WorldWideScience

Sample records for biological effective dose

  1. Biological Effects of Low-Dose Exposure

    CERN Document Server

    Komochkov, M M

    2000-01-01

    On the basis of the two-protection reaction model an analysis of stochastic radiobiological effects of low-dose exposure of different biological objects has been carried out. The stochastic effects are the results published in the last decade: epidemiological studies of human cancer mortality, the yield of thymocyte apoptosis of mice and different types of chromosomal aberrations. The results of the analysis show that as dependent upon the nature of biological object, spontanous effect, exposure conditions and radiation type one or another form dose - effect relationship is realized: downwards concave, near to linear and upwards concave with the effect of hormesis included. This result testifies to the incomplete conformity of studied effects of 1990 ICRP recomendations based on the linear no-threshold hypothesis about dose - effect relationship. Because of this the methodology of radiation risk estimation recomended by ICRP needs more precisian and such quantity as collective dose ought to be classified into...

  2. The biologically effective dose in inhalation nanotoxicology.

    Science.gov (United States)

    Donaldson, Ken; Schinwald, Anja; Murphy, Fiona; Cho, Wan-Seob; Duffin, Rodger; Tran, Lang; Poland, Craig

    2013-03-19

    In all branches of toxicology, the biologically effective dose (BED) is the fraction of the total dose of a toxin that actually drives any toxic effect. Knowledge of the BED has a number of applications including in building structure-activity relationships, the selection of metrics, the design of safe particles, and the determination of when a nanoparticle (NP) can be considered to be "new" for regulatory purposes. In particle toxicology, we define the BED as "the entity within any dose of particles in tissue that drives a critical pathophysiogically relevant form of toxicity (e.g., oxidative stress, inflammation, genotoxicity, or proliferation) or a process that leads to it." In conventional chemical toxicology, researchers generally use the mass as the metric to describe dose (such as mass per unit tissue or cells in culture) because of its convenience. Concentration, calculated from mass, may also figure in any description of dose. In the case of a nanoparticle dose, researchers use either the mass or the surface area. The mass of nanoparticles is not the only driver of their activity: the surfaces of insoluble particles interact with biological systems, and soluble nanoparticles can release factors that interact with these systems. Nanoparticle shape can modify activity. In this Account, we describe the current knowledge of the BED as it pertains to different NP types. Soluble toxins released by NPs represent one potential indicator of BED for wholly or partially soluble NPs composed of copper or zinc. Rapid dissolution of these NPs into their toxic ions in the acidic environment of the macrophage phagolysosome causes those ions to accumulate, which leads to lysosome destabilization and inflammation. In contrast, soluble NPs that release low toxicity ions, such as magnesium oxide NPs, are not inflammogenic. For insoluble NPs, ζ potential can serve as a BED measurement because the exposure of the particle surface to the acidic milieu of the phagolysosome and

  3. Biological effects and equivalent doses in radiotherapy: a software solution

    CERN Document Server

    Voyant, Cyril; Roustit, Rudy; Biffi, Katia; Marcovici, Celine Lantieri

    2013-01-01

    The limits of TDF (time, dose, and fractionation) and linear quadratic models have been known for a long time. Medical physicists and physicians are required to provide fast and reliable interpretations regarding the delivered doses or any future prescriptions relating to treatment changes. We therefore propose a calculation interface under the GNU license to be used for equivalent doses, biological doses, and normal tumor complication probability (Lyman model). The methodology used draws from several sources: the linear-quadratic-linear model of Astrahan, the repopulation effects of Dale, and the prediction of multi-fractionated treatments of Thames. The results are obtained from an algorithm that minimizes an ad-hoc cost function, and then compared to the equivalent dose computed using standard calculators in seven French radiotherapy centers.

  4. Biologically effective doses of postoperative radiotherapy in the prevention of keloids. Dose-effect relationship

    Energy Technology Data Exchange (ETDEWEB)

    Kal, H.B.; Veen, R.E. [University Medical Center Utrecht (Netherlands). Dept. of Radiotherapy

    2005-11-01

    Purpose: To review the recurrence rates of keloids after surgical excision followed by radiotherapy, and to answer the question whether after normalization of the dose, a dose-effect relationship could be derived. Material and Methods: A literature search was performed to identify studies dealing with the efficacy of various irradiation regimes for the prevention of keloids after surgery. Biologically effective doses (BEDs) of the various irradiation regimens were calculated using the linear-quadratic concept. A distinction between recurrence rates of keloids in the face and neck region and those in other parts of the body was made. Results: 31 reports were identified with PubMed with the search terms keloids, surgery, radiation therapy, radiotherapy. 13 reports were excluded, because no link could be found between recurrence rate and dose, or if less than ten patients per dose group. The recurrence rate for surgery only was 50-80%. For BED values >10 Gy the recurrence rate decreased as a function of BED. For BED values >30 Gy the recurrence rate was <10%. For a given dose, the recurrence rates of keloids in the sites with high stretch tension were not significantly higher than in sites without stretch tension. Conclusion: The results of this study indicate that for effectively treating keloids postoperatively, a relatively high dose must be applied in a short overall treatment time. The optimal treatment probably is an irradiation scheme resulting in a BED value of at least 30 Gy. A BED value of 30 Gy can be obtained with, for instance, a single acute dose of 13 Gy, two fractions of 8 Gy two fractions of 8 Gy or three fractions of 6 Gy, or a single dose of 27 Gy at low dose rate. The radiation treatment should be administered within 2 days after surgery. (orig.)

  5. Modeling of biological doses and mechanical effects on bone transduction

    CERN Document Server

    Rieger, Romain; Jennane, Rachid; 10.1016/j.jtbi.2011.01.003

    2012-01-01

    Shear stress, hormones like parathyroid and mineral elements like calcium mediate the amplitude of stimulus signal which affects the rate of bone remodeling. The current study investigates the theoretical effects of different metabolic doses in stimulus signal level on bone. The model was built considering the osteocyte as the sensing center mediated by coupled mechanical shear stress and some biological factors. The proposed enhanced model was developed based on previously published works dealing with different aspects of bone transduction. It describes the effects of physiological doses variations of Calcium, Parathyroid Hormone, Nitric Oxide and Prostaglandin E2 on the stimulus level sensed by osteocytes in response to applied shear stress generated by interstitial fluid flow. We retained the metabolic factors (Parathyroid Hormone, Nitric Oxide, and Prostaglandin E2) as parameters of bone cell mechanosensitivity because stimulation/inhibition of induced pathways stimulates osteogenic response in vivo. We t...

  6. The biological effect of large single doses: a possible role for non-targeted effects in cell inactivation.

    Directory of Open Access Journals (Sweden)

    Marlon R Veldwijk

    Full Text Available BACKGROUND AND PURPOSE: Novel radiotherapy techniques increasingly use very large dose fractions. It has been argued that the biological effect of large dose fractions may differ from that of conventional fraction sizes. The purpose was to study the biological effect of large single doses. MATERIAL AND METHODS: Clonogenic cell survival of MCF7 and MDA-MB-231 cells was determined after direct X-ray irradiation, irradiation of feeder cells, or transfer of conditioned medium (CM. Cell-cycle distributions and the apoptotic sub-G1 fraction were measured by flow cytometry. Cytokines in CM were quantified by a cytokine antibody array. γH2AX foci were detected by immunofluorescence microscopy. RESULTS: The surviving fraction of MCF7 cells irradiated in vitro with 12 Gy showed an 8.5-fold decrease (95% c.i.: 4.4-16.3; P<0.0001 when the density of irradiated cells was increased from 10 to 50×10(3 cells per flask. Part of this effect was due to a dose-dependent transferrable factor as shown in CM experiments in the dose range 5-15 Gy. While no effect on apoptosis and cell cycle distribution was observed, and no differentially expressed cytokine could be identified, the transferable factor induced prolonged expression of γH2AX DNA repair foci at 1-12 h. CONCLUSIONS: A dose-dependent non-targeted effect on clonogenic cell survival was found in the dose range 5-15 Gy. The dependence of SF on cell numbers at high doses would represent a "cohort effect" in vivo. These results support the hypothesis that non-targeted effects may contribute to the efficacy of very large dose fractions in radiotherapy.

  7. The dose-dependence biological effect of laser fluence on rabbit fibroblasts derived from urethral scar.

    Science.gov (United States)

    Yang, Yong; Yu, Bo; Sun, Dongchong; Wu, Yuanyi; Xiao, Yi

    2015-04-01

    Two-micrometer laser vaporization resection has been used in clinic for years, but some patients received the treatment are still faced with excessive and abnormal wound repair which leads to the recurrent of urethral stricture eventually. Fibroblasts play a key role in the processes of "narrow-expansion/operation-restenosis" recurring problems. Here, we investigated the effect of laser fluence biomodulation on urethral scar fibroblasts as well as the underlying mechanism. Urethral scar fibroblasts were isolated and cultured, and laser irradiation (2 μm) was applied at different laser fluence or doses (0, 0.125, 0.5, 2, 8, 32 J/cm(2)) with a single exposure in 1 day. The effect of 2-μm laser irradiation on cell proliferation, viability, and expression of scar formation related genes were investigated. Two-micrometer laser irradiation with intermediate dose (8 J/cm(2)) promoted scar fibroblasts proliferation and reactive oxygen species (ROS) production, while higher doses of 32 J/cm(2) are suppressive as it decreased the survival rate, viability, and proliferation of fibroblasts. In addition, qRT-PCR and Western blotting results both proven that collagen type I, collagen IV, MMP9, and CTGF display significant increase, yet the TGF-β1 expression was severely reduced at intermediate dose (8 J/cm(2)) group when compared with the others groups. Our findings suggest the scar formation-related genes are sensitive to intermediate laser irradiation dose, the most in scar fibroblasts. We revealed the bioeffect and molecular mechanism of 2-μm laser irradiation on rabbit urethral scar fibroblasts. Our study provides new insights into the mechanisms which involved in the excessive and abnormal wound repair of 2-μm laser vaporization resection. These results could potentially contribute to further study on biological effects and application of 2-μm laser irradiation in urethral stricture therapy.

  8. Nonlinear Effects of Nanoparticles: Biological Variability From Hormetic Doses, Small Particle Sizes, and Dynamic Adaptive Interactions

    OpenAIRE

    Bell, Iris R.; Ives, John A.; Wayne B. Jonas

    2013-01-01

    Researchers are increasingly focused on the nanoscale level of organization where biological processes take place in living systems. Nanoparticles (NPs, e.g., 1–100 nm diameter) are small forms of natural or manufactured source material whose properties differ markedly from those of the respective bulk forms of the “same” material. Certain NPs have diagnostic and therapeutic uses; some NPs exhibit low-dose toxicity; other NPs show ability to stimulate low-dose adaptive responses (hormesis). B...

  9. A meta-analysis of the abscopal effect in preclinical models: Is the biologically effective dose a relevant physical trigger?

    Science.gov (United States)

    Strolin, Silvia; Bossi, Gianluca; Strigari, Lidia

    2017-01-01

    Background Preclinical in vivo studies using small animals are considered crucial in translational cancer research and clinical implementation of novel treatments. This is of paramount relevance in radiobiology, especially for any technological developments permitted to deliver high doses in single or oligo-fractionated regimens, such as stereotactic ablative radiotherapy (SABR). In this context, clinical success in cancer treatment needs to be guaranteed, sparing normal tissue and preventing the potential spread of disease or local recurrence. In this work we introduce a new dose-response relationship based on relevant publications concerning preclinical models with regard to delivered dose, fractionation schedule and occurrence of biological effects on non-irradiated tissue, abscopal effects. Methods We reviewed relevant publications on murine models and the abscopal effect in radiation cancer research following PRISMA methodology. In particular, through a log-likelihood method, we evaluated whether the occurrence of abscopal effects may be related to the biologically effective dose (BED). To this aim, studies accomplished with different tumor histotypes were considered in our analysis including breast, colon, lung, fibrosarcoma, pancreas, melanoma and head and neck cancer. For all the tumors, the α / β ratio was assumed to be 10 Gy, as generally adopted for neoplastic cells. Results Our results support the hypothesis that the occurrence rate of abscopal effects in preclinical models increases with BED. In particular, the probability of revealing abscopal effects is 50% when a BED of 60 Gy is generated. Conclusion Our study provides evidence that SABR treatments associated with high BEDs could be considered an effective strategy in triggering the abscopal effect, thus shedding light on the promising outcomes revealed in clinical practice. PMID:28222111

  10. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos [Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, TX 78229 (United States); Cheng, Chih-Yao, E-mail: shic@uthscsa.ed [Radiation Oncology Department, Oklahoma University Health Science Center, Oklahoma, OK 73104 (United States)

    2010-09-21

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V{sub 100} reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as

  11. Interaction between the biological effects of high- and low-LET radiation dose components in a mixed field exposure

    DEFF Research Database (Denmark)

    Mason, Anna J.; Giusti, Valerio; Green, Stuart;

    2011-01-01

    The relative biological effectiveness of two epithermal neutron sources, a reactor based source at Studsvik, Sweden, and a proton accelerator-based source in Birmingham, UK, was studied in relation to the proportional absorbed dose distribution as a function of neutron energy. Evidence for any in...

  12. Extension of the biological effective dose to the MIRD schema and possible implications in radionuclide therapy dosimetry.

    Science.gov (United States)

    Baechler, Sébastien; Hobbs, Robert F; Prideaux, Andrew R; Wahl, Richard L; Sgouros, George

    2008-03-01

    In dosimetry-based treatment planning protocols, patients with rapid clearance of the radiopharmaceutical require a larger amount of initial activity than those with slow clearance to match the absorbed dose to the critical organ. As a result, the dose-rate to the critical organ is higher in patients with rapid clearance and may cause unexpected toxicity compared to patients with slow clearance. In order to account for the biological impact of different dose-rates, radiobiological modeling is beginning to be applied to the analysis of radionuclide therapy patient data. To date, the formalism used for these analyses is based on kinetics derived from activity in a single organ, the target. This does not include the influence of other source organs to the dose and dose-rate to the target organ. As a result, only self-dose irradiation in the target organ contributes to the dose-rate. In this work, the biological effective dose (BED) formalism has been extended to include the effect of multiple source organ contributions to the net dose-rate in a target organ. The generalized BED derivation has been based on the Medical Internal Radionuclide Dose Committee (MIRD) schema assuming multiple source organs following exponential effective clearance of the radionuclide. A BED-based approach to determine the largest safe dose to critical organs has also been developed. The extended BED formalism is applied to red marrow dosimetry, as well as kidney dosimetry considering the cortex and the medulla separately, since both those organs are commonly dose limiting in radionuclide therapy. The analysis shows that because the red marrow is an early responding tissue (high alpha/beta), it is less susceptible to unexpected toxicity arising from rapid clearance of high levels of administered activity in the marrow or in the remainder of the body. In kidney dosimetry, the study demonstrates a complex interplay between clearance of activity in the cortex and the medulla, as well as the

  13. Relative Biological Effectiveness of HZE Fe Ions for Induction ofMicro-Nuclei at Low Doses

    Energy Technology Data Exchange (ETDEWEB)

    Groesser, Torsten; Chun, Eugene; Rydberg, Bjorn

    2007-01-16

    Dose-response curves for induction of micro-nuclei (MN) was measured in Chinese hamster V79 and xrs6 (Ku80-) cells and in human mammary epithelial MCF10A cells in the dose range of 0.05-1 Gy. The Chinese Hamster cells were exposed to 1 GeV/u Fe ions, 600 MeV/u Fe ions, and 300 MeV/u Fe ions (LETs of 151, 176 and 235 keV/{micro}m respectively) as well as with 320 kVp X-rays as reference. Second-order polynomials were fitted to the induction curves and the initial slopes (the alpha values) were used to calculate RBE. For the repair proficient V79 cells the RBE at these low doses increased with LET. The values obtained were 3.1 (LET=151 keV/{micro}m), 4.3 (LET = 176 keV/{micro}m) and 5.7 (LET = 235 keV/{micro}m), while the RBE was close to 1 for the repair deficient xrs6 cells regardless of LET. For the MCF10A cells the RBE was determined for 1 GeV/u Fe ions and found to be 5.4, slightly higher than for V79 cells. To test the effect of shielding, the 1 GeV/u Fe ion beam was intercepted by various thickness of high-density polyethylene plastic absorbers, which resulted in energy loss and fragmentation. It was found that the MN yield for V79 cells placed behind the absorbers decreased in proportion to the decrease in dose both before and after the Fe ion Bragg peak (excluding the area around the Fe-ion Bragg peak itself), indicating that RBE did not change significantly due to shielding. At the Bragg peak the effectiveness for MN formation per unit dose was decreased, indicating an 'overkill' effect by low-energy very high-LET Fe ions.

  14. Biological and hemodynamic effects of low doses of fludrocortisone and hydrocortisone, alone or in combination, in healthy volunteers with hypoaldosteronism.

    Science.gov (United States)

    Laviolle, B; Le Maguet, P; Verdier, M-C; Massart, C; Donal, E; Lainé, F; Lavenu, A; Pape, D; Bellissant, E

    2010-08-01

    Low doses of hydrocortisone (HC) and fludrocortisone (FC) administered together improve the prognosis after septic shock; however, there continues to be disagreement about the utility of FC for this indication. The biological and hemodynamic effects of HC (50 mg intravenously) and FC (50 microg orally) were assessed in 12 healthy male volunteers with saline-induced hypoaldosteronism in a placebo-controlled, randomized, double-blind, crossover study performed according to a 2 x 2 factorial design. HC and FC significantly decreased urinary sodium and potassium levels (from -58% at 4 h to -28% at 10 h and from -35% at 8 h to -24% at 12 h, respectively) with additive effects. At 4 h after administration, HC significantly increased cardiac output (+14%), decreased systemic vascular resistances (-14%), and slightly increased heart rate (+4 beats/min), whereas FC had no hemodynamic effect. At doses used in septic shock, HC induced greater mineralocorticoid effect than FC did. HC also induced transient systemic hemodynamic effects, whereas FC did not. New studies are required to better define the optimal dose of FC in septic shock.

  15. The role of nuclear reactions in Monte Carlo calculations of absorbed and biological effective dose distributions in hadron therapy

    CERN Document Server

    Brons, S; Elsässer, T; Ferrari, A; Gadioli, E; Mairani, A; Parodi, K; Sala, P; Scholz, M; Sommerer, F

    2010-01-01

    Monte Carlo codes are rapidly spreading among hadron therapy community due to their sophisticated nuclear/electromagnetic models which allow an improved description of the complex mixed radiation field produced by nuclear reactions in therapeutic irradiation. In this contribution results obtained with the Monte Carlo code FLUKA are presented focusing on the production of secondary fragments in carbon ion interaction with water and on CT-based calculations of absorbed and biological effective dose for typical clinical situations. The results of the simulations are compared with the available experimental data and with the predictions of the GSI analytical treatment planning code TRiP.

  16. Low dose/low fluence ionizing radiation-induced biological effects: The role of intercellular communication and oxidative metabolism

    Science.gov (United States)

    Azzam, Edouard

    Mechanistic investigations have been considered critical to understanding the health risks of exposure to ionizing radiation. To gain greater insight in the biological effects of exposure to low dose/low fluence space radiations with different linear energy transfer (LET) properties, we examined short and long-term biological responses to energetic protons and high charge (Z) and high energy (E) ions (HZE particles) in human cells maintained in culture and in targeted and non-targeted tissues of irradiated rodents. Particular focus of the studies has been on mod-ulation of gene expression, proliferative capacity, induction of DNA damage and perturbations in oxidative metabolism. Exposure to mean doses of 1000 MeV/nucleon iron ions, by which a small to moderate proportion of cells in an exposed population is targeted through the nucleus by an HZE particle, induced stressful effects in the irradiated and non-irradiated cells in the population. Direct intercellular communication via gap-junctions was a primary mediator of the propagation of stressful effects from irradiated to non-irradiated cells. Compromised prolif-erative capacity, elevated level of DNA damage and oxidative stress evaluated by measurements of protein carbonylation, lipid peroxidation and activity of metabolic enzymes persisted in the progeny of irradiated and non-irradiated cells. In contrast, progeny of cells exposed to high or low doses from 150-1000 MeV protons retained the ability to form colonies and harbored similar levels of micronuclei, a surrogate form of DNA damage, as control, which correlated with normal reactive oxygen species (ROS) levels. Importantly, a significant increase in the spontaneous neoplastic transformation frequency was observed in progeny of bystander mouse embryo fibroblasts (MEFs) co-cultured with MEFs irradiated with energetic iron ions but not protons. Of particular significance, stressful effects were detected in non-targeted tissues of rats that received partial

  17. An analogy between effects of ultra-low doses of biologically active substances on biological objects and properties of spin supercurrents in superfluid 3He-B.

    Science.gov (United States)

    Boldyreva, Liudmila B

    2011-07-01

    The effects of ultra-low doses (ULDs) of biologically active substances (BASs) (with concentrations of 10(-13)M or lower) on biological objects (BOs), such as cells, organisms, etc., and the properties of spin supercurrents in superfluid (3)He-B are discussed. It is shown that the effects of ULDs of BASs on biologic objects can be specified by the same set of physical characteristics and described by the same mathematical relations as those used for the specification and description of the properties of spin supercurrents between spin structures in superfluid (3)He-B. This is based on the up-to-date physical concepts: 1) the physical vacuum has the properties of superfluid (3)He-B; 2) all quantum entities (hence, the BAS and the BO, which consist of such entities) produce spin structures in the physical vacuum. The photon being a quantum entity, the features of the effects of low-intensity electromagnetic radiation on BOs can be explained using the same approach.

  18. Clinical significance of cumulative biological effective dose and overall treatment time in the treatment of carcinoma cervix

    Directory of Open Access Journals (Sweden)

    Mandal Abhijit

    2007-01-01

    Full Text Available The purpose of this retrospective study is to report the radiotherapy treatment response of, and complications in, patients with cervical cancer on the basis of cumulative biologic effective dose (BED and overall treatment time (OTT. Sixty-four (stage II - 35/64; stage III - 29/64 patients of cervical cancer were treated with combination of external beam radiotherapy (EBRT and low dose rate intracavitary brachytherapy (ICBT. The cumulative BED was calculated at Point A (BED 10 ; and bladder, rectal reference points (BED 2.5 using the linear-quadratic BED equations. The local control (LC rate and 5-year disease-free survival (DFS rate in patients of stage II were comparable for BED 10 < 84.5 and BED 10 > 84.5 but were much higher for BED 10 > 84.5 than BED 10 < 84.5 ( P < 0.01 in stage III patients. In the stage II patients, The LC rate and 5-year DFS rate were comparable for OTT < 50 days and for OTT> 50 days but were much higher in stage III patients with OTT < 50 than OTT> 50 days ( P < 0.001. It was also observed that patients who received BED 2.5 < 105 had lesser rectal ( P < 0.001 and bladder complications than BED 2.5 > 105. Higher rectal complication-free survival (CFS R rate, bladder complication-free survival (CFS B rate and all-type late complication-free survival rate were observed in patients who received BED 2.5 < 105 than BED 2.5 > 105. A balanced, optimal and justified radiotherapy treatment schedule to deliver higher BED 10 (>84.5 and lower BED 2.5 (< 105 in lesser OTT (< 50 days is essential in carcinoma cervix to expect a better treatment outcome in all respects.

  19. Biological effects in lymphocytes irradiated with {sup 99m}Tc: determination of the curve dose-response; Efeitos biologicos em linfocitos irradiados com {sup 99m}Tc: determinacao da curva dose-resposta

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Romero Marcilio Barros Matias de

    2002-08-01

    Biological dosimetry estimates the absorbed dose taking into account changes in biological parameters. The most used biological indicator of an exposition to ionizing radiation is the quantification of chromosomal aberrations of lymphocytes from irradiated individuals. The curves of dose versus induced biological effects, obtained through bionalyses, are used in used in retrospective evaluations of the dose, mainly in the case of accidents. In this research, a simple model for electrons and photons transports was idealized to simulate the irradiation of lymphocytes with {sup 99m} Tc, representing a system used for irradiation of blood cells. The objective of the work was to establish a curve of dose versus frequencies of chromosomal aberrations in lymphocytes of human blood. For the irradiation of blood samples micro spheres of human serum of albumin (HSAM) market with {sup 99m} Tc were used, allowing the irradiation of blood with different administered activities of {sup 99m} Tc, making possible the study the cytogenetical effects as a function of such activities. The conditions of irradiation in vivo using HSAM spheres marked with {sup 99m} Tc were simulated with MCNP 4C (Monte Carlo N-Particle) code to obtain the dose-response curve. Soft tissue composition was employed to simulate blood tissue and the analyses of the curve of dose versus biological effect showed a linear quadratic response of the unstable chromosomal aberrations. As a result, the response of dose versus chromosomal aberrations of blood irradiation with {sup 99m} Tc was best fitted by the curve Y=(8,99 {+-}2,06) x 1-{sup -4} + (1,24 {+-}0,62) x 10{sup -2} D + (5,67 {+-} 0,64) x 10{sup -2} D{sup 2}. (author)

  20. Biologically effective dose in fractionated molecular radiotherapy—application to treatment of neuroblastoma with 131I-mIBG

    Science.gov (United States)

    Mínguez, Pablo; Gustafsson, Johan; Flux, Glenn; Sjögreen Gleisner, Katarina

    2016-03-01

    In this work, the biologically effective dose (BED) is investigated for fractionated molecular radiotherapy (MRT). A formula for the Lea-Catcheside G-factor is derived which takes the possibility of combinations of sub-lethal damage due to radiation from different administrations of activity into account. In contrast to the previous formula, the new G-factor has an explicit dependence on the time interval between administrations. The BED of tumour and liver is analysed in MRT of neuroblastoma with 131I-mIBG, following a common two-administration protocol with a mass-based activity prescription. A BED analysis is also made for modified schedules, when due to local regulations there is a maximum permitted activity for each administration. Modifications include both the simplistic approach of delivering this maximum permitted activity in each of the two administrations, and also the introduction of additional administrations while maintaining the protocol-prescribed total activity. For the cases studied with additional (i.e. more than two) administrations, BED of tumour and liver decreases at most 12% and 29%, respectively. The decrease in BED of the tumour is however modest compared to the two-administration schedule using the maximum permitted activity, where the decrease compared to the original schedule is 47%.

  1. Dose response biology: the case of resveratrol.

    Science.gov (United States)

    Calabrese, Edward J; Mattson, Mark P; Calabrese, Vittorio

    2010-12-01

    Resveratrol often displays hormesis-like biphasic dose responses. This occurs in a broad range of biological models and for numerous endpoints of biomedical interest and public health concern. Recognition of the widespread occurrence of the hormetic nature of many of the responses of resveratrol is important on multiple levels. It can help optimize study design protocols by investigators, create a dose-response framework for better addressing dose-related biological complexities and assist in the development of public health and medical guidance with respect to considerations for what is an optimal dose not just for an agent such as resveratrol, but also for the plethora of agents that also act via hormetic mechanisms.

  2. Are there dangers in biologic dose reduction strategies?

    Science.gov (United States)

    Chan, Christopher K Y; Holroyd, Christopher R; Mason, Alice; Zarroug, Jalaa; Edwards, Christopher J

    2016-07-01

    Biologic dose reduction strategies, for patients with inflammatory rheumatic diseases, have been assessed in multiple studies to assess outcomes compared to ongoing maintenance dosing. Whilst cessation in established disease usually leads to disease flare, dose tapering approaches for those achieving low disease activity often appear to be successful in the short term. However, tapering can be associated with a higher risk of losing disease control and rates of recapture of disease control using the original biologic dose vary between studies. Over relatively short periods of follow-up, a number of studies have shown no statistical difference in radiographic progression in patients tapering or discontinuing biologics. However, a Cochrane review found that radiographic and functional outcomes may be worse after TNF inhibitor discontinuation, and over long-term disease follow-up flares have been associated with radiographic progression and worse patient reported outcomes. To date, no studies of biological therapy dose reduction have specifically investigated the risk of increased immunogenicity or the effects on cardiovascular risk and other co-morbidities, although these remain important potential risks. In addition, whether there are greater dangers in certain dose reduction approaches such as a reduction in dose at the same frequency or a spacing of doses is not established.

  3. The Impact of Adaptive and Non-targeted Effects in the Biological Responses to Low Dose/Low Fluence Ionizing-Radiation: The Modulating Effect of Linear Energy Transfer

    OpenAIRE

    de Toledo, Sonia M.; Buonanno, Manuela; Li, Min; Asaad, Nesrin; Qin, Yong; Zhang, Jie; Azzam, Edouard I.

    2011-01-01

    A large volume of laboratory and human epidemiological studies have shown that high doses of ionizing radiation engender significant health risks. In contrast, the health risks of low level radiation remain ambiguous and have been the subject of intense debate. To reduce the uncertainty in evaluating these risks, research advances in cellular and molecular biology are being used to characterize the biological effects of low dose radiation exposures and their underlying mechanisms. Radiation t...

  4. Three dimensional biological dose distribution of antiprotons

    Energy Technology Data Exchange (ETDEWEB)

    Tegami, Sara; Boll, Rebecca; Sellner, Stefan [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Welsch, Carsten P. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Cockcroft Institute, University of Liverpool (United Kingdom); Holzscheiter, Michael H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); University of New Mexico, Albuquerque (United States)

    2010-07-01

    The goal of external beam cancer therapy is to destroy the tumour while sparing the healthy tissue around it. In hadron therapy, the dose profile of heavy charged particles satisfies this request, because most of the energy is deposited at the end of the particle path, in the Bragg peak. Antiprotons are even more promising, thanks to the extra energy released by annihilation when captured in a normal atom at the end of range. The aim of the AD-4/ACE experiment at CERN is to determine the increase in biological dose near the Bragg peak due to densely ionizing particles emanating from the annihilation of antiprotons. Initial experiments showed the damage to cells inflicted at the end of the beam for identical damage at the skin level to be four times higher for antiprotons than for protons. The radiation field in a spread-out Bragg peak produced with antiprotons is highly mixed and for proper dose planning knowledge of linear energy transfer (LET) and relative biological efficiency (RBE) at any point in the target is needed. We are studying a number of detection methods for their response to mixed radiation fields with the goal to obtain a direct measurement of the 3D LET distribution and report on first results.

  5. Practical aspects and uncertainty analysis of biological effective dose (BED) regarding its three-dimensional calculation in multiphase radiotherapy treatment plans

    Energy Technology Data Exchange (ETDEWEB)

    Kauweloa, Kevin I., E-mail: Kauweloa@livemail.uthscsa.edu; Gutierrez, Alonso N.; Bergamo, Angelo; Stathakis, Sotirios; Papanikolaou, Nikos; Mavroidis, Panayiotis [Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 and Cancer Therapy and Research Center, San Antonio, Texas 78229 (United States)

    2014-07-15

    Purpose: There is a growing interest in the radiation oncology community to use the biological effective dose (BED) rather than the physical dose (PD) in treatment plan evaluation and optimization due to its stronger correlation with radiobiological effects. Radiotherapy patients may receive treatments involving a single only phase or multiple phases (e.g., primary and boost). Since most treatment planning systems cannot calculate the analytical BED distribution in multiphase treatments, an approximate multiphase BED expression, which is based on the total physical dose distribution, has been used. The purpose of this paper is to reveal the mathematical properties of the approximate BED formulation, relative to the true BED. Methods: The mathematical properties of the approximate multiphase BED equation are analyzed and evaluated. In order to better understand the accuracy of the approximate multiphase BED equation, the true multiphase BED equation was derived and the mathematical differences between the true and approximate multiphase BED equations were determined. The magnitude of its inaccuracies under common clinical circumstances was also studied. All calculations were performed on a voxel-by-voxel basis using the three-dimensional dose matrices. Results: Results showed that the approximate multiphase BED equation is accurate only when the dose-per-fractions (DPFs) in both the first and second phases are equal, which occur when the dose distribution does not significantly change between the phases. In the case of heterogeneous dose distributions, which significantly vary between the phases, there are fewer occurrences of equal DPFs and hence the inaccuracy of the approximate multiphase BED is greater. These characteristics are usually seen in the dose distributions being delivered to organs at risk rather than to targets. Conclusions: The finding of this study indicates that the true multiphase BED equation should be implemented in the treatment planning

  6. Relative biological effectiveness and tolerance dose of fission neutrons in canine skin for a potential combination of neutron capture therapy and fast-neutron therapy.

    Science.gov (United States)

    Kadosawa, Tsuyoshi; Ohashi, Fumihito; Nishimura, Ryohei; Sasaki, Nobuo; Saito, Isao; Wakabayashi, Hiroaki; Takeuchi, Akira

    2003-10-01

    To investigate the potential efficacy of fission neutrons from a fast-neutron reactor for the treatment of radioresistant tumors, the relative biological effectiveness (RBE) and tolerance dose of fission neutrons in canine skin were determined. The forelimbs of 34 healthy mongrel dogs received a single dose of fission neutrons (5.6, 6.8, 8.2, 9.6 or 11 Gy) or 137Cs gamma rays (10, 15, 20, 25 or 30 Gy). Based on observations of radiodermatitis for each radiation, the single-fraction RBE of fission neutrons in the sixth month was calculated as approximately 3. The tolerance doses of fission neutrons and gamma rays, defined as the highest doses giving no moist desquamation on the irradiated skin in the recovery phase, were estimated as 7.6 Gy and 20 Gy, respectively. The tolerance dose of 7.6 Gy of fission neutrons included 5.0 Gy of fast neutrons possessing high anti-tumor effects and 1.4 x 10(12) n/cm2 of thermal neutrons, which could be applicable to neutron capture therapy (NCT). The combination of fast-neutron therapy and NCT using a fast-neutron reactor might be useful for the treatment of radioresistant tumors.

  7. Biological dose estimation for accidental supra-high dose gamma-ray exposure

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y., E-mail: yingchen29@yahoo.com.cn [Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850 (China); Yan, X.K. [Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850 (China); Department of Radiation Safety, Beijing Institute of Nuclear and Chemical Safety, 14 Guan-cun, Dongcheng District, Beijing 100077 (China); Du, J.; Wang, Z.D.; Zhang, X.Q.; Zeng, F.G.; Zhou, P.K. [Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850 (China)

    2011-09-15

    To correctly estimate the biological dose of victims accidentally exposed to a very high dose of {sup 60}Co gamma-ray, a new dose-effect curve of chromosomal dicentrics/multicentrics and rings in the supra-high dose range was established. Peripheral blood from two healthy men was irradiated in vitro with doses of {sup 60}Co gamma-rays ranging from 6 to 22 Gy at a dose rate of 2.0 Gy/min. Lymphocytes were concentrated, cultured and harvested at 52 h, 68 h and 72 h. The numbers of dic + r were counted. The dose-effect curves were established and validated using comparisons with doses from the Tokai-mura accident and were then applied to two victims of supra-high dose exposure accident. The results indicated that there were no significant differences in chromosome aberration frequency among the different culture times from 52 h to 72 h. The 6-22 Gy dose-effect curve was fitted to a linear quadratic model Y = -2.269 + 0.776D - 7.868 x l0{sup -3}D{sup 2}. Using this mathematic model, the dose estimates were similar to data from Tokai-mura which were estimated by PCC ring. Whole body average doses of 9.7 Gy and 18.1 Gy for two victims in the Jining accident were satisfactorily given. We established and successfully applied a new dose-effect curve of chromosomal dicentrics plus ring (dic + r) after 6-22 Gy {gamma}-irradiation from a supra-high dose {sup 60}Co gamma-ray accident.

  8. Differential tolerance to biological and subjective effects of four closely spaced doses of N,N-dimethyltryptamine in humans.

    Science.gov (United States)

    Strassman, R J; Qualls, C R; Berg, L M

    1996-05-01

    Tolerance of the behavioral effects of the short-acting, endogenous hallucinogen, N,N-dimethyltryptamine (DMT) is seen inconsistently in animals, and has not been produced in humans. The nature and time course of responses to repetitive, closely spaced administrations of an hallucinogenic dose of DMT were characterized. Thirteen experienced hallucinogen users received intravenous 0.3 mg/kg DMT fumarate, or saline placebo, four times, at 30 min intervals, on 2 separate days, in a randomized, double-blind, design. Tolerance to "psychedelic" subjective effects did not occur according to either clinical interview or Hallucinogen Rating Scale scores. Adrenocorticotropic hormone (ACTH), prolactin, cortisol, and heart rate responses decreased with repeated DMT administration, although blood pressure did not. These data demonstrate the unique properties of DMT relative to other hallucinogens and underscore the differential regulation of the multiple processes mediating the effects of DMT.

  9. Temporal Lobe Reactions After Carbon Ion Radiation Therapy: Comparison of Relative Biological Effectiveness–Weighted Tolerance Doses Predicted by Local Effect Models I and IV

    Energy Technology Data Exchange (ETDEWEB)

    Gillmann, Clarissa, E-mail: clarissa.gillmann@med.uni-heidelberg.de [Department of Radiation Oncology and Radiation Therapy, Heidelberg University Hospital, Heidelberg (Germany); Jäkel, Oliver [Department of Radiation Oncology and Radiation Therapy, Heidelberg University Hospital, Heidelberg (Germany); Heidelberg Ion Beam Therapy Center (HIT), Heidelberg (Germany); Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg (Germany); Schlampp, Ingmar [Department of Radiation Oncology and Radiation Therapy, Heidelberg University Hospital, Heidelberg (Germany); Karger, Christian P. [Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg (Germany)

    2014-04-01

    Purpose: To compare the relative biological effectiveness (RBE)–weighted tolerance doses for temporal lobe reactions after carbon ion radiation therapy using 2 different versions of the local effect model (LEM I vs LEM IV) for the same patient collective under identical conditions. Methods and Materials: In a previous study, 59 patients were investigated, of whom 10 experienced temporal lobe reactions (TLR) after carbon ion radiation therapy for low-grade skull-base chordoma and chondrosarcoma at Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt, Germany in 2002 and 2003. TLR were detected as visible contrast enhancements on T1-weighted MRI images within a median follow-up time of 2.5 years. Although the derived RBE-weighted temporal lobe doses were based on the clinically applied LEM I, we have now recalculated the RBE-weighted dose distributions using LEM IV and derived dose-response curves with Dmax,V-1 cm³ (the RBE-weighted maximum dose in the remaining temporal lobe volume, excluding the volume of 1 cm³ with the highest dose) as an independent dosimetric variable. The resulting RBE-weighted tolerance doses were compared with those of the previous study to assess the clinical impact of LEM IV relative to LEM I. Results: The dose-response curve of LEM IV is shifted toward higher values compared to that of LEM I. The RBE-weighted tolerance dose for a 5% complication probability (TD{sub 5}) increases from 68.8 ± 3.3 to 78.3 ± 4.3 Gy (RBE) for LEM IV as compared to LEM I. Conclusions: LEM IV predicts a clinically significant increase of the RBE-weighted tolerance doses for the temporal lobe as compared to the currently applied LEM I. The limited available photon data do not allow a final conclusion as to whether RBE predictions of LEM I or LEM IV better fit better clinical experience in photon therapy. The decision about a future clinical application of LEM IV therefore requires additional analysis of temporal lobe reactions in a

  10. A graphical user interface (GUI) toolkit for the calculation of three-dimensional (3D) multi-phase biological effective dose (BED) distributions including statistical analyses.

    Science.gov (United States)

    Kauweloa, Kevin I; Gutierrez, Alonso N; Stathakis, Sotirios; Papanikolaou, Niko; Mavroidis, Panayiotis

    2016-07-01

    A toolkit has been developed for calculating the 3-dimensional biological effective dose (BED) distributions in multi-phase, external beam radiotherapy treatments such as those applied in liver stereotactic body radiation therapy (SBRT) and in multi-prescription treatments. This toolkit also provides a wide range of statistical results related to dose and BED distributions. MATLAB 2010a, version 7.10 was used to create this GUI toolkit. The input data consist of the dose distribution matrices, organ contour coordinates, and treatment planning parameters from the treatment planning system (TPS). The toolkit has the capability of calculating the multi-phase BED distributions using different formulas (denoted as true and approximate). Following the calculations of the BED distributions, the dose and BED distributions can be viewed in different projections (e.g. coronal, sagittal and transverse). The different elements of this toolkit are presented and the important steps for the execution of its calculations are illustrated. The toolkit is applied on brain, head & neck and prostate cancer patients, who received primary and boost phases in order to demonstrate its capability in calculating BED distributions, as well as measuring the inaccuracy and imprecision of the approximate BED distributions. Finally, the clinical situations in which the use of the present toolkit would have a significant clinical impact are indicated.

  11. Responses to low doses of ionizing radiation in biological systems.

    Science.gov (United States)

    Feinendegen, Ludwig E; Pollycove, Myron; Sondhaus, Charles A

    2004-07-01

    Biological tissues operate through cells that act together within signaling networks. These assure coordinated cell function in the face of constant exposure to an array of potentially toxic agents, externally from the environment and endogenously from metabolism. Living tissues are indeed complex adaptive systems.To examine tissue effects specific for low-dose radiation, (1) absorbed dose in tissue is replaced by the sum of the energies deposited by each track event, or hit, in a cell-equivalent tissue micromass (1 ng) in all micromasses exposed, that is, by the mean energy delivered by all microdose hits in the exposed micromasses, with cell dose expressing the total energy per micromass from multiple microdoses; and (2) tissue effects are related to cell damage and protective cellular responses per average microdose hit from a given radiation quality for all such hits in the exposed micromasses.The probability of immediate DNA damage per low-linear-energy-transfer (LET) average micro-dose hit is extremely small, increasing over a certain dose range in proportion to the number of hits. Delayed temporary adaptive protection (AP) involves (a) induced detoxification of reactive oxygen species, (b) enhanced rate of DNA repair, (c) induced removal of damaged cells by apoptosis followed by normal cell replacement and by cell differentiation, and (d) stimulated immune response, all with corresponding changes in gene expression. These AP categories may last from less than a day to weeks and be tested by cell responses against renewed irradiation. They operate physiologically against nonradiogenic, largely endogenous DNA damage, which occurs abundantly and continually. Background radiation damage caused by rare microdose hits per micromass is many orders of magnitude less frequent. Except for apoptosis, AP increasingly fails above about 200 mGy of low-LET radiation, corresponding to about 200 microdose hits per exposed micromass. This ratio appears to exceed approximately

  12. The effect of the beta-emitting yttrium-90 citrate on the dose-response of dicentric chromosomes in human lymphocytes: a basis for biological dosimetry after radiosynoviorthesis.

    Science.gov (United States)

    Schmid, E; Selbach, H-J; Voth, M; Pinkert, J; Gildehaus, F J; Klett, R; Haney, M

    2006-07-01

    The production of dicentric chromosomes in human lymphocytes by beta-particles of yttrium-90 (Y-90) was studied in vitro to provide a basis of biological dosimetry after radiosynoviorthesis (RSO) of persistent synovitis by intra-articular administration of yttrium-90 citrate colloid. Since the injected colloid may leak into the lymphatic drainage exposing other parts of the body to radiation, the measurement of biological damage induced by beta-particles of Y-90 is important for the assessment of radiation risk to the patients. A linear dose-response relationship (alpha = 0.0229 +/- 0.0028 dicentric chromosomes per cell per gray) was found over the dose range of 0.2176-2.176 Gy. The absorbed doses were calculated for exposure of blood samples to Y-90 activities from 40 to 400 kBq using both Monte Carlo simulation and an analytical model. The maximum low-dose RBE, the RBE(M) which is equivalent to the ratio of the alpha coefficients of the dose-response curves, is well in line with published results obtained earlier for irradiation of blood of the same donor with heavily filtered 220 kV X-rays (3.35 mm copper), but half of the RBE(M) relative to weakly filtered 220 kV X-rays. Therefore, it can be concluded that for estimating an absorbed dose during RSO by the technique of biological dosimetry, in vitro and in vivo data for the same radiation quality are necessary.

  13. Acute biological effects of simulating the whole-body radiation dose distribution from a solar particle event using a porcine model.

    Science.gov (United States)

    Wilson, Jolaine M; Sanzari, Jenine K; Diffenderfer, Eric S; Yee, Stephanie S; Seykora, John T; Maks, Casey; Ware, Jeffrey H; Litt, Harold I; Reetz, Jennifer A; McDonough, James; Weissman, Drew; Kennedy, Ann R; Cengel, Keith A

    2011-11-01

    In a solar particle event (SPE), an unshielded astronaut would receive proton radiation with an energy profile that produces a highly inhomogeneous dose distribution (skin receiving a greater dose than internal organs). The novel concept of using megavoltage electron-beam radiation to more accurately reproduce both the total dose and the dose distribution of SPE protons and make meaningful RBE comparisons between protons and conventional radiation has been described previously. Here, Yucatan minipigs were used to determine the effects of a superficial, SPE-like proton dose distribution using megavoltage electrons. In these experiments, dose-dependent increases in skin pigmentation, ulceration, keratinocyte necrosis and pigment incontinence were observed. Five of 18 animals (one each exposed to 7.5 Gy and 12.5 Gy radiation and three exposed to 25 Gy radiation) developed symptomatic, radiation-associated pneumonopathy approximately 90 days postirradiation. The three animals from the highest dose group showed evidence of mycoplasmal pneumonia along with radiation pneumonitis. Moreover, delayed-type hypersensitivity was found to be altered, suggesting that superficial irradiation of the skin with ionizing radiation might cause immune dysfunction or dysregulation. In conclusion, using total doses, patterns of dose distribution, and dose rates that are compatible with potential astronaut exposure to SPE radiation, animals experienced significant toxicities that were qualitatively different from toxicities previously reported in pigs for homogeneously delivered radiation at similar doses.

  14. Increased Biological Effective Dose of Radiation Correlates with Prolonged Survival of Patients with Limited-Stage Small Cell Lung Cancer: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Lucheng Zhu

    Full Text Available Thoracic radiotherapy (TRT is a critical component of the treatment of limited-stage small cell lung cancer (LS-SCLC. However, the optimal radiation dose/fractionation remains elusive. This study reviewed current evidence and explored the dose-response relationship in patients with LS-SCLC who were treated with radiochemotherapy.A quantitative analysis was performed through a systematic search of PubMed, Web of Science, and the Cochrane Library. The correlations between the biological effective dose (BED and median overall survival (mOS, median progression-free survival (mPFS, 1-, 3-, and 5-year overall survival (OS as well as local relapse (LR were evaluated.In all, 2389 patients in 19 trials were included in this study. Among these 19 trials, seven were conducted in Europe, eight were conducted in Asia and four were conducted in the United States. The 19 trials that were included consisted of 29 arms with 24 concurrent and 5 sequential TRT arms. For all included studies, the results showed that a higher BED prolonged the mOS (R2 = 0.198, p<0.001 and the mPFS (R2 = 0.045, p<0.001. The results also showed that increased BED improved the 1-, 3-, and 5-year OS. A 10-Gy increment added a 6.3%, a 5.1% and a 3.7% benefit for the 1-, 3-, and 5-year OS, respectively. Additionally, BED was negatively correlated with LR (R2 = 0.09, p<0.001. A subgroup analysis of concurrent TRT showed that a high BED prolonged the mOS (p<0.001 and the mPFS (p<0.001, improved the 1-, 3-, and 5-year OS (p<0.001 and decreased the rate of LR (p<0.001.This study showed that an increased BED was associated with improved OS, PFS and decreased LR in patients with LS-SCLC who were treated with combined chemoradiotherapy, which indicates that the strategy of radiation dose escalation over a limited time frame is worth exploring in a prospective clinical trial.

  15. Clinical Outcomes of Biological Effective Dose-Based Fractionated Stereotactic Radiation Therapy for Metastatic Brain Tumors From Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, Tomohiko, E-mail: matsutomo_llp@yahoo.co.jp [Department of Radiation Oncology, Kumamoto University, Kumamoto (Japan); Kogo, Kasei [Kumamoto Radiosurgery Clinic, Kumamoto (Japan); Oya, Natsuo [Department of Radiation Oncology, Kumamoto University, Kumamoto (Japan)

    2013-03-15

    Purpose: To evaluate the efficacy and toxicity of fractionated stereotactic radiation therapy (FSRT) based on biological effective dose (BED), a novel approach to deliver a fixed BED irrespective of dose fractionation, for brain metastases from non-small cell lung cancer (NSCLC). Methods and Materials: Between March 2005 and March 2009 we treated 299 patients with 1 to 5 lesions from NSCLC (573 total brain metastases) with FSRT using Novalis. The dose fractionation schedules were individually determined to deliver a peripheral BED10 (α/β ratio = 10) of approximately 80 Gy{sub 10}. The median number of fractions was 3 (range, 2-10), the median peripheral BED10 was 83.2 Gy (range, 19.1-89.6 Gy). Patients were followed up with magnetic resonance imaging (MRI) studies performed at 1- to 2-month intervals. The local tumor control rate and overall local progression-free and intracranial relapse-free survival were calculated by the Kaplan-Meier method. Results: Local control rates for all 573 lesions at 6 and 12 months were 96.3% and 94.5%, respectively. By multivariate analysis the tumor diameter was the only factor predictive of the local control rate (P=.001). The median overall survival, local progression-free survival, and intracranial relapse-free survival were 17.1, 14.9, and 4.4 months, respectively. The overall survival, local progression-free survival, and intracranial relapse-free survival rates at 6 and 12 months were 78.5% and 63.3%, 74.3% and 57.8%, and 41.0% and 21.8%, respectively. Six patients (2%) manifested progressive radiation injury to the brain even during therapy with corticosteroids; they underwent hyperbaric oxygen therapy, and follow-up MRI showed improvement. Conclusions: This study showed that BED-based FSRT for brain metastases from NSCLC is a promising strategy that may yield excellent outcomes with acceptable toxicity. Criteria must be established to determine the optimal dose fractionation for individual patients.

  16. Which Is the Optimal Biologically Effective Dose of Stereotactic Body Radiotherapy for Stage I Non-Small-Cell Lung Cancer? A Meta-Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jian; Yang Fujun [Department of Radiation Oncology, Cancer Hospital, Tianjin Medical University, Tianjin (China); Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan (China); Shandong' s Key Laboratory of Radiation Oncology, Jinan (China); Li Baosheng, E-mail: baoshli@yahoo.com [Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan (China); Shandong' s Key Laboratory of Radiation Oncology, Jinan (China); Li Hongsheng [Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan (China); Shandong' s Key Laboratory of Radiation Oncology, Jinan (China); Liu Jing [School of Public Health, Shandong University, Jinan (China); Huang Wei; Wang Dongqing; Yi Yan; Wang Juan [Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan (China); Shandong' s Key Laboratory of Radiation Oncology, Jinan (China)

    2011-11-15

    Purpose: To assess the relationship between biologically effective dose (BED) and efficacy of stereotactic body radiation therapy (SBRT) and to explore the optimal BED range for Stage I non-small-cell lung cancer (NSCLC). Methods and Materials: Eligible studies were identified on Medline, Embase, the Cochrane Library, and the proceedings of annual meetings through June 2010. According to the quartile of included studies, BED was divided into four dose groups: low (<83.2 Gy), medium (83.2-106 Gy), medium to high (106-146 Gy), high (>146 Gy). To obtain pooled estimates of overall survival (OS), cancer-specific survival (CSS), and local control rate (LCR), data were combined in a random effect model. Pooled estimates were corrected for the percentage of small tumors (<3 cm). Results: Thirty-four observational studies with a total of 2,587 patients were included in the meta-analysis. Corrected pooled estimates of 2- or 3-year OS in the medium BED (76.1%, 63.5%) or the medium to high BED (68.3%, 63.2%) groups were higher than in the low (62.3%, 51.9%) or high groups (55.9%, 49.5%), respectively (p {<=} 0.004). Corrected 3-year CSS in the medium (79.5%), medium to high (80.6%), and high groups (90.0%) were higher than in the low group (70.1%, p = 0.016, 0.018, 0.001, respectively). Conclusion: The OS for the medium or medium to high BED groups were higher than those for the low or high BED group for SBRT in Stage I NSCLC. The medium or medium to high BED (range, 83.2-146 Gy) for SBRT may currently be more beneficial and reasonable in Stage I NSCLC.

  17. Biological dose representation for carbon-ion radiotherapy of unconventional fractionation

    Science.gov (United States)

    Kanematsu, Nobuyuki; Inaniwa, Taku

    2017-02-01

    In carbon-ion radiotherapy, single-beam delivery each day in alternate directions has been common practice for efficient operation, taking advantage of the Bragg peak and the relative biological effectiveness (RBE) for uniform dose conformation to a tumor. Treatments are usually fractionated and treatment plans are evaluated with the total RBE-weighted dose; however, this is of limited relevance to the biological effect. In this study, we reformulate the biologically effective dose (BED) to normalize the dose-fractionation and cell-repopulation effects as well as the RBE of treating radiation, based on inactivation of a reference cell line by a reference carbon-ion radiation. The BED distribution virtually represents the biological effect of a treatment regardless of radiation modality or fractionation scheme. We applied the BED formulation to simplistic model treatments and to a preclinical survey for hypofractionation based on an actual prostate cancer treatment with carbon ions. The proposed formulation was demonstrated to be practical and to give theoretical implications. For a prostate cancer treatment in 12 fractions, the distributions of BED and of RBE-weighted dose were very similar. With hypofractionation, while the RBE-weighted dose distribution varied significantly, the BED distribution was nearly invariant, implying that carbon-ion radiotherapy would be effectively insensitive to fractionation. However, treatment evaluation with such a simplistic biological dose is intrinsically limited and must be complemented in practice by clinical experience and biological experiments.

  18. Isoeffective dose: a concept for biological weighting of absorbed dose in proton and heavier-ion therapies

    CERN Document Server

    Wambersie, A; Menzel, H G; Gahbauer, R; DeLuca, P M; Hendry, J H; Jones, D T L

    2011-01-01

    When reporting radiation therapy procedures, International Commission on Radiation Units and Measurements (ICRU) recommends specifying absorbed dose at/in all clinically relevant points and/or volumes. In addition, treatment conditions should be reported as completely as possible in order to allow full understanding and interpretation of the treatment prescription. However, the clinical outcome does not only depend on absorbed dose but also on a number of other factors such as dose per fraction, overall treatment time and radiation quality radiation biology effectiveness (RBE). Therefore, weighting factors have to be applied when different types of treatments are to be compared or to be combined. This had led to the concept of `isoeffective absorbed dose', introduced by ICRU and International Atomic Energy Agency (IAEA). The isoeffective dose D(IsoE) is the dose of a treatment carried out under reference conditions producing the same clinical effects on the target volume as those of the actual treatment. It i...

  19. Modeling Dose-response at Low Dose: A Systems Biology Approach for Ionization Radiation.

    Science.gov (United States)

    Zhao, Yuchao; Ricci, Paolo F

    2010-03-18

    For ionization radiation (IR) induced cancer, a linear non-threshold (LNT) model at very low doses is the default used by a number of national and international organizations and in regulatory law. This default denies any positive benefit from any level of exposure. However, experimental observations and theoretical biology have found that both linear and J-shaped IR dose-response curves can exist at those very low doses. We develop low dose J-shaped dose-response, based on systems biology, and thus justify its use regarding exposure to IR. This approach incorporates detailed, molecular and cellular descriptions of biological/toxicological mechanisms to develop a dose-response model through a set of nonlinear, differential equations describing the signaling pathways and biochemical mechanisms of cell cycle checkpoint, apoptosis, and tumor incidence due to IR. This approach yields a J-shaped dose response curve while showing where LNT behaviors are likely to occur. The results confirm the hypothesis of the J-shaped dose response curve: the main reason is that, at low-doses of IR, cells stimulate protective systems through a longer cell arrest time per unit of IR dose. We suggest that the policy implications of this approach are an increasingly correct way to deal with precautionary measures in public health.

  20. Dose-dependent effects of R-sulforaphane isothiocyanate on the biology of human mesenchymal stem cells, at dietary amounts, it promotes cell proliferation and reduces senescence and apoptosis, while at anti-cancer drug doses, it has a cytotoxic effect.

    Science.gov (United States)

    Zanichelli, Fulvia; Capasso, Stefania; Cipollaro, Marilena; Pagnotta, Eleonora; Cartenì, Maria; Casale, Fiorina; Iori, Renato; Galderisi, Umberto

    2012-04-01

    Brassica vegetables are attracting a great deal of attention as healthy foods because of the fact that they contain substantial amounts of secondary metabolite glucosinolates that are converted into isothiocyanates, such as sulforaphane [(-)1-isothiocyanato-4R-(methylsulfinyl)-butane] (R-SFN), through the actions of chopping or chewing the vegetables. Several studies have analyzed the biological and molecular mechanisms of the anti-cancer activity of synthetic R,S-sulforaphane, which is thought to be a result of its antioxidant properties and its ability to inhibit histone deacetylase enzymes (HDAC). Few studies have addressed the possible antioxidant effects of R-SFN, which could protect cells from the free radical damage that strongly contribute to aging. Moreover, little is known about the effect of R-SFN on stem cells whose longevity is implicated in human aging. We evaluated the effects of R-SFN on the biology on human mesenchymal stem cells (MSCs), which, in addition to their ability to differentiate into mesenchymal tissues, support hematopoiesis, and contribute to the homeostatic maintenance of many organs and tissues. Our investigation found evidence that low doses of R-SFN promote MSCs proliferation and protect them from apoptosis and senescence, while higher doses have a cytotoxic effect, leading to the induction of cell cycle arrest, programmed cell death and senescence. The beneficial effects of R-SFN may be ascribed to its antioxidant properties, which were observed when MSC cultures were incubated with low doses of R-SFN. Its cytotoxic effects, which were observed after treating MSCs with high doses of R-SFN, could be attributed to its HDAC inhibitory activity. In summary, we found that R-SFN, like many other dietary supplements, exhibits a hormetic behavior; it is able to induce biologically opposite effects at different doses.

  1. Therapeutic effects of low radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Trott, K.R. (Dept. of Radiation Biology, St. Bartholomew' s Medical College, London (United Kingdom))

    1994-01-01

    This editorial explores the scientific basis of radiotherapy with doses of < 1 Gy for various non-malignant conditions, in particular dose-effect relationships, risk-benefit considerations and biological mechanisms. A review of the literature, particularly clinical and experimental reports published more than 50 years ago was conducted to clarify the following problems. 1. The dose-response relationships for the therapeutic effects on three groups of conditions: non-malignant skin disease, arthrosis and other painful degenerative joint disorders and anti-inflammatory radiotherapy; 2. risks after radiotherapy and after the best alternative treatments; 3. the biological mechanisms of the different therapeutic effects. Radiotherapy is very effective in all three groups of disease. Few dose-finding studies have been performed, all demonstrating that the optimal doses are considerable lower than the generally recommended doses. In different conditions, risk-benefit analysis of radiotherapy versus the best alternative treatment yields very different results: whereas radiotherapy for acute postpartum mastitis may not be justified any more, the risk-benefit ratio of radiotherapy of other conditions and particularly so in dermatology and some anti-inflammatory radiotherapy appears to be more favourable than the risk-benefit ratio of the best alternative treatments. Radiotherapy can be very effective treatment for various non-malignant conditions such as eczema, psoriasis, periarthritis humeroscapularis, epicondylitis, knee arthrosis, hydradenitis, parotitis and panaritium and probably be associated with less acute and long-term side effects than similarly effective other treatments. Randomized clinical studies are required to find the optimal dosage which, at present, may be unnecessarily high.

  2. TU-EF-304-10: Efficient Multiscale Simulation of the Proton Relative Biological Effectiveness (RBE) for DNA Double Strand Break (DSB) Induction and Bio-Effective Dose in the FLUKA Monte Carlo Radiation Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Moskvin, V; Tsiamas, P; Axente, M; Farr, J [St. Jude Children’s Research Hospital, Memphis, TN (United States); Stewart, R [University of Washington, Seattle, WA. (United States)

    2015-06-15

    Purpose: One of the more critical initiating events for reproductive cell death is the creation of a DNA double strand break (DSB). In this study, we present a computationally efficient way to determine spatial variations in the relative biological effectiveness (RBE) of proton therapy beams within the FLUKA Monte Carlo (MC) code. Methods: We used the independently tested Monte Carlo Damage Simulation (MCDS) developed by Stewart and colleagues (Radiat. Res. 176, 587–602 2011) to estimate the RBE for DSB induction of monoenergetic protons, tritium, deuterium, hellium-3, hellium-4 ions and delta-electrons. The dose-weighted (RBE) coefficients were incorporated into FLUKA to determine the equivalent {sup 6}°60Co γ-ray dose for representative proton beams incident on cells in an aerobic and anoxic environment. Results: We found that the proton beam RBE for DSB induction at the tip of the Bragg peak, including primary and secondary particles, is close to 1.2. Furthermore, the RBE increases laterally to the beam axis at the area of Bragg peak. At the distal edge, the RBE is in the range from 1.3–1.4 for cells irradiated under aerobic conditions and may be as large as 1.5–1.8 for cells irradiated under anoxic conditions. Across the plateau region, the recorded RBE for DSB induction is 1.02 for aerobic cells and 1.05 for cells irradiated under anoxic conditions. The contribution to total effective dose from secondary heavy ions decreases with depth and is higher at shallow depths (e.g., at the surface of the skin). Conclusion: Multiscale simulation of the RBE for DSB induction provides useful insights into spatial variations in proton RBE within pristine Bragg peaks. This methodology is potentially useful for the biological optimization of proton therapy for the treatment of cancer. The study highlights the need to incorporate spatial variations in proton RBE into proton therapy treatment plans.

  3. The origins of radiotherapy: discovery of biological effects of X-rays by Freund in 1897, Kienböck's crucial experiments in 1900, and still it is the dose.

    Science.gov (United States)

    Widder, Joachim

    2014-07-01

    The discovery of X-rays by Wilhelm Conrad Röntgen (1845-1923) was triggered by pursuing an anomalous phenomenon: arousal of fluorescence at a distance from tubes in which cathode rays were elicited, a phenomenon which suggested the existence of a new kind of ray other than cathode rays. The discovery of biological effects of these X-rays by Leopold Freund (1868-1943) was triggered by pursuit of the purportedly useless phenomenon of epilation and dermatitis ensuing from X-ray-diagnostic experiments that others had reported. The crucial experiments performed by Robert Kienböck (1871-1953) entailed the proof that X-ray-dose, not electric phenomena, was the active agent of biological effects ensuing when illuminating the skin using Röntgen tubes. For both the discovery of X-rays and the discovery of their biological effectiveness, priority did not matter, but understanding the physical and medico-biological significance of phenomena that others had ignored as a nuisance. Present discussions about the clinical relevance of improving the dose distribution including protons and other charged particles resemble those around 1900 to a certain degree.

  4. Estimation of the Dose and Dose Rate Effectiveness Factor

    Science.gov (United States)

    Chappell, L.; Cucinotta, F. A.

    2013-01-01

    Current models to estimate radiation risk use the Life Span Study (LSS) cohort that received high doses and high dose rates of radiation. Transferring risks from these high dose rates to the low doses and dose rates received by astronauts in space is a source of uncertainty in our risk calculations. The solid cancer models recommended by BEIR VII [1], UNSCEAR [2], and Preston et al [3] is fitted adequately by a linear dose response model, which implies that low doses and dose rates would be estimated the same as high doses and dose rates. However animal and cell experiments imply there should be curvature in the dose response curve for tumor induction. Furthermore animal experiments that directly compare acute to chronic exposures show lower increases in tumor induction than acute exposures. A dose and dose rate effectiveness factor (DDREF) has been estimated and applied to transfer risks from the high doses and dose rates of the LSS cohort to low doses and dose rates such as from missions in space. The BEIR VII committee [1] combined DDREF estimates using the LSS cohort and animal experiments using Bayesian methods for their recommendation for a DDREF value of 1.5 with uncertainty. We reexamined the animal data considered by BEIR VII and included more animal data and human chromosome aberration data to improve the estimate for DDREF. Several experiments chosen by BEIR VII were deemed inappropriate for application to human risk models of solid cancer risk. Animal tumor experiments performed by Ullrich et al [4], Alpen et al [5], and Grahn et al [6] were analyzed to estimate the DDREF. Human chromosome aberration experiments performed on a sample of astronauts within NASA were also available to estimate the DDREF. The LSS cohort results reported by BEIR VII were combined with the new radiobiology results using Bayesian methods.

  5. Biological dose representation for carbon-ion radiotherapy of unconventional fractionation

    CERN Document Server

    Kanematsu, Nobuyuki

    2016-01-01

    In carbon-ion radiotherapy, single-beam delivery each day in alternate directions has been commonly practiced for operational efficiency, taking advantage of the Bragg peak and the relative biological effectiveness (RBE) for uniform dose conformation to a tumor. The treatment plans are usually evaluated with total RBE-weighted dose, which is however deficient in relevance to the biological effect in the linear-quadratic model due to its quadratic-dose term, or the dose-fractionation effect. In this study, we reformulate the extrapolated response dose (ERD), or synonymously BED, which normalizes the dose-fractionation and cell-repopulation effects as well as the RBE of treating radiation, based on inactivation of a single model cell system and a typical treating radiation in carbon-ion RT. The ERD distribution virtually represents the biological effect of the treatment regardless of radiation modality or fractionation scheme. We applied the ERD formulation to simplistic model treatments and to a preclinical su...

  6. Dose escalation in permanent brachytherapy for prostate cancer: dosimetric and biological considerations

    Energy Technology Data Exchange (ETDEWEB)

    Li, X Allen [Department of Radiation Oncology, University of Maryland, School of Medicine, 22 South Greene Street, Baltimore, MD 21201-1595 (United States); Wang, Jian Z [Department of Radiation Oncology, University of Maryland, School of Medicine, 22 South Greene Street, Baltimore, MD 21201-1595 (United States); Stewart, Robert D [School of Health Sciences, Purdue University, West Lafayette, IN 47907-1338 (United States); Di Biase, Steven J [Department of Radiation Oncology, University of Maryland, School of Medicine, 22 South Greene Street, Baltimore, MD 21201-1595 (United States)

    2003-09-07

    No prospective dose escalation study for prostate brachytherapy (PB) with permanent implants has been reported. In this work, we have performed a dosimetric and biological analysis to explore the implications of dose escalation in PB using {sup 125}I and {sup 103}Pd implants. The concept of equivalent uniform dose (EUD), proposed originally for external-beam radiotherapy (EBRT), is applied to low dose rate brachytherapy. For a given {sup 125}I or {sup 103}Pd PB, the EUD for tumour that corresponds to a dose distribution delivered by EBRT is calculated based on the linear quadratic model. The EUD calculation is based on the dose volume histogram (DVH) obtained retrospectively from representative actual patient data. Tumour control probabilities (TCPs) are also determined in order to compare the relative effectiveness of different dose levels. The EUD for normal tissue is computed using the Lyman model. A commercial inverse treatment planning algorithm is used to investigate the feasibility of escalating the dose to prostate with acceptable dose increases in the rectum and urethra. The dosimetric calculation is performed for five representative patients with different prostate sizes. A series of PB dose levels are considered for each patient using {sup 125}I and {sup 103}Pd seeds. It is found that the PB prescribed doses (minimum peripheral dose) that give an equivalent EBRT dose of 64.8, 70.2, 75.6 and 81 Gy with a fraction size of 1.8 Gy are 129, 139, 150 and 161 Gy for {sup 125}I and 103, 112, 122 and 132 Gy for {sup 103}Pd implants, respectively. Estimates of the EUD and TCP for a series of possible prescribed dose levels (e.g., 145, 160, 170 and 180 Gy for {sup 125}I and 125, 135, 145 and 155 for {sup 103}Pd implants) are tabulated. The EUD calculation was found to depend strongly on DVHs and radiobiological parameters. The dosimetric calculations suggest that the dose to prostate can be escalated without a substantial increase in both rectal and urethral dose

  7. Biological equivalent dose studies for dose escalation in the stereotactic synchrotron radiation therapy clinical trials

    Energy Technology Data Exchange (ETDEWEB)

    Prezado, Y.; Fois, G.; Edouard, M.; Nemoz, C.; Renier, M.; Requardt, H.; Esteve, F.; Adam, JF.; Elleaume, H.; Bravin, A., E-mail: prezado@esrf.fr [ID17 Biomedical Beamline, European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz, BP 220, 38043 Grenoble Cedex (France)

    2009-03-15

    Synchrotron radiation is an innovative tool for the treatment of brain tumors. In the stereotactic synchrotron radiation therapy (SSRT) technique a radiation dose enhancement specific to the tumor is obtained. The tumor is loaded with a high atomic number (Z) element and it is irradiated in stereotactic conditions from several entrance angles. The aim of this work was to assess dosimetric properties of the SSRT for preparing clinical trials at the European Synchrotron Radiation Facility (ESRF). To estimate the possible risks, the doses received by the tumor and healthy tissues in the future clinical conditions have been calculated by using Monte Carlo simulations (PENELOPE code). The dose enhancement factors have been determined for different iodine concentrations in the tumor, several tumor positions, tumor sizes, and different beam sizes. A scheme for the dose escalation in the various phases of the clinical trials has been proposed. The biological equivalent doses and the normalized total doses received by the skull have been calculated in order to assure that the tolerance values are not reached.

  8. Effective dose and dose to crystalline lens during angiographic procedures; Dose effective et dose au cristallin lors de procedures angiographiques

    Energy Technology Data Exchange (ETDEWEB)

    Pages, J. [QUARAD and Radiology Dept., Vvije Universiteit Brussel (Belgium)

    1998-07-01

    The highest radiation doses levels received by radiologists are observed during interventional procedures. Doses to forehead and neck received by a radiologist executing angiographic examinations at the department of radiology at the academic hospital (AZ-VUB) have been measured for a group of 34 examinations. The doses to crystalline lens and the effective doses for a period of one year have been estimated. For the crystalline lens the maximum dose approaches the ICRP limit, that indicates the necessity for the radiologist to use leaded glasses. (N.C.)

  9. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    Energy Technology Data Exchange (ETDEWEB)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  10. Dose inhomogeneities at various levels of biological organization

    Energy Technology Data Exchange (ETDEWEB)

    Bond, V.P.

    1988-01-01

    Dose inhomogeneities in both tumor and normal tissue, inherent to the application of boron neutron capture therapy (BNCT), can be the result not only of ununiform distribution of /sup 10/B at various levels of biological organization, but also of the distribution of the thermal neutrons and of the energy depositions from more energetic neutrons and other radiations comprising the externally-applied beams. The severity of the problems resulting from such inhomogeneities, and approaches to evaluating them, are illustrated by three examples, at the macro, micro and intermediate levels.

  11. Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV.

    Science.gov (United States)

    Gudowska, I; Brahme, A; Andreo, P; Gudowski, W; Kierkegaard, J

    1999-09-01

    The absorbed dose due to photonuclear reactions in soft tissue, lung, breast, adipose tissue and cortical bone has been evaluated for a scanned bremsstrahlung beam of end point 50 MeV from a racetrack accelerator. The Monte Carlo code MCNP4B was used to determine the photon source spectrum from the bremsstrahlung target and to simulate the transport of photons through the treatment head and the patient. Photonuclear particle production in tissue was calculated numerically using the energy distributions of photons derived from the Monte Carlo simulations. The transport of photoneutrons in the patient and the photoneutron absorbed dose to tissue were determined using MCNP4B; the absorbed dose due to charged photonuclear particles was calculated numerically assuming total energy absorption in tissue voxels of 1 cm3. The photonuclear absorbed dose to soft tissue, lung, breast and adipose tissue is about (0.11-0.12)+/-0.05% of the maximum photon dose at a depth of 5.5 cm. The absorbed dose to cortical bone is about 45% larger than that to soft tissue. If the contributions from all photoparticles (n, p, 3He and 4He particles and recoils of the residual nuclei) produced in the soft tissue and the accelerator, and from positron radiation and gammas due to induced radioactivity and excited states of the nuclei, are taken into account the total photonuclear absorbed dose delivered to soft tissue is about 0.15+/-0.08% of the maximum photon dose. It has been estimated that the RBE of the photon beam of 50 MV acceleration potential is approximately 2% higher than that of conventional 60Co radiation.

  12. Effects of low doses; Effet des faibles doses

    Energy Technology Data Exchange (ETDEWEB)

    Le Guen, B. [Electricite de France (EDF-LAM-SCAST), 93 - Saint-Denis (France)

    2001-07-01

    Actually, even though it is comfortable for the risk management, the hypothesis of the dose-effect relationship linearity is not confirmed for any model. In particular, in the area of low dose rate delivered by low let emitters. this hypothesis is debated at the light of recent observations, notably these ones relative to the mechanisms leading to genetic instability and induction eventuality of DNA repair. The problem of strong let emitters is still to solve. (N.C.)

  13. Quantum Effects in Biology

    Science.gov (United States)

    Mohseni, Masoud; Omar, Yasser; Engel, Gregory S.; Plenio, Martin B.

    2014-08-01

    List of contributors; Preface; Part I. Introduction: 1. Quantum biology: introduction Graham R. Fleming and Gregory D. Scholes; 2. Open quantum system approaches to biological systems Alireza Shabani, Masoud Mohseni, Seogjoo Jang, Akihito Ishizaki, Martin Plenio, Patrick Rebentrost, Alàn Aspuru-Guzik, Jianshu Cao, Seth Lloyd and Robert Silbey; 3. Generalized Förster resonance energy transfer Seogjoo Jang, Hoda Hossein-Nejad and Gregory D. Scholes; 4. Multidimensional electronic spectroscopy Tomáš Mančal; Part II. Quantum Effects in Bacterial Photosynthetic Energy Transfer: 5. Structure, function, and quantum dynamics of pigment protein complexes Ioan Kosztin and Klaus Schulten; 6. Direct observation of quantum coherence Gregory S. Engel; 7. Environment-assisted quantum transport Masoud Mohseni, Alàn Aspuru-Guzik, Patrick Rebentrost, Alireza Shabani, Seth Lloyd, Susana F. Huelga and Martin B. Plenio; Part III. Quantum Effects in Higher Organisms and Applications: 8. Excitation energy transfer in higher plants Elisabet Romero, Vladimir I. Novoderezhkin and Rienk van Grondelle; 9. Electron transfer in proteins Spiros S. Skourtis; 10. A chemical compass for bird navigation Ilia A. Solov'yov, Thorsten Ritz, Klaus Schulten and Peter J. Hore; 11. Quantum biology of retinal Klaus Schulten and Shigehiko Hayashi; 12. Quantum vibrational effects on sense of smell A. M. Stoneham, L. Turin, J. C. Brookes and A. P. Horsfield; 13. A perspective on possible manifestations of entanglement in biological systems Hans J. Briegel and Sandu Popescu; 14. Design and applications of bio-inspired quantum materials Mohan Sarovar, Dörthe M. Eisele and K. Birgitta Whaley; 15. Coherent excitons in carbon nanotubes Leonas Valkunas and Darius Abramavicius; Glossary; References; Index.

  14. A Systems Biology Approach Reveals the Dose- and Time-Dependent Effect of Primary Human Airway Epithelium Tissue Culture After Exposure to Cigarette Smoke In Vitro

    OpenAIRE

    2015-01-01

    To establish a relevant in vitro model for systems toxicology-based mechanistic assessment of environmental stressors such as cigarette smoke (CS), we exposed human organotypic bronchial epithelial tissue cultures at the air liquid interface (ALI) to various CS doses. Previously, we compared in vitro gene expression changes with published human airway epithelia in vivo data to assess their similarities. Here, we present a follow-up evaluation of these in vitro transcriptomics data, using comp...

  15. Organ Doses and Effective Doses in Pediatric Radiography: Patient-Dose Survey in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Kiljunen, T.; Tietaevaeinen, A.; Parviainen, T.; Viitala, A.; Kortesniemi, M. (Radiation Practices Regulation, Radiation and Nuclear Safety Authority, Helsinki (Finland))

    2009-01-15

    Background: Use of the effective dose in diagnostic radiology permits the radiation exposure of diverse diagnostic procedures to be quantified. Fundamental knowledge of patient doses enhances the implementation of the 'as low as reasonably achievable' (ALARA) principle. Purpose: To provide comparative information on pediatric examination protocols and patient doses in skull, sinus, chest, abdominal, and pelvic radiography examinations. Material and Methods: 24 Finnish hospitals were asked to register pediatric examination data, including patient information and examination parameters and specifications. The total number of examinations in the study was 1916 (1426 chest, 228 sinus, 96 abdominal, 94 skull, and 72 pelvic examinations). Entrance surface dose (ESD) and dose-area products (DAP) were calculated retrospectively or DAP meters were used. Organ doses and effective doses were determined using a Monte Carlo program (PCXMC). Results: There was considerable variation in examination protocols between different hospitals, indicating large variations in patient doses. Mean effective doses of different age groups ranged from 5 muSv to 14 muSv in skull and sinus examinations, from 25 muSv to 483 muSv in abdominal examinations, and from 6 muSv to 48 muSv in chest examinations. Conclusion: In chest and sinus examinations, the amount of data was extensive, allowing national pediatric diagnostic reference levels to be defined. Parameter selection in pediatric examination protocols should be harmonized in order to reduce patient doses and improve optimization

  16. Center of cancer systems biology second annual workshop--tumor metronomics: timing and dose level dynamics.

    Science.gov (United States)

    Hahnfeldt, Philip; Hlatky, Lynn; Klement, Giannoula Lakka

    2013-05-15

    Metronomic chemotherapy, the delivery of doses in a low, regular manner so as to avoid toxic side effects, was introduced over 12 years ago in the face of substantial clinical and preclinical evidence supporting its tumor-suppressive capability. It constituted a marked departure from the classic maximum-tolerated dose (MTD) strategy, which, given its goal of rapid eradication, uses dosing sufficiently intense to require rest periods between cycles to limit toxicity. Even so, upfront tumor eradication is frequently not achieved with MTD, whereupon a de facto goal of longer-term tumor control is often pursued. As metronomic dosing has shown tumor control capability, even for cancers that have become resistant to the same drug delivered under MTD, the question arises whether it may be a preferable alternative dosing approach from the outset. To date, however, our knowledge of the coupled dynamics underlying metronomic dosing is neither sufficiently well developed nor widely enough disseminated to establish its actual potential. Meeting organizers thus felt the time was right, armed with new quantitative approaches, to call a workshop on "Tumor Metronomics: Timing and Dose Level Dynamics" to explore prospects for gaining a deeper, systems-level appreciation of the metronomics concept. The workshop proved to be a forum in which experts from the clinical, biologic, mathematical, and computational realms could work together to clarify the principles and underpinnings of metronomics. Among other things, the need for significant shifts in thinking regarding endpoints to be used as clinical standards of therapeutic progress was recognized.

  17. Biological monitoring to determine worker dose in a butadiene processing plant

    Energy Technology Data Exchange (ETDEWEB)

    Bechtold, W.E.; Hayes, R.B. [National Cancer Inst., Bethesda, MD (United States)

    1995-12-01

    Butadiene (BD) is a reactive gas used extensively in the rubber industry and is also found in combustion products. Although BD is genotoxic and acts as an animal carcinogen, the evidence for carcinogenicity in humans is limited. Extrapolation from animal studies on BD carcinogenicity to risk in humans has been controversial because of uncertainties regarding relative biologic exposure and related effects in humans vs. experimental animals. To reduce this uncertainty, a study was designed to characterize exposure to BD at a polymer production facility and to relate this exposure to mutational and cytogenetic effects. Biological monitoring was used to better assess the internal dose of BD received by the workers. Measurement of 1,2-dihydroxy-4-(N-acetylcysteinyl) butane (M1) in urine served as the biomarker in this study. M1 has been shown to correlate with area monitoring in previous studies. Most studies that relate exposure to a toxic chemical with its biological effects rely on exposure concentration as the dose metric; however, exposure concentration may or may not reflect the actual internal dose of the chemical.

  18. Higher Biologically Effective Dose of Radiotherapy Is Associated With Improved Outcomes for Locally Advanced Non-Small Cell Lung Carcinoma Treated With Chemoradiation: An Analysis of the Radiation Therapy Oncology Group

    Energy Technology Data Exchange (ETDEWEB)

    Machtay, Mitchell, E-mail: Mitchell.machtay@uhhospitals.org [University Hospitals/Case Western Reserve University, Cleveland, OH (United States); Bae, Kyounghwa [Radiation Therapy Oncology Group (RTOG) Department of Statistics, Philadelphia, PA (United States); Movsas, Benjamin [Henry Ford Hospital, Detroit, MI (United States); Paulus, Rebecca [Radiation Therapy Oncology Group (RTOG) Department of Statistics, Philadelphia, PA (United States); Gore, Elizabeth M. [Medical College of Wisconsin, Milwaukee, WI (United States); Komaki, Ritsuko [M.D. Anderson Cancer Center, Houston, TX (United States); Albain, Kathy [Loyola University Chicago Stritch School of Medicine, Maywood, IL (United States); Sause, William T. [LDS Hospital, Salt Lake City, UT (United States); Curran, Walter J. [Emory University, Atlanta, GA (United States)

    2012-01-01

    Purpose: Patients treated with chemoradiotherapy for locally advanced non-small-cell lung carcinoma (LA-NSCLC) were analyzed for local-regional failure (LRF) and overall survival (OS) with respect to radiotherapy dose intensity. Methods and Materials: This study combined data from seven Radiation Therapy Oncology Group (RTOG) trials in which chemoradiotherapy was used for LA-NSCLC: RTOG 88-08 (chemoradiation arm only), 90-15, 91-06, 92-04, 93-09 (nonoperative arm only), 94-10, and 98-01. The radiotherapeutic biologically effective dose (BED) received by each individual patient was calculated, as was the overall treatment time-adjusted BED (tBED) using standard formulae. Heterogeneity testing was done with chi-squared statistics, and weighted pooled hazard ratio estimates were used. Cox and Fine and Gray's proportional hazard models were used for OS and LRF, respectively, to test the associations between BED and tBED adjusted for other covariates. Results: A total of 1,356 patients were analyzed for BED (1,348 for tBED). The 2-year and 5-year OS rates were 38% and 15%, respectively. The 2-year and 5-year LRF rates were 46% and 52%, respectively. The BED (and tBED) were highly significantly associated with both OS and LRF, with or without adjustment for other covariates on multivariate analysis (p < 0.0001). A 1-Gy BED increase in radiotherapy dose intensity was statistically significantly associated with approximately 4% relative improvement in survival; this is another way of expressing the finding that the pool-adjusted hazard ratio for survival as a function of BED was 0.96. Similarly, a 1-Gy tBED increase in radiotherapy dose intensity was statistically significantly associated with approximately 3% relative improvement in local-regional control; this is another way of expressing the finding that the pool-adjusted hazard ratio as a function of tBED was 0.97. Conclusions: Higher radiotherapy dose intensity is associated with improved local-regional control

  19. Application of Benchmark Dose (BMD) in Estimating Biological Exposure Limit (BEL) to Cadmium

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To estimate the biological exposure limit (BEL) using benchmark dose (BMD) based on two sets of data from occupational epidemiology. Methods Cadmium-exposed workers were selected from a cadmium smelting factory and a zinc product factory. Doctors, nurses or shop assistants living in the same area served as a control group. Urinary cadmium (UCd) was used as an exposure biomarker and urinary β2-microgloburin (B2M), N-acetyl-β-D-glucosaminidase (NAG) and albumin (ALB) as effect biomarkers. All urine parameters were adjusted by urinary creatinine. Software of BMDS (Version 1.3.2, EPA.U.S.A) was used to calculate BMD. Results The cut-off point (abnormal values) was determined based on the upper limit of 95% of effect biomarkers in control group. There was a significant dose response relationship between the effect biomarkers (urinary B2M, NAG, and ALB) and exposure biomarker (UCd). BEL value was 5 μg/g creatinine for UB2M as an effect biomarker, consistent with the recommendation of WHO. BEL could be estimated by using the method of BMD. BEL value was 3 μg/g creatinine for UNAG as an effect biomarker. The more sensitive the used biomarker is, the more occupational population will be protected. Conclusion BMD can be used in estimating the biological exposure limit (BEL). UNAG is a sensitive biomarker for estimating BEL after cadmium exposure.

  20. Hormesis [Biological Effects of Low Level Exposures (Belle)] and Dermatology

    OpenAIRE

    Thong, Haw-Yueh; Maibach, Howard I.

    2008-01-01

    Hormesis, or biological effects of low level exposures (BELLE), is characterized by nonmonotonic dose response which is biphasic, displaying opposite effects at low and high dose. Its occurrence has been documented across a broad range of biological models and diverse type of exposure. Since hormesis appears to be a relatively common phenomenon in many areas, the objective of this review is to explore its occurrence related to dermatology and its public health and risk assessment implication....

  1. Biologically adapted radiotherapy and evaluation of non-uniform dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Soevik, Aaste

    2007-07-01

    imaging of tumor physiological parameters include positron emission tomography (PET) of cellular metabolism and hypoxia, dynamic contrast-enhanced magnetic resonance imaging and computerized tomography (DCEMRI and -CT) of perfusion- and/or permeability-related parameters and blood oxygen level dependent (BOLD) MRI. Conventionally, the desired dose distribution to the tumor has been uniform over the tumor volume. This will optimize the tumor control probability (TCP) in the case of homogeneous tumors, but it will generally not be the optimal dose distribution for tumors with spatial variations in radiation sensitivity. Factors influencing the radiation sensitivity of tumors cells are known to be heterogeneously distributed over the tumor volume. It has been hypothesized that, for a heterogeneous tumor, radiation treatment can be viewed as a selection process, whereby treatment selects for the more resistant subpopulations of tumor cells. Consequently, these cells may come to dominate the response of the tumor to treatment. It follows that, for treatment to be effective, it must successfully eradicate the most resistant fraction of cells in the tumor. However, normal tissue toxicity constrains the radiation dose that can be delivered to the tumor. Hence, in order to maximize TCP for a given mean dose to the tumor, the radiation dose could be redistributed according to the spatial distribution of radiosensitivity in the tumor. This strategy for biological treatment optimization is termed dose redistribution, and could potentially improve locoregional tumor control when treatment response is limited by a radioresistant subpopulation of tumor cells (author)

  2. Quantum Effects in Biological Systems

    CERN Document Server

    2016-01-01

    Since the last decade the study of quantum mechanical phenomena in biological systems has become a vibrant field of research. Initially sparked by evidence of quantum effects in energy transport that is instrumental for photosynthesis, quantum biology asks the question of how methods and models from quantum theory can help us to understand fundamental mechanisms in living organisms. This approach entails a paradigm change challenging the related disciplines: The successful framework of quantum theory is taken out of its low-temperature, microscopic regimes and applied to hot and dense macroscopic environments, thereby extending the toolbox of biology and biochemistry at the same time. The Quantum Effects in Biological Systems conference is a platform for researchers from biology, chemistry and physics to present and discuss the latest developments in the field of quantum biology. After meetings in Lisbon (2009), Harvard (2010), Ulm (2011), Berkeley (2012), Vienna (2013), Singapore (2014) and Florence (2015),...

  3. Activation of chemical biological defense mechanisms and remission of vital oxidative injury by low dose radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoka, K. [Okayama University Medical School, Okayama (Japan); Nomura, T. [Central Research Institute of Electric Power Industry, Tokyo (Japan); Kojima, S. [Science University of Tokyo, Chiba (Japan)

    2000-05-01

    Excessive active oxygen produced in vivo by various causes is toxic. Accumulation of oxidation injuries due to excessive active causes cell and tissue injuries, inducing various pathologic conditions such as aging and carcinogenesis. On the other hand, there are chemical defense mechanisms in the body that eliminate active oxygen or repair damaged molecules, defending against resultant injury. It is interesting reports that appropriate oxidation stress activate the chemical biological defense mechanisms. In this study, to elucidate these phenomena and its mechanism by low dose radiation, we studied on the below subjects. Activation of chemical biological defense mechanisms by low dose radiation: (1) The effects radiation on lipid peroxide (LPO) levels in the organs, membrane fluidity and the superoxide dismutase (SOD) activity were examined in rats and rabbits. Rats were irradiated with low dose X-ray over their entire bodies, and rabbits inhaled vaporized radon spring water, which primarily emitted {alpha}-ray. The following results were obtained. Unlike high dose X-ray, low dose X-ray and radon inhalation both reduced LPO levels and made the state of the SH-group on membrane-bound proteins closer to that of juvenile animals, although the sensitivity to radioactivity varied depending on the age of the animals and among different organs and tissues. The SOD activity was elevated, suggesting that low dose X-ray and radon both activate the host defensive function. Those changes were particularly marked in the organs related to immune functions of the animals which received low dose X-ray, while they were particularly marked in the brain after radon inhalation. It was also found that those changes continued for longer periods after low dose X-irradiation. (2) Since SOD is an enzyme that mediates the dismutation of O{sub 2}- to H{sub 2}O{sub 2}, the question as to whether the resultant H{sub 2}O{sub 2} is further detoxicated into H{sub 2}O and O{sub 2} or not must

  4. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  5. Biological Effectiveness of Antiproton Annihilation

    DEFF Research Database (Denmark)

    Maggiore, C.; Agazaryan, N.; Bassler, N.;

    2004-01-01

    from the annihilation of antiprotons produce an increase in ‘‘biological dose’’ in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct measurement of the biological effects of antiproton annihilation. The background, description, and status...

  6. Testing the Capacity of the National Biological Dose Response Plan (NBDRP) EX40801

    Science.gov (United States)

    2009-11-01

    providing radiation biological dose estimates using the dicentric chromosome assay (DCA). As indicated in the CRTI-06-0146RD charter, the existing...laboratories of the National Biological Dose Response Plan plus two US laboratories. Samples were scored for the dicentric chromosome assay and the CBMN...Wilkins, R.C. QuickScan dicentric chromosome analysis for radiation biodosimetry , Health Physics Journal, In Press (2009). 2. McNamee, J.P., Flegal

  7. Responses to Low Doses of Ionizing Radiation in Biological Systems

    OpenAIRE

    Feinendegen, Ludwig E.; Pollycove, Myron; Sondhaus, Charles A.

    2004-01-01

    Biological tissues operate through cells that act together within signaling networks. These assure coordinated cell function in the face of constant exposure to an array of potentially toxic agents, externally from the environment and endogenously from metabolism. Living tissues are indeed complex adaptive systems.

  8. Biological Effects of Acoustic Cavitation

    Science.gov (United States)

    2007-11-02

    rectified diffusion. 56 III. STABLE CAVITATION A. Introduction There are manv areas associated with the biological effects of ultrasound in which the...used said as cavitation indicators. Further, if clinical ultrasound systems are found to be inducing cavitation , either stable or transient, it will...O BIOLOGICAL EFFECTS OF ACOUSTIC CAVITATION by Lawrence A. Crum -- Physical Acoustics Research Laboratory Department of Physics and Astronomy ’ CTE

  9. SU-F-BRD-16: Relative Biological Effectiveness of Double-Strand Break Induction for Modeling Cell Survival in Pristine Proton Beams of Different Dose-Averaged Linear Energy Transfers

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, C; Bronk, L [UT MD Anderson Cancer Center, Houston, TX (United States); UT Graduate School of Biomedical Sciences at Houston, Houston, TX (United States); Taleei, R; Guan, F; Patel, D; Titt, U; Mirkovic, D; Grosshans, D; Mohan, R [UT MD Anderson Cancer Center, Houston, TX (United States); Stewart, R [University of Washington School of Medicine, Seattle, WA (United States)

    2015-06-15

    Purpose: High throughput in vitro experiments assessing cell survival following proton radiation indicate that both the alpha and the beta parameters of the linear quadratic model increase with increasing proton linear energy transfer (LET). We investigated the relative biological effectiveness (RBE) of double-strand break (DSB) induction as a means of explaining the experimental results. Methods: Experiments were performed with two lung cancer cell lines and a range of proton LET values (0.94 – 19.4 keV/µm) using an experimental apparatus designed to irradiate cells in a 96 well plate such that each column encounters protons of different dose-averaged LET (LETd). Traditional linear quadratic survival curve fitting was performed, and alpha, beta, and RBE values obtained. Survival curves were also fit with a model incorporating RBE of DSB induction as the sole fit parameter. Fitted values of the RBE of DSB induction were then compared to values obtained using Monte Carlo Damage Simulation (MCDS) software and energy spectra calculated with Geant4. Other parameters including alpha, beta, and number of DSBs were compared to those obtained from traditional fitting. Results: Survival curve fitting with RBE of DSB induction yielded alpha and beta parameters that increase with proton LETd, which follows from the standard method of fitting; however, relying on a single fit parameter provided more consistent trends. The fitted values of RBE of DSB induction increased beyond what is predicted from MCDS data above proton LETd of approximately 10 keV/µm. Conclusion: In order to accurately model in vitro proton irradiation experiments performed with high throughput methods, the RBE of DSB induction must increase more rapidly than predicted by MCDS above LETd of 10 keV/µm. This can be explained by considering the increased complexity of DSBs or the nature of intra-track pairwise DSB interactions in this range of LETd values. NIH Grant 2U19CA021239-35.

  10. 低剂量辐射复合CO、苯和噪声对大鼠的生物效应研究%The combined biological effects of low dose radiation, carbon monoxide, benzene and noise on rats

    Institute of Scientific and Technical Information of China (English)

    陈伟; 何颖; 侯登勇; 钱甜甜; 莫琳芳; 蒋定文; 王庆蓉; 沈先荣

    2012-01-01

    目的 探讨低剂量辐射复合CO、苯和噪声等复合因素对大鼠生物效应的影响.方法 16只雄性SD大鼠随机分成实验组及对照组.实验组采用CO和苯染毒,并进行低剂量辐射和噪声暴露,对照组正常环境饲养.计数大鼠外周血细胞,检测各脏器指数、骨髓DNA含量,利用双向凝胶电泳和基质辅助激光解析飞行时间串联质谱技术分离、鉴定复合因素导致的大鼠血清差异表达蛋白.结果 与对照组相比,实验组大鼠的肝指数、脾指数、胸腺指数显著降低(t=2.732、4.141、3.053,P<0.05),外周血白细胞、血小板和骨髓DNA含量均显著降低(t=2.211、2.668、11.592,P<0.05).获得了血清蛋白凝胶电泳图谱,软件分析结合手工筛选出12个差异表达蛋白质点,鉴定血浆淀粉样蛋白A4(SAA4),Trichoplein角质细丝结合蛋白(TCHP)和α微管蛋白4A(TUBA4A)3个蛋白质点.结论 低剂量辐射复合CO、苯和噪声对大鼠造血系统、免疫系统损伤明显,导致大鼠血清中某些蛋白表达发生变化,发现差异表达的蛋白与复合因素损伤作用密切相关.%Objective To investigate the combined biological effects of low dose radiation,carbon monoxide,benzene and noise on rats.Methods Sixteen male SD rats were randomly divided into experiment group and control group.The experiment group was exposed to carbon monoxide,benzene,low dose radiation and noise daily,the control group was in common environment.Peripheral blood,organ index,and marrow DNA content were detected.Two-dimensional electrophoresis (2-DE) was performed on serum protein analysis.Differential expressed proteins were identified by a matrix assisted laser desorption/ionization time of flight mass spectrometry (MAIDI-TOF-MS).Results Compared to control group,the liver index,spleen index,thymus index,leukocytes,platelets count,and marrow DNA content of the experiment group were decreased significantly (t =2.732,4.141,3.053,2.211,2.668,11.592,P

  11. The calculation of radial dose from heavy ions: predictions of biological action cross sections

    Science.gov (United States)

    Katz, Robert; Cucinotta, Francis A.; Zhang, C. X.

    1996-02-01

    The track structure model of heavy ion cross sections was developed by Katz and co-workers in the 1960s. In this model the action cross section is evaluated by mapping the dose-response of a detector to γ rays (modeled from biological target theory) onto the radial dose distribution from δ rays about the path of the ion. This is taken to yield the radial distribution of probability for a "hit" (an interaction leading to an observable end-point). Radial integration of the probability yields the cross section. When different response from ions of different Z having the same stopping power is observed this model may be indicated. Since the 1960s there have been several developments in the computation of the radial dose distribution, in the measurement of these distributions, and in new radiobiological data against which to test the model. The earliest model, by Butts and Katz, made use of simplified δ ray distribution functions, of simplified electron range-energy relations, and neglected angular distributions. Nevertheless it made possible the calculation of cross sections for the inactivation of enzymes and viruses, and allowed extension to tracks in nuclear emulsions and other detectors and to biological cells. It set the pattern for models of observable effects in the matter through which the ion passed. Here we outline subsequent calculations of radial dose which make use of improved knowledge of the electron emission spectrum, the electron range-energy relation, the angular distribution, and some considerations of molecular excitation, of particular interest both close to the path of the ion and the outer limits of electron penetration. These are applied to the modeling of action cross sections for the inactivation of several strains of E-coli and B. subtilis spores where extensive measurements in the "thin-down" region have been made with heavy ion beams. Such calculations serve to test the radial dose calculations at the outer limit of electron penetration

  12. On expedient properties of common biological score functions for multi-modality, adaptive and 4D dose optimization

    Energy Technology Data Exchange (ETDEWEB)

    Sobotta, B; Alber, M [Section for Biomedical Physics, Radioonkologische Uniklinik, Universitaet Tuebingen, 72076 Tuebingen (Germany); Soehn, M [Department of Radiation Oncology, University Hospital Grosshadern, LMU Muenchen, 81377 Muenchen (Germany); Shaw, W, E-mail: benjamin.sobotta@med.uni-tuebingen.de [Department of Medical Physics, Faculty of Health Sciences, University of the Free State, PO Box 339, Bloemfontein 9300 (South Africa)

    2011-05-21

    Frequently, radiotherapy treatments are comprised of several dose distributions computed or optimized in different patient geometries. Therefore, the need arises to compute the comprehensive biological effect or physical figure of merit of the combined dose of a number of distinct geometry instances. For that purpose the dose is typically accumulated in a reference geometry through deformation fields obtained from deformable image registration. However, it is difficult to establish precise voxel-by-voxel relationships between different anatomical images in many cases. In this work, the mathematical properties of commonly used score functions are exploited to derive an upper boundary for the maximum effect for normal tissue and a lower boundary for the minimum effect for the target of accumulated doses on multiple geometry instances. (note)

  13. On expedient properties of common biological score functions for multi-modality, adaptive and 4D dose optimization.

    Science.gov (United States)

    Sobotta, B; Söhn, M; Shaw, W; Alber, M

    2011-05-21

    Frequently, radiotherapy treatments are comprised of several dose distributions computed or optimized in different patient geometries. Therefore, the need arises to compute the comprehensive biological effect or physical figure of merit of the combined dose of a number of distinct geometry instances. For that purpose the dose is typically accumulated in a reference geometry through deformation fields obtained from deformable image registration. However, it is difficult to establish precise voxel-by-voxel relationships between different anatomical images in many cases. In this work, the mathematical properties of commonly used score functions are exploited to derive an upper boundary for the maximum effect for normal tissue and a lower boundary for the minimum effect for the target of accumulated doses on multiple geometry instances.

  14. Ambient and biological monitoring of cokeoven workers: determinants of the internal dose of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Jongeneelen, F J; van Leeuwen, F E; Oosterink, S; Anzion, R B; van der Loop, F; Bos, R P; van Veen, H G

    1990-07-01

    Polycyclic aromatic hydrocarbons (PAH) were measured in the breathing zone air of 56 battery workers at two cokeovens during three consecutive days. The concentration of total PAH ranged up to 186 micrograms/m3. Preshift and end of shift urine samples were collected to determine 1-hydroxypyrene, a metabolite of pyrene. Control urine samples were available from 44 workers in the shipping yard of a hot rolling mill. The median values of 1-hydroxypyrene in urine of smoking and non-smoking controls were 0.51 and 0.17 mumol/mol creatinine, respectively. Concentrations of 1-hydroxypyrene up to 11.2 mumol/mol were found in the urine of the cokeoven workers. At the start of the three day working period after 32 hours off work, the 1-hydroxypyrene concentrations were four times higher and at the end of the working period 10 times higher compared with control concentrations. Excretion of 1-hydroxypyrene occurred with a half life of 6-35 hours. Both the ambient air monitoring data and the biological monitoring data showed that the topside workers were the heaviest exposed workers. The relation between air monitoring data and biological monitoring data was not strong. Multiple regression analysis was performed to identify determinants of the internal dose. The combination of exposure and smoking amplify each other and the use of a protective airstream helmet decreases the internal dose. An effect of alcohol consumption and the use of medication on the toxicokinetics of pyrene was not found.

  15. Analysis of clinical trials with biologics using dose-time-response models.

    Science.gov (United States)

    Lange, Markus R; Schmidli, Heinz

    2015-09-30

    Biologics such as monoclonal antibodies are increasingly and successfully used for the treatment of many chronic diseases. Unlike conventional small drug molecules, which are commonly given as tablets once daily, biologics are typically injected at much longer time intervals, that is, weeks or months. Hence, both the dose and the time interval have to be optimized during the drug development process for biologics. To identify an adequate regimen for the investigated biologic, the dose-time-response relationship must be well characterized, based on clinical trial data. The proposed approach uses semi-mechanistic nonlinear regression models to describe and predict the time-changing response for complex dosing regimens. Both likelihood-based and Bayesian methods for inference and prediction are discussed. The methodology is illustrated with data from a clinical study in an auto-immune disease.

  16. Effects of low doses of ionizing radiation; Effets des faibles doses de rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R. [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2006-07-01

    Several groups of human have been irradiated by accidental or medical exposure, if no gene defect has been associated to these exposures, some radioinduced cancers interesting several organs are observed among persons exposed over 100 to 200 mSv delivered at high dose rate. Numerous steps are now identified between the initial energy deposit in tissue and the aberrations of cell that lead to tumors but the sequence of events and the specific character of some of them are the subject of controversy. The stake of this controversy is the risk assessment. From the hypothesis called linear relationship without threshold is developed an approach that leads to predict cancers at any tiny dose without real scientific foundation. The nature and the intensity of biological effects depend on the quantity of energy absorbed in tissue and the modality of its distribution in space and time. The probability to reach a target (a gene) associated to the cancerating of tissue is directly proportional to the dose without any other threshold than the quantity of energy necessary to the effect, its probability of effect can be a more complex function and depends on the quality of the damage produced as well as the ability of the cell to repair the damage. These two parameters are influenced by the concentration of initial injuries in the target so by the quality of radiation and by the dose rate. The mechanisms of defence explain the low efficiency of radiation as carcinogen and then the linearity of effects in the area of low doses is certainly the least defensible scientific hypothesis for the prediction of the risks. (N.C.)

  17. Major cost savings associated with biologic dose reduction in patients with inflammatory arthritis.

    LENUS (Irish Health Repository)

    Murphy, C L

    2015-01-01

    The purpose of this study was to explore whether patients with Inflammatory Arthritis (IA) (Rheumatoid Arthritis (RA), Psoriatic Arthritis (PsA) or Ankylosing Spondylitis (AS)) would remain in remission following a reduction in biologic dosing frequency and to calculate the cost savings associated with dose reduction. This prospective non-blinded non-randomised study commenced in 2010. Patients with Inflammatory Arthritis being treated with a biologic agent were screened for disease activity. A cohort of those in remission according to standardized disease activity indices (DAS28 < 2.6, BASDAI < 4) was offered a reduction in dosing frequency of two commonly used biologic therapies (etanercept 50 mg once per fortnight instead of weekly, adalimumab 40 mg once per month instead of fortnightly). Patients were assessed for disease activity at 3, 6, 12, 18 and 24 months following reduction in dosing frequency. Cost saving was calculated. 79 patients with inflammatory arthritis in remission were recruited. 57% had rheumatoid arthritis (n = 45), 13% psoriatic arthritis (n = 10) and 30% ankylosing spondylitis (n = 24). 57% (n = 45) were taking etanercept and 43% (n = 34) adalimumab. The percentage of patients in remission at 24 months was 56% (n = 44). This resulted in an actual saving to the state of approximately 600,000 euro over two years. This study demonstrates the reduction in biologic dosing frequency is feasible in Inflammatory Arthritis. There was a considerable cost saving at two years. The potential for major cost savings in biologic usage should be pursued further.

  18. Dose-effect relationship in radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Oberhausen, E.

    1983-01-01

    As criterion for the evaluation of risk in connection with nuclear accidents the diminishing of life expectance is assumed. This would allow a better weighting of the different detriments. The possible dose-effect relations for the different detriments caused by radiation are discussed. Some models for a realistic evaluation of the different radiation detriments are proposed.

  19. Biological effects of electromagnetic fields.

    Science.gov (United States)

    Macrì, M. A.; Di Luzio, Sr.; Di Luzio, S.

    2002-01-01

    Nowadays, concerns about hazards from electromagnetic fields represent an alarming source for human lives in technologically developed countries. We are surrounded by electromagnetic fields everywhere we spend our working hours, rest or recreational activities. The aim of this review is to summarize the biological effects due to these fields arising from power and transmission lines, electrical cable splices, electronic devices inside our homes and work-places, distribution networks and associated devices such as cellular telephones and wireless communication tower, etc. Special care has been reserved to study the biological effects of electromagnetic fields on cell lines of the mammalian immune system about which our research group has been working for several years.

  20. Stochastic description of the ligand-receptor interaction of biologically active substances at extremely low doses.

    Science.gov (United States)

    Gurevich, Konstantin G; Agutter, Paul S; Wheatley, Denys N

    2003-04-01

    Signalling molecules can be effective at extraordinarily low concentrations (down to attomolar levels). To handle such cases, probabilistic methods have been used to describe the formal kinetics of action of biologically active substances in these low doses, although it has been necessary to review what is meant by such a term. The mean numbers of transformed/degraded molecules and their dispersions were calculated for the possible range of ligand-receptor binding schemes. We used both analytical equations and numerical simulations to calculate the coefficients of variation (ratio of standard deviation to mean) and demonstrated that the distribution of the coefficient is highly dependent on the reaction scheme. It may, therefore, be used as an additional factor for discriminating between cooperative and noncooperative models of ligand-receptor interaction over extreme ranges of ligand dilution. The relevance to signalling behaviour is discussed.

  1. Biological radiation dose from secondary particles in a Milky Way gamma-ray burst

    Science.gov (United States)

    Atri, Dimitra; Melott, Adrian L.; Karam, Andrew

    2014-07-01

    Gamma-ray bursts (GRBs) are a class of highly energetic explosions emitting radiation in a very short timescale of a few seconds and with a very narrow opening angle. Although, all GRBs observed so far are extragalactic in origin, there is a high probability of a GRB of galactic origin beaming towards the Earth in the past ~0.5 Gyr. We define the level of catastrophic damage to the biosphere as approximation 100 kJ m-2, based on Thomas et al. (2005a, b). Using results in Melott & Thomas (2011), we estimate the probability of the Earth receiving this fluence from a GRB of any type, as 87% during the last 500 Myr. Such an intense burst of gamma rays would ionize the atmosphere and deplete the ozone (O3) layer. With depleted O3, there will be an increased flux of Solar UVB on the Earth's surface with potentially harmful biological effects. In addition to the atmospheric damage, secondary particles produced by gamma ray-induced showers will reach the surface. Among all secondary particles, muons dominate the ground-level secondary particle flux (99% of the total number of particles) and are potentially of biological significance. Using the Monte Carlo simulation code CORSIKA, we modelled the air showers produced by gamma-ray primaries up to 100 GeV. We found that the number of muons produced by the electromagnetic component of hypothetical galactic GRBs significantly increases the total muon flux. However, since the muon production efficiency is extremely low for photon energies below 100 GeV, and because GRBs radiate strongly for only a very short time, we find that the biological radiation dose from secondary muons is negligible. The main mechanism of biological damage from GRBs is through Solar UVB irradiation from the loss of O3 in the upper atmosphere.

  2. Biological effectiveness of antiproton annihilation

    CERN Document Server

    Holzscheiter, Michael H.; Bassler, Niels; Beyer, Gerd; De Marco, John J.; Doser, Michael; Ichioka, Toshiyasu; Iwamoto, Keisuke S.; Knudsen, Helge V.; Landua, Rolf; Maggiore, Carl; McBride, William H.; Møller, Søren Pape; Petersen, Jorgen; Smathers, James B.; Skarsgard, Lloyd D.; Solberg, Timothy D.; Uggerhøj, Ulrik I.; Withers, H.Rodney; Vranjes, Sanja; Wong, Michelle; Wouters, Bradly G.

    2004-01-01

    We describe an experiment designed to determine whether or not the densely ionizing particles emanating from the annihilation of antiprotons produce an increase in “biological dose” in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct measurement of the biological effects of antiproton annihilation. The experiment has been approved by the CERN Research Board for running at the CERN Antiproton Decelerator (AD) as AD-4/ACE (Antiproton Cell Experiment) and has begun data taking in June of 2003. The background, description and the current status of the experiment are given.

  3. Biological effectiveness of antiproton annihilation

    DEFF Research Database (Denmark)

    Holzscheiter, M.H.; Agazaryan, N.; Bassler, Niels;

    2004-01-01

    We describe an experiment designed to determine whether or not the densely ionizing particles emanating from the annihilation of antiprotons produce an increase in ‘‘biological dose’’ in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct...... measurement of the biological effects of antiproton annihilation. The experiment has been approved by the CERN Research Board for running at the CERN Antiproton Decelerator (AD) as AD-4/ACE (Antiproton Cell Experiment) and has begun data taking in June of 2003. The background, description and the current...

  4. Dose and Dose-Rate Effectiveness Factor (DDREF); Der Dosis- und Dosisleistungs-Effektivitaetsfaktor (DDREF)

    Energy Technology Data Exchange (ETDEWEB)

    Breckow, Joachim [Fachhochschule Giessen-Friedberg, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz

    2016-08-01

    For practical radiation protection purposes it is supposed that stochastic radiation effects a determined by a proportional dose relation (LNT). Radiobiological and radiation epidemiological studies indicated that in the low dose range a dependence on dose rates might exist. This would trigger an overestimation of radiation risks based on the LNT model. OCRP had recommended a concept to combine all effects in a single factor DDREF (dose and dose-Rate effectiveness factor). There is still too low information on cellular mechanisms of low dose irradiation including possible repair and other processes. The Strahlenschutzkommission cannot identify a sufficient scientific justification for DDREF and recommends an adaption to the actual state of science.

  5. [Ecological and biological characteristics of Drosophila melanogaster features depending on the dose of electromagnetic radiation of various types].

    Science.gov (United States)

    Babkina, V V; Chernova, G V; Allenova, E A; Endebera, O P; Naumkina, E N

    2013-01-01

    Biological effects of exposure to red light (lambda = 660 +/- 10 nm) on the viability and morphophysiological characteristics of Drosophila melanogaster have been studied. The ability of this physical agent to modify these features is shown. The degree of expression and impact of biological effects depend on the dose, functional and genetic status of the organism. The study of the life expectancy of the exposed to EHF and white light D. melanogaster has revealed that expression of the features depends on the radiation doses, genotype, sex, the nature of the position of wings and lighting conditions. It has been found that the dark mode (24 h-night) is more favorable than the artificial lighting. Individuals with the left wing at the top are more sensitive to the external factors.

  6. The debate on the use of linear no threshold for assessing the effects of low doses

    Energy Technology Data Exchange (ETDEWEB)

    Tubiana, M; Aurengo, A; Averbeck, D; Masse, R [Centre Antoine Beclere, 45 rue des Saints-Peres, 75006 Paris (France)

    2006-09-15

    From December 2004 to July 2005, three reports on the effects of low doses of ionising radiation were released: ICRP (2004), the joint report of the French Academies of Science and Medicine (Tubiana et al 2005), and a report from the American Academy of Sciences (BEIR VII 2005). These reports quote the same recent articles on the biological effects of low doses, yet their conclusions diverge. The French report concludes that recent biological data show that the efficacy of defense mechanisms is modulated by dose and dose rate and that linear no threshold (LNT) is no longer plausible. The ICRP and the BEIR VII reports recognise that there are biologic arguments against LNT but feel that there are not sufficient biological proofs against it to change risk assessment methodology and subsequent regulatory policy based on LNT. They point out the remaining uncertainties and the lack of mechanistic explanations of phenomena such as low dose hyperlethality or the adaptive response. In this context, a critical analysis of the available data is necessary. The epidemiological data and the experimental data challenge the validity of the LNT hypothesis for assessing the carcinogenic effect of low doses, but do not allow its exclusion. Therefore, the main criteria for selecting the most reliable dose-effect relationship from a scientific point of view should be based on biological data. Their analysis should help one to understand the current controversy. (opinion)

  7. The debate on the use of linear no threshold for assessing the effects of low doses.

    Science.gov (United States)

    Tubiana, M; Aurengo, A; Averbeck, D; Masse, R

    2006-09-01

    From December 2004 to July 2005, three reports on the effects of low doses of ionising radiation were released: ICRP (2004), the joint report of the French Academies of Science and Medicine (Tubiana et al 2005), and a report from the American Academy of Sciences (BEIR VII 2005). These reports quote the same recent articles on the biological effects of low doses, yet their conclusions diverge. The French report concludes that recent biological data show that the efficacy of defense mechanisms is modulated by dose and dose rate and that linear no threshold (LNT) is no longer plausible. The ICRP and the BEIR VII reports recognise that there are biologic arguments against LNT but feel that there are not sufficient biological proofs against it to change risk assessment methodology and subsequent regulatory policy based on LNT. They point out the remaining uncertainties and the lack of mechanistic explanations of phenomena such as low dose hyperlethality or the adaptive response. In this context, a critical analysis of the available data is necessary. The epidemiological data and the experimental data challenge the validity of the LNT hypothesis for assessing the carcinogenic effect of low doses, but do not allow its exclusion. Therefore, the main criteria for selecting the most reliable dose-effect relationship from a scientific point of view should be based on biological data. Their analysis should help one to understand the current controversy.

  8. Biologically based multistage modeling of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of

  9. Patient Dosimetry in Arteriography of the Lower Limbs. Part II: Dose Conversion Coefficients, Organ Doses and Effective Dose

    Energy Technology Data Exchange (ETDEWEB)

    Kicken, P.J.H.; Zankl, M.; Kemerink, G.J

    1999-07-01

    X ray projection data (see Part I) and GSF phantoms ADAM and EVA were used as input for the GSF Monte Carlo transport code to calculate hitherto unavailable dose conversion coefficients (DCCs) for common projections in arteriography of the lower limbs. These DCCs served to estimate organ equivalent doses and effective dose in a study of 455 patients. The effective dose caused by percutaneous needle puncture arteriography of one leg was on average 1 mSv, by Seldinger catherisation for arteriography of both legs 4 mSv, and by intravenous digital subtraction arteriography (DSA) 5 mSv. For needle puncture and Seldinger arteriography the effective dose attributable to fluoroscopy was about 50% for male and 60% for female patients. The contribution of DSA was between 15 and 35%, that of cut films between 17 to 28%, depending on gender and procedure. The effective dose in intravenous arteriography was mainly due to DSA (91-93%). (author)

  10. Decavanadate effects in biological systems.

    Science.gov (United States)

    Aureliano, Manuel; Gândara, Ricardo M C

    2005-05-01

    Vanadium biological studies often disregarded the formation of decameric vanadate species known to interact, in vitro, with high-affinity with many proteins such as myosin and sarcoplasmic reticulum calcium pump and also to inhibit these biochemical systems involved in energy transduction. Moreover, very few in vivo animal studies involving vanadium consider the contribution of decavanadate to vanadium biological effects. Recently, it has been shown that an acute exposure to decavanadate but not to other vanadate oligomers induced oxidative stress and a different fate in vanadium intracellular accumulation. Several markers of oxidative stress analyzed on hepatic and cardiac tissue were monitored after in vivo effect of an acute exposure (12, 24 h and 7 days), to a sub-lethal concentration (5 mM; 1 mg/kg) of two vanadium solutions ("metavanadate" and "decavanadate"). It was observed that "decavanadate" promote different effects than other vanadate oligomers in catalase activity, glutathione content, lipid peroxidation, mitochondrial superoxide anion production and vanadium accumulation, whereas both solutions seem to equally depress reactive oxygen species (ROS) production as well as total intracellular reducing power. Vanadium is accumulated in mitochondria in particular when "decavanadate" is administered. These recent findings, that are now summarized, point out the decameric vanadate species contributions to in vivo and in vitro effects induced by vanadium in biological systems.

  11. Quantum Effects in Biological Systems

    Science.gov (United States)

    Roy, Sisir

    2014-07-01

    The debates about the trivial and non-trivial effects in biological systems have drawn much attention during the last decade or so. What might these non-trivial sorts of quantum effects be? There is no consensus so far among the physicists and biologists regarding the meaning of "non-trivial quantum effects". However, there is no doubt about the implications of the challenging research into quantum effects relevant to biology such as coherent excitations of biomolecules and photosynthesis, quantum tunneling of protons, van der Waals forces, ultrafast dynamics through conical intersections, and phonon-assisted electron tunneling as the basis for our sense of smell, environment assisted transport of ions and entanglement in ion channels, role of quantum vacuum in consciousness. Several authors have discussed the non-trivial quantum effects and classified them into four broad categories: (a) Quantum life principle; (b) Quantum computing in the brain; (c) Quantum computing in genetics; and (d) Quantum consciousness. First, I will review the above developments. I will then discuss in detail the ion transport in the ion channel and the relevance of quantum theory in brain function. The ion transport in the ion channel plays a key role in information processing by the brain.

  12. Linking exposure to environmental pollutants with biological effects

    DEFF Research Database (Denmark)

    Sørensen, Mette; Autrup, Herman; Møller, Peter

    2003-01-01

    Exposure to ambient air pollution has been associated with cancer. Ambient air contains a complex mixture of toxics, including particulate matter (PM) and benzene. Carcinogenic effects of PM may relate both to the content of PAH and to oxidative DNA damage generated by transition metals, benzene......, metabolism and inflammation. By means of personal monitoring and biomarkers of internal dose, biologically effective dose and susceptibility, it should be possible to characterize individual exposure and identify air pollution sources with relevant biological effects. In a series of studies, individual......, biological effects of air pollutants appear mainly related to oxidative stress via personal exposure and not to urban background levels. Future developments include personal time-resolved monitors for exposure to ultrafine PM and PM(2.5,) use of GPS, as well as genomics and proteomics based biomarkers....

  13. Biological effects of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, B.G. [SENES Oak Ridge Inc., Oak Ridge, TN (United States); Theodorakis, C.W.; Shugart, L.R. [Oak Ridge National Lab., Oak Ridge, TN (United States). Environmental Sciences Division

    1996-12-31

    Natural populations have always been exposed to background levels of ionizing radiation; however, with the event of the nuclear age, studies about the effects of higher-than-background levels of ionizing radiation on individuals or populations of organisms became important. Originally, concern was focused on survival after large, acute radiation doses, and numerous studies document the somatic and genetic effects of acute ionizing radiation. However, there is a growing realization that chronic long-term exposure to higher-than-background levels of environmental radiation is more likely than is large acute exposure. Less than 10% of the literature on ionizing radiation effects deals with chronic long-term effects, and very few studies involve natural populations. In 1977, mosquito fish, Gambusia affinis, were experimentally introduced into a 0,45 ha, decommissioned, radioactive waste pond where the measured dose at the sediment-water interface was 1,150 rad/year. One year later, the fecundity of the population had not changed significantly. Eighteen years later, studies of the fish showed an inverse correlation between DNA strand breakage and fecundity in the contaminated pond. More recent studies have provided evidence that genetic diversity of the fish has increased in the contaminated site. These fish also have a greater prevalence of certain DNA banding patterns. Individuals displaying these banding patterns have a higher fecundity and lower degree of DNA strand breakage than individuals with less common banding patterns. Gambusia affinis has apparently adapted to the high background radiation, successfully surviving for approximately 50 generations. 31 refs, 5 figs.

  14. Effects of Exposure Imprecision on Estimation of the Benchmark Dose

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Esben; Keiding, Niels; Grandjean, Philippe

    Environmental epidemiology; exposure measurement error; effect of prenatal mercury exposure; exposure standards; benchmark dose......Environmental epidemiology; exposure measurement error; effect of prenatal mercury exposure; exposure standards; benchmark dose...

  15. Systems Cancer Biology and the Controlling Mechanisms for the J-Shaped Cancer Dose Response: Towards Relaxing the LNT Hypothesis

    OpenAIRE

    Lou, In Chio; Zhao, Yuchao; Wu, YingJie; Ricci, Paolo F

    2012-01-01

    The hormesis phenomena or J-shaped dose response have been accepted as a common phenomenon regardless of the involved biological model, endpoint measured and chemical class/physical stressor. This paper first introduced a mathematical dose response model based on systems biology approach. It links molecular-level cell cycle checkpoint control information to clonal growth cancer model to predict the possible shapes of the dose response curves of Ionizing Radiation (IR) induced tumor transforma...

  16. Low doses effects and gamma radiations low dose rates; Les effets des faibles doses et des faibles debits de doses de rayons gamma

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, D. [Institut Curie, CNRS UMR 2027, 75 - Paris (France)

    1999-07-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  17. Mechanism of action for anti-radiation vaccine in reducing the biological impact of high-dose gamma irradiation

    Science.gov (United States)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after high-dose gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naïve animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which they mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  18. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding

    Science.gov (United States)

    George, K.; Willingham, V.; Wu, H.; Gridley, D.; Nelson, G.; Cucinotta, F. A.

    2002-01-01

    Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  19. Metabolomics identifies a biological response to chronic low-dose natural uranium contamination in urine samples.

    Science.gov (United States)

    Grison, Stéphane; Favé, Gaëlle; Maillot, Matthieu; Manens, Line; Delissen, Olivia; Blanchardon, Eric; Banzet, Nathalie; Defoort, Catherine; Bott, Romain; Dublineau, Isabelle; Aigueperse, Jocelyne; Gourmelon, Patrick; Martin, Jean-Charles; Souidi, Maâmar

    2013-01-01

    Because uranium is a natural element present in the earth's crust, the population may be chronically exposed to low doses of it through drinking water. Additionally, the military and civil uses of uranium can also lead to environmental dispersion that can result in high or low doses of acute or chronic exposure. Recent experimental data suggest this might lead to relatively innocuous biological reactions. The aim of this study was to assess the biological changes in rats caused by ingestion of natural uranium in drinking water with a mean daily intake of 2.7 mg/kg for 9 months and to identify potential biomarkers related to such a contamination. Subsequently, we observed no pathology and standard clinical tests were unable to distinguish between treated and untreated animals. Conversely, LC-MS metabolomics identified urine as an appropriate biofluid for discriminating the experimental groups. Of the 1,376 features detected in urine, the most discriminant were metabolites involved in tryptophan, nicotinate, and nicotinamide metabolic pathways. In particular, N-methylnicotinamide, which was found at a level seven times higher in untreated than in contaminated rats, had the greatest discriminating power. These novel results establish a proof of principle for using metabolomics to address chronic low-dose uranium contamination. They open interesting perspectives for understanding the underlying biological mechanisms and designing a diagnostic test of exposure.

  20. Immunological effects of low dose radiation. Absent or minor effects of Chernobyl fallout in Norway?

    Energy Technology Data Exchange (ETDEWEB)

    Reitan, J.B.; Bergan, T.D.; Strand, P. [Statens Straalevern, Oesteraas (Norway); Melbye, O.J. [Rikshospitalet, Oslo (Norway)

    1998-01-01

    In this pilot study of those Norwegian individuals most heavily exposed to the Chernobyl Fallout, immunological parameters generally stayed within normal limits. However, some parameter, apparently within the assumed normal range did, in fact correlate to the estimated individual dose as assessed by wholebody counting of radiocaesium content. The small possible effects revealed in this study may represent real biological effects, but do not necessarily represent a health detriment. 43 refs., 4 figs., 6 tabs.

  1. Dose and dose rate effects of irradiation on blood count and cytokine assay in mice

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joong Sun [Research center, Dongnam institute of radiological and Medical Sciences (DIRAMS), Busan (Korea, Republic of)

    2013-11-15

    The possible role of exposure to radiation as a risk factor for human health has been of increasing public concern in the series of explosions at earthquake damaged nuclear reactors on the Japan. Current events throughout the world underscore the growing threat of different forms of accidental exposure to radiation including nuclear accidents, atomic weapons use and testing, and the side effects of cancer therapy. A large range of dose rates of ionizing radiations could be encountered in accidental radiation situations. Nevertheless, most of the studies related to radiation effects have only examined a high dose rate. In this study, we investigated the blood count and the cytokine levels in the serum of mice exposed to a high or low dose rate of radiation. In this study, the precise molecular mechanism underlying the low dose rate of radiation remains unclear, but differential hematopoietic effects of radiation exposed at a high dose rate versus low dose rate were observed using the number of peripheral blood count and serum cytokines. These data suggest that chronic low dose rate exposure caused a stimulation of heamatopoietic system occurrence, unlike those observed after higher dose rate exposure. Our data suggest that the dose rate, rather than the total dose, may be more critical in causing damage to the cellular hematopoietic compartments of the body.

  2. Total ionizing dose effects of domestic SiGe HBTs under different dose rate

    CERN Document Server

    Mo-Han, Liu; Wu-Ying, Ma; Xin, Wang; Qi, Guo; Cheng-Fa, He; Ke, Jiang; Xiao-Long, Li; Ming-Zhu, Xiong

    2015-01-01

    The total ionizing radiation (TID) response of commercial NPN silicon germanium hetero-junction bipolar transistors (SiGe HBTs) produced domestic were investigated under the dose rate of 800mGy(Si)/s and 1.3mGy(Si)/s with Co-60 gamma irradiation source, respectively. The changes of the transistor parameter such as Gummel characteristics, excess base current before and after irradiation are investigated. The results of the experiments shows that for the KT1151, the radiation damage have slightly difference under the different dose rate after the prolonged annealing, shows an time dependent effect(TDE). But for the KT9041, the degradations of low dose rate irradiation are more higher than the high dose rate, demonstrate that there have potential enhanced low dose rate sensitive(ELDRS) effect exist on KT9041. The underlying physical mechanisms of the different dose rates response induced by the gamma ray are detailed discussed.

  3. Total ionizing dose effects of domestic SiGe HBTs under different dose rates

    Science.gov (United States)

    Liu, Mo-Han; Lu, Wu; Ma, Wu-Ying; Wang, Xin; Guo, Qi; He, Cheng-Fa; Jiang, Ke; Li, Xiao-Long; Xun, Ming-Zhu

    2016-03-01

    The total ionizing radiation (TID) response of commercial NPN silicon germanium hetero-junction bipolar transistors (SiGe HBTs) produced domestically are investigated under dose rates of 800 mGy(Si)/s and 1.3 mGy(Si)/s with a Co-60 gamma irradiation source. The changes of transistor parameters such as Gummel characteristics, and excess base current before and after irradiation, are examined. The results of the experiments show that for the KT1151, the radiation damage is slightly different under the different dose rates after prolonged annealing, and shows a time dependent effect (TDE). For the KT9041, however, the degradations of low dose rate irradiation is higher than for the high dose rate, demonstrating that there is a potential enhanced low dose rate sensitivity (ELDRS) effect for the KT9041. The possible underlying physical mechanisms of the different dose rates responses induced by the gamma rays are discussed.

  4. Biological dosimetry of ionizing radiation: Evaluation of the dose with cytogenetic methodologies by the construction of calibration curves

    Science.gov (United States)

    Zafiropoulos, Demetre; Facco, E.; Sarchiapone, Lucia

    2016-09-01

    In case of a radiation accident, it is well known that in the absence of physical dosimetry biological dosimetry based on cytogenetic methods is a unique tool to estimate individual absorbed dose. Moreover, even when physical dosimetry indicates an overexposure, scoring chromosome aberrations (dicentrics and rings) in human peripheral blood lymphocytes (PBLs) at metaphase is presently the most widely used method to confirm dose assessment. The analysis of dicentrics and rings in PBLs after Giemsa staining of metaphase cells is considered the most valid assay for radiation injury. This work shows that applying the fluorescence in situ hybridization (FISH) technique, using telomeric/centromeric peptide nucleic acid (PNA) probes in metaphase chromosomes for radiation dosimetry, could become a fast scoring, reliable and precise method for biological dosimetry after accidental radiation exposures. In both in vitro methods described above, lymphocyte stimulation is needed, and this limits the application in radiation emergency medicine where speed is considered to be a high priority. Using premature chromosome condensation (PCC), irradiated human PBLs (non-stimulated) were fused with mitotic CHO cells, and the yield of excess PCC fragments in Giemsa stained cells was scored. To score dicentrics and rings under PCC conditions, the necessary centromere and telomere detection of the chromosomes was obtained using FISH and specific PNA probes. Of course, a prerequisite for dose assessment in all cases is a dose-effect calibration curve. This work illustrates the various methods used; dose response calibration curves, with 95% confidence limits used to estimate dose uncertainties, have been constructed for conventional metaphase analysis and FISH. We also compare the dose-response curve constructed after scoring of dicentrics and rings using PCC combined with FISH and PNA probes. Also reported are dose response curves showing scored dicentrics and rings per cell, combining

  5. The Inhibitory Effects of Low-Dose Ionizing Radiation in IgE-Mediated Allergic Responses.

    Directory of Open Access Journals (Sweden)

    Hae Mi Joo

    Full Text Available Ionizing radiation has different biological effects according to dose and dose rate. In particular, the biological effect of low-dose radiation is unclear. Low-dose whole-body gamma irradiation activates immune responses in several ways. However, the effects and mechanism of low-dose radiation on allergic responses remain poorly understood. Previously, we reported that low-dose ionizing radiation inhibits mediator release in IgE-mediated RBL-2H3 mast cell activation. In this study, to have any physiological relevance, we investigated whether low-dose radiation inhibits allergic responses in activated human mast cells (HMC-1(5C6 and LAD2 cells, mouse models of passive cutaneous anaphylaxis and the late-phase cutaneous response. High-dose radiation induced cell death, but low-dose ionizing radiation of <0.5 Gy did not induce mast cell death. Low-dose ionizing radiation that did not induce cell death significantly suppressed mediator release from human mast cells (HMC-1(5C6 and LAD2 cells that were activated by antigen-antibody reaction. To determine the inhibitory mechanism of mediator released by low-dose ionizing radiation, we examined the phosphorylation of intracellular signaling molecules such as Lyn, Syk, phospholipase Cγ, and protein kinase C, as well as the intracellular free Ca2+ concentration ([Ca2+]i. The phosphorylation of signaling molecules and [Ca2+]i following stimulation of FcεRI receptors was inhibited by low dose ionizing radiation. In agreement with its in vitro effect, ionizing radiation also significantly inhibited inflammatory cells infiltration, cytokine mRNA expression (TNF-α, IL-4, IL-13, and symptoms of passive cutaneous anaphylaxis reaction and the late-phase cutaneous response in anti-dinitrophenyl IgE-sensitized mice. These results indicate that ionizing radiation inhibits both mast cell-mediated immediate- and delayed-type allergic reactions in vivo and in vitro.

  6. Effects of high dose rate gamma radiation on survival and reproduction of Biomphalaria glabrata

    Energy Technology Data Exchange (ETDEWEB)

    Cantinha, Rebeca S.; Nakano, Eliana [Instituto Butantan, Sao Paulo, SP (Brazil). Lab. de Parasitologia], e-mail: rebecanuclear@gmail.com, e-mail: eliananakano@butantan.gov.br; Borrely, Sueli I. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes], e-mail: sborrely@ipen.br; Amaral, Ademir; Melo, Ana M.M.A. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Estudos em Radioprotecao e Radioecologia (GERAR)], e-mail: amaral@ufpe.br; Silva, Luanna R.S. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Biofisica e Radiobiologia. Lab. de Radiobiologia], e-mail: amdemelo@hotmail.com, e-mail: luannaribeiro_lua@hotmail.com

    2009-07-01

    Ionizing radiations are known as mutagenic agents, causing lethality and infertility. This characteristic has motivated its application on animal biological control. In this context, the freshwater snail Biomphalaria glabrata can be considered an excellent experimental model to study effects of ionizing radiations on lethality and reproduction. This work was designed to evaluate effects of {sup 60}Co gamma radiation at high dose rate (10.04 kGy/h) on B. glabrata. For this purpose, adult snails were selected and exposed to doses ranging from 20 to 100 Gy, with 10 Gy intervals; one group was kept as control. There was not effect of dose rate in the lethality of gamma radiation; the value of 64,3 Gy of LD{sub 50} obtained in our study was similar to that obtained by other authors with low dose rates. Nevertheless, our data suggest that there was a dose rate effect in the reproduction. On all dose levels, radiation improved the production of embryos for all exposed individuals. However, viability indexes were below 6% and, even 65 days after irradiation, fertility was not recovered. These results are not in agreement with other studies using low dose rates. Lethality was obtained in all groups irradiated, and the highest doses presented percentiles of dead animals above 50%. The results demonstrated that doses of 20 and 30 Gy were ideal for population control of B. glabrata. Further studies are needed; nevertheless, this research evidenced great potential of high dose rate gamma radiation on B. glabrata reproductive control. (author)

  7. [Biological effect of wood dust].

    Science.gov (United States)

    Maciejewska, A; Wojtczak, J; Bielichowska-Cybula, G; Domańska, A; Dutkiewicz, J; Mołocznik, A

    1993-01-01

    The biological effect of exposure to wood dust depends on its composition and the content of microorganisms which are an inherent element of the dust. The irritant and allergic effects of wood dust have been recognised for a long time. The allergic effect is caused by the wood dust of subtropical trees, e.g. western red cedar (Thuja plicata), redwood (Sequoia sempervirens), obeche (Triplochiton scleroxylon), cocabolla (Dalbergia retusa) and others. Trees growing in the European climate such as: larch (Larix), walnut (Juglans regia), oak (Quercus), beech (Fagus), pine (Pinus) cause a little less pronounced allergic effect. Occupational exposure to irritative or allergic wood dust may lead to bronchial asthma, rhinitis, alveolitis allergica, DDTS (Organic dust toxic syndrome), bronchitis, allergic dermatitis, conjunctivitis. An increased risk of adenocarcinoma of the sinonasal cavity is an important and serious problem associated with occupational exposure to wood dust. Adenocarcinoma constitutes about half of the total number of cancers induced by wood dust. An increased incidence of the squamous cell cancers can also be observed. The highest risk of cancer applies to workers of the furniture industry, particularly those dealing with machine wood processing, cabinet making and carpentry. The cancer of the upper respiratory tract develops after exposure to many kinds of wood dust. However, the wood dust of oak and beech seems to be most carcinogenic. It is assumed that exposure to wood dust can cause an increased incidence of other cancers, especially lung cancer and Hodgkin's disease. The adverse effects of microorganisms, mainly mould fungi and their metabolic products are manifested by alveolitis allergica and ODTS. These microorganisms can induce aspergillomycosis, bronchial asthma, rhinitis and allergic dermatitis.

  8. Mechanism of Action for Anti-Radiation Vaccine in Reducing the Biological Impact of High-Dose Irradiation

    Science.gov (United States)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    2006-01-01

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then collected and circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naive animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. We partially analyzed the biochemical characteristics of the SRDs. The SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which the mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  9. Low-dose effects of hormones and endocrine disruptors.

    Science.gov (United States)

    Vandenberg, Laura N

    2014-01-01

    Endogenous hormones have effects on tissue morphology, cell physiology, and behaviors at low doses. In fact, hormones are known to circulate in the part-per-trillion and part-per-billion concentrations, making them highly effective and potent signaling molecules. Many endocrine-disrupting chemicals (EDCs) mimic hormones, yet there is strong debate over whether these chemicals can also have effects at low doses. In the 1990s, scientists proposed the "low-dose hypothesis," which postulated that EDCs affect humans and animals at environmentally relevant doses. This chapter focuses on data that support and refute the low-dose hypothesis. A case study examining the highly controversial example of bisphenol A and its low-dose effects on the prostate is examined through the lens of endocrinology. Finally, the chapter concludes with a discussion of factors that can influence the ability of a study to detect and interpret low-dose effects appropriately.

  10. Biological effects of drilling wastes

    Energy Technology Data Exchange (ETDEWEB)

    Cranford, P. J. [Department of Fisheries and Oceans, Dartmouth, NS (Canada). Bedford Inst. of Oceanography

    2000-07-01

    An argument is made for the point of view that economic realities require that a sustainable fishery must co-exist with the offshore petroleum industry, and therefore to sustain the fishery comprehensive studies are needed to identify and minimize the impact of operational drilling wastes on fishery resources. Moreover, laboratory and field studies indicate that operational drilling platforms impact on fisheries at great distances, therefore studies should not be limited to the immediate vicinity of drilling sites. Studies on long-term exposure of resident organisms to low level contaminants and the chronic lethal and sublethal biological effects of production drilling wastes must be conducted under environmentally relevant conditions to ensure the validity of the results. Studies at the Bedford Institute of Oceanography on sea scallops (Placopecten magellanicus) shows them to be highly sensitive to impacts from drilling wastes. Results of these studies, integrated with toxicity data and information on the distribution and transport of drilling wastes have been used by regulatory agencies and industrial interests to develop scientifically sound and justifiable regulations. They also led to the development of practical, sensitive and cost-effective technologies that use resident resource species to detect environmental impacts at offshore production sites. 1 fig.

  11. Dose Effects of Ion Beam Exposure on Deinococcus Radiodurans: Survival and Dose Response

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To explore the survival and dose response of organism for different radiation sources is of great importance in the research of radiobiology. In this study, the survival-dose response of Deinococcus radiodurans (E.coli, as the control) for ultra-violet (UV), γ-rays radiation and ion beam exposure was investigated. The shoulder type of survival curves were found for both UV and γ-ray ionizing radiation, but the saddle type of survival curves were shown for H+ 、 N+( 20keV and 30keV) and Ar+ beam exposure. This dose effect of the survival initially decreased withthe increase in dose and then increased in the high dose range and finally decreased again in thehigher dose range. Our experimental results suggest that D. radiodurans, which is considerablyradio-resistant to UV and x-ray and γ-ray ionizing radiation, do not resist ion beam exposure.

  12. Organ dose and effective dose with the EOS scanner in spine deformity surgery

    DEFF Research Database (Denmark)

    Heide Pedersen, Peter; Eiskjær, Søren Peter; Petersen, Asger Greval

    2016-01-01

    leads to tissue damage. It has been documented in large cohort studies that radiographic imaging during childhood for spinal deformities eg. scoliosis, increases the lifetime risk of breast cancer. The EOS biplane x-ray imaging system (EOS Imaging S.A, Paris France) has been developed to produce high...... factors. These findings and image quality will be compared to previously reported findings in standard settings and to conventional digital x-ray(CR) Results: Our preliminary studies have shown a significant reduction in absorbed organ dose. In AP position we found a mean liver organ dose of 0.03m...... year old and an adolescent. Thermoluminiscent detectors are used to measure organ dose. A first time measurement with micro-dose settings in both AP and PA will be performed in addition to standard settings in AP and PA positions. Effective dose is calculated using mean organ doses and tissue weighting...

  13. Low-dose rituximab in adult patients with idiopathic autoimmune hemolytic anemia: clinical efficacy and biologic studies.

    Science.gov (United States)

    Barcellini, Wilma; Zaja, Francesco; Zaninoni, Anna; Imperiali, Francesca Guia; Battista, Marta Lisa; Di Bona, Eros; Fattizzo, Bruno; Consonni, Dario; Cortelezzi, Agostino; Fanin, Renato; Zanella, Alberto

    2012-04-19

    This prospective study investigated the efficacy, safety, and response duration of low-dose rituximab (100 mg fixed dose for 4 weekly infusions) together with a short course of steroids as first- or second-line therapy in 23 patients with primary autoimmune hemolytic anemia (AIHA). The overall response was 82.6% at month +2, and subsequently stabilized to ∼ 90% at months +6 and +12; the response was better in warm autoimmune hemolytic anemia (WAIHA; overall response, 100% at all time points) than in cold hemagglutinin disease (CHD; average, 60%); the relapse-free survival was 100% for WAIHA at +6 and +12 months versus 89% and 59% in CHD, respectively, and the estimated relapse-free survival at 2 years was 81% and 40% for the warm and cold forms, respectively. The risk of relapse was higher in CHD and in patients with a longer interval between diagnosis and enrollment. Steroid administration was reduced both as cumulative dose (∼ 50%) and duration compared with the patient's past history. Treatment was well tolerated and no adverse events or infections were recorded; retreatment was also effective. The clinical response was correlated with amelioration biologic markers such as cytokine production (IFN-γ, IL-12, TNF-α, and IL-17), suggesting that low-dose rituximab exerts an immunomodulating activity. This study is registered at www.clinicaltrials.gov as NCT01345708.

  14. Effects of 14-day oral low dose selenium nanoparticles and selenite in rat—as determined by metabolite pattern determination

    DEFF Research Database (Denmark)

    Hadrup, Niels; Löschner, Katrin; Skov, Kasper;

    2016-01-01

    Selenium (Se) is an essential element with a small difference between physiological and toxic doses. To provide more effective and safe Se dosing regimens, as compared to dosing with ionic selenium, nanoparticle formulations have been developed. However, due to the nano-formulation, unexpected...... toxic effects may occur. We used metabolite pattern determination in urine to investigate biological and/or toxic effects in rats administered nanoparticles and for comparison included ionic selenium at an equimolar dose in the form of sodium selenite. Low doses of 10 and 100 fold the recommended human...

  15. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework.

    Science.gov (United States)

    Calabrese, Edward J; Bachmann, Kenneth A; Bailer, A John; Bolger, P Michael; Borak, Jonathan; Cai, Lu; Cedergreen, Nina; Cherian, M George; Chiueh, Chuang C; Clarkson, Thomas W; Cook, Ralph R; Diamond, David M; Doolittle, David J; Dorato, Michael A; Duke, Stephen O; Feinendegen, Ludwig; Gardner, Donald E; Hart, Ronald W; Hastings, Kenneth L; Hayes, A Wallace; Hoffmann, George R; Ives, John A; Jaworowski, Zbigniew; Johnson, Thomas E; Jonas, Wayne B; Kaminski, Norbert E; Keller, John G; Klaunig, James E; Knudsen, Thomas B; Kozumbo, Walter J; Lettieri, Teresa; Liu, Shu-Zheng; Maisseu, Andre; Maynard, Kenneth I; Masoro, Edward J; McClellan, Roger O; Mehendale, Harihara M; Mothersill, Carmel; Newlin, David B; Nigg, Herbert N; Oehme, Frederick W; Phalen, Robert F; Philbert, Martin A; Rattan, Suresh I S; Riviere, Jim E; Rodricks, Joseph; Sapolsky, Robert M; Scott, Bobby R; Seymour, Colin; Sinclair, David A; Smith-Sonneborn, Joan; Snow, Elizabeth T; Spear, Linda; Stevenson, Donald E; Thomas, Yolene; Tubiana, Maurice; Williams, Gary M; Mattson, Mark P

    2007-07-01

    Many biological subdisciplines that regularly assess dose-response relationships have identified an evolutionarily conserved process in which a low dose of a stressful stimulus activates an adaptive response that increases the resistance of the cell or organism to a moderate to severe level of stress. Due to a lack of frequent interaction among scientists in these many areas, there has emerged a broad range of terms that describe such dose-response relationships. This situation has become problematic because the different terms describe a family of similar biological responses (e.g., adaptive response, preconditioning, hormesis), adversely affecting interdisciplinary communication, and possibly even obscuring generalizable features and central biological concepts. With support from scientists in a broad range of disciplines, this article offers a set of recommendations we believe can achieve greater conceptual harmony in dose-response terminology, as well as better understanding and communication across the broad spectrum of biological disciplines.

  16. Biological shielding assessment and dose rate calculation for a neutron inspection portal

    Science.gov (United States)

    Donzella, A.; Bonomi, G.; Giroletti, E.; Zenoni, A.

    2012-04-01

    With reference to the prototype of neutron inspection portal built and successfully tested in the Rijeka seaport (Croatia) within the EURITRACK (EURopean Illicit Trafficking Countermeasures Kit) project, an assessment of the biological shielding in different set-up configurations of a future portal has been calculated with MCNP Monte Carlo code in the frame of the Eritr@C (European Riposte against Illicit TR@ffiCking) project. In the configurations analyzed the compliance with the dose limits for workers and the population stated by the European legislation is provided by appropriate shielding of the neutron sources and by the delimitation of a controlled area.

  17. Dose estimation by biological methods; Estimacion de dosis por metodos biologicos

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C.; David C, L.; Serment G, J.; Brena V, M. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The human being is exposed to strong artificial radiation sources, mainly of two forms: the first is referred to the occupationally exposed personnel (POE) and the second, to the persons that require radiological treatment. A third form less common is by accidents. In all these conditions it is very important to estimate the absorbed dose. The classical biological dosimetry is based in the dicentric analysis. The present work is part of researches to the process to validate the In situ Fluorescent hybridation (FISH) technique which allows to analyse the aberrations on the chromosomes. (Author)

  18. Neuroimmune Effects of Inhaling Low Dose Sarin

    Science.gov (United States)

    2008-02-01

    affect these responses. This was further confirmed by the observation that intracerebroventricular administration of pyridostigmine and edrophonium...intracerebroventricularly) into the brain. These results also suggested that subcutaneous administration of pyridostigmine bromide at doses

  19. Current research on biological effects of low-level exposures

    Energy Technology Data Exchange (ETDEWEB)

    Sagan, L.A.

    1994-12-31

    Rather substantial numbers of industrial chemicals, pharmaceuticals, and radiation display U-shaped or seemingly paradoxical dose-response relationships. A limited listing of studies providing examples of data fitting the U-shaped curve has been published. This array suggests that the U-shaped response is broadly generalizable and therefore potentially of considerable significance in the toxicological and public health domains. In fact, in 1992 and 1993, three conferences (Japan, United States, and China) were held exclusively on the topic of the biological effects of low doses of chemicals and radioactivity with articular emphasis on U-shaped curves. Substantial efforts have been made at understanding this observation.

  20. Systems Cancer Biology and the Controlling Mechanisms for the J-Shaped Cancer Dose Response: Towards Relaxing the LNT Hypothesis.

    Science.gov (United States)

    Lou, In Chio; Zhao, Yuchao; Wu, Yingjie; Ricci, Paolo F

    2012-01-01

    The hormesis phenomena or J-shaped dose response have been accepted as a common phenomenon regardless of the involved biological model, endpoint measured and chemical class/physical stressor. This paper first introduced a mathematical dose response model based on systems biology approach. It links molecular-level cell cycle checkpoint control information to clonal growth cancer model to predict the possible shapes of the dose response curves of Ionizing Radiation (IR) induced tumor transformation frequency. J-shaped dose response curves have been captured with consideration of cell cycle checkpoint control mechanisms. The simulation results indicate the shape of the dose response curve relates to the behavior of the saddle-node points of the model in the bifurcation diagram. A simplified version of the model in previous work of the authors was used mathematically to analyze behaviors relating to the saddle-node points for the J-shaped dose response curve. It indicates that low-linear energy transfer (LET) is more likely to have a J-shaped dose response curve. This result emphasizes the significance of systems biology approach, which encourages collaboration of multidiscipline of biologists, toxicologists and mathematicians, to illustrate complex cancer-related events, and confirm the biphasic dose-response at low doses.

  1. Molecular effects of supraphysiological doses of doping agents on health.

    Science.gov (United States)

    Imperlini, Esther; Mancini, Annamaria; Alfieri, Andreina; Martone, Domenico; Caterino, Marianna; Orrù, Stefania; Buono, Pasqualina

    2015-06-01

    Performance-enhancing drugs (PEDs) gained wide popularity not only among sportsmen but also among specific subsets of population, such as adolescents. Apart from their claimed effects on athletic performance, they are very appealing due to the body shaping effect exerted on fat mass and fat-free mass. Besides the "underestimated" massive misuse of PEDs, the short- as well as long-term consequences of such habits remain largely unrecognized. They have been strictly associated with serious adverse effects, but molecular mechanisms are yet to be elucidated. Here, we analyze the current understanding of the molecular effects of supraphysiological doses of doping agents in healthy biological systems, at genomic and proteomic levels, in order to define the molecular sensors of organ/tissue impairment, determined by their misuse. The focus is put on the anabolic androgenic steroids (AASs), specifically testosterone (T) and its most potent derivative dihydrotestosterone (DHT), and on the peptide hormones, specifically the growth hormone (GH) and the insulin-like growth factor-1 (IGF-1). A map of molecular targets is defined and the risk incidence for human health is taken into account.

  2. Biological effects of high LET radiations

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masami [Nagasaki Univ. (Japan). Faculty of Pharmaceutical Sciences

    1997-03-01

    Biological effect of radiation is different by a kind of it greatly. Heavy ions were generally more effective in cell inactivation, chromosome aberration induction, mutation induction and neoplastic cell transformation induction than {gamma}-rays in SHE cells. (author)

  3. Low-dose rituximab is effective in pemphigus

    NARCIS (Netherlands)

    Horvath, B.; Huizinga, J.; Pas, H. H.; Mulder, A. B.; Jonkman, M. F.

    2012-01-01

    Background Rituximab, an anti-CD20 antibody, was shown in open series studies to be effective in treating pemphigus at a dose of 4 x 375 mg m(-2) as approved for B-cell malignancies. Objectives We investigated whether a lower dose of rituximab is also effective for pemphigus. Methods Patients with p

  4. Aspects of the Relationship Between Drug Dose and Drug Effect

    OpenAIRE

    Peper, Abraham

    2009-01-01

    It is generally assumed that there exists a well-defined relationship between drug dose and drug effect and that this can be expressed by a dose-response curve. This paper argues that there is no such clear relation and that the dose-response curve provides only limited information about the drug effect. It is demonstrated that tolerance development during the measurement of the dose-response curve may cause major distortion of the curve and it is argued that the curve may only be used to ind...

  5. Correlation Effects in Biological Networks

    Directory of Open Access Journals (Sweden)

    A.A. Bagdasaryan

    2012-06-01

    Full Text Available Review of the complex network theory is presented and classification of such networks in accordance with the main statistical characteristics is considered. For the adjacency matrix of a real neural network the shortest distances for each pair of nodes as well as the node degree distribution and cluster coefficients are calculated. Comparison of the main statistical parameters with the random network is performed, and based on this, the conclusions about the correlation phenomena in biological system are made.

  6. Aspects of the relationship between drug dose and drug effect.

    Science.gov (United States)

    Peper, Abraham

    2009-02-09

    It is generally assumed that there exists a well-defined relationship between drug dose and drug effect and that this can be expressed by a dose-response curve. This paper argues that there is no such clear relation and that the dose-response curve provides only limited information about the drug effect. It is demonstrated that tolerance development during the measurement of the dose-response curve may cause major distortion of the curve and it is argued that the curve may only be used to indicate the response to the first administration of a drug, before tolerance has developed. The precise effect of a drug on an individual depends on the dynamic relation between several variables, particularly the level of tolerance, the dose anticipated by the organism and the actual drug dose. Simulations with a previously published mathematical model of drug tolerance demonstrate that the effect of a dose smaller than the dose the organism has developed tolerance to is difficult to predict and may be opposite to the action of the usual dose.

  7. Errors and Uncertainties in Dose Reconstruction for Radiation Effects Research

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.

    2008-04-14

    Dose reconstruction for studies of the health effects of ionizing radiation have been carried out for many decades. Major studies have included Japanese bomb survivors, atomic veterans, downwinders of the Nevada Test Site and Hanford, underground uranium miners, and populations of nuclear workers. For such studies to be credible, significant effort must be put into applying the best science to reconstructing unbiased absorbed doses to tissues and organs as a function of time. In many cases, more and more sophisticated dose reconstruction methods have been developed as studies progressed. For the example of the Japanese bomb survivors, the dose surrogate “distance from the hypocenter” was replaced by slant range, and then by TD65 doses, DS86 doses, and more recently DS02 doses. Over the years, it has become increasingly clear that an equal level of effort must be expended on the quantitative assessment of uncertainty in such doses, and to reducing and managing uncertainty. In this context, this paper reviews difficulties in terminology, explores the nature of Berkson and classical uncertainties in dose reconstruction through examples, and proposes a path forward for Joint Coordinating Committee for Radiation Effects Research (JCCRER) Project 2.4 that requires a reasonably small level of effort for DOSES-2008.

  8. Cytogenetic dose-response in vitro for biological dosimetry after exposure to high doses of gamma-rays.

    Science.gov (United States)

    Vinnikov, Volodymyr A; Maznyk, Nataliya A

    2013-04-01

    The dose response for dicentrics plus centric rings and total unstable chromosome-type aberrations was studied in the first mitoses of cultured human peripheral blood lymphocytes irradiated in vitro to doses of ∼2, 4, 6, 8, 10, 16 and 20 Gy of acute (60)Со gamma-rays. A dose-dependent increase of aberration yield was accompanied by a tendency to the underdispersion of dicentrics and centric rings among cells distributions compared with Poisson statistics at doses ≥6 Gy. The formal fitting of the data to a linear-quadratic model resulted in an equation with the linear and quadratic coefficients ranged 0.098-0.129×cell(-1)×Gy(-1) and 0.039-0.034×cell(-1)×Gy(-2), respectively, depending on the fitting method. The actual radiation-induced aberration yield was markedly lower than expected from a calibration curve, generated earlier within a lower dose range. Interlaboratory variations in reported dicentric yields induced by medium-to-high radiation doses in vitro are discussed.

  9. Off-label biologic regimens in psoriasis: a systematic review of efficacy and safety of dose escalation, reduction, and interrupted biologic therapy.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Brezinski

    Full Text Available OBJECTIVES: While off-label dosing of biologic treatments may be necessary in selected psoriasis patients, no systematic review exists to date that synthesizes the efficacy and safety of these off-label dosing regimens. The aim of this systematic review is to evaluate efficacy and safety of off-label dosing regimens (dose escalation, dose reduction, and interrupted treatment with etanercept, adalimumab, infliximab, ustekinumab, and alefacept for psoriasis treatment. DATA SOURCES AND STUDY SELECTION: We searched OVID Medline from January 1, 1990 through August 1, 2011 for prospective clinical trials that studied biologic therapy for psoriasis treatment in adults. Individual articles were screened for studies that examined escalated, reduced, or interrupted therapy with etanercept, adalimumab, infliximab, ustekinumab, or alefacept. DATA SYNTHESIS: A total of 23 articles with 12,617 patients matched the inclusion and exclusion criteria for the systematic review. Data were examined for primary and secondary efficacy outcomes and adverse events including infections, malignancies, cardiovascular events, and anti-drug antibodies. The preponderance of data suggests that continuous treatment with anti-TNF agents and anti-IL12/23 agent was necessary for maintenance of disease control. Among non-responders, dose escalation with etanercept, adalimumab, ustekinumab, and alefacept typically resulted in greater efficacy than standard dosing. Dose reduction with etanercept and alefacept resulted in reduced efficacy. Withdrawal of the examined biologics led to an increase in disease activity; efficacy from retreatment did not result in equivalent initial response rates for most biologics. Safety data on off-label dosing regimens are limited. CONCLUSION: Dose escalation in non-responders generally resulted in increased efficacy in the examined biologics used to treat moderate-to-severe psoriasis. Continuous treatment with anti-TNF agents and anti-IL12/23 agent

  10. Adaptive response and split-dose effect of radiation on the survival of mice

    Indian Academy of Sciences (India)

    Ashu Bhan Tiku; R K Kale

    2004-03-01

    Although the importance of radiation-induced adaptive response has been recognized in human health, risk assessment and clinical application, the phenomenon has not been understood well in terms of survival of animals. To examine this aspect Swiss albino mice were irradiated with different doses (2–10 Gy) at 0.015 Gy/s dose rate and observed on a regular basis for 30 days. Since almost 50% lethality was seen with 8 Gy, it was selected as the challenging dose for further studies. Irradiation of mice with conditioning doses (0.25 or 0.5 Gy) and subsequent exposure to 8 Gy caused significant increase in the survival of mice compared to irradiated control. The splitting of challenging dose did not influence the efficiency of conditioning doses (0.25 Gy and 0.5 Gy) to induce an adaptive response. However conditioning doses given in fractions (0.25 Gy + 0.25 Gy) or (0.5 Gy + 0.5 Gy) were able to modulate the response of challenging dose of 8 Gy. These results clearly showed the occurrence of adaptive response in terms of survival of animals. The conditioning dose given in small fractions seemed to be more effective. The findings have been discussed from a mechanistic point of view. The possible biological implications, potential medical benefits, uncertainties and controversies related to adaptive response have also been addressed.

  11. Dose-effect relationships, epidemiological analysis and the derivation of low dose risk

    Energy Technology Data Exchange (ETDEWEB)

    Leenhouts, H P [Bennekom (Netherlands); Chadwick, K H, E-mail: kennethhchadwick@aol.com [Cowan Head, Kendal (United Kingdom)

    2011-03-01

    This paper expands on our recent comments in a letter to this journal about the analysis of epidemiological studies and the determination of low dose RBE of low LET radiation (Chadwick and Leenhouts 2009 J. Radiol. Prot. 29 445-7). Using the assumption that radiation induced cancer arises from a somatic mutation (Chadwick and Leenhouts 2011 J. Radiol. Prot. 31 41-8) a model equation is derived to describe cancer induction as a function of dose. The model is described briefly, evidence is provided in support of it, and it is applied to a set of experimental animal data. The results are compared with a linear fit to the data as has often been done in epidemiological studies. The article presents arguments to support several related messages which are relevant to epidemiological analysis, the derivation of low dose risk and the weighting factor of sparsely ionising radiations. The messages are: (a) cancer incidence following acute exposure should, in principle, be fitted to a linear-quadratic curve with cell killing using all the data available; (b) the acute data are dominated by the quadratic component of dose; (c) the linear fit of any acute data will essentially be dependent on the quadratic component and will be unrelated to the effectiveness of the radiation at low doses; consequently, (d) the method used by ICRP to derive low dose risk from the atomic bomb survivor data means that it is unrelated to the effectiveness of the hard gamma radiation at low radiation doses; (e) the low dose risk value should, therefore, not be used as if it were representative for hard gamma rays to argue for an increased weighting factor for tritium and soft x-rays even though there are mechanistic reasons to expect this; (f) epidemiological studies of chronically exposed populations supported by appropriate cellular radiobiological studies have the best chance of revealing different RBE values for different sparsely ionising radiations.

  12. TU-F-CAMPUS-T-05: Dose Escalation to Biological Tumor Volumes of Prostate Cancer Patients Using Gold Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jermoumi, M; Ngwa, W [Department of Physics and Applied Physics, Medical Physics Program, University of Massachusetts Lowell (United States); Department of Radiation Oncology, Dana Farber Cancer Insitute, Brigham and Women’s Hospital, Harvard Medical, Boston, MA (United States); Sajo, E [Department of Physics and Applied Physics, Medical Physics Program, University of Massachusetts Lowell (United States); Houari, K [Department of Radiation Oncology, Dana Farber Cancer Insitute, Brigham and Women’s Hospital, Harvard Medical, Boston, MA (United States)

    2015-06-15

    Purpose: Studies have shown that radiation boosting could help reduce prostate cancer (PCa) recurrence. Biological tumor volumes (BTV) are a high priority for such radiation boosting. The purpose of this study is to investigate the potential of radiation boosting of real patient BTVs using gold nanoparticles (GNP) released from gold-loaded brachytherapy spacers (GBS) during brachytherapy. Methods: The BTVs of 12 patients having prostate adenocarcinoma identified with positron emission tomography (PET) and CT scanner using C-11 labeled tracer [11C]acetate were investigated. The initial GNP concentration and time to achieve a dose enhancement effect (DEF) of 2 was simulated using the freely downloadable software RAID APP. The investigations were carried out for low dose rate (LDR) brachytherapy sources (BTS) described in AAPM Task Group report 43: Cs-131, I-125, and Pd-103. In first case, we used 7 mg/g and 18 mg/g of GNP initial concentrations to estimate the time needed for released GNP to achieve a DEF of 2 for the different BTS, and compare with clinically relevant treatment times. In second case, we calculated the initial concentration of GNPs needed to achieve a DEF of 2 during the time the BTS would typically deliver 50%, 70% and 90% of the total dose. Results: For an initial concentration of 18 mg/g, when using Cs-131, and Pd-103, a DEF of 2 could only be achieved for BTV of 3.3 cm3 and 1 cm3 respectively. Meanwhile a DEF of 2 could be achieved for all 12 BTVs when using I-125. To achieve a DEF of 2 for all patients using Cs-131 and Pd-103, much higher initial concentrations would have to be used than have been typically employed in pre-clinical studies. Conclusion: The I-125 is the most viable BTS that can be employed with GBS to guide dose painting treatment planning for localized PCa.

  13. Committed effective doses at various times after intakes of radionuclides

    CERN Document Server

    Phipps, A W; Kendall, G M; Silk, T J; Stather, J W

    1991-01-01

    This report contains details of committed effective doses at nine times after intake from intakes by ingestion and inhalation of 1 mu 1 AMAD particles by adults. Data are given for various chemical forms of 359 nuclides. It complements NRPB-R245 which describes the changes which have taken place since the last NRPB compendium of dose per unit intake factors (dose coefficients) and gives summary tables. Information on committed equivalent doses to organs is given in NRPB-M288. The information given in these memoranda is also available as a microcomputer package - NRPB-SR245.

  14. Radiation dose-volume effects in the lung

    DEFF Research Database (Denmark)

    Marks, Lawrence B; Bentzen, Soren M; Deasy, Joseph O;

    2010-01-01

    The three-dimensional dose, volume, and outcome data for lung are reviewed in detail. The rate of symptomatic pneumonitis is related to many dosimetric parameters, and there are no evident threshold "tolerance dose-volume" levels. There are strong volume and fractionation effects....

  15. Effective dose estimation to patients and staff during urethrography procedures

    Energy Technology Data Exchange (ETDEWEB)

    Sulieman, A. [Prince Sattam bin Abdulaziz University, College of Applied Medical Sciences, Radiology and Medical Imaging Department, P. O- Box 422, Alkharj 11942 (Saudi Arabia); Barakat, H. [Neelain University, College of Science and Technology, Medical Physics Department, Khartoum (Sudan); Alkhorayef, M.; Babikir, E. [King Saud University, College of Applied Sciences, Radiological Sciences Department, P. O. Box 10219, Riyadh 11433 (Saudi Arabia); Dalton, A.; Bradley, D. [University of Surrey, Centre for Nuclear and Radiation Physics, Department of Physics, Surrey, GU2 7XH Guildford (United Kingdom)

    2015-10-15

    Medical-related radiation is the largest source of controllable radiation exposure to humans and it accounts for more than 95% of radiation exposure from man-made sources. Few data were available worldwide regarding patient and staff dose during urological ascending urethrography (ASU) procedure. The purposes of this study are to measure patient and staff entrance surface air kerma dose (ESAK) during ASU procedure and evaluate the effective doses. A total of 243 patients and 145 staff (Urologist) were examined in three Hospitals in Khartoum state. ESAKs were measured for patient and staff using thermoluminescent detectors (TLDs). Effective doses (E) were calculated using published conversion factors and methods recommended by the national Radiological Protection Board (NRPB). The mean ESAK dose for patients and staff dose were 7.79±6.7 mGy and 0.161±0.30 mGy per procedures respectively. The mean and range of the effective dose was 1.21 mSv per procedure. The radiation dose in this study is comparable with previous studies except Hospital C. It is obvious that high patient and staff exposure is due to the lack of experience and protective equipment s. Interventional procedures remain operator dependent; therefore continuous training is crucial. (Author)

  16. Effects of 14-day oral low dose selenium nanoparticles and selenite in rat—as determined by metabolite pattern determination

    Directory of Open Access Journals (Sweden)

    Niels Hadrup

    2016-10-01

    Full Text Available Selenium (Se is an essential element with a small difference between physiological and toxic doses. To provide more effective and safe Se dosing regimens, as compared to dosing with ionic selenium, nanoparticle formulations have been developed. However, due to the nano-formulation, unexpected toxic effects may occur. We used metabolite pattern determination in urine to investigate biological and/or toxic effects in rats administered nanoparticles and for comparison included ionic selenium at an equimolar dose in the form of sodium selenite. Low doses of 10 and 100 fold the recommended human high level were employed to study the effects at borderline toxicity. Evaluations of all significantly changed putative metabolites, showed that Se nanoparticles and sodium selenite induced similar dose dependent changes of the metabolite pattern. Putative identified metabolites included increased decenedioic acid and hydroxydecanedioic acid for both Se formulations whereas dipeptides were only increased for selenite. These effects could reflect altered fatty acid and protein metabolism, respectively.

  17. Topographic Effects on Ambient Dose Equivalent Rates from Radiocesium Fallout

    CERN Document Server

    Malins, Alex; Machida, Masahiko; Saito, Kimiaki

    2015-01-01

    Land topography can affect air radiation dose rates by locating radiation sources closer to, or further, from detector locations when compared to perfectly flat terrain. Hills and slopes can also shield against the propagation of gamma rays. To understand the possible magnitude of topographic effects on air dose rates, this study presents calculations for ambient dose equivalent rates at a range of heights above the ground for varying land topographies. The geometries considered were angled ground at the intersection of two planar surfaces, which is a model for slopes neighboring flat land, and a simple conical geometry, representing settings from hilltops to valley bottoms. In each case the radiation source was radioactive cesium fallout, and the slope angle was varied systematically to determine the effect of topography on the air dose rate. Under the assumption of homogeneous fallout across the land surface, and for these geometries and detector locations, the dose rates at high altitudes are more strongly...

  18. Variability: The common factor linking low dose-induced genomic instability, adaptation and bystander effects

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Jeffrey L. [Department of Radiation Oncology, University of Washington Medical Center, 1959 NE Pacific, Box 356069, Seattle, WA 98195-6069 (United States)]. E-mail: jschwart@u.washington.edu

    2007-03-01

    The characteristics of low dose radiation-induced genomic instability, adaptive responses, and bystander effects were compared in order to probe possible underlying mechanisms, and develop models for predicting response to in vivo low dose radiation exposures. While there are some features that are common to all three (e.g., absence of a true dose-response, the multiple endpoints affected by each), other characteristics appear to distinguish one from the other (e.g., TP53 involvement, LET response, influence of DNA repair). Each of the responses is also highly variable; not all cell and tissue models show the same response and there is much interindividual variation in response. Most of these studies have employed in vitro cell culture or tissue explant models, and understanding underlying mechanisms and the biological significance of these low dose-responses will require study of tissue-specific in vivo endpoints. The in vitro studies strongly suggest that modeling low dose radiation effects will be a complex process, and will likely require separate study of each of these low dose phenomena. Knowledge of instability responses, for example, may not aid in predicting other low dose effects in the same tissue.

  19. Correlation between effective dose and radiological risk: general concepts*

    Science.gov (United States)

    Costa, Paulo Roberto; Yoshimura, Elisabeth Mateus; Nersissian, Denise Yanikian; Melo, Camila Souza

    2016-01-01

    The present review aims to offer an educational approach related to the limitations in the use of the effective dose mgnitude as a tool for the quantification of doses resulting from diagnostic applications of ionizing radiation. We present a critical analysis of the quantities accepted and currently used for dosimetric evaluation in diagnostic imaging procedures, based on studies published in the literature. It is highlighted the use of these quantities to evaluate the risk attributed to the procedure and to calculate the effective dose, as well as to determine its correct use and interpretation. PMID:27403018

  20. Correlation between effective dose and radiological risk: general concepts

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Paulo Roberto; Yoshimura, Elisabeth Mateus; Nersissian, Denise Yanikian; Melo, Camila Souza, E-mail: pcosta@if.usp.br [Universidade de Sao Paulo (IF/USP), Sao Paulo, SP (Brazil). Instituto de Fisica

    2016-05-15

    The present review aims to offer an educational approach related to the limitations in the use of the effective dose magnitude as a tool for the quantification of doses resulting from diagnostic applications of ionizing radiation. We present a critical analysis of the quantities accepted and currently used for dosimetric evaluation in diagnostic imaging procedures, based on studies published in the literature. It is highlighted the use of these quantities to evaluate the risk attributed to the procedure and to calculate the effective dose, as well as to determine its correct use and interpretation. (author)

  1. An efficient dose-compensation method for proximity effect correction

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ying; Han Weihua; Yang Xiang; Zhang Yang; Yang Fuhua [Research Center of Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Zhang Renping, E-mail: wangying@semi.ac.c [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2010-08-15

    A novel simple dose-compensation method is developed for proximity effect correction in electron-beam lithography. The sizes of exposed patterns depend on dose factors while other exposure parameters (including accelerate voltage, resist thickness, exposing step size, substrate material, and so on) remain constant. This method is based on two reasonable assumptions in the evaluation of the compensated dose factor: one is that the relation between dose factors and circle-diameters is linear in the range under consideration; the other is that the compensated dose factor is only affected by the nearest neighbors for simplicity. Four-layer-hexagon photonic crystal structures were fabricated as test patterns to demonstrate this method. Compared to the uncorrected structures, the homogeneity of the corrected hole-size in photonic crystal structures was clearly improved. (semiconductor technology)

  2. Effect of staff training on radiation dose in pediatric CT

    Energy Technology Data Exchange (ETDEWEB)

    Hojreh, Azadeh, E-mail: azadeh.hojreh@meduniwien.ac.at [Medical University of Vienna, Department of Biological Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Waehringer Guertel 18–20, A-1090 Vienna (Austria); Weber, Michael, E-mail: michael.Weber@Meduniwien.Ac.At [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Waehringer Guertel 18–20, A-1090 Vienna (Austria); Homolka, Peter, E-mail: peter.Homolka@Meduniwien.Ac.At [Medical University of Vienna, Centre for Medical Physics and Biomedical Engineering, Waehringer Guertel 18–20, A-1090 Vienna (Austria)

    2015-08-15

    Highlights: • Pediatric patient CT doses were compared before and after staff training. • Staff training increasing dose awareness resulted in patient dose reduction. • Application of DRL reduced number of CT's with unusually high doses. • Continuous education and training are effective regarding dose optimization. - Abstract: Objective: To evaluate the efficacy of staff training on radiation doses applied in pediatric CT scans. Methods: Pediatric patient doses from five CT scanners before (1426 scans) and after staff training (2566 scans) were compared statistically. Examinations included cranial CT (CCT), thoracic, abdomen–pelvis, and trunk scans. Dose length products (DLPs) per series were extracted from CT dose reports archived in the PACS. Results: A pooled analysis of non-traumatic scans revealed a statistically significant reduction in the dose for cranial, thoracic, and abdomen/pelvis scans (p < 0.01). This trend could be demonstrated also for trunk scans, however, significance could not be established due to low patient frequencies (p > 0.05). The percentage of scans performed with DLPs exceeding the German DRLs was reduced from 41% to 7% (CCT), 19% to 5% (thorax-CT), from 9% to zero (abdominal–pelvis CT), and 26% to zero (trunk; DRL taken as summed DRLs for thorax plus abdomen–pelvis, reduced by 20% accounting for overlap). Comparison with Austrian DRLs – available only for CCT and thorax CT – showed a reduction from 21% to 3% (CCT), and 15 to 2% (thorax CT). Conclusions: Staff training together with application of DRLs provide an efficient approach for optimizing radiation dose in pediatric CT practice.

  3. Marijuana's dose-dependent effects in daily marijuana smokers.

    Science.gov (United States)

    Ramesh, Divya; Haney, Margaret; Cooper, Ziva D

    2013-08-01

    Active marijuana produces significant subjective, psychomotor, and physiological effects relative to inactive marijuana, yet demonstrating that these effects are dose-dependent has proven difficult. This within-subject, double-blind study was designed to develop a smoking procedure to obtain a marijuana dose-response function. In four outpatient laboratory sessions, daily marijuana smokers (N = 17 males, 1 female) smoked six 5-s puffs from 3 marijuana cigarettes (2 puffs/cigarette). The number of puffs from active (≥5.5% Δ⁹-tetrahydrocannabinol/THC) and inactive (0.0% THC) marijuana varied according to condition (0, 2, 4, or 6 active puffs); active puffs were always smoked before inactive puffs. Subjective, physiological, and performance effects were assessed prior to and at set time points after marijuana administration. Active marijuana dose-dependently increased heart rate and decreased marijuana craving, despite evidence (carbon monoxide expiration, weight of marijuana cigarettes post-smoking) that participants inhaled less of each active marijuana cigarette than inactive cigarettes. Subjective ratings of marijuana "strength," "high," "liking," "good effect," and "take again" were increased by active marijuana compared with inactive marijuana, but these effects were not dose-dependent. Active marijuana also produced modest, non-dose-dependent deficits in attention, psychomotor function, and recall relative to the inactive condition. In summary, although changes in inhalation patterns as a function of marijuana strength likely minimized the difference between dose conditions, dose-dependent differences in marijuana's cardiovascular effects and ratings of craving were observed, whereas subjective ratings of marijuana effects did not significantly vary as a function of dose.

  4. Calculation of patient effective dose and scattered dose for dental mobile fluoroscopic equipment: application of the Monte Carlo simulation.

    Science.gov (United States)

    Lee, Boram; Lee, Jungseok; Kang, Sangwon; Cho, Hyelim; Shin, Gwisoon; Lee, Jeong-Woo; Choi, Jonghak

    2013-01-01

    The objective of this study was to evaluate the patient effective dose and scattered dose from recently developed dental mobile equipment in Korea. The MCNPX 2.6 (Los Alamos National Laboratory, USA) was used in a Monte Carlo simulation to calculate both the effective and scattered doses. The MCNPX code was constructed identically as in the general use of equipment and the effective dose and scattered dose were calculated using the KTMAN-2 digital phantom. The effective dose was calculated as 906 μSv. The equivalent doses per organ were calculated via the MCNPX code, and were 32 174 and 19 μSv in the salivary gland and oesophagus, respectively. The scattered dose of 22.5-32.6 μSv of the tube side at 25 cm from the centre in anterior and posterior planes was measured as 1.4-3 times higher than the detector side of 10.5-16.0 μSv.

  5. Biological effects of low level exposures to chemicals and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, E.J. (ed.)

    1992-01-01

    In May 1990 a group of scientists representing several federal agencies, the International Society of Regulatory Toxicology and Pharmacology, the private sector, and academia met to develop a strategy to encourage the study of the biological effects of low level exposures (BELLE) to chemical agents and radioactivity. A workshop was held in 1991 with seven invited speakers focusing on the toxicological implications of biological adaptations. The selection of topics and speakers was designed to consider critically the concept of hormesis, not only in a broad, conceptual manner, but also at the molecular and biochemical levels. These presentations offered a complementary perspective on the diverse range of molecular mechanisms that can become activated at low levels of toxicant exposure. In addition to chemical toxicology research, an overview of current research on Effects of low-dose radiation on the immune response' was presented as well as Cellular adaptation as an important response during chemical carcinogenesis'. The final presentation was devoted to biostatistical considerations when designing studies that address issues associated with the biological responses to low doses of chemicals and radiation, as well as issues in interpretation of the findings from such studies.

  6. Evaluation of iodide deficiency in the lactating rat and pup using a biologically based dose response (BBDR) Model***

    Science.gov (United States)

    A biologically-based dose response (BBDR) model for the hypothalamic-pituitary thyroid (HPT) axis in the lactating rat and nursing pup was developed to describe the perturbations caused by iodide deficiency on the 1-IPT axis. Model calibrations, carried out by adjusting key model...

  7. Evaluation of iodide deficiency in the lactating rat and pup using a biologically based dose-response model

    Science.gov (United States)

    A biologically-based dose response (BBDR) model for the hypothalamic-pituitary thyroid (BPT) axis in the lactating rat and nursing pup was developed to describe the perturbations caused by iodide deficiency on the HPT axis. Model calibrations, carried out by adjusting key model p...

  8. Establishment of a semi-biological phantom model for the study of the effect of dose reducing measures on radiation-induced DNA double strand breaks in CT using the example of risk organ based tube current modulation; Etablierung eines semibiologischen Phantommodells zur Untersuchung des Effekts dosisreduzierender Massnahmen auf strahleninduzierte DNA-Doppelstrangbrueche in der CT am Beispiel der risikoorganbasierten Roehrenstrommodulation

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Matthias

    2013-12-12

    The number of computed tomography (CT) examinations has been rising during the last decades. Therefore techniques for dose reduction receive increasing attention. Risk organ-based tube current modulation (RCM) in CT is a new approach and works by lowering the tube current, while the tube is in front of the patient's body. Therefore it should lead to a dose reduction for radiosensitive organs like the female breast, the eye lenses and the thyroid gland. Biological radiation effects cannot be estimated by physical-based dose measurements. γ-H2AX is a sensitive marker for the determination of x-ray induced DNA double-strand breaks (DSB). Hence the aim of this study was to establish a biological phantom model based on the γ-H2AX immunofluorescence microscopy method and to investigate the effect of RCM on radiation induced DNA damages. The γ-H2AX method is based on the phosphorylation of the histone variant H2AX. The phosphorylated histone γ-H2AX can be visualised using antibodies and is specific for radiation induced DSB. Blood lymphocytes from healthy volunteers, skin fibroblasts (LN) and mammary epithelial cells (HMEpC-p) were placed in different positions of an Alderson-phantom and exposed to x-rays using a 128-slice dual-source CT scanner. Standard head, neck and chest-CT scan protocols either with or without risk-organ based tube current modulation were used. RCM reduces the tube current to 20 percent at an angle of 130 degree anterior to the body, whereas tube current is increased at an angle of 230 degree posterior to the body. Afterwards cells were isolated, fixed on slides und stained with specific primary γ-H2AX antibodies and fluorescent secondary antibodies. Tiny green dots (named foci) can be detected and quantified with a fluorescence microscope and represent distinct DSB. Non-irradiated samples served as controls and CT-induced DSB were calculated by subtraction of pre- from post-exposure values. In this study a semibiological phantom model

  9. Effectiveness of the Medical Emergency Team: the importance of dose.

    Science.gov (United States)

    Jones, Daryl; Bellomo, Rinaldo; DeVita, Michael A

    2009-01-01

    Up to 17% of hospital admissions are complicated by serious adverse events unrelated to the patients presenting medical condition. Rapid Response Teams (RRTs) review patients during early phase of deterioration to reduce patient morbidity and mortality. However, reports of the efficacy of these teams are varied. The aims of this article were to explore the concept of RRT dose, to assess whether RRT dose improves patient outcomes, and to assess whether there is evidence that inclusion of a physician in the team impacts on the effectiveness of the team. A review of available literature suggested that the method of reporting RRT utilization rate, (RRT dose) is calls per 1,000 admissions. Hospitals with mature RRTs that report improved patient outcome following RRT introduction have a RRT dose between 25.8 and 56.4 calls per 1,000 admissions. Four studies report an association between increasing RRT dose and reduced in-hospital cardiac arrest rates. Another reported that increasing RRT dose reduced in-hospital mortality for surgical but not medical patients. The MERIT study investigators reported a negative relationship between MET-like activity and the incidence of serious adverse events. Fourteen studies reported improved patient outcome in association with the introduction of a RRT, and 13/14 involved a Physician-led MET. These findings suggest that if the RRT is the major method for reviewing serious adverse events, the dose of RRT activation must be sufficient for the frequency and severity of the problem it is intended to treat. If the RRT dose is too low then it is unlikely to improve patient outcomes. Increasing RRT dose appears to be associated with reduction in cardiac arrests. The majority of studies reporting improved patient outcome in association with the introduction of an RRT involve a MET, suggesting that inclusion of a physician in the team is an important determinant of its effectiveness.

  10. Biological Effect of Magnetic Field in Mice

    Institute of Scientific and Technical Information of China (English)

    Zhao-Wei ZENG

    2005-01-01

    Objective: To study the biological effect of magnetic field in mice bodies. Method: With a piece of permanent magnet embeded in mice bodies beside the femoral artery and vein to measure the electrophoretic velocity(um/s). Result: The magnetic field in mice bodies on the experiment group that the electrophoretic velocity is faster more than control and free group.Conclusion:The magnetic field in animal's body can raise the negative electric charges on the surface of erythrocyte to improve the microcirculation, this is the biological effect of magnetic field.

  11. Low dose effects and non-monotonic dose responses for endocrine active chemicals: Science to practice workshop: Workshop summary

    DEFF Research Database (Denmark)

    Beausoleil, Claire; Ormsby, Jean-Nicolas; Gies, Andreas

    2013-01-01

    A workshop was held in Berlin September 12–14th 2012 to assess the state of the science of the data supporting low dose effects and non-monotonic dose responses (“low dose hypothesis”) for chemicals with endocrine activity (endocrine disrupting chemicals or EDCs). This workshop consisted...

  12. Biological effects of electric fields: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, L.E.; Phillips, R.D.

    1983-11-01

    An overview of the literature suggests tha electric-field exposure is an environmental agent/influence of relatively low potential toxicity to biological systems. Generally, many of the biological effects which have been reported are quite subtle and differences between exposed and unexposed subjects may be masked by normal biological variations. However, several recent reports indicate possibly more serious consequences from chronic exposure, emphasizing the need for more research in epidemiology and laboratory experiments. This paper presents a cursory overview of investigations on the biological consequences of exposure to ELF electromagnetic fields. Three important topics are discussed, including: 1) the general methodology of exposure experiments, including those elements which are critical for definitive studies in biological systems; 2) a brief discussion of epidemiological and clinical studies conducted to date; and 3) a somewhat more extensive examination of animal experiments representing major areas of investigation (behavior, biological rhythms, nervous and endocrine systems, bone growth and repair, cardiovascular system and blood chemistry, immunology, reproduction, growth and development mortality and pathology, cellular and membrane studies, and mutagenesis). A discussion of current concepts, possible mechanisms and future directions of research is presented. 110 references.

  13. Biological effectiveness of neutrons: Research needs

    Energy Technology Data Exchange (ETDEWEB)

    Casarett, G.W.; Braby, L.A.; Broerse, J.J.; Elkind, M.M.; Goodhead, D.T.; Oleinick, N.L.

    1994-02-01

    The goal of this report was to provide a conceptual plan for a research program that would provide a basis for determining more precisely the biological effectiveness of neutron radiation with emphasis on endpoints relevant to the protection of human health. This report presents the findings of the experts for seven particular categories of scientific information on neutron biological effectiveness. Chapter 2 examines the radiobiological mechanisms underlying the assumptions used to estimate human risk from neutrons and other radiations. Chapter 3 discusses the qualitative and quantitative models used to organize and evaluate experimental observations and to provide extrapolations where direct observations cannot be made. Chapter 4 discusses the physical principles governing the interaction of radiation with biological systems and the importance of accurate dosimetry in evaluating radiation risk and reducing the uncertainty in the biological data. Chapter 5 deals with the chemical and molecular changes underlying cellular responses and the LET dependence of these changes. Chapter 6, in turn, discusses those cellular and genetic changes which lead to mutation or neoplastic transformation. Chapters 7 and 8 examine deterministic and stochastic effects, respectively, and the data required for the prediction of such effects at different organizational levels and for the extrapolation from experimental results in animals to risks for man. Gaps and uncertainties in this data are examined relative to data required for establishing radiation protection standards for neutrons and procedures for the effective and safe use of neutron and other high-LET radiation therapy.

  14. Evaluation of the effective dose and image quality of low-dose multi-detector CT for orthodontic treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Gi Chung; Han, Won Jeong; Kim, Eun Kyung [Department of Oral and Maxillofacial Radiology, School of Dentistry, Dankook University, Cheonan (Korea, Republic of)

    2010-03-15

    This study was designed to compare the effective doses from low-dose and standard-dose multi-detector CT (MDCT) scanning protocols and evaluate the image quality and the spatial resolution of the low-dose MDCT protocols for clinical use. 6-channel MDCT scanner (Siemens Medical System, Forschheim, Germany), was used for this study. Protocol of the standard-dose MDCT for the orthodontic analysis was 130 kV, 35 mAs, 1.25 mm slice width, 0.8 pitch. Those of the low-dose MDCT for orthodontic analysis and orthodontic surgery were 110 kV, 30 mAs, 1.25 mm slice width, 0.85 pitch and 110 kV, 45 mAs, 2.5 mm slice width, 0.85 pitch. Thermoluminescent dosimeters (TLDs) were placed at 31 sites throughout the levels of adult female ART head and neck phantom. Effective doses were calculated according to ICRP 1990 and 2007 recommendations. A formalin-fixed cadaver and AAPM CT performance phantom were scanned for the evaluation of subjective image quality and spatial resolution. Effective doses in {mu}Sv (E2007) were 699.1, 429.4 and 603.1 for standard-dose CT of orthodontic treatment, low-dose CT of orthodontic analysis, and low-dose CT of orthodontic surgery, respectively. The image quality from the low-dose protocol were not worse than those from the standard-dose protocol. The spatial resolutions of both standard-dose and low-dose CT images were acceptable. From the above results, it can be concluded that the low-dose MDCT protocol is preferable in obtaining CT images for orthodontic analysis and orthodontic surgery.

  15. Dose-dependent Effects of mTOR Inhibition on Weight and Mitochondrial Disease in Mice

    Directory of Open Access Journals (Sweden)

    Simon C Johnson

    2015-07-01

    Full Text Available Rapamycin extends lifespan and attenuates age-related pathologies in mice when administered through diet at 14 parts per million (PPM. Recently, we reported that daily intraperitoneal injection of rapamycin at 8 mg/kg attenuates mitochondrial disease symptoms and progression in the Ndufs4 knockout mouse model of Leigh Syndrome. Although rapamycin is a widely used pharmaceutical agent dosage has not been rigorously examined and no dose-response profile has been established. Given these observations we sought to determine if increased doses of oral rapamycin would result in more robust impact on mTOR driven parameters. To test this hypothesis, we compared the effects of dietary rapamycin at doses ranging from 14 to 378 PPM on growth in control and Ndufs4 knockout mice and on health and survival in the Ndufs4 knockout model. High dose rapamycin was well tolerated, dramatically reduced growth, and overcame gender differences. The highest oral dose, approximately 27-times the dose shown to extend murine lifespan, increased survival in Ndufs4 knockout mice similarly to daily rapamycin injection without observable adverse effects. These findings have broad implications for the effective use of rapamycin in murine studies and for the translational potential of rapamycin in the treatment of mitochondrial disease. This data, further supported by a comparison of available literature, suggests that 14 PPM dietary rapamycin is a sub-optimal dose for targeting mTOR systemically in mice. Our findings suggest that the role of mTOR in mammalian biology may be broadly underestimated when determined through treatment with rapamycin at commonly used doses.

  16. MO-G-BRF-09: Investigating Magnetic Field Dose Effects in Mice: A Monte Carlo Study

    Energy Technology Data Exchange (ETDEWEB)

    Rubinstein, A; Guindani, M; Followill, D; Melancon, A; Hazle, J; Court, L [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    Purpose: In MRI-linac treatments, radiation dose distributions are affected by magnetic fields, especially at high-density/low-density interfaces. Radiobiological consequences of magnetic field dose effects are presently unknown; therefore, preclinical studies are needed to ensure the safe clinical use of MRI-linacs. This study investigates the optimal combination of beam energy and magnetic field strength needed for preclinical murine studies. Methods: The Monte Carlo code MCNP6 was used to simulate the effects of a magnetic field when irradiating a mouse-sized lung phantom with a 1.0cmx1.0cm photon beam. Magnetic field effects were examined using various beam energies (225kVp, 662keV[Cs-137], and 1.25MeV[Co-60]) and magnetic field strengths (0.75T, 1.5T, and 3T). The resulting dose distributions were compared to Monte Carlo results for humans with various field sizes and patient geometries using a 6MV/1.5T MRI-linac. Results: In human simulations, the addition of a 1.5T magnetic field caused an average dose increase of 49% (range:36%–60%) to lung at the soft tissue-to-lung interface and an average dose decrease of 30% (range:25%–36%) at the lung-to-soft tissue interface. In mouse simulations, the magnetic fields had no effect on the 225kVp dose distribution. The dose increases for the Cs-137 beam were 12%, 33%, and 49% for 0.75T, 1.5T, and 3.0T magnetic fields, respectively while the dose decreases were 7%, 23%, and 33%. For the Co-60 beam, the dose increases were 14%, 45%, and 41%, and the dose decreases were 18%, 35%, and 35%. Conclusion: The magnetic field dose effects observed in mouse phantoms using a Co-60 beam with 1.5T or 3T fields and a Cs-137 beam with a 3T field compare well with those seen in simulated human treatments with an MRI-linac. These irradiator/magnet combinations are suitable for preclinical studies investigating potential biological effects of delivering radiation therapy in the presence of a magnetic field. Partially funded by Elekta.

  17. Effect of low dose ionizing radiation upon concentration of

    Energy Technology Data Exchange (ETDEWEB)

    Viliae, M.; Kraljeviae, P.; Simpraga, M.; Miljaniae, S.

    2004-07-01

    It is known that low dose ionizing radiation might have stimulating effects (Luckey, 1982, Kraljeviae, 1988). This fact has also been confirmed in the previous papers of Kraljeviae et al. (2000-2000a; 2001). Namely, those authors showed that irradiation of chicken eggs before incubation by a low dose of 0.15 Gy gamma radiation increases the activity aspartateaminotrasferases (AST) and alanine-aminotransferases (ALT) in blood plasma of chickens hatched from irradiated eggs, as well as growth of chickens during the fattening period. Low doses might also cause changes in the concentration of some biochemical parameters in blood plasma of the same chickens such as changes in the concentration of total proteins, glucose and cholesterol. In this paper, an attempt was made to investigate the effects of low dose gamma radiation upon the concentration of sodium and potassium in the blood plasma of chickens which were hatched from eggs irradiated on the 19th day of incubation by dose of 0.15 Gy. Obtained results were compared with the results from the control group (chickens hatched from nonirradiated eggs). After hatching, all other conditions were the same for both groups. Blood samples were drawn from heart, and later from the wing vein on days 1, 3, 5, 7, 10, 20, 30 and 42. The concentration of sodium and potassium was determined spectrophotometrically by atomic absorbing spectrophotometer Perkin-Elmer 1100B. The concentration of sodium and potassium in blood plasma of chickens hatched from eggs irradiated on the 19th day of incubation by dose of 0.15 Gy indicated a statistically significant increase (P>0.01) only on the first day of the experiment. Obtained results showed that irradiation of eggs on the 19th day of incubation by dose of 0.15 Gy gamma radiation could have effects upon the metabolism of electrolytes in chickens. (Author)

  18. Extrapyramidal side effects with low doses of amisulpride.

    Science.gov (United States)

    Mandal, Nikhiles; Singh, Om P; Sen, Subrata

    2014-04-01

    Amisulpride, the newly introduced antipsychotic in India, is claimed to be effective in both positive and negative symptom schizophrenia and related disorders, though it has little or no action on serotonergic receptors. Limbic selectivity and lower striatal dopaminergic receptor binding capacity causes very low incidence of EPS. But, in clinical practice, we are getting EPS with this drug even at lower doses. We have reported three cases of akathisia, acute dystonia, and drug-induced Parkinsonism with low doses of amisulpride. So, we should keep this side effect in mind when using amisulpride. In fact, more studies are required in our country to find out the incidence of EPS and other associated mechanism.

  19. Contribution of the modulation of intensity and the optimization to deliver a dose adapted to the biological heterogeneities; Apport de la modulation d'intensite et de l'optimisation pour delivrer une dose adaptee aux heterogeneites biologiques

    Energy Technology Data Exchange (ETDEWEB)

    Kubs, F

    2007-10-15

    The recent progress in functional imaging by Positron Emission Tomography (TEP) opens new perspectives in the delineation of target volumes in radiotherapy. The functional data is major; we can intend to adapt the irradiation doses on the tumor activity (TA) and to perform a dose escalation. Our objectives were (i) to characterize the TEP threshold, by quantifying the uncertainties of the target volume contour according to the lesion size and the threshold contour level, (ii) to set up the geometry suited to perform a high-precision irradiation based on the TA, (iii) to estimate the dosimetric impact of this new protocol and (iv) to verify that dosimetry is perfectly distributed. Three original phantoms were specially created to satisfy the constraints met, as well as two virtual phantoms containing 3 dose levels (dose level 3 = TA). Our results showed the importance of the effect threshold-volume on the planning in radiotherapy. To use this irradiation method, the diameter of 1 cm for the third level was able to be reached. A dose escalation of 20 Gy was possible between the second (70 Gy) and the third level (90 Gy). The dosimetric impact estimated on two real cases was suitable - increase of COIN (conformal index) from 0.6 to 0.8 and decrease of NTCP (normal tissue complication probability) of a factor 5 -. In absolute and relative dosimetry, the clinical tolerances were respected. So all the treatment process, going from the diagnosis with the TEP to reveal the TA, to the patient treatment made beforehand on phantom, and going through the ballistic and the dose calculation, was estimated and validated according to our objective to adapt the irradiation to the biological heterogeneities. However such high doses should be carefully estimated before being prescribed clinically and progress is also expected in imaging, because the minimal size which we can irradiate is on the limit of the resolution TEP. (author)

  20. SU-E-T-500: Dose Escalation Strategy for Lung Cancer Patients Using a Biologically- Guided Target Definition

    Energy Technology Data Exchange (ETDEWEB)

    Shusharina, N; Khan, F; Choi, N; Sharp, G [Massachusetts General Hospital, Boston, MA (United States)

    2014-06-01

    Purpose: Dose escalation strategy for lung cancer patients can lead to late symptoms such as pneumonitis and cardiac injury. We propose a strategy to increase radiation dose for improving local tumor control while simultaneously striving to minimize the injury of organs at risk (OAR). Our strategy is based on defining a small, biologically-guided target volume for receiving additional radiation dose. Methods: 106 patients with lung cancer treated with radiotherapy were selected for patients diagnosed with stage II and III disease. Previous research has shown that 50% of the maximum SUV threshold in FDG-PET imaging is appropriate for delineation of the most aggressive part of a tumor. After PET- and CT-derived targets were contoured, an IMRT treatment plan was designed to deliver 60 Gy to the GTV as delineated on a 4D CT (Plan 1). A second plan was designed with additional dose of 18 Gy to the PET-derived volume (Plan 2). A composite plan was generated by the addition of Plan 1 and Plan 2. Results: Plan 1 was compared to the composite plan and increases in OAR dose were assessed. For seven patients on average, lung V5 was increased by 1.4% and V20 by 4.2% for ipsilateral lung and by 13.5% and 7% for contralateral lung. For total lung, V5 and V20 were increased by 4.5% and 4.8% respectively. Mean lung dose was increased by 9.7% for the total lung. The maximum dose to the spinal cord increased by 16% on average. For the heart, V20 increased by 4.2% and V40 by 5.2%. Conclusion: It seems feasible that an additional 18 Gy of radiation dose can be delivered to FDG PET-derived subvolume of the CT-based GTV of the primary tumor without significant increase in total dose to the critical organs such as lungs, spinal cord and heart.

  1. Biological radiation dose from secondary particles in a Milky Way gamma ray burst

    CERN Document Server

    Atri, Dimitra; Karam, Andrew

    2013-01-01

    Gamma ray bursts (GBRs) are a class of highly energetic explosions emitting radiation in a very short timescale of a few seconds and with a very narrow opening angle. Although, all GRBs observed so far are extragalactic in origin, there is a high probability of a GRB of galactic origin beaming towards the Earth in the past ~ 0.5 Gyr. Such an intense burst of gamma rays would ionize the atmosphere and deplete the ozone layer. With depleted ozone, there will be an increased flux of solar UVB on the Earth\\~Os surface with harmful biological effects. In addition to the atmospheric damage, secondary particles produced by gamma ray-induced showers will reach the surface. Amongst all secondary particles, muons dominate the ground-level secondary particle flux (99% of the total number of particles) and are potentially of biological significance. Using the Monte Carlo simulation code CORSIKA, we modeled the air showers produced by gamma ray primaries up to 100 GeV. We found that the number of muons produced by hypothe...

  2. II. Biological studies of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.H.

    1948-05-24

    With the completion of the 184 inch cyclotron in Berkeley and the successful construction of a deflector system, it was possible to bring the 190 Mev deuteron and the 380 Mev alpha beams out into the air and to begin a study of the effects of high-energy deuteron beams by direct irradiation of biological specimens. The direct biological use of deuteron beams was attempted earlier in Berkeley by Marshak, MacLeish, and Walker in 1940. These and other investigators have been aware for some time of the potential usefulness of high energy particle beams for radio-biological studies and their suitability for biological investigations. R.R. Wilson advanced the idea of using fast proton beams to deliver radiation and intervening tissues. R.E. Zirkle pointed out that such particle beams may be focused or screened until a cross-section of the beam is small enough to study effects of irradiation under the microscope on single cells or on parts of single cells. This article gives an overview of the radiological use of high energy deuteron beams, including the following topics: potential uses of high energy particle beams; experiments on the physical properties of the beam; lethal effect of the deuteron beam on mice.

  3. [Biological effects of electromagnetic fields (author's transl)].

    Science.gov (United States)

    Bernhardt, J

    1979-08-01

    This résumé deals with thermal and nonthermal effects of electromagnetic fields on man. In consideration of two aspects a limitation is necessary. Firstly, there will be discussed only direct and immediate influences on biological cells and tissues, secondly, the treatment is limited to such phenomena, for which biophysical aproximations, based on experimental data, could be developed. Hazards for the human being may occur only by thermal effects within the microwave range. Regarding frequencies below approximately 30 kHz, excitation processes cannot be excluded in exceptional cases. Thermal effects are predominant, between 30 kHz and 100 kHz, before excitations can appear. Furthermore, by comparing the electrically and magnetically induced currents with the naturally flowing currents in man caused by the brain's and heart's electrical activity, a "lower boundaryline" was estimated. Regarding electric or magnetic field strengths undercutting this boundary-line, direct effects on the central nervous system may be excluded; other mechanisms should be responsible for demonstrated biological effects. The paper closes referring to some reports--presently discussed--on experimental findings of biological effects, which are observed as a result of the influence of electromagnetic fields of small field strengths.

  4. Effects of low-dose heavy ion irradiation on male germ cell adaptation and genetics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong; LI Wen-Jian; ZHENG Rong-Liang

    2005-01-01

    The heavy ions with high linear energy transfer and high relative biological effectiveness are much more deleterious on the male germ cells, ones of the most radiosensitive cells of the body, than low-LET ionizing radiation such as X-ray or gamma-ray. The effects of low-dose heavy ion irradiation on male germ cell adaptation and genetics and the possible mechanism of this adaptation are summarized in our laboratory. Our results showed that the heavy ion irradiation significantly increased the frequencies of chromosomal aberrations in spermatogonia and spermatocytes of mice, the low dose heavy ion irradiation could induce significant adaptative response on mouse testes and human sperm, and pre-exposure of mouse testes with low-dose heavy ion can markedly alleviate damage effects induced by subsequent high-dose irradiation. The increase of SOD activity and decrease of lipid peroxidation levels induced by low-dose ionizing radiation may be involved in this adaptative response mechanism. These studies may provide useful theoretical and clinical bases for radioprotection of reproductive potential and assessment of genetic risks for human exposed to heavy ions in radiotherapy and in outer space environment.

  5. The effect of host age and inoculation dose on infection dynamics of Angiostrongylus vasorum in red foxes (Vulpes vulpes)

    OpenAIRE

    Webster, Pia; Monrad, Jesper; Kapel, Christian M. O.; Kristensen, Annemarie T.; Jensen, Asger L.; Thamsborg, Stig M

    2017-01-01

    Background Infections and clinical cases of Angiostrongylus vasorum in dogs are found increasingly across Europe, thus rendering knowledge on its infection biology more important. We used red foxes as a carnivore model to examine the effect of host age and infection dose on the establishment of adult A. vasorum in single experimental infections. Methods Fourteen juvenile and fourteen adult red foxes, free of metastrongyloid infections, were given a low (50) or high (200) dose of third-stage l...

  6. Patient effective dose from endovascular brachytherapy with 192Ir sources.

    Science.gov (United States)

    Perma, L; Bianchi, C; Nicolini, G; Novario, R; Tanzi, F; Conte, L

    2002-01-01

    The growing use of endovascular brachytherapy has been accompanied by the publication of a large number of studies in several fields, but few studies on patient dose have been found in the literature. Moreover, these studies were carried out on the basis of Monte Carlo simulation. The aim of the present study was to estimate the effective dose to the patient undergoing endovascular brachytherapy treatment with 112Ir sources, by means of experimental measurements. Two standard treatments were taken into account: an endovascular brachytherapy of the coronary artery corresponding to the activity x time product of 184 GBq.min and an endovascular brachytherapy of the renal artery (898 GBq.min). Experimental assessment was accomplished by thermoluminescence dosemeters positioned in more than 300 measurement points in a properly adapted Rqndo phantom. A method has been developed to estimate the mean organ doses for all tissues and organs concerned in order to calculate the effective dose associated with intravascular brachytherapy. The normalised organ doses resulting from cronary treatment were 2.4 x 10(-2) mSv.GBq(-1).min(-1) for lung, 0.9 x 10(-2) mSv.GBSq(-1).min(-1) for oesophagus and 0.48 x 10(-2) mS.GBq(-1).min(-1) for bone marrow. During brachytherapy of the renal artery, the corresponding normalised doses were 4.2 x 10(-2) mS.GBq(-1).min(-1) for colon, 7.8 x 10(-2) mSv.GBq(-1).min(-1) for stomach and 1.7 x 10(-2) mSv.GBq(-1).min(-1) for liver. Coronary treatment iJnvlled an efl'fective dose of (0.046 mSv.GBq(-1).min(-1), whereas the treatment of the renal artery resulted in an effective dose of 0.15 mSv.GBq(-1).min(-1); there were many similarities with data from former studies. Based on these results it can be concluded that the dose level of patients exposed during brachytherapy treatment is low.

  7. The Biological Effects of Bilirubin Photoisomers.

    Science.gov (United States)

    Jasprova, Jana; Dal Ben, Matteo; Vianello, Eleonora; Goncharova, Iryna; Urbanova, Marie; Vyroubalova, Karolina; Gazzin, Silvia; Tiribelli, Claudio; Sticha, Martin; Cerna, Marcela; Vitek, Libor

    2016-01-01

    Although phototherapy was introduced as early as 1950's, the potential biological effects of bilirubin photoisomers (PI) generated during phototherapy remain unclear. The aim of our study was to isolate bilirubin PI in their pure forms and to assess their biological effects in vitro. The three major bilirubin PI (ZE- and EZ-bilirubin and Z-lumirubin) were prepared by photo-irradiation of unconjugated bilirubin. The individual photoproducts were chromatographically separated (TLC, HPLC), and their identities verified by mass spectrometry. The role of Z-lumirubin (the principle bilirubin PI) on the dissociation of bilirubin from albumin was tested by several methods: peroxidase, fluorescence quenching, and circular dichroism. The biological effects of major bilirubin PI (cell viability, expression of selected genes, cell cycle progression) were tested on the SH-SY5Y human neuroblastoma cell line. Lumirubin was found to have a binding site on human serum albumin, in the subdomain IB (or at a close distance to it); and thus, different from that of bilirubin. Its binding constant to albumin was much lower when compared with bilirubin, and lumirubin did not affect the level of unbound bilirubin (Bf). Compared to unconjugated bilirubin, bilirubin PI did not have any effect on either SH-SY5Y cell viability, the expression of genes involved in bilirubin metabolism or cell cycle progression, nor in modulation of the cell cycle phase. The principle bilirubin PI do not interfere with bilirubin albumin binding, and do not exert any toxic effect on human neuroblastoma cells.

  8. Total and secondary gamma doses in ilmenite-limonite concrete biological shields

    Energy Technology Data Exchange (ETDEWEB)

    Makarious, A.S. (AEA, Cairo (Egypt). Reactor and Neutron Physics Dept.); El-Kolaly, M.A. (AEA, Cairo (Egypt). Radiation Protection Dept.); Bashter, I.I. (Zagazig Univ. (Egypt). Physics Dept.); Kansouh, W.A. (AEA, Cairo (Egypt). Nuclear Research Centre)

    1991-10-01

    The attenuation and distribution of total gamma ray doses in a bulk shield of ilmenite-limonite concrete of density 2.9 g cm{sup -3} have been measured. Direct, cadmium filtered and B{sub 4}C filtered collimated reactor beam emitted from one of the horizontal channels of the ET-RR-1 reactor have been utilized in the present work. The distribution of the secondary gamma ray doses generated from the interaction of reactor neutrons of definite energy ranges has also been obtained for ilmenite-limonite concrete. The gamma doses were measured using {sup 7}LiF Teflon disc TL dosimeters. A semiempirical formula was derived to calculate total gamma dose distributions for bare, cadmium filtered and B{sub 4}C filtered reactor beams at different thickness along the beam axis in ordinary concrete, with density 2.3 g cm{sup -3}, using the corresponding measured value in ilmenite-limonite concrete. Good agreement has been achieved between the values of the total gamma doses and those calculated using the derived empirical formula. Isodose curves were constructed for both the total gamma-ray doses and the secondary gamma-ray doses shields together with the corresponding values for ordinary concrete shields. The thickness of ilmenite-limonite concrete required to attenuate the total gamma dose intensity to a certain factor is approximately 94% of the thickness when the shield is made of ordinary concrete. (orig./HP).

  9. Measurement of effective dose for paediatric scoliotic patients

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chih-I. [School of Medical Radiation Sciences, University of Sydney, Lidcombe NSW 1825 (Australia); McLean, Donald [School of Medical Radiation Sciences, University of Sydney, Lidcombe NSW 1825 (Australia)]. E-mail: rdmc@imag.wsahs.nsw.gov.au; Robinson, John [School of Medical Radiation Sciences, University of Sydney, Lidcombe NSW 1825 (Australia)

    2005-05-01

    Purpose: Paediatric radiation dose from scoliosis X-ray examinations is of concern because of its routine nature. Few studies have calculated effective dose which is the primary indicator of radiation risk. This study reports on the use of a new flexible Monte Carlo software package PCXMC14 for such calculation from documented radiographic and patient data. Method: Patient and radiographic data were collected from 54 patient examinations for both postero-anterior (PA) and lateral X-ray projections. A spreadsheet mainly based on radiographic calibration was used to process the raw data and compute entrance air kerma for input in the PCXMC program. A partitioning model was developed to more accurately estimate the effect of an aluminium wedge filter. Results: Results showed the effective dose ranged from 81 to 123 {mu}Sv for the PA projection and 124 to 207 {mu}Sv for the lateral projection, with patient weights varying from 20 to 70 kg. Conclusions: This study demonstrates the usefulness of the PCXMC program to evaluate the effective dose in paediatric scoliosis radiography.

  10. Effects of dose and dose protraction on embryotoxicity of 14.1 MeV neutron irradiation in rats

    Energy Technology Data Exchange (ETDEWEB)

    Beckman, D.A.; Buck, S.J. [Alfred I. duPont Institute, Wilmington, DE (United States)]|[Thomas Jefferson Univ., Philadelphia, PA (United States); Solomon, H.M. [SmithKline and Beecham Pharmaceuticals, King of Prussia, PA (United States); Gorson, R.O. [Thomas Jefferson Univ., Philadelphia, PA (United States); Mills, R.E. [Brookhaven National Lab., Upton, NY (United States); Brent, R.L. [Alfred I. duPont Institute, Wilmington, DE (United States)]|[Thomas Jefferson Univ., Philadelphia, PA (United States)

    1994-06-01

    The embryotoxic effects of neutron radiation on rodent embryos are documented, but there is disagreement about the dose-response relationship and the impact of protracting the dose. Pregnant rats were exposed to total absorbed doses of 0.15 to 1.50 Gy 14.1 MeV neutrons on day 9.5 after conception, coincident with the most sensitive stage of embryonic development for the induction of major congenital malformations. In general terms, the incidence of embryotoxic effects increased with increasing total absorbed dose. However, the dose-response relationship differed depending on the parameter of embryotoxicity chosen, namely, intrauterine death, malformations or very low body weight. In a second study, embryos were exposed to a single embryotoxic absorbed dose (0.75 Gy) administered at a range of dose rates, from 0.10 to 0.50 Gy/h. The results offer no evidence that protraction of this selected dose significantly increased or decreased the incidence or pattern of embryotoxicity of the neutron exposure used in this study. The results do not support the hypothesis of a linear dose-response relationship for the effects of prenatal neutron irradiation that contribute to embryotoxicity for total absorbed doses of 0.15 to 1.50 Gy. 23 refs., 8 tabs.

  11. Mechanistic Effects of Calcitriol in Cancer Biology

    Directory of Open Access Journals (Sweden)

    Lorenza Díaz

    2015-06-01

    Full Text Available Besides its classical biological effects on calcium and phosphorus homeostasis, calcitriol, the active vitamin D metabolite, has a broad variety of actions including anticancer effects that are mediated either transcriptionally and/or via non-genomic pathways. In the context of cancer, calcitriol regulates the cell cycle, induces apoptosis, promotes cell differentiation and acts as anti-inflammatory factor within the tumor microenvironment. In this review, we address the different mechanisms of action involved in the antineoplastic effects of calcitriol.

  12. Effect of lead attenuators on dose in homogeneous phantoms

    Energy Technology Data Exchange (ETDEWEB)

    El-Khatib, E.E.; Podgorsak, E.B.; Pla, C.

    1986-11-01

    In radiotherapy, the radiation beam is sometimes shaped so as to deliver different doses to different organs or give a homogeneous dose to structures of different densities. This objective is achieved by the use of attenuating materials introduced into the beam. These attenuators alter the primary as well as the scattered radiation components of the beam. There is at present no accurate method of dose calculation for these situations. Most calculations are performed considering only the effect of the attenuators on the primary radiation beam and can produce large errors in dosimetry. In the present study, the broad beam attenuation is investigated in homogeneous phantoms for various radiation field sizes, photon beam energies, and depths in phantom. A calculational method taking account of primary as well as first scatter radiation is developed. This method predicts reasonably well the transmission through lead attenuators for the various experimental conditions investigated.

  13. Dose dependent sun protective effect of topical melatonin

    DEFF Research Database (Denmark)

    Scheuer, Cecilie; Pommergaard, Hans-Christian; Rosenberg, Jacob

    2016-01-01

    BACKGROUND: Ultraviolet radiation (UVR) by sunlight results in an increasing number of skin conditions. Earlier studies have suggested a protective effect of topical treatment with the pineal hormone melatonin. However, this protective effect has never been evaluated in natural sunlight, and the ......BACKGROUND: Ultraviolet radiation (UVR) by sunlight results in an increasing number of skin conditions. Earlier studies have suggested a protective effect of topical treatment with the pineal hormone melatonin. However, this protective effect has never been evaluated in natural sunlight......, and the optimal dosing has not been clarified. OBJECTIVE: The aim of this study was to investigate the sun protective effect of topical treatment with three different doses of melatonin (0.5%, 2.5%, 12.5%) against erythema induced by natural sunlight. METHOD: The study was a randomized, placebo-controlled, double......-blind study in healthy volunteers. Twenty-three healthy volunteers, 8 male and 15 female, were enrolled. The protective effect of three different doses of melatonin cream (0.5%, 2.5%, 12.5%) against erythema induced by natural sunlight was tested. All participants had their backs exposed to sun from 1:22 PM...

  14. Relative Biological Effectiveness of HZE Particles for Chromosomal Exchanges and Other Surrogate Cancer Risk Endpoints

    Science.gov (United States)

    Cacao, Eliedonna; Hada, Megumi; Saganti, Premkumar B.; George, Kerry A.; Cucinotta, Francis A.

    2016-01-01

    The biological effects of high charge and energy (HZE) particle exposures are of interest in space radiation protection of astronauts and cosmonauts, and estimating secondary cancer risks for patients undergoing Hadron therapy for primary cancers. The large number of particles types and energies that makeup primary or secondary radiation in HZE particle exposures precludes tumor induction studies in animal models for all but a few particle types and energies, thus leading to the use of surrogate endpoints to investigate the details of the radiation quality dependence of relative biological effectiveness (RBE) factors. In this report we make detailed RBE predictions of the charge number and energy dependence of RBE’s using a parametric track structure model to represent experimental results for the low dose response for chromosomal exchanges in normal human lymphocyte and fibroblast cells with comparison to published data for neoplastic transformation and gene mutation. RBE’s are evaluated against acute doses of γ-rays for doses near 1 Gy. Models that assume linear or non-targeted effects at low dose are considered. Modest values of RBE (10) are predicted at low doses <0.1 Gy. The radiation quality dependence of RBE’s against the effects of acute doses γ-rays found for neoplastic transformation and gene mutation studies are similar to those found for simple exchanges if a linear response is assumed at low HZE particle doses. Comparisons of the resulting model parameters to those used in the NASA radiation quality factor function are discussed. PMID:27111667

  15. Relative Biological Effectiveness of HZE Particles for Chromosomal Exchanges and Other Surrogate Cancer Risk Endpoints.

    Directory of Open Access Journals (Sweden)

    Eliedonna Cacao

    Full Text Available The biological effects of high charge and energy (HZE particle exposures are of interest in space radiation protection of astronauts and cosmonauts, and estimating secondary cancer risks for patients undergoing Hadron therapy for primary cancers. The large number of particles types and energies that makeup primary or secondary radiation in HZE particle exposures precludes tumor induction studies in animal models for all but a few particle types and energies, thus leading to the use of surrogate endpoints to investigate the details of the radiation quality dependence of relative biological effectiveness (RBE factors. In this report we make detailed RBE predictions of the charge number and energy dependence of RBE's using a parametric track structure model to represent experimental results for the low dose response for chromosomal exchanges in normal human lymphocyte and fibroblast cells with comparison to published data for neoplastic transformation and gene mutation. RBE's are evaluated against acute doses of γ-rays for doses near 1 Gy. Models that assume linear or non-targeted effects at low dose are considered. Modest values of RBE (10 are predicted at low doses <0.1 Gy. The radiation quality dependence of RBE's against the effects of acute doses γ-rays found for neoplastic transformation and gene mutation studies are similar to those found for simple exchanges if a linear response is assumed at low HZE particle doses. Comparisons of the resulting model parameters to those used in the NASA radiation quality factor function are discussed.

  16. Biological effects of stellar collapse neutrinos

    CERN Document Server

    Collar, J I

    1996-01-01

    Massive stars in their final stages of collapse radiate most of their binding energy in the form of MeV neutrinos. The recoil atoms that they produce in elastic scattering off nuclei in organic tissue create a radiation damage which is highly effective in the production of irreparable DNA harm, leading to cellular mutation, neoplasia and oncogenesis. Using a conventional model of the galaxy and of the collapse mechanism, the periodicity of nearby stellar collapses and the radiation dose are calculated. The possible contribution of this process to the paleontological record of mass extinctions is examined.

  17. Effect of age and sex on warfarin dosing

    Directory of Open Access Journals (Sweden)

    Khoury G

    2014-07-01

    Full Text Available Ghada Khoury,1 Marwan Sheikh-Taha2 1School of Pharmacy, 2Department of Pharmacy Practice, Lebanese American University, Byblos, Lebanon Objective: We examined the potential effect of sex and age on warfarin dosing in ambulatory adult patients. Methods: We conducted a retrospective chart review of patients attending an anticoagulation clinic. We included patients anticoagulated with warfarin for atrial fibrillation or venous thromboembolism who had a therapeutic international normalized ratio of 2–3 for 2 consecutive months. We excluded patients who had been on any drug that is known to have a major interaction with warfarin, smokers, and heavy alcohol consumers. Out of 340 screened medical records, 96 met the predetermined inclusion criteria. The primary outcome assessed was warfarin total weekly dose (TWD. Results: There was a statistically significant difference in the TWD among the ages (P<0.01; older patients required lower doses. However there was no statistically significant difference in the TWD between sexes (P=0.281. Conclusion: Age was found to have a significant effect on warfarin dosing. Even though women did require a lower TWD than men, this observation was not statistically significant. Keywords: warfarin, INR, anticoagulation, vitamin K antagonists, age

  18. Radon induced hyperplasia: effective adaptation reducing the local doses in the bronchial epithelium.

    Science.gov (United States)

    Madas, Balázs G

    2016-09-01

    There is experimental and histological evidence that chronic irritation and cell death may cause hyperplasia in the exposed tissue. As the heterogeneous deposition of inhaled radon progeny results in high local doses at the peak of the bronchial bifurcations, it was proposed earlier that hyperplasia occurs in these deposition hot spots upon chronic radon exposure. The objective of the present study is to quantify how the induction of basal cell hyperplasia modulates the microdosimetric consequences of a given radon exposure. For this purpose, computational epithelium models were constructed with spherical cell nuclei of six different cell types based on histological data. Basal cell hyperplasia was modelled by epithelium models with additional basal cells and increased epithelium thickness. Microdosimetry for alpha-particles was performed by an own-developed Monte-Carlo code. Results show that the average tissue dose, and the average hit number and dose of basal cells decrease by the increase of the measure of hyperplasia. Hit and dose distribution reveal that the induction of hyperplasia may result in a basal cell pool which is shielded from alpha-radiation. It highlights that the exposure history affects the microdosimetric consequences of a present exposure, while the biological and health effects may also depend on previous exposures. The induction of hyperplasia can be considered as a radioadaptive response at the tissue level. Such an adaptation of the tissue challenges the validity of the application of the dose and dose rate effectiveness factor from a mechanistic point of view. As the location of radiosensitive target cells may change due to previous exposures, dosimetry models considering the tissue geometry characteristic of normal conditions may be inappropriate for dose estimation in case of protracted exposures. As internal exposures are frequently chronic, such changes in tissue geometry may be highly relevant for other incorporated radionuclides.

  19. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships

    DEFF Research Database (Denmark)

    Garnier-Laplace, Jacqueline; Beaugelin-Seiller, Karine; Della-Vedova, Claire;

    2015-01-01

    We reconstructed the radiological dose for birds observed at 300 census sites in the 50-km northwest area affected by the accident at the Fukushima Daiichi nuclear power plant over 2011-2014. Substituting the ambient dose rate measured at the census points (from 0.16 to 31 μGy h(-1)) with the dose...

  20. 菌种添加量对生物预处理小麦秸秆厌氧发酵的影响%Effects of Supplement Dose of Microorganism in Biological Pretreatment of Wheat Straw on Its Characteristics of Anaerobic Digestion for Biogas Production

    Institute of Scientific and Technical Information of China (English)

    刘荣厚; 吴晋锴; 武丽娟

    2012-01-01

    对小麦秸秆进行了氨-生物联合预处理,在实验室自制的小型厌氧发酵装置上,对预处理后的小麦秸秆进行了厌氧发酵制取沼气试验,探讨了氨-生物联合预处理中,菌种的添加量对小麦秸秆厌氧发酵产沼气的影响.结果表明,在氨预处理尿素溶液质量浓度为35 g/L,生物预处理pH值为4,黄孢原毛平革菌和里氏木霉的添加比例为1∶1(数量级为109)的条件下,小麦秸秆厌氧发酵过程中沼气总产气量最大,为7 968 mL,较空白组提高了23.11%.发酵过程终了pH值、VFA和甲烷的变化均在正常的范围内,甲烷最高体积分数为51.33%,较空白组提高了6.01%,整个发酵过程历时23 d.%Co-pretreatment of wheat straw by urea and microorganism was conducted. The effects of supplement dose of microorganism in biological pretreatment of wheat straw on its anaerobic digestion for biogas production were investigated by using a self-made anaerobic digestion device with pretreated wheat straw as raw materials. Results showed that the total yield of biogas reached the maximum of 7 968 mL, which was 23. 11% higher than the control, when the urea concentration, pH value of biological pretreatment and ratio of Phanerochaete chrysosporium to Trichoderma reesei added into the wheat straw were 35 g/L, 4, and 1:1, respectively. The values of VFA, CH4 and pH value were located in normal range. The maximum CH4 content was 51.33% , which was 6. 01% higher than that of control. The fermentation time was shortened to 23 d during the whole experiment.

  1. The Biological Effects of Bilirubin Photoisomers.

    Directory of Open Access Journals (Sweden)

    Jana Jasprova

    Full Text Available Although phototherapy was introduced as early as 1950's, the potential biological effects of bilirubin photoisomers (PI generated during phototherapy remain unclear. The aim of our study was to isolate bilirubin PI in their pure forms and to assess their biological effects in vitro. The three major bilirubin PI (ZE- and EZ-bilirubin and Z-lumirubin were prepared by photo-irradiation of unconjugated bilirubin. The individual photoproducts were chromatographically separated (TLC, HPLC, and their identities verified by mass spectrometry. The role of Z-lumirubin (the principle bilirubin PI on the dissociation of bilirubin from albumin was tested by several methods: peroxidase, fluorescence quenching, and circular dichroism. The biological effects of major bilirubin PI (cell viability, expression of selected genes, cell cycle progression were tested on the SH-SY5Y human neuroblastoma cell line. Lumirubin was found to have a binding site on human serum albumin, in the subdomain IB (or at a close distance to it; and thus, different from that of bilirubin. Its binding constant to albumin was much lower when compared with bilirubin, and lumirubin did not affect the level of unbound bilirubin (Bf. Compared to unconjugated bilirubin, bilirubin PI did not have any effect on either SH-SY5Y cell viability, the expression of genes involved in bilirubin metabolism or cell cycle progression, nor in modulation of the cell cycle phase. The principle bilirubin PI do not interfere with bilirubin albumin binding, and do not exert any toxic effect on human neuroblastoma cells.

  2. LESM: a laser-driven sub-MeV electron source delivering ultra-high dose rate on thin biological samples

    Science.gov (United States)

    Labate, L.; Andreassi, M. G.; Baffigi, F.; Bizzarri, R.; Borghini, A.; Bussolino, G. C.; Fulgentini, L.; Ghetti, F.; Giulietti, A.; Köster, P.; Lamia, D.; Levato, T.; Oishi, Y.; Pulignani, S.; Russo, G.; Sgarbossa, A.; Gizzi, L. A.

    2016-07-01

    We present a laser-driven source of electron bunches with average energy 260~\\text{keV} and picosecond duration, which has been setup for radiobiological tests covering the previously untested sub-MeV energy range. Each bunch combines high charge with short duration and sub-millimeter range into a record instantaneous dose rate, as high as {{10}9}~\\text{Gy}~{{\\text{s}}-1} . The source can be operated at 10~\\text{Hz} and its average dose rate is 35~\\text{mGy}~{{\\text{s}}-1} . Both the high instantaneous dose rate and high level of relative biological effectiveness, attached to sub-MeV electrons, make this source very attractive for studies of ultrafast radiobiology on thin cell samples. The source reliability, in terms of shot-to-shot stability of features such as mean energy, bunch charge and transverse beam profile, is discussed, along with a dosimetric characterization. Finally, a few preliminary biological tests performed with this source are presented.

  3. Whack-A-Mole Model: Towards unified description of biological effect caused by radiation-exposure

    CERN Document Server

    Manabe, Yuichiro; Tsunoyama, Yuichi; Nakajima, Hiroo; Nakamura, Issei; Bando, Masako

    2014-01-01

    We present a novel model to estimate biological effects caused by artificial radiation exposure, Whack-a-mole (WAM) model. It is important to take account of the recovery effects during the time course of the cellular reactions. The inclusion of the dose-rate dependence is essential in the risk estimation of low dose radiation, while nearly all the existing theoretical models relies on the total dose dependence only. By analyzing the experimental data of the relation between the radiation dose and the induced mutation frequency of 5 organisms, mouse, drosophila, chrysanthemum, maize and tradescantia, we found that all the data can be reproduced by WAM model. Most remarkably, a scaling function, which is derived from WAM model, consistently accounts for the observed mutation frequencies of 5 organisms. This is the first rationale to account for the dose rate dependence as well as to give a unified understanding of a general feature of organisms.

  4. Whack-A-Mole Model: Towards a Unified Description of Biological Effects Caused by Radiation Exposure

    Science.gov (United States)

    Manabe, Yuichiro; Wada, Takahiro; Tsunoyama, Yuichi; Nakajima, Hiroo; Nakamura, Issei; Bando, Masako

    2015-04-01

    We present a novel model to for estimating biological effects caused by artificial radiation exposure, i.e., the Whack-A-Mole (WAM) model. It is important to take into account the recovery effects during the time course of cellular reactions. The inclusion of dose-rate dependence is essential in the risk estimation of low-dose radiation, while nearly all the existing theoretical models rely on the total dose dependence only. By analyzing experimental data of the relationship between the radiation dose and the induced mutation frequency of five organisms, namely, mouse, Drosophila, chrysanthemum, maize, Tradescantia, we found that all the data can be reproduced by the WAM model. Most remarkably, a scaling function, which is derived from the WAM model, consistently accounts for the observed mutation frequencies of the five organisms. This is the first rationale to account for the dose rate dependence as well as to provide a unified understanding of a general feature of organisms.

  5. Method for photo-altering a biological system to improve biological effect

    Science.gov (United States)

    Hill, Richard A.; Doiron, Daniel R.; Crean, David H.

    2000-08-01

    Photodynamic therapy is a new adjunctive therapy for filtration surgery that does not use chemotherapy agents or radiation, but uses pharmacologically-active sensitizing compounds to produce a titratable, localized, transient, post operative avascular conjunctiva. A photosensitizing agent in a biological system is selectively activated by delivering the photosensitive agent to the biological system and laser activating only a spatially selected portion of the delivered photosensitive agent. The activated portion of the photosensitive agent reacts with the biological system to obtain a predetermined biological effect. As a result, an improved spatial disposition and effectuation of the biological effect by the photosensitive agent in the biological system is achieved.

  6. Effect of Large Dose Methylcobalamin on Diabetic Peripheral Neuropathy

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The effects of large dose methylcobalamin injection on diabetic peripheral neuropathy in patients were observed to observe the subjective symptom of diabetic perpheral neuropathy (DPN) patients and detect the motor nerve conduction velocity (MCV) and sense nerve conduction velocity (SCV). Fifteen patients were received large dose methylcobalamin injection for two weeks as treatment group, another eleven patients were received muscular injection VitB1 100mg/ d, VitB12 500ug/ d for two weeks as control group. After 2 weeks treatment the subjective symptoms and signs were significantly improved with a total effective rate of 82.9% in the treatment group however the effective rate only has 52.0% in the control group. The result has obvious difference in statistics nerve MCV in median common peroneal nerve, SCV in median and superficial peroneal nerve were improved significantly in the treatment group and no such changes were observed in the control group. So, large dose methylcobalamin is an effective and safe agent for treatment of diabetic peripheral neuropathy.

  7. [The effect of extremely low doses of the novel regulatory plant proteins ].

    Science.gov (United States)

    Krasnov, M S; Margasiuk, D V; Iamskov, I A; Iamskova, V P

    2003-01-01

    Searching and study on regulatory proteins, which can keep under control the scope of important processes as like as cell adhesion, proliferation, differentiation and morphogenesis, is an actual aim of the current biochemistry. Recently we have identified S-100 proteins in plants of following species: plantain (Plantago major L.), aloe (Aloe arborescens L.), and bilberry (Vaccinum myrtillus L.). Extraction and purification of S-100 proteins gotten from these plants were performed by the method we developed earlier for adhesion proteins of animal tissues. Homogeneity of the studied plant proteins was evaluated and confirmed by HPLC and SDS-electrophoresis in PAAG. Both, plant and animal proteins have appeared to be biologically active at extremely low doses. The tests were performed by adhesiometrical method in short-term tissue culture of mouse's liver in vitro. As a result it was established that the plant proteins insert a membranotropic effect being added in extremely low doses, corresponding to 10(-10)-10(-13) mg/ml. Keeping in mind that the plantain is well known remedy for wound protection and healing, in several experiments we studied the biological effect of plant S-100 proteins on animal cells. It was found that S-100 proteins obtained from plantain influences proliferation of human fibroblasts in vitro. It was found that after the treatment with this protein in low doses the cell growth rate increases essentially.

  8. Protective effects of orally applied fullerenol nano particles in rats after a single dose of doxorubicin

    Directory of Open Access Journals (Sweden)

    Ičević Ivana Đ.

    2011-01-01

    Full Text Available Polyhydroxylated, water soluble, fullerenol C60(OH24 nano particles (FNP in vitro and in vivo models, showed an expressive biological activity. The goal of this work was to investigate the potential protective effects of orally applied FNP on rats after a single dose of doxorubicin (DOX (8 mg/kg (i.p. 6 h after the last application of FNP. After the last drug administration, the rats were sacrificed, and the blood and tissues were taken for the analysis. Biochemical and pathological results obtained in this study indicate that fullerenol (FNP, in H2O:DMSO (80:20, w/w solution given orally in final doses of 10, 14.4, and 21.2 mg/kg three days successively, has the protective (hepatoprotective and nephroprotective effect against doxorubicin-induced cytotoxicity via its antioxidant properties.

  9. Effects of erythropoietin in skin wound healing are dose related.

    Science.gov (United States)

    Sorg, Heiko; Krueger, Christian; Schulz, Torsten; Menger, Michael D; Schmitz, Frank; Vollmar, Brigitte

    2009-09-01

    The hematopoietic growth factor erythropoietin (EPO) attracts attention due to its all-tissue-protective pleiotropic properties. We studied the effect of EPO on dermal regeneration using intravital microscopy in a model of full dermal thickness wounds in the skin-fold chamber of hairless mice. Animals received repetitive low doses or high doses of EPO (RLD-EPO or RHD-EPO) or a single high dose of EPO (SHD-EPO). SHD-EPO accelerated wound epithelialization, reduced wound cellularity, and induced maturation of newly formed microvascular networks. In contrast, RHD-EPO impaired the healing process, as indicated by delayed epithelialization, high wound cellularity, and lack of maturation of microvascular networks. Also, RHD-EPO caused an excessive erythrocyte mass and rheological malfunction, further deteriorating vessel and tissue maturation. Moreover, RHD-EPO altered fibroblast and keratinocyte migration in vitro, while both cell types exposed to RLD-EPO, and, in particular, to SHD-EPO showed accelerated wound scratch closure. In summary, our data show that a single application of a high dose of EPO accelerates and improves skin wound healing.

  10. Effect of radiation dose-rate on hematopoietic cell engraftment in adult zebrafish.

    Directory of Open Access Journals (Sweden)

    Tiffany J Glass

    Full Text Available Although exceptionally high radiation dose-rates are currently attaining clinical feasibility, there have been relatively few studies reporting the biological consequences of these dose-rates in hematopoietic cell transplant (HCT. In zebrafish models of HCT, preconditioning before transplant is typically achieved through radiation alone. We report the comparison of outcomes in adult zebrafish irradiated with 20 Gy at either 25 or 800 cGy/min in the context of experimental HCT. In non-transplanted irradiated fish we observed no substantial differences between dose-rate groups as assessed by fish mortality, cell death in the kidney, endogenous hematopoietic reconstitution, or gene expression levels of p53 and ddb2 (damage-specific DNA binding protein 2 in the kidney. However, following HCT, recipients conditioned with the higher dose rate showed significantly improved donor-derived engraftment at 9 days post transplant (p ≤ 0.0001, and improved engraftment persisted at 31 days post transplant. Analysis for sdf-1a expression, as well as transplant of hematopoietic cells from cxcr4b -/- zebrafish, (odysseus, cumulatively suggest that the sdf-1a/cxcr4b axis is not required of donor-derived cells for the observed dose-rate effect on engraftment. Overall, the adult zebrafish model of HCT indicates that exceptionally high radiation dose-rates can impact HCT outcome, and offers a new system for radiobiological and mechanistic interrogation of this phenomenon. Key words: Radiation dose rate, Total Marrow Irradiation (TMI, Total body irradiation (TBI, SDF-1, Zebrafish, hematopoietic cell transplant.

  11. SU-E-T-456: Impact of Dose Calculation Algorithms On Biologically Optimized VMAT Plans for Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Thiyagarajan, Rajesh; Vikraman, S; Karrthick, KP; Ramu, M; Sambasivaselli, R; Senniandavar, V; Kataria, Tejinder [Medanta The Medicity, Gurgaon, Haryana (India); Nambiraj, N Arunai; Sigamani, Ashokkumar [VIT University, Vellore, Tamil Nadu (India); Subbarao, Bargavan [Elekta India, Chennai, Tamil Nadu (India)

    2015-06-15

    Purpose: To evaluate the impact of dose calculation algorithm on the dose distribution of biologically optimized Volumatric Modulated Arc Therapy (VMAT) plans for Esophgeal cancer. Methods: Eighteen retrospectively treated patients with carcinoma esophagus were studied. VMAT plans were optimized using biological objectives in Monaco (5.0) TPS for 6MV photon beam (Elekta Infinity). These plans were calculated for final dose using Monte Carlo (MC), Collapsed Cone Convolution (CCC) & Pencil Beam Convolution (PBC) algorithms from Monaco and Oncentra Masterplan TPS. A dose grid of 2mm was used for all algorithms and 1% per plan uncertainty maintained for MC calculation. MC based calculations were considered as the reference for CCC & PBC. Dose volume histogram (DVH) indices (D95, D98, D50 etc) of Target (PTV) and critical structures were compared to study the impact of all three algorithms. Results: Beam models were consistent with measured data. The mean difference observed in reference with MC calculation for D98, D95, D50 & D2 of PTV were 0.37%, −0.21%, 1.51% & 1.18% respectively for CCC and 3.28%, 2.75%, 3.61% & 3.08% for PBC. Heart D25 mean difference was 4.94% & 11.21% for CCC and PBC respectively. Lung Dmean mean difference was 1.5% (CCC) and 4.1% (PBC). Spinal cord D2 mean difference was 2.35% (CCC) and 3.98% (PBC). Similar differences were observed for liver and kidneys. The overall mean difference found for target and critical structures was 0.71±1.52%, 2.71±3.10% for CCC and 3.18±1.55%, 6.61±5.1% for PBC respectively. Conclusion: We observed a significant overestimate of dose distribution by CCC and PBC as compared to MC. The dose prediction of CCC is closer (<3%) to MC than that of PBC. This can be attributed to poor performance of CCC and PBC in inhomogeneous regions around esophagus. CCC can be considered as an alternate in the absence of MC algorithm.

  12. Comparing Effects of Biologic Agents in Treating Patients with Rheumatoid Arthritis: A Multiple Treatment Comparison Regression Analysis.

    Directory of Open Access Journals (Sweden)

    Ingunn Fride Tvete

    Full Text Available Rheumatoid arthritis patients have been treated with disease modifying anti-rheumatic drugs (DMARDs and the newer biologic drugs. We sought to compare and rank the biologics with respect to efficacy. We performed a literature search identifying 54 publications encompassing 9 biologics. We conducted a multiple treatment comparison regression analysis letting the number experiencing a 50% improvement on the ACR score be dependent upon dose level and disease duration for assessing the comparable relative effect between biologics and placebo or DMARD. The analysis embraced all treatment and comparator arms over all publications. Hence, all measured effects of any biologic agent contributed to the comparison of all biologic agents relative to each other either given alone or combined with DMARD. We found the drug effect to be dependent on dose level, but not on disease duration, and the impact of a high versus low dose level was the same for all drugs (higher doses indicated a higher frequency of ACR50 scores. The ranking of the drugs when given without DMARD was certolizumab (ranked highest, etanercept, tocilizumab/ abatacept and adalimumab. The ranking of the drugs when given with DMARD was certolizumab (ranked highest, tocilizumab, anakinra/rituximab, golimumab/ infliximab/ abatacept, adalimumab/ etanercept [corrected]. Still, all drugs were effective. All biologic agents were effective compared to placebo, with certolizumab the most effective and adalimumab (without DMARD treatment and adalimumab/ etanercept (combined with DMARD treatment the least effective. The drugs were in general more effective, except for etanercept, when given together with DMARDs.

  13. Isoflavones: estrogenic activity, biological effect and bioavailability.

    Science.gov (United States)

    Vitale, Daniela Cristina; Piazza, Cateno; Melilli, Barbara; Drago, Filippo; Salomone, Salvatore

    2013-03-01

    Isoflavones are phytoestrogens with potent estrogenic activity; genistein, daidzein and glycitein are the most active isoflavones found in soy beans. Phytoestrogens have similarity in structure with the human female hormone 17-β-estradiol, which can bind to both alpha and beta estrogen receptors, and mimic the action of estrogens on target organs, thereby exerting many health benefits when used in some hormone-dependent diseases. Numerous clinical studies claim benefits of genistein and daidzein in chemoprevention of breast and prostate cancer, cardiovascular disease and osteoporosis as well as in relieving postmenopausal symptoms. The ability of isoflavones to prevent cancer and other chronic diseases largely depends on pharmacokinetic properties of these compounds, in particular absorption and distribution to the target tissue. The chemical form in which isoflavones occur is important because it influences their bioavailability and, therefore, their biological activity. Glucose-conjugated isoflavones are highly polar, water-soluble compounds. They are hardly absorbed by the intestinal epithelium and have weaker biological activities than the corresponding aglycone. Different microbial families of colon can transform glycosylated isoflavones into aglycones. Clinical studies show important differences between the aglycone and conjugated forms of genistein and daidzein. The evaluation of isoflavone metabolism and bioavailability is crucial to understanding their biological effects. Lipid-based formulations such as drug incorporation into oils, emulsions and self-microemulsifying formulations have been introduced to increase bioavailability. Complexation with cyclodextrin also represent a valid method to improve the physicochemical characteristics of these substances in order to be absorbed and distributed to target tissues. We review and discuss pharmacokinetic issues that critically influence the biological activity of isoflavones.

  14. Biological effects of fruit and vegetables

    DEFF Research Database (Denmark)

    Dragsted, L. O.; Krath, B.; Ravn-Haren, Gitte;

    2006-01-01

    , providing 600hairspg fruit and vegetables/d or in the controls a carbohydrate-rich drink to balance energy intake. Surrogate markers of oxidative damage to DNA, protein and lipids, enzymic defence and lipid metabolism were determined in blood and urine. It was found that a high intake of fruit......A strong and persistent effect of plant-derived foods on the prevention of lifestyle diseases has emerged from observational studies. Several groups of constituents in plants have been identified as potentially health promoting in animal studies, including cholesterol-lowering factors, antioxidants......, enzyme inducers, apoptosis inducers etc. In human intervention studies the dose levels achieved tend to be lower than the levels found to be effective in animals and sampling from target organs is often not possible. A controlled dietary human intervention study was performed with forty-three volunteers...

  15. Low dose radiation damage effects in silicon strip detectors

    Science.gov (United States)

    Wiącek, P.; Dąbrowski, W.

    2016-11-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  16. Effect of low-dose gaseous ozone on pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Fontes Belchor

    2012-12-01

    Full Text Available Abstract Background Treatment of chronically infected wounds is a challenge, and bacterial environmental contamination is a growing issue in infection control. Ozone may have a role in these situations. The objective of this study was to determine whether a low dose of gaseous ozone/oxygen mixture eliminates pathogenic bacteria cultivated in Petri dishes. Methods A pilot study with 6 bacterial strains was made using different concentrations of ozone in an ozone-oxygen mixture to determine a minimally effective dose that completely eliminated bacterial growth. The small and apparently bactericidal gaseous dose of 20 μg/mL ozone/oxygen (1:99 mixture, applied for 5min under atmospheric pressure was selected. In the 2nd phase, eight bacterial strains with well characterized resistance patterns were evaluated in vitro using agar-blood in adapted Petri dishes (105 bacteria/dish. The cultures were divided into 3 groups: 1- ozone-oxygen gaseous mixture containing 20 μg of O3/mL for 5 min; 2- 100% oxygen for 5 min; 3- baseline: no gas was used. Results The selected ozone dose was applied to the following eight strains: Escherichia coli, oxacillin-resistant Staphylococcus aureus, oxacillin-susceptible Staphylococcus aureus, vancomycin-resistant Enterococcus faecalis, extended-spectrum beta-lactamase-producing Klebsiella pneumoniae, carbapenem-resistant Acinetobacter baumannii, Acinetobacter baumannii susceptible only to carbapenems, and Pseudomonas aeruginosa susceptible to imipenem and meropenem. All isolates were completely inhibited by the ozone-oxygen mixture while growth occurred in the other 2 groups. Conclusion A single topical application by nebulization of a low ozone dose completely inhibited the growth of all potentially pathogenic bacterial strains with known resistance to antimicrobial agents.

  17. The biological effects of ionising radiation on Crustaceans: A review

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Neil; Lerebours, Adélaïde [Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire PO4 9LY (United Kingdom); Smith, Jim T. [School of Earth & Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, Hampshire PO1 3QL (United Kingdom); Ford, Alex T., E-mail: alex.ford@port.ac.uk [Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire PO4 9LY (United Kingdom)

    2015-10-15

    Highlights: • We comprehensively review the effects of ionising radiation in crustaceans. • Current environmental radioprotection levels found to be inadequate in some cases. • Mutation is shown to be a sensitive endpoint of radiation exposure. • Lowest observed effect dose rate varies by orders of magnitude. - Abstract: Historic approaches to radiation protection are founded on the conjecture that measures to safeguard humans are adequate to protect non-human organisms. This view is disparate with other toxicants wherein well-developed frameworks exist to minimise exposure of biota. Significant data gaps for many organisms, coupled with high profile nuclear incidents such as Chernobyl and Fukushima, have prompted the re-evaluation of our approach toward environmental radioprotection. Elucidating the impacts of radiation on biota has been identified as priority area for future research within both scientific and regulatory communities. The crustaceans are ubiquitous in aquatic ecosystems, comprising greater than 66,000 species of ecological and commercial importance. This paper aims to assess the available literature of radiation-induced effects within this subphylum and identify knowledge gaps. A literature search was conducted pertaining to radiation effects on four endpoints as stipulated by a number of regulatory bodies: mortality, morbidity, reproduction and mutation. A major finding of this review was the paucity of data regarding the effects of environmentally relevant radiation doses on crustacean biology. Extremely few studies utilising chronic exposure durations or wild populations were found across all four endpoints. The dose levels at which effects occur was found to vary by orders of magnitude thus presenting difficulties in developing phyla-specific benchmark values and reference levels for radioprotection. Based on the limited data, mutation was found to be the most sensitive endpoint of radiation exposure, with mortality the least sensitive

  18. Non-Linear Dose-Response Relationships in Biology, Toxicology and Medicine - An International Conference

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, Edward J.; Kostecki, Paul T.

    2002-05-28

    Conference abstract book contains seven sections: Plenary-4 abstracts; Chemical-9 abstracts; Radiation-7 abstracts; Ultra Low Doses and Medicine-6 abstracts; Biomedical-11 abstracts; Risk Assessment-5 abstracts and Poster Sessions-25 abstracts. Each abstract was provided by the author/presenter participating in the conference.

  19. A kinematic model to estimate effective dose of radioactive substances in a human body

    Science.gov (United States)

    Sasaki, S.; Yamada, T.

    2013-05-01

    The great earthquake occurred in the north-east area in Japan in March 11, 2011. Facility system to control Fukushima Daiichi nuclear power station was completely destroyed by the following giant tsunami. From the damaged reactor containment vessels, an amount of radioactive substances had leaked and diffused in the vicinity of this station. Radiological internal exposure became a serious social issue both in Japan and all over the world. The present study provides an easily understandable, kinematic-based model to estimate the effective dose of radioactive substances in a human body by simplifying the complicated mechanism of metabolism. International Commission on Radiological Protection (ICRP) has developed a sophisticated model, which is well-known as a standard method to calculate the effective dose for radiological protection. However, owing to that ICRP method is fine, it is rather difficult for non-professional people of radiology to gasp the whole images of the movement and the influences of radioactive substances in a human body. Therefore, in the present paper we propose a newly-derived and easily-understandable model to estimate the effective dose. The present method is very similar with the traditional and conventional tank model in hydrology. Ingestion flux of radioactive substances corresponds to rain intensity and the storage of radioactive substances to the water storage in a basin in runoff analysis. The key of the present method is to estimate the energy radiated in the radioactive nuclear disintegration of an atom by using classical theory of β decay and special relativity for various kinds of radioactive atoms. The parameters used in this model are only physical half-time and biological half-time, and there are no operational parameters or coefficients to adjust our theoretical runoff to ICRP. Figure shows the time-varying effective dose with ingestion duration, and we can confirm the validity of our model. The time-varying effective dose with

  20. Background study of absorbed dose in biological experiments at the Modane Underground Laboratory

    Science.gov (United States)

    Lampe, Nathanael; Marin, Pierre; Castor, Jean; Warot, Guillaume; Incerti, S.; Maigne, Lydia; Sarramia, David; Breton, Vincent

    2016-09-01

    Aiming to explore how biological systems respond to ultra-low background environ-ments, we report here our background studies for biological experiments in the Modane Under-ground Laboratory. We find that the minimum radioactive background for biology experiments is limited by the potassium content of the biological sample itself, coming from its nutritive me-dium, which we find in our experimental set-up to be 26 nGy hr-1. Compared to our reference radiation environment in Clermont-Ferrand, biological experiments can be conducted in the Modane laboratory with a radiation background 8.2 times lower than the reference above-ground level. As the radiation background may be further reduced by using different nutritive media, we also provide measurements of the potassium concentration by gamma spectroscopy of yeast extract (63.3±1.2 mg g-1) and tryptone (2.5±0.2 mg g-1) in order to guide media selection in future experiments.

  1. Committed equivalent organ doses and committed effective doses from intakes of radionuclides

    CERN Document Server

    Phipps, A W; Kendall, G M; Silk, T J; Stather, J W

    1991-01-01

    This report contains details of committed equivalent doses to individual organs for intakes by ingestion and inhalation of 1 mu m AMAD particles of 359 nuclides by infants aged 3 months, by children aged 1, 5, 10 and 15 years, and by adults. It complements NRPB-R245 which describes the changes which have taken place since the last NRPB compendium of dose per unit intake factors (dose coefficients) and gives summary tables. Information on the way committed doses increase with the integration period is given in NRPB-M289. The information given in these memoranda is also available as a microcomputer package - NRPB-SR245.

  2. Effect of different doses of glyphosate in soybean

    Directory of Open Access Journals (Sweden)

    S. A. Gomes

    2013-07-01

    Full Text Available Abstract: Brazil ranks second in production of conventional soybeans and third in production of transgenic soybeans. The main advantage of transgenic soybean is resistant to the herbicide glyphosate, but the continued use of exaggeration and even of the same herbicide on soybean can significantly decrease acquired resistance. This work aimed to evaluate the effects of different doses of glyphosate can result in soybean. The experiment was conducted in a greenhouse on the Campus of UFMT in Sinop-MT, and evaluated five doses of glyphosate in transgenic soybeans intercropped with two conventional soybeans. The characters were evaluated for phytotoxicity scores and length of the root system. It was found that, regardless of the amount of glyphosate applied occur symptoms of phytotoxicity in conventional and transgenic soybean. Whereas the most damage will be in conventional soybean, and transgenic soybean little affected by the action of the herbicide.Key words: Glycine max, glyphosate, phytotoxicity

  3. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    Science.gov (United States)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p < 0.05). Basal proliferation of leukocytes in the blood and spleen increased significantly with increasing dose (p < 0.05). Significant dose rate effects were observed only in thrombocyte counts. Plasma levels of transforming growth factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  4. From Chernobyl to Fukushima: the effect of low doses; De Tchernobyl a Fukushima. L'effet des faibles doses

    Energy Technology Data Exchange (ETDEWEB)

    Aurengo, A.

    2011-07-01

    This Power Point presentation describes the Fukushima's reactors, recalls some data about the earthquake and tsunami, and indicates their consequences for the operation of the power station (notably the loss of cooling means). It identifies some design errors for the Chernobyl's and Fukushima's power stations, outlines differences between these two cases. It gives assessment of doses receives by external irradiation around Fukushima, of the dose rate evolution, of the sea contamination. It gives some data about the Chernobyl accident (radioactivity evolution). After some data about health consequences of Chernobyl, health risks and more particularly biological risks associated to low doses are described. Protection measures are evoked, as well as psycho-social impacts

  5. Particle induced X-ray emission and ion dose distribution in a biological micro-beam: Geant4 Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Syed Bilal, E-mail: ahmadsb@mcmaster.ca [TAB-104D, Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1 (Canada); Thompson, Jeroen E., E-mail: Jeroen.thompson@gmail.com [Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1 (Canada); McNeill, Fiona E., E-mail: fmcneill@mcmaster.ca [Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1 (Canada); Byun, Soo Hyun, E-mail: soohyun@mcmaster.ca [Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1 (Canada); Prestwich, William V., E-mail: prestwic@mcmaster.ca [Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1 (Canada)

    2013-01-15

    The goal of a microbeam is to deliver a highly localized and small dose to the biological medium. This can be achieved by using a set of collimators that confine the charged particle beam to a very small spatial area of the order of microns in diameter. By using a system that combines an appropriate beam detection method that signals to a beam shut-down mechanism, a predetermined and counted number of energetic particles can be delivered to targeted biological cells. Since the shutter and the collimators block a significant proportion of the beam, there is a probability of the production of low energy X-rays and secondary electrons through interactions with the beam. There is little information in the biological microbeam literature on potential X-ray production. We therefore used Monte Carlo simulations to investigate the potential production of particle-induced X-rays and secondary electrons in the collimation system (which is predominantly made of tungsten) and the subsequent possible effects on the total absorbed dose delivered to the biological medium. We found, through the simulation, no evidence of the escape of X-rays or secondary electrons from the collimation system for proton energies up to 3 MeV as we found that the thickness of the collimators is sufficient to reabsorb all of the generated low energy X-rays and secondary electrons. However, if the proton energy exceeds 3 MeV our simulations suggest that 10 keV X-rays can escape the collimator and expose the overlying layer of cells and medium. If the proton energy is further increased to 4.5 MeV or beyond, the collimator can become a significant source of 10 keV and 59 keV X-rays. These additional radiation fields could have effects on cells and these results should be verified through experimental measurement. We suggest that researchers using biological microbeams at higher energies need to be aware that cells may be exposed to a mixed LET radiation field and be careful in their interpretation of

  6. Biological effect of radiation on human

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Sil; Cho, Chul Koo; Lee, Su Jae [and others

    2000-04-01

    1. Adaptive response when 0.01 Gy was preirradiated before high challenging dose is induced in normal cell types such normal lymphocytes, primary keratinocytes, and L929 fibroblast cells but not in neoplastic cells such as L5178Y lymphoma cells, EL-4 lymphoma cells and 308 papilloma cells. 2. Heat shock protein (HSP) 25 and inducible HSP70 is responsible for the induction of adaptive response and radioresistance - cell cycle regulation, antiapoptotic molecule and PKC activation were involved. 3. Apoptosis was induced at most 5. hrs after irradiation in primary keratinocytes, in v-rasHa transformed keratinocytes, the maximum interval was 16 hrs, and in 308 papilloma cells, the maximum was 48 hrs. 4. PKC response by radiation is correlated with induction of apoptosis. 5. Rapid induction PKCdelta in primary keratinocytes and no response of PKC epsilon may involved in radiation induced apoptosis. 6. The rate of resorption was increased when radiation was given at 2.5 days after gestation. Early death including foetal death were highly expressed when radiation was given at 7.5 days after gestation. There are no difference in incidence of late death including embryonic death. 7. 2 Gy is the most effective dose in radiation induced teratogenesis in mouse model. 8. Growth retardation and small head was present when radiation was given at 5.5, 7.5, 11.5 and 15.5 days after gestation and small head showed high incidence at 11.5 days after gestation. 9. External malformation, internal malformation and skeletal malformation was induced when radiation was given at 7.5 days after gestation. 10. OGG1-mutated cells induced radiosensitive by G2/M cell cycle arrest. 11. Radiation induced G2/M phase cell cycle and correlated with radiosensitivity. 12. PKCalpha induced differentiation. 13. Radiation exposed cells showed carcinogenic effect. 14. Organ specific radiosensitivity was shown and protein expression was involved.

  7. BIOLOGICAL EFFECTS ON THE SOURCE OF GEONEUTRINOS

    DEFF Research Database (Denmark)

    Sleep, Norman H.; Bird, Dennis K.; Rosing, Minik T.

    2013-01-01

    Detection of antineutrinos from U and Th series decay within the Earth (geoneutrinos) constrains the absolute abundance of these elements. Marine detectors will measure the ratio over the mantle beneath the site and provide spatial averaging. The measured mantle Th/U may well be significantly below...... its bulk earth value of similar to 4; Pb isotope measurements on mantle-derived rocks yield low Th/U values, effectively averaged over geological time. The physics of the modern biological process is complicated, but the net effect is that much of the U in the mantle comes from subducted marine......, these elements behave similarly in the absence of life, where the elements occur as U(IV) and Th(IV), which do not significantly fractionate during igneous processes. Neither do they fractionate during weathering, as they are essentially insoluble in water in surface environments. Th(IV) and U(IV) remain...

  8. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships

    Science.gov (United States)

    Garnier-Laplace, Jacqueline; Beaugelin-Seiller, Karine; Della-Vedova, Claire; Métivier, Jean-Michel; Ritz, Christian; Mousseau, Timothy A.; Pape Møller, Anders

    2015-11-01

    We reconstructed the radiological dose for birds observed at 300 census sites in the 50-km northwest area affected by the accident at the Fukushima Daiichi nuclear power plant over 2011-2014. Substituting the ambient dose rate measured at the census points (from 0.16 to 31 μGy h-1) with the dose rate reconstructed for adult birds of each species (from 0.3 to 97 μGy h-1), we confirmed that the overall bird abundance at Fukushima decreased with increasing total doses. This relationship was directly consistent with exposure levels found in the literature to induce physiological disturbances in birds. Among the 57 species constituting the observed bird community, we found that 90% were likely chronically exposed at a dose rate that could potentially affect their reproductive success. We quantified a loss of 22.6% of the total number of individuals per increment of one unit log10-tansformed total dose (in Gy), over the four-year post-accident period in the explored area. We estimated that a total dose of 0.55 Gy reduced by 50% the total number of birds in the study area over 2011-2014. The data also suggest a significant positive relationship between total dose and species diversity.

  9. Side-effects of fluticasone in asthmatic children : no effects after dose reduction

    NARCIS (Netherlands)

    Visser, MJ; van der Veer, E; Postma, DS; Arends, LR; de Vries, TW; Brand, PLP; Duiverman, EJ

    2004-01-01

    To assess long-term effects and side-effects of fluticasone propionate (FP), a 2-yr study was performed, comparing a step-down dose approach (1,000 mug.day(-1), with reductions every 2 months to 500, 200 and 100 mug.day(-1) for the remainder of the study) versus a constant dose (200 mug.day(-1)). In

  10. The Biological Effects of Ivabradine in Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Graziano Riccioni

    2012-04-01

    Full Text Available A large number of studies in healthy and asymptomatic subjects, as well as patients with already established cardiovascular disease (CAD have demonstrated that heart rate (HR is a very important and major independent cardiovascular risk factor for prognosis. Lowering heart rate reduces cardiac work, thereby diminishing myocardial oxygen demand. Several experimental studies in animals, including dogs and pigs, have clarified the beneficial effects of ivabradine associated with HR lowering. Ivabradine is a selective inhibitor of the hyperpolarisation activated cyclic-nucleotide-gated funny current (If involved in pacemaker generation and responsiveness of the sino-atrial node (SAN, which result in HR reduction with no other apparent direct cardiovascular effects. Several studies show that ivabradine substantially and significantly reduces major risks associated with heart failure when added to guideline-based and evidence-based treatment. However the biological effect of ivabradine have yet to be studied. This effects can appear directly on myocardium or on a systemic level improving endothelial function and modulating immune cell migration. Indeed ivabradine is an ‘open-channel’ blocker of human hyperpolarization-activated cyclic nucleotide gated channels of type-4 (hHCN4, and a ‘closed-channel’ blocker of mouse HCN1 channels in a dose-dependent manner. At endothelial level ivabradine decreased monocyte chemotactin protein-1 mRNA expression and exerted a potent anti-oxidative effect through reduction of vascular NADPH oxidase activity. Finally, on an immune level, ivabradine inhibits the chemokine-induced migration of CD4-positive lymphocytes. In this review, we discuss the biological effects of ivabradine and highlight its effects on CAD.

  11. Collective effective dose in Europe from X-ray and nuclear medicine procedures.

    Science.gov (United States)

    Bly, R; Jahnen, A; Järvinen, H; Olerud, H; Vassileva, J; Vogiatzi, S

    2015-07-01

    Population doses from radiodiagnostic (X-ray and nuclear medicine) procedures in Europe were estimated based on data collected from 36 European countries. For X-ray procedures in EU and EFTA countries (except Liechtenstein) the collective effective dose is 547,500 man Sv, resulting in a mean effective dose of 1.06 mSv per caput. For all European countries included in the survey the collective effective dose is 605,000 man Sv, resulting in a mean effective dose of 1.05 mSv per caput. For nuclear medicine procedures in EU countries and EFTA (except Liechtenstein) countries the collective effective dose is 30,700 man Sv, resulting in a mean effective dose of 0.06 mSv per caput. For all European countries included in the survey the collective effective dose is 31,100 man Sv, resulting in a mean effective dose of 0.05 mSv per caput.

  12. Low-dose radiation employed in diagnostic imaging causes genetic effects in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Ponzinibbio, Maria V.; Peral-Garcia, Pilar; Seoane, Analia (Inst. de Genetica Veterinaria, Univ. Nacional de La Plata CONICET, La Plata (Argentina)), e-mail: aseoane@fcv.unlp.edu.ar; Crudeli, Cintia (Agencia Nacional de Promocion Cientifica y Tecnologica, La Plata (Argentina))

    2010-11-15

    Background: Exposure to environmental, diagnostic, and occupational sources of radiation frequently involves low doses. Although these doses have no immediately noticeable impact on human health there is great interest in their long-term biological effects. Purpose: To assess immediate and time-delayed DNA damage in two cell lines exposed to low doses of ionizing radiation by using the comet assay and micronucleus test, and to compare these two techniques in the analysis of low-dose induced genotoxicity. Material and Methods: CHO and MRC-5 cells were exposed to 50 milliSievert (mSv) of ionizing radiation and assayed immediately after irradiation and at 16 or 12 passages post-irradiation, respectively. Comet assay and micronucleus test were employed. Results: The comet assay values observed in 50 mSv-treated cells were significantly higher than in the control group for both sample times and cell lines (P < 0.001). Micronuclei frequencies were higher in treated cells than in the control group (P < 0.01, CHO cells passage 16; P < 0.05, MRC-5 cells immediately after exposure; P < 0.01 MRC-5 cells passage 12). Correlation analysis between the two techniques was statistically significant (correlation coefficient 0.82, P < 0.05 and correlation coefficient 0.86, P < 0.05 for CHO and MRC-5 cells, respectively). Cells scored at passages 12 or 16 showed more damage than those scored immediately after exposure in both cell lines (no statistically significant differences). Conclusion: Cytomolecular and cytogenetic damage was observed in cells exposed to very low doses of X-rays and their progeny. A single low dose of ionizing radiation was sufficient to induce such response, indicating that mammalian cells are exquisitely sensitive to it. Comet and micronucleus assays are sensitive enough to assess this damage, although the former seems to be more efficient

  13. Effects of X-Ray Dose On Rhizosphere Studies Using X-Ray Computed Tomography.

    Directory of Open Access Journals (Sweden)

    Susan Zappala

    Full Text Available X-ray Computed Tomography (CT is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy. However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored.

  14. Evaluation of organ doses and specific k effective dose of 64-slice CT thorax examination using an adult anthropomorphic phantom

    Science.gov (United States)

    Hashim, S.; Karim, M. K. A.; Bakar, K. A.; Sabarudin, A.; Chin, A. W.; Saripan, M. I.; Bradley, D. A.

    2016-09-01

    The magnitude of radiation dose in computed tomography (CT) depends on the scan acquisition parameters, investigated herein using an anthropomorphic phantom (RANDO®) and thermoluminescence dosimeters (TLD). Specific interest was in the organ doses resulting from CT thorax examination, the specific k coefficient for effective dose estimation for particular protocols also being determined. For measurement of doses representing five main organs (thyroid, lung, liver, esophagus and skin), TLD-100 (LiF:Mg, Ti) were inserted into selected holes in a phantom slab. Five CT thorax protocols were investigated, one routine (R1) and four that were modified protocols (R2 to R5). Organ doses were ranked from greatest to least, found to lie in the order: thyroid>skin>lung>liver>breast. The greatest dose, for thyroid at 25 mGy, was that in use of R1 while the lowest, at 8.8 mGy, was in breast tissue using R3. Effective dose (E) was estimated using three standard methods: the International Commission on Radiological Protection (ICRP)-103 recommendation (E103), the computational phantom CT-EXPO (E(CTEXPO)) method, and the dose-length product (DLP) based approach. E103 k factors were constant for all protocols, ~8% less than that of the universal k factor. Due to inconsistency in tube potential and pitch factor the k factors from CTEXPO were found to vary between 0.015 and 0.010 for protocols R3 and R5. With considerable variation between scan acquisition parameters and organ doses, optimization of practice is necessary in order to reduce patient organ dose.

  15. Stochastic Effects in Computational Biology of Space Radiation Cancer Risk

    Science.gov (United States)

    Cucinotta, Francis A.; Pluth, Janis; Harper, Jane; O'Neill, Peter

    2007-01-01

    Estimating risk from space radiation poses important questions on the radiobiology of protons and heavy ions. We are considering systems biology models to study radiation induced repair foci (RIRF) at low doses, in which less than one-track on average transverses the cell, and the subsequent DNA damage processing and signal transduction events. Computational approaches for describing protein regulatory networks coupled to DNA and oxidative damage sites include systems of differential equations, stochastic equations, and Monte-Carlo simulations. We review recent developments in the mathematical description of protein regulatory networks and possible approaches to radiation effects simulation. These include robustness, which states that regulatory networks maintain their functions against external and internal perturbations due to compensating properties of redundancy and molecular feedback controls, and modularity, which leads to general theorems for considering molecules that interact through a regulatory mechanism without exchange of matter leading to a block diagonal reduction of the connecting pathways. Identifying rate-limiting steps, robustness, and modularity in pathways perturbed by radiation damage are shown to be valid techniques for reducing large molecular systems to realistic computer simulations. Other techniques studied are the use of steady-state analysis, and the introduction of composite molecules or rate-constants to represent small collections of reactants. Applications of these techniques to describe spatial and temporal distributions of RIRF and cell populations following low dose irradiation are described.

  16. Radon exposure of the skin: I. Biological effects

    Energy Technology Data Exchange (ETDEWEB)

    Charles, M W [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2007-09-15

    Radon progeny can plate out on skin and give rise to exposure of the superficial epidermis from alpha emitters Po-218 (7.7 MeV, range {approx}66 {mu}m) and Po-214 (6 MeV, range {approx}44 {mu}m). Dose rates from beta/gamma emitters Pb-214 and Bi-214 are low and only predominate at depths in excess of the alpha range. This paper reviews the evidence for a causal link between exposure from radon and its progeny, and deterministic and stochastic biological effects in human skin. Radiation induced skin effects such as ulceration and dermal atrophy, which require irradiation of the dermis, are ruled out for alpha irradiation from radon progeny because the target cells are considerably deeper than the range of alpha particles. They have not been observed in man or animals. Effects such as erythema and acute epidermal necrosis have been observed in a few cases of very high dose alpha particle exposures in man and after acute high dose exposure in animals from low energy beta radiations with similar depth doses to radon progeny. The required skin surface absorbed doses are in excess of 100 Gy. Such effects would require extremely high levels of radon progeny. They would involve quite exceptional circumstances, way outside the normal range of radon exposures in man. There is no definitive identification of the target cells for skin cancer induction in animals or man. The stem cells in the basal layer which maintain the epidermis are the most plausible contenders for target cells. The majority of these cells are near the end of the range of radon progeny alpha particles, even on the thinnest body sites. The nominal depth of these cells, as recommended by the International Commission on Radiological Protection (ICRP), is 70 {mu}m. There is evidence however that some irradiation of the hair follicles and/or the deeper dermis, as well as the inter-follicular epidermis, is also necessary for skin cancer induction. Alpha irradiation of rodent skin that is restricted to the

  17. Information on biological health effects of ionizing radiation and radionuclides: the rule of a web site

    Energy Technology Data Exchange (ETDEWEB)

    Comte, A.; Gaillard-Lecanu, E.; Flury-Herard, A. [CEA Fontenay aux Roses, 92 (France); Ourly, F. [CEA Saclay, 91 - Gif sur Yvette (France); Hemidy, P.; Lallemand, J. [Electricite de France (EDF), Service de Radioprotection, 75 - Paris (France)

    2006-07-01

    The purpose of this project is to provide a source of information on biological and health effects of radionuclides and ionizing radiation in an easy to use format. Reported work is made up of two distinct parts: data sheets for selected radionuclides and a web file. Data sheets: Specific radiation data sheets provide an overview of the properties, the environmental behaviour, the different pathways of human exposure and the biological and health consequences of selected radionuclides. Radionuclides that have been selected are those commonly dealt with in nuclear industry (and in other areas such as medicine) and released to the environment or naturally occurring (plutonium, tritium, carbon 14). Data sheets corresponding to the different radionuclides are based on the main sources of scientific information in dosimetry, epidemiology, radiobiology and radiation protection. These data sheets are intended for radiation protection specialists and physicians. They include: main physical and chemical characteristics, main radiation protection data: dose coefficients (public, workers), dose limits sources, total released estimate (nuclear industry, atmospheric tests, main pathway of human exposure and biological behaviour, biological and health effects, medical supervision, treatment a list of the main references, appendix providing accurate information. Web file: http://www-dsv.cea.fr/doc/carmin{sub e}xt/fond.php This web file provides a source of information on biological and health effects of ionizing radiation and biological basic knowledge of radiation protection. Available for consultation via Internet, compiled information provides, in a same file, subjects as varied as biological mechanisms, ionizing radiations action, biological and health effects, risk assessment This file is mainly intended to assist in informing and training of non-specialist readership (students, teaching on radiation protection basic knowledge. This electronic document is divided in three

  18. Effective dose and organ doses estimation taking tube current modulation into account with a commercial software package

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Rendon, X. [KU Leuven, Department of Imaging and Pathology, Division of Medical Physics and Quality Assessment, Herestraat 49, box 7003, Leuven (Belgium); Bosmans, H.; Zanca, F. [KU Leuven, Department of Imaging and Pathology, Division of Medical Physics and Quality Assessment, Herestraat 49, box 7003, Leuven (Belgium); University Hospitals Leuven, Department of Radiology, Leuven (Belgium); Oyen, R. [University Hospitals Leuven, Department of Radiology, Leuven (Belgium)

    2015-07-15

    To evaluate the effect of including tube current modulation (TCM) versus using the average mAs in estimating organ and effective dose (E) using commercial software. Forty adult patients (24 females, 16 males) with normal BMI underwent chest/abdomen computed tomography (CT) performed with TCM at 120 kVp, reference mAs of 110 (chest) and 200 (abdomen). Doses to fully irradiated organs (breasts, lungs, stomach, liver and ovaries) and E were calculated using two versions of a dosimetry software: v.2.0, which uses the average mAs, and v.2.2, which accounts for TCM by implementing a gender-specific mAs profile. Student's t-test was used to assess statistically significant differences between organ doses calculated with the two versions. A statistically significant difference (p < 0.001) was found for E on chest and abdomen CT, with E being lower by 4.2 % when TCM is considered. Similarly, organ doses were also significantly lower (p < 0.001): 13.7 % for breasts, 7.3 % for lungs, 9.1 % for the liver and 8.5 % for the stomach. Only the dose to the ovaries was higher with TCM (11.5 %). When TCM is used, for the stylized phantom, the doses to lungs, breasts, stomach and liver decreased while the dose to the ovaries increased. (orig.)

  19. Biological effects of space radiation and development of effective countermeasures

    Science.gov (United States)

    Kennedy, Ann R.

    2014-04-01

    As part of a program to assess the adverse biological effects expected from astronauts' exposure to space radiation, numerous different biological effects relating to astronauts' health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronauts' vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation.

  20. Dose Response Association between Physical Activity and Biological, Demographic, and Perceptions of Health Variables

    Directory of Open Access Journals (Sweden)

    Paul D. Loprinzi

    2013-08-01

    Full Text Available Background: Few population-based studies have examined the association between physical activity (PA and cardiovascular disease risk factors, demographic variables, and perceptions of health status, and we do not have a clear understanding of the dose-response relationship among these variables. Methods: Data from the 2003-2006 National Health and Nutrition Examination Survey was used to examine the dose-response relationship between objectively measured PA and metabolic syndrome (and its individual cardiovascular disease risk factors, demographic variables, and perceptions of health. After exclusions, 5,538 participants 18 years or older were included in the present study, with 2,538 participants providing fasting glucose and 2,527 providing fasting triglyceride data. PA was categorized into deciles. Results: Overall, the health benefits showed a general pattern of increase with each increasing levels of PA. Of the ten PA classifications examined, participants in the highest moderate-to-vigorous physical activity (MVPA category (at least 71 min/day had the lowest odds of developing metabolic syndrome. Conclusion: At a minimum, sedentary adults should strive to meet current PA guidelines (i.e., 150 min/week of MVPA, with additional positive benefits associated with engaging in three times this level of PA.

  1. Carbon Heavy-ion Radiation Induced Biological effects on Oryza sativa L.

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Li, Xishan; Gong, Ning; Meng, Qingmei; Liu, Jiawei; Wang, Ting

    2016-07-01

    Large number of researches on rice after spaceflights indicated that rice was a favorable model organism to study biological effects induced by space radiation. The stimulative effect could often be found on rice seedlings after irradiation by low-dose energetic heavy-ion radiation. Spaceflight also could induce stimulative effect on kinds of seeds. To further understand the mechanism of low-dose radiation biological effects and the dose range, the germinated rice seeds which were irradiated by different doses of carbon heavy-ion (0, 0.02, 0.1, 0.2, 1, 2, 5, 10, 15 and 20Gy, LET=27.3keV/µm) were used as materials to study. By investigating the variation of rice phenotype under different doses, we found that 2Gy radiation dose was a dividing point of the phenotypic variation. Transmission electron microscopy was used to observe the variation of mitochondria, chloroplast, endoplasmic reticulum, ribosome and nucleus in mesophyll cell of rice apical meristem at 24 hours after radiation with different doses. The cells were not apparently physiologically damaged when the dose of radiation was less than 2Gy. The number of chloroplast did not change significantly, but the number of mitochondria was significantly increased, and gathered around in the chloroplast and endoplasmic reticulum; the obvious lesion of chloroplast and mitochondria were found at the mesophyll cells when radiation dose was higher than 2Gy. The mitochondria were swelling and appearing blurred crest. The chloroplast and mitochondrial mutation rate increased significantly (p<0.01). These phenomena showed that cell biological changes may be the reasons of the stimulation and inhibition effects with the boundary of 2Gy. Since mitochondrial was an important organelle involved in the antioxidative systems, its dysfunction could result in the increase of reactive oxygen species and lipid peroxidation. We found that the growth stimulation induced by low-dose radiation mainly occurred at three-leaf stage along

  2. Bioaccumulation and biological effects in the earthworm Eisenia fetida exposed to natural and depleted uranium

    Energy Technology Data Exchange (ETDEWEB)

    Giovanetti, Anna, E-mail: anna.giovanetti@enea.i [ENEA, Institute of Radiation Protection, CR Casaccia Via Anguillarese 301, 00123 Rome (Italy); Fesenko, Sergey [International Atomic Energy Agency (IAEA), Agency' s Laboratories Seibersdorf, A-2444 Seibersdorf (Austria); Cozzella, Maria L. [ENEA, National Institute for Metrology of Ionizing Radiation, CR Casaccia Via Anguillarese 301, 00123 Rome (Italy); Asencio, Lisbet D. [Centro de Estudios Ambientales, Carretera a Castillo de Jagua, CP. 59350 C. Nuclear, Cienfuegos (Cuba); Sansone, Umberto [International Atomic Energy Agency (IAEA), Agency' s Laboratories Seibersdorf, A-2444 Seibersdorf (Austria)

    2010-06-15

    The accumulations of both natural (U) and depleted (DU) uranium in the earthworms (Eisenia fetida) were studied to evaluate corresponding biological effects. Concentrations of metals in the experimental soil ranged from 1.86 to 600 mg kg{sup -1}. Five biological endpoints: mortality, animals' weight increasing, lysosomal membrane stability by measuring the neutral red retention time (the NRRT), histological changes and genetic effects (Comet assay) were used to evaluate biological effects in the earthworms after 7 and 28 days of exposure. No effects have been observed in terms of mortality or weight reduction. Cytotoxic and genetic effects were identified at quite low U concentrations. For some of these endpoints, in particular for genetic effects, the dose (U concentration)-effect relationships have been found to be non-linear. The results have also shown a statistically significant higher level of impact on the earthworms exposed to natural U compared to depleted U.

  3. High-Dose-Rate Monotherapy: Safe and Effective Brachytherapy for Patients With Localized Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Demanes, D. Jeffrey, E-mail: jdemanes@mednet.ucla.edu [California Endocurietherapy at UCLA, Department of Radiation Oncology, David Geffen School of Medicine of University of California at Los Angeles, Los Angeles, CA (United States); Martinez, Alvaro A.; Ghilezan, Michel [William Beaumont Hospital, Royal Oak, MI (United States); Hill, Dennis R.; Schour, Lionel; Brandt, David [California Endocurietherapy, Oakland, CA (United States); Gustafson, Gary [William Beaumont Hospital, Royal Oak, MI (United States)

    2011-12-01

    Purpose: High-dose-rate (HDR) brachytherapy used as the only treatment (monotherapy) for early prostate cancer is consistent with current concepts in prostate radiobiology, and the dose is reliably delivered in a prospectively defined anatomic distribution that meets all the requirements for safe and effective therapy. We report the disease control and toxicity of HDR monotherapy from California Endocurietherapy (CET) and William Beaumont Hospital (WBH) in low- and intermediate-risk prostate cancer patients. Methods and Materials: There were 298 patients with localized prostate cancer treated with HDR monotherapy between 1996 and 2005. Two biologically equivalent hypofractionation protocols were used. At CET the dose was 42 Gy in six fractions (two implantations 1 week apart) delivered to a computed tomography-defined planning treatment volume. At WBH the dose was 38 Gy in four fractions (one implantation) based on intraoperative transrectal ultrasound real-time treatment planning. The bladder, urethral, and rectal dose constraints were similar. Toxicity was scored with the National Cancer Institute Common Toxicity Criteria for Adverse Events version 3. Results: The median follow-up time was 5.2 years. The median age of the patients was 63 years, and the median value of the pretreatment prostate-specific antigen was 6.0 ng/mL. The 8-year results were 99% local control, 97% biochemical control (nadir +2), 99% distant metastasis-free survival, 99% cause-specific survival, and 95% overall survival. Toxicity was scored per event, meaning that an individual patient with more than one symptom was represented repeatedly in the morbidity data table. Genitourinary toxicity consisted of 10% transient Grade 2 urinary frequency or urgency and 3% Grade 3 episode of urinary retention. Gastrointestinal toxicity was <1%. Conclusions: High disease control rates and low morbidity demonstrate that HDR monotherapy is safe and effective for patients with localized prostate cancer.

  4. Differential Effect of Isooctane Doses on HaCaT and HeLa: A Multimodal Analysis

    OpenAIRE

    Lopamudra Das; Sanmitra Basu; Sanghamitra Sengupta; Soumen Das; Jyotirmoy Chatterjee

    2014-01-01

    A multimodal approach is effective in analyzing biological problems critically and thus also useful in assessing cytotoxicity under chemicals assaults. In this study effects of isooctane, an organic solvent and component of gasoline produced in petroleum industries, have been explored on normal (HaCaT) and cancerous (HeLa) epithelial cells. Besides morphological alterations, impacts on viability, prime molecular expressions, and bioelectrical properties on exposure to different doses of isooc...

  5. The radioinduced membranes injuries as biological dose indicators: mechanisms of studies and practical applications; Les dommages membranaires radio-induits comme bio-indicateurs de dose: etudes des mecanismes et applications pratiques

    Energy Technology Data Exchange (ETDEWEB)

    Vincent-Genod, Lucie

    2001-10-15

    After an accidental overexposure, the assessment of the received dose in biological dosimetry is performed by a method based on the effects of irradiation on the DNA molecule. But this technique shows some limitations; therefore we tried to find new bio-sensors of radiation exposure. We have pointed out that membrane is a critical target of ionising radiation after an in vitro and in vivo overexposure. In vitro, these modifications were involved in the radio-induced apoptotic pathway. The measure of membrane fluidity allowed us to obtain an overall view of cellular membrane. Moreover, in vivo, by changing the lipid nutritional status of animals, our results displayed the important role played by membrane lipid composition in radio-induced membrane alterations. Besides, membrane effects were adjusted by the extracellular physiological control, and in particular by the damages on membrane fatty acid pattern. Finally, we have tested the use of membrane fluidity index as a bio-sensor of radiation exposure on in vivo models and blood samples from medical total body irradiated patients. The results achieved on animal models suggested that the membrane fluidity index was a bio-sensor of radiation exposure. Nevertheless, the observations realised on patients highlight that the effect of the first dose fraction of the radiotherapy treatment had some difficulties to be noticed. Indeed, the combined treatment: chemotherapy and radiotherapy disturbed the membrane fluidity index measures. To conclude, whereas this parameter was not a bio-sensor of irradiation exposure usable in biological dosimetry, it may allow us to assess the radio-induced damages and their cellular but also tissue impacts. (author)

  6. The dose and dose-rate effects of paternal irradiation on transgenerational instability in mice: a radiotherapy connection.

    Directory of Open Access Journals (Sweden)

    Safeer K Mughal

    Full Text Available The non-targeted effects of human exposure to ionising radiation, including transgenerational instability manifesting in the children of irradiated parents, remains poorly understood. Employing a mouse model, we have analysed whether low-dose acute or low-dose-rate chronic paternal γ-irradiation can destabilise the genomes of their first-generation offspring. Using single-molecule PCR, the frequency of mutation at the mouse expanded simple tandem repeat (ESTR locus Ms6-hm was established in DNA samples extracted from sperm of directly exposed BALB/c male mice, as well as from sperm and the brain of their first-generation offspring. For acute γ-irradiation from 10-100 cGy a linear dose-response for ESTR mutation induction was found in the germ line of directly exposed mice, with a doubling dose of 57 cGy. The mutagenicity of acute exposure to 100 cGy was more pronounced than that for chronic low-dose-rate irradiation. The analysis of transgenerational effects of paternal irradiation revealed that ESTR mutation frequencies were equally elevated in the germ line (sperm and brain of the offspring of fathers exposed to 50 and 100 cGy of acute γ-rays. In contrast, neither paternal acute irradiation at lower doses (10-25 cGy, nor low-dose-rate exposure to 100 cGy affected stability of their offspring. Our data imply that the manifestation of transgenerational instability is triggered by a threshold dose of acute paternal irradiation. The results of our study also suggest that most doses of human exposure to ionising radiation, including radiotherapy regimens, may be unlikely to result in transgenerational instability in the offspring children of irradiated fathers.

  7. Forbush decrease effects on radiation dose received on-board aeroplanes.

    Science.gov (United States)

    Lantos, P

    2005-01-01

    Doses received on-board aeroplanes during deep Forbush decreases (FDs) have been recently measured and published. Using an operational model of dose calculation, the effects on aviation dose of the FDs observed from 1981 to 2003 using neutron monitors are studied and a simplified method to estimate dose variations from galactic cosmic ray variations during FDs is derived.

  8. Cellular burdens and biological effects on tissue level caused by inhaled radon progenies

    CERN Document Server

    Madas, Balázs G; Farkas, Árpád; Szőke, István

    2014-01-01

    In the case of radon exposure, the spatial distribution of deposited radioactive particles is highly inhomogeneous in the central airways. The objective of this research is to investigate the consequences of this heterogeneity regarding cellular burdens in the bronchial epithelium and to study the possible biological effects on tissue level. Applying a computational fluid dynamics program, the deposition distribution of inhaled radon daughters has been determined in a bronchial airway model for 23 minutes of work in the New Mexico uranium mine corresponding to 0.0129 WLM exposure. A numerical epithelium model based on experimental data has been utilized in order to quantify cellular hits and doses. Finally, a carcinogenesis model considering cell death induced cell cycle shortening has been applied to assess the biological responses. Computations present, that cellular dose may reach 1.5 Gy, which is several orders of magnitude higher than tissue dose. The results are in agreement with the histological findin...

  9. Analytical models for total dose ionization effects in MOS devices.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Phillip Montgomery; Bogdan, Carolyn W.

    2008-08-01

    MOS devices are susceptible to damage by ionizing radiation due to charge buildup in gate, field and SOI buried oxides. Under positive bias holes created in the gate oxide will transport to the Si / SiO{sub 2} interface creating oxide-trapped charge. As a result of hole transport and trapping, hydrogen is liberated in the oxide which can create interface-trapped charge. The trapped charge will affect the threshold voltage and degrade the channel mobility. Neutralization of oxidetrapped charge by electron tunneling from the silicon and by thermal emission can take place over long periods of time. Neutralization of interface-trapped charge is not observed at room temperature. Analytical models are developed that account for the principal effects of total dose in MOS devices under different gate bias. The intent is to obtain closed-form solutions that can be used in circuit simulation. Expressions are derived for the aging effects of very low dose rate radiation over long time periods.

  10. Hanford Technical Basis for Multiple Dosimetry Effective Dose Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Robin L.; Rathbone, Bruce A.

    2010-08-01

    The current method at Hanford for dealing with the results from multiple dosimeters worn during non-uniform irradiation is to use a compartmentalization method to calculate the effective dose (E). The method, as documented in the current version of Section 6.9.3 in the 'Hanford External Dosimetry Technical Basis Manual, PNL-MA-842,' is based on the compartmentalization method presented in the 1997 ANSI/HPS N13.41 standard, 'Criteria for Performing Multiple Dosimetry.' With the adoption of the ICRP 60 methodology in the 2007 revision to 10 CFR 835 came changes that have a direct affect on the compartmentalization method described in the 1997 ANSI/HPS N13.41 standard, and, thus, to the method used at Hanford. The ANSI/HPS N13.41 standard committee is in the process of updating the standard, but the changes to the standard have not yet been approved. And, the drafts of the revision of the standard tend to align more with ICRP 60 than with the changes specified in the 2007 revision to 10 CFR 835. Therefore, a revised method for calculating effective dose from non-uniform external irradiation using a compartmental method was developed using the tissue weighting factors and remainder organs specified in 10 CFR 835 (2007).

  11. Effect of diameter of nanoparticles and capture cross-section library on macroscopic dose enhancement in boron neutron capture therapy

    Science.gov (United States)

    Farhood, Bagher

    2014-01-01

    Purpose The aim of this study is evaluation of the effect of diameter of 10B nanoparticles and various neutron capture cross-section libraries on macroscopic dose enhancement in boron neutron capture therapy (BNCT). Material and methods MCNPX Monte Carlo code was used for simulation of a 252Cf source, a soft tissue phantom and a tumor containing 10B nanoparticles. Using 252Cf as a neutron source, macroscopic dose enhancement factor (MDEF) and total dose rate in tumor in the presence of 100, 200, and 500 ppm of 10B nanoparticles with 25 nm, 50 nm, and 100 nm diameters were calculated. Additionally, the effect of ENDF, JEFF, JENDL, and CENDL neutron capture cross-section libraries on MDEF was evaluated. Results There is not a linear relationship between the average MDEF value and nanoparticles’ diameter but the average MDEF grows with increased concentration of 10B nanoparticles. There is an increasing trend for average MDEF with the tumor distance. The average MDEF values were obtained the same for various neutron capture cross-section libraries. The maximum and minimum doses that effect on the total dose in tumor were neutron and secondary photon doses, respectively. Furthermore, the boron capture related dose component reduced in some extent with increase of diameter of 10B nanoparticles. Conclusions Based on the results of this study, it can be concluded that from physical point of view, various nanoparticle diameters have no dominant effect on average MDEF value in tumor. Furthermore, it is concluded that various neutron capture cross-section libraries are resulted to the same macroscopic dose enhancements. However, it is predicted that taking into account the biological effects for various nanoparticle diameters will result in different dose enhancements. PMID:25834582

  12. Effects of oral doses of fluoride on nestling European starlings

    Science.gov (United States)

    Fleming, W.J.; Grue, C.E.; Schuler, C.A.; Bunck, C.M.

    1987-01-01

    Nestling European starlings (Sturnus vulgaris), raised and fed by free-living adults, were given daily oral doses of either distilled water, 193 mg sodium as Na2CO3 per kg of body weight (sodium control group), or 6, 10, 13, 17,23, 30, 40, 80, 160 mg of the fluoride ion as NaF in distilled water per kg of body weight (mg/kg). Dosing began when nestlings were 24-48 hr old and continued for 16 days. The 24-hr LD50 of fluoride for day-old starlings was 50 mg/kg. The 16-day LD50 was 17 mg/kg. The sodium control group did not differ from the water control group with respect to any of the measured variables. Growth rates were significantly reduced in the 13 and 17 mg of fluoride/kg groups; weights of birds given higher dose levels were omitted from growth comparisons because of high, fluoride-induced mortality. Although pre-fledging weights for the 10, 13, and 17 mg of fluoride/kg groups averaged 3.6 to 8.6% less than controls at 17 days, this difference was not significant. Feather and bone growth of the fluoride and control groups were not different, except for keel length measured at 17 days of age which averaged less in the fluoride groups. Liver and spleen weights were not affected by fluoride treatments. No histological damage related to fluoride treatments was found in liver, spleen, or kidney. The logarithm of bone fluoride and magnesium concentration increased with the logarithm of increasing fluoride treatment levels and were significantly correlated with each other. Fluoride treatments had no effect on percent calcium or phosphorus in bone or plasma alkaline phosphatase activity. Oral doses of fluoride appear to be more toxic than equivalent dietary levels. Most birds probably acquire fluoride through their diet. Therefore, the results of the study may overestimate the potential effects of fluorides on songbirds living in fluoride-contaminated environments.

  13. SU-E-T-802: Verification of Implanted Cardiac Pacemaker Doses in Intensity-Modulated Radiation Therapy: Dose Prediction Accuracy and Reduction Effect of a Lead Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J [Dept. of Radiation Oncology, Konkuk University Medical Center, Seoul (Korea, Republic of); Chung, J [Dept. of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2015-06-15

    Purpose: To verify delivered doses on the implanted cardiac pacemaker, predicted doses with and without dose reduction method were verified using the MOSFET detectors in terms of beam delivery and dose calculation techniques in intensity-modulated radiation therapy (IMRT). Methods: The pacemaker doses for a patient with a tongue cancer were predicted according to the beam delivery methods [step-and-shoot (SS) and sliding window (SW)], intensity levels for dose optimization, and dose calculation algorithms. Dosimetric effects on the pacemaker were calculated three dose engines: pencil-beam convolution (PBC), analytical anisotropic algorithm (AAA), and Acuros-XB. A lead shield of 2 mm thickness was designed for minimizing irradiated doses to the pacemaker. Dose variations affected by the heterogeneous material properties of the pacemaker and effectiveness of the lead shield were predicted by the Acuros-XB. Dose prediction accuracy and the feasibility of the dose reduction strategy were verified based on the measured skin doses right above the pacemaker using mosfet detectors during the radiation treatment. Results: The Acuros-XB showed underestimated skin doses and overestimated doses by the lead-shield effect, even though the lower dose disagreement was observed. It led to improved dose prediction with higher intensity level of dose optimization in IMRT. The dedicated tertiary lead sheet effectively achieved reduction of pacemaker dose up to 60%. Conclusion: The current SS technique could deliver lower scattered doses than recommendation criteria, however, use of the lead sheet contributed to reduce scattered doses.Thin lead plate can be a useful tertiary shielder and it could not acuse malfunction or electrical damage of the implanted pacemaker in IMRT. It is required to estimate more accurate scattered doses of the patient with medical device to design proper dose reduction strategy.

  14. The Clinical Research on Prevention Effects of Uterine Cavity Absorbed Biological Antiblocking Membrane Implantation plus Large Dose Estrogenic Administration plus Imitable Bioelectricity Stimulation Therapy for Uterine CavityAdhesion after TCRA%宫腔粘连分离术后宫腔放置可吸生物防粘连膜+大剂量雌激素+仿生物电疗预防再次粘连的临床研究

    Institute of Scientific and Technical Information of China (English)

    李艳虹; 梁晓斯; 林东红

    2016-01-01

    目的:探讨生物防粘连膜宫腔放置联合大剂量雌激素治疗,再给予仿生物电刺激治疗对宫腔粘连分离术后的再粘连防治的临床疗效。方法:选取2014年2月-2016年2月本院收治的经TCRA成功分离的中、重度宫腔粘连患者48例作为研究对象,随机分为观察组25例和对照组23例。观察组给予防粘连膜宫腔放置联合大剂量雌激素治疗,再给予仿生物电治疗,对照组则给予防粘连膜宫腔放置联合大剂量雌激素治疗,两组均以30 d为1个疗程,共进行3个疗程,B超检查子宫内膜修复程度。结果:治疗2个疗程后,两组子宫内膜均较治疗前增厚,且观察组优于对照组,比较差异均有统计学意义(P<0.05);观察组治疗总有效率为92.00%,明显高于对照组的56.52%,比较差异有统计学意义(P<0.05)。结论:防粘连膜宫腔放置联合大剂量雌激素治疗,再给予仿生物电刺激疗法能够有效防治宫腔粘连分离术后的再粘连。%Objective:To discuss the clinical effects of uterine cavity absorbed biological antiblocking membrane implantation plus large dose estrogenic administration plus imitable bioelectricity stimulation therapy for uterine cavity adhesion after TCRA.Method:From February 2014 to February 2016,48 cases of successfully separated by TCRA middle and severe uterine cavity adhesion in our hospital were selected as the research objects, they were randomly divided into the observation group of 25 cases and the control group of 23 cases.The observation group was given absorbed biological antiblocking membrane implantation plus large dose estrogenic administration plus imitable bioelectricity stimulation therapy,the control group was given absorbed biological antiblocking membrane implantation plus large dose estrogenic administration,two groups were treated with 30 d for 1 treatment course,a total of 3 courses,the degree of endometrial repair was inspected

  15. UV doses and skin effects during psoriasis climate therapy

    Science.gov (United States)

    Randeberg, Lise L.; Hernandez-Palacios, Julio; Lilleeng, Mila; Nilsen, Lill Tove; Krogstad, Anne-Lene

    2011-03-01

    Psoriasis is a common autoimmune disease with inflammatory symptoms affecting skin and joints. One way of dealing with psoriasis is by controlled solar UV exposure treatment. However, this treatment should be optimized to get the best possible treatment effect and to limit negative side effects such as erythema and an increased risk of skin cancer. In this study 24 patients at Valle Marina Treatment Center in Gran Canaria were monitored throughout a treatment period of three weeks starting at the beginning of November. The total UV dose to the location was monitored by UV-meters placed on the roof of the treatment centere, and the patients wore individual film dosimeters throughout the treatment period. Skin parameters were accessed by reflection spectroscopy (400-850nm). This paper presents preliminary findings from the skin measurements in the visible part of the spectrum, such as blood oxygenation, erythema and melanin indexes. Reflection spectroscopy was found to be a good tool for such treatment monitoring.

  16. Cell Biology of Thiazide Bone Effects

    Science.gov (United States)

    Gamba, Gerardo; Riccardi, Daniela

    2008-09-01

    The thiazide-sensitive Na+:Cl- cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian kidney. The activity of NCC is not only related to salt metabolism, but also to calcium and magnesium homeostasis due to the inverse relationship between NCC activity and calcium reabsorption. Hence, the thiazide-type diuretics that specifically block NCC have been used for years, not only for treatment of hypertension and edematous disease, but also for the management of renal stone disease. Epidemiological studies have shown that chronic thiazide treatment is associated with higher bone mineral density and reduced risk of bone fractures, which can only partly be explained in terms of their effects on the kidney. In this regard, we have recently shown that NCC is expressed in bone cells and that inhibition of NCC in bone, either by thiazides or by reduction of NCC protein with specific siRNA, is associated with increased mineralization in vitro. These observations open a field of study to begin to understand the cell biology of the beneficial effects of thiazides in bone.

  17. 肉毒毒素生物效应的动态观测模型的构建及其量效关系%A methodology for dynamic evaluation of the biological efficacy of botulinum toxin and its dose-effect relationship

    Institute of Scientific and Technical Information of China (English)

    靳令经; 张磊; 刘务朝; 管强; 潘丽珍; 詹青; 聂志余

    2012-01-01

    目的 设计可动态评估A型肉毒毒素( BTX-A)生物学效应演变的动物模型及检测手段,探讨BTX-A剂量与肌肉收缩强度变化的量效关系.方法 SD雄性大鼠54只按随机数字表法分成9组,每组6只大鼠,第1~7组右侧腓肠肌注射BTX-A,剂量分别为0.01、0.1、0.5、1.0、1.5、2.0和4.0U,第8组注射0.1 ml含量为0.9%氯化钠注射液,第9组用以确定BTX-A的注射位点.采用自制大鼠下肢神经及肌肉功能测定系统评估注射前、后(注射后75 d)大鼠腓肠肌肌肉收缩强度.结果 注射BTX-A后,第1~7组肌肉收缩强度于3~7d达最低水平,60 d内均显著低于第八组(P<0.05);随毒素剂量增加第21天肌肉收缩强度递减,第1~4组分别为原始肌肉收缩强度水平的(124.10±6.22)%、(75.43±5.67)%、(50.77±9.82)%、(25.65±9.52)%,4组间差异均有统计学意义(x2=20.12,P<0.05),而第4~7组分别降至原始肌肉收缩强度水平的(25.65±9.52)%、(18.43±7.87)%、(13.47±7.21)%、(11.99±6.33)%,4组间比较,差异均无统计学意义(x2 =0.28,P>0.05).结论 腓肠肌标准化注射方案结合大鼠下肢神经及肌肉功能测定系统能敏感、动态地评价BTX-A生物学效应演变趋势.%Objective To develop a method for dynamically observing the biological efficacy of botulinum toxin A (BTX-A) and to investigate the dose-effect relationship between BTX-A dosage and muscle strength.Methods Fifty-four male Sprague Dawley rats were randomly divided into 9 groups.Groups 1-7 were injected intramuscularly with 0.1 ml BTX-A (0.01 U to 4.0 U) into the gastrocnemius on the right side.Rats in group 8 were injected intramuscularly with an equal volume of saline solution as the control group,and group 9 was used to determine the location of injection.Gastrocnemius muscle strength was evaluated using a self-made evaluation system before and after the toxin injection and on the 3rd,7th,14th,21st,30th,45th,60th and 75th day following

  18. Effective dose analysis of three-dimensional rotational angiography during catheter ablation procedures

    Science.gov (United States)

    Wielandts, J.-Y.; Smans, K.; Ector, J.; De Buck, S.; Heidbüchel, H.; Bosmans, H.

    2010-02-01

    There is increasing use of three-dimensional rotational angiography (3DRA) during cardiac ablation procedures. As compared with 2D angiography, a large series of images are acquired, creating the potential for high radiation doses. The aim of the present study was to quantify patient-specific effective doses. In this study, we developed a computer model to accurately calculate organ doses and the effective dose incurred during 3DRA image acquisition. The computer model simulates the exposure geometry and uses the actual exposure parameters, including the variation in tube voltage and current that is realized through the automatic exposure control (AEC). We performed 3DRA dose calculations in 42 patients referred for ablation on the Siemens Axiom Artis DynaCT system (Erlangen, Germany). Organ doses and effective dose were calculated separately for all projections in the course of the C-arm rotation. The influence of patient body mass index (BMI), dose-area product (DAP), collimation and dose per frame (DPF) rate setting on the calculated doses was also analysed. The effective dose was found to be 5.5 ± 1.4 mSv according to ICRP 60 and 6.6 ± 1.8 mSv according to ICRP 103. Effective dose showed an inversely proportional relationship to BMI, while DAP was nearly BMI independent. No simple conversion coefficient between DAP and effective dose could be derived. DPF reduction did not result in a proportional effective dose decrease. These paradoxical findings were explained by the settings of the AEC and the limitations of the x-ray tube. Collimation reduced the effective dose by more than 20%. Three-dimensional rotational angiography is associated with a definite but acceptable radiation dose that can be calculated for all patients separately. Their BMI is a predictor of the effective dose. The dose reduction achieved with collimation suggests that its use is imperative during the 3DRA procedure.

  19. Effective dose analysis of three-dimensional rotational angiography during catheter ablation procedures

    Energy Technology Data Exchange (ETDEWEB)

    Wielandts, J-Y; Ector, J; De Buck, S; Heidbuechel, H [Department of Electrophysiology-Cardiology, University Hospital Gasthuisberg, 49, Herestraat, 3000-Leuven (Belgium); Smans, K [Belgian Nuclear Research Centre (SCK-CEN), Radiation Protection, Dosimetry and Calibration, Boeretang, 2400-Mol (Belgium); Bosmans, H [Department of Radiology, University Hospital Gasthuisberg, 49, Herestraat, 3000-Leuven (Belgium)], E-mail: jean-yves.wielandts@uz.kuleuven.ac.be

    2010-02-07

    There is increasing use of three-dimensional rotational angiography (3DRA) during cardiac ablation procedures. As compared with 2D angiography, a large series of images are acquired, creating the potential for high radiation doses. The aim of the present study was to quantify patient-specific effective doses. In this study, we developed a computer model to accurately calculate organ doses and the effective dose incurred during 3DRA image acquisition. The computer model simulates the exposure geometry and uses the actual exposure parameters, including the variation in tube voltage and current that is realized through the automatic exposure control (AEC). We performed 3DRA dose calculations in 42 patients referred for ablation on the Siemens Axiom Artis DynaCT system (Erlangen, Germany). Organ doses and effective dose were calculated separately for all projections in the course of the C-arm rotation. The influence of patient body mass index (BMI), dose-area product (DAP), collimation and dose per frame (DPF) rate setting on the calculated doses was also analysed. The effective dose was found to be 5.5 {+-} 1.4 mSv according to ICRP 60 and 6.6 {+-} 1.8 mSv according to ICRP 103. Effective dose showed an inversely proportional relationship to BMI, while DAP was nearly BMI independent. No simple conversion coefficient between DAP and effective dose could be derived. DPF reduction did not result in a proportional effective dose decrease. These paradoxical findings were explained by the settings of the AEC and the limitations of the x-ray tube. Collimation reduced the effective dose by more than 20%. Three-dimensional rotational angiography is associated with a definite but acceptable radiation dose that can be calculated for all patients separately. Their BMI is a predictor of the effective dose. The dose reduction achieved with collimation suggests that its use is imperative during the 3DRA procedure.

  20. Computational assessment of effective dose and patient specific doses for kilovoltage stereotactic radiosurgery of wet age-related macular degeneration

    Science.gov (United States)

    Hanlon, Justin Mitchell

    Age-related macular degeneration (AMD) is a leading cause of vision loss and a major health problem for people over the age of 50 in industrialized nations. The current standard of care, ranibizumab, is used to help slow and in some cases stabilize the process of AMD, but requires frequent invasive injections into the eye. Interest continues for stereotactic radiosurgery (SRS), an option that provides a non-invasive treatment for the wet form of AMD, through the development of the IRay(TM) (Oraya Therapeutics, Inc., Newark, CA). The goal of this modality is to destroy choroidal neovascularization beneath the pigment epithelium via delivery of three 100 kVp photon beams entering through the sclera and overlapping on the macula delivering up to 24 Gy of therapeutic dose over a span of approximately 5 minutes. The divergent x-ray beams targeting the fovea are robotically positioned and the eye is gently immobilized by a suction-enabled contact lens. Device development requires assessment of patient effective dose, reference patient mean absorbed doses to radiosensitive tissues, and patient specific doses to the lens and optic nerve. A series of head phantoms, including both reference and patient specific, was derived from CT data and employed in conjunction with the MCNPX 2.5.0 radiation transport code to simulate treatment and evaluate absorbed doses to potential tissues-at-risk. The reference phantoms were used to evaluate effective dose and mean absorbed doses to several radiosensitive tissues. The optic nerve was modeled with changeable positions based on individual patient variability seen in a review of head CT scans gathered. Patient specific phantoms were used to determine the effect of varying anatomy and gaze. The results showed that absorbed doses to the non-targeted tissues were below the threshold levels for serious complications; specifically the development of radiogenic cataracts and radiation induced optic neuropathy (RON). The effective dose

  1. What Makes Biology Learning Difficult and Effective: Students' Views

    Science.gov (United States)

    Cimer, Atilla

    2012-01-01

    The present study aims to determine the biological topics that students have difficulties learning, the reasons why secondary school students have difficulties in learning biology, and ways to improve the effectiveness of students' biology learning. For these purposes, a self-administered questionnaire including three open-ended questions was…

  2. Chemotherapy of onchocerciasis with high doses of diethylcarbamazine or a single dose of ivermectin: microfilaria levels and side effects.

    Science.gov (United States)

    Albiez, E J; Newland, H S; White, A T; Kaiser, A; Greene, B M; Taylor, H R; Büttner, D W

    1988-03-01

    Fifty adult male subjects with moderate to heavy onchocerciasis from the Liberian rain forest were selected for a double-blind placebo-controlled chemotherapy study. The effects of high doses of diethylcarbamazine (DEC) - 30 mg/kg/d - over one week preceded by a one week initial treatment with normal oral doses of DEC or DEC lotion were compared with a single dose of ivermectin (150 micrograms/kg) and placebo. During the initial treatment DEC tablets or lotion caused distinctly more frequent and severe reactions than did invermectin. The reactions to ivermectin did not differ from those of the placebo patients. High doses of DEC caused, in about half of the patients, headache, dizziness, nausea or vomiting. DEC markedly increased the number of corneal microfilariae and of corneal opacities compared to ivermectin. All changes resolved with a return to pretreatment findings two months after treatment. The three treatment groups showed no differences at the ten months follow-up. In all treated patients skin microfilaria counts fell almost to zero by the end of the two week therapy. In the ivermectin group microfilaria counts remained significantly lower than in the DEC patients at the two and ten months examinations. In summary, ivermectin was much better tolerated than DEC and had a longer lasting effect on the microfilariae in the skin. Since high doses of DEC were less effective and caused more frequent and severe side effects, this approach cannot be recommended for treatment of onchocerciasis.

  3. Mechanisms of Action and Dose-Response Relationships Governing Biological Control of Fusarium Wilt of Tomato by Nonpathogenic Fusarium spp.

    Science.gov (United States)

    Larkin, R P; Fravel, D R

    1999-12-01

    ABSTRACT Three isolates of nonpathogenic Fusarium spp. (CS-1, CS-20, and Fo47), previously shown to reduce the incidence of Fusarium wilt diseases of multiple crops, were evaluated to determine their mechanisms of action and antagonist-pathogen inoculum density relationships. Competition for nutrients, as represented by a reduction in pathogen saprophytic growth in the presence of the biocontrol isolates, was observed to be an important mechanism of action for isolate Fo47, but not for isolates CS-1 and CS-20. All three biocontrol isolates demonstrated some degree of induced systemic resistance in tomato (Lycopersicon esculentum) and watermelon (Citrullus lanatus) plants, as determined by split-root tests, but varied in their relative abilities to reduce disease. Isolate CS-20 provided the most effective control (39 to 53% disease reduction), while Fo47 provided the least effective control (23 to 25% reduction) in split-root tests. Dose-response relationships also differed considerably among the three biocon-trol isolates, with CS-20 significantly reducing disease incidence at antagonist doses as low as 100 chlamydospores per g of soil (cgs) and at pathogen densities up to 10(5) cgs. Isolate CS-1 also was generally effective at antagonist densities of 100 to 5,000 cgs, but only when pathogen densities were below 10(4) cgs. Isolate Fo47 was effective only at antagonist densities of 10(4) to 10(5) cgs, regardless of pathogen density. Epidemiological dose-response models (described by linear, negative exponential, hyperbolic saturation [HS], and logistic [LG] functions) fit to the observed data were used to quantify differences among the biocontrol isolates and establish biocontrol characteristics. Each isolate required a different model to best describe its dose-response characteristics, with the HS/HS, LG/HS, and LG/LG models (pathogen/biocontrol components) providing the best fit for isolates CS-1, CS-20, and Fo47, respectively. Model parameters (defining effective

  4. [Dose-effect measurements as a basis for computer-assisted dose distribution planning in brachytherapy].

    Science.gov (United States)

    Fichte, B; Schumann, E

    1984-05-01

    A measuring unit is presented for the measurement of dose rate values around an iridium-192 source. The values determined by measurements are compared to the calculated values. Both show a good conformity, so they can be used as basis for a computer program.

  5. Alcohol and cirrhosis: dose--response or threshold effect?

    DEFF Research Database (Denmark)

    Kamper-Jørgensen, Mads; Grønbaek, Morten; Tolstrup, Janne;

    2004-01-01

    BACKGROUND/AIMS: General population studies have shown a strong association between alcohol intake and death from alcoholic cirrhosis, but whether this is a dose-response or a threshold effect remains unknown, and the relation among alcohol misusers has not been studied. METHODS: A cohort of 6152...... alcohol misusing men and women aged 15-83 were interviewed about drinking pattern and social issues and followed for 84,257 person-years. Outcome was alcoholic cirrhosis mortality. Data was analyzed by means of Cox-regression models. RESULTS: In this large prospective cohort study of alcohol misusers...... there was a 27 fold increased mortality from alcoholic cirrhosis in men and a 35 fold increased mortality from alcoholic cirrhosis in women compared to the Danish population. Number of drinks per day was not significantly associated with death from alcoholic cirrhosis, since there was no additional risk of death...

  6. Effect of γ-dose rate and total dose interrelation on the polymeric hydrogel: A novel injectable male contraceptive

    Science.gov (United States)

    Jha, Pradeep K.; Jha, Rakhi; Gupta, B. L.; Guha, Sujoy K.

    2010-05-01

    Functional necessity to use a particular range of dose rate and total dose of γ-initiated polymerization to manufacture a novel polymeric hydrogel RISUG ® (reversible inhibition of sperm under guidance) made of styrene maleic anhydride (SMA) dissolved in dimethyl sulphoxide (DMSO), for its broad biomedical application explores new dimension of research. The present work involves 16 irradiated samples. They were tested by fourier transform infrared spectroscopy, matrix assisted laser desorption/ionization-TOF, field emission scanning electron microscopy, high resolution transmission electron microscopy, etc. to see the interrelation effect of gamma dose rates (8.25, 17.29, 20.01 and 25.00 Gy/min) and four sets of doses (1.8, 2.0, 2.2 and 2.4 kGy) on the molecular weight, molecular weight distribution and porosity analysis of the biopolymeric drug RISUG ®. The results of randomized experiment indicated that a range of 18-24 Gy/min γ-dose rate and 2.0-2.4 kGy γ-total doses is suitable for the desirable in vivo performance of the contraceptive copolymer.

  7. Effect of gamma-dose rate and total dose interrelation on the polymeric hydrogel: A novel injectable male contraceptive

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Pradeep K. [School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302 (India); Department of Management Science, U.P. Technical University, Lucknow 226021 (India); Jha, Rakhi [School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302 (India); Toxicology Laboratory, Department of Zoology, Ch. C.S. University, Meerut 200005 (India); Gupta, B.L. [CH3/56 Kendriya Vihar, Kharghar, Sector-11, Navi Mumbai-410 210 (India); Guha, Sujoy K., E-mail: guha_sk@yahoo.co [School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302 (India)

    2010-05-15

    Functional necessity to use a particular range of dose rate and total dose of gamma-initiated polymerization to manufacture a novel polymeric hydrogel RISUG (reversible inhibition of sperm under guidance) made of styrene maleic anhydride (SMA) dissolved in dimethyl sulphoxide (DMSO), for its broad biomedical application explores new dimension of research. The present work involves 16 irradiated samples. They were tested by fourier transform infrared spectroscopy, matrix assisted laser desorption/ionization-TOF, field emission scanning electron microscopy, high resolution transmission electron microscopy, etc. to see the interrelation effect of gamma dose rates (8.25, 17.29, 20.01 and 25.00 Gy/min) and four sets of doses (1.8, 2.0, 2.2 and 2.4 kGy) on the molecular weight, molecular weight distribution and porosity analysis of the biopolymeric drug RISUG. The results of randomized experiment indicated that a range of 18-24 Gy/min gamma-dose rate and 2.0-2.4 kGy gamma-total doses is suitable for the desirable in vivo performance of the contraceptive copolymer.

  8. Dose-dependent effects of atorvastatin on myocardial infarction

    Directory of Open Access Journals (Sweden)

    Barbarash O

    2015-06-01

    Full Text Available Olga Barbarash, Olga Gruzdeva, Evgenya Uchasova, Ekaterina Belik, Yulia Dyleva, Victoria KaretnikovaFederal State Budgetary Institution, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, the Russian Federation Background: Dyslipidemia is a key factor determining the development of both myocardial infarction (MI and its subsequent complications. Dyslipidemia is associated with endothelial dysfunction, activation of inflammation, thrombogenesis, and formation of insulin resistance. Statin therapy is thought to be effective for primary and secondary prevention of complications associated with atherosclerosis.Methods: This study examined 210 patients with Segment elevated MI (ST elevated MI who were treated with atorvastatin from the first 24 hours after MI. Group 1 (n=110 were given atorvastatin 20 mg/day. Group 2 (n=100 were given atorvastatin 40 mg/day. At days 1 and 12 after MI onset, insulin resistance levels determined by the homeostasis model assessment of insulin resistance index, lipid profiles, and serum glucose, insulin, adipokine, and ghrelin levels were measured.Results: Free fatty acid levels showed a sharp increase during the acute phase of MI. Treatment with atorvastatin 20 mg/day, and especially with 40 mg/day, resulted in a decrease in free fatty acid levels. The positive effect of low-dose atorvastatin (20 mg/day is normalization of the adipokine status. Administration of atorvastatin 20 mg/day was accompanied with a statistically significant reduction in glucose levels (by 14% and C-peptide levels (by 38%, and a decrease in the homeostasis model assessment of insulin resistance index on day 12.Conclusion: Determination of atorvastatin dose and its use during the in-hospital period and subsequent periods should take into account changes in biochemical markers of insulin resistance and adipokine status in patients with MI.Keywords: myocardial infarction, statin, insulin resistance, adipokines

  9. Characterizing low dose and dose rate effects in rodent and human neural stem cells exposed to proton and gamma irradiation

    Directory of Open Access Journals (Sweden)

    Bertrand P. Tseng

    2013-01-01

    Full Text Available Past work has shown that exposure to gamma rays and protons elicit a persistent oxidative stress in rodent and human neural stem cells (hNSCs. We have now adapted these studies to more realistic exposure scenarios in space, using lower doses and dose rates of these radiation modalities, to further elucidate the role of radiation-induced oxidative stress in these cells. Rodent neural stem and precursor cells grown as neurospheres and human neural stem cells grown as monolayers were subjected to acute and multi-dosing paradigms at differing dose rates and analyzed for changes in reactive oxygen species (ROS, reactive nitrogen species (RNS, nitric oxide and superoxide for 2 days after irradiation. While acute exposures led to significant changes in both cell types, hNSCs in particular, exhibited marked and significant elevations in radiation-induced oxidative stress. Elevated oxidative stress was more significant in hNSCs as opposed to their rodent counterparts, and hNSCs were significantly more sensitive to low dose exposures in terms of survival. Combinations of protons and γ-rays delivered as lower priming or higher challenge doses elicited radioadaptive changes that were associated with improved survival, but in general, only under conditions where the levels of reactive species were suppressed compared to cells irradiated acutely. Protective radioadaptive effects on survival were eliminated in the presence of the antioxidant N-acetylcysteine, suggesting further that radiation-induced oxidative stress could activate pro-survival signaling pathways that were sensitive to redox state. Data corroborates much of our past work and shows that low dose and dose rate exposures elicit significant changes in oxidative stress that have functional consequences on survival.

  10. Biological Effects on the Source of Geoneutrinos

    Science.gov (United States)

    Sleep, Norman H.; Bird, Dennis K.; Rosing, Minik T.

    2013-11-01

    Detection of antineutrinos from U and Th series decay within the Earth (geoneutrinos) constrains the absolute abundance of these elements. Marine detectors will measure the ratio over the mantle beneath the site and provide spatial averaging. The measured mantle Th/U may well be significantly below its bulk earth value of 4; Pb isotope measurements on mantle-derived rocks yield low Th/U values, effectively averaged over geological time. The physics of the modern biological process is complicated, but the net effect is that much of the U in the mantle comes from subducted marine sediments and subducted upper oceanic crust. That is, U subducts preferentially relative to Th. Oxygen ultimately from photosynthesis oxidizes U(IV) to U(VI), which is soluble during weathering and sediment transport. Dissolved U(VI) reacts with FeO in the oceanic crust and organic carbon within sediments to become immobile U(IV). These deep marine rocks are preferentially subducted relative to Th(IV)-bearing continental margin rocks. Ferric iron from anoxygenic photosynthesis and oxygen in local oases likely mobilized some U during the Archean Era when there was very little O2 in the air. Conversely, these elements behave similarly in the absence of life, where the elements occur as U(IV) and Th(IV), which do not significantly fractionate during igneous processes. Neither do they fractionate during weathering, as they are essentially insoluble in water in surface environments. Th(IV) and U(IV) remain in solid clay-sized material. Overall, geoneutrino data constrain the masses of mantle chemical and isotopic domains recognized by studies of mantle-derived rocks and show the extent of recycling into the mantle over geological time.

  11. Effect of Photon Hormesis on Dose Responses to Alpha Particles in Zebrafish Embryos

    Directory of Open Access Journals (Sweden)

    Candy Yuen Ping Ng

    2017-02-01

    Full Text Available Photon hormesis refers to the phenomenon where the biological effect of ionizing radiation with a high linear energy transfer (LET value is diminished by photons with a low LET value. The present paper studied the effect of photon hormesis from X-rays on dose responses to alpha particles using embryos of the zebrafish (Danio rerio as the in vivo vertebrate model. The toxicity of these ionizing radiations in the zebrafish embryos was assessed using the apoptotic counts at 20, 24, or 30 h post fertilization (hpf revealed through acridine orange (AO staining. For alpha-particle doses ≥ 4.4 mGy, the additional X-ray dose of 10 mGy significantly reduced the number of apoptotic cells at 24 hpf, which proved the presence of photon hormesis. Smaller alpha-particle doses might not have inflicted sufficient aggregate damages to trigger photon hormesis. The time gap T between the X-ray (10 mGy and alpha-particle (4.4 mGy exposures was also studied. Photon hormesis was present when T ≤ 30 min, but was absent when T = 60 min, at which time repair of damage induced by alpha particles would have completed to prevent their interactions with those induced by X-rays. Finally, the drop in the apoptotic counts at 24 hpf due to photon hormesis was explained by bringing the apoptotic events earlier to 20 hpf, which strongly supported the removal of aberrant cells through apoptosis as an underlying mechanism for photon hormesis.

  12. Effect of Photon Hormesis on Dose Responses to Alpha Particles in Zebrafish Embryos

    Science.gov (United States)

    Ng, Candy Yuen Ping; Cheng, Shuk Han; Yu, Kwan Ngok

    2017-01-01

    Photon hormesis refers to the phenomenon where the biological effect of ionizing radiation with a high linear energy transfer (LET) value is diminished by photons with a low LET value. The present paper studied the effect of photon hormesis from X-rays on dose responses to alpha particles using embryos of the zebrafish (Danio rerio) as the in vivo vertebrate model. The toxicity of these ionizing radiations in the zebrafish embryos was assessed using the apoptotic counts at 20, 24, or 30 h post fertilization (hpf) revealed through acridine orange (AO) staining. For alpha-particle doses ≥ 4.4 mGy, the additional X-ray dose of 10 mGy significantly reduced the number of apoptotic cells at 24 hpf, which proved the presence of photon hormesis. Smaller alpha-particle doses might not have inflicted sufficient aggregate damages to trigger photon hormesis. The time gap T between the X-ray (10 mGy) and alpha-particle (4.4 mGy) exposures was also studied. Photon hormesis was present when T ≤ 30 min, but was absent when T = 60 min, at which time repair of damage induced by alpha particles would have completed to prevent their interactions with those induced by X-rays. Finally, the drop in the apoptotic counts at 24 hpf due to photon hormesis was explained by bringing the apoptotic events earlier to 20 hpf, which strongly supported the removal of aberrant cells through apoptosis as an underlying mechanism for photon hormesis. PMID:28208665

  13. Final Report - Epigenetics of low dose radiation effects in an animal model

    Energy Technology Data Exchange (ETDEWEB)

    Kovalchuk, Olga

    2014-10-22

    dose radiation effects and adaptive response • To correlate the levels of epigenetic changes with genetic rearrangement levels and gene expression patterns. In sum, we determined the precise global and locus-specific DNA methylation patterns in the LDR-exposed cells and tissues of mice, and to correlated DNA methylation changes with the gene expression patterns and manifestations of genome instability. We also determined the alterations of global histone modification pattern in the LDR exposed tissues. Additionally, we established the nature of microRNAome changes in the LDR exposed tissue. In this study we for the first time found that LDR exposure caused profound tissue-specific epigenetic changes in the exposed tissues. We established that LDR exposure affect methylation of repetitive elements in the murine genome, causes changes in histone methylation, acetylation and phosphorylation. Importantly, we found that LDR causes profound and persistent effects on small RNA profiles and gene expression, and that miRNAs are excellent biomarkers of LDR exposure. Furthermore, we extended our analysis and studied LDR effects in rat tissues and human tissues and cell lines. There we also analyzed LDR-induced gene expression, DNA methylation and miRNA changes. Our datasets laid foundation for several new research projects aimed to understand molecular underpinnings of low dose radiation responses, and biological repercussions of low dose radiation effects and radiation carcinogenesis.

  14. Neutron exposures in human cells: bystander effect and relative biological effectiveness.

    Directory of Open Access Journals (Sweden)

    Isheeta Seth

    Full Text Available Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy, and irradiated-cell conditioned media (ICCM was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control, 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (p<0.0001. These data indicate that neutrons do not induce a bystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0 ± 0.13 for micronuclei and 5.8 ± 2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety.

  15. Applicator Attenuation Effect on Dose Calculations of Esophageal High-Dose Rate Brachytherapy Using EDR2 Film

    Directory of Open Access Journals (Sweden)

    Seyed Mohsen Hosseini Daghigh

    2012-03-01

    Full Text Available Introduction Interaluminal brachytherapy is one of the important methods of esophageal cancer treatment. The effect of applicator attenuation is not considered in dose calculation method released by AAPM-TG43. In this study, the effect of High-Dose Rate (HDR brachytherapy esophageal applicator on dose distribution was surveyed in HDR brachytherapy. Materials and Methods A cylindrical PMMA phantom was built in order to be inserted by various sizes of esophageal applicators. EDR2 films were placed at 33 mm from Ir-192 source and irradiated with 1.5 Gy after planning using treatment planning system for all applicators. Results The results of film dosimetry in reference point for 6, 8, 10, and 20 mm applicators were 1.54, 1.53, 1.48, and 1.50 Gy, respectively. The difference between practical and treatment planning system results was 0.023 Gy (

  16. The effect of low dose steroid (Physiologic dose and Chloroquine in the treatment of rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Gharibdoost F

    1999-06-01

    Full Text Available Introduction: The regulation of neuroendocrine axis is one of the most important goals in the treatment of Rheumatoid Arthritis. Disease modifying drugs such as chloroquine with low dose steroid is the first choice in clinical practice by some physicians. This combination therapy is evaluated by this study. Methods: This survey is a prospective study on furty patients. Variables for determining the activity index of disease were joint tenderness, joint swelling, morning stiffness and erythrocytes sedimentation rate in two years follow up. Results: Decrementation of disease activity index was statistically significant before and after treatment, joint tenderness (X²=7.205, P=0.007, morning stiffness (X²=19.253, P=0.00001, joint swelling (X²=14.107, P=0.0001, ESR (T=2.428, P=0.02. Conclusion: The combination of chloroquine with low dose steroid is beneficial in the treatment of Rheumatoid arthritis

  17. Dose calculation in biological samples in a mixed neutron-gamma field at the TRIGA reactor of the University of Mainz.

    Science.gov (United States)

    Schmitz, Tobias; Blaickner, Matthias; Schütz, Christian; Wiehl, Norbert; Kratz, Jens V; Bassler, Niels; Holzscheiter, Michael H; Palmans, Hugo; Sharpe, Peter; Otto, Gerd; Hampel, Gabriele

    2010-10-01

    To establish Boron Neutron Capture Therapy (BNCT) for non-resectable liver metastases and for in vitro experiments at the TRIGA Mark II reactor at the University of Mainz, Germany, it is necessary to have a reliable dose monitoring system. The in vitro experiments are used to determine the relative biological effectiveness (RBE) of liver and cancer cells in our mixed neutron and gamma field. We work with alanine detectors in combination with Monte Carlo simulations, where we can measure and characterize the dose. To verify our calculations we perform neutron flux measurements using gold foil activation and pin-diodes. Material and methods. When L-α-alanine is irradiated with ionizing radiation, it forms a stable radical which can be detected by electron spin resonance (ESR) spectroscopy. The value of the ESR signal correlates to the amount of absorbed dose. The dose for each pellet is calculated using FLUKA, a multipurpose Monte Carlo transport code. The pin-diode is augmented by a lithium fluoride foil. This foil converts the neutrons into alpha and tritium particles which are products of the (7)Li(n,α)(3)H-reaction. These particles are detected by the diode and their amount correlates to the neutron fluence directly. Results and discussion. Gold foil activation and the pin-diode are reliable fluence measurement systems for the TRIGA reactor, Mainz. Alanine dosimetry of the photon field and charged particle field from secondary reactions can in principle be carried out in combination with MC-calculations for mixed radiation fields and the Hansen & Olsen alanine detector response model. With the acquired data about the background dose and charged particle spectrum, and with the acquired information of the neutron flux, we are capable of calculating the dose to the tissue. Conclusion. Monte Carlo simulation of the mixed neutron and gamma field of the TRIGA Mainz is possible in order to characterize the neutron behavior in the thermal column. Currently we also

  18. [Effects of decitabine on biological behavior of U266 cells].

    Science.gov (United States)

    Wang, Mei-Fang; Yang, Lin-Hua; Dong, Chun-Xia; Zhang, Rui-Juan; Zhang, Jian-Hua; Guo, Zhi-Ping; Chen, Jian-Fang; Zhagn, Li; Feng, Da-Wei

    2011-08-01

    This study was aimed to explore the effects of decitabine on the biological behaviour of U266 cells in vitro so as to provide a new thinking and experiment basis, as well as new evidences for the pathogenesis of multiple myeloma. MTT and colony formation assays were used to evaluate the impact of decitabine on the ability of proliferation of U266 cells; flow cytometry was used to analyze the cell distribution in cell cycle; transwell chamber and matrigel assays were used to observe the ability of migration and invasion. The results indicated that decitabine could significantly suppress the proliferation of U266 cells in time-and dose-dependent manners. The flow cytometric analysis demonstrated that the cells in G(0)-G(1) phase significantly increased while the cells in S and G(2)/M phase decreased. The migration and matrigel invading tests showed that the number of cells moving into under chamber of transwell decreased after U266 cells treated with decitabine. It is concluded that decitabine may act as an effective drug for MM by inhibiting the proliferation, migration and invasion ability, and the specific mechanism needs to be deeply explored.

  19. Radiotherapy Dose-Volume Effects on Salivary Gland Function

    Science.gov (United States)

    Deasy, Joseph O.; Moiseenko, Vitali; Marks, Lawrence; Chao, K. S. Clifford; Nam, Jiho; Eilsbruch, Avraham

    2013-01-01

    Publications relating parotid dose-volume characteristics to radiotherapy-induced salivary toxicity were reviewed. Late salivary dysfunction has been correlated to the mean parotid gland dose, with recovery occurring with time. Severe xerostomia (defined as long-term salivary function of <25% of baseline) is usually avoided if at least one parotid gland is spared to a mean dose of less than ≈20 Gy or if both glands are spared to less than ≈25 Gy (mean dose). For complex, partial-volume RT patterns (e.g., intensity-modulated radiotherapy), each parotid mean dose should be kept as low as possible, consistent with the desired clinical target volume coverage. A lower parotid mean dose usually results in better function. Submandibular gland sparing also significantly decreases the risk of xerostomia. The currently available predictive models are imprecise, and additional study is required to identify more accurate models of xerostomia risk. PMID:20171519

  20. Pharmacodynamic effects of standard dose prasugrel versus high dose clopidogrel in non-diabetic obese patients with coronary artery disease.

    Science.gov (United States)

    Darlington, Andrew; Tello-Montoliu, Antonio; Rollini, Fabiana; Ueno, Masafumi; Ferreiro, José Luis; Patel, Ronakkumar; Desai, Bhaloo; Guzman, Luis A; Bass, Theodore A; Angiolillo, Dominick J

    2014-02-01

    Increased body weight is independently associated with impaired clopidogrel pharmacodynamic (PD) response. Prasugrel has more potent PD effects compared with clopidogrel, although its PD effects in obese patients are unknown. The aim of this prospective, randomised, study was to compare the PD effects of standard-dose prasugrel [60 mg loading dose (LD)/10 mg daily maintenance dose (MD)] with high-dose clopidogrel (900 mg LD/150 mg daily MD) in non-diabetic obese [body mass index (BMI) ≥30 kg/m²] patients, with coronary artery disease (CAD) on aspirin therapy. PD assessments (baseline, 2 hours post-LD and 6 ± 2 days after MD) were conducted using four platelet function assays, and the platelet reactivity index (PRI) assessed by VASP was used for sample size estimation. A total of 42 patients with a BMI of 36.42 ± 5.6 kg/m² completed the study. There were no differences in baseline PD measures between groups. At 2 hours post-LD, prasugrel was associated with lower PRI compared with clopidogrel (24.3 ± 5.5 vs 58.7 ± 5.7, p≤0.001), with consistent findings for all assays. At one-week, PRI values on prasugrel MD were lower than clopidogrel MD without reaching statistical significance (34.7 ± 5.8 vs 42.9 ± 5.8, p=0.32), with consistent findings for all assays. Accordingly, rates of high on-treatment platelet reactivity were markedly reduced after prasugrel LD, but not after MD. In conclusion, in non-diabetic obese patients with CAD, standard prasugrel dosing achieved more potent PD effects than high-dose clopidogrel in the acute phase of treatment, but this was not sustained during maintenance phase treatment. Whether an intensified prasugrel regimen is required in obese patients warrants investigation.

  1. Equivalent dose, effective dose and risk assessment from panoramic radiography to the critical organs of head and neck region

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Bong Hae; Nah, Kyung Soo [Dept. of Dental Radiology, College of Dentistry, Pusan National University, Pusan (Korea, Republic of); Lee, Ae Ryeon [Dept. of Pediatric Dentistry, College of Dentistry, Pusan National University, Pusan (Korea, Republic of)

    1995-08-15

    The purpose of this study was to evaluate the equivalent and effective dose, and estimate radiation risk to the critical organs of head and neck region from the use of adult and child mode in panoramic radiography. The results were as follows. 1. The salivary glands showed the highest equivalent and effective dose in adult and child mode. The equivalent and effective dose in adult mode were 837 {mu}Sv and 20.93 {mu}Sv, those in child mode were 462 {mu}Sv and 11.54 {mu}Sv, respectively. 2. Total effective doses to the critical head and neck organs were estimated 34.2l {mu}Sv in adult mode, 20.14 {mu}Sv in child mode. From these data, the probabilities of stochastic effect from adult and child mode were 2.50xl0{sup -6} and 1.47x10{sup -6} 3. The other remainder showed the greatest risk of fatal cancer. The risk estimate were 4.5 and 2.7 fatal malignancies in adult and child mode from million examinations. The bone marrow and thyroid gland showed about 0.1 fatal cancer in adult. and child mode from these examinations.

  2. Dose-related effects of propericiazine in rats

    Directory of Open Access Journals (Sweden)

    Cechin E.M.

    2003-01-01

    Full Text Available We evaluated the effects of the neuroleptic agent propericiazine on animal models of anxiety and memory. Adult male Wistar rats (250 to 350 g received intraperitoneal injections of propericiazine (0.05, 0.075 and 0.1 mg/kg, diazepam (1 mg/kg, saline, or diazepam vehicle (20% propylene glycol and 80% saline 30 min prior to the experimental procedure. Animals (10-15 for each task were tested for step-down inhibitory avoidance (0.3-mA footshock and habituation to an open-field for memory assessment, and submitted to the elevated plus-maze to evaluate the effects of propericiazine in a model of anxiety. Animals treated with 0.075 mg/kg propericiazine showed a reduction in anxiety measures (P0.05 in the elevated plus-maze model of anxiety. Memory was not affected by propericiazine in any of the tests, but was impaired by diazepam. The results indicate a dose-related, inverse U-shaped effect of propericiazine in an anxiety model, but not on memory tasks, perhaps reflecting involvement of the dopaminergic system in the mechanisms of anxiety.

  3. THE EFFECT OF BORON DOSES ON PARICA (Schizolobium amazonicum Herb.

    Directory of Open Access Journals (Sweden)

    Sebastião Ferreira de Lima

    2003-07-01

    Full Text Available An experiment was conducted in a greenhouse in order to evaluate the effects of boron on parica growth and on concentration and contents of macro and micronutrients indry matter of shoots and roots. Six treatments constituted by boron doses of 0.0; 0.1; 0.3; 0.9;1.5 and 2.1 mg/dm3 in four replications were used. It was evaluated the characteristics:visual diagnostic, plants height and diameter, dry matter production of shoots and roots,concentration and contents of nutrients in dry matter of shoots and roots. The symptoms ofdeficiency can be observed in new leaves and roots and the toxicity in older leaves. Bothboron deficiency and excess inhibits plants growth, but toxicity is more damaging. The Comportamento do paricá (Schizolobium amazonicum Herb. submetido ...193approximate dose of 0 Estimate of average equilibrium moisture content of wood for 26Brazilian states, by Hailwood and Harrobin one hydrate sorption theory equation.15mg/dm3 was the best for plants growth in MSPA and MSRA. The concentration of boronincreased in MSPA and MSRA with application of increasing concentration of B, with a smallreduction in concentration of MSRA from the concentration 1.9 mg/dm3. The toxicity of boronbegins when concentration reaches 36.06 mg/dm3 in shoots and 32.38 in roots. The contentsof all nutrients, except Mn and Fe in MSPA and Cu, Fe and B in MSRA, followed its own drymatter production curves.

  4. Estimating dose painting effects in radiotherapy: a mathematical model.

    Directory of Open Access Journals (Sweden)

    Juan Carlos López Alfonso

    Full Text Available Tumor heterogeneity is widely considered to be a determinant factor in tumor progression and in particular in its recurrence after therapy. Unfortunately, current medical techniques are unable to deduce clinically relevant information about tumor heterogeneity by means of non-invasive methods. As a consequence, when radiotherapy is used as a treatment of choice, radiation dosimetries are prescribed under the assumption that the malignancy targeted is of a homogeneous nature. In this work we discuss the effects of different radiation dose distributions on heterogeneous tumors by means of an individual cell-based model. To that end, a case is considered where two tumor cell phenotypes are present, which we assume to strongly differ in their respective cell cycle duration and radiosensitivity properties. We show herein that, as a result of such differences, the spatial distribution of the corresponding phenotypes, whence the resulting tumor heterogeneity can be predicted as growth proceeds. In particular, we show that if we start from a situation where a majority of ordinary cancer cells (CCs and a minority of cancer stem cells (CSCs are randomly distributed, and we assume that the length of CSC cycle is significantly longer than that of CCs, then CSCs become concentrated at an inner region as tumor grows. As a consequence we obtain that if CSCs are assumed to be more resistant to radiation than CCs, heterogeneous dosimetries can be selected to enhance tumor control by boosting radiation in the region occupied by the more radioresistant tumor cell phenotype. It is also shown that, when compared with homogeneous dose distributions as those being currently delivered in clinical practice, such heterogeneous radiation dosimetries fare always better than their homogeneous counterparts. Finally, limitations to our assumptions and their resulting clinical implications will be discussed.

  5. Dose enhancement effects to the nucleus and mitochondria from gold nanoparticles in the cytosol

    Science.gov (United States)

    McNamara, A. L.; Kam, W. W. Y.; Scales, N.; McMahon, S. J.; Bennett, J. W.; Byrne, H. L.; Schuemann, J.; Paganetti, H.; Banati, R.; Kuncic, Z.

    2016-08-01

    Gold nanoparticles (GNPs) have shown potential as dose enhancers for radiation therapy. Since damage to the genome affects the viability of a cell, it is generally assumed that GNPs have to localise within the cell nucleus. In practice, however, GNPs tend to localise in the cytoplasm yet still appear to have a dose enhancing effect on the cell. Whether this effect can be attributed to stress-induced biological mechanisms or to physical damage to extra-nuclear cellular targets is still unclear. There is however growing evidence to suggest that the cellular response to radiation can also be influenced by indirect processes induced when the nucleus is not directly targeted by radiation. The mitochondrion in particular may be an effective extra-nuclear radiation target given its many important functional roles in the cell. To more accurately predict the physical effect of radiation within different cell organelles, we measured the full chemical composition of a whole human lymphocytic JURKAT cell as well as two separate organelles; the cell nucleus and the mitochondrion. The experimental measurements found that all three biological materials had similar ionisation energies  ˜70 eV, substantially lower than that of liquid water  ˜78 eV. Monte Carlo simulations for 10-50 keV incident photons showed higher energy deposition and ionisation numbers in the cell and organelle materials compared to liquid water. Adding a 1% mass fraction of gold to each material increased the energy deposition by a factor of  ˜1.8 when averaged over all incident photon energies. Simulations of a realistic compartmentalised cell show that the presence of gold in the cytosol increases the energy deposition in the mitochondrial volume more than within the nuclear volume. We find this is due to sub-micron delocalisation of energy by photoelectrons, making the mitochondria a potentially viable indirect radiation target for GNPs that localise to the cytosol.

  6. SIX2 Effects on Wilms Tumor Biology

    Directory of Open Access Journals (Sweden)

    Janene Pierce

    2014-12-01

    Full Text Available Wilms tumor (WT blastema retains gene expression profiles characteristic of the multipotent nephron progenitor pool, or cap mesenchyme (CM, in the developing kidney. As a result, WT blastema and the CM are believed to represent contextual analogues of one another. Sine oculis homeobox 2 (SIX2 is a transcription factor expressed specifically in the CM, provides a critical mechanism for CM self-renewal, and remains persistently active in WT blastema, although its purpose in this childhood malignancy remains unclear. We hypothesized that SIX2, analogous to its function in development, confers a survival pathway to blastema, the putative WT stem cell. To test its functional significance in WT biology, wild-type SIX2 was overexpressed in the human WT cell line, WiT49. After validating this model, SIX2 effects on anchorage-independent growth, proliferation, invasiveness, canonical WNT pathway signaling, and gene expression of specific WNT pathway participants were evaluated. Relative to controls, WiT49 cells overexpressing SIX2 showed significantly enhanced anchorage-independent growth and early-passage proliferation representing surrogates of cell survival. Interestingly, overexpression of SIX2 generally repressed TCF/LEF-dependent canonical WNT signaling, which activates and coordinates both differentiation and stem pathways, but significantly heightened canonical WNT signaling through the survivin promoter, a mechanism that exclusively maintains the stem state. In summary, when overexpressed in a human WT cell line, SIX2 enhances cell survival and appears to shift the balance in WNT/β-catenin signaling away from a differentiation path and toward a stem cell survival path.

  7. Effect of heparin on the biological properties and molecular signature of human mesenchymal stem cells.

    Science.gov (United States)

    Ling, Ling; Camilleri, Emily T; Helledie, Torben; Samsonraj, Rebekah M; Titmarsh, Drew M; Chua, Ren Jie; Dreesen, Oliver; Dombrowski, Christian; Rider, David A; Galindo, Mario; Lee, Ian; Hong, Wanjin; Hui, James H; Nurcombe, Victor; van Wijnen, Andre J; Cool, Simon M

    2016-01-15

    Chronic use of heparin as an anti-coagulant for the treatment of thrombosis or embolism invokes many adverse systemic events including thrombocytopenia, vascular reactions and osteoporosis. Here, we addressed whether adverse effects might also be directed to mesenchymal stem cells that reside in the bone marrow compartment. Harvested human bone marrow-derived mesenchymal stem cells (hMSCs) were exposed to varying doses of heparin and their responses profiled. At low doses (heparin exerted a variable effect on hMSC proliferation and multipotentiality across multiple donors, while at higher doses (≥ 100 μg/ml), heparin supplementation inhibited cell growth and increased both senescence and cell size. Gene expression profiling using cDNA arrays and RNA-seq analysis revealed pleiotropic effects of low-dose heparin on signaling pathways essential to hMSC growth and differentiation (including the TGFβ/BMP superfamily, FGFs, and Wnts). Cells serially passaged in low-dose heparin possess a donor-dependent gene signature that reflects their altered phenotype. Our data indicate that heparin supplementation during the culturing of hMSCs can alter their biological properties, even at low doses. This warrants caution in the application of heparin as a culture supplement for the ex vivo expansion of hMSCs. It also highlights the need for careful evaluation of the bone marrow compartment in patients receiving chronic heparin treatment.

  8. Electromagnetic field induced biological effects in humans.

    Science.gov (United States)

    Kaszuba-Zwoińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J

    2015-01-01

    or be derived from a combination of many sources. Reported symptoms associated with electromagnetic fields are characterized by the overlapping effect with other individuals with these symptoms exhibited a broad spectrum of clinical manifestations, related to exposure to a single or multiple sources of EMF. The phenomenon of electromagnetic hypersensitivity in the form of dermatological disease is associated with mastocytosis. The biopsies taken from skin lesions of patients with EHS indicated on infiltration of the skin layers of the epidermis with mastocytes and their degranulation, as well as on release anaphylactic reaction mediators such as histamine, chymase and tryptase. The number of people suffering from EHS in the world is growing describing themselves as severely dysfunctional, showing multi organ non-specific symptoms upon exposure to low doses of electromagnetic radiation, often associated with hypersensitivity to many chemical agents (Multiple Chemical Sensitivity-MCS) and/or other environmental intolerances (Sensitivity Related Illness-SRI).

  9. Effect of graded doses and a high dose of microbial phytase on the digestibility of various minerals in weaner pigs

    NARCIS (Netherlands)

    Kies, A.K.; Kemme, P.A.; Sebek, L.B.J.; Diepen, van J.T.M.; Jongbloed, A.W.

    2006-01-01

    An experiment with 224 weaner pigs (initial BW of 7.8 kg) was conducted to determine the effect of dose of dietary phytase supplementation on apparent fecal digestibility of minerals (P, Ca, Mg, Na, K, and Cu) and on performance. Four blocks, each with 8 pens of 7 pigs, were formed. Eight dietary tr

  10. The effects of rat's sperm bioassay for low dose X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Gye Hwan; Min, Soo Young; Lee, Sang Bock; Lee, Sam Yul; Lee, Jun Haeng [Nambu Univ., Gwangju (Korea, Republic of); Park, Jong Bae [Juseong College, Cheongwon (Korea, Republic of)

    2007-12-15

    In order to investigate the enhancement effects of low dose radiation on biological activation, this study applied low dose X-ray to the whole body of male rats to find out whether hormesis is induced in male germ cells. Total 36 Sprague-Dawley (SD) rats as experimental animal were subdivided into 6 groups(in 6 rats per group) such as control, 10 mGy, 20 mGy, 50 mGy, 100 mGy and 200 mGy radiation group. All the groups showed slightly increasing number of sperms per 0.1 g semen (14.216 x 10{sup 6}, 13.901 x 10{sup 6}, 14.153 x 10{sup 6}, 13.831 x 10{sup 6}, 14.137 x 10{sup 6}, 14.677 x 10{sup 6} respectively), and the motility of sperms amounted to 50.9%, 49.5%, 55.1%, 54.3%, 48.0% and 52.2% respectively. Particularly, compared to the control, the other 5 groups showed higher male hormone level, and the microscopic observations of testicle tissues showed no vacuolization in seminiferous tubules and testis cells. In the results of this experiment, no harmful effect was observed on Sprague-Dawley (SD) rats for which the dose of radiation was controlled as regulated legally by the Ministry of Science and Technology and the Ministry of Health and Welfare. However, as these results were obtained from a limited number of animals, we cannot maintain that the same effect will be observed in the human body. Therefore, there should be further research on the effect on other animals and ultimately on the human body.

  11. Displacement damage effects in silicon MEMS at high proton doses

    Science.gov (United States)

    Gomes, João; Shea, Herbert R.

    2011-02-01

    We report on a study of the sensitivity of silicon MEMS to proton radiation and mitigation strategies. MEMS can degrade due to ionizing radiation (electron-hole pair creation) and non-ionizing radiation (displacement damage), such as electrons, trapped and solar protons, or cosmic rays, typically found in a space environment. Over the past few years there has been several reports on the effects of ionizing radiation in silicon MEMS, with failure generally linked to trapped charge in dielectrics. However there is near complete lack of studies on displacement damage effects in silicon- MEMS: how does silicon change mechanically due to proton irradiation? We report on an investigation on the susceptibility of 50 μm thick SOI-based MEMS resonators to displacement damages due to proton beams, with energies from 1 to 60 MeV, and annealing of this damage. We measure ppm changes on the Young's modulus and Poisson ratio by means of accurately monitoring the resonant frequency of devices in vacuum using a Laser Doppler Vibrometer. We observed for the first time an increase (up to 0.05%) of the Young's modulus of single-crystal silicon electromagnetically-actuated micromirrors after exposure to low energy protons (1-4 MeV) at high absorbed doses ~ 100 Mrad (Si). This investigation will contribute to a better understanding of the susceptibility of silicon-based MEMS to displacement damages frequently encountered in a space radiation environment, and allow appropriated design margin and shielding to be implemented.

  12. The effects of high-dose ivermectin regimens on Onchocerca volvulus in onchocerciasis patients.

    Science.gov (United States)

    Awadzi, K; Attah, S K; Addy, E T; Opoku, N O; Quartey, B T

    1999-01-01

    Ivermectin, at the standard dose of 150 micrograms/kg bodyweight, does not kill the adult worms of Onchocerca volvulus and does not disrupt embryogenesis or spermatogenesis. Repeated standard doses, if maintained, arrest microfilarial production but result in only a mild-to-modest macrofilaricidal effect. We investigated whether high doses would effectively kill the adult worms, and whether cessation of microfilarial production could be reproduced by an equivalent, single, high dose. One hundred men participated in a double-blind placebo-controlled trial and received increasing doses of ivermectin from 150 micrograms/kg to 1600 micrograms/kg bodyweight. Nodules were excised at day 180 and examined by histopathology. Total doses of ivermectin up to 1600 micrograms/kg were not significantly more effective than 150 micrograms/kg. Moreover, they did not reproduce the marked inhibitory effects of the repeat standard-dose regimens on embryogenesis, nor the modest effect on adult worm viability, at comparable total doses. These effects may be functions of multiplicities of dosages rather than of the total dose. Our findings also suggest that repeated high-dose regimens are unlikely to be more effective than a similar number of 150 micrograms/kg doses. This deficiency of ivermectin requires that the search for macrofilaricides remains a top priority.

  13. Biological effectiveness of neutron irradiation on animals and man

    Energy Technology Data Exchange (ETDEWEB)

    Straume, T.

    1982-11-01

    Neutron experiments on a highly radiosensitive in vivo system - oocytes in mice - provide new insight into the nature of the radiosensitive targets of these important cells. With the radiobiological literature as background, neutron data from animals and humans are integrated, and the controversial question of radiation protection standards for neutrons is addressed. Oocyte killing in juvenile mice by 0.43-MeV, /sup 252/Cf-fission, and 15 MeV neutrons, compared with that by /sup 60/Co gamma rays, yields unusually low neutron RBEs (relative biological effectiveness). At 0.1 rad of 0.43-MeV neutrons the RBE is only 1.8, contrasting greatly with values of 100 or more reported at low-doses for other endpoints. In mice just prior to birth, however, when oocytes are less radiosensitive, the neutron RBE is much higher, similar to values for most other mammalian endpoints. This dramatic change in neutron RBE with mouse age (occurring within 2 to 3 days) can be explained as the result of a shift from a less radiosensitive target (presumably nuclear DNA) to a much more radiosensitive one (probably the oocyte plasma membrane). Using various approaches, a value for the neutron Quality Factor (Q, a radiation protection standard) is estimated as 17 (+-100%), much lower than 100 which has been suggested. With the large uncertainty, 17 is not markedly different from the value of 10 presently in general use.

  14. Effects of Individualized Assignments on Biology Achievement.

    Science.gov (United States)

    Kremer, Philip L.

    1983-01-01

    Compared detailed (favoring field dependence and induction) and nondetailed (favoring field dependence and deduction) assignments on biology achievement of grade 10 male students (N=95) over a seven-month period. Detailed assignments, employing pictorial and verbal block diagrams and high structure, significantly enhanced learning among some…

  15. The Biological Effects of Nonionizing Radiation.

    Science.gov (United States)

    1981-12-29

    surrounding C-12-81 normal tissues. According to N.W. Bleehan, this was the method used by Hippocrates , with the aid of a hot iron. Hippocrates , by the way, is...temporal pattern of desired increases of tempera - ture in the body; (2) the biological consequences of doing this must be established and evaluated

  16. Technology Rich Biology Labs: Effects of Misconceptions.

    Science.gov (United States)

    Kuech, Robert; Zogg, Gregory; Zeeman, Stephan; Johnson, Mark

    This paper describes a study conducted on the lab sections of the general biology course for non-science majors at the University of New England, and reports findings of student misconceptions about photosynthesis and the mass/carbon uptake during plant growth. The current study placed high technology analytic tools in the hands of introductory…

  17. The ICRP protection quantities, equivalent and effective dose: their basis and application

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, J.D. [Health Protection Agency, Radiation Protection Division, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom); Streffer, C. [Institute for Science and Ethics, University Duisburg-Essen, 45117 Essen (Germany)

    2007-07-01

    Equivalent and effective dose are protection quantities defined by the The International Commission on Radiological Protection (ICRP). They are frequently referred to simply as dose and may be misused. They provide a method for the summation of doses received from external sources and from intakes of radionuclides for comparison with dose limits and constraints, set to limit the risk of cancer and hereditary effects. For the assessment of internal doses, ICRP provides dose coefficients (Sv Bq{sup -1}) for the ingestion or inhalation of radionuclides by workers and members of the public, including children. Dose coefficients have also been calculated for in utero exposures following maternal intakes and for the transfer of radionuclides in breast milk. In each case, values are given of committed equivalent doses to organs and tissues and committed effective dose. Their calculation involves the use of defined biokinetic and dosimetric models, including the use of reference phantoms representing the human body. Radiation weighting factors are used as a simple representation of the different effectiveness of different radiations in causing stochastic effects at low doses. A single set of tissue weighting factors is used to take account of the contribution of individual organs and tissues to overall detriment from cancer and hereditary effects, despite age- and gender-related differences in estimates of risk and contributions to risk. The results are quantities that are not individual specific but are reference values for protection purposes, relating to doses to phantoms. The ICRP protection quantities are not intended for detailed assessments of dose and risk to individuals. They should not be used in epidemiological analyses or the assessment of the possibility of occurrence and severity of tissue reactions (deterministic effects) at higher doses. Dose coefficients are published as reference values and as such have no associated uncertainty. Assessments of

  18. Determination of radiation dose to patient by biological dosimetry in interventional radiological procedures; Estimacion de la dosis de radiacion a paciente mediante dosimetria biologica en exploraciones complejas de radiodiagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Serna Berna, A.; Alcaraz, M.; Armero, D.; Navarro, J. L.; Morant, J. J.; Canteras, M.

    2006-07-01

    Interventional radiology is substituting complex surgical procedures. The requirements of high quality images and long fluoroscopy exposure times gives rise to high levels of radiation doses to patients. This topic is increasingly becoming of high concern. The purpose of this work was to evaluate the micronucleus assay (MN) in lymphocytes for the determination of the dose delivered to 15 patients who underwent interventional radiological procedures. The determination of a dose to patients supposing uniform irradiation was done with a dose-effect calibration curve previously determined for 120 keV X-rays. due to the low level of MN rate compared with background we used a bayesian approach to obtain the net MN counting rate, resulting and average counting rate of 3,2{+-}2,5 MN/500 bi nucleated cell. The group of coronariography patients resulted in higher MN rate 5,1 MN/500 BC vs 2,6 for the rest of patients. Average equivalent uniform dose for the total group of patients was 6,5{+-}2,6 cGy, while for the coronariography group was 8,8 {+-} 4,6 cGy. In conclusion, interventional radiology procedures deliver significant doses to patients and the MN assay as biological dosimeter is a good too to evaluate this range to doses. (Author)

  19. Dedicated breast CT: effect of adaptive filtration on dose distribution

    CERN Document Server

    Shikhaliev, Polad M

    2016-01-01

    Purpose: The purpose of the work was experimental investigations of the breast dose distributions with adaptive filtration. Adaptive filtration reduces detector dynamic range and improves image quality. The adaptive filter with predetermined shape is placed at the x-ray beam such that the x-ray intensity at the detector surface is flat. However, adaptive filter alters the mean dose to the breast, as well as volume distribution of the dose. Methods: The dose was measured using a 14 cm diameter cylindrical acrylic breast phantom. An acrylic adaptive filter was fabricated to match the 14 cm diameter of the phantom. The dose was measured using ion chamber inserted into holes distributed along the radius of the phantom from the center to the edge. The radial distribution of dose was measured and fitted by an analytical function and the volume distribution and mean value of dose was calculated. The measurements were performed at 40, 60, 90, and 120 kVp tube voltages and 6.6 mGy air kerma. Results: The adaptive filt...

  20. Dose-Effect Relationship in Chemoradiotherapy for Locally Advanced Rectal Cancer

    DEFF Research Database (Denmark)

    Jakobsen, Anders; Ploen, John; Vuong, Té

    2012-01-01

    PURPOSE: Locally advanced rectal cancer represents a major therapeutic challenge. Preoperative chemoradiation therapy is considered standard, but little is known about the dose-effect relationship. The present study represents a dose-escalation phase III trial comparing 2 doses of radiation...

  1. Additional effective dose by patients undergoing NAI-131 capsules therapy

    Energy Technology Data Exchange (ETDEWEB)

    Orlic, M.; Jovanovic, M.; Spasic Jokic, V.; Cuknic, O.; Ilic, Z.; Vranjes Djuric, S. [VINCA - Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro (Yugoslavia)

    2006-07-01

    Capsules or solutions containing Na{sup 131}I are indicated for the therapy of some thyroid carcinomas such as functioning metastatic papillary or follicular carcinoma of the thyroid; and for the treatment of hyperthyroidism (diffuse toxic goiter and single or multiple toxic nodular goiter). The recommended dosage ranges of Na{sup 131}I capsules or solution for the therapy of the average patient (70 kg) are: (3.7-5.55) GBq for ablation of normal thyroid tissue; (3.7-7.4) GBq for subsequent treatments; a (148-370) MBq for hyperthyroidism. The purpose of this paper is to calculate effective dose as a result of iodine-131 capsules remaining in stomach before absorption starts. This result can determine the disadvantage of capsule versus solution containing sodium iodine-131 (Na{sup 131}I) in radionuclide therapy application from radiation protection point of view. The Monte Carlo code MCNP4b was used to model transport of gamma and beta particles emitted by radionuclide {sup 131}I treated as a point source at the bottom of stomach. Absorbed energy per unit transformation in stomach and surrounding organs has been calculated. (authors)

  2. The effect of 18F-florbetapir dose reduction on region-based classification of cortical amyloid deposition

    Energy Technology Data Exchange (ETDEWEB)

    Herholz, K.; Evans, R.; Anton-Rodriguez, J.; Hinz, R.; Matthews, J.C. [University of Manchester, Wolfson Molecular Imaging Centre and Manchester Academic Health Science Centre, Manchester, England (United Kingdom)

    2014-11-15

    There are specific dose recommendations for diagnostic amyloid PET imaging with 18F-florbetapir, but they may not apply to research studies using regional quantitative analysis. We, therefore, studied the effect of tracer dose reduction on the discriminative power of regional analysis. Using bootstrap resampling of list-mode data from 18F-florbetapir scans, a total of 800 images were reconstructed for four different dosage levels: 100, 50, 20, and 10 %. The effect of the injected dose on the variation of measured radiotracer uptake was determined in large cortical regions defined on co-registered and segmented magnetic resonance images. The impact of the observed variation on the discrimination between normal controls and patients with AD was then assessed using data in a cohort study described by Fleisher et al. (Arch Neurol 68(11):1404-1411, 2011). The coefficient of variance for the cortex to cerebellum uptake ratio increased from 0.9 % at full dose of 300 MBq to 2.5 % at 10 % of this dose, but was still small compared to biological variation. It, therefore, had very little impact on discrimination between AD and elderly controls. The original area under the ROC curve was 0.881, decreasing to 0.878 at 10 % of full dose. Original sensitivity for discrimination between AD and controls was 82.0 %, while specificity was 77.3 %; these decreased to 81.8 and 77.1 %, respectively, at the reduced dose. However, the number of subjects within the classification border zone between proven amyloid pathology and young healthy controls increased substantially by 7 to 14 %. A substantial reduction of tracer dose increases uncertainty at the classification border zone while still providing good discrimination between AD patients and controls when using activity data from cortical regions defined on co-registered and segmented MR scans. (orig.)

  3. Committed effective dose from naturally occuring radionuclides in shellfish

    Science.gov (United States)

    Khandaker, Mayeen Uddin; Wahib, Norfadira Binti; Amin, Yusoff Mohd.; Bradley, D. A.

    2013-07-01

    Recognizing their importance in the average Malaysian daily diet, the radioactivity concentrations in mollusc- and crustacean-based food have been determined for key naturally occuring radionuclides. Fresh samples collected from various maritime locations around peninsular Malaysia have been processed using standard procedures; the radionuclide concentrations being determined using an HPGe γ-ray spectrometer. For molluscs, assuming secular equilibrium, the range of activities of 238U (226Ra), 232Th (228Ra) and 40K were found to be 3.28±0.35 to 5.34±0.52, 1.20±0.21 to 2.44±0.21 and 118±6 to 281±14 Bq kg-1 dry weight, respectively. The respective values for crustaceans were 3.02±0.57 to 4.70±0.52, 1.38±0.21 to 2.40±0.35 and 216±11 to 316±15 Bq kg-1. The estimated average daily intake of radioactivity from consumption of molluscs are 0.37 Bq kg-1 for 238U (226Ra), 0.16 Bq kg-1 for 232Th (228Ra) and 18 Bq kg-1 for 40K; the respective daily intake values from crustaceans are 0.36 Bq kg-1, 0.16 Bq kg-1 and 23 Bq kg-1. Associated annual committed effective doses from molluscs are estimated to be in the range 21.3 to 34.7 μSv for 226Ra, 19.3 to 39.1 μSv for 228Ra and 17.0 to 40.4 μSv for 40K. For crustaceans, the respective dose ranges are 19.6 to 30.5 μSv, 22.0 to 38.4 μSv and 31.1 to 45.5 μSv, being some several times world average values.

  4. Backscatter radiation at tissue-titanium interfaces; Biological effects from diagnostic 65 kVp X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Rosengren, B. (Department of Radiation Sciences, Uppsala University (Sweden) Dept. of Oncology, University Hospital, Bergen (Norway)); Wulff, L. (Dept. of Oral and Maxillofacial Surgery, Central Hospital, Boden (Sweden)); Carlsson, E. (Department of Radiation Sciences, Uppsala University (Sweden)); Carlsson, J. (Department of Radiation Sciences, Uppsala University (Sweden)); Strid, K.G. (Dept. of Handicap Research, Goeteborg Univ. (Sweden)); Montelius, A. (Dept. of Hospital Physics, University Hospital, Uppsala (Sweden))

    1993-01-01

    The induced secondary electrons from a metal surface by diagnostic X-rays are thought to contribute to cell damage near the tissue-metal boundaries of metal implants. Titanium implants are becoming increasingly more popular for tissue reconstructions and it is rather often desirable to take radiographs of the operated area. In this study we compared the biological effects of radiation on cultured mammalian test cells grown on titanium plates with the radiation effects on cells that were grown on plastic control plates. In order to study the acute radiation effects on cell growth it was necessary to work with rather high radiation doses (0.7-5 Gy). Photon energies, suitable for diagnostic radiography in odontology, 65 kV, were applied. We found that the cells grown on titanium plates were, in terms of the applied dose in the surrounding culture medium, more sensitive to the irradiations than the cells growing on plastic plates. The survival curve for the cells on titanium had a steeper slope, showed no shoulder in the low-dose region and looked like curves normally obtained for high LET radiation. It was not possible to resolve to what degree the titanium-dependent changes were due to an increased dose near the titanium surface or to a change in the radiobiological effectiveness. Although there was a significant decrease in cellular survival near the metal, postoperative intraoral radiography after titanium implantations need not be excluded. The maximal doses given in odontological X-ray examinations are less than 1 mGy and, if the results in this study are applied, the biological effects near the titanium implant will correspond to biological effects in soft tissue of doses less than 20 mGy which is lower than the doses that give acute effects. The risk of acute healing disturbances are significant only at much higher radiation doses. (orig.).

  5. Dose-rate effects for apoptosis and micronucleus formation in gamma-irradiated human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Boreham, D.R.; Dolling, J.-A.; Maves, S.R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Siwarungsun, N. [Chulalongkorn Univ., Bangkok (Thailand); Mitchel, R.E.J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2000-07-01

    We have compared dose-rate effects for {gamma}-radiation-induced apoptosis and micronucleus formation in human lymphocytes. Long-term assessment of individual radiation-induced apoptosis showed little intraindividual variation but significant interindividual variation. The effectiveness of radiation exposure to cause apoptosis or micronucleus formation was reduced by low-dose-rate exposures, but the reduction was apparent at different dose rates for these two end points. Micronucleus formation showed a dose-rate effect when the dose rate was lowered to 0.29 cGy/min, but there was no accompanying cell cycle delay. A further increase in the dose-rate effect was seen at 0.15 cGy/min, but was now accompanied by cell cycle delay. There was no dose-rate effect for the induction of apoptosis until the dose rate was reduced to 0.15 cGy/min, indicating that the mechanisms or signals for processing radiation-induced lesions for these two end points must be different at least in part. There appear to be two mechanisms that contribute to the dose-rate effect for micronucleus formation. One of these does not affect binucleate cell frequency and occurs at dose rates higher than that required to produce a dose-rate effect for apoptosis, and one affects binucleate cell frequency, induced only at the very low dose rate which coincidentally produces a dose-rate effect for apoptosis. Since the dose rate at which cells showed reduced apoptosis as well as a further reduction in micronucleus formation was very low, we conclude that the processing of the radiation-induced lesions that induce apoptosis, and some micronuclei, is very slow in quiescent and PHA-stimulated lymphocytes, respectively. (author)

  6. MIRD Commentary: Proposed Name for a Dosimetry Unit Applicable to Deterministic Biological Effects-The Barendsen (Bd)

    Energy Technology Data Exchange (ETDEWEB)

    Sgouros, George; Howell, R. W.; Bolch, Wesley E.; Fisher, Darrell R.

    2009-03-02

    The fundamental physical quantity for relating all biologic effects to radiation exposure is the absorbed dose, the energy imparted per unit mass of tissue. Absorbed dose is expressed in units of joules per kilogram (J/kg) and is given the special name gray (Gy). Exposure to ionizing radiation may cause both deterministic and stochastic biologic effects. To account for the relative effect per unit absorbed dose that has been observed for different types of radiation, the International Commission on Radiological Protection (ICRP) has established radiation weighting factors for stochastic effects. The product of absorbed dose in Gy and the radiation weighting factor is defined as the equivalent dose. Equivalent dose values are designated by a special named unit, the sievert (Sv). Unlike the situation for stochastic effects, no well-defined formalism and associated special named quantities have been widely adopted for deterministic effects. The therapeutic application of radionuclides and, specifically, -particle emitters in nuclear medicine has brought to the forefront the need for a well-defined dosimetry formalism applicable to deterministic effects that is accompanied by corresponding special named quantities. This commentary reviews recent proposals related to this issue and concludes with a recommendation to establish a new named quantity.

  7. Study of hard X-ray dose enhancement effects for some kinds of semiconductor devices

    CERN Document Server

    Guo Hong Xia; Chen Yu Sheng; Zhou Hui; He Chao Hui; Xie Ya Ning; Huang Yu Ying; He Wei; Hu Tian Dou

    2002-01-01

    Experimental results of X-ray dose enhancement effects are given for CMOS4069 and floating gate ROMs irradiated in Beijing Synchrotron Radiation Facility and in cobalt source. Shift of threshold voltage vs. total dose for CMOS4069 and the errors vs. total dose for 28f256 and 29c256 have been tested on line and the equivalent relation of total dose damage under the same accumulated dose is provided comparing the response of devices irradiated by X-ray and gamma-ray source. These results can be provided for X-ray radiation hardening technology as an effective evaluation data

  8. Dose rate effects on the thermoluminescence kinetics properties of MWCVD diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Gastelum, S.; Chernov, V.; Melendrez, R.; Soto-Puebla, D.; Pedroza-Montero, M.; Barboza-Flores, M. [Centro de Investigacion en Fisica, Universidad de Sonora, AP 5-088 Hermosillo, Sonora 83190 (Mexico); Cruz-Zaragoza, E. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, AP 70-543 Mexico D.F. (Mexico); Favalli, A. [European Commission, Joint Research Centre, Institute for the Protection and the Security of the Citizen, TP800,Via E. Fermi, 21020 Ispra (Italy)

    2007-09-15

    Dose rate effects are important in thermoluminescent (TL) dosimeter applications because a certain absorbed dose given at different dose rates may result in a different TL yield. The present work reports about the dose rate effects on TL glow curves and kinetics properties of microwave plasma assisted chemical vapor deposition (MWCVD) diamond films grown on (100) silicon. The diamond films were exposed to {gamma} radiation at 20.67, 43.4 and 81.11 Gy min{sup -1} dose rates in the range of 0.05-10 kGy. The films showed a linear dose behavior up to 2 kGy and reached saturation for higher doses. The TL intensity varied as a function of dose rate and the samples had a maximum TL response for relatively lower dose rates. A single first order kinetics TL peak was typical for low doses while at higher doses two first order kinetics peaks were necessary to fit the glow curves. The results indicate that dose rate effects may be significant in dosimetric applications of MWCVD diamond. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Clinically applicable Monte Carlo-based biological dose optimization for the treatment of head and neck cancers with spot-scanning proton therapy

    CERN Document Server

    Tseung, H Wan Chan; Kreofsky, C R; Ma, D; Beltran, C

    2016-01-01

    Purpose: To demonstrate the feasibility of fast Monte Carlo (MC) based inverse biological planning for the treatment of head and neck tumors in spot-scanning proton therapy. Methods: Recently, a fast and accurate Graphics Processor Unit (GPU)-based MC simulation of proton transport was developed and used as the dose calculation engine in a GPU-accelerated IMPT optimizer. Besides dose, the dose-averaged linear energy transfer (LETd) can be simultaneously scored, which makes biological dose (BD) optimization possible. To convert from LETd to BD, a linear relation was assumed. Using this novel optimizer, inverse biological planning was applied to 4 patients: 2 small and 1 large thyroid tumor targets, and 1 glioma case. To create these plans, constraints were placed to maintain the physical dose (PD) within 1.25 times the prescription while maximizing target BD. For comparison, conventional IMRT and IMPT plans were created for each case in Eclipse (Varian, Inc). The same critical structure PD constraints were use...

  10. Williams Test Required Sample Size For Determining The Minimum Effective Dose

    Directory of Open Access Journals (Sweden)

    Mustafa Agah TEKINDAL

    2016-04-01

    Full Text Available Objective: The biological activity of a substance may be explored through a series of experiments on increased or decreased doses of such substance. One of the purposes in studies of this sort is the determination of minimum effective dose. Use of appropriate sample size has an indisputable effect on the reliability of the decisions made in studies made for this purpose. This study attempts to provide a summary of sample sizes, in different scenarios, needed by researchers during the use of Williams test by taking into consideration the number of groups in dose-response studies as well as minimal clinically significant difference, standard deviation, and the test’s power through asymptotic power analyses. Material and Methods: When Type I error was taken as 0.05, scenarios were determined in different sample sizes for each group (5 to 100 with an increase of 5 at a time and different numbers of groups (from 3 to 10, with an increase of 1 at a time. Minimal clinically significant difference refers to the difference between the control group and the experimental group. In this instance, when the control group is zero and takes a specific average value, it refers to the difference from the experimental group. In the resent study, such differences are defined from 1 to 10 with an increase of 1 at a time. For the test’s power would change when the standard deviation changed, the relevant value was changed in all scenarios from 1 to 10 with an increase of 1 at a time to explore the test’s power. Dose-response distributions are skew. In the present study, data were derived from the Poisson distribution with λ= 1 parameter that was determined in accordance with dose-response curves. Results: When changes occurring in the determined scenarios are considered, it can be said, in general, that the significant difference must be set between 1 and 3; and standard deviation must be set between 1 and 2. Conclusion: It is certain that change in the number

  11. Cellular and molecular aspects of the anti-inflammatory effects of low-dose radiation therapy

    OpenAIRE

    Large, Martin

    2015-01-01

    For decades an anti-inflammatory and analgesic effect of low-dose X-irradiation (LD-RT) has clinically been well established in the treatment of a plethora of benign diseases and chronic degenerative disorders with empirically identified single doses < 1 Gy to be most effective. Although considerable progress has been achieved in the understanding of immune modulatory effects of ionising radiation, especially in the low-dose range, the underlying molecular mechanisms are currently not fully r...

  12. Establishment of a γ-H2AX foci-based assay to determine biological dose of radon to red bone marrow in rats

    Science.gov (United States)

    Wang, Jing; He, Linfeng; Fan, Dunhuang; Ding, Defang; Wang, Xufei; Gao, Yun; Zhang, Xuxia; Li, Qiang; Chen, Honghong

    2016-07-01

    The biodosimetric information is critical for assessment of cancer risk in populations exposed to high radon. However, no tools are available for biological dose estimation following radon exposure. Here, we established a γ-H2AX foci-based assay to determine biological dose to red bone marrow (RBM) in radon-inhaled rats. After 1–3 h of in vitro radon exposure, a specific pattern of γ-H2AX foci, linear tracks with individual p-ATM and p-DNA-PKcs foci, was observed, and the yield of γ-H2AX foci and its linear tracks displayed a linear dose-response manner in both rat peripheral blood lymphocytes (PBLs) and bone-marrow lymphocytes (BMLs). When the cumulative doses of radon inhaled by rats reached 14, 30 and 60 working level months (WLM), the yields of three types of foci markedly increased in both PBLs and BMLs, and γ-H2AX foci-based dose estimates to RBM were 0.97, 2.06 and 3.94 mGy, respectively. Notably, BMLs displayed a more profound increase of three types of foci than PBLs, and the absorbed dose ratio between BMLs and PBLs was similar between rats exposed to 30 and 60 WLM of radon. Taken together, γ-H2AX foci quantitation in PBLs is able to estimate RBM-absorbed doses with the dose-response curve of γ-H2AX foci after in vitro radon exposure and the ratio of RBM- to PBL-absorbed doses in rats following radon exposure.

  13. Establishment of a γ-H2AX foci-based assay to determine biological dose of radon to red bone marrow in rats

    Science.gov (United States)

    Wang, Jing; He, Linfeng; Fan, Dunhuang; Ding, Defang; Wang, Xufei; Gao, Yun; Zhang, Xuxia; Li, Qiang; Chen, Honghong

    2016-01-01

    The biodosimetric information is critical for assessment of cancer risk in populations exposed to high radon. However, no tools are available for biological dose estimation following radon exposure. Here, we established a γ-H2AX foci-based assay to determine biological dose to red bone marrow (RBM) in radon-inhaled rats. After 1–3 h of in vitro radon exposure, a specific pattern of γ-H2AX foci, linear tracks with individual p-ATM and p-DNA-PKcs foci, was observed, and the yield of γ-H2AX foci and its linear tracks displayed a linear dose-response manner in both rat peripheral blood lymphocytes (PBLs) and bone-marrow lymphocytes (BMLs). When the cumulative doses of radon inhaled by rats reached 14, 30 and 60 working level months (WLM), the yields of three types of foci markedly increased in both PBLs and BMLs, and γ-H2AX foci-based dose estimates to RBM were 0.97, 2.06 and 3.94 mGy, respectively. Notably, BMLs displayed a more profound increase of three types of foci than PBLs, and the absorbed dose ratio between BMLs and PBLs was similar between rats exposed to 30 and 60 WLM of radon. Taken together, γ-H2AX foci quantitation in PBLs is able to estimate RBM-absorbed doses with the dose-response curve of γ-H2AX foci after in vitro radon exposure and the ratio of RBM- to PBL-absorbed doses in rats following radon exposure. PMID:27445126

  14. Effective dose estimates for cone beam computed tomography in interventional radiology

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, Y.M.; Irani, F.G.; Tay, K.H.; Yang, C.C.; Padre, C.G.; Tan, B.S. [Singapore General Hospital, Department of Diagnostic Radiology, Singapore (Singapore)

    2013-11-15

    To compare radiation doses in cone beam computed tomography (CBCT) with those of multi-detector computed tomography (MDCT) using manufacturers' standard protocols. Dose-levels in head and abdominal imaging were evaluated using a dosimetric phantom. Effective dose estimates were performed by placing thermoluminescent dosimeters in the phantom. Selected protocols for two CBCT systems and comparable protocols for one MDCT system were evaluated. Organ doses were measured and effective doses derived by applying the International Commission on Radiological Protection 2007 tissue weighting factors. Effective doses estimated for the head protocol were 4.4 and 5.4 mSv for the two CBCT systems respectively and 4.3 mSv for MDCT. Eye doses for one CBCT system and MDCT were comparable (173.6 and 148.4 mGy respectively) but significantly higher compared with the second CBCT (44.6 mGy). Two abdominal protocols were evaluated for each system; the effective doses estimated were 15.0 and 18.6 mSv, 25.4 and 37.0 mSv, and 9.8 and 13.5 mSv, respectively, for each of the CBCT and MDCT systems. The study demonstrated comparable dose-levels for CBCT and MDCT systems in head studies, but higher dose levels for CBCT in abdominal studies. There was a significant difference in eye doses observed between the CBCT systems. (orig.)

  15. The effect of pitch and collimation on radiation dose in spiral CT

    Institute of Scientific and Technical Information of China (English)

    CHENG Qi-Jun; TSANG Cheung; FENG Ding-Hua

    2005-01-01

    Measurements of radiation dose to patients in spiral computed tomography (CT) were completed for various collimations, table speeds and pitch. A standard CT head dosimetry phantom and thermoluminescent dosimeters (TLD) were used for the measurement. The.effect of collimation and pitch on radiation dose was studied. The results indicated that the radiation dose at the given tube current, voltage and rotation speed was inversely proportional to pitch. And the increasing times of dose were as decreasing times of pitch. This regular pattern was tenable for radiation dose at both central holes and peripheral holes of the phantom at pitch = 1, >1 and <1. The collimation had no impact on the radiation dose. The results also indicated that radiation dose at central holes was nearly equal to that at peripheral holes. There was no significant difference between them statistically. The study demonstrates that the pitch in spiral CT scans is the primary parameter and has significant impact on radiation dose.

  16. Dose-Effect Relationships for Individual Pelvic Floor Muscles and Anorectal Complaints After Prostate Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Smeenk, Robert Jan, E-mail: r.smeenk@rther.umcn.nl [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Hoffmann, Aswin L. [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Hopman, Wim P.M. [Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Lin, Emile N.J. Th. van; Kaanders, Johannes H.A.M. [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands)

    2012-06-01

    Purpose: To delineate the individual pelvic floor muscles considered to be involved in anorectal toxicity and to investigate dose-effect relationships for fecal incontinence-related complaints after prostate radiotherapy (RT). Methods and Materials: In 48 patients treated for localized prostate cancer, the internal anal sphincter (IAS) muscle, the external anal sphincter (EAS) muscle, the puborectalis muscle (PRM), and the levator ani muscles (LAM) in addition to the anal wall (Awall) and rectal wall (Rwall) were retrospectively delineated on planning computed tomography scans. Dose parameters were obtained and compared between patients with and without fecal urgency, incontinence, and frequency. Dose-effect curves were constructed. Finally, the effect of an endorectal balloon, which was applied in 28 patients, was investigated. Results: The total volume of the pelvic floor muscles together was about three times that of the Awall. The PRM was exposed to the highest RT dose, whereas the EAS received the lowest dose. Several anal and rectal dose parameters, as well as doses to all separate pelvic floor muscles, were associated with urgency, while incontinence was associated mainly with doses to the EAS and PRM. Based on the dose-effect curves, the following constraints regarding mean doses could be deduced to reduce the risk of urgency: {<=}30 Gy to the IAS; {<=}10 Gy to the EAS; {<=}50 Gy to the PRM; and {<=}40 Gy to the LAM. No dose-effect relationships for frequency were observed. Patients treated with an endorectal balloon reported significantly less urgency and incontinence, while their treatment plans showed significantly lower doses to the Awall, Rwall, and all pelvic floor muscles. Conclusions: Incontinence-related complaints show specific dose-effect relationships to individual pelvic floor muscles. Dose constraints for each muscle can be identified for RT planning. When only the Awall is delineated, substantial components of the continence apparatus are

  17. Non-Thermal Effects Mobile Phones at Biological Objects

    OpenAIRE

    Ladislav Balogh

    2003-01-01

    The article deals with non-thermal effects of mobile phones on biological objects. Even though these effects are observed for longer period, there are not so far unequivocal results on obtained biological and biophysical results in this field. Biologicaleffects of electromagnetic field (EMF) depend on its character, its duration as well as on features of organism. As the receptors offield are not known (e.g. inputs of EMF into organism), its effects are judged only by non-specific reaction of...

  18. Effective dose evaluation for BNCT brain tumor treatment based on voxel phantoms.

    Science.gov (United States)

    Wang, Jeng-Ning; Lee, Kuo-Wei; Jiang, Shiang-Huei

    2014-06-01

    For BNCT treatments, in addition to tumor target doses, non-negligible doses will result in all the remaining organs of the body. This work aims to evaluate the effective dose as well as the average absorbed doses of each of organs of patients with brain tumor treated in the BNCT epithermal neutron beam at THOR. The effective doses were evaluated according to the definitions of ICRP Publications 60 and 103 for the reference male and female computational phantoms developed in ICRP Publication 110 by using the MCNP5 Monte Carlo code with the THOR-Y09 beam source. The effective dose acquired in this work was compared with the results of our previous work calculated for an adult hermaphrodite mathematical phantom. It was found that the effective dose for the female voxel phantom is larger than that for the male voxel phantom by a factor of 1.2-1.5 and the effective dose for the voxel phantom is larger than that for the mathematical phantom by a factor of 1.3-1.6. For a typical brain tumor BNCT, the effective dose was calculated to be 1.51Sv and the average absorbed dose for eye lenses was 1.07Gy.

  19. Dose-dependent effect of histamine on antibody generationin vivo

    Institute of Scientific and Technical Information of China (English)

    Tripathi T; Shahid M; Khan HM; Khan RA; Siddiqui MU

    2010-01-01

    Objective:To delineate immunomodulatory role of histamine on antibody generation profile in rabbit in the present dose-dependent histamine study.Methods: The cohort comprised of three groups (III, IV and V), containing six rabbits each, and received subcutaneous histamine 50 μg/kgíbis in die (b.i.d.), 100 μg/kg í b.i.d. and 200 μg/kgíb.i.d., respectively for 10 days (starting from the 1st day). They were subsequently immunized on the 3rd day with intravenous injection of sheep blood cell (SRBC) (1í109 cells/mL). Group II (positive control) (n=6) received vehicle (sterile distilled water) and immunized at day 3 similarly while group I (negative control) (n=6) remained non-immunized and received only vehicle. All experimentations were performed in triplicate. Blood samples were collected on pre-immunization (pre-I) (day 0), as well as on days 7-, 14-, 21-, 28- and 58- post-immunization (post-I). Immunological parameters [total immunoglobulins (Igs), IgM and IgG] were analyzed by enzyme linked immunosorbent assay (ELISA) technique.Results: Histamine could influence a detectable antibody response to SRBC as early as day 7-post-I, which lasted until day 58- post-I. The results were found statistically significant (P< 0.05).Conclusions: Our results provide evidence that histamine has a short-term effect on antibody generation (until its presence in the body), and the antibody generation titerin vivowere affected by the concentration of histamine.

  20. Effects of low dose gamma radiation on the early growth of red pepper and the resistance to subsquent high dose of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S.; Baek, M. H.; Kim, D. H.; Lee, Y. K. [KAERI, Taejon (Korea, Republic of); Lee, Y. B. [Chungnam National Univ., Taejon (Korea, Republic of)

    2001-05-01

    Red pepper (capsicum annuum L. cv. Jokwang and cv. Johong) seeds were irradiated with the dose of 0{approx}50 Gy to investigated the effect of the low dose gamma radiation on the early growth and resistance to subsequent high dose of radiation. The effect of the low dose gamma radiation on the early growth and resistance to subsequenct high dose of radiation were enhanced in Johong cultivar but not in Jokwang cultivar. Germination rate and early growth of Johong cultivar were noticeably increased at 4 Gy-, 8 Gy- and 20 Gy irradiation group. Resistance to subsequent high dose of radiation of Johong cultivar were increased at almost all of the low dose irradiation group. Especially it was highest at 4 Gy irradiation group. The carotenoid contents and enzyme activity on the resistance to subsequent high dose of radiation of Johong cultivar were increased at the 4 Gy and 8 Gy irradiation group.

  1. Fluence to Effective Dose and Effective Dose Equivalent Conversion Coefficients foe Photons from 50 KeV to 10 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A. [Istituto Nazionale di Fisica Nucleare, Milan (Italy); Pelliccioni, M. [Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati; Pillon, M. [Associazione EUROATOM-ENEA sulla Fusione, Frascati. Rome (Italy)

    1996-07-01

    Effective dose equivalent and effective dose per unit photon fluence have been calculated by the FLUKA code for various geometrical conditions of irradiation of an anthropomorphic phantom placed in a vacuum. Calculations have been performed for monoenergetic photons of energy ranging from 50 keV to 10 GeV. The agreement with the results of other authors, when existing, is generally very satisfactory.

  2. A molecular and phenotypic integrative approach to identify a no-effect dose level for antiandrogen-induced testicular toxicity.

    Science.gov (United States)

    Ludwig, Sophie; Tinwell, Helen; Schorsch, Frédéric; Cavaillé, Christel; Pallardy, Marc; Rouquié, David; Bars, Rémi

    2011-07-01

    The safety assessment of chemicals for humans relies on identifying no-observed adverse effect levels (NOAELs) in animal toxicity studies using standard methods. With the advent of high information content technologies, especially microarrays, it is pertinent to determine the impact of molecular data on the NOAELs. Consequently, we conducted an integrative study to identify a no-transcriptomic effect dose using microarray analyses coupled with quantitative reverse transcriptase PCR (RT-qPCR) and determined how this correlated with the NOAEL. We assessed the testicular effects of the antiandrogen, flutamide (FM), in a rat 28-day toxicity study using doses of 0.2-30 mg/kg/day. Plasma testosterone levels and testicular histopathology indicated a NOAEL of 1 mg/kg/day. A no-effect dose of 0.2 mg/kg/day was established based on molecular data relevant to the phenotypic changes. We observed differential gene expression starting from 1 mg/kg/day and a deregulation of more than 1500 genes at 30 mg/kg/day. Dose-related changes were identified for the major pathways (e.g., fatty acid metabolism) associated with the testicular lesion (Leydig cell hyperplasia) that were confirmed by RT-qPCR. These data, along with protein accumulation profiles and FM metabolite concentrations in testis, supported the no-effect dose of 0.2 mg/kg/day. Furthermore, the microarray data indicated a dose-dependent change in the fatty acid catabolism pathway, a biological process described for the first time to be affected by FM in testicular tissue. In conclusion, the present data indicate the existence of a transcriptomic threshold, which must be exceeded to progress from a normal state to an adaptative state and subsequently to adverse toxicity.

  3. Two separate dose-dependent effects of paroxetine

    DEFF Research Database (Denmark)

    Nielsen, Anette Green; Pedersen, Rasmus Steen; Noehr-Jensen, Lene;

    2010-01-01

    PURPOSE: To investigate paroxetine's putative dose-dependent impact on pupil reaction and inhibition of the O-demethylation of tramadol. METHODS: Twelve healthy CYP2D6 extensive metabolizers participated in this double-blinded randomized five-way placebo controlled cross-over study; they received...... placebo, 10, 20, 30, and 50 mg paroxetine as single oral doses at bedtime. Next morning the pupil was measured followed by oral intake of 50 mg of tramadol, and urine was collected for 8 h. Three hours after ingestion of tramadol a second measurement of the pupil was performed. Enantioselective urine...... concentrations of (+/-)-tramadol and (+/-)-O-desmethyltramadol (M1) were determined. RESULTS: With placebo, the median maximum pupil diameter was 6.43 mm (range 5.45-7.75 mm) before tramadol and 6.22 mm (4.35-7.65 mm) after 50 mg of tramadol (P = 0.4935). Paroxetine resulted in a statistically significant, dose...

  4. Median effective dose of remifentanil for awake laryngoscopy and intudation

    Institute of Scientific and Technical Information of China (English)

    XU Ya-chao; XUE Fu-shan; LUO Mad-ping; YANG Quan-yong; LIAO Xu; LU Yi; ZHANG Yan-ming

    2009-01-01

    Background Awake intubation requires an anesthetic management that provides sufficient patient safety and comfort, adequate intubating conditions, and stable hemodynamics. In this prospective clinical study, our aim was to determine the median effective dose (ED50) of remifentanil in combination with midazolam and airway topical anesthesia for awake laryngoscopy and intubation.Methods Thirty-six female adult patients, scheduled for elective plastic surgery under general anesthesia requiring orotracheal intubation were included in this study. Ten minutes after intravenous administration of midazolam 0.1 mg/kg, patients were assigned to receive remifentanil in bolus, followed by a continuous infusion. The bolus dose and infusion rate of remifentanil were adjusted by a modified Dixon's up-and-down method. Patient's reaction score at laryngoscopy and an Observer's Assessment of Alertness/Sedation Scale (OAA/S) were used to determine whether the remifentanil dosage regimen was accepted. During laryngoscopy, 2% lidocaine was sprayed into the airway to provide the topical anesthesia. EDso of remifentanil was calculated by the modified Dixon up-and-clown method, and the probit analysis was then used to confirm the results obtained from the modified Dixon's up-and-down method. In the patients who were scored as "accept", patient's OAA/S and reaction scores at different observed points, intubating condition score and patient's tolerance to the endotracheal tube after intubation were evaluated and recorded. Blood pressure and heart rate at different measuring points were also noted.Results ED50 of remifentanil for awake laryngoscopy and intubation obtained by the modified Dixon's up-and-down method was (0.62±0.02) pg/kg. Using probit analysis, ED50 and ED95 of remifentanil were 0.63 μg/kg (95% Cl, 0.54-0.70) and 0.83 μg/kg (95% Cl, 0.73-2.59), respectively. Nineteen patients who were scored as =accept" had an OAA/S of 15 and tolerated well laryngoscopy without significant

  5. Segmentation of biological target volumes on multi-tracer PET images based on information fusion for achieving dose painting in radiotherapy.

    Science.gov (United States)

    Lelandais, Benoît; Gardin, Isabelle; Mouchard, Laurent; Vera, Pierre; Ruan, Su

    2012-01-01

    Medical imaging plays an important role in radiotherapy. Dose painting consists in the application of a nonuniform dose prescription on a tumoral region, and is based on an efficient segmentation of biological target volumes (BTV). It is derived from PET images, that highlight tumoral regions of enhanced glucose metabolism (FDG), cell proliferation (FLT) and hypoxia (FMiso). In this paper, a framework based on Belief Function Theory is proposed for BTV segmentation and for creating 3D parametric images for dose painting. We propose to take advantage of neighboring voxels for BTV segmentation, and also multi-tracer PET images using information fusion to create parametric images. The performances of BTV segmentation was evaluated on an anthropomorphic phantom and compared with two other methods. Quantitative results show the good performances of our method. It has been applied to data of five patients suffering from lung cancer. Parametric images show promising results by highlighting areas where a high frequency or dose escalation could be planned.

  6. Evaluation of the effective dose during BNCT at TRR thermal column epithermal facility.

    Science.gov (United States)

    Jarahi, Hossein; Kasesaz, Yaser; Saleh-Koutahi, Seyed Mohsen

    2016-04-01

    An epithermal neutron beam has been designed for Boron neutron Capture Therapy (BNCT) at the thermal column of Tehran Research Reactor (TRR) recently. In this paper the whole body effective dose, as well as the equivalent doses of several organs have been calculated in this facility using MCNP4C Monte Carlo code. The effective dose has been calculated by using the absorbed doses determined for each individual organ, taking into account the radiation and tissue weighting factors. The ICRP 110 whole body male phantom has been used as a patient model. It was found that the effective dose during BNCT of a brain tumor is equal to 0.90Sv. This effective dose may induce a 4% secondary cancer risk.

  7. Topical Day on Biological Effects of Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Baatout, S.; Jacquet, P.

    1997-05-15

    The topical day has been focussed on the potential effects of ionizing radiation on human health. A general overview on molecular and biophysical aspects of radiation, its effects on cells and organisms, and the contribution of radiobiology to radiation protection and risk assessment is given. The genetic effects of radiation and its effects on the developing organism, the effects of radiation on the cell cycle and the mechanisms of radiation induced apoptosis were also discussed.

  8. Epidemiological methods for assessing dose-response and dose-effect relationships

    DEFF Research Database (Denmark)

    Kjellström, Tord; Grandjean, Philippe

    2007-01-01

    of the Toxic Effects of Metals Aluminum Antimony Arsenic Barium Beryllium Bismuth Cadmium Chromium Cobalt Copper Gallium and Semiconductor Compounds Germanium Indium Iron Lead Manganese Mercury Molybdenum Nickel Palladium Platinum Selenium Silver Tellurium Thallium Tin Titanium Tungsten Uranium Vanadium Zinc...

  9. Computer subroutines for the estimation of nuclear reaction effects in proton-tissue-dose calculations

    Science.gov (United States)

    Wilson, J. W.; Khandelwal, G. S.

    1976-01-01

    Calculational methods for estimation of dose from external proton exposure of arbitrary convex bodies are briefly reviewed. All the necessary information for the estimation of dose in soft tissue is presented. Special emphasis is placed on retaining the effects of nuclear reaction, especially in relation to the dose equivalent. Computer subroutines to evaluate all of the relevant functions are discussed. Nuclear reaction contributions for standard space radiations are in most cases found to be significant. Many of the existing computer programs for estimating dose in which nuclear reaction effects are neglected can be readily converted to include nuclear reaction effects by use of the subroutines described herein.

  10. Estimating Effective Dose from Phantom Dose Measurements in Atrial Fibrillation Ablation Procedures and Comparison of MOSFET and TLD Detectors in a Small Animal Dosimetry Setting

    Science.gov (United States)

    Anderson-Evans, Colin David

    effective dose was computed by summing the product of each organ dose and the corresponding tissue weighting factor from the ICRP publication 103. Further risk calculations were done according to the BEIR VII Phase 2 report to obtain relative and lifetime attributable risks of cancer for an average AF ablation procedure. The ED was computed separately for the biplane fluoroscopic and angiographic system's 'low' and 'normal fluoro' automated settings, yielding 27.9 mSv and 45.6 mSv respectively for an average procedure time of 88.2 minutes. The corresponding DAP was 48.7 Gy cm2 and 79.1 Gy cm2 for low and normal settings respectively. The independently measured DAP was found to be within 0.1 % of that measured by the fluoroscopy system's onboard flat panel detectors. DCCs were calculated to be 0.573 and 0.577 for the respective low and normal settings. The results proved to be very closely matched, which was to be expected. The calculated cancer risks were fairly low due to the age of most patients (less than 5 incidences of solid tumor per 100,000 exposed for liver colon and stomach; 100-300 incidences per 100,000 exposed for lungs), but concern remains that longer procedures could increase the risk of erythema or other serious skin injuries. The second section of this thesis study involves the quantification and distribution of radiation dose in small animals undergoing irradiation in an orthovoltage x-ray unit. Extensive research is being done with small animals, particularly mice and rats, in fields such as cancer therapy, radiation biology and radiological countermeasures. Results and conclusion are often drawn from research based solely on manufacturer's specifications of the delivered dose rate without independent verification or adequate understanding of the machines' capabilities. Accurate radiation dose information is paramount when conducting research in this arena. Traditional methods of dosimetry, namely thermoluminescence dosimeters (TLDs) are challenging and

  11. Effective Dose from Stray Radiation for a Patient Receiving Proton Therapy for Liver Cancer

    Science.gov (United States)

    Taddei, Phillip J; Krishnan, Sunil; Mirkovic, Dragan; Yepes, Pablo; Newhauser, Wayne D

    2010-01-01

    Because of its advantageous depth-dose relationship, proton radiotherapy is an emerging treatment modality for patients with liver cancer. Although the proton dose distribution conforms to the target, healthy tissues throughout the body receive low doses of stray radiation, particularly neutrons that originate in the treatment unit or in the patient. The aim of this study was to calculate the effective dose from stray radiation and estimate the corresponding risk of second cancer fatality for a patient receiving proton beam therapy for liver cancer. Effective dose from stray radiation was calculated using detailed Monte Carlo simulations of a double-scattering proton therapy treatment unit and a voxelized human phantom. The treatment plan and phantom were based on CT images of an actual adult patient diagnosed with primary hepatocellular carcinoma. For a prescribed dose of 60 Gy to the clinical target volume, the effective dose from stray radiation was 370 mSv; 61% of this dose was from neutrons originating outside of the patient while the remaining 39% was from neutrons originating within the patient. The excess lifetime risk of fatal second cancer corresponding to the total effective dose from stray radiation was 1.2%. The results of this study establish a baseline estimate of the stray radiation dose and corresponding risk for an adult patient undergoing proton radiotherapy for liver cancer and provide new evidence to corroborate the suitability of proton beam therapy for the treatment of liver tumors. PMID:20865142

  12. Iron diminishes the in vitro biological effect of vanadium.

    Science.gov (United States)

    Mechanistic pathways underlying inflammatory injury following exposures to vanadium-containing compounds are not defined. We tested the postulate that the in vitro biological effect of vanadium results from its impact on iron homeostasis. Human bronchial epithelial (HBE) cells ex...

  13. Critical appraisal: dental amalgam update--part II: biological effects.

    Science.gov (United States)

    Wahl, Michael J; Swift, Edward J

    2013-12-01

    Dental amalgam restorations have been controversial for over 150 years. In Part I of this Critical Appraisal, the clinical efficacy of dental amalgam was updated. Here in Part II, the biological effects of dental amalgam are addressed.

  14. Radiation effects analysis in a group of interventional radiologists using biological and physical dosimetry methods

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, M., E-mail: WEMLmirapas@iqn.upv.e [Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Montoro, A.; Almonacid, M. [Radiation Protection Service, Hospital Universitario La Fe Valencia (Spain); Ferrer, S. [Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Barquinero, J.F. [Biological Dosimetry Service, Unit of Anthropology, Department of Animal and Vegetable Biology and Ecology, Universitat Autonoma de Barcelona (UAB) (Spain); Tortosa, R. [Radiation Protection Service, Hospital Universitario La Fe Valencia (Spain); Verdu, G. [Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Rodriguez, P. [Biological Dosimetry Service, Unit of Anthropology, Department of Animal and Vegetable Biology and Ecology, Universitat Autonoma de Barcelona (UAB) (Spain); Barrios, L.L. [Department of Physiology and Cellular Biology, Unit of Cellular Biology (UAB) (Spain); Villaescusa, J.I. [Radiation Protection Service, Hospital Universitario La Fe Valencia (Spain)

    2010-08-15

    Interventional radiologists and staff members are frequently exposed to protracted and fractionated low doses of ionizing radiation, which extend during all their professional activities. These exposures can derive, due to the effects of direct and scattered radiation, in deterministic effects (radiodermitis, aged skin, cataracts, telangiectasia in nasal region, vasocellular epitelioms, hands depilation) and/or stochastic ones (cancer incidence). A methodology has been proposed for estimating the radiation risk or detriment from a group of six exposed interventional radiologists of the Hospital Universitario La Fe (Valencia, Spain), which had developed general exposition symptoms attributable to deterministic effects of ionizing radiation. Equivalent doses have been periodically registered using TLD's and wrist dosimeters, H{sub p}(10) and H{sub p}(0.07), respectively, and estimated through the observation of translocations in lymphocytes of peripheral blood (biological methods), by extrapolating the yield of translocations to their respective dose-effect curves. The software RADRISK has been applied for estimating radiation risks in these occupational radiation exposures. This software is based on transport models from epidemiological studies of population exposed to external sources of ionizing radiation, such as Hiroshima and Nagasaki atomic bomb survivors [UNSCEAR, Sources and effects of ionizing radiation: 2006 report to the general assembly, with scientific annexes. New York: United Nations; 2006]. The minimum and maximum average excess ratio for skin cancer has been, using wrist physical doses, of [1.03x10{sup -3}, 5.06x10{sup -2}], concluding that there is not an increased risk of skin cancer incidence. The minimum and maximum average excess ratio for leukemia has been, using TLD physical doses, of [7.84x10{sup -2}, 3.36x10{sup -1}], and using biological doses, of [1.40x10{sup -1}, 1.51], which is considerably higher than incidence rates, showing an

  15. Radiation Dose-Volume Effects In the Esophagus

    Science.gov (United States)

    Werner-Wasik, Maria; Yorke, Ellen; Deasy, Joseph; Nam, Jiho; Marks, Lawrence B.

    2013-01-01

    Publications relating esophageal radiation toxicity to clinical variables and to quantitative dose and dose–volume measures derived from three-dimensional conformal radiotherapy for non–small-cell lung cancer are reviewed. A variety of clinical and dosimetric parameters have been associated with acute and late toxicity. Suggestions for future studies are presented. PMID:20171523

  16. The effect of host age and inoculation dose on infection dynamics of Angiostrongylus vasorum in red foxes (Vulpes vulpes)

    DEFF Research Database (Denmark)

    Webster, Pia; Monrad, Jesper; Kapel, Christian

    2017-01-01

    Background: Infections and clinical cases of Angiostrongylus vasorum in dogs are found increasingly across Europe, thus rendering knowledge on its infection biology more important. We used red foxes as a carnivore model to examine the effect of host age and infection dose on the establishment of ...

  17. Effective Dose Reduction to Cardiac Structures Using Protons Compared With 3DCRT and IMRT in Mediastinal Hodgkin Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, Bradford S., E-mail: bhoppe@floridaproton.org [Department of Radiation Oncology, University of Florida Proton Therapy Institute, Jacksonville, FL (United States); Flampouri, Stella; Su Zhong [Department of Radiation Oncology, University of Florida Proton Therapy Institute, Jacksonville, FL (United States); Latif, Naeem [Department of Medical Oncology, University of Florida Proton Therapy Institute, Jacksonville, FL (United States); Dang, Nam H.; Lynch, James [Department of Medical Oncology, University of Florida Shands Cancer Center, Gainesville, FL (United States); Joyce, Michael; Sandler, Eric [Division of Hematology/Oncology, Nemours Children' s Clinic and Wolfson Children' s Hospital, Jacksonville, FL (United States); Li Zuofeng; Mendenhall, Nancy P. [Department of Radiation Oncology, University of Florida Proton Therapy Institute, Jacksonville, FL (United States)

    2012-10-01

    Purpose: We investigated the dosimetric impact of proton therapy (PT) on various cardiac subunits in patients with Hodgkin lymphoma (HL). Methods and Materials: From June 2009 through December 2010, 13 patients were enrolled on an institutional review board-approved protocol for consolidative involved-node radiotherapy (INRT) for HL. Three separate treatment plans were developed prospectively by using three-dimensional conformal radiotherapy (3DCRT), intensity-modulated radiotherapy (IMRT), and PT. Cardiac subunits were retrospectively contoured on the 11 patients with intravenous-contrast simulation scans, and the doses were calculated for all treatment plans. A Wilcoxon paired test was performed to evaluate the statistical significance (p < 0.05) of 3DCRT and IMRT compared with PT. Results: The mean heart doses were 21 Gy, 12 Gy, and 8 Gy (relative biologic effectiveness [RBE]) with 3DCRT, IMRT, and PT, respectively. Compared with 3DCRT and IMRT, PT reduced the mean doses to the left and right atria; the left and right ventricles; the aortic, mitral, and tricuspid valves; and the left anterior descending, left circumflex, and right circumflex coronary arteries. Conclusions: Compared with 3DCRT and IMRT, PT reduced the radiation doses to all major cardiac subunits. Limiting the doses to these structures should translate into lower rates of cardiac toxicities.

  18. Biological effects of exposure to magnetic resonance imaging: an overview

    OpenAIRE

    Formica Domenico; Silvestri Sergio

    2004-01-01

    Abstract The literature on biological effects of magnetic and electromagnetic fields commonly utilized in magnetic resonance imaging systems is surveyed here. After an introduction on the basic principles of magnetic resonance imaging and the electric and magnetic properties of biological tissues, the basic phenomena to understand the bio-effects are described in classical terms. Values of field strengths and frequencies commonly utilized in these diagnostic systems are reported in order to a...

  19. Effective dose estimation in whole-body multislice CT in paediatric trauma patients

    Energy Technology Data Exchange (ETDEWEB)

    Munk, Robin D.; Saueressig, Ulrich; Kotter, Elmar; Langer, Mathias; Bley, Thorsten A. [University Hospital, Department of Radiology, Freiburg im Breisgau (Germany); Strohm, Peter C.; Zwingmann, Joern; Suedkamp, Norbert P. [University Hospital, Department of Orthopaedic and Trauma Surgery, Freiburg im Breisgau (Germany); Uhl, Markus [University Hospital, Department of Radiology, Section of Paediatric Radiology, Freiburg im Breisgau (Germany)

    2009-03-15

    The number of multislice CT (MSCT) scans performed in polytraumatized children has increased rapidly. There is growing concern regarding the radiation dose in MSCT and its long-term consequences, especially in children. To determine the effective dose to polytraumatized children who undergo whole-body MSCT. A total of 51 traumatized children aged 0-16 years underwent a polytrauma protocol CT scan between November 2004 and August 2006 at our institution. The effective dose was calculated retrospectively by a computer program (CT-Expo 1.5, Hannover, Germany). The mean effective dose was 20.8 mSv (range 8.6-48.9 mSv, SD{+-}7.9 mSv). There was no statistically significant difference in the effective dose between male and female patients. Whole-body MSCT is a superior diagnostic tool in polytraumatized children with 20.8 mSv per patient being a justified mean effective dose. In a potentially life-threatening situation whole-body MSCT provides the clinicians with relevant information to initiate life-saving therapy. Radiologists should use special paediatric protocols that include dose-saving mechanisms to keep the effective dose as low as possible. Further studies are needed to examine and advance dose-saving strategies in MSCT, especially in children. (orig.)

  20. Systems Biology and Biomarkers of Early Effects for Occupational Exposure Limit Setting.

    Science.gov (United States)

    DeBord, D Gayle; Burgoon, Lyle; Edwards, Stephen W; Haber, Lynne T; Kanitz, M Helen; Kuempel, Eileen; Thomas, Russell S; Yucesoy, Berran

    2015-01-01

    In a recent National Research Council document, new strategies for risk assessment were described to enable more accurate and quicker assessments. This report suggested that evaluating individual responses through increased use of bio-monitoring could improve dose-response estimations. Identification of specific biomarkers may be useful for diagnostics or risk prediction as they have the potential to improve exposure assessments. This paper discusses systems biology, biomarkers of effect, and computational toxicology approaches and their relevance to the occupational exposure limit setting process. The systems biology approach evaluates the integration of biological processes and how disruption of these processes by chemicals or other hazards affects disease outcomes. This type of approach could provide information used in delineating the mode of action of the response or toxicity, and may be useful to define the low adverse and no adverse effect levels. Biomarkers of effect are changes measured in biological systems and are considered to be preclinical in nature. Advances in computational methods and experimental -omics methods that allow the simultaneous measurement of families of macromolecules such as DNA, RNA, and proteins in a single analysis have made these systems approaches feasible for broad application. The utility of the information for risk assessments from -omics approaches has shown promise and can provide information on mode of action and dose-response relationships. As these techniques evolve, estimation of internal dose and response biomarkers will be a critical test of these new technologies for application in risk assessment strategies. While proof of concept studies have been conducted that provide evidence of their value, challenges with standardization and harmonization still need to be overcome before these methods are used routinely.

  1. LET and dose rate effect on radiation-induced copolymerization in physical gel

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Seiko, E-mail: Nakagawa.Seiko@iri-tokyo.jp [Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto-ku, Tokyo 135-0064 (Japan); Taguchi, Mitsumasa; Kimura, Atsushi; Nagasawa, Naotsugu; Hiroki, Akihiro [Environmental Radiation Processing Group, Environment and Industrial Materials Research Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-09-01

    Highlights: •LET and dose rate effect on polymerization in gel was almost the same as in solution. •The ratio of the dose rate effect in the gel was higher than that in solution. •The initiation and termination processes show the difference on the dose rate effect. -- Abstract: N{sub 2}-saturated 2-propanol solutions containing styrene and maleimide were gelled by the addition of hydroxypropylcellulose and irradiated by proton, He and C-ion beams. The trend in the dose rate and LET effects on the yield and molecular weight distribution of the polymer produced in the gel was almost the same in the solution. On the contrary, the dose rate effect in the gel was higher than that in the solution. This effect was accelerated for irradiations by proton as well as heavier ion with a higher LET value.

  2. Biological Effects of the Great Oxidation Event

    Science.gov (United States)

    Schopf, J.

    2012-12-01

    Fossil evidence of photoautotrophy, documented in Precambrian sediments by stromatolites, stromatolitic microfossils, and carbon isotopic data consistent with autotrophic CO2-fixation, extends to ~3,500 Ma. Such data, however, are insufficient to establish the time of origin of O2-producing (cyanobacterial) photosynthesis from its anoxygenic, photosynthetic bacterial, evolutionary precursor. The oldest (Paleoarchean) stromatolites may have been formed by anoxygenic photoautotrophs, rather than the cyanobacteria that dominate Proterozoic and modern stromatolites. Unlike the cyanobacteria of Proterozoic microbial assemblages, the filamentous and coccoidal microfossils of Archean deposits may represent remnants of non-O2-producing prokaryotes. And although the chemistry of Archean organic matter shows it to be biogenic, its carbon isotopic composition is insufficient to differentiate between oxygenic and anoxygenic sources. Though it is well established that Earth's ecosystem has been based on autotrophy since its early stages and that O2-producing photosynthesis evolved earlier, perhaps much earlier, than the increase of atmospheric oxygen in the ~2,450 and ~2,320 Ma Great Oxidation Event (GOE), the time of origin of oxygenic photoautotrophy has yet to be established. Recent findings suggest that Earth's ecosystem responded more or less immediately to the GOE. The increase of atmospheric oxygen markedly affected ocean water chemistry, most notably by increasing the availability of biologically usable oxygen (which enabled the development of obligate aerobes, such as eukaryotes), and of nitrate, sulfate and hydrogen sulfide (the increase of H2S being a result of microbial reduction of sulfate), the three reactants that power the anaerobic basis of sulfur-cycling microbial sulfuretums. Fossil evidence of the earliest eukaryotes (widely accepted to date from ~1800 Ma and, arguably, ~2200 Ma) fit this scenario, but the most telling example of life's response to the GOE

  3. Biological effects of low energy nitrogen ion implantation on Jatropha curcas L. seed germination

    Energy Technology Data Exchange (ETDEWEB)

    Xu Gang, E-mail: xg335300@yahoo.com.cn [Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025 (China); Institute of Entomology, Guizhou University, Guiyang 550025 (China); Wang Xiaoteng [Department of Agricultural Resources and Environment, College of Agricultural, Guizhou University, Guiyang 550025 (China); Gan Cailing; Fang Yanqiong; Zhang Meng [College of Life Sciences, Guizhou University, Guiyang 550025 (China)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We analyzed biological effects of N{sup +} implantation on dry Jatropha curcas seed. Black-Right-Pointing-Pointer N{sup +} implantation greatly decreased seedling survival rate. Black-Right-Pointing-Pointer At doses beyond 15 Multiplication-Sign 10{sup 16} ion cm{sup -2}, biological repair took place. Black-Right-Pointing-Pointer CAT was essential for H{sub 2}O{sub 2} removal. POD mainly functioned as seed was severely hurt. Black-Right-Pointing-Pointer HAsA-GSH cycle mainly contributed to the regeneration of HAsA. - Abstract: To explore the biological effects of nitrogen ion beam implantation on dry Jatropha curcas seed, a beam of N{sup +} with energy of 25 keV was applied to treat the dry seed at six different doses. N{sup +} beam implantation greatly decreased germination rate and seedling survival rate. The doses within the range of 12 Multiplication-Sign 10{sup 16} to 15 Multiplication-Sign 10{sup 16} ions cm{sup -2} severely damaged the seeds: total antioxidant capacity (TAC), germination rate, seedling survival rate, reduced ascorbate acid (HAsA) and reduced glutathione (GSH) contents, and most of the tested antioxidases activity (i.e. catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD)) reached their lowest levels. At a dose of 18 Multiplication-Sign 10{sup 16} ion cm{sup -2}, biological repair took place: moderate increases were found in TAC, germination rate, seedling survival rate, HAsA and GSH contents, and some antioxidant enzyme activities (i.e. CAT, APX, SOD and GPX). The dose of 18 Multiplication-Sign 10{sup 16} ions cm{sup -2} may be the optimum dose for use in dry J. curcas seed mutation breeding. CAT, HAsA and GSH contributed to the increase of TAC, but CAT was the most important. POD performed its important role as seed was severely damaged. The main role of the HAsA-GSH cycle appeared to be for regeneration of HAsA.

  4. Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects

    Science.gov (United States)

    Kennedy, Ann

    The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together

  5. Effect of Low-Dose (Single-Dose Magnesium Sulfate on Postoperative Analgesia in Hysterectomy Patients Receiving Balanced General Anesthesia

    Directory of Open Access Journals (Sweden)

    Arman Taheri

    2015-01-01

    Full Text Available Background and Aim. Aparallel, randomized, double blinded, placebo-controlled trial study was designed to assess the efficacy of single low dose of intravenous magnesium sulfate on post-total abdominal hysterectomy (TAH pain relief under balanced general anesthesia. Subject and Methods. Forty women undergoing TAH surgery were assigned to two magnesium sulfate (N=20 and normal saline (N=20 groups randomly. The magnesium group received magnesium sulfate 50 mg·kg−1 in 100 mL of normal saline solution i.v as single-dose, just 15 minutes before induction of anesthesia whereas patients in control group received 100 mL of 0.9% sodium chloride solution at the same time. The same balanced general anesthesia was induced for two groups. Pethidine consumption was recorded over 24 hours precisely as postoperative analgesic. Pain score was evaluated with Numeric Rating Scale (NRS at 0, 6, 12, and 24 hours after the surgeries. Results. Postoperative pain score was lower in magnesium group at 6, 12, and 24 hours after the operations significantly (P<0.05. Pethidine requirement was significantly lower in magnesium group throughout 24 hours after the surgeries (P=0.0001. Conclusion. Single dose of magnesium sulfate during balanced general anesthesia could be considered as effective and safe method to reduce postoperative pain and opioid consumption after TAH.

  6. The effect of rare-earth filtration on organ doses in intraoral radiography

    Energy Technology Data Exchange (ETDEWEB)

    Asako, Satoshi; Satoh, Kenji; Furumoto, Keiichi (Nippon Dental Univ., Tokyo (Japan))

    1994-08-01

    Filters of rare-earth elements such as lanthanum (La, Z=57), samarium (Sm, Z=62), gadolinium (Gd, Z=64) and erbium (Er, Z=68) are frequently used in radiography for the purpose of reducing the patient dose by eliminating low-energy and high-energy X-rays which are not involved in imaging. It is useful to evaluate the dose reduction achieved by these rare-earth filters in terms of organ dose, and the effective dose equivalent, which is used for evaluating carcinogenic risks and hereditary effects of X-ray irradiation, for the purpose of optimizing the radiographic technique and radiation protection. Therefore, we calculated the organ dose and effective dose equivalent during intraoral radiography of the maxillary incisor region by simulation using samarium or erbium, typical rare-earth elements, in filtration. We evaluated the effects of these metals in dose reduction. When samarium or erbium, 0.1 mm thick, was used in added filtration at tube voltage of 60, 70, 80 and 90 kV, the time required for radiography almost doubled, respectively. The organ dose at each tube voltage was the largest in the parathyroid and thyroid glands, followed by bone surfaces and the optic lenses, skin, red bone marrow and salivary glands, larynx, and brain, in that order. The organ dose at sites other than the larynx and brain decreased as the quality of the incident X-ray beam was hardened. When samarium or erbium was added at each voltage, the effective dose equivalent was reduced by about 20% to 45%. Erbium was more effective than samarium in reducing the effective dose equivalent, and either of the two elements decreased its effectiveness with an increase in tube voltage. (author) 43 refs.

  7. Experimental study on x-rays dose enhancement effects for floating gate ROMs

    CERN Document Server

    Guo Hong Xia; Chen Yu Sheng; Han Fu Bin; He Chao Hui; Zhao Hui

    2002-01-01

    Experimental results of x-ray dose enhancement effects are given for floating gate read-only memory (ROMs) irradiated in the Beijing Synchrotron Radiation Facility. The wrong byte numbers vs. total irradiation dose have been tested and the equivalent relation of total dose damage is provided compared the response of devices irradiated with sup 6 sup 0 Co gamma-ray source. The x-ray dose enhancement factors for floating gate ROMs are obtained firstly in China. These results can be an effective evaluation data for x-rays radiation hardening technology

  8. {sup 226} Ra committed effective dose assessment for osteoporosis treatment with `Gran-White` dolomite

    Energy Technology Data Exchange (ETDEWEB)

    Pecequilo, Brigitte R.S.; Campos, Marcia P. de [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1997-12-01

    A total of 6 dolomite samples were prepared for activity concentration measurement by using high resolution gamma-ray spectrometry. The calculated average specific activity of {sup 226} Ra was 4.34 Bq/kg. The committed effective dose due to the Ra-226 specific activity in dolomite was performed following the ICRP 30 and ICRP 61 procedures and dose conversion factors. Values of 1.95 x 10{sup -6} Sv were obtained for committed effective dose and 5.93 x 10{sup -5} Sv for committed dose equivalent in the bone surface. (author). 9 refs., 2 tabs.

  9. Analysis of MIR-18 results for physical and biological dosimetry: radiation shielding effectiveness in LEO

    Science.gov (United States)

    Cucinotta, F. A.; Wilson, J. W.; Williams, J. R.; Dicello, J. F.

    2000-01-01

    We compare models of radiation transport and biological response to physical and biological dosimetry results from astronauts on the Mir space station. Transport models are shown to be in good agreement with physical measurements and indicate that the ratio of equivalent dose from the Galactic Cosmic Rays (GCR) to protons is about 3/2:1 and that this ratio will increase for exposures to internal organs. Two biological response models are used to compare to the Mir biodosimetry for chromosome aberration in lymphocyte cells; a track-structure model and the linear-quadratic model with linear energy transfer (LET) dependent weighting coefficients. These models are fit to in vitro data for aberration formation in human lymphocytes by photons and charged particles. Both models are found to be in reasonable agreement with data for aberrations in lymphocytes of Mir crew members: however there are differences between the use of LET dependent weighting factors and track structure models for assigning radiation quality factors. The major difference in the models is the increased effectiveness predicted by the track model for low charge and energy ions with LET near 10 keV/micrometers. The results of our calculations indicate that aluminum shielding, although providing important mitigation of the effects of trapped radiation, provides no protective effect from the galactic cosmic rays (GCR) in low-earth orbit (LEO) using either equivalent dose or the number of chromosome aberrations as a measure until about 100 g/cm 2 of material is used.

  10. Effect of radiation and fungal treatment on ligno celluloses and their biological activity

    Energy Technology Data Exchange (ETDEWEB)

    Lam, N.D.; Nagasawa, Naotsugu; Kume, Tamikazu E-mail: kume@taka.jaeri.go.jp

    2000-10-01

    Effects of high-dose irradiation and fungal treatment on some kinds of lignocellulose material were investigated in order to assess the potential effects of bioactive substances on plants. Each treatment and combination of treatments significantly altered the components of lignocellulose materials. Irradiation strongly affected all plant materials, causing a series of changes in physico-chemical parameters such as solubilization during solvent extraction and losses of fibre components. By these degradations, certain biologically active substances formed and acted as antagonists of auxin-induced growth.

  11. Estimating radiation doses from multidetector CT using Monte Carlo simulations: effects of different size voxelized patient models on magnitudes of organ and effective dose.

    Science.gov (United States)

    DeMarco, J J; Cagnon, C H; Cody, D D; Stevens, D M; McCollough, C H; Zankl, M; Angel, E; McNitt-Gray, M F

    2007-05-07

    The purpose of this work is to examine the effects of patient size on radiation dose from CT scans. To perform these investigations, we used Monte Carlo simulation methods with detailed models of both patients and multidetector computed tomography (MDCT) scanners. A family of three-dimensional, voxelized patient models previously developed and validated by the GSF was implemented as input files using the Monte Carlo code MCNPX. These patient models represent a range of patient sizes and ages (8 weeks to 48 years) and have all radiosensitive organs previously identified and segmented, allowing the estimation of dose to any individual organ and calculation of patient effective dose. To estimate radiation dose, every voxel in each patient model was assigned both a specific organ index number and an elemental composition and mass density. Simulated CT scans of each voxelized patient model were performed using a previously developed MDCT source model that includes scanner specific spectra, including bowtie filter, scanner geometry and helical source path. The scan simulations in this work include a whole-body scan protocol and a thoracic CT scan protocol, each performed with fixed tube current. The whole-body scan simulation yielded a predictable decrease in effective dose as a function of increasing patient weight. Results from analysis of individual organs demonstrated similar trends, but with some individual variations. A comparison with a conventional dose estimation method using the ImPACT spreadsheet yielded an effective dose of 0.14 mSv mAs(-1) for the whole-body scan. This result is lower than the simulations on the voxelized model designated 'Irene' (0.15 mSv mAs(-1)) and higher than the models 'Donna' and 'Golem' (0.12 mSv mAs(-1)). For the thoracic scan protocol, the ImPACT spreadsheet estimates an effective dose of 0.037 mSv mAs(-1), which falls between the calculated values for Irene (0.042 mSv mAs(-1)) and Donna (0.031 mSv mAs(-1)) and is higher relative

  12. Total Dose Effects on Error Rates in Linear Bipolar Systems

    Science.gov (United States)

    Buchner, Stephen; McMorrow, Dale; Bernard, Muriel; Roche, Nicholas; Dusseau, Laurent

    2007-01-01

    The shapes of single event transients in linear bipolar circuits are distorted by exposure to total ionizing dose radiation. Some transients become broader and others become narrower. Such distortions may affect SET system error rates in a radiation environment. If the transients are broadened by TID, the error rate could increase during the course of a mission, a possibility that has implications for hardness assurance.

  13. Dose-related effects of dexamethasone on liver damage due to bile duct ligation in rats

    Institute of Scientific and Technical Information of China (English)

    Halil Eken; Hayrettin Ozturk; Hulya Ozturk; Huseyin Buyukbayram

    2006-01-01

    AIM: To evaluate the effects of dexamethasone on liver damage in rats with bile duct ligation. METHODS: A total of 40 male Sprague-Dawley rats,weighing 165-205 g, were used in this study. Group 1 (sham-control, n = 10) rats underwent laparotomy alone and the bile duct was just dissected from the surrounding tissue. Group 2 rats (untreated, n = 10)were subjected to bile duct ligation (BDL) and no drug was applied. Group 3 rats (low-dose dexa, n = 10)received a daily dose of dexamethasone by orogastric tube for 14 d after BDL. Group 4 rats (high-dose dexa,n = 10) received a daily dose of dexamethasone by orogastric tube for 14 d after BDL. At the end of the twoweek period, biochemical and histological evaluations were processed.RESULTS: The mean serum bilirubin and liver enzyme levels significantly decreased, and superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSHPx) values were significantly increased in low-dose dexa and high-dose dexa groups when compared to the untreated group. The histopathological score was significantly less in the low-dose and high-dose dexa groups compared to the untreated rats. In the low-dose dexa group, moderate liver damage was seen, while mild liver damage was observed in the high-dose dexa group.CONCLUSION: Corticosteroids reduced liver damage produced by bile duct obstruction. However, the histopathological score was not significantly lower in the high-dose corticosteroid group as compared to the lowdose group. Thus, low-dose corticosteroid provides a significant reduction of liver damage without increased side effects, while high dose is associated not with lower fibrosis but with increased side effects.

  14. Lewisite: its chemistry, toxicology, and biological effects.

    Science.gov (United States)

    Goldman, M; Dacre, J C

    1989-01-01

    Lewisite is an organic arsenical war gas which is a vesicant with attendant toxicities due to its ability to combine with thiol groups which are essential for activity of a variety of enzymes. Although Lewisite has been designated as a "suspected carcinogen," the indictment is not supported by the available scientific evidence. Indeed, the unwarranted conclusion is based on one specific case history of a former German soldier whose lower right leg was exposed to liquid Lewisite in 1940 with subsequent development of intraepidermal squamous cell carcinoma, and the examination of death certificates of former workers at a Japanese factory that manufactured a variety of war gases including mustard gas, hydrocyanic acid, chloracetophenome, phosgene, diphenylcyanarsine and Lewisite. It is difficult to comprehend why Lewisite was selected out of this group of toxic chemicals as one of those responsible for respiratory cancer in these workers. It would appear to be a difficult task, indeed, to disengage a specific worker from one of the other of several gases at the workplace and assign a specific gas-induced death. The evidence that organic arsenicals are carcinogenic is weak. Although the weight of evidence is such that inorganic arsenical derivatives are considered weak mutagens, the evidence that organic arsenicals are mutagenic is poor. Recent examination of the mutagenic potential of Lewisite using the Ames test has shown that Lewisite is not mutagenic under these circumstances. While oral administration of arsenical compounds, whether inorganic or organic, does not induce teratogenicity except at very high dose levels which are associated with some degree of maternal toxicity, parenteral administration has been associated with teratogenicity but information of maternal toxicity has not always been available. Indeed, maternal toxicity should be considered as an important diagnostic tool in assessing whether a chemical is teratogenic. The significance of parenteral

  15. Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications

    Energy Technology Data Exchange (ETDEWEB)

    Loubele, M. [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Katholieke Universiteit Leuven, Kapucijnenvoer 7, 3000 Leuven (Belgium); Department of Periodontology, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Katholieke Universiteit Leuven, Kapucijnenvoer 7, 3000 Leuven (Belgium); ESAT-PSI, Centre for the Processing of Speech and Images. Department of Electrotechnical Engineering, Group Science, Engineering and Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10 - bus 2440 Belgium (Belgium)], E-mail: Miet.Loubele@uzleuven.be; Bogaerts, R. [Department of Experimental Radiotherapy, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Herestraat 49 - bus 7003, 3000 Leuven (Belgium)], E-mail: Ria.Bogaerts@med.kuleuven.be; Van Dijck, E. [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Katholieke Universiteit Leuven, Kapucijnenvoer 7, 3000 Leuven (Belgium); Pauwels, R. [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Katholieke Universiteit Leuven, Kapucijnenvoer 7, 3000 Leuven (Belgium)], E-mail: ruben.pauwels@med.kuleuven.be; Vanheusden, S. [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Katholieke Universiteit Leuven, Kapucijnenvoer 7, 3000 Leuven (Belgium); Suetens, P. [ESAT-PSI, Centre for the Processing of Speech and Images. Department of Electrotechnical Engineering, Group Science, Engineering and Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10 - bus 2440 Belgium (Belgium)], E-mail: Paul.Suetens@esat.kuleuven.be; Marchal, G. [Department of Radiology, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Herestraat 49 - bus 7003, 3000 Leuven (Belgium)], E-mail: Guy.Marchal@uzleuven.be (and others)

    2009-09-15

    Objectives: To compare the effective dose levels of cone beam computed tomography (CBCT) for maxillofacial applications with those of multi-slice computed tomography (MSCT). Study design: The effective doses of 3 CBCT scanners were estimated (Accuitomo 3D, i-CAT, and NewTom 3G) and compared to the dose levels for corresponding image acquisition protocols for 3 MSCT scanners (Somatom VolumeZoom 4, Somatom Sensation 16 and Mx8000 IDT). The effective dose was calculated using thermoluminescent dosimeters (TLDs), placed in a Rando Alderson phantom, and expressed according to the ICRP 103 (2007) guidelines (including a separate tissue weighting factor for the salivary glands, as opposed to former ICRP guidelines). Results: Effective dose values ranged from 13 to 82 {mu}Sv for CBCT and from 474 to 1160 {mu}Sv for MSCT. CBCT dose levels were the lowest for the Accuitomo 3D, and highest for the i-CAT. Conclusions: Dose levels for CBCT imaging remained far below those of clinical MSCT protocols, even when a mandibular protocol was applied for the latter, resulting in a smaller field of view compared to various CBCT protocols. Considering this wide dose span, it is of outmost importance to justify the selection of each of the aforementioned techniques, and to optimise the radiation dose while achieving a sufficient image quality. When comparing these results to previous dosimetric studies, a conversion needs to be made using the latest ICRP recommendations.

  16. Dependence of pentobarbital kinetics upon the dose of the drug and its pharmacodynamic effects.

    Science.gov (United States)

    Kozlowski, K H; Szaykowski, A; Danysz, A

    1977-01-01

    Pentobarbital (PB), at dose range of 20--50 mg/kg, displays in rabbits non-linear, dose-dependent kinetics. Pharmacokinetics parameters of drug elimination depend largely upon the dose, while the distribution phase is dose-independent. The rate of disappearance of PB from the central compartment (plasma) decreases with the increase of the dose. The analysis of pharmacodynamic parameters has shown that this dose-dependent retardation of PB elimination is probably caused by an impairment of metabolic processes, resulting from disturbance of the circulatory system. A close correlation has been found between the hypotensive effect of PB and the elimination constant, k13, and also between the hypotensive effect and beta.Vd(extrap), a coefficient proportional to the rate of metabolism of PB [23, 29]. The results indicate the necessity of considering the changes in the functional state of the organism, related to the action of a drug, in pharmacokinetic studies.

  17. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery.

    Science.gov (United States)

    Kirkpatrick, John P; Meyer, Jeffrey J; Marks, Lawrence B

    2008-10-01

    The linear-quadratic (LQ) model is widely used to model the effect of total dose and dose per fraction in conventionally fractionated radiotherapy. Much of the data used to generate the model are obtained in vitro at doses well below those used in radiosurgery. Clinically, the LQ model often underestimates tumor control observed at radiosurgical doses. The underlying mechanisms implied by the LQ model do not reflect the vascular and stromal damage produced at the high doses per fraction encountered in radiosurgery and ignore the impact of radioresistant subpopulations of cells. The appropriate modeling of both tumor control and normal tissue toxicity in radiosurgery requires the application of emerging understanding of molecular-, cellular-, and tissue-level effects of high-dose/fraction-ionizing radiation and the role of cancer stem cells.

  18. Development of MAAP5.0.3 Dose Model for Radiation Environment Effect Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Mi Ro [KHNP-CRI, Daejeon (Korea, Republic of)

    2015-10-15

    The equipment survivability assessment under the severe accident conditions should be performed. For the environmental conditions such as the pressure and temperature, they can be calculated using MAAP (Modular Accident Analysis Program) code. However, since MAAP itself cannot calculate the radiation DOSE, MAAP5 DOSE model should be developed in order to calculate the DOSE rate during the severe accidents. In this study, we developed the MAAP5 DOSE model for spent fuel pool of OPR1000 type NPP and calculated the DOSE to assess the survivability of the facilities in spent fuel pool and fuel handling region. Until now, there are so many uncertainties in the analysis for radiation effect during the severe accident. However, in terms of the establishment of the severe accident management strategy, quantitative analysis in order to find the general trend for radiation increase during the severe accident is useful. For the radiation environmental effect analysis, the previous studies are mainly focused inside the containment. However, after the Fukushima accident, the severe accident phenomena in the SFP have been the great issues in the nuclear industry including Korea. So, in this study, the dose rate for spent fuel building when the severe accident happens in the SFP is calculated using MAAP5 DOSE. As expected, the dose rate is increased right after the spent fuel is partially uncovered. However, the amount of dose is less significant since the rate of temperature increase is much faster than the rate of dose increase.

  19. Naoxintong dose effects on inflammatory factor expression in the rat brain following focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Xiangjian Zhang; Li Xü; Zuoran Chen; Shuchao Hu; Liying Zhang; Haiyan Li; Ruichun Liu

    2008-01-01

    BACKGROUND: Certain components of tetramethylpyrazine, a traditional Chinese medicine, exhibit protective effects against brain injury.OBJECTIVE: To investigate the effects of different Naoxintong doses on expression of nuclear factor-kappa B (κ B), interleukin-6, tumor necrosis factor-α, and complement 3 in rats following focal cerebral ischemia.DESIGN, TIME AND SETTING: The randomized experiment was performed at the Laboratory of Neurology, Second Hospital of Hebei Medical University from June 2004 to June 2006. MATERIAIS: A total of 150 adult, healthy, male, Sprague Dawley rats, weighing 280-320 g, were selected. Naoxintong powder (mainly comprising szechwan lovage rhizome, milkvetch root, danshen root, and radix angelicae sinensis) was obtained from Buchang Pharmacy Co., Ltd. in Xianyang City of Shanxi Province of China, lot number 040608.METHODS: The rats were randomly assigned into sham operation, saline, high-dose Naoxintong, moderate-dose Naoxintong, and low-dose Naoxintong groups, with 30 rats in each group. Rat models of middle cerebral artery occlusion were established using the suture method, with the exception of the sham operation group. Rats in the high-dose, moderate-dose and low-dose Naoxintong groups received 4, 2, and 1 glkg Naoxintong respectively, by gavage. Rats in the saline group were treated with 1 mL saline by gavage. All rats were administered by garage at 5 and 23 hours following surgery, and subsequently, once per day.MAIN OUTCOME MEASURES: At 6, 24, 48, 72 hours, and 7 days following model establishment, brain water content was measured. Histopathological changes in brain tissues were detected using hematoxylin-eosin staining. Expression of nuclear factor- κB, interleukin-6, tumor necrosis factor-α, and complement 3 was examined by immunohistochemistry.RESULTS: A total of 150 rats were included in the final analysis with no loss. Brain water content was significantly increased in the ischemic hemisphere of rats from the saline, as

  20. Dose effect on the uptake and accumulation of hydroxytyrosol and its metabolites in target tissues in rats.

    Science.gov (United States)

    López de las Hazas, Maria-Carmen; Rubió, Laura; Kotronoulas, Aristotelis; de la Torre, Rafael; Solà, Rosa; Motilva, Maria-José

    2015-07-01

    Hydroxytyrosol (HT) is the most prominent phenolic compound of virgin olive oil and due to its scientifically validated biological activities it is entering to the market as a potentially useful supplement for cardiovascular disease prevention. The aim of the present study was to investigate the relationship between the HT dose intake and its tissue uptake in rats, and thus, providing complementary information in relation to the target-dose relationship. Rats were given a refined olive oil enriched with HT at different doses (1, 10, and 100 mg/kg) and they were sacrificed after 5 h to ensure the cell tissue uptake of HT and its metabolites. Plasma samples and different organs as liver, kidney, heart and brain were obtained, and HT metabolites were analyzed by UPLC-MS/MS. The results showed that HT and its metabolites could be accumulated in a dose-dependent manner basically in the liver, kidney, and brain and were detected in these tissues even at nutritionally relevant human doses. The detection of free HT in liver and kidney was noteworthy. To date, this appears to be the only biologically active form, and thus, it provides relevant information for optimizing the potential applications of HT to prevent certain hepatic and renal diseases. In recent years, HT and its derivatives have led to a great interest from the virgin olive oil producers and manufacturers of nutraceutical supplements. The increasing interest in HT is mainly due to the European Food Safety Agency (EFSA) Panel on Dietetic Products, Nutrition, and Allergies (NDA) scientific opinion that established a cause-and-effect relationship between the consumption of olive oil polyphenols and protection of LDL particles from oxidative damage . Based on this positive opinion, the health claim "Olive oil polyphenols contribute to the protection of blood lipids from oxidative stress" was included in the list of health claims , being the only authorized health claim in the European Union regarding polyphenols

  1. CONTRASTING DOSE-RATE EFFECTS OF GAMMA-IRRADIATION ON RAT SALIVARY-GLAND FUNCTION

    NARCIS (Netherlands)

    VISSINK, A; DOWN, JD; KONINGS, AWT

    1992-01-01

    The aim of this study was to investigate the effects of Co-60 irradiation delivered at high (HDR) and low (LDR) dose-rates on rat salivary gland function. Total-body irradiation (TBI; total doses 7.5, 10 and 12.5 Gy) was applied from a Co-60 source at dose-rates of 1 cGy/min (LDR) and 40 cGy/min (HD

  2. Gastrointestinal Dose-Histogram Effects in the Context of Dose-Volume–Constrained Prostate Radiation Therapy: Analysis of Data From the RADAR Prostate Radiation Therapy Trial

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Martin A., E-mail: Martin.Ebert@health.wa.gov.au [Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia (Australia); School of Physics, University of Western Australia, Perth, Western Australia (Australia); Foo, Kerwyn [Sydney Medical School, University of Sydney, Sydney, New South Wales (Australia); Haworth, Annette [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria (Australia); Gulliford, Sarah L. [Joint Department of Physics, Institute of Cancer Research and Royal Marsden National Health Service Foundation Trust, Sutton, Surrey (United Kingdom); Kennedy, Angel [Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia (Australia); Joseph, David J. [Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia (Australia); School of Surgery, University of Western Australia, Perth, Western Australia (Australia); Denham, James W. [School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales (Australia)

    2015-03-01

    Purpose: To use a high-quality multicenter trial dataset to determine dose-volume effects for gastrointestinal (GI) toxicity following radiation therapy for prostate carcinoma. Influential dose-volume histogram regions were to be determined as functions of dose, anatomical location, toxicity, and clinical endpoint. Methods and Materials: Planning datasets for 754 participants in the TROG 03.04 RADAR trial were available, with Late Effects of Normal Tissues (LENT) Subjective, Objective, Management, and Analytic (SOMA) toxicity assessment to a median of 72 months. A rank sum method was used to define dose-volume cut-points as near-continuous functions of dose to 3 GI anatomical regions, together with a comprehensive assessment of significance. Univariate and multivariate ordinal regression was used to assess the importance of cut-points at each dose. Results: Dose ranges providing significant cut-points tended to be consistent with those showing significant univariate regression odds-ratios (representing the probability of a unitary increase in toxicity grade per percent relative volume). Ranges of significant cut-points for rectal bleeding validated previously published results. Separation of the lower GI anatomy into complete anorectum, rectum, and anal canal showed the impact of mid-low doses to the anal canal on urgency and tenesmus, completeness of evacuation and stool frequency, and mid-high doses to the anorectum on bleeding and stool frequency. Derived multivariate models emphasized the importance of the high-dose region of the anorectum and rectum for rectal bleeding and mid- to low-dose regions for diarrhea and urgency and tenesmus, and low-to-mid doses to the anal canal for stool frequency, diarrhea, evacuation, and bleeding. Conclusions: Results confirm anatomical dependence of specific GI toxicities. They provide an atlas summarizing dose-histogram effects and derived constraints as functions of anatomical region, dose, toxicity, and endpoint for

  3. The effects of exercise on dose and dose distribution of inhaled automotive pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Kleinman, M.T.; Mautz, W.J. (Air Pollution Health Effects Laboratory, University of California, Irvine (United States))

    1991-10-01

    The purpose of this study was to determine how changes in ventilation rate and in the entry route of air pollutants into the respiratory tract (nose versus mouth breathing) affected the respiratory tract uptake and penetration of inhaled gaseous and particulate pollutants associated with automobile emissions. Experiments were performed with female beagle dogs exposed while standing at rest or while exercising on a treadmill at 5 km/hour and a 7.5 percent grade. Dogs were exposed to nitrogen dioxide at concentrations of 1 and 5 parts per million (ppm), to formaldehyde at 2 and 10 ppm, and to an aerosol of ammonium nitrate particles (0.3 micron mass median aerodynamic diameter) at 1 mg/m3. Total respiratory system uptake and effects on breath time, expired tidal volume, fractional expiration time, minute ventilation, respiratory gas exchange, ventilation equivalents for oxygen and carbon dioxide, and dynamic pulmonary resistance and compliance were measured in exercising and resting dogs exposed for two hours to 5 ppm nitrogen dioxide and 10 ppm formaldehyde in combination with 1 mg/m3 of ammonium nitrate particles. Regional penetration of pollutants through oral and nasal airways and pollutant uptake in the lung were measured in a separate group of six tracheostomized dogs standing at rest while being exposed to nitrogen dioxide, formaldehyde, and ammonium nitrate particles. Hypercapnic stimulation was used to modify ventilation rates in the tracheostomized dogs while pollutant penetration and uptake were measured. Dogs exposed to 5 ppm of nitrogen dioxide at rest tended to breathe more rapidly (p less than 0.05) and more shallowly (a nonsignificant trend) than dogs exposed to purified air.

  4. Non-Linearity of dose-effect relationship on the example of cytogenetic effects in plant cells at low level exposure to ionising radiation

    Energy Technology Data Exchange (ETDEWEB)

    Oudalova, Alla; Geras' kin, Stanislav; Dikarev, Vladimir; Dikareva, Nina; Chernonog, Elena [Russian Institute of Agricultural Radiology and Agroecology, RIARAE, 249032 Obninsk (Russian Federation); Copplestone, David [Environment Agency, Millbank Tower, 25th. Floor, 21/24 Millbank, London, SW1P 4XL (United Kingdom); Evseeva, Tatyana [Institute of Biology, Kommunisticheskaya st., 28 Syktyvkar 167610, Komi Republic (Russian Federation)

    2006-07-01

    Over several decades, modelling the effects of ionizing radiation on biological system has relied on the target principle [Timofeeff-Ressovsky et al., 1935], which assumes that cell damage or modification to genes appear as a direct consequence of the exposure of biological macromolecules to charged particles. Furthermore, it is assumed that there is no threshold for the induction of biological damage and that the effects observed are proportional to the energy absorbed. Following this principle, the average number of hits per target should increase linearly with dose, and the yield of mutations per unit of dose is assumed to be the same at both low and high doses (linearity of response). This principle has served as the scientific background for the linear no-threshold (LNT) concept that forms the basis for the radiological protection for the public and the environment [ICRP, 1990]. It follows from the LNT that there is an additional risk for human health from exposure to any radiation level, even below natural background. Since the mid 50's, however, the scientific basis for the LNT concept has been challenged as experimental data have shown that, at low doses, there was a non linear relationship in the dose response. Luchnik and Timofeeff-Ressovsky were the first who showed a non-linear response to a low dose exposure [Luchnik, 1957; Timofeeff-Ressovsky and Luchnik, 1960]. Since then, many data have been accumulated which contradict the LNT model at low doses and dose rates. However, the hit-effect paradigm has become such a strong and indissoluble fact that it has persisted even under the growing pressure of scientific evidence for phenomena at low dose exposure that can not be successfully accounted for by the LNT concept. In recent years, additional information on non-targeted effects of radiation has been accumulated following the first reports of an adaptive response in human lymphocytes [Olivieri et al., 1984] as well as bystander mutagenic effect of

  5. Comparison of image quality and effective dose by additional filtration on digital chest tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kye Sun [Dept. of Dignostic Radiology, Samsung Medical Center, Seoul (Korea, Republic of); Kim, Sung Chul [Dept. of Radiological Science, Gachon University, Sungnam (Korea, Republic of)

    2015-12-15

    The purpose of this study is to suggest proper additional filtration by comparisons patient dose and image quality among additional filters in digital chest tomosynthesis (DTS). We measured the effective dose, dose area product (DAP) by changing thickness of Cu, Al and Ni filter to compare image quality by CD curve and SNR, CNR. Cu, Al and Ni exposure dose were similar thickness 0.3 mm, 3 mm and 0.3 mm respectively. The exposure dose using filter was decreased average about 33.1% than non filter. The DAP value of 0.3 mm Ni were decreased 72.9% compared to non filter and the lowest dose among 3 filter. The effective dose of 0.3 mm Ni were decreased 48% compared to 0.102 mSv effective dose of non filter. At the result of comparison of image quality through CD curve there were similar aspect graph among Cu, Al and Ni. SNR was decreased average 19.07%, CNR was average decreased 18.17% using 3 filters. In conclusion, Ni filtration was considered to be most suitable when considered comprehensive thickness, character, sort of filter, dose reduction and image quality evaluation in DTS.

  6. Effects of exposure imprecision on estimation of the benchmark dose

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Esben; Keiding, Niels; Grandjean, Philippe

    2004-01-01

    approach is one of the most widely used methods for development of exposure limits. An important advantage of this approach is that it can be applied to observational data. However, in this type of data, exposure markers are seldom measured without error. It is shown that, if the exposure error is ignored......, then the benchmark approach produces results that are biased toward higher and less protective levels. It is therefore important to take exposure measurement error into account when calculating benchmark doses. Methods that allow this adjustment are described and illustrated in data from an epidemiological study...

  7. SU-E-T-549: Modeling Relative Biological Effectiveness of Protons for Radiation Induced Brain Necrosis

    Energy Technology Data Exchange (ETDEWEB)

    Mirkovic, D; Peeler, C; Grosshans, D; Titt, U; Taleei, R; Mohan, R [UT M.D. Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: To develop a model of the relative biological effectiveness (RBE) of protons as a function of dose and linear energy transfer (LET) for induction of brain necrosis using clinical data. Methods: In this study, treatment planning information was exported from a clinical treatment planning system (TPS) and used to construct a detailed Monte Carlo model of the patient and the beam delivery system. The physical proton dose and LET were computed in each voxel of the patient volume using Monte Carlo particle transport. A follow-up magnetic resonance imaging (MRI) study registered to the treatment planning CT was used to determine the region of the necrosis in the brain volume. Both, the whole brain and the necrosis volumes were segmented from the computed tomography (CT) dataset using the contours drawn by a physician and the corresponding voxels were binned with respect to dose and LET. The brain necrosis probability was computed as a function of dose and LET by dividing the total volume of all necrosis voxels with a given dose and LET with the corresponding total brain volume resulting in a set of NTCP-like curves (probability as a function of dose parameterized by LET). Results: The resulting model shows dependence on both dose and LET indicating the weakness of the constant RBE model for describing the brain toxicity. To the best of our knowledge the constant RBE model is currently used in all clinical applications which may Result in increased rate of brain toxicities in patients treated with protons. Conclusion: Further studies are needed to develop more accurate brain toxicity models for patients treated with protons and other heavy ions.

  8. 49. Biological dose assessment by the analyses of chromosomal aberrations and CB micronuclei in two victims accidentally exposed to 60Co gamma-rays

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Biological doses were estimated by using the yields of dicentrics plus rings(dic+r) and cytokinesis-block micronuclei (CBMN) for two victims of the 60Co radiation source accident occurred on Mar 6,2001 in the City of Xuchang(victim A), and Jun 26,2001 in the City of Kaifeng(victim B), Henan Province, respectively. The whole blood of the victim A (male, 37 years old) and the victim B (female, 27 years old)

  9. Acute cognitive effects of high doses of dextromethorphan relative to triazolam in humans

    Science.gov (United States)

    Carter, Lawrence P.; Reissig, Chad J.; Johnson, Matthew W.; Klinedinst, Margaret A.; Griffiths, Roland R.

    2012-01-01

    BACKGROUND Although concerns surrounding high-dose dextromethorphan (DXM) abuse have recently increased, few studies have examined the acute cognitive effects of high doses of DXM. The aim of this study was to compare the cognitive effects of DXM with those of triazolam and placebo. METHODS Single, acute, oral doses of DXM (100, 200, 300, 400, 500, 600, 700, 800 mg/70 kg), triazolam (0.25, 0.5 mg /70 kg), and placebo were administered p.o. to twelve healthy volunteers with histories of hallucinogen use, under double-blind conditions, using an ascending dose run-up design. Effects on cognitive performance were examined at baseline and after drug administration for up to 6 hours. RESULTS Both triazolam and DXM produced acute impairments in attention, working memory, episodic memory, and metacognition. Impairments observed following doses of 100-300 mg/70 kg DXM were generally smaller in magnitude than those observed after 0.5 mg/70 kg triazolam. Doses of DXM that impaired performance to the same extent as triazolam were in excess of 10-30 times the therapeutic dose of DXM. CONCLUSION The magnitude of the doses required for these effects and the absence of effects on some tasks within the 100-300 mg/70 kg dose range of DXM, speak to the relatively broad therapeutic window of over-the-counter DXM preparations when used appropriately. However, the administration of supratherapeutic doses of DXM resulted in acute cognitive impairments on all tasks that were examined. These findings are likely relevant to cases of high-dose DXM abuse. PMID:22989498

  10. Biological and therapeutical effects of Radon

    Energy Technology Data Exchange (ETDEWEB)

    Deetjen, P. [Institute of Physiologie and Balneologie, University of Innsbruck (Austria)

    1998-12-31

    In spas with a somewhat elevated Radon{sup 222} (Rn) activity (between 300 and 3000 Bq/l), the empirical medicine ended - in all parts of the world - with the same list of indications. It mainly includes the more painful rheumatic diseases such as deformation or degeneration of the joints and non bacterial inflammation of muscles, tendons or joints; Morbus Bechterew and other diseases of the vertebral column like spondylosis, spondylarthrosis or osteochondrosis. While informer times these effects were seldom documented in an objective manner, in recent years several prospective randomized double-blind studies proved the pain reducing efficacy of Radon therapy in patients with cervical pain syndromes, with chronic polyarthritis or with Morbus Bechterew. Studies in experimental animal models have accumulated remarkable data in organs, tissue and cultured cells that provide a rationale to explain the observed effects of Radon therapy in patients. (author)

  11. Palytoxin and Analogs: Biological and Ecological Effects

    Directory of Open Access Journals (Sweden)

    Vítor Ramos

    2010-06-01

    Full Text Available Palytoxin (PTX is a potent marine toxin that was originally found in soft corals from tropical areas of the Pacific Ocean. Soon after, its occurrence was observed in numerous other marine organisms from the same ecological region. More recently, several analogs of PTX were discovered, remarkably all from species of the dinoflagellate genus Ostreopsis. Since these dinoflagellates are also found in other tropical and even in temperate regions, the formerly unsuspected broad distribution of these toxins was revealed. Toxicological studies with these compounds shows repeatedly low LD50 values in different mammals, revealing an acute toxic effect on several organs, as demonstrated by different routes of exposure. Bioassays tested for some marine invertebrates and evidences from environmental populations exposed to the toxins also give indications of the high impact that these compounds may have on natural food webs. The recognition of its wide distribution coupled with the poisoning effects that these toxins can have on animals and especially on humans have concerned the scientific community. In this paper, we review the current knowledge on the effects of PTX and its analogs on different organisms, exposing the impact that these toxins may have in coastal ecosystems.

  12. Effect of uncertainty in nasal airway deposition of radioactive particles on effective dose

    Energy Technology Data Exchange (ETDEWEB)

    Guilmette, R.A.; Birchall, A.; Jarvis, N.S

    1998-07-01

    In the current ICRP human respiratory tract (RT) model (ICRP Publication 66), the deposition of particles in various regions of the RT during natural breathing is modelled by considering the RT as a series of filters, resulting in deposition probabilities for distal portions of the RT being dependent on those of the proximal segments. Thus, uncertainties in regional deposition in proximal segments of the RT are reflected or propagated in uncertainties in deposition in the distal segments of the lung. Experimental data on aerosol particle deposition have demonstrated significant variability in nasal airway (NA) deposition for different individuals studied. This report summarises the impact of introducing variability in NA deposition efficiency on the calculation of effective doses using the ICRP 66 model for selected radionuclides. The computer software LUDEP, modified for this purpose, was used to customise deposition patterns, and effective doses were calculated for several radionuclides ({sup 111}In, {sup 106}Ru, {sup 60}Co, {sup 210}Po, {sup 238}U and {sup 239}Pu) chosen to represent isotopes with various decay schemes and half-lives. The results indicated significant but particle-size-specific effects of assumed NA deposition efficiencies on the calculated effective doses, which varied typically by factors of five to six. The majority of the variability was associated with direct effects on deposition patterns, but in some cases, alterations of radiation dose distribution within the various target organs also contributed to the variability. These results provide a basis for evaluating uncertainties due to inter-individual differences in deposition patterns for radiation protection and risk analysis. (author)

  13. Modes-of-Action Related to Repeated Dose Toxicity: Tissue-Specific Biological Roles of PPARγ Ligand-Dependent Dysregulation in Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Merilin Al Sharif

    2014-01-01

    Full Text Available Comprehensive understanding of the precise mode of action/adverse outcome pathway (MoA/AOP of chemicals becomes a key step towards superseding the current repeated dose toxicity testing methodology with new generation predictive toxicology tools. The description and characterization of the toxicological MoA leading to non-alcoholic fatty liver disease (NAFLD are of specific interest, due to its increasing incidence in the modern society. Growing evidence stresses on the PPARγ ligand-dependent dysregulation as a key molecular initiating event (MIE for this adverse effect. The aim of this work was to analyze and systematize the numerous scientific data about the steatogenic role of PPARγ. Over 300 papers were ranked according to preliminary defined criteria and used as reliable and significant sources of data about the PPARγ-dependent prosteatotic MoA. A detailed analysis was performed regarding proteins which PPARγ-mediated expression changes had been confirmed to be prosteatotic by most experimental evidence. Two probable toxicological MoAs from PPARγ ligand binding to NAFLD were described according to the Organisation for Economic Cooperation and Development (OECD concepts: (i PPARγ activation in hepatocytes and (ii PPARγ inhibition in adipocytes. The possible events at different levels of biological organization starting from the MIE to the organ response and the connections between them were described in details.

  14. Effect of radiation dose level on the detectability of pulmonary nodules in chest tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, Sara A.; Svalkvist, Angelica; Maansson, Lars Gunnar; Baath, Magnus [University of Gothenburg, Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg (Sweden); Sahlgrenska University Hospital, Department of Medical Physics and Biomedical Engineering, Gothenburg (Sweden); Johnsson, Aase A.; Vikgren, Jenny; Flinck, Agneta; Boijsen, Marianne; Fisichella, Valeria A. [University of Gothenburg, Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg (Sweden); Sahlgrenska University Hospital, Department of Radiology, Gothenburg (Sweden)

    2014-07-15

    To investigate the detectability of pulmonary nodules in chest tomosynthesis at reduced radiation dose levels. Eighty-six patients were included in the study and were examined with tomosynthesis and computed tomography (CT). Artificial noise was added to simulate that the tomosynthesis images were acquired at dose levels corresponding to 12, 32, and 70 % of the default setting effective dose (0.12 mSv). Three observers (with >20, >20 and three years of experience) read the tomosynthesis cases for presence of nodules in a free-response receiver operating characteristics (FROC) study. CT served as reference. Differences between dose levels were calculated using the jack-knife alternative FROC (JAFROC) figure of merit (FOM). The JAFROC FOM was 0.45, 0.54, 0.55, and 0.54 for the 12, 32, 70, and 100 % dose levels, respectively. The differences in FOM between the 12 % dose level and the 32, 70, and 100 % dose levels were 0.087 (p = 0.006), 0.099 (p = 0.003), and 0.093 (p = 0.004), respectively. Between higher dose levels, no significant differences were found. A substantial reduction from the default setting dose in chest tomosynthesis may be possible. In the present study, no statistically significant difference in detectability of pulmonary nodules was found when reducing the radiation dose to 32 %. (orig.)

  15. The effect of host age and inoculation dose on infection dynamics of Angiostrongylus vasorum in red foxes (Vulpes vulpes)

    DEFF Research Database (Denmark)

    Webster, Pia; Monrad, Jesper; Kapel, Christian M O;

    2017-01-01

    , as reflected in high establishment rates. Although severe clinical disease was never observed in the foxes, A. vasorum infections in red foxes appear to be chronic and moreover, to resemble infections in dogs. The results underline the red fox as a suitable model as well as natural reservoir for the parasite.......Background: Infections and clinical cases of Angiostrongylus vasorum in dogs are found increasingly across Europe, thus rendering knowledge on its infection biology more important. We used red foxes as a carnivore model to examine the effect of host age and infection dose on the establishment...... of adult A. vasorum in single experimental infections. Methods: Fourteen juvenile and fourteen adult red foxes, free of metastrongyloid infections, were given a low (50) or high (200) dose of third-stage larvae (L3) of A. vasorum. Two groups of three foxes of each age group served as uninfected controls...

  16. Suicidal Obsessions as Dose Dependent Side-Effect of Clozapine

    Science.gov (United States)

    Aukst-Margetić, Branka; Margetić, Branimir; Boričević Maršanić, Vlatka

    2011-01-01

    Objective Although numerous reports suggest that different atypical antipsychotics can exacerbate or induce (de novo) obsessive-compulsive symptoms, there is no report of the development of ego-dystonic, suicidal obsessions during treatment with these medications. Here, the authors report the first case of clozapine-induced suicidal obsessions. Method The authors report a case of a patient diagnosed with bipolar disorder and who developed suicidal obsessions in the weeks after the dose of clozapine was increased from 150 mg/day to 300 mg/day. Results Symptoms quickly resolved after the treatment with clozapine was changed to the treatment with quetiapine and sodium valproate. Suicidal obsessions decreased promptly, within a few days, and disappeared completely when the dose of clozapine was 100 mg/day, quetiapine 600 mg/day, and sodium valproate 900 mg/day, 16 days after the initiation of changes in the medications. Conclusion The case report emphasizes the crucial need of differentiation between genuine suicidal desires and ego-dystonic suicidal obsessions. The authors suggest that in similar cases a change in antipsychotic medications to those with stronger antidopaminergic properties and lower 5HT2 receptor affinity should be considered, but also assume that the use of sodium valproate in treatment of obsessive-compulsive symptoms deserves further study. PMID:22506440

  17. Method of simulation of low dose rate for total dose effect in 0.18 {mu}m CMOS technology

    Energy Technology Data Exchange (ETDEWEB)

    He Baoping; Yao Zhibin; Guo Hongxia; Luo Yinhong; Zhang Fengqi; Wang Yuanming; Zhang Keying, E-mail: baopinghe@126.co [Northwest Institute of Nuclear Technology, Xi' an 710613 (China)

    2009-07-15

    Three methods for simulating low dose rate irradiation are presented and experimentally verified by using 0.18 {mu}m CMOS transistors. The results show that it is the best way to use a series of high dose rate irradiations, with 100 {sup 0}C annealing steps in-between irradiation steps, to simulate a continuous low dose rate irradiation. This approach can reduce the low dose rate testing time by as much as a factor of 45 with respect to the actual 0.5 rad (Si)/s dose rate irradiation. The procedure also provides detailed information on the behavior of the test devices in a low dose rate environment.

  18. Dosimetric effect by the low-dose threshold levels in gamma analysis on VMAT QA

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ji Hye; Kim, Min Joo; Park, So Hyun; Lee, Seu Ran; Lee, Min Young; Suh, Tae Suk [Dept. of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Lee, Dong Soo [Dept. of Radiation Oncology, Uijeongbu St. Mary' s Hospital, Uijeongbu (Korea, Republic of)

    2015-10-15

    Based on a survey by Nelms and Simon, more than 70% of institutions use a low-dose threshold between 0% and 10% for gamma analysis. However, there are no clinical data to quantitatively demonstrate the impact of the low-dose threshold on the gamma index. Therefore, we performed a gamma analysis with low-dose thresholds of 0%, 5%, 10%, and 15% according to both global and local normalization and different acceptance criteria: 3%/3 mm, 2%/2 mm, and 1%/1 mm. Applying low-dose threshold in the global normalization does not have critical effect to judge patient-specific QA results.

  19. Effect of repeated doses of mercuric chloride on the kinetics of iron in rats

    Energy Technology Data Exchange (ETDEWEB)

    Grosicki, A.; Kossakowski, S. [National Veterinary Research Institute, Pulawy (Poland)

    1994-12-31

    The effect of repeated doses of 0.5 and 1.0 mg HgCl{sub 2}/kg b.w. given intragastrically for 30 days on the absorption and distribution of intragastrically trace dose of {sup 59}FeCl{sub 3} was studied in male Wistar rats. Both doses of mercury distributed the absorption of Fe-59 from the gastrointestinal track. Furthermore, the results revealed a dose-dependent influence of mercury on the content of Fe-59 in the organs and the AUC values. (author). 14 refs, 2 figs, 1 tab.

  20. Establishment and validation of a dose-effect curve for {gamma}-rays by cytogenetic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Barquinero, Joan F.; Caballin, Maria Rosa [Unitat d`Antropologia, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Ciencies, Universitat Autonoma de Barcelona, Bellaterra (Spain); Barrios, Leonardo; Ribas, Montserrat [Unitat de Biologia Cel.lular, Departament de Biologia Cel.lular i Fisiologia, Facultat de Ciencies, Universitat Autonoma de Barcelona, Bellaterra (Spain); Miro, Rosa [Institut de Biologia Fondamental `Vicent Villar Palasi`, Universitat Autonoma de Barcelona, Barcelona (Spain); Egozcue, Josep [Servei d`Oncologia, Hospital de la Santa Crue i Sant Pau, Universitat Autonome de Barcelona, Barcelona (Spain)

    1995-01-01

    A dose-effect curve obtained by analysis of dicentric chromosomes after irradiation of peripheral blood samples, from one donor, at 11 different doses of {gamma}-rays is presented. For the elaboration of this curve, more than 18,000 first division metaphases have been analyzed. The results fit very well to the linear-quadratic model. To validate the curve, samples from six individuals (three controls and three occupationally exposed persons) were irradiated at 2 Gy. The results obtained, when compared with the curve, showed that in all cases the 95% confidence interval included the 2 Gy dose, with estimated dose ranges from 1.82 to 2.19 Gy.

  1. Dose-dependent effects of hydrocortisone infusion on autobiographical memory recall.

    Science.gov (United States)

    Young, Kymberly; Drevets, Wayne C; Schulkin, Jay; Erickson, Kristine

    2011-10-01

    The glucocorticoid hormone cortisol has been shown to impair episodic memory performance. The present study examined the effect of two doses of hydrocortisone (synthetic cortisol) administration on autobiographical memory retrieval. Healthy volunteers (n = 66) were studied on two separate visits, during which they received placebo and either moderate-dose (0.15 mg/kg IV; n = 33) or high-dose (0.45 mg/kg IV; n = 33) hydrocortisone infusion. From 75 to 150 min post-infusion subjects performed an Autobiographical Memory Test and the California Verbal Learning Test (CVLT). The high-dose hydrocortisone administration reduced the percent of specific memories recalled (p = .04), increased the percent of categorical (nonspecific) memories recalled (p cortisol affects accessibility of autobiographical memories in a dose-dependent manner. Specifically, administration of hydrocortisone at doses analogous to those achieved under severe psychosocial stress impaired the specificity and speed of retrieval of autobiographical memories.

  2. Non-Target Effect for Chromosome Aberrations in Human Lymphocytes and Fibroblasts After Exposure to Very Low Doses of High LET Radiation

    Science.gov (United States)

    Hada, Megumi; George, Kerry A.; Cucinotta, F. A.

    2011-01-01

    The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivor with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (.01 - 0.2 Gy) of 170 MeV/u Si-28-ions or 600 MeV/u Fe-56-ions. Chromosomes were analyzed using the whole chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). The curves for doses above 0.1 Gy were more than one ion traverses a cell showed linear dose responses. However, for doses less than 0.1 Gy, Si-28-ions showed no dose response, suggesting a non-targeted effect when less than one ion traversal occurs. Additional findings for Fe-56 will be discussed.

  3. Nanosilver – Harmful effects of biological activity

    Directory of Open Access Journals (Sweden)

    Anna Maria Świdwińska-Gajewska

    2014-12-01

    Full Text Available Nanosilver, also identified as colloidal silver, has been known and used for ages to combat diseases or prolong food freshness. It usually occurs in the form of a suspension consisting of particles of size < 100 nm. Due to its specific properties, silver nanoparticles are used in many technologies to produce medical devices, textiles, conductive materials or photovoltaic cells. The growing popularity of nanosilver applications increases the number of people occupationally exposed to this substance. Potential exposure routes for silver nanoparticles are through dermal, oral and inhalation pathways. Silver nanoparticles may be absorbed through the lungs, intestine, and through the skin into circulation and thus may reach such organs as the liver, kidney, spleen, brain, heart and testes. Nanosilver may cause mild eyes and skin irritations. It can also act as a mild skin allergen. Inhalation of silver nanoparticles mainly affects the lungs and liver. It has been demonstrated that silver nanoparticles may be genotoxic to mammalian cells. There are some alarming reports on the adverse effects of silver nanoparticles on reproduction of experimental animals. Exposure to silver nanoparticles may exert a neurotoxic effect and affect cognitive functions, causing the impairment of short-term and working memory. Maximum admissible concentration (MAC for the inhalable fraction of silver of 0.05 mg/m3 is currently binding in Poland. In light of toxicological studies of silver nanoparticles it seems reasonable to update the hygiene standards for silver with nanoparticles as a separate fraction. Med Pr 2014;65(6:831–845

  4. Numerical model for computation of effective and ambient dose equivalent at flight altitudes

    Directory of Open Access Journals (Sweden)

    Mishev Alexander

    2015-01-01

    Full Text Available A numerical model for assessment of the effective dose and ambient dose equivalent produced by secondary cosmic ray particles of galactic and solar origin at commercial aircraft altitudes is presented. The model represents a full chain analysis based on ground-based measurements of cosmic rays, from particle spectral and angular characteristics to dose estimation. The model is based on newly numerically computed yield functions and realistic propagation of cosmic ray in the Earth magnetosphere. The yield functions are computed using a straightforward full Monte Carlo simulation of the atmospheric cascade induced by primary protons and α-particles and subsequent conversion of secondary particle fluence (neutrons, protons, gammas, electrons, positrons, muons and charged pions to effective dose or the ambient dose equivalent. The ambient dose equivalent is compared with reference data at various conditions such as rigidity cut-off and level of solar activity. The method is applied for computation of the effective dose rate at flight altitude during the ground level enhancement of 13 December 2006. The solar proton spectra are derived using neutron monitor data. The computation of the effective dose rate during the event explicitly considers the derived anisotropy i.e. the pitch angle distribution as well as the propagation of the solar protons in the magnetosphere of the Earth.

  5. Dose-dependent suppression of adrenocortical activity with metyrapone : Effects on emotion and memory

    NARCIS (Netherlands)

    Roozendaal, B; Bohus, B; McGaugh, JL

    1996-01-01

    Different levels of circulating corticosterone are considered to produce different emotional states and effects on learning and memory. The purpose of the present study was to use different doses of the 11-beta-hydroxylase inhibitor metyrapone to produce dose-dependent inhibition of the synthesis of

  6. Dose Response Effects of Lisdexamfetamine Dimesylate Treatment in Adults with ADHD: An Exploratory Study

    Science.gov (United States)

    Faraone, Stephen V.; Spencer, Thomas J.; Kollins, Scott H.; Glatt, Stephen J.; Goodman, David

    2012-01-01

    Objective: To explore dose-response effects of lisdexamfetamine dimesylate (LDX) treatment for ADHD. Method: This was a 4-week, randomized, double-blinded, placebo-controlled, parallel-group, forced-dose titration study in adult participants, aged 18 to 55 years, meeting "Diagnostic and Statistical Manual of Mental Disorders" (4th ed., text rev.)…

  7. Linear Energy Transfer Painting With Proton Therapy: A Means of Reducing Radiation Doses With Equivalent Clinical Effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Fager, Marcus, E-mail: Marcus.Fager@UPHS.UPenn.edu [Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Medical Radiation Physics, Stockholm University, Stockholm (Sweden); Toma-Dasu, Iuliana [Medical Radiation Physics, Stockholm University and Karolinska Institutet, Stockholm (Sweden); Kirk, Maura; Dolney, Derek; Diffenderfer, Eric S.; Vapiwala, Neha [Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Carabe, Alejandro, E-mail: Alejandro.Carabe-Fernandez@UPHS.UPenn.edu [Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2015-04-01

    Purpose: The purpose of this study was to propose a proton treatment planning method that trades physical dose (D) for dose-averaged linear energy transfer (LET{sub d}) while keeping the radiobiologically weighted dose (D{sub RBE}) to the target the same. Methods and Materials: The target is painted with LET{sub d} by using 2, 4, and 7 fields aimed at the proximal segment of the target (split target planning [STP]). As the LET{sub d} within the target increases with increasing number of fields, D decreases to maintain the D{sub RBE} the same as the conventional treatment planning method by using beams treating the full target (full target planning [FTP]). Results: The LET{sub d} increased 61% for 2-field STP (2STP) compared to FTP, 72% for 4STP, and 82% for 7STP inside the target. This increase in LET{sub d} led to a decrease of D with 5.3 ± 0.6 Gy for 2STP, 4.4 ± 0.7 Gy for 4STP, and 5.3 ± 1.1 Gy for 7STP, keeping the DRBE at 90% of the volume (DRBE, 90) constant to FTP. Conclusions: LET{sub d} painting offers a method to reduce prescribed dose at no cost to the biological effectiveness of the treatment.

  8. Total Dose Effects on Bipolar Integrated Circuits at Low Temperature

    Science.gov (United States)

    Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.

    2012-01-01

    Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -140 deg C, no damage occurs until devices are warmed to temperatures above -50 deg C. After warm-up, subsequent cooling shows that damage is then present at low temperature. This can be explained by the very strong temperature dependence of dispersive transport in the continuous-time-random-walk model for hole transport. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.

  9. Spillover adherence effects of fixed-dose combination HIV therapy

    Directory of Open Access Journals (Sweden)

    Kauf TL

    2012-02-01

    Full Text Available Teresa L Kauf1, Keith L Davis2, Stephanie R Earnshaw2, E Anne Davis31Department of Pharmaceutical Outcomes and Policy, College of Pharmacy, University of Florida, Gainesville, FL, 2RTI Health Solutions, Research Triangle Park, NC, 3Independent consultant, Pittsboro, NC, USAAbstract: The impact of fixed-dose combination (FDC products on adherence to other, non-fixed regimen components has not been examined. We compared adherence to a third antiretroviral (ART component among patients receiving a nucleoside reverse transcriptase inhibitor (NRTI backbone consisting of the FDC Epzicom®, GlaxoSmithKline Inc, Research Triangle Park, NC (abacavir sulfate 600 mg + lamivudine 300 mg; FDC group versus NRTI combinations taken as two separate pills (NRTI Combo group using data from a national sample of 30 health plans covering approximately 38 million lives from 1997 to 2005. Adherence was measured as the medication possession ratio (MPR. Multivariate logistic regression compared treatment groups based on the likelihood of achieving ≥95% adherence, with sensitivity analyses using alternative thresholds. MPR was assessed as a continuous variable using multivariate linear regression. Covariates included age, gender, insurance payer type, year of study drug initiation, presence of mental health and substance abuse disorders, and third agent class. The study sample consisted of 650 FDC and 1947 NRTI Combo patients. Unadjusted mean adherence to the third agent was higher in the FDC group than the NRTI Combo group (0.92 vs 0.85; P < 0.0001. In regression analyses, FDC patients were 48% and 39% more likely to achieve 95% and 90% third agent adherence, respectively (P ≤ 0.03. None of the other MPR specifications achieved comparable results. Among managed care patients, use of an FDC appears to substantially improve adherence to a third regimen component and thus the likelihood of achieving the accepted standard for adherence to HIV therapy of 95%.Keywords

  10. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  11. Effective dose delivered by conventional radiology to Aosta Valley population between 2002 and 2009

    Science.gov (United States)

    Zenone, F; Aimonetto, S; Catuzzo, P; Peruzzo Cornetto, A; Marchisio, P; Natrella, M; Rosanò, A M; Meloni, T; Pasquino, M; Tofani, S

    2012-01-01

    Objective Medical diagnostic procedures can be considered the main man-made source of ionising radiation exposure for the population. Conventional radiography still represents the largest contribution to examination frequency. The present work evaluates procedure frequency and effective dose from the majority of conventional radiology examinations performed at the Radiological Department of Aosta Hospital from 2002 to 2009. Method Effective dose to the patient was evaluated by means of the software PCXMC. Data provided by the radiological information system allowed us to obtain collective effective and per caput dose. Results The biggest contributors to per caput effective dose from conventional radiology are vertebral column, abdomen, chest, pelvis and (limited to females) breast. Vertebral column, pelvis and breast procedures show a significant dose increment in the period of the study. The mean effective dose per inhabitant from conventional radiology increased from 0.131 mSv in 2002 to 0.156 mSv in 2009. Combining these figures with those from our study of effective dose from CT (0.55 mSv in 2002 to 1.03 mSv in 2009), the total mean effective dose per inhabitant increased from 0.68 mSv to 1.19 mSv. The contribution of CT increased from 81% to 87% of the total. In contrast, conventional radiology accounts for 85% of the total number of procedures, but only 13% of the effective dose. Conclusion The study has demonstrated that conventional radiography still represents the biggest contributor to examination frequency in Aosta Valley in 2009. However, the frequency of the main procedures did not change significantly between 2002 and 2009. PMID:21937611

  12. Low-dose effects of bisphenol A on mammary gland development in rats.

    Science.gov (United States)

    Mandrup, K; Boberg, J; Isling, L K; Christiansen, S; Hass, U

    2016-07-01

    Bisphenol A (BPA) is widely used in food contact materials, toys, and other products. Several studies have indicated that effects observed at doses near human exposure levels may not be observed at higher doses. Many studies have shown effects on mammary glands at low doses of BPA, however, because of small number of animals or few doses investigated these data have not been used by EFSA as point of departure for the newly assessed tolerable daily intake (TDI). We performed a study with perinatal exposure to BPA (0, 0.025, 0.25, 5, and 50 mg/kg bw/day) in rats (n = 22 mated/group). One of the aims was to perform a study robust enough to contribute to the risk assessment of BPA and to elucidate possible biphasic dose-response relationships. We investigated mammary gland effects in the offspring at 22, 100, and 400 days of age. Male offspring showed increased mammary outgrowth on pup day (PD) 22 at 0.025 mg/kg BPA, indicating an increased mammary development at this low dose only. Increased prevalence of intraductal hyperplasia was observed in BPA females exposed to 0.25 mg/kg at PD 400, but not at PD 100, and not at higher or lower doses. The present findings support data from the published literature showing that perinatal exposure to BPA can induce increased mammary growth and proliferative lesions in rodents. Our results indicate that low-dose exposure to BPA can affect mammary gland development in male and female rats, although higher doses show a different pattern of effects. The observed intraductal hyperplasia in female rats could be associated with an increased risk for developing hyperplastic lesions, which are parallels to early signs of breast neoplasia in women. Collectively, current knowledge on effects of BPA on mammary gland at low doses indicates that highly exposed humans may not be sufficiently protected.

  13. A novel method of estimating effective dose from the point dose method: a case study—parathyroid CT scans

    Science.gov (United States)

    Januzis, Natalie; Nguyen, Giao; Hoang, Jenny K.; Lowry, Carolyn; Yoshizumi, Terry T.

    2015-02-01

    The purpose of this study was to validate a novel approach of applying a partial volume correction factor (PVCF) using a limited number of MOSFET detectors in the effective dose (E) calculation. The results of the proposed PVCF method were compared to the results from both the point dose (PD) method and a commercial CT dose estimation software (CT-Expo). To measure organ doses, an adult female anthropomorphic phantom was loaded with 20 MOSFET detectors and was scanned using the non-contrast and 2 phase contrast-enhanced parathyroid imaging protocols on a 64-slice multi-detector computed tomography scanner. E was computed by three methods: the PD method, the PVCF method, and the CT-Expo method. The E (in mSv) for the PD method, the PVCF method, and CT-Expo method was 2.6  ±  0.2, 1.3  ±  0.1, and 1.1 for the non-contrast scan, 21.9  ±  0.4, 13.9  ±  0.2, and 14.6 for the 1st phase of the contrast-enhanced scan, and 15.5  ±  0.3, 9.8  ±  0.1, and 10.4 for the 2nd phase of the contrast-enhanced scan, respectively. The E with the PD method differed from the PVCF method by 66.7% for the non-contrast scan, by 44.9% and by 45.5% respectively for the 1st and 2nd phases of the contrast-enhanced scan. The E with PVCF was comparable to the results from the CT-Expo method with percent differences of 15.8%, 5.0%, and 6.3% for the non-contrast scan and the 1st and 2nd phases of the contrast-enhanced scan, respectively. To conclude, the PVCF method estimated E within 16% difference as compared to 50-70% in the PD method. In addition, the results demonstrate that E can be estimated accurately from a limited number of detectors.

  14. Haematological effects of rhGM-CSF in dogs exposed to total-body irradiation with a dose of 2. 4 Gy

    Energy Technology Data Exchange (ETDEWEB)

    Nothdurft, W.; Selig, C.; Fliedner, T.M.; Kreja, L.; Weinsheimer, W. (Ulm Univ. (Germany)); Hintz-Obertreis, P.; Krumwieh, D.; Kurrle, R.; Seiler, F.R. (Ulm Univ. (Germany). Inst. of Occupational and Social Medicine)

    1992-04-01

    It was the aim of this study to test the stimulatory effects of recombinant human GM-CSF (rhGM-CSF) on haemopoietic regeneration in dogs which had received total-body irradiation (TBI) with a dose of 2.4 Gy. Results indicate that treatment with GM-CSF can be an effective biological monotherapy for radiation-induced bone marrow failure, but that for higher radiation doses the number of GM-CSF responsive target cells will become a critical determinant of therapeutic efficacy. (author).

  15. Third eye, the biological effects; 3. oeil, les effets biologiques

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2004-02-01

    The discovery of a third kind of photo-receptor cell in the human eye has permitted to better understand the biological effects of lighting, not only on the vision, but also on some nervous processes, like emotion, mood, stress, biological clock, etc.. This additional dimension has led the engineers of Philips Lighting company to launch a new indoor lighting concept named 'Carpe Diem'. This concept adapts both the illuminance and the color of a lighting system according to the type of work and to the expected stimulating effect. (J.S.)

  16. Biological effect of penetration controlled irradiation with ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi; Shimizu, Takashi; Kikuchi, Masahiro; Kobayashi, Yasuhiko; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Yamashita, Takao

    1997-03-01

    To investigate the effect of local irradiation with ion beams on biological systems, technique for penetration controlled irradiation has been established. The range in a target was controlled by changing the distance from beam window in the atmosphere, and could be controlled linearly up to about 31 {mu}m in biological material. In addition, the effects of the penetration controlled irradiations with 1.5 MeV/u C and He ions were examined using tobacco pollen. The increased frequency of leaky pollen produced by ion beams suggests that the efficient pollen envelope damages would be induced at the range-end of ion beams. (author)

  17. Fast dose analysis of movement effects during treatments with scanned proton and carbon-ion beams

    Science.gov (United States)

    Vignati, A.; Varasteh Anvar, M.; Giordanengo, S.; Monaco, V.; Attili, A.; Donetti, M.; Marchetto, F.; Mas Milian, F.; Ciocca, M.; Russo, G.; Sacchi, R.; Cirio, R.

    2017-01-01

    Charged particle therapy delivered using scanned pencil beams shows the potential to produce better dose conformity than conventional radiotherapy, although the dose distributions are more sensitive to anatomical changes and patient motion. Therefore, the introduction of engines to monitor the dose as it is being delivered is highly desirable, in order to enhance the development of adaptive treatment techniques in hadrontherapy. A tool for fast dose distributions analysis is presented, which integrates on GPU a Fast Forward Planning, a Fast Image Deformation algorithm, a fast computation of Gamma-Index and Dose-Volume Histogram. The tool is being interfaced with the Dose Delivery System and the Optical Tracking System of a synchrotron-based facility to investigate the feasibility to quantify, spill by spill, the effects of organ movements on dose distributions during treatment deliveries with protons and carbon-ions. The dose calculation and comparison times for a patient treated with protons on a 61.3 cm3 planning target volume, a CT matrix of 512x512x125 voxels, and a computation matrix of 170x170x125 voxels are within 1 s per spill. In terms of accuracy, the absolute dose differences compared with benchmarked Treatment Planning System results are negligible (<10-4 Gy).

  18. Effect of tissue composition on dose distribution in brachytherapy with various photon emitting sources

    Science.gov (United States)

    Ghorbani, Mahdi; Salahshour, Fateme; Haghparast, Abbas; Knaup, Courtney

    2014-01-01

    Purpose The aim of this study is to compare the dose in various soft tissues in brachytherapy with photon emitting sources. Material and methods 103Pd, 125I, 169Yb, 192Ir brachytherapy sources were simulated with MCNPX Monte Carlo code, and their dose rate constant and radial dose function were compared with the published data. A spherical phantom with 50 cm radius was simulated and the dose at various radial distances in adipose tissue, breast tissue, 4-component soft tissue, brain (grey/white matter), muscle (skeletal), lung tissue, blood (whole), 9-component soft tissue, and water were calculated. The absolute dose and relative dose difference with respect to 9-component soft tissue was obtained for various materials, sources, and distances. Results There was good agreement between the dosimetric parameters of the sources and the published data. Adipose tissue, breast tissue, 4-component soft tissue, and water showed the greatest difference in dose relative to the dose to the 9-component soft tissue. The other soft tissues showed lower dose differences. The dose difference was also higher for 103Pd source than for 125I, 169Yb, and 192Ir sources. Furthermore, greater distances from the source had higher relative dose differences and the effect can be justified due to the change in photon spectrum (softening or hardening) as photons traverse the phantom material. Conclusions The ignorance of soft tissue characteristics (density, composition, etc.) by treatment planning systems incorporates a significant error in dose delivery to the patient in brachytherapy with photon sources. The error depends on the type of soft tissue, brachytherapy source, as well as the distance from the source. PMID:24790623

  19. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico.

    Science.gov (United States)

    Luevano-Gurrola, Sergio; Perez-Tapia, Angelica; Pinedo-Alvarez, Carmelo; Carrillo-Flores, Jorge; Montero-Cabrera, Maria Elena; Renteria-Villalobos, Marusia

    2015-09-30

    Determining ionizing radiation in a geographic area serves to assess its effects on a population's health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h(-1). At the same sites, 48 soil samples were taken to obtain the activity concentrations of (226)Ra, (232)Th and (40)K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h(-1). Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg(-1), for (226)Ra, (232)Th and (40)K, respectively. From the analysis, the spatial distribution of (232)Th, (226)Ra and (40)K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize.

  20. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico

    Directory of Open Access Journals (Sweden)

    Sergio Luevano-Gurrola

    2015-09-01

    Full Text Available Determining ionizing radiation in a geographic area serves to assess its effects on a population’s health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h−1. At the same sites, 48 soil samples were taken to obtain the activity concentrations of 226Ra, 232Th and 40K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h−1. Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg−1, for 226Ra, 232Th and 40K, respectively. From the analysis, the spatial distribution of 232Th, 226Ra and 40K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize.

  1. Radon as a medicine. Therapeutic effectiveness, biological mechanism and comparative risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Deetjen, Peter; Falkenbach, Albrecht; Harder, Dietrich; Joeckel, Hans; Kaul, Alexander; Philipsborn, Henning von

    2014-07-01

    Proofs of the therapeutic efficiency of balneological radon applications administered to patients suffering from rheumatic diseases, investigations into the biological action mechanism associated with the alpha particles emitted by radon and its radioactive daughter products, and the comparative risk assessment of radon treatment and medicinal pain therapy have been the research projects whose results are summarized in this book. Controlled clinical studies, if possible performed as prospective, randomized and placebo-controlled double blind studies, have given evidence that the therapeutic effects of balneological radon applications - long-lasting pain reduction and reduced consumption of medicines compared with controls - are significantly persisting over many post-treatment months. The molecular and cellular mechanism of action underlying these long-lasting therapeutic effects has been identified as the down-regulation of cellular immune responses, initiated by cellular apoptosis sequential to low alpha particle doses and by the subsequent release of anti-inflammatory cytokines. The unwanted side-effects of non-steroidal anti-rheumatic drug treatments have to be compared with the absence of side effects from the balneological radon applications which merely involve radiation doses well below the mean value and the fluctuation width of the annual doses attributable to everybody's natural radiation exposure.

  2. Effect of different ionizing radiation dose rates on the Staphylococcal enterotoxin in mechanically deboned chicken meat

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Heliana de; Brito, Poliana de Paula; Fukuma, Henrique Takuji; Roque, Claudio Vitor; Custodio, Wilson [Brazilian Nuclear Energy Commission (CNEN-MG), Pocos de Caldas, MG (Brazil)], e-mail: hazevedo@cnen.gov.br, e-mail: pbrito@cnen.gov.br, e-mail: cvroque@cnen.gov.br, e-mail: htfukuma@cnen.gov.br, e-mail: wilsonc@cnen.gov.br; Kodama, Yasko [Nuclear and Energy Research Institute (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: ykodama@ipen.br; Miya, Norma Terugo Nago; Pereira, Jose Luiz [Campinas State University (UNICAMP), SP (Brazil). Dept. of Food Sciences], e-mail: pereira@fea.unicamp.br, e-mail: miya@fea.unicamp.br

    2009-07-01

    Samples weighing 50g each were prepared from allotments of back with skin MDCM, to the EEB contamination or not (control). Each sample of MDCM contaminated or not with EEB was conditioned in low density polyethylene bag, frozen (-18 {+-} 1 deg C) for one night in a tunnel and irradiated with gamma rays from {sup 60}Co source in this state with doses of 0.0 kGy (control), 1.5 kGy (5.7 kGy.h{sup -1} - higher dose rate, 1.8 kGy.h{sup -1} - intermediary dose rate and 0.6 kGy.h{sup -1} - lower dose rate) and 3.0 kGy (8.4 kGy.h{sup -}'1 - higher dose rate, 2.4 kGy.h{sup -1} - intermediary dose rate and 0.6 kGy.h{sup -1} - lower dose rate). Irradiated or non irradiated MDCM samples were processed to the EEB extraction, according to the VIDAS Staph enterotoxin II kit (bioMerieux) manufacturer protocol. The calculation to determinate the MDCM EEB recovery after the sample (control or irradiated) processing were carried out applying the principle of mass balance, along the whole process. Described experiment was performed in triplicate. Results showed that the irradiation process was effective to remove the MDCM EEB, to both 1.5 kGy and 3.0 kGy. According to the expected, doses of 3.0 kGy showed the highest values of MDCM EEB removal. Regarding the effect of dose rate of radiation on the removal of EEB of the MDCM, it could be observed only for samples irradiated with 1.5 kGy radiation dose; in these processing conditions, the highest value of EEB removal was obtained for samples processed with low radiation dose rate. (author)

  3. Determination of effective doses in image-guided radiation therapy system

    Science.gov (United States)

    Pyone, Y. Y.; Suriyapee, S.; Sanghangthum, T.; Oonsiri, S.; Tawonwong, T.

    2016-03-01

    The organ and effective doses in image-guided radiotherapy system are determined in this study. For 2D imaging, incident air kerma (Ki) was measured by 6cc ionization chamber with Accu-Pro dosimeter. The entrance surface air kerma (ESAK) was calculated by multiplying Ki with backscatter factor. The effective dose was calculated by multiplying ESAK with conversion coefficient. For 3D imaging, computed tomography/cone-beam dose index (CTDI/CBDI) measurements were performed by using 100mm pencil ionization chamber with Accu-Pro dosimeter. The dose index in air and in CTDI phantom from planning CT and cone- beam CT were measured. Then, effective dose was calculated by ImPACT software. The effective doses from 2D conventional simulator for anteroposterior and lateral projections were 01 and 0.02mSv for head, 0.15 and 0.16mSv for thorax, 0.22 and 0.21mSv for pelvis, respectively. The effective doses from 3D, planning CT and CBCT, were 3.3 and 0.1mSv for head, 13 and 2.4mSv for thorax and 7.2 and 4.9mSv for pelvis, respectively. Based on 30 fractions of treatment course, total effective dose (3D CT, 2D setup verification and 6 times CBCT) of head, thorax and pelvis were 3.93, 27.71 and 37.03mSv, respectively. Therefore, IGRT should be administered with significant parameters to reduce the dose.

  4. Biological effects of high strength electric fields on small laboratory animals. Interim progress report, March 9, 1976--September 8, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, R.D.; Kaune, W.T.; Decker, J.R.; Hjeresen, D.L.

    1976-09-01

    Progress is reported on a broad and comprehensive series of biological experiments made under strictly controlled laboratory conditions to screen for possible effects of exposure to 60-Hz electric fields on small laboratory animals. Electric field strengths comparable to and exceeding those under existing and anticipated transmission line designs will be used. Dosimetry studies will complement the animal studies to establish the relationship between tissue dose and any observed biological effects. Information derived from this project will provide a better basis for evaluating potential hazards of exposure to 60-Hz electric fields and help define parameters to be studied in clinical evaluations on humans.

  5. Plasma effects in electromagnetic field interaction with biological tissue

    Science.gov (United States)

    Sharma, R. P.; Batra, Karuna; Excell, Peter S.

    2011-02-01

    Theoretical analysis is presented of the nonlinear behavior of charge carriers in biological tissue under the influence of varying low-intensity electromagnetic (EM) field. The interaction occurs because of the nonlinear force arising due to the gradient of the EM field intensity acting on free electrons in the conduction band of proteins in metabolically active biological cell membrane receptors leading to a redistribution of charge carriers. Field dependence of the resulting dielectric constant is investigated by a suitable modification to include an additional electronic contribution term to the three-term Debye model. The exogenous EM field propagating in this nonlinear cellular medium satisfies the nonlinear Schrödinger equation and can be affected significantly. Resulting field effect can be substantially augmented and effective rectification/demodulation can occur. Possible implications of this modification on biological processes in white and grey matter are discussed.

  6. Position displacement effect on the doses in the peripheral head regions

    Energy Technology Data Exchange (ETDEWEB)

    Kortesniemi, M.; Seppaelae, T.; Bjugg, H. [Helsinki Univ., Department of Physics, Helsinki (Finland); Seren, T.; Kotiluoto, P.; Auterinen, I. [VTT Chemical Technology, Espoo (Finland); Parkkinen, R. [STUK Finnish Radiation and Nuclear Safety Authority, Helsinki (Finland); Savolainen, S. [Helsinki Univ. Hospital, Departments of Radiology, Helsinki (Finland)

    2000-10-01

    Patient positioning is a challenging task in BNCT-treatments due to the use of multiple fields and a static horizontal beam construction. Positioning accuracy of 5 mm is required for acceptable dose delivery within appropriate limits of dose uncertainty (up to 10% of point dose in target volume). The aim of this study was to determine if a patient head position creating a clear gap between the beam port and the head would have a significant effect on the doses to the peripheral regions of the head, e.g. to the eyes. The gamma dose rates were measured in a water filled ellipsoidal phantom with an ionisation chamber (IC). Mn activation wires were used to determine the Mn-55(n, {gamma}) reaction rates. Twelve measurement points were chosen in the phantom and two phantom positions were applied. According to this study the 35 mm position change and the resulting gap has an obvious effect on the peripheral doses in BNCT. The Mn activation reaction rates were on the average 80% higher in the deviation position than in the reference position. Increasing depth from the surface inside the phantom diminished the gamma dose difference between the two positions. Scattering environment changes with position displacement and resulting gap causes differences in neutron fluences and gamma doses. (author)

  7. Thermal-stress effects on enhanced low-dose-rate sensitivity of linear bipolar circuits

    Energy Technology Data Exchange (ETDEWEB)

    SHANEYFELT,MARTY R.; SCHWANK,JAMES R.; WITCZAK,STEVEN C.; RIEWE,LEONARD CHARLES; WINOKUR,PETER S.; HASH,GERALD L.; PEASE,R.L.; FLEETWOOD,D.M.

    2000-02-17

    Thermal-stress effects are shown to have a significant impact on the enhanced low-dose-rate sensitivity of linear bipolar circuits. Implications of these results on hardness assurance testing and mechanisms are discussed.

  8. Low-dose effects of bisphenol A on mammary gland development in rats

    DEFF Research Database (Denmark)

    Egebjerg, Karen Mandrup; Boberg, Julie; Isling, Louise Krag;

    2016-01-01

    intraductal hyperplasia in female rats could be associated with an increased risk for developing hyperplastic lesions, which are parallels to early signs of breast neoplasia in women. Collectively, current knowledge on effects of BPA on mammary gland at low doses indicates that highly exposed humans may......Bisphenol A (BPA) is widely used in food contact materials, toys, and other products. Several studies have indicated that effects observed at doses near human exposure levels may not be observed at higher doses. Many studies have shown effects on mammary glands at low doses of BPA, however, because...... was to perform a study robust enough to contribute to the risk assessment of BPA and to elucidate possible biphasic dose–response relationships. We investigated mammary gland effects in the offspring at 22, 100, and 400 days of age. Male offspring showed increased mammary outgrowth on pup day (PD) 22 at 0.025 mg...

  9. Acute coronary hemodynamic effects of equihypotensive doses of nisoldipine and diltiazem

    NARCIS (Netherlands)

    H. Suryapranata (Harry); P.W.J.C. Serruys (Patrick); A.L. Soward; J. Planellas; G. Vanhaleweyk; P.G. Hugenholtz (Paul)

    1985-01-01

    textabstractThe hemodynamic effects of nisoldipine and diltiazem were investigated in two groups of patients undergoing investigation for suspected coronary artery disease. Emphasis was placed on the coronary hemodynamic changes. Approximately equihypotensive doses of these two calcium channel block

  10. Dose rate effects in radiation degradation of polymer-based cable materials

    Science.gov (United States)

    Plaček, V.; Bartoníček, B.; Hnát, V.; Otáhal, B.

    2003-08-01

    Cable ageing under the nuclear power plant (NPP) conditions must be effectively managed to ensure that the required plant safety and reliability are maintained throughout the plant service life. Ionizing radiation is one of the main stressors causing age-related degradation of polymer-based cable materials in air. For a given absorbed dose, radiation-induced damage to a polymer in air environment usually depends on the dose rate of the exposure. In this work, the effect of dose rate on the degradation rate has been studied. Three types of NPP cables (with jacket/insulation combinations PVC/PVC, PVC/PE, XPE/XPE) were irradiated at room temperature using 60Co gamma ray source at average dose rates of 7, 30 and 100 Gy/h with the doses up to 590 kGy. The irradiated samples have been tested for their mechanical properties, thermo-oxidative stability (using differential scanning calorimetry, DSC), and density. In the case of PVC and PE samples, the tested properties have shown evident dose rate effects, while the XPE material has shown no noticeable ones. The values of elongation at break and the thermo-oxidative stability decrease with the advanced degradation, density tends to increase with the absorbed dose. For XPE samples this effect can be partially explained by the increase of crystallinity. It was tested by the DSC determination of the crystalline phase amount.

  11. Dose reconstruction starting from the pre-dose effect of quartz: combined procedure of additive dose and multiple activation; Reconstruccion de dosis a partir del efecto pre-dosis del cuarzo: procedimiento combinado de dosis aditiva y activacion multiple

    Energy Technology Data Exchange (ETDEWEB)

    Correcher, V.; Gomez R, J. M.; Delgado, A. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Av. Complutense 22, 28040 Madrid (Spain); Garcia G, J. [Consejo Superior de Investigaciones Cientificas, Museo Nacional de Ciencias Naturales, Jose Gutierrez Abascal No. 2, 28006 Madrid (Spain)], e-mail: v.correcher@ciemat.es

    2009-07-01

    The pre-dose effect of the 110 C thermoluminescence (Tl) peak of quartz gives rise to the use of a sensitive technique to estimate of low-level doses under retrospective conditions. However, one can appreciate how aliquots of quartz, from the same mineral fraction, display different sensitivities. In this sense, we herein report on a new measurement protocol based on the aforementioned pre-dose effect. Such procedure includes additive dose and multiple activation steps allows to determine simultaneously the sensitivity changes induced by the thermal activation and the Tl dose dependence. This behaviour let calculate the field accrued dose by interpolation thus permitting an increase of both precision and accuracy. (Author)

  12. Effect of bevacizumab, which remain after withdrawal of the first dose/s from a single-use vial on diabetic macular edema

    Directory of Open Access Journals (Sweden)

    Mehmet Demir

    2015-02-01

    Conclusion: Bevacizumab which remain in the single use vial after first dose/s is safe and effective for treatment of DME. These results are useful for poor countries. [Int J Basic Clin Pharmacol 2015; 4(1.000: 159-163

  13. Strengths and limitations of using repeat-dose toxicity studies to predict effects on fertility.

    Science.gov (United States)

    Dent, M P

    2007-08-01

    for possible effects on fertility (or early embryonic development), the biological significance of which can be ascertained in a littering (e.g. 2-generation) study. From the chemicals reviewed it would appear that where there are no alerts from a repeat-dose toxicity study, a pre-natal developmental toxicity study and sex steroid receptor binding assays, there exists a low priority for animal studies to address the fertility endpoint. The ability for these types of tests to provide alerts for effects on fertility is clearly dependent on the mode of action of the toxicant in question. Further work should therefore be performed to determine the 'failure rate' of this type of approach when applied to a larger group of chemicals with diverse modes of action.

  14. Effect of Admission Oral Diuretic Dose on Response to Continuous versus Bolus Intravenous Diuretics in Acute Heart Failure: An Analysis from DOSE-AHF

    Science.gov (United States)

    Shah, Ravi V.; McNulty, Steven; O'Connor, Christopher M.; Felker, G. Michael; Braunwald, Eugene; Givertz, Michael M.

    2014-01-01

    Background Results from the Diuretic Optimization Strategies in Acute Heart Failure (DOSE-AHF) study suggest that an initial continuous infusion of loop diuretics is not superior to bolus dosing with regard to clinical endpoints in AHF. We hypothesized that outpatient furosemide dose was associated with congestion and poorer renal function, and explored the hypothesis that a continuous infusion may be more effective in patients on higher outpatient diuretic doses. Methods DOSE-AHF randomized 308 patients within 24 hours of admission to high vs. low initial intravenous diuretic dose given as either a continuous infusion or bolus. We compared baseline characteristics and assessed associations between mode of administration (bolus vs. continuous) and outcomes in patients receiving high-dose (≥120 mg furosemide equivalent, n=177) versus low-dose (<120 mg furosemide equivalent, n=131) outpatient diuretics. Results Patients on higher doses of furosemide were less frequently on renin-angiotensin system inhibitors (P=.01), and had worse renal function and more advanced symptoms. There was a significant interaction between outpatient dose and mode of therapy (P=0.01) with respect to net fluid loss at 72 hours after adjusting for creatinine and intensification strategy. Admission diuretic dose was associated with an increased risk of death or rehospitalization at 60 days (adjusted HR=1.08 per 20-mg increment in dose, 95% CI 1.01–1.16, P=.03). Conclusions In acute HF, patients on higher diuretic doses have greater disease severity, and may benefit from an initial bolus strategy. PMID:23194486

  15. Conservatism in effective dose calculations for accident events involving fuel reprocessing waste tanks.

    Science.gov (United States)

    Bevelacqua, J J

    2011-07-01

    Conservatism in the calculation of the effective dose following an airborne release from an accident involving a fuel reprocessing waste tank is examined. Within the regulatory constraints at the Hanford Site, deterministic effective dose calculations are conservative by at least an order of magnitude. Deterministic calculations should be used with caution in reaching decisions associated with required safety systems and mitigation philosophy related to the accidental release of airborne radioactive material to the environment.

  16. Non-targeted effects of ionising radiation—Implications for low dose risk

    DEFF Research Database (Denmark)

    Kadhim, Munira; Salomaa, Sisko; Wright, Eric;

    2013-01-01

    Non-DNA targeted effects of ionising radiation, which include genomic instability, and a variety of bystander effects including abscopal effects and bystander mediated adaptive response, have raised concerns about the magnitude of low-dose radiation risk. Genomic instability, bystander effects...

  17. Challenges in Analyzing the Biological Effects of Resveratrol

    DEFF Research Database (Denmark)

    Erdogan, Cihan Süleyman; Vang, Ole

    2016-01-01

    The suggested health effects (e.g., disease prevention) of dietary bioactive compounds such as resveratrol are challenging to prove in comparison to man-made drugs developed for therapeutic purposes. Dietary bioactive compounds have multiple cellular targets and therefore have a variety of biolog...

  18. Effective dose measured with a life size human phantom in a low Earth orbit mission.

    Science.gov (United States)

    Yasuda, Hiroshi

    2009-03-01

    The biggest concern about the health risk to astronauts is how large the stochastic effects (cancers and hereditary effects) of space radiation could be. The practical goal is to determine the "effective dose" precisely, which is difficult for each crew because of the complex transport processes of energetic secondary particles. The author and his colleagues thus attempted to measure an effective dose in space using a life-size human phantom torso in the STS-91 Shuttle-Mir mission, which flew at nearly the same orbit as that of the International Space Station (ISS). The effective dose for about 10-days flight was 4.1 mSv, which is about 90% of the dose equivalent (H) at the skin; the lowest H values were seen in deep, radiation-sensitive organs/tissues such as the bone marrow and colon. Succeeding measurements and model calculations show that the organ dose equivalents and effective dose in the low Earth orbit mission are highly consistent, despite the different dosimetry methodologies used to determine them.

  19. High doses of dextromethorphan, an NMDA antagonist, produce effects similar to classic hallucinogens

    Science.gov (United States)

    Carter, Lawrence P.; Johnson, Matthew W.; Mintzer, Miriam Z.; Klinedinst, Margaret A.; Griffiths, Roland R.

    2013-01-01

    Rationale Although reports of dextromethorphan (DXM) abuse have increased recently, few studies have examined the effects of high doses of DXM. Objective This study in humans evaluated the effects of supratherapeutic doses of DXM and triazolam. Methods Single, acute, oral doses of DXM (100, 200, 300, 400, 500, 600, 700, 800 mg/70 kg), triazolam (0.25, 0.5 mg/70kg), and placebo were administered to twelve healthy volunteers with histories of hallucinogen use, under double-blind conditions, using an ascending dose run-up design. Subjective, behavioral, and physiological effects were assessed repeatedly after drug administration for 6 hours. Results Triazolam produced dose-related increases in subject-rated sedation, observer-rated sedation, and behavioral impairment. DXM produced a profile of dose-related physiological and subjective effects differing from triazolam. DXM effects included increases in blood pressure, heart rate, and emesis, increases in observer-rated effects typical of classic hallucinogens (e.g. distance from reality, visual effects with eyes open and closed, joy, anxiety), and participant ratings of stimulation (e.g. jittery, nervous), somatic effects (e.g. tingling, headache), perceptual changes, end-of-session drug liking, and mystical-type experience. After 400 mg/70kg DXM, 11 of 12 participants indicated on a pharmacological class questionnaire that they thought they had received a classic hallucinogen (e.g. psilocybin). Drug effects resolved without significant adverse effects by the end of the session. In a 1-month follow up volunteers attributed increased spirituality and positive changes in attitudes, moods, and behavior to the session experiences. Conclusions High doses of DXM produced effects distinct from triazolam and had characteristics that were similar to the classic hallucinogen psilocybin. PMID:22526529

  20. SEMICONDUCTOR TECHNOLOGY: An efficient dose-compensation method for proximity effect correction

    Science.gov (United States)

    Ying, Wang; Weihua, Han; Xiang, Yang; Renping, Zhang; Yang, Zhang; Fuhua, Yang

    2010-08-01

    A novel simple dose-compensation method is developed for proximity effect correction in electron-beam lithography. The sizes of exposed patterns depend on dose factors while other exposure parameters (including accelerate voltage, resist thickness, exposing step size, substrate material, and so on) remain constant. This method is based on two reasonable assumptions in the evaluation of the compensated dose factor: one is that the relation between dose factors and circle-diameters is linear in the range under consideration; the other is that the compensated dose factor is only affected by the nearest neighbors for simplicity. Four-layer-hexagon photonic crystal structures were fabricated as test patterns to demonstrate this method. Compared to the uncorrected structures, the homogeneity of the corrected hole-size in photonic crystal structures was clearly improved.

  1. Effect of vertical angulation to dose of thyroid glands in periapical radiography

    Energy Technology Data Exchange (ETDEWEB)

    Hosoi, Keitaro; Satoh, Keiji; Furumoto, Keiichi (Nippon Dental Univ., Tokyo (Japan). School of Dentistry)

    1992-10-01

    Much attention has been given to reducing the dose of radiation in dental radiography in terms of the highest risk for the head and neck. Organ doses in intraoral radiography vary greatly with subtle differences in vertical angulation. Quantitative determination of doses delivered to the thyroid gland is thus necessary in determining adequate doses and risk for dental radiography. A personal computer program, prepared for estimating organ doses under various radiographic conditions, was used to evaluate the effect of vertical angulation on the dose delivered to the thyroid gland in radiography of the maxillary and mandibular incisors. Review of the literature revealed that the calculated dose delivered to the thyroid gland is approximately in accordance with the data of the actual determination under the same radiographic conditions. The dose-dependence of radiation delivered to the thyroid gland on vertical angulation of the maxilla was much more than that of the mandible. In the mandible, the dose delivered to the thyroid gland increased about three fold at a field size of 6 cm[phi] and about 1.5 fold at 8 cm[phi] when the vertical angulation changed from -40deg to 0deg. In the maxilla, the delivered dose increased about 480 times at a field size of 6 cm[phi] when vertical angulation changed from 0deg to 50deg and rapidly increased about 280 times at 8 cm[phi] when the angulation changed from 0deg to 40deg. The dose of radiation delivered to the thyroid gland was evaluated as a function of product of the irradiated volume within the primary beam directed at the thyroid gland and the inverse square of the distance between a subject's surface and the thyroid gland. (N.K.).

  2. Effective dose and cancer risk in PET/CT exams; Dose efetiva e risco de cancer em exames de PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Gabriella M.; Sa, Lidia Vasconcellos de, E-mail: montezano@ird.gov.br, E-mail: Iidia@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Due to the use of radiopharmaceutical positron-emitting in PET exam and realization of tomography by x-ray transmission in CT examination, an increase of dose with hybrid PET/CT technology is expected. However, differences of doses have been reported in many countries for the same type of procedure. It is expected that the dose is an influent parameter to standardize the protocols of PET/CT. This study aimed to estimate the effective doses and absorbed in 65 patients submitted to oncological Protocol in a nuclear medicine clinic in Rio de Janeiro, considering the risk of induction of cancer from the scan. The CT exam-related doses were estimated with a simulator of PMMA and simulated on the lmPACT resistance, which for program effective dose, were considered the weight factors of the lCRP 103. The PET exam doses were estimated by multiplying the activity administered to the patient with the ICRP dose 80 factors. The radiological risk for cancer incidence were estimated according to the ICRP 103. The results showed that the effective dose from CT exam is responsible for 70% of the effective total in a PET/CT scan. values of effective dose for the PET/CT exam reached average values of up to 25 mSv leading to a risk of 2, 57 x 10{sup -4}. Considering that in staging of oncological diseases at least four tests are performed annually, the total risk comes to 1,03x 10{sup -3}.

  3. Study of Biological Effects of Low Energy Ion Implantation on Tomato and Radish Breeding

    Science.gov (United States)

    Liang, Qiuxia; Huang, Qunce; Cao, Gangqiang; Ying, Fangqing; Liu, Yanbo; Huang, Wen

    2008-04-01

    Biological effects of 30 keV low energy nitrogen ion implantation on the seeds of five types of tomato and one type of radish were investigated. Results showed that low energy ions have different effects on different vegetables. The whole dose-response curve of the germination ratio did not take on "the shape of saddle", but was a rising and falling waveform with the increase or decrease in ion implantation. In the vegetable of Solanaceae, two outstanding aberrant plants were selected from M1 of Henan No.4 tomato at a dose of 7 × 1017 nitrogen ions/cm2, which had thin-leaves, long-petal and nipple tip fruit stably inherited to M7. Furthermore the analysis of the isozyme showed that the activity of the mutant tomato seedling was distinct in quantity and color. In Raphanus sativus L., the aberrances were obvious in the mutant of radish 791 at a dose of 5 × 1017 nitrogen ions/cm2, and the weight of succulent root and the volume of growth were over twice the control's. At present, many species for breeding have been identified in the field and only stable species have been selected for the experiment of production. It is evident that the low energy ion implantation technology has clear effects on vegetables' genetic improvement.

  4. Study of Biological Effects of Low Energy Ion Implantation on Tomato and Radish Breeding

    Institute of Scientific and Technical Information of China (English)

    LIANG Qiuxia; HUANG Qunce; CAO Gangqiang; YING Fangqing; LIU Yanbo; HUANG Wen

    2008-01-01

    Biological effects of 30 keV low energy nitrogen ion implantation on the seeds of five types of tomato and one type of radish were investigated. Results showed that low energy ions have different effects on different vegetables. The whole dose-response curve of the germination ratio did not take on "the shape of saddle", but was a rising and falling waveform with the increase or decrease in ion implantation. In the vegetable of Solanaceae, two outstanding aberrant plants were selected from M1 of Henan No.4 tomato at a dose of 7×1017 nitrogen ions/cm2, which had thin-leaves, long-petal and nipple tip fruit stably inherited to M7. Furthermore the analysis of the isozyme showed that the activity of the mutant tomato seedling was distinct in quantity and color. In Raphanus sativus L., the aberrances were obvious in the mutant of radish 791 at a dose of 5×1017 nitrogen ions/cm2, and the weight of succulent root and the volume of growth were over twice the control's. At present, many species for breeding have been identified in the field and only stable species have been selected for the experiment of production. It is evident that the low energy ion implantation technology has clear effects on vegetables' genetic improvement.

  5. Biological effects of radon in Drosophila; Efectos biologicos del radon en Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel P, A.E.; Tavera D, L.; Cruces M, M.P.; Arceo M, C.; Rosa D, M.E. de la

    1992-04-15

    The main objective of this investigation, is to study the biological effects of the Radon-222 at low dose in 'Drosophila melanogaster'. It is necessary to mention that these effects will analyze from the genetic point of view for: 1) To evaluate in which form the Radon-222 to low dose it influences in some genetic components of the adaptation in Drosophila, such as: fecundity, viability egg-adult and sex proportion. 2) To evaluate which is the genetic effect that induces the Radon to low dose by means of the SMART technique in Drosophila melanogaster, and this way to try of to identify which is the possible mechanism that causes the genetic damage to somatic level. The carried out investigation was divided in three stages: 1. Tests to the vacuum resistance. 2. Test of somatic mutation, and 3. Determination of the presence of radon daughters on the adult of Drosophila. It is necessary to point out that all the experiments were made by triplicate and in each one of them was placed detectors in preset places. Those obtained results are presented inside the 4 charts included in the present work. (Author)

  6. Low doses of nanodiamonds and silica nanoparticles have beneficial hormetic effects in normal human skin fibroblasts in culture.

    Science.gov (United States)

    Mytych, Jennifer; Wnuk, Maciej; Rattan, Suresh I S

    2016-04-01

    Nanodiamonds (ND) and silica nanoparticles (SiO2-NP) have been much investigated for their toxicity at high doses, little is known about their biological activity at low concentrations. Here we report the biphasic dose response of ND and SiO2-NP in modulating normal human facial skin fibroblasts (FSF1) in culture. ND and SiO2-NP at low concentration (up to 0.5 μg/ml) had beneficial effects on FSF1 in terms of increasing their proliferation and metabolic activity. Exposure of FSF1 cells to low levels of NP enhanced their wound healing ability in vitro and slowed down aging during serial passaging as measured by maintenance of youthful morphology, reduction in the rate of loss of telomeres, and the over all proliferative characteristics. Furthermore, NP treatment induced the activation of Nrf2- and FOXO3A-mediated cellular stress responses, including an increased expression of heme oxygenease (HO-1), sirtuin (SIRT1), and DNA methyltransferase II (DNMT2). These results imply that ND and SiO2-NP at low doses are potential hormetins, which exert mild stress-induced beneficial hormetic effects through improved survival, longevity, maintenance, repair and function of human cells.

  7. Effects of pyruvate dose on in vivo metabolism and quantification of hyperpolarized 13C spectra

    DEFF Research Database (Denmark)

    Janich, M. A.; Menzel, M. I.; Wiesinger, F.

    2012-01-01

    by acquiring slice‐selective free induction decay signals in slices dominated by heart, liver and kidney tissue. Dose effects were noted in all cases, except for alanine in the cardiac slice below the dose of 0.2 mmol/kg. Our results indicate unlimited cellular uptake of pyruvate up to this dose and limited...... enzymatic activity of lactate dehydrogenase. In the cardiac slice above 0.2 mmol/kg and in liver and kidney slices, reflect limited cellular uptake or enzymatic activity, or a combination of both effects. The results indicate that the dose of pyruvate must be recognized as an important determinant...... for metabolic tissue kinetics, and saturation effects must be taken into account for the quantitative interpretation of the observed results. Copyright © 2011 John Wiley & Sons, Ltd....

  8. Effectiveness of single doses of Fenbendazole Hoe 88I against Ascaris, hookworm and Trichuris in man.

    Science.gov (United States)

    Bruch, K; Haas, J

    1976-06-01

    Fenbendazole (Hoe 881) 5-(phenylthio)-2-benzimidazolecarbaminicacidmethylester in doses of 1-0 g and 1-5 g per person were effective against Ascaris and gave substantial egg count reductions against hookworm (mainly Necator americanus). The 1-5 g dose gave good results against Trichuris. In a trial with a suspension of Hoe 881 with a high specific surface of 25 m2/g there was no advantage over tablets with a specific surface of approximately 8 m2/g. Two doses of 500 mg given with an interval of 24 hours were no more effective than one dose of 1-0 g. In a comparative trial using Hoe 881 1-5 g, Pyrantel 10 mg/kg and placebo respectively Hoe 881 showed equal potency against hookworms and Acsaris as Pyrantel and good effectiveness against Trichuris. Pyrantel showed only moderate activity against Trichuris in this trial.

  9. Calculation of effective dose in whole body in dependence of angle of collimator for photon fields

    Energy Technology Data Exchange (ETDEWEB)

    Fuenzalida, M. [Universidad de la Frontera, Temuco (Chile). Programa de Magister en Fisica Medica; Varon, C.; Piriz, G.; Banguero, Y.; Lozano, E.; Mancilla, C., E-mail: fisicamedica@incancer.c [Instituto Nacional del Cancer, Santiago (Chile). Unidad de Fisica Medica

    2011-07-01

    The objective of this work is to obtain quantifiable data of whole body effective dose for photons fields of 6 MV and 18 MV in function of the collimator angle of a Varian Clinac 21EX lineal accelerator. It has been made a variety of studies which investigate the form to reduce the dose in whole body with photons fields, specially over the potential risks and the influence of the collimator angle, as performed Stanthakis et al. [1] with the Monte Carlo method. As a result of this work, the values of whole body effective doses are higher with a 0 deg collimator than with a 90 deg collimator, and as the field size increases, the effective doses difference in whole body, between 0 deg and 90 deg collimator angle, for both energies, becomes smaller. (author)

  10. Adaptation hypothesis of biological effectiveness of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kudritsky, Yu.K.; Georgievsky, A.B.; Karpov, V.I.

    1993-12-31

    The adoptation hypothesis of biological effectiveness of ionizing radiations is based on the recognition of the invariability of general biological laws for radiobiology and on the comprehension of life evolution regularities and axiomatic principles of environment and biota unity. The ionizing radiation factor is essential for life which could not exist beyond the radiation field. The possibility of future development of the adaptation hypothesis serves as a basis for it`s transformation into the theoretical foundation of radiobiology. This report discusses the aspects of the adaptation theory.

  11. Effective dose in the manufacturing process of rutile covered welding electrodes.

    Science.gov (United States)

    Herranz, M; Rozas, S; Pérez, C; Idoeta, R; Núñez-Lagos, R; Legarda, F

    2013-03-01

    Shielded metal arc welding using covered electrodes is the most common welding process. Sometimes the covering contains naturally occurring radioactive materials (NORMs). In Spain the most used electrodes are those covered with rutile mixed with other materials. Rutile contains some detectable natural radionuclides, so it can be considered a NORM. This paper mainly focuses on the use of MCNP (Monte Carlo N-Particle Transport Code) as a predictive tool to obtain doses in a factory which produces this type of electrode and assess the radiological impact in a specific facility after estimating the internal dose.To do this, in the facility, areas of highest radiation and positions of workers were identified, radioactive content of rutile and rutile covered electrodes was measured, and, considering a worst possible scenario, external dose at working points has been calculated using MCNP. This procedure has been validated comparing the results obtained with those from a pressurised ionisation chamber and TLD dosimeters. The internal dose has been calculated using DCAL (dose and risk calculation). The doses range between 8.8 and 394 μSv yr(-1), always lower than the effective dose limit for the public, 1 mSv yr(-1). The highest dose corresponds to the mixing area.

  12. Radiation dose response of normal lung assessed by Cone Beam CT - a potential tool for biologically adaptive radiation therapy

    DEFF Research Database (Denmark)

    Bertelsen, Anders; Schytte, Tine; Bentzen, Søren M;

    2011-01-01

    Density changes of healthy lung tissue during radiotherapy as observed by Cone Beam CT (CBCT) might be an early indicator of patient specific lung toxicity. This study investigates the time course of CBCT density changes and tests for a possible correlation with locally delivered dose....

  13. Effect of biologic agents on radiographic progression of rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Gabriel J Tobón

    2010-08-01

    Full Text Available Gabriel J Tobón1, Alain Saraux1,2, Valérie Devauchelle-Pensec1,21Immunology Laboratory, Morvan Hospital, Université de Bretagne Occidentale, Brest, France; 2Rheumatology Unit, Hôpital de la Cavale Blanche, CHU Brest, FranceAbstract: The treatment of rheumatoid arthritis (RA has benefited over the last few years from the introduction of biologic agents whose development was based on new insights into the immunological factors involved in the pathogenesis of RA and the development of joint damage. These biological agents have been proven effective in RA patients with inadequate responses to synthetic disease-modifying antirheumatic drugs (DMARDs. Preventing joint damage is now the primary goal of RA treatment, and guidelines exist for the follow-up of joint abnormalities. Most biologic agents produced high clinical and radiological response rates in patients with established or recent-onset RA. Thus, for the first time, obtaining a remission is a reasonable treatment goal in RA patients. Factors that are crucial to joint damage control are: early initiation of DMARDs, use of intensive treatments including biological agents, and close monitoring of clinical disease activity and radiographic progression. However, some patients remain unresponsive to all available treatments and continue to experience joint damage progression. A major objective now is to identify patients at high risk for severe joint damage, in order to tailor the treatment regimen to their specific needs.Keywords: rheumatoid arthritis, radiographic progression, biologics

  14. Co-administration of morphine and gabapentin leads to dose dependent synergistic effects in a rat model of postoperative pain

    DEFF Research Database (Denmark)

    Papathanasiou, Theodoros; Juul, Rasmus Vestergaard; Heegaard, Anne-Marie;

    2016-01-01

    dose combinations and investigate whether co-administration leads to synergistic effects in a preclinical model of postoperative pain. The pharmacodynamic effects of morphine (1, 3 and 7 mg/kg), gabapentin (10, 30 and 100 mg/kg) or their combination (9 combinations in total) were evaluated in the rat...... ranged between 26 and 58 % for the synergistic doses. The finding of dose-dependent synergistic effects highlights that choosing the right dose-dose combination is of importance in postoperative pain therapy. Our results indicate benefit of high doses of gabapentin as adjuvant to morphine...

  15. Dose rate effects in the radiation damage of the plastic scintillators of the CMS Hadron Endcap Calorimeter

    CERN Document Server

    Khachatryan, V.

    2016-01-01

    We present measurements of the reduction of light output by plastic scintillators irradiated in the CMS detector during the 8 TeV run of the Large Hadron Collider and show that they indicate a strong dose rate effect. The damage for a given dose is larger for lower dose rate exposures. The results agree with previous measurements of dose rate effects, but are stronger due to the very low dose rates probed. We show that the scaling with dose rate is consistent with that expected from diffusion effects.

  16. Predictive modeling of nanomaterial exposure effects in biological systems

    Directory of Open Access Journals (Sweden)

    Liu X

    2013-09-01

    Full Text Available Xiong Liu,1 Kaizhi Tang,1 Stacey Harper,2 Bryan Harper,2 Jeffery A Steevens,3 Roger Xu1 1Intelligent Automation, Inc., Rockville, MD, USA; 2Department of Environmental and Molecular Toxicology, School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, USA; 3ERDC Environmental Laboratory, Vicksburg, MS, USA Background: Predictive modeling of the biological effects of nanomaterials is critical for industry and policymakers to assess the potential hazards resulting from the application of engineered nanomaterials. Methods: We generated an experimental dataset on the toxic effects experienced by embryonic zebrafish due to exposure to nanomaterials. Several nanomaterials were studied, such as metal nanoparticles, dendrimer, metal oxide, and polymeric materials. The embryonic zebrafish metric (EZ Metric was used as a screening-level measurement representative of adverse effects. Using the dataset, we developed a data mining approach to model the toxic endpoints and the overall biological impact of nanomaterials. Data mining techniques, such as numerical prediction, can assist analysts in developing risk assessment models for nanomaterials. Results: We found several important attributes that contribute to the 24 hours post-fertilization (hpf mortality, such as dosage concentration, shell composition, and surface charge. These findings concur with previous studies on nanomaterial toxicity using embryonic zebrafish. We conducted case studies on modeling the overall effect/impact of nanomaterials and the specific toxic endpoints such as mortality, delayed development, and morphological malformations. The results show that we can achieve high prediction accuracy for certain biological effects, such as 24 hpf mortality, 120 hpf mortality, and 120 hpf heart malformation. The results also show that the weighting scheme for individual biological effects has a significant influence on modeling the overall impact of

  17. DNA double-strand breaks as potential indicators for the biological effects of ionising radiation exposure from cardiac CT and conventional coronary angiography: a randomised, controlled study

    Energy Technology Data Exchange (ETDEWEB)

    Geisel, Dominik; Zimmermann, Elke; Rief, Matthias; Greupner, Johannes; Hamm, Bernd [Charite Medical School, Department of Radiology, Berlin (Germany); Laule, Michael; Knebel, Fabian [Charite Medical School, Department of Cardiology, Berlin (Germany); Dewey, Marc [Charite Medical School, Department of Radiology, Berlin (Germany); Charite, Institut fuer Radiologie, Berlin (Germany)

    2012-08-15

    To prospectively compare induced DNA double-strand breaks by cardiac computed tomography (CT) and conventional coronary angiography (CCA). 56 patients with suspected coronary artery disease were randomised to undergo either CCA or cardiac CT. DNA double-strand breaks were assessed in fluorescence microscopy of blood lymphocytes as indicators of the biological effects of radiation exposure. Radiation doses were estimated using dose-length product (DLP) and dose-area product (DAP) with conversion factors for CT and CCA, respectively. On average there were 0.12 {+-} 0.06 induced double-strand breaks per lymphocyte for CT and 0.29 {+-} 0.18 for diagnostic CCA (P < 0.001). This relative biological effect of ionising radiation from CCA was 1.9 times higher (P < 0.001) than the effective dose estimated by conversion factors would have suggested. The correlation between the biological effects and the estimated radiation doses was excellent for CT (r = 0.951, P < 0.001) and moderate to good for CCA (r = 0.862, P < 0.001). One day after radiation, a complete repair of double-strand breaks to background levels was found in both groups. Conversion factors may underestimate the relative biological effects of ionising radiation from CCA. DNA double-strand break assessment may provide a strategy for individualised assessments of radiation. (orig.)

  18. Investigation into the effects of lead shielding for fetal dose reduction in CT pulmonary angiography.

    Science.gov (United States)

    Kennedy, E V; Iball, G R; Brettle, D S

    2007-08-01

    This work aims to determine whether lead shielding can be used to decrease the radiation dose to the fetus during CT scans for the diagnosis of pulmonary embolism during early stage pregnancy. An anthropomorphic phantom was modified to contain a 15 cc ionization chamber at the site of the uterus to enable fetal dose to be measured. The effects of a range of scan parameters, positioning of lead and thicknesses of lead were investigated. Fetal dose was lower with lower values of kV(p) and mAs. An increasing thickness of lead decreased the radiation dose to the uterus, as did increasing the proportion of the patient covered by the lead shielding. Fetal dose increased exponentially as the edge of the scan volume moved closer to the point of measurement. In no experiment was the dose to the fetus increased by the presence of the lead. It was found that the fetal radiation dose from a CT scan following a pulmonary embolism protocol can be effectively reduced by the use of lead shielding.

  19. Effective dose conversion coefficients for X-ray radiographs of the chest and the abdomen

    Energy Technology Data Exchange (ETDEWEB)

    Lima, F.R.A. [Centro regional de Ciencias Nucleares, CRCN/CNEN, Rua Conego Barata, 999, Tamarineira, Recife, PE (Brazil); Kramer, R.; Vieira, J.W.; Khoury, H.J. [Departamento de Energia Nuclear, DEN/UFPE, Cidade Universitaria, Recife, PE (Brazil)]. E-mail: falima@cnen.gov.br

    2004-07-01

    The recently developed MAX (Male Adult voXel) and the FAXht (Female Adult voXel) head and trunk phantoms have been used to calculate organ and tissue equivalent dose conversion coefficients for X-ray radiographs of the chest and the abdomen as a function of source and field parameters, like voltage, filtration, field size, focus-to-skin distance, etc. Based on the equivalent doses to twenty three organs and tissues at risk, the effective dose has been determined and compared with corresponding data for others phantoms. The influence of different radiation transport codes, different tissue compositions and different human anatomies have been investigated separately. (Author)

  20. Up-dosing with bilastine results in improved effectiveness in cold contact urticaria

    OpenAIRE

    Krause, K; Spohr, A.; Zuberbier, T.; Church, M. K.; Maurer, M.

    2013-01-01

    Background Cold contact urticaria (CCU) is characterized by itchy wheal and flare responses due to the release of histamine and other pro-inflammatory mediators after exposure to cold. The treatment of choice is nonsedating antihistamines, dosages of which may be increased up to fourfold if standard doses are ineffective. Here, we assess the effects of a standard 20 mg dose and up-dosing to 40 and 80 mg of bilastine in reducing the symptoms of CCU and inflammatory mediator release following c...

  1. Low-dose effect of developmental bisphenol A exposure on sperm count and behaviour in rats

    DEFF Research Database (Denmark)

    Hass, Ulla; Christiansen, Sofie; Boberg, Julie

    2016-01-01

    /day. In the offspring, growth, sexual maturation, weights and histopathology of reproductive organs, oestrus cyclicity and sperm counts were assessed. Neurobehavioural development was investigated using a behavioural testing battery including tests for motor activity, sweet preference, anxiety and spatial learning....... Decreased sperm count was found at the lowest bisphenol A dose, that is 25 μg/kg/day, but not at the higher doses. Reproductive organ weight and histology were not affected and no behavioural effects were seen in male offspring. In the female offspring, exposure to 25 μg/kg bw/day bisphenol A dose resulted...

  2. Efeitos das isoflavonas em altas doses sobre o útero da rata Effects of high-dose isoflavones on rat uterus

    Directory of Open Access Journals (Sweden)

    Adriana Aparecida Ferraz Carbonel

    2011-10-01

    Full Text Available OBJETIVO: Avaliar o efeito de altas doses de isoflavonas no útero de ratas adultas castradas. MÉTODOS: Ratas virgens ovariectomizadas (n = 40 foram tratadas por 30 dias consecutivos com veículo (GCtrl ou genisteína nas concentrações 42 (GES42, 125 (GES125 e 250 (GES250 µg/g de peso corporal ao dia. O extrato de soja e o veículo (propilenoglicol foram administrados por gavagem. Ao final do experimento, foi realizada dosagem sérica de 17 β-estradiol e progesterona, avaliou-se o peso dos animais e dos úteros e foi feito exame colpocitológico. Fragmentos do terço médio dos cornos uterinos foram fixados em formol a 10% e processados para inclusão em parafina para estudo histológico. Cortes de 5 µm de espessura foram corados pelo HE e destinados a estudo em microscopia de luz. Analisou-se a histomorfologia do endométrio, área endometrial, número e área ocupada pelas glândulas, assim como a concentração de eosinófilos presentes na lâmina própria. Os dados numéricos obtidos foram submetidos à análise de variância complementada pelo teste de Tukey-Kramer (p GES125 do que nos outros grupos (GES250 > GES125 > GES42 = GCtrl; p OBJECTIVE: To evaluate the effects of high-dose isoflavones on the uterus of castrated adult rats. METHODS: Adult, ovariectomized virgin rats (n = 40 were treated by gavage during 30 consecutive days with vehicle (propylene glycol, group GCtrl or different doses of genistein: 42 (group GES42, 125 (GES125, or 250 (GES250 µg/g body weight per day. Animals were killed, weighed, vaginal and uterine samples were taken for cytologic evaluation, and serum levels of 17 β-estradiol and progesterone were determined. The middle third of the uterine horns was dissected, fixed in 10% formaldehyde and processed for paraffin inclusion; 5-µm thick sections were obtained and stained with HE for further histological study under light microscopy. The endometrial morphology and area, number and area of glands, and number

  3. Effects of Tebufenozide on the Biological Characteristics of Beet Armyworm (Spodoptera exigua Hübner) and Its Resistance Selection

    Institute of Scientific and Technical Information of China (English)

    LIU Wei-wei; MU Wei; ZHU Bing-yu; LIU Feng

    2008-01-01

    In this article, the selection of tebufenozide to beet armyworm (Spodoptera exigua Hubner) was studied by the treatments to alternative generations' 3rd-instar larvae with LC50 dose and to continuous generations' larvae with LC10 dose; the effects of tebufenozide on the biological characteristics of current and subsequent generations were examined by the treatments to 3rd-instar larvae and egg pods in different concentrations. After treatments with LC50 dose till F11, the toxicity of tebufenozide to beet armyworm had no significant change, whereas the pupation rate, pupal weight, and fecundity were reduced markedly. After treatments with LC10 dose till F19, the beet armyworm only developed 3.52-fold resistance, and the main biological characteristics were nearly accordant in each generation. The livability was reduced 72 h later after treatments to 3rd-instar larvae, respectively in 2.5-40 (ig mL-', and larval duration, pupation rate, and pupal weight changed considerably with the increase in concentrations. The fecundity, larval livability, larval weight and pupal weight of subsequent generations were reduced as the dose increased over 10 ug mL-1. The hatching rate of egg pods did not differ with that of the controls obviously after treatment in 10-300 ug mL-1. But the larval livability, larval weight and pupal weight were reduced when eggs were exposed to 50 ug mL-1 dose or more. The results indicated that tebufenozide had low resistance risk to the current and subsequent generations of beet armyworm even if tebufenozide had significant effects on the biological characteristics of this insect.

  4. The effect of low-dose spironolactone on resistant hypertension

    DEFF Research Database (Denmark)

    Engbaek, Mette; Hjerrild, Mette; Hallas, Jesper;

    2010-01-01

    an average of 3.7 mmol/L to 4.1 mmol/L (P hyperkalemia in 4.1% of the cases. A total of 18% of all patients had adverse effects, which in 9.9% led to discontinuation of the drug. A total of 5.2% of the males developed gynecomastia. In conclusion, low...

  5. Health effects of low doses at low dose rates: dose-response relationship modeling in a cohort of workers of the nuclear industry; Effets sanitaires des faibles doses a faibles debits de dose: modelisation de la relation dose-reponse dans une cohorte de travailleurs du nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Metz-Flamant, Camille

    2011-09-19

    The aim of this thesis is to contribute to a better understanding of the health effects of chronic external low doses of ionising radiation. This work is based on the French cohort of CEA-AREVA NC nuclear workers. The mains stages of this thesis were (1) conducting a review of epidemiological studies on nuclear workers, (2) completing the database and performing a descriptive analysis of the cohort, (3) quantifying risk by different statistical methods and (4) modelling the exposure-time-risk relationship. The cohort includes monitored workers employed more than one year between 1950 and 1994 at CEA or AREVA NC companies. Individual annual external exposure, history of work, vital status and causes of death were reconstructed for each worker. Standardized mortality ratios using French national mortality rates as external reference were computed. Exposure-risk analysis was conducted in the cohort using the linear excess relative risk model, based on both Poisson regression and Cox model. Time dependent modifying factors were investigated by adding an interaction term in the model or by using exposure time windows. The cohort includes 36, 769 workers, followed-up until age 60 in average. During the 1968- 2004 period, 5, 443 deaths, 2, 213 cancers, 62 leukemia and 1, 314 cardiovascular diseases were recorded. Among the 57% exposed workers, the mean cumulative dose was 21.5 milli-sieverts (mSv). A strong Healthy Worker Effect is observed in the cohort. Significant elevated risks of pleura cancer and melanoma deaths were observed in the cohort but not associated with dose. No significant association was observed with solid cancers, lung cancer and cardiovascular diseases. A significant dose-response relationship was observed for leukemia excluding chronic lymphatic leukemia, mainly for doses received less than 15 years before and for yearly dose rates higher than 10 mSv. This PhD work contributes to the evaluation of risks associated to chronic external radiation

  6. The biologically equivalent dose BED - Is the approach for calculation of this factor really a reliable basis?; Die biologisch aequivalente Dosis BED - wie solide ist die Berechnung dieses Faktors? Eine Betrachtung der Fehlerbalken der biologisch aequivalenten Dosis

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, J.M. [Kiel Univ. (DE). Klinik fuer Strahlentherapie (Radioonkologie); Zimmermann, J. [Marburg Univ. (DE). Klinik fuer Strahlentherapie (Radioonkologie)

    2000-07-01

    To predict the effect on tumours in radiotherapy, especially relating to irreversible effects, but also to realize the retrospective assessment the so called L-Q-model is relied on at present. Internal specific organ parameters, such as {alpha}, {beta}, {gamma}, T{sub p}, T{sub k}, and {rho}, as well as external parameters, so as D, d, n, V, and V{sub ref}, were used for determination of the biologically equivalent dose BED. While the external parameters are determinable with small deviations, the internal parameters depend on biological varieties and dispersons: In some cases the lowest value is assumed to be {delta}={+-}25%. This margin of error goes on to the biologically equivalent dose by means of the principle of superposition of errors. In some selected cases (lung, kidney, skin, rectum) these margins of error were calculated exemplarily. The input errors especially of the internal parameters cause a mean error {delta} on the biologically equivalent dose and a dispersion of the single fraction dose d dependent on the organ taking into consideration, of approximately 8-30%. Hence it follows only a very critical and cautious application of those L-Q-algorithms in expert proceedings, and in radiotherapy more experienced based decisions are recommended, instead of acting only upon simple two-dimensional mechanistic ideas. (orig.) [German] Um bei der Strahlentherapie von Tumoren die Wirkung, vor allem hinsichtlich irreversibler Effekte, zu prognostizieren, aber auch retrospektive Beurteilungen durchzufuehren, wird z.Z. auf das sog. LQ-Modell vertraut. Interne organspezifische Parameter, {alpha}, {beta}, {gamma}, T{sub p}, T{sub k} und {rho}, und externe Parameter, wie D, d, n, V und V{sub ref}, (Erlaeuterungen im Text) werden zur Bestimmung einer biologisch aequivalenten Dosis BED herangezogen. Waehrend die externen Parameter mit geringem Fehler bestimmbar sind, unterliegen die internen Parameter biologischen Varianzen und Streuungen, in manchen Faellen ist der

  7. Sustained effect after lowering high-dose infliximab in patients with rheumatoid arthritis: a prospective dose titration study.

    NARCIS (Netherlands)

    Bemt, B.J. van den; Broeder, AA den; Snijders, G.F.; Hekster, Y.A.; Riel, P.L.C.M. van; Benraad, B.; Wolbink, G.J.; Hoogen, F.H.J. van den

    2008-01-01

    OBJECTIVES: In clinical trials only a small subset of patients with rheumatoid arthritis (RA) benefits from higher than standard dose of infliximab (>3 mg/kg/8 weeks). However, dose escalation of infliximab is frequently applied in clinical practice. Individual adjustment of infliximab treatment

  8. [Effectiveness of various dopamine doses in acute myocardial ischemia complicated by cardiogenic shock (an experimental study)].

    Science.gov (United States)

    Kipshidze, N N; Korotkov, A A; Marsagishvili, L A; Prigolashvili, T Sh; Bokhua, M R

    1981-06-01

    The effect of various doses of dopamine on the values of cardiac contractile and hemodynamic function under conditions of acute two-hour ischemia complicated by cardiogenic shock was studied in 27 experiments on dogs. In a dose of 5 microgram/kg/min dopamine caused an optimum increase in cardiac productive capacity, reduction of peripheral resistance, adequate increase in coronary circulation and decrease in ST segment depression on the ECG. Infusion of 10 microgram/kg/min dopamine usually caused myocardial hyperfunction with an increase in total peripheral resistance and cardiac performance. Maximum dopamine doses (10 microgram/kg/min and more) were effective in the areactive form of cardiogenic shock. In longterm dopamine infusion it is necessary to establish continuous control over the hemodynamic parameters and the ECG to prevent aggravation of ischemia and for stage-by-stage reduction of the drug concentration and determination of the minimum maintenance dose.

  9. Beneficial effects of low dose Musa paradisiaca on the semen quality of male Wistar rats

    Directory of Open Access Journals (Sweden)

    A S Alabi

    2013-01-01

    Full Text Available Background: This study aimed at determining the effects of administration of mature green fruits of Musa paradisiaca on the semen quality of adult male Wistar rats. Materials and Methods: The animals used for the study were grouped into three: the control group, given 2 ml of double distilled water, a low dose group given 500 mg/kg/day and a high dose group given 1000 mg/kg/day of the plantain fruits, which was made into flour, and dissolved in 2 ml of double distilled water for easy oral administration. Results: Significant increment in the semen parameters was noticed in animals that received a lower dose of the plantain flour, but those animals who received the high dose had marked and very significant reduction in sperm cell concentration and percentage of morphologically normal spermatozoa. Conclusion: Musa paradisiaca should be consumed in moderate quantities in order to derive its beneficial effects of enhancing male reproductive functions.

  10. The effects of gantry tilt on breast dose and image noise in cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, Michael E.; Gandhi, Diksha; Schmidt, Taly Gilat [Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53233 (United States); Stevens, Grant M. [GE Healthcare, Waukesha, Wisconsin 53188 (United States); Foley, W. Dennis [Department of Radiology, Medical College of Wisconsin, Froedtert Memorial Lutheran Hospital, Milwaukee, Wisconsin 53226 (United States)

    2013-12-15

    Purpose: This study investigated the effects of tilted-gantry acquisition on image noise and glandular breast dose in females during cardiac computed tomography (CT) scans. Reducing the dose to glandular breast tissue is important due to its high radiosensitivity and limited diagnostic significance in cardiac CT scans.Methods: Tilted-gantry acquisition was investigated through computer simulations and experimental measurements. Upon IRB approval, eight voxelized phantoms were constructed from previously acquired cardiac CT datasets. Monte Carlo simulations quantified the dose deposited in glandular breast tissue over a range of tilt angles. The effects of tilted-gantry acquisition on breast dose were measured on a clinical CT scanner (CT750HD, GE Healthcare) using an anthropomorphic phantom with MOSFET dosimeters in the breast regions. In both simulations and experiments, scans were performed at gantry tilt angles of 0°–30°, in 5° increments. The percent change in breast dose was calculated relative to the nontilted scan for all tilt angles. The percent change in noise standard deviation due to gantry tilt was calculated in all reconstructed simulated and experimental images.Results: Tilting the gantry reduced the breast dose in all simulated and experimental phantoms, with generally greater dose reduction at increased gantry tilts. For example, at 30° gantry tilt, the dosimeters located in the superior, middle, and inferior breast regions measured dose reductions of 74%, 61%, and 9%, respectively. The simulations estimated 0%–30% total breast dose reduction across the eight phantoms and range of tilt angles. However, tilted-gantry acquisition also increased the noise standard deviation in the simulated phantoms by 2%–50% due to increased pathlength through the iodine-filled heart. The experimental phantom, which did not contain iodine in the blood, demonstrated decreased breast dose and decreased noise at all gantry tilt angles.Conclusions: Tilting the

  11. Lack of a Dose-Effect Relationship for Pulmonary Function Changes After Stereotactic Body Radiation Therapy for Early-Stage Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Guckenberger, Matthias, E-mail: Guckenberger_M@klinik.uni-wuerzburg.de [Department of Radiation Oncology, University Hospital Wuerzburg, Wuerzburg (Germany); Klement, Rainer J. [Department of Radiation Oncology, University Hospital Wuerzburg, Wuerzburg (Germany); Kestin, Larry L. [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan (United States); Hope, Andrew J. [Princess Margaret Hospital, University of Toronto, Toronto, ON (Canada); Belderbos, Jose [The Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Werner-Wasik, Maria [Thomas Jefferson University Hospital, Philadelphia, Pennsylvania (United States); Yan, Di [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan (United States); Sonke, Jan-Jakob [The Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Bissonnette, Jean-Pierre [Princess Margaret Hospital, University of Toronto, Toronto, ON (Canada); Xiao, Ying [Thomas Jefferson University Hospital, Philadelphia, Pennsylvania (United States); Grills, Inga S. [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan (United States)

    2013-03-15

    Purpose: To evaluate the influence of tumor size, prescription dose, and dose to the lungs on posttreatment pulmonary function test (PFT) changes after stereotactic body radiation therapy (SBRT) for early-stage non-small cell lung cancer (NSCLC). Methods and Materials: The analysis is based on 191 patients treated at 5 international institutions: inclusion criteria were availability of pre- and post-SBRT PFTs and dose-volume histograms of the lung and planning target volume (PTV); patients treated with more than 1 SBRT course were excluded. Correlation between early (1-6 months, median 3 months) and late (7-24 months, median 12 months) PFT changes and tumor size, planning target volume (PTV) dose, and lung doses was assessed using linear regression analysis, receiver operating characteristics analysis, and Lyman's normal tissue complication probability model. The PTV doses were converted to biologically effective doses and lung doses to 2 Gy equivalent doses before correlation analyses. Results: Up to 6 months after SBRT, forced expiratory volume in 1 second and carbon monoxide diffusion capacity changed by −1.4% (95% confidence interval [CI], −3.4% to 0) and −7.6% (95% CI, −10.2% to −3.4%) compared with pretreatment values, respectively. A modest decrease in PFTs was observed 7-24 months after SBRT, with changes of −8.1% (95% CI, −13.3% to −5.3%) and −12.4% (95% CI, −15.5% to −6.9%), respectively. Using linear regression analysis, receiver operating characteristic analysis, and normal tissue complication probability modeling, all evaluated parameters of tumor size, PTV dose, mean lung dose, and absolute and relative volumes of the lung exposed to minimum doses of 5-70 Gy were not correlated with early and late PFT changes. Subgroup analysis based on pre-SBRT PFTs (greater or equal and less than median) did not identify any dose-effect relationship. Conclusions: This study failed to demonstrate a significant dose-effect relationship for

  12. Marijuana’s Dose-Dependent Effects in Daily Marijuana Smokers

    Science.gov (United States)

    Ramesh, Divya; Haney, Margaret; Cooper, Ziva D.

    2015-01-01

    Active marijuana produces significant subjective, psychomotor, and physiological effects relative to inactive marijuana, yet demonstrating that these effects are dose-dependent has proven difficult. This within-subject, double-blind study was designed to develop a smoking procedure to obtain a marijuana dose–response function. In four outpatient laboratory sessions, daily marijuana smokers (N = 17 males, 1 female) smoked six 5-s puffs from 3 marijuana cigarettes (2 puffs/cigarette). The number of puffs from active (≥5.5% Δ9-tetrahydrocannabinol/THC) and inactive (0.0% THC) marijuana varied according to condition (0, 2, 4, or 6 active puffs); active puffs were always smoked before inactive puffs. Subjective, physiological, and performance effects were assessed prior to and at set time points after marijuana administration. Active marijuana dose-dependently increased heart rate and decreased marijuana craving, despite evidence (carbon monoxide expiration, weight of marijuana cigarettes post-smoking) that participants inhaled less of each active marijuana cigarette than inactive cigarettes. Subjective ratings of marijuana “strength,” “high,” “liking,” “good effect,” and “take again” were increased by active marijuana compared with inactive marijuana, but these effects were not dose-dependent. Active marijuana also produced modest, non-dose-dependent deficits in attention, psychomotor function, and recall relative to the inactive condition. In summary, although changes in inhalation patterns as a function of marijuana strength likely minimized the difference between dose conditions, dose-dependent differences in marijuana’s cardiovascular effects and ratings of craving were observed, whereas subjective ratings of marijuana effects did not significantly vary as a function of dose. PMID:23937597

  13. Radiation Leukemogenesis: Applying Basic Science of Epidemiological Estimates of Low Dose Risks and Dose-Rate Effects

    Energy Technology Data Exchange (ETDEWEB)

    Hoel, D. G.

    1998-11-01

    The next stage of work has been to examine more closely the A-bomb leukemia data which provides the underpinnings of the risk estimation of CML in the above mentioned manuscript. The paper by Hoel and Li (Health Physics 75:241-50) shows how the linear-quadratic model has basic non-linearities at the low dose region for the leukemias including CML. Pierce et. al., (Radiation Research 123:275-84) have developed distributions for the uncertainty in the estimated exposures of the A-bomb cohort. Kellerer, et. al., (Radiation and Environmental Biophysics 36:73-83) has further considered possible errors in the estimated neutron values and with changing RBE values with dose and has hypothesized that the tumor response due to gamma may not be linear. We have incorporated his neutron model and have constricted new A-bomb doses based on his model adjustments. The Hoel and Li dose response analysis has also been applied using the Kellerer neutron dose adjustments for the leukemias. Finally, both Pierce's dose uncertainties and Kellerer neutron adjustments are combined as well as the varying RBE with dose as suggested by Rossi and Zaider and used for leukemia dose-response analysis. First the results of Hoel and Li showing a significantly improved fit of the linear-quadratic dose response by the inclusion of a threshold (i.e. low-dose nonlinearity) persisted. This work has been complete for both solid tumor as well as leukemia for both mortality as well as incidence data. The results are given in the manuscript described below which has been submitted to Health Physics.

  14. The Effect of High-Dose Ionizing Radiation on the Astrobiological Model Lichen Circinaria gyrosa

    Science.gov (United States)

    de la Torre, Rosa; Zélia Miller, Ana; Cubero, Beatriz; Martín-Cerezo, M. Luisa; Raguse, Marina; Meeßen, Joachim

    2017-02-01

    The lichen Circinaria gyrosa is an astrobiological model defined by its high capacity of resistance to space conditions and to a simulated martian environment. Therefore, it became part of the currently operated BIOMEX experiment on board the International Space Station and the recent STARLIFE campaign to study the effects of four types of space-relevant ionizing radiation. The samples were irradiated with helium and iron ions at doses up to 2 kGy, with X-rays at doses up to 5 kGy and with γ rays at doses from 6 to 113 kGy. Results on C. gyrosa's resistance to simulated space ionizing radiation and its post-irradiation viability were obtained by (i) chlorophyll a fluorescence of photosystem II (PSII), (ii) epifluorescence microscopy, (iii) confocal laser scanning microscopy (CLSM), and (iv) field emission scanning electron microscopy (FESEM). Results of photosynthetic activity and epifluorescence show no significant changes up to a dose of 1 kGy (helium ions), 2 kGy (iron ions), 5 kGy (X-rays) - the maximum doses applied for those radiation qualities - as well as a dose of 6 kGy of γ irradiation, which was the lowest dose applied for this low linear energy transfer (LET) radiation. Significant damage in a dose-related manner was observed only at much higher doses of γ irradiation (up to 113 kGy). These data corroborate the findings of the parallel STARLIFE studies on the effects of ionizing radiation on the lichen Circinaria gyrosa, its isolated photobiont, and the lichen Xanthoria elegans.

  15. Prokinetic effects of large-dose lubiprostone on gastrointestinal transit in dogs and its mechanisms

    OpenAIRE

    Song, Jun; Yin, Jieyun; Xu, Xiaohong; Chen, Jiande

    2015-01-01

    Objective: To systemically explore effects of large dose of lubiprostone on gastrointestinal (GI) transit and contractions and its safety in dogs. Methods: 12 healthy dogs were studied. 6 dogs were operated to receive duodenal cannula and colon cannula and the other 6 dogs received gastric cannula. Lubiprostone was orally administrated at a dose of 24 µg or 48 µg 1 hr prior to the experiments. Gastric emptying (GE) of solids and small bowel transit were evaluated by collecting the effluents f...

  16. Study of effective dose of various protocols in equipment cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Soares, M. R.; Maia, A. F. [Universidade Federale de Sergipe, Departamento de Fisica, Cidade Universitaria Prof. Jose Aloisio de Campos, Marechal Rondon s/n, Jardim Rosa Elze, 49-100000 Sao Cristovao, Sergipe (Brazil); Batista, W. O. [Instituto Federal da Bahia, Rua Emidio dos Santos s/n, Barbalho, Salvador, 40301015 Bahia (Brazil); Caldas, L. V. E.; Lara, P. A., E-mail: mrs2206@gmail.com [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    Currently the cone beam computed tomography is widely used in various procedures of dental radiology. Although the doses values associated with the procedures of cone beam CT are low compared to typical values associated with dental radiology procedure in multi slices CT. However can be high compared to typical values of other techniques commonly used in dental radiology. The present scenario is a very wide range of designs of equipment and, consequently, lack of uniformity in all parameters associated with x-ray generation and geometry. In this context, this study aimed to evaluate and calculate the absorbed dose in organs and tissues relevant and estimate effective dose for different protocols with different geometries of exposure in five cone beam CT equipment. For this, a female Alderson anthropomorphic phantom, manufactured by Radiology Support Devices was used. The phantom was irradiated with 26 dosimeters LiF: Mg, Ti (TLD-100), inserted in organs and tissues along the layers forming the head and neck of the phantom. The equipment used, in this present assessment, was: i-CAT Classical, Kodak 9000 3D, Gendex GXCB 500, Sirona Orthophos X G 3D and Planmeca Pro Max 3D. The effective doses were be determined by the ICRP 103 weighting factors. The values were between 7.0 and 111.5 micro Sv, confirming the broad dose range expected due to the diversity of equipment and protocols used in each equipment. The values of effective dose per Fov size were: between 7 and 51.2 micro Sv for located Fov; between 17.6 and 52.0 micro Sv for medium Fov; and between 11.5 and 43.1 micro Sv to large Fov (maxillofacial). In obtaining the effective dose the measurements highlighted a relevance contribution of dose absorbed by the remaining organs (36%), Salivary glands (30%), thyroid (12%) and bone marrow (12%). (Author)

  17. Effective dose of dexmedetomidine to induce adequate sedation in elderly patients under spinal anesthesia

    OpenAIRE

    2015-01-01

    Background During sedation with dexmedetomidine, a dose adjustment may be needed based on the invasiveness of the procedure, the patient's general condition, and their age. We aim here to determine the effective dose (ED) of dexmedetomidine to induce an adequate depth of sedation in elderly patients undergoing spinal anesthesia. Methods In this study, 47 patients aged 65 years or older, American Society of Anesthesiologists physical status I or II, undergoing spinal anesthesia were included. ...

  18. A phenomenological relative biological effectiveness approach for proton therapy based on an improved description of the mixed radiation field

    Science.gov (United States)

    Mairani, A.; Dokic, I.; Magro, G.; Tessonnier, T.; Bauer, J.; Böhlen, T. T.; Ciocca, M.; Ferrari, A.; Sala, P. R.; Jäkel, O.; Debus, J.; Haberer, T.; Abdollahi, A.; Parodi, K.

    2017-02-01

    Proton therapy treatment planning systems (TPSs) are based on the assumption of a constant relative biological effectiveness (RBE) of 1.1 without taking into account the found in vitro experimental variations of the RBE as a function of tissue type, linear energy transfer (LET) and dose. The phenomenological RBE models available in literature are based on the dose-averaged LET (LET D ) as an indicator of the physical properties of the proton radiation field. The LET D values are typically calculated taking into account primary and secondary protons, neglecting the biological effect of heavier secondaries. In this work, we have introduced a phenomenological RBE approach which considers the biological effect of primary protons, and of secondary protons, deuterons, tritons (Z  =  1) and He fragments (3He and 4He, Z  =  2). The calculation framework, coupled with a Monte Carlo (MC) code, has been successfully benchmarked against clonogenic in vitro data measured in this work for two cell lines and then applied to determine biological quantities for spread-out Bragg peaks and a prostate and a head case. The introduced RBE formalism, which depends on the mixed radiation field, the dose and the ratio of the linear–quadratic model parameters for the reference radiation {{≤ft(α /β \\right)}\\text{ph}} , predicts, when integrated in an MC code, higher RBE values in comparison to LET D -based parameterizations. This effect is particular enhanced in the entrance channel of the proton field and for low {{≤ft(α /β \\right)}\\text{ph}} tissues. For the prostate and the head case, we found higher RBE-weighted dose values up to about 5% in the entrance channel when including or neglecting the Z  =  2 secondaries in the RBE calculation. TPSs able to proper account for the mixed radiation field in proton therapy are thus recommended for an accurate determination of the RBE in the whole treatment field.

  19. Estimating radiation effective doses from whole body computed tomography scans based on U.S. soldier patient height and weight

    Directory of Open Access Journals (Sweden)

    Quinn Brian

    2011-10-01

    Full Text Available Abstract Background The purpose of this study is to explore how a patient's height and weight can be used to predict the effective dose to a reference phantom with similar height and weight from a chest abdomen pelvis computed tomography scan when machine-based parameters are unknown. Since machine-based scanning parameters can be misplaced or lost, a predictive model will enable the medical professional to quantify a patient's cumulative radiation dose. Methods One hundred mathematical phantoms of varying heights and weights were defined within an x-ray Monte Carlo based software code in order to calculate organ absorbed doses and effective doses from a chest abdomen pelvis scan. Regression analysis was used to develop an effective dose predictive model. The regression model was experimentally verified using anthropomorphic phantoms and validated against a real patient population. Results Estimates of the effective doses as calculated by the predictive model were within 10% of the estimates of the effective doses using experimentally measured absorbed doses within the anthropomorphic phantoms. Comparisons of the patient population effective doses show that the predictive model is within 33% of current methods of estimating effective dose using machine-based parameters. Conclusions A patient's height and weight can be used to estimate the effective dose from a chest abdomen pelvis computed tomography scan. The presented predictive model can be used interchangeably with current effective dose estimating techniques that rely on computed tomography machine-based techniques.

  20. Altered natural killer cell biology in C57BL/6 mice after leukemogenic split-dose irradiation. [/sup 137/Cs

    Energy Technology Data Exchange (ETDEWEB)

    Parkinson, D.R.; Brightman, R.P.; Waksal, S.D.

    1981-04-01

    Natural killer (NK) cell activity was examined in the spleens of C57BL/6 mice given leukemogenic split-dose irradiation. The radiation protocol resulted in severe depression of spontaneous NK cell activity; this activity was not fully restored after treatment with the interferon inducer poly I:C. In vitro mixing studies provided no evidence for active suppression in vivo as a mechanism for this decrease in activity. In addition, spontaneous activity was restored towards control levels after bone marrow transfusion from nonirradiated mice. The results are most compatible with the radiation-induced loss of a cell with normal NK activity from spleen and bone marrow after the split-dose radiation protocol. In addition, a population of cells able to competitively block normal NK cell lysis of YAC-1 tumor cells is found in the bone marrow, spleen, and thymus of the irradiated mice lacking NK cell activity.

  1. Biological activity of two botulinum toxin type A complexes (Dysport and Botox) in volunteers: a double-blind, randomized, dose-ranging study.

    Science.gov (United States)

    Wohlfarth, K; Schwandt, I; Wegner, F; Jürgens, T; Gelbrich, G; Wagner, A; Bogdahn, U; Schulte-Mattler, W

    2008-12-01

    Despite extensive clinical experience and published data regarding botulinum toxin, questions remain about the clinical substitution of one botulinum toxin formulation for another. In the case of Dysport and Botox, dose-equivalence ratios ranging from 1:1 to 6:1 (Dysport:Botox) have been advocated. This dose-ranging, electroneurographic study investigated the dose equivalence, diffusion characteristics (spread) and safety of these two type-A toxins in 79 volunteers. Dysport and Botox caused significant and similar reductions in compound muscle action potential (CMAP) amplitude in the target muscle (extensor digitorum brevis, EDB) 2 weeks after injection, with effects persisting to the 12-week timepoint. For both products, the reduction in amplitude was increased with increasing doses and with increasing concentration. The effects of toxin on neighbouring muscles were much smaller and of a shorter duration than those on the target muscle, implying a modest spread of toxin. Unlike the target muscle, the effects were greater with the higher volume, suggesting this volume led to greater diffusion from the EDB. No adverse events were reported. Statistical modelling with CMAP amplitude data from the target muscle gave a bioequivalence of 1.57 units of Dysport:1 unit of Botox (95 % CI: 0.77-3.20 units). The data indicate that a dose-equivalence ratio of 3:1 was within the statistical error limits, but ratios over 3:1 are too high.

  2. Dose reduction in computed tomography: the effect of eye and testicle shielding on radiation dose measured in patients with beryllium oxide-based optically stimulated luminescence dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Grobe, Henrik; Koch, Arne; Abolmaali, Nasreddin [Dresden University of Technology, OncoRay - Center for Radiation Research in Oncology, Molecular Imaging, Medical Faculty Carl Gustav Carus, Fetscherstrasse 74, P.O. Box 86, Dresden (Germany); Sommer, Marian; Henniger, Juergen [Dresden University of Technology, Radiation Physics Group, Institute of Nuclear and Particle Physics, Dresden (Germany); Hietschold, Volker [University Hospital Carl Gustav Carus, Institute and Policlinic of Radiological Diagnostics, Dresden (Germany)

    2009-05-15

    The aim of this study was to assess the effect of eye and testicle shielding on radiation dose to the lens and the testes of patients undergoing CT examinations. Fifty-one male patients underwent CT twice with identical protocols initially without, the second time with protective garments. Doses to the testes and the lenses were recorded with beryllium oxide-based dosimeters. The dose to the testes and lenses from CT exposure was reduced by 96.2% {+-} 1.7% and 28.2% {+-} 18.5%, when testicle and eye shielding was used, respectively. The effect of the eye shielding on the eye lens dose was found to depend on the x-ray tube position when the eye is primarily exposed during the scan. The maximum eye lens dose reduction achieved was found to be 43.2% {+-} 6.5% corresponding to the anterior position of the tube. A significant correlation between the patient's body mass index and dose exposure could not be found. Eye and testicle shields, apart from being inexpensive and easy to use, were proven to be effective in reducing eye lens and testicle radiation dose burden from CT exposures. (orig.)

  3. Digital orthodontic radiographic set versus cone-beam computed tomography: an evaluation of the effective dose

    Science.gov (United States)

    Chinem, Lillian Atsumi Simabuguro; Vilella, Beatriz de Souza; Maurício, Cláudia Lúcia de Pinho; Canevaro, Lucia Viviana; Deluiz, Luiz Fernando; Vilella, Oswaldo de Vasconcellos

    2016-01-01

    ABSTRACT Objective: The aim of this study was to compare the equivalent and effective doses of different digital radiographic methods (panoramic, lateral cephalometric and periapical) with cone-beam computed tomography (CBCT). Methods: Precalibrated thermoluminescent dosimeters were placed at 24 locations in an anthropomorphic phantom (Alderson Rando Phantom, Alderson Research Laboratories, New York, NY, USA), representing a medium sized adult. The following devices were tested: Heliodent Plus (Sirona Dental Systems, Bernsheim, Germany), Orthophos XG 5 (Sirona Dental Systems, Bernsheim, Germany) and i-CAT (Imaging Sciences International, Hatfield, PA, USA). The equivalent doses and effective doses were calculated considering the recommendations of the International Commission of Radiological Protection (ICRP) issued in 1990 and 2007. Results: Although the effective dose of the radiographic set corresponded to 17.5% (ICRP 1990) and 47.2% (ICRP 2007) of the CBCT dose, the equivalent doses of skin, bone surface and muscle obtained by the radiographic set were higher when compared to CBCT. However, in some areas, the radiation produced by the orthodontic set was higher due to the complete periapical examination. Conclusion: Considering the optimization principle of radiation protection, i-CAT tomography should be used only in specific and justified circumstances. Additionally, following the ALARA principle, single periapical radiographies covering restricted areas are more suitable than the complete periapical examination. PMID:27653266

  4. Digital orthodontic radiographic set versus cone-beam computed tomography: an evaluation of the effective dose

    Directory of Open Access Journals (Sweden)

    Lillian Atsumi Simabuguro Chinem

    Full Text Available ABSTRACT Objective: The aim of this study was to compare the equivalent and effective doses of different digital radiographic methods (panoramic, lateral cephalometric and periapical with cone-beam computed tomography (CBCT. Methods: Precalibrated thermoluminescent dosimeters were placed at 24 locations in an anthropomorphic phantom (Alderson Rando Phantom, Alderson Research Laboratories, New York, NY, USA, representing a medium sized adult. The following devices were tested: Heliodent Plus (Sirona Dental Systems, Bernsheim, Germany, Orthophos XG 5 (Sirona Dental Systems, Bernsheim, Germany and i-CAT (Imaging Sciences International, Hatfield, PA, USA. The equivalent doses and effective doses were calculated considering the recommendations of the International Commission of Radiological Protection (ICRP issued in 1990 and 2007. Results: Although the effective dose of the radiographic set corresponded to 17.5% (ICRP 1990 and 47.2% (ICRP 2007 of the CBCT dose, the equivalent doses of skin, bone surface and muscle obtained by the radiographic set were higher when compared to CBCT. However, in some areas, the radiation produced by the orthodontic set was higher due to the complete periapical examination. Conclusion: Considering the optimization principle of radiation protection, i-CAT tomography should be used only in specific and justified circumstances. Additionally, following the ALARA principle, single periapical radiographies covering restricted areas are more suitable than the complete periapical examination.

  5. On the use of age-specific effective dose coefficients in radiation protection of the public

    Energy Technology Data Exchange (ETDEWEB)

    Kocher, D.C.; Eckerman, K.F.

    1998-11-01

    Current radiation protection standards for the public include a limit on effective dose in any year for individuals in critical groups. This paper considers the question of how the annual dose limit should be applied in controlling routine exposures of populations consisting of individuals of all ages. The authors assume that the fundamental objective of radiation protection is limitation of lifetime risk and, therefore, that standards for controlling routine exposures of the public should provide a reasonable correspondence with lifetime risk, taking into account the age dependence of intakes and doses and the variety of radionuclides and exposure pathways of concern. Using new calculations of the per capita (population-averaged) risk of cancer mortality per unit activity inhaled or ingested in the US Environmental Protection Agency`s Federal Guidance Report No. 13, the authors show that applying a limit on annual effective dose only to adults, which was the usual practice in radiation protection of the public before the development of age-specific effective dose coefficients, provides a considerably better correspondence with lifetime risk than applying the annual dose limit to the critical group of any a