WorldWideScience

Sample records for biological effective dose

  1. Biological Effects of Low-Dose Exposure

    CERN Document Server

    Komochkov, M M

    2000-01-01

    On the basis of the two-protection reaction model an analysis of stochastic radiobiological effects of low-dose exposure of different biological objects has been carried out. The stochastic effects are the results published in the last decade: epidemiological studies of human cancer mortality, the yield of thymocyte apoptosis of mice and different types of chromosomal aberrations. The results of the analysis show that as dependent upon the nature of biological object, spontanous effect, exposure conditions and radiation type one or another form dose - effect relationship is realized: downwards concave, near to linear and upwards concave with the effect of hormesis included. This result testifies to the incomplete conformity of studied effects of 1990 ICRP recomendations based on the linear no-threshold hypothesis about dose - effect relationship. Because of this the methodology of radiation risk estimation recomended by ICRP needs more precisian and such quantity as collective dose ought to be classified into...

  2. Doses and biological effect of ionizing radiation

    International Nuclear Information System (INIS)

    Basic values and their symbols as well as units of physical dosimetry are given. The most important information about biological radiation effects is presented. Polish radiation protection standards are cited. (A.S.)

  3. Biological effects and equivalent doses in radiotherapy: a software solution

    CERN Document Server

    Voyant, Cyril; Roustit, Rudy; Biffi, Katia; Marcovici, Celine Lantieri

    2013-01-01

    The limits of TDF (time, dose, and fractionation) and linear quadratic models have been known for a long time. Medical physicists and physicians are required to provide fast and reliable interpretations regarding the delivered doses or any future prescriptions relating to treatment changes. We therefore propose a calculation interface under the GNU license to be used for equivalent doses, biological doses, and normal tumor complication probability (Lyman model). The methodology used draws from several sources: the linear-quadratic-linear model of Astrahan, the repopulation effects of Dale, and the prediction of multi-fractionated treatments of Thames. The results are obtained from an algorithm that minimizes an ad-hoc cost function, and then compared to the equivalent dose computed using standard calculators in seven French radiotherapy centers.

  4. Effective biological dose from occupational exposure during nanoparticle synthesis

    International Nuclear Information System (INIS)

    Nanomaterial and nanotechnology safety require the characterization of occupational exposure levels for completing a risk assessment. However, equally important is the estimation of the effective internal dose via lung deposition, transport and clearance mechanisms. An integrated source-to-biological dose assessment study is presented using real monitoring data collected during nanoparticle synthesis. Experimental monitoring data of airborne exposure levels during nanoparticle synthesis of CaSO4 and BiPO4 nanoparticles in a research laboratory is coupled with a human lung transport and deposition model, which solves in an Eulerian framework the general dynamic equation for polydisperse aerosols using particle specific physical-chemical properties. Subsequently, the lung deposition model is coupled with a mathematical particle clearance model providing the effective biological dose as well as the time course of the biological dose build-up after exposure. The results for the example of BiPO4 demonstrate that even short exposures throughout the day can lead to particle doses of 1.10·E+08/(kg-bw·8h-shift), with the majority accumulating in the pulmonary region. Clearance of particles is slow and is not completed within a working shift following a 1 hour exposure. It mostly occurs via macrophage activity in the alveolar region, with small amounts transported to the interstitium and less to the lymph nodes.

  5. Effective biological dose from occupational exposure during nanoparticle synthesis

    Science.gov (United States)

    Demou, Evangelia; Tran, Lang; Housiadas, Christos

    2009-02-01

    Nanomaterial and nanotechnology safety require the characterization of occupational exposure levels for completing a risk assessment. However, equally important is the estimation of the effective internal dose via lung deposition, transport and clearance mechanisms. An integrated source-to-biological dose assessment study is presented using real monitoring data collected during nanoparticle synthesis. Experimental monitoring data of airborne exposure levels during nanoparticle synthesis of CaSO4 and BiPO4 nanoparticles in a research laboratory is coupled with a human lung transport and deposition model, which solves in an Eulerian framework the general dynamic equation for polydisperse aerosols using particle specific physical-chemical properties. Subsequently, the lung deposition model is coupled with a mathematical particle clearance model providing the effective biological dose as well as the time course of the biological dose build-up after exposure. The results for the example of BiPO4 demonstrate that even short exposures throughout the day can lead to particle doses of 1.10·E+08#/(kg-bw·8h-shift), with the majority accumulating in the pulmonary region. Clearance of particles is slow and is not completed within a working shift following a 1 hour exposure. It mostly occurs via macrophage activity in the alveolar region, with small amounts transported to the interstitium and less to the lymph nodes.

  6. Biologically effective doses of postoperative radiotherapy in the prevention of keloids. Dose-effect relationship

    International Nuclear Information System (INIS)

    Purpose: To review the recurrence rates of keloids after surgical excision followed by radiotherapy, and to answer the question whether after normalization of the dose, a dose-effect relationship could be derived. Material and Methods: A literature search was performed to identify studies dealing with the efficacy of various irradiation regimes for the prevention of keloids after surgery. Biologically effective doses (BEDs) of the various irradiation regimens were calculated using the linear-quadratic concept. A distinction between recurrence rates of keloids in the face and neck region and those in other parts of the body was made. Results: 31 reports were identified with PubMed with the search terms keloids, surgery, radiation therapy, radiotherapy. 13 reports were excluded, because no link could be found between recurrence rate and dose, or if less than ten patients per dose group. The recurrence rate for surgery only was 50-80%. For BED values >10 Gy the recurrence rate decreased as a function of BED. For BED values >30 Gy the recurrence rate was <10%. For a given dose, the recurrence rates of keloids in the sites with high stretch tension were not significantly higher than in sites without stretch tension. Conclusion: The results of this study indicate that for effectively treating keloids postoperatively, a relatively high dose must be applied in a short overall treatment time. The optimal treatment probably is an irradiation scheme resulting in a BED value of at least 30 Gy. A BED value of 30 Gy can be obtained with, for instance, a single acute dose of 13 Gy, two fractions of 8 Gy two fractions of 8 Gy or three fractions of 6 Gy, or a single dose of 27 Gy at low dose rate. The radiation treatment should be administered within 2 days after surgery. (orig.)

  7. Biological effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Few weeks ago, when the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) submitted to the U.N. General Assembly the UNSCEAR 1994 report, the international community had at its disposal a broad view of the biological effects of low doses of ionizing radiation. The 1994 report (272 pages) specifically addressed the epidemiological studies of radiation carcinogenesis and the adaptive responses to radiation in cells and organisms. The report was aimed to supplement the UNSCEAR 1993 report to the U.N. General Assembly- an extensive document of 928 pages-which addressed the global levels of radiation exposing the world population, as well as some issues on the effects of ionizing radiation, including: mechanisms of radiation oncogenesis due to radiation exposure, influence of the level of dose and dose rate on stochastic effects of radiation, hereditary effects of radiation effects on the developing human brain, and the late deterministic effects in children. Those two UNSCEAR reports taken together provide an impressive overview of current knowledge on the biological effects of ionizing radiation. This article summarizes the essential issues of both reports, although it cannot cover all available information. (Author)

  8. Modeling of biological doses and mechanical effects on bone transduction

    CERN Document Server

    Rieger, Romain; Jennane, Rachid; 10.1016/j.jtbi.2011.01.003

    2012-01-01

    Shear stress, hormones like parathyroid and mineral elements like calcium mediate the amplitude of stimulus signal which affects the rate of bone remodeling. The current study investigates the theoretical effects of different metabolic doses in stimulus signal level on bone. The model was built considering the osteocyte as the sensing center mediated by coupled mechanical shear stress and some biological factors. The proposed enhanced model was developed based on previously published works dealing with different aspects of bone transduction. It describes the effects of physiological doses variations of Calcium, Parathyroid Hormone, Nitric Oxide and Prostaglandin E2 on the stimulus level sensed by osteocytes in response to applied shear stress generated by interstitial fluid flow. We retained the metabolic factors (Parathyroid Hormone, Nitric Oxide, and Prostaglandin E2) as parameters of bone cell mechanosensitivity because stimulation/inhibition of induced pathways stimulates osteogenic response in vivo. We t...

  9. Biological effects of low doses of radiation at low dose rate

    International Nuclear Information System (INIS)

    The purpose of this report was to examine available scientific data and models relevant to the hypothesis that induction of genetic changes and cancers by low doses of ionizing radiation at low dose rate is a stochastic process with no threshold or apparent threshold. Assessment of the effects of higher doses of radiation is based on a wealth of data from both humans and other organisms. 234 refs., 26 figs., 14 tabs

  10. Biological effects of hadrons at very low doses

    CERN Document Server

    Baarli, Johan; Di Paola, M; Sullivan, A H

    1976-01-01

    Several sensitive biological tests have been utilized to investigate any possible effects of hadron interactions in tissue. These include lens opacification in mice, testes weight loss in mice inhibition of 10-day growth of Vicia faba bean roots, and type-B spermatogonia survival in mice. The radiations employed were 600 and 400-MeV neutron beams, a stopped negative pion beam, as well as Pu-Be and 14-MeV neutrons. The results obtained are summarized and discussed. (10 refs) .

  11. Review of low dose-rate epidemiological studies and biological mechanisms of dose-rate effects on radiation induced carcinogenesis

    International Nuclear Information System (INIS)

    Radiation protection system adopts the linear non-threshold model with using dose and dose-rate effectiveness factor (DDREF). The dose-rate range where DDREF is applied is below 100 mGy per hour, and it is regarded that there are no dose-rate effects at very low dose rate, less than of the order of 10 mGy per year, even from the biological risk evaluation model based on cellular and molecular level mechanisms for maintenance of genetic integrity. Among low dose-rate epidemiological studies, studies of residents in high natural background areas showed no increase of cancer risks at less than about 10 mGy per year. On the other hand, some studies include a study of the Techa River cohort suggested the increase of cancer risks to the similar degree of Atomic bomb survivor data. The difference of those results was supposed due to the difference of dose rate. In 2014, International Commission on Radiological Protection opened a draft report on stem cell biology for public consultations. The report proposed a hypothesis based on the new idea of stem cell competition as a tissue level quality control mechanism, and suggested that it could explain the dose-rate effects around a few milligray per year. To verify this hypothesis, it would be needed to clarify the existence and the lowest dose of radiation-induced stem cell competition, and to elucidate the rate of stem cell turnover and radiation effects on it. As for the turnover, replenishment of damaged stem cells would be the important biological process. It would be meaningful to collect the information to show the difference of dose rates where the competition and the replenishment would be the predominant processes. (author)

  12. Cytogenetic effects of low ionising radiation doses and biological dosimetry

    OpenAIRE

    Gricienė, Birutė

    2010-01-01

    The intensive use of ionising radiation (IR) sources and development of IR technology is related to increased exposure and adverse health risk to workers and public. The unstable chromosome aberration analysis in the group of nuclear energy workers (N=84) has shown that doses below annual dose limit (50 mSv) can induce chromosome aberrations in human peripheral blood lymphocytes. Significantly higher frequencies of the total chromosome aberrations were determened in the study group when compa...

  13. Low doses of ionizing radiation: Biological effects and regulatory control. Contributed papers

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency and the World Health Organization, in cooperation with the United Nations Scientific Committee on the Effects of Atomic Radiation, organized an international conference on Low Doses of Ionizing Radiation: Biological Effects and Regulatory Control, held in seville, Spain, from 17 to 21 November 1997. This technical document contains concise papers submitted to the conference

  14. Biological effective doses in 300 patients undergoing therapy with 177Lu-octreotate

    International Nuclear Information System (INIS)

    Full text of publication follows. Aim: fractionated therapy with 177Lu-octreotate has been reported to be an effective treatment option for patients with generalized neuroendocrine tumors. The main aim of this study was to calculate the biological effective dose (BED) to the kidneys using an individualized dosimetry protocol, and to assess differences in the number of possible treatment cycles based on BED compared to those based on absorbed dose. Methods: a total of 148 female and 152 male patients with neuroendocrine tumors with high somatostatin receptor expression (grade 3 or 4) were included. After infusion of 7.4 GBq of 177Lu-octreotate SPECT/CT images over the abdomen were acquired at 24, 96 and 168 h after infusion. Absorbed dose to kidneys was calculated based on pharmacokinetic data obtained from SPECT/CT. From this the effective half-life of 177Lu-octreotate in the kidneys was estimated, and BED was calculated using the equation described by Barone et al. (1). Results and discussion: for a single treatment cycle of 7.4 GBq, median (1:st-3:rd quartiles) BED was 5.0 Gy (3.9-6.1) in the right kidney and 4.7 Gy (3.7-5.8) in the left kidney. For the same treatment cycle, BED was 9.0% (7.1-11.3) and 8.7% (7.0-10.9) higher than absorbed dose in right and left kidneys, respectively. In patients with high absorbed doses, BED could be more than 20% higher than absorbed dose. Assuming an absorbed dose limit of 23 Gy and a BED limit of 45 Gy to the kidneys, the possible number of treatment cycles was 5.4 (4.5-6.8) based on absorbed dose while using BED increased the number of possible cycles to 9.8 (8.1-12.5). Conclusions: although biological effective dose to the kidneys is higher than absorbed dose, use of BED to estimate the number of possible treatment cycles in 177Lu-octreotate therapy may allow for more treatment cycles than the use of absorbed dose. Refs: 1) Barone, R. et al. Patient-specific dosimetry in predicting renal toxicity with (90)Y

  15. Biological modelling of the radiation dose escalation effect of regional hyperthermia in cervical cancer

    International Nuclear Information System (INIS)

    Locoregional hyperthermia combined with radiotherapy significantly improves locoregional control and overall survival for cervical tumors compared to radiotherapy alone. In this study biological modelling is applied to quantify the effect of radiosensitization for three cervical cancer patients to evaluate the improvement in equivalent dose for the combination treatment with radiotherapy and hyperthermia. The Linear-Quadratic (LQ) model extended with temperature-dependent LQ-parameters α and β was used to model radiosensitization by hyperthermia and to calculate the conventional radiation dose that is equivalent in biological effect to the combined radiotherapy and hyperthermia treatment. External beam radiotherapy planning was performed based on a prescription dose of 46Gy in 23 fractions of 2Gy. Hyperthermia treatment using the AMC-4 system was simulated based on the actual optimized system settings used during treatment. The simulated hyperthermia treatments for the 3 patients yielded a T50 of 40.1 °C, 40.5 °C, 41.1 °C and a T90 of 39.2 °C, 39.7 °C, 40.4 °C, respectively. The combined radiotherapy and hyperthermia treatment resulted in a D95 of 52.5Gy, 55.5Gy, 56.9Gy in the GTV, a dose escalation of 7.3–11.9Gy compared to radiotherapy alone (D95 = 45.0–45.5Gy). This study applied biological modelling to evaluate radiosensitization by hyperthermia as a radiation-dose escalation for cervical cancer patients. This model is very useful to compare the effectiveness of different treatment schedules for combined radiotherapy and hyperthermia treatments and to guide the design of clinical studies on dose escalation using hyperthermia in a multi-modality setting

  16. Biology responses to low dose radiation

    International Nuclear Information System (INIS)

    Biology responses to low dose radiation is the most important problem of medical radiation and radiation protection. The especial mechanism of low dose or low dose rate induced cell responses, has been found independent with linear no-threshold model. This article emphasize to introduce low dose or low dose rate induced biology responses of adaptive response, by-effect, super-sensitivity and genomic instability. (authors)

  17. Influence of variations in dose and dose rates on biological effects of inhaled beta-emitting radionuclides

    International Nuclear Information System (INIS)

    The biological effects of inhaled β-emitting radionuclides, 90Y, 91Y, 144Ce and 90Sr, are being investigated in beagle dogs that received single acute exposures at 12 to 14 months of age. The aerosols studied have included 91YC13,144CeC13, 90SrC12, and 90Y, 91Y, 144Ce or 90Sr in aluminosilicate particles. Thus, 91YCl3, 144CeCl3 and the aluminosilicate containing radionuclide particles all resulted in significant exposures to lung; 91YC13, 144CeC13 an 90SrC12 resulted in significant exposures to bone; 91YC13 and 144 CeC13 resulted in significant exposures to liver. The higher initial doserate exposures have been more effective than low dose-rate exposures on a per-rad basis in producing early effects. To date (144CeO2, it was observed that, on a μCi initial lung burden per kilogram body weight basis, mice did not develop pulmonary tumours whereas beagle dogs did. To fid out the reason for this observation mice have been repeatedly exposed by inhalation to 144CeO2 to maintain lung burdens of 144Ce that resulted in radiation dose rates similar to that observed in beagle dogs. Several of the repeatedly exposed mice developed malignant pulmonary tumours. Thus, with similar dose rates and cumulative doses to the lung, mice and dogs responded in a similar manner to chronic β radiation

  18. The biological effect of 125I seed continuous low dose rate irradiation in CL187 cells

    Directory of Open Access Journals (Sweden)

    Zhuang Hong-Qing

    2009-01-01

    Full Text Available Abstract Background To investigate the effectiveness and mechanism of 125I seed continuous low-dose-rate irradiation on colonic cell line CL187 in vitro. Methods The CL187 cell line was exposed to radiation of 60Coγ ray at high dose rate of 2 Gy/min and 125I seed at low dose rate of 2.77 cGy/h. Radiation responses to different doses and dose rates were evaluated by colony-forming assay. Under 125I seed low dose rate irradiation, a total of 12 culture dishes were randomly divided into 4 groups: Control group, and 2, 5, and 10 Gy irradiation groups. At 48 h after irradiation, apoptosis was detected by Annexin and Propidium iodide (PI staining. Cell cycle arrests were detected by PI staining. In order to investigate the influence of low dose rate irradiation on the MAPK signal transduction, the expression changes of epidermal growth factor receptor (EGFR and Raf under continuous low dose rate irradiation (CLDR and/or EGFR monoclonal antibodies were determined by indirect immunofluorescence. Results The relative biological effect (RBE for 125I seeds compared with 60Co γ ray was 1.41. Apoptosis rates of CL187 cancer cells were 13.74% ± 1.63%, 32.58% ± 3.61%, and 46.27% ± 3.82% after 2 Gy, 5 Gy, and 10 Gy irradiation, respectively; however, the control group apoptosis rate was 1.67% ± 0.19%. G2/M cell cycle arrests of CL187 cancer cells were 42.59% ± 3.21%, 59.84% ± 4.96%, and 34.61% ± 2.79% after 2 Gy, 5 Gy, and 10 Gy irradiation, respectively; however, the control group apoptosis rate was 26.44% ± 2.53%. P 2/M cell cycle arrest. After low dose rate irradiation, EGFR and Raf expression increased, but when EGFR was blocked by a monoclonal antibody, EGFR and Raf expression did not change. Conclusion 125I seeds resulted in more effective inhibition than 60Co γ ray high dose rate irradiation in CL187 cells. Apoptosis following G2/M cell cycle arrest was the main mechanism of cell-killing effects under low dose rate irradiation. CLDR could

  19. Comparison of breast sequential and simultaneous integrated boost using the biologically effective dose volume histogram (BEDVH)

    International Nuclear Information System (INIS)

    A method is presented to radiobiologically compare sequential (SEQ) and simultaneously integrated boost (SIB) breast radiotherapy. The method is based on identically prescribed biologically effective dose (iso-BED) which was achieved by different prescribed doses due to different fractionation schemes. It is performed by converting the calculated three-dimensional dose distribution to the corresponding BED distribution taking into consideration the different number of fractions for generic α/β ratios. A cumulative BED volume histogram (BEDVH) is then derived from the BED distribution and is compared for the two delivery schemes. Ten breast cancer patients (4 right-sided and 6 left-sided) were investigated. Two tangential intensity modulated whole breast beams with two other oblique (with different gantry angles) beams for the boost volume were used. The boost and the breast target volumes with either α/β = 10 or 3 Gy, and ipsi-lateral and contra-lateral lungs, heart, and contra-lateral breast as organs at risk (OARs) with α/β = 3 Gy were compared. Based on the BEDVH comparisons, the use of SIB reduced the biological breast mean dose by about 3 %, the ipsi-lateral lung and heart by about 10 %, and contra-lateral breast and lung by about 7 %. BED based comparisons should always be used in comparing plans that have different fraction sizes. SIB schemes are dosimetrically more advantageous than SEQ in breast target volume and OARs for equal prescribed BEDs for breast and boost

  20. Early biological effects of low doses of ionizing radiation on yeast cells

    International Nuclear Information System (INIS)

    The biological effectiveness of different radiation types for variety organisms requires further study. For fundamental studies of this problem it is worthwhile to use the most thoroughly investigated biological objects, for example, yeasts. The yeast Saccharomyces cerevisiae was used as the test eukaryotic organism which gives the experimenter complete control over its chemical and physical environment. The aim of the study consisted in comparative analysis of early effects induced by low doses of low LET (60Co and 137Cs) and high LET ( α-particles 239Pu, neutrons) radiation on eukaryotic cells (cell survival about 100%). Biological effects of low doses of ionizing radiation were studied by two criteria: 1.delay of cell division and kinetics of yeast cells micro-colonies formation; 2.morphology of micro-colonies at different temperature. The results have shown that only small part of irradiated cell population (∼10%) divided at the same rate as unirradiated cells. Other part of cells had a delayed division. Unirradiated control cells formed typical micro-colonies at the solid nutrient media (YEPD) after 10 15 h of incubation. The fraction of cells population (20- 25%) exposed to low doses of?-particles or neutrons formed spectrum of untypical micro-colonies for the same incubation time, which consisted of small number of larger and more elongated cells. Some of these micro-colonies had 10 50 cells were of exotic forms ('spider'), differed from other micro-colonies in population. Using this method we can reveal an early response of cells at very low doses (survival about 100%) and determine the number non-lethally damaged cells. (author)

  1. The biological effect of large single doses: a possible role for non-targeted effects in cell inactivation.

    Directory of Open Access Journals (Sweden)

    Marlon R Veldwijk

    Full Text Available BACKGROUND AND PURPOSE: Novel radiotherapy techniques increasingly use very large dose fractions. It has been argued that the biological effect of large dose fractions may differ from that of conventional fraction sizes. The purpose was to study the biological effect of large single doses. MATERIAL AND METHODS: Clonogenic cell survival of MCF7 and MDA-MB-231 cells was determined after direct X-ray irradiation, irradiation of feeder cells, or transfer of conditioned medium (CM. Cell-cycle distributions and the apoptotic sub-G1 fraction were measured by flow cytometry. Cytokines in CM were quantified by a cytokine antibody array. γH2AX foci were detected by immunofluorescence microscopy. RESULTS: The surviving fraction of MCF7 cells irradiated in vitro with 12 Gy showed an 8.5-fold decrease (95% c.i.: 4.4-16.3; P<0.0001 when the density of irradiated cells was increased from 10 to 50×10(3 cells per flask. Part of this effect was due to a dose-dependent transferrable factor as shown in CM experiments in the dose range 5-15 Gy. While no effect on apoptosis and cell cycle distribution was observed, and no differentially expressed cytokine could be identified, the transferable factor induced prolonged expression of γH2AX DNA repair foci at 1-12 h. CONCLUSIONS: A dose-dependent non-targeted effect on clonogenic cell survival was found in the dose range 5-15 Gy. The dependence of SF on cell numbers at high doses would represent a "cohort effect" in vivo. These results support the hypothesis that non-targeted effects may contribute to the efficacy of very large dose fractions in radiotherapy.

  2. A perspective on dose limits and biological effects of radiation on the foetus

    International Nuclear Information System (INIS)

    The potential biological effects of radiation doses to pregnant workers consistent with Canadian regulations and ICRP recommendations are reviewed. These hazards are in general very small compared to the normal hazards associated with human development. Potential carcinogenic effects may well be the major biological problem associated with foetal exposures. Radiation hazards to the embryo are essentially zero for exposures occurring during the first four weeks after conception. The new ICRP recommendations on exposures of pregnant women suggest a number of problems to be solved. These include (a) improvements in current methods of measuring both external radiation doses and intakes of certain radionuclides in Canada, (b) further research on the metabolism of radionuclides in pregnant women, including concentrations of certain radionuclides in foetal/embryonic tissues and also in adjacent tissues of the mother; and (c) socio-economic problems that may be involved in the implementation of the recommendations on exposures of pregnant workers, particularly in small facilities such as nuclear medicine departments in hospitals. (Author) 3 tabs., 21 refs

  3. Late biological effects of ionizing radiation as influenced by dose, dose rate, age at exposure and genetic sensitivity to neoplastic transformation

    International Nuclear Information System (INIS)

    A most comprehensive investigation is in progress at the Los Alamos Scientific Laboratory to study the late biological effects of whole-body exposure to gamma irradiation as they may be influenced by total dose, dose rate, age at exposure and genetic background. Strain C57B1/6J mice of four age groups (newborn, 2, 6 and l5 months) were given five doses (20, 60, 180, 540, and 1620 rads) of gamma rays, with each dose being delivered at six dose rates (0.7, 2.1, 6.3, 18.9, 56.7 rads/day and 25 rads/min). Forty to sixty mice were used in each of the approximately 119 dose/dose-rate and age combinations. The study was done in two replications with an equal number of mice per replicaton. Strain RF/J mice were used in a companion study to investigate the influence of genetic background on the type and magnitude of effect. Results of the first and second replications of the l5-month-old age group and data on the influence of genetic background on biological response have been completed, and the results show no significant life shortening within the dose and dose-rate range used. It was also concluded that radiaton-induced neoplastic transformaton was significantly greater in mice with a known genetic sensitivity to neoplastic disease than in mammals which do not normally have a significant incidence of tumours. (author)

  4. Biological dosimetry - Dose estimation method using biomakers

    International Nuclear Information System (INIS)

    The individual radiation dose estimation is an important step in the radiation risk assessment. In case of radiation incident or radiation accident, sometime, physical dosimetry method can not be used for calculating the individual radiation dose, the other complement method such as biological dosimetry is very necessary. This method is based on the quantitative specific biomarkers induced by ionizing radiation, such as dicentric chromosomes, translocations, micronuclei... in human peripheral blood lymphocytes. The basis of the biological dosimetry method is the close relationship between the biomarkers and absorbed dose or dose rate; the effects of in vitro and in vivo are similar, so it is able to generate the calibration dose-effect curve in vitro for in vivo assessment. Possibilities and perspectives for performing biological dosimetry method in radiation protection area are presented in this report. (author)

  5. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos [Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, TX 78229 (United States); Cheng, Chih-Yao, E-mail: shic@uthscsa.ed [Radiation Oncology Department, Oklahoma University Health Science Center, Oklahoma, OK 73104 (United States)

    2010-09-21

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V{sub 100} reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as

  6. Low doses of ionizing radiation: Biological effects and regulatory control. Invited papers and discussions. Proceedings of an international conference

    International Nuclear Information System (INIS)

    The levels and biological effects resulting from exposure to ionizing radiation are continuously reviewed by the United Nations Committee on the Effects of Atomic Radiation (UNSCEAR). Since its creation in 1928, the International Commission on Radiological Protection (ICRP) has issued recommendations on protection against ionizing radiation. The UNSCEAR estimates and the ICRP recommendations have served as the basis for national and international safety standards on radiation safety, including those developed by the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO). Concerning health effects of low doses of ionizing radiation, the international standards are based on the plausible assumption that, above the unavoidable background radiation dose, the probability of effects increases linearly with dose, i.e. on a 'linear, no threshold' (LNT) assumption. However, in recent years the biological estimates of health effects of low doses of ionizing radiation and the regulatory approach to the control of low level radiation exposure have been much debated. To foster information exchange on the relevant issues, an International Conference on Low Doses of Ionizing Radiation: Biological Effects and Regulatory Control, jointly sponsored by the IAEA and WHO in co-operation with UNSCEAR, was held from 17-21 November 1997 at Seville, Spain. These Proceedings contain the invited special reports, keynote papers, summaries of discussions, session summaries and addresses presented at the opening and closing of the Conference

  7. Biological effects in lymphocytes irradiated with 99mTc: determination of the curve dose-response

    International Nuclear Information System (INIS)

    Biological dosimetry estimates the absorbed dose taking into account changes in biological parameters. The most used biological indicator of an exposition to ionizing radiation is the quantification of chromosomal aberrations of lymphocytes from irradiated individuals. The curves of dose versus induced biological effects, obtained through bionalyses, are used in used in retrospective evaluations of the dose, mainly in the case of accidents. In this research, a simple model for electrons and photons transports was idealized to simulate the irradiation of lymphocytes with 99m Tc, representing a system used for irradiation of blood cells. The objective of the work was to establish a curve of dose versus frequencies of chromosomal aberrations in lymphocytes of human blood. For the irradiation of blood samples micro spheres of human serum of albumin (HSAM) market with 99m Tc were used, allowing the irradiation of blood with different administered activities of 99m Tc, making possible the study the cytogenetical effects as a function of such activities. The conditions of irradiation in vivo using HSAM spheres marked with 99m Tc were simulated with MCNP 4C (Monte Carlo N-Particle) code to obtain the dose-response curve. Soft tissue composition was employed to simulate blood tissue and the analyses of the curve of dose versus biological effect showed a linear quadratic response of the unstable chromosomal aberrations. As a result, the response of dose versus chromosomal aberrations of blood irradiation with 99m Tc was best fitted by the curve Y=(8,99 ±2,06) x 1--4 + (1,24 ±0,62) x 10-2 D + (5,67 ± 0,64) x 10-2 D2. (author)

  8. Interaction between the biological effects of high- and low-LET radiation dose components in a mixed field exposure

    DEFF Research Database (Denmark)

    Mason, Anna J.; Giusti, Valerio; Green, Stuart;

    2011-01-01

    The relative biological effectiveness of two epithermal neutron sources, a reactor based source at Studsvik, Sweden, and a proton accelerator-based source in Birmingham, UK, was studied in relation to the proportional absorbed dose distribution as a function of neutron energy. Evidence for any...

  9. Extension of the biological effective dose to the MIRD schema and possible implications in radionuclide therapy dosimetry.

    Science.gov (United States)

    Baechler, Sébastien; Hobbs, Robert F; Prideaux, Andrew R; Wahl, Richard L; Sgouros, George

    2008-03-01

    In dosimetry-based treatment planning protocols, patients with rapid clearance of the radiopharmaceutical require a larger amount of initial activity than those with slow clearance to match the absorbed dose to the critical organ. As a result, the dose-rate to the critical organ is higher in patients with rapid clearance and may cause unexpected toxicity compared to patients with slow clearance. In order to account for the biological impact of different dose-rates, radiobiological modeling is beginning to be applied to the analysis of radionuclide therapy patient data. To date, the formalism used for these analyses is based on kinetics derived from activity in a single organ, the target. This does not include the influence of other source organs to the dose and dose-rate to the target organ. As a result, only self-dose irradiation in the target organ contributes to the dose-rate. In this work, the biological effective dose (BED) formalism has been extended to include the effect of multiple source organ contributions to the net dose-rate in a target organ. The generalized BED derivation has been based on the Medical Internal Radionuclide Dose Committee (MIRD) schema assuming multiple source organs following exponential effective clearance of the radionuclide. A BED-based approach to determine the largest safe dose to critical organs has also been developed. The extended BED formalism is applied to red marrow dosimetry, as well as kidney dosimetry considering the cortex and the medulla separately, since both those organs are commonly dose limiting in radionuclide therapy. The analysis shows that because the red marrow is an early responding tissue (high alpha/beta), it is less susceptible to unexpected toxicity arising from rapid clearance of high levels of administered activity in the marrow or in the remainder of the body. In kidney dosimetry, the study demonstrates a complex interplay between clearance of activity in the cortex and the medulla, as well as the

  10. Radiosensitivity of Nicotiana protoplasts. Action on cell; cycle effects of low dose and fractionated irradiations; biological repair

    International Nuclear Information System (INIS)

    Leaf protoplasts of Nicotiana plumbaginifolia and Nicotiana sylvestris demonstrate five main qualities: they can be maintained as haploid lines; they constitute starting populations with a remarkable cytological homogeneity; they show a transient initial lag-phase; they yield very high plating efficiencies and retain permanently a complete differentiation capacity; being derived of a cell wall, they appear well adapted for fusion experiments or enzymatic dosages. The resumption of mitotic activity was followed by cytophotometric measurements, labelling experiments, nuclear sizing and enzymatic assays. The action of 5 Gy gamma-ray irradiations delayed entrance in the S-phase, provoked an otherwise not verified dependency between transcription, translation and protein synthesis, increased nuclear volumes in the G2-phase, and slightly stimulated the activity of a repair enzyme. The plating efficiency was a sensitive end-point which allowed the evaluation of the biological effectiveness of low to medium radiation-doses after gamma-ray and fast neutron irradiations. The neutron dose-RBE relationship increased from 3 to 25 when the dose decreased from 5 Gy to 5 mGy. When fractionated into low single doses only, a neutron dose of 300 mGy markedly increased its biological effectiveness: this phenomenon could not be explained by cell progression, and necessitated additional hypotheses involving other mechanisms in the specific action of low radiation doses. Radiation-induced UDS was measured in presence of aphidicolin. A beta-like DNA-polymerase was shown to be definitely involved in nuclear repair synthesis

  11. Compatibility of the Linear-Quadratic Formalism and Biologically Effective Dose Concept to High-Dose-Per-Fraction Irradiation in a Murine Tumor

    International Nuclear Information System (INIS)

    Purpose: To evaluate the compliance of linear-quadratic (LQ) model calculations in the high-dose range as used in stereotactic irradiation in a murine tumor model. Methods and Materials: Female 10-week-old Balb/c mice bearing 1-cm-diameter EMT6 tumors in the hind legs were used. Single doses of 10–25 Gy were compared with 2–5 fractions of 4–13 Gy given at 4-hour intervals. Cell survival after irradiation was determined by an in vivo–in vitro assay. Using an α/β ratio determined for in vitro EMT6 cells and the LQ formalism, equivalent single doses for the hypofractionated doses were calculated. They were then compared with actually measured equivalent single doses for the hypofractionated doses. These fractionation schedules were also compared simultaneously to investigate the concordance/divergence of dose–survival curves plotted against actual radiation doses and biologically effective doses (BED). Results: Equivalent single doses for hypofractionated doses calculated from LQ formalism were lower than actually measured doses by 21%–31% in the 2- or 3-fraction experiments and by 27%–42% in the 4- or 5-fraction experiments. The differences were all significant. When a higher α/β ratio was assumed, the discrepancy became smaller. In direct comparison of the 2- to 5-fraction schedules, respective dose–response curves almost overlapped when cell survival was plotted against actual radiation doses. However, the curves tended to shift downward by increasing the fraction number when cell survival was plotted against BED calculated using an α/β ratio of 3.5 Gy for in vitro EMT6 cells. Conclusion: Conversion of hypofractionated radiation doses to single doses using the LQ formalism underestimated the in vivo effect of hypofractionated radiation by approximately 20%–40%. The discrepancy appeared to be larger than that seen in the previous in vitro study and tended to increase with the fraction number. BED appeared to be an unreliable measure of tumor

  12. Biological effectiveness on live cells of laser driven protons at dose rates exceeding 109 Gy/s

    Science.gov (United States)

    Doria, D.; Kakolee, K. F.; Kar, S.; Litt, S. K.; Fiorini, F.; Ahmed, H.; Green, S.; Jeynes, J. C. G.; Kavanagh, J.; Kirby, D.; Kirkby, K. J.; Lewis, C. L.; Merchant, M. J.; Nersisyan, G.; Prasad, R.; Prise, K. M.; Schettino, G.; Zepf, M.; Borghesi, M.

    2012-03-01

    The ultrashort duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queen's University, the effect of proton irradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 109 Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4±0.2 at 10% survival is estimated from a comparison with a 225 kVp X-ray source.

  13. Biological effectiveness on live cells of laser driven protons at dose rates exceeding 10{sup 9} Gy/s

    Energy Technology Data Exchange (ETDEWEB)

    Doria, D.; Kakolee, K. F.; Kar, S.; Litt, S. K.; Ahmed, H.; Lewis, C. L.; Nersisyan, G.; Prasad, R.; Zepf, M.; Borghesi, M. [Centre for Plasma Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Fiorini, F.; Kirby, D. [School of Physics and Astronomy, University of Birmingham, B15 2TT (United Kingdom); Green, S. [Hall Edwards Radiotherapy Research Group, Dept. of Medical Physics, University Hospital Birmingham, B15 2TH (United Kingdom); Jeynes, J. C. G.; Kirkby, K. J.; Merchant, M. J. [Ion Beam Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom); Kavanagh, J.; Prise, K. M.; Schettino, G. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, BT9 7BL (United Kingdom)

    2012-03-15

    The ultrashort duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queen's University, the effect of proton irradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 10{sup 9} Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4{+-}0.2 at 10% survival is estimated from a comparison with a 225 kVp X-ray source.

  14. The debate about effects of low doses: from epidemiology to biology; Le debat sur les effets des faibles doses: de l'epidemiologie a la biologie

    Energy Technology Data Exchange (ETDEWEB)

    Tubiana, M. [Institut Gustave Roussy, 94 - Villejuif (France); Academie de Medecine, 75 - Paris (France); Centre Antoine Beclere, 75 - Paris (France)

    2007-01-15

    The validity of the linear no-threshold dose-carcinogenic effect relationship used in radio protection was called into question by the discovery during the past 15 years of three cell mechanisms for protection of the genome: antioxidant systems that react to oxidative stress, DNA repair, and elimination by death of cells with damaged DNA, either when the DNA repair mechanisms were not activated because of the very low dose (or dose rate) or by apoptosis for higher doses because the DNA damage was not appropriately repaired. It is now clear that these mechanisms are more effective for low closes (<100 mSv) than for doses exceeding several hundred mSv, therefore the biological data are no longer compatible with the hypothesis of a linear no-threshold relationship (LNT). This conclusion is consistent with the experimental (both in vivo and in vitro) and epidemiologic data, which reveal no harmful effects for doses less than approximately 100 mSv. Accordingly, the principal conclusion that has been drawn from the LNT, that is, that any close, however low, is carcinogenic, is called into question because it no longer has a scientific basis. This dogma, which has been extended to all carcinogenic agents, causes diffuse anxiety in all those exposed to carcinogenic agents, even at very low concentrations. It has led to the refusal of some to submit to radiologic examinations (such as mammographic screening for breast cancer), with sometimes regrettable medical consequences. After the Chernobyl catastrophe it caused panic and the evacuation of vast territories where natural irradiation was only very slightly increased, with social and medical consequences due to displacement of more than 200,000 people. It is therefore urgent to reconsider it. (author)

  15. Influence of dose rate on fast neutron OER and biological effectiveness determined for growth inhibition in Vicia faba

    International Nuclear Information System (INIS)

    The influence of dose rate on the effectiveness of a neutron irradiation was investigated using growth inhibition in Vicia faba bean roots as biological system. d(50)+Be neutron beams produced at the cyclotron CYCLONE of the University of Louvain-la-Neuve were used, at high and low dose rate, by modifying the deuteron beam current. When decreasing the dose rate from 0.14 Gy.min-1 to 0.2 Gy.h-1, the effectiveness of the neutrons decreased down to 0.84+-0.05 (dose ratio, at high and low dose rate, Dsub(high)/Dsub(low), producing equal biological effect). Control irradiation, with 60Co γ-rays, indicated a similar reduction in effectiveness (0.84+-0.03) when decreasing dose rate from 0,6 Gy.min-1 to 0.7 Gy.h-1. In previous experiments, on the same Vicia faba system, higher RBE values were observed for 252Cf neutrons, at low dose rate (RBE=8.3), compared to different neutron beams actually used in external beam therapy (RBE=3.2-3.6 for d(50)+Be, p(75)+Be and 15 MeV (d, T) neutrons). According to present results, this higher RBE has to be related to lower energy of the 252Cf neutron spectrum (2 MeV), since the influence of dose rate was shown to be small. As far as OER is concerned, for d(50)+Be neutrons, it decreases from 1.65+-0.12 to 1.59+-0.09 when decreasing close rate from 0.14 Gy.min-1 to 0.2 Gy.h-1. Control irradiations with 60Co γ-rays have shown an OER decrease from 2.69+-0.08 to 2.55+-0.11 when decreasing dose rate from 0.6 Gy.min-1 to 0.7 Gy.h-1. These rather small OER reductions are within the statistical fluctuations. (orig.)

  16. Relative Biological Effectiveness of HZE Fe Ions for Induction ofMicro-Nuclei at Low Doses

    Energy Technology Data Exchange (ETDEWEB)

    Groesser, Torsten; Chun, Eugene; Rydberg, Bjorn

    2007-01-16

    Dose-response curves for induction of micro-nuclei (MN) was measured in Chinese hamster V79 and xrs6 (Ku80-) cells and in human mammary epithelial MCF10A cells in the dose range of 0.05-1 Gy. The Chinese Hamster cells were exposed to 1 GeV/u Fe ions, 600 MeV/u Fe ions, and 300 MeV/u Fe ions (LETs of 151, 176 and 235 keV/{micro}m respectively) as well as with 320 kVp X-rays as reference. Second-order polynomials were fitted to the induction curves and the initial slopes (the alpha values) were used to calculate RBE. For the repair proficient V79 cells the RBE at these low doses increased with LET. The values obtained were 3.1 (LET=151 keV/{micro}m), 4.3 (LET = 176 keV/{micro}m) and 5.7 (LET = 235 keV/{micro}m), while the RBE was close to 1 for the repair deficient xrs6 cells regardless of LET. For the MCF10A cells the RBE was determined for 1 GeV/u Fe ions and found to be 5.4, slightly higher than for V79 cells. To test the effect of shielding, the 1 GeV/u Fe ion beam was intercepted by various thickness of high-density polyethylene plastic absorbers, which resulted in energy loss and fragmentation. It was found that the MN yield for V79 cells placed behind the absorbers decreased in proportion to the decrease in dose both before and after the Fe ion Bragg peak (excluding the area around the Fe-ion Bragg peak itself), indicating that RBE did not change significantly due to shielding. At the Bragg peak the effectiveness for MN formation per unit dose was decreased, indicating an 'overkill' effect by low-energy very high-LET Fe ions.

  17. The different biological effects of single, fractionated and continuous low dose rate irradiation on CL187 colorectal cancer cells

    International Nuclear Information System (INIS)

    To determine the biological effectiveness of single, fractionated and continuous low dose rate irradiation on the human colorectal cancer cell line CL187 in vitro and explore the cellular mechanisms. The CL187 cells were exposed to radiation of 6 MV X-ray at a high dose rate of 4Gy/min and 125I seed at a low dose rate of 2.77 cGy/h. Three groups were employed: single dose radiation group (SDR), fractionated dose radiation group (FDR) by 2Gy/f and continuous low dose rate radiation group (CLDR). Four radiation doses 2, 4, 6 and 8Gy were chosen and cells without irradiation as the control. The responses of CL187 cells to distinct modes of radiation were evaluated by the colony-forming assay, cell cycle progression as well as apoptosis analysis. In addition, we detected the expression patterns of DNA-PKcs, Ku70 and Ku80 by Western blotting. The relative biological effect for 125I seeds compared with 6 MV X-ray was 1.42. 48 hrs after 4Gy irradiation, the difference between proportions of cells at G2/M phase of SDR and CLDR groups were statistically significant (p = 0.026), so as the FDR and CLDR groups (p = 0.005). 48 hrs after 4Gy irradiation, the early apoptotic rate of CLDR group was remarkably higher than SDR and FDR groups (CLDR vs. SDR, p = 0.001; CLDR vs. FDR, p = 0.02), whereas the late apoptotic rate of CLDR group increased significantly compared with SDR and FDR group (CLDR vs. SDR, p = 0.004; CLDR vs. FDR, p = 0.007). Moreover, DNA-PKcs and Ku70 expression levels in CLDR-treated cells decreased compared with SDR and FDR groups. Compared with the X-ray high dose rate irradiation, 125I seeds CLDR showed more effective induction of cell apoptosis and G2/M cell cycle arrest. Furthermore, 125I seeds CLDR could impair the DNA repair capability by down-regulating DNA-PKcs and Ku70 expression

  18. Local Control Following Permanent Prostate Brachytherapy: Effect of High Biologically Effective Dose on Biopsy Results and Oncologic Outcomes

    International Nuclear Information System (INIS)

    Purpose: To determine factors that influence local control and systemic relapse in patients undergoing permanent prostate brachytherapy (PPB). Methods and Materials: A total of 584 patients receiving PPB alone or PPB with external beam radiation therapy (19.5%) agreed to undergo prostate biopsy (PB) at 2 years postimplantion and yearly if results were positive or if the prostate-specific antigen (PSA) level increased. Short-term hormone therapy was used with 280 (47.9%) patients. Radiation doses were converted to biologically effective doses (BED) (using α/β = 2). Comparisons were made by chi-square analysis and linear regression. Survival was determined by the Kaplan-Meier method. Results: The median PSA concentration was 7.1 ng/ml, and the median follow-up period was 7.1 years. PB results were positive for 48/584 (8.2%) patients. Positive biopsy results by BED group were as follows: 22/121 (18.2%) patients received a BED of ≤150 Gy; 15/244 (6.1%) patients received >150 to 200 Gy; and 6/193 (3.1%; p 200 Gy. Significant associations of positive PB results by risk group were low-risk group BED (p = 0.019), intermediate-risk group hormone therapy (p = 0.011) and BED (p = 0.040), and high-risk group BED (p = 0.004). Biochemical freedom from failure rate at 7 years was 82.7%. Biochemical freedom from failure rate by PB result was 84.7% for negative results vs. 59.2% for positive results (p 200 Gy with an α/β ratio of 2 yields 96.9% local control rate. Failure to establish local control impacts survival.

  19. Biological and hemodynamic effects of low doses of fludrocortisone and hydrocortisone, alone or in combination, in healthy volunteers with hypoaldosteronism.

    Science.gov (United States)

    Laviolle, B; Le Maguet, P; Verdier, M-C; Massart, C; Donal, E; Lainé, F; Lavenu, A; Pape, D; Bellissant, E

    2010-08-01

    Low doses of hydrocortisone (HC) and fludrocortisone (FC) administered together improve the prognosis after septic shock; however, there continues to be disagreement about the utility of FC for this indication. The biological and hemodynamic effects of HC (50 mg intravenously) and FC (50 microg orally) were assessed in 12 healthy male volunteers with saline-induced hypoaldosteronism in a placebo-controlled, randomized, double-blind, crossover study performed according to a 2 x 2 factorial design. HC and FC significantly decreased urinary sodium and potassium levels (from -58% at 4 h to -28% at 10 h and from -35% at 8 h to -24% at 12 h, respectively) with additive effects. At 4 h after administration, HC significantly increased cardiac output (+14%), decreased systemic vascular resistances (-14%), and slightly increased heart rate (+4 beats/min), whereas FC had no hemodynamic effect. At doses used in septic shock, HC induced greater mineralocorticoid effect than FC did. HC also induced transient systemic hemodynamic effects, whereas FC did not. New studies are required to better define the optimal dose of FC in septic shock.

  20. The role of nuclear reactions in Monte Carlo calculations of absorbed and biological effective dose distributions in hadron therapy

    CERN Document Server

    Brons, S; Elsässer, T; Ferrari, A; Gadioli, E; Mairani, A; Parodi, K; Sala, P; Scholz, M; Sommerer, F

    2010-01-01

    Monte Carlo codes are rapidly spreading among hadron therapy community due to their sophisticated nuclear/electromagnetic models which allow an improved description of the complex mixed radiation field produced by nuclear reactions in therapeutic irradiation. In this contribution results obtained with the Monte Carlo code FLUKA are presented focusing on the production of secondary fragments in carbon ion interaction with water and on CT-based calculations of absorbed and biological effective dose for typical clinical situations. The results of the simulations are compared with the available experimental data and with the predictions of the GSI analytical treatment planning code TRiP.

  1. Biologically effective dose and definitive radiation treatment for localized prostate cancer. Treatment gaps do affect the risk of biochemical failure

    International Nuclear Information System (INIS)

    It is not clear if prolongation of definitive external radiation therapy for prostate cancer has an effect on biochemical failure. The aim of this work was to evaluate whether the biologically effective dose (BED), and in particular the duration of radiotherapy, intended as overall treatment time, has an effect on biochemical failure rates and to develop a nomogram useful to predict the 6-year probability of biochemical failure. A total of 670 patients with T1-3 N0 prostate cancer were treated with external beam definitive radiotherapy, to a total dose of 72-79.2 Gy in 40-44 fractions. The computed BED values were treated with restricted cubic splines. Variables were checked for colinearity using Spearman's test. The Kaplan-Meier method was used to calculate freedom from biochemical relapse (FFBR) rates. The Cox regression analysis was used to identify prognostic factors of biochemical relapse in the final most performing model and to create a nomogram. Concordance probability estimate and calibration methods were used to validate the nomogram. Neoadjuvant and concomitant androgen deprivation was administered to 475 patients (70 %). The median follow-up was 80 months (range 20-129 months). Overall, the 6-year FFBR rate was 88.3 %. BED values were associated with higher biochemical failure risk. Age, iPSA, risk category, and days of radiotherapy treatment were independent variables of biochemical failure. A prolongation of RT (lower BED values) is associated with an increased risk of biochemical failure. The nomogram may be helpful in decision making for the individual patient. (orig.)

  2. Clinical significance of cumulative biological effective dose and overall treatment time in the treatment of carcinoma cervix

    Directory of Open Access Journals (Sweden)

    Mandal Abhijit

    2007-01-01

    Full Text Available The purpose of this retrospective study is to report the radiotherapy treatment response of, and complications in, patients with cervical cancer on the basis of cumulative biologic effective dose (BED and overall treatment time (OTT. Sixty-four (stage II - 35/64; stage III - 29/64 patients of cervical cancer were treated with combination of external beam radiotherapy (EBRT and low dose rate intracavitary brachytherapy (ICBT. The cumulative BED was calculated at Point A (BED 10 ; and bladder, rectal reference points (BED 2.5 using the linear-quadratic BED equations. The local control (LC rate and 5-year disease-free survival (DFS rate in patients of stage II were comparable for BED 10 < 84.5 and BED 10 > 84.5 but were much higher for BED 10 > 84.5 than BED 10 < 84.5 ( P < 0.01 in stage III patients. In the stage II patients, The LC rate and 5-year DFS rate were comparable for OTT < 50 days and for OTT> 50 days but were much higher in stage III patients with OTT < 50 than OTT> 50 days ( P < 0.001. It was also observed that patients who received BED 2.5 < 105 had lesser rectal ( P < 0.001 and bladder complications than BED 2.5 > 105. Higher rectal complication-free survival (CFS R rate, bladder complication-free survival (CFS B rate and all-type late complication-free survival rate were observed in patients who received BED 2.5 < 105 than BED 2.5 > 105. A balanced, optimal and justified radiotherapy treatment schedule to deliver higher BED 10 (>84.5 and lower BED 2.5 (< 105 in lesser OTT (< 50 days is essential in carcinoma cervix to expect a better treatment outcome in all respects.

  3. Biologically effective dose in fractionated molecular radiotherapy—application to treatment of neuroblastoma with 131I-mIBG

    Science.gov (United States)

    Mínguez, Pablo; Gustafsson, Johan; Flux, Glenn; Sjögreen Gleisner, Katarina

    2016-03-01

    In this work, the biologically effective dose (BED) is investigated for fractionated molecular radiotherapy (MRT). A formula for the Lea-Catcheside G-factor is derived which takes the possibility of combinations of sub-lethal damage due to radiation from different administrations of activity into account. In contrast to the previous formula, the new G-factor has an explicit dependence on the time interval between administrations. The BED of tumour and liver is analysed in MRT of neuroblastoma with 131I-mIBG, following a common two-administration protocol with a mass-based activity prescription. A BED analysis is also made for modified schedules, when due to local regulations there is a maximum permitted activity for each administration. Modifications include both the simplistic approach of delivering this maximum permitted activity in each of the two administrations, and also the introduction of additional administrations while maintaining the protocol-prescribed total activity. For the cases studied with additional (i.e. more than two) administrations, BED of tumour and liver decreases at most 12% and 29%, respectively. The decrease in BED of the tumour is however modest compared to the two-administration schedule using the maximum permitted activity, where the decrease compared to the original schedule is 47%.

  4. Biological effects in lymphocytes irradiated with {sup 99m}Tc: determination of the curve dose-response; Efeitos biologicos em linfocitos irradiados com {sup 99m}Tc: determinacao da curva dose-resposta

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Romero Marcilio Barros Matias de

    2002-08-01

    Biological dosimetry estimates the absorbed dose taking into account changes in biological parameters. The most used biological indicator of an exposition to ionizing radiation is the quantification of chromosomal aberrations of lymphocytes from irradiated individuals. The curves of dose versus induced biological effects, obtained through bionalyses, are used in used in retrospective evaluations of the dose, mainly in the case of accidents. In this research, a simple model for electrons and photons transports was idealized to simulate the irradiation of lymphocytes with {sup 99m} Tc, representing a system used for irradiation of blood cells. The objective of the work was to establish a curve of dose versus frequencies of chromosomal aberrations in lymphocytes of human blood. For the irradiation of blood samples micro spheres of human serum of albumin (HSAM) market with {sup 99m} Tc were used, allowing the irradiation of blood with different administered activities of {sup 99m} Tc, making possible the study the cytogenetical effects as a function of such activities. The conditions of irradiation in vivo using HSAM spheres marked with {sup 99m} Tc were simulated with MCNP 4C (Monte Carlo N-Particle) code to obtain the dose-response curve. Soft tissue composition was employed to simulate blood tissue and the analyses of the curve of dose versus biological effect showed a linear quadratic response of the unstable chromosomal aberrations. As a result, the response of dose versus chromosomal aberrations of blood irradiation with {sup 99m} Tc was best fitted by the curve Y=(8,99 {+-}2,06) x 1-{sup -4} + (1,24 {+-}0,62) x 10{sup -2} D + (5,67 {+-} 0,64) x 10{sup -2} D{sup 2}. (author)

  5. The radiological consequences of notional accidental releases of radioactivity from fast breeder reactors: sensitivity to the dose-effect relationships adopted for early biological effects

    International Nuclear Information System (INIS)

    This study considered the sensitivity to the dose-response relationships adopted for the estimation of early biological effects from notional accidental releases of radioactivity from fast breeder reactors. Two distinct aspects were considered: the sensitivity of the predicted consequences to variation in the dose-mortality relationships for irradiation of the bone marrow and the lung; and the influence of simple supportive medical treatment in reducing the incidence of early deaths in the exposed population. The numbers of early effects estimated in the initial study were relatively insensitive to variation in the dose-mortality relationships within the bounds proposed. The few exceptions concerned releases of particular nuclide composition, and the variation in the predicted consequences could be around an order of magnitude; the absolute numbers of effects however were in general small when the sensitivity was most pronounced. The reduction in the incidence of early deaths when using simple supportive treatment varied markedly with the nuclide composition of the release. Areas of uncertainty were identified where further research and investigation might most profitably be directed with a view to improving the reliability of the dose-effect relationships adopted and hence of the predicted consequences of the release considered. (author)

  6. Are there dangers in biologic dose reduction strategies?

    Science.gov (United States)

    Chan, Christopher K Y; Holroyd, Christopher R; Mason, Alice; Zarroug, Jalaa; Edwards, Christopher J

    2016-07-01

    Biologic dose reduction strategies, for patients with inflammatory rheumatic diseases, have been assessed in multiple studies to assess outcomes compared to ongoing maintenance dosing. Whilst cessation in established disease usually leads to disease flare, dose tapering approaches for those achieving low disease activity often appear to be successful in the short term. However, tapering can be associated with a higher risk of losing disease control and rates of recapture of disease control using the original biologic dose vary between studies. Over relatively short periods of follow-up, a number of studies have shown no statistical difference in radiographic progression in patients tapering or discontinuing biologics. However, a Cochrane review found that radiographic and functional outcomes may be worse after TNF inhibitor discontinuation, and over long-term disease follow-up flares have been associated with radiographic progression and worse patient reported outcomes. To date, no studies of biological therapy dose reduction have specifically investigated the risk of increased immunogenicity or the effects on cardiovascular risk and other co-morbidities, although these remain important potential risks. In addition, whether there are greater dangers in certain dose reduction approaches such as a reduction in dose at the same frequency or a spacing of doses is not established. PMID:26970488

  7. Are there dangers in biologic dose reduction strategies?

    Science.gov (United States)

    Chan, Christopher K Y; Holroyd, Christopher R; Mason, Alice; Zarroug, Jalaa; Edwards, Christopher J

    2016-07-01

    Biologic dose reduction strategies, for patients with inflammatory rheumatic diseases, have been assessed in multiple studies to assess outcomes compared to ongoing maintenance dosing. Whilst cessation in established disease usually leads to disease flare, dose tapering approaches for those achieving low disease activity often appear to be successful in the short term. However, tapering can be associated with a higher risk of losing disease control and rates of recapture of disease control using the original biologic dose vary between studies. Over relatively short periods of follow-up, a number of studies have shown no statistical difference in radiographic progression in patients tapering or discontinuing biologics. However, a Cochrane review found that radiographic and functional outcomes may be worse after TNF inhibitor discontinuation, and over long-term disease follow-up flares have been associated with radiographic progression and worse patient reported outcomes. To date, no studies of biological therapy dose reduction have specifically investigated the risk of increased immunogenicity or the effects on cardiovascular risk and other co-morbidities, although these remain important potential risks. In addition, whether there are greater dangers in certain dose reduction approaches such as a reduction in dose at the same frequency or a spacing of doses is not established.

  8. Biologically effective dose and definitive radiation treatment for localized prostate cancer. Treatment gaps do affect the risk of biochemical failure

    Energy Technology Data Exchange (ETDEWEB)

    Sanpaolo, P.; Barbieri, V. [CROB, Rionero in Vulture (Italy). Radiation Oncology Dept.; Genovesi, D. [' ' G. D' Annunzio Univ., Chieti (Italy). Radiation Oncology Dept.

    2014-08-15

    It is not clear if prolongation of definitive external radiation therapy for prostate cancer has an effect on biochemical failure. The aim of this work was to evaluate whether the biologically effective dose (BED), and in particular the duration of radiotherapy, intended as overall treatment time, has an effect on biochemical failure rates and to develop a nomogram useful to predict the 6-year probability of biochemical failure. A total of 670 patients with T1-3 N0 prostate cancer were treated with external beam definitive radiotherapy, to a total dose of 72-79.2 Gy in 40-44 fractions. The computed BED values were treated with restricted cubic splines. Variables were checked for colinearity using Spearman's test. The Kaplan-Meier method was used to calculate freedom from biochemical relapse (FFBR) rates. The Cox regression analysis was used to identify prognostic factors of biochemical relapse in the final most performing model and to create a nomogram. Concordance probability estimate and calibration methods were used to validate the nomogram. Neoadjuvant and concomitant androgen deprivation was administered to 475 patients (70 %). The median follow-up was 80 months (range 20-129 months). Overall, the 6-year FFBR rate was 88.3 %. BED values were associated with higher biochemical failure risk. Age, iPSA, risk category, and days of radiotherapy treatment were independent variables of biochemical failure. A prolongation of RT (lower BED values) is associated with an increased risk of biochemical failure. The nomogram may be helpful in decision making for the individual patient. (orig.) [German] Es ist nicht geklaert, ob die Verlaengerung einer definitiven Strahlentherapie bei der Behandlung von Prostatakarzinompatienten einen Effekt auf das biochemische Versagen hat. Die vorliegende Studie hat das Ziel zu evaluieren, ob biologisch die effektive Dosis und insbesondere die Gesamtdauer der Behandlung eine Wirkung auf das biochemisches Rezidiv haben koennte. Ferner

  9. Biological effects of low doses irradiation on human and animal: observations and experiences performed in France and Kazakhstan between 1995 and 2000

    International Nuclear Information System (INIS)

    All the data suggests that low doses of irradiation at low dose rate affects living organisms. All the negative effects that have been observed on the embrittlement of DNA suggest that it is necessary to better quantify the potential risks to the environment and human beings living in such conditions and that the test of comets could be a useful tool for this purpose.The evidence of this instability should be quantified in an even more specific by finer techniques of cyto-genetics or molecular biology techniques. A modelling of irradiation is necessary as it has been begun to do so on a simpler model (plants). In terms of radiation protection it has been demonstrated in animals and in our observing conditions (long-term consequence of irradiation) that the dose-response curve for the low dose and dose rate is neither linear nor infra linear with or without a threshold, but above type linear which means that very low doses of radiation have comparatively at higher doses, a cytogenetic relatively more important.These results are not directly extrapolated to humans, but the question is entirely valid: monitoring of populations currently living in the contaminated areas or exposed in the workplace. Several teams at the international level are beginning to accumulate data in the same direction. (N.C.)

  10. Biological dosimetry of ionizing radiation in the high dose range

    International Nuclear Information System (INIS)

    The report reviews briefly methods of dose evaluation after exposure to high doses of ionizing radiation. Validation of two methods also is described: micronucleus (Mn) frequency estimation according Muller and Rode and premature chromosome condensation (PCC) combined with painting of 3 pairs of chromosomes in human lymphocytes. According to Muller and Rode, micronucleus frequency per binucleated cells with at least one Mn linearly increases with dose up to 15 Gy and is suitable end-point for biological dosimetry. These authors, however, examined cells from only one donor. The data reported below were obtained for 5 donors; they point to a considerable individual variation of thus measured response to irradiation. Due to the high degree of inter-donor variability, there is no possibility to apply this approach in biological dosimetry in the dose range 5 - 20 Gy gamma 60Co radiation. A linear response up to 10 Gy was observed only in the case of certain donors. In contrast, determination of the dose-effect relationship with the PCC method gave good results (small inter-individual variation, no plateau effect up to dose 10 Gy), so that with a calibration curve it could be used for dose estimation after exposure to doses up to 10 Gy of X or gamma 60Co radiation. (author)

  11. Practical aspects and uncertainty analysis of biological effective dose (BED) regarding its three-dimensional calculation in multiphase radiotherapy treatment plans

    Energy Technology Data Exchange (ETDEWEB)

    Kauweloa, Kevin I., E-mail: Kauweloa@livemail.uthscsa.edu; Gutierrez, Alonso N.; Bergamo, Angelo; Stathakis, Sotirios; Papanikolaou, Nikos; Mavroidis, Panayiotis [Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 and Cancer Therapy and Research Center, San Antonio, Texas 78229 (United States)

    2014-07-15

    Purpose: There is a growing interest in the radiation oncology community to use the biological effective dose (BED) rather than the physical dose (PD) in treatment plan evaluation and optimization due to its stronger correlation with radiobiological effects. Radiotherapy patients may receive treatments involving a single only phase or multiple phases (e.g., primary and boost). Since most treatment planning systems cannot calculate the analytical BED distribution in multiphase treatments, an approximate multiphase BED expression, which is based on the total physical dose distribution, has been used. The purpose of this paper is to reveal the mathematical properties of the approximate BED formulation, relative to the true BED. Methods: The mathematical properties of the approximate multiphase BED equation are analyzed and evaluated. In order to better understand the accuracy of the approximate multiphase BED equation, the true multiphase BED equation was derived and the mathematical differences between the true and approximate multiphase BED equations were determined. The magnitude of its inaccuracies under common clinical circumstances was also studied. All calculations were performed on a voxel-by-voxel basis using the three-dimensional dose matrices. Results: Results showed that the approximate multiphase BED equation is accurate only when the dose-per-fractions (DPFs) in both the first and second phases are equal, which occur when the dose distribution does not significantly change between the phases. In the case of heterogeneous dose distributions, which significantly vary between the phases, there are fewer occurrences of equal DPFs and hence the inaccuracy of the approximate multiphase BED is greater. These characteristics are usually seen in the dose distributions being delivered to organs at risk rather than to targets. Conclusions: The finding of this study indicates that the true multiphase BED equation should be implemented in the treatment planning

  12. Clinical investigation of the biological effects of a new combination low-dose oral contraceptive ('Ovostat E').

    Science.gov (United States)

    Tarkkila, T; Hulkko, S; Alapiessa, U; Kauraniemi, T

    1977-01-01

    A low-dose contraceptive containing 1 mg of lynestrenol and .05 mg of ethinyl estradiol was studied over 12 cycles in 11 healthy fertile women volunteers. The subjects were aged 20-30 years. Measurements were taken of urinary luteinizing hormone (LH), pregnanediol, and estrogen, and serum progesterone and estradiol values; in addition, on a fixed schedule during treatment, the 3rd, 5th, 7th, and 12th months, vaginal smears and endometrial biopsies were taken, along with SGOT and SGPT determinations. According to determinations, ovulation was inhibited during every cycle tested. A clear estrogenic effect was evident in the karyopyknotic index, during cycle 3, at the beginning of the cycle which became a progestational effect around Day 13 (biphasic). In cycle 6, the indexes of cytology decreased, but during Cycle 12, they rose a bit again. Basal body temperature during treatment was monophasic. Cervical mucus assessed by spinnbarket during treatment was low and arborization absent. The SGOT and SGPT liver function tests were within normal values in all cycles in 7 women; 4 showed clearly higher levels in Cycles 3 and 12. None of the cycles showed the high midcycle urinary excretion of LH. No significant side effects were reported. Examination of the endometrial biopsies showed a drug effect in all cases and there was no secretory activity in any of the samples. These findings confirm clinical results that show this low-dose combination to be an effective contraceptive agent. PMID:162661

  13. Differential tolerance to biological and subjective effects of four closely spaced doses of N,N-dimethyltryptamine in humans.

    Science.gov (United States)

    Strassman, R J; Qualls, C R; Berg, L M

    1996-05-01

    Tolerance of the behavioral effects of the short-acting, endogenous hallucinogen, N,N-dimethyltryptamine (DMT) is seen inconsistently in animals, and has not been produced in humans. The nature and time course of responses to repetitive, closely spaced administrations of an hallucinogenic dose of DMT were characterized. Thirteen experienced hallucinogen users received intravenous 0.3 mg/kg DMT fumarate, or saline placebo, four times, at 30 min intervals, on 2 separate days, in a randomized, double-blind, design. Tolerance to "psychedelic" subjective effects did not occur according to either clinical interview or Hallucinogen Rating Scale scores. Adrenocorticotropic hormone (ACTH), prolactin, cortisol, and heart rate responses decreased with repeated DMT administration, although blood pressure did not. These data demonstrate the unique properties of DMT relative to other hallucinogens and underscore the differential regulation of the multiple processes mediating the effects of DMT. PMID:8731519

  14. Effects of low doses

    International Nuclear Information System (INIS)

    Actually, even though it is comfortable for the risk management, the hypothesis of the dose-effect relationship linearity is not confirmed for any model. In particular, in the area of low dose rate delivered by low let emitters. this hypothesis is debated at the light of recent observations, notably these ones relative to the mechanisms leading to genetic instability and induction eventuality of DNA repair. The problem of strong let emitters is still to solve. (N.C.)

  15. Biological dose representation for carbon-ion radiotherapy of unconventional fractionation

    OpenAIRE

    Kanematsu, Nobuyuki; Inaniwa, Taku

    2016-01-01

    In carbon-ion radiotherapy, single-beam delivery each day in alternate directions has been commonly practiced for operational efficiency, taking advantage of the Bragg peak and the relative biological effectiveness (RBE) for uniform dose conformation to a tumor. The treatment plans are usually evaluated with total RBE-weighted dose, which is however deficient in relevance to the biological effect in the linear-quadratic model due to its quadratic-dose term, or the dose-fractionation effect. I...

  16. A graphical user interface (GUI) toolkit for the calculation of three-dimensional (3D) multi-phase biological effective dose (BED) distributions including statistical analyses.

    Science.gov (United States)

    Kauweloa, Kevin I; Gutierrez, Alonso N; Stathakis, Sotirios; Papanikolaou, Niko; Mavroidis, Panayiotis

    2016-07-01

    A toolkit has been developed for calculating the 3-dimensional biological effective dose (BED) distributions in multi-phase, external beam radiotherapy treatments such as those applied in liver stereotactic body radiation therapy (SBRT) and in multi-prescription treatments. This toolkit also provides a wide range of statistical results related to dose and BED distributions. MATLAB 2010a, version 7.10 was used to create this GUI toolkit. The input data consist of the dose distribution matrices, organ contour coordinates, and treatment planning parameters from the treatment planning system (TPS). The toolkit has the capability of calculating the multi-phase BED distributions using different formulas (denoted as true and approximate). Following the calculations of the BED distributions, the dose and BED distributions can be viewed in different projections (e.g. coronal, sagittal and transverse). The different elements of this toolkit are presented and the important steps for the execution of its calculations are illustrated. The toolkit is applied on brain, head & neck and prostate cancer patients, who received primary and boost phases in order to demonstrate its capability in calculating BED distributions, as well as measuring the inaccuracy and imprecision of the approximate BED distributions. Finally, the clinical situations in which the use of the present toolkit would have a significant clinical impact are indicated. PMID:27265044

  17. Biological effects of radiation

    International Nuclear Information System (INIS)

    This fourth chapter presents: cell structure and metabolism; radiation interaction with biological tissues; steps of the production of biological effect of radiation; radiosensitivity of tissues; classification of biological effects; reversibility, transmissivity and influence factors; pre-natal biological effects; biological effects in therapy and syndrome of acute irradiation

  18. Biological effect of dose distortion by fiducial markers in spot-scanning proton therapy with a limited number of fields: A simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, Taeko; Maeda, Kenichiro; Sutherland, Kenneth; Takayanagi, Taisuke; Shimizu, Shinichi; Takao, Seishin; Miyamoto, Naoki; Nihongi, Hideaki; Toramatsu, Chie; Nagamine, Yoshihiko; Fujimoto, Rintaro; Suzuki, Ryusuke; Ishikawa, Masayori; Umegaki, Kikuo; Shirato, Hiroki [Department of Medical Physics, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-8638 (Japan); Hitachi, Ltd., Hitachi Research Laboratory, 7-2-1 Omika-cho, Hitachi-shi, Ibaraki 319-1221 (Japan); Department of Radiation Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-8638 (Japan); Department of Medical Physics, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-8638 (Japan); Hitachi, Ltd., Hitachi Works, 3-1-1 Saiwai-cho, Hitachi-shi, Ibaraki 317-8511 (Japan); Hitachi, Ltd., Hitachi Research Laboratory, 7-2-1 Omika-cho, Hitachi-shi, Ibaraki 319-1221 (Japan); Department of Medical Physics, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-8638 (Japan); Department of Radiation Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-8638 (Japan)

    2012-09-15

    Purpose: In accurate proton spot-scanning therapy, continuous target tracking by fluoroscopic x ray during irradiation is beneficial not only for respiratory moving tumors of lung and liver but also for relatively stationary tumors of prostate. Implanted gold markers have been used with great effect for positioning the target volume by a fluoroscopy, especially for the cases of liver and prostate with the targets surrounded by water-equivalent tissues. However, recent studies have revealed that gold markers can cause a significant underdose in proton therapy. This paper focuses on prostate cancer and explores the possibility that multiple-field irradiation improves the underdose effect by markers on tumor-control probability (TCP). Methods: A Monte Carlo simulation was performed to evaluate the dose distortion effect. A spherical gold marker was placed at several characteristic points in a water phantom. The markers were with two different diameters of 2 and 1.5 mm, both visible on fluoroscopy. Three beam arrangements of single-field uniform dose (SFUD) were examined: one lateral field, two opposite lateral fields, and three fields (two opposite lateral fields + anterior field). The relative biological effectiveness (RBE) was set to 1.1 and a dose of 74 Gy (RBE) was delivered to the target of a typical prostate size in 37 fractions. The ratios of TCP to that without the marker (TCP{sub r}) were compared with the parameters of the marker sizes, number of fields, and marker positions. To take into account the dependence of biological parameters in TCP model, {alpha}/{beta} values of 1.5, 3, and 10 Gy (RBE) were considered. Results: It was found that the marker of 1.5 mm diameter does not affect the TCPs with all {alpha}/{beta} values when two or more fields are used. On the other hand, if the marker diameter is 2 mm, more than two irradiation fields are required to suppress the decrease in TCP from TCP{sub r} by less than 3%. This is especially true when multiple

  19. Biological optimization of heterogeneous dose distributions in systemic radiotherapy

    International Nuclear Information System (INIS)

    The standard computational method developed for internal radiation dosimetry is the MIRD (medical internal radiation dose) formalism, based on the assumption that tumor control is given by uniform dose and activity distributions. In modern systemic radiotherapy, however, the need for full 3D dose calculations that take into account the heterogeneous distribution of activity in the patient is now understood. When information on nonuniform distribution of activity becomes available from functional imaging, a more patient specific 3D dosimetry can be performed. Application of radiobiological models can be useful to correlate the calculated heterogeneous dose distributions to the current knowledge on tumor control probability of a homogeneous dose distribution. Our contribution to this field is the introduction of a parameter, the F factor, already used by our group in studying external beam radiotherapy treatments. This parameter allows one to write a simplified expression for tumor control probability (TCP) based on the standard linear quadratic (LQ) model and Poisson statistics. The LQ model was extended to include different treatment regimes involving source decay, incorporating the repair 'μ' of sublethal radiation damage, the relative biological effectiveness and the effective 'waste' of dose delivered when repopulation occurs. The sensitivity of the F factor against radiobiological parameters (α,β,μ) and the influence of the dose volume distribution was evaluated. Some test examples for 131I and 90Y labeled pharmaceuticals are described to further explain the properties of the F factor and its potential applications. To demonstrate dosimetric feasibility and advantages of the proposed F factor formalism in systemic radiotherapy, we have performed a retrospective planning study on selected patient case. F factor formalism helps to assess the total activity to be administered to the patient taking into account the heterogeneity in activity uptake and dose

  20. Biological effects of neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Ogiu, Toshiaki; Ohmachi, Yasushi; Ishida, Yuka [National Inst. of Radiological Sciences, Chiba (JP)] [and others

    2003-03-01

    Although the occasion to be exposed to neutrons is rare in our life, except for nuclear accidents like in the critical accident at Tokai-mura in 1999, countermeasures against accident should be always prepared. In the Tokai-mura accident, residents received less than 21 mSv of neutrons and gamma rays. The cancer risks and fetal effects of low doses of neutrons were matters of concern among residents. The purpose of this program is to investigate the relative biological effectiveness (RBE) for leukemias, and thereby to assess risks of neutrons. Animal experiments are planed to obtain the following RBEs: (1) RBE for the induction of leukemias in mice and (2) RBE for effects on fetuses. Cyclotron fast neutrons (10 MeV) and electrostatic accelerator-derived neutrons (2 MeV) are used for exposure in this program. Furthermore, cytological and cytogenetic analyses will be performed. (author)

  1. Increased Biological Effective Dose of Radiation Correlates with Prolonged Survival of Patients with Limited-Stage Small Cell Lung Cancer: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Lucheng Zhu

    Full Text Available Thoracic radiotherapy (TRT is a critical component of the treatment of limited-stage small cell lung cancer (LS-SCLC. However, the optimal radiation dose/fractionation remains elusive. This study reviewed current evidence and explored the dose-response relationship in patients with LS-SCLC who were treated with radiochemotherapy.A quantitative analysis was performed through a systematic search of PubMed, Web of Science, and the Cochrane Library. The correlations between the biological effective dose (BED and median overall survival (mOS, median progression-free survival (mPFS, 1-, 3-, and 5-year overall survival (OS as well as local relapse (LR were evaluated.In all, 2389 patients in 19 trials were included in this study. Among these 19 trials, seven were conducted in Europe, eight were conducted in Asia and four were conducted in the United States. The 19 trials that were included consisted of 29 arms with 24 concurrent and 5 sequential TRT arms. For all included studies, the results showed that a higher BED prolonged the mOS (R2 = 0.198, p<0.001 and the mPFS (R2 = 0.045, p<0.001. The results also showed that increased BED improved the 1-, 3-, and 5-year OS. A 10-Gy increment added a 6.3%, a 5.1% and a 3.7% benefit for the 1-, 3-, and 5-year OS, respectively. Additionally, BED was negatively correlated with LR (R2 = 0.09, p<0.001. A subgroup analysis of concurrent TRT showed that a high BED prolonged the mOS (p<0.001 and the mPFS (p<0.001, improved the 1-, 3-, and 5-year OS (p<0.001 and decreased the rate of LR (p<0.001.This study showed that an increased BED was associated with improved OS, PFS and decreased LR in patients with LS-SCLC who were treated with combined chemoradiotherapy, which indicates that the strategy of radiation dose escalation over a limited time frame is worth exploring in a prospective clinical trial.

  2. Clinical Outcomes of Biological Effective Dose-Based Fractionated Stereotactic Radiation Therapy for Metastatic Brain Tumors From Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, Tomohiko, E-mail: matsutomo_llp@yahoo.co.jp [Department of Radiation Oncology, Kumamoto University, Kumamoto (Japan); Kogo, Kasei [Kumamoto Radiosurgery Clinic, Kumamoto (Japan); Oya, Natsuo [Department of Radiation Oncology, Kumamoto University, Kumamoto (Japan)

    2013-03-15

    Purpose: To evaluate the efficacy and toxicity of fractionated stereotactic radiation therapy (FSRT) based on biological effective dose (BED), a novel approach to deliver a fixed BED irrespective of dose fractionation, for brain metastases from non-small cell lung cancer (NSCLC). Methods and Materials: Between March 2005 and March 2009 we treated 299 patients with 1 to 5 lesions from NSCLC (573 total brain metastases) with FSRT using Novalis. The dose fractionation schedules were individually determined to deliver a peripheral BED10 (α/β ratio = 10) of approximately 80 Gy{sub 10}. The median number of fractions was 3 (range, 2-10), the median peripheral BED10 was 83.2 Gy (range, 19.1-89.6 Gy). Patients were followed up with magnetic resonance imaging (MRI) studies performed at 1- to 2-month intervals. The local tumor control rate and overall local progression-free and intracranial relapse-free survival were calculated by the Kaplan-Meier method. Results: Local control rates for all 573 lesions at 6 and 12 months were 96.3% and 94.5%, respectively. By multivariate analysis the tumor diameter was the only factor predictive of the local control rate (P=.001). The median overall survival, local progression-free survival, and intracranial relapse-free survival were 17.1, 14.9, and 4.4 months, respectively. The overall survival, local progression-free survival, and intracranial relapse-free survival rates at 6 and 12 months were 78.5% and 63.3%, 74.3% and 57.8%, and 41.0% and 21.8%, respectively. Six patients (2%) manifested progressive radiation injury to the brain even during therapy with corticosteroids; they underwent hyperbaric oxygen therapy, and follow-up MRI showed improvement. Conclusions: This study showed that BED-based FSRT for brain metastases from NSCLC is a promising strategy that may yield excellent outcomes with acceptable toxicity. Criteria must be established to determine the optimal dose fractionation for individual patients.

  3. Biological dose assessment of 15 victims in Haerbin radiation accident

    International Nuclear Information System (INIS)

    unstable aberrations were analyzed and biological dose was assessed according to the dose-effect curves built by our lab member. For micronucleus analysis, blood were added cytochalasin-B after culturing 40 hours. The doses were assessed according to the dose-effect curves built by our lab member. According to a human lymphocyte chromosome aberration and micronucleus analysis, the estimated maximum irradiation dose of 3 exposed patients is lower than 2 Gy, equal to the dose of once uneven total-body irradiation. In vitro dose-response calibration curves for (60)Co gamma rays have been established for unstable chromosome aberrations in human peripheral blood lymphocytes. The observed dose-response data were fitted to a linear quadratic model. The calibration curve parameters were used to estimate the equivalent whole-body dose and dose to the irradiated region in partial body irradiation of cancer patients. The derived partial body doses and fractions of lymphocytes irradiated were in agreement with those estimated from the radiotherapy regimes. (author)

  4. Strategies for Biologic Image-Guided Dose Escalation: A Review

    International Nuclear Information System (INIS)

    There is increasing interest in how to incorporate functional and molecular information obtained by noninvasive, three-dimensional tumor imaging into radiotherapy. The key issues are to identify radioresistant regions that can be targeted for dose escalation, and to develop radiation dose prescription and delivery strategies providing optimal treatment for the individual patient. In the present work, we review the proposed strategies for biologic image-guided dose escalation with intensity-modulated radiation therapy. Biologic imaging modalities and the derived images are discussed, as are methods for target volume delineation. Different dose escalation strategies and techniques for treatment delivery and treatment plan evaluation are also addressed. Furthermore, we consider the need for response monitoring during treatment. We conclude with a summary of the current status of biologic image-based dose escalation and of areas where further work is needed for this strategy to become incorporated into clinical practice

  5. Isoeffective dose: a concept for biological weighting of absorbed dose in proton and heavier-ion therapies

    CERN Document Server

    Wambersie, A; Menzel, H G; Gahbauer, R; DeLuca, P M; Hendry, J H; Jones, D T L

    2011-01-01

    When reporting radiation therapy procedures, International Commission on Radiation Units and Measurements (ICRU) recommends specifying absorbed dose at/in all clinically relevant points and/or volumes. In addition, treatment conditions should be reported as completely as possible in order to allow full understanding and interpretation of the treatment prescription. However, the clinical outcome does not only depend on absorbed dose but also on a number of other factors such as dose per fraction, overall treatment time and radiation quality radiation biology effectiveness (RBE). Therefore, weighting factors have to be applied when different types of treatments are to be compared or to be combined. This had led to the concept of `isoeffective absorbed dose', introduced by ICRU and International Atomic Energy Agency (IAEA). The isoeffective dose D(IsoE) is the dose of a treatment carried out under reference conditions producing the same clinical effects on the target volume as those of the actual treatment. It i...

  6. Space Radiation Quality Factors and the Delta Ray Dose and Dose-Rate Reduction Effectiveness Factor.

    Science.gov (United States)

    Cucinotta, Francis A; Cacao, Eliedonna; Alp, Murat

    2016-03-01

    In this paper, the authors recommend that the dose and dose-rate effectiveness factor used for space radiation risk assessments should be based on a comparison of the biological effects of energetic electrons produced along a cosmic ray particles path in low fluence exposures to high dose-rate gamma-ray exposures of doses of about 1 Gy. Methods to implement this approach are described. PMID:26808878

  7. A comparison of the biological effects of 125I seeds continuous low-dose-rate radiation and 60Co high-dose-rate gamma radiation on non-small cell lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Zhongmin Wang

    Full Text Available To compare the biological effects of 125I seeds continuous low-dose-rate (CLDR radiation and 60Co γ-ray high-dose-rate (HDR radiation on non-small cell lung cancer (NSCLC cells.A549, H1299 and BEAS-2B cells were exposed to 125I seeds CLDR radiation or 60Co γ-ray HDR radiation. The survival fraction was determined using a colony-forming assay. The cell cycle progression and apoptosis were detected by flow cytometry (FCM. The expression of the apoptosis-related proteins caspase-3, cleaved-caspase-3, PARP, cleaved-PARP, BAX and Bcl-2 were detected by western blot assay.After irradiation with 125I seeds CLDR radiation, there was a lower survival fraction, more pronounced cell cycle arrest (G1 arrest and G2/M arrest in A549 and H1299 cells, respectively and a higher apoptotic ratio for A549 and H1299 cells than after 60Co γ-ray HDR radiation. Moreover, western blot assays revealed that 125I seeds CLDR radiation remarkably up-regulated the expression of Bax, cleaved-caspase-3 and cleaved-PARP proteins and down-regulated the expression of Bcl-2 proteins in A549 and H1299 cells compared with 60Co γ-ray HDR radiation. However, there was little change in the apoptotic ratio and expression of apoptosis-related proteins in normal BEAS-2B cells receiving the same treatment.125I seeds CLDR radiation led to remarkable growth inhibition of A549 and H1299 cells compared with 60Co HDR γ-ray radiation; A549 cells were the most sensitive to radiation, followed by H1299 cells. In contrast, normal BEAS-2B cells were relatively radio-resistant. The imbalance of the Bcl-2/Bax ratio and the activation of caspase-3 and PARP proteins might play a key role in the anti-proliferative effects induced by 125I seeds CLDR radiation, although other possibilities have not been excluded and will be investigated in future studies.

  8. Molecular circuits, biological switches, and nonlinear dose-response relationships.

    OpenAIRE

    Andersen, Melvin E.; Yang, Raymond S.H.; French, C. Tenley; Chubb, Laura S; Dennison, James E

    2002-01-01

    Signaling motifs (nuclear transcriptional receptors, kinase/phosphatase cascades, G-coupled protein receptors, etc.) have composite dose-response behaviors in relation to concentrations of protein receptors and endogenous signaling molecules. "Molecular circuits" include the biological components and their interactions that comprise the workings of these signaling motifs. Many of these molecular circuits have nonlinear dose-response behaviors for endogenous ligands and for exogenous toxicants...

  9. A Systems Biology Approach in Therapeutic Response Study for Different Dosing Regimens—a Modeling Study of Drug Effects on Tumor Growth using Hybrid Systems

    OpenAIRE

    Xiangfang Li; Lijun Qian; Bittner, Michale L.; Dougherty, Edward R.

    2012-01-01

    Motivated by the frustration of translation of research advances in the molecular and cellular biology of cancer into treatment, this study calls for cross-disciplinary efforts and proposes a methodology of incorporating drug pharmacology information into drug therapeutic response modeling using a computational systems biology approach. The objectives are two fold. The first one is to involve effective mathematical modeling in the drug development stage to incorporate preclinical and clinical...

  10. Biological impact of high-dose and dose-rate radiation exposure

    International Nuclear Information System (INIS)

    Experimental anti-radiation vaccine is a power tool of immune - prophylaxis of the acute radiation disease. Existing principles of treatment of the acute radiation dis ease are based on a correction of developing patho-physiological and biochemical processes within the first days after irradiation. Protection from radiation is built on the general principles of immunology and has two main forms - active and passive immunization. Active immunization by the essential radiation toxins of specific radiation determinant (S.D.R.) group allows significantly reduce the lethality and increase duration of life among animals that are irradiated by lethal and sub-lethal doses of gamma radiation.The radiation toxins of S.D.R. group have antigenic properties that are specific for different forms of acute radiation disease. Development of the specific and active immune reaction after intramuscular injection of radiation toxins allows optimize a manifestation of a clinical picture and stabilize laboratory parameters of the acute radiation syndromes. Passive immunization by the anti-radiation serum or preparations of immune-globulins gives a manifestation of the radioprotection effects immediately after this kind of preparation are injected into organisms of mammals. Providing passive immunization by preparations of anti-radiations immune-globulins is possible in different periods of time after radiation. Providing active immunization by preparations of S.D.R. group is possible only to achieve a prophylaxis goal and form the protection effects that start to work in 18 - 35 days after an injection of biological active S.D.R. substance has been administrated. However active and passive immunizations by essential anti-radiation toxins and preparations of gamma-globulins extracted from a hyper-immune serum of a horse have significantly different medical prescriptions for application and depend on many factors like a type of radiation, a power of radiation, absorption doses, a time of

  11. Biological impact of high-dose and dose-rate radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Maliev, V.; Popov, D. [Russian Academy of Science, Vladicaucas (Russian Federation); Jones, J.; Gonda, S. [NASA -Johnson Space Center, Houston (United States); Prasad, K.; Viliam, C.; Haase, G. [Antioxida nt Research Institute, Premier Micronutrient Corporation, Novato (United States); Kirchin, V. [Moscow State Veterinary and Biotechnology Acade my, Moscow (Russian Federation); Rachael, C. [University Space Research Association, Colorado (United States)

    2006-07-01

    Experimental anti-radiation vaccine is a power tool of immune - prophylaxis of the acute radiation disease. Existing principles of treatment of the acute radiation dis ease are based on a correction of developing patho-physiological and biochemical processes within the first days after irradiation. Protection from radiation is built on the general principles of immunology and has two main forms - active and passive immunization. Active immunization by the essential radiation toxins of specific radiation determinant (S.D.R.) group allows significantly reduce the lethality and increase duration of life among animals that are irradiated by lethal and sub-lethal doses of gamma radiation.The radiation toxins of S.D.R. group have antigenic properties that are specific for different forms of acute radiation disease. Development of the specific and active immune reaction after intramuscular injection of radiation toxins allows optimize a manifestation of a clinical picture and stabilize laboratory parameters of the acute radiation syndromes. Passive immunization by the anti-radiation serum or preparations of immune-globulins gives a manifestation of the radioprotection effects immediately after this kind of preparation are injected into organisms of mammals. Providing passive immunization by preparations of anti-radiations immune-globulins is possible in different periods of time after radiation. Providing active immunization by preparations of S.D.R. group is possible only to achieve a prophylaxis goal and form the protection effects that start to work in 18 - 35 days after an injection of biological active S.D.R. substance has been administrated. However active and passive immunizations by essential anti-radiation toxins and preparations of gamma-globulins extracted from a hyper-immune serum of a horse have significantly different medical prescriptions for application and depend on many factors like a type of radiation, a power of radiation, absorption doses, a time of

  12. Biological indicators for radiation absorbed dose: a review

    International Nuclear Information System (INIS)

    Biological dosimetry has an important role to play in assessing the cumulative radiation exposure of persons working with radiation and also in estimating the true dose received during accidents involving external and internal exposure. Various biodosimetric methods have been tried to estimate radiation dose for the above purposes. Biodosimetric methods include cytogenetic, immunological and mutational assays. Each technique has certain advantages and disadvantages. We present here a review of each technique, the actual method used for detection of dose, the sensitivity of detection and its use in long term studies. (author)

  13. Therapeutic effects of low radiation doses

    International Nuclear Information System (INIS)

    This editorial explores the scientific basis of radiotherapy with doses of < 1 Gy for various non-malignant conditions, in particular dose-effect relationships, risk-benefit considerations and biological mechanisms. A review of the literature, particularly clinical and experimental reports published more than 50 years ago was conducted to clarify the following problems. 1. The dose-response relationships for the therapeutic effects on three groups of conditions: non-malignant skin disease, arthrosis and other painful degenerative joint disorders and anti-inflammatory radiotherapy; 2. risks after radiotherapy and after the best alternative treatments; 3. the biological mechanisms of the different therapeutic effects. Radiotherapy is very effective in all three groups of disease. Few dose-finding studies have been performed, all demonstrating that the optimal doses are considerable lower than the generally recommended doses, yet few of these studies meet the required standard. In different conditions, risk-benefit analysis of radiotherapy versus the best alternative treatment yields very different results: whereas radiotherapy for acute postpartum mastitis may not be justified any more, the risk-benefit ratio of radiotherapy of other conditions and particularly so in dermatology and some anti-inflammatory radiotherapy appears to be more favourable than the risk-benefit ratio of the best alternative treatments. Radiotherapy can be very effective treatment for various non-malignant conditions such as eczema, psoriasis, periarthritis humeroscapularis, epicondylitis, knee arthrosis, hydradenitis, parotitis and panaritium and probably be associated with less acute and long-term side effects than similarly effective other treatments. Randomized clinical studies are required to find the optimal dosage which, at present, may be unnecessarily high. Since no adequate experimental studies have been performed nothing is known about the mechanisms of these therapeutic radiation

  14. Therapeutic effects of low radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Trott, K.R. (Dept. of Radiation Biology, St. Bartholomew' s Medical College, London (United Kingdom))

    1994-01-01

    This editorial explores the scientific basis of radiotherapy with doses of < 1 Gy for various non-malignant conditions, in particular dose-effect relationships, risk-benefit considerations and biological mechanisms. A review of the literature, particularly clinical and experimental reports published more than 50 years ago was conducted to clarify the following problems. 1. The dose-response relationships for the therapeutic effects on three groups of conditions: non-malignant skin disease, arthrosis and other painful degenerative joint disorders and anti-inflammatory radiotherapy; 2. risks after radiotherapy and after the best alternative treatments; 3. the biological mechanisms of the different therapeutic effects. Radiotherapy is very effective in all three groups of disease. Few dose-finding studies have been performed, all demonstrating that the optimal doses are considerable lower than the generally recommended doses. In different conditions, risk-benefit analysis of radiotherapy versus the best alternative treatment yields very different results: whereas radiotherapy for acute postpartum mastitis may not be justified any more, the risk-benefit ratio of radiotherapy of other conditions and particularly so in dermatology and some anti-inflammatory radiotherapy appears to be more favourable than the risk-benefit ratio of the best alternative treatments. Radiotherapy can be very effective treatment for various non-malignant conditions such as eczema, psoriasis, periarthritis humeroscapularis, epicondylitis, knee arthrosis, hydradenitis, parotitis and panaritium and probably be associated with less acute and long-term side effects than similarly effective other treatments. Randomized clinical studies are required to find the optimal dosage which, at present, may be unnecessarily high.

  15. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    It has been emphasised the importance of DNA as the main target for ionizing radiation, that can induce damage by its direct action on this molecule or by an indirect effect mediated by free-radicals generated by water radiolysis. Biological effects of ionizing radiation are influenced not only by the dose but also by the dose-rate and the radiation quality. Radiation induced damage, mainly DNA single and double strand breaks, is detected by molecular sensors which in turn trigger signalling cascades leading to cell cycle arrest to allow DNA repair or programmed cell death (apoptosis). Those effects related with cell death, named deterministic, exhibits a dose-threshold below which they are not observed. Acute radiation syndrome and radiological burns are examples of this kind of effects. Other radiation induced effects, called stochastic, are the consequence of cell transformation and do not exhibit a dose-threshold. This is the case of cancer induction and hereditary effects. The aim of this presentation is briefly describe the main aspects of deterministic and stochastic effects from the point of view of radiobiology and radio pathology. (author)

  16. Biological dosimetry: chromosomal aberration analysis for dose assessment

    International Nuclear Information System (INIS)

    In view of the growing importance of chromosomal aberration analysis as a biological dosimeter, the present report provides a concise summary of the scientific background of the subject and a comprehensive source of information at the technical level. After a review of the basic principles of radiation dosimetry and radiation biology basic information on the biology of lymphocytes, the structure of chromosomes and the classification of chromosomal aberrations are presented. This is followed by a presentation of techniques for collecting blood, storing, transporting, culturing, making chromosomal preparations and scaring of aberrations. The physical and statistical parameters involved in dose assessment are discussed and examples of actual dose assessments taken from the scientific literature are given

  17. Medical exposure and effective dose

    International Nuclear Information System (INIS)

    The frequency of radiological diagnosis in Japan and individual population effective dose are reported. Questionnaire on radiological practice was delivered to selected medical facilities. The total number of X-ray diagnosis performed in 1991 was 180,000,000, being age-dependent in both men and women. The chest was the most common site to be examined. The number of X-ray films per examination was the highest for the stomach. The spread of ultrasound has decreased radiological practice in the obstetric field (approximately one sixth between 1979 and 1986). There was an 8-fold increase in the number of X-ray CT as of 1989 during the past decade. The total number of CT scanning in 1989 reached nearly 14,850,000 (about 16 times as much as that of 1979). The number of stomach X-ray screening increased to 7,800,000 which is twice as much as that in 1975. In the dental field, panoramic method brought about a 7-fold increase between 1974 and 1985. The frequency of nuclear medicine diagnosis has slightly increased, reaching 1,400,000 cases in 1992, and 99mTc was the most common nuclide. The total population effective dose of radiography and fluoroscopy was 179,000 mSv. The highest effective dose was associated with gastric X-ray. The effective dose equivalent per diagnosis was estimated to be 1.02 mSv (the total population/total number of radiological diagnosis). The population effective dose per person was 2.3 mSv (population effective dose equivalent/national population), which was equal to the world average of yearly effective dose equivalent of natural radiation. (S.Y.)

  18. The maximum tolerated dose and biologic effects of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) in combination with irinotecan for patients with refractory solid tumors

    Science.gov (United States)

    Choi, Brian S.; Alberti, Dona B.; Schelman, William R.; Kolesar, Jill M.; Thomas, James P.; Marnocha, Rebecca; Eickhoff, Jens C.; Ivy, S. Percy; Wilding, George; Holen, Kyle D.

    2010-01-01

    Purpose 3-AP is a ribonucleotide reductase inhibitor and has been postulated to act synergistically with other chemotherapeutic agents. This study was conducted to determine the toxicity and antitumor activity of 3-AP with irinotecan. Correlative studies included pharmacokinetics and the effects of ABCB1 and UGT1A1 polymorphisms. Methods The treatment plan consisted of irinotecan on day 1 with 3-AP on days 1-3 of a 21-day cycle. Starting dose was irinotecan 150 mg/m2 and 3-AP 85 mg/m2/d. Polymorphisms of ABCB1 were evaluated by pyrosequencing. Drug concentrations were determined by HPLC. Results Twenty-three patients were enrolled, 10 men and 13 women. Tumor types included 7 patients with pancreatic cancer, 4 with lung cancer, 2 with cholangiocarcinoma, 2 with mesothelioma, 2 with ovarian cancer, and 6 with other malignancies. Two patients experienced dose-limiting toxicity (DLT) at dose level 1, requiring amendment of the dose escalation scheme. Maximal tolerated dose (MTD) was determined to be 3-AP 60 mg/m2/d and irinotecan 200 mg/m2. DLTs consisted of hypoxia, leukopenia, fatigue, infection, thrombocytopenia, dehydration and ALT elevation. One partial response in a patient with refractory non-small cell lung cancer was seen. Genotyping suggests that patients with wild-type ABCB1 have a higher rate of grade 3 or 4 toxicity than those with ABCB1 mutations. Conclusions The MTD for this combination was 3-AP 60 mg/m2/d on days 1-3 and irinotecan 200 mg/m2 on day 1 every 21 days. Antitumor activity in a patient with refractory non-small cell lung cancer was noted at level 1. PMID:20127092

  19. Biological radiation effects and radioprotection standards

    International Nuclear Information System (INIS)

    In this report, after recalling the mode of action of ionizing radiations, the notions of dose, dose equivalents and the values of natural irradiation, the author describes the biological radiation effects. Then he presents the ICRP recommendations and their applications to the french radioprotection system

  20. The origins of radiotherapy: discovery of biological effects of X-rays by Freund in 1897, Kienböck's crucial experiments in 1900, and still it is the dose.

    Science.gov (United States)

    Widder, Joachim

    2014-07-01

    The discovery of X-rays by Wilhelm Conrad Röntgen (1845-1923) was triggered by pursuing an anomalous phenomenon: arousal of fluorescence at a distance from tubes in which cathode rays were elicited, a phenomenon which suggested the existence of a new kind of ray other than cathode rays. The discovery of biological effects of these X-rays by Leopold Freund (1868-1943) was triggered by pursuit of the purportedly useless phenomenon of epilation and dermatitis ensuing from X-ray-diagnostic experiments that others had reported. The crucial experiments performed by Robert Kienböck (1871-1953) entailed the proof that X-ray-dose, not electric phenomena, was the active agent of biological effects ensuing when illuminating the skin using Röntgen tubes. For both the discovery of X-rays and the discovery of their biological effectiveness, priority did not matter, but understanding the physical and medico-biological significance of phenomena that others had ignored as a nuisance. Present discussions about the clinical relevance of improving the dose distribution including protons and other charged particles resemble those around 1900 to a certain degree.

  1. Biological effectiveness of fission neutrons

    International Nuclear Information System (INIS)

    Human peripheral blood lymphocytes were exposed to the uranium fission neutrons with different energy spectra, and the effects of changing pattern of energy spectrum on the relative biological effectiveness (RBE) were studied by analyzing dose-response relationship of chromosome aberrations. When the contribution of contaminated gamma-rays was subtracted, the efficiency of chromosomal response to the neutron dose was found to be refractory to the difference in the energy spectrum while the mean energy ranged from 2 MeV to 27 keV. This chromosomal refractoriness to energy spectrum may be explained by the similarity of energy spectrum for kerma contribution; most of the doses being given by neutrons with energy above 50 keV. Small doses given by short tracks may be less efficient. A comparison of these observations with chromosome aberration frequencies in lymphocytes of A-bomb survivors leads to somewhat higher estimate of neutron dose in Hiroshima than the estimate by the recently revised dosimetry system, DS86. (author)

  2. Modelling the Influence of Shielding on Physical and Biological Organ Doses

    CERN Document Server

    Ballarini, Francesca; Ferrari, Alfredo; Ottolenghi, Andrea; Pelliccioni, Maurizio; Scannicchio, Domenico

    2002-01-01

    Distributions of "physical" and "biological" dose in different organs were calculated by coupling the FLUKA MC transport code with a geometrical human phantom inserted into a shielding box of variable shape, thickness and material. While the expression "physical dose" refers to the amount of deposited energy per unit mass (in Gy), "biological dose" was modelled with "Complex Lesions" (CL), clustered DNA strand breaks calculated in a previous work based on "event-by-event" track-structure simulations. The yields of complex lesions per cell and per unit dose were calculated for different radiation types and energies, and integrated into a version of FLUKA modified for this purpose, allowing us to estimate the effects of mixed fields. As an initial test simulation, the phantom was inserted into an aluminium parallelepiped and was isotropically irradiated with 500 MeV protons. Dose distributions were calculated for different values of the shielding thickness. The results were found to be organ-dependent. In most ...

  3. Biological dose representation for carbon-ion radiotherapy of unconventional fractionation

    CERN Document Server

    Kanematsu, Nobuyuki

    2016-01-01

    In carbon-ion radiotherapy, single-beam delivery each day in alternate directions has been commonly practiced for operational efficiency, taking advantage of the Bragg peak and the relative biological effectiveness (RBE) for uniform dose conformation to a tumor. The treatment plans are usually evaluated with total RBE-weighted dose, which is however deficient in relevance to the biological effect in the linear-quadratic model due to its quadratic-dose term, or the dose-fractionation effect. In this study, we reformulate the extrapolated response dose (ERD), or synonymously BED, which normalizes the dose-fractionation and cell-repopulation effects as well as the RBE of treating radiation, based on inactivation of a single model cell system and a typical treating radiation in carbon-ion RT. The ERD distribution virtually represents the biological effect of the treatment regardless of radiation modality or fractionation scheme. We applied the ERD formulation to simplistic model treatments and to a preclinical su...

  4. Relationship between biologic tissue heterogeneity and absorbed dose distribution in therapy of oncologic patients with cyclotron U-120 fast neutrons

    International Nuclear Information System (INIS)

    Effect of biological tissue heterogeneity on the absorbed dose distribution of U-120 cyclotron fast neutron beam was studied by estimation and experimental method. It was found that adipose and bone tissues significantly changes the pattern of neutron absorbed dose distribution in patient body. Absorbed dose in adipose layer increase by 20% as compared to the dose in soft biological tissue. Approximation method for estimation of the absorbed dose distribution of fast neutrons in heterogeneities was proposed which could be applied in the dosimetric planning of U-120 cyclotron neutron therapy of neoplasms

  5. Biological Effects of Ionizing Radiation

    Science.gov (United States)

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  6. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    Energy Technology Data Exchange (ETDEWEB)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  7. Low dose effects. Adaptive response

    International Nuclear Information System (INIS)

    The purpose of this work was to evaluate if there are disturbancies in adaptive response when lymphocytes of people living on the polluted with radionuclides area after Chernobyl disaster and liquidators suffered from accident have been investigated. The level of lymphocytes with micronuclei have been scored in Moscow donors and people living in Bryansk region with the degree of contamination 15 - 40 Ci/km. The doses that liquidators have been obtained were not higher then 25 cGy. The mean spontaneous level of MN in control people and people from Chernobyl zones does't differ significantly but the individual variability in the mean value between two populations does not differ significantly too. And in this case it seems that persons of exposed areas. Then another important fact in lymphocytes of people living on polluted areas the chronic low dose irradiation does not induce the adaptive response. In Moscow people in most cases (≅ 59 %) the adaptive response is observed and in some cases the demonstration of adaptive response is not significant (≅1%). In Chernobyl population exposed to chronic low level, low dose rate irradiation there are fewer people here with distinct adaptive response (≅38%). And there appear beings with increased radiosensitivity after conditioned dose. Such population with enhanced radiosensitivity have not observed in Moscow. In liquidators the same types of effects have been registered. These results have been obtained on adults. Adaptive response in children 8 - 14 old population living in Moscow and in Chernobyl zone have been investigated too. In this case the spontaneous level of MN is higher in children living in polluted areas, after the 1.0 Gy irradiation the individual variability is very large. Only 5 % of children have distinct is very large. Only 5 % of children have distinct adaptive response, the enhancement of radiosensitivity after conditioned dose is observed. (authors)

  8. The impact of different dose response parameters on biologically optimized IMRT in breast cancer

    Science.gov (United States)

    Costa Ferreira, Brigida; Mavroidis, Panayiotis; Adamus-Górka, Magdalena; Svensson, Roger; Lind, Bengt K.

    2008-05-01

    The full potential of biologically optimized radiation therapy can only be maximized with the prediction of individual patient radiosensitivity prior to treatment. Unfortunately, the available biological parameters, derived from clinical trials, reflect an average radiosensitivity of the examined populations. In the present study, a breast cancer patient of stage I II with positive lymph nodes was chosen in order to analyse the effect of the variation of individual radiosensitivity on the optimal dose distribution. Thus, deviations from the average biological parameters, describing tumour, heart and lung response, were introduced covering the range of patient radiosensitivity reported in the literature. Two treatment configurations of three and seven biologically optimized intensity-modulated beams were employed. The different dose distributions were analysed using biological and physical parameters such as the complication-free tumour control probability (P+), the biologically effective uniform dose (\\bar{\\bar{D}} ), dose volume histograms, mean doses, standard deviations, maximum and minimum doses. In the three-beam plan, the difference in P+ between the optimal dose distribution (when the individual patient radiosensitivity is known) and the reference dose distribution, which is optimal for the average patient biology, ranges up to 13.9% when varying the radiosensitivity of the target volume, up to 0.9% when varying the radiosensitivity of the heart and up to 1.3% when varying the radiosensitivity of the lung. Similarly, in the seven-beam plan, the differences in P+ are up to 13.1% for the target, up to 1.6% for the heart and up to 0.9% for the left lung. When the radiosensitivity of the most important tissues in breast cancer radiation therapy was simultaneously changed, the maximum gain in outcome was as high as 7.7%. The impact of the dose response uncertainties on the treatment outcome was clinically insignificant for the majority of the simulated patients

  9. Effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Several groups of human have been irradiated by accidental or medical exposure, if no gene defect has been associated to these exposures, some radioinduced cancers interesting several organs are observed among persons exposed over 100 to 200 mSv delivered at high dose rate. Numerous steps are now identified between the initial energy deposit in tissue and the aberrations of cell that lead to tumors but the sequence of events and the specific character of some of them are the subject of controversy. The stake of this controversy is the risk assessment. From the hypothesis called linear relationship without threshold is developed an approach that leads to predict cancers at any tiny dose without real scientific foundation. The nature and the intensity of biological effects depend on the quantity of energy absorbed in tissue and the modality of its distribution in space and time. The probability to reach a target (a gene) associated to the cancerating of tissue is directly proportional to the dose without any other threshold than the quantity of energy necessary to the effect, its probability of effect can be a more complex function and depends on the quality of the damage produced as well as the ability of the cell to repair the damage. These two parameters are influenced by the concentration of initial injuries in the target so by the quality of radiation and by the dose rate. The mechanisms of defence explain the low efficiency of radiation as carcinogen and then the linearity of effects in the area of low doses is certainly the least defensible scientific hypothesis for the prediction of the risks. (N.C.)

  10. Effects of Proton Radiation Dose, Dose Rate and Dose Fractionation on Hematopoietic Cells in Mice

    OpenAIRE

    Ware, J.H.; Sanzari, J.; Avery, S.; Sayers, C; Krigsfeld, G.; Nuth, M.; Wan, X. S.; Rusek, A.; Kennedy, A R

    2010-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05–0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals...

  11. Current issues in carcinogenic effect of low-dose radiation

    International Nuclear Information System (INIS)

    A review of publications dealing with study of radiation sources and biological evaluation of increasing doses of people irradiation under occupational and usual living conditions is presented. The existing natural and artifial irradiation sources are considered. It is noted that all types of ionizing radiations are characterized by high carcinogenic efficiency and can induce benign and malignant tumors practically in all organs. Statistically reliable data in experimental and epidemiological investigations were recorded under the effect of large and mean doses. Minor radiation doses not responsible for visible functional and morphological changes in early periods can cause pathological changes in delayed periods. The data on carcinogenic effect of relatively small radiation doses are available

  12. The biological basis for dose limitation to the skin

    International Nuclear Information System (INIS)

    Ionizing radiation may cause deterministic effects and cancer. It has been the policy to base dose limits for radiation protection of the skin on the prevention of deterministic effects (1). In the case of cancer in general, dose limitation for radiation protection is based on limiting excess cancer mortality to low levels of radiation. Since skin cancers are seldom lethal, the general radiation protection standards will protect against an increase in excess mortality from skin cancer. However, with the dose limits selected to prevent deterministic effects, there is a significant probability of an excess incidence of skin cancer occurring as a result of exposure during a working lifetime. The induction of skin cancer by radiation is influenced significantly by subsequent exposure to ultraviolet radiation (UVR) from sunlight. This finding raises not only interesting questions about the mechanisms involved, but also about the differences in risk of skin cancer in different populations. The amount and distribution of melanin in the skin determines the degree of the effect of UVR. This paper discusses the mechanisms of the induction of both deterministic and stochastic effects in skin exposed to radiation in relation to radiation protection. (author)

  13. From body burden to effective dose equivalent

    International Nuclear Information System (INIS)

    The necessary data to calculate the effective committed dose equivalent and the effective dose-equivalent rate from measured body burdens are presented. Both ingestion and inhalation intakes are considered, for single intake as well as for continuous exposure

  14. Biological Effects after Prenatal Irradiation

    International Nuclear Information System (INIS)

    A Task Group of the International Commission on Radiological Protection (ICRP) has finished a report Biological Effects after Prenatal Irradiation (Embryo and Fetus) which has been approved by the Main Commission and Will be Published. Some new important scientific data shall be discussed in this contribution. During the preimplantation period lethality of the mammalian embryo is the dominating radiation effect. However, in mouse strains with genetic predispositions it has been shown that also malformations can be caused. This effect is genetically determined and its mechanisms is different from the induction of malformations during major organogenesis. Radiation exposures during this prenatal period leads ato an increase of genomic instability of cells in the normal appearing fetuses. These radiation effects can be transmitted to the next generation. A renewed analysis of individuals with severe mental retardation after exposures during the 8th to 15th week post conception in Hiroshima and Nagasaki gives evidence that a threshold dose exists for this effect around 300 mGy. This is supported by a number of experimental animal data which have been obtained from cellular and molecular investigations during the brain development. The data show the high radiosensitivity of the developing brain but also the various compensatory mechanisms and the enormous plasticity of these processes. The radiosensitivity varies strongly during the prenatal development. The highest sensitivity is found during the early and mid fetal period which is coinciding with weeks 8-15 post conception in humans. The lowest doses causing persistent damage are in the range of 100 to 300 mGy. For intelligence quotient scores a linear dose response model provides a satisfactory fit. From the experimental data it can be concluded that the fetal stage is most sensitive to the carcinogenic effect in comparison to the other prenatal stages. Such as clear situation cannot be obtained from the

  15. The influence of low doses of ionizing radiation on biological systems

    International Nuclear Information System (INIS)

    Recent results concerning possible beneficial effects of low doses of ionizing radiation on biological systems are summarized. It is also pointed out on the basis of existing evidence that harmful effects on living organisms take place not only in the case of excess but also in the case of deficiency of ionizing radiation. Possibility of using radio-enhanced ultralow luminescence for studying hormesis phenomena is discussed. 24 refs., 4 figs. (author)

  16. Low level radiation: biological effects

    International Nuclear Information System (INIS)

    It is imperative that physicians and scientists using radiations in health care delivery continue to assess the benefits derived, vs. potential risk, to patients and radiation workers being exposed to radiation in its various forms as part of our health delivery system. Insofar as possible we should assure our patients and ourselves that the benefits outweigh the potential hazards involved. Inferences as to the possible biological effects of low level radiation are generally based on extrapolations from those effects observed and measured following acute exposures to considerably higher doses of radiation. Thus, in order to shed light on the question of the possible biological effects of low level radiation, a wide variety of studies have been carried out using cells in culture and various species of plant and animal life. This manuscript makes reference to some of those studies with indications as to how and why the studies were done and the conclusions that might be drawn there from. In addition reference is made to the handling of this information by scientists, by environmentalists, and by the news media. Unfortunately, in many instances the public has been misled by what has been said and/or written. It is hoped that this presentation will provide an understandable and reasonable perspective on the various appropriate uses of radiation in our lives and how such uses do provide significant improvement in our health and in our quality of life

  17. Health effect of low dose/low dose rate radiation

    International Nuclear Information System (INIS)

    The clarified and non-clarified scientific knowledge is discussed to consider the cause of confusion of explanation of the title subject. The low dose is defined roughly lower than 200 mGy and low dose rate, 0.05 mGy/min. The health effect is evaluated from 2 aspects of clinical symptom/radiation hazard protection. In the clinical aspect, the effect is classified in physical (early and late) and genetic ones, and is classified in stochastic (no threshold value, TV) and deterministic (with TV) ones from the radioprotection aspect. Although the absence of TV in the carcinogenic and genetic effects has not been proved, ICRP employs the stochastic standpoint from the safety aspect for radioprotection. The lowest human TV known now is 100 mGy, meaning that human deterministic effect would not be generated below this dose. Genetic deterministic effect can be observable only in animal experiments. These facts suggest that the practical risk of exposure to <100 mGy in human is the carcinogenesis. The relationship between carcinogenic risk in A-bomb survivors and their exposed dose are found fitted to the linear no TV model, but the epidemiologic data, because of restriction of subject number analyzed, do not always mean that the model is applicable even below the dose <100 mGy. This would be one of confusing causes in explanation: no carcinogenic risk at <100 mGy or risk linear to dose even at <100 mGy, neither of which is scientifically conclusive at present. Also mentioned is the scarce risk of cancer in residents living in the high background radiation regions in the world in comparison with that in the A-bomb survivors exposed to the chronic or acute low dose/dose rate. Molecular events are explained for the low-dose radiation-induced DNA damage and its repair, gene mutation and chromosome aberration, hypothesis of carcinogenesis by mutation, and non-targeting effect of radiation (bystander effect and gene instability). Further researches to elucidate the low dose

  18. Effects of low doses; Effet des faibles doses

    Energy Technology Data Exchange (ETDEWEB)

    Le Guen, B. [Electricite de France (EDF-LAM-SCAST), 93 - Saint-Denis (France)

    2001-07-01

    Actually, even though it is comfortable for the risk management, the hypothesis of the dose-effect relationship linearity is not confirmed for any model. In particular, in the area of low dose rate delivered by low let emitters. this hypothesis is debated at the light of recent observations, notably these ones relative to the mechanisms leading to genetic instability and induction eventuality of DNA repair. The problem of strong let emitters is still to solve. (N.C.)

  19. Biological cell irradiation at ultrahigh dose rate employing laser driven protons

    Energy Technology Data Exchange (ETDEWEB)

    Doria, D.; Kakolee, K. F.; Kar, S. [Centre for Plasma Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); School of Physics and Astronomy, University of Birmingham, B15 2TT (United Kingdom); and others

    2012-07-09

    The ultrashort duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queen's University, the effect of proton irradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 10{sup 9}Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4{+-}0.2 at 10% survival is estimated from a comparison with a 225 kVp X-ray source.

  20. Biological cell irradiation at ultrahigh dose rate employing laser driven protons

    Science.gov (United States)

    Doria, D.; Kakolee, K. F.; Kar, S.; Litt, S. K.; Fiorini, F.; Ahmed, H.; Green, S.; Jeynes, JC. G.; Kavanagh, J.; Kirby, D.; Kirkby, K. J.; Lewis, C. L.; Merchant, M. J.; Nersisyan, G.; Prasad, R.; Prise, K. M.; Schettino, G.; Zepf, M.; Borghesi, M.

    2012-07-01

    The ultrashort duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queen's University, the effect of proton irradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 109Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4±0.2 at 10% survival is estimated from a comparison with a 225 kVp X-ray source.

  1. Biological Effects of Ionizing Radiation

    International Nuclear Information System (INIS)

    The aim of this work is to verify the existence of the adaptive response phenomenon induced by low doses of ionizing radiation in living cells.A wild-type yeast Saccharomyces cerevisiae (Baker's yeast) was chosen as the biological target.As a parameter to quantify the sensibility of the target to radiation, the Lethal Dose 50 (LD50 ) was observed. In our experimental condition a value of (60 ± 1) Gy was measured for LD50 with Dose Rate of (0.44 ± 0.03) Gy/min. The method employed to show up the adaptive response phenomenon consisted in exposing the sample to low ''conditioning'' doses, which would initiate these mechanisms. Later the samples with and without conditioning were exposed to higher ''challenging'' doses (such as LD50), and the surviving fractions were compared. In order to maximize the differences, the doses and the time between irradiations were varied. The best results were obtained with both a conditioning dose of (0.44 ± 0.03) Gy and a waiting time of 2 hs until the application of the challenging dose. Following this procedures the 80% of the conditioned samples has survived, after receiving the application of the LD50. The adaptive response phenomenon was also verified for a wide range of challenging doses

  2. Organ Doses and Effective Doses in Pediatric Radiography: Patient-Dose Survey in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Kiljunen, T.; Tietaevaeinen, A.; Parviainen, T.; Viitala, A.; Kortesniemi, M. (Radiation Practices Regulation, Radiation and Nuclear Safety Authority, Helsinki (Finland))

    2009-01-15

    Background: Use of the effective dose in diagnostic radiology permits the radiation exposure of diverse diagnostic procedures to be quantified. Fundamental knowledge of patient doses enhances the implementation of the 'as low as reasonably achievable' (ALARA) principle. Purpose: To provide comparative information on pediatric examination protocols and patient doses in skull, sinus, chest, abdominal, and pelvic radiography examinations. Material and Methods: 24 Finnish hospitals were asked to register pediatric examination data, including patient information and examination parameters and specifications. The total number of examinations in the study was 1916 (1426 chest, 228 sinus, 96 abdominal, 94 skull, and 72 pelvic examinations). Entrance surface dose (ESD) and dose-area products (DAP) were calculated retrospectively or DAP meters were used. Organ doses and effective doses were determined using a Monte Carlo program (PCXMC). Results: There was considerable variation in examination protocols between different hospitals, indicating large variations in patient doses. Mean effective doses of different age groups ranged from 5 muSv to 14 muSv in skull and sinus examinations, from 25 muSv to 483 muSv in abdominal examinations, and from 6 muSv to 48 muSv in chest examinations. Conclusion: In chest and sinus examinations, the amount of data was extensive, allowing national pediatric diagnostic reference levels to be defined. Parameter selection in pediatric examination protocols should be harmonized in order to reduce patient doses and improve optimization

  3. Biological monitoring to determine worker dose in a butadiene processing plant

    Energy Technology Data Exchange (ETDEWEB)

    Bechtold, W.E.; Hayes, R.B. [National Cancer Inst., Bethesda, MD (United States)

    1995-12-01

    Butadiene (BD) is a reactive gas used extensively in the rubber industry and is also found in combustion products. Although BD is genotoxic and acts as an animal carcinogen, the evidence for carcinogenicity in humans is limited. Extrapolation from animal studies on BD carcinogenicity to risk in humans has been controversial because of uncertainties regarding relative biologic exposure and related effects in humans vs. experimental animals. To reduce this uncertainty, a study was designed to characterize exposure to BD at a polymer production facility and to relate this exposure to mutational and cytogenetic effects. Biological monitoring was used to better assess the internal dose of BD received by the workers. Measurement of 1,2-dihydroxy-4-(N-acetylcysteinyl) butane (M1) in urine served as the biomarker in this study. M1 has been shown to correlate with area monitoring in previous studies. Most studies that relate exposure to a toxic chemical with its biological effects rely on exposure concentration as the dose metric; however, exposure concentration may or may not reflect the actual internal dose of the chemical.

  4. A review of in vitro dose-effect relationships

    International Nuclear Information System (INIS)

    One of the principal reasons for investigating the relationship between absorbed dose and the number of chromosome aberrations per cell in lymphocytes taken from samples of human peripheral blood is to obtain a calibration curve for biological dosimetry. Factors affecting the radiation-induced aberration yield in vitro of T lymphocytes are reviewed under the following heads: temperature, oxygen effect, inter-mitotic death, mitotic delay, dose rate background of aberrations in normal humans, mathematical representation. (U.K.)

  5. Higher Biologically Effective Dose of Radiotherapy Is Associated With Improved Outcomes for Locally Advanced Non–Small Cell Lung Carcinoma Treated With Chemoradiation: An Analysis of the Radiation Therapy Oncology Group

    International Nuclear Information System (INIS)

    Purpose: Patients treated with chemoradiotherapy for locally advanced non–small-cell lung carcinoma (LA-NSCLC) were analyzed for local-regional failure (LRF) and overall survival (OS) with respect to radiotherapy dose intensity. Methods and Materials: This study combined data from seven Radiation Therapy Oncology Group (RTOG) trials in which chemoradiotherapy was used for LA-NSCLC: RTOG 88-08 (chemoradiation arm only), 90-15, 91-06, 92-04, 93-09 (nonoperative arm only), 94-10, and 98-01. The radiotherapeutic biologically effective dose (BED) received by each individual patient was calculated, as was the overall treatment time-adjusted BED (tBED) using standard formulae. Heterogeneity testing was done with chi-squared statistics, and weighted pooled hazard ratio estimates were used. Cox and Fine and Gray’s proportional hazard models were used for OS and LRF, respectively, to test the associations between BED and tBED adjusted for other covariates. Results: A total of 1,356 patients were analyzed for BED (1,348 for tBED). The 2-year and 5-year OS rates were 38% and 15%, respectively. The 2-year and 5-year LRF rates were 46% and 52%, respectively. The BED (and tBED) were highly significantly associated with both OS and LRF, with or without adjustment for other covariates on multivariate analysis (p < 0.0001). A 1-Gy BED increase in radiotherapy dose intensity was statistically significantly associated with approximately 4% relative improvement in survival; this is another way of expressing the finding that the pool-adjusted hazard ratio for survival as a function of BED was 0.96. Similarly, a 1-Gy tBED increase in radiotherapy dose intensity was statistically significantly associated with approximately 3% relative improvement in local-regional control; this is another way of expressing the finding that the pool-adjusted hazard ratio as a function of tBED was 0.97. Conclusions: Higher radiotherapy dose intensity is associated with improved local-regional control

  6. Higher Biologically Effective Dose of Radiotherapy Is Associated With Improved Outcomes for Locally Advanced Non-Small Cell Lung Carcinoma Treated With Chemoradiation: An Analysis of the Radiation Therapy Oncology Group

    Energy Technology Data Exchange (ETDEWEB)

    Machtay, Mitchell, E-mail: Mitchell.machtay@uhhospitals.org [University Hospitals/Case Western Reserve University, Cleveland, OH (United States); Bae, Kyounghwa [Radiation Therapy Oncology Group (RTOG) Department of Statistics, Philadelphia, PA (United States); Movsas, Benjamin [Henry Ford Hospital, Detroit, MI (United States); Paulus, Rebecca [Radiation Therapy Oncology Group (RTOG) Department of Statistics, Philadelphia, PA (United States); Gore, Elizabeth M. [Medical College of Wisconsin, Milwaukee, WI (United States); Komaki, Ritsuko [M.D. Anderson Cancer Center, Houston, TX (United States); Albain, Kathy [Loyola University Chicago Stritch School of Medicine, Maywood, IL (United States); Sause, William T. [LDS Hospital, Salt Lake City, UT (United States); Curran, Walter J. [Emory University, Atlanta, GA (United States)

    2012-01-01

    Purpose: Patients treated with chemoradiotherapy for locally advanced non-small-cell lung carcinoma (LA-NSCLC) were analyzed for local-regional failure (LRF) and overall survival (OS) with respect to radiotherapy dose intensity. Methods and Materials: This study combined data from seven Radiation Therapy Oncology Group (RTOG) trials in which chemoradiotherapy was used for LA-NSCLC: RTOG 88-08 (chemoradiation arm only), 90-15, 91-06, 92-04, 93-09 (nonoperative arm only), 94-10, and 98-01. The radiotherapeutic biologically effective dose (BED) received by each individual patient was calculated, as was the overall treatment time-adjusted BED (tBED) using standard formulae. Heterogeneity testing was done with chi-squared statistics, and weighted pooled hazard ratio estimates were used. Cox and Fine and Gray's proportional hazard models were used for OS and LRF, respectively, to test the associations between BED and tBED adjusted for other covariates. Results: A total of 1,356 patients were analyzed for BED (1,348 for tBED). The 2-year and 5-year OS rates were 38% and 15%, respectively. The 2-year and 5-year LRF rates were 46% and 52%, respectively. The BED (and tBED) were highly significantly associated with both OS and LRF, with or without adjustment for other covariates on multivariate analysis (p < 0.0001). A 1-Gy BED increase in radiotherapy dose intensity was statistically significantly associated with approximately 4% relative improvement in survival; this is another way of expressing the finding that the pool-adjusted hazard ratio for survival as a function of BED was 0.96. Similarly, a 1-Gy tBED increase in radiotherapy dose intensity was statistically significantly associated with approximately 3% relative improvement in local-regional control; this is another way of expressing the finding that the pool-adjusted hazard ratio as a function of tBED was 0.97. Conclusions: Higher radiotherapy dose intensity is associated with improved local-regional control

  7. Low Dose Effects: Testing the Assumptions

    International Nuclear Information System (INIS)

    Our work is to investigate the biological responses of cells and animals to low doses and low dose rates of low linear energy transfer radiation and to compare the results to the predictions of the Linear No-Threshold (LNT) hypothesis. These experiments indicate that at low dose, none of the assumptions of the LNT hypothesis were supported by the data, either in cells or in animals. If these results from human and rodent cells, and from other animals, are applicable to humans, the data further indicate that the use of the LNT hypothesis for radiation protection purposes is not conservative but may actually increase the overall risk of cancer

  8. Biological radiation effects

    International Nuclear Information System (INIS)

    This work examines ionizing radiations: what they are, where they come from, their actions and consequences, finally the norms and preventive measures necessary to avoid serious contamination, whether the individual or the population in general is involved. Man has always been exposed to natural irradiation, but owing to the growing use of ionizing radiations both in medicine and in industry, not to mention nuclear tests and their use as an argument of dissuasion, the irradiation of human beings is increasing daily. Radioactive contamination does remain latent, apart from acute cases, but this is where the danger lies since the consequences may not appear until long after the irradiation. Of all biological effects due to the action of radioelements the genetic risk is one of the most important, affecting the entire population and especially the generations to come. The risk of cancer and leukemia induction plays a substantial part also since a large number of people may be concerned, depending on the mode of contamination involved. All these long-term dangers do not of course exclude the various general or local effects to which the individual alone may be exposed and which sometimes constitute a threat to life. As a result the use of ionizing radiations must be limited and should only be involved if no other process can serve instead. The regulations governing radioelements must be stringent and their application strictly supervised for the better protection of man. This protection must be not only individual but also collective since pollution exists in air, water and land passes to plants and animals and finally reaches the last link in the food chain, man

  9. A Bayesian Dose-finding Design for Oncology Clinical Trials of Combinational Biological Agents.

    Science.gov (United States)

    Cai, Chunyan; Yuan, Ying; Ji, Yuan

    2014-01-01

    Treating patients with novel biological agents is becoming a leading trend in oncology. Unlike cytotoxic agents, for which efficacy and toxicity monotonically increase with dose, biological agents may exhibit non-monotonic patterns in their dose-response relationships. Using a trial with two biological agents as an example, we propose a dose-finding design to identify the biologically optimal dose combination (BODC), which is defined as the dose combination of the two agents with the highest efficacy and tolerable toxicity. A change-point model is used to reflect the fact that the dose-toxicity surface of the combinational agents may plateau at higher dose levels, and a flexible logistic model is proposed to accommodate the possible non-monotonic pattern for the dose-efficacy relationship. During the trial, we continuously update the posterior estimates of toxicity and efficacy and assign patients to the most appropriate dose combination. We propose a novel dose-finding algorithm to encourage sufficient exploration of untried dose combinations in the two-dimensional space. Extensive simulation studies show that the proposed design has desirable operating characteristics in identifying the BODC under various patterns of dose-toxicity and dose-efficacy relationships. PMID:24511160

  10. Dose Rate Effects in Linear Bipolar Transistors

    Science.gov (United States)

    Johnston, Allan; Swimm, Randall; Harris, R. D.; Thorbourn, Dennis

    2011-01-01

    Dose rate effects are examined in linear bipolar transistors at high and low dose rates. At high dose rates, approximately 50% of the damage anneals at room temperature, even though these devices exhibit enhanced damage at low dose rate. The unexpected recovery of a significant fraction of the damage after tests at high dose rate requires changes in existing test standards. Tests at low temperature with a one-second radiation pulse width show that damage continues to increase for more than 3000 seconds afterward, consistent with predictions of the CTRW model for oxides with a thickness of 700 nm.

  11. Radiobiological impact of dose calculation algorithms on biologically optimized IMRT lung stereotactic body radiation therapy plans

    OpenAIRE

    Liang, X.; Penagaricano, J.; Zheng, D.; Morrill, S.; Zhang, X; Corry, P.; Griffin, R. J.; Han, E. Y.; Hardee, M.; Ratanatharathom, V.

    2016-01-01

    Background The aim of this study is to evaluate the radiobiological impact of Acuros XB (AXB) vs. Anisotropic Analytic Algorithm (AAA) dose calculation algorithms in combined dose-volume and biological optimized IMRT plans of SBRT treatments for non-small-cell lung cancer (NSCLC) patients. Methods Twenty eight patients with NSCLC previously treated SBRT were re-planned using Varian Eclipse (V11) with combined dose-volume and biological optimization IMRT sliding window technique. The total dos...

  12. Quantum Effects in Biological Systems

    CERN Document Server

    2016-01-01

    Since the last decade the study of quantum mechanical phenomena in biological systems has become a vibrant field of research. Initially sparked by evidence of quantum effects in energy transport that is instrumental for photosynthesis, quantum biology asks the question of how methods and models from quantum theory can help us to understand fundamental mechanisms in living organisms. This approach entails a paradigm change challenging the related disciplines: The successful framework of quantum theory is taken out of its low-temperature, microscopic regimes and applied to hot and dense macroscopic environments, thereby extending the toolbox of biology and biochemistry at the same time. The Quantum Effects in Biological Systems conference is a platform for researchers from biology, chemistry and physics to present and discuss the latest developments in the field of quantum biology. After meetings in Lisbon (2009), Harvard (2010), Ulm (2011), Berkeley (2012), Vienna (2013), Singapore (2014) and Florence (2015),...

  13. Radiation doses and correlated late effects in diagnostic radiology

    International Nuclear Information System (INIS)

    Patient irradiation in diagnostic radiology was estimated from measurements of absorbed doses in different organs, assessment of the energy imparted and retrospective calculations based on literature data. Possible late biological effects, with special aspects on children, were surveyed. The dose to the lens of the eye and the possibility of shielding in carotid angiography was studied as was the absorbed dose to the thyroid gland at cardiac catheterization and angiocardiography in children. Calculations of the mean bone marrow dose and gonad doses were performed in children with chronic skeletal disease revealing large contributions from examinations of organs other than the skeleton. The dose distribution in the breast in mammography was investigated. Comparison of the energy imparted in common roentgen examinations in 1960 and 1975 showed an unexpected low decrease in spite of technical improvements. Reasons for the failing decrease are discussed. The energy imparted to children in urological examinations was reduced significantly due to introduction of high sensitivity screens and omission of dose demanding projections. Contributions to the possible late effects were estimated on the basis of the organ doses assessed. (author)

  14. Application of Benchmark Dose (BMD) in Estimating Biological Exposure Limit (BEL) to Cadmium

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To estimate the biological exposure limit (BEL) using benchmark dose (BMD) based on two sets of data from occupational epidemiology. Methods Cadmium-exposed workers were selected from a cadmium smelting factory and a zinc product factory. Doctors, nurses or shop assistants living in the same area served as a control group. Urinary cadmium (UCd) was used as an exposure biomarker and urinary β2-microgloburin (B2M), N-acetyl-β-D-glucosaminidase (NAG) and albumin (ALB) as effect biomarkers. All urine parameters were adjusted by urinary creatinine. Software of BMDS (Version 1.3.2, EPA.U.S.A) was used to calculate BMD. Results The cut-off point (abnormal values) was determined based on the upper limit of 95% of effect biomarkers in control group. There was a significant dose response relationship between the effect biomarkers (urinary B2M, NAG, and ALB) and exposure biomarker (UCd). BEL value was 5 μg/g creatinine for UB2M as an effect biomarker, consistent with the recommendation of WHO. BEL could be estimated by using the method of BMD. BEL value was 3 μg/g creatinine for UNAG as an effect biomarker. The more sensitive the used biomarker is, the more occupational population will be protected. Conclusion BMD can be used in estimating the biological exposure limit (BEL). UNAG is a sensitive biomarker for estimating BEL after cadmium exposure.

  15. Biological Effectiveness of Antiproton Annihilation

    DEFF Research Database (Denmark)

    Maggiore, C.; Agazaryan, N.; Bassler, N.;

    2004-01-01

    from the annihilation of antiprotons produce an increase in ‘‘biological dose’’ in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct measurement of the biological effects of antiproton annihilation. The background, description, and status...

  16. Biologically adapted radiotherapy and evaluation of non-uniform dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Soevik, Aaste

    2007-07-01

    imaging of tumor physiological parameters include positron emission tomography (PET) of cellular metabolism and hypoxia, dynamic contrast-enhanced magnetic resonance imaging and computerized tomography (DCEMRI and -CT) of perfusion- and/or permeability-related parameters and blood oxygen level dependent (BOLD) MRI. Conventionally, the desired dose distribution to the tumor has been uniform over the tumor volume. This will optimize the tumor control probability (TCP) in the case of homogeneous tumors, but it will generally not be the optimal dose distribution for tumors with spatial variations in radiation sensitivity. Factors influencing the radiation sensitivity of tumors cells are known to be heterogeneously distributed over the tumor volume. It has been hypothesized that, for a heterogeneous tumor, radiation treatment can be viewed as a selection process, whereby treatment selects for the more resistant subpopulations of tumor cells. Consequently, these cells may come to dominate the response of the tumor to treatment. It follows that, for treatment to be effective, it must successfully eradicate the most resistant fraction of cells in the tumor. However, normal tissue toxicity constrains the radiation dose that can be delivered to the tumor. Hence, in order to maximize TCP for a given mean dose to the tumor, the radiation dose could be redistributed according to the spatial distribution of radiosensitivity in the tumor. This strategy for biological treatment optimization is termed dose redistribution, and could potentially improve locoregional tumor control when treatment response is limited by a radioresistant subpopulation of tumor cells (author)

  17. Effective dose from chest tomosynthesis in children

    International Nuclear Information System (INIS)

    Tomosynthesis (digital tomography) is a recently introduced low-dose alternative to CT in the evaluation of the lungs in patients with cystic fibrosis and pulmonary nodules. Previous studies have reported an adult effective dose of 0.12-0.13 mSv for chest tomosynthesis. The aim of this study was to determine the paediatric effective dose from the dose-area-product. During a 3-y period, 38 children with cystic fibrosis and 36 paediatric oncology patients were examined with chest tomosynthesis, totally 169 posteroanterior and 17 anteroposterior examinations (40 boys and 34 girls, mean age 13.7 y, range 7-20 y). Using recently reported paediatric chest tomosynthesis conversion factors (0.23-1.09 mSv Gy cm-2) corrected for sex, age and energy, the mean posteroanterior effective dose calculated was 0.17 mSv; using the proposed simplified conversion factors of 0.6 (8-10 y), 0.4 (11-14 y) and 0.3 mSv Gy cm-2 (15-19 y), the mean posteroanterior effective dose calculated was 0.15 mSv. As the difference in the calculated effective dose was minor, it is recommendable to use the simplified conversion factors. Using the conversion factor for adult chest tomosynthesis (0.26 mSv Gy cm-2), the mean effective dose was 0.11 mSv. Anteroposterior exposures had considerably higher effective dose. By using conversion factors adapted for children, the calculated risks from radiologic procedures will be more accurate. (authors)

  18. Activation of chemical biological defense mechanisms and remission of vital oxidative injury by low dose radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoka, K. [Okayama University Medical School, Okayama (Japan); Nomura, T. [Central Research Institute of Electric Power Industry, Tokyo (Japan); Kojima, S. [Science University of Tokyo, Chiba (Japan)

    2000-05-01

    Excessive active oxygen produced in vivo by various causes is toxic. Accumulation of oxidation injuries due to excessive active causes cell and tissue injuries, inducing various pathologic conditions such as aging and carcinogenesis. On the other hand, there are chemical defense mechanisms in the body that eliminate active oxygen or repair damaged molecules, defending against resultant injury. It is interesting reports that appropriate oxidation stress activate the chemical biological defense mechanisms. In this study, to elucidate these phenomena and its mechanism by low dose radiation, we studied on the below subjects. Activation of chemical biological defense mechanisms by low dose radiation: (1) The effects radiation on lipid peroxide (LPO) levels in the organs, membrane fluidity and the superoxide dismutase (SOD) activity were examined in rats and rabbits. Rats were irradiated with low dose X-ray over their entire bodies, and rabbits inhaled vaporized radon spring water, which primarily emitted {alpha}-ray. The following results were obtained. Unlike high dose X-ray, low dose X-ray and radon inhalation both reduced LPO levels and made the state of the SH-group on membrane-bound proteins closer to that of juvenile animals, although the sensitivity to radioactivity varied depending on the age of the animals and among different organs and tissues. The SOD activity was elevated, suggesting that low dose X-ray and radon both activate the host defensive function. Those changes were particularly marked in the organs related to immune functions of the animals which received low dose X-ray, while they were particularly marked in the brain after radon inhalation. It was also found that those changes continued for longer periods after low dose X-irradiation. (2) Since SOD is an enzyme that mediates the dismutation of O{sub 2}- to H{sub 2}O{sub 2}, the question as to whether the resultant H{sub 2}O{sub 2} is further detoxicated into H{sub 2}O and O{sub 2} or not must

  19. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  20. Abstracts of papers of international scientific conference 'Fundamental and applied aspects of radiobiology: Biological effects of low doses and radioactive contamination of environment (Radioecological and medical biological consequences of the Chernobyl NPP accident)'

    International Nuclear Information System (INIS)

    The results of research works executed in Belarus, as well as in Ukraine and Russia, on various aspects of the Chernobyl problematic are given: radiation medicine and risks, radiobiological effects and their forecasting, radioecology and agricultural radiology, decontamination and radioactive wastes management, socio economic and psychological problems caused by the Chernobyl NPP accident

  1. Dose-rate effect on chromosomal aberrations induced by 60Co γ-rays irradiation in human peripheral blood lymphocyte

    International Nuclear Information System (INIS)

    To estimate exactly the biological dose of persons exposed to different dose rate, human peripheral blood was exposed to 60Co γ-rays in vitro at low, middle and high dose rates respectively and chromosome samples were prepared, then dose-response curves were established according to the dicentrics and ring frequencies. The result showed that the aberration frequency at same dose level increased with dose rate and there was an obvious dose-rate effect. Absorbed dose estimated with low dose-rate dose-response curve was higher markedly than that with high dose-rate dose-response curve. So, considering the effect of dose-rate, approximate dose-rate dose-response curve should be chosen when absorbed dose estimation and the result will be credible. (authors)

  2. 低剂量辐射复合CO、苯和噪声对大鼠的生物效应研究%The combined biological effects of low dose radiation, carbon monoxide, benzene and noise on rats

    Institute of Scientific and Technical Information of China (English)

    陈伟; 何颖; 侯登勇; 钱甜甜; 莫琳芳; 蒋定文; 王庆蓉; 沈先荣

    2012-01-01

    目的 探讨低剂量辐射复合CO、苯和噪声等复合因素对大鼠生物效应的影响.方法 16只雄性SD大鼠随机分成实验组及对照组.实验组采用CO和苯染毒,并进行低剂量辐射和噪声暴露,对照组正常环境饲养.计数大鼠外周血细胞,检测各脏器指数、骨髓DNA含量,利用双向凝胶电泳和基质辅助激光解析飞行时间串联质谱技术分离、鉴定复合因素导致的大鼠血清差异表达蛋白.结果 与对照组相比,实验组大鼠的肝指数、脾指数、胸腺指数显著降低(t=2.732、4.141、3.053,P<0.05),外周血白细胞、血小板和骨髓DNA含量均显著降低(t=2.211、2.668、11.592,P<0.05).获得了血清蛋白凝胶电泳图谱,软件分析结合手工筛选出12个差异表达蛋白质点,鉴定血浆淀粉样蛋白A4(SAA4),Trichoplein角质细丝结合蛋白(TCHP)和α微管蛋白4A(TUBA4A)3个蛋白质点.结论 低剂量辐射复合CO、苯和噪声对大鼠造血系统、免疫系统损伤明显,导致大鼠血清中某些蛋白表达发生变化,发现差异表达的蛋白与复合因素损伤作用密切相关.%Objective To investigate the combined biological effects of low dose radiation,carbon monoxide,benzene and noise on rats.Methods Sixteen male SD rats were randomly divided into experiment group and control group.The experiment group was exposed to carbon monoxide,benzene,low dose radiation and noise daily,the control group was in common environment.Peripheral blood,organ index,and marrow DNA content were detected.Two-dimensional electrophoresis (2-DE) was performed on serum protein analysis.Differential expressed proteins were identified by a matrix assisted laser desorption/ionization time of flight mass spectrometry (MAIDI-TOF-MS).Results Compared to control group,the liver index,spleen index,thymus index,leukocytes,platelets count,and marrow DNA content of the experiment group were decreased significantly (t =2.732,4.141,3.053,2.211,2.668,11.592,P

  3. Dose-related analgesic effects of flupirtine.

    OpenAIRE

    Hummel, T; Friedmann, T; Pauli, E.; Niebch, G.; Borbe, H. O.; Kobal, G

    1991-01-01

    1. Flupirtine is a novel and, in all probability, centrally acting, analgesic. The present investigation was conducted in order to investigate dose-related effects of perorally administered flupirtine in man, with special regard to specifically analgesic actions, employing a model based on pain-related chemosomatosensory evoked potentials and subjective intensity estimates of painful stimuli. 2. Plasma concentrations of flupirtine measured 2 h after dosing linearly increased as a function of ...

  4. The calculation of radial dose from heavy ions: predictions of biological action cross sections

    Science.gov (United States)

    Katz, R.; Cucinotta, F. A.; Zhang, C. X.; Wilson, J. W. (Principal Investigator)

    1996-01-01

    The track structure model of heavy ion cross sections was developed by Katz and co-workers in the 1960s. In this model the action cross section is evaluated by mapping the dose-response of a detector to gamma rays (modeled from biological target theory) onto the radial dose distribution from delta rays about the path of the ion. This is taken to yield the radial distribution of probability for a "hit" (an interaction leading to an observable end-point). Radial integration of the probability yields the cross section. When different response from ions of different Z having the same stopping power is observed this model may be indicated. Since the 1960s there have been several developments in the computation of the radial dose distribution, in the measurement of these distributions, and in new radiobiological data against which to test the model. The earliest model, by Butts and Katz made use of simplified delta ray distribution functions, of simplified electron range-energy relations, and neglected angular distributions. Nevertheless it made possible the calculation of cross sections for the inactivation of enzymes and viruses, and allowed extension to tracks in nuclear emulsions and other detectors and to biological cells. It set the pattern for models of observable effects in the matter through which the ion passed. Here we outline subsequent calculations of radial dose which make use of improved knowledge of the electron emission spectrum, the electron range-energy relation, the angular distribution, and some considerations of molecular excitation, of particular interest both close to the path of the ion and the outer limits of electron penetration. These are applied to the modeling of action cross sections for the inactivation of several strains of E-coli and B. subtilis spores where extensive measurements in the "thin-down" region have been made with heavy ion beams. Such calculations serve to test the radial dose calculations at the outer limit of electron

  5. The calculation of radial dose from heavy ions: predictions of biological action cross sections

    Science.gov (United States)

    Katz, Robert; Cucinotta, Francis A.; Zhang, C. X.

    1996-02-01

    The track structure model of heavy ion cross sections was developed by Katz and co-workers in the 1960s. In this model the action cross section is evaluated by mapping the dose-response of a detector to γ rays (modeled from biological target theory) onto the radial dose distribution from δ rays about the path of the ion. This is taken to yield the radial distribution of probability for a "hit" (an interaction leading to an observable end-point). Radial integration of the probability yields the cross section. When different response from ions of different Z having the same stopping power is observed this model may be indicated. Since the 1960s there have been several developments in the computation of the radial dose distribution, in the measurement of these distributions, and in new radiobiological data against which to test the model. The earliest model, by Butts and Katz, made use of simplified δ ray distribution functions, of simplified electron range-energy relations, and neglected angular distributions. Nevertheless it made possible the calculation of cross sections for the inactivation of enzymes and viruses, and allowed extension to tracks in nuclear emulsions and other detectors and to biological cells. It set the pattern for models of observable effects in the matter through which the ion passed. Here we outline subsequent calculations of radial dose which make use of improved knowledge of the electron emission spectrum, the electron range-energy relation, the angular distribution, and some considerations of molecular excitation, of particular interest both close to the path of the ion and the outer limits of electron penetration. These are applied to the modeling of action cross sections for the inactivation of several strains of E-coli and B. subtilis spores where extensive measurements in the "thin-down" region have been made with heavy ion beams. Such calculations serve to test the radial dose calculations at the outer limit of electron penetration

  6. Biological effects of mutagenic agents

    International Nuclear Information System (INIS)

    There is an increasing body of evidence that mutagenic agents (biological, chemical and physical) play an important role in the etiology of human diseases. Mutations may occur in the germinal as well as in the somatic cells. Mutations of the germ cells may result on infertility or fertilization of damaged cells, the later leading to abortion or birth of a malformed fetus. Somatic-cells mutations may have various biological effects, depending on the period of the human life at which the mutation occurs. If it occurs during the prenatal life, a teratogenic or carcinogenic effect will be observed. If the somatic cell is damaged during the postnatal life, this will lead to neoplastic transformation. Therefore it is extremely important to know the mutagenic, teratogenic and carcinogenic effects of various biological, chemical and physical agents in order to eliminate them from our environment. (author). 13 refs, 4 figs, 1 tab

  7. Radiation-induced stress effects following low dose exposure

    International Nuclear Information System (INIS)

    Complete text of publication follows. Recent advances in our understanding of effects of radiation on living cells suggest that fundamentally different mechanisms are operating at low doses compared with high doses. Also, acute low doses appear to involve different response mechanisms compared with chronic low doses. Both genomic instability and so called 'bystander effects' show many similarities with well known cellular responses to oxidative stress. These predominate following low dose exposures and are maximally expressed at doses as low as 5mGy. At the biological level this is not surprising. Chemical toxicity has been known for many years to show these patterns of dose response. Cell signaling and coordinated stress mechanisms appear to dominate acute low dose exposure to chemicals. Adaptation to chemical exposures is also well documented although mechanisms of adaptive responses are less clear. In the radiation field adaptive responses also become important when low doses are protracted or fractionated. Recent data from our group concerning bystander effects following multiple low dose exposures suggest that adaptive responses can be induced in cells which only receive signals from irradiated neighbours. We have data showing delayed and bystander effects in humans, rodents 3 fish species and in prawns following in vitro and/or in vivo irradiation of haematopoietic tissues and, from the aquatic groups, gill and skin/fin tissue. Bystander signals induced by radiation can be communicated from fish to fish in vivo and are detectable as early as the eyed egg stage, i.e. as soon as tissue starts to develop. Using proteomic approaches we have determined that the bystander and the direct irradiation proteomes are different. The former show significant upregulation of 5 proteins with anti-oxidant, regenerative and restorative functions while the direct radiation proteome has 2 upregulated proteins both involved in proliferation. These data have implications for

  8. Ambient and biological monitoring of cokeoven workers: determinants of the internal dose of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Jongeneelen, F J; van Leeuwen, F E; Oosterink, S; Anzion, R B; van der Loop, F; Bos, R P; van Veen, H G

    1990-07-01

    Polycyclic aromatic hydrocarbons (PAH) were measured in the breathing zone air of 56 battery workers at two cokeovens during three consecutive days. The concentration of total PAH ranged up to 186 micrograms/m3. Preshift and end of shift urine samples were collected to determine 1-hydroxypyrene, a metabolite of pyrene. Control urine samples were available from 44 workers in the shipping yard of a hot rolling mill. The median values of 1-hydroxypyrene in urine of smoking and non-smoking controls were 0.51 and 0.17 mumol/mol creatinine, respectively. Concentrations of 1-hydroxypyrene up to 11.2 mumol/mol were found in the urine of the cokeoven workers. At the start of the three day working period after 32 hours off work, the 1-hydroxypyrene concentrations were four times higher and at the end of the working period 10 times higher compared with control concentrations. Excretion of 1-hydroxypyrene occurred with a half life of 6-35 hours. Both the ambient air monitoring data and the biological monitoring data showed that the topside workers were the heaviest exposed workers. The relation between air monitoring data and biological monitoring data was not strong. Multiple regression analysis was performed to identify determinants of the internal dose. The combination of exposure and smoking amplify each other and the use of a protective airstream helmet decreases the internal dose. An effect of alcohol consumption and the use of medication on the toxicokinetics of pyrene was not found.

  9. Biological radiation effects of Radon in Drosophila

    International Nuclear Information System (INIS)

    In order to contribute to the knowledge on the effects of radon and its decay products, the aim of this investigation is to study the biological effects of radon using Drosophila melanogaster throught the somatic mutation and recombination test (SMART) and the analysis of some adaptative factors exposing larvaes to controlled radon atmosphers, considering that this insect could be used as biological monitor. Using the somatic mutation test a mutagenic effect was observed proportional to radon concentration, into an interval of 1 ± 0.3 to 111 ± 7.4 KBq/m3 equivalent to doses under 0.0106 Gy. The correlation analysis gives a linear (r=0.80) relationship with a positive slope of 0.2217. The same happens when gamma rays are used in the interval of 1 to 20 Gy, given a linear dose-dependent effect (r=0.878) is obtained; nevetheless the slop is smaller (m=0.003) than for radon. Analysing the results of adaptative factors of the nine exposed generations, it was found that probably radon exposition induced dominant lethals during gametogenesis or/and a selection of the more component gamets of the treated individuals in larval state. It was reflected in the significant decrease on fecundity of the generation exposed. Nevertheless the laying eggs had an increase in egg-to-adult viability and the develop velocity was higher than in control for 3 KBq/m3, this suggest that radon concentrations used were able to induce repair mechanisms. These data agree with the Hormesis hypothesis that says: low doses have positive effects on health. It was not possible to obtain a dose-effect relationship except with the develop velocity where it was found a dose-effect inverse proportion. In conclusion, Drosophila melanogaster could be a good system to obtain in vivo damaged induction concentration dependent of radon and its decay products, as well as to study the effects in an exposed population by the analysis of adaptative factors. (Author)

  10. Effects of low doses of ionizing radiation; Effets des faibles doses de rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R. [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2006-07-01

    Several groups of human have been irradiated by accidental or medical exposure, if no gene defect has been associated to these exposures, some radioinduced cancers interesting several organs are observed among persons exposed over 100 to 200 mSv delivered at high dose rate. Numerous steps are now identified between the initial energy deposit in tissue and the aberrations of cell that lead to tumors but the sequence of events and the specific character of some of them are the subject of controversy. The stake of this controversy is the risk assessment. From the hypothesis called linear relationship without threshold is developed an approach that leads to predict cancers at any tiny dose without real scientific foundation. The nature and the intensity of biological effects depend on the quantity of energy absorbed in tissue and the modality of its distribution in space and time. The probability to reach a target (a gene) associated to the cancerating of tissue is directly proportional to the dose without any other threshold than the quantity of energy necessary to the effect, its probability of effect can be a more complex function and depends on the quality of the damage produced as well as the ability of the cell to repair the damage. These two parameters are influenced by the concentration of initial injuries in the target so by the quality of radiation and by the dose rate. The mechanisms of defence explain the low efficiency of radiation as carcinogen and then the linearity of effects in the area of low doses is certainly the least defensible scientific hypothesis for the prediction of the risks. (N.C.)

  11. Biological effectiveness of antiproton annihilation

    CERN Document Server

    Holzscheiter, Michael H.; Bassler, Niels; Beyer, Gerd; De Marco, John J.; Doser, Michael; Ichioka, Toshiyasu; Iwamoto, Keisuke S.; Knudsen, Helge V.; Landua, Rolf; Maggiore, Carl; McBride, William H.; Møller, Søren Pape; Petersen, Jorgen; Smathers, James B.; Skarsgard, Lloyd D.; Solberg, Timothy D.; Uggerhøj, Ulrik I.; Withers, H.Rodney; Vranjes, Sanja; Wong, Michelle; Wouters, Bradly G.

    2004-01-01

    We describe an experiment designed to determine whether or not the densely ionizing particles emanating from the annihilation of antiprotons produce an increase in “biological dose” in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct measurement of the biological effects of antiproton annihilation. The experiment has been approved by the CERN Research Board for running at the CERN Antiproton Decelerator (AD) as AD-4/ACE (Antiproton Cell Experiment) and has begun data taking in June of 2003. The background, description and the current status of the experiment are given.

  12. Biological effectiveness of antiproton annihilation

    DEFF Research Database (Denmark)

    Holzscheiter, M.H.; Agazaryan, N.; Bassler, Niels;

    2004-01-01

    We describe an experiment designed to determine whether or not the densely ionizing particles emanating from the annihilation of antiprotons produce an increase in ‘‘biological dose’’ in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct...... measurement of the biological effects of antiproton annihilation. The experiment has been approved by the CERN Research Board for running at the CERN Antiproton Decelerator (AD) as AD-4/ACE (Antiproton Cell Experiment) and has begun data taking in June of 2003. The background, description and the current...

  13. Major cost savings associated with biologic dose reduction in patients with inflammatory arthritis.

    LENUS (Irish Health Repository)

    Murphy, C L

    2015-01-01

    The purpose of this study was to explore whether patients with Inflammatory Arthritis (IA) (Rheumatoid Arthritis (RA), Psoriatic Arthritis (PsA) or Ankylosing Spondylitis (AS)) would remain in remission following a reduction in biologic dosing frequency and to calculate the cost savings associated with dose reduction. This prospective non-blinded non-randomised study commenced in 2010. Patients with Inflammatory Arthritis being treated with a biologic agent were screened for disease activity. A cohort of those in remission according to standardized disease activity indices (DAS28 < 2.6, BASDAI < 4) was offered a reduction in dosing frequency of two commonly used biologic therapies (etanercept 50 mg once per fortnight instead of weekly, adalimumab 40 mg once per month instead of fortnightly). Patients were assessed for disease activity at 3, 6, 12, 18 and 24 months following reduction in dosing frequency. Cost saving was calculated. 79 patients with inflammatory arthritis in remission were recruited. 57% had rheumatoid arthritis (n = 45), 13% psoriatic arthritis (n = 10) and 30% ankylosing spondylitis (n = 24). 57% (n = 45) were taking etanercept and 43% (n = 34) adalimumab. The percentage of patients in remission at 24 months was 56% (n = 44). This resulted in an actual saving to the state of approximately 600,000 euro over two years. This study demonstrates the reduction in biologic dosing frequency is feasible in Inflammatory Arthritis. There was a considerable cost saving at two years. The potential for major cost savings in biologic usage should be pursued further.

  14. Biological effects of radon in Drosophila

    International Nuclear Information System (INIS)

    The main objective of this investigation, is to study the biological effects of the Radon-222 at low dose in 'Drosophila melanogaster'. It is necessary to mention that these effects will analyze from the genetic point of view for: 1) To evaluate in which form the Radon-222 to low dose it influences in some genetic components of the adaptation in Drosophila, such as: fecundity, viability egg-adult and sex proportion. 2) To evaluate which is the genetic effect that induces the Radon to low dose by means of the SMART technique in Drosophila melanogaster, and this way to try of to identify which is the possible mechanism that causes the genetic damage to somatic level. The carried out investigation was divided in three stages: 1. Tests to the vacuum resistance. 2. Test of somatic mutation, and 3. Determination of the presence of radon daughters on the adult of Drosophila. It is necessary to point out that all the experiments were made by triplicate and in each one of them was placed detectors in preset places. Those obtained results are presented inside the 4 charts included in the present work. (Author)

  15. The radioinduced membranes injuries as biological dose indicators: mechanisms of studies and practical applications

    International Nuclear Information System (INIS)

    After an accidental overexposure, the assessment of the received dose in biological dosimetry is performed by a method based on the effects of irradiation on the DNA molecule. But this technique shows some limitations; therefore we tried to find new bio-sensors of radiation exposure. We have pointed out that membrane is a critical target of ionising radiation after an in vitro and in vivo overexposure. In vitro, these modifications were involved in the radio-induced apoptotic pathway. The measure of membrane fluidity allowed us to obtain an overall view of cellular membrane. Moreover, in vivo, by changing the lipid nutritional status of animals, our results displayed the important role played by membrane lipid composition in radio-induced membrane alterations. Besides, membrane effects were adjusted by the extracellular physiological control, and in particular by the damages on membrane fatty acid pattern. Finally, we have tested the use of membrane fluidity index as a bio-sensor of radiation exposure on in vivo models and blood samples from medical total body irradiated patients. The results achieved on animal models suggested that the membrane fluidity index was a bio-sensor of radiation exposure. Nevertheless, the observations realised on patients highlight that the effect of the first dose fraction of the radiotherapy treatment had some difficulties to be noticed. Indeed, the combined treatment: chemotherapy and radiotherapy disturbed the membrane fluidity index measures. To conclude, whereas this parameter was not a bio-sensor of irradiation exposure usable in biological dosimetry, it may allow us to assess the radio-induced damages and their cellular but also tissue impacts. (author)

  16. Medical irradiation and the use of the ''effective dose equivalent'' concept

    International Nuclear Information System (INIS)

    The aim of this paper is to demonstrate the use of the effective dose for all kinds of medical irradiation. In order to estimate the 'somatic effective dose' the weighting factors recommended by ICRP 26 have been separated into those for somatic effects and for genetic effects. Calculation of the effective dose in diagnostic radiology procedures must consider the various technical parameters which determine the absorbed dose in the various organs, i.e. beam quality, typical entrance dose and the number of films of each view. Knowledge about these parameters is not always well established and therefore the effective dose estimates are very uncertain. The average dose absorbed by various organs in the case of administration of radionuclides to the body depends to a much higher degree on biological parameters than in the case of external irradiation. In contrast to the variability and lack of reliability of biological data, the physical methods for internal dose calculation are quite elaborate. However, these methods have to be extended to involve the target dose from the radioactivity distributed within the remaining parts of the body. An attempt was made to estimate the somatic effective dose for the most common diagnostic X-ray and nuclear medicine procedures. This would make it possible to compare the risk of X-ray and nuclear medicine techniques on a more equitable basis. The collective effective dose from medical irradiation is estimated for various countries on the basis of reported statistical data. (H.K.)

  17. The relationships between radiation doses and their effects

    International Nuclear Information System (INIS)

    Dose-effect relationships have been developed both for the biological effects studied by Radiobiology and the long-term pathological effects (malignant diseases) studied by Radiation Protection. The former approach chiefly considers the primary biological injuries at the cellular level, and the relationship between the dependent variable characteristic of the effect and the dose -an independent variable- has an explanatory meaning. The parameters associated to the independent variable have a biophysical signification and fit into a model of the action of ionizing radiations. In the latter approach, the relationship is pragmatic and the previous parameters are just the results of a curve-fitting procedure realized on experimental or human data. The biophysical models have led to a general formulation associating a linear term to a quadratic term both of them weighted by an exponential term describing cellular killing at the highest doses. To a certain extent the curves obtained for leukemias, bronchopulmonary and breast cancers prove the validity of the pragmatic model

  18. Dose-effect relationship in radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Oberhausen, E.

    1983-01-01

    As criterion for the evaluation of risk in connection with nuclear accidents the diminishing of life expectance is assumed. This would allow a better weighting of the different detriments. The possible dose-effect relations for the different detriments caused by radiation are discussed. Some models for a realistic evaluation of the different radiation detriments are proposed.

  19. Stochastic description of the ligand-receptor interaction of biologically active substances at extremely low doses.

    Science.gov (United States)

    Gurevich, Konstantin G; Agutter, Paul S; Wheatley, Denys N

    2003-04-01

    Signalling molecules can be effective at extraordinarily low concentrations (down to attomolar levels). To handle such cases, probabilistic methods have been used to describe the formal kinetics of action of biologically active substances in these low doses, although it has been necessary to review what is meant by such a term. The mean numbers of transformed/degraded molecules and their dispersions were calculated for the possible range of ligand-receptor binding schemes. We used both analytical equations and numerical simulations to calculate the coefficients of variation (ratio of standard deviation to mean) and demonstrated that the distribution of the coefficient is highly dependent on the reaction scheme. It may, therefore, be used as an additional factor for discriminating between cooperative and noncooperative models of ligand-receptor interaction over extreme ranges of ligand dilution. The relevance to signalling behaviour is discussed.

  20. Stimulating effects of low doses of radiation

    International Nuclear Information System (INIS)

    Different ionizing radiations cause biochemical and biophysical changes in the cells of the genotypes according to the application of the doses applied to different organs of the plants, and the manner of their application (acute, chronic, or acute and chronic). The sensitivity of different genotypes, and their tissues, depends on the stage at which their tissues were irradiated as well as on the environmental conditions under which the irradiation was made. Relatively strong doses usually cause some genetic changes in the somatic and generative cells. Small doses can, in some genotypes, stimulate the growth of some tissues to some extent. The stimulating effect on the growth of seedlings of the M2 generation, developed from acute seed irradiation of some genotypes of wheat, barley, and inbred lines of maize and their hybrids is described here. 3 refs, 5 tabs

  1. Biologically based multistage modeling of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of

  2. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    In this review radiation produced by the nuclear industry is placed into context with other sources of radiation in our world. Human health effects of radiation, derivation of standards and risk estimates are reviewed in this document. The implications of exposing the worker and the general population to radiation generated by nuclear power are assessed. Effects of radiation are also reviewed. Finally, gaps in our knowledge concerning radiation are identified and current research on biological effects, on environmental aspects, and on dosimetry of radiation within AECL and Canada is documented in this report. (author)

  3. E. Biological effects of radiation on man

    International Nuclear Information System (INIS)

    This report firstly summarises information on the biological hazards of radiation and their relation to radiation dose, and hence estimates the biological risks associated with nuclear power production. Secondly, it describes the basis and present status of radiation protection standards in the nuclear power industry

  4. Ameliorative effects of low dose/low dose-rate irradiation on reactive oxygen species-related diseases model mice

    International Nuclear Information System (INIS)

    Living organisms have developed complex biological system which protects themselves against environmental radiation, and irradiation with proper dose, dose-rate and irradiation time can stimulate their biological responses against oxidative stress evoked by the irradiation. Because reactive oxygen species are involved in various human diseases, non-toxic low dose/low dose-rate radiation can be utilized for the amelioration of such diseases. In this study, we used mouse experimental models for fatty liver, nephritis, diabetes, and ageing to elucidate the ameliorative effect of low dose/low dose-rate radiation in relation to endogenous antioxidant activity. Single irradiation at 0.5 Gy ameliorates carbon tetrachloride-induced fatty liver. The irradiation increases hepatic anti-oxidative system involving glutathione and glutathione peroxidase, suggesting that endogenous radical scavenger is essential for the ameliorative effect of low dose radiation on carbon tetrachloride-induced fatty liver. Single irradiation at 0.5 Gy ameliorates ferric nitrilotriacetate-induced nephritis. The irradiation increases catalase and decreases superoxide dismutase in kidney. The result suggests that low dose radiation reduced generation of hydroxide radical generation by reducing cellular hydroperoxide level. Single irradiation at 0.5 Gy at 12 week of age ameliorates incidence of type I diabetes in non-obese diabetic (NOD) mice through the suppression of inflammatory activity of splenocytes, and resultant apoptosis of β-cells in pancreas. The irradiation activities of superoxide dismutase and catalase, which coordinately diminish intracellular reactive oxygen species. Continuous irradiation at 0.70 mGy/hr from 10 week of age elongates life span, and suppresses alopecia in type II diabetesmice. The irradiation improved glucose clearance without affecting insulin-resistance, and increased pancreatic catalase activity. The results suggest that continuous low dose-rate irradiation protect

  5. Testing the individual effective dose hypothesis.

    Science.gov (United States)

    Vu, Hung T; Klaine, Stephen J

    2014-04-01

    The assumption of the individual effective dose is the basis for the probit method used for analyzing dose or concentration-response data. According to this assumption, each individual has a uniquely innate tolerance expressed as the individual effective dose (IED) or the smallest dose that is sufficient to kill the individual. An alternative to IED, stochasticity suggests that individuals do not have uniquely innate tolerance; deaths result from random processes occurring among similar individuals. Although the probit method has been used extensively in toxicology, the underlying assumption has not been tested rigorously. The goal of the present study was to test which assumption, IED or stochasticity, best explained the response of Daphnia magna exposed to multiple pulses of copper sulfate (CuSO4 ) over 24 d. Daphnia magna were exposed to subsequent age-dependent 24-h median lethal concentrations (LC50s) of copper (Cu). Age-dependent 24-h LC50 values and Cu depuration test were determined prior to the 24-d bioassay. The LC50 values were inversely related to organism age. The Cu depuration of D. magna did not depend on age or Cu concentration, and 5 d was sufficient recovery time. Daphnia magna were exposed to 4 24-h Cu exposures, and surviving organisms after each exposure were transferred to Cu-free culture media for recovery before the next exposure. Stochasticity appropriately explained the survival and reproduction response of D. magna exposed to Cu. PMID:24318469

  6. Biological effects of prenatal irradiation

    International Nuclear Information System (INIS)

    After large releases of radionuclides, exposure of the embryo or fetus can take place by external irradiation or uptake of radionuclies. The embryo and fetus are radiosensitive throughout prenatal development. The quality and extent of radiation effects depend on the development stage. During the preimplantation period (one to 10 days postconception, p.c.) a radiation exposure of at least 0.2 Gy can cause the death of the embryo. Malformations are only observed in rare cases when genetic predisposition exist. Macroscopic, anatomical malformations are induced only after irradiation during the major organogenesis (two to eight weeks p.c.). A radiation dose of about 0.2 Gy is a doubling dose for the malformation risks as extrapolated from experiments with rodents. The human embryo may be more radioresistant. During early fetogenesis (8-15 weeks p.c.) a high radiosensitivity exists for the developmental of the brain. Radiation doses of 1.0 Gy cause severe mental retardation in about 40% of the exposed fetuses. It must be taken into account that a radiation exposure during the fetal period can also induce cancer. It is generally assumed that the risk exists at about the same level as for children. (Author)

  7. [Ecological and biological characteristics of Drosophila melanogaster features depending on the dose of electromagnetic radiation of various types].

    Science.gov (United States)

    Babkina, V V; Chernova, G V; Allenova, E A; Endebera, O P; Naumkina, E N

    2013-01-01

    Biological effects of exposure to red light (lambda = 660 +/- 10 nm) on the viability and morphophysiological characteristics of Drosophila melanogaster have been studied. The ability of this physical agent to modify these features is shown. The degree of expression and impact of biological effects depend on the dose, functional and genetic status of the organism. The study of the life expectancy of the exposed to EHF and white light D. melanogaster has revealed that expression of the features depends on the radiation doses, genotype, sex, the nature of the position of wings and lighting conditions. It has been found that the dark mode (24 h-night) is more favorable than the artificial lighting. Individuals with the left wing at the top are more sensitive to the external factors.

  8. Dose and Dose-Rate Effectiveness Factor (DDREF); Der Dosis- und Dosisleistungs-Effektivitaetsfaktor (DDREF)

    Energy Technology Data Exchange (ETDEWEB)

    Breckow, Joachim [Fachhochschule Giessen-Friedberg, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz

    2016-08-01

    For practical radiation protection purposes it is supposed that stochastic radiation effects a determined by a proportional dose relation (LNT). Radiobiological and radiation epidemiological studies indicated that in the low dose range a dependence on dose rates might exist. This would trigger an overestimation of radiation risks based on the LNT model. OCRP had recommended a concept to combine all effects in a single factor DDREF (dose and dose-Rate effectiveness factor). There is still too low information on cellular mechanisms of low dose irradiation including possible repair and other processes. The Strahlenschutzkommission cannot identify a sufficient scientific justification for DDREF and recommends an adaption to the actual state of science.

  9. The effect of radiation dose on mouse skeletal muscle remodeling

    International Nuclear Information System (INIS)

    The purpose of this study was to determine the effect of two clinically relevant radiation doses on the susceptibility of mouse skeletal muscle to remodeling. Alterations in muscle morphology and regulatory signaling were examined in tibialis anterior and gastrocnemius muscles after radiation doses that differed in total biological effective dose (BED). Female C57BL/6 (8-wk) mice were randomly assigned to non-irradiated control, four fractionated doses of 4 Gy (4x4 Gy; BED 37 Gy), or a single 16 Gy dose (16 Gy; BED 100 Gy). Mice were sacrificed 2 weeks after the initial radiation exposure. The 16 Gy, but not 4x4 Gy, decreased total muscle protein and RNA content. Related to muscle regeneration, both 16 Gy and 4x4 Gy increased the incidence of central nuclei containing myofibers, but only 16 Gy increased the extracellular matrix volume. However, only 4x4 Gy increased muscle 4-hydroxynonenal expression. While both 16 Gy and 4x4 Gy decreased IIB myofiber mean cross-sectional area (CSA), only 16 Gy decreased IIA myofiber CSA. 16 Gy increased the incidence of small diameter IIA and IIB myofibers, while 4x4 Gy only increased the incidence of small diameter IIB myofibers. Both treatments decreased the frequency and CSA of low succinate dehydrogenase activity (SDH) fibers. Only 16 Gy increased the incidence of small diameter myofibers having high SDH activity. Neither treatment altered muscle signaling related to protein turnover or oxidative metabolism. Collectively, these results demonstrate that radiation dose differentially affects muscle remodeling, and these effects appear to be related to fiber type and oxidative metabolism

  10. Off-Label Biologic Regimens in Psoriasis: A Systematic Review of Efficacy and Safety of Dose Escalation, Reduction, and Interrupted Biologic Therapy

    OpenAIRE

    Elizabeth A. Brezinski; Armstrong, April W.

    2012-01-01

    OBJECTIVES: While off-label dosing of biologic treatments may be necessary in selected psoriasis patients, no systematic review exists to date that synthesizes the efficacy and safety of these off-label dosing regimens. The aim of this systematic review is to evaluate efficacy and safety of off-label dosing regimens (dose escalation, dose reduction, and interrupted treatment) with etanercept, adalimumab, infliximab, ustekinumab, and alefacept for psoriasis treatment. DATA SOURCES AND STUDY SE...

  11. Effective dose to radon considering people's activities

    International Nuclear Information System (INIS)

    The tidal volume was estimated for evaluating the effective dose due to radon concentration in the atmosphere. In this study regional population was separated to vocation and non-vocation. The occupancy time and the breathing rate for both vocation and non-vocation groups were estimated, and the annual tidal volume for both groups were calculated. Human actions were separated to 18 activities in the process for estimating the breathing rate. It was clear that the breathing rate depended on human activity and that the human activity changed with its age, so the breathing rate varied with age. Finally the effective doses due to radon and radon progeny indoors and outdoors were evaluated. The maximum annual effective dose was estimated to be 1.2 mSv, minimum 0.2 mSv, and mean 0.51 mSv for vocation. For non-vocation, the male maximum value 0.43 mSv was obtained at the 16 age and the minimum 0.12 mSv at the 70 age, whereas female maximum 0.26 mSv was obtained at the 12 age and the minimum 0.11 mSv at the 70 age. In addition in this study objective areas are Aichi, Gifu, and Mie prefectures for vocation and only Aichi prefecture for non-vocation. (author)

  12. Effects of acute low doses of gamma-radiation on erythrocytes membrane.

    Science.gov (United States)

    Mahmoud, Sherif S; El-Sakhawy, Eman; Abdel-Fatah, Eman S; Kelany, Adel M; Rizk, Rizk M

    2011-03-01

    It is believed that any dose of ionizing radiation may damage cells and that the mutated cells could develop into cancer cells. Additionally, results of research performed over the past century on the effects of low doses of ionizing radiation on biological organisms show beneficial health effects, called hormesis. Much less is known about the cellular response to low doses of ionizing radiation, such as those typical for medical diagnostic procedures, normal occupational exposures or cosmic-ray exposures at flight altitudes. Extrapolating from the effects observed at higher doses to predict changes in cells after low-dose exposure is problematic. We examined the biological effects of low doses (0.01-0.3 Gy) of γ-radiation on the membrane characteristics of erythrocytes of albino rats and carried out osmotic fragility tests and Fourier transform infrared spectroscopy (FTIR). Our results indicate that the lowest three doses in the investigated radiation range, i.e., 0.01, 0.025 and 0.05 Gy, resulted in positive effects on the erythrocyte membranes, while a dose of 0.1 Gy appeared to represent the limiting threshold dose of those positive effects. Doses higher than 0.1 Gy were associated with the denaturation of erythrocyte proteins. PMID:20865271

  13. Effect of low-dose ionizing radiation on immune system in mice

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, Y.; Sakai, K. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    2002-07-01

    Low-dose irradiation induces a number of biological functions in mice. Nomura et al. have demonstrated that the low-dose irradiation elevates the level of antioxidants and gives suppressive effects on some chemically induced reactive oxygen species (ROS)-related disease models. We paid attention to this stimulated immunological function by low dose irradiation and started the study that by low dose irradiation and started the study that by low-dose rate irradiation. The enhancement of immune response in mice under various conditions will be discussed.

  14. Linking exposure to environmental pollutants with biological effects

    DEFF Research Database (Denmark)

    Sørensen, Mette; Autrup, Herman; Møller, Peter;

    2003-01-01

    Exposure to ambient air pollution has been associated with cancer. Ambient air contains a complex mixture of toxics, including particulate matter (PM) and benzene. Carcinogenic effects of PM may relate both to the content of PAH and to oxidative DNA damage generated by transition metals, benzene......, metabolism and inflammation. By means of personal monitoring and biomarkers of internal dose, biologically effective dose and susceptibility, it should be possible to characterize individual exposure and identify air pollution sources with relevant biological effects. In a series of studies, individual......, biological effects of air pollutants appear mainly related to oxidative stress via personal exposure and not to urban background levels. Future developments include personal time-resolved monitors for exposure to ultrafine PM and PM(2.5,) use of GPS, as well as genomics and proteomics based biomarkers....

  15. Patient Dosimetry in Arteriography of the Lower Limbs. Part II: Dose Conversion Coefficients, Organ Doses and Effective Dose

    International Nuclear Information System (INIS)

    X ray projection data (see Part I) and GSF phantoms ADAM and EVA were used as input for the GSF Monte Carlo transport code to calculate hitherto unavailable dose conversion coefficients (DCCs) for common projections in arteriography of the lower limbs. These DCCs served to estimate organ equivalent doses and effective dose in a study of 455 patients. The effective dose caused by percutaneous needle puncture arteriography of one leg was on average 1 mSv, by Seldinger catherisation for arteriography of both legs 4 mSv, and by intravenous digital subtraction arteriography (DSA) 5 mSv. For needle puncture and Seldinger arteriography the effective dose attributable to fluoroscopy was about 50% for male and 60% for female patients. The contribution of DSA was between 15 and 35%, that of cut films between 17 to 28%, depending on gender and procedure. The effective dose in intravenous arteriography was mainly due to DSA (91-93%). (author)

  16. Health Effects of Exposure to Low Dose of Radiation

    International Nuclear Information System (INIS)

    Human beings are exposed to natural radiation from external sources include radionuclides in the earth and cosmic radiation, and by internal radiation from radionuclides, mainly uranium and thorium series, incorporated into the body. Living systems have adapted to the natural levels of radiation and radioactivity. But some industrial practices involving natural resources enhance these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Biological effects of ionizing radiation are the outcomes of physical and chemical processes that occur immediately after the exposure, then followed by biological process in the body. These processes will involve successive changes in the molecular, cellular, tissue and whole organism levels. Any dose of radiation, no matter how small, may produce health effects since even a single ionizing event can result in DNA damage. The damage to DNA in the nucleus is considered to be the main initiating event by which radiation causes damage to cells that results in the development of cancer and hereditary disease. It has also been indicated that cytogenetic damage can occur in cells that receive no direct radiation exposure, known as bystander effects. This paper reviews health risks of low dose radiation exposure to human body causing stochastic effects, i.e. cancer induction in somatic cells and hereditary disease in genetic cells. (author)

  17. Biological effects of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, B.G. [SENES Oak Ridge Inc., Oak Ridge, TN (United States); Theodorakis, C.W.; Shugart, L.R. [Oak Ridge National Lab., Oak Ridge, TN (United States). Environmental Sciences Division

    1996-12-31

    Natural populations have always been exposed to background levels of ionizing radiation; however, with the event of the nuclear age, studies about the effects of higher-than-background levels of ionizing radiation on individuals or populations of organisms became important. Originally, concern was focused on survival after large, acute radiation doses, and numerous studies document the somatic and genetic effects of acute ionizing radiation. However, there is a growing realization that chronic long-term exposure to higher-than-background levels of environmental radiation is more likely than is large acute exposure. Less than 10% of the literature on ionizing radiation effects deals with chronic long-term effects, and very few studies involve natural populations. In 1977, mosquito fish, Gambusia affinis, were experimentally introduced into a 0,45 ha, decommissioned, radioactive waste pond where the measured dose at the sediment-water interface was 1,150 rad/year. One year later, the fecundity of the population had not changed significantly. Eighteen years later, studies of the fish showed an inverse correlation between DNA strand breakage and fecundity in the contaminated pond. More recent studies have provided evidence that genetic diversity of the fish has increased in the contaminated site. These fish also have a greater prevalence of certain DNA banding patterns. Individuals displaying these banding patterns have a higher fecundity and lower degree of DNA strand breakage than individuals with less common banding patterns. Gambusia affinis has apparently adapted to the high background radiation, successfully surviving for approximately 50 generations. 31 refs, 5 figs.

  18. Biological studies of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.H.

    1949-11-16

    This paper discusses procedures for research on biological effects of radiation, using mouse tissue: activation trace analysis including methods and proceedures for handling samples before during and after irradiation; methods and procedures for ion exchange study; method of separation and recovery of copper, iron, zinc, cobalt, pubidium and cesium. Also included are studies of trace elements with radioactive isotopes: the distribution of cobalt 60, zinc 65, and copper 64 in the cytoplasm and nuclei of normal mice and those with tumors. 16 figs., 2 tabs.

  19. Dosimetry and biological effects of fast neutrons

    International Nuclear Information System (INIS)

    This thesis contains studies on two types of cellular damage: cell reproductive death and chromosome aberrations induced by irradiation with X rays, gamma rays and fast neutrons of different energies. A prerequisite for the performance of radiobiological experiments is the determination of the absorbed dose with a sufficient degree of accuracy and precision. Basic concepts of energy deposition by ionizing radiation and practical aspects of neutron dosimetry for biomedical purposes are discussed. Information on the relative neutron sensitivity of GM counters and on the effective point of measurement of ionization chambers for dosimetry of neutron and photon beams under free-in-air conditions and inside phantoms which are used to simulate the biological objects is presented. Different methods for neutron dosimetry are compared and the experimental techniques used for the investigations of cell reproductive death and chromosome aberrations induced by ionizing radiation of different qualities are presented. Dose-effect relations for induction cell inactivation and chromsome aberrations in three cultured cell lines for different radiation qualities are presented. (Auth.)

  20. Effect of dose ascertainment errors on observed risk

    International Nuclear Information System (INIS)

    Inaccuracies in dose assignments can lead to misclassification in epidemiological studies. The extent of this misclassification is examined for different error functions, classification intervals, and actual dose distributions. The error function model is one which results in a truncated lognormal distribution of the assigned dose for each actual dose. The error function may vary as the actual dose changes. The effect of misclassification on the conclusions about dose effect relationships is examined for the linear and quadratic dose effect models. 10 references, 9 figures, 8 tables

  1. Effect of column ozone on the variability of biologically effective UV radiation at high southern latitudes.

    Science.gov (United States)

    Sobolev, I

    2000-12-01

    Solar irradiance measurements from Ushuaia (Argentina) and Palmer and McMurdo Stations in Antarctica covering four seasons from mid-1993 through early 1997 have been analyzed and their variations compared with column ozone changes. UV irradiances were weighted for biological effectiveness using a published biological weighting function for dose-dependent inhibition of photosynthesis by phytoplankton from the Weddell Sea. All calculations involved integrated daily UV doses and visible exposures (weighted UV and unweighted visible irradiances, respectively). The results show that daily biologically effective total UV doses underwent large short-term variations at all three sites, with day-to-day increases up to 236% at Ushuaia, 285% at Palmer and 99% at McMurdo. Parallel changes in visible exposure indicated that the total UV changes were preponderantly due to variations in cloudiness. On a 12-month basis, daily biologically effective UV doses correlated strongly with visible exposures (R > or = 0.99). Anticorrelations of total UV with ozone, on the other hand, were poor (R > -0.11). The largest daily biologically effective UV doses, and their day-to-day increases, occurred as part of the normal variability related to cloud cover and were seldom associated with significant ozone depletion. UV dose/visible exposure ratios tended to reflect ozone depletion events somewhat more consistently than UV doses alone. With the Weddell Sea phytoplankton weighting function used in this study, antarctic ozone hole events were seldom readily discernible in the biologically effective UV record. The results suggest that, where the UV sensitivity of organisms was similar to that of the Weddell Sea phytoplankton, seasonal ozone depletion had no appreciable effect on annual primary productivity during the 1993-1997 period. Additional data on the geographical and seasonal variation of biological weighting functions are desirable for more comprehensive assessments of ozone depletion

  2. Effects of Exposure Imprecision on Estimation of the Benchmark Dose

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Esben; Keiding, Niels; Grandjean, Philippe

    Environmental epidemiology; exposure measurement error; effect of prenatal mercury exposure; exposure standards; benchmark dose......Environmental epidemiology; exposure measurement error; effect of prenatal mercury exposure; exposure standards; benchmark dose...

  3. Report of task group on the biological basis for dose limitation in the skin

    International Nuclear Information System (INIS)

    Researchers have drawn attention to what they consider inconsistencies in the manner in which ICRP have considered skin in relation to the effective dose equivalent. They urge that the dose to the skin should be considered routinely for inclusion in the effective dose equivalent in the context of protection of individuals and population groups. They note that even with a weighting factor of only 0.01 that the dose to the skin can be a significant contributor to the effective dose equivalent including skin for practical exposure conditions. In the case of many exposures the risk to the skin can be ignored but exposure in an uniformly contaminated cloud that might occur with 85Kr the dose to the skin could contribute 60% of the stochastic risk if included in the effective dose equivalent with a WT of 0.01. Through the years and even today the same questions about radiation effects in the skin and dosimetry keep being asked. This report collates the available data and current understanding of radiation effects on the skin, and may make it possible to estimate risks more accurately and to improve the approach to characterizing skin irradiations. 294 refs., 29 figs

  4. Biologically motivated tumor-models used for risk estimates at low doses of radiation

    International Nuclear Information System (INIS)

    Biologically motivated tumour models are necessary for estimating the radiation risk at low doses, as epidemiological studies cannot give significant results for sufficiently small risks as a matter of principle. The tumour models combine knowledge about the mechanisms of tumour development with epidemiological data and results of animal experiments. The are usefuls for testing hypothesis on radiation carcinogenesis. In the framework of EU-projects European partners work on the difficult task of quantifying the relevant biological parameters, and the radiation risk at low doses. Various data sets are described well by assuming an initiating and a promoting action of radiation. As an example a new analysis of radon-induced lung tumours in the Colorado plateau miners is discussed. The estimated lifetime relative risk extrapolated to exposures as they hold in indoor situations is substantially lower than estimated in the BEIR VI report. (orig.)

  5. Low doses effects and gamma radiations low dose rates; Les effets des faibles doses et des faibles debits de doses de rayons gamma

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, D. [Institut Curie, CNRS UMR 2027, 75 - Paris (France)

    1999-07-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  6. Alternative Physical Quality Parameters Influences Effectiveness of Lower Doses Ionizing Radiation

    Science.gov (United States)

    Yousif, Abubaker Ali; Bahari, Ismail Bin; Yasir, Muhamad Samudi

    2011-03-01

    It has been proved in many studied that the absorbed dose is not good physical quality parameter to quantify the radiation effects at lower doses. However relative biological effect (RBE) is still used as a major parameter of radiation effectiveness. Whereas linear energy transfer (LET) is inadequate physical parameter, therefore the weaknesses in using RBE-LET system for radiation protection have been investigated. Secondary data of V79 has reanalyzed to help complement the inadequacy current method in assessing cell inactivation at lower doses. Results of analysis show that the effectiveness of densely ionizing radiation is better quantified using mean free path (λ).

  7. Metabolomics identifies a biological response to chronic low-dose natural uranium contamination in urine samples.

    Science.gov (United States)

    Grison, Stéphane; Favé, Gaëlle; Maillot, Matthieu; Manens, Line; Delissen, Olivia; Blanchardon, Eric; Banzet, Nathalie; Defoort, Catherine; Bott, Romain; Dublineau, Isabelle; Aigueperse, Jocelyne; Gourmelon, Patrick; Martin, Jean-Charles; Souidi, Maâmar

    2013-01-01

    Because uranium is a natural element present in the earth's crust, the population may be chronically exposed to low doses of it through drinking water. Additionally, the military and civil uses of uranium can also lead to environmental dispersion that can result in high or low doses of acute or chronic exposure. Recent experimental data suggest this might lead to relatively innocuous biological reactions. The aim of this study was to assess the biological changes in rats caused by ingestion of natural uranium in drinking water with a mean daily intake of 2.7 mg/kg for 9 months and to identify potential biomarkers related to such a contamination. Subsequently, we observed no pathology and standard clinical tests were unable to distinguish between treated and untreated animals. Conversely, LC-MS metabolomics identified urine as an appropriate biofluid for discriminating the experimental groups. Of the 1,376 features detected in urine, the most discriminant were metabolites involved in tryptophan, nicotinate, and nicotinamide metabolic pathways. In particular, N-methylnicotinamide, which was found at a level seven times higher in untreated than in contaminated rats, had the greatest discriminating power. These novel results establish a proof of principle for using metabolomics to address chronic low-dose uranium contamination. They open interesting perspectives for understanding the underlying biological mechanisms and designing a diagnostic test of exposure.

  8. Immunological effects of low dose radiation. Absent or minor effects of Chernobyl fallout in Norway?

    Energy Technology Data Exchange (ETDEWEB)

    Reitan, J.B.; Bergan, T.D.; Strand, P. [Statens Straalevern, Oesteraas (Norway); Melbye, O.J. [Rikshospitalet, Oslo (Norway)

    1998-01-01

    In this pilot study of those Norwegian individuals most heavily exposed to the Chernobyl Fallout, immunological parameters generally stayed within normal limits. However, some parameter, apparently within the assumed normal range did, in fact correlate to the estimated individual dose as assessed by wholebody counting of radiocaesium content. The small possible effects revealed in this study may represent real biological effects, but do not necessarily represent a health detriment. 43 refs., 4 figs., 6 tabs.

  9. Determination of the effective dose equivalent in gynecologic radium therapy

    International Nuclear Information System (INIS)

    In this study, the authors describe how to determine the effective dose equivalent absorbed by occupationally exposed persons during a gynecologic radium therapy. The observed irradiation conditions of the physician and the medical staff are approximated by a standard geometry, for which conversion factors between the measured personal dose, the effective dose equivalent and different organ doses, respectively, are calculated. The results are job-specific conversion factors between dose to a personal dosimeter and the effective dose equivalent for the occupationally exposed persons involved. According to the individual tasks, these factors are between 0.59 and 1.13. (orig.)

  10. Reconstruction of biologically equivalent dose distribution on CT-image from measured physical dose distribution of therapeutic beam in water phantom

    International Nuclear Information System (INIS)

    From the standpoint of quality assurance in radiotherapy, it is very important to compare the dose distributions realized by an irradiation system with the distribution planned by a treatment planning system. To compare the two dose distributions, it is necessary to convert the dose distributions on CT images to distributions in a water phantom or convert the measured dose distributions to distributions on CT images. Especially in heavy-ion radiotherapy, it is reasonable to show the biologically equivalent dose distribution on the CT images. We developed tools for the visualization and comparison of these distributions in order to check the therapeutic beam for each patient at the National Institute of Radiological Sciences (NIRS). To estimate the distribution in a patient, the dose is derived from the measurement by mapping it on a CT-image. Fitting the depth-dose curve to the calculated SOBP curve also gives biologically equivalent dose distributions in the case of a carbon beam. Once calculated, dose distribution information can be easily handled to make a comparison with the planned distribution and display it on a grey-scale CT-image. Quantitative comparisons of dose distributions can be made with anatomical information, which also gives a verification of the irradiation system in a very straightforward way. (author)

  11. Contribution of the modulation of intensity and the optimization to deliver a dose adapted to the biological heterogeneities

    International Nuclear Information System (INIS)

    The recent progress in functional imaging by Positron Emission Tomography (TEP) opens new perspectives in the delineation of target volumes in radiotherapy. The functional data is major; we can intend to adapt the irradiation doses on the tumor activity (TA) and to perform a dose escalation. Our objectives were (i) to characterize the TEP threshold, by quantifying the uncertainties of the target volume contour according to the lesion size and the threshold contour level, (ii) to set up the geometry suited to perform a high-precision irradiation based on the TA, (iii) to estimate the dosimetric impact of this new protocol and (iv) to verify that dosimetry is perfectly distributed. Three original phantoms were specially created to satisfy the constraints met, as well as two virtual phantoms containing 3 dose levels (dose level 3 = TA). Our results showed the importance of the effect threshold-volume on the planning in radiotherapy. To use this irradiation method, the diameter of 1 cm for the third level was able to be reached. A dose escalation of 20 Gy was possible between the second (70 Gy) and the third level (90 Gy). The dosimetric impact estimated on two real cases was suitable - increase of COIN (conformal index) from 0.6 to 0.8 and decrease of NTCP (normal tissue complication probability) of a factor 5 -. In absolute and relative dosimetry, the clinical tolerances were respected. So all the treatment process, going from the diagnosis with the TEP to reveal the TA, to the patient treatment made beforehand on phantom, and going through the ballistic and the dose calculation, was estimated and validated according to our objective to adapt the irradiation to the biological heterogeneities. However such high doses should be carefully estimated before being prescribed clinically and progress is also expected in imaging, because the minimal size which we can irradiate is on the limit of the resolution TEP. (author)

  12. Attributability of Health Effects at Low Radiation Doses

    International Nuclear Information System (INIS)

    the assumption that the relationship between the number of people being exposed and their doses is robust enough to make epidemiological attestability feasible (Strictly, the population would also need to be identical to those populations studied epidemiologically). - Conversely, at the individual level, stochastic health effects at low doses are, at this time of biological understanding, unfeasible to be credited, assigned and imputed and consequently ascribed to a specific exposure situation; - However, if attributability is taken to be a stochastic notion, then a conditional probability of causation can be theoretically assigned (following Bayes' theorem and using available scientific information). This stochastic attributability, nevertheless, will not be attestable. - Therefore, while individual health effects can under certain theoretical assumptions be stochastically attributable, they can not be subjected to an attestable attributability. - As a result, presently individual health effects can not be deterministically attributable to radiation exposure situations delivering low radiation doses and, thus, they may not be deemed attributable in codified legal systems.(authors)

  13. Attributability of health effects at low radiation doses

    International Nuclear Information System (INIS)

    assumption that the relationship between the number of people being exposed and their doses is robust enough to make epidemiological attestability feasible (Strictly, the population would also need to be identical to those populations studied epidemiologically). - Conversely, at the individual level, stochastic health effects at low doses are, at this time of biological understanding, unfeasible to be credited, assigned and imputed and consequently ascribed to a specific exposure situation; - However, if attributability is taken to be a stochastic notion, then a conditional probability of causation can be theoretically assigned (following Bayes' theorem and using available scientific information). This stochastic attributability, nevertheless, will not be attestable. - Therefore, while individual health effects can under certain theoretical assumptions be stochastically attributable, they can not be subjected to an attestable attributability. - As a result, presently individual health effects can not be deterministically attributable to radiation exposure situations delivering low radiation doses and, thus, they may not be deemed attributable in codified legal systems. (author)

  14. Collective effective dose equivalent, population doses and risk estimates from occupational exposures in Japan

    International Nuclear Information System (INIS)

    Collective dose equivalent and population dose from occupational exposures in Japan, 1988 were estimated on the basis of a nationwide survey. The survey was conducted on annual collective dose equivalents by sex, age group and type of radiation work for about 0.21 million workers except for the workers in nuclear power stations. The data on the workers in nuclear power stations were obtained from the official report of the Japan Nuclear Safety Commission. The total number of workers including nuclear power stations was estimated to be about 0.26 million. Radiation works were subdivided as follows: medical works including dental; non-atomic energy industry; research and education; atomic energy industry and nuclear power station. For the determination of effective dose equivalent and population dose, organ or tissue doses were measured with a phantom experiment. The resultant doses were compared with the doses previously calculated using a chord length technique and with data from ICRP publications. The annual collective effective dose equivalent were estimated to be about 21.94 person·Sv for medical workers, 7.73 person·Sv for industrial workers, 0.75 person·Sv for research and educational workers, 2.48 person·Sv for atomic energy industry and 84.4 person ·Sv for workers in nuclear power station. The population doses were calculated to be about 1.07 Sv for genetically significant dose, 0.89 Sv for leukemia significant dose and 0.42 Sv for malignant significant dose. The population risks were estimated using these population doses. (author)

  15. Biological dosimetry of ionizing radiation: Evaluation of the dose with cytogenetic methodologies by the construction of calibration curves

    Science.gov (United States)

    Zafiropoulos, Demetre; Facco, E.; Sarchiapone, Lucia

    2016-09-01

    In case of a radiation accident, it is well known that in the absence of physical dosimetry biological dosimetry based on cytogenetic methods is a unique tool to estimate individual absorbed dose. Moreover, even when physical dosimetry indicates an overexposure, scoring chromosome aberrations (dicentrics and rings) in human peripheral blood lymphocytes (PBLs) at metaphase is presently the most widely used method to confirm dose assessment. The analysis of dicentrics and rings in PBLs after Giemsa staining of metaphase cells is considered the most valid assay for radiation injury. This work shows that applying the fluorescence in situ hybridization (FISH) technique, using telomeric/centromeric peptide nucleic acid (PNA) probes in metaphase chromosomes for radiation dosimetry, could become a fast scoring, reliable and precise method for biological dosimetry after accidental radiation exposures. In both in vitro methods described above, lymphocyte stimulation is needed, and this limits the application in radiation emergency medicine where speed is considered to be a high priority. Using premature chromosome condensation (PCC), irradiated human PBLs (non-stimulated) were fused with mitotic CHO cells, and the yield of excess PCC fragments in Giemsa stained cells was scored. To score dicentrics and rings under PCC conditions, the necessary centromere and telomere detection of the chromosomes was obtained using FISH and specific PNA probes. Of course, a prerequisite for dose assessment in all cases is a dose-effect calibration curve. This work illustrates the various methods used; dose response calibration curves, with 95% confidence limits used to estimate dose uncertainties, have been constructed for conventional metaphase analysis and FISH. We also compare the dose-response curve constructed after scoring of dicentrics and rings using PCC combined with FISH and PNA probes. Also reported are dose response curves showing scored dicentrics and rings per cell, combining

  16. Dose to tissues and effective dose equivalent by inhalation of radon-222, radon-220 and their short-lived daughters

    International Nuclear Information System (INIS)

    In this study the results of a sensitivity analysis are described which shows the influence of relevant physical and biological parameters on the dose from inhaled Rn-222, Rn-220 and their daughters to the basal cell layer of the bronchi, to the pulmonary tissues and to other body tissues. The used models for deposition, retention and dosimetry of inhaled daughters take into regard the variation of following parameters: The AMAD of inhaled radioactive particles; the fraction of unattached daughters atoms; the velocity of ciliary transport; the desorption rate of attached daughter atoms from their particles; the absorption rate to blood; and the depth of the basal cell layer in the bronchial generations. A computer programme was set-up for the calculation of the activity and dose distribution in the lungs as function of these parameters. For the evaluation of the effective dose from inhaled mixtures of Rn-222- and Rn-220-daughters three different alternatives for the weighting of the mean doses to the target tissues in the lungs are described, taking into regard possible differences between the cancerogenic sensitivity of the target cells in the bronchial and alveolar region. On the basis of the results of this sensitivity analysis mean values for the effective dose to adults per unit of inhaled potential α-energy (in Joule) and per unit of potential α-energy (in WLM) of daughters mixtures are derived as function of the unattached fraction of potential α-energy in air and the desorption half-life time of attached daughter atoms in the lungs. In addition the effective dose from inhaled Rn-222 and Rn-220 (+ Po-216) is estimated and compared with the effective dose from inhaled daughters. Finally the consequences for the assessment of intake and exposure limits for workers and for members of the public are outlined. (orig.)

  17. Total ionizing dose effects of domestic SiGe HBTs under different dose rate

    CERN Document Server

    Mo-Han, Liu; Wu-Ying, Ma; Xin, Wang; Qi, Guo; Cheng-Fa, He; Ke, Jiang; Xiao-Long, Li; Ming-Zhu, Xiong

    2015-01-01

    The total ionizing radiation (TID) response of commercial NPN silicon germanium hetero-junction bipolar transistors (SiGe HBTs) produced domestic were investigated under the dose rate of 800mGy(Si)/s and 1.3mGy(Si)/s with Co-60 gamma irradiation source, respectively. The changes of the transistor parameter such as Gummel characteristics, excess base current before and after irradiation are investigated. The results of the experiments shows that for the KT1151, the radiation damage have slightly difference under the different dose rate after the prolonged annealing, shows an time dependent effect(TDE). But for the KT9041, the degradations of low dose rate irradiation are more higher than the high dose rate, demonstrate that there have potential enhanced low dose rate sensitive(ELDRS) effect exist on KT9041. The underlying physical mechanisms of the different dose rates response induced by the gamma ray are detailed discussed.

  18. Total ionizing dose effects of domestic SiGe HBTs under different dose rates

    Science.gov (United States)

    Liu, Mo-Han; Lu, Wu; Ma, Wu-Ying; Wang, Xin; Guo, Qi; He, Cheng-Fa; Jiang, Ke; Li, Xiao-Long; Xun, Ming-Zhu

    2016-03-01

    The total ionizing radiation (TID) response of commercial NPN silicon germanium hetero-junction bipolar transistors (SiGe HBTs) produced domestically are investigated under dose rates of 800 mGy(Si)/s and 1.3 mGy(Si)/s with a Co-60 gamma irradiation source. The changes of transistor parameters such as Gummel characteristics, and excess base current before and after irradiation, are examined. The results of the experiments show that for the KT1151, the radiation damage is slightly different under the different dose rates after prolonged annealing, and shows a time dependent effect (TDE). For the KT9041, however, the degradations of low dose rate irradiation is higher than for the high dose rate, demonstrating that there is a potential enhanced low dose rate sensitivity (ELDRS) effect for the KT9041. The possible underlying physical mechanisms of the different dose rates responses induced by the gamma rays are discussed.

  19. The Inhibitory Effects of Low-Dose Ionizing Radiation in IgE-Mediated Allergic Responses.

    Directory of Open Access Journals (Sweden)

    Hae Mi Joo

    Full Text Available Ionizing radiation has different biological effects according to dose and dose rate. In particular, the biological effect of low-dose radiation is unclear. Low-dose whole-body gamma irradiation activates immune responses in several ways. However, the effects and mechanism of low-dose radiation on allergic responses remain poorly understood. Previously, we reported that low-dose ionizing radiation inhibits mediator release in IgE-mediated RBL-2H3 mast cell activation. In this study, to have any physiological relevance, we investigated whether low-dose radiation inhibits allergic responses in activated human mast cells (HMC-1(5C6 and LAD2 cells, mouse models of passive cutaneous anaphylaxis and the late-phase cutaneous response. High-dose radiation induced cell death, but low-dose ionizing radiation of <0.5 Gy did not induce mast cell death. Low-dose ionizing radiation that did not induce cell death significantly suppressed mediator release from human mast cells (HMC-1(5C6 and LAD2 cells that were activated by antigen-antibody reaction. To determine the inhibitory mechanism of mediator released by low-dose ionizing radiation, we examined the phosphorylation of intracellular signaling molecules such as Lyn, Syk, phospholipase Cγ, and protein kinase C, as well as the intracellular free Ca2+ concentration ([Ca2+]i. The phosphorylation of signaling molecules and [Ca2+]i following stimulation of FcεRI receptors was inhibited by low dose ionizing radiation. In agreement with its in vitro effect, ionizing radiation also significantly inhibited inflammatory cells infiltration, cytokine mRNA expression (TNF-α, IL-4, IL-13, and symptoms of passive cutaneous anaphylaxis reaction and the late-phase cutaneous response in anti-dinitrophenyl IgE-sensitized mice. These results indicate that ionizing radiation inhibits both mast cell-mediated immediate- and delayed-type allergic reactions in vivo and in vitro.

  20. Effects of high dose rate gamma radiation on survival and reproduction of Biomphalaria glabrata

    International Nuclear Information System (INIS)

    Ionizing radiations are known as mutagenic agents, causing lethality and infertility. This characteristic has motivated its application on animal biological control. In this context, the freshwater snail Biomphalaria glabrata can be considered an excellent experimental model to study effects of ionizing radiations on lethality and reproduction. This work was designed to evaluate effects of 60Co gamma radiation at high dose rate (10.04 kGy/h) on B. glabrata. For this purpose, adult snails were selected and exposed to doses ranging from 20 to 100 Gy, with 10 Gy intervals; one group was kept as control. There was not effect of dose rate in the lethality of gamma radiation; the value of 64,3 Gy of LD50 obtained in our study was similar to that obtained by other authors with low dose rates. Nevertheless, our data suggest that there was a dose rate effect in the reproduction. On all dose levels, radiation improved the production of embryos for all exposed individuals. However, viability indexes were below 6% and, even 65 days after irradiation, fertility was not recovered. These results are not in agreement with other studies using low dose rates. Lethality was obtained in all groups irradiated, and the highest doses presented percentiles of dead animals above 50%. The results demonstrated that doses of 20 and 30 Gy were ideal for population control of B. glabrata. Further studies are needed; nevertheless, this research evidenced great potential of high dose rate gamma radiation on B. glabrata reproductive control. (author)

  1. Effects of high dose rate gamma radiation on survival and reproduction of Biomphalaria glabrata

    Energy Technology Data Exchange (ETDEWEB)

    Cantinha, Rebeca S.; Nakano, Eliana [Instituto Butantan, Sao Paulo, SP (Brazil). Lab. de Parasitologia], e-mail: rebecanuclear@gmail.com, e-mail: eliananakano@butantan.gov.br; Borrely, Sueli I. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes], e-mail: sborrely@ipen.br; Amaral, Ademir; Melo, Ana M.M.A. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Estudos em Radioprotecao e Radioecologia (GERAR)], e-mail: amaral@ufpe.br; Silva, Luanna R.S. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Biofisica e Radiobiologia. Lab. de Radiobiologia], e-mail: amdemelo@hotmail.com, e-mail: luannaribeiro_lua@hotmail.com

    2009-07-01

    Ionizing radiations are known as mutagenic agents, causing lethality and infertility. This characteristic has motivated its application on animal biological control. In this context, the freshwater snail Biomphalaria glabrata can be considered an excellent experimental model to study effects of ionizing radiations on lethality and reproduction. This work was designed to evaluate effects of {sup 60}Co gamma radiation at high dose rate (10.04 kGy/h) on B. glabrata. For this purpose, adult snails were selected and exposed to doses ranging from 20 to 100 Gy, with 10 Gy intervals; one group was kept as control. There was not effect of dose rate in the lethality of gamma radiation; the value of 64,3 Gy of LD{sub 50} obtained in our study was similar to that obtained by other authors with low dose rates. Nevertheless, our data suggest that there was a dose rate effect in the reproduction. On all dose levels, radiation improved the production of embryos for all exposed individuals. However, viability indexes were below 6% and, even 65 days after irradiation, fertility was not recovered. These results are not in agreement with other studies using low dose rates. Lethality was obtained in all groups irradiated, and the highest doses presented percentiles of dead animals above 50%. The results demonstrated that doses of 20 and 30 Gy were ideal for population control of B. glabrata. Further studies are needed; nevertheless, this research evidenced great potential of high dose rate gamma radiation on B. glabrata reproductive control. (author)

  2. Topics on study of low dose-effect relationship

    International Nuclear Information System (INIS)

    It is not exceptional but usually observed that a dose-effect relationship in biosystem is not linear. Sometimes, the low dose-effect relationship appears entirely contrary to the expectation from high dose-effect. This is called a 'hormesis' phenomena. A high dose irradiation inflicts certainly an injury on biosystem. No matter how low the dose may be, an irradiation might inflict some injury on biosystem according to Linear Non-Threshold hypothesis(LNT). On the contrary to the expectation, a low dose irradiation stimulates immune system, and promotes cell proliferation. This is called 'radiation hormesis'. The studies of the radiation hormesis are made on from four points of view as follows: (1) radiation adaptive response, (2) revitalization caused by a low dose stimulation, (3) a low dose response unexpected from the LNT hypothesis, (4) negation of the LNT hypothesis. The various empirical proofs of radiation hormesis are introduced in the report. (M . Suetake)

  3. Physical and biological factors determining the effective proton range

    Energy Technology Data Exchange (ETDEWEB)

    Grün, Rebecca [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291 (Germany); Institute of Medical Physics and Radiation Protection, University of Applied Sciences Gießen, Gießen 35390 (Germany); Medical Faculty of Philipps-University Marburg, Marburg 35032 (Germany); Friedrich, Thomas; Krämer, Michael; Scholz, Michael [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291 (Germany); Zink, Klemens [Institute of Medical Physics and Radiation Protection, University of Applied Sciences Gießen, Gießen 35390, Germany and Department of Radiotherapy and Radiation Oncology, University Medical Center Giessen and Marburg, Marburg 35043 (Germany); Durante, Marco [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291, Germany and Department of Condensed Matter Physics, Darmstadt University of Technology, Darmstadt 64289 (Germany); Engenhart-Cabillic, Rita [Medical Faculty of Philipps-University Marburg, Marburg 35032, Germany and Department of Radiotherapy and Radiation Oncology, University Medical Center Giessen and Marburg, Marburg 35043 (Germany)

    2013-11-15

    Purpose: Proton radiotherapy is rapidly becoming a standard treatment option for cancer. However, even though experimental data show an increase of the relative biological effectiveness (RBE) with depth, particularly at the distal end of the treatment field, a generic RBE of 1.1 is currently used in proton radiotherapy. This discrepancy might affect the effective penetration depth of the proton beam and thus the dose to the surrounding tissue and organs at risk. The purpose of this study was thus to analyze the impact of a tissue and dose dependent RBE of protons on the effective range of the proton beam in comparison to the range based on a generic RBE of 1.1.Methods: Factors influencing the biologically effective proton range were systematically analyzed by means of treatment planning studies using the Local Effect Model (LEM IV) and the treatment planning software TRiP98. Special emphasis was put on the comparison of passive and active range modulation techniques.Results: Beam energy, tissue type, and dose level significantly affected the biological extension of the treatment field at the distal edge. Up to 4 mm increased penetration depth as compared to the depth based on a constant RBE of 1.1. The extension of the biologically effective range strongly depends on the initial proton energy used for the most distal layer of the field and correlates with the width of the distal penumbra. Thus, the range extension, in general, was more pronounced for passive as compared to active range modulation systems, whereas the maximum RBE was higher for active systems.Conclusions: The analysis showed that the physical characteristics of the proton beam in terms of the width of the distal penumbra have a great impact on the RBE gradient and thus also the biologically effective penetration depth of the beam.

  4. Mechanism of Action for Anti-radiation Vaccine in Reducing the Biological Impact of High-dose Gamma Irradiation

    Science.gov (United States)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    2007-01-01

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then collected and circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naive animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which the mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  5. Biological dosimetry in radiological protection: dose response curves elaboration for 60Co and 137Cs

    International Nuclear Information System (INIS)

    Ionizing radiation sources for pacific uses are being extensively utilized by modern society and the applications of these sources have raised the probability of the occurrence of accidents. The accidental exposition to radiation creates a necessity of the development of methods to evaluate dose quantity. This data could be obtained by the measurement of damage caused by radiation in the exposed person. The radiation dose can be estimated in exposed persons through physical methods (physical dosimetry) but the biological methods can't be dispensed, and among them, the cytogenetic one that makes use of chromosome aberrations (dicentric and centric ring) formed in peripheral blood lymphocytes (PBL) exposed to ionizing radiation. This method correlates the frequency of radioinduced aberrations with the estimated absorbed dose, as in vitro as in vivo, which is called cytogenetic dosimetry. By the introduction of improved new techniques in culture, in the interpretation of aberrations in the different analysers of slides and by the adoption of different statistical programs to analyse the data, significant differences are observed among laboratories in dose-response curves (calibration curves). The estimation of absorbed dose utilizing other laboratory calibration curves may introduce some uncertainties, so the International Atomic Energy Agency (IAEA) advises that each laboratory elaborates your own dose-response curve for cytogenetic dosimetry. The results were obtained from peripheral blood lymphocytes of the healthy and no-smoking donors exposed to 60Co and 137Cs radiation, with dose rate of 5 cGy.min.-1. Six points of dose were determined 20,50,100,200,300,400 cGy and the control not irradiated. The analysed aberrations were of chromosomic type, dicentric and centric ring. The dose response curve for dicentrics were obtained by frequencies weighted in liner-quadratic mathematic model and the equation resulted were for 60Co: Y = (3 46 +- 2.14)10-4 cGy-1 + (3.45 +- 0

  6. The late biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Full text: The principal objective of the symposium was to review the current status of understanding of the late biological effects of ionizing radiation from external and internal sources. A second objective was to critically evaluate information obtained from epidemiological studies of human population groups as well as from animal experimentation in order to provide a solid scientific basis upon which problems of current concern, such as radiation protection standards and risk-benefit analysis, could be deliberated. Eighty-one papers were presented in 10 sessions which covered epidemiological studies of late effects in human populations exposed to internal and/or external ionizing radiation; quantitative and qualitative data from animal experimentation of late effects; methodological problems and modern approaches; factors influencing susceptibility or expression of late radiation injury; comparative evaluation of late effects induced by radiation and other environmental pollutants, and problems of risk assessment. In addition, there were two evening sessions for free discussion of problems of interpreting animal data, and of the epidemiological studies of occupationally exposed populations. Reports on atomic bomb survivors showed that these epidemiological studies are providing dependable data, such as dose-related excess infant mortality. The reports also revealed the need for consensus in the method employed in the interpretation of data. That was also the case with studies on occupationally exposed populations at Hanford plant, where disparate results were presented on radiation-induced neoplasia among radiation workers. These data are, however, considered not so significant in relative terms when compared to risks involved in other industries. It was recommended that national registry systems for the dosimetry and medical records of radiation workers be established and co-ordinated internationally in order to facilitate reliable epidemiological

  7. Development of Two-Dosemeter Algorithm for Better Estimation of Effective Dose Equivalent and Effective Dose

    International Nuclear Information System (INIS)

    An optimal algorithm, which suitably combines two dosemeter readings, one dosemeter on the chest and the other on the back, for better estimation of effective dose equivalent (HE) and effective dose (E), was developed by utilising hundreds of broad parallel photon beam irradiation geometries. The developed algorithm, weighting front (chest) and back dosemeter readings by 0.58 and 0.42, respectively, was found to be superior to other currently available algorithms, neither underestimating HE or E by more than 14%, nor overestimating by more than a few tens of a per cent for a broad range of frontal and dorsal incident beams. Like other algorithms, however, this algorithm tends to overestimate HE and E significantly for the lateral, overhead and underfoot beam directions. This study also suggests that this overestimation problem significantly decreases when one uses typical commercial dosemeters instead of isotropic-responding dosemeters. (author)

  8. Dose Effects of Ion Beam Exposure on Deinococcus Radiodurans: Survival and Dose Response

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To explore the survival and dose response of organism for different radiation sources is of great importance in the research of radiobiology. In this study, the survival-dose response of Deinococcus radiodurans (E.coli, as the control) for ultra-violet (UV), γ-rays radiation and ion beam exposure was investigated. The shoulder type of survival curves were found for both UV and γ-ray ionizing radiation, but the saddle type of survival curves were shown for H+ 、 N+( 20keV and 30keV) and Ar+ beam exposure. This dose effect of the survival initially decreased withthe increase in dose and then increased in the high dose range and finally decreased again in thehigher dose range. Our experimental results suggest that D. radiodurans, which is considerablyradio-resistant to UV and x-ray and γ-ray ionizing radiation, do not resist ion beam exposure.

  9. Dose Effects of Ion Beam Exposure on Deinococcus Radiodurans: Survival and Dose Response

    Science.gov (United States)

    Song, Dao-jun; Wu, Li-fang; Wu, Li-jun; Yu, Zeng-liang

    2001-02-01

    To explore the survival and dose response of organism for different radiation sources is of great importance in the research of radiobiology. In this study, the survival-dose response of Deinococcus radiodurans (E.coli, as the control) for ultra-violet (UV), γ-rays radiation and ion beam exposure was investigated. The shoulder type of survival curves were found for both UV and γ-ray ionizing radiation, but the saddle type of survival curves were shown for H+, N+(20keV and 30keV) and Ar+ beam exposure. This dose effect of the survival initially decreased with the increase in dose and then increased in the high dose range and finally decreased again in the higher dose range. Our experimental results suggest that D. radiodurans, which is considerably radio-resistant to UV and x-ray and γ-ray ionizing radiation, do not resist ion beam exposure.

  10. Dose reconstruction in deforming lung anatomy: Dose grid size effects and clinical implications

    International Nuclear Information System (INIS)

    In this study we investigated the accumulation of dose to a deforming anatomy (such as lung) based on voxel tracking and by using time weighting factors derived from a breathing probability distribution function (p.d.f.). A mutual information registration scheme (using thin-plate spline warping) provided a transformation that allows the tracking of points between exhale and inhale treatment planning datasets (and/or intermediate state scans). The dose distributions were computed at the same resolution on each dataset using the Dose Planning Method (DPM) Monte Carlo code. Two accumulation/interpolation approaches were assessed. The first maps exhale dose grid points onto the inhale scan, estimates the doses at the 'tracked' locations by trilinear interpolation and scores the accumulated doses (via the p.d.f.) on the original exhale data set. In the second approach, the 'volume' associated with each exhale dose grid point (exhale dose voxel) is first subdivided into octants, the center of each octant is mapped to locations on the inhale dose grid and doses are estimated by trilinear interpolation. The octant doses are then averaged to form the inhale voxel dose and scored at the original exhale dose grid point location. Differences between the interpolation schemes are voxel size and tissue density dependent, but in general appear primarily only in regions with steep dose gradients (e.g., penumbra). Their magnitude (small regions of few percent differences) is less than the alterations in dose due to positional and shape changes from breathing in the first place. Thus, for sufficiently small dose grid point spacing, and relative to organ motion and deformation, differences due solely to the interpolation are unlikely to result in clinically significant differences to volume-based evaluation metrics such as mean lung dose (MLD) and tumor equivalent uniform dose (gEUD). The overall effects of deformation vary among patients. They depend on the tumor location, field

  11. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework.

    Science.gov (United States)

    Calabrese, Edward J; Bachmann, Kenneth A; Bailer, A John; Bolger, P Michael; Borak, Jonathan; Cai, Lu; Cedergreen, Nina; Cherian, M George; Chiueh, Chuang C; Clarkson, Thomas W; Cook, Ralph R; Diamond, David M; Doolittle, David J; Dorato, Michael A; Duke, Stephen O; Feinendegen, Ludwig; Gardner, Donald E; Hart, Ronald W; Hastings, Kenneth L; Hayes, A Wallace; Hoffmann, George R; Ives, John A; Jaworowski, Zbigniew; Johnson, Thomas E; Jonas, Wayne B; Kaminski, Norbert E; Keller, John G; Klaunig, James E; Knudsen, Thomas B; Kozumbo, Walter J; Lettieri, Teresa; Liu, Shu-Zheng; Maisseu, Andre; Maynard, Kenneth I; Masoro, Edward J; McClellan, Roger O; Mehendale, Harihara M; Mothersill, Carmel; Newlin, David B; Nigg, Herbert N; Oehme, Frederick W; Phalen, Robert F; Philbert, Martin A; Rattan, Suresh I S; Riviere, Jim E; Rodricks, Joseph; Sapolsky, Robert M; Scott, Bobby R; Seymour, Colin; Sinclair, David A; Smith-Sonneborn, Joan; Snow, Elizabeth T; Spear, Linda; Stevenson, Donald E; Thomas, Yolene; Tubiana, Maurice; Williams, Gary M; Mattson, Mark P

    2007-07-01

    Many biological subdisciplines that regularly assess dose-response relationships have identified an evolutionarily conserved process in which a low dose of a stressful stimulus activates an adaptive response that increases the resistance of the cell or organism to a moderate to severe level of stress. Due to a lack of frequent interaction among scientists in these many areas, there has emerged a broad range of terms that describe such dose-response relationships. This situation has become problematic because the different terms describe a family of similar biological responses (e.g., adaptive response, preconditioning, hormesis), adversely affecting interdisciplinary communication, and possibly even obscuring generalizable features and central biological concepts. With support from scientists in a broad range of disciplines, this article offers a set of recommendations we believe can achieve greater conceptual harmony in dose-response terminology, as well as better understanding and communication across the broad spectrum of biological disciplines.

  12. Issues in Low Dose Radiation Biology: The Controversy Continues. A Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, William F.; Bair, William J.

    2013-05-01

    Both natural and man-made sources of ionizing radiation contribute to human exposure and consequently pose a risk to human health. Much of this is unavoidable, e.g., natural background radiation, and as the use of radiation in modern medicine and industry increases so does the potential health risk. This perspective reflects the author’s view of current issues in low dose radiation biology research, highlights some of the controversies therein, and suggests areas of future research to address these issues. The views expressed here are the authors own and do not represent any institution, organization or funding body.

  13. Dose estimation by biological methods; Estimacion de dosis por metodos biologicos

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C.; David C, L.; Serment G, J.; Brena V, M. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The human being is exposed to strong artificial radiation sources, mainly of two forms: the first is referred to the occupationally exposed personnel (POE) and the second, to the persons that require radiological treatment. A third form less common is by accidents. In all these conditions it is very important to estimate the absorbed dose. The classical biological dosimetry is based in the dicentric analysis. The present work is part of researches to the process to validate the In situ Fluorescent hybridation (FISH) technique which allows to analyse the aberrations on the chromosomes. (Author)

  14. On the biological effects of cosmic rays: Epidemiological study

    Science.gov (United States)

    Conforto, A. M.; Signorini, C.

    1991-04-01

    The determination of the biological effects of cosmic rays and other natural radiation to resolve the more general problem of the consequences on human health, from the basis of ionizing radiation, is addressed. Difficulties relating to an epmidemiological study are outlined and results are discussed particularly concerning their inconsistency. In particular, high and low doses are discussed, referencing the Hiroshima bomb, the HBRA (High Background Radiation Area), and the CA (Control Area). High and low regions are discussed for the case of cancer.

  15. Dose rate effect in food irradiation

    International Nuclear Information System (INIS)

    It has been suggested that the minor losses of nutrients associated with radiation processing may be further reduced by irradiating foods at the high dose rates generally associated with electron beams from accelerators, rather than at the low dose rates typical of gamma irradiation (e.g. 60Co). This review briefly examines available comparative data on gamma and electron irradiation of foods to evaluate these suggestions. (137 refs., 27 tabs., 11 figs.)

  16. Biological effects of high LET radiations

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masami [Nagasaki Univ. (Japan). Faculty of Pharmaceutical Sciences

    1997-03-01

    Biological effect of radiation is different by a kind of it greatly. Heavy ions were generally more effective in cell inactivation, chromosome aberration induction, mutation induction and neoplastic cell transformation induction than {gamma}-rays in SHE cells. (author)

  17. Biological dose estimation of partial body exposures in cervix cancer patients

    International Nuclear Information System (INIS)

    At present, unstable chromosome aberrations analysis in peripheral blood lymphocytes is the most sensitive method to provide a biological estimation of the dose in accidental radiation over exposures. The assessment of the dose is particularly reliable in cases of acute, uniform, whole-body exposures or after irradiation of large parts of the body. However, the scenarios of most radiation accidents result in partial-body exposures or non-uniform dose distribution, leading to a differential exposure of lymphocytes in the body. Inhomogeneity produces a yield of dicentrics, which does not conform to a Poisson distribution, but is generally over dispersed. This arises because those lymphocytes in tissues outside the radiation field will not be damaged. Most of the lymphocytes (80 %) belong to the 'redistributional pool' (lymphatic tissues and other organs) and made recirculate into peripheral blood producing a mixed irradiated and unirradiated population of lymphocytes. So-called over dispersion, with a variance greater than the mean, can be taken as an indication of non-uniform exposure. The main factors operating in vivo partial-body irradiation may be the location and size of the irradiation field and, at high doses, various cellular reactions such as reduced blast transformation, mitotic delay or interphase death may contribute. For partial-body exposures, mathematical-statistical analysis of chromosome aberration data can be performed to derive a dose estimate for the irradiated fraction of the body, been more realistic than to quote a mean equivalent uniform whole body dose. The 'Contaminated Poisson' method of Dolphin or the Qdr method of Sasaki, both based on similar principles, can achieve this. Contaminated Poisson considers the over dispersed distribution of dicentrics among all the cells scored. The observed distribution is considered to be the sum of a Poisson distribution, which represents the irradiated fraction of the body, and the remaining unexposed

  18. From Chernobyl to Fukushima: the effect of low doses

    International Nuclear Information System (INIS)

    This Power Point presentation describes the Fukushima's reactors, recalls some data about the earthquake and tsunami, and indicates their consequences for the operation of the power station (notably the loss of cooling means). It identifies some design errors for the Chernobyl's and Fukushima's power stations, outlines differences between these two cases. It gives assessment of doses receives by external irradiation around Fukushima, of the dose rate evolution, of the sea contamination. It gives some data about the Chernobyl accident (radioactivity evolution). After some data about health consequences of Chernobyl, health risks and more particularly biological risks associated to low doses are described. Protection measures are evoked, as well as psycho-social impacts

  19. Effects of low doses: Proof and inferences; Effet des faibles doses: preuves et inferences

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, Ph. [Ineris Direction des risques chroniques, 60 - Verneuil-en-Halatte (France)

    2010-07-15

    It is essential to discuss the plausibility of 'low-dose' effects from environmental exposures. The question, nonetheless, is wrongly labelled, for it is not the magnitude of the dose that matters, but rather the effect. The question thus concerns 'doses with low effects'. More precisely, because the low effects on large populations are not that small, even when epidemiological tools fail to detect them, it would be more accurate to talk about 'doses with undetectable or barely detectable effects'. Hereafter, we describe this 'low-effect dose' concept from the viewpoint of toxicology and epidemiology and discuss the fragile boundary line for these low-effect doses. Next, we review the different types of inference from observed situations (i.e., with high effects) to situations relevant to public health, to characterize the level of confidence to be accorded them. The first type is extrapolation - from higher to lower doses or from higher to lower dose rates. The second type is transposition - from humans to other humans or from animals to humans. The third type can be called 'analogy' as in 'read across' approaches, where QSAR (Quantitative Structure Activity Relationship) methodology can be used. These three types of inferences can be based on an estimate of the 'distance' between observed and predicted areas, but can also rely on knowledge and theories of the relevant mechanisms. The new tools of predictive toxicology are helpful both in deriving quantitative estimates and grounding inferences on sound bases. (author)

  20. Dose and dose rate effects on coherent-to-incoherent transition of precipitates upon irradiation

    Institute of Scientific and Technical Information of China (English)

    LI Zhengchao

    2006-01-01

    A typical precipitation hardened alloy, Cu-Co dilute alloy was selected to study the precipitation behavior and irradiation effect on precipitates. It is found that the principal effect of ion irradiation on the coherent precipitates is loss of coherency, and TEM cross-section observations show that the fraction of the incoherent precipitates is dependent on dose but not on dose rate during heavy ion irradiation.

  1. Evaluation of effective dose equivalent from environmental gamma rays

    International Nuclear Information System (INIS)

    Organ doses and effective dose equivalents for environmental gamma rays were calculated using human phantoms and Monte Carlo methods accounting rigorously the environmental gamma ray fields. It was suggested that body weight is the dominant factor to determine organ doses. The weight function expressing organ doses was introduced. Using this function, the variation in organ doses due to several physical factors were investigated. A detector having gamma-ray response similar to that of human bodies has been developed using a NaI(Tl) scintillator. (author)

  2. Hafnium oxide nanoparticles: toward an in vitro predictive biological effect?

    International Nuclear Information System (INIS)

    Hafnium oxide, NBTXR3 nanoparticles were designed for high dose energy deposition within cancer cells when exposed to ionizing radiation. The purpose of this study was to assess the possibility of predicting in vitro the biological effect of NBTXR3 nanoparticles when exposed to ionizing radiation. Cellular uptake of NBTXR3 nanoparticles was assessed in a panel of human cancer cell lines (radioresistant and radiosensitive) by transmission electron microscopy. The radioenhancement of NBTXR3 nanoparticles was measured by the clonogenic survival assay. NBTXR3 nanoparticles were taken up by cells in a concentration dependent manner, forming clusters in the cytoplasm. Differential nanoparticle uptake was observed between epithelial and mesenchymal or glioblastoma cell lines. The dose enhancement factor increased with increase NBTXR3 nanoparticle concentration and radiation dose. Beyond a minimum number of clusters per cell, the radioenhancement of NBTXR3 nanoparticles could be estimated from the radiation dose delivered and the radiosensitivity of the cancer cell lines. Our preliminary results suggest a predictable in vitro biological effect of NBTXR3 nanoparticles exposed to ionizing radiation

  3. The relevance of radiation induced bystander effects for low dose radiation carcinogenic risk

    International Nuclear Information System (INIS)

    Full text: Where epidemiology studies lack the ability to prescribe radiation doses, customise sample sizes and replicate findings, radiobiology experiments provide greater flexibility to control experimental conditions. This control simplifies the process of answering questions concerning carcinogenic risk after low dose radiation exposures. However, the flexibility requires critical evaluation of radiobiology findings to ensure that the right questions are being asked, the experimental conditions are relevant to human exposure scenarios and that the data are cautiously interpreted in the context of the experimental model. In particular, low dose radiobiology phenomena such as adaptive responses, genomic instability and bystander effects need to be investigated thoroughly, with continual reference to the way these phenomena might occur in the real world. Low dose radiation induced bystander effects are of interest since their occurrence in vivo could complicate the shape of the radiation dose-response curve in the low dose range for a number of biological endpoints with subsequent effects on radiation-induced cancer risk. Conversely, radiation-induced abscopal effects implicate biological consequences of radiation exposure outside irradiated volumes, and complicate the notion of effective dose calculations. Achieving a consensus on the boundaries that distinguish the radiobiology phenomena of bystander and abscopal effects will aid progress towards understanding their relevance to in vivo radiation exposures. A proposed framework for discussing bystander effects and abscopal effects in their appropriate context will be outlined, with a discussion on the future investigation of radiation-induced bystander effects. Such frameworks can assist the integration of results from experimental radiobiology to risk evaluation and management practice. This research was funded by the Low Dose Radiation Research Program, BioI. and Environ. Research, US Dept. of Energy, Grant DE

  4. Radiobiological impact of dose calculation algorithms on biologically optimized IMRT lung stereotactic body radiation therapy plans

    International Nuclear Information System (INIS)

    The aim of this study is to evaluate the radiobiological impact of Acuros XB (AXB) vs. Anisotropic Analytic Algorithm (AAA) dose calculation algorithms in combined dose-volume and biological optimized IMRT plans of SBRT treatments for non-small-cell lung cancer (NSCLC) patients. Twenty eight patients with NSCLC previously treated SBRT were re-planned using Varian Eclipse (V11) with combined dose-volume and biological optimization IMRT sliding window technique. The total dose prescribed to the PTV was 60 Gy with 12 Gy per fraction. The plans were initially optimized using AAA algorithm, and then were recomputed using AXB using the same MUs and MLC files to compare with the dose distribution of the original plans and assess the radiobiological as well as dosimetric impact of the two different dose algorithms. The Poisson Linear-Quadatric (PLQ) and Lyman-Kutcher-Burman (LKB) models were used for estimating the tumor control probability (TCP) and normal tissue complication probability (NTCP), respectively. The influence of the model parameter uncertainties on the TCP differences and the NTCP differences between AAA and AXB plans were studied by applying different sets of published model parameters. Patients were grouped into peripheral and centrally-located tumors to evaluate the impact of tumor location. PTV dose was lower in the re-calculated AXB plans, as compared to AAA plans. The median differences of PTV(D95%) were 1.7 Gy (range: 0.3, 6.5 Gy) and 1.0 Gy (range: 0.6, 4.4 Gy) for peripheral tumors and centrally-located tumors, respectively. The median differences of PTV(mean) were 0.4 Gy (range: 0.0, 1.9 Gy) and 0.9 Gy (range: 0.0, 4.3 Gy) for peripheral tumors and centrally-located tumors, respectively. TCP was also found lower in AXB-recalculated plans compared with the AAA plans. The median (range) of the TCP differences for 30 month local control were 1.6 % (0.3 %, 5.8 %) for peripheral tumors and 1.3 % (0.5 %, 3.4 %) for centrally located tumors. The lower TCP

  5. BIOLOGICAL EFFECTS OF PULSED SHORT WAVE TREATMENT. AN EXPERIMENTAL STUDY

    Directory of Open Access Journals (Sweden)

    Dogaru Gabriela

    2015-02-01

    Full Text Available Pulsed short waves are short electromagnetic waves emitted as intermittent trains with a fixed duration, separated by free intervals of variable duration. The biological effects of pulsed short waves could be explained according to most of the authors by an activation of cellular enzymatic reactions, a stimulation of energy metabolism, a stimulation of liver function, of adrenal gland function and of the reticulocyte system, changes in cell permeability, by an increase of peripheral blood flow through the enhancement of local vascularization. This research aimed to investigate the biological effects of exposure to pulsed short waves at different doses on the adrenal glands of experimental animals, by structural and ultrastructural studies. The study included 35 animals assigned to 4 groups. Group I included 10 experimental animals exposed to radiation at a dose of 1/80 impulses/sec, group II, 10 animals exposed to a dose of 4/400 impulses/sec, group III, 10 animals exposed to a dose of 6/600 impulses/sec, for 10 min/day, and the control group consisted of 5 unexposed animals. Structural and ultrastructural changes of adrenal glands induced by the dose of 4/400 impulses/sec, compared to the unexposed control group and the dose of 1/80 impulses/sec, include an intensification of protein synthesis processes, an enhancement of energy metabolism in providing the energy required for an increased production of hormones, an intensification of collagen fiber synthesis processes in the capsule, necessary for healing. It was demonstrated that this dose induced an intensification of hormone synthesis and secretion, a stimulation of adrenal function. At the dose of 6/600 cycles/sec, a slight diminution of hormone synthesis and secretion activity was found, which was not below the limits existing in the unexposed control group, but was comparable to group II. This dose is probably too strong for experimental animals, inducing them a state of stress. The

  6. Mechanisms and biological importance of photon-induced bystander responses. Do they have an impact on low-dose radiation responses

    International Nuclear Information System (INIS)

    Elucidating the biological effect of low linear energy transfer (LET), low-dose and/or low-dose-rate ionizing radiation is essential in ensuring radiation safety. Over the past two decades, non-targeted effects, which are not only a direct consequence of radiation-induced initial lesions produced in cellular DNA but also of intra- and inter-cellular communications involving both targeted and non-targeted cells, have been reported and are currently defining a new paradigm in radiation biology. These effects include radiation-induced adaptive response, low-dose hypersensitivity, genomic instability, and radiation-induced bystander response (RIBR). RIBR is generally defined as a cellular response that is induced in non-irradiated cells that receive bystander signals from directly irradiated cells. RIBR could thus play an important biological role in low-dose irradiation conditions. However, this suggestion was mainly based on findings obtained using high-LET charged-particle radiations. The human population (especially the Japanese, who are exposed to lower doses of radon than the world average) is more frequently exposed to low-LET photons (X-rays or γ-rays) than to high-LET charged-particle radiation on a daily basis. There are currently a growing number of reports describing a distinguishing feature between photon-induced bystander response and high-LET RIBR. In particular, photon-induced by-stander response is strongly influenced by irradiation dose, the irradiated region of the targeted cells, and p53 status. The present review focuses on the photon-induced bystander response, and discusses its impact on the low-dose radiation effect. (author)

  7. The time factor in dose-effect relationships

    International Nuclear Information System (INIS)

    The assumption that carcinogenic risk is proportional to dose fails to consider that probable time of actual cancer incidence. The time lag between exposure and carcinogenic effect for radiation and chemical agents varies as Dosesup(-1/n), with napproximately3. A model is offered explaining that concentration of initially altered cells depends on dose, whereas their chance for development into tumours on their proximity, which varies as Dsup(-1/3). Because of biological variability, n has a range of values. The model implies that tumours resulting from a single exposure should be closely distributed in time, producing a pulse of cases and subsequently being essentially without effect. Testing of the Dsup(-1/3) rule was extended and its model, by further refinement of methods, applied to radiogenic leukaemia risk and to the effect of urethan in inducing lung tumours in mice with and without radiation exposure as a possible cocarcinogen. Radiation did not affect the tumour yield from urethan in mice. Radiogenic leukaemia and lung tumours induced by urethan both occur in proportion to exposure, but the time of their occurrence is limited to a short interval in relation to life span. Similarly, in murine or in human radiogenic leukaemia, leukaemia risk occurs in proportion to exposure, but the time of occurrences is limited to a short interval in relation to life span. In both sets of observations, as well as in other test systems of carcinogenesis, the peak of occurrence or the mean latent period is roughly inversely related to Dsup(-1/3). Applied to lung tumours and leukaemia, the spread of cases about the peak incidence was found to be typically less than a fifth of the life span. Exposure risks do not continue to act over life span. Neoplastic disease risk from carcinogens levels too low to be tested experimentally, theoretically usually lies beyond the life span. The social and economic consequences of a theoretically calculated number of deaths due to those

  8. Survey of effective dose levels from typical paediatric CT protocols

    International Nuclear Information System (INIS)

    Concern over reported large radiation doses leading to a high cancer risk for paediatric CT patients has prompted considerable investigation in paediatric CT. The recent release of software from Germany has allowed effective doses to be calculated from CT protocol information and radiation measurement for standard paediatric patient sizes for both sexes. An initial study has been undertaken in nine radiology departments, four of which were dedicated paediatric departments, for routine chest and abdominal CT procedures. The dose calculation software is based on Monte Carlo simulation of X-ray conditions during a CT procedure and utilized a 'tomographic' phantom model of a 7-year-old child and an 8-week-old baby to allow calculation of organ dose and hence effective dose. Results of the survey indicate that effective doses were higher for females than males, and higher for abdominal procedures. Slightly higher effective doses were calculated for the child compared to the baby. All centres but one recorded lower effective doses with their current protocols than if they had used recommended CT protocols found in the literature. Analysis of the survey data indicates that scan parameters are the main cause of dose variations, although the type of scanner can affect dose by a factor of 2 (when comparing different units) as well as variation in anatomy scanned in protocols. Dose reduction appears to be most closely linked with reduced mAs and increased pitch as expected. The calculation of effective dose appears to be a key factor in assessing CT protocols, particularly for paediatric patients. Copyright (2003) Blackwell Science Pty Ltd

  9. Frequency and collective effective dose equivalent of medical exposures

    International Nuclear Information System (INIS)

    According to ICRP recommendation, medical exposure refers to the intentional exposure of patients for diagnostic and therapeutic purposes, and to the exposures resulting from the artificial replacement of body organs or functions. Since the objective of radiotherapy is to give a large amount of radiation dose to the patient to kill cancer cells, neither individual nor collective effective doses are directly relevant for comparisons with doses from other sources, not even with diagnostic procedures. For this reason, in present report, therapeutic uses of radiations and radiopharmaceuticals are not included in the medical exposures. Medical exposures in Japan have been investigated by the nationwide surveys on the type and the frequency of radiological procedures and by the dose determinations with phantom experiments or calculations since 1960. Present report reviews the frequency of diagnostic radiological procedures and the collective effective dose equivalents from these procedures, and excess deaths from the medical exposures in Japan. In 1986, the number of X-ray diagnostic examinations was estimated to be about 1.41 x 108. The preliminary result in 1991 shows the number will be about 1.8 x 108. The resultant collective effective dose equivalent from X-ray diagnosis in 1986 was about 1.84 x 105 person Sv. Consequently per Caput mean effective dose equivalent was about 1.48 mSv/person in 1986. The total collective effective dose equivalent from all the diagnostic radiological procedures in Japan was estimated to be about 2.96 x 105 person Sv/year. per Caput mean effective dose equivalent from the total diagnostic radiological procedures in Japan was evaluated to be about 2.3 mSv/year. This value may be comparable to the mean annual effective dose equivalent received from natural radiations for the worldwide population. Mean effective dose equivalent per diagnostic radiological examination was calculated to be about 1.00 mSv/examination. (author)

  10. Determining effective radiation mutagen dose for garlic (Allium sativum L.)

    International Nuclear Information System (INIS)

    This study was carried out to get database for future garlic mutation breeding studies. For this aim, 0, 5, 10, 15, 20, 25 and 30 Gy doses of Cs137 (gamma-ray) were applied on garlic cloves as a physical mutagen. 50 cloves were used for each dose. Sixty days after treatment, germination rate and shoot development of cloves were determined. The Effective Mutagen Dose (ED50) was calculated by regression analyses. According to the results, 4.455 Gy dose was found to be effective as ED50. (author)

  11. Effective dose from direct and indirect digital panoramic units

    International Nuclear Information System (INIS)

    This study aimed to provide comparative measurements of the effective dose from direct and indirect digital panoramic units according to phantoms and exposure parameters. Dose measurements were carried out using a head phantom representing an average man (175 cm tall, 73.5 kg male) and a limbless whole body phantom representing an average woman (155 cm tall, 50 kg female). Lithium fluoride thermoluminescent dosimeter (TLD) chips were used for the dosimeter. Two direct and 2 indirect digital panoramic units were evaluated in this study. Effective doses were derived using 2007 International Commission on Radiological Protection (ICRP) recommendations. The effective doses of the 4 digital panoramic units ranged between 8.9 μSv and 37.8 μSv. By using the head phantom, the effective doses from the direct digital panoramic units (37.8 μSv, 27.6 μSv) were higher than those from the indirect units (8.9 μSv, 15.9 μSv). The same panoramic unit showed the difference in effective doses according to the gender of the phantom, numbers and locations of TLDs, and kVp. To reasonably assess the radiation risk from various dental radiographic units, the effective doses should be obtained with the same numbers and locations of TLDs, and with standard hospital exposure. After that, it is necessary to survey the effective doses from various dental radiographic units according to the gender with the corresponding phantom.

  12. Effective dose from direct and indirect digital panoramic units

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gun Sun; Kim, Jin Soo; Seo, Yo Seob; Kim, Jae Duk [School of Dentistry, Oral Biology Research Institute, Chosun University, Gwangju (Korea, Republic of)

    2013-06-15

    This study aimed to provide comparative measurements of the effective dose from direct and indirect digital panoramic units according to phantoms and exposure parameters. Dose measurements were carried out using a head phantom representing an average man (175 cm tall, 73.5 kg male) and a limbless whole body phantom representing an average woman (155 cm tall, 50 kg female). Lithium fluoride thermoluminescent dosimeter (TLD) chips were used for the dosimeter. Two direct and 2 indirect digital panoramic units were evaluated in this study. Effective doses were derived using 2007 International Commission on Radiological Protection (ICRP) recommendations. The effective doses of the 4 digital panoramic units ranged between 8.9 {mu}Sv and 37.8 {mu}Sv. By using the head phantom, the effective doses from the direct digital panoramic units (37.8 {mu}Sv, 27.6 {mu}Sv) were higher than those from the indirect units (8.9 {mu}Sv, 15.9 {mu}Sv). The same panoramic unit showed the difference in effective doses according to the gender of the phantom, numbers and locations of TLDs, and kVp. To reasonably assess the radiation risk from various dental radiographic units, the effective doses should be obtained with the same numbers and locations of TLDs, and with standard hospital exposure. After that, it is necessary to survey the effective doses from various dental radiographic units according to the gender with the corresponding phantom.

  13. Aspects of the relationship between drug dose and drug effect.

    Science.gov (United States)

    Peper, Abraham

    2009-02-09

    It is generally assumed that there exists a well-defined relationship between drug dose and drug effect and that this can be expressed by a dose-response curve. This paper argues that there is no such clear relation and that the dose-response curve provides only limited information about the drug effect. It is demonstrated that tolerance development during the measurement of the dose-response curve may cause major distortion of the curve and it is argued that the curve may only be used to indicate the response to the first administration of a drug, before tolerance has developed. The precise effect of a drug on an individual depends on the dynamic relation between several variables, particularly the level of tolerance, the dose anticipated by the organism and the actual drug dose. Simulations with a previously published mathematical model of drug tolerance demonstrate that the effect of a dose smaller than the dose the organism has developed tolerance to is difficult to predict and may be opposite to the action of the usual dose.

  14. Assessment of organ equivalent doses and effective doses from diagnostic X-ray examinations

    International Nuclear Information System (INIS)

    The MIRD-type adult male, female and age 10 phantoms were constructed to evaluate organ equivalent dose and effective dose of patient due to typical diagnostic X-ray examination. These phantoms were constructed with external and internal dimensions of Korean. The X-ray energy spectra were generated with SPEC78. MCNP4B ,the general-purposed Monte Carlo code, was used. Information of chest PA , chest LAT, and abdomen AP diagnostic X-ray procedures was collected on the protocol of domestic hospitals. The results showed that patients pick up approximate 0.02 to 0.18 mSv of effective dose from a single chest PA examination, and 0.01 to 0.19 mSv from a chest LAT examination depending on the ages. From an abdomen AP examination, patients pick up 0.17 to 1.40 mSv of effective dose. Exposure time, organ depth from the entrance surface and X-ray beam field coverage considerably affect the resulting doses. Deviation among medical institutions is somewhat high, and this indicated that medical institutions should interchange their information and the need of education for medical staff. The methodology and the established system can be applied, with some expansion, to dose assessment for other medical procedures accompanying radiation exposure of patients like nuclear medicine or therapeutic radiology

  15. Errors and Uncertainties in Dose Reconstruction for Radiation Effects Research

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.

    2008-04-14

    Dose reconstruction for studies of the health effects of ionizing radiation have been carried out for many decades. Major studies have included Japanese bomb survivors, atomic veterans, downwinders of the Nevada Test Site and Hanford, underground uranium miners, and populations of nuclear workers. For such studies to be credible, significant effort must be put into applying the best science to reconstructing unbiased absorbed doses to tissues and organs as a function of time. In many cases, more and more sophisticated dose reconstruction methods have been developed as studies progressed. For the example of the Japanese bomb survivors, the dose surrogate “distance from the hypocenter” was replaced by slant range, and then by TD65 doses, DS86 doses, and more recently DS02 doses. Over the years, it has become increasingly clear that an equal level of effort must be expended on the quantitative assessment of uncertainty in such doses, and to reducing and managing uncertainty. In this context, this paper reviews difficulties in terminology, explores the nature of Berkson and classical uncertainties in dose reconstruction through examples, and proposes a path forward for Joint Coordinating Committee for Radiation Effects Research (JCCRER) Project 2.4 that requires a reasonably small level of effort for DOSES-2008.

  16. Population variability in biological adaptive responses to DNA damage and the shapes of carcinogen dose-response curves

    International Nuclear Information System (INIS)

    Carcinogen dose-response curves for both ionizing radiation and chemicals are typically assumed to be linear at environmentally relevant doses. This assumption is used to ensure protection of the public health in the absence of relevant dose-response data. A theoretical justification for the assumption has been provided by the argument that low dose linearity is expected when an exogenous agent adds to an ongoing endogenous process. Here, we use computational modeling to evaluate (1) how two biological adaptive processes, induction of DNA repair and cell cycle checkpoint control, may affect the shapes of dose-response curves for DNA-damaging carcinogens and (2) how the resulting dose-response behaviors may vary within a population. Each model incorporating an adaptive process was capable of generating not only monotonic dose-responses but also nonmonotonic (J-shaped) and threshold responses. Monte Carlo analysis suggested that all these dose-response behaviors could coexist within a population, as the spectrum of qualitative differences arose from quantitative changes in parameter values. While this analysis is largely theoretical, it suggests that (a) accurate prediction of the qualitative form of the dose-response requires a quantitative understanding of the mechanism (b) significant uncertainty is associated with human health risk prediction in the absence of such quantitative understanding and (c) a stronger experimental and regulatory focus on biological mechanisms and interindividual variability would allow flexibility in regulatory treatment of environmental carcinogens without compromising human health

  17. Importance of dose-rate and cell proliferation in the evaluation of biological experimental results

    Science.gov (United States)

    Curtis, S. B.

    1994-01-01

    The nuclei of cells within the bodies of astronauts traveling on extended missions outside the geomagnetosphere will experience single traversals of particles with high Linear Energy Transfer (LET) (e.g., one iron ion per one hundred years, on average) superimposed on a background of tracks with low LET (approximately one proton every two to three days, and one helium ion per month). In addition, some cell populations within the body will be proliferating, thus possibly providing increasing numbers of cells with 'initiated' targets for subsequent radiation hits. These temporal characteristics are not generally reproduced in laboratory experimental protocols. Implications of the differences in the temporal patterns of radiation delivery between conventionally designed radiation biology experiments and the pattern to be experienced in space are examined and the importance of dose-rate and cell proliferation are pointed out in the context of radiation risk assessment on long mission in space.

  18. Off-label biologic regimens in psoriasis: a systematic review of efficacy and safety of dose escalation, reduction, and interrupted biologic therapy.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Brezinski

    Full Text Available OBJECTIVES: While off-label dosing of biologic treatments may be necessary in selected psoriasis patients, no systematic review exists to date that synthesizes the efficacy and safety of these off-label dosing regimens. The aim of this systematic review is to evaluate efficacy and safety of off-label dosing regimens (dose escalation, dose reduction, and interrupted treatment with etanercept, adalimumab, infliximab, ustekinumab, and alefacept for psoriasis treatment. DATA SOURCES AND STUDY SELECTION: We searched OVID Medline from January 1, 1990 through August 1, 2011 for prospective clinical trials that studied biologic therapy for psoriasis treatment in adults. Individual articles were screened for studies that examined escalated, reduced, or interrupted therapy with etanercept, adalimumab, infliximab, ustekinumab, or alefacept. DATA SYNTHESIS: A total of 23 articles with 12,617 patients matched the inclusion and exclusion criteria for the systematic review. Data were examined for primary and secondary efficacy outcomes and adverse events including infections, malignancies, cardiovascular events, and anti-drug antibodies. The preponderance of data suggests that continuous treatment with anti-TNF agents and anti-IL12/23 agent was necessary for maintenance of disease control. Among non-responders, dose escalation with etanercept, adalimumab, ustekinumab, and alefacept typically resulted in greater efficacy than standard dosing. Dose reduction with etanercept and alefacept resulted in reduced efficacy. Withdrawal of the examined biologics led to an increase in disease activity; efficacy from retreatment did not result in equivalent initial response rates for most biologics. Safety data on off-label dosing regimens are limited. CONCLUSION: Dose escalation in non-responders generally resulted in increased efficacy in the examined biologics used to treat moderate-to-severe psoriasis. Continuous treatment with anti-TNF agents and anti-IL12/23 agent

  19. Biological dosimetry - a Bayesian approach in the presentation of the uncertainty of the estimated dose in cases of exposure to low dose radiation

    International Nuclear Information System (INIS)

    Biodosimetry laboratory experience has shown that there are limitations in the existing statistical methodology. Statistical difficulties generally occur due to the low number of aberrations leading to large uncertainties for dose estimation. Some problems derived from limitations of the classical statistical methodology, which requires that chromosome aberration yields be considered as something fixed and consequently provides a deterministic dose estimation and associated confidence limits. On the other hand, recipients of biological dosimetry reports, including medical doctors, regulators and the patients themselves may have a limited comprehension of statistics and of informed reports. Thus, the objective of the present paper is to use a Bayesian approach to present the uncertainty on the estimated dose to which a person could be exposed, in the case of low dose (occupational doses) radiation exposure. Such methodology will allow the biodosimetrists to adopt a probabilistic approach for the cytogenetic data analysis. At present, classical statistics allows to produce a confidence interval to report such dose, with a lower limit that could not detach from zero. In this situation it becomes difficult to make decisions as they could impact on the labor activities of the worker if an exposure exceeding the occupational dose limits is inferred. The proposed Bayesian approach is applied to occupational exposure scenario to contribute to take the appropriate radiation protection measures. (authors)

  20. Adaptive response and split-dose effect of radiation on the survival of mice

    Indian Academy of Sciences (India)

    Ashu Bhan Tiku; R K Kale

    2004-03-01

    Although the importance of radiation-induced adaptive response has been recognized in human health, risk assessment and clinical application, the phenomenon has not been understood well in terms of survival of animals. To examine this aspect Swiss albino mice were irradiated with different doses (2–10 Gy) at 0.015 Gy/s dose rate and observed on a regular basis for 30 days. Since almost 50% lethality was seen with 8 Gy, it was selected as the challenging dose for further studies. Irradiation of mice with conditioning doses (0.25 or 0.5 Gy) and subsequent exposure to 8 Gy caused significant increase in the survival of mice compared to irradiated control. The splitting of challenging dose did not influence the efficiency of conditioning doses (0.25 Gy and 0.5 Gy) to induce an adaptive response. However conditioning doses given in fractions (0.25 Gy + 0.25 Gy) or (0.5 Gy + 0.5 Gy) were able to modulate the response of challenging dose of 8 Gy. These results clearly showed the occurrence of adaptive response in terms of survival of animals. The conditioning dose given in small fractions seemed to be more effective. The findings have been discussed from a mechanistic point of view. The possible biological implications, potential medical benefits, uncertainties and controversies related to adaptive response have also been addressed.

  1. Effects of Low Dose Radiation on Mammals 1

    OpenAIRE

    Okumura, Yutaka; Mine, Mariko; Kishikawa, Masao

    1991-01-01

    Radiation has been applied widely to clinics, researches and industries nowadays. Irradiation by atomic bomb produced many victims in Hiroshima and Nagasaki. Radiation effects on animals and human belings have been reported extensively, especially at a dose range of high amount of radiation. As radiation effects at low dose have not been well studied, it is believed that even a small amount of radiation produces hazardous effects. However, it might not be true. Beneficial effects of a low dos...

  2. Chest X ray effective doses estimation in computed radiography

    International Nuclear Information System (INIS)

    Conventional chest radiography is technically difficult because of wide in tissue attenuations in the chest and limitations of screen-film systems. Computed radiography (CR) offers a different approach utilizing a photostimulable phosphor. photostimulable phosphors overcome some image quality limitations of chest imaging. The objective of this study was to estimate the effective dose in computed radiography at three hospitals in Khartoum. This study has been conducted in radiography departments in three centres Advanced Diagnostic Center, Nilain Diagnostic Center, Modern Diagnostic Center. The entrance surface dose (ESD) measurement was conducted for quality control of x-ray machines and survey of operators experimental techniques. The ESDs were measured by UNFORS dosimeter and mathematical equations to estimate patient doses during chest X rays. A total of 120 patients were examined in three centres, among them 62 were males and 58 were females. The overall mean and range of patient dosed was 0.073±0.037 (0.014-0.16) mGy per procedure while the effective dose was 3.4±01.7 (0.6-7.0) mSv per procedure. This study compared radiation doses to patients radiographic examinations of chest using computed radiology. The radiation dose was measured in three centres in Khartoum- Sudan. The results of the measured effective dose showed that the dose in chest radiography was lower in computed radiography compared to previous studies.(Author)

  3. Biological Effects of Neutron and Proton Irradiations. Vol. II. Proceedings of the Symposium on Biological Effects of Neutron Irradiations

    International Nuclear Information System (INIS)

    During recent years the interest in biological effects caused by neutrons has been increasing steadily as a result of the rapid development of neutron technology and the great number of neutron sources being used. Neutrons, because of their specific physical characteristics and biological effects, form a special type of radiation hazard but, at the same time, are a prospective tool for applied radiobiology. This Symposium, held in Brookhaven at the invitation of the United States Government from 7-11 October 1963, provided an opportunity for scientists to discuss the experimental information at present available on the biological action of neutrons and to evaluate future possibilities. It was a sequel to the Symposium on Neutron Detection, Dosimetry and Standardization, which was organized by the International Atomic Energy Agency in December 1962 at Harwell. The Symposium was attended by 128 participants from 17 countries and 6 international organizations. Fifty-four papers were presented. The following subjects were discussed in various sessions: (1) Dosimetry. Estimation of absorbed dose of neutrons in biological material. (2) Biological effects of high-energy protons. (3) Cellular and genetic effects. (4) Pathology of neutron irradiation, including acute and chronic radiation syndromes (mortality, anatomical and histological changes, biochemical and metabolic disturbances) and delayed consequences. (5) Relative biological effectiveness of neutrons evaluated by different biological tests. A Panel on Biophysical Considerations in Neutron Experimentation, with special emphasis on informal discussions, was organized during the Symposium. The views of the Panel are recorded in Volume II of the Proceedings. Many reports were presented on the important subject of the relative effectiveness of the biological action of neutrons, as well as on the general pathology of neutron irradiation and the cellular and genetic effects related to it. Three survey papers considered

  4. Biological Effects of Neutron and Proton Irradiations. Vol. I. Proceedings of the Symposium on Biological Effects of Neutron Irradiations

    International Nuclear Information System (INIS)

    During recent years the interest in biological effects caused by neutrons has been increasing steadily as a result of the rapid development of neutron technology and the great number of neutron sources being used. Neutrons, because of their specific physical characteristics and biological effects, form a special type of radiation hazard but, at the same time, are a prospective tool for applied radiobiology. This Symposium, held in Brookhaven at the invitation of the United States Government from 7-11 October 1963, provided an opportunity for scientists to discuss the experimental information at present available on the biological action of neutrons and to evaluate future possibilities. It was a sequel to the Symposium on Neutron Detection, Dosimetry and Standardization, which was organized by the International Atomic Energy Agency in December 1962 at Harwell. The Symposium was attended by 128 participants from 17 countries and 6 international organizations. Fifty-four papers were presented. The following subjects were discussed in various sessions: (1) Dosimetry. Estimation of absorbed dose of neutrons in biological material. (2) Biological effects of high-energy protons. (3) Cellular and genetic effects. (4) Pathology of neutron irradiation, including acute and chronic radiation syndromes (mortality, anatomical and histological changes, biochemical and metabolic disturbances) and delayed consequences. (5) Relative biological effectiveness of neutrons evaluated by different biological tests. A Panel on Biophysical Considerations in Neutron Experimentation, with special emphasis on informal discussions, was organized during the Symposium. The views of the Panel are recorded in Volume II of the Proceedings. Many reports were presented on the important subject of the relative effectiveness of the biological action of neutrons, as well as on the general pathology of neutron irradiation and the cellular and genetic effects related to it. Three survey papers considered

  5. What can we say about the dose-effect relationship at very low doses?

    International Nuclear Information System (INIS)

    This paper uses a few sets of low-dose experimental radiobiological data to examine just what these data sets say with respect to the shape of the dose-effect relationship at very low doses. The examination of the data leads to the conclusion that neither experimental nor epidemiological data will ever be statistically strong enough to resolve the debate unambiguously. An alternative approach to the low-dose problem is proposed based on gaining a deeper understanding of both the mechanism of action of radiation and the cellular changes which lead to malignancy. Research spending needs to be directed to more basic investigations of radiation action and to ways by which the information from these studies can be applied to the interpretation of epidemiological data. (author)

  6. Biological Effectiveness and Application of Heavy Ions in Radiation Therapy Described by a Physical and Biological Model

    DEFF Research Database (Denmark)

    Olsen, Kjeld J.; Hansen, Johnny W.

    A description is given of the physical basis for applying track structure theory in the determination of the effectiveness of heavy-ion irradiation of single- and multi-hit target systems. It will be shown that for applying the theory to biological systems the effectiveness of heavy-ion irradiation...... is inadequately described by an RBE-factor, whereas the complete formulation of the probability of survival must be used, as survival depends on both radiation quality and dose. The theoretical model of track structure can be used in dose-effect calculations for neutron-, high-LET, and low-LET radiation applied...

  7. The effect of ongoing exposure dynamics in dose response relationships.

    Directory of Open Access Journals (Sweden)

    Josep M Pujol

    2009-06-01

    Full Text Available Characterizing infectivity as a function of pathogen dose is integral to microbial risk assessment. Dose-response experiments usually administer doses to subjects at one time. Phenomenological models of the resulting data, such as the exponential and the Beta-Poisson models, ignore dose timing and assume independent risks from each pathogen. Real world exposure to pathogens, however, is a sequence of discrete events where concurrent or prior pathogen arrival affects the capacity of immune effectors to engage and kill newly arriving pathogens. We model immune effector and pathogen interactions during the period before infection becomes established in order to capture the dynamics generating dose timing effects. Model analysis reveals an inverse relationship between the time over which exposures accumulate and the risk of infection. Data from one time dose experiments will thus overestimate per pathogen infection risks of real world exposures. For instance, fitting our model to one time dosing data reveals a risk of 0.66 from 313 Cryptosporidium parvum pathogens. When the temporal exposure window is increased 100-fold using the same parameters fitted by our model to the one time dose data, the risk of infection is reduced to 0.09. Confirmation of this risk prediction requires data from experiments administering doses with different timings. Our model demonstrates that dose timing could markedly alter the risks generated by airborne versus fomite transmitted pathogens.

  8. Committed effective doses at various times after intakes of radionuclides

    CERN Document Server

    Phipps, A W; Kendall, G M; Silk, T J; Stather, J W

    1991-01-01

    This report contains details of committed effective doses at nine times after intake from intakes by ingestion and inhalation of 1 mu 1 AMAD particles by adults. Data are given for various chemical forms of 359 nuclides. It complements NRPB-R245 which describes the changes which have taken place since the last NRPB compendium of dose per unit intake factors (dose coefficients) and gives summary tables. Information on committed equivalent doses to organs is given in NRPB-M288. The information given in these memoranda is also available as a microcomputer package - NRPB-SR245.

  9. Total dose dependency and ELDRS effects on bipolar linear devices

    Science.gov (United States)

    Yui, C. C.; McClure, S. S.; Rax, B. G.; Lehman, J. M.; Minto, T. D.; Wiedeman, M.

    2002-01-01

    The use of bipolar linear devices is prevalent in most satellite and some space applications. However, degradation as a result of low dose irradiations known as ELDERS (effects of enhanced low dose rate sensitivity) is a major concern when selecting flight hardware. Many studies and reports have been conducted on this possible phenomenon as well as their responsible physical mechanisms.

  10. Radiation Dose-Volume Effects in the Lung

    International Nuclear Information System (INIS)

    The three-dimensional dose, volume, and outcome data for lung are reviewed in detail. The rate of symptomatic pneumonitis is related to many dosimetric parameters, and there are no evident threshold 'tolerance dose-volume' levels. There are strong volume and fractionation effects.

  11. Radiation dose-volume effects in the lung

    DEFF Research Database (Denmark)

    Marks, Lawrence B; Bentzen, Soren M; Deasy, Joseph O;

    2010-01-01

    The three-dimensional dose, volume, and outcome data for lung are reviewed in detail. The rate of symptomatic pneumonitis is related to many dosimetric parameters, and there are no evident threshold "tolerance dose-volume" levels. There are strong volume and fractionation effects....

  12. Effective dose and cancer risk in PET/CT exams

    International Nuclear Information System (INIS)

    Due to the use of radiopharmaceutical positron-emitting in PET exam and realization of tomography by x-ray transmission in CT examination, an increase of dose with hybrid PET/CT technology is expected. However, differences of doses have been reported in many countries for the same type of procedure. It is expected that the dose is an influent parameter to standardize the protocols of PET/CT. This study aimed to estimate the effective doses and absorbed in 65 patients submitted to oncological Protocol in a nuclear medicine clinic in Rio de Janeiro, considering the risk of induction of cancer from the scan. The CT exam-related doses were estimated with a simulator of PMMA and simulated on the lmPACT resistance, which for program effective dose, were considered the weight factors of the lCRP 103. The PET exam doses were estimated by multiplying the activity administered to the patient with the ICRP dose 80 factors. The radiological risk for cancer incidence were estimated according to the ICRP 103. The results showed that the effective dose from CT exam is responsible for 70% of the effective total in a PET/CT scan. values of effective dose for the PET/CT exam reached average values of up to 25 mSv leading to a risk of 2, 57 x 10-4. Considering that in staging of oncological diseases at least four tests are performed annually, the total risk comes to 1,03x 10-3

  13. Topics on study of low dose-effect relationship

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Takeshi [Toho Univ., School of Medicine, Tokyo (Japan); Ohyama, Harumi

    1999-09-01

    It is not exceptional but usually observed that a dose-effect relationship in biosystem is not linear. Sometimes, the low dose-effect relationship appears entirely contrary to the expectation from high dose-effect. This is called a 'hormesis' phenomena. A high dose irradiation inflicts certainly an injury on biosystem. No matter how low the dose may be, an irradiation might inflict some injury on biosystem according to Linear Non-Threshold hypothesis(LNT). On the contrary to the expectation, a low dose irradiation stimulates immune system, and promotes cell proliferation. This is called 'radiation hormesis'. The studies of the radiation hormesis are made on from four points of view as follows: (1) radiation adaptive response, (2) revitalization caused by a low dose stimulation, (3) a low dose response unexpected from the LNT hypothesis, (4) negation of the LNT hypothesis. The various empirical proofs of radiation hormesis are introduced in the report. (M . Suetake)

  14. Effective dose estimation to patients and staff during urethrography procedures

    Energy Technology Data Exchange (ETDEWEB)

    Sulieman, A. [Prince Sattam bin Abdulaziz University, College of Applied Medical Sciences, Radiology and Medical Imaging Department, P. O- Box 422, Alkharj 11942 (Saudi Arabia); Barakat, H. [Neelain University, College of Science and Technology, Medical Physics Department, Khartoum (Sudan); Alkhorayef, M.; Babikir, E. [King Saud University, College of Applied Sciences, Radiological Sciences Department, P. O. Box 10219, Riyadh 11433 (Saudi Arabia); Dalton, A.; Bradley, D. [University of Surrey, Centre for Nuclear and Radiation Physics, Department of Physics, Surrey, GU2 7XH Guildford (United Kingdom)

    2015-10-15

    Medical-related radiation is the largest source of controllable radiation exposure to humans and it accounts for more than 95% of radiation exposure from man-made sources. Few data were available worldwide regarding patient and staff dose during urological ascending urethrography (ASU) procedure. The purposes of this study are to measure patient and staff entrance surface air kerma dose (ESAK) during ASU procedure and evaluate the effective doses. A total of 243 patients and 145 staff (Urologist) were examined in three Hospitals in Khartoum state. ESAKs were measured for patient and staff using thermoluminescent detectors (TLDs). Effective doses (E) were calculated using published conversion factors and methods recommended by the national Radiological Protection Board (NRPB). The mean ESAK dose for patients and staff dose were 7.79±6.7 mGy and 0.161±0.30 mGy per procedures respectively. The mean and range of the effective dose was 1.21 mSv per procedure. The radiation dose in this study is comparable with previous studies except Hospital C. It is obvious that high patient and staff exposure is due to the lack of experience and protective equipment s. Interventional procedures remain operator dependent; therefore continuous training is crucial. (Author)

  15. Biological effects of low level exposures to chemicals and radiation

    International Nuclear Information System (INIS)

    In May 1990 a group of scientists representing several federal agencies, the International Society of Regulatory Toxicology and Pharmacology, the private sector, and academia met to develop a strategy to encourage the study of the biological effects of low level exposures (BELLE) to chemical agents and radioactivity. A workshop was held in 1991 with seven invited speakers focusing on the toxicological implications of biological adaptations. The selection of topics and speakers was designed to consider critically the concept of hormesis, not only in a broad, conceptual manner, but also at the molecular and biochemical levels. These presentations offered a complementary perspective on the diverse range of molecular mechanisms that can become activated at low levels of toxicant exposure. In addition to chemical toxicology research, an overview of current research on 'Effects of low-dose radiation on the immune response' was presented as well as 'Cellular adaptation as an important response during chemical carcinogenesis'. The final presentation was devoted to biostatistical considerations when designing studies that address issues associated with the biological responses to low doses of chemicals and radiation, as well as issues in interpretation of the findings from such studies

  16. Topographic Effects on Ambient Dose Equivalent Rates from Radiocesium Fallout

    CERN Document Server

    Malins, Alex; Machida, Masahiko; Saito, Kimiaki

    2015-01-01

    Land topography can affect air radiation dose rates by locating radiation sources closer to, or further, from detector locations when compared to perfectly flat terrain. Hills and slopes can also shield against the propagation of gamma rays. To understand the possible magnitude of topographic effects on air dose rates, this study presents calculations for ambient dose equivalent rates at a range of heights above the ground for varying land topographies. The geometries considered were angled ground at the intersection of two planar surfaces, which is a model for slopes neighboring flat land, and a simple conical geometry, representing settings from hilltops to valley bottoms. In each case the radiation source was radioactive cesium fallout, and the slope angle was varied systematically to determine the effect of topography on the air dose rate. Under the assumption of homogeneous fallout across the land surface, and for these geometries and detector locations, the dose rates at high altitudes are more strongly...

  17. Effects of dose fractionation on the response of alanine dosimetry

    International Nuclear Information System (INIS)

    Alanine dosimetry is well established as a transfer standard and is becoming more prevalently used in routine dosimetry systems for radiation processing. Many routine measurement applications in radiation processing involve absorbed dose measurements resulting from fractioned exposures to ionizing radiation. Fractioning of absorbed dose is identified as an influence quantity (ISO/ASTM, 2013). This paper reports on study results of absorbed dose fractioning characteristics of alanine for gamma and high energy electron beam radiation sources. The results of this study indicate a radiation response difference due to absorbed dose fractioning in response can be observed after four fractionations for high-energy electron beams and no difference up to seven fractions for gamma rays using an ANOVA evaluation method. - Highlights: • Fractioning effects signaled in electron beam using an ANOVA at 6 equal increments. • Fractioning effects not signaled in gamma using an ANOVA up to 7 equal increments. • Insensitivity of alanine to dose fractioning indicates nominal impact on calibration

  18. Radioactive Doses - Predicted and Actual - and Likely Health Effects.

    Science.gov (United States)

    Nagataki, S; Takamura, N

    2016-04-01

    Five years have passed since the nuclear accident at Fukushima Daiichi Nuclear Power Stations on 11 March 2011. Here we refer to reports from international organisations as sources of predicted values obtained from environmental monitoring and dose estimation models, and reports from various institutes in Japan are used as sources of individual actual values. The World Health Organization, based on information available up to 11 September 2011 (and published in 2012), reported that characteristic effective doses in the first year after the accident, to all age groups, were estimated to be in the 10-50 mSv dose band in example locations in evacuation areas. Estimated characteristic thyroid doses to infants in Namie Town were within the 100-200 mSv dose band. A report from the United Nations Scientific Committee on the Effects of Atomic Radiation published in 2014 shows that the effective dose received by adults in evacuation areas during the first year after the accident was 1.1-13 mSv. The absorbed dose to the thyroid in evacuated settlements was 7.2-35 mSv in adults and 15-83 mSv in 1-year-old infants. Individual external radiation exposure in the initial 4 months after the accident, estimated by superimposing individual behaviour data on to a daily dose rate map, was less than 3 mSv in 93.9% of residents (maximum 15 mSv) in evacuation areas. Actual individual thyroid equivalent doses were less than 15 mSv in 98.8% of children (maximum 25 mSv) in evacuation areas. When uncertainty exists in dose estimation models, it may be sensible to err on the side of caution, and final estimated doses are often much greater than actual radiation doses. However, overestimation of the dose at the time of an accident has a great influence on the psychology of residents. More than 100 000 residents have not returned to the evacuation areas 5 years after the Fukushima accident because of the social and mental effects during the initial period of the disaster. Estimates of

  19. TLD estimation of absorbed dose for 131I on the surface of biological organs of REMCAL phantom

    International Nuclear Information System (INIS)

    In nuclear medicine, the accuracy of absorbed dose of an internally distributed radiopharmaceuticals estimated by the MIRD (medical internal radiation dose) method depends on the cumulated activity of the source organs and their mass. The usual method for obtaining the cumulated activities are: 1) direct measurements by a) positron emission tomography (PET) and b) single photon emission computed tomography (SPECT) 2) extrapolation from animal data and 3) calculations based on the mathematical biokinetic model. Among these methods, extrapolation of animal data to humans includes inevitable inaccuracy due to large interspecies metabolic differences with regard to the administered radiochemical. Biokinetic modeling requires adequate knowledge of various kinetic parameters, which is based on some biological assumptions. Direct measurements can provide cumulated distributions with fewer biological assumptions. But direct measurements of PET/SPECT are difficult to perform routinely. A method has been developed to obtain the surface dose of different biological organs by using TLDs. Here, a number of TLDs are placed just above the surface of the biological organs of the REMCAL Alderson human phantom filled with water. Firstly, investigation of the accuracy of this method by calibration studies using the said phantom, which is having the entire biological organ intact and simulate the organs as human body is done. These organs are filled with the known activity of the radioisotope. In the present study, estimation of radiation dose received by fifteen different target organs, when the known activity was filled in the three major organs of interest was carried out

  20. Biological Effects Of Artificial Illumination

    Science.gov (United States)

    Corth, Richard

    1980-10-01

    We are increasingly being warned of the possible effects of so called "polluted" light, that is light that differs in spectral content from that of sunlight. We should be concerned, we are told, because all animals and plants have evolved under this natural daylight and therefore any difference between that illuminant and the artificial illuminants that are on the market today, is suspect. The usual presentation of the differences between the sunlight and the artificial illuminants are as shown in Figure 1. Here we are shown the spectral power distribution of sunlight and Cool White fluorescent light. The spectral power distributions of each have been normalized to some convenient wavelength so that each can be seen and easily compared on the same figure. But this presentation is misleading for one does not experience artificial illuminants at the same intensity as one experiences sunlight. Sunlight intensities are ordinarily found to be in the 8000 to 10,000 footcandle range whereas artificial illuminants are rarely experienced at intensity levels greater than 100 footcandles. Therefore a representative difference between the two types of illumination conditions is more accurately represented as in Figure 2. Thus if evolutionary adaptations require that humans and other animals be exposed to sunlight to ensure wellbeing, it is clear that one must be exposed to sunlight intensities. It is not feasible to expect that artificially illuminated environments will be lit to the same intensity as sunlight

  1. Experimental dose effects after interstitial irradiation of the brain

    International Nuclear Information System (INIS)

    Experiments performed on healthy brain (beagle) were performed to study the dose effects of the gamma emitters iodine-125, iridium-192, and gold-198. Permanent implants with low dose rates were contrasted with temporary implants with high-dose rates at an identical accumulative total dose across the study period (5-365 days). The three radioisotopes used allow to achieve sharply demonstrated necrotic volumes in the healthy tissue. Necrotic volume and side effects in terms of a vasogenic oedema can be influenced in dependence from the emitter applied. Dose absorption is nonlinear in the case of permanent implants due to perifocal mineralization. In cases of high-dose-rate implants, nonlinear dose absorption is of secondary importance. Opening of the blood-brain barrier resulting in a vasogenic oedema is the limiting factor for the tolerance of the healthy brain. Application of temporary high-dose-rate iodine-125 seeds is already one conclusion drawn from these experimental findings which is relevant to clinical application for the treatment of human brain tumours. (orig./MG)

  2. Correlation between effective dose and radiological risk: general concepts*

    Science.gov (United States)

    Costa, Paulo Roberto; Yoshimura, Elisabeth Mateus; Nersissian, Denise Yanikian; Melo, Camila Souza

    2016-01-01

    The present review aims to offer an educational approach related to the limitations in the use of the effective dose mgnitude as a tool for the quantification of doses resulting from diagnostic applications of ionizing radiation. We present a critical analysis of the quantities accepted and currently used for dosimetric evaluation in diagnostic imaging procedures, based on studies published in the literature. It is highlighted the use of these quantities to evaluate the risk attributed to the procedure and to calculate the effective dose, as well as to determine its correct use and interpretation.

  3. Correlation between effective dose and radiological risk: general concepts*

    Science.gov (United States)

    Costa, Paulo Roberto; Yoshimura, Elisabeth Mateus; Nersissian, Denise Yanikian; Melo, Camila Souza

    2016-01-01

    The present review aims to offer an educational approach related to the limitations in the use of the effective dose mgnitude as a tool for the quantification of doses resulting from diagnostic applications of ionizing radiation. We present a critical analysis of the quantities accepted and currently used for dosimetric evaluation in diagnostic imaging procedures, based on studies published in the literature. It is highlighted the use of these quantities to evaluate the risk attributed to the procedure and to calculate the effective dose, as well as to determine its correct use and interpretation. PMID:27403018

  4. Correlation between effective dose and radiological risk: general concepts

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Paulo Roberto; Yoshimura, Elisabeth Mateus; Nersissian, Denise Yanikian; Melo, Camila Souza, E-mail: pcosta@if.usp.br [Universidade de Sao Paulo (IF/USP), Sao Paulo, SP (Brazil). Instituto de Fisica

    2016-05-15

    The present review aims to offer an educational approach related to the limitations in the use of the effective dose magnitude as a tool for the quantification of doses resulting from diagnostic applications of ionizing radiation. We present a critical analysis of the quantities accepted and currently used for dosimetric evaluation in diagnostic imaging procedures, based on studies published in the literature. It is highlighted the use of these quantities to evaluate the risk attributed to the procedure and to calculate the effective dose, as well as to determine its correct use and interpretation. (author)

  5. Effective dose range for dental cone beam computed tomography scanners

    International Nuclear Information System (INIS)

    Objective: To estimate the absorbed organ dose and effective dose for a wide range of cone beam computed tomography scanners, using different exposure protocols and geometries. Materials and methods: Two Alderson Radiation Therapy anthropomorphic phantoms were loaded with LiF detectors (TLD-100 and TLD-100H) which were evenly distributed throughout the head and neck, covering all radiosensitive organs. Measurements were performed on 14 CBCT devices: 3D Accuitomo 170, Galileos Comfort, i-CAT Next Generation, Iluma Elite, Kodak 9000 3D, Kodak 9500, NewTom VG, NewTom VGi, Pax-Uni3D, Picasso Trio, ProMax 3D, Scanora 3D, SkyView, Veraviewepocs 3D. Effective dose was calculated using the ICRP 103 (2007) tissue weighting factors. Results: Effective dose ranged between 19 and 368 μSv. The largest contributions to the effective dose were from the remainder tissues (37%), salivary glands (24%), and thyroid gland (21%). For all organs, there was a wide range of measured values apparent, due to differences in exposure factors, diameter and height of the primary beam, and positioning of the beam relative to the radiosensitive organs. Conclusions: The effective dose for different CBCT devices showed a 20-fold range. The results show that a distinction is needed between small-, medium-, and large-field CBCT scanners and protocols, as they are applied to different indication groups, the dose received being strongly related to field size. Furthermore, the dose should always be considered relative to technical and diagnostic image quality, seeing that image quality requirements also differ for patient groups. The results from the current study indicate that the optimisation of dose should be performed by an appropriate selection of exposure parameters and field size, depending on the diagnostic requirements.

  6. On the biological basis for competing macroscopic dose descriptors for kilovoltage dosimetry: cellular dosimetry for brachytherapy and diagnostic radiology

    Science.gov (United States)

    Thomson, R. M.; Carlsson Tedgren, Å.; Williamson, J. F.

    2013-02-01

    The purpose of this work is to investigate how alternative macroscopic dose descriptors track absorbed dose to biologically relevant subcellular targets via Monte Carlo (MC) analysis of cellular models for a variety of cancerous and normal soft tissues for kilovoltage radiation. The relative mass distributions of water, light inorganic elements, and protein components of nuclear and cytoplasm compartments for various tissues are determined from a literature review. These data are used to develop representative cell models to demonstrate the range of mass elemental compositions of these subcellular structures encountered in the literature from which radiological quantities (energy absorption and attenuation coefficients; stopping powers) are computed. Using representative models of cell clusters, doses to subcellular targets are computed using MC simulation for photon sources of energies between 20 and 370 keV and are compared to bulk medium dose descriptors. It is found that cells contain significant and varying mass fractions of protein and inorganic elements, leading to variations in mass energy absorption coefficients for cytoplasm and nuclear media as large as 10% compared to water for sub-50 keV photons. Doses to subcellular structures vary by as much as 23% compared to doses to the corresponding average bulk medium or to small water cavities embedded in the bulk medium. Relationships between cellular target doses and doses to the bulk medium or to a small water cavity embedded in the bulk medium are sensitive to source energy and cell morphology, particularly for lower energy sources, e.g., low energy brachytherapy (water or the corresponding average bulk tissue. For kilovoltage photon sources, neither dose to bulk medium nor dose to water quantitatively tracks energy imparted to biologically relevant subcellular targets for the range of cellular morphologies and tissues considered.

  7. Evaluation of radiobiological effects in 3 distinct biological models

    International Nuclear Information System (INIS)

    on the field) for the study of biological effects of low doses of ionizing radiation, believing that there is a clear lack of data related with the biological effects of low doses of ionizing radiation. It is our goal to study the radiobiological effects of those levels of radiation - the medical imaging levels, that characterizes the Nuclear Medicine and Radiology typical environments. (authors)

  8. Biological Effect of Magnetic Field in Mice

    Institute of Scientific and Technical Information of China (English)

    Zhao-Wei ZENG

    2005-01-01

    Objective: To study the biological effect of magnetic field in mice bodies. Method: With a piece of permanent magnet embeded in mice bodies beside the femoral artery and vein to measure the electrophoretic velocity(um/s). Result: The magnetic field in mice bodies on the experiment group that the electrophoretic velocity is faster more than control and free group.Conclusion:The magnetic field in animal's body can raise the negative electric charges on the surface of erythrocyte to improve the microcirculation, this is the biological effect of magnetic field.

  9. Marijuana's dose-dependent effects in daily marijuana smokers.

    Science.gov (United States)

    Ramesh, Divya; Haney, Margaret; Cooper, Ziva D

    2013-08-01

    Active marijuana produces significant subjective, psychomotor, and physiological effects relative to inactive marijuana, yet demonstrating that these effects are dose-dependent has proven difficult. This within-subject, double-blind study was designed to develop a smoking procedure to obtain a marijuana dose-response function. In four outpatient laboratory sessions, daily marijuana smokers (N = 17 males, 1 female) smoked six 5-s puffs from 3 marijuana cigarettes (2 puffs/cigarette). The number of puffs from active (≥5.5% Δ⁹-tetrahydrocannabinol/THC) and inactive (0.0% THC) marijuana varied according to condition (0, 2, 4, or 6 active puffs); active puffs were always smoked before inactive puffs. Subjective, physiological, and performance effects were assessed prior to and at set time points after marijuana administration. Active marijuana dose-dependently increased heart rate and decreased marijuana craving, despite evidence (carbon monoxide expiration, weight of marijuana cigarettes post-smoking) that participants inhaled less of each active marijuana cigarette than inactive cigarettes. Subjective ratings of marijuana "strength," "high," "liking," "good effect," and "take again" were increased by active marijuana compared with inactive marijuana, but these effects were not dose-dependent. Active marijuana also produced modest, non-dose-dependent deficits in attention, psychomotor function, and recall relative to the inactive condition. In summary, although changes in inhalation patterns as a function of marijuana strength likely minimized the difference between dose conditions, dose-dependent differences in marijuana's cardiovascular effects and ratings of craving were observed, whereas subjective ratings of marijuana effects did not significantly vary as a function of dose. PMID:23937597

  10. Marijuana's dose-dependent effects in daily marijuana smokers.

    Science.gov (United States)

    Ramesh, Divya; Haney, Margaret; Cooper, Ziva D

    2013-08-01

    Active marijuana produces significant subjective, psychomotor, and physiological effects relative to inactive marijuana, yet demonstrating that these effects are dose-dependent has proven difficult. This within-subject, double-blind study was designed to develop a smoking procedure to obtain a marijuana dose-response function. In four outpatient laboratory sessions, daily marijuana smokers (N = 17 males, 1 female) smoked six 5-s puffs from 3 marijuana cigarettes (2 puffs/cigarette). The number of puffs from active (≥5.5% Δ⁹-tetrahydrocannabinol/THC) and inactive (0.0% THC) marijuana varied according to condition (0, 2, 4, or 6 active puffs); active puffs were always smoked before inactive puffs. Subjective, physiological, and performance effects were assessed prior to and at set time points after marijuana administration. Active marijuana dose-dependently increased heart rate and decreased marijuana craving, despite evidence (carbon monoxide expiration, weight of marijuana cigarettes post-smoking) that participants inhaled less of each active marijuana cigarette than inactive cigarettes. Subjective ratings of marijuana "strength," "high," "liking," "good effect," and "take again" were increased by active marijuana compared with inactive marijuana, but these effects were not dose-dependent. Active marijuana also produced modest, non-dose-dependent deficits in attention, psychomotor function, and recall relative to the inactive condition. In summary, although changes in inhalation patterns as a function of marijuana strength likely minimized the difference between dose conditions, dose-dependent differences in marijuana's cardiovascular effects and ratings of craving were observed, whereas subjective ratings of marijuana effects did not significantly vary as a function of dose.

  11. Effect of staff training on radiation dose in pediatric CT

    Energy Technology Data Exchange (ETDEWEB)

    Hojreh, Azadeh, E-mail: azadeh.hojreh@meduniwien.ac.at [Medical University of Vienna, Department of Biological Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Waehringer Guertel 18–20, A-1090 Vienna (Austria); Weber, Michael, E-mail: michael.Weber@Meduniwien.Ac.At [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Waehringer Guertel 18–20, A-1090 Vienna (Austria); Homolka, Peter, E-mail: peter.Homolka@Meduniwien.Ac.At [Medical University of Vienna, Centre for Medical Physics and Biomedical Engineering, Waehringer Guertel 18–20, A-1090 Vienna (Austria)

    2015-08-15

    Highlights: • Pediatric patient CT doses were compared before and after staff training. • Staff training increasing dose awareness resulted in patient dose reduction. • Application of DRL reduced number of CT's with unusually high doses. • Continuous education and training are effective regarding dose optimization. - Abstract: Objective: To evaluate the efficacy of staff training on radiation doses applied in pediatric CT scans. Methods: Pediatric patient doses from five CT scanners before (1426 scans) and after staff training (2566 scans) were compared statistically. Examinations included cranial CT (CCT), thoracic, abdomen–pelvis, and trunk scans. Dose length products (DLPs) per series were extracted from CT dose reports archived in the PACS. Results: A pooled analysis of non-traumatic scans revealed a statistically significant reduction in the dose for cranial, thoracic, and abdomen/pelvis scans (p < 0.01). This trend could be demonstrated also for trunk scans, however, significance could not be established due to low patient frequencies (p > 0.05). The percentage of scans performed with DLPs exceeding the German DRLs was reduced from 41% to 7% (CCT), 19% to 5% (thorax-CT), from 9% to zero (abdominal–pelvis CT), and 26% to zero (trunk; DRL taken as summed DRLs for thorax plus abdomen–pelvis, reduced by 20% accounting for overlap). Comparison with Austrian DRLs – available only for CCT and thorax CT – showed a reduction from 21% to 3% (CCT), and 15 to 2% (thorax CT). Conclusions: Staff training together with application of DRLs provide an efficient approach for optimizing radiation dose in pediatric CT practice.

  12. Effect of staff training on radiation dose in pediatric CT

    International Nuclear Information System (INIS)

    Highlights: • Pediatric patient CT doses were compared before and after staff training. • Staff training increasing dose awareness resulted in patient dose reduction. • Application of DRL reduced number of CT's with unusually high doses. • Continuous education and training are effective regarding dose optimization. - Abstract: Objective: To evaluate the efficacy of staff training on radiation doses applied in pediatric CT scans. Methods: Pediatric patient doses from five CT scanners before (1426 scans) and after staff training (2566 scans) were compared statistically. Examinations included cranial CT (CCT), thoracic, abdomen–pelvis, and trunk scans. Dose length products (DLPs) per series were extracted from CT dose reports archived in the PACS. Results: A pooled analysis of non-traumatic scans revealed a statistically significant reduction in the dose for cranial, thoracic, and abdomen/pelvis scans (p < 0.01). This trend could be demonstrated also for trunk scans, however, significance could not be established due to low patient frequencies (p > 0.05). The percentage of scans performed with DLPs exceeding the German DRLs was reduced from 41% to 7% (CCT), 19% to 5% (thorax-CT), from 9% to zero (abdominal–pelvis CT), and 26% to zero (trunk; DRL taken as summed DRLs for thorax plus abdomen–pelvis, reduced by 20% accounting for overlap). Comparison with Austrian DRLs – available only for CCT and thorax CT – showed a reduction from 21% to 3% (CCT), and 15 to 2% (thorax CT). Conclusions: Staff training together with application of DRLs provide an efficient approach for optimizing radiation dose in pediatric CT practice

  13. Mass effect of injected dose in small rodent imaging by SPECT and PET

    Energy Technology Data Exchange (ETDEWEB)

    Kung, M.-P. [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Kung, Hank F. [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States) and Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (United States)]. E-mail: kunghf@sunmac.spect.upenn.edu

    2005-10-01

    This paper discusses the effect of mass (chemical quantity) of injected dose on positron emission tomography (PET) and single-photon emission computed tomography (SPECT). Commonly, PET or SPECT imaging study uses a 'no-carrier added' dose, which contains a small amount of radioactive imaging agent (in picogram to microgram). For small animal (rodent) imaging studies, specifically targeting binding sites or biological processes, the mass (chemical quantity) in the dose may significantly modify the binding, pharmacokinetics and, ultimately, the imaging outcome. Due to differences in size and other physiological factors between humans and rodents, there is a dramatic divergence of mass effect between small animal and human imaging study. In small animal imaging studies, the mass, or effective dose (ED{sub 50}), a dose required for 50% of receptor or binding site occupancy, is usually not directly related to binding potential (B {sub max}/K {sub d}) (measured by in vitro binding assay). It is likely that dynamic interplays between specific and nonspecific binding in blood circulation, transient lung retention, kidney excretion, liver-gallbladder flow, soft tissue retention as well as metabolism could each play a significant role in determining the concentration of the tracer in the target regions. When using small animal imaging for studying drug occupancy (either by a pretreatment, coinjection or chasing dose), the mass effects on imaging outcome are important factors for consideration.

  14. Establishment of a semi-biological phantom model for the study of the effect of dose reducing measures on radiation-induced DNA double strand breaks in CT using the example of risk organ based tube current modulation; Etablierung eines semibiologischen Phantommodells zur Untersuchung des Effekts dosisreduzierender Massnahmen auf strahleninduzierte DNA-Doppelstrangbrueche in der CT am Beispiel der risikoorganbasierten Roehrenstrommodulation

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Matthias

    2013-12-12

    The number of computed tomography (CT) examinations has been rising during the last decades. Therefore techniques for dose reduction receive increasing attention. Risk organ-based tube current modulation (RCM) in CT is a new approach and works by lowering the tube current, while the tube is in front of the patient's body. Therefore it should lead to a dose reduction for radiosensitive organs like the female breast, the eye lenses and the thyroid gland. Biological radiation effects cannot be estimated by physical-based dose measurements. γ-H2AX is a sensitive marker for the determination of x-ray induced DNA double-strand breaks (DSB). Hence the aim of this study was to establish a biological phantom model based on the γ-H2AX immunofluorescence microscopy method and to investigate the effect of RCM on radiation induced DNA damages. The γ-H2AX method is based on the phosphorylation of the histone variant H2AX. The phosphorylated histone γ-H2AX can be visualised using antibodies and is specific for radiation induced DSB. Blood lymphocytes from healthy volunteers, skin fibroblasts (LN) and mammary epithelial cells (HMEpC-p) were placed in different positions of an Alderson-phantom and exposed to x-rays using a 128-slice dual-source CT scanner. Standard head, neck and chest-CT scan protocols either with or without risk-organ based tube current modulation were used. RCM reduces the tube current to 20 percent at an angle of 130 degree anterior to the body, whereas tube current is increased at an angle of 230 degree posterior to the body. Afterwards cells were isolated, fixed on slides und stained with specific primary γ-H2AX antibodies and fluorescent secondary antibodies. Tiny green dots (named foci) can be detected and quantified with a fluorescence microscope and represent distinct DSB. Non-irradiated samples served as controls and CT-induced DSB were calculated by subtraction of pre- from post-exposure values. In this study a semibiological phantom model

  15. Biological effectiveness of neutrons: Research needs

    International Nuclear Information System (INIS)

    The goal of this report was to provide a conceptual plan for a research program that would provide a basis for determining more precisely the biological effectiveness of neutron radiation with emphasis on endpoints relevant to the protection of human health. This report presents the findings of the experts for seven particular categories of scientific information on neutron biological effectiveness. Chapter 2 examines the radiobiological mechanisms underlying the assumptions used to estimate human risk from neutrons and other radiations. Chapter 3 discusses the qualitative and quantitative models used to organize and evaluate experimental observations and to provide extrapolations where direct observations cannot be made. Chapter 4 discusses the physical principles governing the interaction of radiation with biological systems and the importance of accurate dosimetry in evaluating radiation risk and reducing the uncertainty in the biological data. Chapter 5 deals with the chemical and molecular changes underlying cellular responses and the LET dependence of these changes. Chapter 6, in turn, discusses those cellular and genetic changes which lead to mutation or neoplastic transformation. Chapters 7 and 8 examine deterministic and stochastic effects, respectively, and the data required for the prediction of such effects at different organizational levels and for the extrapolation from experimental results in animals to risks for man. Gaps and uncertainties in this data are examined relative to data required for establishing radiation protection standards for neutrons and procedures for the effective and safe use of neutron and other high-LET radiation therapy

  16. Biological effectiveness of neutrons: Research needs

    Energy Technology Data Exchange (ETDEWEB)

    Casarett, G.W.; Braby, L.A.; Broerse, J.J.; Elkind, M.M.; Goodhead, D.T.; Oleinick, N.L.

    1994-02-01

    The goal of this report was to provide a conceptual plan for a research program that would provide a basis for determining more precisely the biological effectiveness of neutron radiation with emphasis on endpoints relevant to the protection of human health. This report presents the findings of the experts for seven particular categories of scientific information on neutron biological effectiveness. Chapter 2 examines the radiobiological mechanisms underlying the assumptions used to estimate human risk from neutrons and other radiations. Chapter 3 discusses the qualitative and quantitative models used to organize and evaluate experimental observations and to provide extrapolations where direct observations cannot be made. Chapter 4 discusses the physical principles governing the interaction of radiation with biological systems and the importance of accurate dosimetry in evaluating radiation risk and reducing the uncertainty in the biological data. Chapter 5 deals with the chemical and molecular changes underlying cellular responses and the LET dependence of these changes. Chapter 6, in turn, discusses those cellular and genetic changes which lead to mutation or neoplastic transformation. Chapters 7 and 8 examine deterministic and stochastic effects, respectively, and the data required for the prediction of such effects at different organizational levels and for the extrapolation from experimental results in animals to risks for man. Gaps and uncertainties in this data are examined relative to data required for establishing radiation protection standards for neutrons and procedures for the effective and safe use of neutron and other high-LET radiation therapy.

  17. Evaluation of iodide deficiency in the lactating rat and pup using a biologically based dose-response model

    Science.gov (United States)

    A biologically-based dose response (BBDR) model for the hypothalamic-pituitary thyroid (BPT) axis in the lactating rat and nursing pup was developed to describe the perturbations caused by iodide deficiency on the HPT axis. Model calibrations, carried out by adjusting key model p...

  18. Evaluation of iodide deficiency in the lactating rat and pup using a biologically based dose response (BBDR) Model***

    Science.gov (United States)

    A biologically-based dose response (BBDR) model for the hypothalamic-pituitary thyroid (HPT) axis in the lactating rat and nursing pup was developed to describe the perturbations caused by iodide deficiency on the 1-IPT axis. Model calibrations, carried out by adjusting key model...

  19. Spatial interpolation of biologically effective UV radiation over Poland

    Science.gov (United States)

    Walawender, J.; Ustrnul, Z.

    2010-09-01

    The ultraviolet(UV) radiation plays an important role in the Earth-Atmosphere System. It has a positive influence on both human health and natural environment but it may also be very harmful if UV exposure exceeds "safe" limits. For that reason knowledge about spatial distribution of biologically effective UV doses seems to be crucial in minimization or complete elimination of the negative UV effects. The main purpose of this study is to find the most appropriate interpolation method in order to create reliable maps of the biologically effective UV radiation over Poland. As the broadband UV measurement network in Poland is very sparse, erythemaly weighted UV radiation data reconstructed from homogeneous global solar radiation records were used. UV reconstruction model was developed in Centre of Aerology (Institute of Meteorology and Water Management) within COST Action 726 - ‘Long term changes and climatology of UV radiation over Europe'. The model made it possible to reconstruct daily erythemal UV doses for 21 solar radiation measurement stations in the period 1985 - 2008. Mapping methodology included the following processing steps: exploratory spatial data analysis, verification of additional variables, selection and parameterization of interpolation model, accuracy assessment and cartographic visualization. Several different stochastic and deterministic interpolation methods along with various empirical semivariogram models were tested. Multiple regression analysis was performed in order to examine statistical relationship between UV radiation and additional environmental variables such as: elevation, latitude, stratospheric ozone content and cloud cover. The data were integrated, processed and visualized within GIS environment.

  20. Health effects of daily airborne particle dose in children: Direct association between personal dose and respiratory health effects

    International Nuclear Information System (INIS)

    Air pollution is a widespread health problem associated with respiratory symptoms. Continuous exposure monitoring was performed to estimate alveolar and tracheobronchial dose, measured as deposited surface area, for 103 children and to evaluate the long-term effects of exposure to airborne particles through spirometry, skin prick tests and measurement of exhaled nitric oxide (eNO). The mean daily alveolar deposited surface area dose received by children was 1.35 × 103 mm2. The lowest and highest particle number concentrations were found during sleeping and eating time. A significant negative association was found between changes in pulmonary function tests and individual dose estimates. Significant differences were found for asthmatics, children with allergic rhinitis and sensitive to allergens compared to healthy subjects for eNO. Variation is a child's activity over time appeared to have a strong impact on respiratory outcomes, which indicates that personal monitoring is vital for assessing the expected health effects of exposure to particles. -- Highlights: •Particle dose was estimated through personal monitoring on more than 100 children. •We focused on real-time daily dose of particle alveolar deposited surface area. •Spirometry, skin prick and exhaled Nitric Oxide tests were performed. •Negative link was found between changes in pulmonary functions and individual doses. •A child's lifestyle appeared to have a strong impact on health respiratory outcomes. -- The respiratory health effects of daily airborne particle dose on children through personal monitoring

  1. The effect of low-dose spironolactone on resistant hypertension

    DEFF Research Database (Denmark)

    Engbaek, Mette; Hjerrild, Mette; Hallas, Jesper;

    2010-01-01

    Our objective was to estimate the effect of addition of low-dose spironolactone to previous antihypertensive therapy in patients with resistant hypertension. Patients had 25 to 50 mg of spironolactone once daily added to the treatment of hypertension that was uncontrolled despite previous treatment...... with three classes of antihypertensive drugs. The effect on blood pressure was estimated by office measurements together with serum potassium and adverse effects. The data were analyzed retrospectively. A total of 544 patients were identified; 200 were excluded because of secondary hypertension, other......-dose spironolactone is highly effective when added to previous treatment of patients with resistant hypertension....

  2. Nuclear energy: biological effects and environmental impact

    International Nuclear Information System (INIS)

    This thesis is concerned with the large development of nuclear power plants and the recent nuclear catastrophe which has made clear how the hazards resulting from radioactivity affect public health and the environment. Environmental effects of nuclear power plants operating in normal conditions are small, but to obtain nuclear power plants of reduced radioactivity, optimization of their design, construction, operation and waste processing plays a decisive role. Biological effects of ionizing radiations and environmental impacts of Nuclear Power plants are developed

  3. II. Biological studies of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.H.

    1948-05-24

    With the completion of the 184 inch cyclotron in Berkeley and the successful construction of a deflector system, it was possible to bring the 190 Mev deuteron and the 380 Mev alpha beams out into the air and to begin a study of the effects of high-energy deuteron beams by direct irradiation of biological specimens. The direct biological use of deuteron beams was attempted earlier in Berkeley by Marshak, MacLeish, and Walker in 1940. These and other investigators have been aware for some time of the potential usefulness of high energy particle beams for radio-biological studies and their suitability for biological investigations. R.R. Wilson advanced the idea of using fast proton beams to deliver radiation and intervening tissues. R.E. Zirkle pointed out that such particle beams may be focused or screened until a cross-section of the beam is small enough to study effects of irradiation under the microscope on single cells or on parts of single cells. This article gives an overview of the radiological use of high energy deuteron beams, including the following topics: potential uses of high energy particle beams; experiments on the physical properties of the beam; lethal effect of the deuteron beam on mice.

  4. EFFECTS OF FOCUS FILM DISTANCE (FFD) VARIATION ON ENTRANCE TESTICULAR DOSE IN LUMBAR-PELVIC RADIOGRAPHY

    OpenAIRE

    Dilger, Ron; Egan, Ingrid; Hayek, Ray

    1997-01-01

    Introduction: With the steady increase in public and professional concern regarding the biological effects of ionising radiation, there is a need for both the Chiropractic and Radiography professions to improve imaging techniques for the lowering of patient radiation doses. Lumbar radiographs are essential in chiropractic general practice for biomechanical diagnosis and postural analysis. Detailed anatomical measurements are taken from spinal radiographs for the determination of various biome...

  5. Lunar biological effects and the magnetosphere.

    Science.gov (United States)

    Bevington, Michael

    2015-12-01

    The debate about how far the Moon causes biological effects has continued for two millennia. Pliny the Elder argued for lunar power "penetrating all things", including plants, fish, animals and humans. He also linked the Moon with tides, confirmed mathematically by Newton. A review of modern studies of biological effects, especially from plants and animals, confirms the pervasive nature of this lunar force. However calculations from physics and other arguments refute the supposed mechanisms of gravity and light. Recent space exploration allows a new approach with evidence of electromagnetic fields associated with the Earth's magnetotail at full moon during the night, and similar, but more limited, effects from the Moon's wake on the magnetosphere at new moon during the day. The disturbance of the magnetotail is perhaps shown by measurements of electric fields of up to 16V/m compared with the usual electromagnetic radiation are known to affect animals and 10-20% of the human population. There is now evidence for mechanisms such as calcium flux, melatonin disruption, magnetite and cryptochromes. Both environmental and receptor variations explain confounding factors and inconsistencies in the evidence. Electromagnetic effects might also account for some evolutionary changes. Further research on lunar biological effects, such as acute myocardial infarction, could help the development of strategies to reduce adverse effects for people sensitive to geomagnetic disturbance. PMID:26462435

  6. Dose calculation in biological samples in a mixed neutron-gamma field at the TRIGA reactor of the University of Mainz

    DEFF Research Database (Denmark)

    Schmitz, T.; Blaickner, M.; Schütz, C.;

    2010-01-01

    and pin-diodes. Material and methods. When L-α-alanine is irradiated with ionizing radiation, it forms a stable radical which can be detected by electron spin resonance (ESR) spectroscopy. The value of the ESR signal correlates to the amount of absorbed dose. The dose for each pellet is calculated using...... biological effectiveness (RBE) of liver and cancer cells in our mixed neutron and gamma field. We work with alanine detectors in combination with Monte Carlo simulations, where we can measure and characterize the dose. To verify our calculations we perform neutron flux measurements using gold foil activation...... to the neutron fluence directly. Results and discussion. Gold foil activation and the pin-diode are reliable fluence measurement systems for the TRIGA reactor, Mainz. Alanine dosimetry of the photon field and charged particle field from secondary reactions can in principle be carried out in combination with MC-calculations...

  7. Fundamental studies on the radiation chemical dose-response with use of thymine. Is activation of the surface between radiation biology and radiation chemistry possible?

    International Nuclear Information System (INIS)

    The review described the importance and difficulty of radiation chemical assessment of dose-response. The assessment has the tasks of the unit, low dose region evaluation and direct/indirect effects in biology. The authors' vacuum evaporated thymine for G-value determination is appropriate for XANES (X-ray absorption near edge structures) measurement with monochromic ultrasoft X-rays (-550 eV photon) generated by SPring-8. However, the data of yielded thymine derivatives as well as those yielded after 60Co γ-ray (1.5 MeV photon) irradiation are not suitable for direct application in DNA damage evaluation of living cells due to trans-scientific uncertainty. Efforts are required for reducing the uncertainty present in dose-response assessment. (K.H.)

  8. Dose-effect relationships for the US radium dial painters

    International Nuclear Information System (INIS)

    Dose-response data are presented from a large percentage of the US workers who were exposed to radium through the painting of luminous dials. The data in this paper are only from females, because very few males worked in this occupation. Log-normal analyses were done for radium-induced bone sarcomas and head carcinomas after the populations of the respective doses were first determined to be log-normally distributed. These populations included luminisers who expressed no radium-related cancerous condition. In this study of the female radium luminisers, the most important data concerning radiation protection are probably from workers who were exposed to radium but showed no cancer incidence. A total of 1391 subjects with average measured skeletal doses below 10 Gy are in this category. A primary purpose is to illustrate the strong case that 226,228Ra is representative of those radionuclides that exemplify in humans a 'threshold' dose, a dose below which there has been no observed health effects on the exposed individual. Application of a threshold dose for radium deposited in the skeleton does not mean to imply that any other source of skeletal irradiation should be considered to follow a similar pattern. Second, a policy issue that begs for attention is the economic consequence of forcing radiation to appear as a highly toxic insult. It is time to evaluate the data objectively instead of formatting the extrapolation scheme beforehand and forcing the data to fit a preconceived pattern such as linearity through the dose-effect origin. In addition, it is time to re-evaluate (again) variations in background radiation levels throughout the world and to cease being concerned with, and regulating against, miniscule doses for which no biomedical effects on humans have ever been satisfactorily identified or quantified. (author)

  9. Scientific projection paper on biologic effects of ionizing radiation

    International Nuclear Information System (INIS)

    There is widespread knowledge about the effects of radiation in human populations but the studies have had some limitations which have left gaps in our knowledge. Most populations have had exposure to high doses with little information on the effect of dose rate. The characteristics of the populations have been restricted by the location of the disaster, the occupational limitations, or the basic risks associated with the under-lying disease for which radiation was given. All doses have been estimated and such values are subject to marked variability particularly when they rely on sources of data such as hospital records. The biological data although extensive have several deficits in information. Which are the sites in which cancer is produced by irradiation and what are the cell types which are produced. The sensitivity of various tissues and organs are not similar and it is important to rank them according to susceptibility. This has been done in the past but the results are not complete for all cell types and organs. The temporal patterns for tumor development, the latent period, the period of expressed excess, the life-time risks need to be defined more precisely for the cancers. Many populations have not been followed long enough to express the complete risk

  10. Cost-effectiveness of reduction of off-site dose

    International Nuclear Information System (INIS)

    Since the early 1970's, nuclear power plants have been designed and operated with a target of not releasing more than one percent of the licensed limits (derived emission limits) in liquid and gaseous effluents. The AECB initiated this study of the cost-effectiveness of the reduction of off-site doses as part of a review to determine if further measures to reduce off-site doses might be reasonably achievable. Atlantic Nuclear has estimated the cost of existing technology options that can be applied for a further reduction of radioactive effluents from future CANDU nuclear power plants. Detritiation, filtration, ion exchange and evaporation are included in the assessment. The costs are presented in 1987 Canadian dollars, and include capital and operating costs for a reference 50 year plant life. Darlington NGS and Point Lepreau NGS are the reference nuclear power plant types and locations. The effect resulting from the hypothetical application of each technology has been calculated as the resulting reduction in world collective radiation dose detriment. The CSA N288.1 procedure was used for local pathway analysis and the global dispersion model developed by the NEA (OECD) group of experts was used for dose calculations. The reduction in the 'collective effective dose equivalent commitment' was assumed to exist for 10,000 years, the expected life-span of solid waste repositories. No attempt was made to model world population dynamics. The collective dose reductions were calculated for a nominal world population of 10 billion persons. The estimated cost and effect of applying the technology options are summarized in a tabular form for input to further consideration of 'reasonably achievable off-site dose levels'

  11. Thermal dose requirement for tissue effect: experimental and clinical findings

    Science.gov (United States)

    Dewhirst, Mark; Viglianti, Benjamin L.; Lora-Michiels, Michael; Hoopes, P. Jack; Hanson, Margaret A.

    2003-06-01

    In this review we have summarized the basic principles that govern the relationships between thermal exposure (temperature and time of exposure) and thermal damage, with an emphasis on normal tissue effects. We have also attempted to identify specific thermal dose information (for safety and injury) for a variety of tissues in a variety of species. We address the use, accuracy and difficulty of conversion of an individual time and temperature (thermal dose) to a standardized value (eg equivalent minutes at 43degC) for comparison of thermal treatments. Although, the conversion algorithm appears to work well within a range of moderately elevated temperatures (2-15degC) above normal physiologic baseline (37-39degC) there is concern that conversion accuracy does not hold up for temperatures which are minimally or significantly above baseline. An extensive review of the literature suggests a comprehensive assessment of the "thermal dose-to-tissue effect" has not previously been assembled for most individual tissues and never been viewed in a semi-comprehensive (tissues and species) manner. Finally, we have addressed the relationship of thermal dose-to-effect vs. baseline temperature. This issues is important since much of the thermal dose-to-effect information has been accrued in animal models with baseline temperatures 1-2 deg higher than that of humans.

  12. Soil biochar amendments: type and dose effects

    Science.gov (United States)

    Ojeda, G.; Domene, X.; Mattana, S.; Sousa, J. P.; Ortiz, O.; Andres, P.; Alcañiz, J. M.

    2012-04-01

    Biochar is an organic material produced via the pyrolysis of C-based biomass, which is increasingly being recognized by scientists and policy makers for its potential role in carbon sequestration, reducing greenhouse gas emissions, waste mitigation, and as a soil amendment. Recent studies indicated that biochar improves soil fertility through its positive influence on physical-chemical properties, since not only improves water retention, aggregation and permeability, but its high charge density can also hold large amounts of nutrients, increasing crop production. However, it was observed that combustion temperature could affects the degree of aromaticity and the size of aromatic sheets, which in turns determine short-term mineralization rates. To reconcile the different decompasibility observations of biochar, it has sugested that physical protection and interactions with soil minerals play a significant part in biochar stability. In this context, it has initiated one pilot studies which aims to assess the effects of biochar application on physical and chemical properties of agricultural soil under Mediterranean conditions, such as changes in aggregate formation, intra-aggregate carbon sequestration and chemistry of soil water. In the present study, different clases of biochar produced from fast, slow and gasification pyrolisis of vegetal (pine, poplar) and dried sludge biomass, were applied at 1% of biochar-C to mesocosmos of an agricultural soil. Preliminary, it must be pointed out that slow and gasification pyrolisis changes the proportion of particles < 2 mm in diameter, from 10% (original materials) to almost 100%. In contrast, slow pyrolisis not modifies significantly biochar granulometry. As a consequence, bulk density of poplar and pine splinters decreases after fast pyrolisis. Regarding to organic carbon contents of biochar, all biochars obtained from plant biomass presented percentagens of total organic carbon (TOC) between 70 - 90%, while biochar

  13. Generic Biologic Drugs Seem as Effective as Originals

    Science.gov (United States)

    ... news/fullstory_160183.html Generic Biologic Drugs Seem as Effective as Originals Biologics are made from living cells and ... treating rheumatoid arthritis, inflammatory bowel disease and psoriasis, a new study says. Biologics are medications made from ...

  14. Dose-dependent Effects of mTOR Inhibition on Weight and Mitochondrial Disease in Mice

    Directory of Open Access Journals (Sweden)

    Simon C Johnson

    2015-07-01

    Full Text Available Rapamycin extends lifespan and attenuates age-related pathologies in mice when administered through diet at 14 parts per million (PPM. Recently, we reported that daily intraperitoneal injection of rapamycin at 8 mg/kg attenuates mitochondrial disease symptoms and progression in the Ndufs4 knockout mouse model of Leigh Syndrome. Although rapamycin is a widely used pharmaceutical agent dosage has not been rigorously examined and no dose-response profile has been established. Given these observations we sought to determine if increased doses of oral rapamycin would result in more robust impact on mTOR driven parameters. To test this hypothesis, we compared the effects of dietary rapamycin at doses ranging from 14 to 378 PPM on growth in control and Ndufs4 knockout mice and on health and survival in the Ndufs4 knockout model. High dose rapamycin was well tolerated, dramatically reduced growth, and overcame gender differences. The highest oral dose, approximately 27-times the dose shown to extend murine lifespan, increased survival in Ndufs4 knockout mice similarly to daily rapamycin injection without observable adverse effects. These findings have broad implications for the effective use of rapamycin in murine studies and for the translational potential of rapamycin in the treatment of mitochondrial disease. This data, further supported by a comparison of available literature, suggests that 14 PPM dietary rapamycin is a sub-optimal dose for targeting mTOR systemically in mice. Our findings suggest that the role of mTOR in mammalian biology may be broadly underestimated when determined through treatment with rapamycin at commonly used doses.

  15. Evaluation of the effective dose and image quality of low-dose multi-detector CT for orthodontic treatment planning

    International Nuclear Information System (INIS)

    This study was designed to compare the effective doses from low-dose and standard-dose multi-detector CT (MDCT) scanning protocols and evaluate the image quality and the spatial resolution of the low-dose MDCT protocols for clinical use. 6-channel MDCT scanner (Siemens Medical System, Forschheim, Germany), was used for this study. Protocol of the standard-dose MDCT for the orthodontic analysis was 130 kV, 35 mAs, 1.25 mm slice width, 0.8 pitch. Those of the low-dose MDCT for orthodontic analysis and orthodontic surgery were 110 kV, 30 mAs, 1.25 mm slice width, 0.85 pitch and 110 kV, 45 mAs, 2.5 mm slice width, 0.85 pitch. Thermoluminescent dosimeters (TLDs) were placed at 31 sites throughout the levels of adult female ART head and neck phantom. Effective doses were calculated according to ICRP 1990 and 2007 recommendations. A formalin-fixed cadaver and AAPM CT performance phantom were scanned for the evaluation of subjective image quality and spatial resolution. Effective doses in μSv (E2007) were 699.1, 429.4 and 603.1 for standard-dose CT of orthodontic treatment, low-dose CT of orthodontic analysis, and low-dose CT of orthodontic surgery, respectively. The image quality from the low-dose protocol were not worse than those from the standard-dose protocol. The spatial resolutions of both standard-dose and low-dose CT images were acceptable. From the above results, it can be concluded that the low-dose MDCT protocol is preferable in obtaining CT images for orthodontic analysis and orthodontic surgery.

  16. Mechanistic Effects of Calcitriol in Cancer Biology

    Directory of Open Access Journals (Sweden)

    Lorenza Díaz

    2015-06-01

    Full Text Available Besides its classical biological effects on calcium and phosphorus homeostasis, calcitriol, the active vitamin D metabolite, has a broad variety of actions including anticancer effects that are mediated either transcriptionally and/or via non-genomic pathways. In the context of cancer, calcitriol regulates the cell cycle, induces apoptosis, promotes cell differentiation and acts as anti-inflammatory factor within the tumor microenvironment. In this review, we address the different mechanisms of action involved in the antineoplastic effects of calcitriol.

  17. Effective dose and risks from medical x-ray procedures

    International Nuclear Information System (INIS)

    The radiation risks from a range of medical x-ray examinations (radiography, fluoroscopy, and computed tomography) were assessed as a function of the age and sex of the patient using risk models described in Publication 103 (ICRP, 2007) and UNSCEAR (2006, Annex A). Such estimates of risk based on typical organ doses were compared with those derived from effective doses using the International Commission on Radiological Protection’s nominal risk coefficients. Methodologically similar but not identical dose and risk calculations were performed independently at the Institute of Radiation Hygiene (Russia) and the Health Protection Agency (UK), and led to similar conclusions. The radiogenic risk of stochastic health effects following various x-ray procedures varied significantly with the patient’s age and sex, but to differing degrees depending on which body organs were irradiated. In general, the risks of radiation-induced stochastic health effects in children are estimated to be higher (by a factor of ⩽4) than in adults, and risks in senior patients are lower by a factor of ⩾10 relative to younger people. If risks are assessed on the basis of effective dose, they are underestimated for children of both sexes by a factor of ⩽4. This approach overestimates risks by a factor of ⩽3 for adults and about an order of magnitude for senior patients. The significant sex and age dependence of radiogenic risk for different cancer types is an important consideration for radiologists when planning x-ray examinations. Whereas effective dose was not intended to provide a measure of risk associated with such examinations, it may be sufficient to make simple adjustments to the nominal risk per unit effective dose to account for age and sex differences.

  18. Effects of dose, dose-rate and fraction on radiation-induced breast and lung cancers

    International Nuclear Information System (INIS)

    Recent results from a large Canadian epidemiologic cohort study of low-LET radiation and cancer will be described. This is a study of 64,172 tuberculosis patients first treated in Canada between 1930 and 1952, of whom many received substantial doses to breast and lung tissue from repeated chest fluoroscopies. The mortality of the cohort between 1950 and 1987 has been determined by computerized record linkage to the National Mortality Data Base. There is a strong positive association between radiation and breast cancer risk among the females in the cohort, but in contrast very little evidence of any increased risk in lung cancer. The results of this and other studies suggest that the effect of dose-rate and/or fractionation on cancer risk may will differ depending upon the particular cancer being considered. (author)

  19. Predicted effects of countermeasures on radiation doses from contaminated food

    International Nuclear Information System (INIS)

    Quantitative assessments of the effects on radiation-dose reductions from nine typical countermeasures against accidental fod contamination have been carried out with dynamic radioecological models. The foodstuffs are assumed to be contaminated with iodine-131, caesium-134 and caesium-137 after a release of radioactive materials from the Ringhals nuclear power station in Sweden resulting from a hypothetical core melt accident. The release of activity of these radionuclides is assumed at 0.07% of the core inventory of the unit 1 reactor (1600 TBq of I-131, 220 TBq of Cs-134 and 190 TBq of Cs-137). Radiation doses are estimated for the 55,000 affected inhabitants along the south-eastern coast of Sweden eating locally produced foodstuffs. The average effective dose equivalent to an individual in the critical group is predicted to be 2.9 mSv from food consumption contaminated with I-131. An accident occurring during winter is estimated to cause average individual doses of 0.32 mSv from Cs-134 and 0.47 mSv from Cs-137, and 9.4 mSv and 6.8 mSv from Cs-134 and Cs-137, respectively, for an accident occurring during summer. Doses from the intake of radioiodine may be reduced by up to a factor of 60 by rejecting contaminated food for 30 days. For the doses from radiocaesium, the largest effect is found form deep ploughing which may reduce the dose by up to a factor of 80. (au) (12 tabs., 6 ills., 19 refs.)

  20. Effect of low dose ionizing radiation upon concentration of

    Energy Technology Data Exchange (ETDEWEB)

    Viliae, M.; Kraljeviae, P.; Simpraga, M.; Miljaniae, S.

    2004-07-01

    It is known that low dose ionizing radiation might have stimulating effects (Luckey, 1982, Kraljeviae, 1988). This fact has also been confirmed in the previous papers of Kraljeviae et al. (2000-2000a; 2001). Namely, those authors showed that irradiation of chicken eggs before incubation by a low dose of 0.15 Gy gamma radiation increases the activity aspartateaminotrasferases (AST) and alanine-aminotransferases (ALT) in blood plasma of chickens hatched from irradiated eggs, as well as growth of chickens during the fattening period. Low doses might also cause changes in the concentration of some biochemical parameters in blood plasma of the same chickens such as changes in the concentration of total proteins, glucose and cholesterol. In this paper, an attempt was made to investigate the effects of low dose gamma radiation upon the concentration of sodium and potassium in the blood plasma of chickens which were hatched from eggs irradiated on the 19th day of incubation by dose of 0.15 Gy. Obtained results were compared with the results from the control group (chickens hatched from nonirradiated eggs). After hatching, all other conditions were the same for both groups. Blood samples were drawn from heart, and later from the wing vein on days 1, 3, 5, 7, 10, 20, 30 and 42. The concentration of sodium and potassium was determined spectrophotometrically by atomic absorbing spectrophotometer Perkin-Elmer 1100B. The concentration of sodium and potassium in blood plasma of chickens hatched from eggs irradiated on the 19th day of incubation by dose of 0.15 Gy indicated a statistically significant increase (P>0.01) only on the first day of the experiment. Obtained results showed that irradiation of eggs on the 19th day of incubation by dose of 0.15 Gy gamma radiation could have effects upon the metabolism of electrolytes in chickens. (Author)

  1. Extrapyramidal side effects with low doses of amisulpride.

    Science.gov (United States)

    Mandal, Nikhiles; Singh, Om P; Sen, Subrata

    2014-04-01

    Amisulpride, the newly introduced antipsychotic in India, is claimed to be effective in both positive and negative symptom schizophrenia and related disorders, though it has little or no action on serotonergic receptors. Limbic selectivity and lower striatal dopaminergic receptor binding capacity causes very low incidence of EPS. But, in clinical practice, we are getting EPS with this drug even at lower doses. We have reported three cases of akathisia, acute dystonia, and drug-induced Parkinsonism with low doses of amisulpride. So, we should keep this side effect in mind when using amisulpride. In fact, more studies are required in our country to find out the incidence of EPS and other associated mechanism.

  2. Effective UV radiation dose in polyethylene exposed to weather

    Science.gov (United States)

    González-Mota, R.; Soto-Bernal, J. J.; Rosales-Candelas, I.; Calero Marín, S. P.; Vega-Durán, J. T.; Moreno-Virgen, R.

    2009-09-01

    In this work we quantified the effective UV radiation dose in orange and colorless polyethylene samples exposed to weather in the city of Aguascalientes, Ags. Mexico. The spectral distribution of solar radiation was calculated using SMART 2.9.5.; the samples absorption properties were measured using UV-Vis spectroscopy and the quantum yield was calculated using samples reflectance properties. The determining factor in the effective UV dose is the spectral distribution of solar radiation, although the chemical structure of materials is also important.

  3. Pulsed total dose damage effect experimental study on EPROM

    International Nuclear Information System (INIS)

    Nowadays, memory radiation effect study mainly focus on functionality measurement. Measurable parameters is few in china. According to the present situation, threshold voltage testing method was presented on floating gate EPROM memory. Experimental study of pulsed total dose effect on EPROM threshold voltage was carried out. Damage mechanism was analysed The experiment results showed that memory cell threshold voltage negative shift was caused by pulsed total dose, memory cell threshold voltage shift is basically coincident under steady bias supply and no bias supply. (authors)

  4. THz waves: biological effects, industrial and medical

    International Nuclear Information System (INIS)

    Following the debates about body scanners installed in airports for passengers security control, the non-ionizing radiations (NIR) section of the French radiation protection society (SFR) has organized a conference day to take stock of the present day knowledge about the physical aspects and the biological effects of this frequency range as well as about their medical, and industrial applications (both civil and military). This document gathers the slides of the available presentations: 1 - introduction and general considerations about THz waves, the THz physical phenomenon among NIR (J.L. Coutaz); 2 - interaction of millimeter waves with living material: from dosimetry to biological impacts (Y. Le Drean and M. Zhadobov); 3 - Tera-Hertz: standards and recommendations (B. Veyret); 4 - THz spectro-imaging technique: status and perspectives (P. Mounaix); 5 - THz technology: seeing the invisible? (J.P. Caumes); 6 - Tera-Hertz: biological and medical applications (G. Gallot); 7 - Biological applications of THz radiation: a review of events and a glance to the future (G.P. Gallerano); 8 - Industrial and military applications - liquids and solids detection in the THz domain (F. Garet); 9 - THz radiation and its civil and military applications - gas detection and quantifying (G. Mouret); 10 - Body scanners and civil aviation security (J.C. Guilpin, presentation not available). (J.S.)

  5. Biological radiation dose from secondary particles in a Milky Way gamma ray burst

    CERN Document Server

    Atri, Dimitra; Karam, Andrew

    2013-01-01

    Gamma ray bursts (GBRs) are a class of highly energetic explosions emitting radiation in a very short timescale of a few seconds and with a very narrow opening angle. Although, all GRBs observed so far are extragalactic in origin, there is a high probability of a GRB of galactic origin beaming towards the Earth in the past ~ 0.5 Gyr. Such an intense burst of gamma rays would ionize the atmosphere and deplete the ozone layer. With depleted ozone, there will be an increased flux of solar UVB on the Earth\\~Os surface with harmful biological effects. In addition to the atmospheric damage, secondary particles produced by gamma ray-induced showers will reach the surface. Amongst all secondary particles, muons dominate the ground-level secondary particle flux (99% of the total number of particles) and are potentially of biological significance. Using the Monte Carlo simulation code CORSIKA, we modeled the air showers produced by gamma ray primaries up to 100 GeV. We found that the number of muons produced by hypothe...

  6. SU-E-T-500: Dose Escalation Strategy for Lung Cancer Patients Using a Biologically- Guided Target Definition

    International Nuclear Information System (INIS)

    Purpose: Dose escalation strategy for lung cancer patients can lead to late symptoms such as pneumonitis and cardiac injury. We propose a strategy to increase radiation dose for improving local tumor control while simultaneously striving to minimize the injury of organs at risk (OAR). Our strategy is based on defining a small, biologically-guided target volume for receiving additional radiation dose. Methods: 106 patients with lung cancer treated with radiotherapy were selected for patients diagnosed with stage II and III disease. Previous research has shown that 50% of the maximum SUV threshold in FDG-PET imaging is appropriate for delineation of the most aggressive part of a tumor. After PET- and CT-derived targets were contoured, an IMRT treatment plan was designed to deliver 60 Gy to the GTV as delineated on a 4D CT (Plan 1). A second plan was designed with additional dose of 18 Gy to the PET-derived volume (Plan 2). A composite plan was generated by the addition of Plan 1 and Plan 2. Results: Plan 1 was compared to the composite plan and increases in OAR dose were assessed. For seven patients on average, lung V5 was increased by 1.4% and V20 by 4.2% for ipsilateral lung and by 13.5% and 7% for contralateral lung. For total lung, V5 and V20 were increased by 4.5% and 4.8% respectively. Mean lung dose was increased by 9.7% for the total lung. The maximum dose to the spinal cord increased by 16% on average. For the heart, V20 increased by 4.2% and V40 by 5.2%. Conclusion: It seems feasible that an additional 18 Gy of radiation dose can be delivered to FDG PET-derived subvolume of the CT-based GTV of the primary tumor without significant increase in total dose to the critical organs such as lungs, spinal cord and heart

  7. SU-E-T-500: Dose Escalation Strategy for Lung Cancer Patients Using a Biologically- Guided Target Definition

    Energy Technology Data Exchange (ETDEWEB)

    Shusharina, N; Khan, F; Choi, N; Sharp, G [Massachusetts General Hospital, Boston, MA (United States)

    2014-06-01

    Purpose: Dose escalation strategy for lung cancer patients can lead to late symptoms such as pneumonitis and cardiac injury. We propose a strategy to increase radiation dose for improving local tumor control while simultaneously striving to minimize the injury of organs at risk (OAR). Our strategy is based on defining a small, biologically-guided target volume for receiving additional radiation dose. Methods: 106 patients with lung cancer treated with radiotherapy were selected for patients diagnosed with stage II and III disease. Previous research has shown that 50% of the maximum SUV threshold in FDG-PET imaging is appropriate for delineation of the most aggressive part of a tumor. After PET- and CT-derived targets were contoured, an IMRT treatment plan was designed to deliver 60 Gy to the GTV as delineated on a 4D CT (Plan 1). A second plan was designed with additional dose of 18 Gy to the PET-derived volume (Plan 2). A composite plan was generated by the addition of Plan 1 and Plan 2. Results: Plan 1 was compared to the composite plan and increases in OAR dose were assessed. For seven patients on average, lung V5 was increased by 1.4% and V20 by 4.2% for ipsilateral lung and by 13.5% and 7% for contralateral lung. For total lung, V5 and V20 were increased by 4.5% and 4.8% respectively. Mean lung dose was increased by 9.7% for the total lung. The maximum dose to the spinal cord increased by 16% on average. For the heart, V20 increased by 4.2% and V40 by 5.2%. Conclusion: It seems feasible that an additional 18 Gy of radiation dose can be delivered to FDG PET-derived subvolume of the CT-based GTV of the primary tumor without significant increase in total dose to the critical organs such as lungs, spinal cord and heart.

  8. Contribution of the modulation of intensity and the optimization to deliver a dose adapted to the biological heterogeneities; Apport de la modulation d'intensite et de l'optimisation pour delivrer une dose adaptee aux heterogeneites biologiques

    Energy Technology Data Exchange (ETDEWEB)

    Kubs, F

    2007-10-15

    The recent progress in functional imaging by Positron Emission Tomography (TEP) opens new perspectives in the delineation of target volumes in radiotherapy. The functional data is major; we can intend to adapt the irradiation doses on the tumor activity (TA) and to perform a dose escalation. Our objectives were (i) to characterize the TEP threshold, by quantifying the uncertainties of the target volume contour according to the lesion size and the threshold contour level, (ii) to set up the geometry suited to perform a high-precision irradiation based on the TA, (iii) to estimate the dosimetric impact of this new protocol and (iv) to verify that dosimetry is perfectly distributed. Three original phantoms were specially created to satisfy the constraints met, as well as two virtual phantoms containing 3 dose levels (dose level 3 = TA). Our results showed the importance of the effect threshold-volume on the planning in radiotherapy. To use this irradiation method, the diameter of 1 cm for the third level was able to be reached. A dose escalation of 20 Gy was possible between the second (70 Gy) and the third level (90 Gy). The dosimetric impact estimated on two real cases was suitable - increase of COIN (conformal index) from 0.6 to 0.8 and decrease of NTCP (normal tissue complication probability) of a factor 5 -. In absolute and relative dosimetry, the clinical tolerances were respected. So all the treatment process, going from the diagnosis with the TEP to reveal the TA, to the patient treatment made beforehand on phantom, and going through the ballistic and the dose calculation, was estimated and validated according to our objective to adapt the irradiation to the biological heterogeneities. However such high doses should be carefully estimated before being prescribed clinically and progress is also expected in imaging, because the minimal size which we can irradiate is on the limit of the resolution TEP. (author)

  9. Life-span studies in 226Ra-injected animals: Effect of low doses, effect of a decorporative treatment

    International Nuclear Information System (INIS)

    A life-span radiation effects study was performed in mice injected with several doses of 226Ra. The study included 788 male C57Bl mice. For the removal of the 226Ra, half the mice were treated daily with a diet 5% of which was sodium-alginate. The experiment revealed that mice that received the lowest dose of 226Ra lived significantly longer than controls, and, despite appreciable skeletal removal of 226Ra as a result of decorporative treatment, no biological benefit was observed in treated animals. 19 refs., 4 figs., 3 tabs

  10. Effects of target size on the comparison of photon and charged particle dose distributions

    International Nuclear Information System (INIS)

    The work presented here is part of an ongoing project to quantify and evaluate the differences in the use of different radiation types and irradiation geometries in radiosurgery. We are examining dose distributions for photons using the ''Gamma Knife'' and the linear accelerator arc methods, as well as different species of charged particles from protons to neon ions. A number of different factors need to be studied to accurately compare the different modalities such as target size, shape and location, the irradiation geometry, and biological response. This presentation focuses on target size, which has a large effect on the dose distributions in normal tissue surrounding the lesion. This work concentrates on dose distributions found in radiosurgery, as opposed to those usually found in radiotherapy. 5 refs., 2 figs

  11. Effects of low-dose heavy ion irradiation on male germ cell adaptation and genetics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong; LI Wen-Jian; ZHENG Rong-Liang

    2005-01-01

    The heavy ions with high linear energy transfer and high relative biological effectiveness are much more deleterious on the male germ cells, ones of the most radiosensitive cells of the body, than low-LET ionizing radiation such as X-ray or gamma-ray. The effects of low-dose heavy ion irradiation on male germ cell adaptation and genetics and the possible mechanism of this adaptation are summarized in our laboratory. Our results showed that the heavy ion irradiation significantly increased the frequencies of chromosomal aberrations in spermatogonia and spermatocytes of mice, the low dose heavy ion irradiation could induce significant adaptative response on mouse testes and human sperm, and pre-exposure of mouse testes with low-dose heavy ion can markedly alleviate damage effects induced by subsequent high-dose irradiation. The increase of SOD activity and decrease of lipid peroxidation levels induced by low-dose ionizing radiation may be involved in this adaptative response mechanism. These studies may provide useful theoretical and clinical bases for radioprotection of reproductive potential and assessment of genetic risks for human exposed to heavy ions in radiotherapy and in outer space environment.

  12. Normal tissue complication probabilities: dependence on choice of biological model and dose-volume histogram reduction scheme

    International Nuclear Information System (INIS)

    Purpose: To evaluate the impact of dose-volume histogram (DVH) reduction schemes and models of normal tissue complication probability (NTCP) on ranking of radiation treatment plans. Methods and Materials: Data for liver complications in humans and for spinal cord in rats were used to derive input parameters of four different NTCP models. DVH reduction was performed using two schemes: 'effective volume' and 'preferred Lyman'. DVHs for competing treatment plans were derived from a sample DVH by varying dose uniformity in a high dose region so that the obtained cumulative DVHs intersected. Treatment plans were ranked according to the calculated NTCP values. Results: Whenever the preferred Lyman scheme was used to reduce the DVH, competing plans were indistinguishable as long as the mean dose was constant. The effective volume DVH reduction scheme did allow us to distinguish between these competing treatment plans. However, plan ranking depended on the radiobiological model used and its input parameters. Conclusions: Dose escalation will be a significant part of radiation treatment planning using new technologies, such as 3-D conformal radiotherapy and tomotherapy. Such dose escalation will depend on how the dose distributions in organs at risk are interpreted in terms of expected complication probabilities. The present study indicates considerable variability in predicted NTCP values because of the methods used for DVH reduction and radiobiological models and their input parameters. Animal studies and collection of standardized clinical data are needed to ascertain the effects of non-uniform dose distributions and to test the validity of the models currently in use

  13. The effect of dose calculation accuracy on inverse treatment planning

    Science.gov (United States)

    Jeraj, Robert; Keall, Paul J.; Siebers, Jeffrey V.

    2002-02-01

    The effect of dose calculation accuracy during inverse treatment planning for intensity modulated radiotherapy (IMRT) was studied in this work. Three dose calculation methods were compared: Monte Carlo, superposition and pencil beam. These algorithms were used to calculate beamlets, which were subsequently used by a simulated annealing algorithm to determine beamlet weights which comprised the optimal solution to the objective function. Three different cases (lung, prostate and head and neck) were investigated and several different objective functions were tested for their effect on inverse treatment planning. It is shown that the use of inaccurate dose calculation introduces two errors in a treatment plan, a systematic error and a convergence error. The systematic error is present because of the inaccuracy of the dose calculation algorithm. The convergence error appears because the optimal intensity distribution for inaccurate beamlets differs from the optimal solution for the accurate beamlets. While the systematic error for superposition was found to be ~1% of Dmax in the tumour and slightly larger outside, the error for the pencil beam method is typically ~5% of Dmax and is rather insensitive to the given objectives. On the other hand, the convergence error was found to be very sensitive to the objective function, is only slightly correlated to the systematic error and should be determined for each case individually. Our results suggest that because of the large systematic and convergence errors, inverse treatment planning systems based on pencil beam algorithms alone should be upgraded either to superposition or Monte Carlo based dose calculations.

  14. Investigations into the effective dose and collective dose from diagnostic X-ray examinations in the former Federal Republic

    International Nuclear Information System (INIS)

    Members of the staff of the Institute of Radiation Hygiene have started early in 1992 to measure or record the surface dose products for various types of diagnostic X-ray examinations. Approx. 5,000 surface dose products for 38 different procedures have so far been evaluated by some members of the task group or the institute on the basis of a uniform record sheet. The data were obtained in 8 hospitals and 2 medical practices and had mostly been compiled during the years 1992/93. For most types of examination, the effective doses and collective effective doses were calculated. The effective doses for mammography, dental radiogrammes and examinations of the extremities as well as for computerized tomography were determined in separate procedures. The different approaches used in the calculation of the effective dose with reference to age and sex are discussed. (orig./MG)

  15. Patient effective dose from endovascular brachytherapy with 192Ir sources.

    Science.gov (United States)

    Perma, L; Bianchi, C; Nicolini, G; Novario, R; Tanzi, F; Conte, L

    2002-01-01

    The growing use of endovascular brachytherapy has been accompanied by the publication of a large number of studies in several fields, but few studies on patient dose have been found in the literature. Moreover, these studies were carried out on the basis of Monte Carlo simulation. The aim of the present study was to estimate the effective dose to the patient undergoing endovascular brachytherapy treatment with 112Ir sources, by means of experimental measurements. Two standard treatments were taken into account: an endovascular brachytherapy of the coronary artery corresponding to the activity x time product of 184 GBq.min and an endovascular brachytherapy of the renal artery (898 GBq.min). Experimental assessment was accomplished by thermoluminescence dosemeters positioned in more than 300 measurement points in a properly adapted Rqndo phantom. A method has been developed to estimate the mean organ doses for all tissues and organs concerned in order to calculate the effective dose associated with intravascular brachytherapy. The normalised organ doses resulting from cronary treatment were 2.4 x 10(-2) mSv.GBq(-1).min(-1) for lung, 0.9 x 10(-2) mSv.GBSq(-1).min(-1) for oesophagus and 0.48 x 10(-2) mS.GBq(-1).min(-1) for bone marrow. During brachytherapy of the renal artery, the corresponding normalised doses were 4.2 x 10(-2) mS.GBq(-1).min(-1) for colon, 7.8 x 10(-2) mSv.GBq(-1).min(-1) for stomach and 1.7 x 10(-2) mSv.GBq(-1).min(-1) for liver. Coronary treatment iJnvlled an efl'fective dose of (0.046 mSv.GBq(-1).min(-1), whereas the treatment of the renal artery resulted in an effective dose of 0.15 mSv.GBq(-1).min(-1); there were many similarities with data from former studies. Based on these results it can be concluded that the dose level of patients exposed during brachytherapy treatment is low.

  16. Carbon Heavy-ion Radiation Induced Biological effects on Oryza sativa L.

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Li, Xishan; Gong, Ning; Meng, Qingmei; Liu, Jiawei; Wang, Ting

    2016-07-01

    Large number of researches on rice after spaceflights indicated that rice was a favorable model organism to study biological effects induced by space radiation. The stimulative effect could often be found on rice seedlings after irradiation by low-dose energetic heavy-ion radiation. Spaceflight also could induce stimulative effect on kinds of seeds. To further understand the mechanism of low-dose radiation biological effects and the dose range, the germinated rice seeds which were irradiated by different doses of carbon heavy-ion (0, 0.02, 0.1, 0.2, 1, 2, 5, 10, 15 and 20Gy, LET=27.3keV/µm) were used as materials to study. By investigating the variation of rice phenotype under different doses, we found that 2Gy radiation dose was a dividing point of the phenotypic variation. Transmission electron microscopy was used to observe the variation of mitochondria, chloroplast, endoplasmic reticulum, ribosome and nucleus in mesophyll cell of rice apical meristem at 24 hours after radiation with different doses. The cells were not apparently physiologically damaged when the dose of radiation was less than 2Gy. The number of chloroplast did not change significantly, but the number of mitochondria was significantly increased, and gathered around in the chloroplast and endoplasmic reticulum; the obvious lesion of chloroplast and mitochondria were found at the mesophyll cells when radiation dose was higher than 2Gy. The mitochondria were swelling and appearing blurred crest. The chloroplast and mitochondrial mutation rate increased significantly (pplant. Keywords: Heavy-ion radiation; Low dose; Stimulation effect; Inhibition effect; Rice.

  17. Relative Biological Effectiveness of HZE Particles for Chromosomal Exchanges and Other Surrogate Cancer Risk Endpoints.

    Directory of Open Access Journals (Sweden)

    Eliedonna Cacao

    Full Text Available The biological effects of high charge and energy (HZE particle exposures are of interest in space radiation protection of astronauts and cosmonauts, and estimating secondary cancer risks for patients undergoing Hadron therapy for primary cancers. The large number of particles types and energies that makeup primary or secondary radiation in HZE particle exposures precludes tumor induction studies in animal models for all but a few particle types and energies, thus leading to the use of surrogate endpoints to investigate the details of the radiation quality dependence of relative biological effectiveness (RBE factors. In this report we make detailed RBE predictions of the charge number and energy dependence of RBE's using a parametric track structure model to represent experimental results for the low dose response for chromosomal exchanges in normal human lymphocyte and fibroblast cells with comparison to published data for neoplastic transformation and gene mutation. RBE's are evaluated against acute doses of γ-rays for doses near 1 Gy. Models that assume linear or non-targeted effects at low dose are considered. Modest values of RBE (10 are predicted at low doses <0.1 Gy. The radiation quality dependence of RBE's against the effects of acute doses γ-rays found for neoplastic transformation and gene mutation studies are similar to those found for simple exchanges if a linear response is assumed at low HZE particle doses. Comparisons of the resulting model parameters to those used in the NASA radiation quality factor function are discussed.

  18. Relative Biological Effectiveness of HZE Particles for Chromosomal Exchanges and Other Surrogate Cancer Risk Endpoints.

    Science.gov (United States)

    Cacao, Eliedonna; Hada, Megumi; Saganti, Premkumar B; George, Kerry A; Cucinotta, Francis A

    2016-01-01

    The biological effects of high charge and energy (HZE) particle exposures are of interest in space radiation protection of astronauts and cosmonauts, and estimating secondary cancer risks for patients undergoing Hadron therapy for primary cancers. The large number of particles types and energies that makeup primary or secondary radiation in HZE particle exposures precludes tumor induction studies in animal models for all but a few particle types and energies, thus leading to the use of surrogate endpoints to investigate the details of the radiation quality dependence of relative biological effectiveness (RBE) factors. In this report we make detailed RBE predictions of the charge number and energy dependence of RBE's using a parametric track structure model to represent experimental results for the low dose response for chromosomal exchanges in normal human lymphocyte and fibroblast cells with comparison to published data for neoplastic transformation and gene mutation. RBE's are evaluated against acute doses of γ-rays for doses near 1 Gy. Models that assume linear or non-targeted effects at low dose are considered. Modest values of RBE (10) are predicted at low doses <0.1 Gy. The radiation quality dependence of RBE's against the effects of acute doses γ-rays found for neoplastic transformation and gene mutation studies are similar to those found for simple exchanges if a linear response is assumed at low HZE particle doses. Comparisons of the resulting model parameters to those used in the NASA radiation quality factor function are discussed. PMID:27111667

  19. Low doses effects of ionizing radiation on Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    The exposure of living cells to low doses of ionizing radiation induce in response the activation of cellular protection mechanisms against subsequent larger doses of radiation. This cellular adaptive response may vary depending on radiation intensity and time of exposure, and also on the testing probes used whether they were mammalian cells, yeast, bacteria and other organisms or cell types. The mechanisms involved are the genome activation, followed by DNA repair enzymes synthesis. Due to the prompt cell response, the cell cycle can be delayed, and the secondary detoxification of free radicals and/or activation of membrane bound receptors may proceed. All these phenomena are submitted to intense scientific research nowadays, and their elucidation will depend on the complexity of the organism under study. In the present work, the effects of low doses of ionizing radiation (gamma rays) over a suspension of the yeast Saccharomyces cerevisiae (Baker's yeast) was studied, mainly in respect to survival rate and radio-adaptive response. At first, the yeast surviving curve was assessed towards increasing doses, and an estimation of Lethal Dose 50 (LD50) was made. The irradiation tests were performed at LINAC (electrons Linear Accelerator) where electron energy reached approximately 2.65 MeV, and gamma-radiation was produced for bremsstrahlung process over an aluminium screen target. A series of experiments of conditioning doses was performed and an increment surviving fraction was observed when the dose was 2.3 Gy and a interval time between this and a higher dose (challenging dose) of 27 Gy was 90 minutes. A value of 58 ± 4 Gy was estimated for LD50, at a dose rate of 0.44 ± 0.03 Gy/min These quantities must be optimized. Besides data obtained over yeast survival, an unusual increasing amount of tiny yeast colonies appeared on the agar plates after incubation, and this number increased as increasing the time exposure. Preliminary results indicate these colonies as

  20. Measurement of effective dose for paediatric scoliotic patients

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chih-I. [School of Medical Radiation Sciences, University of Sydney, Lidcombe NSW 1825 (Australia); McLean, Donald [School of Medical Radiation Sciences, University of Sydney, Lidcombe NSW 1825 (Australia)]. E-mail: rdmc@imag.wsahs.nsw.gov.au; Robinson, John [School of Medical Radiation Sciences, University of Sydney, Lidcombe NSW 1825 (Australia)

    2005-05-01

    Purpose: Paediatric radiation dose from scoliosis X-ray examinations is of concern because of its routine nature. Few studies have calculated effective dose which is the primary indicator of radiation risk. This study reports on the use of a new flexible Monte Carlo software package PCXMC14 for such calculation from documented radiographic and patient data. Method: Patient and radiographic data were collected from 54 patient examinations for both postero-anterior (PA) and lateral X-ray projections. A spreadsheet mainly based on radiographic calibration was used to process the raw data and compute entrance air kerma for input in the PCXMC program. A partitioning model was developed to more accurately estimate the effect of an aluminium wedge filter. Results: Results showed the effective dose ranged from 81 to 123 {mu}Sv for the PA projection and 124 to 207 {mu}Sv for the lateral projection, with patient weights varying from 20 to 70 kg. Conclusions: This study demonstrates the usefulness of the PCXMC program to evaluate the effective dose in paediatric scoliosis radiography.

  1. Dose Addition Models Based on Biologically Relevant Reductions in Fetal Testosterone Accurately Predict Postnatal Reproductive Tract Alterations by a Phthalate Mixture in Rats.

    Science.gov (United States)

    Howdeshell, Kembra L; Rider, Cynthia V; Wilson, Vickie S; Furr, Johnathan R; Lambright, Christy R; Gray, L Earl

    2015-12-01

    Challenges in cumulative risk assessment of anti-androgenic phthalate mixtures include a lack of data on all the individual phthalates and difficulty determining the biological relevance of reduction in fetal testosterone (T) on postnatal development. The objectives of the current study were 2-fold: (1) to test whether a mixture model of dose addition based on the fetal T production data of individual phthalates would predict the effects of a 5 phthalate mixture on androgen-sensitive postnatal male reproductive tract development, and (2) to determine the biological relevance of the reductions in fetal T to induce abnormal postnatal reproductive tract development using data from the mixture study. We administered a dose range of the mixture (60, 40, 20, 10, and 5% of the top dose used in the previous fetal T production study consisting of 300 mg/kg per chemical of benzyl butyl (BBP), di(n)butyl (DBP), diethyl hexyl phthalate (DEHP), di-isobutyl phthalate (DiBP), and 100 mg dipentyl (DPP) phthalate/kg; the individual phthalates were present in equipotent doses based on their ability to reduce fetal T production) via gavage to Sprague Dawley rat dams on GD8-postnatal day 3. We compared observed mixture responses to predictions of dose addition based on the previously published potencies of the individual phthalates to reduce fetal T production relative to a reference chemical and published postnatal data for the reference chemical (called DAref). In addition, we predicted DA (called DAall) and response addition (RA) based on logistic regression analysis of all 5 individual phthalates when complete data were available. DA ref and DA all accurately predicted the observed mixture effect for 11 of 14 endpoints. Furthermore, reproductive tract malformations were seen in 17-100% of F1 males when fetal T production was reduced by about 25-72%, respectively. PMID:26350170

  2. Effects of exposure imprecision on estimation of the benchmark dose

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Esben; Keiding, Niels; Grandjean, Philippe

    2004-01-01

    In regression analysis failure to adjust for imprecision in the exposure variable is likely to lead to underestimation of the exposure effect. However, the consequences of exposure error for determination of safe doses of toxic substances have so far not received much attention. The benchmark......, then the benchmark approach produces results that are biased toward higher and less protective levels. It is therefore important to take exposure measurement error into account when calculating benchmark doses. Methods that allow this adjustment are described and illustrated in data from an epidemiological study...

  3. Whack-A-Mole Model: Towards unified description of biological effect caused by radiation-exposure

    CERN Document Server

    Manabe, Yuichiro; Tsunoyama, Yuichi; Nakajima, Hiroo; Nakamura, Issei; Bando, Masako

    2014-01-01

    We present a novel model to estimate biological effects caused by artificial radiation exposure, Whack-a-mole (WAM) model. It is important to take account of the recovery effects during the time course of the cellular reactions. The inclusion of the dose-rate dependence is essential in the risk estimation of low dose radiation, while nearly all the existing theoretical models relies on the total dose dependence only. By analyzing the experimental data of the relation between the radiation dose and the induced mutation frequency of 5 organisms, mouse, drosophila, chrysanthemum, maize and tradescantia, we found that all the data can be reproduced by WAM model. Most remarkably, a scaling function, which is derived from WAM model, consistently accounts for the observed mutation frequencies of 5 organisms. This is the first rationale to account for the dose rate dependence as well as to give a unified understanding of a general feature of organisms.

  4. Effects of dose and dose protraction on embryotoxicity of 14.1 MeV neutron irradiation in rats

    Energy Technology Data Exchange (ETDEWEB)

    Beckman, D.A.; Buck, S.J. [Alfred I. duPont Institute, Wilmington, DE (United States)]|[Thomas Jefferson Univ., Philadelphia, PA (United States); Solomon, H.M. [SmithKline and Beecham Pharmaceuticals, King of Prussia, PA (United States); Gorson, R.O. [Thomas Jefferson Univ., Philadelphia, PA (United States); Mills, R.E. [Brookhaven National Lab., Upton, NY (United States); Brent, R.L. [Alfred I. duPont Institute, Wilmington, DE (United States)]|[Thomas Jefferson Univ., Philadelphia, PA (United States)

    1994-06-01

    The embryotoxic effects of neutron radiation on rodent embryos are documented, but there is disagreement about the dose-response relationship and the impact of protracting the dose. Pregnant rats were exposed to total absorbed doses of 0.15 to 1.50 Gy 14.1 MeV neutrons on day 9.5 after conception, coincident with the most sensitive stage of embryonic development for the induction of major congenital malformations. In general terms, the incidence of embryotoxic effects increased with increasing total absorbed dose. However, the dose-response relationship differed depending on the parameter of embryotoxicity chosen, namely, intrauterine death, malformations or very low body weight. In a second study, embryos were exposed to a single embryotoxic absorbed dose (0.75 Gy) administered at a range of dose rates, from 0.10 to 0.50 Gy/h. The results offer no evidence that protraction of this selected dose significantly increased or decreased the incidence or pattern of embryotoxicity of the neutron exposure used in this study. The results do not support the hypothesis of a linear dose-response relationship for the effects of prenatal neutron irradiation that contribute to embryotoxicity for total absorbed doses of 0.15 to 1.50 Gy. 23 refs., 8 tabs.

  5. Dose-stochastic radiobiological effect relationship in model of two reactions and estimation of radiation risk

    International Nuclear Information System (INIS)

    The model of dose-stochastic effect relationship for biological systems capable of self-defence under danger factor effect is developed. A defence system is realized in two forms of organism reaction, which determine innate μn and adaptive μa radiosensitivities. The significances of μn are determined by host (inner) factors; and the significances of μa, by external factors. The possibilities of adaptive reaction are determined by the coefficient of capabilities of the defence system. The formulas of the dose-effect relationship are the solutions of differential equations of assumed process in the defence system of organism. The model and formulas have been checked both at cell and at human levels. Based on the model and personal monitoring data, the estimation of radiation risk at the Joint Institute for Nuclear Research is done

  6. Actions for adoption of effective dose equivalent standards

    International Nuclear Information System (INIS)

    Regulations related with radiological protection have been revised to adopt SI units and to accept the ICRP recommendation requesting to use the effective dose equivalent for radiation exposure control. The present report mainly deals with actions to be taken in the field of radiation instrumentation to promote the adoption of effective dose equivalent standards. In the past, exposure in roentgen has been generally used as a quantity to represent the intensity of a X-ray or alpha-ray field, because it can be measured relatively easily and accurately. The introduction of the effective dose equivalent is intended to establish annual exposure limits to ensure that the possibility of death of workers in a radioactive environment and that of development of hereditary disorders in their children or grandchildren will be maintained below permissible levels. The quantity is expressed as the sum of each organ's dose equivalent multiplied by a weight that reflects risks. Presently, such weights are assigned to seven organs including the gential glands and red marrow. Fixed-type area monitors and portable survey meters are used for work environment monitoring while film badges, TLDs, dosimeters, etc., are employed for personnel monitoring. (Nogami, K.)

  7. Effect of low dose irradiation on Trichinella isolates

    International Nuclear Information System (INIS)

    Irradiation should be an effective and safe method for reducing the risk of human trichinellosis. With the existence of different Trichinella phenotypes, however, parasite strains with different gene pools may exhibit different radiosensitivity. Studies were performed using the rat as a laboratory animal for testing Trichinella spiralis isolated from different hosts from one geographic region. The results showed no unique radioresistance of the strains. Although the effective dose of irradiation (i.e. the dose required for total blocking of development of muscle larvae) for most isolates was 0.6kGy, that dose did not affect the viability of Trichinella larvae of all strains. Two strains, tested at doses only up to 0.6 kGy, had their reproductive capacities reduced by more than 10,000-fold as a result of exposure to irradiation. On the other hand, strains of Trichinella isolated in a different region from different hosts and belonging to different taxa (T. spiralis, T. nativa, T. nelsoni, putative European T. nelsoni = T3) were similarly more radiosensitive when tested in mice. A dose of 0.2 kGy prevented the production of larval progeny of all but one strain. The results of the experiments performed with the same T. spiralis strain on two different laboratory hosts (rat and mouse) showed unequivocally that the different results of the former experiments were attributable to the laboratory host used. The laboratory rat was found to be more sensitive in a bioassay for monitoring Trichinella larvae viability. It is concluded that low dose irradiation, 0.3-0.6 kGy, of hog carcasses can provide a substantial margin of safety for human consumption of pork heavily infected with Trichinella. However, irradiation procedures should be complemented by health education, improvement in sanitary measures on farms raising pigs and improvement in diagnosing infections in animals. Isolation of the domestic transmission cycle from the wildlife transmission cycle is also important

  8. Biological Effects of Yeast β-Glucans

    Directory of Open Access Journals (Sweden)

    Vlatka Petravić-tominac

    2010-12-01

    Full Text Available β-Glucans are glucose polymers that naturally occur in yeasts, molds, algae, mushrooms, bacteria, oats and barley. Immunostimulation is one of the most important properties of β-glucans. They are classified as biological response modifiers and because of their biological activities they can be used in human and veterinary medicine and pharmacy. Additionally, β-glucans show interesting physicochemical properties and therefore could be applied in food and feed production as well as in cosmetic and chemical industries. Immunomodulation by β-glucan, both in vitro and in vivo, inhibits cancer cell growth and metastasis and prevents or reduces bacterial infection. In humans, dietary β-glucan lowers blood cholesterol, improves glucose utilization by body cells and also helps wound healing. β-Glucans work, in part, by stimulating the innate immune mechanism to fight a range of foreign challenges and could be used as an adjuvant, in combination with anti infective or antineoplastic agents, radiotherapy, and a range of topical agents and nutrients. The structure of β-glucans depends on the source they are isolated from. Native β-glucan molecules can be linked and branched in several ways. Biological properties of different β-glucan molecules are dependent on their molecular structure. Some authors claim that the β-(1→3, (1→6-glucan derived from yeast Saccharomyces cerevisiae produce the highest biological effects. Thus, in this review the β-glucans and their metabolic activity are discussed, with the special accent on those isolated from yeast. Other possible β-glucan applications, directed to cosmetic production, non-medical application in pharmaceutical and chemical industry, are also discussed.

  9. Oral High-Dose Ankaferd Administration Effects on Gastrointestinal System

    OpenAIRE

    Akbal, Erdem; Köklü, Seyfettin; Astarcı, Hesna Müzeyyen; Koçak, Erdem; Karaca, Gökhan; Beyazıt, Yavuz; Topcu, Güler; Acar, Bilgehan; Ergün, Dilek; Haznedaroğlu, İbrahim Celalettin

    2013-01-01

    Background and aims: Ankaferd Blood Stopper (ABS) is a herbal extract obtained from five different plants. It has a therapeutic potential for the management of external hemorrhage and controlling gastrointestinal bleeding. However, ABS's effects are not unknown on gastrointestinal systems. The aim of this study was to assess the effect of short- and long-term systemic exposure and gastrointestinal safety following the oral administration of high-dose ABS in rats. Methods: Eighteen healthy adu...

  10. Effects of Sublethal Dose of Imidacloprid and Pymetrozine on Relative Biological Fitness of Brown Planthopper, Nilaparvata lugens%亚致死剂量吡虫啉和吡蚜酮对褐飞虱生物适合度的影响

    Institute of Scientific and Technical Information of China (English)

    刘淑华; 杨保军; 刘双; 丁志平; 刘泽文; 唐健

    2012-01-01

    全面评价了亚致死剂量吡虫啉和吡蚜酮对褐飞虱繁殖力和生存力的长期影响.毒力测定结果显示,吡虫啉和吡蚜酮对褐飞虱3龄若虫的LC70分别为42.41mg/L.和396.46mg/L,吡虫啉毒力约是吡蚜酮毒力的9.35倍.通过建立褐飞虱在吡虫啉和吡蚜酮亚致死剂量(LC30)作用下的生命表,发现褐飞虱在两种药剂处理下生物适合度都有所下降,分别为对照试虫的83.8%和8.4%.吡虫啉处理试虫仅羽化率明显低于对照,而吡蚜酮处理试虫的羽化率、雌虫比例、雌成虫寿命和卵孵化率各参数部明显下降.亚致死剂量的吡蚜酮使褐飞虱日产卵节律和卵孵化高峰都有所推迟,这可能是吡蚜酮对褐飞虱产生取食抑制作用进而导致其生殖器官发育缓慢造成的.%Long-term influences of sublethal dose of imidacloprid and pymetrozine on reproduction and biological fitness of the brown planthopper(BPH) were evaluated. Bioassay results showed that the LC50 values for imidacloprid and pymetrozine were 42. 41 mg/L and 396. 46 mg/L, respectively, suggesting imidacloprid was approximately 9. 35 times more toxic than pymetrozine. The effects of the sublethal dose (LC30) of imidacloprid and pymetrozine on the fitness of the brown planthopper were evaluated by constructing and comparing the life tables. Results revealed that the biological fitness of BPH exposed to imidacloprid and pymetrozine had reduced to only 83. 8% and 8. 4% of the control, respectively. In imidacloprid treatment, there was only an obvious decline in emergence rate of adult. However, the emergence rate of adult, female adult ratio, female adult duration and eggs hatching rate were conspicuously reduced under pymetrozine treatment. In addition, the egg laying and fecundity fastigium of BPH exposed to sublethal pymetrozine were postponed compared to the control, which is probably correlated with the delayed development of genitalia caused by pymetrozine's feeding

  11. Critical dose and toxicity index of organs at risk in radiotherapy: Analyzing the calculated effects of modified dose fractionation in non–small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pedicini, Piernicola, E-mail: ppiern@libero.it [Service of Medical Physics, I.R.C.C.S. Regional Cancer Hospital C.R.O.B, Rionero in Vulture (Italy); Strigari, Lidia [Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome (Italy); Benassi, Marcello [Service of Medical Physics, Scientific Institute of Tumours of Romagna I.R.S.T., Meldola (Italy); Caivano, Rocchina [Service of Medical Physics, I.R.C.C.S. Regional Cancer Hospital C.R.O.B, Rionero in Vulture (Italy); Fiorentino, Alba [U.O. of Radiotherapy, I.R.C.C.S. Regional Cancer Hospital C.R.O.B., Rionero in Vulture (Italy); Nappi, Antonio [U.O. of Nuclear Medicine, I.R.C.C.S. Regional Cancer Hospital C.R.O.B., Rionero in Vulture (Italy); Salvatore, Marco [U.O. of Nuclear Medicine, I.R.C.C.S. SDN Foundation, Naples (Italy); Storto, Giovanni [U.O. of Nuclear Medicine, I.R.C.C.S. Regional Cancer Hospital C.R.O.B., Rionero in Vulture (Italy)

    2014-04-01

    To increase the efficacy of radiotherapy for non–small cell lung cancer (NSCLC), many schemes of dose fractionation were assessed by a new “toxicity index” (I), which allows one to choose the fractionation schedules that produce less toxic treatments. Thirty-two patients affected by non resectable NSCLC were treated by standard 3-dimensional conformal radiotherapy (3DCRT) with a strategy of limited treated volume. Computed tomography datasets were employed to re plan by simultaneous integrated boost intensity-modulated radiotherapy (IMRT). The dose distributions from plans were used to test various schemes of dose fractionation, in 3DCRT as well as in IMRT, by transforming the dose-volume histogram (DVH) into a biological equivalent DVH (BDVH) and by varying the overall treatment time. The BDVHs were obtained through the toxicity index, which was defined for each of the organs at risk (OAR) by a linear quadratic model keeping an equivalent radiobiological effect on the target volume. The less toxic fractionation consisted in a severe/moderate hyper fractionation for the volume including the primary tumor and lymph nodes, followed by a hypofractionation for the reduced volume of the primary tumor. The 3DCRT and IMRT resulted, respectively, in 4.7% and 4.3% of dose sparing for the spinal cord, without significant changes for the combined-lungs toxicity (p < 0.001). Schedules with reduced overall treatment time (accelerated fractionations) led to a 12.5% dose sparing for the spinal cord (7.5% in IMRT), 8.3% dose sparing for V{sub 20} in the combined lungs (5.5% in IMRT), and also significant dose sparing for all the other OARs (p < 0.001). The toxicity index allows to choose fractionation schedules with reduced toxicity for all the OARs and equivalent radiobiological effect for the tumor in 3DCRT, as well as in IMRT, treatments of NSCLC.

  12. Biological Effect of Magnetic Field in Mice

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    With a piece of magnet embeded in mouse body tomeasure the electrophoretic velocity of erythrocyte for ob-servation onthe biological effect of magnetic field.1Experi mental Material and Method1 .1Experi mental materialUsing permanent magnet was made of alloys fromCe .Co.Cu.Fe .,of which the force of magnetic field is500Gs ,formseems cylinder andthe weight is 0 .5 mg.1 .2Ani mals and groupingThere were eighteen mice that were choosed on ran-dom,theirs weight was 18-22gto divide equallyinthreegroups ,each gro...

  13. Effects of Pesticides on Biological Systems

    Directory of Open Access Journals (Sweden)

    Ergul Belge Kurutas

    2003-06-01

    Full Text Available The use of pesticid both in Turkey and other contries is widespread in order to combat against many pests which cause economical damages. However, pesticides in human pass through skin, respiratory or digestive systems and is metabolized by monooxygenase system dependent upon cytocrome P450 in liver. They also give rise to severe decreases cytochrome P450 and amount of "hem" enzyme activites of glucose-6-phosphatase, pyrophosphatase by stimulating lipid peroxidation on hepatic microsomes. In this study effects of pesticides on biological systems will be presented in genaral terms. [Archives Medical Review Journal 2003; 12(3.000: 215-228

  14. Biological effects of synchrotron radiation on crops

    Institute of Scientific and Technical Information of China (English)

    唐掌雄; 董保中; 等

    1996-01-01

    The sensitivity of germinating seeds of barley,winter wheat and spring one to synchrotron ultraviolet radiation is barley>winter wheat and spring one.But when dry seeds of the three crops are irradiated by 3.5-22keV X-rays,the sequence of their sensitivity to radiation can be changed.for irradiation of 0.6-3keV ultra soft X-rays,0.40-0.90 of the seedlings of the first generation appear mutation of striped chlorophyll defect.This biological effect has never been found for irradiation of other rays.

  15. Biological effects of novel bovine milk fractions.

    Science.gov (United States)

    Lönnerdal, Bo

    2011-01-01

    Novel dairy fractions have been isolated and are now commercially available. Several of them have been shown to have biological activities in various test systems. α-Lactalbumin was first isolated to provide a good source of tryptophan, often the first limiting amino acid in infant formulas, but has then been shown to be digested into smaller peptides with antimicrobial and prebiotic activities, immunostimulatory effect and acting as enhancers of mineral absorption. Lactoferrin bioactivities include antibacterial and antiviral effects, regulation of immune function, stimulation of intestinal proliferation and differentiation and facilitating iron absorption, but these activities may have been limited due to earlier contamination with LPS. Lactoferrin free of lipopolysaccharide may prove to be more effective with regard to exerting these activities. Osteopontin is a heavily phosphorylated and glycosylated protein that modulates immune function and stimulates Th1/Th2 switching, and, possibly, also affects bone mineralization and growth. Biological activities of lactoferrin may be facilitated by osteopontin. Milk fat globule membranes are a fraction that has previously been excluded from infant formulas, but components of this fraction have been shown to exhibit antimicrobial activities and to prevent infection. Further clinical studies are needed on infants fed formulas with these components incorporated. PMID:21335989

  16. Biological effects data: Fluoride and sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    McMechan, K.J. (ed.); Holton, R.L.; Ulbricht, R.J.; Morgan , J.B.

    1975-04-01

    The Alumax Pacific Aluminum Corporation has proposed construction of an aluminum reduction facility near Youngs Bay at Warrenton, Oregon. This report comprises one part of the final report to Alumax on a research project entitled, Physical, Chemical and Biological Studies of Youngs Bay.'' It presents data pertaining to the potential biological effects of fluoride and sulfur dioxide, two potentially hazardous plant-stack emissions, on selected aquatic species of the area. Companion volumes provide a description of the physical characteristics the geochemistry, and the aquatic animals present in Youngs Bay and adjacent ecosystems. An introductory volume provides general information and maps of the area, and summarizes the conclusions of all four studies. The data from the two phases of the experimental program are included in this report: lethal studies on the effects of selected levels of fluoride and sulfur dioxide on the survival rate of eleven Youngs Bay faunal species from four phyla, and sublethal studies on the effects of fluoride and sulfur dioxide on the rate of primary production of phytoplankton. 44 refs., 18 figs., 38 tabs.

  17. Xenon preconditioning: molecular mechanisms and biological effects

    Directory of Open Access Journals (Sweden)

    Liu Wenwu

    2013-01-01

    Full Text Available Abstract Xenon is one of noble gases and has been recognized as an anesthetic for more than 50 years. Xenon possesses many of the characteristics of an ideal anesthetic, but it is not widely applied in clinical practice mainly because of its high cost. In recent years, numerous studies have demonstrated that xenon as an anesthetic can exert neuroprotective and cardioprotective effects in different models. Moreover, xenon has been applied in the preconditioning, and the neuroprotective and cardioprotective effects of xenon preconditioning have been investigated in a lot of studies in which some mechanisms related to these protections are proposed. In this review, we summarized these mechanisms and the biological effects of xenon preconditioning.

  18. Comparing Effects of Biologic Agents in Treating Patients with Rheumatoid Arthritis: A Multiple Treatment Comparison Regression Analysis.

    Directory of Open Access Journals (Sweden)

    Ingunn Fride Tvete

    Full Text Available Rheumatoid arthritis patients have been treated with disease modifying anti-rheumatic drugs (DMARDs and the newer biologic drugs. We sought to compare and rank the biologics with respect to efficacy. We performed a literature search identifying 54 publications encompassing 9 biologics. We conducted a multiple treatment comparison regression analysis letting the number experiencing a 50% improvement on the ACR score be dependent upon dose level and disease duration for assessing the comparable relative effect between biologics and placebo or DMARD. The analysis embraced all treatment and comparator arms over all publications. Hence, all measured effects of any biologic agent contributed to the comparison of all biologic agents relative to each other either given alone or combined with DMARD. We found the drug effect to be dependent on dose level, but not on disease duration, and the impact of a high versus low dose level was the same for all drugs (higher doses indicated a higher frequency of ACR50 scores. The ranking of the drugs when given without DMARD was certolizumab (ranked highest, etanercept, tocilizumab/ abatacept and adalimumab. The ranking of the drugs when given with DMARD was certolizumab (ranked highest, tocilizumab, anakinra/rituximab, golimumab/ infliximab/ abatacept, adalimumab/ etanercept [corrected]. Still, all drugs were effective. All biologic agents were effective compared to placebo, with certolizumab the most effective and adalimumab (without DMARD treatment and adalimumab/ etanercept (combined with DMARD treatment the least effective. The drugs were in general more effective, except for etanercept, when given together with DMARDs.

  19. Effect of age and sex on warfarin dosing

    Directory of Open Access Journals (Sweden)

    Khoury G

    2014-07-01

    Full Text Available Ghada Khoury,1 Marwan Sheikh-Taha2 1School of Pharmacy, 2Department of Pharmacy Practice, Lebanese American University, Byblos, Lebanon Objective: We examined the potential effect of sex and age on warfarin dosing in ambulatory adult patients. Methods: We conducted a retrospective chart review of patients attending an anticoagulation clinic. We included patients anticoagulated with warfarin for atrial fibrillation or venous thromboembolism who had a therapeutic international normalized ratio of 2–3 for 2 consecutive months. We excluded patients who had been on any drug that is known to have a major interaction with warfarin, smokers, and heavy alcohol consumers. Out of 340 screened medical records, 96 met the predetermined inclusion criteria. The primary outcome assessed was warfarin total weekly dose (TWD. Results: There was a statistically significant difference in the TWD among the ages (P<0.01; older patients required lower doses. However there was no statistically significant difference in the TWD between sexes (P=0.281. Conclusion: Age was found to have a significant effect on warfarin dosing. Even though women did require a lower TWD than men, this observation was not statistically significant. Keywords: warfarin, INR, anticoagulation, vitamin K antagonists, age

  20. Dose dependent sun protective effect of topical melatonin

    DEFF Research Database (Denmark)

    Scheuer, Cecilie; Pommergaard, Hans-Christian; Rosenberg, Jacob;

    2016-01-01

    BACKGROUND: Ultraviolet radiation (UVR) by sunlight results in an increasing number of skin conditions. Earlier studies have suggested a protective effect of topical treatment with the pineal hormone melatonin. However, this protective effect has never been evaluated in natural sunlight......, and the optimal dosing has not been clarified. OBJECTIVE: The aim of this study was to investigate the sun protective effect of topical treatment with three different doses of melatonin (0.5%, 2.5%, 12.5%) against erythema induced by natural sunlight. METHOD: The study was a randomized, placebo-controlled, double...... to 2:02 PM local time and UV-index was 9. Primary outcome was reduction in erythema evaluated by chromatography after sun exposure, when treated with topical melatonin cream (0.5%, 2.5%, 12.5%) versus placebo and no treatment. The erythema reaction was evaluated with chromatography and visual scoring...

  1. Frequency of chromosome aberration and dose/dose rate effects in the mouse exposed to long-term low dose radiation

    International Nuclear Information System (INIS)

    Authors have been conducting long term irradiation experiments in the mouse with the dose rate as low as unreported hitherto and have shown with highly sensitive methods to detect chromosomal aberration, that there is the positive dose rate effect under even such a condition, of which details are described herein. According to the definition of United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCER) (1993), the low dose rate is 137Cs-gamma-ray at the low dose rate of 1 or 20 mGy/22 h/day (total, 125-615 or 100-8000 mGy, respectively). Other groups received radiations of 0 Gy (non-irradiated, age-matched control), 200-8000 mGy at 200 mGy/22 h/day, 400-8000 mGy at 400 mGy/22 h/day, or 250-2000 mGy at 890 mGy/min. At the defined days after exposure, mice were sacrificed, their spleens were dissected out, splenic cells were cultured for 48 hr, and their chromosome specimens were prepared to be stained with Giemsa or FISH (fluorescence in situ hybridization). Dicentric (dic) and translocation chromosomal aberrations were found to increase even with the lowest total (accumulated) dose, where the frequency was significantly higher than that in control. Comparison of the regression slopes at each dose rate of the relation between dose and aberration revealed the difference dependent on the rate, thus demonstrating the presence of dose rate effect. Dose/dose rate effect factor (DDREF) calculated by authors' procedure (at 1000-100 mGy: DDREF=17.8-4.5 for dic by FISH; 24.5-5.2 for dic+ring chromosome by Giemsa) was thought important in the risk assessment of low dose radiation and also revealed a problem in International Commission on Radiological Protection (ICRP) (1991) calculation of the factor. (K.T.)

  2. Dose, dose-rate and field size effects on cell survival following exposure to non-uniform radiation fields

    Science.gov (United States)

    Butterworth, Karl T.; McGarry, Conor K.; Trainor, Colman; McMahon, Stephen J.; O'Sullivan, Joe M.; Schettino, Giuseppe; Hounsell, Alan R.; Prise, Kevin M.

    2012-05-01

    For the delivery of intensity-modulated radiation therapy (IMRT), highly modulated fields are used to achieve dose conformity across a target tumour volume. Recent in vitro evidence has demonstrated significant alterations in cell survival occurring out-of-field which cannot be accounted for on the basis of scattered dose. The radiobiological effect of area, dose and dose-rate on out-of-field cell survival responses following exposure to intensity-modulated radiation fields is presented in this study. Cell survival was determined by clonogenic assay in human prostate cancer (DU-145) and primary fibroblast (AG0-1522) cells following exposure to different modulated field configurations delivered using a X-Rad 225 kVp x-ray source. Uniform survival responses were compared to in- and out-of-field responses in which 25-99% of the cell population was shielded. Dose delivered to the out-of-field region was varied from 1.6-37.2% of that delivered to the in-field region using different levels of brass shielding. Dose rate effects were determined for 0.2-4 Gy min-1 for uniform and modulated exposures with no effect seen in- or out-of-field. Survival responses showed little dependence on dose rate and area in- and out-of-field with a trend towards increased survival with decreased in-field area. Out-of-field survival responses were shown to scale in proportion to dose delivered to the in-field region and also local dose delivered out-of-field. Mathematical modelling of these findings has shown survival response to be highly dependent on dose delivered in- and out-of-field but not on area or dose rate. These data provide further insight into the radiobiological parameters impacting on cell survival following exposure to modulated irradiation fields highlighting the need for refinement of existing radiobiological models to incorporate non-targeted effects and modulated dose distributions.

  3. LESM: a laser-driven sub-MeV electron source delivering ultra-high dose rate on thin biological samples

    Science.gov (United States)

    Labate, L.; Andreassi, M. G.; Baffigi, F.; Bizzarri, R.; Borghini, A.; Bussolino, G. C.; Fulgentini, L.; Ghetti, F.; Giulietti, A.; Köster, P.; Lamia, D.; Levato, T.; Oishi, Y.; Pulignani, S.; Russo, G.; Sgarbossa, A.; Gizzi, L. A.

    2016-07-01

    We present a laser-driven source of electron bunches with average energy 260~\\text{keV} and picosecond duration, which has been setup for radiobiological tests covering the previously untested sub-MeV energy range. Each bunch combines high charge with short duration and sub-millimeter range into a record instantaneous dose rate, as high as {{10}9}~\\text{Gy}~{{\\text{s}}-1} . The source can be operated at 10~\\text{Hz} and its average dose rate is 35~\\text{mGy}~{{\\text{s}}-1} . Both the high instantaneous dose rate and high level of relative biological effectiveness, attached to sub-MeV electrons, make this source very attractive for studies of ultrafast radiobiology on thin cell samples. The source reliability, in terms of shot-to-shot stability of features such as mean energy, bunch charge and transverse beam profile, is discussed, along with a dosimetric characterization. Finally, a few preliminary biological tests performed with this source are presented.

  4. [The effect of extremely low doses of the novel regulatory plant proteins ].

    Science.gov (United States)

    Krasnov, M S; Margasiuk, D V; Iamskov, I A; Iamskova, V P

    2003-01-01

    Searching and study on regulatory proteins, which can keep under control the scope of important processes as like as cell adhesion, proliferation, differentiation and morphogenesis, is an actual aim of the current biochemistry. Recently we have identified S-100 proteins in plants of following species: plantain (Plantago major L.), aloe (Aloe arborescens L.), and bilberry (Vaccinum myrtillus L.). Extraction and purification of S-100 proteins gotten from these plants were performed by the method we developed earlier for adhesion proteins of animal tissues. Homogeneity of the studied plant proteins was evaluated and confirmed by HPLC and SDS-electrophoresis in PAAG. Both, plant and animal proteins have appeared to be biologically active at extremely low doses. The tests were performed by adhesiometrical method in short-term tissue culture of mouse's liver in vitro. As a result it was established that the plant proteins insert a membranotropic effect being added in extremely low doses, corresponding to 10(-10)-10(-13) mg/ml. Keeping in mind that the plantain is well known remedy for wound protection and healing, in several experiments we studied the biological effect of plant S-100 proteins on animal cells. It was found that S-100 proteins obtained from plantain influences proliferation of human fibroblasts in vitro. It was found that after the treatment with this protein in low doses the cell growth rate increases essentially.

  5. [The effect of extremely low doses of the novel regulatory plant proteins ].

    Science.gov (United States)

    Krasnov, M S; Margasiuk, D V; Iamskov, I A; Iamskova, V P

    2003-01-01

    Searching and study on regulatory proteins, which can keep under control the scope of important processes as like as cell adhesion, proliferation, differentiation and morphogenesis, is an actual aim of the current biochemistry. Recently we have identified S-100 proteins in plants of following species: plantain (Plantago major L.), aloe (Aloe arborescens L.), and bilberry (Vaccinum myrtillus L.). Extraction and purification of S-100 proteins gotten from these plants were performed by the method we developed earlier for adhesion proteins of animal tissues. Homogeneity of the studied plant proteins was evaluated and confirmed by HPLC and SDS-electrophoresis in PAAG. Both, plant and animal proteins have appeared to be biologically active at extremely low doses. The tests were performed by adhesiometrical method in short-term tissue culture of mouse's liver in vitro. As a result it was established that the plant proteins insert a membranotropic effect being added in extremely low doses, corresponding to 10(-10)-10(-13) mg/ml. Keeping in mind that the plantain is well known remedy for wound protection and healing, in several experiments we studied the biological effect of plant S-100 proteins on animal cells. It was found that S-100 proteins obtained from plantain influences proliferation of human fibroblasts in vitro. It was found that after the treatment with this protein in low doses the cell growth rate increases essentially. PMID:12881977

  6. Protective effects of orally applied fullerenol nano particles in rats after a single dose of doxorubicin

    Directory of Open Access Journals (Sweden)

    Ičević Ivana Đ.

    2011-01-01

    Full Text Available Polyhydroxylated, water soluble, fullerenol C60(OH24 nano particles (FNP in vitro and in vivo models, showed an expressive biological activity. The goal of this work was to investigate the potential protective effects of orally applied FNP on rats after a single dose of doxorubicin (DOX (8 mg/kg (i.p. 6 h after the last application of FNP. After the last drug administration, the rats were sacrificed, and the blood and tissues were taken for the analysis. Biochemical and pathological results obtained in this study indicate that fullerenol (FNP, in H2O:DMSO (80:20, w/w solution given orally in final doses of 10, 14.4, and 21.2 mg/kg three days successively, has the protective (hepatoprotective and nephroprotective effect against doxorubicin-induced cytotoxicity via its antioxidant properties.

  7. Effect of Large Dose Methylcobalamin on Diabetic Peripheral Neuropathy

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The effects of large dose methylcobalamin injection on diabetic peripheral neuropathy in patients were observed to observe the subjective symptom of diabetic perpheral neuropathy (DPN) patients and detect the motor nerve conduction velocity (MCV) and sense nerve conduction velocity (SCV). Fifteen patients were received large dose methylcobalamin injection for two weeks as treatment group, another eleven patients were received muscular injection VitB1 100mg/ d, VitB12 500ug/ d for two weeks as control group. After 2 weeks treatment the subjective symptoms and signs were significantly improved with a total effective rate of 82.9% in the treatment group however the effective rate only has 52.0% in the control group. The result has obvious difference in statistics nerve MCV in median common peroneal nerve, SCV in median and superficial peroneal nerve were improved significantly in the treatment group and no such changes were observed in the control group. So, large dose methylcobalamin is an effective and safe agent for treatment of diabetic peripheral neuropathy.

  8. BIOLOGICAL EFFECTS ON THE SOURCE OF GEONEUTRINOS

    DEFF Research Database (Denmark)

    Sleep, Norman H.; Bird, Dennis K.; Rosing, Minik T.

    2013-01-01

    Detection of antineutrinos from U and Th series decay within the Earth (geoneutrinos) constrains the absolute abundance of these elements. Marine detectors will measure the ratio over the mantle beneath the site and provide spatial averaging. The measured mantle Th/U may well be significantly below...... its bulk earth value of similar to 4; Pb isotope measurements on mantle-derived rocks yield low Th/U values, effectively averaged over geological time. The physics of the modern biological process is complicated, but the net effect is that much of the U in the mantle comes from subducted marine...... sediments and subducted upper oceanic crust. That is, U subducts preferentially relative to Th. Oxygen ultimately from photosynthesis oxidizes U(IV) to U(VI), which is soluble during weathering and sediment transport. Dissolved U(VI) reacts with FeO in the oceanic crust and organic carbon within sediments...

  9. Effective dose efficiency: an application-specific metric of quality and dose for digital radiography

    Energy Technology Data Exchange (ETDEWEB)

    Samei, Ehsan; Ranger, Nicole T; Dobbins, James T III; Ravin, Carl E, E-mail: samei@duke.edu [Carl E Ravin Advanced Imaging Laboratories, Department of Radiology (United States)

    2011-08-21

    The detective quantum efficiency (DQE) and the effective DQE (eDQE) are relevant metrics of image quality for digital radiography detectors and systems, respectively. The current study further extends the eDQE methodology to technique optimization using a new metric of the effective dose efficiency (eDE), reflecting both the image quality as well as the effective dose (ED) attributes of the imaging system. Using phantoms representing pediatric, adult and large adult body habitus, image quality measurements were made at 80, 100, 120 and 140 kVp using the standard eDQE protocol and exposures. ED was computed using Monte Carlo methods. The eDE was then computed as a ratio of image quality to ED for each of the phantom/spectral conditions. The eDQE and eDE results showed the same trends across tube potential with 80 kVp yielding the highest values and 120 kVp yielding the lowest. The eDE results for the pediatric phantom were markedly lower than the results for the adult phantom at spatial frequencies lower than 1.2-1.7 mm{sup -1}, primarily due to a correspondingly higher value of ED per entrance exposure. The relative performance for the adult and large adult phantoms was generally comparable but affected by kVps. The eDE results for the large adult configuration were lower than the eDE results for the adult phantom, across all spatial frequencies (120 and 140 kVp) and at spatial frequencies greater than 1.0 mm{sup -1} (80 and 100 kVp). Demonstrated for chest radiography, the eDE shows promise as an application-specific metric of imaging performance, reflective of body habitus and radiographic technique, with utility for radiography protocol assessment and optimization.

  10. Biological effect of radiation on human

    International Nuclear Information System (INIS)

    1. Adaptive response when 0.01 Gy was preirradiated before high challenging dose is induced in normal cell types such normal lymphocytes, primary keratinocytes, and L929 fibroblast cells but not in neoplastic cells such as L5178Y lymphoma cells, EL-4 lymphoma cells and 308 papilloma cells. 2. Heat shock protein (HSP) 25 and inducible HSP70 is responsible for the induction of adaptive response and radioresistance - cell cycle regulation, antiapoptotic molecule and PKC activation were involved. 3. Apoptosis was induced at most 5. hrs after irradiation in primary keratinocytes, in v-rasHa transformed keratinocytes, the maximum interval was 16 hrs, and in 308 papilloma cells, the maximum was 48 hrs. 4. PKC response by radiation is correlated with induction of apoptosis. 5. Rapid induction PKCdelta in primary keratinocytes and no response of PKC epsilon may involved in radiation induced apoptosis. 6. The rate of resorption was increased when radiation was given at 2.5 days after gestation. Early death including foetal death were highly expressed when radiation was given at 7.5 days after gestation. There are no difference in incidence of late death including embryonic death. 7. 2 Gy is the most effective dose in radiation induced teratogenesis in mouse model. 8. Growth retardation and small head was present when radiation was given at 5.5, 7.5, 11.5 and 15.5 days after gestation and small head showed high incidence at 11.5 days after gestation. 9. External malformation, internal malformation and skeletal malformation was induced when radiation was given at 7.5 days after gestation. 10. OGG1-mutated cells induced radiosensitive by G2/M cell cycle arrest. 11. Radiation induced G2/M phase cell cycle and correlated with radiosensitivity. 12. PKCalpha induced differentiation. 13. Radiation exposed cells showed carcinogenic effect. 14. Organ specific radiosensitivity was shown and protein expression was involved

  11. Biological effect of radiation on human

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Sil; Cho, Chul Koo; Lee, Su Jae [and others

    2000-04-01

    1. Adaptive response when 0.01 Gy was preirradiated before high challenging dose is induced in normal cell types such normal lymphocytes, primary keratinocytes, and L929 fibroblast cells but not in neoplastic cells such as L5178Y lymphoma cells, EL-4 lymphoma cells and 308 papilloma cells. 2. Heat shock protein (HSP) 25 and inducible HSP70 is responsible for the induction of adaptive response and radioresistance - cell cycle regulation, antiapoptotic molecule and PKC activation were involved. 3. Apoptosis was induced at most 5. hrs after irradiation in primary keratinocytes, in v-rasHa transformed keratinocytes, the maximum interval was 16 hrs, and in 308 papilloma cells, the maximum was 48 hrs. 4. PKC response by radiation is correlated with induction of apoptosis. 5. Rapid induction PKCdelta in primary keratinocytes and no response of PKC epsilon may involved in radiation induced apoptosis. 6. The rate of resorption was increased when radiation was given at 2.5 days after gestation. Early death including foetal death were highly expressed when radiation was given at 7.5 days after gestation. There are no difference in incidence of late death including embryonic death. 7. 2 Gy is the most effective dose in radiation induced teratogenesis in mouse model. 8. Growth retardation and small head was present when radiation was given at 5.5, 7.5, 11.5 and 15.5 days after gestation and small head showed high incidence at 11.5 days after gestation. 9. External malformation, internal malformation and skeletal malformation was induced when radiation was given at 7.5 days after gestation. 10. OGG1-mutated cells induced radiosensitive by G2/M cell cycle arrest. 11. Radiation induced G2/M phase cell cycle and correlated with radiosensitivity. 12. PKCalpha induced differentiation. 13. Radiation exposed cells showed carcinogenic effect. 14. Organ specific radiosensitivity was shown and protein expression was involved.

  12. Relative biological effectiveness and radiation weighting factors in the context of animals and plants

    International Nuclear Information System (INIS)

    Radiation weighting factors have long been employed to modify absorbed dose as part of the process of evaluating radiological impact to humans. Their use represents an acknowledgement of the fundamental difference in energy deposition patterns of charged and uncharged particles, and how this can translate into varying degrees of biological impact. Weighting factors used in human radiation protection are derived from a variety of endpoints taken from in-vitro experiments that include human and animal cell lines, as well as in-vivo experiments with animals. Nonetheless, the application of radiation weighting factors in the context of dose assessment of animals and plants is not without some controversy. Specifically, radiation protection of biota has largely focused on limiting deterministic effects, such as reduced reproductive fitness. Consequently, the application of conventional stochastic-based radiation weighting factors (when used for human protection) appears inappropriate. While based on research, radiation weighting factors represent the parsing of extensive laboratory studies on relative biological effectiveness. These studies demonstrate that the magnitude of a biological effect depends not just on dose, but also on other factors including the rate at which the dose is delivered, the type and energy of the radiation delivering the dose, and, most importantly, the endpoint under consideration. This article discusses the efforts taken to develop a logical, transparent, and defensible approach to establishing radiation weighting factors for use in assessing impact to non-human biota, and the challenges found in differentiating stochastic from deterministic impacts.

  13. Doses due to tritium releases by NET - data base and relevant parameters on biological tritium behaviour

    International Nuclear Information System (INIS)

    This study gives an overview on the current knowledge about the behaviour of tritium in plants and in food chains in order to evaluate the ingestion pathway modelling of existing computer codes for dose estimations. The tritium uptake and retention by plants standing at the beginning of the food chains is described. The different chemical forms of tritium, which may be released into the atmosphere (HT, HTO and tritiated organics), and incorporation of tritium into organic material of plants are considered. Uptake and metabolism of tritiated compounds in animals and man are reviewed with particular respect to organically bound tritium and its significance for dose estimations. Some basic remarks on tritium toxicity are also included. Furthermore, a choice of computer codes for dose estimations due to chronic or accidental tritium releases has been compared with respect to the ingestion pathway. (orig.)

  14. Biological effect of carbon beams on cultured human cells

    International Nuclear Information System (INIS)

    This study was performed to determine the biological effect of carbon beams on 13 human tumor cells, in comparison with 200 KVp X-rays. Carbon beams were generated by the Riken Ring Cyclotron. The RBE (relative biological effectiveness) values were distributed from 1.46 to 2.20 for LET of 20 keV/μm, and 2.29-3.54 for 80 keV/μm. The RBEs were increased in all cell lines as the LET of carbon beams was increased from 20 to 80 keV/μm. There was no significant difference in radiosensitivity between cells from adenocarcinoma and those from squamous cell carcinoma. The relationship between the radiosensitivity of cells to X-rays and RBE was analyzed, but no significant correlation was suggested. Several survival curves of 20-40 keV/μm carbon beam irradiation showed the initial shoulders and the recovery ratios between two split doses were determined. Recovery was observed for LET of 2O keV/μm but not for that of 40 keV/μm. Furthermore, recovery ratios were 1.0-1.8, smaller than those for X-rays (1.5-2.4). (author)

  15. The effect of dose, dose rate, route of administration, and species on tissue and blood levels of benzene metabolites.

    OpenAIRE

    Henderson, R F; Sabourin, P J; Bechtold, W E; Griffith, W. C.; Medinsky, M A; Birnbaum, L S; Lucier, G W

    1989-01-01

    Studies were completed in F344/N rats and B6C3F1 mice to determine the effect of dose, dose rate, route of administration, and rodent species on formation of total and individual benzene metabolites. Oral doses of 50 mg/kg or higher saturated the capacity for benzene metabolism in both rats and mice, resulting in an increased proportion of the administered dose being exhaled as benzene. The saturating air concentration for benzene metabolism during 6-hr exposures was between 130 and 900 ppm. ...

  16. Effect of radiation dose-rate on hematopoietic cell engraftment in adult zebrafish.

    Directory of Open Access Journals (Sweden)

    Tiffany J Glass

    Full Text Available Although exceptionally high radiation dose-rates are currently attaining clinical feasibility, there have been relatively few studies reporting the biological consequences of these dose-rates in hematopoietic cell transplant (HCT. In zebrafish models of HCT, preconditioning before transplant is typically achieved through radiation alone. We report the comparison of outcomes in adult zebrafish irradiated with 20 Gy at either 25 or 800 cGy/min in the context of experimental HCT. In non-transplanted irradiated fish we observed no substantial differences between dose-rate groups as assessed by fish mortality, cell death in the kidney, endogenous hematopoietic reconstitution, or gene expression levels of p53 and ddb2 (damage-specific DNA binding protein 2 in the kidney. However, following HCT, recipients conditioned with the higher dose rate showed significantly improved donor-derived engraftment at 9 days post transplant (p ≤ 0.0001, and improved engraftment persisted at 31 days post transplant. Analysis for sdf-1a expression, as well as transplant of hematopoietic cells from cxcr4b -/- zebrafish, (odysseus, cumulatively suggest that the sdf-1a/cxcr4b axis is not required of donor-derived cells for the observed dose-rate effect on engraftment. Overall, the adult zebrafish model of HCT indicates that exceptionally high radiation dose-rates can impact HCT outcome, and offers a new system for radiobiological and mechanistic interrogation of this phenomenon. Key words: Radiation dose rate, Total Marrow Irradiation (TMI, Total body irradiation (TBI, SDF-1, Zebrafish, hematopoietic cell transplant.

  17. A Novel Biological Dosimetry Method for Monitoring Occupational Radiation Exposure in Diagnostic and Therapeutic Wards: From Radiation Dosimetry to Biological Effects

    OpenAIRE

    Heydarheydari, S.; Haghparast, A.; Eivazi, M.T.

    2016-01-01

    Background and Objective Professional radiation workers are occupationally exposed to long-term low levels of ionizing radiation. Occupational health hazards from radiation exposure, in a large occupational segment of the population, are of special concern. Biological dosimetry can be performed in addition to physical dosimetry with the aim of individual dose assessment and biological effects. Methods In this biodosimetry study, some hematological parameters have been examined in 40 exposed a...

  18. Determining effective methadone doses for individual opioid-dependent patients.

    Directory of Open Access Journals (Sweden)

    Jodie A Trafton

    2006-03-01

    Full Text Available BACKGROUND: Randomized clinical trials of methadone maintenance have found that on average high daily doses are more effective for reducing heroin use, and clinical practice guidelines recommend 60 mg/d as a minimum dosage. Nevertheless, many clinicians report that some patients can be stably maintained on lower methadone dosages to optimal effect, and clinic dosing practices vary substantially. Studies of individual responses to methadone treatment may be more easily translated into clinical practice. METHODS AND FINDINGS: A volunteer sample of 222 opioid-dependent US veterans initiating methadone treatment was prospectively observed over the year after treatment entry. In the 168 who achieved at least 1 mo of heroin abstinence, methadone dosages on which patients maintained heroin-free urine samples ranged from 1.5 mg to 191.2 mg (median = 69 mg. Among patients who achieved heroin abstinence, higher methadone dosages were predicted by having a diagnosis of posttraumatic stress disorder or depression, having a greater number of previous opioid detoxifications, living in a region with lower average heroin purity, attending a clinic where counselors discourage dosage reductions, and staying in treatment longer. These factors predicted 42% of the variance in dosage associated with heroin abstinence. CONCLUSIONS: Effective and ineffective methadone dosages overlap substantially. Dosing guidelines should focus more heavily on appropriate processes of dosage determination rather than solely specifying recommended dosages. To optimize therapy, methadone dosages must be titrated until heroin abstinence is achieved.

  19. Biological Effects of Yeast β-Glucans

    Directory of Open Access Journals (Sweden)

    Vlatka Petravić-Tominac

    2014-02-01

    Full Text Available Normal 0 21 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0pt 5.4pt 0pt 5.4pt; mso-para-margin:0pt; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} β-Glucans are glucose polymers that naturally occur in yeasts, molds, algae, mushrooms, bacteria, oats and barley. Immunostimulation is one of the most important properties of β-glucans. They are classified as biological response modifiers and because of their biological activities they can be used in human and veterinary medicine and pharmacy. Additionally, β-glucans show interesting physicochemical properties and therefore could be applied in food and feed production as well as in cosmetic and chemical industries. Immunomodulation by β-glucan, both in vitro and in vivo, inhibits cancer cell growth and metastasis and prevents or reduces bacterial infection. In humans, dietary β-glucan lowers blood cholesterol, improves glucose utilization by body cells and also helps wound healing. β-Glucans work, in part, by stimulating the innate immune mechanism to fight a range of foreign challenges and could be used as an adjuvant, in combination with anti infective or antineoplastic agents, radiotherapy, and a range of topical agents and nutrients. The structure of β-glucans depends on the source they are isolated from. Native β-glucan molecules can be linked and branched in several ways. Biological properties of different β-glucan molecules are dependent on their molecular structure. Some authors claim that the β-(1→3, (1→6-glucan derived from yeast Saccharomyces cerevisiae produce the highest biological effects. Thus, in this review the β-glucans and their metabolic

  20. Effect of low-dose gaseous ozone on pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Fontes Belchor

    2012-12-01

    Full Text Available Abstract Background Treatment of chronically infected wounds is a challenge, and bacterial environmental contamination is a growing issue in infection control. Ozone may have a role in these situations. The objective of this study was to determine whether a low dose of gaseous ozone/oxygen mixture eliminates pathogenic bacteria cultivated in Petri dishes. Methods A pilot study with 6 bacterial strains was made using different concentrations of ozone in an ozone-oxygen mixture to determine a minimally effective dose that completely eliminated bacterial growth. The small and apparently bactericidal gaseous dose of 20 μg/mL ozone/oxygen (1:99 mixture, applied for 5min under atmospheric pressure was selected. In the 2nd phase, eight bacterial strains with well characterized resistance patterns were evaluated in vitro using agar-blood in adapted Petri dishes (105 bacteria/dish. The cultures were divided into 3 groups: 1- ozone-oxygen gaseous mixture containing 20 μg of O3/mL for 5 min; 2- 100% oxygen for 5 min; 3- baseline: no gas was used. Results The selected ozone dose was applied to the following eight strains: Escherichia coli, oxacillin-resistant Staphylococcus aureus, oxacillin-susceptible Staphylococcus aureus, vancomycin-resistant Enterococcus faecalis, extended-spectrum beta-lactamase-producing Klebsiella pneumoniae, carbapenem-resistant Acinetobacter baumannii, Acinetobacter baumannii susceptible only to carbapenems, and Pseudomonas aeruginosa susceptible to imipenem and meropenem. All isolates were completely inhibited by the ozone-oxygen mixture while growth occurred in the other 2 groups. Conclusion A single topical application by nebulization of a low ozone dose completely inhibited the growth of all potentially pathogenic bacterial strains with known resistance to antimicrobial agents.

  1. A kinematic model to estimate effective dose of radioactive substances in a human body

    Science.gov (United States)

    Sasaki, S.; Yamada, T.

    2013-05-01

    The great earthquake occurred in the north-east area in Japan in March 11, 2011. Facility system to control Fukushima Daiichi nuclear power station was completely destroyed by the following giant tsunami. From the damaged reactor containment vessels, an amount of radioactive substances had leaked and diffused in the vicinity of this station. Radiological internal exposure became a serious social issue both in Japan and all over the world. The present study provides an easily understandable, kinematic-based model to estimate the effective dose of radioactive substances in a human body by simplifying the complicated mechanism of metabolism. International Commission on Radiological Protection (ICRP) has developed a sophisticated model, which is well-known as a standard method to calculate the effective dose for radiological protection. However, owing to that ICRP method is fine, it is rather difficult for non-professional people of radiology to gasp the whole images of the movement and the influences of radioactive substances in a human body. Therefore, in the present paper we propose a newly-derived and easily-understandable model to estimate the effective dose. The present method is very similar with the traditional and conventional tank model in hydrology. Ingestion flux of radioactive substances corresponds to rain intensity and the storage of radioactive substances to the water storage in a basin in runoff analysis. The key of the present method is to estimate the energy radiated in the radioactive nuclear disintegration of an atom by using classical theory of β decay and special relativity for various kinds of radioactive atoms. The parameters used in this model are only physical half-time and biological half-time, and there are no operational parameters or coefficients to adjust our theoretical runoff to ICRP. Figure shows the time-varying effective dose with ingestion duration, and we can confirm the validity of our model. The time-varying effective dose with

  2. Non-Linear Dose-Response Relationships in Biology, Toxicology and Medicine - An International Conference

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, Edward J.; Kostecki, Paul T.

    2002-05-28

    Conference abstract book contains seven sections: Plenary-4 abstracts; Chemical-9 abstracts; Radiation-7 abstracts; Ultra Low Doses and Medicine-6 abstracts; Biomedical-11 abstracts; Risk Assessment-5 abstracts and Poster Sessions-25 abstracts. Each abstract was provided by the author/presenter participating in the conference.

  3. Pulse and integral optically stimulated luminescence (OSL). Similarities and dissimilarities to thermoluminescence (TL) dose dependence and dose-rate effects

    International Nuclear Information System (INIS)

    Optically stimulated luminescence (OSL) and thermoluminescence (Tl) are two possible methods to monitor the absorbed radiation in solid samples, and therefore are utilized for dosimetry. For this application, two properties are desirable, namely, linear dose dependence of the measured quantity and dose-rate independence. For Tl, different kinds of super linear dose dependence have been reported in the literature in different materials, and in some cases, dose-rate dependence has also been found. These have been explained as being the result of competition. In OSL, some recent works reported on super linear dose dependence in annealed samples. In the present work, we explain the possible occurrence of these phenomena in OSL by solving numerically the relevant rate equations governing the process during irradiation, relaxation and read-out (heating or light stimulation). The results show that for short pulse OSL, quadratic dose dependence can be expected when only one trapping state and one kind of recombination center are involved and when the excitation starts with empty traps and centers. With the short pulse OSL, the calculation also reveals a possible dose-rate effect. Under the same circumstances, the area under the OSL curve depends linearly on the dose. The dependence of the whole area under the OSL curve on the dose is shown to be super linear when a disconnected trapping state or radiationless center take part in the process. Also, dose-rate effect can be expected in these cases, although no experimental effect of this sort has been reported so far. In pulse OSL, the analogy is made between the measured intensity and the initial rise range of non-first order Tl, whereas for the total area OSL, there is a nearly full analogy with the dose behavior of the Tl maximum. (Author)

  4. Background study of absorbed dose in biological experiments at the Modane Underground Laboratory

    Science.gov (United States)

    Lampe, Nathanael; Marin, Pierre; Castor, Jean; Warot, Guillaume; Incerti, S.; Maigne, Lydia; Sarramia, David; Breton, Vincent

    2016-09-01

    Aiming to explore how biological systems respond to ultra-low background environ-ments, we report here our background studies for biological experiments in the Modane Under-ground Laboratory. We find that the minimum radioactive background for biology experiments is limited by the potassium content of the biological sample itself, coming from its nutritive me-dium, which we find in our experimental set-up to be 26 nGy hr-1. Compared to our reference radiation environment in Clermont-Ferrand, biological experiments can be conducted in the Modane laboratory with a radiation background 8.2 times lower than the reference above-ground level. As the radiation background may be further reduced by using different nutritive media, we also provide measurements of the potassium concentration by gamma spectroscopy of yeast extract (63.3±1.2 mg g-1) and tryptone (2.5±0.2 mg g-1) in order to guide media selection in future experiments.

  5. Stochastic Effects in Computational Biology of Space Radiation Cancer Risk

    Science.gov (United States)

    Cucinotta, Francis A.; Pluth, Janis; Harper, Jane; O'Neill, Peter

    2007-01-01

    Estimating risk from space radiation poses important questions on the radiobiology of protons and heavy ions. We are considering systems biology models to study radiation induced repair foci (RIRF) at low doses, in which less than one-track on average transverses the cell, and the subsequent DNA damage processing and signal transduction events. Computational approaches for describing protein regulatory networks coupled to DNA and oxidative damage sites include systems of differential equations, stochastic equations, and Monte-Carlo simulations. We review recent developments in the mathematical description of protein regulatory networks and possible approaches to radiation effects simulation. These include robustness, which states that regulatory networks maintain their functions against external and internal perturbations due to compensating properties of redundancy and molecular feedback controls, and modularity, which leads to general theorems for considering molecules that interact through a regulatory mechanism without exchange of matter leading to a block diagonal reduction of the connecting pathways. Identifying rate-limiting steps, robustness, and modularity in pathways perturbed by radiation damage are shown to be valid techniques for reducing large molecular systems to realistic computer simulations. Other techniques studied are the use of steady-state analysis, and the introduction of composite molecules or rate-constants to represent small collections of reactants. Applications of these techniques to describe spatial and temporal distributions of RIRF and cell populations following low dose irradiation are described.

  6. Ionol [BHT]. Distribution in the organism, metabolism, and biological effect. II. Biological effects of ionol (survey)

    International Nuclear Information System (INIS)

    In these experiments, a 25 mg/kg dose of ionol, administered to mice immediately after transplantation of melanoma B-16 or injection of tumor cells, inhibited the growth of pigmented B-16 cells and somewhat decreased the number of metastases. Ionol inhibited the mutagenic effect of benz(a)pyrene in vitro and in a culture of Salmonella typhimurium. In a mix with butylhydroxyanisole and propyl gallate, it decreased the number of mutations induced by gamma irradiation in the same culture. It protected mice from dominant lethal mutations and hereditary translocations induced by ethyl methanesulfonate (EMS). When ionol was present in the feed in a dose of 0.75% it reduced the lethal effect in mice of dimethylnitrosamine, EMS, ethylene dibromide and cyclophosphamide

  7. Biological effects of space radiation and development of effective countermeasures

    Science.gov (United States)

    Kennedy, Ann R.

    2014-04-01

    As part of a program to assess the adverse biological effects expected from astronauts' exposure to space radiation, numerous different biological effects relating to astronauts' health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronauts' vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation.

  8. Microwave radiation: biological effects and exposure standards

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, I.R.

    1981-01-01

    The thermal effects of microwave radiation are well recognized and are discussed with particular reference to cataractogenesis; the possibility of an association cannot be questioned. Postulated nonthermal effects comprise an asthenic syndrome, and for the most part the disturbances lie within clinical norms and tolerances, and are reversible. World opinion on safe exposure levels for microwave radiation is varied, and this had led to national standards disparate by three to four orders of magnitude. The US and UK exposure standard of 10 mW/cm/sup 2/ was determined over two decades ago; the possibility of a change to a more restrictive level, in line with other countries, in the near future is examined. It is concluded that such a change, without scientific rationale, is not justified. Some biological implications of the microwave radiation from the solar power satellite are considered in terms of precautions to be taken by personnel working in the vicinity of the rectenna, effects on cardiac pacemakers, and any potential effects on birds. 14 references.

  9. Radon exposure of the skin: I. Biological effects

    International Nuclear Information System (INIS)

    Radon progeny can plate out on skin and give rise to exposure of the superficial epidermis from alpha emitters Po-218 (7.7 MeV, range ∼66 μm) and Po-214 (6 MeV, range ∼44 μm). Dose rates from beta/gamma emitters Pb-214 and Bi-214 are low and only predominate at depths in excess of the alpha range. This paper reviews the evidence for a causal link between exposure from radon and its progeny, and deterministic and stochastic biological effects in human skin. Radiation induced skin effects such as ulceration and dermal atrophy, which require irradiation of the dermis, are ruled out for alpha irradiation from radon progeny because the target cells are considerably deeper than the range of alpha particles. They have not been observed in man or animals. Effects such as erythema and acute epidermal necrosis have been observed in a few cases of very high dose alpha particle exposures in man and after acute high dose exposure in animals from low energy beta radiations with similar depth doses to radon progeny. The required skin surface absorbed doses are in excess of 100 Gy. Such effects would require extremely high levels of radon progeny. They would involve quite exceptional circumstances, way outside the normal range of radon exposures in man. There is no definitive identification of the target cells for skin cancer induction in animals or man. The stem cells in the basal layer which maintain the epidermis are the most plausible contenders for target cells. The majority of these cells are near the end of the range of radon progeny alpha particles, even on the thinnest body sites. The nominal depth of these cells, as recommended by the International Commission on Radiological Protection (ICRP), is 70 μm. There is evidence however that some irradiation of the hair follicles and/or the deeper dermis, as well as the inter-follicular epidermis, is also necessary for skin cancer induction. Alpha irradiation of rodent skin that is restricted to the epidermis does not

  10. Radon exposure of the skin: I. Biological effects

    Energy Technology Data Exchange (ETDEWEB)

    Charles, M W [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2007-09-15

    Radon progeny can plate out on skin and give rise to exposure of the superficial epidermis from alpha emitters Po-218 (7.7 MeV, range {approx}66 {mu}m) and Po-214 (6 MeV, range {approx}44 {mu}m). Dose rates from beta/gamma emitters Pb-214 and Bi-214 are low and only predominate at depths in excess of the alpha range. This paper reviews the evidence for a causal link between exposure from radon and its progeny, and deterministic and stochastic biological effects in human skin. Radiation induced skin effects such as ulceration and dermal atrophy, which require irradiation of the dermis, are ruled out for alpha irradiation from radon progeny because the target cells are considerably deeper than the range of alpha particles. They have not been observed in man or animals. Effects such as erythema and acute epidermal necrosis have been observed in a few cases of very high dose alpha particle exposures in man and after acute high dose exposure in animals from low energy beta radiations with similar depth doses to radon progeny. The required skin surface absorbed doses are in excess of 100 Gy. Such effects would require extremely high levels of radon progeny. They would involve quite exceptional circumstances, way outside the normal range of radon exposures in man. There is no definitive identification of the target cells for skin cancer induction in animals or man. The stem cells in the basal layer which maintain the epidermis are the most plausible contenders for target cells. The majority of these cells are near the end of the range of radon progeny alpha particles, even on the thinnest body sites. The nominal depth of these cells, as recommended by the International Commission on Radiological Protection (ICRP), is 70 {mu}m. There is evidence however that some irradiation of the hair follicles and/or the deeper dermis, as well as the inter-follicular epidermis, is also necessary for skin cancer induction. Alpha irradiation of rodent skin that is restricted to the

  11. Food irradiation and its biological effects

    International Nuclear Information System (INIS)

    Irradiation of foods drew attention mostly in 1960s for disinfestation of food grains, spices and sprout inhibition in mainly potato and onion. γ-irradiation at 0.25 to 1 kGy dosage levels are usually used for irradiating grains, legumes, spices and sprout-prone vegetables. Irradiation of foods with in permissible dosage levels of 0.25 to 5 kGy is usually considered fairly safe from human consumption point of view not withstanding usual health concerns about its usage in foods. Irradiation of foods, in mostly solid or semi-solid form, at 5 kGy levels of γ-irradiation can achieve radicidation or, radiation equivalent of pasteurization and, if γ-irradiation is used at 10 kGy, it can achieve radappertization or, radiation equivalent of thermal commercial sterilization. However, the food industry uses γ-irradiation at 0.25 to 2 kGy only for mostly disinfestation of food grains/legumes, spices, sprout inhibition in potato and onion and, for surface sanitation of frozen fish, poultry and meat. Exposure to irradiation creates free radicals in foods that are capable of destroying some of the spoilage and pathogenic microflora but the same can also damage vitamins and enzymes besides creating some new harmful new chemical species, called unique radiolytic products (URPs), by combining with certain chemicals that a food may be laced with (like pesticides/fungicides). Exposure to high-energy electron beams are also known to create deleterious biological effects which may even lead to detection of trace amounts of radioactivity in the food. Some possible causes delineated for such harmful biological effects of irradiation include: irradiation induced vitamin deficiencies, the inactivity of enzymes in the foods, DNA damage and toxic radiolytic products in the foods. Irradiation, a non-thermal food preservation technique, has a role in salvaging enormous post harvest losses (25-30%) in developing economies to increase the per capita availability of foods. (author)

  12. Information on biological health effects of ionizing radiation and radionuclides: the rule of a web site

    International Nuclear Information System (INIS)

    The purpose of this project is to provide a source of information on biological and health effects of radionuclides and ionizing radiation in an easy to use format. Reported work is made up of two distinct parts: data sheets for selected radionuclides and a web file. Data sheets: Specific radiation data sheets provide an overview of the properties, the environmental behaviour, the different pathways of human exposure and the biological and health consequences of selected radionuclides. Radionuclides that have been selected are those commonly dealt with in nuclear industry (and in other areas such as medicine) and released to the environment or naturally occurring (plutonium, tritium, carbon 14). Data sheets corresponding to the different radionuclides are based on the main sources of scientific information in dosimetry, epidemiology, radiobiology and radiation protection. These data sheets are intended for radiation protection specialists and physicians. They include: main physical and chemical characteristics, main radiation protection data: dose coefficients (public, workers), dose limits sources, total released estimate (nuclear industry, atmospheric tests, main pathway of human exposure and biological behaviour, biological and health effects, medical supervision, treatment a list of the main references, appendix providing accurate information. Web file: http://www-dsv.cea.fr/doc/carmin_ext/fond.php This web file provides a source of information on biological and health effects of ionizing radiation and biological basic knowledge of radiation protection. Available for consultation via Internet, compiled information provides, in a same file, subjects as varied as biological mechanisms, ionizing radiations action, biological and health effects, risk assessment This file is mainly intended to assist in informing and training of non-specialist readership (students, teaching on radiation protection basic knowledge. This electronic document is divided in three

  13. Effect of low doses of seed irradiation on plant growth

    International Nuclear Information System (INIS)

    The stimulation effect has often been discussed in research papers. There were the results of Russian work which showed greater yield after seed irradiation, and other research which showed no significant stimulating effect of seed irradiation on plant growth. These different results may be due to varying conditions like temperature, rainfall, variety, etc., under which the experiments were carried out. In the present work of this establishment the effect of radiation at different growing periods is being studied to obtain more information on the stimulating effect of small doses of radiation. These studies cover: (1) Germination speed. In these experiments the breakthrough of the primary root is investigated in relation to time and dose. (2) Development of young plants. After a growing period of 14 d the length of the plants and their dry and fresh weight are measured. (3) Radiation effect on yield. In pot and field experiments several agricultural plants, such as barley, wheat, potatoes and maize, are investigated at harvest time. The total yield, and the yield in grain and straw, are then determined separately. The first experiments have shown that the effect depends very much on the variety of plant, the growing temperature and the water content of the seeds at the time of irradiation. 10 figs, 1 tab

  14. Effect of different doses of glyphosate in soybean

    Directory of Open Access Journals (Sweden)

    S. A. Gomes

    2013-07-01

    Full Text Available Abstract: Brazil ranks second in production of conventional soybeans and third in production of transgenic soybeans. The main advantage of transgenic soybean is resistant to the herbicide glyphosate, but the continued use of exaggeration and even of the same herbicide on soybean can significantly decrease acquired resistance. This work aimed to evaluate the effects of different doses of glyphosate can result in soybean. The experiment was conducted in a greenhouse on the Campus of UFMT in Sinop-MT, and evaluated five doses of glyphosate in transgenic soybeans intercropped with two conventional soybeans. The characters were evaluated for phytotoxicity scores and length of the root system. It was found that, regardless of the amount of glyphosate applied occur symptoms of phytotoxicity in conventional and transgenic soybean. Whereas the most damage will be in conventional soybean, and transgenic soybean little affected by the action of the herbicide.Key words: Glycine max, glyphosate, phytotoxicity

  15. Ionizing Dose Effect of Thermal Oxides Implanted with Si+ Ions

    Institute of Scientific and Technical Information of China (English)

    CHEN Ming; LUO Hong-Wei; ZHANG Zheng-Xuan; ZHANG En-Xia; YANG Hui; TIAN Hao; WANG Ru; YU Wen-Jie

    2007-01-01

    Total ionizing dose effects of Si+ ion implanted thermal oxides are studied by 10keV x-ray irradiation. Photo-luminescence (PL) method is engaged to investigate nanostructures of samples. Ar+ implanted samples are also studied by the same way to provide a comparison. The results show that Si+ implantation following with high temperature annealing can significantly reduce the radiation induced Hatband shift, which is caused by net positive charge accumulation in oxides. This reduction is attributed to the formation of Si nanoscale structures. Ar+ implantation is also found to reduce the radiation induced Satband shift, while it is different that the reduction with Si+ implantation shows little dependence on implant dose of Ar+ ions. This is explained by possible increase of recombination centres.

  16. Particle induced X-ray emission and ion dose distribution in a biological micro-beam: Geant4 Monte Carlo simulations

    International Nuclear Information System (INIS)

    The goal of a microbeam is to deliver a highly localized and small dose to the biological medium. This can be achieved by using a set of collimators that confine the charged particle beam to a very small spatial area of the order of microns in diameter. By using a system that combines an appropriate beam detection method that signals to a beam shut-down mechanism, a predetermined and counted number of energetic particles can be delivered to targeted biological cells. Since the shutter and the collimators block a significant proportion of the beam, there is a probability of the production of low energy X-rays and secondary electrons through interactions with the beam. There is little information in the biological microbeam literature on potential X-ray production. We therefore used Monte Carlo simulations to investigate the potential production of particle-induced X-rays and secondary electrons in the collimation system (which is predominantly made of tungsten) and the subsequent possible effects on the total absorbed dose delivered to the biological medium. We found, through the simulation, no evidence of the escape of X-rays or secondary electrons from the collimation system for proton energies up to 3 MeV as we found that the thickness of the collimators is sufficient to reabsorb all of the generated low energy X-rays and secondary electrons. However, if the proton energy exceeds 3 MeV our simulations suggest that 10 keV X-rays can escape the collimator and expose the overlying layer of cells and medium. If the proton energy is further increased to 4.5 MeV or beyond, the collimator can become a significant source of 10 keV and 59 keV X-rays. These additional radiation fields could have effects on cells and these results should be verified through experimental measurement. We suggest that researchers using biological microbeams at higher energies need to be aware that cells may be exposed to a mixed LET radiation field and be careful in their interpretation of

  17. UV dose-effect relationships and current protection exposure standards

    International Nuclear Information System (INIS)

    In this paper we have attempted to quantify the health effects in man of uv-radiation exposure of wavelengths from 240 nm to 320 nm. Exposure to uv in this region could result in the formation of skin cancer or premature aging in man. The induction of cancer by uv radiation results from changes in genetic material. We have used the DNA action spectrum coupled with the uv skin cancer data available in the literature to derive the dose-effect relationships. The results are compared against the current uv protection standards

  18. Committed equivalent organ doses and committed effective doses from intakes of radionuclides

    CERN Document Server

    Phipps, A W; Kendall, G M; Silk, T J; Stather, J W

    1991-01-01

    This report contains details of committed equivalent doses to individual organs for intakes by ingestion and inhalation of 1 mu m AMAD particles of 359 nuclides by infants aged 3 months, by children aged 1, 5, 10 and 15 years, and by adults. It complements NRPB-R245 which describes the changes which have taken place since the last NRPB compendium of dose per unit intake factors (dose coefficients) and gives summary tables. Information on the way committed doses increase with the integration period is given in NRPB-M289. The information given in these memoranda is also available as a microcomputer package - NRPB-SR245.

  19. Proton dose distribution measurements using a MOSFET detector with a simple dose-weighted correction method for LET effects.

    Science.gov (United States)

    Kohno, Ryosuke; Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi

    2011-01-01

    We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth-dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high-bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L-shaped bolus. The dose reproducibility, angular dependence and depth-dose response were evaluated using a 190 MeV proton beam. Depth-output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose-weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L-shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors. PMID:21587191

  20. Prevention of cancer and the dose-effect relationship: the carcinogenic effects of ionizing radiations

    International Nuclear Information System (INIS)

    Cancer prevention has to be based on robust biological and epidemiological data, therefore its reappraisal becomes mandatory in view of recent progress in the understanding of carcinogenesis. The first phase of the carcinogenic process, that of initiation, is generally associated with mutation; however the role of extrinsic mutagens is less critical than was thought two decades ago. During intracellular oxygen metabolism, reactive oxygen species (R.O.S.) are made which are potent mutagens. Defense mechanisms against these intrinsic mutagens include scavenger and enzymatic systems which destroy them (catalase, superoxide dismutase). When the radiation dose is low, DNA repair is very effective as well as the elimination of cells with unrepaired or bad repaired DNA. Therefore a small increase in the number of R.O.S., such as that caused by a small dose of radiation has most probably no significant effect on the risk of DNA damage. These conclusions are consistent with the concept of a practical threshold. The second phase, that of promotion, appears to be the key one. During the promotion phase, initiated cells must acquire new properties (immortalization, release of angiogenic factors, resistance to hypoxia, etc.) in order to become pre-cancerous. This evolution is due to the accumulation in the genome of 6 to 10 new alteration defects. In the clone of initiated cells, the occurrence in one cell of a mutation or an epigenetic event gives birth to a sub clone. There is a Darwinian type competition between the sub clones and those with the more rapid growth because dominant (the acceleration of the growth rate can be due to shorter cell cycles or to an alleviation of cell proliferation exerted by the neighboring cells or the microenvironment). In the dominant sub clones new genomic events provoke the appearance of new sub clones growing more rapidly and having greater autonomy. The process is very slow because the specific genetic events that favour this evolution

  1. Bioaccumulation and biological effects in the earthworm Eisenia fetida exposed to natural and depleted uranium

    Energy Technology Data Exchange (ETDEWEB)

    Giovanetti, Anna, E-mail: anna.giovanetti@enea.i [ENEA, Institute of Radiation Protection, CR Casaccia Via Anguillarese 301, 00123 Rome (Italy); Fesenko, Sergey [International Atomic Energy Agency (IAEA), Agency' s Laboratories Seibersdorf, A-2444 Seibersdorf (Austria); Cozzella, Maria L. [ENEA, National Institute for Metrology of Ionizing Radiation, CR Casaccia Via Anguillarese 301, 00123 Rome (Italy); Asencio, Lisbet D. [Centro de Estudios Ambientales, Carretera a Castillo de Jagua, CP. 59350 C. Nuclear, Cienfuegos (Cuba); Sansone, Umberto [International Atomic Energy Agency (IAEA), Agency' s Laboratories Seibersdorf, A-2444 Seibersdorf (Austria)

    2010-06-15

    The accumulations of both natural (U) and depleted (DU) uranium in the earthworms (Eisenia fetida) were studied to evaluate corresponding biological effects. Concentrations of metals in the experimental soil ranged from 1.86 to 600 mg kg{sup -1}. Five biological endpoints: mortality, animals' weight increasing, lysosomal membrane stability by measuring the neutral red retention time (the NRRT), histological changes and genetic effects (Comet assay) were used to evaluate biological effects in the earthworms after 7 and 28 days of exposure. No effects have been observed in terms of mortality or weight reduction. Cytotoxic and genetic effects were identified at quite low U concentrations. For some of these endpoints, in particular for genetic effects, the dose (U concentration)-effect relationships have been found to be non-linear. The results have also shown a statistically significant higher level of impact on the earthworms exposed to natural U compared to depleted U.

  2. Measurement of Entrance Skin Dose and Calculation of Effective Dose for Common Diagnostic X-Ray Examinations in Kashan, Iran.

    Science.gov (United States)

    Aliasgharzadeh, Akbar; Mihandoost, Ehsan; Masoumbeigi, Mahboubeh; Salimian, Morteza; Mohseni, Mehran

    2015-01-01

    The knowledge of the radiation dose received by the patient during the radiological examination is essential to prevent risks of exposures. The aim of this work is to study patient doses for common diagnostic radiographic examinations in hospitals affiliated to Kashan University of Medical sciences, Iran. The results of this survey are compared with those published by some national and international values. Entrance surface dose (ESD) was measured based on the exposure parameters used for the actual examination and effective dose (ED) was calculated by use of conversion coefficients calculated by Monte Carlo methods. The mean entrance surface dose and effective dose for examinations of the chest (PA, Lat), abdomen (AP), pelvis (AP), lumbar spine (AP, Lat) and skull (AP, Lat) are 0.37, 0.99, 2.01, 1.76, 2.18, 5.36, 1.39 and 1.01 mGy, and 0.04, 0.1, 0.28, 0,28, 0.23, 0.13, 0.01 and 0.01 mSv, respectively. The ESDs and EDs reported in this study, except for examinations of the chest, are generally lower than comparable reference dose values published in the literature. On the basis of the results obtained in this study can conclude that use of newer equipment and use of the proper radiological parameter can significantly reduce the absorbed dose. It is recommended that radiological parameter in chest examinations be revised. PMID:26156930

  3. Effect of Dose Rate Variation on Dose Distribution in IMRT with a Dynamic Multileaf Collimator

    International Nuclear Information System (INIS)

    To evaluate dose distribution differences when the dose rates are randomly changed in intensity-modulated radiation therapy using a dynamic multileaf collimator. Two IMRT treatment plans including small-field and large-field plans were made using a commercial treatment planning system (Eclipse, Varian, Palo Alto, CA). Each plan had three sub-plans according to various dose rates of 100, 400, and 600 MU/min. A chamber array (2D-Array Seven729, PTW-Freiburg) was positioned between solid water phantom slabs to give measurement depth of 5 cm and backscattering depth of 5 cm. Beam deliveries were performed on the array detector using a 6 MV beam of a linear accelerator (Clinac 21EX, Varian, Palo Alto, CA) equipped with 120-leaf MLC (Millenium 120, Varian). At first, the beam was delivered with same dose rates as planned to obtain reference values. After the standard measurements, dose rates were then changed as follows: 1) for plans with 100 MU/min, dose rate was varied to 200, 300, 400, 500 and 600 MU/min, 2) for plans with 400 MU/min, dose rate was varied to 100, 200, 300, 500 and 600 MU/min, 3) for plans with 600 MU/min, dose rate was varied to 100, 200, 300, 400 and 500 MU/min. Finally, using an analysis software (Verisoft 3.1, PTW-Freiburg), the dose difference and distribution between the reference and dose-rate-varied measurements was evaluated. For the small field plan, the local dose differences were -0.8, -1.1, -1.3, -1.5, and -1.6% for the dose rate of 200, 300, 400, 500, 600 MU/min, respectively (for 100 MU/min reference), +0.9, +0.3, +0.1, -0.2, and -0.2% for the dose rate of 100, 200, 300, 500, 600 MU/min, respectively (for 400 MU/min reference) and +1.4, +0.8, +0.5, +0.3, and +0.2% for the dose rate of 100, 200, 300, 400, 500 MU/min, respectively (for 600 MU/min reference). On the other hand, for the large field plan, the pass-rate differences were -1.3, -1.6, -1.8, -2.0, and -2.4% for the dose rate of 200, 300, 400, 500, 600 MU/min, respectively (for 100

  4. Biological effects of rutin on skin aging.

    Science.gov (United States)

    Choi, Seong Jin; Lee, Sung-Nae; Kim, Karam; Joo, Da Hye; Shin, Shanghun; Lee, Jeongju; Lee, Hyun Kyung; Kim, Jihyun; Kwon, Seung Bin; Kim, Min Jung; Ahn, Kyu Joong; An, In-Sook; An, Sungkwan; Cha, Hwa Jun

    2016-07-01

    Rutin, a quercetin glycoside is a member of the bioflavonoid family which is known to possess antioxidant properties. In the present study, we aimed to confirm the anti‑aging effects of rutin on human dermal fibroblasts (HDFs) and human skin. We examined the effects of rutin using a cell viability assay, senescence-associated-β-galactosidase assay, reverse transcription-quantitative polymerase chain reaction, and by measuring reactive oxygen species (ROS) scavenging activity in vitro. To examine the effects of rutin in vivo, rutin‑containing cream was applied to human skin. A double-blind clinical study was conducted in 40 subjects aged between 30-50 years and divided into control and experimental groups. The test material was applied for 4 weeks. After 2 and 4 weeks, dermal density, skin elasticity, the length and area of crow's feet, and number of under-eye wrinkles following the application of either the control or the rutin-containing cream were analyzed. Rutin increased the mRNA expression of collagen, type I, alpha 1 (COL1A1) and decreased the mRNA expression of matrix metallopeptidase 1 (MMP1) in HDFs. We verified that ROS scavenging activity was stimulated by rutin in a dose‑dependent manner and we identified that rutin exerted protective effects under conditions of oxidative stress. Furthermore, rutin increased skin elasticity and decreased the length, area and number of wrinkles. The consequences of human aging are primarily visible on the skin, such as increased wrinkling, sagging and decreased elasticity. Overall, this study demonstrated the biological effects of rutin on ROS-induced skin aging. PMID:27220601

  5. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships

    International Nuclear Information System (INIS)

    We reconstructed the radiological dose for birds observed at 300 census sites in the 50-km northwest area affected by the accident at the Fukushima Daiichi nuclear power plant over 2011-2014. Substituting the ambient dose rate measured at the census points (from 0.16 to 31 μGy h-1) with the dose rate reconstructed for adult birds of each species (from 0.3 to 97 μGy h-1), we confirmed that the overall bird abundance at Fukushima decreased with increasing total doses. This relationship was directly consistent with exposure levels found in the literature to induce physiological disturbances in birds. Among the 57 species constituting the observed bird community, we found that 90% were likely chronically exposed at a dose rate that could potentially affect their reproductive success. We quantified a loss of 22.6% of the total number of individuals per increment of one unit log10-transformed total dose (in Gy), over the four-year post-accident period in the explored area. We estimated that a total dose of 0.55 Gy reduced by 50% the total number of birds in the study area over 2011-2014. The data also suggest a significant positive relationship between total dose and species diversity. (authors)

  6. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships

    Science.gov (United States)

    Garnier-Laplace, Jacqueline; Beaugelin-Seiller, Karine; Della-Vedova, Claire; Métivier, Jean-Michel; Ritz, Christian; Mousseau, Timothy A.; Pape Møller, Anders

    2015-11-01

    We reconstructed the radiological dose for birds observed at 300 census sites in the 50-km northwest area affected by the accident at the Fukushima Daiichi nuclear power plant over 2011-2014. Substituting the ambient dose rate measured at the census points (from 0.16 to 31 μGy h-1) with the dose rate reconstructed for adult birds of each species (from 0.3 to 97 μGy h-1), we confirmed that the overall bird abundance at Fukushima decreased with increasing total doses. This relationship was directly consistent with exposure levels found in the literature to induce physiological disturbances in birds. Among the 57 species constituting the observed bird community, we found that 90% were likely chronically exposed at a dose rate that could potentially affect their reproductive success. We quantified a loss of 22.6% of the total number of individuals per increment of one unit log10-tansformed total dose (in Gy), over the four-year post-accident period in the explored area. We estimated that a total dose of 0.55 Gy reduced by 50% the total number of birds in the study area over 2011-2014. The data also suggest a significant positive relationship between total dose and species diversity.

  7. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships

    DEFF Research Database (Denmark)

    Garnier-Laplace, Jacqueline; Beaugelin-Seiller, Karine; Della-Vedova, Claire;

    2015-01-01

    We reconstructed the radiological dose for birds observed at 300 census sites in the 50-km northwest area affected by the accident at the Fukushima Daiichi nuclear power plant over 2011-2014. Substituting the ambient dose rate measured at the census points (from 0.16 to 31 μGy h(-1)) with the dos...

  8. Dose-related effects of alcohol on cognitive functioning.

    Directory of Open Access Journals (Sweden)

    Matthew J Dry

    Full Text Available We assessed the suitability of six applied tests of cognitive functioning to provide a single marker for dose-related alcohol intoxication. Numerous studies have demonstrated that alcohol has a deleterious effect on specific areas of cognitive processing but few have compared the effects of alcohol across a wide range of different cognitive processes. Adult participants (N = 56, 32 males, 24 females aged 18-45 years were randomized to control or alcohol treatments within a mixed design experiment involving multiple-dosages at approximately one hour intervals (attained mean blood alcohol concentrations (BACs of 0.00, 0.048, 0.082 and 0.10%, employing a battery of six psychometric tests; the Useful Field of View test (UFOV; processing speed together with directed attention; the Self-Ordered Pointing Task (SOPT; working memory; Inspection Time (IT; speed of processing independent from motor responding; the Traveling Salesperson Problem (TSP; strategic optimization; the Sustained Attention to Response Task (SART; vigilance, response inhibition and psychomotor function; and the Trail-Making Test (TMT; cognitive flexibility and psychomotor function. Results demonstrated that impairment is not uniform across different domains of cognitive processing and that both the size of the alcohol effect and the magnitude of effect change across different dose levels are quantitatively different for different cognitive processes. Only IT met the criteria for a marker for wide-spread application: reliable dose-related decline in a basic process as a function of rising BAC level and easy to use non-invasive task properties.

  9. Cellular burdens and biological effects on tissue level caused by inhaled radon progenies

    CERN Document Server

    Madas, Balázs G; Farkas, Árpád; Szőke, István

    2014-01-01

    In the case of radon exposure, the spatial distribution of deposited radioactive particles is highly inhomogeneous in the central airways. The objective of this research is to investigate the consequences of this heterogeneity regarding cellular burdens in the bronchial epithelium and to study the possible biological effects on tissue level. Applying a computational fluid dynamics program, the deposition distribution of inhaled radon daughters has been determined in a bronchial airway model for 23 minutes of work in the New Mexico uranium mine corresponding to 0.0129 WLM exposure. A numerical epithelium model based on experimental data has been utilized in order to quantify cellular hits and doses. Finally, a carcinogenesis model considering cell death induced cell cycle shortening has been applied to assess the biological responses. Computations present, that cellular dose may reach 1.5 Gy, which is several orders of magnitude higher than tissue dose. The results are in agreement with the histological findin...

  10. Dosimetry for quantitative analysis of low dose ionizing radiation effects on humans in radiation therapy patients

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, J; Stern, R L; Daly, T P; Schwieter, C W; Jones, G E; Arnold, M L; Hartmann-Siantar, C L; Goldberg, Z

    2004-04-20

    We have successfully developed a practical approach to predicting the location of skin surface dose at potential biopsy sites that receive 1 cGy and 10 cGy, respectively, in support of in vivo biologic dosimetry in humans. This represents a significant technical challenge as the sites lie on the patient surface out side the radiation fields. The PEREGRINE Monte Carlo simulation system was used to model radiation dose delivery and TLDs were used for validation on a phantom and confirmation during patient treatment. In the developmental studies the Monte Carlo simulations consistently underestimated the dose at the biopsy site by approximately 15% for a realistic treatment configuration, most likely due to lack of detail in the simulation of the linear accelerator outside the main beam line. Using a single, thickness-independent correction factor for the clinical calculations, the average of 36 measurements for the predicted 1 cGy point was 0.985 cGy (standard deviation: 0.110 cGy) despite patient breathing motion and other real world challenges. Since the 10 cGy point is situated in the region of high dose gradient at the edge of the field, patient motion had a greater effect and the six measured points averaged 5.90 cGy (standard deviation: 1.01 cGy), a difference that is equivalent to approximately a 6 mm shift on the patient's surface.

  11. Late effects of chronic low dose-rate γ-rays irradiation on mice

    International Nuclear Information System (INIS)

    To evaluate late biological effects of chronic low dose-rate radiation, the life-span and pathological changes were evaluated in mice which had been continuously irradiated with gamma-rays for 400 days. Two hundred (100 male and 100 female) specific-pathogen-free (SPF) B6C3F1 mice at six weeks of age were purchased every month. After a 2-week quarantine, they were divided into 4 groups (1 unirradiated control and 3 irradiated). Irradiation was performed using 137Cs gamma-rays at dose-rates of 20 mGy/day, 1 mGy/day and 0.05 mGy/day with accumulated doses equivalent to 8000 mGy, 400 mGy and 20 mGy, respectively. All mice were kept until they died a natural death. Results of the monthly microbiological examinations confirmed that the mice were maintained under SPF-conditions throughout the experimental period. A total of 4000 mice have been admitted into the experiment since it started in February 1996, all of which have received their predetermined doses and have been transferred to the animal room. Data on the 20 mGy/day group of both sexes suggested a shortened life span. The most common lethal neoplasms in pooled data of unirradiated control and irradiated male mice in order of frequency were neoplasms of the lymphohematopoietic system, liver, and lung. In female mice, neoplasms of the lymphohematopoietic system, soft tissue, and endocrine system were common. (author)

  12. Dosimetry for quantitative analysis of low dose ionizing radiation effects on humans in radiation therapy patients

    International Nuclear Information System (INIS)

    We have successfully developed a practical approach to predicting the location of skin surface dose at potential biopsy sites that receive 1 cGy and 10 cGy, respectively, in support of in vivo biologic dosimetry in humans. This represents a significant technical challenge as the sites lie on the patient surface out side the radiation fields. The PEREGRINE Monte Carlo simulation system was used to model radiation dose delivery and TLDs were used for validation on a phantom and confirmation during patient treatment. In the developmental studies the Monte Carlo simulations consistently underestimated the dose at the biopsy site by approximately 15% for a realistic treatment configuration, most likely due to lack of detail in the simulation of the linear accelerator outside the main beam line. Using a single, thickness-independent correction factor for the clinical calculations, the average of 36 measurements for the predicted 1 cGy point was 0.985 cGy (standard deviation: 0.110 cGy) despite patient breathing motion and other real world challenges. Since the 10 cGy point is situated in the region of high dose gradient at the edge of the field, patient motion had a greater effect and the six measured points averaged 5.90 cGy (standard deviation: 1.01 cGy), a difference that is equivalent to approximately a 6 mm shift on the patient's surface

  13. Effects of X-Ray Dose On Rhizosphere Studies Using X-Ray Computed Tomography.

    Directory of Open Access Journals (Sweden)

    Susan Zappala

    Full Text Available X-ray Computed Tomography (CT is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy. However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored.

  14. Low-dose radiation employed in diagnostic imaging causes genetic effects in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Ponzinibbio, Maria V.; Peral-Garcia, Pilar; Seoane, Analia (Inst. de Genetica Veterinaria, Univ. Nacional de La Plata CONICET, La Plata (Argentina)), e-mail: aseoane@fcv.unlp.edu.ar; Crudeli, Cintia (Agencia Nacional de Promocion Cientifica y Tecnologica, La Plata (Argentina))

    2010-11-15

    Background: Exposure to environmental, diagnostic, and occupational sources of radiation frequently involves low doses. Although these doses have no immediately noticeable impact on human health there is great interest in their long-term biological effects. Purpose: To assess immediate and time-delayed DNA damage in two cell lines exposed to low doses of ionizing radiation by using the comet assay and micronucleus test, and to compare these two techniques in the analysis of low-dose induced genotoxicity. Material and Methods: CHO and MRC-5 cells were exposed to 50 milliSievert (mSv) of ionizing radiation and assayed immediately after irradiation and at 16 or 12 passages post-irradiation, respectively. Comet assay and micronucleus test were employed. Results: The comet assay values observed in 50 mSv-treated cells were significantly higher than in the control group for both sample times and cell lines (P < 0.001). Micronuclei frequencies were higher in treated cells than in the control group (P < 0.01, CHO cells passage 16; P < 0.05, MRC-5 cells immediately after exposure; P < 0.01 MRC-5 cells passage 12). Correlation analysis between the two techniques was statistically significant (correlation coefficient 0.82, P < 0.05 and correlation coefficient 0.86, P < 0.05 for CHO and MRC-5 cells, respectively). Cells scored at passages 12 or 16 showed more damage than those scored immediately after exposure in both cell lines (no statistically significant differences). Conclusion: Cytomolecular and cytogenetic damage was observed in cells exposed to very low doses of X-rays and their progeny. A single low dose of ionizing radiation was sufficient to induce such response, indicating that mammalian cells are exquisitely sensitive to it. Comet and micronucleus assays are sensitive enough to assess this damage, although the former seems to be more efficient

  15. Effect of low-dose gamma-radiation upon hatchability and weight of chickens

    Energy Technology Data Exchange (ETDEWEB)

    Vilic, M.; Kraljevic, P.; Simpraga, M. [Zagreb Univ., Veterinary faculty (Croatia); Miljanic, S. [Ruder Boskovic Institute, Zagreb (Croatia)

    2006-07-01

    Full text of publication follows: Although any dose of ionizing radiation has generally been recognized to be detrimental to living being, low dose ionizing radiation seems to invoke primary stimulative effects. Stimulatory effects of low dose ionizing radiation include many aspects such as growth, fecundity and longevity stimulation, accelerated development, enhance biological responses for immune systems, enzymatic repair, physiological functions, and the removal of cellular damage, including prevention and removal of cancers and other diseases. Low dose ionizing radiation might also cause changes in the concentration of some biochemical parameters in blood plasma of chickens such as changes in the concentration of total proteins, glucose and cholesterol. The objective of this study was to determine the effect of low doses of gamma irradiation before incubation and on the seventh day of incubation on hatchability of eggs and body weight of chickens. This study includes three independent experiments. In the first experiment, six-hundred eggs produced by a commercial flock of Avian-line 34, were irradiated by a dose of 0.15 Gy gamma radiation (60 Co) before incubation. In the second experiments also involving six-hundred-line 34 eggs were irradiated by dose of 0.15 Gy gamma radiation on the seventh day of incubation. In the third experiment three-hundred eggs produced by a commercial flock of Ross 308 were irradiated by dose 0.30 Gy gamma irradiation before incubation. Along with the chickens which were hatched from irradiated eggs, there was a control group of chickens hatched from nonirradiated eggs. All other conditions were the same for both groups. Hatchability was calculated in terms of all eggs divided with fertile eggs which hatched. The individual weights of the chickens were determined on the first and on the forty second day. Growth data were analyzed statistically by t-test. Irradiation of chicken eggs and embryos at rates o f 0.15 Gy increases

  16. Challenges in Analyzing the Biological Effects of Resveratrol

    DEFF Research Database (Denmark)

    Erdogan, Cihan Süleyman; Vang, Ole

    2016-01-01

    The suggested health effects (e.g., disease prevention) of dietary bioactive compounds such as resveratrol are challenging to prove in comparison to man-made drugs developed for therapeutic purposes. Dietary bioactive compounds have multiple cellular targets and therefore have a variety of biolog......The suggested health effects (e.g., disease prevention) of dietary bioactive compounds such as resveratrol are challenging to prove in comparison to man-made drugs developed for therapeutic purposes. Dietary bioactive compounds have multiple cellular targets and therefore have a variety...... research. Questions we address include: (1) Is the combinatorial effect of resveratrol and other compounds real? (2) What are the real and relevant doses of resveratrol after administration? and (3) Is it possible to estimate the preventive effect of resveratrol by clinical trials using standard...... experimental designs? The examples concerning resveratrol taken from the scientific literature are mainly from 2010 and later. The challenges pointed out in this review are similar to most naturally occurring bioactive compounds...

  17. Cell Biology of Thiazide Bone Effects

    Science.gov (United States)

    Gamba, Gerardo; Riccardi, Daniela

    2008-09-01

    The thiazide-sensitive Na+:Cl- cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian kidney. The activity of NCC is not only related to salt metabolism, but also to calcium and magnesium homeostasis due to the inverse relationship between NCC activity and calcium reabsorption. Hence, the thiazide-type diuretics that specifically block NCC have been used for years, not only for treatment of hypertension and edematous disease, but also for the management of renal stone disease. Epidemiological studies have shown that chronic thiazide treatment is associated with higher bone mineral density and reduced risk of bone fractures, which can only partly be explained in terms of their effects on the kidney. In this regard, we have recently shown that NCC is expressed in bone cells and that inhibition of NCC in bone, either by thiazides or by reduction of NCC protein with specific siRNA, is associated with increased mineralization in vitro. These observations open a field of study to begin to understand the cell biology of the beneficial effects of thiazides in bone.

  18. Dose, time and volume effects in interstitial radiation therapy

    International Nuclear Information System (INIS)

    This study presents the main features and uncertainties of interstitial therapy and was undertaken to examine whether differences could be found in different clinical situations treated by interstitial implants with removable sources, that were not simply related to dose. In chapter 2, dating from 1978, continuous low dose rate irradiation is discussed from the radiobiological point of view together with some points related to variation in dose rate. A benefit of continuous low dose rate irradiation could be surmised in a few situations with special cell-kinetic properties. The problem of dose specification, the sharp dose gradient and other volume characteristics are discussed in chapter 3. Possible adjustments to variations in dose rate are discussed in chapter 4. The clinical material is reviewed in chapter 5, including aspects of dose specification, dose fall-off and variation in dose rate. The general discussion and conclusions are given in chapter 6. (Auth.)

  19. Evaluation of organ doses and specific k effective dose of 64-slice CT thorax examination using an adult anthropomorphic phantom

    Science.gov (United States)

    Hashim, S.; Karim, M. K. A.; Bakar, K. A.; Sabarudin, A.; Chin, A. W.; Saripan, M. I.; Bradley, D. A.

    2016-09-01

    The magnitude of radiation dose in computed tomography (CT) depends on the scan acquisition parameters, investigated herein using an anthropomorphic phantom (RANDO®) and thermoluminescence dosimeters (TLD). Specific interest was in the organ doses resulting from CT thorax examination, the specific k coefficient for effective dose estimation for particular protocols also being determined. For measurement of doses representing five main organs (thyroid, lung, liver, esophagus and skin), TLD-100 (LiF:Mg, Ti) were inserted into selected holes in a phantom slab. Five CT thorax protocols were investigated, one routine (R1) and four that were modified protocols (R2 to R5). Organ doses were ranked from greatest to least, found to lie in the order: thyroid>skin>lung>liver>breast. The greatest dose, for thyroid at 25 mGy, was that in use of R1 while the lowest, at 8.8 mGy, was in breast tissue using R3. Effective dose (E) was estimated using three standard methods: the International Commission on Radiological Protection (ICRP)-103 recommendation (E103), the computational phantom CT-EXPO (E(CTEXPO)) method, and the dose-length product (DLP) based approach. E103 k factors were constant for all protocols, ~8% less than that of the universal k factor. Due to inconsistency in tube potential and pitch factor the k factors from CTEXPO were found to vary between 0.015 and 0.010 for protocols R3 and R5. With considerable variation between scan acquisition parameters and organ doses, optimization of practice is necessary in order to reduce patient organ dose.

  20. Effect of particulate adjuvant on the anthrax protective antigen dose required for effective nasal vaccination.

    Science.gov (United States)

    Bento, Dulce; Staats, Herman F; Borges, Olga

    2015-07-17

    Successful vaccine development is dependent on the development of effective adjuvants since the poor immunogenicity of modern subunit vaccines typically requires the use of potent adjuvants and high antigen doses. In recent years, adjuvant formulations combining both immunopotentiators and delivery systems have emerged as a promising strategy to develop effective and improved vaccines. In this study we investigate if the association of the mast cell activating adjuvant compound 48/80 (C48/80) with chitosan nanoparticles would promote an antigen dose sparing effect when administered intranasally. Even though the induction of strong mucosal immunity required higher antigen doses, incorporation of C48/80 into nanoparticles provided significant dose sparing when compared to antigen and C48/80 in solution with no significant effect on serum neutralizing antibodies titers. These results suggest the potential of this novel adjuvant combination to improve the immunogenicity of a vaccine and decrease the antigen dose required for vaccination. PMID:26087299

  1. Influence of standing positions and beam projections on effective dose and eye lens dose of anaesthetists in interventional procedures

    International Nuclear Information System (INIS)

    More and more anaesthetists are getting involved in interventional radiology procedures and so it is important to know the radiation dose and to optimise protection for anaesthetists. In this study, based on Monte Carlo simulations and field measurements, both the whole-body doses and eye lens dose of anaesthetists were studied. The results showed that the radiation exposure to anaesthetists not only depends on their workload, but also largely varies with their standing positions and beam projections during interventional procedures. The simulation results showed that the effective dose to anaesthetists may vary with their standing positions and beam projections to more than a factor of 10, and the eye lens dose may vary with the standing positions and beam projections to more than a factor of 200. In general, a close position to the bed and the left lateral (LLAT) beam projection will bring a high exposure to anaesthetists. Good correlations between the eye lens dose and the doses at the neck, chest and waist over the apron were observed from the field measurements. The results indicate that adequate arrangements of anaesthesia device or other monitoring equipment in the fluoroscopy rooms are useful measures to reduce the radiation exposure to anaesthetists, and anaesthetists should be aware that they will receive the highest doses under left lateral beam projection. (authors)

  2. Biological effects of low energy nitrogen ion implantation on Jatropha curcas L. seed germination

    International Nuclear Information System (INIS)

    Highlights: ► We analyzed biological effects of N+ implantation on dry Jatropha curcas seed. ► N+ implantation greatly decreased seedling survival rate. ► At doses beyond 15 × 1016 ion cm−2, biological repair took place. ► CAT was essential for H2O2 removal. POD mainly functioned as seed was severely hurt. ► HAsA–GSH cycle mainly contributed to the regeneration of HAsA. - Abstract: To explore the biological effects of nitrogen ion beam implantation on dry Jatropha curcas seed, a beam of N+ with energy of 25 keV was applied to treat the dry seed at six different doses. N+ beam implantation greatly decreased germination rate and seedling survival rate. The doses within the range of 12 × 1016 to 15 × 1016 ions cm−2 severely damaged the seeds: total antioxidant capacity (TAC), germination rate, seedling survival rate, reduced ascorbate acid (HAsA) and reduced glutathione (GSH) contents, and most of the tested antioxidases activity (i.e. catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD)) reached their lowest levels. At a dose of 18 × 1016 ion cm−2, biological repair took place: moderate increases were found in TAC, germination rate, seedling survival rate, HAsA and GSH contents, and some antioxidant enzyme activities (i.e. CAT, APX, SOD and GPX). The dose of 18 × 1016 ions cm−2 may be the optimum dose for use in dry J. curcas seed mutation breeding. CAT, HAsA and GSH contributed to the increase of TAC, but CAT was the most important. POD performed its important role as seed was severely damaged. The main role of the HAsA–GSH cycle appeared to be for regeneration of HAsA.

  3. A consideration of low dose radiation effects on human health

    International Nuclear Information System (INIS)

    On March 11, 2011, an earthquake categorized as 9 Mw occurred off the northeast coast of Japan. The subsequent destructive tsunami disabled emergency units of Fukushima Dai'ichi Nuclear Power Plant and caused partial meltdown of reactors and explosions. Resulting radiation releases forced large evacuations, bore concerns about food and water and fears against human health. In this manuscript, we described the effect of radiation, especially low dose radiation below 100 mSv, on cancer risk, focusing on fetuses and children. (author)

  4. THE EFFECT OF BORON DOSES ON PARICA (Schizolobium amazonicum Herb.)

    OpenAIRE

    Sebastião Ferreira de Lima; Rodrigo Luz da Cunha; Janice Guedes de Carvalho; Carlos Alberto Spaggiari Souza; Fernando Luiz de Oliveira Corrêa

    2003-01-01

    An experiment was conducted in a greenhouse in order to evaluate the effects of boron on parica growth and on concentration and contents of macro and micronutrients indry matter of shoots and roots. Six treatments constituted by boron doses of 0.0; 0.1; 0.3; 0.9;1.5 and 2.1 mg/dm3 in four replications were used. It was evaluated the characteristics:visual diagnostic, plants height and diameter, dry matter production of shoots and roots,concentration and contents of nutrients in dry matter of ...

  5. What Makes Biology Learning Difficult and Effective: Students' Views

    Science.gov (United States)

    Cimer, Atilla

    2012-01-01

    The present study aims to determine the biological topics that students have difficulties learning, the reasons why secondary school students have difficulties in learning biology, and ways to improve the effectiveness of students' biology learning. For these purposes, a self-administered questionnaire including three open-ended questions was…

  6. Dose Response Association between Physical Activity and Biological, Demographic, and Perceptions of Health Variables

    Directory of Open Access Journals (Sweden)

    Paul D. Loprinzi

    2013-08-01

    Full Text Available Background: Few population-based studies have examined the association between physical activity (PA and cardiovascular disease risk factors, demographic variables, and perceptions of health status, and we do not have a clear understanding of the dose-response relationship among these variables. Methods: Data from the 2003-2006 National Health and Nutrition Examination Survey was used to examine the dose-response relationship between objectively measured PA and metabolic syndrome (and its individual cardiovascular disease risk factors, demographic variables, and perceptions of health. After exclusions, 5,538 participants 18 years or older were included in the present study, with 2,538 participants providing fasting glucose and 2,527 providing fasting triglyceride data. PA was categorized into deciles. Results: Overall, the health benefits showed a general pattern of increase with each increasing levels of PA. Of the ten PA classifications examined, participants in the highest moderate-to-vigorous physical activity (MVPA category (at least 71 min/day had the lowest odds of developing metabolic syndrome. Conclusion: At a minimum, sedentary adults should strive to meet current PA guidelines (i.e., 150 min/week of MVPA, with additional positive benefits associated with engaging in three times this level of PA.

  7. Effective dose and organ doses estimation taking tube current modulation into account with a commercial software package

    International Nuclear Information System (INIS)

    To evaluate the effect of including tube current modulation (TCM) versus using the average mAs in estimating organ and effective dose (E) using commercial software. Forty adult patients (24 females, 16 males) with normal BMI underwent chest/abdomen computed tomography (CT) performed with TCM at 120 kVp, reference mAs of 110 (chest) and 200 (abdomen). Doses to fully irradiated organs (breasts, lungs, stomach, liver and ovaries) and E were calculated using two versions of a dosimetry software: v.2.0, which uses the average mAs, and v.2.2, which accounts for TCM by implementing a gender-specific mAs profile. Student's t-test was used to assess statistically significant differences between organ doses calculated with the two versions. A statistically significant difference (p < 0.001) was found for E on chest and abdomen CT, with E being lower by 4.2 % when TCM is considered. Similarly, organ doses were also significantly lower (p < 0.001): 13.7 % for breasts, 7.3 % for lungs, 9.1 % for the liver and 8.5 % for the stomach. Only the dose to the ovaries was higher with TCM (11.5 %). When TCM is used, for the stylized phantom, the doses to lungs, breasts, stomach and liver decreased while the dose to the ovaries increased. (orig.)

  8. Effective dose and organ doses estimation taking tube current modulation into account with a commercial software package

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Rendon, X. [KU Leuven, Department of Imaging and Pathology, Division of Medical Physics and Quality Assessment, Herestraat 49, box 7003, Leuven (Belgium); Bosmans, H.; Zanca, F. [KU Leuven, Department of Imaging and Pathology, Division of Medical Physics and Quality Assessment, Herestraat 49, box 7003, Leuven (Belgium); University Hospitals Leuven, Department of Radiology, Leuven (Belgium); Oyen, R. [University Hospitals Leuven, Department of Radiology, Leuven (Belgium)

    2015-07-15

    To evaluate the effect of including tube current modulation (TCM) versus using the average mAs in estimating organ and effective dose (E) using commercial software. Forty adult patients (24 females, 16 males) with normal BMI underwent chest/abdomen computed tomography (CT) performed with TCM at 120 kVp, reference mAs of 110 (chest) and 200 (abdomen). Doses to fully irradiated organs (breasts, lungs, stomach, liver and ovaries) and E were calculated using two versions of a dosimetry software: v.2.0, which uses the average mAs, and v.2.2, which accounts for TCM by implementing a gender-specific mAs profile. Student's t-test was used to assess statistically significant differences between organ doses calculated with the two versions. A statistically significant difference (p < 0.001) was found for E on chest and abdomen CT, with E being lower by 4.2 % when TCM is considered. Similarly, organ doses were also significantly lower (p < 0.001): 13.7 % for breasts, 7.3 % for lungs, 9.1 % for the liver and 8.5 % for the stomach. Only the dose to the ovaries was higher with TCM (11.5 %). When TCM is used, for the stylized phantom, the doses to lungs, breasts, stomach and liver decreased while the dose to the ovaries increased. (orig.)

  9. Evidence for the Cellular Basis of Intestinal Death in Mice, from an Analysis of Dose-Effect Relationships Modified by Quality of Radiation, Dose Rate, Fractionation and Anoxia

    International Nuclear Information System (INIS)

    When animals are killed by radiation, as by other toxic agents, the dose-effect relationship may be characterized by the LD50 together with the 'spread' or variance of the observations. It is generally accepted that the type of dose-effect curve (a probability curve) obtained in such experiments is to be ascribed to subtle and uncontrollable biological variations within any group of experimental animals. Conditions of irradiation have been used such that the values of LD50 might be widely different, e.g. for intestinal death (at 4-5 days) the LD50 for animals exposed to fast electrons while breathing oxygen was 1020 rad, while for animals breathing nitrogen it was 2800 rad. In that example, the variances of the two sets of data were in exactly the same ratio as the LD50 values, so that the anoxia operated as a dose-modifying agent. For other methods of modifying the LD50, however, this was not true: for example when the LD50 was increased from 1200 to 1600 rad by fractionation the variance remained constant. A computer programme was set up to perform probit analyses on animal survival curves, and to test whether 'dose modification' or 'parallel slopes' (i.e. variances proportional to LD50 values, or constant variances) provides the better model for the comparison of the results of irradiation in any two sets of conditions. It was found , in general, that conditions which give true dose modification of cell survival curves (e.g. anoxia) are also dose-modifying for the animal survival curves, whereas conditions which act as if to change the shoulder of a cell survival curve, but not its slope (e.g. dose fractionation) act similarly in respect of animal survival curves. Thus the biological variability which expresses itself in the probability curve for animal survival seems to be closely linked with the survival curve for the particular cell population the depletion of which leads to the gastro-intestinal • syndrome. (author)

  10. Low dose effects and non-monotonic dose responses for endocrine active chemicals: Science to practice workshop: Workshop summary

    DEFF Research Database (Denmark)

    Beausoleil, Claire; Ormsby, Jean-Nicolas; Gies, Andreas;

    2013-01-01

    A workshop was held in Berlin September 12–14th 2012 to assess the state of the science of the data supporting low dose effects and non-monotonic dose responses (“low dose hypothesis”) for chemicals with endocrine activity (endocrine disrupting chemicals or EDCs). This workshop consisted...... no consensus was reached the robust discussions were helpful to inform both basic scientists and risk assessors on all the issues. There were a number of important ideas developed to help continue the discussion and improve communication over the next few years....

  11. The radioinduced membranes injuries as biological dose indicators: mechanisms of studies and practical applications; Les dommages membranaires radio-induits comme bio-indicateurs de dose: etudes des mecanismes et applications pratiques

    Energy Technology Data Exchange (ETDEWEB)

    Vincent-Genod, Lucie

    2001-10-15

    After an accidental overexposure, the assessment of the received dose in biological dosimetry is performed by a method based on the effects of irradiation on the DNA molecule. But this technique shows some limitations; therefore we tried to find new bio-sensors of radiation exposure. We have pointed out that membrane is a critical target of ionising radiation after an in vitro and in vivo overexposure. In vitro, these modifications were involved in the radio-induced apoptotic pathway. The measure of membrane fluidity allowed us to obtain an overall view of cellular membrane. Moreover, in vivo, by changing the lipid nutritional status of animals, our results displayed the important role played by membrane lipid composition in radio-induced membrane alterations. Besides, membrane effects were adjusted by the extracellular physiological control, and in particular by the damages on membrane fatty acid pattern. Finally, we have tested the use of membrane fluidity index as a bio-sensor of radiation exposure on in vivo models and blood samples from medical total body irradiated patients. The results achieved on animal models suggested that the membrane fluidity index was a bio-sensor of radiation exposure. Nevertheless, the observations realised on patients highlight that the effect of the first dose fraction of the radiotherapy treatment had some difficulties to be noticed. Indeed, the combined treatment: chemotherapy and radiotherapy disturbed the membrane fluidity index measures. To conclude, whereas this parameter was not a bio-sensor of irradiation exposure usable in biological dosimetry, it may allow us to assess the radio-induced damages and their cellular but also tissue impacts. (author)

  12. SU-E-T-280: Reconstructed Rectal Wall Dose Map-Based Verification of Rectal Dose Sparing Effect According to Rectum Definition Methods and Dose Perturbation by Air Cavity in Endo-Rectal Balloon

    International Nuclear Information System (INIS)

    Purpose: Dosimetric effect and discrepancy according to the rectum definition methods and dose perturbation by air cavity in an endo-rectal balloon (ERB) were verified using rectal-wall (Rwall) dose maps considering systematic errors in dose optimization and calculation accuracy in intensity-modulated radiation treatment (IMRT) for prostate cancer patients. Methods: When the inflated ERB having average diameter of 4.5 cm and air volume of 100 cc is used for patient, Rwall doses were predicted by pencil-beam convolution (PBC), anisotropic analytic algorithm (AAA), and AcurosXB (AXB) with material assignment function. The errors of dose optimization and calculation by separating air cavity from the whole rectum (Rwhole) were verified with measured rectal doses. The Rwall doses affected by the dose perturbation of air cavity were evaluated using a featured rectal phantom allowing insert of rolled-up gafchromic films and glass rod detectors placed along the rectum perimeter. Inner and outer Rwall doses were verified with reconstructed predicted rectal wall dose maps. Dose errors and extent at dose levels were evaluated with estimated rectal toxicity. Results: While AXB showed insignificant difference of target dose coverage, Rwall doses underestimated by up to 20% in dose optimization for the Rwhole than Rwall at all dose range except for the maximum dose. As dose optimization for Rwall was applied, the Rwall doses presented dose error less than 3% between dose calculation algorithm except for overestimation of maximum rectal dose up to 5% in PBC. Dose optimization for Rwhole caused dose difference of Rwall especially at intermediate doses. Conclusion: Dose optimization for Rwall could be suggested for more accurate prediction of rectal wall dose prediction and dose perturbation effect by air cavity in IMRT for prostate cancer. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea

  13. Comparison between Monte Carlo simulation and measurement with a 3D polymer gel dosimeter for dose distributions in biological samples

    International Nuclear Information System (INIS)

    In this research, we used a 135 MeV/nucleon carbon-ion beam to irradiate a biological sample composed of fresh chicken meat and bones, which was placed in front of a PAGAT gel dosimeter, and compared the measured and simulated transverse-relaxation-rate (R2) distributions in the gel dosimeter. We experimentally measured the three-dimensional R2 distribution, which records the dose induced by particles penetrating the sample, by using magnetic resonance imaging. The obtained R2 distribution reflected the heterogeneity of the biological sample. We also conducted Monte Carlo simulations using the PHITS code by reconstructing the elemental composition of the biological sample from its computed tomography images while taking into account the dependence of the gel response on the linear energy transfer. The simulation reproduced the experimental distal edge structure of the R2 distribution with an accuracy under about 2 mm, which is approximately the same as the voxel size currently used in treatment planning. (paper)

  14. Comparison between Monte Carlo simulation and measurement with a 3D polymer gel dosimeter for dose distributions in biological samples

    Science.gov (United States)

    Furuta, T.; Maeyama, T.; Ishikawa, K. L.; Fukunishi, N.; Fukasaku, K.; Takagi, S.; Noda, S.; Himeno, R.; Hayashi, S.

    2015-08-01

    In this research, we used a 135 MeV/nucleon carbon-ion beam to irradiate a biological sample composed of fresh chicken meat and bones, which was placed in front of a PAGAT gel dosimeter, and compared the measured and simulated transverse-relaxation-rate (R2) distributions in the gel dosimeter. We experimentally measured the three-dimensional R2 distribution, which records the dose induced by particles penetrating the sample, by using magnetic resonance imaging. The obtained R2 distribution reflected the heterogeneity of the biological sample. We also conducted Monte Carlo simulations using the PHITS code by reconstructing the elemental composition of the biological sample from its computed tomography images while taking into account the dependence of the gel response on the linear energy transfer. The simulation reproduced the experimental distal edge structure of the R2 distribution with an accuracy under about 2 mm, which is approximately the same as the voxel size currently used in treatment planning.

  15. Is the Linear No-Threshold Dose-Response Paradigm Still Necessary for the Assessment of Health Effects of Low Dose Radiation?

    Science.gov (United States)

    Seong, Ki Moon; Seo, Songwon; Lee, Dalnim; Kim, Min-Jeong; Lee, Seung-Sook; Park, Sunhoo; Jin, Young Woo

    2016-02-01

    Inevitable human exposure to ionizing radiation from man-made sources has been increased with the proceeding of human civilization and consequently public concerns focus on the possible risk to human health. Moreover, Fukushima nuclear power plant accidents after the 2011 East-Japan earthquake and tsunami has brought the great fear and anxiety for the exposure of radiation at low levels, even much lower levels similar to natural background. Health effects of low dose radiation less than 100 mSv have been debated whether they are beneficial or detrimental because sample sizes were not large enough to allow epidemiological detection of excess effects and there was lack of consistency among the available experimental data. We have reviewed an extensive literature on the low dose radiation effects in both radiation biology and epidemiology, and highlighted some of the controversies therein. This article could provide a reasonable view of utilizing radiation for human life and responding to the public questions about radiation risk. In addition, it suggests the necessity of integrated studies of radiobiology and epidemiology at the national level in order to collect more systematic and profound information about health effects of low dose radiation. PMID:26908982

  16. Biological Effects on the Source of Geoneutrinos

    Science.gov (United States)

    Sleep, Norman H.; Bird, Dennis K.; Rosing, Minik T.

    2013-11-01

    Detection of antineutrinos from U and Th series decay within the Earth (geoneutrinos) constrains the absolute abundance of these elements. Marine detectors will measure the ratio over the mantle beneath the site and provide spatial averaging. The measured mantle Th/U may well be significantly below its bulk earth value of 4; Pb isotope measurements on mantle-derived rocks yield low Th/U values, effectively averaged over geological time. The physics of the modern biological process is complicated, but the net effect is that much of the U in the mantle comes from subducted marine sediments and subducted upper oceanic crust. That is, U subducts preferentially relative to Th. Oxygen ultimately from photosynthesis oxidizes U(IV) to U(VI), which is soluble during weathering and sediment transport. Dissolved U(VI) reacts with FeO in the oceanic crust and organic carbon within sediments to become immobile U(IV). These deep marine rocks are preferentially subducted relative to Th(IV)-bearing continental margin rocks. Ferric iron from anoxygenic photosynthesis and oxygen in local oases likely mobilized some U during the Archean Era when there was very little O2 in the air. Conversely, these elements behave similarly in the absence of life, where the elements occur as U(IV) and Th(IV), which do not significantly fractionate during igneous processes. Neither do they fractionate during weathering, as they are essentially insoluble in water in surface environments. Th(IV) and U(IV) remain in solid clay-sized material. Overall, geoneutrino data constrain the masses of mantle chemical and isotopic domains recognized by studies of mantle-derived rocks and show the extent of recycling into the mantle over geological time.

  17. Hanford Technical Basis for Multiple Dosimetry Effective Dose Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Robin L.; Rathbone, Bruce A.

    2010-08-01

    The current method at Hanford for dealing with the results from multiple dosimeters worn during non-uniform irradiation is to use a compartmentalization method to calculate the effective dose (E). The method, as documented in the current version of Section 6.9.3 in the 'Hanford External Dosimetry Technical Basis Manual, PNL-MA-842,' is based on the compartmentalization method presented in the 1997 ANSI/HPS N13.41 standard, 'Criteria for Performing Multiple Dosimetry.' With the adoption of the ICRP 60 methodology in the 2007 revision to 10 CFR 835 came changes that have a direct affect on the compartmentalization method described in the 1997 ANSI/HPS N13.41 standard, and, thus, to the method used at Hanford. The ANSI/HPS N13.41 standard committee is in the process of updating the standard, but the changes to the standard have not yet been approved. And, the drafts of the revision of the standard tend to align more with ICRP 60 than with the changes specified in the 2007 revision to 10 CFR 835. Therefore, a revised method for calculating effective dose from non-uniform external irradiation using a compartmental method was developed using the tissue weighting factors and remainder organs specified in 10 CFR 835 (2007).

  18. Analytical models for total dose ionization effects in MOS devices.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Phillip Montgomery; Bogdan, Carolyn W.

    2008-08-01

    MOS devices are susceptible to damage by ionizing radiation due to charge buildup in gate, field and SOI buried oxides. Under positive bias holes created in the gate oxide will transport to the Si / SiO{sub 2} interface creating oxide-trapped charge. As a result of hole transport and trapping, hydrogen is liberated in the oxide which can create interface-trapped charge. The trapped charge will affect the threshold voltage and degrade the channel mobility. Neutralization of oxidetrapped charge by electron tunneling from the silicon and by thermal emission can take place over long periods of time. Neutralization of interface-trapped charge is not observed at room temperature. Analytical models are developed that account for the principal effects of total dose in MOS devices under different gate bias. The intent is to obtain closed-form solutions that can be used in circuit simulation. Expressions are derived for the aging effects of very low dose rate radiation over long time periods.

  19. Population effective collective dose from nuclear medicine examination in Cuba

    International Nuclear Information System (INIS)

    In an attempt to estimate the effective collective dose imparted to the population of Camagueey-Ciego de Avila territory (Cuba)), we have made use of the statistics from nuclear medicine examinations given to a population of 1.1 million inhabitants for the years 1995-1999. The average annual frequency of examinations was estimated to be 3.82 per 1000 population. The results show that nuclear medicine techniques of thyroid imaging with 43.73% and thyroid uptake with 43.36% are the main techniques implicated in the relative contribution to the total annual effective collective dose, which averaged 54.43 man Sv for the studied period. Radiation risks for the Camagueey-Ciego de Avila population caused by nuclear medicine examinations in the period studied were calculated: the total number of fatal and non-fatal cancers was 16.33 and the number of serious hereditary disturbance was 3.54 as a result of 21,073 nuclear medicine procedures, corresponding to a total detriment of one case per thousand examinations. (authors)

  20. Effects of Total Ionizing Dose on Bipolar Junction Transistor

    Directory of Open Access Journals (Sweden)

    Chee F. Pien

    2010-01-01

    Full Text Available Problem statement: The amount of ionizing radiation that Bipolar Junction Transistor (BJT devices encounter during their lifecycle degrades both of their functional and electrical parameter performances. The different radiation environments either in space, high energy physics experiments, nuclear environment or fabrication process as well as for standard terrestrial operation possess an impact on the devices. Approach: In this research, analytical studies of the effects of ionizing radiation introduced in Commercial-Off-The Shelf (COTS NPN BJTs by 60Co gamma (γ rays had been performed. Results: It was observed that exposure of BJTs to 60Co caused ionizing radiation damage. Ionizing radiation damage was caused mainly by excess charges trapped on or near the surfaces of their insulating layers and interfaces. This phenomenon reduced the minority carrier lifetime and thus, leading to a decrease in the current gain of the BJTs. Conclusion: This ionizing radiation effect was found to arouse either a permanent or temporarily damage in the devices depending on their current drives and also the Total Ionizing Dose (TID absorbed. The performance and degradation of selected BJT devices during irradiation with respect to total dose 60Co were presented in this study.

  1. Effects of oral doses of fluoride on nestling European starlings

    Science.gov (United States)

    Fleming, W.J.; Grue, C.E.; Schuler, C.A.; Bunck, C.M.

    1987-01-01

    Nestling European starlings (Sturnus vulgaris), raised and fed by free-living adults, were given daily oral doses of either distilled water, 193 mg sodium as Na2CO3 per kg of body weight (sodium control group), or 6, 10, 13, 17,23, 30, 40, 80, 160 mg of the fluoride ion as NaF in distilled water per kg of body weight (mg/kg). Dosing began when nestlings were 24-48 hr old and continued for 16 days. The 24-hr LD50 of fluoride for day-old starlings was 50 mg/kg. The 16-day LD50 was 17 mg/kg. The sodium control group did not differ from the water control group with respect to any of the measured variables. Growth rates were significantly reduced in the 13 and 17 mg of fluoride/kg groups; weights of birds given higher dose levels were omitted from growth comparisons because of high, fluoride-induced mortality. Although pre-fledging weights for the 10, 13, and 17 mg of fluoride/kg groups averaged 3.6 to 8.6% less than controls at 17 days, this difference was not significant. Feather and bone growth of the fluoride and control groups were not different, except for keel length measured at 17 days of age which averaged less in the fluoride groups. Liver and spleen weights were not affected by fluoride treatments. No histological damage related to fluoride treatments was found in liver, spleen, or kidney. The logarithm of bone fluoride and magnesium concentration increased with the logarithm of increasing fluoride treatment levels and were significantly correlated with each other. Fluoride treatments had no effect on percent calcium or phosphorus in bone or plasma alkaline phosphatase activity. Oral doses of fluoride appear to be more toxic than equivalent dietary levels. Most birds probably acquire fluoride through their diet. Therefore, the results of the study may overestimate the potential effects of fluorides on songbirds living in fluoride-contaminated environments.

  2. Low-Dose Nonlinear Effects of Smoking on Coronary Heart Disease Risk

    Science.gov (United States)

    Cox, Louis Anthony (Tony)

    2012-01-01

    Some recent discussions of adverse human health effects of active and passive smoking have suggested that low levels of exposure are disproportionately dangerous, so that “The effects of even brief (minutes to hours) passive smoking are often nearly as large (averaging 80% to 90%) as chronic active smoking” (Barnoya and Glantz, 2005). Recent epidemiological evidence (Teo et al., 2006) suggests a more linear relation. This paper reexamines the empirical relation between self-reported low levels of active smoking and risk of coronary heart disease (CHD) in public-domain data from the National Health and Nutrition Examination Survey (NHANES). Consistent with biological evidence on J-shaped and U-shaped relations between smoking-associated risk factors and CHD risks, we find that low levels of active smoking do not appear to be associated with increased CHD risk. Several methodological challenges in epidemiology may explain how model-derived estimates can predict low-dose linear or concave dose-response estimates, even if the empirical (i.e., data-based) relation does not show a clear increased risk at the lowest doses. PMID:22740784

  3. Effects of low-dose. gamma. -irradiation on grapefruit products

    Energy Technology Data Exchange (ETDEWEB)

    Moshonas, M.G.; Shaw, P.E.

    Products obtained from Florida grapefruit irradiated with low-dosage ..gamma..-rays as a possible treatment for infestation by larvae of the Caribbean fruit fly were evaluated to determine effects on flavor and composition. Seven tests were run in which twenty-two lots of fruit were exposed to 7.5, 15, 30, 60 or 90 krd of ..gamma..-irradiation covering the 1981-1982 and early 1982-1983 harvesting season. There were few significant adverse flavor effects on products from irradiated fruit with the exception of the first test run on early-season fruit. In some cases, particularly at the lower doses of radiation, there was a significant improvement of flavor in grapefruit sections. There were no marked differences in vitamin C, sugar or acid levels in juice nor on essential peel oil composition of volatile constituents from irradiated fruit when compared with those from untreated fruit. 18 references, 2 tables.

  4. Dose-effect studies with inhaled plutonium oxide in beagles

    International Nuclear Information System (INIS)

    Beagle dogs given single exposure to 239PuO2 or 238PuO2 aerosols are being observed for life-span dose-effect relationships. The 239Pu body burden of the nine dogs dying due to pulmonary fibrosis-induced insufficiency during the first 3 years after exposure was 1 to 12 μCi. One of these dogs had a pulmonary tumor. Three additional dogs with body burdens of 0.7 to 1.8 μCi died due to pulmonary neoplasia 4-1/2 years after exposure. None of the dogs exposed to 238Pu have died during the first two postexposure years. After inhalation of 239PuO2 or 238PuO2 lymphocytopenia was the earliest observed effect, occuring 0.5 to 2 years after deposition of greater than or equal to 80 nCi plutonium in the lungs

  5. Effect of fast electrons on the reproductive biology of the grain mite Acarus siro (Acari: Acaridae)

    International Nuclear Information System (INIS)

    The effect of fast electrons on the reproductive biology of the grain mite Acarus siro was investigated in the laboratory at 25±1°C and 85% RH. Irradiation of adults with substerilizing doses of fast electrons significantly reduced fecundity and egg viability of the mite. The number of spermatophores found in the bursa of treated females was also considerably reduced. However, no change in the shape of the spermatophores was observed. It was not known whether the decrease in fecundity and egg viability was the result of the drop in spermatophore production or to the death of sperm cells. Fast electrons had less effect upon fecundity than the same dose of gamma radiation. However, irradiation by fast electrons had a similar effect on egg viability (expressed in percentage), number of spermatophores produced per individual, and number of adult F1 progeny. Fast-electron doses above 0.4 kGy caused sterility of the mite

  6. Effective dose analysis of three-dimensional rotational angiography during catheter ablation procedures

    Science.gov (United States)

    Wielandts, J.-Y.; Smans, K.; Ector, J.; De Buck, S.; Heidbüchel, H.; Bosmans, H.

    2010-02-01

    There is increasing use of three-dimensional rotational angiography (3DRA) during cardiac ablation procedures. As compared with 2D angiography, a large series of images are acquired, creating the potential for high radiation doses. The aim of the present study was to quantify patient-specific effective doses. In this study, we developed a computer model to accurately calculate organ doses and the effective dose incurred during 3DRA image acquisition. The computer model simulates the exposure geometry and uses the actual exposure parameters, including the variation in tube voltage and current that is realized through the automatic exposure control (AEC). We performed 3DRA dose calculations in 42 patients referred for ablation on the Siemens Axiom Artis DynaCT system (Erlangen, Germany). Organ doses and effective dose were calculated separately for all projections in the course of the C-arm rotation. The influence of patient body mass index (BMI), dose-area product (DAP), collimation and dose per frame (DPF) rate setting on the calculated doses was also analysed. The effective dose was found to be 5.5 ± 1.4 mSv according to ICRP 60 and 6.6 ± 1.8 mSv according to ICRP 103. Effective dose showed an inversely proportional relationship to BMI, while DAP was nearly BMI independent. No simple conversion coefficient between DAP and effective dose could be derived. DPF reduction did not result in a proportional effective dose decrease. These paradoxical findings were explained by the settings of the AEC and the limitations of the x-ray tube. Collimation reduced the effective dose by more than 20%. Three-dimensional rotational angiography is associated with a definite but acceptable radiation dose that can be calculated for all patients separately. Their BMI is a predictor of the effective dose. The dose reduction achieved with collimation suggests that its use is imperative during the 3DRA procedure.

  7. Effective dose analysis of three-dimensional rotational angiography during catheter ablation procedures

    Energy Technology Data Exchange (ETDEWEB)

    Wielandts, J-Y; Ector, J; De Buck, S; Heidbuechel, H [Department of Electrophysiology-Cardiology, University Hospital Gasthuisberg, 49, Herestraat, 3000-Leuven (Belgium); Smans, K [Belgian Nuclear Research Centre (SCK-CEN), Radiation Protection, Dosimetry and Calibration, Boeretang, 2400-Mol (Belgium); Bosmans, H [Department of Radiology, University Hospital Gasthuisberg, 49, Herestraat, 3000-Leuven (Belgium)], E-mail: jean-yves.wielandts@uz.kuleuven.ac.be

    2010-02-07

    There is increasing use of three-dimensional rotational angiography (3DRA) during cardiac ablation procedures. As compared with 2D angiography, a large series of images are acquired, creating the potential for high radiation doses. The aim of the present study was to quantify patient-specific effective doses. In this study, we developed a computer model to accurately calculate organ doses and the effective dose incurred during 3DRA image acquisition. The computer model simulates the exposure geometry and uses the actual exposure parameters, including the variation in tube voltage and current that is realized through the automatic exposure control (AEC). We performed 3DRA dose calculations in 42 patients referred for ablation on the Siemens Axiom Artis DynaCT system (Erlangen, Germany). Organ doses and effective dose were calculated separately for all projections in the course of the C-arm rotation. The influence of patient body mass index (BMI), dose-area product (DAP), collimation and dose per frame (DPF) rate setting on the calculated doses was also analysed. The effective dose was found to be 5.5 {+-} 1.4 mSv according to ICRP 60 and 6.6 {+-} 1.8 mSv according to ICRP 103. Effective dose showed an inversely proportional relationship to BMI, while DAP was nearly BMI independent. No simple conversion coefficient between DAP and effective dose could be derived. DPF reduction did not result in a proportional effective dose decrease. These paradoxical findings were explained by the settings of the AEC and the limitations of the x-ray tube. Collimation reduced the effective dose by more than 20%. Three-dimensional rotational angiography is associated with a definite but acceptable radiation dose that can be calculated for all patients separately. Their BMI is a predictor of the effective dose. The dose reduction achieved with collimation suggests that its use is imperative during the 3DRA procedure.

  8. X-ray imaging and the skin: Radiation biology, patient dosimetry and observed effects

    International Nuclear Information System (INIS)

    A wide variety of radiation-induced deterministic skin effects have been observed after X-ray guided interventions ranging from mild effects, such as transient erythema or temporary epilation, to severe effects, such as desquamation and necrosis. Radiation biologists have identified, in addition to absorbed dose to the skin, other factors that strongly influence the type and severity of a skin reaction, including exposure-related factors (dose rate, fractionation, the size of the exposed area and its site), biological factors (age, oxygen status, capillary density, hormonal status and genetic factors) and ethnic differences. A peak entrance skin dose of 2 Gy is an arbitrary, but pragmatic, threshold for radiation-induced skin effects after X-ray guided interventions. Transient skin injury originating in the epidermis is not expected in the average patient population at peak entrance skin doses up to 6 Gy. Serious skin effects are not likely to occur in clinical practice when optimised X-ray equipment is used in combination with good techniques for fluoroscopy and imaging. However, this might not be true for patients with biological factors that are associated with an increased sensitivity for radiation-induced skin reactions. (authors)

  9. [Effects of decitabine on biological behavior of U266 cells].

    Science.gov (United States)

    Wang, Mei-Fang; Yang, Lin-Hua; Dong, Chun-Xia; Zhang, Rui-Juan; Zhang, Jian-Hua; Guo, Zhi-Ping; Chen, Jian-Fang; Zhagn, Li; Feng, Da-Wei

    2011-08-01

    This study was aimed to explore the effects of decitabine on the biological behaviour of U266 cells in vitro so as to provide a new thinking and experiment basis, as well as new evidences for the pathogenesis of multiple myeloma. MTT and colony formation assays were used to evaluate the impact of decitabine on the ability of proliferation of U266 cells; flow cytometry was used to analyze the cell distribution in cell cycle; transwell chamber and matrigel assays were used to observe the ability of migration and invasion. The results indicated that decitabine could significantly suppress the proliferation of U266 cells in time-and dose-dependent manners. The flow cytometric analysis demonstrated that the cells in G(0)-G(1) phase significantly increased while the cells in S and G(2)/M phase decreased. The migration and matrigel invading tests showed that the number of cells moving into under chamber of transwell decreased after U266 cells treated with decitabine. It is concluded that decitabine may act as an effective drug for MM by inhibiting the proliferation, migration and invasion ability, and the specific mechanism needs to be deeply explored.

  10. Electron beam simulation of pulsed photon effects in electronic devices at very high doses and dose rates

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.J.; van Lint, V.A.J.; Beezhold, W.; Posey, L.D.; Smith, G.; Wrobe, T.F.

    1985-04-01

    Large high-energy flash X-ray simulation facilities are expensive to build and operate. As a result, the radiation effects community has at its disposal a limited number of X-ray sources with the capability of providing the very high levels of radiation (hundreds of k rad(Si)) required for R and D. Because of the inefficiency of bremsstrahlung production, an accelerator which provides only small doses in the X-ray mode could readily provide the very high total doses and associated dose rates via direct electron irradiation. A prerequisite for electron beam testing is a satisfactory demonstration of the fidelity of the simulation. This paper presents the experimental details and results of such an assessment. It was demonstrated in this work that electron beams do simulate the effects of high-energy bremsstrahlung X-rays when testing semiconductor devices for very high dose and dose rate effects. However, it was also found that the effects of charge deposition from the electron beam can dramatically perturb the nominal irradiation bias conditions. In electronic devices where radiation induced degradation is a function of applied potentials (e.g., MOS devices), this charge capture can totally invalidate the simulation unless the experimenter is aware of and compensates for the effect.

  11. Biological effects of neutrons, mechanisms and applications; Effets biologiques des neutrons: mecanismes et applications

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, Ph. [CEA/Fontenay-aux-Roses, Inst. de Protection et de Surete Nucleaire (IPSN), 92 (France)

    1999-12-01

    The interest to study the ionizing radiations effects on the biological structures concern not only the fundamental comprehension of the mechanisms leading to the radiation damage but also much more pragmatic problems such as the accidental overexposure or radiotherapy treatment. Among these fundamental or applied studies, the neutrons effects take an important part, because of their particular mode of indirect ionization effect and their applications, as well civil as military ones. The purpose of this review is to point out some specific biological effects of neutrons and to describe biological methods to measure them. It clearly appears that neutrons biological effects are more deleterious than those caused by the radiations of lower TEL(X- and {gamma}-rays) taken as reference, for all the measurement levels used, genes mutations, chromosome aberrations, cellular survival or carcinogenesis. This difference is probably related to the density of the energy deposit in the vital cell targets, and to the absence of significant variations related to oxygenation, dose rate or dose fractionation. Such toxic effects, when considered in the course of a criticality accident, can paradoxically become an advantage in the follow-up of therapeutic treatment. (author)

  12. SIX2 Effects on Wilms Tumor Biology

    Directory of Open Access Journals (Sweden)

    Janene Pierce

    2014-12-01

    Full Text Available Wilms tumor (WT blastema retains gene expression profiles characteristic of the multipotent nephron progenitor pool, or cap mesenchyme (CM, in the developing kidney. As a result, WT blastema and the CM are believed to represent contextual analogues of one another. Sine oculis homeobox 2 (SIX2 is a transcription factor expressed specifically in the CM, provides a critical mechanism for CM self-renewal, and remains persistently active in WT blastema, although its purpose in this childhood malignancy remains unclear. We hypothesized that SIX2, analogous to its function in development, confers a survival pathway to blastema, the putative WT stem cell. To test its functional significance in WT biology, wild-type SIX2 was overexpressed in the human WT cell line, WiT49. After validating this model, SIX2 effects on anchorage-independent growth, proliferation, invasiveness, canonical WNT pathway signaling, and gene expression of specific WNT pathway participants were evaluated. Relative to controls, WiT49 cells overexpressing SIX2 showed significantly enhanced anchorage-independent growth and early-passage proliferation representing surrogates of cell survival. Interestingly, overexpression of SIX2 generally repressed TCF/LEF-dependent canonical WNT signaling, which activates and coordinates both differentiation and stem pathways, but significantly heightened canonical WNT signaling through the survivin promoter, a mechanism that exclusively maintains the stem state. In summary, when overexpressed in a human WT cell line, SIX2 enhances cell survival and appears to shift the balance in WNT/β-catenin signaling away from a differentiation path and toward a stem cell survival path.

  13. Electromagnetic field induced biological effects in humans.

    Science.gov (United States)

    Kaszuba-Zwolińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J

    2015-01-01

    or be derived from a combination of many sources. Reported symptoms associated with electromagnetic fields are characterized by the overlapping effect with other individuals with these symptoms exhibited a broad spectrum of clinical manifestations, related to exposure to a single or multiple sources of EMF. The phenomenon of electromagnetic hypersensitivity in the form of dermatological disease is associated with mastocytosis. The biopsies taken from skin lesions of patients with EHS indicated on infiltration of the skin layers of the epidermis with mastocytes and their degranulation, as well as on release anaphylactic reaction mediators such as histamine, chymase and tryptase. The number of people suffering from EHS in the world is growing describing themselves as severely dysfunctional, showing multi organ non-specific symptoms upon exposure to low doses of electromagnetic radiation, often associated with hypersensitivity to many chemical agents (Multiple Chemical Sensitivity-MCS) and/or other environmental intolerances (Sensitivity Related Illness-SRI).

  14. Electromagnetic field induced biological effects in humans.

    Science.gov (United States)

    Kaszuba-Zwolińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J

    2015-01-01

    or be derived from a combination of many sources. Reported symptoms associated with electromagnetic fields are characterized by the overlapping effect with other individuals with these symptoms exhibited a broad spectrum of clinical manifestations, related to exposure to a single or multiple sources of EMF. The phenomenon of electromagnetic hypersensitivity in the form of dermatological disease is associated with mastocytosis. The biopsies taken from skin lesions of patients with EHS indicated on infiltration of the skin layers of the epidermis with mastocytes and their degranulation, as well as on release anaphylactic reaction mediators such as histamine, chymase and tryptase. The number of people suffering from EHS in the world is growing describing themselves as severely dysfunctional, showing multi organ non-specific symptoms upon exposure to low doses of electromagnetic radiation, often associated with hypersensitivity to many chemical agents (Multiple Chemical Sensitivity-MCS) and/or other environmental intolerances (Sensitivity Related Illness-SRI). PMID:27012122

  15. Compressed sensing electron tomography of needle-shaped biological specimens--Potential for improved reconstruction fidelity with reduced dose.

    Science.gov (United States)

    Saghi, Zineb; Divitini, Giorgio; Winter, Benjamin; Leary, Rowan; Spiecker, Erdmann; Ducati, Caterina; Midgley, Paul A

    2016-01-01

    Electron tomography is an invaluable method for 3D cellular imaging. The technique is, however, limited by the specimen geometry, with a loss of resolution due to a restricted tilt range, an increase in specimen thickness with tilt, and a resultant need for subjective and time-consuming manual segmentation. Here we show that 3D reconstructions of needle-shaped biological samples exhibit isotropic resolution, facilitating improved automated segmentation and feature detection. By using scanning transmission electron tomography, with small probe convergence angles, high spatial resolution is maintained over large depths of field and across the tilt range. Moreover, the application of compressed sensing methods to the needle data demonstrates how high fidelity reconstructions may be achieved with far fewer images (and thus greatly reduced dose) than needed by conventional methods. These findings open the door to high fidelity electron tomography over critically relevant length-scales, filling an important gap between existing 3D cellular imaging techniques.

  16. Chemotherapy of onchocerciasis with high doses of diethylcarbamazine or a single dose of ivermectin: microfilaria levels and side effects.

    Science.gov (United States)

    Albiez, E J; Newland, H S; White, A T; Kaiser, A; Greene, B M; Taylor, H R; Büttner, D W

    1988-03-01

    Fifty adult male subjects with moderate to heavy onchocerciasis from the Liberian rain forest were selected for a double-blind placebo-controlled chemotherapy study. The effects of high doses of diethylcarbamazine (DEC) - 30 mg/kg/d - over one week preceded by a one week initial treatment with normal oral doses of DEC or DEC lotion were compared with a single dose of ivermectin (150 micrograms/kg) and placebo. During the initial treatment DEC tablets or lotion caused distinctly more frequent and severe reactions than did invermectin. The reactions to ivermectin did not differ from those of the placebo patients. High doses of DEC caused, in about half of the patients, headache, dizziness, nausea or vomiting. DEC markedly increased the number of corneal microfilariae and of corneal opacities compared to ivermectin. All changes resolved with a return to pretreatment findings two months after treatment. The three treatment groups showed no differences at the ten months follow-up. In all treated patients skin microfilaria counts fell almost to zero by the end of the two week therapy. In the ivermectin group microfilaria counts remained significantly lower than in the DEC patients at the two and ten months examinations. In summary, ivermectin was much better tolerated than DEC and had a longer lasting effect on the microfilariae in the skin. Since high doses of DEC were less effective and caused more frequent and severe side effects, this approach cannot be recommended for treatment of onchocerciasis.

  17. Imputability of health effects to low-dose radiation exposure situations

    International Nuclear Information System (INIS)

    The key note address is aimed to discuss a crucial issue in nuclear law: whether or not late health effects of stochastic nature, such as radio-induced cancer or hereditable effects, are attributable to radiation exposure situations delivering relatively low radiation doses and, therefore, whether such effects are imputable to those responsible of such situations. The term low dose is used in the presentation when referring to doses similar to natural background doses. (author)

  18. Effect of heparin on the biological properties and molecular signature of human mesenchymal stem cells.

    Science.gov (United States)

    Ling, Ling; Camilleri, Emily T; Helledie, Torben; Samsonraj, Rebekah M; Titmarsh, Drew M; Chua, Ren Jie; Dreesen, Oliver; Dombrowski, Christian; Rider, David A; Galindo, Mario; Lee, Ian; Hong, Wanjin; Hui, James H; Nurcombe, Victor; van Wijnen, Andre J; Cool, Simon M

    2016-01-15

    Chronic use of heparin as an anti-coagulant for the treatment of thrombosis or embolism invokes many adverse systemic events including thrombocytopenia, vascular reactions and osteoporosis. Here, we addressed whether adverse effects might also be directed to mesenchymal stem cells that reside in the bone marrow compartment. Harvested human bone marrow-derived mesenchymal stem cells (hMSCs) were exposed to varying doses of heparin and their responses profiled. At low doses (heparin exerted a variable effect on hMSC proliferation and multipotentiality across multiple donors, while at higher doses (≥ 100 μg/ml), heparin supplementation inhibited cell growth and increased both senescence and cell size. Gene expression profiling using cDNA arrays and RNA-seq analysis revealed pleiotropic effects of low-dose heparin on signaling pathways essential to hMSC growth and differentiation (including the TGFβ/BMP superfamily, FGFs, and Wnts). Cells serially passaged in low-dose heparin possess a donor-dependent gene signature that reflects their altered phenotype. Our data indicate that heparin supplementation during the culturing of hMSCs can alter their biological properties, even at low doses. This warrants caution in the application of heparin as a culture supplement for the ex vivo expansion of hMSCs. It also highlights the need for careful evaluation of the bone marrow compartment in patients receiving chronic heparin treatment.

  19. Effects of prednisone, aspirin, and acetaminophen on an in vivo biologic response to interferon in humans.

    Science.gov (United States)

    Witter, F R; Woods, A S; Griffin, M D; Smith, C R; Nadler, P; Lietman, P S

    1988-08-01

    In healthy volunteers receiving a single intramuscular dose of 18 X 10(6) U interferon alone or after 24 hours of an 8-day course of prednisone (40 mg/day), aspirin (650 mg every 4 hours), or acetaminophen (650 mg every 4 hours), the magnitude of the biologic response to interferon was quantified by measuring the time course of the induction of 2'-5'-oligoadenylate synthetase and resistance to vesicular stomatitis virus infection in human peripheral blood mononuclear cells. Prednisone decreased the AUC of 2'-5'-oligoadenylate synthetase activity (p less than 0.05), whereas administration of aspirin or acetaminophen did not affect this biologic response. No measurable effect was seen during administration of prednisone, aspirin, or acetaminophen on the duration or intensity of vesicular stomatitis virus yield reduction. The side effects seen with interferon administration at the dose tested were not altered in a clinically meaningful manner by prednisone, aspirin, or acetaminophen. PMID:2456175

  20. Low dose radiation effects: an integrative european approach (Risc-Rad Project) coordinated by the Cea

    International Nuclear Information System (INIS)

    RISC-RAD (Radiosensitivity of Individuals and Susceptibility to Cancer induced by ionizing Radiations) is an Integrated Project funded by the European Commission under 6. Framework Programme / EURATOM. RISC-RAD started on 1. January 2004 for a duration of four years. Coordinated by Cea (Dr Laure Sabatier), it involves 11 European countries (Austria, Denmark, Finland, France, Germany, Ireland, Italy, the Netherlands, Spain, Sweden and the United Kingdom) and 29 research institutions. Objectives: Exposures to low and protracted doses of ionizing radiation are very frequent in normal living environment, at work places, in industry and in medicine. Effects of these exposures on human health cannot be reliably assessed by epidemiological methods, nor is thoroughly understood by biologists. RISC-RAD project proposes to help bridging the gap of scientific knowledge about these effects. To achieve this goal, a necessary key step is to understand the basic mechanisms by which radiation induces cancer. Studying this multistage process in an integrated way, the project offers a new biological approach characterised by and clear-cut and objective-driven scientific policy: the project is focused on the effects of low doses (less than 100 mSv) and protracted doses of radiation. It aims at identifying new parameters that take into account the differences in radiation responses between individuals. A group of modelers works closely with the experimental teams in order to better quantify the risks associated with low and protracted doses. Research work is divided into five work packages interacting closely with each other. WP1 is dedicated to DNA damage. Ionizing Radiation (IR) produce a broad spectrum of base modifications and DNA strand breaks of different kinds, among which double-strand breaks and 'clustered damage' which is thought to be a major feature in biological effectiveness of IR. The aim of Work Package 1 is to improve understanding of the initial DNA damage induced by

  1. CMOS inverter design-hardened to the total dose effect

    International Nuclear Information System (INIS)

    This paper reports and discusses the experimental behavior of two inverter structures Rad-Hardened by Design to 60Co irradiation. The authors use the results on a set of basic circuits and transistors exposed to the same total doses as these structures to establish the effective formation conditions of the parasitic channel. Then this leakage evolution is related to the gate voltage history under irradiation. Finally, they take advantage of this intrinsic degradation property to propose a new Design Rad Hardened (DRH) cell. This structure considerably limits the Low Noise Margin degradation, helps to maintain the logic functionality with a High Output level and improves both the rad-tolerance and the static power consumption

  2. Alcohol and cirrhosis: dose--response or threshold effect?

    DEFF Research Database (Denmark)

    Kamper-Jørgensen, Mads; Grønbaek, Morten; Tolstrup, Janne;

    2004-01-01

    BACKGROUND/AIMS: General population studies have shown a strong association between alcohol intake and death from alcoholic cirrhosis, but whether this is a dose-response or a threshold effect remains unknown, and the relation among alcohol misusers has not been studied. METHODS: A cohort of 6152...... alcohol misusing men and women aged 15-83 were interviewed about drinking pattern and social issues and followed for 84,257 person-years. Outcome was alcoholic cirrhosis mortality. Data was analyzed by means of Cox-regression models. RESULTS: In this large prospective cohort study of alcohol misusers...... there was a 27 fold increased mortality from alcoholic cirrhosis in men and a 35 fold increased mortality from alcoholic cirrhosis in women compared to the Danish population. Number of drinks per day was not significantly associated with death from alcoholic cirrhosis, since there was no additional risk of death...

  3. Biological effects of anthropogenic contaminants in the San Francisco Estuary

    Science.gov (United States)

    Thompson, B.; Adelsbach, T.; Brown, C.; Hunt, J.; Kuwabara, J.; Neale, J.; Ohlendorf, H.; Schwarzbach, S.; Spies, R.; Taberski, K.

    2007-01-01

    Concentrations of many anthropogenic contaminants in the San Francisco Estuary exist at levels that have been associated with biological effects elsewhere, so there is a potential for them to cause biological effects in the Estuary. The purpose of this paper is to summarize information about biological effects on the Estuary's plankton, benthos, fish, birds, and mammals, gathered since the early 1990s, focusing on key accomplishments. These studies have been conducted at all levels of biological organization (sub-cellular through communities), but have included only a small fraction of the organisms and contaminants of concern in the region. The studies summarized provide a body of evidence that some contaminants are causing biological impacts in some biological resources in the Estuary. However, no general patterns of effects were apparent in space and time, and no single contaminant was consistently related to effects among the biota considered. These conclusions reflect the difficulty in demonstrating biological effects due specifically to contamination because there is a wide range of sensitivity to contaminants among the Estuary's many organisms. Additionally, the spatial and temporal distribution of contamination in the Estuary is highly variable, and levels of contamination covary with other environmental factors, such as freshwater inflow or sediment-type. Federal and State regulatory agencies desire to develop biological criteria to protect the Estuary's biological resources. Future studies of biological effects in San Francisco Estuary should focus on the development of meaningful indicators of biological effects, and on key organism and contaminants of concern in long-term, multifaceted studies that include laboratory and field experiments to determine cause and effect to adequately inform management and regulatory decisions. ?? 2006 Elsevier Inc. All rights reserved.

  4. Studying of ion implantation effect on the biology in China

    International Nuclear Information System (INIS)

    Since low energy ion effect on the biology was observed, the ion implantation as a new mutagenic source has been widely used in improving crops and modifying microbes in China. The basic phenomenon of ion implantation effect on the biology and analytical results are reported, and the examples of its application and its further development are shown

  5. Effects of emitter junction and passive base region on low dose rate effect in bipolar devices

    International Nuclear Information System (INIS)

    Low dose rate effect in bipolar devices consists in the increase of peripheral surface recombination current with dose rate decrease. This is due to the more rapid positive oxide charge and interface trap density build-up as the dose rate becomes lower. High dose rate elevated temperature irradiation is proposed for simulation if the low dose rate effect. In the present we tried to separate the effect of radiation-induced charge in the thick passivation oxide over the emitter junction and passive base regions of npn bipolar transistor. Its goal is to improve bipolar device design for use in space environments and nuclear installations. Three experiments were made during this work. 1. Experiment on radiation-induced charge neutralization (RICN) effect under elevated temperature was performed to show transistor degradation dependence on emitter-base bias. 2. High dose rate elevated and room temperature irradiation of bipolar transistors were performed to separate effects of emitter-junction and passive base regions. 3. Pre- and post- irradiation hydrogen ambient storage was used to investigate its effect on radiation-induced charge build-up over the passive base region. All experiments were performed with npn and pnp transistors. (authors)

  6. The effective dose equivalent from external and internal radiation

    International Nuclear Information System (INIS)

    The various sources of low-level ionizing radiation are discussed and compared in terms of mean effective dose equivalent to man. For the most nonoccupationally exposed individuals, natural sources given the dominating contribution to the effective dose equivalent. The size of this contribution is strongly dependent on human activities. Natural sources contribution on average 2.4 mSV per year, of which half is due to irradiation of lungs and airways from short lived radon daughters present in indoor air. In Sweden this radon daughter contribution is considerably higher and contributes a mean of 3 mSv per year, thus giving a total contribution from natural radiation of about 4 mSV per year. In extreme cases, radon daughter contributions of several hundreds of mSv per year may be reached. Medical exposure, mainly diagnostic X-rays, contributes 0.4-1 mSv per year both in Sweden and as a world average. The testing of nuclear weapons in the atmosphere has given 1-2 mSv to each person in the world as a mean. The contribution from the routine operation of nuclear reactors is insignificant. The reactor accident in Chernobyl resulted in widely varying exposures of the European population. The average for Sweden is estimated to be 0.1 mSv during the first year and about 1 mSv during a 50-year period. For groups of Swedes who eat a considerable amount of game this contribution will be 10 times higher, and for the Lapps who breed reindeer in the most contaminated areas, typical values of 20-70 mSv and extreme values of about 1 Sv may be reached in 50 years. This means that the Chernobyl reactor accident for several years will be their dominating source of irradiation

  7. Dose-dependent effects of atorvastatin on myocardial infarction

    Directory of Open Access Journals (Sweden)

    Barbarash O

    2015-06-01

    Full Text Available Olga Barbarash, Olga Gruzdeva, Evgenya Uchasova, Ekaterina Belik, Yulia Dyleva, Victoria KaretnikovaFederal State Budgetary Institution, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, the Russian Federation Background: Dyslipidemia is a key factor determining the development of both myocardial infarction (MI and its subsequent complications. Dyslipidemia is associated with endothelial dysfunction, activation of inflammation, thrombogenesis, and formation of insulin resistance. Statin therapy is thought to be effective for primary and secondary prevention of complications associated with atherosclerosis.Methods: This study examined 210 patients with Segment elevated MI (ST elevated MI who were treated with atorvastatin from the first 24 hours after MI. Group 1 (n=110 were given atorvastatin 20 mg/day. Group 2 (n=100 were given atorvastatin 40 mg/day. At days 1 and 12 after MI onset, insulin resistance levels determined by the homeostasis model assessment of insulin resistance index, lipid profiles, and serum glucose, insulin, adipokine, and ghrelin levels were measured.Results: Free fatty acid levels showed a sharp increase during the acute phase of MI. Treatment with atorvastatin 20 mg/day, and especially with 40 mg/day, resulted in a decrease in free fatty acid levels. The positive effect of low-dose atorvastatin (20 mg/day is normalization of the adipokine status. Administration of atorvastatin 20 mg/day was accompanied with a statistically significant reduction in glucose levels (by 14% and C-peptide levels (by 38%, and a decrease in the homeostasis model assessment of insulin resistance index on day 12.Conclusion: Determination of atorvastatin dose and its use during the in-hospital period and subsequent periods should take into account changes in biochemical markers of insulin resistance and adipokine status in patients with MI.Keywords: myocardial infarction, statin, insulin resistance, adipokines

  8. Effect of gamma-dose rate and total dose interrelation on the polymeric hydrogel: A novel injectable male contraceptive

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Pradeep K. [School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302 (India); Department of Management Science, U.P. Technical University, Lucknow 226021 (India); Jha, Rakhi [School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302 (India); Toxicology Laboratory, Department of Zoology, Ch. C.S. University, Meerut 200005 (India); Gupta, B.L. [CH3/56 Kendriya Vihar, Kharghar, Sector-11, Navi Mumbai-410 210 (India); Guha, Sujoy K., E-mail: guha_sk@yahoo.co [School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302 (India)

    2010-05-15

    Functional necessity to use a particular range of dose rate and total dose of gamma-initiated polymerization to manufacture a novel polymeric hydrogel RISUG (reversible inhibition of sperm under guidance) made of styrene maleic anhydride (SMA) dissolved in dimethyl sulphoxide (DMSO), for its broad biomedical application explores new dimension of research. The present work involves 16 irradiated samples. They were tested by fourier transform infrared spectroscopy, matrix assisted laser desorption/ionization-TOF, field emission scanning electron microscopy, high resolution transmission electron microscopy, etc. to see the interrelation effect of gamma dose rates (8.25, 17.29, 20.01 and 25.00 Gy/min) and four sets of doses (1.8, 2.0, 2.2 and 2.4 kGy) on the molecular weight, molecular weight distribution and porosity analysis of the biopolymeric drug RISUG. The results of randomized experiment indicated that a range of 18-24 Gy/min gamma-dose rate and 2.0-2.4 kGy gamma-total doses is suitable for the desirable in vivo performance of the contraceptive copolymer.

  9. Effect of γ-dose rate and total dose interrelation on the polymeric hydrogel: A novel injectable male contraceptive

    Science.gov (United States)

    Jha, Pradeep K.; Jha, Rakhi; Gupta, B. L.; Guha, Sujoy K.

    2010-05-01

    Functional necessity to use a particular range of dose rate and total dose of γ-initiated polymerization to manufacture a novel polymeric hydrogel RISUG ® (reversible inhibition of sperm under guidance) made of styrene maleic anhydride (SMA) dissolved in dimethyl sulphoxide (DMSO), for its broad biomedical application explores new dimension of research. The present work involves 16 irradiated samples. They were tested by fourier transform infrared spectroscopy, matrix assisted laser desorption/ionization-TOF, field emission scanning electron microscopy, high resolution transmission electron microscopy, etc. to see the interrelation effect of gamma dose rates (8.25, 17.29, 20.01 and 25.00 Gy/min) and four sets of doses (1.8, 2.0, 2.2 and 2.4 kGy) on the molecular weight, molecular weight distribution and porosity analysis of the biopolymeric drug RISUG ®. The results of randomized experiment indicated that a range of 18-24 Gy/min γ-dose rate and 2.0-2.4 kGy γ-total doses is suitable for the desirable in vivo performance of the contraceptive copolymer.

  10. Final Report - Epigenetics of low dose radiation effects in an animal model

    Energy Technology Data Exchange (ETDEWEB)

    Kovalchuk, Olga

    2014-10-22

    dose radiation effects and adaptive response • To correlate the levels of epigenetic changes with genetic rearrangement levels and gene expression patterns. In sum, we determined the precise global and locus-specific DNA methylation patterns in the LDR-exposed cells and tissues of mice, and to correlated DNA methylation changes with the gene expression patterns and manifestations of genome instability. We also determined the alterations of global histone modification pattern in the LDR exposed tissues. Additionally, we established the nature of microRNAome changes in the LDR exposed tissue. In this study we for the first time found that LDR exposure caused profound tissue-specific epigenetic changes in the exposed tissues. We established that LDR exposure affect methylation of repetitive elements in the murine genome, causes changes in histone methylation, acetylation and phosphorylation. Importantly, we found that LDR causes profound and persistent effects on small RNA profiles and gene expression, and that miRNAs are excellent biomarkers of LDR exposure. Furthermore, we extended our analysis and studied LDR effects in rat tissues and human tissues and cell lines. There we also analyzed LDR-induced gene expression, DNA methylation and miRNA changes. Our datasets laid foundation for several new research projects aimed to understand molecular underpinnings of low dose radiation responses, and biological repercussions of low dose radiation effects and radiation carcinogenesis.

  11. Characterizing low dose and dose rate effects in rodent and human neural stem cells exposed to proton and gamma irradiation

    Directory of Open Access Journals (Sweden)

    Bertrand P. Tseng

    2013-01-01

    Full Text Available Past work has shown that exposure to gamma rays and protons elicit a persistent oxidative stress in rodent and human neural stem cells (hNSCs. We have now adapted these studies to more realistic exposure scenarios in space, using lower doses and dose rates of these radiation modalities, to further elucidate the role of radiation-induced oxidative stress in these cells. Rodent neural stem and precursor cells grown as neurospheres and human neural stem cells grown as monolayers were subjected to acute and multi-dosing paradigms at differing dose rates and analyzed for changes in reactive oxygen species (ROS, reactive nitrogen species (RNS, nitric oxide and superoxide for 2 days after irradiation. While acute exposures led to significant changes in both cell types, hNSCs in particular, exhibited marked and significant elevations in radiation-induced oxidative stress. Elevated oxidative stress was more significant in hNSCs as opposed to their rodent counterparts, and hNSCs were significantly more sensitive to low dose exposures in terms of survival. Combinations of protons and γ-rays delivered as lower priming or higher challenge doses elicited radioadaptive changes that were associated with improved survival, but in general, only under conditions where the levels of reactive species were suppressed compared to cells irradiated acutely. Protective radioadaptive effects on survival were eliminated in the presence of the antioxidant N-acetylcysteine, suggesting further that radiation-induced oxidative stress could activate pro-survival signaling pathways that were sensitive to redox state. Data corroborates much of our past work and shows that low dose and dose rate exposures elicit significant changes in oxidative stress that have functional consequences on survival.

  12. Radiation dose-fractionation effects in spinal cord: comparison of animal and human data

    OpenAIRE

    Jin, Jian-Yue; Huang, Yimei; Brown, Stephen L.; Movsas, Benjamin; Kaminski, Joseph; Chetty, Indrin J.; Ryu, Samuel; Kong, Feng-Ming (Spring)

    2015-01-01

    Purpose Recognizing spinal cord dose limits in various fractionations is essential to ensure adequate dose for tumor control while minimizing the chance of radiation-induced myelopathy (RIM). This study aimed to determine the α/β ratio of the spinal cord and the cord dose limit in terms of BED50, the biological equivalent dose (BED) that induces 50 % chance of RIM, by fitting data collected from published animal and patient studies. Methods RIM data from five rat studies; three large animal s...

  13. Low-dose effects of bisphenol A on mammary gland development in rats

    DEFF Research Database (Denmark)

    Egebjerg, Karen Mandrup; Boberg, Julie; Isling, Louise Krag;

    2016-01-01

    Bisphenol A (BPA) is widely used in food contact materials, toys, and other products. Several studies have indicated that effects observed at doses near human exposure levels may not be observed at higher doses. Many studies have shown effects on mammary glands at low doses of BPA, however, because...

  14. Effective dose per unit intake of radionuclides by adults and young people

    International Nuclear Information System (INIS)

    This paper describes the NRPB's computerised database of effective dose and organ doses per unit intake by adults, children (10 years) and infants (1 year) of over 300 radionuclides. It describes and discusses the changes that have recently been made to the database and lists effective dose equivalents for intakes by inhalation and ingestion of 48 of the more important nuclides. (author)

  15. Biological effectiveness of neutron irradiation on animals and man

    International Nuclear Information System (INIS)

    Neutron experiments on a highly radiosensitive in vivo system - oocytes in mice - provide new insight into the nature of the radiosensitive targets of these important cells. With the radiobiological literature as background, neutron data from animals and humans are integrated, and the controversial question of radiation protection standards for neutrons is addressed. Oocyte killing in juvenile mice by 0.43-MeV, 252Cf-fission, and 15 MeV neutrons, compared with that by 60Co gamma rays, yields unusually low neutron RBEs (relative biological effectiveness). At 0.1 rad of 0.43-MeV neutrons the RBE is only 1.8, contrasting greatly with values of 100 or more reported at low-doses for other endpoints. In mice just prior to birth, however, when oocytes are less radiosensitive, the neutron RBE is much higher, similar to values for most other mammalian endpoints. This dramatic change in neutron RBE with mouse age (occurring within 2 to 3 days) can be explained as the result of a shift from a less radiosensitive target (presumably nuclear DNA) to a much more radiosensitive one (probably the oocyte plasma membrane). Using various approaches, a value for the neutron Quality Factor (Q, a radiation protection standard) is estimated as 17 (+-100%), much lower than 100 which has been suggested. With the large uncertainty, 17 is not markedly different from the value of 10 presently in general use

  16. Biological effectiveness of neutron irradiation on animals and man

    Energy Technology Data Exchange (ETDEWEB)

    Straume, T.

    1982-11-01

    Neutron experiments on a highly radiosensitive in vivo system - oocytes in mice - provide new insight into the nature of the radiosensitive targets of these important cells. With the radiobiological literature as background, neutron data from animals and humans are integrated, and the controversial question of radiation protection standards for neutrons is addressed. Oocyte killing in juvenile mice by 0.43-MeV, /sup 252/Cf-fission, and 15 MeV neutrons, compared with that by /sup 60/Co gamma rays, yields unusually low neutron RBEs (relative biological effectiveness). At 0.1 rad of 0.43-MeV neutrons the RBE is only 1.8, contrasting greatly with values of 100 or more reported at low-doses for other endpoints. In mice just prior to birth, however, when oocytes are less radiosensitive, the neutron RBE is much higher, similar to values for most other mammalian endpoints. This dramatic change in neutron RBE with mouse age (occurring within 2 to 3 days) can be explained as the result of a shift from a less radiosensitive target (presumably nuclear DNA) to a much more radiosensitive one (probably the oocyte plasma membrane). Using various approaches, a value for the neutron Quality Factor (Q, a radiation protection standard) is estimated as 17 (+-100%), much lower than 100 which has been suggested. With the large uncertainty, 17 is not markedly different from the value of 10 presently in general use.

  17. Biological effects of low energy nitrogen ion implantation on Jatropha curcas L. seed germination

    Science.gov (United States)

    Xu, Gang; Wang, Xiao-teng; Gan, Cai-ling; Fang, Yan-qiong; Zhang, Meng

    2012-09-01

    To explore the biological effects of nitrogen ion beam implantation on dry Jatropha curcas seed, a beam of N+ with energy of 25 keV was applied to treat the dry seed at six different doses. N+ beam implantation greatly decreased germination rate and seedling survival rate. The doses within the range of 12 × 1016 to 15 × 1016 ions cm-2 severely damaged the seeds: total antioxidant capacity (TAC), germination rate, seedling survival rate, reduced ascorbate acid (HAsA) and reduced glutathione (GSH) contents, and most of the tested antioxidases activity (i.e. catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD)) reached their lowest levels. At a dose of 18 × 1016 ion cm-2, biological repair took place: moderate increases were found in TAC, germination rate, seedling survival rate, HAsA and GSH contents, and some antioxidant enzyme activities (i.e. CAT, APX, SOD and GPX). The dose of 18 × 1016 ions cm-2 may be the optimum dose for use in dry J. curcas seed mutation breeding. CAT, HAsA and GSH contributed to the increase of TAC, but CAT was the most important. POD performed its important role as seed was severely damaged. The main role of the HAsA-GSH cycle appeared to be for regeneration of HAsA.

  18. Dose calculation in biological samples in a mixed neutron-gamma field at the TRIGA reactor of the University of Mainz.

    Science.gov (United States)

    Schmitz, Tobias; Blaickner, Matthias; Schütz, Christian; Wiehl, Norbert; Kratz, Jens V; Bassler, Niels; Holzscheiter, Michael H; Palmans, Hugo; Sharpe, Peter; Otto, Gerd; Hampel, Gabriele

    2010-10-01

    To establish Boron Neutron Capture Therapy (BNCT) for non-resectable liver metastases and for in vitro experiments at the TRIGA Mark II reactor at the University of Mainz, Germany, it is necessary to have a reliable dose monitoring system. The in vitro experiments are used to determine the relative biological effectiveness (RBE) of liver and cancer cells in our mixed neutron and gamma field. We work with alanine detectors in combination with Monte Carlo simulations, where we can measure and characterize the dose. To verify our calculations we perform neutron flux measurements using gold foil activation and pin-diodes. Material and methods. When L-α-alanine is irradiated with ionizing radiation, it forms a stable radical which can be detected by electron spin resonance (ESR) spectroscopy. The value of the ESR signal correlates to the amount of absorbed dose. The dose for each pellet is calculated using FLUKA, a multipurpose Monte Carlo transport code. The pin-diode is augmented by a lithium fluoride foil. This foil converts the neutrons into alpha and tritium particles which are products of the (7)Li(n,α)(3)H-reaction. These particles are detected by the diode and their amount correlates to the neutron fluence directly. Results and discussion. Gold foil activation and the pin-diode are reliable fluence measurement systems for the TRIGA reactor, Mainz. Alanine dosimetry of the photon field and charged particle field from secondary reactions can in principle be carried out in combination with MC-calculations for mixed radiation fields and the Hansen & Olsen alanine detector response model. With the acquired data about the background dose and charged particle spectrum, and with the acquired information of the neutron flux, we are capable of calculating the dose to the tissue. Conclusion. Monte Carlo simulation of the mixed neutron and gamma field of the TRIGA Mainz is possible in order to characterize the neutron behavior in the thermal column. Currently we also

  19. Dose calculation in biological samples in a mixed neutron-gamma field at the TRIGA reactor of the Univ. of Mainz

    International Nuclear Information System (INIS)

    To establish Boron Neutron Capture Therapy (BNCT) for non-resectable liver metastases and for in vitro experiments at the TRIGA Mark II reactor at the Univ. of Mainz (DE), it is necessary to have a reliable dose monitoring system. The in vitro experiments are used to determine the relative biological effectiveness (RBE) of liver and cancer cells in our mixed neutron and gamma field. We work with alanine detectors in combination with Monte Carlo simulations, where we can measure and characterize the dose. To verify our calculations we perform neutron flux measurements using gold foil activation and pin-diodes. Material and methods. When L-a-alanine is irradiated with ionizing radiation, it forms a stable radical which can be detected by electron spin resonance (ESR) spectroscopy. The value of the ESR signal correlates to the amount of absorbed dose. The dose for each pellet is calculated using FLUKA, a multipurpose Monte Carlo transport code. The pin-diode is augmented by a lithium fluoride foil. This foil converts the neutrons into alpha and tritium particles which are products of the 7Li(n,a)3H-reaction. These particles are detected by the diode and their amount correlates to the neutron fluence directly. Results and discussion. Gold foil activation and the pin-diode are reliable fluence measurement systems for the TRIGA reactor, Mainz. Alanine dosimetry of the photon field and charged particle field from secondary reactions can in principle be carried out in combination with MC-calculations for mixed radiation fields and the Hansen and Olsen alanine detector response model. With the acquired data about the background dose and charged particle spectrum, and with the acquired information of the neutron flux, we are capable of calculating the dose to the tissue. Conclusion. Monte Carlo simulation of the mixed neutron and gamma field of the TRIGA Mainz is possible in order to characterize the neutron behavior in the thermal column. Currently we also speculate on

  20. Dose calculation in biological samples in a mixed neutron-gamma field at the TRIGA reactor of the University of Mainz.

    Science.gov (United States)

    Schmitz, Tobias; Blaickner, Matthias; Schütz, Christian; Wiehl, Norbert; Kratz, Jens V; Bassler, Niels; Holzscheiter, Michael H; Palmans, Hugo; Sharpe, Peter; Otto, Gerd; Hampel, Gabriele

    2010-10-01

    To establish Boron Neutron Capture Therapy (BNCT) for non-resectable liver metastases and for in vitro experiments at the TRIGA Mark II reactor at the University of Mainz, Germany, it is necessary to have a reliable dose monitoring system. The in vitro experiments are used to determine the relative biological effectiveness (RBE) of liver and cancer cells in our mixed neutron and gamma field. We work with alanine detectors in combination with Monte Carlo simulations, where we can measure and characterize the dose. To verify our calculations we perform neutron flux measurements using gold foil activation and pin-diodes. Material and methods. When L-α-alanine is irradiated with ionizing radiation, it forms a stable radical which can be detected by electron spin resonance (ESR) spectroscopy. The value of the ESR signal correlates to the amount of absorbed dose. The dose for each pellet is calculated using FLUKA, a multipurpose Monte Carlo transport code. The pin-diode is augmented by a lithium fluoride foil. This foil converts the neutrons into alpha and tritium particles which are products of the (7)Li(n,α)(3)H-reaction. These particles are detected by the diode and their amount correlates to the neutron fluence directly. Results and discussion. Gold foil activation and the pin-diode are reliable fluence measurement systems for the TRIGA reactor, Mainz. Alanine dosimetry of the photon field and charged particle field from secondary reactions can in principle be carried out in combination with MC-calculations for mixed radiation fields and the Hansen & Olsen alanine detector response model. With the acquired data about the background dose and charged particle spectrum, and with the acquired information of the neutron flux, we are capable of calculating the dose to the tissue. Conclusion. Monte Carlo simulation of the mixed neutron and gamma field of the TRIGA Mainz is possible in order to characterize the neutron behavior in the thermal column. Currently we also

  1. Health effects of low doses at low dose rates: dose-response relationship modeling in a cohort of workers of the nuclear industry

    International Nuclear Information System (INIS)

    The aim of this thesis is to contribute to a better understanding of the health effects of chronic external low doses of ionising radiation. This work is based on the French cohort of CEA-AREVA NC nuclear workers. The mains stages of this thesis were (1) conducting a review of epidemiological studies on nuclear workers, (2) completing the database and performing a descriptive analysis of the cohort, (3) quantifying risk by different statistical methods and (4) modelling the exposure-time-risk relationship. The cohort includes monitored workers employed more than one year between 1950 and 1994 at CEA or AREVA NC companies. Individual annual external exposure, history of work, vital status and causes of death were reconstructed for each worker. Standardized mortality ratios using French national mortality rates as external reference were computed. Exposure-risk analysis was conducted in the cohort using the linear excess relative risk model, based on both Poisson regression and Cox model. Time dependent modifying factors were investigated by adding an interaction term in the model or by using exposure time windows. The cohort includes 36, 769 workers, followed-up until age 60 in average. During the 1968- 2004 period, 5, 443 deaths, 2, 213 cancers, 62 leukemia and 1, 314 cardiovascular diseases were recorded. Among the 57% exposed workers, the mean cumulative dose was 21.5 milli-sieverts (mSv). A strong Healthy Worker Effect is observed in the cohort. Significant elevated risks of pleura cancer and melanoma deaths were observed in the cohort but not associated with dose. No significant association was observed with solid cancers, lung cancer and cardiovascular diseases. A significant dose-response relationship was observed for leukemia excluding chronic lymphatic leukemia, mainly for doses received less than 15 years before and for yearly dose rates higher than 10 mSv. This PhD work contributes to the evaluation of risks associated to chronic external radiation

  2. Green light effects on biological systems: a new biophysical phenomenon.

    Science.gov (United States)

    Comorosan, Sorin; Kappel, Wilhelm; Constantinescu, Ileana; Gheorghe, Marin; Ionescu, Elena; Pîrvu, Cristian; Cinca, Sabin; Cristache, Ligia

    2009-08-01

    This paper reports a new phenomenon connected with the influence of green light (GL) on biological systems. Our experiments have revealed an antioxidant effect of GL on cells subjected to lethal doses of UV at the cellular level and a protective effect of GL on DNA denatured by UV, coupled with a structural modification of DNA macromolecules under GL irradiation, at the molecular level. Mouse melanocyte cultures are subjected to UV irradiations with L(50) fluxes of 16.0 J m(-2) s(-1). GL is obtained from a strontium aluminate pigment, which emits GL under UV activation. Cells grown in GL, prior to UV irradiation, present a clear surprising protective effect with surviving values close to the controls. A GL antioxidant effect is suggested to be mediated through GL influence on cellular water cluster dynamics. To test this hypothesis, reactive oxygen species (ROS) are determined in cell cultures. The results revealed a decrease of cellular ROS generation in the UV-irradiated samples protected by a previous 24 h of GL irradiation. At the DNA level, the same type of GL protection against UV damage is recorded by gel electrophoresis and by UV spectroscopy of the irradiated DNA molecules. Two physical methods, impedance spectroscopy and chronoamperometry, have revealed at the level of GL-irradiated DNA molecules spectral modifications that correlate with the UV spectroscopy results. The interaction between the chargeless photons and the field of water molecules from the cellular compartments is discussed in relation with the new field of macroscopic quantum coherence phenomena. PMID:19669578

  3. Calculation of dose equivalent index, effective dose equivalent and ambient dose equivalent for the giant resonance neutron spectra produced at an electron accelerator

    International Nuclear Information System (INIS)

    The ANISN code has been used in this study to evaluate the attenuation of neutron beams of various spectra incident normally on slabs of different kinds of concrete. Spectra of the most common sources (Am-Be and Cf-252) and those of giant resonance neutrons, produced at electron accelerators, were studied. The concretes examined had densities between 2.1 and 4.64 g.cm-3. The calculation were made in terms of the deep dose equivalent index, the effective dose equivalent and the ambient dose equivalent. Values of attenuation length in the various materials were derived from the attenuation curves. The results found should allow for useful evaluations in every day practice for health physicist

  4. Dose enhancement effects to the nucleus and mitochondria from gold nanoparticles in the cytosol

    Science.gov (United States)

    McNamara, A. L.; Kam, W. W. Y.; Scales, N.; McMahon, S. J.; Bennett, J. W.; Byrne, H. L.; Schuemann, J.; Paganetti, H.; Banati, R.; Kuncic, Z.

    2016-08-01

    Gold nanoparticles (GNPs) have shown potential as dose enhancers for radiation therapy. Since damage to the genome affects the viability of a cell, it is generally assumed that GNPs have to localise within the cell nucleus. In practice, however, GNPs tend to localise in the cytoplasm yet still appear to have a dose enhancing effect on the cell. Whether this effect can be attributed to stress-induced biological mechanisms or to physical damage to extra-nuclear cellular targets is still unclear. There is however growing evidence to suggest that the cellular response to radiation can also be influenced by indirect processes induced when the nucleus is not directly targeted by radiation. The mitochondrion in particular may be an effective extra-nuclear radiation target given its many important functional roles in the cell. To more accurately predict the physical effect of radiation within different cell organelles, we measured the full chemical composition of a whole human lymphocytic JURKAT cell as well as two separate organelles; the cell nucleus and the mitochondrion. The experimental measurements found that all three biological materials had similar ionisation energies  ˜70 eV, substantially lower than that of liquid water  ˜78 eV. Monte Carlo simulations for 10-50 keV incident photons showed higher energy deposition and ionisation numbers in the cell and organelle materials compared to liquid water. Adding a 1% mass fraction of gold to each material increased the energy deposition by a factor of  ˜1.8 when averaged over all incident photon energies. Simulations of a realistic compartmentalised cell show that the presence of gold in the cytosol increases the energy deposition in the mitochondrial volume more than within the nuclear volume. We find this is due to sub-micron delocalisation of energy by photoelectrons, making the mitochondria a potentially viable indirect radiation target for GNPs that localise to the cytosol.

  5. Dose enhancement effects to the nucleus and mitochondria from gold nanoparticles in the cytosol

    Science.gov (United States)

    McNamara, A. L.; Kam, W. W. Y.; Scales, N.; McMahon, S. J.; Bennett, J. W.; Byrne, H. L.; Schuemann, J.; Paganetti, H.; Banati, R.; Kuncic, Z.

    2016-08-01

    Gold nanoparticles (GNPs) have shown potential as dose enhancers for radiation therapy. Since damage to the genome affects the viability of a cell, it is generally assumed that GNPs have to localise within the cell nucleus. In practice, however, GNPs tend to localise in the cytoplasm yet still appear to have a dose enhancing effect on the cell. Whether this effect can be attributed to stress-induced biological mechanisms or to physical damage to extra-nuclear cellular targets is still unclear. There is however growing evidence to suggest that the cellular response to radiation can also be influenced by indirect processes induced when the nucleus is not directly targeted by radiation. The mitochondrion in particular may be an effective extra-nuclear radiation target given its many important functional roles in the cell. To more accurately predict the physical effect of radiation within different cell organelles, we measured the full chemical composition of a whole human lymphocytic JURKAT cell as well as two separate organelles; the cell nucleus and the mitochondrion. The experimental measurements found that all three biological materials had similar ionisation energies  ∼70 eV, substantially lower than that of liquid water  ∼78 eV. Monte Carlo simulations for 10–50 keV incident photons showed higher energy deposition and ionisation numbers in the cell and organelle materials compared to liquid water. Adding a 1% mass fraction of gold to each material increased the energy deposition by a factor of  ∼1.8 when averaged over all incident photon energies. Simulations of a realistic compartmentalised cell show that the presence of gold in the cytosol increases the energy deposition in the mitochondrial volume more than within the nuclear volume. We find this is due to sub-micron delocalisation of energy by photoelectrons, making the mitochondria a potentially viable indirect radiation target for GNPs that localise to the cytosol.

  6. Evaluation of biological effectiveness of high energy charged particles in terms of cytogenetic disorders in murine sex cells

    International Nuclear Information System (INIS)

    The frequency of reciprocal translocations in spermatogenia of F1(CBAxC57Bl6) mice irradiated with 50 MeV protons, 4.2 GeV deuterons, 1.8 GeV/nuclon helium ions, or 60Co γ-rays was investigated. The relative biological effectiveness of these particles calculated by comparing the equiffective doses of reference and experimental radiations was less than 1.0 under the assumption of the linear dose-effect relationship. The RBE of the particles calculated by means of the nonparametric method largely depended on the doses applied

  7. Dose-related effects of propericiazine in rats

    Directory of Open Access Journals (Sweden)

    Cechin E.M.

    2003-01-01

    Full Text Available We evaluated the effects of the neuroleptic agent propericiazine on animal models of anxiety and memory. Adult male Wistar rats (250 to 350 g received intraperitoneal injections of propericiazine (0.05, 0.075 and 0.1 mg/kg, diazepam (1 mg/kg, saline, or diazepam vehicle (20% propylene glycol and 80% saline 30 min prior to the experimental procedure. Animals (10-15 for each task were tested for step-down inhibitory avoidance (0.3-mA footshock and habituation to an open-field for memory assessment, and submitted to the elevated plus-maze to evaluate the effects of propericiazine in a model of anxiety. Animals treated with 0.075 mg/kg propericiazine showed a reduction in anxiety measures (P0.05 in the elevated plus-maze model of anxiety. Memory was not affected by propericiazine in any of the tests, but was impaired by diazepam. The results indicate a dose-related, inverse U-shaped effect of propericiazine in an anxiety model, but not on memory tasks, perhaps reflecting involvement of the dopaminergic system in the mechanisms of anxiety.

  8. Repeated dose of ketamine effect to the rat hippocampus tissue

    Directory of Open Access Journals (Sweden)

    Mehtap Okyay Karaca

    2015-01-01

    Full Text Available Aim: We aimed to determine the neurotoxic effect of repeated ketamine administration on brain tissue and if neurotoxic effect was present, whether this effect continued 16 days later using histological stereological method, a quantitative and objective method. Materials and Methods: Female rats were divided into three groups, each containing five rats. Rats in Group I were given 0.9% saline solution 4 times a day for 5 days. The rats in Groups II and III were given ketamine as intraperitoneal injections. Rats in Groups I and II were sacrificed on 5 th day while the ones in Group III on 21 st day. Cornu ammonis (CA and gyrus dentatus (GD regions in hippocampus tissue of rats were studied using optic fractionation method. Findings: There were significantly less number of cells in hippocampal CA and GD regions of rats from Groups II and III compared to the ones from Group I. Difference in cell number was also significantly higher in Group III than in Group II, but this difference was not as pronounced as the one between Groups III and I. Conclusion: Repeated ketamine doses caused neurotoxicity in rat hippocampus.

  9. Effective doses of background radiation in the Almaty and the Kazakhstan nuclear sites areas

    International Nuclear Information System (INIS)

    The comparative results for determination of partial effective doses from each kind of ionizing radiation and all pathways of radionuclides intakes of Almaty city population, and localities adjoining to nuclear test sites (Lira and Azgir), as well as Semipalatinsk test site (STS). Results of effective dose calculations are evidencing about absence of considerable influence of tests on the sites on the natural radiation dose loads and about some exceeding of effective dose in Almaty above effective doses in the sites' areas. Artificial radionuclides contribution of the sites areas (beside STS) does not exceeds the level of global fallout in Almaty

  10. Pharmacodynamic effects of standard dose prasugrel versus high dose clopidogrel in non-diabetic obese patients with coronary artery disease.

    Science.gov (United States)

    Darlington, Andrew; Tello-Montoliu, Antonio; Rollini, Fabiana; Ueno, Masafumi; Ferreiro, José Luis; Patel, Ronakkumar; Desai, Bhaloo; Guzman, Luis A; Bass, Theodore A; Angiolillo, Dominick J

    2014-02-01

    Increased body weight is independently associated with impaired clopidogrel pharmacodynamic (PD) response. Prasugrel has more potent PD effects compared with clopidogrel, although its PD effects in obese patients are unknown. The aim of this prospective, randomised, study was to compare the PD effects of standard-dose prasugrel [60 mg loading dose (LD)/10 mg daily maintenance dose (MD)] with high-dose clopidogrel (900 mg LD/150 mg daily MD) in non-diabetic obese [body mass index (BMI) ≥30 kg/m²] patients, with coronary artery disease (CAD) on aspirin therapy. PD assessments (baseline, 2 hours post-LD and 6 ± 2 days after MD) were conducted using four platelet function assays, and the platelet reactivity index (PRI) assessed by VASP was used for sample size estimation. A total of 42 patients with a BMI of 36.42 ± 5.6 kg/m² completed the study. There were no differences in baseline PD measures between groups. At 2 hours post-LD, prasugrel was associated with lower PRI compared with clopidogrel (24.3 ± 5.5 vs 58.7 ± 5.7, p≤0.001), with consistent findings for all assays. At one-week, PRI values on prasugrel MD were lower than clopidogrel MD without reaching statistical significance (34.7 ± 5.8 vs 42.9 ± 5.8, p=0.32), with consistent findings for all assays. Accordingly, rates of high on-treatment platelet reactivity were markedly reduced after prasugrel LD, but not after MD. In conclusion, in non-diabetic obese patients with CAD, standard prasugrel dosing achieved more potent PD effects than high-dose clopidogrel in the acute phase of treatment, but this was not sustained during maintenance phase treatment. Whether an intensified prasugrel regimen is required in obese patients warrants investigation.

  11. THE EFFECT OF BORON DOSES ON PARICA (Schizolobium amazonicum Herb.

    Directory of Open Access Journals (Sweden)

    Sebastião Ferreira de Lima

    2003-07-01

    Full Text Available An experiment was conducted in a greenhouse in order to evaluate the effects of boron on parica growth and on concentration and contents of macro and micronutrients indry matter of shoots and roots. Six treatments constituted by boron doses of 0.0; 0.1; 0.3; 0.9;1.5 and 2.1 mg/dm3 in four replications were used. It was evaluated the characteristics:visual diagnostic, plants height and diameter, dry matter production of shoots and roots,concentration and contents of nutrients in dry matter of shoots and roots. The symptoms ofdeficiency can be observed in new leaves and roots and the toxicity in older leaves. Bothboron deficiency and excess inhibits plants growth, but toxicity is more damaging. The Comportamento do paricá (Schizolobium amazonicum Herb. submetido ...193approximate dose of 0 Estimate of average equilibrium moisture content of wood for 26Brazilian states, by Hailwood and Harrobin one hydrate sorption theory equation.15mg/dm3 was the best for plants growth in MSPA and MSRA. The concentration of boronincreased in MSPA and MSRA with application of increasing concentration of B, with a smallreduction in concentration of MSRA from the concentration 1.9 mg/dm3. The toxicity of boronbegins when concentration reaches 36.06 mg/dm3 in shoots and 32.38 in roots. The contentsof all nutrients, except Mn and Fe in MSPA and Cu, Fe and B in MSRA, followed its own drymatter production curves.

  12. Estimating dose painting effects in radiotherapy: a mathematical model.

    Directory of Open Access Journals (Sweden)

    Juan Carlos López Alfonso

    Full Text Available Tumor heterogeneity is widely considered to be a determinant factor in tumor progression and in particular in its recurrence after therapy. Unfortunately, current medical techniques are unable to deduce clinically relevant information about tumor heterogeneity by means of non-invasive methods. As a consequence, when radiotherapy is used as a treatment of choice, radiation dosimetries are prescribed under the assumption that the malignancy targeted is of a homogeneous nature. In this work we discuss the effects of different radiation dose distributions on heterogeneous tumors by means of an individual cell-based model. To that end, a case is considered where two tumor cell phenotypes are present, which we assume to strongly differ in their respective cell cycle duration and radiosensitivity properties. We show herein that, as a result of such differences, the spatial distribution of the corresponding phenotypes, whence the resulting tumor heterogeneity can be predicted as growth proceeds. In particular, we show that if we start from a situation where a majority of ordinary cancer cells (CCs and a minority of cancer stem cells (CSCs are randomly distributed, and we assume that the length of CSC cycle is significantly longer than that of CCs, then CSCs become concentrated at an inner region as tumor grows. As a consequence we obtain that if CSCs are assumed to be more resistant to radiation than CCs, heterogeneous dosimetries can be selected to enhance tumor control by boosting radiation in the region occupied by the more radioresistant tumor cell phenotype. It is also shown that, when compared with homogeneous dose distributions as those being currently delivered in clinical practice, such heterogeneous radiation dosimetries fare always better than their homogeneous counterparts. Finally, limitations to our assumptions and their resulting clinical implications will be discussed.

  13. Pediatric fracture diagnosis. Ultra-low-dose CT with an effective dose equal to that of radiographs

    International Nuclear Information System (INIS)

    Purpose: Computed tomography (CT) plays an important role in trauma diagnosis in children, especially for complex fractures. The aim of this study was to examine the diagnostic value of ultra-low-dose-CT (ULD-CT) with an effective dose equal to that of radiographs in an experimental study and to compare its results with those of radiographs. Materials and Methods: Limb bones of dead young pigs served as a model for pediatric bones. A total of 51 fractured and non-fractured bones were examined with a 64 multislice-CT with a standard dose protocol as gold standard, with two ultra-low-dose-protocols, and with standard radiographs with different exposures. Results: In spite of high background noise the examinations of ULD-CT were not adequate only in 2 of 204 cases. ULD-CT was slightly superior to radiographs in detection of fractures. ULD-CT could significantly better characterize the fractures than radiographs. The overall result of ULD-CT was significantly better than that of radiographs with standard exposure. Conclusion: ULD-CT with the effective dose of radiographs is successfully applicable in pediatric fracture diagnosis, and its overall result is significantly better than that of radiographs. (orig.)

  14. The effects of rat's sperm bioassay for low dose X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Gye Hwan; Min, Soo Young; Lee, Sang Bock; Lee, Sam Yul; Lee, Jun Haeng [Nambu Univ., Gwangju (Korea, Republic of); Park, Jong Bae [Juseong College, Cheongwon (Korea, Republic of)

    2007-12-15

    In order to investigate the enhancement effects of low dose radiation on biological activation, this study applied low dose X-ray to the whole body of male rats to find out whether hormesis is induced in male germ cells. Total 36 Sprague-Dawley (SD) rats as experimental animal were subdivided into 6 groups(in 6 rats per group) such as control, 10 mGy, 20 mGy, 50 mGy, 100 mGy and 200 mGy radiation group. All the groups showed slightly increasing number of sperms per 0.1 g semen (14.216 x 10{sup 6}, 13.901 x 10{sup 6}, 14.153 x 10{sup 6}, 13.831 x 10{sup 6}, 14.137 x 10{sup 6}, 14.677 x 10{sup 6} respectively), and the motility of sperms amounted to 50.9%, 49.5%, 55.1%, 54.3%, 48.0% and 52.2% respectively. Particularly, compared to the control, the other 5 groups showed higher male hormone level, and the microscopic observations of testicle tissues showed no vacuolization in seminiferous tubules and testis cells. In the results of this experiment, no harmful effect was observed on Sprague-Dawley (SD) rats for which the dose of radiation was controlled as regulated legally by the Ministry of Science and Technology and the Ministry of Health and Welfare. However, as these results were obtained from a limited number of animals, we cannot maintain that the same effect will be observed in the human body. Therefore, there should be further research on the effect on other animals and ultimately on the human body.

  15. Dose-response effects of fluoride in mammalian species

    International Nuclear Information System (INIS)

    A number of deleterious effects have been attributed to the ingestion of fluoride, sometimes for good reason and sometimes with no good basis. Literature describing some of these effects has been reviewed and threshold doses for the effects are suggested. Fluoride absorbed into the systemic circulation is rapidly removed, in part by storage in the skeletal system and in part by excretion in the urine. Skeletal storage evident in x-ray films as increased density to the x-rays is seen in about 10% of persons who have used drinking water containing 8 mg F per liter (8 ppm) for long periods of time. No deleterious effects are seen at this level of F storage in the bone. In the kidney the renal status of a population using water containing 8 mg F was not different from that of a population in an area where there was 0.4 ppm F in the water supply. Decreased renal function has been reported in persons using water supplies containing 10 ppm F. In human subjects growth is unaffected by prolonged use of water supplies containing up to 6-8 mg F/l (6-8 ppm). Growth in most animal species is not affected at concentrations of 100 mg F/kg diet (100 ppm). However, cattle undergoing cycle pregnancy, gestation and lactation appear to be more sensitive and growth is adversely affected at more than 40 ppm F in the diet. For cardiovascular effects, prolonged use of a water supply containing 2.5 mg F/l (2.5 ppm) was found not to increase the incidence of CVD

  16. Backscatter radiation at tissue-titanium interfaces; Biological effects from diagnostic 65 kVp X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Rosengren, B. (Department of Radiation Sciences, Uppsala University (Sweden) Dept. of Oncology, University Hospital, Bergen (Norway)); Wulff, L. (Dept. of Oral and Maxillofacial Surgery, Central Hospital, Boden (Sweden)); Carlsson, E. (Department of Radiation Sciences, Uppsala University (Sweden)); Carlsson, J. (Department of Radiation Sciences, Uppsala University (Sweden)); Strid, K.G. (Dept. of Handicap Research, Goeteborg Univ. (Sweden)); Montelius, A. (Dept. of Hospital Physics, University Hospital, Uppsala (Sweden))

    1993-01-01

    The induced secondary electrons from a metal surface by diagnostic X-rays are thought to contribute to cell damage near the tissue-metal boundaries of metal implants. Titanium implants are becoming increasingly more popular for tissue reconstructions and it is rather often desirable to take radiographs of the operated area. In this study we compared the biological effects of radiation on cultured mammalian test cells grown on titanium plates with the radiation effects on cells that were grown on plastic control plates. In order to study the acute radiation effects on cell growth it was necessary to work with rather high radiation doses (0.7-5 Gy). Photon energies, suitable for diagnostic radiography in odontology, 65 kV, were applied. We found that the cells grown on titanium plates were, in terms of the applied dose in the surrounding culture medium, more sensitive to the irradiations than the cells growing on plastic plates. The survival curve for the cells on titanium had a steeper slope, showed no shoulder in the low-dose region and looked like curves normally obtained for high LET radiation. It was not possible to resolve to what degree the titanium-dependent changes were due to an increased dose near the titanium surface or to a change in the radiobiological effectiveness. Although there was a significant decrease in cellular survival near the metal, postoperative intraoral radiography after titanium implantations need not be excluded. The maximal doses given in odontological X-ray examinations are less than 1 mGy and, if the results in this study are applied, the biological effects near the titanium implant will correspond to biological effects in soft tissue of doses less than 20 mGy which is lower than the doses that give acute effects. The risk of acute healing disturbances are significant only at much higher radiation doses. (orig.).

  17. Late effects of chronic low dose-rate γ-rays irradiation on mice

    International Nuclear Information System (INIS)

    To evaluate late biological effects of chronic low dose-rate radiation, the life-span and pathological changes were evaluated in mice that were continuously irradiated with gamma-rays for 400 days. Two hundred (100 male and 100 female) specific-pathogen-free (SPF) B6C3F1 mice at six weeks of age were purchased every month. After a 2-week quarantine, they were divided into 4 groups (1 unirradiated control and 3 irradiated). Irradiation was performed using 137Cs gamma-rays at dose-rates of 20 mGy (22 h-day)-1, 1 mGy (22 h-day)-1 and 0.05 mGy (22 h-day)''-1 with accumulated doses equivalent to 8,000 mGy, 400 mGy and 20 mGy, respectively. All mice were kept until they died a natural death. Results of the monthly microbiological examinations confirmed that the mice were maintained under SPF-conditions throughout the experimental period. A total of 4,000 mice have been admitted into the experiment since it started in February 1996, all of which have received their predetermined doses and have been transferred to the animal room. Data on the 20 mGy (22 h-day)-1 group of both sexes suggested a shortened life span. The most common lethal neoplasms in pooled data of unirradiated control male mice and irradiated male mice in order of frequency were neoplasms of the lymphohematopoietic system, liver, lung, and soft tissue. In female mice, neoplasms of the lymphohematopoietic system, soft tissue, endocrine system, and liver were most common. (author)

  18. Dose-effect studies with inhaled plutonium oxide in beagles

    International Nuclear Information System (INIS)

    Beagle dogs given a single exposure to 239PuO2 and 238PuO2 aerosols are being observed for life-span dose-effect relationships. The 239Pu body burden of the nine dogs that died of pulmonary fibrosis-induced respiratory insufficiency during the first 3 yr after exposure was 1 to 12 μCi. One of these dogs had a pulmonary tumor; nine additional dogs with body burdens of 0.6 to 1.8 μCi died due to pulmonary neoplasia 3 to 6 yr after exposure. Two of the dogs exposed to 238Pu have died during the first 4 yr postexposure, due to bone and lung tumors, with body burdens at death of 10 μCi. Lymphocytopenia was the earliest observed effect after inhalation of 239PuO2 or 238PuO2, occurring 0.5 to 2 yr after deposition of equal to or greater than 80 nCi plutonium in the lungs

  19. Dose-effect studies with inhaled plutonium oxide in beagles

    International Nuclear Information System (INIS)

    Beagle dogs given a single exposure to 239PuO2 and 238PuO2 aerosols are being observed for life-span dose-effect relationships. The 239Pu body burden of the nine dogs that dies of pulmonary fibrosis-induced respiratory insufficiency during the first 3 yr after exposure was 1 to 12 μCi; one of these dogs had a pulmonary tumor. Eleven additional dogs with body burdens of 0.6 to 1.8 μCi died due to pulmonary neoplasia 3 to 7 yr after exposure. Four of the dogs exposed to 238Pu have died during the first 4 1/2 yr postexposure due to bone and/or lung tumors; the body burden at death ranged from 6 to 10 μCi. Lymphopenia was the earliest observed effect after inhalation of 239PuO2 or 238PuO2, occurring 0.5 to 2 yr after deposition of greater than or equal to 80 nCi plutonium in the lungs

  20. Dose-effect studies with inhaled plutonium oxide in beagles

    International Nuclear Information System (INIS)

    Beagle dogs given a single exposure to 239PuO2 and 238PuO2 aerosols are being observed for life-span dose-effect relationships. The 239Pu body burden of the nine dogs that died of pulmonary-fibrosis-induced respiratory insufficiency during the first 3 yr after exposure was 1 to 12 μCi; one of these dogs had a pulmonary tumor. Seventeen additional dogs, with body burdens of 0.2 to 1.8 μCi, died due to pulmonary neoplasia 3 to 8 yr after exposure. Ten of the dogs exposed to 238Pu have died during the first 5 1/2 yr postexposure due to bone and/or lung tumors; the body burden at death ranged from 1.5 to 10 μCi. Lymphopenia was the earliest observed effect after inhalation of 239PuO2 or 238PuO2, occurring 0.5 to 2 yr after deposition of >80 nCi plutonium in the lungs

  1. MIRD Commentary: Proposed Name for a Dosimetry Unit Applicable to Deterministic Biological Effects-The Barendsen (Bd)

    Energy Technology Data Exchange (ETDEWEB)

    Sgouros, George; Howell, R. W.; Bolch, Wesley E.; Fisher, Darrell R.

    2009-03-02

    The fundamental physical quantity for relating all biologic effects to radiation exposure is the absorbed dose, the energy imparted per unit mass of tissue. Absorbed dose is expressed in units of joules per kilogram (J/kg) and is given the special name gray (Gy). Exposure to ionizing radiation may cause both deterministic and stochastic biologic effects. To account for the relative effect per unit absorbed dose that has been observed for different types of radiation, the International Commission on Radiological Protection (ICRP) has established radiation weighting factors for stochastic effects. The product of absorbed dose in Gy and the radiation weighting factor is defined as the equivalent dose. Equivalent dose values are designated by a special named unit, the sievert (Sv). Unlike the situation for stochastic effects, no well-defined formalism and associated special named quantities have been widely adopted for deterministic effects. The therapeutic application of radionuclides and, specifically, -particle emitters in nuclear medicine has brought to the forefront the need for a well-defined dosimetry formalism applicable to deterministic effects that is accompanied by corresponding special named quantities. This commentary reviews recent proposals related to this issue and concludes with a recommendation to establish a new named quantity.

  2. Radiation Dose-Volume Effects in the Esophagus

    International Nuclear Information System (INIS)

    Publications relating esophageal radiation toxicity to clinical variables and to quantitative dose and dose-volume measures derived from three-dimensional conformal radiotherapy for non-small-cell lung cancer are reviewed. A variety of clinical and dosimetric parameters have been associated with acute and late toxicity. Suggestions for future studies are presented.

  3. Detection and assessment of genetic effects of low and very low doses of ionizing radiations using the a1+/a1 a2+/a2 system of Tobacco

    International Nuclear Information System (INIS)

    The main problem related to the detection and assessment of biological and genetic effects of low and very low doses of ionizing radiations concerns the statistical confidence. The a1+/a1 a2+/a2 system of Tobacco (Nicotania tabacum L. variety xanthi) is particularly well suited for evaluating genetic effects in this radiobiological field. (author). 7 refs., 1 tab

  4. Evolutionary Tradeoffs between Economy and Effectiveness in Biological Homeostasis Systems

    OpenAIRE

    Pablo Szekely; Hila Sheftel; Avi Mayo; Uri Alon

    2013-01-01

    Biological regulatory systems face a fundamental tradeoff: they must be effective but at the same time also economical. For example, regulatory systems that are designed to repair damage must be effective in reducing damage, but economical in not making too many repair proteins because making excessive proteins carries a fitness cost to the cell, called protein burden. In order to see how biological systems compromise between the two tasks of effectiveness and economy, we applied an approach ...

  5. Biological effects of 12C6+ heavy ions irradiation on Allium fistulosum L

    International Nuclear Information System (INIS)

    In order to study biological effects of 12C6+ heavy ions irradiation on Allium fistulosum L., the dry seeds were treated by 12C6+ heavy ion beam with different doses. Obvious 'parabola' trends were observed in the characteristics of germination rate and height of Allium fistulosum L. seedling when irradiated doses increased. With irradiation of an appropriate dose of 12C6+ heavy ion beam, 30Gy, the germination rate of Allium fistulosum L. is increased and the seedlings can resist drought and lodging, and grow better than the control. At the same time, the formation frequency of micronucleus and chromosomal aberration were surveyed in root-tip cells. The highest formation frequency of micronucleus and chromosomal aberration treated with 180Gy could reach to 9.09% and 10.03% respectively. This study laid the basis for further work on breeding and improvement of Allium fistulosum L. irradiated by 12C6+ heavy ion beam. (authors)

  6. Biological characterization of radiation exposure and dose estimates for inhaled uranium milling effluents. Annual progress report, April 1981-March 1982

    International Nuclear Information System (INIS)

    The problems addressed are the protection of uranium will workers from occupational exposure to uranium through routine bioassay programs and the assessment of accidental worker exposures. Comparisons of chemical properties and the biological behavior of refined uranium ore (yellowcake) are made to identify important properties that influence uranium distribution patterns among organs. These studies will facilitate calculations of organ doses for specific exposures and associated health risk estimates and will identify important bioassay procedures to improve evaluations of human exposures. Sampling of airborne yellowcake at four uranium mills showed that aerosols were heterogeneous, changed with time and contained approx. 50% of the airborne uranium in particles greater than 12 μm aerodynamic diameter. Results are related to specific packaging steps and to predictions of appreciable upper respiratory tract deposition rates for the aerosols, if inhaled by a worker without respiratory protection. Previously used in vitro dissolution techniques were evaluated and the uses of the results for interpreting urinary bioassay data are described. Preliminary results from an inhalation experiment using rats indicate that the clearance patterns of inhaled uranium from lung agreed quantitatively with results from in vitro dissolution and infrared analyses of the yellowcake used. Preliminary results from an experiment to simulate contamination of a wound by yellowcake showed that more of the implanted dose of a less soluble form of yellowcake was retained at the wound site than of a more soluble form at 32 days after implantation. The results did not quantitatively agree with in vitro dissolution results. A two-year study of yellowcake from two mills was initiated. Twenty Beagle dogs were exposed by nose-only inhalation to a more soluble form of yellowcake and 20 to a less soluble form

  7. The ICRP protection quantities, equivalent and effective dose: their basis and application

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, J.D. [Health Protection Agency, Radiation Protection Division, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom); Streffer, C. [Institute for Science and Ethics, University Duisburg-Essen, 45117 Essen (Germany)

    2007-07-01

    Equivalent and effective dose are protection quantities defined by the The International Commission on Radiological Protection (ICRP). They are frequently referred to simply as dose and may be misused. They provide a method for the summation of doses received from external sources and from intakes of radionuclides for comparison with dose limits and constraints, set to limit the risk of cancer and hereditary effects. For the assessment of internal doses, ICRP provides dose coefficients (Sv Bq{sup -1}) for the ingestion or inhalation of radionuclides by workers and members of the public, including children. Dose coefficients have also been calculated for in utero exposures following maternal intakes and for the transfer of radionuclides in breast milk. In each case, values are given of committed equivalent doses to organs and tissues and committed effective dose. Their calculation involves the use of defined biokinetic and dosimetric models, including the use of reference phantoms representing the human body. Radiation weighting factors are used as a simple representation of the different effectiveness of different radiations in causing stochastic effects at low doses. A single set of tissue weighting factors is used to take account of the contribution of individual organs and tissues to overall detriment from cancer and hereditary effects, despite age- and gender-related differences in estimates of risk and contributions to risk. The results are quantities that are not individual specific but are reference values for protection purposes, relating to doses to phantoms. The ICRP protection quantities are not intended for detailed assessments of dose and risk to individuals. They should not be used in epidemiological analyses or the assessment of the possibility of occurrence and severity of tissue reactions (deterministic effects) at higher doses. Dose coefficients are published as reference values and as such have no associated uncertainty. Assessments of

  8. The ICRP protection quantities, equivalent and effective dose: their basis and application.

    Science.gov (United States)

    Harrison, J D; Streffer, C

    2007-01-01

    Equivalent and effective dose are protection quantities defined by the The International Commission on Radiological Protection (ICRP). They are frequently referred to simply as dose and may be misused. They provide a method for the summation of doses received from external sources and from intakes of radionuclides for comparison with dose limits and constraints, set to limit the risk of cancer and hereditary effects. For the assessment of internal doses, ICRP provides dose coefficients (Sv Bq(-1)) for the ingestion or inhalation of radionuclides by workers and members of the public, including children. Dose coefficients have also been calculated for in utero exposures following maternal intakes and for the transfer of radionuclides in breast milk. In each case, values are given of committed equivalent doses to organs and tissues and committed effective dose. Their calculation involves the use of defined biokinetic and dosimetric models, including the use of reference phantoms representing the human body. Radiation weighting factors are used as a simple representation of the different effectiveness of different radiations in causing stochastic effects at low doses. A single set of tissue weighting factors is used to take account of the contribution of individual organs and tissues to overall detriment from cancer and hereditary effects, despite age- and gender-related differences in estimates of risk and contributions to risk. The results are quantities that are not individual specific but are reference values for protection purposes, relating to doses to phantoms. The ICRP protection quantities are not intended for detailed assessments of dose and risk to individuals. They should not be used in epidemiological analyses or the assessment of the possibility of occurrence and severity of tissue reactions (deterministic effects) at higher doses. Dose coefficients are published as reference values and as such have no associated uncertainty. Assessments of uncertainties

  9. The ICRP protection quantities, equivalent and effective dose: their basis and application

    International Nuclear Information System (INIS)

    Equivalent and effective dose are protection quantities defined by the The International Commission on Radiological Protection (ICRP). They are frequently referred to simply as dose and may be misused. They provide a method for the summation of doses received from external sources and from intakes of radionuclides for comparison with dose limits and constraints, set to limit the risk of cancer and hereditary effects. For the assessment of internal doses, ICRP provides dose coefficients (Sv Bq-1) for the ingestion or inhalation of radionuclides by workers and members of the public,