WorldWideScience

Sample records for biological cupric complexes

  1. Leaching of complex sulphide concentrate in acidic cupric chloride solutions

    Institute of Scientific and Technical Information of China (English)

    M. TCHOUMOU; M. ROYNETTE

    2007-01-01

    The chemical analysis of a complex sulphide concentrate by emission spectrometry and X-ray diffraction shows that it contains essentially copper, lead, zinc and iron in the form of chalcopyrite, sphalerite and galena. A small amount of pyrite is also present in the ore but does not be detected with X-ray diffraction. The cupric chloride leaching of the sulphide concentrate at various durations and solid/liquid ratios at 100 ℃ shows that the rate of dissolution of the ore is the fastest in the first several hours, and after 12 h it does not evolve significantly. If oxygen is excluded from the aqueous cupric chloride solution during the leaching experiment at 100 ℃, the pyrite in the ore will not be leached. The determination of principal dissolved metals in the leaching liquor by flame atomic absorption spectrometry, and the chemical analysis of solid residues by emission spectrometry and X-ray diffraction allow to conclude that the rate of dissolution of the minerals contained in the complex sulphide concentrate are in the order of galena>sphalerite>chalcopyrite.

  2. Mechanistic insights into the oxidation of substituted phenols via hydrogen atom abstraction by a cupric-superoxo complex.

    Science.gov (United States)

    Lee, Jung Yoon; Peterson, Ryan L; Ohkubo, Kei; Garcia-Bosch, Isaac; Himes, Richard A; Woertink, Julia; Moore, Cathy D; Solomon, Edward I; Fukuzumi, Shunichi; Karlin, Kenneth D

    2014-07-16

    To obtain mechanistic insights into the inherent reactivity patterns for copper(I)-O2 adducts, a new cupric-superoxo complex [(DMM-tmpa)Cu(II)(O2(•-))](+) (2) [DMM-tmpa = tris((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)amine] has been synthesized and studied in phenol oxidation-oxygenation reactions. Compound 2 is characterized by UV-vis, resonance Raman, and EPR spectroscopies. Its reactions with a series of para-substituted 2,6-di-tert-butylphenols (p-X-DTBPs) afford 2,6-di-tert-butyl-1,4-benzoquinone (DTBQ) in up to 50% yields. Significant deuterium kinetic isotope effects and a positive correlation of second-order rate constants (k2) compared to rate constants for p-X-DTBPs plus cumylperoxyl radical reactions indicate a mechanism that involves rate-limiting hydrogen atom transfer (HAT). A weak correlation of (k(B)T/e) ln k2 versus E(ox) of p-X-DTBP indicates that the HAT reactions proceed via a partial transfer of charge rather than a complete transfer of charge in the electron transfer/proton transfer pathway. Product analyses, (18)O-labeling experiments, and separate reactivity employing the 2,4,6-tri-tert-butylphenoxyl radical provide further mechanistic insights. After initial HAT, a second molar equiv of 2 couples to the phenoxyl radical initially formed, giving a Cu(II)-OO-(ArO') intermediate, which proceeds in the case of p-OR-DTBP substrates via a two-electron oxidation reaction involving hydrolysis steps which liberate H2O2 and the corresponding alcohol. By contrast, four-electron oxygenation (O-O cleavage) mainly occurs for p-R-DTBP which gives (18)O-labeled DTBQ and elimination of the R group.

  3. Promotion of hexadecyltrimethyleamine bromide to the damage of Alexandrium sp. LC3 by cupric glutamate

    Institute of Scientific and Technical Information of China (English)

    LI Hao; MIAO Jin-lai; CUI Feng-xia; LI Guang-you

    2006-01-01

    The effect of hexadecyltrimethyleamine bromide (HDTMAB) on the removal of A lexandrium sp. LC3 under cupric glutamate stress was investigated. Toxic effect of cupric glutamate on A lexandrium sp. LC3 was significantly promoted in the presence of HDTMAB, especially at 3.0 cmc of HDTMAB. It was found that the sulfhydryl group content of the cell decreased, while the malonaldehyde content and membrane permeability increased when Alexandrium sp. LC3 was treated with HDTMAB and cupric glutamate complex, compared with cupric glutamate alone. The data suggest that HDTMAB might stimulate the damage of A lexandrium sp. LC3 by enhancing the membrane permeability.

  4. Complexity, Information and Biological Organisation

    Directory of Open Access Journals (Sweden)

    Attila Grandpierre

    2005-12-01

    Full Text Available Regarding the widespread confusion about the concept and nature of complexity, information and biological organization, we look for some coordinated conceptual considerations corresponding to quantitative measures suitable to grasp the main characteristics of biological complexity. Quantitative measures of algorithmic complexity of supercomputers like Blue Gene/L are compared with the complexity of the brain. We show that both the computer and the brain have a more fundamental, dynamic complexity measure corresponding to the number of operations per second. Recent insights suggest that the origin of complexity may go back to simplicity at a deeper level, corresponding to algorithmic complexity. We point out that for physical systems Ashby’s Law, Kahre’s Law and causal closure of the physical exclude the generation of information, and since genetic information corresponds to instructions, we are faced with a controversy telling that the algorithmic complexity of physics is much lower than the instructions’ complexity of the human DNA: I_algorithmic(physics ~ 10^3 bit << I_instructions(DNA ~ 10^9 bit. Analyzing the genetic complexity we obtain that actually the genetic information corresponds to a deeper than algorithmic level of complexity, putting an even greater emphasis to the information paradox. We show that the resolution of the fundamental information paradox may lie either in the chemical evolution of inheritance in abiogenesis, or in the existence of an autonomous biological principle allowing the production of information beyond physics.

  5. Cupric natural zeolites as microbic ides

    International Nuclear Information System (INIS)

    The Escherichia coli and the Candida albicans are considered contamination indicators for what these organisms reflect the water quality. The natural zeolites by their characteristics and properties, they could incorporate to a waters treatment system, as ion exchange, adsorbents and/or microbiocid agents, representing an alternative method of low cost. Inside this investigation work was found that depending on the microorganism type, it varies the quantity of cupric zeolite that is required to carry out the water disinfection, being great for the case of yeasts than the bacteria s. In addition to that marked differences are presented in the required time to reach this process. The characterization of the natural zeolite material, sodium and cupric, was realized by means of scanning electron microscopy, determining the elementary composition (Energy Dispersive Spectroscopy) of each one of them, and by X-ray diffraction. (Author)

  6. Modelling biological complexity: a physical scientist's perspective

    OpenAIRE

    Coveney, Peter V.; Fowler, Philip W.

    2005-01-01

    We discuss the modern approaches of complexity and self-organization to understanding dynamical systems and how these concepts can inform current interest in systems biology. From the perspective of a physical scientist, it is especially interesting to examine how the differing weights given to philosophies of science in the physical and biological sciences impact the application of the study of complexity. We briefly describe how the dynamics of the heart and circadian rhythms, canonical exa...

  7. Building phenomenological models of complex biological processes

    Science.gov (United States)

    Daniels, Bryan; Nemenman, Ilya

    2009-11-01

    A central goal of any modeling effort is to make predictions regarding experimental conditions that have not yet been observed. Overly simple models will not be able to fit the original data well, but overly complex models are likely to overfit the data and thus produce bad predictions. Modern quantitative biology modeling efforts often err on the complexity side of this balance, using myriads of microscopic biochemical reaction processes with a priori unknown kinetic parameters to model relatively simple biological phenomena. In this work, we show how Bayesian model selection (which is mathematically similar to low temperature expansion in statistical physics) can be used to build coarse-grained, phenomenological models of complex dynamical biological processes, which have better predictive powers than microscopically correct, but poorely constrained mechanistic molecular models. We illustrate this on the example of a multiply-modifiable protein molecule, which is a simplified description of multiple biological systems, such as an immune receptors and an RNA polymerase complex. Our approach is similar in spirit to the phenomenological Landau expansion for the free energy in the theory of critical phenomena.

  8. Free cupric ions in contaminated agricultural soils around a copper mine in eastern Nanjing City, China

    Institute of Scientific and Technical Information of China (English)

    LUO Xiao-san; ZHOU Dong-mei; WANG Yu-jun

    2006-01-01

    To determine the environmental free metal ion activity was a recent hot issue. A method to measure low-level free cupric ion activity in soil solution extracted with 0.01 mol/L KNO3 was developed by using cupric ion-selective electrode (ISE) and calibrating with Cu-buffer solution. Three copper buffers including iminodiacetic acid (IDA), ethylenediamine (EN), and glycine (Gly)were compared for calibrating the Cu-ISE curves in the range of free cupric ions (pCu2+) 7-13. The Cu-EN buffer showed the best electrode response and thus was applied as the calibration buffer. The pCu2+ of 39 contaminated agricultural soils around a copper mine was measured, ranging from 5.03 to 9.20. Most Cu in the soil solutions was found to be complexed with dissolved soil organic matters, averaging 98.1%. The proportion of free Cu2+ ions in the soil solutions decreased with the increasing of solution pH. Soluble Cu and free Cu2+ ions concentrations were analyzed by multiple linear regressions to evaluate the effects of soil properties on metal levels and speciation. The results showed that soil solution pH was the most significant factor influencing pCu2+ (with R2 value of 0.76), while not important for the soluble Cu concentration.

  9. Stochastic Physics, Complex Systems and Biology

    CERN Document Server

    Qian, Hong

    2012-01-01

    In complex systems, the interplay between nonlinear and stochastic dynamics gives rise to an evolution process in Darwinian sense with punctuated equilibrium, random "mutations" and "adaptations". The emergent discrete states in such a system, i.e., attractors, have natural robustness against both internal and external perturbations. Epigenetic states of a biological cell, a mesoscopic nonlinear stochastic open biochemical system, could be understood through such a framework.

  10. Studies on the interaction of cupric isonicotinohydrazide with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Divakar, S.; Vasudevachari, M.B.; Antony, A.; Easwaran, K.R.K.

    1987-06-30

    The interaction of cupric isonicotinohydrazide (Cu/sup II/INH), antiviral compound, with calf thymus DNA was investigated by circular dichroism (CD) and nuclear magnetic resonance (NMR). Gel electrophoresis of DNA incubated with Cu/sup II/INH showed cleavage of DNA to various extents. This cleavage was found to be time and concentration dependent. In the presence of Cu/sup II/INH the positive CD band at 274 nm disappeared and the negative band at 246 nm showed a decrease in the mean residual ellipticity value, indicating binding of Cu/sup II/INH to DNA. /sup 31/P NMR studies indicated that the binding of copper in Cu/sup II/INH is to the phosphate oxygen of the DNA backbone. The binding of Cu/sup II/INH was also found to be reversible. Addition of ethylenediaminetetraacetic acid to the Cu/sup II/INH-DNA complex resulted in breaking of the complex and restoring the original structure features of the B family of DNA in the resulting fragments. At the concentration level of Cu/sup II/INH employed, both CuSO/sub 4/ and INH independently did not show any interaction with DNA.

  11. Complex biological and bio-inspired systems

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    The understanding and characterization ofthe fundamental processes of the function of biological systems underpins many of the important challenges facing American society, from the pathology of infectious disease and the efficacy ofvaccines, to the development of materials that mimic biological functionality and deliver exceptional and novel structural and dynamic properties. These problems are fundamentally complex, involving many interacting components and poorly understood bio-chemical kinetics. We use the basic science of statistical physics, kinetic theory, cellular bio-chemistry, soft-matter physics, and information science to develop cell level models and explore the use ofbiomimetic materials. This project seeks to determine how cell level processes, such as response to mechanical stresses, chemical constituents and related gradients, and other cell signaling mechanisms, integrate and combine to create a functioning organism. The research focuses on the basic physical processes that take place at different levels ofthe biological organism: the basic role of molecular and chemical interactions are investigated, the dynamics of the DNA-molecule and its phylogenetic role are examined and the regulatory networks of complex biochemical processes are modeled. These efforts may lead to early warning algorithms ofpathogen outbreaks, new bio-sensors to detect hazards from pathomic viruses to chemical contaminants. Other potential applications include the development of efficient bio-fuel alternative-energy processes and the exploration ofnovel materials for energy usages. Finally, we use the notion of 'coarse-graining,' which is a method for averaging over less important degrees of freedom to develop computational models to predict cell function and systems-level response to disease, chemical stress, or biological pathomic agents. This project supports Energy Security, Threat Reduction, and the missions of the DOE Office of Science through its efforts to

  12. Life: An Introduction to Complex Systems Biology

    CERN Document Server

    Kaneko, Kunihiko

    2006-01-01

    What is life? Has molecular biology given us a satisfactory answer to this question? And if not, why, and how to carry on from there? This book examines life not from the reductionist point of view, but rather asks the question: what are the universal properties of living systems and how can one construct from there a phenomenological theory of life that leads naturally to complex processes such as reproductive cellular systems, evolution and differentiation? The presentation has been deliberately kept fairly non-technical so as to address a broad spectrum of students and researchers from the natural sciences and informatics.

  13. [From the mechanical complexity in biology].

    Science.gov (United States)

    Uribe, Libia Herrero

    2008-03-01

    From the mechanical complexity in biology. Through history, each century has brought new discoveries and beliefs that have resulted in different perspectives to study life organisms. In this essay, 1 define three periods: in the first, organisms were studied in the context of their environment, in the second, on the basis of physical and chemical laws, and on the third, systemically. My analysis starts with primitive humans, continues to Aristoteles and Newton, Lamarck and Darwin, the DNA doble helix discovery, and the beginnings of reduccionism in science. I propose that life is paradigmatical, that it obeys physical and chemical laws but cannot be explained by them I review the systemic theory, autopoiesis, discipative structures and non- linear dynamics. 1 propose that the deterministic, lineal and quantitative paradigm of nature are not the only way to study nature and invite the reader to explore the complexity paradigm. PMID:18624253

  14. [From the mechanical complexity in biology].

    Science.gov (United States)

    Uribe, Libia Herrero

    2008-03-01

    From the mechanical complexity in biology. Through history, each century has brought new discoveries and beliefs that have resulted in different perspectives to study life organisms. In this essay, 1 define three periods: in the first, organisms were studied in the context of their environment, in the second, on the basis of physical and chemical laws, and on the third, systemically. My analysis starts with primitive humans, continues to Aristoteles and Newton, Lamarck and Darwin, the DNA doble helix discovery, and the beginnings of reduccionism in science. I propose that life is paradigmatical, that it obeys physical and chemical laws but cannot be explained by them I review the systemic theory, autopoiesis, discipative structures and non- linear dynamics. 1 propose that the deterministic, lineal and quantitative paradigm of nature are not the only way to study nature and invite the reader to explore the complexity paradigm.

  15. Can biological complexity be reverse engineered?

    Science.gov (United States)

    Green, Sara

    2015-10-01

    Concerns with the use of engineering approaches in biology have recently been raised. I examine two related challenges to biological research that I call the synchronic and diachronic underdetermination problem. The former refers to challenges associated with the inference of design principles underlying system capacities when the synchronic relations between lower-level processes and higher-level systems capacities are degenerate (many-to-many). The diachronic underdetermination problem regards the problem of reverse engineering a system where the non-linear relations between system capacities and lower-level mechanisms are changing over time. Braun and Marom argue that recent insights to biological complexity leave the aim of reverse engineering hopeless - in principle as well as in practice. While I support their call for systemic approaches to capture the dynamic nature of living systems, I take issue with the conflation of reverse engineering with naïve reductionism. I clarify how the notion of design principles can be more broadly conceived and argue that reverse engineering is compatible with a dynamic view of organisms. It may even help to facilitate an integrated account that bridges the gap between mechanistic and systems approaches.

  16. In-vacuum scattered light reduction with cupric oxide surfaces for sensitive fluorescence detection

    CERN Document Server

    Norrgard, Eric B; Barry, John F; McCarron, Daniel J; Steinecker, Matthew H; DeMille, David

    2016-01-01

    We demonstrate a simple and easy method for producing low-reflectivity surfaces that are ultra-high vacuum compatible, may be baked to high temperatures, and are easily applied even on complex surface geometries. Black cupric oxide (CuO) surfaces are chemically grown in minutes on any copper surface, allowing for low-cost, rapid prototyping and production. The reflective properties are measured to be comparable to commercially available products for creating optically black surfaces. We describe a vacuum apparatus which uses multiple blackened copper surfaces for sensitive, low-background detection of molecules using laser-induced fluorescence.

  17. Complex Networks: from Graph Theory to Biology

    Science.gov (United States)

    Lesne, Annick

    2006-12-01

    The aim of this text is to show the central role played by networks in complex system science. A remarkable feature of network studies is to lie at the crossroads of different disciplines, from mathematics (graph theory, combinatorics, probability theory) to physics (statistical physics of networks) to computer science (network generating algorithms, combinatorial optimization) to biological issues (regulatory networks). New paradigms recently appeared, like that of ‘scale-free networks’ providing an alternative to the random graph model introduced long ago by Erdös and Renyi. With the notion of statistical ensemble and methods originally introduced for percolation networks, statistical physics is of high relevance to get a deep account of topological and statistical properties of a network. Then their consequences on the dynamics taking place in the network should be investigated. Impact of network theory is huge in all natural sciences, especially in biology with gene networks, metabolic networks, neural networks or food webs. I illustrate this brief overview with a recent work on the influence of network topology on the dynamics of coupled excitable units, and the insights it provides about network emerging features, robustness of network behaviors, and the notion of static or dynamic motif.

  18. Noncommutative Biology: Sequential Regulation of Complex Networks

    Science.gov (United States)

    Letsou, William; Cai, Long

    2016-01-01

    Single-cell variability in gene expression is important for generating distinct cell types, but it is unclear how cells use the same set of regulatory molecules to specifically control similarly regulated genes. While combinatorial binding of transcription factors at promoters has been proposed as a solution for cell-type specific gene expression, we found that such models resulted in substantial information bottlenecks. We sought to understand the consequences of adopting sequential logic wherein the time-ordering of factors informs the final outcome. We showed that with noncommutative control, it is possible to independently control targets that would otherwise be activated simultaneously using combinatorial logic. Consequently, sequential logic overcomes the information bottleneck inherent in complex networks. We derived scaling laws for two noncommutative models of regulation, motivated by phosphorylation/neural networks and chromosome folding, respectively, and showed that they scale super-exponentially in the number of regulators. We also showed that specificity in control is robust to the loss of a regulator. Lastly, we connected these theoretical results to real biological networks that demonstrate specificity in the context of promiscuity. These results show that achieving a desired outcome often necessitates roundabout steps. PMID:27560383

  19. Network biology concepts in complex disease comorbidities

    DEFF Research Database (Denmark)

    Hu, Jessica Xin; Thomas, Cecilia Engel; Brunak, Søren

    2016-01-01

    The co-occurrence of diseases can inform the underlying network biology of shared and multifunctional genes and pathways. In addition, comorbidities help to elucidate the effects of external exposures, such as diet, lifestyle and patient care. With worldwide health transaction data now often bein...

  20. Electrochemical Analysis of the Concentration of Cupric Chloride Complex in CuCl2-NaCl Solution at Room Temperature%室温氯化铜-氯化钠溶液中铜氯络合物浓度的电化学分析

    Institute of Scientific and Technical Information of China (English)

    张艳清; 李和平; 刘庆友; 徐丽萍; 张磊

    2011-01-01

    The electrochemical reaction mechanism of CuCl2-NaCl weak acid solution was studied by the Tafel method and linear potential sweep voltammetry at room temperature. The exchange current densities at different concentration ratios of CuCl2-NaCl solution were obtained from their polarization curves and the coordination number of the electrochemical reduction complex was calculated from electrochemical reaction order method. The electrochemical reduction on Pt electrode was further studied by linear potential sweep voltammetry. Finally, the concentration of the electrochemical reduction complex ion was calculated when the procedure was reversed. The results were shown that [ CuCl ]+ is the main cupric chloride complex in solution and the one for electrochemical reduction on Pt electrode. Two one-electron reduction steps of the copper chloride complex were observed on the surface of the Pt electrode. The first step was a one-electron-transfer reversible reduction process. The electrochemical reaction orders of [ CuCl ]+ and Cu in the system were both level one. In 4. 000 mol/L NaCl + 0. 100 mol/L CuCl2 solution, the concentration of the electrochemical reduction reactant ( [ CuCl ]+ ) was 0. 086 mol/L. The results provided important experimental evidences for electrochemical reduction mechanism of Cu + in aqueous solutions with highly concentrated chloride ions.This work can also be used as a reference for electrochemical analysis of dissolved metal complex in the fields ofmetallurgy, geology, geochemistry in the future.%运用Tafel极化曲线和线性电势扫描法研究了常温弱酸性CuCl2-NaCl溶液中铜氯络合物体系的电化学放电机理.通过测量不同浓度配比的CuCl2-NaCl溶液的极化曲线得到各自的交换电流密度,然后根据电化学反应级数法计算直接在电极上放电的Cu(Ⅱ)-Cl络合物的配位数.并且运用线性电势扫描法进一步研究了此络合物在铂电极上的还原反应,在体系可逆的情况下

  1. Complexity, Analysis and Control of Singular Biological Systems

    CERN Document Server

    Zhang, Qingling; Zhang, Xue

    2012-01-01

    Complexity, Analysis and Control of Singular Biological Systems follows the control of real-world biological systems at both ecological and phyisological levels concentrating on the application of now-extensively-investigated singular system theory. Much effort has recently been dedicated to the modelling and analysis of developing bioeconomic systems and the text establishes singular examples of these, showing how proper control can help to maintain sustainable economic development of biological resources. The book begins from the essentials of singular systems theory and bifurcations before tackling  the use of various forms of control in singular biological systems using examples including predator-prey relationships and viral vaccination and quarantine control. Researchers and graduate students studying the control of complex biological systems are shown how a variety of methods can be brought to bear and practitioners working with the economics of biological systems and their control will also find the ...

  2. Integrative Systems Biology: Elucidating Complex Traits

    DEFF Research Database (Denmark)

    Pers, Tune Hannes

    to analyses conducted within a single type of data. e first line of research presented here outlines two integrative methodologies designed to identify etiological pathways and susceptibility genes. In Paper I, my coworkers and I present an integrative approach that interrogates protein complexes...... that body-mass index associated gene products coalesce onto distinct protein complexes, and show that these putative risk modules incriminate novel candidate obesitysusceptibility genes. e last overall line of research presented here, provides examples on how networks of human metabolism may serve...... for weight maintenance upon dietary-induced weight loss. e approaches presented in this PhD esis provide integrative methodologies for the aggregation of multiple, functionally relevant data types. Together they represent a novel bioinformatics-based toolbox for analyses of genetic variation in human...

  3. Stochastic Physics, Complex Systems and Biology

    OpenAIRE

    Qian, Hong

    2012-01-01

    In complex systems, the interplay between nonlinear and stochastic dynamics, e.g., J. Monod's necessity and chance, gives rise to an evolutionary process in Darwinian sense, in terms of discrete jumps among attractors, with punctuated equilibrium, spontaneous random "mutations" and "adaptations". On an evlutionary time scale it produces sustainable diversity among individuals in a homogeneous population rather than convergence as usually predicted by a deterministic dynamics. The emergent dis...

  4. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles

    Science.gov (United States)

    Chen, Jian; Zeng, Fang; Wu, Shuizhu; Su, Junhua; Zhao, Jianqing; Tong, Zhen

    2009-09-01

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu2+ in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu2+ ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu2+ ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu2+ ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu2+/PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu2+ detection is 1 µM for a nanoparticle sample with a diameter of ~30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu2+ ion among the metal ions examined (Na+, K+, Mg2+, Ca2+, Zn2+, Hg2+, Mn2+, Fe2+, Ni2+, Co2+ and Pb2+). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  5. Mössbauer study of some biological iron complexes

    Indian Academy of Sciences (India)

    Sikander Ali; Alimuddin; V R Reddy

    2005-12-01

    Some biological complexes containing iron are investigated experimentally at room temperature using the Mössbauer resonance. The complexes show quadrupole doublet and Kramer's degeneracy is found to exist. The electric field gradient, difference in -electron densities and quadrupole coupling constant have been calculated in each case. These parameters are used to obtain information on the surroundings of the Mössbauer atom.

  6. Methods of information theory and algorithmic complexity for network biology.

    Science.gov (United States)

    Zenil, Hector; Kiani, Narsis A; Tegnér, Jesper

    2016-03-01

    We survey and introduce concepts and tools located at the intersection of information theory and network biology. We show that Shannon's information entropy, compressibility and algorithmic complexity quantify different local and global aspects of synthetic and biological data. We show examples such as the emergence of giant components in Erdös-Rényi random graphs, and the recovery of topological properties from numerical kinetic properties simulating gene expression data. We provide exact theoretical calculations, numerical approximations and error estimations of entropy, algorithmic probability and Kolmogorov complexity for different types of graphs, characterizing their variant and invariant properties. We introduce formal definitions of complexity for both labeled and unlabeled graphs and prove that the Kolmogorov complexity of a labeled graph is a good approximation of its unlabeled Kolmogorov complexity and thus a robust definition of graph complexity.

  7. Complex fluids in biological systems experiment, theory, and computation

    CERN Document Server

    2015-01-01

    This book serves as an introduction to the continuum mechanics and mathematical modeling of complex fluids in living systems. The form and function of living systems are intimately tied to the nature of surrounding fluid environments, which commonly exhibit nonlinear and history dependent responses to forces and displacements. With ever-increasing capabilities in the visualization and manipulation of biological systems, research on the fundamental phenomena, models, measurements, and analysis of complex fluids has taken a number of exciting directions. In this book, many of the world’s foremost experts explore key topics such as: Macro- and micro-rheological techniques for measuring the material properties of complex biofluids and the subtleties of data interpretation Experimental observations and rheology of complex biological materials, including mucus, cell membranes, the cytoskeleton, and blood The motility of microorganisms in complex fluids and the dynamics of active suspensions Challenges and solut...

  8. Mechanistic modeling confronts the complexity of molecular cell biology

    OpenAIRE

    Phair, Robert D.

    2014-01-01

    Mechanistic modeling has the potential to transform how cell biologists contend with the inescapable complexity of modern biology. I am a physiologist–electrical engineer–systems biologist who has been working at the level of cell biology for the past 24 years. This perspective aims 1) to convey why we build models, 2) to enumerate the major approaches to modeling and their philosophical differences, 3) to address some recurrent concerns raised by experimentalists, and then 4) to imagine a fu...

  9. Systems Biology Approaches to Epidemiological Studies of Complex Diseases

    OpenAIRE

    Li, Hongzhe

    2013-01-01

    Systems biology approaches to epidemiological studies of complex diseases include collection of genetic, genomic, epigenomic and metagenomic data in large-scale epidemiological studies of complex phenotypes. Designs and analyses of such studies raise many statistical challenges. This paper reviews some issues related to integrative analysis of such high dimensional and inter-related data sets and outline some possible solutions. I focus my review on integrative approaches for genome-wide gene...

  10. Cupric ion reducing antioxidant capacity assay for food antioxidants: vitamins, polyphenolics, and flavonoids in food extracts.

    Science.gov (United States)

    Apak, Reşat; Güçlü, Kubilay; Ozyürek, Mustafa; Bektas Oğlu, Burcu; Bener, Mustafa

    2008-01-01

    Antioxidants are health beneficial compounds through their combat with reactive oxygen and nitrogen species and free radicals that may cause tissue damage leading to various diseases. This work reports the development of a simple and widely applicable antioxidant capacity index for dietary polyphenols, vitamins C and E, and plasma antioxidants utilizing the copper(II)-neocuproine (Cu(II)-Nc) reagent as the chromogenic oxidizing agent. This novel method based on an electron-transfer mechanism was named by our research group as 'cupric reducing antioxidant capacity', abbreviated as the CUPRAC method. The method is comprised of mixing the antioxidant solution with aqueous copper(II) chloride, alcoholic neocuproine, and ammonium acetate aqueous buffer at pH 7, and subsequently measuring the developed absorbance at 450 nm after 30 min. Since the color development is fast for compounds like ascorbic acid, gallic acid, and quercetin but slow for naringin and naringenin, the latter compounds are assayed after incubation at 50 degrees C on a water bath for 20 min. The flavonoid glycosides are hydrolyzed to their corresponding aglycones by refluxing in 1.2 M: HCl-containing 50% MeOH so as to exert maximal reducing power towards Cu(II)-Nc. The CUPRAC antioxidant capacities of synthetic mixtures are equal to the sum of individual capacities of antioxidant constituents, indicating lack of chemical deviations from Beer's law. Tests on antioxidant polyphenols demonstrate that the highest CUPRAC capacities are observed for epicatechin gallate, epigallocatechin gallate, quercetin, fisetin, epigallocatechin, catechin, and caffeic acid in this order, in accord with the number and position of the -OH groups as well the conjugation level of the molecule. The parallelism of the linear calibration curves of pure antioxidants in water and in a given complex matrix (plant extract) demonstrates that there are no chemical interactions of interferent nature among the solution constituents

  11. Cupric Hexacyanoferrate Nanoparticle Modified Carbon Ceramic Composite Electrodes

    Institute of Scientific and Technical Information of China (English)

    WANG,Peng(王鹏); ZHU,Guo-Yi(朱果逸)

    2002-01-01

    Graphite powder-supported cupric hexacyanoferrate (CuHCF)nanoparticles were dispersed into methyltrimethoxysilane-based gels to produce a conducting carbon ceramic composite, which was used as electrode material to fabricate surface-renewable CuHCF-modified electrodes. Electrochemical behavior of the CuHCF-modified carbon ceramic composite electrodes was characterized using cyclic and square-wave voitammetry.Cyclic voltammograms at various scan rates indicated that peak currents were surface-confined at low scan rates. In the presence of glutathione, a clear electrocatalytic response was observed at the CuHCF-modified composite electrodes. In addition, the electrodes exhibited a distinct advantage of reproducible surface-renewal by simple mechanical polishing on emery paper, as well as ease of preparation, and good chemical and mechanical stability in a flowing stream.

  12. Cupric Hexacyanoferrate Nanoparticle Modified Carbon Ceramic Composite Electrodes

    Institute of Scientific and Technical Information of China (English)

    WANG,Peng; ZHU,Guo-Yi

    2002-01-01

    Graphite powder-supported cupric hexacyanoferrate(CuHCF) nanoparticles were dispersed into methyltrimethoxysilane-based gels to produce a conducting carbon ceramic composite,which was used as electrode materials to fabricate surface-renewable CuHCF-modified electrodes.Electrochemical behavior of the CuHCF-modified carbon ceramic composite electrodes was characterized using cyclic and square-wave voltammetry. Cyclinc voltammograms at various scan rates indicated that peak currents were suface-confined at low scan rates.In the presence of glutathione,a clear electrocatalytic response was observed at the CuHCF-modified composite electrodes.In addition,the electrodes exhibited a distinct advantage of reproducible surface-renewal by simple mechanical polishing on emery paper,as well as ease of preparation,and good chemical and mechanical stability in a flowing stream.

  13. Mechanistic modeling confronts the complexity of molecular cell biology.

    Science.gov (United States)

    Phair, Robert D

    2014-11-01

    Mechanistic modeling has the potential to transform how cell biologists contend with the inescapable complexity of modern biology. I am a physiologist-electrical engineer-systems biologist who has been working at the level of cell biology for the past 24 years. This perspective aims 1) to convey why we build models, 2) to enumerate the major approaches to modeling and their philosophical differences, 3) to address some recurrent concerns raised by experimentalists, and then 4) to imagine a future in which teams of experimentalists and modelers build-and subject to exhaustive experimental tests-models covering the entire spectrum from molecular cell biology to human pathophysiology. There is, in my view, no technical obstacle to this future, but it will require some plasticity in the biological research mind-set.

  14. Ultra-high performance supercritical fluid chromatography of lignin-derived phenols from alkaline cupric oxide oxidation.

    Science.gov (United States)

    Sun, Mingzhe; Lidén, Gunnar; Sandahl, Margareta; Turner, Charlotta

    2016-08-01

    Traditional chromatographic methods for the analysis of lignin-derived phenolic compounds in environmental samples are generally time consuming. In this work, an ultra-high performance supercritical fluid chromatography method with a diode array detector for the analysis of major lignin-derived phenolic compounds produced by alkaline cupric oxide oxidation was developed. In an analysis of a collection of 11 representative monomeric lignin phenolic compounds, all compounds were clearly separated within 6 min with excellent peak shapes, with a limit of detection of 0.5-2.5 μM, a limit of quantification of 2.5-5.0 μM, and a dynamic range of 5.0-2.0 mM (R(2) > 0.997). The new ultra-high performance supercritical fluid chromatography method was also applied for the qualitative and quantitative analysis of lignin-derived phenolic compounds obtained upon alkaline cupric oxide oxidation of a commercial humic acid. Ten out of the previous eleven model compounds could be quantified in the oxidized humic acid sample. The high separation power and short analysis time obtained demonstrate for the first time that supercritical fluid chromatography is a fast and reliable technique for the analysis of lignin-derived phenols in complex environmental samples. PMID:27452148

  15. Finding optimal interaction interface alignments between biological complexes

    KAUST Repository

    Cui, Xuefeng

    2015-06-13

    Motivation: Biological molecules perform their functions through interactions with other molecules. Structure alignment of interaction interfaces between biological complexes is an indispensable step in detecting their structural similarities, which are keys to understanding their evolutionary histories and functions. Although various structure alignment methods have been developed to successfully access the similarities of protein structures or certain types of interaction interfaces, existing alignment tools cannot directly align arbitrary types of interfaces formed by protein, DNA or RNA molecules. Specifically, they require a \\'blackbox preprocessing\\' to standardize interface types and chain identifiers. Yet their performance is limited and sometimes unsatisfactory. Results: Here we introduce a novel method, PROSTA-inter, that automatically determines and aligns interaction interfaces between two arbitrary types of complex structures. Our method uses sequentially remote fragments to search for the optimal superimposition. The optimal residue matching problem is then formulated as a maximum weighted bipartite matching problem to detect the optimal sequence order-independent alignment. Benchmark evaluation on all non-redundant protein-DNA complexes in PDB shows significant performance improvement of our method over TM-align and iAlign (with the \\'blackbox preprocessing\\'). Two case studies where our method discovers, for the first time, structural similarities between two pairs of functionally related protein-DNA complexes are presented. We further demonstrate the power of our method on detecting structural similarities between a protein-protein complex and a protein-RNA complex, which is biologically known as a protein-RNA mimicry case. © The Author 2015. Published by Oxford University Press.

  16. From globally coupled maps to complex-systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Kunihiko, E-mail: kaneko@complex.c.u-tokyo.ac.jp [Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, The University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2015-09-15

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  17. From globally coupled maps to complex-systems biology

    Science.gov (United States)

    Kaneko, Kunihiko

    2015-09-01

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  18. A complex systems approach to computational molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    Lapedes, A. [Los Alamos National Lab., NM (United States)]|[Santa Fe Inst., NM (United States)

    1993-09-01

    We report on the containing research program at Santa Fe Institute that applies complex systems methodology to computational molecular biology. Two aspects are stressed here are the use of co-evolving adaptive neutral networks for determining predictable protein structure classifications, and the use of information theory to elucidate protein structure and function. A ``snapshot`` of the current state of research in these two topics is presented, representing the present state of two major research thrusts in the program of Genetic Data and Sequence Analysis at the Santa Fe Institute.

  19. Chapter 5: Network biology approach to complex diseases.

    Directory of Open Access Journals (Sweden)

    Dong-Yeon Cho

    Full Text Available Complex diseases are caused by a combination of genetic and environmental factors. Uncovering the molecular pathways through which genetic factors affect a phenotype is always difficult, but in the case of complex diseases this is further complicated since genetic factors in affected individuals might be different. In recent years, systems biology approaches and, more specifically, network based approaches emerged as powerful tools for studying complex diseases. These approaches are often built on the knowledge of physical or functional interactions between molecules which are usually represented as an interaction network. An interaction network not only reports the binary relationships between individual nodes but also encodes hidden higher level organization of cellular communication. Computational biologists were challenged with the task of uncovering this organization and utilizing it for the understanding of disease complexity, which prompted rich and diverse algorithmic approaches to be proposed. We start this chapter with a description of the general characteristics of complex diseases followed by a brief introduction to physical and functional networks. Next we will show how these networks are used to leverage genotype, gene expression, and other types of data to identify dysregulated pathways, infer the relationships between genotype and phenotype, and explain disease heterogeneity. We group the methods by common underlying principles and first provide a high level description of the principles followed by more specific examples. We hope that this chapter will give readers an appreciation for the wealth of algorithmic techniques that have been developed for the purpose of studying complex diseases as well as insight into their strengths and limitations.

  20. Biological Computation as the Revolution of Complex Engineered Systems

    CERN Document Server

    Gómez-Cruz, Nelson Alfonso

    2011-01-01

    Provided that there is no theoretical frame for complex engineered systems (CES) as yet, this paper claims that bio-inspired engineering can help provide such a frame. Within CES bio-inspired systems play a key role. The disclosure from bio-inspired systems and biological computation has not been sufficiently worked out, however. Biological computation is to be taken as the processing of information by living systems that is carried out in polynomial time, i.e., efficiently; such processing however is grasped by current science and research as an intractable problem (for instance, the protein folding problem). A remark is needed here: P versus NP problems should be well defined and delimited but biological computation problems are not. The shift from conventional engineering to bio-inspired engineering needs bring the subject (or problem) of computability to a new level. Within the frame of computation, so far, the prevailing paradigm is still the Turing-Church thesis. In other words, conventional engineering...

  1. Fluorescence study on the interaction between apoCopC and cupric

    Institute of Scientific and Technical Information of China (English)

    PANG Erguo; ZHAO Yaqin; YANG Binsheng

    2005-01-01

    The interaction between apoCopC and cupric was investigated by fluorescence spectra, in phosphate (20 mmol/L) buffer at pH 6.0. Results suggest that the environment is measured to be hydrophobic completely around tryptophan (83). At the same time, apoCopC fluorescence at 320 nm was significantly quenched with the addition of cupric and the 1:1 stoichiometric ratio of apoCopC to cupric was confirmed by fluorescence. In addition, the conditional binding constants were calculated to be Kcu-Copc = (1.8(0.58)× 1013 mol-1 L on the basis of the results of fluorescence titration curves. The apoCopC has the ability to bind specifically cupricion.

  2. The Evolution of Biological Complexity in Digital Organisms

    Science.gov (United States)

    Ofria, Charles

    2013-03-01

    When Darwin first proposed his theory of evolution by natural selection, he realized that it had a problem explaining the origins of traits of ``extreme perfection and complication'' such as the vertebrate eye. Critics of Darwin's theory have latched onto this perceived flaw as a proof that Darwinian evolution is impossible. In anticipation of this issue, Darwin described the perfect data needed to understand this process, but lamented that such data are ``scarcely ever possible'' to obtain. In this talk, I will discuss research where we use populations of digital organisms (self-replicating and evolving computer programs) to elucidate the genetic and evolutionary processes by which new, highly-complex traits arise, drawing inspiration directly from Darwin's wistful thinking and hypotheses. During the process of evolution in these fully-transparent computational environments we can measure the incorporation of new information into the genome, a process akin to a natural Maxwell's Demon, and identify the original source of any such information. We show that, as Darwin predicted, much of the information used to encode a complex trait was already in the genome as part of simpler evolved traits, and that many routes must be possible for a new complex trait to have a high probability of successfully evolving. In even more extreme examples of the evolution of complexity, we are now using these same principles to examine the evolutionary dynamics the drive major transitions in evolution; that is transitions to higher-levels of organization, which are some of the most complex evolutionary events to occur in nature. Finally, I will explore some of the implications of this research to other aspects of evolutionary biology and as well as ways that these evolutionary principles can be applied toward solving computational and engineering problems.

  3. Acute Copper and Cupric Ion Toxicity in an Estuarine Microbial Community

    OpenAIRE

    Jonas, Robert B.

    1989-01-01

    Copper was acutely toxic to the estuarine microbial community of Middle Marshes, N.C. Under ambient water quality conditions, 10 μg of added total copper [Cu(II)] liter−1 reduced the CFU bacterial abundance by up to 60% and inhibited the amino acid turnover rate (AATR) by as much as 30%. Copper toxicity, however, was a quantitative function of free cupric ion (Cu2+) activity that was not directly related to Cu(II) or ligand-bound copper. By using a nitrilotriacetic acid-cupric ion buffer to c...

  4. Dermal tumorigen PAH and complex mixtures for biological research

    International Nuclear Information System (INIS)

    Thirteen commercially available, commonly reported four-five ring dermal tumorigen PAHs, were determined in a set of complex mixtures consisting of crude and upgraded coal liquids, and petroleum crude oils and their distillate fractions. Semi-preparative scale, normal phase high performance liquid chromatographic fractionation followed by capillary column gas chromatography or gas chromatography-mass spectroscopy were used for the measurements. Deuterated or carbon-14 labeled PAH served as internal standards or allowed recovery corrections. Approaches for the preparation and measurement of radiolabeled PAH were examined to provide chemical probes for biological study. Synthetic routes for production of 14C labeled dihydrobenzo[a]pyrene and 14C- or 3H 10-azabenzo[a]pyrene are being studied to provide tracers for fundamental studies in tracheal transplant and skin penetration systems. (DT)

  5. Sporothrix schenckii complex biology: environment and fungal pathogenicity.

    Science.gov (United States)

    Téllez, M D; Batista-Duharte, A; Portuondo, D; Quinello, C; Bonne-Hernández, R; Carlos, I Z

    2014-11-01

    Sporothrix schenckii is a complex of various species of fungus found in soils, plants, decaying vegetables and other outdoor environments. It is the aetiological agent of sporotrichosis in humans and several animals. Humans and animals can acquire the disease through traumatic inoculation of the fungus into subcutaneous tissue. Despite the importance of sporotrichosis, it being currently regarded as an emergent disease in several countries, the factors driving its increasing medical importance are still largely unknown. There have only been a few studies addressing the influence of the environment on the virulence of these pathogens. However, recent studies have demonstrated that adverse conditions in its natural habitats can trigger the expression of different virulence factors that confer survival advantages both in animal hosts and in the environment. In this review, we provide updates on the important advances in the understanding of the biology of Spor. schenckii and the modification of its virulence linked to demonstrated or putative environmental factors.

  6. The biology of aging and lymphoma: a complex interplay.

    Science.gov (United States)

    Sarkozy, Clémentine; Salles, Gilles; Falandry, Claire

    2015-07-01

    The probability to develop non-Hodgkin lymphoma grows with age. The biological links between aging and lymphoma are not well described in the literature, and different hypothesis may be raised to explain this complex relationship. First, the impact of chronological age favoring the accumulation of genetic alterations can contribute to the multisteps proces of lymphomagenesis. Then, the age-related defects in cancer protection and the age-related clonal restriction in hematopoietic stem cell may also promote lymphoma development. Finally, the senescent and immunosenescence phenotype might represent a key process explaining this link. In this review, we will explore the current available clinical data and their ability to apply to age-related regulation pathways. PMID:26003736

  7. Deciphering The Complex Biological Interactions Of Nitric Oxide In Cancer

    Directory of Open Access Journals (Sweden)

    S. Perwez Hussain

    2015-08-01

    Full Text Available NO• is a free radical and is involved in a number of critical physiological processes including vasodilation, neurotransmission, immune regulation and inflammation. There are convincing evidence suggesting a role of NO• in the development and progression of different cancer types. However, the role of NO• in tumorigenesis is highly complex and both pro- and anti-neoplastic functions have been reported, which largely depends on the amount of NO•, cell types, cellular microenvironment, its interaction with other reactive species and presence of metals. An interesting interaction occurs between NO• and p53 tumor suppressor, in which NO•-induced DNA damage causes the stabilization and accumulation of p53, which in turn, transrepresses inducible nitric oxide synthase (NOS2 in a negative feedback loop. In chronic inflammatory diseases, for example ulcerative colitis, NO• induces p53 stabilization and the initiation of DNA-damage response pathway, and also generation of p53 mutation and subsequent clonal selection of p53 mutant cells. Genetic deletion of NOS2 in p53-deficient mice can either suppress or enhance lymphomagenesis depending on the inflammatory microenvironment. These findings highlight the importance of understanding the complex biological interaction of NO• in the context of the molecular makeup of each individual cancer to design NO•-targeted treatment strategies.

  8. Complex systems of biological interest stability under ionising radiations

    International Nuclear Information System (INIS)

    This PhD work presents the study of stability of molecular systems of biological interest in the gas phase after interaction with ionising radiations. The use of ionising radiation can probe the physical chemistry of complex systems at the molecular scale and thus consider their intrinsic properties. Beyond the fundamental aspect, this work is part of the overall understanding of radiation effects on living organisms and in particular the use of ionizing radiation in radiotherapy. Specifically, this study focused on the use of low-energy multiply charged ions (tens of keV) provided by the GANIL (Caen), which includes most of the experiments presented. In addition, experiments using VUV photons were also conducted at synchrotron ELETTRA (Trieste, Italy). The bio-molecular systems studied are amino acids and nucleic acid constituents. Using an experimental crossed beams device allows interaction between biomolecules and ionising radiation leads mainly to the ionization and fragmentation of the system. The study of its relaxation dynamics is by time-of-flight mass spectrometry coupled to a coincidences measurements method. It is shown that an approach combining experiment and theory allows a detailed study of the fragmentation dynamics of complex systems. The results indicate that fragmentation is generally governed by the Coulomb repulsion but the intramolecular rearrangements involve specific relaxation mechanisms. (author)

  9. Bridging Mechanistic and Phenomenological Models of Complex Biological Systems

    Science.gov (United States)

    Transtrum, Mark K.; Qiu, Peng

    2016-01-01

    The inherent complexity of biological systems gives rise to complicated mechanistic models with a large number of parameters. On the other hand, the collective behavior of these systems can often be characterized by a relatively small number of phenomenological parameters. We use the Manifold Boundary Approximation Method (MBAM) as a tool for deriving simple phenomenological models from complicated mechanistic models. The resulting models are not black boxes, but remain expressed in terms of the microscopic parameters. In this way, we explicitly connect the macroscopic and microscopic descriptions, characterize the equivalence class of distinct systems exhibiting the same range of collective behavior, and identify the combinations of components that function as tunable control knobs for the behavior. We demonstrate the procedure for adaptation behavior exhibited by the EGFR pathway. From a 48 parameter mechanistic model, the system can be effectively described by a single adaptation parameter τ characterizing the ratio of time scales for the initial response and recovery time of the system which can in turn be expressed as a combination of microscopic reaction rates, Michaelis-Menten constants, and biochemical concentrations. The situation is not unlike modeling in physics in which microscopically complex processes can often be renormalized into simple phenomenological models with only a few effective parameters. The proposed method additionally provides a mechanistic explanation for non-universal features of the behavior. PMID:27187545

  10. Bridging Mechanistic and Phenomenological Models of Complex Biological Systems.

    Directory of Open Access Journals (Sweden)

    Mark K Transtrum

    2016-05-01

    Full Text Available The inherent complexity of biological systems gives rise to complicated mechanistic models with a large number of parameters. On the other hand, the collective behavior of these systems can often be characterized by a relatively small number of phenomenological parameters. We use the Manifold Boundary Approximation Method (MBAM as a tool for deriving simple phenomenological models from complicated mechanistic models. The resulting models are not black boxes, but remain expressed in terms of the microscopic parameters. In this way, we explicitly connect the macroscopic and microscopic descriptions, characterize the equivalence class of distinct systems exhibiting the same range of collective behavior, and identify the combinations of components that function as tunable control knobs for the behavior. We demonstrate the procedure for adaptation behavior exhibited by the EGFR pathway. From a 48 parameter mechanistic model, the system can be effectively described by a single adaptation parameter τ characterizing the ratio of time scales for the initial response and recovery time of the system which can in turn be expressed as a combination of microscopic reaction rates, Michaelis-Menten constants, and biochemical concentrations. The situation is not unlike modeling in physics in which microscopically complex processes can often be renormalized into simple phenomenological models with only a few effective parameters. The proposed method additionally provides a mechanistic explanation for non-universal features of the behavior.

  11. Complex network problems in physics, computer science and biology

    Science.gov (United States)

    Cojocaru, Radu Ionut

    There is a close relation between physics and mathematics and the exchange of ideas between these two sciences are well established. However until few years ago there was no such a close relation between physics and computer science. Even more, only recently biologists started to use methods and tools from statistical physics in order to study the behavior of complex system. In this thesis we concentrate on applying and analyzing several methods borrowed from computer science to biology and also we use methods from statistical physics in solving hard problems from computer science. In recent years physicists have been interested in studying the behavior of complex networks. Physics is an experimental science in which theoretical predictions are compared to experiments. In this definition, the term prediction plays a very important role: although the system is complex, it is still possible to get predictions for its behavior, but these predictions are of a probabilistic nature. Spin glasses, lattice gases or the Potts model are a few examples of complex systems in physics. Spin glasses and many frustrated antiferromagnets map exactly to computer science problems in the NP-hard class defined in Chapter 1. In Chapter 1 we discuss a common result from artificial intelligence (AI) which shows that there are some problems which are NP-complete, with the implication that these problems are difficult to solve. We introduce a few well known hard problems from computer science (Satisfiability, Coloring, Vertex Cover together with Maximum Independent Set and Number Partitioning) and then discuss their mapping to problems from physics. In Chapter 2 we provide a short review of combinatorial optimization algorithms and their applications to ground state problems in disordered systems. We discuss the cavity method initially developed for studying the Sherrington-Kirkpatrick model of spin glasses. We extend this model to the study of a specific case of spin glass on the Bethe

  12. From structure of the complex to understanding of the biology

    Energy Technology Data Exchange (ETDEWEB)

    Rossmann, Michael G., E-mail: mr@purdue.edu [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Arisaka, Fumio [Graduate School and School of Bioscience and Biotechnology, Tokyo Institute of Technology, 5249 Nagatsuta-cho, Yokohama 226-8501-B39 (Japan); Battisti, Anthony J.; Bowman, Valorie D.; Chipman, Paul R.; Fokine, Andrei; Hafenstein, Susan [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Kanamaru, Shuji [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Graduate School and School of Bioscience and Biotechnology, Tokyo Institute of Technology, 5249 Nagatsuta-cho, Yokohama 226-8501-B39 (Japan); Kostyuchenko, Victor A. [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Mesyanzhinov, Vadim V.; Shneider, Mikhail M. [Laboratory of Molecular Bioengineering, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow, 117997 (Russian Federation); Morais, Marc C.; Leiman, Petr G. [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Palermo, Laura M.; Parrish, Colin R. [James A. Baker Institute, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 (United States); Xiao, Chuan [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States)

    2007-01-01

    The most extensive structural information on viruses relates to apparently icosahedral virions and is based on X-ray crystallography and on cryo-electron microscopy single-particle reconstructions. This paper concerns itself with the study of the macromolecular complexes that constitute viruses, using structural hybrid techniques. The most extensive structural information on viruses relates to apparently icosahedral virions and is based on X-ray crystallography and on cryo-electron microscopy (cryo-EM) single-particle reconstructions. Both techniques lean heavily on imposing icosahedral symmetry, thereby obscuring any deviation from the assumed symmetry. However, tailed bacteriophages have icosahedral or prolate icosahedral heads that have one obvious unique vertex where the genome can enter for DNA packaging and exit when infecting a host cell. The presence of the tail allows cryo-EM reconstructions in which the special vertex is used to orient the head in a unique manner. Some very large dsDNA icosahedral viruses also develop special vertices thought to be required for infecting host cells. Similarly, preliminary cryo-EM data for the small ssDNA canine parvovirus complexed with receptor suggests that these viruses, previously considered to be accurately icosahedral, might have some asymmetric properties that generate one preferred receptor-binding site on the viral surface. Comparisons are made between rhinoviruses that bind receptor molecules uniformly to all 60 equivalent binding sites, canine parvovirus, which appears to have a preferred receptor-binding site, and bacteriophage T4, which gains major biological advantages on account of its unique vertex and tail organelle.

  13. Multimode lasers as analogs of complex biological systems (a survey)

    Science.gov (United States)

    Danilov, O. B.; Rosanov, N. N.; Solov'ev, N. A.; Soms, L. N.

    2016-04-01

    Simulating the activity of complex biological systems, in particular, the human brain, is a topical problem the solution of which is necessary both for understanding their functioning and for developing new classes of computational system based on operating principles of the brain. Some features and analogies that can be found in the operation of laser systems and brain and used for developing new generation computational systems are discussed. The appropriateness of such analogies is justified by the fact that both laser systems and the brain are open (interacting with the environment) dissipative spatially distributed nonlinear systems. Therefore, laser optical systems and, in particular, systems with dissipative optical solitons offer an opportunity to experimentally and theoretically model some important cognitive brain functions. One of particularities of the brain operation is the ability to manipulate images. Proceeding from this, in this work, problems related to generation and amplification with laser of spatial structures (images), as well as to amplification of signals coming to it from outside are discussed.

  14. A microfluidic dialysis device for complex biological mixture SERS analysis

    KAUST Repository

    Perozziello, Gerardo

    2015-08-01

    In this paper, we present a microfluidic device fabricated with a simple and inexpensive process allowing rapid filtering of peptides from a complex mixture. The polymer microfluidic device can be used for sample preparation in biological applications. The device is fabricated by micromilling and solvent assisted bonding, in which a microdialysis membrane (cut-off of 12-14 kDa) is sandwiched in between an upper and a bottom microfluidic chamber. An external frame connects the microfluidic device to external tubes, microvalves and syringe pumps. Bonding strength and interface sealing are pneumatically tested. Microfluidic protocols are also described by using the presented device to filter a sample composed of specific peptides (MW 1553.73 Da, at a concentration of 1.0 ng/μl) derived from the BRCA1 protein, a tumor-suppressor molecule which plays a pivotal role in the development of breast cancer, and albumin (MW 66.5 kDa, at a concentration of 35 μg/μl), the most represented protein in human plasma. The filtered samples coming out from the microfluidic device were subsequently deposited on a SERS (surface enhanced Raman scattering) substrate for further analysis by Raman spectroscopy. By using this approach, we were able to sort the small peptides from the bigger and highly concentrated protein albumin and to detect them by using a label-free technique at a resolution down to 1.0 ng/μl.

  15. The complex jujube genome provides insights into fruit tree biology.

    Science.gov (United States)

    Liu, Meng-Jun; Zhao, Jin; Cai, Qing-Le; Liu, Guo-Cheng; Wang, Jiu-Rui; Zhao, Zhi-Hui; Liu, Ping; Dai, Li; Yan, Guijun; Wang, Wen-Jiang; Li, Xian-Song; Chen, Yan; Sun, Yu-Dong; Liu, Zhi-Guo; Lin, Min-Juan; Xiao, Jing; Chen, Ying-Ying; Li, Xiao-Feng; Wu, Bin; Ma, Yong; Jian, Jian-Bo; Yang, Wei; Yuan, Zan; Sun, Xue-Chao; Wei, Yan-Li; Yu, Li-Li; Zhang, Chi; Liao, Sheng-Guang; He, Rong-Jun; Guang, Xuan-Min; Wang, Zhuo; Zhang, Yue-Yang; Luo, Long-Hai

    2014-10-28

    The jujube (Ziziphus jujuba Mill.), a member of family Rhamnaceae, is a major dry fruit and a traditional herbal medicine for more than one billion people. Here we present a high-quality sequence for the complex jujube genome, the first genome sequence of Rhamnaceae, using an integrated strategy. The final assembly spans 437.65 Mb (98.6% of the estimated) with 321.45 Mb anchored to the 12 pseudo-chromosomes and contains 32,808 genes. The jujube genome has undergone frequent inter-chromosome fusions and segmental duplications, but no recent whole-genome duplication. Further analyses of the jujube-specific genes and transcriptome data from 15 tissues reveal the molecular mechanisms underlying some specific properties of the jujube. Its high vitamin C content can be attributed to a unique high level expression of genes involved in both biosynthesis and regeneration. Our study provides insights into jujube-specific biology and valuable genomic resources for the improvement of Rhamnaceae plants and other fruit trees.

  16. PREFACE: Complex Networks: from Biology to Information Technology

    Science.gov (United States)

    Barrat, A.; Boccaletti, S.; Caldarelli, G.; Chessa, A.; Latora, V.; Motter, A. E.

    2008-06-01

    The field of complex networks is one of the most active areas in contemporary statistical physics. Ten years after seminal work initiated the modern study of networks, interest in the field is in fact still growing, as indicated by the ever increasing number of publications in network science. The reason for such a resounding success is most likely the simplicity and broad significance of the approach that, through graph theory, allows researchers to address a variety of different complex systems within a common framework. This special issue comprises a selection of contributions presented at the workshop 'Complex Networks: from Biology to Information Technology' held in July 2007 in Pula (Cagliari), Italy as a satellite of the general conference STATPHYS23. The contributions cover a wide range of problems that are currently among the most important questions in the area of complex networks and that are likely to stimulate future research. The issue is organised into four sections. The first two sections describe 'methods' to study the structure and the dynamics of complex networks, respectively. After this methodological part, the issue proceeds with a section on applications to biological systems. The issue closes with a section concentrating on applications to the study of social and technological networks. The first section, entitled Methods: The Structure, consists of six contributions focused on the characterisation and analysis of structural properties of complex networks: The paper Motif-based communities in complex networks by Arenas et al is a study of the occurrence of characteristic small subgraphs in complex networks. These subgraphs, known as motifs, are used to define general classes of nodes and their communities by extending the mathematical expression of the Newman-Girvan modularity. The same line of research, aimed at characterising network structure through the analysis of particular subgraphs, is explored by Bianconi and Gulbahce in Algorithm

  17. Synthesis, characterization and biological activity of uranyl thiosemicarbazone complexes

    International Nuclear Information System (INIS)

    A new thiosemicarbazone namely phenacyl thioacetic acid thiosemicarbazone was synthesized and its UO22+ complexes were prepared. The synthesized ligand and complexes were characterized by elemental analyses, spectral (IR, 1H NMR and Mass) studies. In all complexes the ligand coordinates through carboxylic oxygen, azomethine nitrogen and thiolate sulfur. Antimicrobial screening of the free ligand and its complexes showed that, the free ligand and metal complexes possess antimicrobial activities towards two types of bacteria and two types of fungi. (author)

  18. Thermodynamics of interface formation between Hexa-Peri Hexabenzocoronene and Cupric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Manwani, Krishna; Panda, Emila, E-mail: emila@iitgn.ac.in

    2015-02-27

    A thermodynamic formalism has been developed to predict the formation of an ultra-thin interfacial layer at a solid–solid interface. To derive the thermodynamic expressions at crystalline–crystalline as well as crystalline–amorphous interfaces, as used in this study, Miedema's semi-empirical approach is used. This formalism is then applied to understand the interfacial layer formation between the organic Hexa-Peri Hexabenzocoronene and inorganic Cupric oxide layers at room temperature. It is found that, graphene interfacial layer formation is thermodynamically favorable. This prediction is in agreement with the experimental observations from literature. - Highlights: • Formalism was developed to predict ultra-thin interfacial layer between solids. • This is unique to similar and dissimilar systems with scarce thermodynamic data. • Applicability was tested to Hexa-Peri Hexabenzocoronene–Cupric oxide interface. • Model predicted graphene interfacial layer is concurrent with experimental results.

  19. The Synthesis of Highly Aligned Cupric Oxide Nanowires by Heating Copper Foil

    Directory of Open Access Journals (Sweden)

    Jianbo Liang

    2011-01-01

    Full Text Available We have investigated the effects of grain size and orientation of copper substrates for the growth of cupric oxide nanowires by thermal oxidation method. Long, less-roughness, high-density, and aligned cupric oxide nanowires have been synthesized by heating (200 oriented copper foils with small grain size in air gas. Long and aligned nanowires of diameter around 80 nm can only be formed within a short temperature range from 400 to 700°C. On the other hand, uniform, smooth-surface, and aligned nanowires were not formed in the case of larger crystallite size of copper foils with (111 and (200 orientation. Smaller grain size of copper foil with (200 orientation is favorable for the growth of highly aligned, smooth surface, and larger-diameter nanowires by thermal oxidation method.

  20. Highly Efficient and Versatile Acetalization of Glycol Catalyzed by Cupric p-Toluenesulfonate

    Institute of Scientific and Technical Information of China (English)

    LIU,Cai-Hua; YU,Xin-Yu; LIANG,Xue-Zheng; WANG,Wen-Juan; YANG,Jian-Guo; HE,Ming-Yuan

    2007-01-01

    Acetalization of glycol with carbonyl compounds was carried out catalyzed by cupric p-toluenesulfonate. These carbonyl compounds included cyclohexanone, propionoaldehyde, n-butyraldehyde, iso-butyraldehyde, n-valeraldehyde, benzaldehyde and butanone. Satisfactory results were obtained: the conversions of these carbonyl compounds were more than 90%, the selectivities were higher than 99.1%, only 0.1% mole ratio of catalyst to substrate and 90 min were sufficient in most cases. The catalyst and products were separated easily by phase separation.

  1. Phylogenetic and biological species diversity within the Neurospora tetrasperma complex

    NARCIS (Netherlands)

    Menkis, A.; Bastiaans, E.; Jacobson, D.J.; Johannesson, H.

    2009-01-01

    The objective of this study was to explore the evolutionary history of the morphologically recognized filamentous ascomycete Neurospora tetrasperma, and to reveal the genetic and reproductive relationships among its individuals and populations. We applied both phylogenetic and biological species rec

  2. Dioxins contamination in the feed additive (feed grade cupric sulfate) tied to chlorine industry

    Science.gov (United States)

    Wang, Pu; Zhang, Qinghua; Lan, Yonghui; Xu, Shiai; Gao, Renfu; Li, Gang; Zhang, Haidong; Shang, Hongtao; Ren, Daiwei; Zhu, Chaofei; Li, Yingming; Li, Xiaomin; Jiang, Guibin

    2014-08-01

    The sources of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) found in animal feed additive (feed grade cupric sulfate, CuSO4) were investigated and traced back to the formation of chlorinated organic compounds in the chlor-alkali industry. PCDD/Fs could be transported through the supply chain: hydrochloric acid (HCl) by-produced during formation of chlorinated organic compounds in chlor-alkali industry --> spent acid etching solution (acid-SES) generated in printed circuit board production --> industrial cupric salt --> CuSO4 in animal feed, and finally enter the food chain. The concentration ranges in HCl and acid-SES were similar, of which the level in acid-SES was also consistent with that in various cupric salt products including CuSO4 based on Cu element content. PCDD/Fs also showed very similar congener profiles in all the sample types. This indicates a probable direct transport pathway of PCDD/Fs into the food chain, which may eventually be exposed to humans through consumption. To date this is the first study in China that systematically reports on the PCDD/Fs transport from industrial pollution sources to industrial processes and finally enters the human food chain.

  3. Oxidatively Robust Monophenolate-Copper(II) Complexes as Potential Models of Galactose Oxidation

    NARCIS (Netherlands)

    Koten, G. van; Klein Gebbink, R.J.M.; Watanabe, M.; Pratt, R.C.; Stack, D.P.

    2003-01-01

    Cupric complexes of a novel phenanthroline-phenolate ligand have strongly distorted coordination geometries and electrochemical properties conducive to modeling the spectroscopy and reactivity of the enzyme galactose oxidase.

  4. Experimental and Theoretical Studies on Biologically Active Lanthanide (III) Complexes

    Science.gov (United States)

    Kostova, I.; Trendafilova, N.; Georgieva, I.; Rastogi, V. K.; Kiefer, W.

    2008-11-01

    The complexation ability and the binding mode of the ligand coumarin-3-carboxylic acid (HCCA) to La(III), Ce(III), Nd(III), Sm(III), Gd(III) and Dy(III) lanthanide ions (Ln(III)) are elucidated at experimental and theoretical level. The complexes were characterized using elemental analysis, DTA and TGA data as well as 1H NMR and 13C NMR spectra. FTIR and Raman spectroscopic techniques as well as DFT quantum chemical calculations were used for characterization of the binding mode and the structures of lanthanide(III) complexes of HCCA. The metal—ligand binding mode is predicted through molecular modeling and energy estimation of different Ln—CCA structures using B3LYP/6-31G(d) method combined with a large quasi-relativistic effective core potential for lanthanide ion. The energies obtained predict bidentate coordination of CCA- to Ln(III) ions through the carbonylic oxygen and the carboxylic oxygen. Detailed vibrational analysis of HCCA, CCA- and Ln(III) complexes based on both calculated and experimental frequencies confirms the suggested metal—ligand binding mode. The natural bonding analysis predicts strongly ionic character of the Ln(III)-CCA bonding in the- complexes studied. With the relatively resistant tumor cell line K-562 we obtained very interesting in-vitro results which are in accordance with our previously published data concerning the activity of lanthanide(III) complexes with other coumarin derivatives.

  5. Biological Properties Of Benzopyran-Based Platinum (Ii Complexes

    Directory of Open Access Journals (Sweden)

    Malinowska Katarzyna

    2014-04-01

    Full Text Available The aim of the study was to analyze the physicochemical synthesized complex 3 [(1,3- thiazol -2- ylimino methyl]-4H- chromene -4 -one with tetrachloroplatinate(II dipotassium and determination peroxidase activity and glutathione (GPX in red blood cells of cancer patients and healthy subjects. Materials and methods. Tests were carried out with the approval of the Bioethics Committee No. RNN/260/08/KB. Blood was collected into tubes with anticoagulant (heparin lithium. Determination of glutathione peroxidase activity was performed by methods of Little and O’Brien in 20 person groups hospitalized at the Department of General and Colorectal Surgery Veterans General Hospital in Łódź. Results. The study was an increase of activity in the control without the compound and after the introduction of the complex relative to the treatment groups. In healthy subjects, without the use of glutathione peroxidase complex averaged 73.25 ± 23.88 U / g Hb after application of the compound corresponds to the reference group 81.01 ± 25.94 U / g Hb. In contrast, in patients without the use of the complex activity amounted to 42.85 ± 27.49 U / g Hb. In the study group, which uses synthesized complex GPX activity corresponds to 67.72 ± 13.44 U / g Hb. Conclusions. The obtained results underline that the introduction of significant blood antioxidant complex research has a significant impact on the results of the determinations. Statistically significant (p < 0.05 difference occurred in both test and no relation to the administration of the complex in relation to the control of 1. 2.

  6. Lateral diffusion of lipids in complex biological membranes.

    OpenAIRE

    O'Leary, T. J.

    1987-01-01

    Lateral diffusion of lipids in biological membranes may be influenced by polypeptides, proteins, and other nonlipid membrane constituents. Using concepts from scaled-particle theory, we extend the free-volume model for lipid diffusion to membranes having an arbitrarily large number of components. This theory clarifies the interpretation of the free-volume theory, better reproduces the free-area dependence of lipid lateral diffusion rates, and quantitatively predicts the experimental observati...

  7. Analysis of complex networks from biology to linguistics

    CERN Document Server

    Dehmer, Matthias

    2009-01-01

    Mathematical problems such as graph theory problems are of increasing importance for the analysis of modelling data in biomedical research such as in systems biology, neuronal network modelling etc. This book follows a new approach of including graph theory from a mathematical perspective with specific applications of graph theory in biomedical and computational sciences. The book is written by renowned experts in the field and offers valuable background information for a wide audience.

  8. Autocatalysis as the Natural Philosophy Underlying Complexity and Biological Evolution

    Directory of Open Access Journals (Sweden)

    Güngör Gündüz

    2011-06-01

    Full Text Available The importance and different aspects of autocatalysis in evolution was analyzed. The behaviour of autocatalytic reactions mainly the Lotka-Volterra and the Schlögl equations were discussed in terms of phase change, entropy, and their oscillation frequency. The increase of complexity as the general direction of evolution was examined on some patterns in terms of both their entropy and information content. In addition, the relation between stability and functionality, stability and cohesion were discussed. It was concluded that evolution drifts in the direction of increasing complexity as a kind of natural philosophy to counteract the increase of entropy in the universe.

  9. Complexity, Post-genomic Biology and Gene Expression Programs

    Science.gov (United States)

    Williams, Rohan B. H.; Luo, Oscar Junhong

    Gene expression represents the fundamental phenomenon by which information encoded in a genome is utilised for the overall biological objectives of the organism. Understanding this level of information transfer is therefore essential for dissecting the mechanistic basis of form and function of organisms. We survey recent developments in the methodology of the life sciences that is relevant for understanding the organisation and function of the genome and review our current understanding of the regulation of gene expression, and finally, outline some new approaches that may be useful in understanding the organisation of gene regulatory systems.

  10. North Mississippi Refuges Complex Biological Program 'Pulse-Check' Review - DRAFT REPORT

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Biological review for the three refuges of the North Mississippi Refuges Complex is presented. Review is based on an assessment of addressing goals and objectives...

  11. Overcoming Problems in the Measurement of Biological Complexity

    CERN Document Server

    Cebrian, Manuel; Ortega, Alfonso

    2010-01-01

    In a genetic algorithm, fluctuations of the entropy of a genome over time are interpreted as fluctuations of the information that the genome's organism is storing about its environment, being this reflected in more complex organisms. The computation of this entropy presents technical problems due to the small population sizes used in practice. In this work we propose and test an alternative way of measuring the entropy variation in a population by means of algorithmic information theory, where the entropy variation between two generational steps is the Kolmogorov complexity of the first step conditioned to the second one. As an example application of this technique, we report experimental differences in entropy evolution between systems in which sexual reproduction is present or absent.

  12. Complexation of oppositely charged polyelectrolytes in gene delivery and biology

    Science.gov (United States)

    Shklovskii, Boris

    2009-03-01

    Charge inversion of a DNA double helix by a positively charged flexible polymer (polyelectrolyte) is widely used to facilitate DNA contact with negative cell membranes for gene delivery. Motivated by this application in the first part of the talk I study the phase diagram a solution of long polyanions (PA) with a shorter polycations (PC) as a function the ratio of total charges of PC and PA in the solution, x, and the concentration of monovalent salt. Each PA attracts many PCs to form a complex. When x= 1, the complexes are neutral and condense in a macroscopic drop. When x is far away from 1, complexes are strongly charged and stable. PA are overcharged by PC at x > 1 and undercharged by PC at x vegetable viruses from long ss-RNA molecule paying role of scaffold and identical capsid proteins with long positive tails. I show that optimization Coulomb energy of the virus leads to the charge of RNA twice larger than the total charge of the capsid, in agreement with the experimental data. Then I discuss kinetics of the Coulomb complexation driven virus self-assembly. Capsid proteins stick to unassembled chain of ss RNA (which we call ``antenna'') and slide on it towards the assembly site. I show that at excess of capsid proteins such one-dimensional diffusion accelerates self-assembly more than ten times. On the other hand at excess of ss-RNA, antenna slows self-assembly down. Several experiments are proposed to verify the role of ss-RNA antenna in self-assembly.

  13. Inference, simulation, modeling, and analysis of complex networks, with special emphasis on complex networks in systems biology

    Science.gov (United States)

    Christensen, Claire Petra

    Across diverse fields ranging from physics to biology, sociology, and economics, the technological advances of the past decade have engendered an unprecedented explosion of data on highly complex systems with thousands, if not millions of interacting components. These systems exist at many scales of size and complexity, and it is becoming ever-more apparent that they are, in fact, universal, arising in every field of study. Moreover, they share fundamental properties---chief among these, that the individual interactions of their constituent parts may be well-understood, but the characteristic behaviour produced by the confluence of these interactions---by these complex networks---is unpredictable; in a nutshell, the whole is more than the sum of its parts. There is, perhaps, no better illustration of this concept than the discoveries being made regarding complex networks in the biological sciences. In particular, though the sequencing of the human genome in 2003 was a remarkable feat, scientists understand that the "cellular-level blueprints" for the human being are cellular-level parts lists, but they say nothing (explicitly) about cellular-level processes. The challenge of modern molecular biology is to understand these processes in terms of the networks of parts---in terms of the interactions among proteins, enzymes, genes, and metabolites---as it is these processes that ultimately differentiate animate from inanimate, giving rise to life! It is the goal of systems biology---an umbrella field encapsulating everything from molecular biology to epidemiology in social systems---to understand processes in terms of fundamental networks of core biological parts, be they proteins or people. By virtue of the fact that there are literally countless complex systems, not to mention tools and techniques used to infer, simulate, analyze, and model these systems, it is impossible to give a truly comprehensive account of the history and study of complex systems. The author

  14. Life Is Simple-Biologic Complexity Is an Epiphenomenon.

    Science.gov (United States)

    Torday, John S

    2016-01-01

    Life originated from unicellular organisms by circumventing the Second Law of Thermodynamics using the First Principles of Physiology, namely negentropy, chemiosmosis and homeostatic regulation of calcium and lipids. It is hypothesized that multicellular organisms are merely contrivances or tools, used by unicellular organisms as agents for the acquisition of epigenetic inheritance. The First Principles of Physiology, which initially evolved in unicellular organisms are the exapted constraints that maintain, sustain and perpetuate that process. To ensure fidelity to this mechanism, we must return to the first principles of the unicellular state as the determinants of the primary level of selection pressure during the life cycle. The power of this approach is reflected by examples of its predictive value. This perspective on life is a "game changer", mechanistically rendering transparent many dogmas, teleologies and tautologies that constrain the current descriptive view of Biology. PMID:27128951

  15. Life Is Simple—Biologic Complexity Is an Epiphenomenon

    Directory of Open Access Journals (Sweden)

    John S. Torday

    2016-04-01

    Full Text Available Life originated from unicellular organisms by circumventing the Second Law of Thermodynamics using the First Principles of Physiology, namely negentropy, chemiosmosis and homeostatic regulation of calcium and lipids. It is hypothesized that multicellular organisms are merely contrivances or tools, used by unicellular organisms as agents for the acquisition of epigenetic inheritance. The First Principles of Physiology, which initially evolved in unicellular organisms are the exapted constraints that maintain, sustain and perpetuate that process. To ensure fidelity to this mechanism, we must return to the first principles of the unicellular state as the determinants of the primary level of selection pressure during the life cycle. The power of this approach is reflected by examples of its predictive value. This perspective on life is a “game changer”, mechanistically rendering transparent many dogmas, teleologies and tautologies that constrain the current descriptive view of Biology.

  16. Life Is Simple—Biologic Complexity Is an Epiphenomenon

    Science.gov (United States)

    Torday, John S.

    2016-01-01

    Life originated from unicellular organisms by circumventing the Second Law of Thermodynamics using the First Principles of Physiology, namely negentropy, chemiosmosis and homeostatic regulation of calcium and lipids. It is hypothesized that multicellular organisms are merely contrivances or tools, used by unicellular organisms as agents for the acquisition of epigenetic inheritance. The First Principles of Physiology, which initially evolved in unicellular organisms are the exapted constraints that maintain, sustain and perpetuate that process. To ensure fidelity to this mechanism, we must return to the first principles of the unicellular state as the determinants of the primary level of selection pressure during the life cycle. The power of this approach is reflected by examples of its predictive value. This perspective on life is a “game changer”, mechanistically rendering transparent many dogmas, teleologies and tautologies that constrain the current descriptive view of Biology. PMID:27128951

  17. Spectrophotometric total reducing sugars assay based on cupric reduction.

    Science.gov (United States)

    Başkan, Kevser Sözgen; Tütem, Esma; Akyüz, Esin; Özen, Seda; Apak, Reşat

    2016-01-15

    As the concentration of reducing sugars (RS) is controlled by European legislation for certain specific food and beverages, a simple and sensitive spectrophotometric method for the determination of RS in various food products is proposed. The method is based on the reduction of Cu(II) to Cu(I) with reducing sugars in alkaline medium in the presence of 2,9-dimethyl-1,10-phenanthroline (neocuproine: Nc), followed by the formation of a colored Cu(I)-Nc charge-transfer complex. All simple sugars tested had the linear regression equations with almost equal slope values. The proposed method was successfully applied to fresh apple juice, commercial fruit juices, milk, honey and onion juice. Interference effect of phenolic compounds in plant samples was eliminated by a solid phase extraction (SPE) clean-up process. The method was proven to have higher sensitivity and precision than the widely used dinitrosalicylic acid (DNS) colorimetric method.

  18. Spectrophotometric total reducing sugars assay based on cupric reduction.

    Science.gov (United States)

    Başkan, Kevser Sözgen; Tütem, Esma; Akyüz, Esin; Özen, Seda; Apak, Reşat

    2016-01-15

    As the concentration of reducing sugars (RS) is controlled by European legislation for certain specific food and beverages, a simple and sensitive spectrophotometric method for the determination of RS in various food products is proposed. The method is based on the reduction of Cu(II) to Cu(I) with reducing sugars in alkaline medium in the presence of 2,9-dimethyl-1,10-phenanthroline (neocuproine: Nc), followed by the formation of a colored Cu(I)-Nc charge-transfer complex. All simple sugars tested had the linear regression equations with almost equal slope values. The proposed method was successfully applied to fresh apple juice, commercial fruit juices, milk, honey and onion juice. Interference effect of phenolic compounds in plant samples was eliminated by a solid phase extraction (SPE) clean-up process. The method was proven to have higher sensitivity and precision than the widely used dinitrosalicylic acid (DNS) colorimetric method. PMID:26592591

  19. 氯化铜脱除硫化氢气体制硫磺研究%H2S Removal with Cupric Chloride for Producing Sulfur

    Institute of Scientific and Technical Information of China (English)

    张俊丰; 童志权

    2006-01-01

    A novel technology of removing H2S with cupric chloride solution was developed in this paper. Cupric as the form of CuS deposition, the CuS produced was then oxidized by excessive cupric ion in another reactor meanwhile cupric ion that has been consumed can be recovered by the oxidization of CuCl2- with oxygen in air,and the solution can be circulated. Moreover, the leaching kinetics of CuS by cupric ion was studied. The removal efficiency of H2S is close to 100%, and the required operating condition is mild. Compared with other wet oxidization methods, no raw material is consumed except O2 in air, the process has no secondary pollution and no problem of degradation and scale, and the absorbent is much stable and reliable.

  20. Using systems biology to simplify complex disease: immune cartography.

    Science.gov (United States)

    Polpitiya, Ashoka D; McDunn, Jonathan E; Burykin, Anton; Ghosh, Bijoy K; Cobb, J Perren

    2009-01-01

    What if there was a rapid, inexpensive, and accurate blood diagnostic that could determine which patients were infected, identify the organism(s) responsible, and identify patients who were not responding to therapy? We hypothesized that systems analysis of the transcriptional activity of circulating immune effector cells could be used to identify conserved elements in the host response to systemic inflammation, and furthermore, to discriminate between sterile and infectious etiologies. We review herein a validated, systems biology approach demonstrating that 1) abdominal and pulmonary sepsis diagnoses can be made in mouse models using microarray (RNA) data from circulating blood, 2) blood microarray data can be used to differentiate between the host response to Gram-negative and Gram-positive pneumonia, 3) the endotoxin response of normal human volunteers can be mapped at the level of gene expression, and 4) a similar strategy can be used in the critically ill to follow septic patients and quantitatively determine immune recovery. These findings provide the foundation of immune cartography and demonstrate the potential of this approach for rapidly diagnosing sepsis and identifying pathogens. Further, our data suggest a new approach to determine how specific pathogens perturb the physiology of circulating leukocytes in a cell-specific manner. Large, prospective clinical trails are needed to validate the clinical utility of leukocyte RNA diagnostics (e.g., the riboleukogram).

  1. Decisions, dopamine, and degeneracy in complex biological systems

    Directory of Open Access Journals (Sweden)

    Regan CM

    2014-01-01

    Full Text Available Ciaran M Regan School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland Abstract: The neurobiological and computational analysis of value-based decision-making rests within the domain of neuroeconomics which has the goal of providing a biological account of human behavior relevant to both natural and social sciences. This review proposes a framework to investigate different aspects of the theoretical and molecular neurobiology of decision-making. In order to learn how to make good decisions, the brain needs to compute a separate value signal that measures the desirability of the outcomes that were generated by its previous decisions. The framework presented here combines aspects of current ideas relating to information processing by the hippocampal formation and how these relate to the phasic midbrain dopaminergic firing that occurs in response to the spatial and motivational aspects of rewarding events in the environment. The activities of hippocampal ensembles are considered to reflect a continuous updating process for attended experiences, defining both regular and irregular stimuli, environments, and actions, that are rapidly encoded as schemas into pre-existing knowledge bases. Keywords: hippocampus, schemas, synapse assemblies, cell assemblies, synapse plasticity

  2. Approaching complexity by stochastic methods: From biological systems to turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Rudolf [Institute for Theoretical Physics, University of Muenster, D-48149 Muenster (Germany); Peinke, Joachim [Institute of Physics, Carl von Ossietzky University, D-26111 Oldenburg (Germany); Sahimi, Muhammad [Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1211 (United States); Reza Rahimi Tabar, M., E-mail: mohammed.r.rahimi.tabar@uni-oldenburg.de [Department of Physics, Sharif University of Technology, Tehran 11155-9161 (Iran, Islamic Republic of); Institute of Physics, Carl von Ossietzky University, D-26111 Oldenburg (Germany); Fachbereich Physik, Universitaet Osnabrueck, Barbarastrasse 7, 49076 Osnabrueck (Germany)

    2011-09-15

    This review addresses a central question in the field of complex systems: given a fluctuating (in time or space), sequentially measured set of experimental data, how should one analyze the data, assess their underlying trends, and discover the characteristics of the fluctuations that generate the experimental traces? In recent years, significant progress has been made in addressing this question for a class of stochastic processes that can be modeled by Langevin equations, including additive as well as multiplicative fluctuations or noise. Important results have emerged from the analysis of temporal data for such diverse fields as neuroscience, cardiology, finance, economy, surface science, turbulence, seismic time series and epileptic brain dynamics, to name but a few. Furthermore, it has been recognized that a similar approach can be applied to the data that depend on a length scale, such as velocity increments in fully developed turbulent flow, or height increments that characterize rough surfaces. A basic ingredient of the approach to the analysis of fluctuating data is the presence of a Markovian property, which can be detected in real systems above a certain time or length scale. This scale is referred to as the Markov-Einstein (ME) scale, and has turned out to be a useful characteristic of complex systems. We provide a review of the operational methods that have been developed for analyzing stochastic data in time and scale. We address in detail the following issues: (i) reconstruction of stochastic evolution equations from data in terms of the Langevin equations or the corresponding Fokker-Planck equations and (ii) intermittency, cascades, and multiscale correlation functions.

  3. Influence of Complex Refractive Index on Diffuse Reflection of Biological Tissues

    Institute of Scientific and Technical Information of China (English)

    LAI Jian-Cheng; LI Zhen-Hua; HE An-Zhi

    2005-01-01

    @@ Complex refractive indices are introduced to solve various boundary questions at the interfaces when modelling light migration within heterogeneous tissues. Combined with the complex refractive index, Fresnel's formulae are used to describe the reflection and transmission at the interfaces between two heterogeneous tissues layers.Using the Monte Carlo method, the influence of the complex refractive index on diffuse reflection of semi-infinite biological tissues is discussed. The results show that neglecting the imaginary part of the refractive index of tissues will bring a major deviation in the diffuse reflection of semi-infinite biological tissues when its emitting point is apart from the incident point.

  4. Synthesis, characterization and exploration of the catalytic, supramolecular and biological applications of dinuclear complexes

    OpenAIRE

    Johnpeter, Justin Paul Raj; Therrien, Bruno

    2014-01-01

    The work presented in this thesis involves the synthesis and characterization of dinuclear ruthenium, rhodium and iridium complexes. The catalytic, supramolecular and biological applications of these dinuclear complexes will be discussed. In the first part, the synthesis of sawhorse-type diruthenium tetracarbonyl complexes and their catalytic applications in the supercritical carbon dioxide (scCO2) are presented. Synthesis of sawhorse-type molecular tweezers derived from pyrenyl and porphyrin...

  5. Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Dilshad [Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Najam-ul-Haq, Muhammad, E-mail: najamulhaq@bzu.edu.pk [Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, A-6020 Innsbruck (Austria); Jabeen, Fahmida; Ashiq, Muhammad N.; Athar, Muhammad [Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Rainer, Matthias; Huck, Christian W.; Bonn, Guenther K. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, A-6020 Innsbruck (Austria)

    2013-05-02

    Graphical abstract: -- Highlights: •Derivatization of diamond nanopowder as IMAC and RP. •Characterization with SEM, EDX and FT-IR. •Phosphopeptide enrichment from standard as well as real samples. •Desalting and human serum profiling with reproducible results. •MALDI-MS analysis with database identification. -- Abstract: Diamond is known for its high affinity and biocompatibility towards biomolecules and is used exclusively in separation sciences and life science research. In present study, diamond nanopowder is derivatized as Immobilized Metal Ion Affinity Chromatographic (IMAC) material for the phosphopeptides enrichment and as Reversed Phase (C-18) media for the desalting of complex mixtures and human serum profiling through MALDI-TOF-MS. Functionalized diamond nanopowder is characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Diamond-IMAC is applied to the standard protein (β-casein), spiked human serum, egg yolk and non-fat milk for the phosphopeptides enrichment. Results show the selectivity of synthesized IMAC-diamond immobilized with Fe{sup 3+} and La{sup 3+} ions. To comprehend the elaborated use, diamond-IMAC is also applied to the serum samples from gall bladder carcinoma for the potential biomarkers. Database search is carried out by the Mascot program ( (www.matrixscience.com)) for the assignment of phosphorylation sites. Diamond nanopowder is thus a separation media with multifunctional use and can be applied to cancer protein profiling for the diagnosis and biomarker identification.

  6. Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids.

    Science.gov (United States)

    Hussain, Dilshad; Najam-ul-Haq, Muhammad; Jabeen, Fahmida; Ashiq, Muhammad N; Athar, Muhammad; Rainer, Matthias; Huck, Christian W; Bonn, Guenther K

    2013-05-01

    Diamond is known for its high affinity and biocompatibility towards biomolecules and is used exclusively in separation sciences and life science research. In present study, diamond nanopowder is derivatized as Immobilized Metal Ion Affinity Chromatographic (IMAC) material for the phosphopeptides enrichment and as Reversed Phase (C-18) media for the desalting of complex mixtures and human serum profiling through MALDI-TOF-MS. Functionalized diamond nanopowder is characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Diamond-IMAC is applied to the standard protein (β-casein), spiked human serum, egg yolk and non-fat milk for the phosphopeptides enrichment. Results show the selectivity of synthesized IMAC-diamond immobilized with Fe(3+) and La(3+) ions. To comprehend the elaborated use, diamond-IMAC is also applied to the serum samples from gall bladder carcinoma for the potential biomarkers. Database search is carried out by the Mascot program (www.matrixscience.com) for the assignment of phosphorylation sites. Diamond nanopowder is thus a separation media with multifunctional use and can be applied to cancer protein profiling for the diagnosis and biomarker identification. PMID:23601977

  7. Major Histocompatibility Complex (MHC) markers in conservation biology.

    Science.gov (United States)

    Ujvari, Beata; Belov, Katherine

    2011-01-01

    Human impacts through habitat destruction, introduction of invasive species and climate change are increasing the number of species threatened with extinction. Decreases in population size simultaneously lead to reductions in genetic diversity, ultimately reducing the ability of populations to adapt to a changing environment. In this way, loss of genetic polymorphism is linked with extinction risk. Recent advances in sequencing technologies mean that obtaining measures of genetic diversity at functionally important genes is within reach for conservation programs. A key region of the genome that should be targeted for population genetic studies is the Major Histocompatibility Complex (MHC). MHC genes, found in all jawed vertebrates, are the most polymorphic genes in vertebrate genomes. They play key roles in immune function via immune-recognition and -surveillance and host-parasite interaction. Therefore, measuring levels of polymorphism at these genes can provide indirect measures of the immunological fitness of populations. The MHC has also been linked with mate-choice and pregnancy outcomes and has application for improving mating success in captive breeding programs. The recent discovery that genetic diversity at MHC genes may protect against the spread of contagious cancers provides an added impetus for managing and protecting MHC diversity in wild populations. Here we review the field and focus on the successful applications of MHC-typing for conservation management. We emphasize the importance of using MHC markers when planning and executing wildlife rescue and conservation programs but stress that this should not be done to the detriment of genome-wide diversity. PMID:21954351

  8. Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids

    International Nuclear Information System (INIS)

    Graphical abstract: -- Highlights: •Derivatization of diamond nanopowder as IMAC and RP. •Characterization with SEM, EDX and FT-IR. •Phosphopeptide enrichment from standard as well as real samples. •Desalting and human serum profiling with reproducible results. •MALDI-MS analysis with database identification. -- Abstract: Diamond is known for its high affinity and biocompatibility towards biomolecules and is used exclusively in separation sciences and life science research. In present study, diamond nanopowder is derivatized as Immobilized Metal Ion Affinity Chromatographic (IMAC) material for the phosphopeptides enrichment and as Reversed Phase (C-18) media for the desalting of complex mixtures and human serum profiling through MALDI-TOF-MS. Functionalized diamond nanopowder is characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Diamond-IMAC is applied to the standard protein (β-casein), spiked human serum, egg yolk and non-fat milk for the phosphopeptides enrichment. Results show the selectivity of synthesized IMAC-diamond immobilized with Fe3+ and La3+ ions. To comprehend the elaborated use, diamond-IMAC is also applied to the serum samples from gall bladder carcinoma for the potential biomarkers. Database search is carried out by the Mascot program ( (www.matrixscience.com)) for the assignment of phosphorylation sites. Diamond nanopowder is thus a separation media with multifunctional use and can be applied to cancer protein profiling for the diagnosis and biomarker identification

  9. Biological correlates of complex posttraumatic stress disorder—state of research and future directions

    Directory of Open Access Journals (Sweden)

    Zoya Marinova

    2015-04-01

    Full Text Available Complex posttraumatic stress disorder (PTSD presents with clinical features of full or partial PTSD (re-experiencing a traumatic event, avoiding reminders of the event, and a state of hyperarousal together with symptoms from three additional clusters (problems in emotional regulation, negative self-concept, and problems in interpersonal relations. Complex PTSD is proposed as a new diagnostic entity in ICD-11 and typically occurs after prolonged and complex trauma. Here we shortly review current knowledge regarding the biological correlates of complex PTSD and compare it to the relevant findings in PTSD. Recent studies provide support to the validity of complex PTSD as a separate diagnostic entity; however, data regarding the biological basis of the disorder are still very limited at this time. Further studies focused on complex PTSD biological correlates and replication of the initial findings are needed, including neuroimaging, neurobiochemical, genetic, and epigenetic investigations. Identification of altered biological pathways in complex PTSD may be critical to further understand the pathophysiology and optimize treatment strategies.

  10. Major Histocompatibility Complex (MHC Markers in Conservation Biology

    Directory of Open Access Journals (Sweden)

    Katherine Belov

    2011-08-01

    Full Text Available Human impacts through habitat destruction, introduction of invasive species and climate change are increasing the number of species threatened with extinction. Decreases in population size simultaneously lead to reductions in genetic diversity, ultimately reducing the ability of populations to adapt to a changing environment. In this way, loss of genetic polymorphism is linked with extinction risk. Recent advances in sequencing technologies mean that obtaining measures of genetic diversity at functionally important genes is within reach for conservation programs. A key region of the genome that should be targeted for population genetic studies is the Major Histocompatibility Complex (MHC. MHC genes, found in all jawed vertebrates, are the most polymorphic genes in vertebrate genomes. They play key roles in immune function via immune-recognition and -surveillance and host-parasite interaction. Therefore, measuring levels of polymorphism at these genes can provide indirect measures of the immunological fitness of populations. The MHC has also been linked with mate-choice and pregnancy outcomes and has application for improving mating success in captive breeding programs. The recent discovery that genetic diversity at MHC genes may protect against the spread of contagious cancers provides an added impetus for managing and protecting MHC diversity in wild populations. Here we review the field and focus on the successful applications of MHC-typing for conservation management. We emphasize the importance of using MHC markers when planning and executing wildlife rescue and conservation programs but stress that this should not be done to the detriment of genome-wide diversity.

  11. Systems Biology as a Comparative Approach to Understand Complex Gene Expression in Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Francisco J. Esteban

    2013-05-01

    Full Text Available Systems biology interdisciplinary approaches have become an essential analytical tool that may yield novel and powerful insights about the nature of human health and disease. Complex disorders are known to be caused by the combination of genetic, environmental, immunological or neurological factors. Thus, to understand such disorders, it becomes necessary to address the study of this complexity from a novel perspective. Here, we present a review of integrative approaches that help to understand the underlying biological processes involved in the etiopathogenesis of neurological diseases, for example, those related to autism and autism spectrum disorders (ASD endophenotypes. Furthermore, we highlight the role of systems biology in the discovery of new biomarkers or therapeutic targets in complex disorders, a key step in the development of personalized medicine, and we demonstrate the role of systems approaches in the design of classifiers that can shorten the time for behavioral diagnosis of autism.

  12. Development of a General Modeling Framework for Investigating Complex Interactions among Biological and Physical Ecosystem Dynamics

    Science.gov (United States)

    Bennett, C.; Poole, G. C.; Kimball, J. S.; Stanford, J. A.; O'Daniel, S. J.; Mertes, L. A.

    2005-05-01

    Historically, physical scientists have developed models with highly accurate governing equations, while biologists have excelled at abstraction (the strategic simplification of system complexity). These different modeling paradigms yield biological (e.g. food web) and physical (e.g. hydrologic) models that can be difficult to integrate. Complex biological dynamics may be impossible to represent with governing equations. Conversely, physical processes may be oversimplified in biological models. Using agent-based modeling, a technique applied widely in social sciences and economics, we are developing a general modeling system to integrate accurate representations of physical dynamics such as water and heat flux with abstracted biological processes such as nutrient transformations. The modeling system represents an ecosystem as a complex integrated network of intelligent physical and biological "agents" that store, transform, and trade ecosystem resources (e.g., water, heat, nutrients, carbon) using equations that describe either abstracted concepts and/or physical laws. The modular design of the system allows resource submodels to be developed independently and installed into the simulation architecture. The modeling system provides a useful heuristic tool to support integrated physical and biological research topics, such as the influence of hydrologic dynamics and spatio-temporal physical heterogeneity on trophic (food web) dynamics and/or nutrient cycling.

  13. Correlation of mRNA and protein in complex biological samples.

    Science.gov (United States)

    Maier, Tobias; Güell, Marc; Serrano, Luis

    2009-12-17

    The correlation between mRNA and protein abundances in the cell has been reported to be notoriously poor. Recent technological advances in the quantitative analysis of mRNA and protein species in complex samples allow the detailed analysis of this pathway at the center of biological systems. We give an overview of available methods for the identification and quantification of free and ribosome-bound mRNA, protein abundances and individual protein turnover rates. We review available literature on the correlation of mRNA and protein abundances and discuss biological and technical parameters influencing the correlation of these central biological molecules.

  14. Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology.

    Science.gov (United States)

    Sudhir, Putty-Reddy; Chen, Chung-Hsuan

    2016-01-01

    A protein complex consists of two or more proteins that are linked together through protein-protein interactions. The proteins show stable/transient and direct/indirect interactions within the protein complex or between the protein complexes. Protein complexes are involved in regulation of most of the cellular processes and molecular functions. The delineation of protein complexes is important to expand our knowledge on proteins functional roles in physiological and pathological conditions. The genetic yeast-2-hybrid method has been extensively used to characterize protein-protein interactions. Alternatively, a biochemical-based affinity purification coupled with mass spectrometry (AP-MS) approach has been widely used to characterize the protein complexes. In the AP-MS method, a protein complex of a target protein of interest is purified using a specific antibody or an affinity tag (e.g., DYKDDDDK peptide (FLAG) and polyhistidine (His)) and is subsequently analyzed by means of MS. Tandem affinity purification, a two-step purification system, coupled with MS has been widely used mainly to reduce the contaminants. We review here a general principle for AP-MS-based characterization of protein complexes and we explore several protein complexes identified in pluripotent stem cell biology and cancer biology as examples. PMID:27011181

  15. Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia

    OpenAIRE

    Javier Macia; Romilde Manzoni; Núria Conde; Arturo Urrios; Eulàlia de Nadal; Ricard Solé; Francesc Posas

    2016-01-01

    Engineered synthetic biological devices have been designed to perform a variety of functions from sensing molecules and bioremediation to energy production and biomedicine. Notwithstanding, a major limitation of in vivo circuit implementation is the constraint associated to the use of standard methodologies for circuit design. Thus, future success of these devices depends on obtaining circuits with scalable complexity and reusable parts. Here we show how to build complex computational devices...

  16. Some biologically active oxovanadium(IV) complexes of triazole derived Schiff bases: their synthesis, characterization and biological properties.

    Science.gov (United States)

    Chohan, Zahid H; Sumrra, Sajjad H

    2010-10-01

    A series of biologically active oxovanadium(IV) complexes of triazole derived Schiff bases L(1)-L(5) have been synthesized and characterized by their physical, analytical, and spectral data. The synthesized ligands potentially act as bidentate, in which the oxygen of furfural and nitrogen of azomethine coordinate with the oxovanadium atom to give a stoichiometry of vanadyl complexes 1:2 (M:L) in a square-pyramidal geometry. In vitro antibacterial and antifungal activities on different species of pathogenic bacteria (E. coli, S. flexneri, P. aeruginosa, S. typhi, S. aureus, and B. subtilis) and fungi (T. longifusus, C. albicans, A. flavus, M. canis, F. solani, and C. glabrata) have been studied. All compounds showed moderate to significant antibacterial activity against one or more bacterial strains and good antifungal activity against most of the fungal strains. The brine shrimp bioassay was also carried out to check the cytotoxicity of coordinated and uncoordinated synthesized compounds. PMID:20429776

  17. Inference, simulation, modeling, and analysis of complex networks, with special emphasis on complex networks in systems biology

    Science.gov (United States)

    Christensen, Claire Petra

    Across diverse fields ranging from physics to biology, sociology, and economics, the technological advances of the past decade have engendered an unprecedented explosion of data on highly complex systems with thousands, if not millions of interacting components. These systems exist at many scales of size and complexity, and it is becoming ever-more apparent that they are, in fact, universal, arising in every field of study. Moreover, they share fundamental properties---chief among these, that the individual interactions of their constituent parts may be well-understood, but the characteristic behaviour produced by the confluence of these interactions---by these complex networks---is unpredictable; in a nutshell, the whole is more than the sum of its parts. There is, perhaps, no better illustration of this concept than the discoveries being made regarding complex networks in the biological sciences. In particular, though the sequencing of the human genome in 2003 was a remarkable feat, scientists understand that the "cellular-level blueprints" for the human being are cellular-level parts lists, but they say nothing (explicitly) about cellular-level processes. The challenge of modern molecular biology is to understand these processes in terms of the networks of parts---in terms of the interactions among proteins, enzymes, genes, and metabolites---as it is these processes that ultimately differentiate animate from inanimate, giving rise to life! It is the goal of systems biology---an umbrella field encapsulating everything from molecular biology to epidemiology in social systems---to understand processes in terms of fundamental networks of core biological parts, be they proteins or people. By virtue of the fact that there are literally countless complex systems, not to mention tools and techniques used to infer, simulate, analyze, and model these systems, it is impossible to give a truly comprehensive account of the history and study of complex systems. The author

  18. Temperature preference as an indicator of the chronic toxicity of cupric ions to Mozambique Tilapia

    Energy Technology Data Exchange (ETDEWEB)

    Welch, T.J.; Stauffer, J.R. Jr.; Morgan, R.P. II (Univ. of Maryland, Frostburg (USA))

    1989-11-01

    Evaluation of the effects of environmental contaminants on aquatic communities has focused primarily on acute bioassays. These bioassays provide rapid and reproducible concentration response curves based on death as an endpoint. In recent years, however, emphasis has shifted towards monitoring sublethal effects of toxicants. Temperature is an easily quantifiable parameter influencing both the behavior and survival of fishes. As poikilotherms, fish use behavioral responses to help regulate body temperature. Fish thermoregulatory behavior may be altered by various toxic substances. Some researchers found that a 24 hr exposure of sublethal concentrations of copper caused a significant decrease in preferred temperature of fathead minnows (Pimephales promelas), although the results were confounded due to variations in copper concentrations. In this study, the authors examined the feasibility of using acute temperature preference tests to assess the chronic toxicity of low concentrations of free cupric ions to Mozambique tilapia, Oreochromis mossambicus (Peters).

  19. Microstructural and electrical properties of PVA/PVP polymer blend films doped with cupric sulphate

    Science.gov (United States)

    Hemalatha, K.; Mahadevaiah, Gowtham, G. K.; Urs, G. Thejas; Somashekarappa, H.; Somashekar, R.

    2016-05-01

    A series of polyvinyl alcohol (PVA)/polyvinyl pyrrolidone (PVP) polymer blends added with different concentrations of cupric sulphate (CuSO4) were prepared by solution casting method and were subjected to X-ray diffraction (XRD) and Ac conductance measurements. An attempt has been made to study the changes in crystal imperfection parameters in PVA/PVP blend films with the increase in concentration of CuSO4. Results show that decrease in micro crystalline parameter values is accompanied with increase in the amorphous content in the film which is the reason for film to have more flexibility, biodegradability and good ionic conductivity. AC conductance measurements in these films show that the conductivity increases as the concentration of CuSO4 increases. These films were suitable for electro chemical applications.

  20. 78 FR 58311 - Complex Issues in Developing Drug and Biological Products for Rare Diseases; Public Workshop...

    Science.gov (United States)

    2013-09-23

    ... for Rare Diseases; Public Workshop; Request for Comments AGENCY: Food and Drug Administration, HHS... for Rare Diseases.'' The purpose of the public workshop is twofold: To discuss complex issues in clinical trials for developing drug and biological products (``drugs'') for rare diseases,...

  1. Detection of Two Isomeric Binding Configurations in a Protein-Aptamer Complex with a Biological Nanopore

    NARCIS (Netherlands)

    Van Meervelt, Veerle; Soskine, Misha; Maglia, Giovanni

    2014-01-01

    ProteinDNA interactions play critical roles in biological systems, and they often involve complex mechanisms and dynamics that are not easily measured by ensemble experiments. Recently, we showed that folded proteins can be internalized inside ClyA nanopores and studied by ionic current recordings a

  2. Chemometric and Statistical Analyses of ToF-SIMS Spectra of Increasingly Complex Biological Samples

    Energy Technology Data Exchange (ETDEWEB)

    Berman, E S; Wu, L; Fortson, S L; Nelson, D O; Kulp, K S; Wu, K J

    2007-10-24

    Characterizing and classifying molecular variation within biological samples is critical for determining fundamental mechanisms of biological processes that will lead to new insights including improved disease understanding. Towards these ends, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to examine increasingly complex samples of biological relevance, including monosaccharide isomers, pure proteins, complex protein mixtures, and mouse embryo tissues. The complex mass spectral data sets produced were analyzed using five common statistical and chemometric multivariate analysis techniques: principal component analysis (PCA), linear discriminant analysis (LDA), partial least squares discriminant analysis (PLSDA), soft independent modeling of class analogy (SIMCA), and decision tree analysis by recursive partitioning. PCA was found to be a valuable first step in multivariate analysis, providing insight both into the relative groupings of samples and into the molecular basis for those groupings. For the monosaccharides, pure proteins and protein mixture samples, all of LDA, PLSDA, and SIMCA were found to produce excellent classification given a sufficient number of compound variables calculated. For the mouse embryo tissues, however, SIMCA did not produce as accurate a classification. The decision tree analysis was found to be the least successful for all the data sets, providing neither as accurate a classification nor chemical insight for any of the tested samples. Based on these results we conclude that as the complexity of the sample increases, so must the sophistication of the multivariate technique used to classify the samples. PCA is a preferred first step for understanding ToF-SIMS data that can be followed by either LDA or PLSDA for effective classification analysis. This study demonstrates the strength of ToF-SIMS combined with multivariate statistical and chemometric techniques to classify increasingly complex biological samples

  3. Degeneracy: a link between evolvability, robustness and complexity in biological systems

    CERN Document Server

    Whitacre, James

    2010-01-01

    A full accounting of biological robustness remains elusive; both in terms of the mechanisms by which robustness is achieved and the forces that have caused robustness to grow over evolutionary time. Although its importance to topics such as ecosystem services and resilience is well recognized, the broader relationship between robustness and evolution is only starting to be fully appreciated. A renewed interest in this relationship has been prompted by evidence that mutational robustness can play a positive role in the discovery of future adaptive innovations (evolvability) and evidence of an intimate relationship between robustness and complexity in biology. This paper offers a new perspective on the mechanics of evolution and the origins of complexity, robustness, and evolvability. Here we explore the hypothesis that degeneracy, a partial overlap in the functioning of multi-functional components, plays a central role in the evolution and robustness of complex forms. In support of this hypothesis, we present ...

  4. Physical properties and biological activities of hesperetin and naringenin in complex with methylated β-cyclodextrin

    Directory of Open Access Journals (Sweden)

    Waratchada Sangpheak

    2015-12-01

    Full Text Available The aim of this work is to improve physical properties and biological activities of the two flavanones hesperetin and naringenin by complexation with β-cyclodextrin (β-CD and its methylated derivatives (2,6-di-O-methyl-β-cyclodextrin, DM-β-CD and randomly methylated-β-CD, RAMEB. The free energies of inclusion complexes between hesperetin with cyclodextrins (β-CD and DM-β-CD were theoretically investigated by molecular dynamics simulation. The free energy values obtained suggested a more stable inclusion complex with DM-β-CD. The vdW force is the main guest–host interaction when hesperetin binds with CDs. The phase solubility diagram showed the formation of a soluble complex of AL type, with higher increase in solubility and stability when hesperetin and naringenin were complexed with RAMEB. Solid complexes were prepared by freeze-drying, and the data from differential scanning calorimetry (DSC confirmed the formation of inclusion complexes. The data obtained by the dissolution method showed that complexation with RAMEB resulted in a better release of both flavanones to aqueous solution. The flavanones-β-CD/DM-β-CD complexes demonstrated a similar or a slight increase in anti-inflammatory activity and cytotoxicity towards three different cancer cell lines. The overall results suggested that solubilities and bioactivities of both flavanones were increased by complexation with methylated β-CDs.

  5. Engineering and control of biological systems: A new way to tackle complex diseases.

    Science.gov (United States)

    Menolascina, Filippo; Siciliano, Velia; di Bernardo, Diego

    2012-07-16

    The ongoing merge between engineering and biology has contributed to the emerging field of synthetic biology. The defining features of this new discipline are abstraction and standardisation of biological parts, decoupling between parts to prevent undesired cross-talking, and the application of quantitative modelling of synthetic genetic circuits in order to guide their design. Most of the efforts in the field of synthetic biology in the last decade have been devoted to the design and development of functional gene circuits in prokaryotes and unicellular eukaryotes. Researchers have used synthetic biology not only to engineer new functions in the cell, but also to build simpler models of endogenous gene regulatory networks to gain knowledge of the "rules" governing their wiring diagram. However, the need for innovative approaches to study and modify complex signalling and regulatory networks in mammalian cells and multicellular organisms has prompted advances of synthetic biology also in these species, thus contributing to develop innovative ways to tackle human diseases. In this work, we will review the latest progress in synthetic biology and the most significant developments achieved so far, both in unicellular and multicellular organisms, with emphasis on human health. PMID:22580058

  6. Cupric and cuprous oxide by reactive ion beam sputter deposition and the photosensing properties of cupric oxide metal–semiconductor–metal Schottky photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Min-Jyun; Lin, Yong-Chen; Chao, Liang-Chiun, E-mail: lcchao@mail.ntust.edu.tw; Lin, Pao-Hung; Huang, Bohr-Ran

    2015-08-15

    Highlights: • CuO and Cu{sub 2}O were deposited by reactive ion beam sputter deposition. • Single phase CuO thin film is obtained with Ar:O{sub 2} = 2:1. • CuO MSM PD shows photoresponse from 400 nm to 1.30 μm. • CuO MSM PD is RC limited with a decay time less than 1 μs. - Abstract: Cupric (CuO) and cuprous (Cu{sub 2}O) oxide thin films have been deposited by reactive ion beam sputter deposition at 400 °C with an Ar:O{sub 2} ratio from 2:1 to 12:1. With an Ar:O{sub 2} ratio of 2:1, single phase polycrystalline CuO thin films were obtained. Decreasing oxygen flow rate results in CuO + Cu{sub 2}O and Cu{sub 2}O + Cu mixed thin films. As Ar:O{sub 2} ratio reaches 12:1, Cu{sub 2}O nanorods with diameter of 250 nm and length longer than 1 μm were found across the sample. Single phase CuO thin film exhibits an indirect band gap of 1.3 eV with a smooth surface morphology. CuO metal–semiconductor–metal (MSM) Schottky photodiodes (PD) were fabricated by depositing Cu interdigitated electrodes on CuO thin films. Photosensing properties of the CuO PD were characterized from 350 to 1300 nm and a maximum responsivity of 43 mA/W was found at λ = 700 nm. The MSM PD is RC limited with a decay time constant less than 1 μs.

  7. Transition metal complexes of some biologically active ligands; synthesis characterization and bioactivities

    International Nuclear Information System (INIS)

    Transition/representative transition metals complexes of biologically active chelating agent 1,2-dipyrolodinoethane were synthesized and characterized through spectral and analytical data. The complexes are of the formula (M(L)X/sub 2/). Where (M = Co (II), Ni (II), Cu (II), Zn (II), Hg (II) and Cd (II) and X = CI, Br, NO/sub 3/). Tetrahedral geometry has been proposed to these-metal complexes with the help of magnetic measurements, elemental analysis, chemical stoichiometry and spectroscopic data Antibacterial activity of the ligand and its metal complexes were screened against Eschereschi coli, Klebsiello pneumonia, Proteus mirabilis, Proteus vulhari, Streptococcus pneumonia, Salmonella Iyphi, Bacilh,s anthrax, Streptococcus fecalis and Staphylococcus aureus. Complexes were found to be active against Eschereschi coli, Klebsiella pneumonia, Proteus mirabilis and Proteus vulharis. (author)

  8. Phytochemical profile and ABTS cation radical scavenging, cupric reducing antioxidant capacity and anticholinesterase activities of endemic Ballota nigra L. subsp. anatolica P.H. Davis from Turkey

    Directory of Open Access Journals (Sweden)

    Abdulselam Ertaş

    2014-07-01

    Full Text Available Objective: To evaluate the chemical compositions and biological activities of an endemic Ballota nigra L. subsp. anatolica P.H. Davis. Methods: Essential oil and fatty acid composition were determined by GC/MS analysis. ABTS cation radical decolourisation and cupric reducing antioxidant capacity assays were carried out to indicate the antioxidant activity. The anticholinesterase potential of the extracts were determined by Ellman method. Results: The major compounds in the fatty acid composition of the petroleum ether extract were identified as palmitic (36.0% and linoleic acids (14.3%. The major components of essential oil were 1-hexacosanol (26.7%, germacrene-D (9.3% and caryophyllene oxide (9.3%. The water extract indicated higher ABTS cation radical scavenging activity than α-tocopherol and BHT, at 100 µg/ mL. The acetone extract showed 71.58 and 44.71% inhibitory activity against butyrylcholinesterase and acetylcholinesterase enzyme at 200 µg/mL, respectively. Conclusions: The water and acetone extracts of Ballota nigra subsp. anatolica can be investigated in terms of both phytochemical and biological aspects to find natural active compounds.

  9. Exploitation of complex network topology for link prediction in biological interactomes

    KAUST Repository

    Alanis Lobato, Gregorio

    2014-06-01

    The network representation of the interactions between proteins and genes allows for a holistic perspective of the complex machinery underlying the living cell. However, the large number of interacting entities within the cell makes network construction a daunting and arduous task, prone to errors and missing information. Fortunately, the structure of biological networks is not different from that of other complex systems, such as social networks, the world-wide web or power grids, for which growth models have been proposed to better understand their structure and function. This means that we can design tools based on these models in order to exploit the topology of biological interactomes with the aim to construct more complete and reliable maps of the cell. In this work, we propose three novel and powerful approaches for the prediction of interactions in biological networks and conclude that it is possible to mine the topology of these complex system representations and produce reliable and biologically meaningful information that enriches the datasets to which we have access today.

  10. Critical evaluation of the JDO API for the persistence and portability requirements of complex biological databases

    Directory of Open Access Journals (Sweden)

    Schwieger Michael

    2005-01-01

    Full Text Available Abstract Background Complex biological database systems have become key computational tools used daily by scientists and researchers. Many of these systems must be capable of executing on multiple different hardware and software configurations and are also often made available to users via the Internet. We have used the Java Data Object (JDO persistence technology to develop the database layer of such a system known as the SigPath information management system. SigPath is an example of a complex biological database that needs to store various types of information connected by many relationships. Results Using this system as an example, we perform a critical evaluation of current JDO technology; discuss the suitability of the JDO standard to achieve portability, scalability and performance. We show that JDO supports portability of the SigPath system from a relational database backend to an object database backend and achieves acceptable scalability. To answer the performance question, we have created the SigPath JDO application benchmark that we distribute under the Gnu General Public License. This benchmark can be used as an example of using JDO technology to create a complex biological database and makes it possible for vendors and users of the technology to evaluate the performance of other JDO implementations for similar applications. Conclusions The SigPath JDO benchmark and our discussion of JDO technology in the context of biological databases will be useful to bioinformaticians who design new complex biological databases and aim to create systems that can be ported easily to a variety of database backends.

  11. Preparation, structural characterization and biological evaluation of L-tyrosinate metal ion complexes

    Science.gov (United States)

    Refat, Moamen S.; El-Korashy, Sabry A.; Ahmed, Ahmed S.

    2008-06-01

    The complexes formed between different metal ions and biological molecules like amino acids play an important role in human life. Sn(II), Sn(IV), Zn(II), Cd(II), Hg(II), Cr(III), Fe(III), La(III), ZrO(II) and UO 2(II) complexes are synthesized with L-tyrosine (tyr). These complexes are characterized by elemental analysis, molar conductance, magnetic measurements, mass, IR, UV-vis and 1H NMR spectra as well as thermogravimetric analysis (TGA/DTG). It has been found from the elemental analysis and the thermal studies that the ligand behaves as bidentate ligand forming chelates with 1:3 (metal:ligand) stoichiometry for trivalent metals and 1:2 for divalent and tetravalent metals. The molar conductance measurements of the complexes in DMSO indicate that the complexes are non-electrolyte. The activation energies and other kinetic parameters were calculated from the Coats-Redfern and Horowitz-Metzger equations. The biological activities of the metal complexes have also been studied against different bacteria and fungi.

  12. Mn(II) complexes with bipyridine, phenanthroline and benzoic acid: Biological and catalase-like activity

    Indian Academy of Sciences (India)

    Ibrahim Kani; Özlem Atlier; Kiymet Güven

    2016-04-01

    Five mononuclear Mn(II) complexes, [Mn(phen)2(ClO4)2] (1), [Mn(phen)3](ClO4)2(H2CO3)2(2), [Mn(bipy)2(ClO4)2] (3), [Mn(bipy)3](ClO4)2) (4), and Mn(phen)2(ba)(H2O)](ClO4)(CH3OH) (5), where bipy = 2,2’-bipyridine, phen = 1,10-phenanthroline, and ba = benzoic acid were prepared and characterized by Xray, IR and UV-Vis spectroscopies, and their catalase-like and biological activities were studied. The presence of two different types and the number of chelating NN-donor neutral ligands allowed for analysis of their effects on the catalase and biological activities. It was observed that the presence and number of phen ligands improved the activity more than the bipy ligand. Complexes 1 and 2, which contain more basic phen ligands, disproportionate H2O2 faster than complexes 3 and 4, which contain less basic bipy ligands. The in vitro antimicrobial activities of all the complexes were also tested against seven bacterial strains by microdilution tests. All the bacterial isolates demonstrated sensitivity to the complexes and the antifungal (anticandidal) activities of the Mn(II) complexes were remarkably higher than the reference drug ketoconazole.

  13. Revealing complex function, process and pathway interactions with high-throughput expression and biological annotation data.

    Science.gov (United States)

    Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila

    2016-10-20

    The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.

  14. Spectroscopic, Thermal and Biological Studies on Some Trivalent Ruthenium and Rhodium NS Chelating Thiosemicarbazone Complexes

    Directory of Open Access Journals (Sweden)

    Vinod K. Sharma

    2007-03-01

    Full Text Available The synthetic, spectroscopic, and biological studies of sixteen ring-substituted 4-phenylthiosemicarbazones and 4-nitrophenyl-thiosemicarbazones of anisaldehyde, 4-chlorobenzaldehyde, 4-fluorobenzaldehyde, and vanillin with ruthenium(III and rhodium(III chlorides are reported here. Their structures were determined on the basis of the elemental analyses, spectroscopic data (IR, electronic, H1 and C13 NMR along with magnetic susceptibility measurements, molar conductivity and thermogravimetric analyses. Electrical conductance measurement revealed a 1:3 electrolytic nature of the complexes. The resulting colored products are monomeric in nature. On the basis of the above studies, three ligands were suggested to be coordinated to each metal atom by thione sulphur and azomethine nitrogen to form low-spin octahedral complexes with ruthenium(III while forming diamagnetic complexes with rhodium(III. Both ligands and their complexes have been screened for their bactericidal activities and the results indicate that they exhibit a significant activity.

  15. Synthesis, characterization and biological studies of a charge transfer complex: 2-Aminopyridinium-4-methylbenzenesulfonate

    Science.gov (United States)

    Vadivelan, Ganesan; Saravanabhavan, Munusamy; Murugesan, Venkatesan; Sekar, Marimuthu

    2015-06-01

    A single crystal charge transfer (CT) complex, 2-aminopyridinium-4-methylbenzenesulfonate (APTS) was synthesized and recrystallized by slow solvent evaporation solution growth method at room temperature. The complex has been characterized with the elemental analysis, UV-visible, infrared (IR), 1H and 13C nuclear magnetic resonance (NMR) spectra. Thermogravimetric (TG) and differential thermal analysis (DTA) were reported the thermal behaviour of the complex. Single crystal XRD studies showed that the orthorhombic nature of the crystal with space group Pbca. The biological activities of CT complex, such as DNA binding and antioxidant activity has been carried out. The results indicated that the compound could interact with DNA through intercalation and show significant capacity of scavenging with 2,2-diphenyl-2-picryl-hydrazyl (DPPH).

  16. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels.

    Science.gov (United States)

    Hinton, Thomas J; Jallerat, Quentin; Palchesko, Rachelle N; Park, Joon Hyung; Grodzicki, Martin S; Shue, Hao-Jan; Ramadan, Mohamed H; Hudson, Andrew R; Feinberg, Adam W

    2015-10-01

    We demonstrate the additive manufacturing of complex three-dimensional (3D) biological structures using soft protein and polysaccharide hydrogels that are challenging or impossible to create using traditional fabrication approaches. These structures are built by embedding the printed hydrogel within a secondary hydrogel that serves as a temporary, thermoreversible, and biocompatible support. This process, termed freeform reversible embedding of suspended hydrogels, enables 3D printing of hydrated materials with an elastic modulus hardware and software tools. Proof-of-concept structures based on femurs, branched coronary arteries, trabeculated embryonic hearts, and human brains were mechanically robust and recreated complex 3D internal and external anatomical architectures. PMID:26601312

  17. Schiff base triphenylphosphine palladium (II) complexes: Synthesis, structural elucidation, electrochemical and biological evaluation

    Science.gov (United States)

    Shabbir, Muhammad; Akhter, Zareen; Ahmad, Iqbal; Ahmed, Safeer; Shafiq, Maryam; Mirza, Bushra; McKee, Vickie; Munawar, Khurram Shahzad; Ashraf, Ahmad Raza

    2016-08-01

    The complexes N-(2-oxidophenyl)salicylideneiminatotriphenylphosphine palladium(II) (1) and N-(2-sulfidophenyl)salicylideneiminato triphenylphosphine palladium(II) (2) of tridentate Schiff bases derived from salicylaldehyde and an amino- or thiophenol, have been synthesized and characterized by various spectroscopic, analytical and electro-analytical techniques. X-ray single crystal analysis of complex 1 has revealed its square planar geometry. The thermal analysis has shown the absence of coordinated water and final degradation product is PdO. The alkaline phosphatase studies have indicated that enzymatic activity is concentration dependent which is inversely proportional to the concentration of the compounds. The biological assays (brine shrimp cytotoxicity, DPPH) have reflected their biologically active and mild antioxidant nature. However, results of DNA protection assay have shown that they possess moderate protective activity against hydroxyl free radicals (rad OH). The voltammetric studies ascertain two-electron reduction of the compounds through purely diffusion controlled process and reveal intercalative mode of drug DNA interactions.

  18. Evaluating the biological activity of oil-polluted soils using a complex index

    Science.gov (United States)

    Kabirov, R. R.; Kireeva, N. A.; Kabirov, T. R.; Dubovik, I. Ye.; Yakupova, A. B.; Safiullina, L. M.

    2012-02-01

    A complex index characterizing the biological activity of soils (BAS) is suggested. It is based on an estimate of the level of activity of catalase; the number of heterotrophic and hydrocarbon oxidizing microorganisms, microscopic fungi, algae, and cyanobacteria; and the degree of development of higher plants and insects in the studied soil. The data on using the BAS coefficient for evaluating the efficiency of rehabilitation measures for oil-polluted soils are given. Such measures included introducing the following biological preparations: Lenoil based on a natural consortium of microorganisms Bacillus brevis and Arthrobacter sp.; the Azolen biofertilizer with complex action based on Azotobacter vinelandii; the Belvitamil biopreparation, which is the active silt of pulp and paper production; and a ready-mixed industrial association of aerobic and anaerobic microorganisms that contains hydrocarbon oxidizing microorganisms of the Arthrobacter, Bacillus, Candida, Desulfovibrio, and Pseudomonas genera.

  19. Complex dynamics in biological systems arising from multiple limit cycle bifurcation.

    Science.gov (United States)

    Yu, P; Lin, W

    2016-12-01

    In this paper, we study complex dynamical behaviour in biological systems due to multiple limit cycles bifurcation. We use simple epidemic and predator-prey models to show exact routes to new types of bistability, that is, bistability between equilibrium and periodic oscillation, and bistability between two oscillations, which may more realistically describe the real situations. Bifurcation theory and normal form theory are applied to investigate the multiple limit cycles bifurcating from Hopf critical point. PMID:27042877

  20. Unwinding RNA’s Secrets: Advances in the Biology, Physics, and Modeling of Complex RNAs

    OpenAIRE

    Herschlag, Daniel; Chu, Vincent B.

    2008-01-01

    The rapid development of our understanding of the diverse biological roles fulfilled by non-coding RNA has motivated interest in the basic macromolecular behavior, structure, and function of RNA. We focus on two areas in the behavior of complex RNAs. First, we present advances in the understanding of how RNA folding is accomplished in vivo by presenting a mechanism for the action of DEAD-box proteins. Members of this family are intimately associated with almost all cellular processes involvin...

  1. Bivalent transition metal complexes of cetirizine: Spectroscopic, equilibrium studies and biological activity

    Science.gov (United States)

    El-Sherif, Ahmed A.; Shoukry, Mohamed M.; Abobakr, Lamis O.

    2013-08-01

    Metal complexes of cetirizineṡ2HCl (CTZ = 2-[2-[4-[(4-chlorophenyl)phenyl methyl]piperazine-1-yl]-ethoxy]acetic acid, dihydrochloride have been prepared and characterized by elemental analyses, IR, solid reflectance, magnetic moment, molar conductance, and UV-Vis spectra. The analytical data of the complexes show the formation of 1:2 [M:L] ratio, where M represents Ni(II), Co(II) and Cu(II) ions, while L represents the deprotonated CTZ ligand. IR spectra show that CTZ is coordinated to the metal ions in a monodentate manner through carboxylate-O atom. Protonation equilibria of CTZ and its metal complexation by some divalent metal ions were determined in aqueous solution at constant ionic strength (0.1 M NaCl) using an automatic potentiometric technique. Thermodynamic parameters for the protonation equilibria of CTZ were calculated and discussed. The stability order of M(II)-CTZ complexes were found to obey Mn2+ pH. The CTZ ligand and its metal complexes were screened for their biological activity against bacterial species (Bacillus subtillis RCMB 010067, Staphylococcus aureus RCMB 010028, Pseudomonas aeuroginosa RCMB 010043, and Escherichia coli RCMB 010052) and fungi as (Aspergillus flavus RCMB 02568, Pencicillium italicum RCMB 03924, Candida albicans RCMB 05031 and Geotricum candidum RCMB 05097). The activity data show that the metal complexes have antibacterial and antifungal activity more than the parent CTZ ligand against one or more bacterial or fungi species. MIC was evaluated for the isolated complexes.

  2. Synthesis, characterization, and biological activity of a new palladium(II) complex with deoxyalliin

    Energy Technology Data Exchange (ETDEWEB)

    Corbi, P.P.; Massabni, A.C. [Inst. de Quimica - UNESP, Dept., Dept. de Quimica Geral e Inoganica, Araraquara (Brazil)]. E-mail: pedrocorbi@yahoo.com; Moreira, A.G. [Inst. de Quimica - UNESP, Dept. de Quimica Geral e Inoganica, Araraquara (Brazil); Faculdade de Medicina de Ribeirao Preto - USP, Dept. de Bioquimica e Imunologia, Ribeirao Preto (Brazil); Medrano, F.J. [Laboratorio Nacional de Luz Sincrotron - LNLS, Campinas (Brazil); Jasiulionis, M.G. [Escola Paulista de Medicina - UNIFESP, Dept. de Micro-Imuno-Parasitologia, Sao Paulo (Brazil); Costa-Neto, C.M. [Faculdade de Medicina de Ribeirao Preto - USP, Dept. de Bioquimica e Imunologia, Ribeirao Preto (Brazil)

    2005-02-15

    Synthesis, characterization, and biological activity of a new water-soluble Pd(II)-deoxyalliin (S-allyl-L-cysteine) complex are described in this article. Elemental and thermal analysis for the complex are consistent with the formula [Pd(C{sub 6}H{sub 10}NO{sub 2}S){sub 2}]. {sup 13}C NMR, {sup 1}H NMR, and IR spectroscopy show coordination of the ligand to Pd(II) through S and N atoms in a square planar geometry. Final residue of the thermal treatment was identified as a mixture of PdO and metallic Pd. Antiproliferative assays using aqueous solutions of the complex against HeLa and TM5 tumor cells showed a pronounced activity of the complex even at low concentrations. After incubation for 24 h, the complex induced cytotoxic effect over HeLa cells when used at concentrations higher than 0.40 mmol/L. At lower concentrations, the complex was nontoxic, indicating its action is probably due to cell cycle arrest, rather than cell death. In agreement with these results, the flow cytometric analysis indicated that after incubation for 24 h at low concentrations of the complex cells are arrested in G0/G1. (author)

  3. Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats

    Directory of Open Access Journals (Sweden)

    Lee IC

    2016-06-01

    Full Text Available In-Chul Lee,1 Je-Won Ko,1 Sung-Hyeuk Park,1 Je-Oh Lim,1 In-Sik Shin,1 Changjong Moon,1 Sung-Hwan Kim,2 Jeong-Doo Heo,3 Jong-Choon Kim1 1College of Veterinary Medicine BK21 Plus Project Team, Chonnam National University, Gwangju, 2Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup, 3Gyeongnam Department of Environment and Toxicology, Korea Institute of Toxicology, Gyeongnam, Republic of Korea Abstract: Despite widespread use and prospective biomedical applications of copper nanoparticles (Cu NPs, their biosafety issues and kinetics remain unclear. Thus, the aim of this study was to compare the detailed in vivo toxicity of Cu NPs and cupric ions (CuCl2; Cu ions after a single oral dose. We determined the physicochemical characteristics of Cu NPs, including morphology, hydrodynamic size, zeta potential, and dissolution in gastric (pH 1.5, vehicle (pH 6.5, and intestinal (pH 7.8 conditions. We also evaluated the kinetics of Cu following a single equivalent dose (500 mg/kg of Cu NPs and Cu ions. Cu NPs had highest dissolution (84.5% only in gastric conditions when compared with complete dissolution of Cu ions under various physiological milieus. Kinetic analysis revealed that highest Cu levels in blood and tested organs of Cu NP-treated rats were 15%–25% lower than that of Cu ions. Similar to the case of Cu ions, Cu levels in the tested organs (especially liver, kidney, and spleen of Cu NP-treated rats increased significantly when compared with the vehicle control. However, delay in reaching the highest level and biopersistence of Cu were observed in the blood and tested organs of Cu NP-treated rats compared with Cu ions. Extremely high levels of Cu in feces indicated that unabsorbed Cu NPs or absorbed Cu ions were predominantly eliminated through liver/feces. Cu NPs exerted apparent toxicological effects at higher dose levels compared with Cu ions and showed sex-dependent differences in mortality, biochemistry, and

  4. Functional Genomics Assistant (FUGA: a toolbox for the analysis of complex biological networks

    Directory of Open Access Journals (Sweden)

    Ouzounis Christos A

    2011-10-01

    Full Text Available Abstract Background Cellular constituents such as proteins, DNA, and RNA form a complex web of interactions that regulate biochemical homeostasis and determine the dynamic cellular response to external stimuli. It follows that detailed understanding of these patterns is critical for the assessment of fundamental processes in cell biology and pathology. Representation and analysis of cellular constituents through network principles is a promising and popular analytical avenue towards a deeper understanding of molecular mechanisms in a system-wide context. Findings We present Functional Genomics Assistant (FUGA - an extensible and portable MATLAB toolbox for the inference of biological relationships, graph topology analysis, random network simulation, network clustering, and functional enrichment statistics. In contrast to conventional differential expression analysis of individual genes, FUGA offers a framework for the study of system-wide properties of biological networks and highlights putative molecular targets using concepts of systems biology. Conclusion FUGA offers a simple and customizable framework for network analysis in a variety of systems biology applications. It is freely available for individual or academic use at http://code.google.com/p/fuga.

  5. Ruthenium(ii) complexes with dppz: from molecular photoswitch to biological applications.

    Science.gov (United States)

    Li, Guanying; Sun, Lingli; Ji, Liangnian; Chao, Hui

    2016-09-14

    The DNA photoswitch [Ru(bpy)2dppz](2+) (bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine) has attracted much attention and become a powerful tool for studying the interaction of metal polypyridyl complexes with DNA. A large number of Ru-dppz complexes have been designed for a wide range of uses in many fields. In this perspective, we first introduce the latest results of Ru-dppz complexes that bind with DNA. The mechanisms of the light-switch effect and the structural modifications of Ru-dppz systems are also briefly introduced. We also review the recent advances in biological applications of the Ru-dppz system in DNA binders, cellular imaging, anticancer drugs, protein aggregation detection and chemosensors. PMID:27426487

  6. Solid state structures of cadmium complexes with relevance for biological systems.

    Science.gov (United States)

    Carballo, Rosa; Castiñeiras, Alfonso; Domínguez-Martín, Alicia; García-Santos, Isabel; Niclós-Gutiérrez, Juan

    2013-01-01

    This chapter provides a review of the literature on structural information from crystal structures determined by X-ray diffractometry of cadmium(II) complexes containing ligands of potential biological interest. These ligands fall into three broad classes, (i) those containing N-donors such as purine or pyrimidine bases and derivatives of adenine, guanine or cytosine, (ii) those containing carboxylate groups such as α-amino acids, in particular the twenty essential ones, the water soluble vitamins (B-complex) or the polycarboxylates of EDTA type ligands, and (iii) S-donors such as thiols/thiolates or dithiocarbamates. A crystal and molecular structural analysis has been carried out for some representative complexes of these ligands, specifically addressing the coordination mode of ligands, the coordination environment of cadmium and, in some significant cases, the intermolecular interactions. PMID:23430774

  7. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions.

    Science.gov (United States)

    Itoh, Shinobu

    2015-07-21

    Active-oxygen species generated on a copper complex play vital roles in several biological and chemical oxidation reactions. Recent attention has been focused on the reactive intermediates generated at the mononuclear copper active sites of copper monooxygenases such as dopamine β-monooxygenase (DβM), tyramine β-monooxygenase (TβM), peptidylglycine-α-hydroxylating monooxygenase (PHM), and polysaccharide monooxygenases (PMO). In a simple model system, reaction of O2 and a reduced copper(I) complex affords a mononuclear copper(II)-superoxide complex or a copper(III)-peroxide complex, and subsequent H(•) or e(-)/H(+) transfer, which gives a copper(II)-hydroperoxide complex. A more reactive species such as a copper(II)-oxyl radical type species could be generated via O-O bond cleavage of the peroxide complex. However, little had been explored about the chemical properties and reactivity of the mononuclear copper-active-oxygen complexes due to the lack of appropriate model compounds. Thus, a great deal of effort has recently been made to develop efficient ligands that can stabilize such reactive active-oxygen complexes in synthetic modeling studies. In this Account, I describe our recent achievements of the development of a mononuclear copper(II)-(end-on)superoxide complex using a simple tridentate ligand consisting of an eight-membered cyclic diamine with a pyridylethyl donor group. The superoxide complex exhibits a similar structure (four-coordinate tetrahedral geometry) and reactivity (aliphatic hydroxylation) to those of a proposed reactive intermediate of copper monooxygenases. Systematic studies based on the crystal structures of copper(I) and copper(II) complexes of the related tridentate supporting ligands have indicated that the rigid eight-membered cyclic diamine framework is crucial for controlling the geometry and the redox potential, which are prerequisites for the generation of such a unique mononuclear copper(II)-(end-on)superoxide complex

  8. Synthesis, Characterization and Biological Evaluation of Transition Metal Complexes Derived from N, S Bidentate Ligands

    Directory of Open Access Journals (Sweden)

    Enis Nadia Md Yusof

    2015-05-01

    Full Text Available Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC with 2-methoxybenzaldehyde (2MB and 3-methoxybenzaldehyde (3MB. The ligands were reacted separately with acetates of Cu(II, Ni(II and Zn(II yielding 1:2 (metal:ligand complexes. The metal complexes formed were expected to have a general formula of [M(NS2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1 and S2M3MBH (2 were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7 and estrogen receptor-negative (MDA-MB-231 breast cancer cell lines. Only the Cu(II complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II complexes have a strong DNA binding affinity.

  9. Metal Complexes of Macrocyclic Schiff-Base Ligand: Preparation, Characterisation, and Biological Activity

    Science.gov (United States)

    Ahmed, Riyadh M.; Yousif, Enaam I.; Hasan, Hasan A.; Al-Jeboori, Mohamad J.

    2013-01-01

    A new macrocyclic multidentate Schiff-base ligand Na4L consisting of two submacrocyclic units (10,21-bis-iminomethyl-3,6,14,17-tricyclo[17.3.1.18,12]tetracosa-1(23),2,6,8,10,12(24),13,17,19,21,-decaene-23,24-disodium) and its tetranuclear metal complexes with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) are reported. Na4L was prepared via a template approach, which is based on the condensation reaction of sodium 2,4,6-triformyl phenolate with ethylenediamine in mole ratios of 2 : 3. The tetranuclear macrocyclic-based complexes were prepared from the reaction of the corresponding metal chloride with the ligand. The mode of bonding and overall geometry of the compounds were determined through physicochemical and spectroscopic methods. These studies revealed tetrahedral geometries about Mn, Co, and Zn atoms. However, square planar geometries have been suggested for NiII and CuII complexes. Biological activity of the ligand and its metal complexes against Gram positive bacterial strain Staphylococcus aureus and Gram negative bacteria Escherichia coli revealed that the metal complexes become more potentially resistive to the microbial activities as compared to the free ligand. However, these metal complexes do not exhibit any effects on the activity of Pseudomonas aeruginosa bacteria. There is therefore no inhibition zone. PMID:23935414

  10. Intrinsic properties of cupric oxide nanoparticles enable effective filtration of arsenic from water

    Science.gov (United States)

    McDonald, Kyle J.; Reynolds, Brandon; Reddy, K. J.

    2015-06-01

    The contamination of arsenic in human drinking water supplies is a serious global health concern. Despite multiple years of research, sustainable arsenic treatment technologies have yet to be developed. This study demonstrates the intrinsic abilities of cupric oxide nanoparticles (CuO-NP) towards arsenic adsorption and the development of a point-of-use filter for field application. X-ray diffraction and X-ray photoelectron spectroscopy experiments were used to examine adsorption, desorption, and readsorption of aqueous arsenite and arsenate by CuO-NP. Field experiments were conducted with a point-of-use filter, coupled with real-time arsenic monitoring, to remove arsenic from domestic groundwater samples. The CuO-NP were regenerated by desorbing arsenate via increasing pH above the zero point of charge. Results suggest an effective oxidation of arsenite to arsenate on the surface of CuO-NP. Naturally occurring arsenic was effectively removed by both as-prepared and regenerated CuO-NP in a field demonstration of the point-of-use filter. A sustainable arsenic mitigation model for contaminated water is proposed.

  11. The interaction of polycrystalline copper films with dilute aqueous solutions of cupric chloride

    Science.gov (United States)

    Walsh, Lois Harper

    1989-10-01

    In the electronics industry, thin films of copper deposited on substrates are used as electrically conductive paths to interconnect semiconductor devices and other computer components. The dissolution of copper in a dilute aqueous cupric chloride solution was studied to achieve an understanding of the role microstructure plays in the dissolution process. A multi-technique approach was taken using combinations of solution chemistry, computer modeling, and microstructural characterization techniques to analyze as-received samples and to monitor the dissolution process. This latter approach allowed reaction rates and activation energies to be calculated from speciation concentrations derived from computer modeling of known thermochemical reactions. In conjunction with the solution analysis, surface techniques were used to analyze the concentration distribution of the various elements after sample exposure to the etchant. The etching characteristics of the polycrystalline thin copper films are dependent on the film's microstructure. A procedure is suggested that will aid future researchers in the correlation of microstructure and dissolution characteristics of different copper samples prior to mass production of metallization for microelectronic circuits.

  12. Treatment of complex biological mixtures with pulsed electric fields An energy transfer characterization

    International Nuclear Information System (INIS)

    Sewage sludge from waste water treatment plants is a complex biological mixture and a problematic by-product because of valorisation restrictions. In order to limit its production, pulsed electric fields (PEF) were studied because of their biological effects and their potentially physico-chemical action. This work demonstrated a paradoxical phenomenon: cell lysis triggered a respirometric activation followed by a delayed lethality. This phenomenon was related to the leakage of internal compounds which were immediately bio-assimilated. At high energy expense, the plasmic membrane permeabilization led to cell death. Practically, with the technical configuration of the equipment, no hydrolysis was detected. This limitation decreases the interest for excess sludge reduction, but for the same reason, PEF cold sterilization technique can be assessed as a promising process. The representation of the electric energy transfer from electrodes to cell was exchanged by the study of mass transfer from the biological cell to the surrounding media under an electromotive force. Thus, the survival rate was modelled by a Sherwood number taking account of electrical, biological and hydraulic parameters. (author)

  13. Biological significance of complex N-glycans in plants and their impact on plant physiology

    Directory of Open Access Journals (Sweden)

    Richard eStrasser

    2014-07-01

    Full Text Available Asparagine (N-linked protein glycosylation is a ubiquitous co- and post-translational modification which can alter the biological function of proteins and consequently affects the development, growth and physiology of organisms. Despite an increasing knowledge of N-glycan biosynthesis and processing, we still understand very little about the biological function of individual N-glycan structures in plants. In particular, the N-glycan processing steps mediated by Golgi-resident enzymes create a structurally diverse set of protein-linked carbohydrate structures. Some of these complex N-glycan modifications like the presence of beta1,2-xylose, core alpha1,3-fucose or the Lewis a-epitope are characteristic for plants and are evolutionary highly conserved. In mammals, complex N-glycans are involved in different cellular processes including molecular recognition and signalling events. By contrast, the complex N-glycan function is still largely unknown in plants. Here, in this short review I focus on important recent developments and discuss their implications for future research in plant glycobiology and plant biotechnology.

  14. Monitoring prion protein expression in complex biological samples by SERS for diagnostic applications

    International Nuclear Information System (INIS)

    Surface-enhanced Raman spectroscopy (SERS) allows a new insight into the analysis of cell physiology. In this work, the difficulty of producing suitable substrates that, besides permitting the amplification of the Raman signal, do not interact with the biological material causing alteration, has been overcome by a combined method of hydrothermal green synthesis and thermal annealing. The SERS analysis of the cell membrane has been performed with special attention to the cellular prion protein PrPC. In addition, SERS has also been used to reveal the prion protein-Cu(II) interaction in four different cell models (B104, SH-SY5Y, GN11, HeLa), expressing PrPC at different levels. A significant implication of the current work consists of the intriguing possibility of revealing and quantifying prion protein expression in complex biological samples by a cheap SERS-based method, replacing the expensive and time-consuming immuno-assay systems commonly employed.

  15. Synthesis, Spectroscopic Characterization and Biological Activities of Transition Metal Complexes Derived from a Tridentate Schiff Base

    Directory of Open Access Journals (Sweden)

    J. Senthil Kumaran

    2013-01-01

    Full Text Available A new series of Cu (II, Ni (II, Co (II and Zn (II complexes have been synthesized from the Schiff base derived from 4-hydroxy-3-methoxybenzylidine-4-aminoantipyrine and 2-aminophenol. The structural features have been determined from their elemental analysis, magnetic susceptibility, molar conductance, Mass, IR, UV-Vis, 1H-NMR, 13C-NMR and ESR spectral studies. The redox behavior of the copper complex has been studied by cyclic voltammetry. The data confirm that the complexes have composition of ML2 type. The electronic absorption spectral data of the complexes propose an octahedral geometry around the central metal ion. All the metal complexes with DNA structure were guided by the presence of inter-molecular C–H⋯O and C–H⋯N hydrogen bonds. The biological activity of the synthesized compounds were tested against the bacterial species such as Bacillus subtilis, Staphylococcus aureus, Proteus vulgaris and fungal species such as Candida albicans by the well-diffusion method.

  16. Biological activities of selected peptides: skin penetration ability of copper complexes with peptides.

    Science.gov (United States)

    Mazurowska, Lena; Mojski, Miroslaw

    2008-01-01

    This study concerning the permeability through skin barriers of copper complexes with peptides is an important part of the research on their biological activity. The transport of copper complexes through the skin is essential in treatment of dermatological dysfunctions connected to the deficiency of these elements in the skin. During the last several years, a special interest in transepidermal copper delivery has been observed. This is the reason why copper compounds have been used as active compounds in care cosmetics. Yet, the transport process of copper complexes with tripeptides, glycyl-histidyl-lysine GHK, or gamma-glutamyl-cysteinyl-glycine GSH through the stratum corneum has received very little attention in the literature so far. The penetration ability of GHK-Cu and GSH-Cu through the stratum corneum and the influence of the complexes with tripeptide on the copper ion transport process is the key factor in their cosmetic and pharmaceutical activity. The in vitro penetration process was studied in the model system, a Franz diffusion cell with a liposome membrane, where liquid crystalline systems of physicochemical properties similar to the ones of the intercellular cement of stratum corneum were used as a standard model of a skin barrier. The results obtained demonstrated that copper complexes permeate through the membranes modeling the horny lipid layer and showed the influence of peptides on the dynamics of copper ion diffusion. PMID:18350235

  17. Biological effects of ruthenium, osmium and copper complexes with tumour inhibiting ligands

    International Nuclear Information System (INIS)

    Many substances active against neoplastic cells lack solubility and bioavailability. Standard therapies using well-known platin analogues, among them cisplatin, can only cure a few types of malignances and have serious side effects. A major problem with many tumours is the occurrence of acquired and/or intrinsic resistance. In this study as an alternative to platinum agents, new complexes of ruthenium, osmium and copper complexes with pronouncedly biologically active ligands (indolobenzazepines, indolochinolines, chinoxalinones, flavones and benzimidazolyl-pyrazolo-pyridines) were under investigation in order to improve the desired destructive impact on cancer cells. Formulation complexes with transition metal centers which are binding to DNA or other biomolecules and biologically active ligands may yield synergistic effects, enhance the solubility of ligands and act against cancer cells in two ways. Modification of these complexes by changing the metal center and different ligands as well as an alteration of substituents were investigated in order to find a stable, well soluble and optimal structure for biomolecule interaction. The cell cycle regulated by cyclin-dependent kinases (Cdks) and their modulators is a major target of cancer therapy. Many ATP antagonists were synthesized, but among them there are only a few that have reached the stage of clinical trials. All complexes investigated here were tested as to their cytotoxic potency with three cancer cell lines (A549, CH1, SW480), some of them with three additional ones (LNCaP, T47D, N87) by an MTT assay. The results of structure-activity relationships of different cell lines were compared. All compounds under investigation showed cytotoxic potency with IC50 values in the micromolar to nanomolar range. Results with respect to selected compounds were then compared as to their influence on the cell cycle which was in most cases rather weak, and as to the induction of apoptosis (Annexin/PI stain), both measured

  18. Current progress in the biology of members of the Sporothrix schenckii complex following the genomic era.

    Science.gov (United States)

    Mora-Montes, Héctor M; Dantas, Alessandra da Silva; Trujillo-Esquivel, Elías; de Souza Baptista, Andrea R; Lopes-Bezerra, Leila M

    2015-09-01

    Sporotrichosis has been attributed for more than a century to one single etiological agent, Sporothrix schencki. Only eight years ago, it was described that, in fact, the disease is caused by several pathogenic cryptic species. The present review will focus on recent advances to understand the biology and virulence of epidemiologically relevant pathogenic species of the S. schenckii complex. The main subjects covered are the new clinical and epidemiological aspects including diagnostic and therapeutic challenges, the development of molecular tools, the genome database and the perspectives for study of virulence of emerging Sporothrix species.

  19. The Synergistic Biologic Activity of Oleanolic and Ursolic Acids in Complex with Hydroxypropyl-γ-Cyclodextrin

    Directory of Open Access Journals (Sweden)

    Codruţa Soica

    2014-04-01

    Full Text Available Oleanolic and ursolic acids are natural triterpenic compounds with pentacyclic cholesterol-like structures which gives them very low water solubility, a significant disadvantage in terms of bioavailability. We previously reported the synthesis of inclusion complexes between these acids and cyclodextrins, as well as their in vivo evaluation on chemically induced skin cancer experimental models. In this study the synergistic activity of the acid mixture included inside hydroxypropyl-gamma-cyclodextrin (HPGCD was monitored using in vitro tests and in vivo skin cancer models. The coefficient of drug interaction (CDI was used to characterize the interactions as synergism, additivity or antagonism. Our results revealed an increased antitumor activity for the mixture of the two triterpenic acids, both single and in complex with cyclodextrin, thus proving their complementary biologic activities.

  20. Mueller matrix polarimetry for the characterization of complex random medium like biological tissues

    Indian Academy of Sciences (India)

    Nirmalya Ghosh; Jalpa Soni; M F G Wood; M A Wallenberg; I A Vitkin

    2010-12-01

    The polarization parameters of light scattered from biological tissues contain wealth of morphological and functional information of potential biomedical importance. But, in optically thick turbid media such as tissues, numerous complexities due to multiple scattering and simultaneous occurrences of many polarization events present formidable challenges, in terms of both accurate measurement and unique interpretation of the individual polarimetry characteristics. We have developed and validated an expanded Mueller matrix decomposition approach to overcome this problem. The approach was validated theoretically with a polarization-sensitive Monte Carlo light propagation model and experimentally by recording Mueller matrices from tissue-like complex random medium. In this paper, we discuss our comprehensive turbid polarimetry platform consisting of the experimental polarimetry system, forward Monte Carlo modelling and inverse polar decomposition analysis. Initial biomedical applications of this novel general method for polarimetry analysis in random media are also presented.

  1. Synthesis, characterization and biological evaluation of novel Ru(II)-arene complexes containing intercalating ligands.

    Science.gov (United States)

    Nikolić, Stefan; Rangasamy, Loganathan; Gligorijević, Nevenka; Aranđelović, Sandra; Radulović, Siniša; Gasser, Gilles; Grgurić-Šipka, Sanja

    2016-07-01

    Three new ruthenium(II)-arene complexes, namely [(η(6)-p-cymene)Ru(Me2dppz)Cl]PF6 (1), [(η(6)-benzene)Ru(Me2dppz)Cl]PF6 (2) and [(η(6)-p-cymene)Ru(aip)Cl]PF6 (3) (Me2dppz=11,12-dimethyldipyrido[3,2-a:2',3'-c]phenazine; aip=2-(9-anthryl)-1H-imidazo[4,5-f] [1,10] phenanthroline) have been synthesized and characterized using different spectroscopic techniques including elemental analysis. The complexes were found to be well soluble and stable in DMSO. The biological activity of the three complexes was tested in three different human cancer cell lines (A549, MDA-MB-231 and HeLa) and in one human non-cancerous cell line (MRC-5). Complexes 1 and 3, carrying η(6)-p-cymene as the arene ligand, were shown to be toxic in all cell lines in the low micromolar/subnanomolar range, with complex 1 being the most cytotoxic complex of the series. Flow cytometry analysis revealed that complex 1 caused concentration- and time-dependent arrest of the cell cycle in G2-M and S phases in HeLa cells. This event is followed by the accumulation of the sub-G1 DNA content after 48h, in levels higher than cisplatin and in the absence of phosphatidylserine externalization. Fluorescent microscopy and acridine orange/ethidium bromide staining revealed that complex 1 induced both apoptotic and necrotic cell morphology characteristics. Drug-accumulation and DNA-binding studies performed by inductively coupled plasma mass spectrometry in HeLa cells showed that the total ruthenium uptake increased in a time- and concentration-dependent manner, and that complex 1 accumulated more efficiently than cisplatin at equimolar concentrations. The introduction of a Me2dppz ligand into the ruthenium(II)-p-cymene scaffold was found to allow the discovery of a strongly cytotoxic complex with significantly higher cellular uptake and DNA-binding properties than cisplatin. PMID:26818702

  2. Design, spectral characterization and biological studies of transition metal(II) complexes with triazole Schiff bases

    Science.gov (United States)

    Hanif, Muhammad; Chohan, Zahid H.

    2013-03-01

    A new series of three biologically active triazole derived Schiff base ligands L1-L3 have been synthesized in equimolar reaction of 3-amino-1H-1,2,4-triazole with pyrrol-2-carboxaldehyde, 4-bromo-thiophene-2-carboxaldehyde, and 5-iodo-2-hydroxy benzaldehyde. The prepared Schiff bases were used for further complex formation reaction with different metal elements like Co(II), Ni(II), Cu(II) and Zn(II) as chlorides by using a molar ratio of ligand:metal as 2:1. The structure and bonding nature of all the compounds were identified by their physical, spectral and analytical data. All the metal(II) complexes possessed an octahedral geometry except the Cu(II) complexes which showed a distorted octahedral geometry. All the synthesized compounds, were studied for their in vitro antibacterial, and antifungal activities, against four Gram-negative (Escherichia coli, Shigella sonnei, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and against six fungal strains (Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata) by using agar-well diffusion method. It has been shown that all the synthesized compounds showed moderate to significant antibacterial activity against one or more bacterial strains. In vitro Brine Shrimp bioassay was also carried out to investigate the cytotoxic properties of these compounds. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination.

  3. Spectroscopic studies and biological activity of some transition metal complexes of unusual Schiff base

    Science.gov (United States)

    Abu Al-Nasr, Ahmad K.; Ramadan, Ramadan M.

    2013-03-01

    Unusual Schiff base ligand, 4-ethanimidoyl-6-[(1E)-N-(2-hydroxy-4-methylphenyl)ethanimidoyl]benzene-1,3-diol, L, was synthesized via catalytic process involving the interaction of some metal ions with a macrocyclic Schiff base (MSB). The transition metal derivatives [ML(H2O)4](NO3)3, M = Cr(III) and Fe(III), [NiL(H2O)4](NO3)2, [ML(H2O)2](NO3)2, M = Zn(II) and Cd(II), [Cl2Pd(μ-Cl)2PdL], [PtL(Cl)2] and [PtL(Cl)4] were also synthesized from the corresponding metal species with L. The Schiff bases and complexes were characterized by elemental analysis, mass spectrometry, IR and 1H NMR spectroscopy. The crystal structure of L was determined by X-ray analysis. The spectroscopic studies revealed a variety of structure arrangements for the complexes. The biological activities of L and metal complexes against the Escherchia coli as Gram-negative bacteria and Staphylococcus aureus as Gram-positive bacteria, and the two fungus Aspergillus flavus and Candida albicans were screened. The cytotoxicity of [PtL(Cl)2] complex, a cis-platin analogous, was checked as an antitumor agent on two breast cancer cell lines (MCF7 and T47D) and human liver carcinoma cell line (HepG2).

  4. Biological properties of novel ruthenium- and osmium-nitrosyl complexes with azole heterocycles

    KAUST Repository

    Novak, Maria S.

    2016-03-09

    Since the discovery that nitric oxide (NO) is a physiologically relevant molecule, there has been great interest in the use of metal nitrosyl compounds as antitumor pharmaceuticals. Particularly interesting are those complexes which can deliver NO to biological targets. Ruthenium- and osmium-based compounds offer lower toxicity compared to other metals and show different mechanisms of action as well as different spectra of activity compared to platinum-based drugs. Novel ruthenium- and osmium-nitrosyl complexes with azole heterocycles were studied to elucidate their cytotoxicity and possible interactions with DNA. Apoptosis induction, changes of mitochondrial transmembrane potential and possible formation of reactive oxygen species were investigated as indicators of NO-mediated damage by flow cytometry. Results suggest that ruthenium- and osmium-nitrosyl complexes with the general formula (indazolium)[cis/trans-MCl4(NO)(1H-indazole)] have pronounced cytotoxic potency in cancer cell lines. Especially the more potent ruthenium complexes strongly induce apoptosis associated with depolarization of mitochondrial membranes, and elevated reactive oxygen species levels. Furthermore, a slight yet not unequivocal trend to accumulation of intracellular cyclic guanosine monophosphate attributable to NO-mediated effects was observed.

  5. New neutral and lipophilic technetium complexes based on a cytectrene moiety. Synthesis, characterization and biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    El Aissi, Radhia [National Centre of Sciences and Nuclear Technology, Sidi Thabet (Tunisia). Radiopharmaceutical Unit; CNRS, Laboratoire de Synthese et Physico-Chimie de Molecules d' Interet Biologique, SPCMIB, UMR 5068, Toulouse (France); Toulouse Univ., UPS, Laboratoire de Synthese et Physico-Chimie de Molecules d' Interet Biologique, SPCMIB, UMR 5068, Toulouse (France); Malek-Saied, Nadia; Saidi, Mouldi [National Centre of Sciences and Nuclear Technology, Sidi Thabet (Tunisia). Radiopharmaceutical Unit; Mallet-Ladeira, Sonia [Toulouse Univ., UPS et CNRS, FR2599 (France). Inst. de Chimie de Toulouse; Coulais, Yvon [Toulouse Univ. (France). Lab. ' ' Traceurs et traitement de l' image' ' ; Benoist, Eric [CNRS, Laboratoire de Synthese et Physico-Chimie de Molecules d' Interet Biologique, SPCMIB, UMR 5068, Toulouse (France); Toulouse Univ., UPS, Laboratoire de Synthese et Physico-Chimie de Molecules d' Interet Biologique, SPCMIB, UMR 5068, Toulouse (France)

    2015-05-01

    The synthesis, characterization and biological evaluation of five neutral and lipophilic {sup 99m}Tc-complexes, so-called cytectrenes, obtained from N-substitutedferrocenecarboxamide derivatives are reported. N-substituted ferrocenecarboxamide starting materials were obtained in two steps, with good yield and were fully characterized by classical spectroscopic methods including X-ray diffraction analysis for one of them. Using a microwave strategy for the {sup 99m}Tc-radiolabelling step, each cytectrene were obtained quickly (radiolabelling time < 5 min), from modest to good yield. The {sup 99m}Tc-complexes, characterized by HPLC comparison with cold rhenium complex analogues, are stable, neutral and lipophilic (logP{sub o/w} ranged between 1.8 and 2.9). Unfortunately, despite such suitable features, in vivo studies of two of them gave poor results, in terms of brain uptake. Both radiocompounds exhibited the maximum brain accumulation of 0.31% ID/g and 0.26% ID/g at 5 min post-injection, respectively, followed by a very fast washout from the brain (0.06% ID/g and 0.07% ID/g at 30 min post-injection, respectively). Although our ligand systems exhibited high stability against exchange reactions with blood proteins, the high radioactivity level in stomach, increasing with time, suggests in vivo decomposition of our complex to pertechnetate.

  6. Systematic metabolite annotation and identification in complex biological extracts : combining robust mass spectrometry fragmentation and nuclear magnetic resonance spectroscopy

    NARCIS (Netherlands)

    Hooft, van der J.J.J.

    2012-01-01

    Detailed knowledge of the chemical content of organisms, organs, tissues, and cells is needed to fully characterize complex biological systems. The high chemical variety of compounds present in biological systems is illustrated by the presence of a large variety of compounds, ranging from apolar lip

  7. Measurement of the Cupric Ion Concentration in the Simulation of the Focusing effect

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Je-Young; Hong, Seung-Hyun; Chung, Bum-Jin [Kyung Hee University, Seoul (Korea, Republic of)

    2015-10-15

    The Rayleigh number and aspect ratio (H/R) ranged from 8.49x10{sup 7} to 5.43x10{sup 9} and 0.135 to 0.541 respectively. In order to simulate the different temperature conditions of top and side wall, an electrical resistance was attached to the top wall so that it is mimics hotter wall condition. The heat transfer experiments were replaced by mass transfer experiments based on the heat and mass transfer analogy concept. A sulfuric acid-copper sulfate (H{sub 2}SO{sub 4} - CuSO{sub 4}) electroplating system was adopted as the mass transfer system. The experimental study was performed to investigate the focusing effect according to the different temperature conditions and the height in metallic layer. This work devised a method to simulate the different cooling conditions of the top and side walls and adopted an electrical resistance to the top plate. The electrical resistance was varied for the height of side wall. The experimental results agreed well with the Rayleigh-Benard convection correlations of Dropkin and Somerscales and Globe and Dropkin. The heat transfer was enhanced by increasing the electrical resistance and decreasing the height of side wall. The focusing effect at the side wall was improved by the hotter top wall condition. In order to overcome the limitations of mass transfer, this work tried to measure the cupric ion concentration. The methods of concentration measurement are RGB, Brightness, ICP and PIV. The key of RGB, Brightness and PIV method is the clear images of the thermal boundary layer.

  8. Nanostructured cupric oxide electrode: An alternative to amperometric detection of carbohydrates in anion-exchange chromatography.

    Science.gov (United States)

    Barragan, José T C; Kubota, Lauro T

    2016-02-01

    In this paper, a new and low cost copper/cupric oxide nanostructured electrode is presented as an alternative to the amperometric detection of carbohydrates in high-performance anion exchange chromatography. The modified copper electrodes were prepared by a simple and fast method which resulted in the obtainment of homogeneously distributed nanostructures adhered to the surface with controlled chemical nature. The results, when compared to conventional copper electrodes, exhibited considerable improvements in analytical results, including: 1) Better repeatability in consecutive glucose detections, in which the percent relative standard deviation improved from 15.1% to 0.279%. 2) Significant improvements in the stability of the baseline and a decrease of the stabilization time, going from several hours to approximately 15 min. 3) Considerable increase in the sensitivity towards glucose, from 5.02 nA min mg L(-1) to 25.5 nA min mg L(-1). 4) Improvements in the detectability with limits as low as 1.09 pmol. 5) Wide working range of concentrations (1 × 10(-2) to 1 × 10(4) mg L(-1)). 6) Good linearity with correlation coefficients greater than 0.998. 7) Possibility of detecting different molecules of carbohydrates (lactose, maltose, sucrose cellobiose, sorbitol, fructose, glucose, galactose, manose, arabitol, xylose, ribose and arabnose). In comparison to the electrode that is more employed for this type of application (gold electrode), the low cost, the possibility of detection at constant potential and the equivalent detection limits presented by the new electrode material introduced in this work emerge as characteristics that make this material a powerful alternative considering the detection of carbohydrates in anion exchange chromatography.

  9. Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats.

    Science.gov (United States)

    Lee, In-Chul; Ko, Je-Won; Park, Sung-Hyeuk; Lim, Je-Oh; Shin, In-Sik; Moon, Changjong; Kim, Sung-Hwan; Heo, Jeong-Doo; Kim, Jong-Choon

    2016-01-01

    Despite widespread use and prospective biomedical applications of copper nanoparticles (Cu NPs), their biosafety issues and kinetics remain unclear. Thus, the aim of this study was to compare the detailed in vivo toxicity of Cu NPs and cupric ions (CuCl2; Cu ions) after a single oral dose. We determined the physicochemical characteristics of Cu NPs, including morphology, hydrodynamic size, zeta potential, and dissolution in gastric (pH 1.5), vehicle (pH 6.5), and intestinal (pH 7.8) conditions. We also evaluated the kinetics of Cu following a single equivalent dose (500 mg/kg) of Cu NPs and Cu ions. Cu NPs had highest dissolution (84.5%) only in gastric conditions when compared with complete dissolution of Cu ions under various physiological milieus. Kinetic analysis revealed that highest Cu levels in blood and tested organs of Cu NP-treated rats were 15%-25% lower than that of Cu ions. Similar to the case of Cu ions, Cu levels in the tested organs (especially liver, kidney, and spleen) of Cu NP-treated rats increased significantly when compared with the vehicle control. However, delay in reaching the highest level and biopersistence of Cu were observed in the blood and tested organs of Cu NP-treated rats compared with Cu ions. Extremely high levels of Cu in feces indicated that unabsorbed Cu NPs or absorbed Cu ions were predominantly eliminated through liver/feces. Cu NPs exerted apparent toxicological effects at higher dose levels compared with Cu ions and showed sex-dependent differences in mortality, biochemistry, and histopathology. Liver, kidney, and spleen were the major organs affected by Cu NPs. Collectively, the toxicity and kinetics of Cu NPs are most likely influenced by the release of Cu dissociated from Cu NPs under physiological conditions.

  10. Combined HPLC-CUPRAC (cupric ion reducing antioxidant capacity) assay of parsley, celery leaves, and nettle.

    Science.gov (United States)

    Yildiz, Leyla; Başkan, Kevser Sözgen; Tütem, Esma; Apak, Reşat

    2008-10-19

    This study aims to identify the essential antioxidant compounds present in parsley (Petroselinum sativum) and celery (Apium graveolens) leaves belonging to the Umbelliferae (Apiaceae) family, and in stinging nettle (Urtica dioica) belonging to Urticaceae family, to measure the total antioxidant capacity (TAC) of these compounds with CUPRAC (cupric ion reducing antioxidant capacity) and ABTS spectrophotometric methods, and to correlate the TAC with high performance liquid chromatography (HPLC) findings. The CUPRAC spectrophotometric method of TAC assay using copper(II)-neocuproine (2,9-dimethyl-1,10-phenanthroline) as the chromogenic oxidant was developed in our laboratories. The individual antioxidant constituents of plant extracts were identified and quantified by HPLC on a C18 column using a modified mobile phase of gradient elution comprised of MeOH-0.2% o-phosphoric acid and UV detection for polyphenols at 280 nm. The TAC values of HPLC-quantified antioxidant constituents were found, and compared for the first time with those found by CUPRAC. The TAC of HPLC-quantified compounds accounted for a relatively high percentage of the observed CUPRAC capacities of plant extracts, namely 81% of nettle, 60-77% of parsley (in different hydrolyzates of extract and solid sample), and 41-57% of celery leaves (in different hydrolyzates). The CUPRAC total capacities of the 70% MeOH extracts of studied plants (in the units of mmol trolox g(-1)plant) were in the order: celery leaves>nettle>parsley. The TAC calculated with the aid of HPLC-spectrophotometry did not compensate for 100% of the CUPRAC total capacities, because all flavonoid glycosides subjected to hydrolysis were either not detectable with HPLC, or not converted to the corresponding aglycons (i.e., easily detectable and quantifiable with HPLC) during the hydrolysis step. PMID:18804638

  11. New water-soluble ruthenium(II) cytotoxic complex: biological activity and cellular distribution.

    Science.gov (United States)

    Morais, Tânia S; Santos, Filipa C; Jorge, Tiago F; Côrte-Real, Leonor; Madeira, Paulo J Amorim; Marques, Fernanda; Robalo, M Paula; Matos, António; Santos, Isabel; Garcia, M Helena

    2014-01-01

    A novel water soluble organometallic compound, [RuCp(mTPPMSNa)(2,2'-bipy)][CF3SO3] (TM85, where Cp=η(5)-cyclopentadienyl, mTPPMS=diphenylphosphane-benzene-3-sulfonate and 2,2'-bipy=2,2'-bipyridine) is presented herein. Studies of interactions with relevant proteins were performed to understand the behavior and mode of action of this complex in the biological environment. Electrochemical and fluorescence studies showed that TM85 strongly binds to albumin. Studies carried out to study the formation of TM85 which adducts with ubiquitin and cytochrome c were performed by electrospray ionization mass spectrometry (ESI-MS). Antitumor activity was evaluated against a variety of human cancer cell lines, namely A2780, A2780cisR, MCF7, MDAMB231, HT29, PC3 and V79 non-tumorigenic cells and compared with the reference drug cisplatin. TM85 cytotoxic effect was reduced in the presence of endocytosis modulators at low temperatures, suggesting an energy-dependent mechanism consistent with endocytosis. Ultrastructural analysis by transmission electron microscopy (TEM) revealed that TM85 targets the endomembranar system disrupting the Golgi and also affects the mitochondria. Disruption of plasma membrane observed by flow cytometry could lead to cellular damage and cell death. On the whole, the biological activity evaluated herein combined with the water solubility property suggests that complex TM85 could be a promising anticancer agent. PMID:24145065

  12. Y-12 National Security Complex Biological Monitoring and Abatement Program 2007 Calendar Yeare Report

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, M.J.; Greeley, M. S. Jr.; Morris, G. W.; Roy, W. K.; Ryan, M. G.; Smith, J. G.; Southworth, G. R.

    2008-07-01

    The National Pollutant Discharge Elimination System (NPDES) permit issued for the Oak Ridge Y-12 National Security Complex (Y-12 Complex) which became effective May 1, 2006, continued a requirement for a Biological Monitoring and Abatement Program (BMAP). The BMAP was originally developed in 1985 to demonstrate that the effluent limitations established for the Y-12 Complex protected the classified uses of the receiving stream (East Fork Poplar Creek: EFPC), in particular, the growth and propagation of aquatic life (Loar et al. 1989). The objectives of the current BMAP are similar, specifically to assess stream ecological conditions relative to regulatory limits and criteria, to assess ecological impacts as well as recovery in response to Y-12 operations, and to investigate the causes of continuing impacts. The BMAP consists of three tasks that reflect complementary approaches to evaluating the effects of the Y-12 Complex discharges on the biotic integrity of EFPC. These tasks include: (1) bioaccumulation monitoring, (2) benthic macroinvertebrate community monitoring, and (3) fish community monitoring. As required by the NPDES permit, the BMAP benthic macroinvertebrate community monitoring task includes studies to annually evaluate the receiving stream's biological integrity in comparison to TN Water Quality Criteria. BMAP monitoring is currently being conducted at five primary EFPC sites, although sites may be excluded or added depending upon the specific objectives of the various tasks. Criteria used in selecting the sites include: (1) location of sampling sites used in other studies, (2) known or suspected sources of downstream impacts, (3) proximity to U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR) boundaries, (4) appropriate habitat distribution, and (5) access. The primary sampling sites include upper EFPC at kilometers (EFKs) 24.4 and 23.4 [upstream and downstream of Lake Reality (LR) respectively]; EFK 18.7 (also EFK 18.2 and 19), located

  13. Toxic Effects of Cupric Acetate and Avermectins on Orange Spotted Grouper Epinephelus coioides%乙酸铜和阿维菌素对斜带石斑幼鱼毒性效应的研究

    Institute of Scientific and Technical Information of China (English)

    程敏红; 杨小立; 庞强; 黄建荣; 黎祖福

    2014-01-01

    In this study ,the activities of acetylcholinesterase (AChE) ,superoxide dismutase (SOD) ,and aspartate transaminase (GOT ) and glutathione (GSH ) content were studied in liver of orange spotted grouper Epinephelus coioides exposed to cupric acetate and Avermectins at various concentrations to evaluate acute toxicity of cupric acetate and Avermectins .The results showed that the 24 h LC50 and 48 h LC50 were 103 .51 mg/L and 50 .86 mg/L in cupric acetate and 0 .02543 mg/L and 0 .01726 mg/L in Avermectins , with safe concentration of 3 .684 mg/L for cupric acetate and 0 .00239 mg/L for Avermectins .Cupric acetate and Avermectins stress resulted in significant changes in AChE ,SOD ,and GOT activities in liver (P0 .05) ,but higher than that in the control group in 96 h cupric acetate exposure (P< 0 .05) .There were significantly lower liver GSH contents in 2 .5μg/L ,4 .25μg/L ,7 .25 μg/L and 12 .25 μg/L Avermectins groups than that in the control group . The findings indicate that cupric acetate and Avermectins stress affect AChE , SOD and GOT activities and GSH content ,and that biological effects of pesticides on orange spotted grouper are reflected in changes in activities of AChE ,SOD and GOT and GSH content .%采用静水生物法,研究了乙酸铜和阿维菌素对斜带石斑鱼的急性毒性并进行安全评价;依据急性试验结果,设计一系列质量浓度梯度进行暴露试验,探讨了乙酸铜和阿维菌素暴露对斜带石斑鱼肝脏中乙酰胆碱酯酶、超氧化物歧化酶、谷草转氨酶活性和谷胱甘肽含量的毒性影响。试验结果表明,乙酸铜和阿维菌素对斜带石斑鱼的24 h半致死质量浓度、48 h半致死质量浓度分别为103.51、50.86 mg/L和0.02543、0.01726 mg/L ,安全质量浓度分别为3.684 mg/L和0.00239 mg/L ;除阿维菌素对谷草转氨酶作用不明显外,乙酸铜和阿维菌素胁迫均引起肝脏乙酰胆碱酯酶、超氧化物歧化酶和谷草转

  14. Geometric triangular chiral hexagon crystal-like complexes organization in pathological tissues biological collision order.

    Directory of Open Access Journals (Sweden)

    Jairo A Díaz

    Full Text Available The present study describes and documents self-assembly of geometric triangular chiral hexagon crystal like complex organizations (GTCHC in human pathological tissues. The authors have found this architectural geometric expression at macroscopic and microscopic levels mainly in cancer processes. This study is based essentially on macroscopic and histopathologic analyses of 3000 surgical specimens: 2600 inflammatory lesions and 400 malignant tumours. Geometric complexes identified photographically at macroscopic level were located in the gross surgical specimen, and these areas were carefully dissected. Samples were taken to carry out histologic analysis. Based on the hypothesis of a collision genesis mechanism and because it is difficult to carry out an appropriate methodological observation in biological systems, the authors designed a model base on other dynamic systems to obtain indirect information in which a strong white flash wave light discharge, generated by an electronic device, hits over the lines of electrical conductance structured in helicoidal pattern. In their experimental model, the authors were able to reproduce and to predict polarity, chirality, helicoid geometry, triangular and hexagonal clusters through electromagnetic sequential collisions. They determined that similar events among constituents of extracelular matrix which drive and produce piezoelectric activity are responsible for the genesis of GTCHC complexes in pathological tissues. This research suggests that molecular crystals represented by triangular chiral hexagons derived from a collision-attraction event against collagen type I fibrils emerge at microscopic and macroscopic scales presenting a lateral assembly of each side of hypertrophy helicoid fibers, that represent energy flow in cooperative hierarchically chiral electromagnetic interaction in pathological tissues and arises as a geometry of the equilibrium in perturbed biological systems. Further

  15. Cupric ion release and cytotoxicity for Yuangong Cu-IUDs and the release behavior of indomethacin for medicated 220 Cu-IUD

    Institute of Scientific and Technical Information of China (English)

    CAO BianMei; XI TingFei; ZHENG YuDong; YANG LiFeng; ZHENG Qi

    2009-01-01

    These years Yuangong copper-bearing intrauterine devices (Cu-IUDs) have been used because of less side effects in use. The corrosion of copper is essential to the success of contraception,and the release behavior of indomethacin from medicated Cu-IUD is related to its therapeutic effect. In this study,analytical methods were established to investigate the release behavior of cupric ion of three kinds of Yuangong Cu-IUDs and indomethacin of medicated Yuangong 220 Cu-IUD. Cu-IUDs were incubated in simulated uterine solution (SUS). The concentrations of cupric ion and indomethacin were analyzed by flame atomic absorption spectrometer (FAAS) for 60 days and UV/vis-3310 spectrophotometer for 60 days,respectively. The morphology of copper after corrosion was characterized by SEM. In addition,we detected cytotoxicity by MTT of L929 mouse fibroblasts cells caused by extracts of the three Yuangong Cu-IUDs. The release behavior of cupric ion for three kinds of Yuangong Cu-IUDs was biphasic,which consisted of the initial burst release and then slow and constant release. In vitro release experiment confirmed a biphasic release of indomethacin from Yuangong 220. The copper wire of Yuangong Cu-IUDs showed uneven corrosion. The RGR value of Yuangong 365 Cu-IUD was smaller than that of medicated Yuangong 220 Cu-IUD and RGR value of medicated Yuangong 220 Cu-IUD was smaller than that of Yuangong 300 Cu-IUD. The cupric ion release and indomethacin release showed biphasic. Indomethacin increased the cupric ion release rate and might diminish the adverse effects caused by burst release of cupric ion. The toxicity grade of these three Yuangong Cu-IUDs was 4. We should canvass the adverse events of Cu-IUDs based on practical experiments,and try our best to reduce the toxicity of Cu-IUDs.

  16. Synthesis, characterization and biological evaluation of Rutin-zinc(II) flavonoid -metal complex.

    Science.gov (United States)

    Ikeda, Norma Estefania Andrades; Novak, Estela Maria; Maria, Durvanei Augusto; Velosa, Adélia Segin; Pereira, Regina Mara Silva

    2015-09-01

    Synthesis of compounds analogous to natural products from secondary metabolites, such as flavonoids, is a promising source of novel drugs. Rutin (quercetin-3-O-rutinoside) is a natural flavone, which has, in its chemical structure, different sites for coordination with transition metals and the complexation with these metals enhances its biological properties. Rutin-zinc(II), a flavonoid-metal complex, was synthesized and characterized by UV-VIS, FT-IR, elemental analysis and (1)H NMR. The antioxidant and antitumor activities, as well as the cytotoxicity and in vivo toxicity of this complex were evaluated and compared with the free rutin. Rutin-zinc(II) has not shown any cytotoxicity against normal cells (fibroblasts and HUVECs) or toxicity in BALB/c mice, but has shown antioxidant activity in vitro and cytotoxicity against leukemia (KG1, K562 and Jurkat), multiple myeloma (RPMI8226) and melanoma (B16F10 and SK-Mel-28) cell lines in vitro. In Ehrlich ascites carcinoma model, Rutin-zinc(II) modulated the mitochondrial membrane potential and the expression of genes related to cell cycle progression, angiogenesis and apoptosis.

  17. Y-12 National Security Complex Biological Monitoring And Abatement Program 2008 Calendar Year Report

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, M. J.; Greeley Jr., M. S.; Mathews, T. J.; Morris, G. W.; Roy, W. K.; Ryon, M. G.; Smith, J. G.; Southworth, G. R.

    2009-07-01

    The National Pollutant Discharge Elimination System (NPDES) permit issued for the Oak Ridge Y-12 National Security Complex (Y-12 Complex) which became effective May 1, 2006, continued a requirement for a Biological Monitoring and Abatement Program (BMAP). The BMAP was originally developed in 1985 to demonstrate that the effluent limitations established for the Y-12 Complex protected the classified uses of the receiving stream (East Fork Poplar Creek: EFPC), in particular, the growth and propagation of aquatic life (Loar et al. 1989). The objectives of the current BMAP are similar, specifically to assess stream ecological conditions relative to regulatory limits and criteria, to assess ecological impacts as well as recovery in response to Y-12 operations, and to investigate the causes of continuing impacts. The BMAP consists of three tasks that reflect complementary approaches to evaluating the effects of the Y-12 Complex discharges on the biotic integrity of EFPC. These tasks include: (1) bioaccumulation monitoring, (2) benthic macroinvertebrate community monitoring, and (3) fish community monitoring. As required by the NPDES permit, the BMAP benthic macroinvertebrate community monitoring task includes studies to annually evaluate the receiving stream's biological integrity in comparison to TN Water Quality Criteria. BMAP monitoring is currently being conducted at five primary EFPC sites, although sites may be excluded or added depending upon the specific objectives of the various tasks. Criteria used in selecting the sites include: (1) location of sampling sites used in other studies, (2) known or suspected sources of downstream impacts, (3) proximity to U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR) boundaries, (4) appropriate habitat distribution, and (5) access. The primary sampling sites include upper EFPC at kilometers (EFKs) 24.4 and 23.4 [upstream and downstream of Lake Reality (LR) respectively]; EFK 18.7 (also EFK 18.2 and 19), located off

  18. Solid-State Synthesis, Characterization, and Biological Activity of the Bioinorganic Complex of Aspartic Acid and Arsenic Triiodide

    Directory of Open Access Journals (Sweden)

    Guo-Qing Zhong

    2013-01-01

    Full Text Available The bioinorganic complex of aspartic acid and arsenic triiodide was synthesized by a solid-state reaction at room temperature. The formula of the complex is AsI3[HOOCCH2CH(NH2COOH]2.5. The crystal structure of the complex belongs to monoclinic system with lattice parameters: a=1.0019 nm, b=1.5118 nm, c=2.1971 nm, and β=100.28°. The infrared spectra can demonstrate the complex formation between the arsenic ion and aspartic acid, and the complex may be a dimer with bridge structure. The result of primary biological test indicates that the complex possesses better biological activity for the HL-60 cells of the leukemia than arsenic triiodide.

  19. Zinc(II) complexes with dithiocarbamato derivatives: structural characterisation and biological assays on cancerous cell lines.

    Science.gov (United States)

    Nagy, Eszter Márta; Sitran, Sergio; Montopoli, Monica; Favaro, Monica; Marchiò, Luciano; Caparrotta, Laura; Fregona, Dolores

    2012-12-01

    Zinc is one of the most important trace elements in the body and it is essential as a cofactor for the structure and function of a number of cellular molecules including enzymes, transcription factors, cellular signalling proteins and DNA repair enzymes. On the other hand, recent studies have shown that zinc could play a role both in the development of various cancers and in the induction of apoptosis in some cell types, however, no established common relationships of zinc with cancer development and progression have been identified. To date, in our research group different metal-dithiocarbamato complexes have been designed that were expected to resemble the main features of cisplatin together with higher activity, improved selectivity and bioavailability, and lower side-effects. On the basis of the obtained encouraging achievements with other metals (such as gold and copper) we have decided to enlarge the studies to the complexes of zinc(II) using the same ligands. Hereby, we report the results on the synthesis and characterisation of ZnL(2) complexes with five different dithiocarbamato derivatives, such as dimethyl-(DMDT), pyrrolidine-(PyDT), methyl-(MSDT), ethyl-(ESDT) and tert-butyl-(TSDT) sarcosinedithiocarbamate. All the obtained compounds have fully been characterised by means of several spectroscopic techniques. In addition, the crystal structure of [Zn(MSDT)(2)](2) dinuclear complex is also reported. In order to evaluate the in vitro cytotoxic properties, some biological assays have been carried out on a panel of human tumour cell lines sensible and resistant to cisplatin. Some of the tested compounds show cytotoxicity levels comparable or even greater than the reference drug (cisplatin). PMID:23085593

  20. Recovery Management in All Optical Networks Using Biologically-Inspired Complex Adaptive System

    Directory of Open Access Journals (Sweden)

    Inadyuti Dutt

    2013-01-01

    Full Text Available All-Optical Networks have the ability to display varied advantages like performance efficiency, throughput etc but their efficiency depends on their survivability as they are attack prone. These attacks can be categorised as active or passive because they try to access information within the network or alter the information in the network. The attack once detected has to be recovered by formulating back-up or alternative paths. The proposed heuristic uses biologically inspired Complex Adaptive System, inspired by Natural Immune System. The study shows that natural immune system exhibit unique behaviour of detecting foreign bodies in our body and removing them on their first occurrences. This phenomenon is being utilised in the proposed heuristic for recovery management in All-optical Network

  1. Complex Biological Event Extraction from Full Text using Signatures of Linguistic and Semantic Features

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, Liam R.; Domico, Kelly O.; Corley, Courtney D.; Webb-Robertson, Bobbie-Jo M.

    2011-06-24

    Building on technical advances from the BioNLP 2009 Shared Task Challenge, the 2011 challenge sets forth to generalize techniques to other complex biological event extraction tasks. In this paper, we present the implementation and evaluation of a signature-based machine-learning technique to predict events from full texts of infectious disease documents. Specifically, our approach uses novel signatures composed of traditional linguistic features and semantic knowledge to predict event triggers and their candidate arguments. Using a leave-one out analysis, we report the contribution of linguistic and shallow semantic features in the trigger prediction and candidate argument extraction. Lastly, we examine evaluations and posit causes for errors of infectious disease track subtasks.

  2. Preparation and Biological Properties of Platinum(II Complex-Loaded Copolymer PLA-TPGS

    Directory of Open Access Journals (Sweden)

    Ha Phuong Thu

    2013-01-01

    Full Text Available A new nanodrug system containing bis(menthone thiosemicarbazonato Platinum(II complex (Pt-thiomen encapsulated with the block copolymers polylactide-d-α-tocopheryl polyethylene glycol 1000 succinate (PLA-TPGS was prepared by a modified solvent extraction/evaporation technique. The characteristics of the nanoparticles including surface morphology, size distribution, structure, and biological activities such as antimicrobial and cytotoxic activities were in vitro investigated. The spherical nanoparticles were around 50 nm in size with core-shell structure and narrow-size distribution. The encapsulated Pt-thiomen can avoid interaction with proteins in the blood plasma. The inhibitory activity of Pt-thiomen-loaded PLA-TPGS nanoparticles on the growth of some bacteria, fungi, and Hep-G2 cells suggests a possibility of developing PLA-TPGS-Pt-thiomen nanoparticles as one of the potential chemotherapeutic agents.

  3. Structure and Bonding in Heme-Nitrosyl Complexes and Implications for Biology

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Nicolai; Scheidt, W. Robert; Wolf, Matthew W. [Michigan; (Notre)

    2016-09-13

    This review summarizes our current understanding of the geometric and electronic structures of ferrous and ferric heme–nitrosyls, which are of key importance for the biological functions and transformations of NO. In-depth correlations are made between these properties and the reactivities of these species. Here, a focus is put on the discoveries that have been made in the last 10 years, but previous findings are also included as necessary. Besides this, ferrous heme–nitroxyl complexes are also considered, which have become of increasing interest recently due to their roles as intermediates in NO and multiheme nitrite reductases, and because of the potential role of HNO as a signaling molecule in mammals. In recent years, computational methods have received more attention as a means of investigating enzyme reaction mechanisms, and some important findings from these theoretical studies are also highlighted in this chapter.

  4. Designing, syntheses, characterization, computational study and biological activities of silver-phenothiazine metal complex

    Science.gov (United States)

    Kumar, Vijay; Upadhyay, Niraj; Manhas, Anu

    2015-11-01

    A noble biologically active compound Ag(I)-PTZ metal complex (1) with spherical morphology was synthesized first time. Entire characterization tool (spectral, elemental, mass and thermal analysis) was supported a distorted tetrahedral structure, where two water compounds were coordinated with Ag(I) including one phenothiazine and one nitrate group. For the better insight, obtained spectral/structural results were supported by 3D molecular modeling. Compound 1 had shown excellent activities against the Salmonella typhimurium and Aspergillus fumigatus with minimum inhibitory concentration (MIC) value 20 mg/L and 25 mg/L. The observed antioxidant radical scavenging activity (in %) of compound 1 (62.74%) was more than control ascorbic acid (28.58%). The observed protein (BSA) binding constant of 1 was 8.86 × 104 M-1, which is similar to binding constant of salicylic acid with BSA protein. Initial studies have revealed that synthesized compound 1 may act as multipurpose drug analogue in future.

  5. Modeling Complex Biological Flows in Multi-Scale Systems using the APDEC Framework

    Energy Technology Data Exchange (ETDEWEB)

    Trebotich, D

    2006-06-24

    We have developed advanced numerical algorithms to model biological fluids in multiscale flow environments using the software framework developed under the SciDAC APDEC ISIC. The foundation of our computational effort is an approach for modeling DNA-laden fluids as ''bead-rod'' polymers whose dynamics are fully coupled to an incompressible viscous solvent. The method is capable of modeling short range forces and interactions between particles using soft potentials and rigid constraints. Our methods are based on higher-order finite difference methods in complex geometry with adaptivity, leveraging algorithms and solvers in the APDEC Framework. Our Cartesian grid embedded boundary approach to incompressible viscous flow in irregular geometries has also been interfaced to a fast and accurate level-sets method within the APDEC Framework for extracting surfaces from volume renderings of medical image data and used to simulate cardio-vascular and pulmonary flows in critical anatomies.

  6. Temperature-dependent phase transitions in zeptoliter volumes of a complex biological membrane

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforov, Maxim P; Jesse, Stephen; Kalinin, Sergei V [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Hohlbauch, Sophia; Proksch, Roger [Asylum Research, Santa Barbara, CA 93117 (United States); King, William P [Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801 (United States); Voitchovsky, Kislon [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Contera, Sonia Antoranz [Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, Oxford (United Kingdom)

    2011-02-04

    Phase transitions in purple membrane have been a topic of debate for the past two decades. In this work we present studies of a reversible transition of purple membrane in the 50-60 deg. C range in zeptoliter volumes under different heating regimes (global heating and local heating). The temperature of the reversible phase transition is 52 {+-} 5 deg. C for both local and global heating, supporting the hypothesis that this transition is mainly due to a structural rearrangement of bR molecules and trimers. To achieve high resolution measurements of temperature-dependent phase transitions, a new scanning probe microscopy-based method was developed. We believe that our new technique can be extended to other biological systems and can contribute to the understanding of inhomogeneous phase transitions in complex systems.

  7. Temperature-dependent phase transitions of a complex biological membrane in zeptoliter volumes

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforov, Maxim [ORNL; Hohlbauch, Sophia [Asylum Research, Santa Barbara, CA; King, William P [University of Illinois, Urbana-Champaign; Voitchovsky, K [Massachusetts Institute of Technology (MIT); Contera, S Antoranz [University of Oxford; Jesse, Stephen [ORNL; Kalinin, Sergei V [ORNL; Proksch, Roger [Asylum Research, Santa Barbara, CA

    2011-01-01

    Phase transitions in purple membrane have been a topic of debate for the past two decades. In this work we present studies of a reversible transition of purple membrane in the 50 60 C range in zeptoliter volumes under different heating regimes (global heating and local heating). The temperature of the reversible phase transition is 52 5 C for both local and global heating, supporting the hypothesis that this transition is mainly due to a structural rearrangement of bR molecules and trimers. To achieve high resolution measurements of temperature-dependent phase transitions, a new scanning probe microscopy-based method was developed. We believe that our new technique can be extended to other biological systems and can contribute to the understanding of inhomogeneous phase transitions in complex systems.

  8. Bions: a family of biomimetic mineralo-organic complexes derived from biological fluids.

    Directory of Open Access Journals (Sweden)

    Cheng-Yeu Wu

    Full Text Available Mineralo-organic nanoparticles form spontaneously in human body fluids when the concentrations of calcium and phosphate ions exceed saturation. We have shown previously that these mineralo-organic nanoparticles possess biomimetic properties and can reproduce the whole phenomenology of the so-called nanobacteria-mineralized entities initially described as the smallest microorganisms on earth. Here, we examine the possibility that various charged elements and ions may form mineral nanoparticles with similar properties in biological fluids. Remarkably, all the elements tested, including sodium, magnesium, aluminum, calcium, manganese, iron, cobalt, nickel, copper, zinc, strontium, and barium form mineralo-organic particles with bacteria-like morphologies and other complex shapes following precipitation with phosphate in body fluids. Upon formation, these mineralo-organic particles, which we term bions, invariably accumulate carbonate apatite during incubation in biological fluids; yet, the particles also incorporate additional elements and thus reflect the ionic milieu in which they form. Bions initially harbor an amorphous mineral phase that gradually converts to crystals in culture. Our results show that serum produces a dual inhibition-seeding effect on bion formation. Using a comprehensive proteomic analysis, we identify a wide range of proteins that bind to these mineral particles during incubation in medium containing serum. The two main binding proteins identified, albumin and fetuin-A, act as both inhibitors and seeders of bions in culture. Notably, bions possess several biomimetic properties, including the possibility to increase in size and number and to be sub-cultured in fresh culture medium. Based on these results, we propose that bions represent biological, mineralo-organic particles that may form in the body under both physiological and pathological homeostasis conditions. These mineralo-organic particles may be part of a

  9. Monitoring prion protein expression in complex biological samples by SERS for diagnostic applications

    Energy Technology Data Exchange (ETDEWEB)

    Manno, D; Filippo, E; Fiore, R; Serra, A [Dipartimento di Scienza dei Materiali, Universita del Salento, Lecce (Italy); Urso, E; Rizzello, A; Maffia, M [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Universita del Salento, Lecce (Italy)

    2010-04-23

    Surface-enhanced Raman spectroscopy (SERS) allows a new insight into the analysis of cell physiology. In this work, the difficulty of producing suitable substrates that, besides permitting the amplification of the Raman signal, do not interact with the biological material causing alteration, has been overcome by a combined method of hydrothermal green synthesis and thermal annealing. The SERS analysis of the cell membrane has been performed with special attention to the cellular prion protein PrP{sup C}. In addition, SERS has also been used to reveal the prion protein-Cu(II) interaction in four different cell models (B104, SH-SY5Y, GN11, HeLa), expressing PrP{sup C} at different levels. A significant implication of the current work consists of the intriguing possibility of revealing and quantifying prion protein expression in complex biological samples by a cheap SERS-based method, replacing the expensive and time-consuming immuno-assay systems commonly employed.

  10. Dissecting Complex and Multifactorial Nature of Alzheimer's Disease Pathogenesis: a Clinical, Genomic, and Systems Biology Perspective.

    Science.gov (United States)

    Talwar, Puneet; Sinha, Juhi; Grover, Sandeep; Rawat, Chitra; Kushwaha, Suman; Agarwal, Rachna; Taneja, Vibha; Kukreti, Ritushree

    2016-09-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by loss of memory and other cognitive functions. AD can be classified into familial AD (FAD) and sporadic AD (SAD) based on heritability and into early onset AD (EOAD) and late onset AD (LOAD) based on age of onset. LOAD cases are more prevalent with genetically complex architecture. In spite of significant research focused on understanding the etiological mechanisms, search for diagnostic biomarker(s) and disease-modifying therapy is still on. In this article, we aim to comprehensively review AD literature on established etiological mechanisms including role of beta-amyloid and apolipoprotein E (APOE) along with promising newer etiological factors such as epigenetic modifications that have been associated with AD suggesting its multifactorial nature. As genomic studies have recently played a significant role in elucidating AD pathophysiology, a systematic review of findings from genome-wide linkage (GWL), genome-wide association (GWA), genome-wide expression (GWE), and epigenome-wide association studies (EWAS) was conducted. The availability of multi-dimensional genomic data has further coincided with the advent of computational and network biology approaches in recent years. Our review highlights the importance of integrative approaches involving genomics and systems biology perspective in elucidating AD pathophysiology. The promising newer approaches may provide reliable means of early and more specific diagnosis and help identify therapeutic interventions for LOAD. PMID:26351077

  11. Studying Biological Tissue with Fluorescence Lifetime Imaging: Microscopy, Endoscopy, and Complex Decay Profiles

    Science.gov (United States)

    Siegel, Jan; Elson, Daniel S.; Webb, Stephen E. D.; Lee, K. C. Benny; Vlandas, Alexis; Gambaruto, Giovanni L.; Léveque-Fort, Sandrine; Lever, M. John; Tadrous, Paul J.; Stamp, Gordon W. H.; Wallace, Andrew L.; Sandison, Ann; Watson, Tim F.; Alvarez, Fernando; French, Paul M. W.

    2003-06-01

    We have applied fluorescence lifetime imaging (FLIM) to the autofluorescence of different kinds of biological tissue in vitro , including animal tissue sections and knee joints as well as human teeth, obtaining two-dimensional maps with functional contrast. We find that fluorescence decay profiles of biological tissue are well described by the stretched exponential function (StrEF), which can represent the complex nature of tissue. The StrEF yields a continuous distribution of fluorescence lifetimes, which can be extracted with an inverse Laplace transformation, and additional information is provided by the width of the distribution. Our experimental results from FLIM microscopy in combination with the StrEF analysis indicate that this technique is ready for clinical deployment, including portability that is through the use of a compact picosecond diode laser as the excitation source. The results obtained with our FLIM endoscope successfully demonstrated the viability of this modality, though they need further optimization. We expect a custom-designed endoscope with optimized illumination and detection efficiencies to provide significantly improved performance.

  12. Electrolytic regeneration of acid cupric chloride printed circuit board etchant. Final report, August 1, 1995--October 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Oxley, J.E.; Smialek, R.J.

    1997-04-18

    The overall objective of this ERIP program was to make substantial progress in further developing a process for electrolytic regeneration of acid cupric chloride etchant - a process which was initially demonstrated in in-house studies and EPA Phase I and Phase II SBIRs. Specific objectives of the work were: (1) to define optimum system operating conditions by conducting a systematic study of process parameters, (2) to develop or find a superior electrolyic cell separator material, (3) to determine an optimum activation procedure for the flow-through carbon/graphite felt electrodes which are so critical to process performance, (4) to demonstrate - on the pre-prototype scale - electrolytic compensation for oxygen ingress - which causes etchant solution growth, and (5) to begin engineering design work on a prototype-scale regeneration unit. Parametric studies looked at the effect that key plating parameters have on copper deposit quality. Parameters tested included (a) velocity past the plating cathodes, (b) copper concentration in the catholyte solution from which the copper is being plated, (c) plating current density, and (d) catholyte cupric ion concentration. The most significant effects were obtained for velocity changes. The work showed that catholyte velocities above 0.5 ft/sec were needed to get adequate plating at 77.5 mA/cm{sup 2} and higher currents, and that even higher flow was better.

  13. Detection of two isomeric binding configurations in a protein-aptamer complex with a biological nanopore.

    Science.gov (United States)

    Van Meervelt, Veerle; Soskine, Misha; Maglia, Giovanni

    2014-12-23

    Protein-DNA interactions play critical roles in biological systems, and they often involve complex mechanisms and dynamics that are not easily measured by ensemble experiments. Recently, we showed that folded proteins can be internalized inside ClyA nanopores and studied by ionic current recordings at the single-molecule level. Here, we use ClyA nanopores to sample the interaction between the G-quadruplex fold of the thrombin binding aptamer (TBA) and human thrombin (HT). Surprisingly, the internalization of the HT:TBA complex inside the nanopore induced two types of current blockades with distinguished residual current and lifetime. Using single nucleobase substitutions to TBA we showed that these two types of blockades originate from TBA binding to thrombin with two isomeric orientations. Voltage dependencies and the use of ClyA nanopores with two different diameters allowed assessing the effect of the applied potential and confinement and revealed that the two binding configurations of TBA to HT display different lifetimes. These results show that the ClyA nanopores can be used to probe conformational heterogeneity in protein:DNA interactions. PMID:25493908

  14. Attomolar detection of botulinum toxin type A in complex biological matrices.

    Directory of Open Access Journals (Sweden)

    Karine Bagramyan

    Full Text Available BACKGROUND: A highly sensitive, rapid and cost efficient method that can detect active botulinum neurotoxin (BoNT in complex biological samples such as foods or serum is desired in order to 1 counter the potential bioterrorist threat 2 enhance food safety 3 enable future pharmacokinetic studies in medical applications that utilize BoNTs. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a botulinum neurotoxin serotype A assay with a large immuno-sorbent surface area (BoNT/A ALISSA that captures a low number of toxin molecules and measures their intrinsic metalloprotease activity with a fluorogenic substrate. In direct comparison with the "gold standard" mouse bioassay, the ALISSA is four to five orders of magnitudes more sensitive and considerably faster. Our method reaches attomolar sensitivities in serum, milk, carrot juice, and in the diluent fluid used in the mouse assay. ALISSA has high specificity for the targeted type A toxin when tested against alternative proteases including other BoNT serotypes and trypsin, and it detects the holotoxin as well as the multi-protein complex form of BoNT/A. The assay was optimized for temperature, substrate concentration, size and volume proportions of the immuno-sorbent matrix, enrichment and reaction times. Finally, a kinetic model is presented that is consistent with the observed improvement in sensitivity. CONCLUSIONS/SIGNIFICANCE: The sensitivity, specificity, speed and simplicity of the BoNT ALISSA should make this method attractive for diagnostic, biodefense and pharmacological applications.

  15. Reduction theories elucidate the origins of complex biological rhythms generated by interacting delay-induced oscillations.

    Directory of Open Access Journals (Sweden)

    Ikuhiro Yamaguchi

    Full Text Available Time delay is known to induce sustained oscillations in many biological systems such as electroencephalogram (EEG activities and gene regulations. Furthermore, interactions among delay-induced oscillations can generate complex collective rhythms, which play important functional roles. However, due to their intrinsic infinite dimensionality, theoretical analysis of interacting delay-induced oscillations has been limited. Here, we show that the two primary methods for finite-dimensional limit cycles, namely, the center manifold reduction in the vicinity of the Hopf bifurcation and the phase reduction for weak interactions, can successfully be applied to interacting infinite-dimensional delay-induced oscillations. We systematically derive the complex Ginzburg-Landau equation and the phase equation without delay for general interaction networks. Based on the reduced low-dimensional equations, we demonstrate that diffusive (linearly attractive coupling between a pair of delay-induced oscillations can exhibit nontrivial amplitude death and multimodal phase locking. Our analysis provides unique insights into experimentally observed EEG activities such as sudden transitions among different phase-locked states and occurrence of epileptic seizures.

  16. The biological networks in studying cell signal transduction complexity: The examples of sperm capacitation and of endocannabinoid system

    OpenAIRE

    Nicola Bernabò; Barbara Barboni; Mauro Maccarrone

    2014-01-01

    Cellular signal transduction is a complex phenomenon, which plays a central role in cell surviving and adaptation. The great amount of molecular data to date present in literature, together with the adoption of high throughput technologies, on the one hand, made available to scientists an enormous quantity of information, on the other hand, failed to provide a parallel increase in the understanding of biological events. In this context, a new discipline arose, the systems biology, aimed to ma...

  17. Synthesis, characterization, electrochemical and biological studies on some metal(II) Schiff base complexes containing quinoxaline moiety

    Science.gov (United States)

    Justin Dhanaraj, Chellaian; Johnson, Jijo

    2014-01-01

    Novel Co(II), Ni(II), Cu(II) and Zn(II) complexes of Schiff base derived from quinoxaline-2,3-(1,4H)-dione and 4-aminoantipyrine (QDAAP) were synthesized. The ligand and its complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, FTIR, UV-Vis., mass and 1H NMR spectral studies. The X band ESR spectrum of the Cu(II) complex at 300 and 77 K were also recorded. Thermal studies of the ligand and its complexes show the presence of coordinated water in the Ni(II) and Zn(II) complexes. The coordination behavior of QDAAP is also discussed. All the complexes are mono nuclear and tetrahedral geometry was found for Co(II) complex. For the Ni(II) and Zn(II) complexes, octahedral geometry was assigned and for the Cu(II) complex, square planar geometry has been suggested. The grain size of the complexes was estimated using powder XRD. The surface morphology of the compounds was studied using SEM analysis. Electrochemical behavior of the synthesized complexes in DMF at room temperature was investigated by cyclic voltammetry. The in vitro biological screening of QDAAP and its metal complexes were tested against bacterial species Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The fungal species include Aspergillus niger, Aspergillus flavus and Candida albicans. The DNA cleavage activity of QDAAP and its complexes were also discussed.

  18. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  19. Synthesis, structural elucidation, biological, antioxidant and nuclease activities of some 5-Fluorouracil-amino acid mixed ligand complexes

    Science.gov (United States)

    Shobana, Sutha; Subramaniam, Perumal; Mitu, Liviu; Dharmaraja, Jeyaprakash; Arvind Narayan, Sundaram

    2015-01-01

    Some biologically active mixed ligand complexes (1-9) have been synthesized from 5-Fluorouracil (5-FU; A) and amino acids (B) such as glycine (gly), L-alanine (ala) and L-valine (val) with Ni(II), Cu(II) and Zn(II) ions. The synthesized mixed ligand complexes (1-9) were characterized by various physico-chemical, spectral, thermal and morphological studies. 5-Fluorouracil and its mixed ligand complexes have been tested for their in vitro biological activities against some pathogenic bacterial and fungal species by the agar well diffusion method. The in vitro antioxidant activities of 5-Fluorouracil and its complexes have also been investigated by using the DPPH assay method. The results demonstrate that Cu(II) mixed ligand complexes (4-6) exhibit potent biological as well as antioxidant activities compared to 5-Fluorouracil and Ni(II) (1-3) and Zn(II) (7-9) mixed ligand complexes. Further, the cleaving activities of CT DNA under aerobic conditions show moderate activity with the synthesized Cu(II) and Ni(II) mixed ligand complexes (1-6) while no activity is seen with Zn(II) complexes (7-9). Binding studies of CT DNA with these complexes show a decrease in intensity of the charge transfer band to the extent of 5-15% along with a minor red shift. The free energy change values (Δ‡G) calculated from intrinsic binding constants indicate that the interaction between mixed ligand complex and DNA is spontaneous.

  20. Ecological complexity in a coffee agroecosystem: spatial heterogeneity, population persistence and biological control.

    Directory of Open Access Journals (Sweden)

    Heidi Liere

    Full Text Available BACKGROUND: Spatial heterogeneity is essential for the persistence of many inherently unstable systems such as predator-prey and parasitoid-host interactions. Since biological interactions themselves can create heterogeneity in space, the heterogeneity necessary for the persistence of an unstable system could be the result of local interactions involving elements of the unstable system itself. METHODOLOGY/PRINCIPAL FINDINGS: Here we report on a predatory ladybird beetle whose natural history suggests that the beetle requires the patchy distribution of the mutualism between its prey, the green coffee scale, and the arboreal ant, Azteca instabilis. Based on known ecological interactions and the natural history of the system, we constructed a spatially-explicit model and showed that the clustered spatial pattern of ant nests facilitates the persistence of the beetle populations. Furthermore, we show that the dynamics of the beetle consuming the scale insects can cause the clustered distribution of the mutualistic ants in the first place. CONCLUSIONS/SIGNIFICANCE: From a theoretical point of view, our model represents a novel situation in which a predator indirectly causes a spatial pattern of an organism other than its prey, and in doing so facilitates its own persistence. From a practical point of view, it is noteworthy that one of the elements in the system is a persistent pest of coffee, an important world commodity. This pest, we argue, is kept within limits of control through a complex web of ecological interactions that involves the emergent spatial pattern.

  1. Preparative divergent flow IEF without carrier ampholytes for separation of complex biological samples.

    Science.gov (United States)

    Stastna, Miroslava; Slais, Karel

    2010-01-01

    Efficient separation method is a crucial part of the process in which components of highly complex biological sample are identified and characterized. Based on the principles of recently newly established electrophoretic method called divergent flow IEF (DF IEF), we have tested the DF IEF instrument which is able to operate without the use of background carrier ampholytes. We have verified that during separation and focusing of sample consisting of high numbers of proteins (yeast lysate and wheat flour extract), the pH gradient of preparative DF IEF can be created by autofocusing of the sample components themselves without any addition of carrier ampholytes. In DF IEF, the proteins are separated, desalted and concentrated in one step. The fractions of yeast lysate sample, collected at the DF IEF output and subjected to gel IEF, contained the zones of proteins gradually covering the pI values from 3.7 to 8.5. In our experimental arrangement, the highest number of proteins has been found in fractions with pI values around 5.3 as detected by polyacrylamide gel IEF with CBB staining. During DF IEF, the selected protein bands have been concentrated up to 16.8-fold.

  2. Cu(II AND Zn(II COMPLEX COMPOUNDS WITH BIGUANIDES AROMATIC DERIVATIVES. SYNTHESIS, CHARACTERIZATION, BIOLOGICAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Ticuţa Negreanu-Pîrjol

    2011-05-01

    Full Text Available In this paper we report the synthesis, physical-chemical characterization and antimicrobial activity of some new complex compounds of hetero-aromatic biguanides ligands, chlorhexidine base (CHX and chlorhexidine diacetate (CHXac2 with metallic ions Cu(II and Zn(II, in different molar ratio. The synthesized complexes were characterized by elemental chemical analysis and differential thermal analysis. The stereochemistry of the metallic ions was determined by infrared spectra, UV-Vis, EPR spectroscopy and magnetic susceptibility in the aim to establish the complexes structures. The biological activity of the new complex compounds was identified in solid technique by measuring minimum inhibition diameter of bacterial and fungal culture, against three standard pathogen strains, Escherichia coli ATCC 25922, Staphilococcus aureus ATCC 25923 and Candida albicans ATCC 10231. The results show an increased specific antimicrobial activity for the complexes chlorhexidine:Cu(II 1:1 and 1:2 compared with the one of the Zn(II complexes.

  3. Spectral, thermal, optical and biological studies on (E-4-[(2-hydroxyphenylimino]pentan-2-one and its complexes

    Directory of Open Access Journals (Sweden)

    Hosny Nasser M.

    2016-01-01

    Full Text Available Metal complexes derived from the reaction of Cu(II, Co(II, Ni(II and Zn(II acetates and (E-4-(2-hydroxyphenyliminopentan-2-one (H2L have been synthesized and characterized by elemental analyses, MS, IR, UV-Vis., 1H NMR, thermal analyses (TGA and DTG and magnetic measurements. In all complexes except for Zn(II complex, the Schiff base ligand acts as a mono-negative tridentate (NOO donor, through the azomethine nitrogen, the hydroxyl oxygen and the enolic carbonyl oxygen. The structure of the Cu(II complex is square-planar, the Co(II is octahedral while, the Ni(II and Zn(II are tetrahedral. The optical band gap measurements indicated a semi-conducting nature of these complexes. The biological activities have been screened against two bacteria and two fungi. Some of the studied complexes showed activity against bacteria and fungi.

  4. Synthesis, structure, and biological evaluation of a copper(ii) complex with fleroxacin and 1,10-phenanthroline.

    Science.gov (United States)

    Xiao, Ying; Wang, Qing; Huang, Yanmei; Ma, Xiangling; Xiong, Xinnuo; Li, Hui

    2016-07-01

    A novel mixed-ligand Cu(ii) complex combined with the quinolone drug fleroxacin and 1,10-phenanthroline was synthesized in this work. The crystal structure of the complex was characterized via X-ray crystallography, which was the first reported single crystal complex of fleroxacin. Results showed that Cu(ii) was coordinated through pyridone oxygen and one carboxylate oxygen atom of fleroxacin, as well as two nitrogen atoms from 1,10-phenanthroline. Various characterization methods, including Fourier transform infrared, elementary analysis, thermogravimetry, and X-ray powder diffraction, were applied. The Cu(ii)-quinolone complex exhibited favorable biological activities, and was proved to be capable of transforming supercoiled PUC19 DNA into nicked form under hydrolytic conditions. The obtained pseudo-Michaelis-Menten kinetic parameter was 12.64 h(-1), which corresponded to a million-fold rate enhancement in DNA cleavage. In addition, the interaction capacity of the complex with human serum albumin (HSA) was investigated. The results demonstrated a moderately intense combination between HSA and the complex. The complex evidently quenched the fluorescence of HSA. Approximately 19.2% of the quenching was attributed to Förster resonance energy transfer (FRET), whereas the rest was caused by ground-state complex formation (molar ratio of HSA : complex = 1 : 2). The energy of the complex was excited during FRET, which increased the fluorescence of the complex by approximately 18%. PMID:27301999

  5. Studies of Complex Biological Systems with Applications to Molecular Medicine: The Need to Integrate Transcriptomic and Proteomic Approaches

    Directory of Open Access Journals (Sweden)

    Elena Silvestri

    2011-01-01

    Full Text Available Omics approaches to the study of complex biological systems with potential applications to molecular medicine are attracting great interest in clinical as well as in basic biological research. Genomics, transcriptomics and proteomics are characterized by the lack of an a priori definition of scope, and this gives sufficient leeway for investigators (a to discern all at once a globally altered pattern of gene/protein expression and (b to examine the complex interactions that regulate entire biological processes. Two popular platforms in “omics” are DNA microarrays, which measure messenger RNA transcript levels, and proteomic analyses, which identify and quantify proteins. Because of their intrinsic strengths and weaknesses, no single approach can fully unravel the complexities of fundamental biological events. However, an appropriate combination of different tools could lead to integrative analyses that would furnish new insights not accessible through one-dimensional datasets. In this review, we will outline some of the challenges associated with integrative analyses relating to the changes in metabolic pathways that occur in complex pathophysiological conditions (viz. ageing and altered thyroid state in relevant metabolically active tissues. In addition, we discuss several new applications of proteomic analysis to the investigation of mitochondrial activity.

  6. SYNTHESIS, SPECTROSCOPIC, THERMAL STUDIES AND BIOLOGICAL ACTIVITY OF A NEW SULFAMETHOXAZOLE SCHIFF BASE AND ITS COPPER COMPLEXES

    Directory of Open Access Journals (Sweden)

    A. M. Abu-Yamin et al.

    2011-12-01

    Full Text Available A new Sulfamethoxazole Schiff base (E-4-(4-methoxybenzylideneamino-N-(5-methylis-oxazol-3-yl benzenesulfonamide (C18H17N3O4S, and its copper complex were synthesized and the structures elucidated on the basis of Physiochemical methods. The studies indicate an octahedral structure for the complexes with the (C22H27N3O10SCu formula. The IR spectra suggest that the ligand act as tridentate (from oxygen and two nitrogen atoms donor. Also the biological activity of the Schiff base and its Cu complex were studied.

  7. Analysis of undergraduate students' conceptual models of a complex biological system across a diverse body of learners

    Science.gov (United States)

    Dirnbeck, Matthew R.

    Biological systems pose a challenge both for learners and teachers because they are complex systems mediated by feedback loops; networks of cause-effect relationships; and non-linear, hierarchical, and emergent properties. Teachers and scientists routinely use models to communicate ideas about complex systems. Model-based pedagogies engage students in model construction as a means of practicing higher-order reasoning skills. One such modeling paradigm describes systems in terms of their structures, behaviors, and functions (SBF). The SBF framework is a simple modeling language that has been used to teach about complex biological systems. Here, we used student-generated SBF models to assess students' causal reasoning in the context of a novel biological problem on an exam. We compared students' performance on the modeling problem, their performance on a set of knowledge/comprehension questions, and their performance on a set of scientific reasoning questions. We found that students who performed well on knowledge and understanding questions also constructed more networked, higher quality models. Previous studies have shown that learners' mental maps increase in complexity with increased expertise. We wanted to investigate if biology students with varying levels of training in biology showed a similar pattern when constructing system models. In a pilot study, we administered the same modeling problem to two additional groups of students: 1) an animal physiology course for students pursuing a major in biology (n=37) and 2) an exercise physiology course for non-majors (n=27). We found that there was no significant difference in model organization across the three student populations, but there was a significant difference in the ability to represent function between the three populations. Between the three groups the non-majors had the lowest function scores, the introductory majors had the middle function scores, and the upper division majors had the highest function

  8. Liquid Water, the ``Most Complex'' Liquid: New Results in Bulk, Nanoconfined, and Biological Environments

    Science.gov (United States)

    Stanley, H. Eugene

    2010-03-01

    We will introduce some of the 63 anomalies of the most complex of liquids, water. We will demonstrate some recent progress in understanding these anomalies by combining information provided by recent experiments and simulations on water in bulk, nanoconfined, and biological environments. We will interpret evidence from recent experiments designed to test the hypothesis that liquid water may display ``polymorphism'' in that it can exist in two different phases---and discuss recent work on water's transport anomalies [1] as well as the unusual behavior of water in biological environments [2]. Finally, we will discuss how the general concept of liquid polymorphism [3] is proving useful in understanding anomalies in other liquids, such as silicon, silica, and carbon, as well as metallic glasses, which have in common that they are characterized by two characteristic length scales in their interactions. This work was supported by NSF Chemistry Division, and carried out in collaboration with a number of colleagues, chief among whom are C. A. Angell, M. C. Barbosa, M. C. Bellissent, L. Bosio, F. Bruni, S. V. Buldyrev, M. Canpolat, S. -H. Chen, P. G. Debenedetti, U. Essmann,G. Franzese, A. Geiger, N. Giovambattista, S. Han, P. Kumar, E. La Nave,G. Malescio, F. Mallamace, M. G. Mazza, O. Mishima, P. Netz, P. H. Poole, P. J. Rossky, R. Sadr,S. Sastry, A. Scala, F. Sciortino, A. Skibinsky, F. W. Starr, K. C. Stokely J. Teixeira, L. Xu, and Z. Yan.[4pt] [1] L. Xu, F. Mallamace, Z. Yan, F. W. Starr, S. V. Buldyrev, and H. E. Stanley, ``Appearance of a Fractional Stokes-Einstein Relation in Water and a Structural Interpretation of Its Onset,'' Nature Physics 5, 565--569 (2009). [0pt] [2] P. Kumar, Z. Yan, L. Xu, M. G. Mazza, S. V. Buldyrev, S. -H. Chen. S. Sastry, and H. E. Stanley, ``Glass Transition in Biomolecules and the Liquid-Liquid Critical Point of Water,'' Phys. Rev. Lett. 97, 177802 (2006). [0pt] [3] H. E. Stanley, ed. , Liquid Polymorphism [Advances in Chemical Physics

  9. Complex monitoring system for analytical detection and biological evaluation of soil micropollutants for a sustainable environment

    International Nuclear Information System (INIS)

    Complete text of publication follows. In the development of a complex soil contamination monitoring system including the detection of agriculture-related micropollutants, heavy metal contamination and ecotoxicity, a survey has been carried out in Bekes county (Hungary) using different techniques for the characterisation of soil and surface water status. Besides the representativity-optimisation of the sampling technique, in situ sensoric methods, instrumental analysis, biological tests (soil biology, ecotoxicity and mutagenicity) were also applied, and results obtained were presented in a spatial informatics system. The target group, indicators and methodology is in compliance with recommendations of the EEA monitoring working group. Contamination in arable lands and industrial areas has been investigated in 13 plots with 5 replications. Sampling has been carried out by using drilling machine and contaminant concentrations of soil profiles have been characterised down to ground water table. Pesticide residues were monitored by using GC-MS. Target analytes included triazine, phenoxyacetic acid, acetanilide and dinitroaniline herbicides, chlorinated hydrocarbon (CHC), organophosphate and carbamate insecticides, an insect hormonal agonist and a triazole fungicide. Besides banned persistent CHC insecticides (DDT, HCH, etc.), atrazine and acetochlor herbicides are common contaminants in Hungary, reaching 200 ng/g and 300 ng/ml concentration in the soil and surface water samples studied, and trifluralin and metolachlor were also detected in some cases. Heavy metal contamination was detected by ICP AES, and within-plot heterogeneities were studied throughout soil profiles. Nickel has been fund as a relatively common contaminant in arable lands in the area; however relation to fertilisers could not be confirmed. Even in small spatial scale (50x50 meters) a very high variability has been demonstrated in half of the experimental plots. The effects of pesticide residues in

  10. Assessing the Possibility of Biological Complexity on Other Worlds, with an Estimate of the Occurrence of Complex Life in the Milky Way Galaxy

    Directory of Open Access Journals (Sweden)

    Louis N. Irwin

    2014-05-01

    Full Text Available Rational speculation about biological evolution on other worlds is one of the outstanding challenges in astrobiology. With the growing confirmation that multiplanetary systems abound in the universe, the prospect that life occurs redundantly throughout the cosmos is gaining widespread support. Given the enormous number of possible abodes for life likely to be discovered on an ongoing basis, the prospect that life could have evolved into complex, macro-organismic communities in at least some cases merits consideration. Toward that end, we here propose a Biological Complexity Index (BCI, designed to provide a quantitative estimate of the relative probability that complex, macro-organismic life forms could have emerged on other worlds. The BCI ranks planets and moons by basic, first-order characteristics detectable with available technology. By our calculation only 11 (~1.7% of the extrasolar planets known to date have a BCI above that of Europa; but by extrapolation, the total of such planets could exceed 100 million in our galaxy alone. This is the first quantitative assessment of the plausibility of complex life throughout the universe based on empirical data. It supports the view that the evolution of complex life on other worlds is rare in frequency but large in absolute number.

  11. Towards targeting anticancer drugs: ruthenium(ii)-arene complexes with biologically active naphthoquinone-derived ligand systems.

    Science.gov (United States)

    Kubanik, Mario; Kandioller, Wolfgang; Kim, Kunwoo; Anderson, Robert F; Klapproth, Erik; Jakupec, Michael A; Roller, Alexander; Söhnel, Tilo; Keppler, Bernhard K; Hartinger, Christian G

    2016-08-16

    Anticancer active metal complexes with biologically active ligands have the potential to interact with more than one biological target, which could help to overcome acquired and/or intrinsic resistance of tumors to small molecule drugs. In this paper we present the preparation of 2-hydroxy-[1,4]-naphthoquinone-derived ligands and their coordination to a Ru(II)(η(6)-p-cymene)Cl moiety. The synthesis of oxime derivatives resulted in the surprising formation of nitroso-naphthalene complexes, as confirmed by X-ray diffraction analysis. The compounds were shown to be stable in aqueous solution but reacted with glutathione and ascorbic acid rather than undergoing reduction. One-electron reduction with pulse radiolysis revealed different behavior for the naphthoquinone and nitroso-naphthalene complexes, which was also observed in in vitro anticancer assays. PMID:27214822

  12. Synthesis, Structure and Biological Activity of Zn(II) Complex with Tris(benzimidazol-2-yl-methyl)amine Ligand

    Institute of Scientific and Technical Information of China (English)

    LIU,Xiao-Lan(刘小兰); ZHAO,Ru(赵茹); LIU,Xiao-Hong(刘晓红); YUE,Jun-Jie(岳俊杰); YIN,Yu-Xin(尹宇新); SUN,Yun(孙云); SUN,Ming(孙命)

    2004-01-01

    A new Zn(II) mononuclear complex with tris(benzimidazol-2-yl-methyl)amine (NTB) was synthesized with stoichiometry of [Zn(NTB)NO3]NO3·DIPY·DMF (DIPY∶4,4'-dipyridyl). The complex was characterized by elemental analysis, UV and IR spectra. The crystal structure was determined by using X-ray diffraction analysis. The crystal structure indicates that four N atoms and one O atom coordinate to zinc ion to construct a distorted trigonal-dipyramid configuration. Three nonprotonated N atoms from imidazole groups are in the equatorial plane, one alkylamino N atom and one O atom from in the axial directions. The biological activity assay shows that this complex presents certain biological activity by means of pyrogallol autoxidation and it can be called a model compound of superoxide dismutase (SOD).

  13. Integration of complex data sources to provide biologic insight into pulmonary vascular disease (2015 Grover Conference Series)

    Science.gov (United States)

    Chan, Stephen Y.

    2016-01-01

    Abstract The application of complex data sources to pulmonary vascular diseases is an emerging and promising area of investigation. The use of -omics platforms, in silico modeling of gene networks, and linkage of large human cohorts with DNA biobanks are beginning to bear biologic insight into pulmonary hypertension. These approaches to high-throughput molecular phenotyping offer the possibility of discovering new therapeutic targets and identifying variability in response to therapy that can be leveraged to improve clinical care. Optimizing the methods for analyzing complex data sources and accruing large, well-phenotyped human cohorts linked to biologic data remain significant challenges. Here, we discuss two specific types of complex data sources—gene regulatory networks and DNA-linked electronic medical record cohorts—that illustrate the promise, challenges, and current limitations of these approaches to understanding and managing pulmonary vascular disease.

  14. Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology

    OpenAIRE

    Putty-Reddy Sudhir; Chung-Hsuan Chen

    2016-01-01

    A protein complex consists of two or more proteins that are linked together through protein–protein interactions. The proteins show stable/transient and direct/indirect interactions within the protein complex or between the protein complexes. Protein complexes are involved in regulation of most of the cellular processes and molecular functions. The delineation of protein complexes is important to expand our knowledge on proteins functional roles in physiological and pathological conditions. T...

  15. Atypical behavior in the electron capture induced dissociation of biologically relevant transition metal ion complexes of the peptide hormone oxytocin

    Science.gov (United States)

    Kleinnijenhuis, Anne J.; Mihalca, Romulus; Heeren, Ron M. A.; Heck, Albert J. R.

    2006-07-01

    Doubly protonated ions of the disulfide bond containing nonapeptide hormone oxytocin and oxytocin complexes with different transition metal ions, that have biological relevance under physiological conditions, were subjected to electron capture dissociation (ECD) to probe their structural features in the gas phase. Although, all the ECD spectra were strikingly different, typical ECD behavior was observed for complexes of the nonapeptide hormone oxytocin with Ni2+, Co2+ and Zn2+, i.e., abundant c/z' and a'/y backbone cleavages and ECD characteristic S-S and S-C bond cleavages were observed. We propose that, although in the oxytocin-transition metal ion complexes the metal ions serve as the main initial capture site, the captured electron is transferred to other sites in the complex to form a hydrogen radical, which drives the subsequent typical ECD fragmentations. The complex of oxytocin with Cu2+ displayed noticeably different ECD behavior. The fragment ions were similar to fragment ions typically observed with low-energy collision induced dissociation (CID). We propose that the electrons captured by the oxytocin-Cu2+ complex might be favorably involved in reducing the Cu2+ metal ion to Cu+. Subsequent energy redistribution would explain the observed low-energy CID-type fragmentations. Electron capture resulted also in quite different specific cleavage sites for the complexes of oxytocin with Ni2+, Co2+ and Zn2+. This is an indication for structural differences in these complexes possibly linked to their significantly different biological effects on oxytocin-receptor binding, and suggests that ECD may be used to study subtle structural differences in transition metal ion-peptide complexes.

  16. Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes

    Science.gov (United States)

    Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M. Arif

    2016-05-01

    We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica.

  17. Copper(II) and nickel(II) complexes of benzyloxybenzaldehyde-4-phenyl-3-thiosemicarbazone: Synthesis, characterization and biological activity

    Science.gov (United States)

    Prathima, B.; Subba Rao, Y.; Adinarayana Reddy, S.; Reddy, Y. P.; Varada Reddy, A.

    2010-09-01

    Benzyloxybenzaldehyde-4-phenyl-3-thiosemicarbazone ligand (L) has been synthesized from benzyloxybenzaldehyde and 4-phenyl-3-thiosemicarbazide. Complexes of this ligand with chlorides of Cu(II) and Ni(II) have been prepared. The structure of the ligand (L) is proposed based on elemental analysis, IR and 1H NMR spectra. Its complexes with Cu(II) and Ni(II) ions are characterized from the studies of electronic as well as EPR spectra. On the basis of electronic and EPR studies, rhombically distorted octahedral structure has been proposed for Cu(II) complex while the Ni(II) complex has been found to acquire an octahedral structure. The ligand and their metal complexes have been tested in vitro for their biological effects. Their antibacterial activities against Gram-negative bacteria ( Escherichia coli and Klebsiella pneumoniae) and Gram-positive bacteria ( Staphylococcus aureus and Bacillus subtilis) have been investigated. The prepared metal complexes exhibit higher antibacterial activities than the parent ligand. The in vitro antioxidant activity of free ligand and its metal(II) complexes have also been investigated and the results however reveal that the ligand exhibits greater antioxidant activity than its complexes.

  18. Spectral, NLO, Fluorescence, and Biological Activity of Knoevenagel Condensate of β-Diketone Ligands and Their Metal(II Complexes

    Directory of Open Access Journals (Sweden)

    S. Sumathi

    2011-01-01

    Full Text Available Transition metal complexes of various acetylacetone-based ligands of the type ML (where M=  Cu(II, Ni(II, Co(II; L=  3-(aryl-pentane-2,4-dione have been synthesized. The structural features have been derived from their elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, H1NMR, mass and ESR spectral studies. Conductivity measurements reveal that all the complexes are nonelectrolytic in nature. Spectroscopic and other analytical data of the complexes suggest square planar geometry for copper(II, cobalt(II, and nickel(II complexes of 3-(3-phenylallylidenepentane-2,4-dione and octahedral geometry for other metal(II complexes. The redox behaviors of the copper(II complexes have been studied by cyclic voltammetry. The free ligands and their metal complexes have been screened for their in vitro biological activities against bacteria and fungus. The metal(II complexes are found to possess increased activities compared to those of the free ligands. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG efficiency of the ligands was found to have considerable effect compared to that of urea and KDP.

  19. Biological properties of aerococci and bacilli as a component of new associate-probiotic complex

    Directory of Open Access Journals (Sweden)

    S. I. Valchuk

    2015-03-01

    Full Text Available Dysbioses of the gastrointestinal tract are common among people of all ages and genders. Development of this pathology is associated with a number of complications, from indigestion to occurrence of malignant disease. Therefore, there is a need in development of measures of their prevention and correction. Probiotics are used as drugs against dysbiosis. Most of the presently known probiotics contain bacterial cells of one species, although combination preparations feature higher efficiency. At the same time, there are difficulties in construction of these drugs, primarily due to incompatibility of physiological properties of microorganisms and mutually antagonistic action of their components. The aim was to examine the compatibility of Bacillus subtilis and Aerococcus viridans in a single preparation, their antagonistic activity against different strains of test-cultures and general antagonism directed on different groups of bacteria for subsequent formation of associative probiotic complex. Properties of aerococci strains were studied and A. viridans 167 strain was selected for inclusion into the probiotic preparation. The tested strain showed the highest indicators of production of hydrogen peroxide, which is one of the mechanisms of antagonistic effect against opportunistic pathogens. General study of biological properties of aerococci strains showed that producing of hydrogen peroxide and superoxide radical in them was conditioned by functioning of NAD-independent lactatoxidase. It has been determined that antioxidant defense of aerococci from the action of endogenous and active excretable forms of oxygen was provided by activity of superoxide-dismutase and GSH-peroxidase. The method of deferred antagonism found no depressing mutual action between probiotic strains of B. subtilis 3 and A. viridans 167 at their joint cultivation. Inhibition of growth at the joint application of A. viridans 167 and B. subtilis 3 strains was recorded for both

  20. Organometallic complexes with biological molecules. XVIII. Alkyltin(IV) cephalexinate complexes: synthesis, solid state and solution phase investigations.

    Science.gov (United States)

    Di Stefano, R; Scopelliti, M; Pellerito, C; Casella, G; Fiore, T; Stocco, G C; Vitturi, R; Colomba, M; Ronconi, L; Sciacca, I D; Pellerito, L

    2004-03-01

    Dialkyltin(IV) and trialkyltin(IV) complexes of the deacetoxycephalo-sporin-antibiotic cephalexin [7-(d-2-amino-2-phenylacetamido)-3-methyl-3-cephem-4-carboxylic acid] (Hceph) have been synthesized and investigated both in solid and solution phase. Analytical and thermogravimetric data supported the general formula Alk(2)SnOHceph(.)H(2)O and Alk(3)Snceph(.)H(2)O (Alk=Me, n-Bu), while structural information has been gained by FT-IR, (119)Sn Mössbauer and (1)H, (13)C, (119)Sn NMR data. In particular, IR results suggested polymeric structures both for Alk(2)SnOHceph(.)H(2)O and Alk(3)Snceph(.)H(2)O. Moreover, cephalexin appears to behave as monoanionic tridentate ligand coordinating the tin(IV) atom through ester-type carboxylate, as well as through beta-lactam carbonyl oxygen atoms and the amino nitrogen donor atoms in Alk(2)SnOHceph(.)H(2)O complexes. On the basis of (119)Sn Mössbauer spectroscopy it could be inferred that tin(IV) was hexacoordinated in such complexes in the solid state, showing skew trapezoidal configuration. As far as Alk(3)Sn(IV)ceph(.)H(2)O derivatives are concerned, cephalexin coordinated the Alk(3)Sn moiety through the carboxylate acting as a bridging bidentate monoanionic group. Again, (119)Sn Mössbauer spectroscopy led us to propose a trigonal configuration around the tin(IV) atom, with R(3)Sn equatorial disposition and bridging carboxylate oxygen atoms in the axial positions. The nature of the complexes in solution state was investigated by using (1)H, (13)C and (119)Sn NMR spectroscopy. Finally, the cytotoxic activity of organotin(IV) cephalexinate derivatives has been tested using two different chromosome-staining techniques Giemsa and CMA(3), towards spermatocyte chromosomes of the mussel Brachidontes pharaonis (Mollusca: Bivalvia). Colchicinized-like mitoses (c-mitoses) on slides obtained from animals exposed to organotin(IV) cephalexinate compounds, demonstrated the high mitotic spindle-inhibiting potentiality of these chemicals

  1. Solid State Structures of Alkali Metal Ion Complexes Formed by Low-Molecular-Weight Ligands of Biological Relevance.

    Science.gov (United States)

    Aoki, Katsuyuki; Murayama, Kazutaka; Hu, Ning-Hai

    2016-01-01

    This chapter provides structural data, mainly metal binding sites/modes, observed in crystal structures of alkali metal ion complexes containing low-molecular-weight ligands of biological relevance, mostly obtained from the Cambridge Structural Database (the CSD version 5.35 updated to February 2014). These ligands include (i) amino acids and small peptides, (ii) nucleic acid constituents (excluding quadruplexes and other oligonucleotides), (iii) simple carbohydrates, and (iv) naturally occurring antibiotic ionophores. For some representative complexes of these ligands, some details on the environment of the metal coordination and structural characteristics are described. PMID:26860299

  2. SYNTHESIS, SPECTROSCOPIC, THERMAL STUDIES AND BIOLOGICAL ACTIVITY OF A NEW SULFAMETHOXAZOLE SCHIFF BASE AND ITS COPPER COMPLEXES

    OpenAIRE

    A. M. Abu-Yamin et al.

    2011-01-01

    A new Sulfamethoxazole Schiff base (E)-4-(4-methoxybenzylideneamino)-N-(5-methylis-oxazol-3-yl) benzenesulfonamide (C18H17N3O4S), and its copper complex were synthesized and the structures elucidated on the basis of Physiochemical methods. The studies indicate an octahedral structure for the complexes with the (C22H27N3O10SCu) formula. The IR spectra suggest that the ligand act as tridentate (from oxygen and two nitrogen atoms) donor. Also the biological activity of the Schiff base and its Cu...

  3. Process Simulation of Complex Biological Pathways in Physical Reactive Space and Reformulated for Massively Parallel Computing Platforms.

    Science.gov (United States)

    Ganesan, Narayan; Li, Jie; Sharma, Vishakha; Jiang, Hanyu; Compagnoni, Adriana

    2016-01-01

    Biological systems encompass complexity that far surpasses many artificial systems. Modeling and simulation of large and complex biochemical pathways is a computationally intensive challenge. Traditional tools, such as ordinary differential equations, partial differential equations, stochastic master equations, and Gillespie type methods, are all limited either by their modeling fidelity or computational efficiency or both. In this work, we present a scalable computational framework based on modeling biochemical reactions in explicit 3D space, that is suitable for studying the behavior of large and complex biological pathways. The framework is designed to exploit parallelism and scalability offered by commodity massively parallel processors such as the graphics processing units (GPUs) and other parallel computing platforms. The reaction modeling in 3D space is aimed at enhancing the realism of the model compared to traditional modeling tools and framework. We introduce the Parallel Select algorithm that is key to breaking the sequential bottleneck limiting the performance of most other tools designed to study biochemical interactions. The algorithm is designed to be computationally tractable, handle hundreds of interacting chemical species and millions of independent agents by considering all-particle interactions within the system. We also present an implementation of the framework on the popular graphics processing units and apply it to the simulation study of JAK-STAT Signal Transduction Pathway. The computational framework will offer a deeper insight into various biological processes within the cell and help us observe key events as they unfold in space and time. This will advance the current state-of-the-art in simulation study of large scale biological systems and also enable the realistic simulation study of macro-biological cultures, where inter-cellular interactions are prevalent.

  4. Molecular Mechanisms Used by Tumors to Escape Immune Recognition: Immunogenetherapy and the Cell Biology of Major Histocompatibility Complex Class I

    OpenAIRE

    Restifo, Nicholas P; Kawakami, Yutaka; Marincola, Franco; Shamamian, Peter; Taggarse, Akash; ESQUIVEL, FERNANDO; Rosenberg, Steven A.

    1993-01-01

    In this article, we explore the hypothesis that tumor cells can escape recognition by CD8+ T cells via deficiencies in antigen processing and presentation. Aspects of the molecular and cellular biology of major histocompatibility complex class I are reviewed. Evidence for histology-specific molecular mechanisms in the antigen-processing and -presentation deficiencies observed in some human and murine tumors is presented. Mechanisms identified include down-regulation of antigen processing, los...

  5. The biological networks in studying cell signal transduction complexity: The examples of sperm capacitation and of endocannabinoid system

    Science.gov (United States)

    Bernabò, Nicola; Barboni, Barbara; Maccarrone, Mauro

    2014-01-01

    Cellular signal transduction is a complex phenomenon, which plays a central role in cell surviving and adaptation. The great amount of molecular data to date present in literature, together with the adoption of high throughput technologies, on the one hand, made available to scientists an enormous quantity of information, on the other hand, failed to provide a parallel increase in the understanding of biological events. In this context, a new discipline arose, the systems biology, aimed to manage the information with a computational modeling-based approach. In particular, the use of biological networks has allowed the making of huge progress in this field. Here we discuss two possible application of the use of biological networks to explore cell signaling: the study of the architecture of signaling systems that cooperate in determining the acquisition of a complex cellular function (as it is the case of the process of activation of spermatozoa) and the organization of a single specific signaling systems expressed by different cells in different tissues (i.e. the endocannabinoid system). In both the cases we have found that the networks follow a scale free and small world topology, likely due to the evolutionary advantage of robustness against random damages, fastness and specific of information processing, and easy navigability. PMID:25379139

  6. Introduction to symposium: Arthropods and wildlife conservation: synergy in complex biological systems

    Science.gov (United States)

    The symposium will discuss the effects of arthropods and other stressors on wildlife conservation programs. Speakers with affiliations in wildlife biology, parasitology and entomology will be included in the program. Research of national and international interest will be presented....

  7. A preliminary biological assessment of Long Lake National Wildlife Refuge Complex, North Dakota

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report represents an initial biological assessment of wetland conditions on Long Lake National Wildlife Refuge (NWR), Slade NWR, and Florence Lake NWR that was...

  8. openBIS: a flexible framework for managing and analyzing complex data in biology research

    OpenAIRE

    Bauch Angela; Adamczyk Izabela; Buczek Piotr; Elmer Franz-Josef; Enimanev Kaloyan; Glyzewski Pawel; Kohler Manuel; Pylak Tomasz; Quandt Andreas; Ramakrishnan Chandrasekhar; Beisel Christian; Malmström Lars; Aebersold Ruedi; Rinn Bernd

    2011-01-01

    Abstract Background Modern data generation techniques used in distributed systems biology research projects often create datasets of enormous size and diversity. We argue that in order to overcome the challenge of managing those large quantitative datasets and maximise the biological information extracted from them, a sound information system is required. Ease of integration with data analysis pipelines and other computational tools is a key requirement for it. Results We have developed openB...

  9. Biological significance of complex N-glycans in plants and their impact on plant physiology

    OpenAIRE

    Strasser, Richard

    2014-01-01

    Asparagine (N)-linked protein glycosylation is a ubiquitous co- and post-translational modification which can alter the biological function of proteins and consequently affects the development, growth, and physiology of organisms. Despite an increasing knowledge of N-glycan biosynthesis and processing, we still understand very little about the biological function of individual N-glycan structures in plants. In particular, the N-glycan-processing steps mediated by Golgi-resident enzymes create...

  10. Efficient Sample Preparation from Complex Biological Samples Using a Sliding Lid for Immobilized Droplet Extractions

    OpenAIRE

    Casavant, Benjamin P.; Guckenberger, David J.; Beebe, David J.; Berry, Scott M

    2014-01-01

    Sample preparation is a major bottleneck in many biological processes. Paramagnetic particles (PMPs) are a ubiquitous method for isolating analytes of interest from biological samples and are used for their ability to thoroughly sample a solution and be easily collected with a magnet. There are three main methods by which PMPs are used for sample preparation: (1) removal of fluid from the analyte-bound PMPs, (2) removal of analyte-bound PMPs from the solution, and (3) removal of the substrate...

  11. Physicochemical and biological study of a renal scintigraphy agent: the DMSA - 99mTc complex

    International Nuclear Information System (INIS)

    This research thesis deals with the study of the dimercaptosuccinic acid (DMSA) marked with 99mTc, a recently developed scintigraphy agent used for the kidney isotopic exploration. The author notably studied the relationships between the physicochemical properties of solutions of dimercaptosuccinic acid marked with 99mTc and the biological distribution of 99mTc in order to reach a better understanding of the biological mechanism which results in technetium fixation to the kidney

  12. Synthesis, physico-chemical characterization and biological activity of 2-aminobenzimidazole complexes with different metal ions

    Directory of Open Access Journals (Sweden)

    Podunavac-Kuzmanović Sanja O.

    2004-01-01

    Full Text Available Complexes of 2-aminobenzimidazole (L with nitrates of cobalt(II nickel(II, copper (II, zinc(II and silver(I were synthesized. The molar ratio metal:ligand in the reaction of the complex formation was 1:2. It should be noticed, that the reaction of all the metal salts yielded bis(ligand complexes of the general formula M(L2(NO32 × nH2O (M=Co, Ni Cu, Zn or Ag; n=0, 1, 2 or 6. The complexes were characterized by elemental analysis of the metal, molar conductivity, magnetic susceptibility measurements and IR spectra. Co(II, Ni(II and Cu(II complexes behave as non-electrolytes, whilst Zn(II and Ag(I are 1:1 electrolytes. Cu(II complex has a square-planar stereochemistry, Ag(I complex is linear, whilst the Co(II, Ni(II and Zn(II complexes have a tetrahedral configuration. In all the complexes ligand is coordinated by participation of the pyridine nitrogen of the benzimidazole ring. The antimicrobial activity of the ligand and its complexes against Pseudomonas aeruginosa, Bacillus sp. Staphylococcus aureus and Saccharomyces cerevisiae was investigated. The effect of metal on the ligand antimicrobial activity is discussed.

  13. Influence of the nucleobase on the physicochemical characteristics and biological activities of Sb{sup V}-ribonucleoside complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Claudio S.; Demicheli, Cynthia, E-mail: demichel@netuno.lcc.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Quimica; Rocha, Iara C.M. da; Melo, Maria N. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Parasitologia; Monte Neto, Rubens L.; Frezard, Frederic [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisiologia e Biofisica

    2010-07-01

    The influence of the nucleobase (uracyl, U; cytosine, C; adenine, A; guanine, G) on the physicochemical characteristics and in vitro biological activities of Sb{sup V}-ribonucleoside complexes has been investigated. The 1:1 Sb-U and Sb-C complexes were characterized by NMR and ESI-MS spectroscopies and elemental analysis. The stability constant and the apparent association and dissociation rate constants of 1:1 Sb{sup V}-U, Sb{sup V}-C and Sb{sup V}-A complexes were determined. Although Sb{sup V} most probably binds via oxygen atoms to the same 2' and 3' positions in the different nucleosides, the ribose conformational changes and the physicochemical characteristics of the complex depend on the nucleobase. The nucleobase had a strong influence on the cytotoxicity against macrophages and the antileishmanial activity of the Sb{sup V}-ribonucleoside complexes. The Sb{sup V}-purine complexes were more cytotoxic and more effective against Leishmania chagasi than the Sb{sup V}-pyrimidine complexes, supporting the model that the interaction of Sb{sup V} with purine nucleosides may mediate the antileishmanial activity of pentavalent antimonial drugs. (author)

  14. Palladium polypyridyl complexes: synthesis, characterization, DNA interaction and biological activity on Leishmania (L.) mexicana

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Maribel [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela). Centro de Quimica; Betancourt, Adelmo [Universidad de Carabobo, Valencia (Venezuela). Facultad Experimental de Ciencia y Tecnologia. Dept. de Quimica; Hernandez, Clara [Universidad de Carabobo Sede Aragua, Maracay (Venezuela). Facultad de Ciencias de la Salud. Dept. de Ciencias Basicas; Marchan, Edgar [Universidad de Oriente, Cumana (Venezuela). Inst. de Investigaciones en Biomedicina y Ciencias Aplicadas. Nucleo de Sucre

    2008-07-01

    This paper describes the search for new potential chemotherapeutic agents based on transition metal complexes with planar ligands. In this study, palladium polypyridyl complexes were synthesized and characterized by elemental analysis, NMR, UV-VIS and IR spectroscopies. The interaction of the complexes with DNA was also investigated by spectroscopic methods. All metal-to-ligand charge transfer (MLCT) bands of the palladium polypyridyl complexes exhibited hypochromism and red shift in the presence of DNA. The binding constant and viscosity data suggested that the complexes [PdCl{sub 2}(phen)] and [PdCl{sub 2}(phendiamine)] interact with DNA by electrostatic forces. Additionally, these complexes induced an important leishmanistatic effect on L. (L.) mexicana promastigotes at the final concentration of 10 {mu}mol L{sup -1} in 48 h. (author)

  15. Biological correlates of complex posttraumatic stress disorder*state of research and future directions

    OpenAIRE

    Marinova, Zoya; Maercker, Andreas

    2015-01-01

    Complex posttraumatic stress disorder (PTSD) presents with clinical features of full or partial PTSD (re-experiencing a traumatic event, avoiding reminders of the event, and a state of hyperarousal) together with symptoms from three additional clusters (problems in emotional regulation, negative self-concept, and problems in interpersonal relations). Complex PTSD is proposed as a new diagnostic entity in ICD-11 and typically occurs after prolonged and complex trauma. Here we shortly review cu...

  16. Synthesis, Characterization and Biological Activity of an Intramolecular Stacking Zinc(Ⅱ) Complex

    Institute of Scientific and Technical Information of China (English)

    GAO, Enjun; LIU, Lei; ZHU, Mingchang; WU, Qiong

    2009-01-01

    The synthesis, crystallographic analysis and spectroscopic study of a zinc(Ⅱ) complex [Zn(bipy)(pmal)(H2O)]· 2H2O (bipy=2,2'-bipyfidine, pmal=phenylmalonic acid) were carded out. The complex has been investigated by the methods of X-ray crystallography, elemental analysis and IR spectra. The binding ability of the Zn(Ⅱ) complex to calf thymus (CT-DNA) was characterized by measuring the effects on the UV spectroscopy and fluorescence spectra of DNA. The agarose gel electrophoresis experimental results suggest that the ligand planaxity of complex has a significant effect on cleaving the pBR322 plasmid DNA.

  17. openBIS: a flexible framework for managing and analyzing complex data in biology research

    Directory of Open Access Journals (Sweden)

    Bauch Angela

    2011-12-01

    Full Text Available Abstract Background Modern data generation techniques used in distributed systems biology research projects often create datasets of enormous size and diversity. We argue that in order to overcome the challenge of managing those large quantitative datasets and maximise the biological information extracted from them, a sound information system is required. Ease of integration with data analysis pipelines and other computational tools is a key requirement for it. Results We have developed openBIS, an open source software framework for constructing user-friendly, scalable and powerful information systems for data and metadata acquired in biological experiments. openBIS enables users to collect, integrate, share, publish data and to connect to data processing pipelines. This framework can be extended and has been customized for different data types acquired by a range of technologies. Conclusions openBIS is currently being used by several SystemsX.ch and EU projects applying mass spectrometric measurements of metabolites and proteins, High Content Screening, or Next Generation Sequencing technologies. The attributes that make it interesting to a large research community involved in systems biology projects include versatility, simplicity in deployment, scalability to very large data, flexibility to handle any biological data type and extensibility to the needs of any research domain.

  18. Symphonia globulifera, a widespread source of complex metabolites with potent biological activities.

    Science.gov (United States)

    Fromentin, Yann; Cottet, Kevin; Kritsanida, Marina; Michel, Sylvie; Gaboriaud-Kolar, Nicolas; Lallemand, Marie-Christine

    2015-01-01

    Symphonia globulifera has been widely used in traditional medicine and has therefore been subjected to several phytochemical studies in the American and African continents. Interestingly, some disparities have been observed concerning its metabolic profile. Several phytochemical studies of S. globulifera have led to the identification of more than 40 compounds, including several polycyclic polyprenylated acylphloroglucinols. Biological evaluations have pointed out the promising biological activities of these secondary metabolites, mostly as antiparasitic or antimicrobial, confirming the traditional use of this plant. The purpose of this review is to describe the natural occurrence, botanical aspects, ethnomedicinal use, structure, and biogenesis, as well as biological activities of compounds isolated from this species according to their provenance. PMID:25590372

  19. Novel Bis-β-diketone-type Ligand and Its Copper and Zinc Complexes for Two-photon Biological Imaging

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shuang-sheng; XUE Xuan; WEI Dong; JIANG Bo; WANG Jia-feng; LU Cheng-hua

    2012-01-01

    A curcumin derivative ligand,1,7-bis(3-methoxyl-4-oxyethylacetate)phenyl-1,6-heptadiene-3,5-diketone (diethyl acetatecurcumin,abbreviated as HL),and its Cu(Ⅱ) and Zn(Ⅱ) complexes have been synthesized and characterized by elemental analyses,infrared(IR),1H NMR and molar conductivity.The experimental results show that the resulting complexes bear strong two-photon excited fluorescence(TPEF) in N,N-dimethyformamide solvent,which has been proven to be potentially useful for two-photon microscopy imaging in living cells.In addition,cytotoxicity tests show that the low-micromolar concentrations of metal-ligand complex(ML2) did not cause significant reduction in cell viability over a pcriod of,at least,24 h and should be safe for further biological studies.

  20. Synthesis, physical characterization and biological evaluation of Schiff base M(II complexes

    Directory of Open Access Journals (Sweden)

    Mahasin Alias

    2014-04-01

    Full Text Available Metal (II complexes of Cu, Ni, and Co with Schiff base derived from potassium 2-N (4-N,N-dimethylaminobenzyliden- 4-trithiocarbonate 1,3,4-thiadiazole (L were synthesized and characterized by standard physico-chemical procedures i.e. (metal analysis A.A, elemental chemical analysis C.H.N.S, FTIR, UV–vis, thermal analysis TGA, magnetic susceptibility and conductometric measurements. On the basis of these studies, a six coordinated octahedral geometry for all these complexes has been proposed. The Schiff base ligand and its complexes were also tested for their antibacterial activity to assess their inhibiting potential against Pseudomonas aeruginosa (as gram negative bacteria and Staphylococcus aureus (as gram positive bacteria using two different concentrations (5 and 10 mM. The results showed the Ni(II complex have the higher rate in antibacterial activity than other complexes and ligand when compared them with ampicillin as standard drug.

  1. Spectroscopic and biological studies on newly synthesized nickel(II) complexes of semicarbazones and thiosemicarbazones

    Science.gov (United States)

    Chandra, Sulekh; Gupta, Lokesh Kumar

    2005-12-01

    Nickel(II) complexes, having the general composition Ni(L) 2X 2, have been synthesized [where L: isopropyl methyl ketone semicarbazone (LLA), isopropyl methyl ketone thiosemicarbazone (LLB), 4-aminoacetophenone semicarbazone (LLC) and 4-aminoacetophenone thiosemicarbazone (LLD) and X = Cl -, 1/2SO 42-]. All the Ni(II) complexes reported here have been characterized by elemental analyses, magnetic moments, IR, electronic and mass spectral studies. All the complexes were found to have magnetic moments corresponding to two unpaired electrons. The possible geometries of the complexes were assigned on the basis of electronic and infrared spectral studies. Newly synthesized ligand and its nickel(II) complexes have been screened against different bacterial and fungal growth.

  2. Synthesis, characterisation and biological evaluation of copper and silver complexes based on acetylsalicylic acid.

    Science.gov (United States)

    Rubner, Gerhard; Bensdorf, Kerstin; Wellner, Anja; Bergemann, Silke; Gust, Ronald

    2011-10-01

    Metalcarbonyl complexes with ligands derived from acetylsalicylic acid demonstrated high cytotoxic potential against various tumor cell lines and strong inhibition of the cyclooxygenase enzymes COX-1 and 2. In this study we tried to achieve comparable effects with [alkyne]silver or copper trifluoromethanesulfonate complexes which are more hydrophilic then the uncharged metalcarbonyl derivatives. All compounds were evaluated for growth inhibition against breast (MCF-7, MDA-MB 231) and colon cancer (HT-29) cell lines and for COX-1 and COX-2 inhibitory effects at isolated isoenzymes. Pure ligands showed neither cytotoxic nor COX-inhibitory effects. While the silver complexes of (but-2-ynyl)-2-acetoxybenzoate (But-ASS-Ag) and (but-2-yne-1,4-diyl)-bis(2-acetoxybenzoate) (Di-ASS-But-Ag) were strong cytostatics, only the copper complex Di-ASS-But-Cu was active. At the COX enzymes the complexes were more effective than their ligands and aspirin.

  3. Identification of Copper(II) Complexes in Aqueous Solution by Electron Spin Resonance: An Undergraduate Coordination Chemistry Experiment.

    Science.gov (United States)

    Micera, G.; And Others

    1984-01-01

    Background, procedures, and results are provided for an experiment which examines, through electron spin resonance spectroscopy, complex species formed by cupric and 2,6-dihydroxybenzoate ions in aqueous solutions. The experiment is illustrative of several aspects of inorganic and coordination chemistry, including the identification of species…

  4. Co(II) and Cd(II) Complexes Derived from Heterocyclic Schiff-Bases: Synthesis, Structural Characterisation, and Biological Activity

    Science.gov (United States)

    Ahmed, Riyadh M.; Yousif, Enaam I.; Al-Jeboori, Mohamad J.

    2013-01-01

    New monomeric cobalt and cadmium complexes with Schiff-bases, namely, N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]furan-2-carbohydrazide (L1) and N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]thiophene-2-carbohydrazide (L2) are reported. Schiff-base ligands L1 and L2 were derived from condensation of 3-hydroxy-4-methoxybenzaldehyde (iso-vanillin) with furan-2-carboxylic acid hydrazide and thiophene-2-carboxylic acid hydrazide, respectively. Complexes of the general formula [M(L)2]Cl2 (where M = Co(II) or Cd(II), L = L1 or L2) have been obtained from the reaction of the corresponding metal chloride with the ligands. The ligands and their metal complexes were characterised by spectroscopic methods (FTIR, UV-Vis, 1H, and 13C NMR spectra), elemental analysis, metal content, magnetic measurement, and conductance. These studies revealed the formation of four-coordinate complexes in which the geometry about metal ion is tetrahedral. Biological activity of the ligands and their metal complexes against gram positive bacterial strain Bacillus (G+) and gram negative bacteria Pseudomonas (G−) revealed that the metal complexes become less resistive to the microbial activities as compared to the free ligands. PMID:24027449

  5. Synthesis, spectroscopic, coordination and biological activities of some organometallic complexes derived from thio-Schiff base ligands

    Science.gov (United States)

    Abou-Hussein, Azza A.; Linert, Wolfgang

    2014-01-01

    Two series of mono- and binuclear complexes cyclic or acyclic thio-ferocine Schiff base ligands, derived from the condensation of 2-aminobenzenthiol (L) with monoacetyl ferrocene in the molar ratio 1:1 or in the molar ratio 1:2 for diacetyl ferocine have been prepared. The condensation reactions yield the corresponding Schiff Base ligands, HLa-Maf and H2Lb-Daf. The chelation of the ligands to metal ions occurs through the sulfur of the thiol group as well as the nitrogen atoms of the azomethine group of the ligands. HLa-Maf acts as monobasic bidentate or dibasic tetradentate, while H2Lb-Daf behaves as twice negatively cargend tetradentate ligand. The structures of these ligands were elucidated by elemental analysis, infrared, ultraviolet-visible spectra, as well as 1H NMR spectra. Reactions of the Schiff bases ligands with ruthenium(III), oxovanadium(IV) and dioxouranium(VI) afforded the corresponding transition metal complexes. The properties of the newly prepared complexes were analyse by elemental analyses, infrared, electronic spectra, 1H NMR as well as the magnetic susceptibility and conductivity measurement. The metal complexes exhibits different geometrical arrangements such as octahedral and square pyramidal coordination. Schiff base ligands and their metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi to study their biological activity. All the complexes exhibit antibacterial and antifungal activities against these organisms.

  6. Oxidative leaching process with cupric ion in hydrochloric acid media for recovery of Pd and Rh from spent catalytic converters.

    Science.gov (United States)

    Nogueira, C A; Paiva, A P; Oliveira, P C; Costa, M C; da Costa, A M Rosa

    2014-08-15

    The recycling of platinum-group metals from wastes such as autocatalytic converters is getting growing attention due to the scarcity of these precious metals and the market pressure originated by increase of demand in current and emerging applications. Hydrometallurgical treatment of such wastes is an alternative way to the most usual pyrometallurgical processes based on smelter operations. This paper focuses on the development of a leaching process using cupric chloride as oxidising agent, in HCl media, for recovery of palladium and rhodium from a spent catalyst. The chloride media allows the adequate conditions for oxidising and solubilising the metals, as demonstrated by equilibrium calculations based on thermodynamic data. The experimental study of the leaching process revealed that Pd solubilisation is clearly easier than that of Rh. The factors temperature, time, and HCl and Cu(2+) concentrations were significant regarding Pd and Rh leaching, the latter requiring higher factor values to achieve the same results. Leaching yields of 95% Pd and 86% Rh were achieved under optimised conditions (T = 80 °C, t = 4h, [HCl] = 6M, [Cu(2+)] = 0.3M).

  7. Oxidative leaching process with cupric ion in hydrochloric acid media for recovery of Pd and Rh from spent catalytic converters

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, C.A., E-mail: carlos.nogueira@lneg.pt [Laboratório Nacional de Energia e Geologia, I.P., Campus do Lumiar, 1649-038 Lisboa (Portugal); Paiva, A.P., E-mail: appaiva@fc.ul.pt [Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa (Portugal); Oliveira, P.C. [Laboratório Nacional de Energia e Geologia, I.P., Campus do Lumiar, 1649-038 Lisboa (Portugal); Costa, M.C., E-mail: mcorada@ualg.pt [Centro de Ciências do Mar, Departamento de Química e Farmácia, Faculdade de Ciências e de Tecnologia, Campus de Gambelas, 8005-139 Faro (Portugal); Costa, A.M. Rosa da, E-mail: amcosta@ualg.pt [Centro de Investigação em Química do Algarve, Departamento de Química e Farmácia, Faculdade de Ciências e de Tecnologia, Campus de Gambelas, 8005-139 Faro (Portugal)

    2014-08-15

    Highlights: • A new leaching process based on Cu{sup 2+}/HCl media for recovering Pd and Rh from spent autocatalytic converters is presented. • Palladium and rhodium were efficiently leached, with attained maximum yields of 95% and 86%, respectively. • Temperature, time, and HCl and Cu{sup 2+} concentrations were found to be significant factors in the leaching of Pd and Rh. - Abstract: The recycling of platinum-group metals from wastes such as autocatalytic converters is getting growing attention due to the scarcity of these precious metals and the market pressure originated by increase of demand in current and emerging applications. Hydrometallurgical treatment of such wastes is an alternative way to the most usual pyrometallurgical processes based on smelter operations. This paper focuses on the development of a leaching process using cupric chloride as oxidising agent, in HCl media, for recovery of palladium and rhodium from a spent catalyst. The chloride media allows the adequate conditions for oxidising and solubilising the metals, as demonstrated by equilibrium calculations based on thermodynamic data. The experimental study of the leaching process revealed that Pd solubilisation is clearly easier than that of Rh. The factors temperature, time, and HCl and Cu{sup 2+} concentrations were significant regarding Pd and Rh leaching, the latter requiring higher factor values to achieve the same results. Leaching yields of 95% Pd and 86% Rh were achieved under optimised conditions (T = 80 °C, t = 4 h, [HCl] = 6 M, [Cu{sup 2+}] = 0.3 M)

  8. Structural, morphological, electrical, and optical properties of silver thin films of varying thickness deposited on cupric oxide

    Science.gov (United States)

    Hajakbari, Fatemeh; Shafieinejad, Farzaneh

    2016-03-01

    In this investigation, silver (Ag) films of varying thickness (25-100 nm) were grown on cupric oxide (CuO) on silicon and quartz. The CuO preparation was carried out by the thermal oxidation annealing of copper (Cu) thin films deposited by DC magnetron sputtering. The physical properties of the prepared films were studied by different techniques. Rutherford backscattering spectroscopy (RBS) analysis indicated that the Ag film thickness was about 25-100 nm. X-ray diffraction (XRD) results showed that by increasing Ag thickness, the film crystallinity was improved. Also, atomic force microscopy (AFM) and scanning electron microscopy (SEM) results demonstrated that the surface morphology and the grain size were affected by the Ag film thickness. Furthermore, the electrical resistivity of films determined by four-point probe measurements versus the Ag film thickness was discussed. A reduction in the optical band gap energy of CuO is observed from 1.51 to 1.42 eV with an increase in Ag film thickness to 40 nm in Ag/CuO films.

  9. Measuring the complex permittivity tensor of uniaxial biological materials with coplanar waveguide transmission line

    Science.gov (United States)

    A simple and accurate technique is described for measuring the uniaxial permittivity tensor of biological materials with a coplanar waveguide transmission-line configuration. Permittivity tensor results are presented for several chicken and beef fresh meat samples at 2.45 GHz....

  10. Preliminary radiochemical and biological studies on the liposome encapsulated platinum-[125I]iodohistamine complex

    International Nuclear Information System (INIS)

    The platinum-iodohistamine complex with in vitro cytostatic activity toward colon and mammary cancer cells has been synthesised recently in our laboratory. The pharmacokinetics of radioactive complex analogues, labelled with I-131 and I-125, has been examined in murine model of spontaneous mammary adenocarcinoma. The present work is devoted to the examination of the potential use of liposomes as a carrier system for the radioactive platinum-[*I]iodohistamine complex in vivo. Encapsulations of the Pt-125I]iodohistamine were studied using a different molar ratio of the complex and liposomes with positive surface charge, as well as various incubation procedures. Biodistribution of the initial and the liposomal form of the complex were studied in C3H tumour-bearing mice with spontaneously developed and transplantable (16C) mammary adenocarcinoma. Comparative biodistribution studies in C3H/16C mice and in mice with spontaneously developed mammary tumour have shown that in the former model pharmacokinetics of the Pt-[125 I]iodohistamine complex is more predictable and more similar to that observed for cisplatin. Therefore, the transplantable tumour model is more advantageous for the complex and its liposomal form evaluation. In C3H/16C mice, significant differences in the biodistribution between the radioactive platinum complex and its liposomal form were observed. The concentration of the activity in blood after 2 h p.i.v. was two times lower for the encapsulated complex, and the uptake of the radioactivity by liver, spleen, and lungs was twice as high as that obtained for the free Pt-[125I]iodohistamine preparation. The radioactivity in tumour was almost constant for liposomal platinum complex (ca. 2% ID/g), although it was two times lower compared to the initial platinum complex. The results of the present study indicate that platinum-[*I]iodohistamine can be efficiently incorporated into cationic liposomes (c. 40%). However, the uptake of the encapsulated complex by

  11. DNA structure, binding mechanism and biology functions of polypyridyl complexes in biomedicine

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    There is considerable research interest and vigorous debate about the DNA binding of polypyridyl complexes including the electron transfer involving DNA. In this review, based on the fluorescence quenching experiments, it was proposed that DNA might serve as a conductor. From the time-interval CD spectra, the different binding rates of D- and L-enantiomer to calf thymus DNA were observed. The factors influencing the DNA-binding of polypyridyl complexes, and the potential bio-functions of the complexes are also discussed.

  12. Dynamics on and of complex networks applications to biology, computer science, and the social sciences

    CERN Document Server

    Ganguly, Niloy; Mukherjee, Animesh

    2009-01-01

    This self-contained book systematically explores the statistical dynamics on and of complex networks having relevance across a large number of scientific disciplines. The theories related to complex networks are increasingly being used by researchers for their usefulness in harnessing the most difficult problems of a particular discipline. The book is a collection of surveys and cutting-edge research contributions exploring the interdisciplinary relationship of dynamics on and of complex networks. Towards this goal, the work is thematically organized into three main sections: Part I studies th

  13. Capillary zone electrophoresis for analysis of phytochelatins and other thiol peptides in complex biological samples derivatized with monobromobimane.

    Science.gov (United States)

    Perez-Rama, Mónica; Torres Vaamonde, Enrique; Abalde Alonso, Julio

    2005-02-01

    A new method to improve the analysis of phytochelatins and their precursors (cysteine, gamma-Glu-Cys, and glutathione) derivatized with monobromobimane (mBrB) in complex biological samples by capillary zone electrophoresis is described. The effects of the background electrolyte pH, concentration, and different organic additives (acetonitrile, methanol, and trifluoroethanol) on the separation were studied to achieve optimum resolution and number of theoretical plates of the analyzed compounds in the electropherograms. Optimum separation of the thiol peptides was obtained with 150 mM phosphate buffer at pH 1.60. Separation efficiency was improved when 2.5% v/v methanol was added to the background electrolyte. The electrophoretic conditions were 13 kV and capillary dimensions with 30 cm length from the inlet to the detector (38 cm total length) and 50 microm inner diameter. The injection was by pressure at 50 mbar for 17 s. Under these conditions, the separation between desglycyl-peptides and phytochelatins was also achieved. We also describe the optimum conditions for the derivatization of biological samples with mBrB to increase electrophoretic sensitivity and number of theoretical plates. The improved method was shown to be simple, reproducible, selective, and accurate in measuring thiol peptides in complex biological samples, the detection limit being 2.5 microM glutathione at a wavelength of 390 nm.

  14. Structural Biology of Proteins of the Multi-enzyme Assembly Human Pyruvate Dehydrogenase Complex

    Science.gov (United States)

    2003-01-01

    Objectives and research challenges of this effort include: 1. Need to establish Human Pyruvate Dehydrogenase Complex protein crystals; 2. Need to test value of microgravity for improving crystal quality of Human Pyruvate Dehydrogenase Complex protein crystals; 3. Need to improve flight hardware in order to control and understand the effects of microgravity on crystallization of Human Pyruvate Dehydrogenase Complex proteins; 4. Need to integrate sets of national collaborations with the restricted and specific requirements of flight experiments; 5. Need to establish a highly controlled experiment in microgravity with a rigor not yet obtained; 6. Need to communicate both the rigor of microgravity experiments and the scientific value of results obtained from microgravity experiments to the national community; and 7. Need to advance the understanding of Human Pyruvate Dehydrogenase Complex structures so that scientific and commercial advance is identified for these proteins.

  15. Nanoparticular iron complex drugs for parenteral administration - physicochemical characterization, biological distribution and pharmacological safety

    OpenAIRE

    Fütterer, Sören

    2014-01-01

    Iron deficiency is the most common deficiency disease worldwide with many patients who require intravenous iron. Within the last years new kind of parenteral iron complexes as well as generic preparations entered the market. There is a high demand for methods clarifying benefit to risk profiles of old and new iron complexes. It is also necessary to disclose interchangeability between originator and intended copies to avoid severe anaphylactic and anaphylactoid side reaction and assure equival...

  16. Tris(thioimidazolyl)borate-zinc-thiolate complexes for the modeling of biological thiolate alkylations.

    Science.gov (United States)

    Ibrahim, Mohamed M; Seebacher, Jan; Steinfeld, Gunther; Vahrenkamp, Heinrich

    2005-11-14

    The S3Zn-SR coordination of thiolate-alkylating enzymes such as the Ada DNA repair protein was reproduced in tris(thioimidazolyl)borate-zinc-thiolate complexes Tti(R)Zn-SR'. Four different Tti(R) ligands and nine different thiolates were employed, yielding a total of 12 new complexes. In addition, one Tti(R)Zn-SH complex and two thiolate-bridged [Tti(R)-SEt-Tti(R)]+ complexes were obtained. A selection of six thiolate complexes was converted with methyl iodide to the corresponding methyl thioethers and Tti(R)Zn-I. According to a kinetic analysis these reactions are second-order processes, which implies that the alkylations are likely to occur at the zinc-bound thiolates. They are much faster than the alkylations of zinc thiolates with N3 or N2S tripod ligands. The most reactive thiolate, Tti(Xyl)Zn-SEt, reacts slowly with trimethyl phosphate in a nonpolar medium at room temperature, yielding methyl-ethyl-thioether and Tti(Xyl)Zn-OPO(OMe)2 which can be converted back to the thiolate complex with NaSEt. This is the closest reproduction of the Ada repair process so far. PMID:16270993

  17. Metal complexes of the fourth generation quinolone antimicrobial drug gatifloxacin: Synthesis, structure and biological evaluation

    Science.gov (United States)

    Sadeek, Sadeek A.; El-Shwiniy, Walaa H.

    2010-08-01

    Three metal complexes of the fourth generation quinolone antimicrobial agent gatifloxacin (GFLX) with Y(ΙΙΙ), Zr(ΙV) and U(VΙ) have been prepared and characterized with physicochemical and spectroscopic techniques. In these complexes, gatifloxacin acts as a bidentate deprotonated ligand bound to the metal through the ketone oxygen and a carboxylato oxygen. The complexes are six-coordinated with distorted octahedral geometry. The kinetic parameters for gatifloxacin and the three prepared complexes have been evaluated from TGA curves by using Coats-Redfern (CR) and Horowitz-Metzeger (HM) methods. The calculated bond length and force constant, F(U dbnd O), for the UO 2 bond in uranyl complex are 1.7522 Å and 639.46 N m -1. The antimicrobial activity of the complexes has been tested against microorganisms, three bacterial species, such as Staphylococcus aureus ( S. aureus), Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) and two fungi species, penicillium ( P. rotatum) and trichoderma ( T. sp.), showing that they exhibit higher activity than free ligand.

  18. Synthesis characterization and biological evaluation of a novel mixed ligand 99mTc complex as potential brain imaging agent

    International Nuclear Information System (INIS)

    One approach in the design of neutral oxotechnetium complexes is based on the simultaneous substitution of a tridentate dianionic ligand and a monodentate monoanionic coligand on a [Tc(V)O]+3 precursor. Following this ''mixed ligand'' concept, a novel 99mTc complex with N,N-bis(2-mercaptoethyl)-N'N'-diethylethylenediamine as ligand and 1-octanethiol as coligand is prepared and evaluated as potential brain radiopharmaceutical. Preparation of the complex at tracer level was accomplished by using 99mTc-glucoheptonate as precursor. The substitution was optimized and a coligand/ligand ratio of 5 was selected. Under this conditions the labeling yield was over 80% and a major product (with radiochemical purity > 80%) was isolated by HPLC methods and used for biological evaluation. Chemical characterization at carrier level was developed using the corresponding rhenium complex as structural model. The Re complex was also prepared by substitution method and isolated as a crystalline product. The crystals were characterized by UV-vis and IR spectra and elemental analysis. Results were consistent with the expected ReOLC structure. X ray crystallographic study demonstrated that the complex adopts a distorted trigonal bipyramidal geometry. The basal plane is defined by the SS atoms of the ligand and the oxo group, while the N of the ligand and the S of the colligand occupy the two apical positions. All sulphur atoms underwent ionization leading to the formation of a neutral compound. 99Tc complex was also prepared. Although it was not isolated due to the small amount of reagents employed, the HPLC profile was identical to the one observed for the rhenium complex suggesting the same chemical structure. Biodistribution in mice demonstrated early brain uptake, fast blood clearance, excretion through hepatobiliary system and a brain/blood ratio that increased significantly with time. (author)

  19. Alkali Metal Ion Complexes with Phosphates, Nucleotides, Amino Acids, and Related Ligands of Biological Relevance. Their Properties in Solution.

    Science.gov (United States)

    Crea, Francesco; De Stefano, Concetta; Foti, Claudia; Lando, Gabriele; Milea, Demetrio; Sammartano, Silvio

    2016-01-01

    Alkali metal ions play very important roles in all biological systems, some of them are essential for life. Their concentration depends on several physiological factors and is very variable. For example, sodium concentrations in human fluids vary from quite low (e.g., 8.2 mmol dm(-3) in mature maternal milk) to high values (0.14 mol dm(-3) in blood plasma). While many data on the concentration of Na(+) and K(+) in various fluids are available, the information on other alkali metal cations is scarce. Since many vital functions depend on the network of interactions occurring in various biofluids, this chapter reviews their complex formation with phosphates, nucleotides, amino acids, and related ligands of biological relevance. Literature data on this topic are quite rare if compared to other cations. Generally, the stability of alkali metal ion complexes of organic and inorganic ligands is rather low (usually log K  Na(+) > K(+) > Rb(+) > Cs(+). For example, for citrate it is: log K ML = 0.88, 0.80, 0.48, 0.38, and 0.13 at 25 °C and infinite dilution. Some considerations are made on the main aspects related to the difficulties in the determination of weak complexes. The importance of the alkali metal ion complexes was also studied in the light of modelling natural fluids and in the use of these cations as probes for different processes. Some empirical relationships are proposed for the dependence of the stability constants of Na(+) complexes on the ligand charge, as well as for correlations among log K values of NaL, KL or LiL species (L = generic ligand). PMID:26860301

  20. Finding complex biological relationships in recent PubMed articles using Bio-LDA.

    Directory of Open Access Journals (Sweden)

    Huijun Wang

    Full Text Available The overwhelming amount of available scholarly literature in the life sciences poses significant challenges to scientists wishing to keep up with important developments related to their research, but also provides a useful resource for the discovery of recent information concerning genes, diseases, compounds and the interactions between them. In this paper, we describe an algorithm called Bio-LDA that uses extracted biological terminology to automatically identify latent topics, and provides a variety of measures to uncover putative relations among topics and bio-terms. Relationships identified using those approaches are combined with existing data in life science datasets to provide additional insight. Three case studies demonstrate the utility of the Bio-LDA model, including association predication, association search and connectivity map generation. This combined approach offers new opportunities for knowledge discovery in many areas of biology including target identification, lead hopping and drug repurposing.

  1. Finding complex biological relationships in recent PubMed articles using Bio-LDA.

    Science.gov (United States)

    Wang, Huijun; Ding, Ying; Tang, Jie; Dong, Xiao; He, Bing; Qiu, Judy; Wild, David J

    2011-03-23

    The overwhelming amount of available scholarly literature in the life sciences poses significant challenges to scientists wishing to keep up with important developments related to their research, but also provides a useful resource for the discovery of recent information concerning genes, diseases, compounds and the interactions between them. In this paper, we describe an algorithm called Bio-LDA that uses extracted biological terminology to automatically identify latent topics, and provides a variety of measures to uncover putative relations among topics and bio-terms. Relationships identified using those approaches are combined with existing data in life science datasets to provide additional insight. Three case studies demonstrate the utility of the Bio-LDA model, including association predication, association search and connectivity map generation. This combined approach offers new opportunities for knowledge discovery in many areas of biology including target identification, lead hopping and drug repurposing.

  2. Synthesis, structural characterization and biological activity of a trinuclear zinc(II) complex: DNA interaction study and antimicrobial activity

    Indian Academy of Sciences (India)

    Bhaskar Biswas; Niranjan Kole; Moumita Patra; Shampa Dutta; Mousumi Ganguly

    2013-11-01

    A trinuclear zinc(II) complex [Zn3L2(-O2CCH3)2(H2O)2]·H2O·2CH3OH (1) was synthesized from an in situ reaction between zinc acetate and a Schiff base ligand (H2L = 2-((2-hydroxyphenylimino) methyl)-6-methoxyphenol). The ligand was prepared by (1:1) condensation of ortho-vanillin and ortho-aminophenol. The ligand and zinc(II) complex were characterized by elemental analysis, Fourier Transform Infrared (FTIR), 1H-Nuclear Magnetic Resonance (NMR), UV-Vis spectroscopy, Powder X-ray Diffraction (PXRD) and thermogravimetric analysis. 1 crystallizes in P-1 space group with = 11.9241(3) Å, = 12.19746 Å, = 20.47784 Å with unit cell volume is 2674.440 (Å)3. Binding property of the complex with calf thymus DNA (CT-DNA) has been investigated using absorption and emission studies. Thermal melting and viscosity experiments were further performed to determine the mode of binding of 1 with CT-DNA. Spectroscopic and viscosity investigations revealed an intercalative binding mode of 1 with CT-DNA. The ligand and its zinc complex were screened for their biological activity against bacterial species and fungi. Activity data show that the metal complex has more antibacterial and antifungal activity than the parent Schiff base ligand and against those bacterial or fungi species.

  3. Synthesis, structural characterization and biological activities of organotin(IV) complexes with 5-allyl-2-hydroxy-3-methoxybenzaldehyde-4-thiosemicarbazone

    Indian Academy of Sciences (India)

    Rosenani A Haque; M A Salam

    2015-09-01

    The organotin(IV) complexes [MeSnCl(L)] (2), [BuSnCl(L)] (3), [PhSnCl(L)] (4) and [Me2Sn(L)] (5) were synthesized by reacting organotin(IV) chloride(s) with 5-allyl-2-hydroxy-3-methoxybenzaldehyde- 4-thiosemicarbazone [H2L], (1)] in presence of KOH in 1:2:1 molar ratio (metal salt: base:ligand). All the complexes have been characterized by elemental analyses, UV-Vis, FT-IR, 1H, 13C and 119Sn NMR spectral studies. The molecular structure of complex 5 has been confirmed by single crystal X-ray diffraction analysis. The ligand, H2L coordinates to Sn(IV) in thiolate form through phenoxide-O, azomethine-N and thiolate-S atoms. The C-Sn-C angle measured from coupling constant 1 (119Sn, 13C) for dimethyltin(IV) complex 5 is 123.4°. The 2 (119Sn, 1H) coupling constant values for complex 2 and 5 are 72.4 and 76.3 Hz, respectively. Proposed geometry for five coordinated Sn(IV) atom is a strongly distorted trigonal bipyramid. Biological studies were preformed in vitro against four bacterial strains which have shown better activities and potential as antibacterial agents.

  4. Spectroscopic, Thermal and Biological Studies on Some Trivalent Ruthenium and Rhodium NS Chelating Thiosemicarbazone Complexes

    OpenAIRE

    Vinod K Sharma; Shipra Srivastava; Ankita Srivastava

    2007-01-01

    The synthetic, spectroscopic, and biological studies of sixteen ring-substituted 4-phenylthiosemicarbazones and 4-nitrophenyl-thiosemicarbazones of anisaldehyde, 4-chlorobenzaldehyde, 4-fluorobenzaldehyde, and vanillin with ruthenium(III) and rhodium(III) chlorides are reported here. Their structures were determined on the basis of the elemental analyses, spectroscopic data (IR, electronic, 1H and 13C NMR) along with magnetic susceptibility measurements, molar conductivity and thermogravimetr...

  5. Total Integrated Sample Preparation for Microfluidic Immunoassays in Complex Biological Matrices

    OpenAIRE

    Apori, Akwasi Asare

    2011-01-01

    A high-throughput protein analysis platform with integrated sample preparation is developed to address the identified technology gaps in biomarker validation, clinical and point-of-care diagnostics. The goals of the technology are to automate and integrate protein sample preparation with electrokinetic separations, implement immunoassays capable of processing raw biological fluids, and perform high-throughput protein assays targeted for disease diagnosis.Integration of multiple functions is ...

  6. Ecological Complexity in a Coffee Agroecosystem: Spatial Heterogeneity, Population Persistence and Biological Control

    OpenAIRE

    Heidi Liere; Doug Jackson; John Vandermeer

    2012-01-01

    BACKGROUND: Spatial heterogeneity is essential for the persistence of many inherently unstable systems such as predator-prey and parasitoid-host interactions. Since biological interactions themselves can create heterogeneity in space, the heterogeneity necessary for the persistence of an unstable system could be the result of local interactions involving elements of the unstable system itself. METHODOLOGY/PRINCIPAL FINDINGS: Here we report on a predatory ladybird beetle whose natural history ...

  7. Modulation of the Biological Activity of a Tobacco LTP1 by Lipid Complexation

    OpenAIRE

    Buhot, Nathalie; Gomès, Eric; Milat, Marie-Louise; Ponchet, Michel; Marion, Didier; Lequeu, José; Delrot, Serge; Coutos-Thévenot, Pierre; Blein, Jean-Pierre

    2004-01-01

    Plant lipid transfer proteins (LTPs) are small, cysteine-rich proteins secreted into the extracellular space. They belong to the pathogenesis-related proteins (PR-14) family and are believed to be involved in several physiological processes including plant disease resistance, although their precise biological function is still unknown. Here, we show that a recombinant tobacco LTP1 is able to load fatty acids and jasmonic acid. This LTP1 binds to specific plasma membrane sites, previously char...

  8. Attraction basins as gauges of robustness against boundary conditions in biological complex systems.

    Directory of Open Access Journals (Sweden)

    Jacques Demongeot

    Full Text Available One fundamental concept in the context of biological systems on which researches have flourished in the past decade is that of the apparent robustness of these systems, i.e., their ability to resist to perturbations or constraints induced by external or boundary elements such as electromagnetic fields acting on neural networks, micro-RNAs acting on genetic networks and even hormone flows acting both on neural and genetic networks. Recent studies have shown the importance of addressing the question of the environmental robustness of biological networks such as neural and genetic networks. In some cases, external regulatory elements can be given a relevant formal representation by assimilating them to or modeling them by boundary conditions. This article presents a generic mathematical approach to understand the influence of boundary elements on the dynamics of regulation networks, considering their attraction basins as gauges of their robustness. The application of this method on a real genetic regulation network will point out a mathematical explanation of a biological phenomenon which has only been observed experimentally until now, namely the necessity of the presence of gibberellin for the flower of the plant Arabidopsis thaliana to develop normally.

  9. Ruthenium(II) chalconate complexes: Synthesis, characterization, catalytic, and biological studies

    Science.gov (United States)

    Muthukumar, M.; Viswanathamurthi, P.

    2009-10-01

    A series of new hexa-coordinated ruthenium(II) carbonyl complexes of the type [RuCl(CO)(EPh 3)(B)(L)] (E = P or As; B = PPh 3, AsPh 3 or Py; L = 2'-hydroxychalcones) have been prepared by reacting [RuHCl(CO)(EPh 3) 2(B)] (E = P or As; B = PPh 3, AsPh 3 or Py) with 2'-hydroxychalcones in benzene under reflux. The new complexes have been characterized by analytical and spectral (IR, electronic, 1H, 31P and 13C NMR) data. Based on the above data, an octahedral structure has been assigned for all the complexes. The new complexes exhibit catalytic activity for the oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine- N-oxide (NMO) as co-oxidant and also found efficient catalyst in the transfer hydrogenation of ketones. The antifungal properties of the complexes have also been examined and compared with standard Bavistin.

  10. Structural and biological evaluation of some metal complexes of vanillin-4N-(2-pyridyl) thiosemicarbazone

    Science.gov (United States)

    Yousef, T. A.; Abu El-Reash, G. M.; Al-Jahdali, M.; El-Rakhawy, El-Bastawesy R.

    2013-12-01

    The synthesis and characterization of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) and U(VI)O2 complexes of vanillin-4N-(2-pyridyl) thiosemicarbazone (H2PVT) are reported. Theoretical calculations have been performed to obtain IR spectra of ligand and its complexes using AM1, Zindo/1, MM+ and PM3, methods. The Schiff base and its metal complexes have been screened for antibacterial Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis and Staphylococcus saprophyticus. H2VPT shows no apparent digestion effect on the egg albumin while Mn(II), Hg(II) and Cu(II) complexes exhibited a considerable digestion effect following the order Cu(II) > Mn(II) > Hg(II). Moreover, Ni(II) and Co(II) complexes revealed strong digestion effect. Fe(II), Mn(II), Cu(II), Zn(II) and Ni(II) acted as metal co- SOD enzyme factors, which are located in different compartments of the cell.

  11. Improving biological understanding and complex trait prediction by integrating prior information in genomic feature models

    DEFF Research Database (Denmark)

    Edwards, Stefan McKinnon

    In this thesis we investigate an approach to integrate external data into the analysis of genetic variants. The goal is similar to that of gene-set enrichment tests, but relies on the robust statistical framework of linear mixed models. This approach has allowed us to integrate virtually any...... externally founded information, such as KEGG pathways, Gene Ontology gene sets, or genomic features, and estimate the joint contribution of the genetic variants within these sets to complex trait phenotypes. The analysis of complex trait phenotypes is hampered by the myriad of genes that control the trait...... the successful application of an integrative approach for enhancing the systems genetics analysis of complex traits. The results shows that by using informed subsets of genetic variants, it is possible to increase the predictive ability in populations of low relatedness; a valuable prospect for fields...

  12. Derivatives of phosphate Schiff base transition metal complexes: synthesis, studies and biological activity

    Science.gov (United States)

    El-Wahab, Z. H. Abd; El-Sarrag, M. R.

    2004-01-01

    We report the synthesis and structural characterization of series of tetra- and hexacoordinate metal chelate complexes of phosphate Schiff base ligands having the general composition LMX n·H 2O and L 2MX n (L=phosphate Schiff base ligand; M=Ag +, Mn 2+, Cu 2+, Zn 2+, Cd 2+, Hg 2+, or Fe 3+ and X=NO 3-, Br - or Cl -). The structure of the prepared compounds was investigated using elemental analysis, IR, 1H and 31P NMR, UV-vis, mass spectra, solid reflectance, magnetic susceptibility and conductance measurements as well as conductometric titration. In all the complexes studied, the ligands act as a chelate ligand with coordination involving the phosphateO-atom and the azomethineN-atom. IR, solid reflectance spectra and magnetic moment measurement are used to infer the structure and to illustrate the coordination capacity of ligand. IR spectra show the presence of coordinated nitrate and water molecule, the magnetic moments of all complexes show normal magnetic behavior and the electronic spectra of the metal complexes indicate a tetra- and octahedral structure for Mn 2+, octahedral structure of Fe 3+ and both square-planar and distorted octahedral structure for Cu 2+ complexes. Antimicrobial activity of the ligands and their complexes were tested using the disc diffusion method and the chosen strains include Staphylococcus aureus, Pseudomonas aereuguinosa, Klebsiella penumoniae, Escherichia coli, Microsporum canis, Trichophyton mentagrophyte and Trichophyton rubrum. Some known antibiotics are included for the sake of comparison and the chosen antibiotic are Amikacin, Doxycllin, Augmantin, Sulperazon, Unasyn, Septrin, Cefobid, Ampicillin, Nitrofurantion, Traivid and Erythromycin.

  13. Biological activity of ruthenium and osmium arene complexes with modified paullones in human cancer cells

    OpenAIRE

    Mühlgassner, Gerhard; Bartel, Caroline; Schmid, Wolfgang F.; Jakupec, Michael A.; Arion, Vladimir B; BERNHARD K. KEPPLER

    2012-01-01

    In an attempt to combine the ability of indolobenzazepines (paullones) to inhibit cyclin-dependent kinases (Cdks) and that of platinum-group metal ions to interact with proteins and DNA, ruthenium(II) and osmium(II) arene complexes with paullones were prepared, expecting synergies and an increase of solubility of paullones. Complexes with the general formula [MIICl(η 6-p-cymene)L]Cl, where M = Ru (1, 3) or Os (2, 4), and L = L 1 (1, 2) or L 2 (3, 4), L 1  = N-(9-bromo-7,12-dihydroindolo[3,2-d...

  14. Synthesis, characterization and biological properties of thienyl derived triazole Schiff bases and their oxovanadium(IV) complexes.

    Science.gov (United States)

    Chohan, Zahid H; Sumrra, Sajjad H

    2012-04-01

    A new series of biologically active thienyl derived triazole Schiff bases and their oxovanadium(IV) complexes have been synthesized and characterized on the basis of physical (m.p., magnetic susceptibility and conductivity), spectral (IR, ¹H and ¹³C NMR, electronic and mass spectrometry) and microanalytical data. All the Schiff base ligands and their oxovanadium(IV) complexes have been subjected to in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa, Salmonella enterica serover typhi) and two Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacterial strains and, for in vitro antifungal activity against Trichophyton longifucus, Candida albican, Aspergillus flavus, Microscopum canis, Fusarium solani and Candida glabrata. Brine shrimp bioassay was also carried out to check the cytotoxic nature of these compounds. PMID:21635212

  15. RYBP and Cbx7 Define Specific Biological Functions of Polycomb Complexes in Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Lluis Morey

    2013-01-01

    Full Text Available The Polycomb repressive complex 1 (PRC1 is required for decisions of stem cell fate. In mouse embryonic stem cells (ESCs, two major variations of PRC1 complex, defined by the mutually exclusive presence of Cbx7 or RYBP, have been identified. Here, we show that although the genomic localization of the Cbx7- and RYBP-containing PRC1 complexes overlaps in certain genes, it can also be mutually exclusive. At the molecular level, Cbx7 is necessary for recruitment of Ring1B to chromatin, whereas RYBP enhances the PRC1 enzymatic activity. Genes occupied by RYBP show lower levels of Ring1B and H2AK119ub and are consequently more highly transcribed than those bound by Cbx7. At the functional level, we show that genes occupied by RYBP are primarily involved in the regulation of metabolism and cell-cycle progression, whereas those bound by Cbx7 predominantly control early-lineage commitment of ESCs. Altogether, our results indicate that different PRC1 subtypes establish a complex pattern of gene regulation that regulates common and nonoverlapping aspects of ESC pluripotency and differentiation.

  16. Mononuclear Ru(III) Schiff base complexes: Synthesis, spectral, redox, catalytic and biological activity studies

    Science.gov (United States)

    Priya, N. Padma; Arunachalam, S.; Manimaran, A.; Muthupriya, D.; Jayabalakrishnan, C.

    2009-04-01

    An octahedral ruthenium(III) Schiff base complexes of the type [RuX(EPh 3)(L)] (where, X = Cl/Br; E = As/P; L = dianion of the Schiff bases derived from acetoacetanilide with o-phenylenediamine and salicylaldehyde/ o-hydroxyacetophenone/ o-vanillin/2-hydroxy-1-naphthaldehyde) have been synthesized from the reactions of equimolar reactions of [RuX 3(EPh 3) 3] and Schiff bases in benzene. The new Ru(III) Schiff base complexes have been characterized by elemental analyses, FT-IR, electronic, 1H NMR and 13C NMR spectra, EPR spectral studies, powder X-ray diffraction (XRD) and electrochemical studies. The new complexes were found to be effective catalysts for aryl-aryl coupling and the oxidation of alcohols into their corresponding carbonyl compounds, respectively, using molecular oxygen atmosphere at ambient temperature. Further, the new Ru(III) Schiff base complexes were screened for their antibacterial activity against Pseudomonas aeruginosa, Vibrio cholera, Salomonella typhi and Staphylococcus aureaus.

  17. Luminescent cyclometalated iridium(Ⅲ) dipyridoquinoxaline indole complexes as biological probes

    Institute of Scientific and Technical Information of China (English)

    LO; Kenneth; Kam-Wing; LEUNG; Arthur; Ho-Hon

    2010-01-01

    Four luminescent cyclometalated iridium(Ⅲ) dipyridoquinoxaline complexes appended with an indole moiety [Ir(NC)2(NN)] (PF6) (HNC = 2-phenylpyridine, Hppy; NN = 2-(N-(2-(indole-3-acetamido)ethyl)aminocarbonyl)dipyrido[3,2-f:2′,3′-h]quinox- aline, dpqC2indole (1a), NN = 2-(N-(6-(indole-3-acetamido)hexyl)aminocarbonyl)dipyrido[3,2-f:2′,3′-h]quinoxaline, dpqC6indole (1b); HNC = 7,8-benzoquinoline, Hbzq, NN = dpqC2indole (2a), NN = dpqC6indole (2b)) have been synthesized and characterized. Upon irradiation, all the complexes displayed moderately intense and long-lived luminescence under ambient condi-tions and in 77 K glass. On the basis of the photophysical data, the emission of the complexes has been assigned to an excited state of triplet metal-to-ligand charge-transfer (3MLCT) ((dπ(Ir)→π*(NN)) character. Cyclic voltammetric studies revealed indole-based and iridium-based oxidations at ca. +1.10 V and +1.24 V vs. SCE, respectively, and ligand-based reductions at ca. -1.07 to-2.29 V vs. SCE. The interactions of the complexes with an indole-binding protein, bovine serum albumin (BSA), have been examined by emission titrations.

  18. Biological factors underlying regularity and chaos in aquatic ecosystems: Simple models of complex dynamics

    Indian Academy of Sciences (India)

    A B Medvinsky; S V Petrovskii; D A Tikhonov; I A Tikhonova; G R Ivanitsky; E Venturino; H Malchow

    2001-03-01

    This work is focused on the processes underlying the dynamics of spatially inhomogeneous plankton communities. We demonstrate that reaction—diffusion mathematical models are an appropriate tool for searching and understanding basic mechanisms of complex spatio-temporal plankton dynamics and fractal properties of planktivorous fish school walks.

  19. Reduction enhances yields of nitric oxide trapping by iron-diethyldithiocarbamate complex in biological systems.

    NARCIS (Netherlands)

    Vanin, A.F.; Bevers, L.M.; Mikoyan, V.D.; Poltorakov, A.P.; Kubrina, L.N.; Faassen, E. van

    2007-01-01

    The mechanism of NO trapping by iron-diethylthiocarbamate complexes was investigated in cultured cells and animal and plant tissues. Contrary to common belief, the NO radicals are trapped by iron-diethylthiocarbamates not only in ferrous but in ferric state also in the biosystems. When DETC was exce

  20. Microwave assisted synthesis, characterization and biological evaluation of palladium and platinum complexes with azomethines

    Science.gov (United States)

    Sharma, Krishna; Singh, Ritu; Fahmi, Nighat; Singh, R. V.

    2010-01-01

    Reactions of 3-acetyl-2,5-dimethylthiophene with thiosemicarbazide and semicarbazide hydrochloride resulted in the formation of new heterocyclic ketimines, 3-acetyl-2,5-dimethylthiophene thiosemicarbazone (C 9H 13N 3OS 2 or L 1H) and 3-acetyl-2,5- dimethylthiophene semicarbazone (C 9H 13N 3OS or L 2H), respectively. The Pd(II) and Pt(II) complexes have been synthesized by mixing metal salts in 1:2 molar ratios with these ligands by using microwave as well as conventional heating method for comparison purposes. The authenticity of these ligands and their complexes has been established on the basis of elemental analysis, melting point determinations, molecular weight determinations, IR, 1H NMR and UV spectral studies. These studies showed that the ligands coordinate to the metal atom in a monobasic bidentate manner and square planar environment around the metal atoms has been proposed to the complexes. Both the ligands and their complexes have been screened for their antimicrobial activities. The antiamoebic activity of both the ligands and their palladium compounds against the protozoan parasite Entamoeba histolytica has been tested.

  1. PLANT LIPIDOMICS: DISCERNING BIOLOGICAL FUNCTION BY PROFILING PLANT COMPLEX LIPIDS USING MASS SPECTROMETRY

    Science.gov (United States)

    Since 2002, plant biologists have begun to apply mass spectrometry to the comprehensive analysis of complex lipids. Such lipidomic analyses have been used to uncover roles for lipids in plant response to stresses and to identify in vivo functions of genes involved in lipid metabolism....

  2. Applying complex models to poultry production in the future--economics and biology.

    Science.gov (United States)

    Talpaz, H; Cohen, M; Fancher, B; Halley, J

    2013-09-01

    The ability to determine the optimal broiler feed nutrient density that maximizes margin over feeding cost (MOFC) has obvious economic value. To determine optimal feed nutrient density, one must consider ingredient prices, meat values, the product mix being marketed, and the projected biological performance. A series of 8 feeding trials was conducted to estimate biological responses to changes in ME and amino acid (AA) density. Eight different genotypes of sex-separate reared broilers were fed diets varying in ME (2,723-3,386 kcal of ME/kg) and AA (0.89-1.65% digestible lysine with all essential AA acids being indexed to lysine) levels. Broilers were processed to determine carcass component yield at many different BW (1.09-4.70 kg). Trial data generated were used in model constructed to discover the dietary levels of ME and AA that maximize MOFC on a per broiler or per broiler annualized basis (bird × number of cycles/year). The model was designed to estimate the effects of dietary nutrient concentration on broiler live weight, feed conversion, mortality, and carcass component yield. Estimated coefficients from the step-wise regression process are subsequently used to predict the optimal ME and AA concentrations that maximize MOFC. The effects of changing feed or meat prices across a wide spectrum on optimal ME and AA levels can be evaluated via parametric analysis. The model can rapidly compare both biological and economic implications of changing from current practice to the simulated optimal solution. The model can be exploited to enhance decision making under volatile market conditions.

  3. Applying complex models to poultry production in the future--economics and biology.

    Science.gov (United States)

    Talpaz, H; Cohen, M; Fancher, B; Halley, J

    2013-09-01

    The ability to determine the optimal broiler feed nutrient density that maximizes margin over feeding cost (MOFC) has obvious economic value. To determine optimal feed nutrient density, one must consider ingredient prices, meat values, the product mix being marketed, and the projected biological performance. A series of 8 feeding trials was conducted to estimate biological responses to changes in ME and amino acid (AA) density. Eight different genotypes of sex-separate reared broilers were fed diets varying in ME (2,723-3,386 kcal of ME/kg) and AA (0.89-1.65% digestible lysine with all essential AA acids being indexed to lysine) levels. Broilers were processed to determine carcass component yield at many different BW (1.09-4.70 kg). Trial data generated were used in model constructed to discover the dietary levels of ME and AA that maximize MOFC on a per broiler or per broiler annualized basis (bird × number of cycles/year). The model was designed to estimate the effects of dietary nutrient concentration on broiler live weight, feed conversion, mortality, and carcass component yield. Estimated coefficients from the step-wise regression process are subsequently used to predict the optimal ME and AA concentrations that maximize MOFC. The effects of changing feed or meat prices across a wide spectrum on optimal ME and AA levels can be evaluated via parametric analysis. The model can rapidly compare both biological and economic implications of changing from current practice to the simulated optimal solution. The model can be exploited to enhance decision making under volatile market conditions. PMID:23960140

  4. Copper(ii) mixed-ligand polypyridyl complexes with doxycycline - structures and biological evaluation.

    Science.gov (United States)

    Abosede, Olufunso O; Vyas, Nilima A; Singh, Sushma B; Kumbhar, Avinash S; Kate, Anup; Kumbhar, Anupa A; Khan, Ayesha; Erxleben, Andrea; Smith, Peter; de Kock, Carmen; Hoffmann, Frank; Obaleye, Joshua A

    2016-02-21

    Mixed-ligand Cu(ii) complexes of the type [Cu(doxycycline)(L)(H2O)2](NO3)2, where doxycycline = [4-(dimethylamino)-3,5,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide] and L = 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3) and dipyrido[3,2-a:2',3'-c]phenazine (dppz, 4) have been synthesised and characterised by structural, analytical, and spectral methods. The single-crystal X-ray structures of 1 and 2 exhibited two different geometries, distorted square-pyramidal and octahedral respectively as well as different coordination modes of doxycycline. Complexes 2-4 exhibit prominent plasmid DNA cleavage at significantly low concentrations probably by an oxidative mechanism. Matrix Metalloproteinase (MMP-2) inhibition studies revealed that all complexes inhibit MMP-2 similar to doxycycline which is a well-known MMP inhibitor with 3 being the most potent. IC50 values of doxycycline and 1-4 against MCF-7 (human breast cancer) and HeLa cell lines were almost equal in which 3 showed the highest efficiency (IC50 = 0.46 ± 0.05 μM), being consistent with its increased MMP inhibition potency. The antimalarial activities of these complexes against the chloroquine-sensitive Plasmodium falciparum NF54 and chloroquine-resistant Plasmodium falciparum Dd2 strains reveal that complex 3 exhibited a higher activity than artesunate drug against the chloroquine-resistant Dd2 strain.

  5. Semi- and thiosemicarbazide Mn(II) complexes: Characterization, DFT and biological studies

    Science.gov (United States)

    Yousef, T. A.; Alduaij, O. K.; Ahmed, Sara F.; Abu El-Reash, G. M.; El-Gammal, O. A.

    2016-09-01

    One NO and two NOS donor ligands have been prepared by addition ethanolic suspension of 2-hydrazino-2-oxo-N-phenyl-acetamide to phenyl isocyanate (H2PAPS), phenyl isothiocyanate (H2PAPT) and benzoyl isothiocyanate (H2PABT). The Mn (II) complexes were prepared from the chloride salt and characterized by conventional techniques. The isolated complexes were assigned the formulaes, [Mn(HPAPS)2], [Mn(HPAPT)Cl] and [Mn(HPABT)Cl(H2O)2], respectively. The IR study of ligands and their complexes shows that H2PAPS behaves as a mononegative tridentate via both CO of hydrazide moiety in keto and deprotonated enol form and CN (azomethine) due to enolization of CO cyanate moiety without deprotonation. H2PAPT behaves as mononegative tridentate via CO of hydrazide moiety, deprotonated thiol CS and NH group. Finally H2PABT behaves as mononegative tridentate via deprotonated enolized CO of hydrazide moiety, CO of benzoyl moiety and NH group. The IR spectra of ligands from DFT calculations are compared with those obtained experimentally. Also, HOMO, LUMO, the bond lengths, bond angles, and dipole moments have been calculated. The calculated HOMO-LUMO energy gap reveals that charge transfer occurs within the molecule. The binding energy values display the high stability of complexes. The kinetic and thermodynamic parameters were determined by Coats-Redfern and Horowitz-Metzger methods. The antibacterial activities were also tested against Bacillus subtilis and Escherichia coli bacteria. Finally, the antitumor activities of the Ligands and their Mn(II) complexes have been evaluated against liver (HePG2) and breast (MCF-7) cancer cells.

  6. Bone morphogenetic protein in complex cervical spine surgery: A safe biologic adjunct?

    OpenAIRE

    Lebl, Darren R.

    2013-01-01

    The advent of recombinant DNA technology has substantially increased the intra-operative utilization of biologic augmentation in spine surgery over the past several years after the Food and Drug Administration approval of the bone morphogenetic protein (BMP) class of molecules for indications in the lumbar spine. Much less is known about the potential benefits and risks of the “off-label” use of BMP in the cervical spine. The history and relevant literature pertaining to the use of the “off-l...

  7. Unraveling human complexity and disease with systems biology and personalized medicine

    OpenAIRE

    Naylor, Stephen; Jake Y Chen

    2010-01-01

    We are all perplexed that current medical practice often appears maladroit in curing our individual illnesses or disease. However, as is often the case, a lack of understanding, tools and technologies are the root cause of such situations. Human individuality is an often-quoted term but, in the context of human biology, it is poorly understood. This is compounded when there is a need to consider the variability of human populations. In the case of the former, it is possible to quantify human ...

  8. CoreFlow: A computational platform for integration, analysis and modeling of complex biological data

    OpenAIRE

    Pasculescu, Adrian; Schoof, Erwin; Creixell, Pau; Zheng, Yong; Olhovsky, Marina; Tian, Ruijun; So, Jonathan; Vanderlaan, Rachel D.; Pawson, Tony; Linding, Rune; Colwill, Karen

    2014-01-01

    A major challenge in mass spectrometry and other large-scale applications is how to handle, integrate, and model the data that is produced. Given the speed at which technology advances and the need to keep pace with biological experiments, we designed a computational platform, CoreFlow, which provides programmers with a framework to manage data in real-time. It allows users to upload data into a relational database (MySQL), and to create custom scripts in high-level languages such as R, Pytho...

  9. Comparison of biological activities of human antithrombins with high-mannose or complex-type nonfucosylated N-linked oligosaccharides.

    Science.gov (United States)

    Yamada, Tsuyoshi; Kanda, Yutaka; Takayama, Makoto; Hashimoto, Akitoshi; Sugihara, Tsutomu; Satoh-Kubota, Ai; Suzuki-Takanami, Eri; Yano, Keiichi; Iida, Shigeru; Satoh, Mitsuo

    2016-05-01

    The structure of the N-linked oligosaccharides attached to antithrombin (AT) has been shown to affect its anticoagulant activity and pharmacokinetics. Human AT has biantennary complex-type oligosaccharides with the unique feature of lacking a core fucose, which affects its biological activities by changing its heparin-binding affinity. In human plasma, AT circulates as a mixture of the α-form bearing four oligosaccharides and the β-form lacking an oligosaccharide at Asn135. However, it remains unclear how the immature high-mannose-type oligosaccharides produced by mammalian cells affect biological activities of AT. Here, we succeeded in directly comparing the activities between the high-mannose and complex types. Interestingly, although there were no substantial differences in thrombin inhibitory activity, the high-mannose type showed higher heparin-binding affinity. The anticoagulant activities were increased by heparin and correlated with the heparin-binding affinity, resulting in the strongest anticoagulant activity being displayed in the β-form with the high-mannose type. In pharmacokinetic profiling, the high-mannose type showed a much shorter plasma half-life than the complex type. The β-form was found to have a prolonged plasma half-life compared with the α-form for the high-mannose type; conversely, the α-form showed a longer half-life than the β-form for the complex-type. The present study highlights that AT physiological activities are strictly controlled not only by a core fucose at the reducing end but also by the high-mannose-type structures at the nonreducing end. The β-form with the immature high-mannose type appears to function as a more potent anticoagulant than the AT typically found in human plasma, once it emerges in the blood. PMID:26747427

  10. Present Day Biology seen in the Looking Glass of Physics of Complexity

    Science.gov (United States)

    Schuster, P.

    Darwin's theory of variation and selection in its simplest form is directly applicable to RNA evolution in vitro as well as to virus evolution, and it allows for quantitative predictions. Understanding evolution at the molecular level is ultimately related to the central paradigm of structural biology: sequence⇒ structure ⇒ function. We elaborate on the state of the art in modeling and understanding evolution of RNA driven by reproduction and mutation. The focus will be laid on the landscape concept—originally introduced by Sewall Wright—and its application to problems in biology. The relation between genotypes and phenotypes is the result of two consecutive mappings from a space of genotypes called sequence space onto a space of phenotypes or structures, and fitness is the result of a mapping from phenotype space into non-negative real numbers. Realistic landscapes as derived from folding of RNA sequences into structures are characterized by two properties: (i) they are rugged in the sense that sequences lying nearby in sequence space may have very different fitness values and (ii) they are characterized by an appreciable degree of neutrality implying that a certain fraction of genotypes and/or phenotypes cannot be distinguished in the selection process. Evolutionary dynamics on realistic landscapes will be studied as a function of the mutation rate, and the role of neutrality in the selection process will be discussed.

  11. PHYTOLECTINS AND DIAZOTROPHS ARE THE POLYFUNCTIONAL COMPONENTS OF THE COMPLEX BIOLOGICAL COMPOSITIONS

    Directory of Open Access Journals (Sweden)

    Kyrychenko E. V.

    2014-02-01

    Full Text Available The role of lectins and diazotrophic microorganisms as polyfunctional components for creation of new lectin-bacterial biological composition with a view to practical application of agro biotechnology were discussed on the base of literature data and personal author’s experimental results. Phytolectins characterized by varied biological activity such as bioeffector, adap togen, growth-regulatory, fungicide and com munication to the components of a system «plant–soil–microorganisms» in molecular, cellular, organism and systemic levels of organization and functioning of agrophytocenosis. Rhizobacteria have many positive effects on plants and soil, the most determinative among the effects are the ability to fix molecular nitrogen of atmosphere, synthesis of hormonal and antibiotical substances, mobilization of sparingly soluble soil phosphates and decomposition of hazardous chemical compounds. It was justified creation of a new class of lectin-bacterial compositions on a base of phytolectins and diazotrophic microorganisms for increasing of productive potential of symbioses and associations, adaptable plasticity and plants protection and soil ecology improvement as well.

  12. Biomolecular Interactions and Biological Responses of Emerging Two-Dimensional Materials and Aromatic Amino Acid Complexes.

    Science.gov (United States)

    Mallineni, Sai Sunil Kumar; Shannahan, Jonathan; Raghavendra, Achyut J; Rao, Apparao M; Brown, Jared M; Podila, Ramakrishna

    2016-07-01

    The present work experimentally investigates the interaction of aromatic amino acids viz., tyrosine, tryptophan, and phenylalnine with novel two-dimensional (2D) materials including graphene, graphene oxide (GO), and boron nitride (BN). Photoluminescence, micro-Raman spectroscopy, and cyclic voltammetry were employed to investigate the nature of interactions and possible charge transfer between 2D materials and amino acids. Graphene and GO were found to interact strongly with aromatic amino acids through π-π stacking, charge transfer, and H-bonding. Particularly, it was observed that both physi and chemisorption are prominent in the interactions of GO/graphene with phenylalanine and tryptophan while tyrosine exhibited strong chemisorption on graphene and GO. In contrast, BN exhibited little or no interactions, which could be attributed to localized π-electron clouds around N atoms in BN lattice. Lastly, the adsorption of amino acids on 2D materials was observed to considerably change their biological response in terms of reactive oxygen species generation. More importantly, these changes in the biological response followed the same trends observed in the physi and chemisorption measurements. PMID:27281436

  13. 3D-dynamic visualization of complex molecular cell biology processes : 1-year university students' understanding of visualizations of signal transduction

    OpenAIRE

    Jacobsson, Johan Lars Henrik

    2008-01-01

    This study deals with the use of 3D-dynamic visualizations for teaching complex molecular cell biology concepts. The focus is on signal transduction, which is a concept that constitutes an important part of biological systems. 3D-dynamic visualizations (animations) were produced and shown for a total of 24 students attending a course in molecular cell biology at Karlstad University, Sweden. Data were collected by questionnaires and interviews which were structured around the understandability...

  14. When physics is not "just physics": complexity science invites new measurement frames for exploring the physics of cognitive and biological development.

    Science.gov (United States)

    Kelty-Stephen, Damian; Dixon, James A

    2012-01-01

    The neurobiological sciences have struggled to resolve the physical foundations for biological and cognitive phenomena with a suspicion that biological and cognitive systems, capable of exhibiting and contributing to structure within themselves and through their contexts, are fundamentally distinct or autonomous from purely physical systems. Complexity science offers new physics-based approaches to explaining biological and cognitive phenomena. In response to controversy over whether complexity science might seek to "explain away" biology and cognition as "just physics," we propose that complexity science serves as an application of recent advances in physics to phenomena in biology and cognition without reducing or undermining the integrity of the phenomena to be explained. We highlight that physics is, like the neurobiological sciences, an evolving field and that the threat of reduction is overstated. We propose that distinctions between biological and cognitive systems from physical systems are pretheoretical and thus optional. We review our own work applying insights from post-classical physics regarding turbulence and fractal fluctuations to the problems of developing cognitive structure. Far from hoping to reduce biology and cognition to "nothing but" physics, we present our view that complexity science offers new explanatory frameworks for considering physical foundations of biological and cognitive phenomena.

  15. SYNTHESIS AND BIOLOGICAL ACTIVITY OF BUTANONE THIOSEMICARBAZONE AND THEIR METALLIC COMPLEXES

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar

    2013-01-01

    Full Text Available In present work, Ligand butanone thiosemicarbazone and their 11 complexes of the type ML2X2, ML2X’, where M = Cu(II, Cd(II, Co(II, Zn(II, Hg(II; L = butanone thiosemicarbazone; X = Cl, NO3 or CH3COO; X’ = SO4 have been synthesized and characterized with the help of infra-red and ultra-violet spectroscopy. The spectral data revealed that the thiosemicarbazone act as bidentate ligand, making use of thionic sulphur and the azomethine nitrogen atom for co-ordination to the central metal atom. All the compounds have been screened for their antibacterial activity against Gram positive bacteria Staphylococcus aureus, Staphylococcus epidermidis and Gram negative bacteria Escherichia coli and Pseudomonas aeruginosa. Some of complexes exhibited appreciable activity.

  16. Freshwater fish internals as a promising source of biologically active lipid complexes

    Directory of Open Access Journals (Sweden)

    Samoilovа D. A.

    2015-12-01

    Full Text Available The research on development of technology of fat extraction from freshwater fish entrails has been carried out. The study of mass composition of freshwater fish internals has shown that the highest content of fat (averaged 13,8 % is typical for internals of fish like carp, perch, silver carp, pike. The higher content is typical for silver carp (14.4 % permitting the possibility of its use as a source of lipid complexes. The chemical composition of the internal organs of researched objects has been studied; to justify the rational modes of extracting lipid complexes from freshwater fish internals the methods of extracting fat (thermal, enzymatic and low temperature have been tested. The quality indicators of raw fat have been analyzed and the conclusion on possibility of combining the ways of oil extraction in order to increase its output and improve the quality characteristics has been made

  17. Properties of Random Complex Chemical Reaction Networks and Their Relevance to Biological Toy Models

    OpenAIRE

    Bigan, Erwan; Steyaert, Jean-Marc; Douady, Stéphane

    2013-01-01

    We investigate the properties of large random conservative chemical reaction networks composed of elementary reactions endowed with either mass-action or saturating kinetics, assigning kinetic parameters in a thermodynamically-consistent manner. We find that such complex networks exhibit qualitatively similar behavior when fed with external nutrient flux. The nutrient is preferentially transformed into one specific chemical that is an intrinsic property of the network. We propose a self-consi...

  18. Protease inhibitors as possible pitfalls in proteomic analyses of complex biological samples

    OpenAIRE

    Clifton, James; Huang, Feilei; Rucevic, Marijana; Cao, Lulu; Hixson, Douglas; Josic, Djuro

    2011-01-01

    Sample preparation, especially protein and peptide fractionation prior to identification by mass spectrometry (MS) are typically applied to reduce sample complexity. The second key element in this process is proteolytic digestion that is performed mostly by trypsin. Optimization of this step is an important factor in order to achieve both speed and better performance of proteomic analysis, and tryptic digestion prior to the MS analysis is topic of many studies. To date, only few studies pay a...

  19. Scalable Binder-Free Supersonic Cold Spraying of Nanotextured Cupric Oxide (CuO) Films as Efficient Photocathodes.

    Science.gov (United States)

    Lee, Jong Gun; Kim, Do-Yeon; Lee, Jong-Hyuk; Kim, Min-Woo; An, Seongpil; Jo, Hong Seok; Nervi, Carlo; Al-Deyab, Salem S; Swihart, Mark T; Yoon, Sam S

    2016-06-22

    We demonstrate production of nanotextured p-type cupric oxide (CuO) films via a low-cost scalable supersonic cold spray method in open air conditions. Simply sweeping the spray nozzle across a substrate produced a large-scale CuO film. When used as hydrogen evolution photocathodes, these films produced photocurrent densities (PCD) of up to 3.1 mA/cm(2) under AM1.5 illumination, without the use of a cocatalyst or any additional heterojunction layers. Cu2O particles were supersonically sprayed onto an indium tin oxide (ITO) coated soda lime glass (SLG) substrate, without any solvent or binder. Annealing in air converted the Cu2O films to CuO, with a corresponding decrease in the bandgap and increase in the fraction of the solar spectrum absorbed. Annealing at 600 °C maximized the PCD. Increasing the supersonic gas velocity from ∼450 to ∼700 m/s produced denser films with greater surface roughness, in turn producing higher PCD. The nanoscale texture of the films, which resembles the skin of a dinosaur, enhanced their performance, leading to one of the highest PCD values in the literature. We characterized the films by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and transmission electron microscopy to elucidate the origins of their outstanding performance. This supersonic cold spraying deposition has the potential to be used on a commercial scale for low cost mass production. PMID:27232695

  20. Synthesis, Characterization, Luminescence and Biological Activity of Two Lanthanide Complexes Involving Mixed Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Deyun; Guo, Haifu; Qin, Liang [Zhaoqing Univ., Zhaoqing (China); Xu, Jun [Jinan Univ., Guangzhou (China)

    2013-09-15

    Two new isostructural dinuclear complexes, Ln{sub 2}(4-cpa){sub 6}(bpy){sub 2} (Ln = Eu (1); Tb (2), 4-cpa = 4-chlorophenyl-acetate, bpy = 2,2'-bipyridine), have been hydrothermally synthesized and characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis (TGA), powder X-ray diffraction and single-crystal X-ray diffraction. The lanthanide ions are bridged by two bidentate and two terdentate carboxylate groups to give centrosymmetric dimers with Ln···Ln separations of 3.967(2) and 3.956(3) A, respectively. Each metal atom is nine-coordinate and exhibits a distorted tricapped trigonal prismatic geometry. Three-dimensional fluorescence spectra show that both 1 and 2 emit bright red and green luminescence at room temperature, with long lifetimes of up to 0.369 ms (at 614 nm) and 0.432 ms (at 543 nm), respectively. Moreover, poor luminescence efficiency has been noted for complex 2. The 4-Hcpa ligand and complexes 1-2 have been screened for their phytogrowth-inhibitory activities against Brassica napus L. and Echinochloa crusgalli L., and the results are compared with the activity of quizalofop-P-ethyl.

  1. Genistein in 1:1 inclusion complexes with ramified cyclodextrins: theoretical, physicochemical and biological evaluation.

    Science.gov (United States)

    Danciu, Corina; Soica, Codruta; Oltean, Mircea; Avram, Stefana; Borcan, Florin; Csanyi, Erzsebet; Ambrus, Rita; Zupko, Istvan; Muntean, Delia; Dehelean, Cristina A; Craina, Marius; Popovici, Ramona A

    2014-01-27

    Genistein is one of the most studied phytocompound in the class of isoflavones, presenting a notable estrogenic activity and in vitro and/or in vivo benefits in different types of cancer such as those of the bladder, kidney, lung, pancreatic, skin and endometrial cancer. A big inconvenience for drug development is low water solubility, which can be solved by using hydrophilic cyclodextrins. The aim of this study is to theoretically analyze, based on the interaction energy, the possibility of a complex formation between genistein (Gen) and three different ramified cyclodextrins (CD), using a 1:1 molar ratio Gen:CD. Theoretical data were correlated with a screening of both in vitro and in vivo activity. Proliferation of different human cancer cell lines, antimicrobial activity and angiogenesis behavior was analyzed in order to see if complexation has a beneficial effect for any of the above mentioned activities and if so, which of the three CDs is the most suitable for the incorporation of genistein, and which may lead to future improved pharmaceutical formulations. Results showed antiproliferative activity with different IC50 values for all tested cell lines, remarkable antimicrobial activity on Bacillus subtilis and antiangiogenic activity as revealed by CAM assay. Differences regarding the intensity of the activity for pure and the three Gen complexes were noticed as explained in the text. The data represent a proof that the three CDs can be used for furtherer research towards practical use in the pharmaceutical and medical field.

  2. Genistein in 1:1 Inclusion Complexes with Ramified Cyclodextrins: Theoretical, Physicochemical and Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Corina Danciu

    2014-01-01

    Full Text Available Genistein is one of the most studied phytocompound in the class of isoflavones, presenting a notable estrogenic activity and in vitro and/or in vivo benefits in different types of cancer such as those of the bladder, kidney, lung, pancreatic, skin and endometrial cancer. A big inconvenience for drug development is low water solubility, which can be solved by using hydrophilic cyclodextrins. The aim of this study is to theoretically analyze, based on the interaction energy, the possibility of a complex formation between genistein (Gen and three different ramified cyclodextrins (CD, using a 1:1 molar ratio Gen:CD. Theoretical data were correlated with a screening of both in vitro and in vivo activity. Proliferation of different human cancer cell lines, antimicrobial activity and angiogenesis behavior was analyzed in order to see if complexation has a beneficial effect for any of the above mentioned activities and if so, which of the three CDs is the most suitable for the incorporation of genistein, and which may lead to future improved pharmaceutical formulations. Results showed antiproliferative activity with different IC50 values for all tested cell lines, remarkable antimicrobial activity on Bacillus subtilis and antiangiogenic activity as revealed by CAM assay. Differences regarding the intensity of the activity for pure and the three Gen complexes were noticed as explained in the text. The data represent a proof that the three CDs can be used for furtherer research towards practical use in the pharmaceutical and medical field.

  3. A dinuclear ruthenium(II) complex as a one- and two-photon luminescent probe for biological Cu(2+) detection.

    Science.gov (United States)

    Zhang, Pingyu; Pei, Lingmin; Chen, Yu; Xu, Wenchao; Lin, Qitian; Wang, Jinquan; Wu, Jingheng; Shen, Yong; Ji, Liangnian; Chao, Hui

    2013-11-11

    A new dinuclear Ru(II) polypyridyl complex, [(bpy)2 Ru(H2 bpip)Ru(bpy)2 ](4+) (RuH2 bpip, bpy=2,2-bipyridine, H2 bpip=2,6-pyridyl(imidazo[4,5-f][1,10]phenanthroline), was developed to act as a one- and two-photon luminescent probe for biological Cu(2+) detection. This Ru(II) complex shows a significant two-photon absorption cross section (400 GM) and displays a remarkable one- and two-photon luminescence switch in the presence of Cu(2+) ions. Importantly, RuH2 bpip can selectively recognise Cu(2+) in aqueous media in the presence of other abundant cellular cations (such as Na(+) , K(+) , Mg(2+) , and Ca(2+) ), trace metal ions in organisms (such as Zn(2+) , Ag(+) , Fe(3+) , Fe(2+) , Ni(2+) , Mn(2+) , and Co(2+) ), prevalent toxic metal ions in the environment (such as Cd(2+) , Hg(2+) , and Cr(3+) ), and amino acids, with high sensitivity (detection limit≤3.33×10(-8)  M) and a rapid response time (≤15 s). The biological applications of RuH2 bpip were also evaluated and it was found to exhibit low cytotoxicity, good water solubility, and membrane permeability; RuH2 bpip was, therefore, employed as a sensing probe for the detection of Cu(2+) in living cells and zebrafish. PMID:24166837

  4. Chemical biology tools for regulating RAS signaling complexity in space and time.

    Science.gov (United States)

    van Hattum, Hilde; Waldmann, Herbert

    2014-09-18

    Rat sarcoma (RAS) family members are small GTPases that control a number of signaling pathways important for normal cellular proliferation. Therefore, it is no surprise that a significant portion of human tumors express constitutively active mutated RAS proteins, which leads to deregulation of RAS signaling pathways, resulting in pathological perturbations of cell growth and death. Although the molecular details of RAS signaling cascades are well understood, there is still a largely unmet need for small molecule probes to control RAS signaling in space and time. More broadly, given the prevalence of mutated RAS in cancer, the need to translate the insights obtained from using small molecule probes into clinically useful drugs is also significant. In this review, we introduce RAS proteins and the signaling pathways they are involved in, and discuss some of the innovative chemical biology approaches to regulate RAS signaling, which include the exploitation of newly identified binding pockets, covalent inhibitors for mutated RAS, and RAS localization impairment.

  5. STRUCTURE AND SOME BIOLOGICAL PROPERTIES OF Fe(III COMPLEXES WITH NITROGEN-CONTAINING LIGANDS

    Directory of Open Access Journals (Sweden)

    Ion Bulhac

    2016-06-01

    Full Text Available Four coordination compounds of iron(III with ligands based on hydrazine and sulfadiazine: FeCl3·digsemi·2H2O (I (digsemi-semicarbazide diacetic acid dihydrazide, [Fe(HLSO4] (II (НL - sulfadiazine, [Fe(H2L1(H2O2](NO33·5H2O (III (H2L1-2,6-diacetylpyridine bis(nicotinoylhydrazone and [Fe(H2L2(H2O2](NO33•1.5H2O (IV (H2L2 - 2,6-diacetylpyridine bis(isonicotinoylhydrazone were synthesized. The spectroscopic and structural characterisation as well as their biological, properties are presented.

  6. Algorithmic and complexity results for decompositions of biological networks into monotone subsystems.

    Science.gov (United States)

    DasGupta, Bhaskar; Enciso, German Andres; Sontag, Eduardo; Zhang, Yi

    2007-01-01

    A useful approach to the mathematical analysis of large-scale biological networks is based upon their decompositions into monotone dynamical systems. This paper deals with two computational problems associated to finding decompositions which are optimal in an appropriate sense. In graph-theoretic language, the problems can be recast in terms of maximal sign-consistent subgraphs. The theoretical results include polynomial-time approximation algorithms as well as constant-ratio inapproximability results. One of the algorithms, which has a worst-case guarantee of 87.9% from optimality, is based on the semidefinite programming relaxation approach of Goemans-Williamson [Goemans, M., Williamson, D., 1995. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42 (6), 1115-1145]. The algorithm was implemented and tested on a Drosophila segmentation network and an Epidermal Growth Factor Receptor pathway model, and it was found to perform close to optimally.

  7. Synthesis, Radiolabeling and Biological Evaluation of Propylene Amine Oxime Complexes Containing Nitrotriazoles as Hypoxia Markers

    Directory of Open Access Journals (Sweden)

    Huafan Huang

    2012-06-01

    Full Text Available Two propylene amine oxime (PnAO complexes, 1, containing a 3-nitro-1,2,4-triazole and 2, containing two 3-nitro-1,2,4-triazoles, were synthesized and radiolabeled with 99mTc in high labeling yields. Cellular uptakes of 99mTc-1 and 99mTc-2 were tested using a S180 cells line. Under anoxic conditions, the cellular uptakes of 99mTc-1 and 99mTc-2 were 33.7 ± 0.2% and 35.0 ± 0.7% at 4 h, whereas the normoxic uptakes of the two complexes were 6.0 ± 1.6% and 4.6 ± 0.9%, respectively. Both 99mTc-1 and 99mTc-2 displayed significant anoxic/normoxic differentials. The cellular uptakes were highly dependent on oxygen and temperature. Biodistribution studies revealed that both 99mTc-1 and 99mTc-2 showed a selective localization in tumor and slow clearance from it. At 4 h, the tumor-to-muscle ratios (T/M were 3.79 for 99mTc-1 and 4.58 for 99mTc-2. These results suggested that 99mTc-labeled PnAO complexes 99mTc-1 and 99mTc-2 might serve as novel hypoxia markers. By introducing a second nitrotriazole redox center, the hypoxic accumulation of the marker was slightly enhanced.

  8. Biological Activity and Molecular Structures of Bis(benzimidazole and Trithiocyanurate Complexes

    Directory of Open Access Journals (Sweden)

    Pavel Kopel

    2015-06-01

    Full Text Available 1-(1H-Benzimidazol-2-yl-N-(1H-benzimidazol-2-ylmethylmethanamine (abb and 2-(1H-benzimidazol-2-ylmethylsulfanylmethyl-1H-benzimidazole (tbb have been prepared and characterized by elemental analysis. These bis(benzimidazoles have been further used in combination with trithiocyanuric acid for the preparation of complexes. The crystal and molecular structures of two of them have been solved. Each nickel atom in the structure of trinuclear complex [Ni3(abb3(H2O3(μ-ttc](ClO43·3H2O·EtOH (1, where ttcH3 = trithiocyanuric acid, is coordinated with three N atoms of abb, the N,S donor set of ttc anion and an oxygen of a water molecule. The crystal of [(tbbH2(ttcH22(ttcH3(H2O] (2 is composed of a protonated bis(benzimidazole, two ttcH2 anions, ttcH3 and water. The structure is stabilized by a network of hydrogen bonds. These compounds were primarily synthesized for their potential antimicrobial activity and hence their possible use in the treatment of infections caused by bacteria or yeasts (fungi. The antimicrobial and antifungal activity of the prepared compounds have been evaluated on a wide spectrum of bacterial and yeast strains and clinical specimens isolated from patients with infectious wounds and the best antimicrobial properties were observed in strains after the use of ligand abb and complex 1, when at least 80% growth inhibition was achieved.

  9. Biological activity of ruthenium and osmium arene complexes with modified paullones in human cancer cells.

    Science.gov (United States)

    Mühlgassner, Gerhard; Bartel, Caroline; Schmid, Wolfgang F; Jakupec, Michael A; Arion, Vladimir B; Keppler, Bernhard K

    2012-11-01

    In an attempt to combine the ability of indolobenzazepines (paullones) to inhibit cyclin-dependent kinases (Cdks) and that of platinum-group metal ions to interact with proteins and DNA, ruthenium(II) and osmium(II) arene complexes with paullones were prepared, expecting synergies and an increase of solubility of paullones. Complexes with the general formula [M(II)Cl(η(6)-p-cymene)L]Cl, where M=Ru (1, 3) or Os (2, 4), and L=L(1) (1, 2) or L(2) (3, 4), L(1)=N-(9-bromo-7,12-dihydroindolo[3,2-d][1]-benzazepin-6(5H)-yliden-N'-(2-hydroxybenzylidene)azine and L(2)=N-(9-bromo-7,12-dihydroindolo[3,2-d][1]benzazepin-6-yl)-N'-[3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl-methylene]azinium chloride (L(2)(*)HCl), were now investigated regarding cytotoxicity and accumulation in cancer cells, impact on the cell cycle, capacity of inhibiting DNA synthesis and inducing apoptosis as well as their ability to inhibit Cdk activity. The MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) assay yielded IC(50) values in the nanomolar to low micromolar range. In accordance with cytotoxicity data, the BrdU assay showed that 1 is the most and 4 the least effective of these compounds regarding inhibition of DNA synthesis. Effects on the cell cycle are minor, although concentration-dependent inhibition of Cdk2/cyclin E activity was observed in cell-free experiments. Induction of apoptosis is most pronounced for complex 1, accompanied by a low fraction of necrotic cells, as observed by annexin V-fluorescein isothiocyanate/propidium iodide staining and flow cytometric analysis. PMID:23037896

  10. SYNTHESIS AND BIOLOGICAL ACTIVITY OF BUTANONE THIOSEMICARBAZONE AND THEIR METALLIC COMPLEXES

    OpenAIRE

    Sandeep Kumar; Nitin Kumar

    2013-01-01

    In present work, Ligand butanone thiosemicarbazone and their 11 complexes of the type ML2X2, ML2X’, where M = Cu(II), Cd(II), Co(II), Zn(II), Hg(II); L = butanone thiosemicarbazone; X = Cl, NO3 or CH3COO; X’ = SO4 have been synthesized and characterized with the help of infra-red and ultra-violet spectroscopy. The spectral data revealed that the thiosemicarbazone act as bidentate ligand, making use of thionic sulphur and the azomethine nitrogen atom for co-ordination to the central metal a...

  11. Vanadium(V) complexes of a tripodal ligand, their characterisation and biological implications.

    Science.gov (United States)

    Maurya, Mannar R; Uprety, Bhawna; Avecilla, Fernando; Adão, Pedro; Costa Pessoa, J

    2015-10-28

    The reaction of the tripodal tetradentate dibasic ligand 6,6'-(2-(pyridin-2-yl)ethylazanediyl)bis(methylene)bis(2,4-di-tert-butylphenol), H2L(1)I, with [V(IV)O(acac)2] in CH3CN gives the V(V)O-complex, [V(V)O(acac)(L(1))] 1. Crystallisation of 1 in CH3CN at ∼0 °C gives dark blue crystals of 1, while at room temperature it affords dark green crystals of [{V(V)O(L(1))}2μ-O] 3. Upon prolonged treatment of 1 in MeOH, [V(V)O(OMe)(MeOH)(L(1))] 2 is obtained. All three complexes were analysed by single-crystal X-ray diffraction, depicting a distorted octahedral geometry around vanadium. In the reaction of H2L(1) with V(IV)OSO4 partial hydrolysis of the tripodal ligand results in the elimination of the pyridyl fragment of L(1) and the formation of H[V(V)O2(L(2))] 4 containing the ONO tridentate ligand 6,6'-azanediylbis(methylene)bis(2,4-di-tert-butylphenol), H2L(2)II. Compound 4, which was not fully characterised, undergoes dimerization in acetone yielding the hydroxido-bridged [{V(V)O(L(2))}2μ-(OH)2] 5 having a distorted octahedral geometry around each vanadium. In contrast, from a solution of 4 in acetonitrile, the dinuclear compound [{V(V)O(L(2))}2μ-O] 6 is obtained, with a trigonal bipyramidal geometry around each vanadium. The methoxido complex 2 is successfully employed as a functional catechol-oxidase mimic in the oxidation of catechol to o-quinone under air. The process was confirmed to follow a Michaelis-Menten type kinetics with respect to catechol, the Vmax and KM values obtained being 7.66 × 10(-6) M min(-1) and 0.0557 M, respectively, and the turnover frequency is 0.0541 min(-1). A similar reaction with the bulkier 3,5-di-tert-butylcatechol proceeded at a much slower rate. Complex 2 was also used as a catalyst precursor for the oxidative bromination of thymol in aqueous medium. The selectivity shows quite interesting trends, namely when not using excess of the primary oxidizing agent, H2O2, the para mono-brominated product corresponds to ∼93% of the

  12. Synthesis, characterization and biological evaluation of labile intercalative ruthenium(ii) complexes for anticancer drug screening.

    Science.gov (United States)

    Huang, Huaiyi; Zhang, Pingyu; Chen, Yu; Qiu, Kangqiang; Jin, Chengzhi; Ji, Liangnian; Chao, Hui

    2016-08-16

    DNA binding and DNA transcription inhibition is regarded as a promising strategy for cancer chemotherapy. Herein, chloro terpyridyl Ru(ii) complexes, [Ru(tpy)(N^N)Cl](+) (Ru1, N^N = 2,2'-bipyridine; Ru2, N^N = 3-(pyrazin-2-yl)-as-triazino[5,6-f]acenaphthylene; Ru3, N^N = 3-(pyrazin-2-yl)-as-triazino[5,6-f]phenanthrene; Ru4, N^N = 3-(pyrazin-2-yl)-as-triazino[5,6-f]pyrene) were prepared as DNA intercalative and covalent binding anticancer agents. The chloro ligand hydrolysis slowly and the octanol and water partition coefficient of Ru2-Ru4 were between 0.6 and 1.2. MALDI-TOF mass, DNA gel electrophoresis confirmed covalent and intercalative DNA binding modes of Ru2-Ru4, while Ru1 can only bind DNA covalently. As a result, Ru2-Ru4 exhibited stronger DNA transcription inhibition activity, higher cell uptake efficiency and better anticancer activity than Ru1. Ru4 was the most toxic complex toward all cancer cells which inhibited DNA replication and transcription. AO/EB, Annexin V/PI, nuclear staining, JC-1 assays further confirmed that Ru2-Ru4 induced cancer cell death by an apoptosis mechanism. PMID:27294337

  13. Structural, thermal, morphological and biological studies of proton-transfer complexes formed from 4-aminoantipyrine with quinol and picric acid

    Science.gov (United States)

    Adam, Abdel Majid A.

    2013-03-01

    4-Aminoantipyrine (4AAP) is widely used in the pharmaceutical industry, biochemical experiments and environmental monitoring. However, residual amounts of 4AAP in the environment may pose a threat to human health. To provide basic data that can be used to extract or eliminate 4AAP from the environment, the proton-transfer complexes of 4AAP with quinol (QL) and picric acid (PA) were synthesized and spectroscopically investigated. The interactions afforded two new proton-transfer salts named 1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-aminium-4-hydroxyphenolate and 1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-aminium-2,4,6-trinitrophenolate for QL and PA, respectively, via a 1:1 stoichiometry. Elemental analysis (CHN), electronic absorption, spectrophotometric titration, IR, Raman, 1H NMR and X-ray diffraction were used to characterize the new products. The thermal stability of the synthesized CT complexes was investigated using thermogravimetric (TG) analyses, and the morphology and particle size of these complexes were obtained from scanning electron microscopy (SEM). It was found that PA and 4AAP immediately formed a yellow precipitate with a remarkable sponge-like morphology and good thermal stability up to 180 °C. Finally, the biological activities of the newly synthesized CT complexes were tested for their antibacterial and antifungal activities. The results indicated that the [(4AAP)(QL)] complex exhibited strong antimicrobial activities against various bacterial and fungal strains compared with standard drugs.

  14. The Role of Model Integration in Complex Systems Modelling An Example from Cancer Biology

    CERN Document Server

    Patel, Manish

    2010-01-01

    Model integration – the process by which different modelling efforts can be brought together to simulate the target system – is a core technology in the field of Systems Biology. In the work presented here model integration was addressed directly taking cancer systems as an example. An in-depth literature review was carried out to survey the model forms and types currently being utilised. This was used to formalise the main challenges that model integration poses, namely that of paradigm (the formalism on which a model is based), focus (the real-world system the model represents) and scale. A two-tier model integration strategy, including a knowledge-driven approach to address model semantics, was developed to tackle these challenges. In the first step a novel description of models at the level of behaviour, rather than the precise mathematical or computational basis of the model, is developed by distilling a set of abstract classes and properties. These can accurately describe model behaviour and hence d...

  15. Synthesis, crystal, and biological activity of a novel carbene silver(I) complex with imidazole derivative

    Energy Technology Data Exchange (ETDEWEB)

    Jiu-Fu, Lu, E-mail: jiufulu@163.com; Hong-Guang, Ge; Juan, Shi [Chemical Engineering College, Shaanxi University of Technology (China)

    2015-12-15

    Reaction of 2-(1-methyl-1,2-dihydroimidazol-3-yl)acetonitrile tetrafluoroborate with silver oxide in dichloromethane readily yields [Ag(DIM){sub 2}]BF{sub 4}, where DIM is 2-(1-methyl-1, 2-dihydroimidazol-3-yl)acetonitrile, representing a carbene organic ligand. The title compound was characterized by elemental analysis, IR, MS and single crystal X-ray diffraction. The crystal is of monoclinic system, space group C2/c with a = 14.010(18), b = 8.303(11), c = 14.936(20) Å, β = 93.910(4)°, V = 1639(4) Å{sup 3}, Z = 4, D{sub x} = 1.771 g/cm{sup 3}, F (000) = 864, µ(MoK{sub α}) = 1.278 mm{sup –1}. The final R{sup 1} = 0.0711 and wR{sup 2} = 0.1903 for reflections with I > 2σ(I). In addition, the preliminary biological test showed that the title compound had anti-fungus yeast activity.

  16. Technological advances for deciphering the complexity of psychiatric disorders: merging proteomics with cell biology.

    Science.gov (United States)

    Wesseling, Hendrik; Guest, Paul C; Lago, Santiago G; Bahn, Sabine

    2014-08-01

    Proteomic studies have increased our understanding of the molecular pathways affected in psychiatric disorders. Mass spectrometry and two-dimensional gel electrophoresis analyses of post-mortem brain samples from psychiatric patients have revealed effects on synaptic, cytoskeletal, antioxidant and mitochondrial protein networks. Multiplex immunoassay profiling studies have found alterations in hormones, growth factors, transport and inflammation-related proteins in serum and plasma from living first-onset patients. Despite these advances, there are still difficulties in translating these findings into platforms for improved treatment of patients and for discovery of new drugs with better efficacy and side effect profiles. This review describes how the next phase of proteomic investigations in psychiatry should include stringent replication studies for validation of biomarker candidates and functional follow-up studies which can be used to test the impact on physiological function. All biomarker candidates should now be tested in series with traditional and emerging cell biological approaches. This should include investigations of the effects of post-translational modifications, protein dynamics and network analyses using targeted proteomic approaches. Most importantly, there is still an urgent need for development of disease-relevant cellular models for improved translation of proteomic findings into a means of developing novel drug treatments for patients with these life-altering disorders.

  17. Water Complexes Take Part in Biological Effect Created by Weak Combined Magnetic Field

    Science.gov (United States)

    Sheykina, Nadiia

    2016-07-01

    It was revealed experimentally that at small level of magnetic field's noise (less than 4µT/Hz0.5) the dependence of gravitropc reaction of cress roots on frequency had a fine structure/ The peak that corresponded to the cyclotron frequency of Ca2+ ions for the static component of combined magnetic field that was equal to 40µT became split up into three peaks ( f1 = 31/3Hz, f2 = 32.5Hz i f3 = 34 Hz./ . The frequency f1 corresponded to the Ca2+ ion (theoretical value 31.6 Hz), the frequency f2 corresponded to the hydronium ion H3O+ (theoretical value 32.9 Hz), the frequency f3 corresponded to OH- ion (theoretical value 35 Hz). Taking into account the influence of combined magnetic field on hydronium ions and Del Giudice' hypothesis one may throw away doubts about the possibility of ion cyclotron resonance. The hydronium ions are unusual because they have a long free path length. It was revealed that pH of the distillated water changed under the treatment in combined magnetic field tuned to cyclotron frequency of hydronium ion. Such changes in pH had to lead to the biological effects on the molecular ,cell and organism levels.

  18. Biology of cancer and aging: a complex association with cellular senescence.

    Science.gov (United States)

    Falandry, Claire; Bonnefoy, Marc; Freyer, Gilles; Gilson, Eric

    2014-08-20

    Over the last 50 years, major improvements have been made in our understanding of the driving forces, both parallel and opposing, that lead to aging and cancer. Many theories on aging first proposed in the 1950s, including those associated with telomere biology, senescence, and adult stem-cell regulation, have since gained support from cumulative experimental evidence. These views suggest that the accumulation of mutations might be a common driver of both aging and cancer. Moreover, some tumor suppressor pathways lead to aging in line with the theory of antagonist pleiotropy. According to the evolutionary-selected disposable soma theory, aging should affect primarily somatic cells. At the cellular level, both intrinsic and extrinsic pathways regulate aging and senescence. However, increasing lines of evidence support the hypothesis that these driving forces might be regulated by evolutionary-conserved pathways that modulate energy balance. According to the hyperfunction theory, aging is a quasi-program favoring both age-related diseases and cancer that could be inhibited by the regulation of longevity pathways. This review summarizes these hypotheses, as well as the experimental data that have accumulated over the last 60 years linking aging and cancer.

  19. Synthesis, structural studies and biological activity of new Cu(II) complexes with acetyl derivatives of 7-hydroxy-4-methylcoumarin.

    Science.gov (United States)

    Klepka, Marcin T; Drzewiecka-Antonik, Aleksandra; Wolska, Anna; Rejmak, Paweł; Ostrowska, Kinga; Hejchman, Elżbieta; Kruszewska, Hanna; Czajkowska, Agnieszka; Młynarczuk-Biały, Izabela; Ferenc, Wiesława

    2015-04-01

    The new Cu(II) complexes with 6-acetyl-7-hydroxy-4-methylcoumarin (HL1) and 8-acetyl-7-hydroxy-4-methylcoumarin (HL2) have been obtained by the electrochemical method. The density functional theory calculations and X-ray absorption spectroscopy techniques have been used to geometrically describe a series of new compounds. The studies have been focused on the coordination mode of the hydroxy ligands to the metallic centre. The complexes, Cu(HL1)2 and Cu(HL2)2⋅0.5H2O, have flat square geometry with oxygen atoms in the first coordination sphere. Two bidentate anionic coumarins are bonded to the metal cation via the acetyl and deprotonated hydroxyl O atoms. Biological activity, including microbiological and cytotoxic, has been evaluated and found to be enhanced in comparison with the parent ligands. Moreover, the Cu(II) complex with 8-acetyl-7-hydroxy-4-methylcoumarin shows similar antifungal activity as commercially used fluconazole.

  20. Chemical and biological profiles of novel copper(II) complexes containing S-donor ligands for the treatment of cancer.

    Science.gov (United States)

    Giovagnini, Lorena; Sitran, Sergio; Montopoli, Monica; Caparrotta, Laura; Corsini, Maddalena; Rosani, Claudia; Zanello, Piero; Dou, Q Ping; Fregona, Dolores

    2008-07-21

    In the last years, we have synthesized some new platinum(II), palladium(II), gold(I/III) complexes with dithiocarbamato derivatives as potential anticancer drugs, to obtain compounds with superior chemotherapeutic index in terms of increased bioavailability, higher cytotoxicity, and lower side effects than cisplatin. On the basis of the obtained encouraging results, we have been studying the interaction of CuCl2 with methyl-/ethyl-/tert-butylsarcosine-dithiocarbamato moieties in a 1:2 molar ratio; we also synthesized and studied the N,N-dimethyl- and pyrrolidine-dithiocarbamato copper complexes for comparison purposes. The reported compounds have been successfully isolated, purified, and fully characterized by means of several spectroscopic techniques. Moreover, the electrochemical properties of the designed compounds have been studied through cyclic voltammetry. In addition, the behavior in solution was followed by means of UV-vis technique to check the stability with time in physiological conditions. To evaluate their in vitro cytotoxic properties, preliminary biological assays (MTT test) have been carried out on a panel of human tumor cell lines. The results show that cytotoxicity levels of all of the tested complexes are comparable or even greater than that of the reference drug (cisplatin). PMID:18572881

  1. Lanthanide metal complex-based membrane electrodes for sensing of biological amino alcohols

    International Nuclear Information System (INIS)

    Electrodes selective for amino alcohols were prepared by incorporating lanthanide tris(β-diketonates) in PVC membranes, which formed 1:1 highly coordinated complexes with amino alcohols. Several electrodes gave near-Nernstian slopes for 2-amino-3-methyl-1-butanol in the linear concentration range of 1.0 x 10-1 to 1.0 x 10-3 M, while the low detection limits of these electrodes were order of ∼10-4 M. Although the observed response profiles were significantly dependent on the natures of the targeted amino alcohols, the electrodes exhibited stable potentiometric signals in the pH range of 6-12 in short time period of 20 s. The related monoalcohol, diol, and zwitterionic amino acid substrates gave no response, indicating that the present type of lanthanide tris(β-diketonates) were applicable in potentiometric sensing of amino alcohols

  2. A Numerical Algorithm for Complex Biological Flow in Irregular Microdevice Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, A; Miller, G H; Marshall, T; Liepmann, D; Gulati, S; Trebotich, D; Colella, P

    2003-12-15

    We present a numerical algorithm to simulate non-Newtonian flow in complex microdevice components. The model consists of continuum viscoelastic incompressible flow in irregular microscale geometries. Our numerical approach is the projection method of Bell, Colella and Glaz (BCG) to impose the incompressibility constraint coupled with the polymeric stress splitting discretization of Trebotich, Colella and Miller (TCM). In this approach we exploit the hyperbolic structure of the equations of motion to achieve higher resolution in the presence of strong gradients and to gain an order of magnitude in the timestep. We also extend BCG and TCM to an embedded boundary method to treat irregular domain geometries which exist in microdevices. Our method allows for particle representation in a continuum fluid. We present preliminary results for incompressible viscous flow with comparison to flow of DNA and simulants in microchannels and other components used in chem/bio microdevices.

  3. Biological studies of samarium-153 bleomycin complex in human breast cancer murine xenografts for therapeutic applications

    International Nuclear Information System (INIS)

    In this work, a potential therapeutic DNA targeting agent, 153Sm-bleomycin complex (153Sm-BLM), was developed and the tumor accumulation studies were performed using single photon emission computed tomography (SPECT) and scarification studies. 153Sm-BLM was prepared at optimized conditions (room temperature, 4-8 h, 0.1 mg bleomycin for 740-3700 MBq 153SmCl3, radiochemical purity over 98%, HPLC, specific activity = 55 TBq/mmol). 153Sm-BLM was administered into human breast cancer murine xenografts and the biodistribution and imaging studies were performed up to 48 h. 153Sm-BLM demonstrated superior tumor accumulation properties in contrast with the other radiolabeled bleomycins with tumor:blood ratios of 41, 72 and 182 at 4, 24 and 48 h, respectively, and tumor:muscle ratios of 23, 33 and > 1490 at 4, 24 and 48 h, respectively, while administered intravenously. The SPECT images also demonstrated the obvious tumor uptake at the chest region of the breast-tumor bearing mice. These initial experiments demonstrate significant accumulation of 153Sm-BLM in tumor tissues. (orig.)

  4. Preparation and biological distribution of 99mTc-cefazolin complex, a novel agent for detecting sites of infection

    International Nuclear Information System (INIS)

    The optimization of the radiolabeling yield of cefazolin with 99mTc was described. Dependence of the labeling yield of 99mTc-cefazolin complex on the amounts of cefazolin and SnCl2·2H2O, pH and reaction time was studied. Cefazolin was labeled with 99mTc with a labeling yield of 89.5 % by using 1 mg cefazolin, 5 μg SnCl2·2H2O at pH 4 and 30 min reaction time. The radiochemical purity of 99mTc-cefazolin was evaluated with ITLC. The formed 99mTc-cefazolin complex was stable for a time up to 3 h, after that the labeling yield decreased 64.0 % at 8 h. Biological distribution of 99mTc-cefazolin complex was investigated in experimentally induced inflammation mice, in the left thigh, using Staphylococcus aureus (bacterial infection model) and turpentine oil (sterile inflammation model). Both thighs of the mice were dissected and counted and the ratio of bacterial infected thigh/contralateral thigh was then evaluated. In case of bacterial infection, T/NT for 99mTc-cefazolin complex was 8.57 ± 0.4 after 0.5 h, which was higher than that of the commercially available 99mTc-ciprofloxacin under the same experimental conditions. The ability of 99mTc-cefazolin to differentiate between septic and aseptic inflammation indicates that 99mTc-cefazolin could undergo further clinical trials to be used for imaging sites of infection. (author)

  5. Labeling of thymidine analog with an organometallic complex of technetium-99m for diagnostic of cancer: radiochemical and biological evaluation

    International Nuclear Information System (INIS)

    Thymidine analogs have been labeled with different radioisotopes due to their potential in monitoring the uncontrollable cell proliferation. Considering that the radioisotopes technetium-99m still keep a privileged position as a marker due to its chemical and nuclear properties, this dissertation was constituted by the developed of a new technique of labeling of thymidine analog with 99mTc, by means of the organometallic complex. The aims of this research were: synthesis of the organometallic complex technetium-99m-carbonyl, thymidine labeling with this precursor, evaluation of stability, and radiochemical e biological evaluation with healthy and tumor-bearing animals. The preparation of the organometallic precursor, using the CO gas, was easily achieved, as well as the labeling of thymidine with this precursor, resulting itself a radiochemical pureness of ≥ 97% and ≥ 94%, respectively. Chromatography systems with good levels of trustworthiness were used, ensuring the qualification and quantification of the radiochemical samples. The result of in vitro testing of lipophilicity disclosed that the radiolabeled complex is hydrophilic, with a partition coefficient (log P) of -1.48. The precursor complex and the radiolabeled have good radiochemical stability up to 6 h in room temperature. The cysteine and histidine challenge indicated losses between 8 and 1 1 % for concentrations until 300 mM. The biodistribution assay in healthy mice revealed rapid blood clearance and low uptake by general organs with renal and hepatobiliary excretion. The tumor concentration was low with values of 0.28 and 0.18 %ID/g for lung and breast cancer, respectively. The results imply more studies in other tumor models or the modification of the structure of the organic molecule that act like ligand. (author)

  6. New and improved proteomics technologies for understanding complex biological systems: addressing a grand challenge in the life sciences.

    Science.gov (United States)

    Hood, Leroy E; Omenn, Gilbert S; Moritz, Robert L; Aebersold, Ruedi; Yamamoto, Keith R; Amos, Michael; Hunter-Cevera, Jennie; Locascio, Laurie

    2012-09-01

    This White Paper sets out a Life Sciences Grand Challenge for Proteomics Technologies to enhance our understanding of complex biological systems, link genomes with phenotypes, and bring broad benefits to the biosciences and the US economy. The paper is based on a workshop hosted by the National Institute of Standards and Technology (NIST) in Gaithersburg, MD, 14-15 February 2011, with participants from many federal R&D agencies and research communities, under the aegis of the US National Science and Technology Council (NSTC). Opportunities are identified for a coordinated R&D effort to achieve major technology-based goals and address societal challenges in health, agriculture, nutrition, energy, environment, national security, and economic development.

  7. Impact of reclamation treatment on the biological activity of soils of the solonetz complex in Western Siberia

    Science.gov (United States)

    Berezin, L. V.; Khamova, O. F.; Paderina, E. V.; Gindemit, A. M.

    2014-11-01

    The abundance and activity of the soil microflora were studied in a field experiment with the use of green manure crops to assess the impact of reclamation measures on the biological activity of soils of the solonetz complex. The number of microorganisms in the plow soil horizon increased in the background of the green fallows as compared to the black ones. Coefficients of mineralization, immobilization, and transformation of organic compounds were calculated for different variants of the soil treatment. The value of the mineralization coefficient indicates the intense decomposition of the green manure that entered the soil. In the first year, peas were actively decomposed, while oats, in the second year (aftereffect). The activity of the soil enzymes (invertase, urease, and catalase) was determined. A close relationship between the catalase activity and the intensity of the microbiological processes in the soils was revealed.

  8. Measurement issues associated with quantitative molecular biology analysis of complex food matrices for the detection of food fraud.

    Science.gov (United States)

    Burns, Malcolm; Wiseman, Gordon; Knight, Angus; Bramley, Peter; Foster, Lucy; Rollinson, Sophie; Damant, Andrew; Primrose, Sandy

    2016-01-01

    Following a report on a significant amount of horse DNA being detected in a beef burger product on sale to the public at a UK supermarket in early 2013, the Elliott report was published in 2014 and contained a list of recommendations for helping ensure food integrity. One of the recommendations included improving laboratory testing capacity and capability to ensure a harmonised approach for testing for food authenticity. Molecular biologists have developed exquisitely sensitive methods based on the polymerase chain reaction (PCR) or mass spectrometry for detecting the presence of particular nucleic acid or peptide/protein sequences. These methods have been shown to be specific and sensitive in terms of lower limits of applicability, but they are largely qualitative in nature. Historically, the conversion of these qualitative techniques into reliable quantitative methods has been beset with problems even when used on relatively simple sample matrices. When the methods are applied to complex sample matrices, as found in many foods, the problems are magnified resulting in a high measurement uncertainty associated with the result which may mean that the assay is not fit for purpose. However, recent advances in the technology and the understanding of molecular biology approaches have further given rise to the re-assessment of these methods for their quantitative potential. This review focuses on important issues for consideration when validating a molecular biology assay and the various factors that can impact on the measurement uncertainty of a result associated with molecular biology approaches used in detection of food fraud, with a particular focus on quantitative PCR-based and proteomics assays. PMID:26631264

  9. Measurement issues associated with quantitative molecular biology analysis of complex food matrices for the detection of food fraud.

    Science.gov (United States)

    Burns, Malcolm; Wiseman, Gordon; Knight, Angus; Bramley, Peter; Foster, Lucy; Rollinson, Sophie; Damant, Andrew; Primrose, Sandy

    2016-01-01

    Following a report on a significant amount of horse DNA being detected in a beef burger product on sale to the public at a UK supermarket in early 2013, the Elliott report was published in 2014 and contained a list of recommendations for helping ensure food integrity. One of the recommendations included improving laboratory testing capacity and capability to ensure a harmonised approach for testing for food authenticity. Molecular biologists have developed exquisitely sensitive methods based on the polymerase chain reaction (PCR) or mass spectrometry for detecting the presence of particular nucleic acid or peptide/protein sequences. These methods have been shown to be specific and sensitive in terms of lower limits of applicability, but they are largely qualitative in nature. Historically, the conversion of these qualitative techniques into reliable quantitative methods has been beset with problems even when used on relatively simple sample matrices. When the methods are applied to complex sample matrices, as found in many foods, the problems are magnified resulting in a high measurement uncertainty associated with the result which may mean that the assay is not fit for purpose. However, recent advances in the technology and the understanding of molecular biology approaches have further given rise to the re-assessment of these methods for their quantitative potential. This review focuses on important issues for consideration when validating a molecular biology assay and the various factors that can impact on the measurement uncertainty of a result associated with molecular biology approaches used in detection of food fraud, with a particular focus on quantitative PCR-based and proteomics assays.

  10. A differential genome-wide transcriptome analysis: impact of cellular copper on complex biological processes like aging and development.

    Directory of Open Access Journals (Sweden)

    Jörg Servos

    explain the underlying mechanisms controlling complex biological processes like aging and development.

  11. Biologic surveys for the Sandia National Laboratories, Coyote Canyon Test Complex, Kirtland Air Force Base, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.M. [4115 Allen Dr., Kingsville, TX (United States); Knight, P.J. [Marron and Associates, Inc., Corrales, NM (United States)

    1994-05-25

    This report provides results of a comprehensive biologic survey performed in Coyote Canyon Test Complex (CCTC), Sandia National Laboratories (SNL), Bernalillo County, New Mexico, which was conducted during the spring and summer of 1992 and 1993. CCTC is sited on land owned by the Department of Energy (DOE) and Kirtland Air Force Base and managed by SNL. The survey covered 3,760 acres of land, most of which is rarely disturbed by CCTC operations. Absence of grazing by livestock and possibly native ungulates, and relative to the general condition of private range lands throughout New Mexico, and relative to other grazing lands in central New Mexico. Widely dispersed, low intensity use by SNL as well as prohibition of grazing has probably contributed to abundance of special status species such as grama grass cactus within the CCTC area. This report evaluates threatened and endangered species found in the area, as well as comprehensive assessment of biologic habitats. Included are analyses of potential impacts and mitigative measures designed to reduce or eliminate potential impacts. Included is a summary of CCTC program and testing activities.

  12. Complexity

    CERN Document Server

    Gershenson, Carlos

    2011-01-01

    The term complexity derives etymologically from the Latin plexus, which means interwoven. Intuitively, this implies that something complex is composed by elements that are difficult to separate. This difficulty arises from the relevant interactions that take place between components. This lack of separability is at odds with the classical scientific method - which has been used since the times of Galileo, Newton, Descartes, and Laplace - and has also influenced philosophy and engineering. In recent decades, the scientific study of complexity and complex systems has proposed a paradigm shift in science and philosophy, proposing novel methods that take into account relevant interactions.

  13. Multimodal representation contributes to the complex development of science literacy in a college biology class

    Science.gov (United States)

    Bennett, William Drew

    educators are communicating ideas and concepts to their audience with more than simple text. A focused holistic rubric was designed in this study to score how well students in this class were able to incorporate aspects of multimodality into their writing assignments. Using these scores and factors within the rubric (ex. Number of original modes created) they were correlated with classroom performance scores to determine the strength and direction of the relationship. Classroom observations of lectures and discussion sections along with personal interviews with students and teaching assistants aided the interpretation of the results. The results from the study were surprisingly complex to interpret given the background of literature which suggested a strong relationship between multimodal representations and science learning (Lemke, 2000). There were significant positive correlations between student multimodal representations and quiz scores but not exam scores. This study was also confounded by significant differences between sections at the beginning of the study which may have led to learning effects later. The dissimilarity between the tasks of writing during their homework and working on exams may be the reason for no significant correlations with exams. The power to interpret these results was limited by the number of the participants, the number of modal experiences by the students, and the operationalization of multimodal knowledge through the holistic rubric. These results do show that a relationship does exist between the similar tasks within science writing and quizzes. Students may also gain derived science literacy benefits from modal experiences on distal tasks in exams as well. This study shows that there is still much more research to be known about the interconnectedness of multimodal representational knowledge and use to the development of science literacy.

  14. Development of a new catalase activity assay for biological samples using optical CUPRAC sensor

    Science.gov (United States)

    Bekdeşer, Burcu; Özyürek, Mustafa; Güçlü, Kubilay; Alkan, Fulya Üstün; Apak, Reşat

    2014-11-01

    A novel catalase activity assay was developed for biological samples (liver and kidney tissue homogenates) using a rapid and low-cost optical sensor-based ‘cupric reducing antioxidant capacity' (CUPRAC) method. The reagent, copper(II)-neocuproine (Cu(II)-Nc) complex, was immobilized onto a cation-exchanger film of Nafion, and the absorbance changes associated with the formation of the highly-colored Cu(I)-Nc chelate as a result of reaction with hydrogen peroxide (H2O2) was measured at 450 nm. When catalase was absent, H2O2 produced the CUPRAC chromophore, whereas catalase, being an effective H2O2 scavenger, completely annihilated the CUPRAC signal due to H2O2. Thus, the CUPRAC absorbance due to H2O2 oxidation concomitant with Cu(I)-Nc formation decreased proportionally with catalase. The developed sensor gave a linear response over a wide concentration range of H2O2 (0.68-78.6 μM). This optical sensor-based method applicable to tissue homogenates proved to be efficient for low hydrogen peroxide concentrations (physiological and nontoxic levels) to which the widely used UV method is not accurately responsive. Thus, conventional problems of the UV method arising from relatively low sensitivity and selectivity, and absorbance disturbance due to gaseous oxygen evolution were overcome. The catalase findings of the proposed method for tissue homogenates were statistically alike with those of HPLC.

  15. Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 2: Complex urban VOCs and model PM

    Directory of Open Access Journals (Sweden)

    H. E. Jeffries

    2012-12-01

    Full Text Available This is the second study in a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOCs, particulate matter (PM, and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber, both in the dark and in sunlight. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model living receptors. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects from cells exposed to chamber air relative to cells exposed to clean air. Our exposure systems permit side-by-side, gas-only- and PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure for either gases or PM. In Part 1 (Ebersviller et al., 2012a, we demonstrated the existence of PM "effect modification" (NAS, 2004 for the case of a single gas-phase toxicant and an inherently non-toxic PM (mineral oil aerosol, MOA. That is, in the presence of the single gas-phase toxicant in the dark, the initially non-toxic PM became toxic to lung cells in the PM-only-biological exposure system. In this Part 2 study, we used sunlit-reactive systems to create a large variety of gas-phase toxicants from a complex mixture of oxides of nitrogen and 54 VOCs representative of those measured in US city air. In these mostly day-long experiments, we have designated the period in the dark just after injection (but before sunrise as the "Fresh" condition and the period in the dark after sunset as the "Aged" condition. These two conditions were used to expose cells and to collect chemical characterization samples. We used the same inherently non-toxic PM from the Part 1 study as the target PM

  16. Gaseous VOCs rapidly modify particulate matter and its biological effects - Part 2: Complex urban VOCs and model PM

    Science.gov (United States)

    Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y.-H.; Jaspers, I.; Jeffries, H. E.

    2012-12-01

    This is the second study in a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOCs), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber, both in the dark and in sunlight. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model living receptors. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. Our exposure systems permit side-by-side, gas-only- and PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure for either gases or PM. In Part 1 (Ebersviller et al., 2012a), we demonstrated the existence of PM "effect modification" (NAS, 2004) for the case of a single gas-phase toxicant and an inherently non-toxic PM (mineral oil aerosol, MOA). That is, in the presence of the single gas-phase toxicant in the dark, the initially non-toxic PM became toxic to lung cells in the PM-only-biological exposure system. In this Part 2 study, we used sunlit-reactive systems to create a large variety of gas-phase toxicants from a complex mixture of oxides of nitrogen and 54 VOCs representative of those measured in US city air. In these mostly day-long experiments, we have designated the period in the dark just after injection (but before sunrise) as the "Fresh" condition and the period in the dark after sunset as the "Aged" condition. These two conditions were used to expose cells and to collect chemical characterization samples. We used the same inherently non-toxic PM from the Part 1 study as the target PM for "effect

  17. Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 2: Complex urban VOCs and model PM

    Directory of Open Access Journals (Sweden)

    S. Ebersviller

    2012-03-01

    Full Text Available This is the second study in a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOCs, particulate matter (PM, and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber, both in the dark and in sunlight. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model living receptors. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects from cells exposed to chamber air relative to cells exposed to clean air. Our exposure systems permit side-by-side, gas-only- and PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure for either gases or PM.

    In Part 1 (Ebersviller et al., 2012a, we demonstrated the existence of PM "effect modification" (NAS, 2004 for the case of a single gas-phase toxicant and an inherently non-toxic PM (mineral oil aerosol, MOA. That is, in the presence of the single gas-phase toxicant in the dark, the initially non-toxic PM became toxic to lung cells in the PM-only-biological exposure system. In this Part 2 study, we used sunlit-reactive systems to create a large variety of gas-phase toxicants from a complex mixture of oxides of nitrogen and 54 VOCs representative of those measured in US city air. In these mostly day-long experiments, we have designated the period in the dark just after injection (but before sunrise as the "Fresh" condition and the period in the dark after sunset as the "Aged" condition. These two conditions were used to expose cells and to collect chemical characterization samples. We used the same inherently non-toxic PM from the Part 1 study as the

  18. A comparison of the application of a biological and phenetic species concept in the Hebeloma crustuliniforme complex within a phylogenetic framework

    DEFF Research Database (Denmark)

    Aanen, Duur Kornelis; Kuyper, T.W.

    2004-01-01

    A method is presented to derive an operational phenetic species concept for the Hebeloma crustuliniforme complex in northwestern Europe. The complex was found to consist of at least 22 biological species (intercompatibility groups; ICGs). Almost none of these biological species could be recognised...... criterion of monophyly and allowing paraphyletic groupings of biological species as phenetic species would result in the recognition of three phenetic species. A tree, with the five ICGs of the previously defined morphospecies H. crustuliniforme (1, 2, 3, 4 and 5) constrained as a monophyletic group, can...... not be rejected. This constrained tree, together with the relaxed criterion that allows for paraphyletic groupings of biological species, leads to the recognition of four phenetic species, viz. H. crustuliniforme, H. helodes, H. incarnatulum and H. velutipes. These phenetic species are described and a...

  19. The bottom-up approach to defining life : deciphering the functional organization of biological cells via multi-objective representation of biological complexity from molecules to cells

    Directory of Open Access Journals (Sweden)

    Sathish ePeriyasamy

    2013-12-01

    Full Text Available In silico representation of cellular systems needs to represent the adaptive dynamics of biological cells, recognizing a cell’s multi-objective topology formed by spatially and temporally cohesive intracellular structures. The design of these models needs to address the hierarchical and concurrent nature of cellular functions and incorporate the ability to self-organise in response to transitions between healthy and pathological phases, and adapt accordingly. The functions of biological systems are constantly evolving, due to the ever changing demands of their environment. Biological systems meet these demands by pursuing objectives, aided by their constituents, giving rise to biological functions. A biological cell is organised into an objective/task hierarchy. These objective hierarchy corresponds to the nested nature of temporally cohesive structures and representing them will facilitate in studying pleiotropy and polygeny by modeling causalities propagating across multiple interconnected intracellular processes. Although biological adaptations occur in physiological, developmental and reproductive timescales, the paper is focused on adaptations that occur within physiological timescales, where the biomolecular activities contributing to functional organisation, play a key role in cellular physiology. The paper proposes a multi-scale and multi-objective modelling approach from the bottom-up by representing temporally cohesive structures for multi-tasking of intracellular processes. Further the paper characterises the properties and constraints that are consequential to the organisational and adaptive dynamics in biological cells.

  20. Rapid Isolation and Determination of Flavones in Biological Samples Using Zinc Complexation Coupled with High-Performance Liquid Chromatography.

    Science.gov (United States)

    Sun, Chenghe; Wang, Hecheng; Wang, Yingping; Xiao, Shengyuan

    2016-01-01

    Chlorophyll-type contaminants are commonly encountered in the isolation and determination of flavones of plant aerial plant parts. Heme is also a difficult background substance in whole blood analysis. Both chlorophyll and heme are porphyrin type compounds. In this study, a rapid method for isolating flavones with 5-hydroxyl or ortho-hydroxyl groups from biological samples was developed based on the different solubilities of porphyrin-metal and flavone-metal complexes. It is important that other background substances, e.g., proteins and lipids, are also removed from flavones without an additional processing. The recoveries of scutellarin, baicalin, baicalein, wogonoside and wogonin, which are the primary constituents of Scutellaria baicalensis (skullcaps) were 99.65% ± 1.02%, 98.98% ± 0.73%, 99.65% ± 0.03%, 97.59% ± 0.09% and 95.19% ± 0.47%, respectively. As a sample pretreatment procedure, this method was coupled to high-performance liquid chromatography (HPLC) with good separation, sensitivity and linearity and was applied to determine the flavone content in different aerial parts of S. baicalensis and in dried blood spot samples. PMID:27537870

  1. Rapid Isolation and Determination of Flavones in Biological Samples Using Zinc Complexation Coupled with High-Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Chenghe Sun

    2016-08-01

    Full Text Available Chlorophyll-type contaminants are commonly encountered in the isolation and determination of flavones of plant aerial plant parts. Heme is also a difficult background substance in whole blood analysis. Both chlorophyll and heme are porphyrin type compounds. In this study, a rapid method for isolating flavones with 5-hydroxyl or ortho-hydroxyl groups from biological samples was developed based on the different solubilities of porphyrin-metal and flavone-metal complexes. It is important that other background substances, e.g., proteins and lipids, are also removed from flavones without an additional processing. The recoveries of scutellarin, baicalin, baicalein, wogonoside and wogonin, which are the primary constituents of Scutellaria baicalensis (skullcaps were 99.65% ± 1.02%, 98.98% ± 0.73%, 99.65% ± 0.03%, 97.59% ± 0.09% and 95.19% ± 0.47%, respectively. As a sample pretreatment procedure, this method was coupled to high-performance liquid chromatography (HPLC with good separation, sensitivity and linearity and was applied to determine the flavone content in different aerial parts of S. baicalensis and in dried blood spot samples.

  2. Reconstruction of complex passageways for simulations of transport phenomena: development of a graphical user interface for biological applications.

    Science.gov (United States)

    Godo, M N; Morgan, K T; Richardson, R B; Kimbell, J S

    1995-07-01

    Flow of fluids, such as blood, lymph and air, plays a major role in the normal physiology of all living organisms. Within individual organ systems, flow fields may significantly influence the transport of solutes, including nutrients and chemical toxicants, to and from the confining vessel walls (epithelia and endothelia). Computational fluid dynamics (CFD) provides a potentially useful tool for biologists and toxicologists investigating solute disposition in these flow fields in both normal and disease states. Application of CFD is dependent upon generation of accurate representations of the geometry of the system of interest in the form of a computational reconstruction. The present investigations, which were based on studies of the toxicology of inhaled reactive gases in the respiratory tract of rodents, provide computer programs for the generation of finite element meshes from serial tissue cross-sections. These programs, which interface with a commercial finite element fluid dynamics simulation package (FIDAP 7.05, Fluid Dynamics International, Evanston, IL), permit simulation of fluid flow in the complex geometries and local solute mass flux to the vessel walls of biological systems. The use of these programs and their application to studies of respiratory tract toxicology are described.

  3. Biological soil crusts: a microenvironment characterized by complex microbial interrelations affected by the presence of the exopolysaccharidic matrix.

    Science.gov (United States)

    De Philippis, Roberto

    2015-04-01

    Biological Soil Crusts (BSCs) are complex microbial communities, commonly found in arid and semiarid areas of the world. The capability of the microorganisms residing in BSCs to withstand the harsh environmental conditions typical of these habitats, namely drought and high solar irradiation, is related with the presence of a matrix constituted by microbial-produced extracellular polysaccharides (EPSs), which also accomplish for a wide array of key ecological roles. EPSs represent a huge carbon source directly available to heterotrophic organisms, affect soil characteristics, water regimes, and establish complex interactions with plants. The induction of BSCs on degraded soils is considered a feasible approach to amend and maintain land fertility, as it was reported in a number of recent studies. It was recently shown that BSC induction is beneficial in enhancing SOC (Soil Organic Carbon) and in increasing the abundance of phototrophic organisms and vegetation cover. This lecture will describe the results of a study showing that cyanobacterial-EPS resulted advantageous to the growth and metabolism of seedlings of Caragana korshinskii, a desert sub-shrub widely diffused in the area under study, also contributing a defensive effect against the damaging effects of reactive oxygen species (ROS), generated under UV-irradiation, salt stress and desiccation. A study aimed at investigating the possible correlation between the chemical composition and the macromolecular features of the EPS matrix of induced BSCs of different age, collected in the hyper-arid plateau of Hobq desert, Inner Mongolia, China, will be also presented. The results of this study showed that the characteristics of the EPS of the matrix of the investigated IBSCs cannot be put only in relation with the age of the crusts and the activity of phototrophic microorganisms but, more properly, it has to be taken into account the biotic interactions ongoing between EPS producers (cyanobacteria, green microalgae

  4. Improving fundamental abilities of atomic force microscopy for investigating quantitative nanoscale physical properties of complex biological systems

    Science.gov (United States)

    Cartagena-Rivera, Alexander X.

    Measurements of local material properties of complex biological systems (e.g. live cells and viruses) in their respective physiological conditions are extremely important in the fields of biophysics, nanotechnology, material science, and nanomedicine. Yet, little is known about the structure-function-property relationship of live cells and viruses. In the case of live cells, the measurements of progressive variations in viscoelastic properties in vitro can provide insight to the mechanistic processes underpinning morphogenesis, mechano-transduction, motility, metastasis, and many more fundamental cellular processes. In the case of living viruses, the relationship between capsid structural framework and the role of the DNA molecule interaction within viruses influencing their stiffness, damping and electrostatic properties can shed light in virological processes like protein subunits assembly/dissassembly, maturation, and infection. The study of mechanics of live cells and viruses has been limited in part due to the lack of technology capable of acquiring high-resolution (nanoscale, subcellular) images of its heterogeneous material properties which vary widely depending on origin and physical interaction. The capabilities of the atomic force microscope (AFM) for measuring forces and topography with sub-nm precision have greatly contributed to research related to biophysics and biomechanics during the past two decades. AFM based biomechanical studies have the unique advantage of resolving/mapping spatially the local material properties over living cells and viruses. However, conventional AFM techniques such as force-volume and quasi-static force-distance curves are too low resolution and low speed to resolve interesting biophysical processes such as cytoskeletal dynamics for cells or assembly/dissasembly of viruses. To overcome this bottleneck, a novel atomic force microscopy mode is developed, that leads to sub-10-nm resolution and sub-15-minutes mapping of local

  5. Nano structure zinc (II) Schiff base complexes of a N3-tridentate ligand as new biological active agents: Spectral, thermal behaviors and crystal structure of zinc azide complex

    Science.gov (United States)

    Montazerozohori, M.; Mojahedi Jahromi, S.; Masoudiasl, A.; McArdle, P.

    2015-03-01

    In this work, synthesis of some new five coordinated zinc halide/pseudo-halide complexes of a N3-tridentate ligand is presented. All complexes were subjected to spectroscopic and physical methods such as FT-IR, UV-visible, 1H and 13C NMR spectra, thermal analyses and conductivity measurements for identification. Based on spectral data, the general formula of ZnLX2 (X = Cl-, Br-, I-, SCN- and N3-) was proposed for the zinc complexes. Zinc complexes have been also prepared in nano-structure sizes under ultrasonic irradiation. X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were applied for confirmation of nano-structure character for the complexes. Among the complexes, zinc azide complex structure was analyzed by X-ray crystallography. This complex crystallizes as a triplet in trigonal system with space group of P31. The coordination sphere around the zinc center is well shown as a distorted trigonal bipyramidal with three nitrogen atoms from Schiff base ligand and two terminal azide nitrogen atoms attached to zinc ion. Various intermolecular interactions such as Nsbnd H⋯N, Csbnd H⋯N and Csbnd H⋯π hydrogen bonding interactions stabilize crystalline lattice so that they causes a three dimensional supramolecular structure for the complex. In vitro screening of the compounds for their antimicrobial activities showed that ZnLI2, ZnL(N3)2, ZnLCl2 and ZnL(NCS)2 were found as the most effective compound against bacteria of Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli respectively. Also ZnLI2 and ZnLCl2 complexes were found more effective against two selected fungi than others. Finally, thermal behaviors of the zinc complexes showed that they are decomposed via 2-4 thermal steps from room temperature up to 1000 °C.

  6. Synthesis of the 99mTc(CO)3-trovafloxacin dithiocarbamate complex and biological characterization in artificially methicillin-resistant Staphylococcus aureus infected rats model

    International Nuclear Information System (INIS)

    Synthesis of the 99mTc(CO)3-trovafloxacin dithiocarbamate (99mTc(CO)3-TVND) complex and biological characterization in artificially Staphylococcus aureus (S. aureus) infected rats model was assessed. The suitability of the complex was evaluated and compared with 99mTcN-TVND, in terms of radiochemical immovability in saline, in vitro permanence in serum, in vitro binding with S. aureus and biodistribution in Male Sprague-Dawley rats (MSDR). After 30 min of the reconstitution both the complexes showed maximum radiochemical stabilities in saline and remain more than 90% stable up to 120 min. However the 99mTc(CO)3-TVND showed to some extent higher stability than 99mTcN-TVND complex. In serum 1.75% less de-tagging was observed than 99mTcN-TVND complex. Both the complexes showed saturated in vitro binding with S. aureus and no significant difference were observed between the uptakes. Six fold uptakes were noted in the infected muscle as compared to the inflamed and normal muscles of the MDSR. The uptake of the 99mTc(CO)3-TVND in infected muscle of the MSDR was 2.25% high as compared to the 99mTcN-TVND complex. Based on radiochemical stabilities in saline, serum, in vitro binding with MRSA and significantly higher uptake in the infected muscle, we recommend both the complexes for in vivo investigation of the MRSA infection in human. (author)

  7. Efficient biological conversion of carbon monoxide (CO) to carbon dioxide (CO2) and for utilization in bioplastic production by Ralstonia eutropha through the display of an enzyme complex on the cell surface.

    Science.gov (United States)

    Hyeon, Jeong Eun; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok

    2015-06-25

    An enzyme complex for biological conversion of CO to CO2 was anchored on the cell surface of the CO2-utilizing Ralstonia eutropha and successfully resulted in a 3.3-fold increase in conversion efficiency. These results suggest that this complexed system may be a promising strategy for CO2 utilization as a biological tool for the production of bioplastics. PMID:26017299

  8. Efficient biological conversion of carbon monoxide (CO) to carbon dioxide (CO2) and for utilization in bioplastic production by Ralstonia eutropha through the display of an enzyme complex on the cell surface.

    Science.gov (United States)

    Hyeon, Jeong Eun; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok

    2015-06-25

    An enzyme complex for biological conversion of CO to CO2 was anchored on the cell surface of the CO2-utilizing Ralstonia eutropha and successfully resulted in a 3.3-fold increase in conversion efficiency. These results suggest that this complexed system may be a promising strategy for CO2 utilization as a biological tool for the production of bioplastics.

  9. Radiosynthesis and biological evaluation of the {sup 99m}Tc-tricarbonyl moxifloxacin dithiocarbamate complex as a potential Staphylococcus aureus infection radiotracer

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Syed Qaiser, E-mail: ssqaiser2002@yahoo.co [Nuclear Medicine Research Laboratory (NMRL), University of Peshawar, Peshawar, KPK (Pakistan); Khan, Muhammad Rafiullah [Phytopharmaceutical and Neutraceuticals Research Laboratory (PNRL), University of Peshawar, Peshawar, KPK (Pakistan)

    2011-04-15

    In the present investigation, radiosynthesis of the {sup 99m}Tc-tricarbonyl moxifloxacin dithiocarbamate complex ({sup 99m}Tc(CO){sub 3}-MXND) and its biological evaluation in male Wister rats (MWR) artificially infected with Staphylococcus aureus (S. aureus) was assessed. The {sup 99m}Tc(CO){sub 3}-MXND complex was radiochemically examined in terms of stability in saline and in serum and biologically its in-vitro binding with S. aureus and percent absorption in MWR models. Radiochemically the {sup 99m}Tc(CO){sub 3}-MXND complex showed more than 90% stability in saline up to 240 min and in serum 14.95% undesirable species was appeared within 16 h. In-vitro the {sup 99m}Tc(CO){sub 3}-MXND complex showed saturated binding with S. aureus. In MWR artificially infected with live S. aureus the complex showed about six fold higher uptakes in the infected muscle as compared to the normal muscle. However, insignificant change in the uptake of {sup 99m}Tc(CO){sub 3}-MXND complex in the infected and inflamed or normal muscle was observed in the MWR infected with heat killed S. aureus. The {sup 99m}Tc(CO){sub 3}-MXND complex disappeared from the circulatory system and appeared in the urinary system within 60-90 min followed by excretion through normal route of urinary system. Based on the elevated and stable radiochemical succumb in saline, serum, saturated in-vitro binding with S. aureus and higher accumulation in the target organ of the MWR, we recommend the {sup 99m}Tc(CO){sub 3}-MXND complex for radio-localization of the infection induced by S. aureus in human.

  10. Scientific Opinion on the safety and efficacy of copper compounds (E4) as feed additives for all species: cupric chelate of amino acids hydrate, based on a dossier submitted by Zinpro Animal Nutrition Inc.

    OpenAIRE

    EFSA Panel on Additives and Products or Substances used in Animal Feed

    2013-01-01

    Cupric chelate of amino acids hydrate is safe for all animal species/categories up to the authorised maximum of total copper content in complete feed. Consumption surveys include copper from foodstuffs of animal origin. Since the supplementation of animal feed with copper-containing compounds has not essentially changed over the last decade, no change in the contribution of foodstuffs originating from supplemented animals to the overall copper intake of consumers is expected. No concerns for ...

  11. The GLOBE 3D Genome Platform - towards a novel system-biological paper tool to integrate the huge complexity of genome organization and function.

    Science.gov (United States)

    Knoch, Tobias A; Lesnussa, Michael; Kepper, Nick; Eussen, Hubert B; Grosveld, Frank G

    2009-01-01

    Genomes are tremendous co-evolutionary holistic systems for molecular storage, processing and fabrication of information. Their system-biological complexity remains, however, still largely mysterious, despite immense sequencing achievements and huge advances in the understanding of the general sequential, three-dimensional and regulatory organization. Here, we present the GLOBE 3D Genome Platform a completely novel grid based virtual "paper" tool and in fact the first system-biological genome browser integrating the holistic complexity of genomes in a single easy comprehensible platform: Based on a detailed study of biophysical and IT requirements, every architectural level from sequence to morphology of one or several genomes can be approached in a real and in a symbolic representation simultaneously and navigated by continuous scale-free zooming within a unique three-dimensional OpenGL and grid driven environment. In principle an unlimited number of multi-dimensional data sets can be visualized, customized in terms of arrangement, shape, colour, and texture etc. as well as accessed and annotated individually or in groups using internal or external data bases/facilities. Any information can be searched and correlated by importing or calculating simple relations in real-time using grid resources. A general correlation and application platform for more complex correlative analysis and a front-end for system-biological simulations both using again the huge capabilities of grid infrastructures is currently under development. Hence, the GLOBE 3D Genome Platform is an example of a grid based approach towards a virtual desktop for genomic work combining the three fundamental distributed resources: i) visual data representation, ii) data access and management, and iii) data analysis and creation. Thus, the GLOBE 3D Genome Platform is the novel system-biology oriented information system urgently needed to access, present, annotate, and to simulate the holistic genome

  12. Synthesis, spectral characterisation, morphology, biological activity and DNA cleavage studies of metal complexes with chromone Schiff base

    Directory of Open Access Journals (Sweden)

    P. Kavitha

    2016-07-01

    Full Text Available Cu(II, Co(II, Ni(II and Zn(II complexes have been synthesized using 3-((pyridine-2-yliminomethyl-4H-chromen-4-one as a ligand derived from 3-formyl chromone and 2-amino pyridine. All the complexes were characterised by analytical, conductivity, IR, electronic, magnetic, ESR, thermal, powder XRD and SEM studies. The analytical data revealed that the metal to ligand molar ratio is 1:2 in all the complexes. Molar conductivity data indicates that all the complexes are neutral in nature. On the basis of magnetic and electronic spectral data, octahedral geometry is proposed for all the complexes. Thermal behaviour of the synthesized complexes indicates the coordinated and lattice water molecules are present in the complexes. The X-ray diffraction data suggest a triclinic system for all compounds. Different surface morphologies were identified from SEM micrographs. All metal complexes exhibit fluorescence. The antimicrobial and nematicidal activity data show that metal complexes are more potent than the parent ligand. The DNA cleavage activity of the ligand and its metal complexes were observed in the presence of H2O2.

  13. Potentiometric studies on ternary complexes involving some divalent transition metal ions, gallic acid and biologically abundant aliphatic dicarboxylic acids in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Abdelatty Mohamed Radalla

    2015-06-01

    Full Text Available Formation of binary and ternary complexes of the divalent transition metal ions, Cu2+, Ni2+, Co2+ and Zn2+ with gallic acid and the biologically important aliphatic dicarboxylic acids (adipic, succinic, malic, malonic, maleic, tartaric and oxalic acids were investigated by means of the potentiometric technique at 25 °C and I = 0.10 mol dm−3 NaNO3. The acid-base properties of the ligands were investigated and discussed. The acidity constants of gallic acid and aliphatic dicarboxylic acids were determined and used for determining the stability constants of the binary and ternary complexes formed in the aqueous medium under the above experimental conditions. The formation of the different 1:1 and 1:2 binary complexes and 1:1:1 ternary complexes are inferred from the corresponding potentiometric pH-metric titration curves. The ternary complex formation was found to occur in a stepwise manner. The stability constants of these binary and ternary systems were calculated. The values of Δ log K, percentage of relative stabilization (%R.S. and log X were evaluated and discussed. The concentration distribution of the various complex species formed in solution was evaluated and discussed. The mode of chelation of ternary complexes formed was ascertained by conductivity measurements.

  14. Study on HNS-Ⅳ Initiated by Flyer Driven by Cupric Azide%叠氮化铜驱动飞片起爆HNS-Ⅳ的研究

    Institute of Scientific and Technical Information of China (English)

    郭俊峰; 曾庆轩; 李明愉; 李兵

    2015-01-01

    针对以叠氮化铜微装药为基础的MEMS起爆传爆序列,利用数值模拟的方法研究起爆序列结构对起爆性能的影响.研究结果表明:飞片的剪切形状与文献结果相符.在装药直径一定的情况下,随着装药厚度的增加,飞片速度增加;当装药厚度为0.5mm、装药直径大于0.7mm时,增加装药直径不能进一步增加飞片速度;当叠氮化铜的尺寸为Φ0.7mm×0.5mm、加速膛长度为0.56mm时,系统能够起爆HNS-IV炸药.利用文献数据拟合得到了HNS-IV炸药的冲击起爆判据,模拟结果符合HNS-Ⅳ的冲击起爆判据.%Aimed at MEMS booster train based on micro charge involving cupric azide, numerical simulation method was utilized to study the effect of the structure of booster train on shock-initiation performance. Simulation results indicate that the shear of flyer shape is consistent with literature results. To a certain charge diameter, the flyer velocity is increased as the charge thickness increasing. While the flyer velocity cannot continue to increase with the diameter increasing, when the charge thickness is 0.5 mm and the charge diameter exceeds 0.7mm. When the charge size of cupric azide is Φ 0.7mm×0.5 mm and the length of barrel is 0.56 mm, HNS-IV explosive can be initiated by this system. The shock-initiation criterion of HNS-Ⅳ explosive fitted by literature results is determined, which is consistent with the simulation results.

  15. Spectroscopic and biological approach of Ni(II) and Cu(II) complexes of 2-pyridinecarboxaldehyde thiosemicarbazone

    Science.gov (United States)

    Chandra, Sulekh; Raizada, Smriti; Tyagi, Monika; Sharma, Praveen Kumar

    2008-03-01

    Ni(II) and Cu(II) complexes having the general composition [M(L) 2X 2] [where L = 2-pyridinecarboxaldehyde thiosemicarbazone, M = Ni(II) and Cu(II), X = Cl -, NO 3- and 1/2 SO 42-] have been synthesized. All the metal complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, EPR and electronic spectral studies. The magnetic moment measurements of the complexes indicate that all the complexes are of high-spin type. On the basis of spectral studies an octahedral geometry has been assigned for Ni(II) complexes whereas tetragonal geometry for Cu(II) except [Cu(L) 2SO 4] which posseses five coordinated geometry. The ligand and its metal complexes were screened against phytopathogenic fungi and bacteria in vitro.

  16. Theoretical investigation, biological evaluation and VEGFR2 kinase studies of metal(II) complexes derived from hydrotris(methimazolyl)borate.

    Science.gov (United States)

    Jayakumar, S; Mahendiran, D; Srinivasan, T; Mohanraj, G; Kalilur Rahiman, A

    2016-02-01

    The reaction of soft tripodal scorpionate ligand, sodium hydrotris(methimazolyl)borate with M(ClO4)2·6H2O [MMn(II), Ni(II), Cu(II) or Zn(II)] in methanol leads to the cleavage of B-N bond followed by the formation of complexes of the type [M(MeimzH)4](ClO4)2·H2O (1-4), where MeimzH=methimazole. All the complexes were fully characterized by spectro-analytical techniques. The molecular structure of the zinc(II) complex (4) was determined by X-ray crystallography, which supports the observed deboronation reaction in the scorpionate ligand with tetrahedral geometry around zinc(II) ion. The electronic spectra of complexes suggested tetrahedral geometry for manganese(II) and nickel(II) complexes, and square-planar geometry for copper(II) complex. Frontier molecular orbital analysis (HOMO-LUMO) was carried out by B3LYP/6-31G(d) to understand the charge transfer occurring in the molecules. All the complexes exhibit significant antimicrobial activity against Gram (-ve) and Gram (+ve) bacterial as well as fungal strains, which are quite comparable to standard drugs streptomycin and clotrimazole. The copper(II) complex (3) showed excellent free radical scavenging activity against DPPH in all concentration with IC50 value of 30μg/mL, when compared to the other complexes. In the molecular docking studies, all the complexes showed hydrophobic, π-π and hydrogen bonding interactions with BSA. The cytotoxic activity of the complexes against human hepatocellular liver carcinoma (HepG2) cells was assessed by MTT assay, which showed exponential responses toward increasing concentration of complexes. PMID:26735002

  17. Synthesis, Characterisation, and Biological Evaluation of Zn(II) Complex with Tridentate (NNO Donor) Schiff Base Ligand

    OpenAIRE

    Ahmed, Nayaz; Riaz, Mohd; Ahmed, Altaf; Bhagat, Madhulika

    2015-01-01

    The present paper deals with the synthesis and characterization of metal complex of tridentate Schiff base ligand derived from the inserted condensation of 2-aminobenzimidazole (1H-benzimidazol-2-amine) with salicylaldehyde (2-hydroxybenzaldehyde) in a 1 : 1 molar ratio. Using this tridentate ligand, complex of Zn(II) with general formula ML has been synthesized. The synthesized complex was characterized by several techniques using molar conductance, elemental analysis, FT-IR, and mass and 1H...

  18. Synthesis, spectral, characterization, catalytic and biological studies of new RuII N2O Schiff base complexes

    International Nuclear Information System (INIS)

    Complexes of the type (RuCl(CO)(B)(L)) (B = PPh3, AsPh3, py or pip; L monobasic tridentate Schiff base) have been synthesized by the reaction of equimolar amounts of (RuHCl(CO)(EPh3)2(B)) and Schiff bases in benzene. The resulting complexes have been characterized by analytical and spectral (IR, electronic, NMR) data. An octahedral structure has been assigned to all these complexes. The new complexes have been exhibit catalytic activity for the oxidation of benzyl alcohol and cyclohexanol in the presence of N-methylmorpholine-N-oxide as co-oxidant. (author)

  19. Biological evaluation of 99mTC cis-Pt iminoacetic acid complexes as tumour imaging agents

    International Nuclear Information System (INIS)

    The biodistributions of three new 99mTc labelled cis-platinum bifunctional tumour imaging agents were examined in mice bearing a certain type of sarcoma between 15 minutes and 24 hours post injection. The three complexes were excreted primarily via the renal pathway into the urine but at quite different rates. All complexes had some affinity for the tumour, but complexes III had the greatest, with tumour to blood and tumour to muscle rates at 24 hours in excess of 10:1 and 18:1. Biodistribution results were calculated using Tiscon Program. Suggesting that the three complexes may be useful as tumour imaging agents. (M.E.L.)

  20. New Transition and Actinide Metal Complexes of 2-Carboxyphenyl-hydrazo-Benzoylacetone Ligand:Synthesis,Characterization and Biological Study

    Institute of Scientific and Technical Information of China (English)

    KHALIL M.M.H.; MASHALY M.M.

    2008-01-01

    A new series of binary mononuclear complexes were prepared from the reaction of the hydrazone ligand,2-carboxyphenylhydrazo-benzoylacetone (H2L),with the metal ions,Cd(II),Cu(II),Ni(lI),Co01),Th(IV) and UO2(VI).The binary Cu(II) complex of H2L was reacted with the ligands 1,10-phenanthroline or 2-aminopyridine to form mixed-ligand complexes.The binary complexes of Cu(II) and Ni(II) are suggested to have octahedral configurations.The Cd(II) and Co(II) complexes are suggested to have tetrahedral and/or square-planar geometries,respectively.The Th(IV) and UO2(VI) complexes are suggested to have octahedral and dodecahedral geometries,respectively.The mixed-ligand complexes have octahedral configurations.The structures of all complexes and the corresponding thermal products were elucidated by elemental analyses,conductance,IR and electronic absorption spectra,magnetic moments,1H NMR and TG-DSC measurements as well as by mass spectroscopy.The ligand and some of the metal complexes were found to activate the enzyme pectinlyase.

  1. Half-sandwich ruthenium-arene complexes with thiosemicarbazones: Synthesis and biological evaluation of [(η6-p-cymene)Ru(piperonal thiosemicarbazones)Cl]Cl complexes

    OpenAIRE

    Beckford, Floyd; Dourth, Deidra; Shaloski, Michael; Didion, Jacob; Thessing, Jeffrey; Woods, Jason; Crowell, Vernon; Gerasimchuk, Nikolay; Gonzalez-Sarrías, Antonio; Seeram, Navindra P.

    2011-01-01

    The synthesis and characterization of a number of organometallic ruthenium(II) complexes containing a series of bidentate thiosemicarbazone ligands derived from piperonal is reported. The structure of compounds have been confirmed by spectroscopic analysis (IR and NMR) as well as X-ray crystallographic analysis of [(η6-p-cymene)Ru(pPhTSC)Cl]Cl (4) (pPhTSC is piperonal-N(4)-phenylthiosemicarbazone). The interaction of the complexes ([(η6-p-cymene)Ru(pEtTSC)Cl]Cl) (3) (pEtTSC is piperonal-N(4)-...

  2. Synthesis, spectral characterization, molecular modeling, thermal study and biological evaluation of transition metal complexes of a bidentate Schiff base ligand

    Science.gov (United States)

    Chandra, Sulekh; Bargujar, Savita; Nirwal, Rita; Qanungo, Kushal; Sharma, Saroj K.

    2013-09-01

    Complexes of copper(II) and nickel(II) of general composition M(L)2X2, have been synthesized [where L = 3-Bromoacetophenone thiosemicarbazone and X = CH3COO-, Cl- and NO3-]. All the complexes were characterized by elemental analysis, magnetic moments, IR, electronic and EPR spectral studies. The ligand behaved as bidentate and coordinated through sulfur of sbnd Cdbnd S group and nitrogen atoms of sbnd Cdbnd N group. The copper(II) and nickel(II) complexes were found to have magnetic moments 1.94-2.02 BM, 2.96-3.02 BM respectively which was corresponding to one and two unpaired electrons respectively. The molar conductance of the complexes in solution of DMSO lies in the range of 10-20 Ω-1 cm2 mol-1 indicating their non-electrolytic behavior. On the basis of EPR, electronic and infrared spectral studies, tetragonal geometry has been assigned for copper(II) complexes and an octahedral geometry for nickel(II) complexes. The values of Nephelauxetic parameter β lie in the range 0.19-0.37 which indicated the covalent character in metal ligand ‘σ' bond. Synthesized ligand and its copper(II) and nickel(II) complexes have also been screened against different bacterial and fungal species which suggested that complexes are more active than the ligands in antimicrobial activities.

  3. Does constructive neutral evolution play an important role in the origin of cellular complexity? Making sense of the origins and uses of biological complexity

    NARCIS (Netherlands)

    D. Speijer

    2011-01-01

    Recently, constructive neutral evolution has been touted as an important concept for the understanding of the emergence of cellular complexity. It has been invoked to help explain the development and retention of, amongst others, RNA splicing, RNA editing and ribosomal and mitochondrial respiratory

  4. Determination of mercury levels in biological samples using the incomplete cubane-type sulfur-bridged nitrilotriacetato molybdenum complex by a spectrophotometer.

    Science.gov (United States)

    Aikoh, H; Yamate, M; Takahashi, M; Shibahara, T

    1997-01-01

    Spectrophotometric determination of mercury levels in biological samples was investigated using incomplete cubane-type sulfur-bridged molybdenum complex, K2[Mo3S4(Hnta)3] 9H2O, ("NTA" complex; H3nta = nitrilotri acetic acid). The urine or organs of mice, which were either exposed to metallic mercury vapor or injected intraperitoneally with mercuric ion, were decomposed from four to twelve hours with a mixed solution of potassium permanganate and sulfuric acid. After the pretreatment, mercury in the urine and organs of mice was captured by the "NTA" complex. Absorbance of the resultant solution in the urine or organs of mice was also measured by a spectrophotometer under conditions similar to that of the exhalation. PMID:9353959

  5. Synthesis, photoluminescence and biological properties of terbium(III) complexes with hydroxyketone and nitrogen containing heterocyclic ligands

    Science.gov (United States)

    Poonam; Kumar, Rajesh; Boora, Priti; Khatkar, Anurag; Khatkar, S. P.; Taxak, V. B.

    2016-01-01

    The ternary terbium(III) complexes [Tb(HDAP)3ṡbiq], [Tb(HDAP)3ṡdmph] and [Tb(HDAP)3ṡbathophen] were prepared by using methoxy substituted hydroxyketone ligand HDAP (2-hydroxy-4,6-dimethoxyacetophenone) and an ancillary ligand 2,2-biquinoline or 5,6-dimethyl-1,10-phenanthroline or bathophenanthroline respectively. The ligand and synthesized complexes were characterised based on elemental analysis, FT-IR and 1H NMR. Thermal behaviour of the synthesized complexes illustrates the general decomposition patterns of the complexes by thermogravimetric analysis. Photophysical properties such as excitation spectra, emission spectra and luminescence decay curves of the complexes were investigated in detail. The main green emitting peak at 548 nm can be attributed to 5D4 → 7F5 of Tb3+ ion. Thus, these complexes might be used to make a bright green light-emitting diode for display purpose. In addition the in vitro antibacterial activities of HDAP and its Tb(III) complexes against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and antifungal activities against Candida albicans and Aspergillus niger are reported. The Tb3+ complexes were found to be more potent antimicrobial agent as compared to the ligand. Among all these complexes, [Tb(HDAP)3ṡbathophen] exhibited excellent antimicrobial activity which proves its potential usefulness as an antimicrobial agent. Furthermore, in vitro antioxidant activity tests were carried out by using DPPH method which indicates that the complexes have considerable antioxidant activity when compared with the standard ascorbic acid.

  6. Biologically active new Fe(II, Co(II, Ni(II, Cu(II, Zn(II and Cd(II complexes of N-(2-thienylmethylenemethanamine

    Directory of Open Access Journals (Sweden)

    C. SPÎNU

    2008-04-01

    Full Text Available Iron(II, cobalt(II, nickel (II, copper (II, zinc(II and cadmium(II complexes of the type ML2Cl2, where M is a metal and L is the Schiff base N-(2-thienylmethylenemethanamine (TNAM formed by the condensation of 2-thiophenecarboxaldehyde and methylamine, were prepared and characterized by elemental analysis as well as magnetic and spectroscopic measurements. The elemental analyses suggest the stoichiometry to be 1:2 (metal:ligand. Magnetic susceptibility data coupled with electronic, ESR and Mössbauer spectra suggest a distorted octahedral structure for the Fe(II, Co(II and Ni(II complexes, a square-planar geometry for the Cu(II compound and a tetrahedral geometry for the Zn(II and Cd(II complexes. The infrared and NMR spectra of the complexes agree with co-ordination to the central metal atom through nitrogen and sulphur atoms. Conductance measurements suggest the non-electrolytic nature of the complexes, except for the Cu(II, Zn(II and Cd(II complexes, which are 1:2 electrolytes. The Schiff base and its metal chelates were screened for their biological activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and the metal chelates were found to possess better antibacterial activity than that of the uncomplexed Schiff base.

  7. Synthesis, spectroscopic, coordination and biological activities of some transition metal complexes containing ONO tridentate Schiff base ligand.

    Science.gov (United States)

    Belal, A A M; El-Deen, I M; Farid, N Y; Zakaria, Rosan; Refat, Moamen S

    2015-01-01

    The main target of this paper is to get an interesting data for the preparation and characterizations of metal oxide (MO) nanoparticles using H2L Schiff base complexes as precursors through the thermal decomposition procedure. Five Schiff base complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) metal ions were synthesized from 2-[(2-hydroxy-naphthalen-1-ylmethylene)-amino]-benzoic acid new adduct (H2L). Theses complexes were characterized using infrared, electronic, mass and (1)H NMR spectroscopic techniques. The elemental analysis data was confirmed that the stoichiometry of (metal:H2L) is 1:1 molar ratio. The molar conductance indicates that all of complexes are non electrolytic. The general chemical formulas of these complexes is [M(L)(NH3)]·nH2O. All complexes are tetrahedral geometry. The thermal decomposition behavior of H2L hydrated and anhydrous complexes has been discussed using thermogravimetric analysis (TG/DTG) and differential thermal analyses (DTA) under nitrogen atmosphere. The crystalline phases of the reaction products were checked using X-ray diffractometer (XRD) and scanning electron microscopy (SEM). PMID:25989615

  8. Coping with the abstract and complex nature of genetics in biology education : The yo-yo learning and teaching strategy

    NARCIS (Netherlands)

    Knippels, M.C.P.J.

    2002-01-01

    This thesis describes a research project that was carried out at the Centre for Science and Mathematics Education at Utrecht University between 1998 and 2002. The study addresses problems in learning and teaching genetics in upper secondary biology education. The aim of the study is to develop a the

  9. Synthesis, Characterization, and Biological Activity of Some Transition Metal Complexes of N-Benzoyl-N′-2-thiophenethiocarbohydrazide

    Directory of Open Access Journals (Sweden)

    Mahendra Yadav

    2012-01-01

    Full Text Available In the present study, Mn(II, Fe(II, Ni(II, and Cu(II complexes of N-benzoyl -N′-2-thiophenethiocarbohydrazide (H2 BTTH have been synthesized and characterized by elemental analysis, magnetic susceptibility measurements, infrared, NMR, electronic, and ESR spectral studies. The complexes were found to have compositions [Mn(H BTTH2], [Ni(BTTH(H2O2], [Cu(BTTH], and [Fe(H BTTH2EtOH]. The antibacterial and antifungal properties of H2 BTTH and its metal complexes have been screened against several bacteria and fungi.

  10. Spectral, thermal, optical and biological studies on (E)-4-[(2-hydroxyphenyl)imino]pentan-2-one and its complexes

    OpenAIRE

    Hosny Nasser M.; Ibrahim Reyad; El-Asmy Ahmed A.

    2016-01-01

    Metal complexes derived from the reaction of Cu(II), Co(II), Ni(II) and Zn(II) acetates and (E)-4-(2-hydroxyphenylimino)pentan-2-one (H2L) have been synthesized and characterized by elemental analyses, MS, IR, UV-Vis., 1H NMR, thermal analyses (TGA and DTG) and magnetic measurements. In all complexes except for Zn(II) complex, the Schiff base ligand acts as a mono-negative tridentate (NOO) donor, through the azomethine nitrogen, the hydroxyl oxygen and the ...

  11. Biological and Spectral Studies of Newly Synthesized Triazole Schiff Bases and Their Si(IV, Sn(IV Complexes

    Directory of Open Access Journals (Sweden)

    Kiran Singh

    2011-01-01

    Full Text Available The Schiff bases HL1-3 have been prepared by the reaction of 5-bromothiophene-2-carboxaldehyde with 4-amino-5-mercapto-3-methyl/propyl/isopropyl-s-triazole, respectively. Organosilicon(IV and organotin(IV complexes of formulae (CH32MCl(L1-3, (CH32M(L1-32 were synthesized from the reaction of (CH32MCl2 and the Schiff bases in 1 : 1 and 1 : 2 molar ratio, where M=Si and Sn. The synthesized Schiff bases and their metal complexes have been characterized with the aid of various physicochemical techniques like elemental analyses, molar conductance, UV, IR, 1H, 13C, 29Si, and 119Sn NMR spectroscopy. Based on these studies, the trigonal bipyramidal and octahedral geometries have been proposed for these complexes. The ligands and their metal complexes have been screened in vitro against some bacteria and fungi.

  12. Spectral, magnetic and biological studies of 1,4-dibenzoyl-3-thiosemicarbazide complexes with some first row transition metal ions

    Indian Academy of Sciences (India)

    Nand K Singh; Saty B Singh; Anuraag Shrivastav; Sukh M Singh

    2001-08-01

    The ligand 1,4-dibenzoyl-3-thiosemicarbazide (DBtsc) forms complexes [M(DBtsc-H)(SCN)] [M = Mn(II), Co(II) or Zn(II)], [M(DBtscH)(SCN)(H2O)] [M = Ni(II) or Cu(II)], [M(DBtsc-H)Cl] [M = Co(II), Ni(II), Cu(II) or Zn(II)] and [Mn(DBtsc)Cl2], which have been characterized by elemental analyses, magnetic susceptibility measurements, UV/Vis, IR, 1H and 13C NMR and FAB mass spectral data. Room temperature ESR spectra of the Mn(II) and Cu(II) complexes yield values, characteristic of tetrahedral and square planar complexes respectively. DBtsc and its soluble complexes have been screened against several bacteria, fungi and tumour cell lines.

  13. Synthesis, characterization, electrochemical studies and DFT calculations of amino acids ternary complexes of copper (II) with isonitrosoacetophenone. Biological activities

    Science.gov (United States)

    Tidjani-Rahmouni, Nabila; Bensiradj, Nour el Houda; Djebbar, Safia; Benali-Baitich, Ouassini

    2014-10-01

    Three mixed complexes having formula [Cu(INAP)L(H2O)2] where INAP = deprotonated isonitrosoacetophenone and L = deprotonated amino acid such as histidine, phenylalanine and tryptophan have been synthesized. They have also been characterized using elemental analyses, molar conductance, UV-Vis, IR and ESR spectra. The value of molar conductance indicates them to be non-electrolytes. The spectral studies support the binding of the ligands with two N and two O donor sites to the copper (II) ion, giving an arrangement of N2O2 donor groups. Density Functional Theory (DFT) calculations were applied to evaluate the cis and trans coordination modes of the two water molecules. The trans form was shown to be energetically more stable than the cis one. The ESR data indicate that the covalent character of the metal-ligand bonding in the copper (II) complexes increases on going from histidine to phenylalanine to tryptophan. The electrochemical behavior of the copper (II) complexes was determined by cyclic voltammetry which shows that the chelate structure and electron donating effects of the ligands substituent are among the factors influencing the redox potentials of the complexes. The antimicrobial activities of the complexes were evaluated against several pathogenic microorganisms to assess their antimicrobial potentials. The copper complexes were found to be more active against Gram-positive than Gram-negative bacteria. Furthermore, the antioxidant efficiencies of the metal complexes were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. The antioxidant activity of the complexes indicates their moderate scavenging activity against the radical DPPH.

  14. STRUCTURE AND REDOX TRANSFORMATIONS OF IRON(III COMPLEXES WITH SOME BIOLOGICALLY IMPORTANT INDOLE-3-ALKANOIC ACIDS IN AQUEOUS SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Krisztina Kovács

    2007-06-01

    Full Text Available Interactions of a series of indole-3-alkanoic acids (with n-alkanoic acid side-chains from C1 to C4 with iron(III in acidic aqueous solutions have been shown to comprise two parallel processes including complexation and redox transformations giving iron(II hexaaquo complexes. The structure and composition of the reaction products are discussed, as analysed using a combination of instrumental techniques including 57Fe Mössbauer, vibrational and HNMR spectroscopies.

  15. Studies on some metal complexes of quinoxaline based unsymmetric ligand: Synthesis, spectral characterization, in vitro biological and molecular modeling studies.

    Science.gov (United States)

    Dhanaraj, Chellaian Justin; Johnson, Jijo

    2016-08-01

    Mononuclear Co(II), Ni(II), Cu(II) and Zn(II) complexes of an unsymmetric Schiff base ligand, 3-(-(3-(-3,5-dichloro-2-hydroxybenzylideneamino)propylimino)methyl)quinoxalin-2(1H) -one (L) were synthesized and characterized by various analytical and spectral techniques. The molar conductance values of metal complexes indicate non-electrolytic behavior of the metal complexes. The Schiff base act as tetra dentate ONNO donor ligand in Co(II), Ni(II), Zn(II) complexes and tridentate NNO donor in Cu(II) complex. Thermal stabilities of the newly synthesized compounds were determined by thermal analysis. Crystallinity, average grain size and unit cell parameters were determined from powder X-ray diffraction study. Electrochemical behaviors of the compounds were examined by cyclic voltammetry technique. The Schiff base and its complexes have been screened for their in vitro antimicrobial activities against some bacterial and fungal strains by disc diffusion method. The interaction of the compounds with calf thymus DNA (CT DNA) has been investigated by electronic absorption spectral titration and viscosity measurement (hydrodynamic) methods. Furthermore, the pUC18 DNA cleavage activities of the complexes have been explored. The compounds were also subjected to in vitro antioxidant, anticancer activity screening, druglikeness and bioactivity predictions using Molinspiration software. Molecular docking studies of the present compounds were carried out against B-DNA dodecamer d(CGCGAATTCGCG)2 and vascular endothelial growth factor receptor (VEGFR-2) kinase. Quantum chemical calculations were done with DFT method to determine the optimum geometry of the ligand and its metal complexes. From the quantum chemical parameters, the reactivity parameters of the compounds were established.

  16. Dual-Emissive Cyclometalated Iridium(III) Polypyridine Complexes as Ratiometric Biological Probes and Organelle-Selective Bioimaging Reagents.

    Science.gov (United States)

    Zhang, Kenneth Yin; Liu, Hua-Wei; Tang, Man-Chung; Choi, Alex Wing-Tat; Zhu, Nianyong; Wei, Xi-Guang; Lau, Kai-Chung; Lo, Kenneth Kam-Wing

    2015-07-01

    In this Article, we present a series of cyclometalated iridium(III) polypyridine complexes of the formula [Ir(N^C)2(N^N)](PF6) that showed dual emission under ambient conditions. The structures of the cyclometalating and diimine ligands were changed systematically to investigate the effects of the substituents on the dual-emission properties of the complexes. On the basis of the photophysical data, the high-energy (HE) and low-energy (LE) emission features of the complexes were assigned to triplet intraligand ((3)IL) and triplet charge-transfer ((3)CT) excited states, respectively. Time-dependent density functional theory (TD-DFT) calculations supported these assignments and indicated that the dual emission resulted from the interruption of the communication between the higher-lying (3)IL and the lower-lying (3)CT states by a triplet amine-to-ligand charge-transfer ((3)NLCT) state. Also, the avidin-binding properties of the biotin complexes were studied by emission titrations, and the results showed that the dual-emissive complexes can be utilized as ratiometric probes for avidin. Additionally, all the complexes exhibited efficient cellular uptake by live HeLa cells. The MTT and Annexin V assays confirmed that no cell death and early apoptosis occurred during the cell imaging experiments. Interestingly, laser-scanning confocal microscopy revealed that the complexes were selectively localized on the cell membrane, mitochondria, or both, depending on the nature of the substituents of the ligands. The results of this work will contribute to the future development of dual-emissive transition metal complexes as ratiometric probes and organelle-selective bioimaging reagents. PMID:26087119

  17. Studies on some metal complexes of quinoxaline based unsymmetric ligand: Synthesis, spectral characterization, in vitro biological and molecular modeling studies.

    Science.gov (United States)

    Dhanaraj, Chellaian Justin; Johnson, Jijo

    2016-08-01

    Mononuclear Co(II), Ni(II), Cu(II) and Zn(II) complexes of an unsymmetric Schiff base ligand, 3-(-(3-(-3,5-dichloro-2-hydroxybenzylideneamino)propylimino)methyl)quinoxalin-2(1H) -one (L) were synthesized and characterized by various analytical and spectral techniques. The molar conductance values of metal complexes indicate non-electrolytic behavior of the metal complexes. The Schiff base act as tetra dentate ONNO donor ligand in Co(II), Ni(II), Zn(II) complexes and tridentate NNO donor in Cu(II) complex. Thermal stabilities of the newly synthesized compounds were determined by thermal analysis. Crystallinity, average grain size and unit cell parameters were determined from powder X-ray diffraction study. Electrochemical behaviors of the compounds were examined by cyclic voltammetry technique. The Schiff base and its complexes have been screened for their in vitro antimicrobial activities against some bacterial and fungal strains by disc diffusion method. The interaction of the compounds with calf thymus DNA (CT DNA) has been investigated by electronic absorption spectral titration and viscosity measurement (hydrodynamic) methods. Furthermore, the pUC18 DNA cleavage activities of the complexes have been explored. The compounds were also subjected to in vitro antioxidant, anticancer activity screening, druglikeness and bioactivity predictions using Molinspiration software. Molecular docking studies of the present compounds were carried out against B-DNA dodecamer d(CGCGAATTCGCG)2 and vascular endothelial growth factor receptor (VEGFR-2) kinase. Quantum chemical calculations were done with DFT method to determine the optimum geometry of the ligand and its metal complexes. From the quantum chemical parameters, the reactivity parameters of the compounds were established. PMID:27236046

  18. Synthesis and Spectroscopic Characterization of Some New Axially Ligated Indium(III Macrocyclic Complexes and Their Biological Activities

    Directory of Open Access Journals (Sweden)

    Gauri D. Bajju

    2014-01-01

    Full Text Available The synthesis and spectroscopic characterization of new axially ligated indium(III porphyrin complexes were reported. Chloroindium(III porphyrin (TPPIn-Cl was obtained in good yield by treating the corresponding free base with indium trichloride. The action of the different phenols on chloroderivatives (TPPIn-Cl led to the corresponding phenolato complexes (TPPIn-X. These derivatives were characterized on the basis of mass spectrometry, 1H-NMR, IR, and UV-visible data. The separation and isolation of these derivatives have been achieved through chromatography. The spectral properties of free base porphyrin and its corresponding metallated and axially ligated indium(III porphyrin compounds were compared with each other. A detailed analysis of UV-Vis, 1H-NMR, and IR suggested the transformation from free base porphyrin to indium(III porphyrin. Besides, 13C-NMR and fluorescence spectra were also reported and interpreted. The stability of these derivatives has also been studied through thermogravimetry. The complexes were also screened for anticancerous activities. Among all the complexes, 4-MePhO-InTPP shows highest anticancerous activity. The title complexe, TPPIn-X (where X = different phenolates, represents a five-coordinate indium(III porphyrin complex in a square-pyramidal geometry with the phenolate anion as the axial ligand.

  19. Synthesis, spectroscopic characterization and biological activity of the metal complexes of the Schiff base derived from phenylaminoacetohydrazide and dibenzoylmethane

    Science.gov (United States)

    El-Tabl, Abdou Saad; El-Saied, Fathey A.; Plass, Winfried; Al-Hakimi, Ahmed Noman

    2008-11-01

    A new series of mono and binuclear Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), La(III), Ru(III), Hf(IV), ZrO(II) and UO 2(II) complexes of phenylaminodibenzoylhydrazone have been synthesized and characterized by elementals analyses, IR UV-vis spectra, magnetic moments, conductances, thermal analyses (DTA and TGA) and electron spin resonance (ESR) measurements. The IR spectral data show that, the ligand behaves as a neutral bidentate type ( 15 and 16), monobasic bidentate type ( 6), or monobasic tridentate type ( 5, 7, 8, 10, 11, 13, 14, 17- 21) or dibasic tridentate type 2- 4, 9 and 12 towards the metal ion. Molar conductances in DMF solution indicate that, the complexes are non-electrolytes. The ESR spectra of solid complexes ( 9 and 10) show axial and non-axial types indicating a d ground state with significant covalent bond character. However, complexes ( 11 and 12), show isotropic type, indicating manganese(II) octahedral geometry. Antibacterial and antifungal tests of the ligand and its metal complexes are also carried out and it has been observed that the complexes are more potent bactericides and fungicides than the ligand.

  20. Synthesis, crystal structure, spectral characterization and biological exploration of water soluble Cu(II) complexes of vitamin B6 derivative.

    Science.gov (United States)

    Annaraj, B; Neelakantan, M A

    2015-09-18

    The synthesis and characterization of Copper(II) complexes of a Schiff base derived from vitamin B6 component (pyridoxal) and ethanol amine [CuL2] (1), and its mixed ligand complexes [Cu(L)(N,N')]NO3, where N,N' is bipyridine (2) and 1,10-phenanthroline (3) are reported, including the X-ray crystal structures of [CuL2] (1). The crystal structure of 1 has square planar geometry with ligand to the metal ratio 2:1. The molecules are assembled in 3D supramolecular structure through hydrogen bonding interactions. DNA is considered as the major pharmacological target of metal based drugs, the objective of the present work includes the understanding of DNA binding mode of the synthesized compounds. The complexes bind with DNA through non intercalative interaction has been evidenced from the results of UV-Visible and fluorescence spectral titrations. It is further validated by molecular docking studies. Bovine serum albumin (BSA) binding studies revealed that the complexes can strongly quench the intrinsic fluorescence of BSA through a static quenching mechanism. The complexes promote the DNA cleavage even in the absence of additives which follows the order 2 > 1 > 3. Further, the complexes show potential cytotoxicity towards human breast cancer cell MCF-7 and induce the cell death. PMID:26241872

  1. Synthesis, Characterisation, and Biological Evaluation of Zn(II Complex with Tridentate (NNO Donor Schiff Base Ligand

    Directory of Open Access Journals (Sweden)

    Nayaz Ahmed

    2015-01-01

    Full Text Available The present paper deals with the synthesis and characterization of metal complex of tridentate Schiff base ligand derived from the inserted condensation of 2-aminobenzimidazole (1H-benzimidazol-2-amine with salicylaldehyde (2-hydroxybenzaldehyde in a 1 : 1 molar ratio. Using this tridentate ligand, complex of Zn(II with general formula ML has been synthesized. The synthesized complex was characterized by several techniques using molar conductance, elemental analysis, FT-IR, and mass and 1HNMR spectroscopy. The elemental analysis data suggest the stoichiometry to be 1 : 1 [M : L]. The complex is nonelectrolytic in nature as suggested by molar conductance measurements. Infrared spectral data indicate the coordination between the ligand and the central metal ion through deprotonated phenolic oxygen, imidazole nitrogen of benzimidazole ring, and azomethine nitrogen atom. Spectral studies suggest tetrahedral geometry for the complex. The pure compound, synthesized ligand, and metal complex were screened for their antimicrobial activity.

  2. Biologically active Schiff bases containing thiophene/furan ring and their copper(II) complexes: Synthesis, spectral, nonlinear optical and density functional studies

    Science.gov (United States)

    Gündüzalp, Ayla Balaban; Özsen, İffet; Alyar, Hamit; Alyar, Saliha; Özbek, Neslihan

    2016-09-01

    Schiff bases; 1,8-bis(thiophene-2-carboxaldimine)-p-menthane (L1) and 1,8-bis(furan-2-carboxaldimine)-p-menthane (L2) have been synthesized and characterized by elemental analysis, 1Hsbnd 13C NMR, UV-vis, FT-IR and LC-MS methods. 1H and 13C shielding tensors for L1 and L2 were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The vibrational band assignments, nonlinear optical (NLO) activities, frontier molecular orbitals (FMOs) and absorption spectrum have been investigated by the same basis set. Schiff base-copper(II) complexes have been synthesized and structurally characterized with spectroscopic methods, magnetic and conductivity measurements. The spectroscopic data suggest that Schiff base ligands coordinate through azomethine-N and thiophene-S/furan-O donors (as SNNS and ONNO chelating systems) to give a tetragonal geometry around the copper(II) ions. Schiff bases and Cu(II) complexes have been screened for their biological activities on different species of pathogenic bacteria, those are, Gram positive bacteria: Bacillus subtitilus, Yersinia enterotica, Bacillus cereus, Listeria monocytogenes, Micrococcus luteus and Gram negative bacteria: Escherichia coli, Pseudomonas aeroginosa, Shigella dysenteriae, Salmonella typhi, Klebsiella pseudomonas by using microdilution technique (MIC values in mM). Biological activity results show that Cu(II) complexes have higher activities than parent ligands and metal chelation may affect significantly the antibacterial behavior of the organic ligands.

  3. Boundary Element Method(BEM) for Solving Normal or Inverse Bio—heat Transfer Problem of Biological Bodies with Complex Shape

    Institute of Scientific and Technical Information of China (English)

    RenZePei; LiuJing; 等

    1995-01-01

    The application of BEM for solving normal or inverse bio-heat transfer problems of biological bodies with complex shapes is discussed and a new method for non-invasive reconstruction of the spatial temperature field and the non-homogeneous heat source is proposed in this paper,Tikhonov's (1979) regularization technique is used to improve the performance of ill-posed equations in the process of solving for inverse problems.The feasibility of the above mentioned method was verified by the numerical test results of a two-dimensional steady state problem.This method has laid the theoretical foundation for developing a bimedical instrument and respective software used in the non-invasive monitoring of the spatial temperature field of biological bodies.

  4. Quantification of biopharmaceuticals and biomarkers in complex biological matrices: a comparison of liquid chromatography coupled to tandem mass spectrometry and ligand binding assays.

    Science.gov (United States)

    Bults, Peter; van de Merbel, Nico C; Bischoff, Rainer

    2015-08-01

    The quantification of proteins (biopharmaceuticals or biomarkers) in complex biological samples such as blood plasma requires exquisite sensitivity and selectivity, as all biological matrices contain myriads of proteins that are all made of the same 20 proteinogenic amino acids, notwithstanding post-translational modifications. This review describes and compares the two main approaches, namely, ligand binding assays (LBAs) and liquid chromatography coupled to tandem mass spectrometry in the selected reaction monitoring (SRM) mode. While LBAs remain the most widely used approach, SRM assays are gaining interest due to their generally better analytical performance (precision and accuracy) and their capacity for multiplex analyses. This article focuses on the possible reasons for the discrepancies between results obtained by LBAs and SRM assays.

  5. Herbo-mineral based Schiff base ligand and its metal complexes: Synthesis, characterization, catalytic potential and biological applications.

    Science.gov (United States)

    Kareem, Abdul; Laxmi; Arshad, Mohammad; Nami, Shahab A A; Nishat, Nahid

    2016-07-01

    Schiff base ligand, (L), derived from condensation reaction of 1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, (curcumin), with pyridine-3-carboxamide, (nicotinamide), and its complexes of Co(II), Ni(II) and Cu(II) ions, containing 1,10-phenanthroline as auxiliary ligand were synthesized and characterized by various physico-chemical techniques. From the micro analytical data, the stoichiometry of the complexes 1:1 (metal: ligand) was ascertained. The Co(II) and Cu(II) forms octahedral complexes, while the geometric structure around Ni(II) atom can be described as square planar. The catalytic potential of the metal complexes have been evaluated by recording the rate of decomposition of hydrogen peroxide. The results reveal that the percent decomposition of H2O2increases with time and the highest value (50.50%) was recorded for Co(II) complex. The ligand and its complexes were also screened for their in vitro antibacterial activity against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pyogenes and Pseudomonas aeruginosa. The relative order of antibacterial activity against S. Pyogenes, S. aureus and E. coli is Cu(II)>Ni(II)>Co(II)>(L); while with P. aeruginosa, K. pneumoniae the order of activity is Cu(II)>Co(II)>Ni(II)>(L). The anthelmintic screening was performed using Pheretima posthuma. The order of anthelmintic activity of ligand and its complexes is [(Phen)CuLCl2]>[(Phen)CoLCl2]>[(Phen)NiL]Cl2>(L). PMID:27107703

  6. THE ROLE OF COMPLEX COMPOST IN THE BIOLOGICAL CYCLE OF ELEMENTS AND SUBSTANCES AND SUSTAINABILITY OF AGRICULTURAL LANDSCAPES

    Directory of Open Access Journals (Sweden)

    Belyuchenko I. S.

    2014-09-01

    Full Text Available Complicated compost with organic and mineral components, has a serious impact on the physical, chemical and biological properties of topsoil significantly modifies its cycles of elements and substances; with the Carboniferous and up to now it has been established the supremacy of the recovery processes in landscapes as compared to oxidation processes through the introduction of complicated compost in their stabilizing factors

  7. Comprehensive biological effects of a complex field poly-metallic pollution gradient on the New Zealand mudsnail Potamopyrgus antipodarum (Gray)

    International Nuclear Information System (INIS)

    The Lot River is known to be contaminated by metals, mainly cadmium and zinc, due to a former Zn ore treatment plant in the watershed of the Riou-Mort, a tributary of the Lot River. Many studies have been performed to characterize contamination, but few have assessed its consequences on the biological responses of organisms along the gradient. We exposed adult and juvenile New Zealand freshwater mudsnails Potamopyrgus antipodarum at several sites along the gradient of metal contamination for 28 days. Biological responses were monitored at different levels: individual (survival, growth and fecundity), tissue and biochemical (energy status and vertebrate-like sex steroid levels) to better understand the toxicity mechanisms involved. Accumulation of Cd and Zn was high during exposure. Most of the biological effects observed could be linked to this contamination and were concentration-dependent. Histological lesions of the digestive gland were observed, with hypertrophy of calcium cells and vacuolization of digestive cells. Such effects are likely to explain the decrease of energy status (triglycerides and proteins), juvenile growth and adult fecundity observed at the most polluted site. However the magnitude of the fall in fecundity cannot be attributed only to these tissular effects, indicating another mode of action of Cd or possible confounding factors. Steroid accumulation in snails indicated only organic pollution. Histopathological effects proved the most sensitive endpoint to metal (Cd and Zn) contamination.

  8. Comprehensive biological effects of a complex field poly-metallic pollution gradient on the New Zealand mudsnail Potamopyrgus antipodarum (Gray)

    Energy Technology Data Exchange (ETDEWEB)

    Gust, M., E-mail: marion.gust@cemagref.fr [Cemagref, UR MALY, Laboratoire d' ecotoxicologie, 3b quai Chauveau, 69009 Lyon (France); AgroPariTech ENGREF, 19 avenue du Maine, F 75732 Paris (France); Buronfosse, T., E-mail: thierry.buronfosse@inserm.fr [Universite de Lyon, Laboratoire d' endocrinologie, Ecole Nationale Veterinaire de Lyon, avenue Bourgelat, 69280 Marcy l' Etoile (France); Geffard, O., E-mail: olivier.geffard@cemagref.fr [Cemagref, UR MALY, Laboratoire d' ecotoxicologie, 3b quai Chauveau, 69009 Lyon (France); Coquery, M., E-mail: marina.coquery@cemagref.fr [Cemagref, UR MALY, Laboratoire d' analyses physico-chimiques des milieux aquatiques, 3b quai Chauveau, 69009 Lyon (France); Mons, R., E-mail: raphael.mons@cemagref.fr [Cemagref, UR MALY, Laboratoire d' ecotoxicologie, 3b quai Chauveau, 69009 Lyon (France); Abbaci, K., E-mail: khedidja.abbaci@cemagref.fr [Cemagref, UR MALY, Laboratoire d' ecotoxicologie, 3b quai Chauveau, 69009 Lyon (France); Giamberini, L., E-mail: giamb@sciences.univ-metz.fr [Laboratoire des interactions Ecotoxicologie, Biodiversite, Ecosystemes, CNRS UMR 7146, campus Bridoux, 57000 Metz (France); Garric, J., E-mail: jeanne.garric@cemagref.fr [Cemagref, UR MALY, Laboratoire d' ecotoxicologie, 3b quai Chauveau, 69009 Lyon (France)

    2011-01-17

    The Lot River is known to be contaminated by metals, mainly cadmium and zinc, due to a former Zn ore treatment plant in the watershed of the Riou-Mort, a tributary of the Lot River. Many studies have been performed to characterize contamination, but few have assessed its consequences on the biological responses of organisms along the gradient. We exposed adult and juvenile New Zealand freshwater mudsnails Potamopyrgus antipodarum at several sites along the gradient of metal contamination for 28 days. Biological responses were monitored at different levels: individual (survival, growth and fecundity), tissue and biochemical (energy status and vertebrate-like sex steroid levels) to better understand the toxicity mechanisms involved. Accumulation of Cd and Zn was high during exposure. Most of the biological effects observed could be linked to this contamination and were concentration-dependent. Histological lesions of the digestive gland were observed, with hypertrophy of calcium cells and vacuolization of digestive cells. Such effects are likely to explain the decrease of energy status (triglycerides and proteins), juvenile growth and adult fecundity observed at the most polluted site. However the magnitude of the fall in fecundity cannot be attributed only to these tissular effects, indicating another mode of action of Cd or possible confounding factors. Steroid accumulation in snails indicated only organic pollution. Histopathological effects proved the most sensitive endpoint to metal (Cd and Zn) contamination.

  9. Synthesis, Spectral Characterization, and Biological Evaluation of Transition Metal Complexes of Bidentate N, O Donor Schiff Bases

    Directory of Open Access Journals (Sweden)

    Sajjad Hussain Sumrra

    2014-01-01

    Full Text Available New series of three bidentate N, O donor type Schiff bases (L1–(L3 were prepared by using ethylene-1,2-diamine with 5-methyl furfural, 2-anisaldehyde, and 2-hydroxybenzaldehyde in an equimolar ratio. These ligands were further complexed with Co(II, Cu(II, Ni(II, and Zn(II metals to produce their new metal complexes having an octahedral geometry. These compounds were characterized on the basis of their physical, spectral, and analytical data. Elemental analysis and spectral data of the uncomplexed ligands and their metal(II complexes were found to be in good agreement with their structures, indicating high purity of all the compounds. All ligands and their metal complexes were screened for antimicrobial activity. The results of antimicrobial activity indicated that metal complexes have significantly higher activity than corresponding ligands. This higher activity might be due to chelation process which reduces the polarity of metal ion by coordinating with ligands.

  10. 复合生物保鲜剂对缢蛏保鲜效果的研究%Fresh-Keeping Effect of Complex Biological Preservatives on Sinonovacula constricta

    Institute of Scientific and Technical Information of China (English)

    张辉; 李丽娜; 刘红英

    2012-01-01

    Sinonovacula constricta was treated with complex biological preservatives and then stored in cold environment (0 -2℃). The fresh-keeping effect of complex biological preservatives on Sinonovacula constricta was evaluated by determining the changes of thibabituric acid (TBA), free fatty acid (FFA), total volatile basic nitrogen (TVBN) and Ca2+-ATPase during the storage process. The results showed that complex biological preservatives revealed an obvious fresh-keeping effect on Sinonovacula constricta during the cold storage.The preservative composed of 0.05% lysozyme, 0.02% Nisin, 7% glycine and 0.07% potassium sorbate had the best fresh-keeping efficiency and could significantly prolong the shelf life of Sinonovacula constricta.%缢蛏肉用复合生物保鲜剂处理,进行冷藏(0~2℃)试验,观察其感官指标的变化,测定其在此过程中硫代巴比妥酸(TBA)、游离脂肪酸(FFA)、挥发性盐基氮(TVBN)、Ca2+.ATPase值等生化指标的变化。结果表明:在冷藏过程中,蜢蛏肉使用复合生物保鲜剂处理的保鲜效果明显好于对照组。几种复合生物保鲜剂配方中C组(溶菌酶0.05%、Nisin0.02%、甘氨酸7%、山梨酸钾0.07%等)保鲜效果最好,可以较长的延长缢蛏肉的货架期。

  11. Synthesis and spectral characterization of 2'-hydroxy chalconate complexes of ruthenium(II) and their catalytic and biological applications

    Science.gov (United States)

    Muthukumar, M.; Viswanathamurthi, P.; Natarajan, K.

    2008-10-01

    The reactions of [RuHCl(CO)(B)(EPh 3) 2] (B = EPh 3 or pyridine; E = P or As) and 2'-hydroxychalcones in 1:2 ratio led to the formation of [Ru(CO)(B)(L) 2] (B = PPh 3, AsPh 3 or Py; L = 2'-hydroxychalcones). The new complexes have been characterized by analytical and spectral (IR, electronic and 1H NMR) data. They have been assigned an octahedral structure. The new complexes were found to catalyze the oxidation of alcohols to aldehydes using N-methylmorpholine- N-oxide as co-oxidant. All the new complexes were found to be active against bacteria such as E. coli, Salmonella typhi and fungi Aspergillus niger. The activity was compared with standard Streptomycin or Bavistin.

  12. Structural biology. Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target.

    Science.gov (United States)

    Mulepati, Sabin; Héroux, Annie; Bailey, Scott

    2014-09-19

    In prokaryotes, RNA derived from type I and type III CRISPR loci direct large ribonucleoprotein complexes to destroy invading bacteriophage and plasmids. In Escherichia coli, this 405-kilodalton complex is called Cascade. We report the crystal structure of Cascade bound to a single-stranded DNA (ssDNA) target at a resolution of 3.03 angstroms. The structure reveals that the CRISPR RNA and target strands do not form a double helix but instead adopt an underwound ribbon-like structure. This noncanonical structure is facilitated by rotation of every sixth nucleotide out of the RNA-DNA hybrid and is stabilized by the highly interlocked organization of protein subunits. These studies provide insight into both the assembly and the activity of this complex and suggest a mechanism to enforce fidelity of target binding.

  13. Insight into the mechanism of biological methanol activation based on the crystal structure of the methanol-cobalamin methyltransferase complex

    OpenAIRE

    Hagemeier, Christoph H.; Kr̈er, Markus; Thauer, Rudolf K.; Warkentin, Eberhard; Ermler, Ulrich

    2006-01-01

    Some methanogenic and acetogenic microorganisms have the catalytic capability to cleave heterolytically the CO bond of methanol. To obtain insight into the elusive enzymatic mechanism of this challenging chemical reaction we have investigated the methanol-activating MtaBC complex from Methanosarcina barkeri composed of the zinc-containing MtaB and the 5-hydroxybenzimidazolylcobamide-carrying MtaC subunits. Here we report the 2.5-Å crystal structure of this complex organized as a (MtaBC)2 hete...

  14. Kinetic studies on the oxidation of oxyhemoglobin by biologically active iron thiosemicarbazone complexes: relevance to iron-chelator-induced methemoglobinemia.

    Science.gov (United States)

    Basha, Maram T; Rodríguez, Carlos; Richardson, Des R; Martínez, Manuel; Bernhardt, Paul V

    2014-03-01

    The oxidation of oxyhemoglobin to methemoglobin has been found to be facilitated by low molecular weight iron(III) thiosemicarbazone complexes. This deleterious reaction, which produces hemoglobin protein units unable to bind dioxygen and occurs during the administration of iron chelators such as the well-known 3-aminopyridine-2-pyridinecarbaldehyde thiosemicarbazone (3-AP; Triapine), has been observed in the reaction with Fe(III) complexes of some members of the 3-AP structurally-related thiosemicarbazone ligands derived from di-2-pyridyl ketone (HDpxxT series). We have studied the kinetics of this oxidation reaction in vitro using human hemoglobin and found that the reaction proceeds with two distinct time-resolved steps. These have been associated with sequential oxidation of the two different oxyheme cofactors in the α and β protein chains. Unexpected steric and hydrogen-bonding effects on the Fe(III) complexes appear to be the responsible for the observed differences in the reaction rate across the series of HDpxxT ligand complexes used in this study. PMID:24317633

  15. Synthesis of uranyl(II), vanadyl(II) and zirconyl urate complexes, spectral, thermal and biological studies

    Science.gov (United States)

    El-Megharbel, Samy M.; El-Metwaly, Nashwa M.; Refat, Moamen S.

    2015-10-01

    Three urate chelations were obtained when uric acid was reacted with UO2(CH3COO)2H2O, VOSO4·XH2O and ZrOCl2·XH2O salts with neutralized with 0.1 M NaOH aqueous media. The 1:2 metal-to-ligand complexes [(UO2)2(C5H2N4O3)2](H2O), [(ZrO)2(H2O)2(C5H2N4O3)2] and [VO((C5H3N4O3)2] were characterized by elemental analyses, molar conductivity, (infrared, Raman and UV-vis) spectra, effective magnetic moment in Bohr magnetons, and thermal analysis (TG/DTG). The urate ligand coordinates as mononegative bidentate donor towards the mononuclear central vanadium atom and coordinated as binegative tetradentate mode towards the binuclear dioxouranium and zirconyl centers. The antibacterial activity of the metal complexes were tested against some kind of bacteria and fungi strains and compared with uric acid. The ligand, ZrO(II) and UO2(II) complex showed a week potential degradation on calf thymus DNA, whereas VO(II) complex slightly degraded the DNA.

  16. Biological and pathological studies of new synthetic copper complex in mice inoculated with tumours and exposed to gamma irradiation

    International Nuclear Information System (INIS)

    New derivatives of neutral copper complexes, particularly copper salicylate complexes having the formula Cu [ C6H4(OH) CO O]2 ROH in which ROH represent an alkanol, were prepared and characterized through IR spectroscopy and mass spectroscopy. The compounds have the same surface active properties. Cu(II) bis (salicylate) octanol (Cu-Bisod) and Cu(II) bis (salicylate) dodecanol (Cu-BISOD) were chosen in this study to evaluate their effects as antitumour agents. The compounds were administered i.p in mice bearing solid tumour of ehrlich carcinoma with four successive doses, 25 mg/kg for each dose alone or 20 min before a fractionated dose of gamma-irradiation (1.5 Gy x 4). The effects of these copper complexes were examined on solid ehrlich cells tumour growing in vivo as well in vitro systems.The study was also extended to show the effect of treatment on the histopathology of the tumour cells beside some liver histological studies. This investigation represents a preliminary study which might clarify the role of copper complexes compounds as an antitumour agents

  17. Synthesis, structural characterization and in vitro biological screening of some homoleptic copper(II) complexes with substituted guanidines.

    Science.gov (United States)

    Murtaza, Ghulam; Rauf, Muhammad Khawar; Badshah, Amin; Ebihara, Masahiro; Said, Muhammad; Gielen, Marcel; de Vos, Dick; Dilshad, Erum; Mirza, Bushra

    2012-02-01

    A series of homoleptic copper(II) complexes (1a-8a) with N,N',N″-trisubstituted guanidines, [Cu(II){PhCONHC(NHR)NPh}(2)] (where R = phenyl (1a), n-butyl (2a), sec-butyl (3a), cyclohexyl (4a), 1-naphthyl (5a), 2,4-dichlorophenyl (6a), 3,4-dichlorophenyl (7a), and 3,5-dichlorophenyl (8a)) have been synthesized and characterized by elemental analyses, FT-IR, UV-visible, (1)H and (13)C NMR spectroscopy, and single crystal X-ray diffraction analysis. The X-ray crystal structures revealed that the complexes 2a and 4a are mononuclear in the solid state and that the geometry around the copper atom is nearly square planar. In both the cases, N,N',N″-trisubstituted guanidine ligands have been coordinated to the Cu(II) through the oxygen and nitrogen atoms. The synthesized guanidines and their complexes were initially screened for their anti-microbial activities, and Brine Shrimps Lethality assay. The complexes were also screened for in vitro cytotoxicity activity in human cell lines carcinomas A498, EVSAT, H226, IGROV, M19, MCF-7 and WIDR. The results show a moderate level of cytotoxicity against these seven human cancer cell lines as compared with standard chemotherapeutic drugs. PMID:22177420

  18. Synthesis, characterization, and biological properties of nano-rare earth complexes with L-glutamic acid and imidazole

    Institute of Scientific and Technical Information of China (English)

    ZHOU Meifeng; HE Qizhuang

    2008-01-01

    Four nano-rare earth ternary complexes of L-glutamic acid and imidazole RE(Glu)3ImCl3·3H2O (RE=Ce3+, Pr3+, Sm3+, Dy3+, Glu= L-glutamic acid , and Im=imidazole) were synthesized. Their composition was characterized with elemental analysis, IR, and molar conductance. The TEM image indicated that the complexes were regular shaped and the length was about 30~60 nm. The antibacterial activity test showed that all these complexes exhibited better antibacterial ability against Escherichia coli, Staphylociccus aureus, and Candida albican (MIC were about 180, 100, and 310 μg/ml, respectively) and could be considered as broad-spectral antimicrobial. Their antitumor activity in vitro against leukemia K562 cells was measured using the MTT method. The results indicate that the four complexes possess strong inhibition effect on leukemia K562 cells. An approximately linear relationship is discovered between the relative inhibition rate and concentration, with the correlation coefficients R>0.7 and P<0.05, which is considered statistically significant.

  19. Synthesis, spectroscopic, DFT calculations and biological activity studies of ruthenium carbonyl complexes with 2-picolinic acid and a secondary ligand

    Science.gov (United States)

    Shohayeb, Shahera M.; Mohamed, Rania G.; Moustafa, H.; El-Medani, Samir M.

    2016-09-01

    Thermal reaction of [Ru3(CO)12] with 2-picolinic acid (Hpic) in the absence and presence of a secondary ligand (pyridine, Py, bipyridine, Bipy, or thiourea, Tu) was investigated. Four complexes with molecular formulae: [Ru(CO)3(Hpic)], 1, [Ru2(CO)5(Hpic)(Py)], 2, [Ru2(CO)5(Hpic)(Tu)], 3 and [Ru2(CO)4(Hpic)(Bipy)], 4, were isolated. All complexes were characterized based on elemental analyses, IR, 1H NMR, magnetic studies, mass spectrometry and thermal analysis. The ligand and its complexes have been screened for antibacterial activities. Density Functional Theory (DFT) calculations at the B3LYP/6-311G (d,p)_ level of theory have been carried out to investigate the equilibrium geometry of the ligands. The optimized geometry parameters of the complexes were evaluated using B3LYP method and LANL2DZ basis set. The extent of natural charge population (core, valence and rydberg), exact electronic configuration, total Lewis and total non-Lewis are estimated and discussed in terms of natural bond orbitals (NBO) analysis.

  20. Metal based biologically active compounds: design, synthesis, and antibacterial/antifungal/cytotoxic properties of triazole-derived Schiff bases and their oxovanadium(IV) complexes.

    Science.gov (United States)

    Chohan, Zahid H; Sumrra, Sajjad H; Youssoufi, Moulay H; Hadda, Taibi B

    2010-07-01

    A new series of oxovanadium(IV) complexes have been designed and synthesized with a new class of triazole Schiff bases derived from the reaction of 3,5-diamino-1,2,4-triazole with 2-hydroxy-1-naphthaldehyde, pyrrole-2-carboxaldehyde, pyridine-2-carboxaldehyde and acetyl pyridine-2-carboxaldehyde, respectively. Physical (magnetic susceptibility, molar conductance), spectral (IR, (1)H NMR, (13)C NMR, mass and electronic) and analytical data have established the structures of these synthesized Schiff bases and their oxovanadium(IV) complexes. The Schiff bases, predominantly act as bidentate and coordinate with the vanadium(IV) metal to give a stoichiometric ratio of 1:2 [M:L], forming a general formulae, [M(L-H)(2)] and [M(L)(2)]SO(4) where L = (L(1))-(L(4)) and M = VO(IV) of these complexes in a square-pyramidal geometry. In order to evaluate the biological activity of Schiff bases and to assess the role of vanadium(IV) metal on biological activity, the triazole Schiff bases and their oxovanadium(IV) complexes have been studied for in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexenari, Pseudomonas aeruginosa, Salmonella typhi) and two Gram-positive (Staphylococcus aureus, Bacillus subtilis) bacterial strains, in vitro antifungal activity against Trichophyton longifucus, Candida albican, Aspergillus flavus, Microscopum canis, Fusarium solani and Candida glaberata. The simple Schiff bases showed weaker to significant activity against one or more bacterial and fungal strains. In most of the cases higher activity was exhibited upon coordination with vanadium(IV) metal. Brine shrimp bioassay was also carried out for in vitro cytotoxic properties against Artemia salina. PMID:20338672

  1. Luminescent europium and terbium complexes of dipyridoquinoxaline and dipyridophenazine ligands as photosensitizing antennae: structures and biological perspectives.

    Science.gov (United States)

    Dasari, Srikanth; Patra, Ashis K

    2015-12-14

    The europium(III) and terbium(III) complexes, namely [Eu(dpq)(DMF)2(NO3)3] (1), [Eu(dppz)2(NO3)3] (2), [Tb(dpq)(DMF)2Cl3] (3), and [Tb(dppz)(DMF)2Cl3] (4), where dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 1 and 3), dipyrido[3,2-a:2',3'-c]phenazine (dppz in 2 and 4) and N,N'-dimethylformamide (DMF) have been isolated, characterized from their physicochemical data, luminescence studies and their interaction with DNA, serum albumin protein and photo-induced DNA cleavage activity are studied. The X-ray crystal structures of complexes 1-4 show discrete mononuclear Ln(3+)-based structures. The Eu(3+) in [Eu(dpq)(DMF)2(NO3)3] (1) and [Eu(dppz)2(NO3)3] (2) as [Eu(dppz)2(NO3)3]·dppz (2a) adopts a ten-coordinated bicapped dodecahedron structure with a bidentate N,N-donor dpq ligand, two DMF and three NO3(-) anions in 1 and two bidentate N,N-donor dppz ligands and three NO3(-) anions in 2. Complexes 3 and 4 show a seven-coordinated mono-capped octahedron structure where Tb(3+) contains bidentate dpq/dppz ligands, two DMF and three Cl(-) anions. The complexes are highly luminescent in nature indicating efficient photo-excited energy transfer from the dpq/dppz antenna to Ln(3+) to generate long-lived emissive excited states for characteristic f → f transitions. The time-resolved luminescence spectra of complexes 1-4 show typical narrow emission bands attributed to the (5)D0 → (7)F(J) and (5)D4 → (7)F(J) f-f transitions of Eu(3+) and Tb(3+) ions respectively. The number of inner-sphere water molecules (q) was determined from luminescence lifetime measurements in H2O and D2O confirming ligand-exchange reactions with water in solution. The complexes display significant binding propensity to the CT-DNA giving binding constant values in the range of 1.0 × 10(4)-6.1 × 10(4) M(-1) in the order 2, 4 (dppz) > 1, 3 (dpq). DNA binding data suggest DNA groove binding with the partial intercalation nature of the complexes. All the complexes also show binding propensity (K(BSA)

  2. Is vanadate reduced by thiols under biological conditions? Changing the redox potential of V(V)/V(IV) by complexation in aqueous solution.

    Science.gov (United States)

    Crans, Debbie C; Zhang, Boyan; Gaidamauskas, Ernestas; Keramidas, Anastasios D; Willsky, Gail R; Roberts, Chris R

    2010-05-01

    Although dogma states that vanadate is readily reduced by glutathione, cysteine, and other thiols, there are several examples documenting that vanadium(V)-sulfur complexes can form and be observed. This conundrum has impacted life scientists for more than two decades. Investigation of this problem requires an understanding of both the complexes that form from vanadium(IV) and (V) and a representative thiol in aqueous solution. The reactions of vanadate and hydrated vanadyl cation with 2-mercaptoethanol have been investigated using multinuclear NMR, electron paramagnetic resonance (EPR), and UV-vis spectroscopy. Vanadate forms a stable complex of 2:2 stoichiometry with 2-mercaptoethanol at neutral and alkaline pH. In contrast, vanadate can oxidize 2-mercaptoethanol; this process is favored at low pH and high solute concentrations. The complex that forms between aqueous vanadium(IV) and 2-mercaptoethanol has a 1:2 stoichiometry and can be observed at high pH and high 2-mercaptoethanol concentration. The solution structures have been deduced based on coordination induced chemical shifts and speciation diagrams prepared. This work demonstrates that both vanadium(IV) and (V)-thiol complexes form and that redox chemistry also takes place. Whether reduction of vanadate takes place is governed by a combination of parameters: pH, solute- and vanadate-concentrations and the presence of other complexing ligands. On the basis of these results it is now possible to understand the distribution of vanadium in oxidation states (IV) and (V) in the presence of glutathione, cysteine, and other thiols and begin to evaluate the forms of the vanadium compounds that exert a particular biological effect including the insulin-enhancing agents, antiamoebic agents, and interactions with vanadium binding proteins. PMID:20359175

  3. Extensions of sampling-based approaches to path planning in complex cost spaces: applications to robotics and structural biology

    OpenAIRE

    Devaurs, Didier

    2014-01-01

    Planifier le chemin d’un robot dans un environnement complexe est un problème crucial en robotique. Les méthodes de planification probabilistes peuvent résoudre des problèmes complexes aussi bien en robotique, qu’en animation graphique, ou en biologie structurale. En général, ces méthodes produisent un chemin évitant les collisions, sans considérer sa qualité. Récemment, de nouvelles approches ont été créées pour générer des chemins de bonne qualité : en robotique, cela peut être le chemin le...

  4. Synthetic, structural and biological studies of organosilicon(IV complexes of Schiff bases derived from pyrrole-2-carboxaldehyde

    Directory of Open Access Journals (Sweden)

    KIRAN SING

    2010-07-01

    Full Text Available Selected new organosilicon(IV complexes having the general formula R2SiCl[L] and R2Si[L] 2 were synthesized by the reactions of Me2SiCl2 with Schiff bases (5-mercapto-4-[(1H-pyrrol-2ylmethyleneamino]-s-triazole, 5-mercapto-3-methyl-4-[(1H-pyrrol-2ylmethyleneamino]-s-triazole and 3-ethyl-5-mercapto-4-[(1H-pyrrol-2ylmethyleneamino]-s-triazole in 1:1 and 1:2 molar ratios. All of the compounds were characterized by elemental analysis, molar conductance, and IR, UV, 1H-, 13C- and 29Si-NMR spectral studies. All the spectral data suggest an involvement with an azomethine nitrogen in coordination to the central silicon atom. With the help of above-mentioned spectral studies, penta and hexacoordinated environments around the central silicon atoms in the 1:1 and 1:2 complexes, respectively, are proposed. Finally, the free ligands and their metal complexes were tested in vitro against some pathogenic bacteria and fungi to assess their antimicrobial properties.

  5. New tridentate azo-azomethines and their copper(II) complexes: Synthesis, solvent effect on tautomerism, electrochemical and biological studies

    Science.gov (United States)

    Sarigul, Munire; Deveci, Pervin; Kose, Muhammet; Arslan, Ugur; Türk Dagi, Hatice; Kurtoglu, Mukerrem

    2015-09-01

    In this study, three azo-azomethines and their copper(II) complexes were prepared and characterized by analytical and spectroscopic methods. The complexes prepared were found to be mononuclear and the chelation of the ligands to the copper(II) ions occurs through two phenolic oxygens and a nitrogen atom of the azomethine group of the ligand. The tautomeric behaviors of the azo-azomethines in solution were studied by UV-Vis. spectra in three organic solvents with different polarity (CHCl3, DMSO and DMF) at room temperature. The redox behaviors of the azo-azomethines and their Cu(II) complexes were investigated by cyclic voltammetry (CV) in DMSO solution containing 0.1 M tetrabutylammonium tetrafluoroborate (TBATFB) as supporting electrolyte. Additionally, the antibacterial activity was also evaluated by the broth microdilution methods against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. The compounds were found to be less effective against all bacteria tested than two reference antibiotics (ampicillin and gentamicin).

  6. Cupric citrate as growth promoter for broiler chickens in different rearing stages Citrato cúprico como promotor de crescimento de frangos de corte diferentes em fases de criação

    Directory of Open Access Journals (Sweden)

    Mônica Maria de Almeida Brainer

    2003-01-01

    Full Text Available Feeding cupric citrate as alternative to cupric sulfate to broilers has been suggested in the literature. Day-old male broiler chicks (1,200 were used in an experiment to evaluate the efficacy of cupric citrate supplementation (75 mg Cu kg-1 during the 1-21, 22-42 or 1-42 d periods in comparison to an unsupplemented diet and a diet supplemented with cupric sulfate (200 mg Cu kg-1, 1-42 d. A randomized block design was used, with five treatments, six replicates and 40 birds per pen. The diets, based on corn and soybean meal, and water were offered ad libitum during the 42-day experimental period. Over the entire period, there was no effect of copper supplementation (P > 0.05 on bird live weight, weight gain, feed intake, feed conversion and mortality. Cupric citrate supplementation on the 22-42 d period resulted in worse feed conversion as compared to broilers receiving cupric sulfate (2.014 vs. 1.967, P Citrato cúprico foi apontado como alternativa ao sulfato cúprico como promotor de crescimento na dieta de frangos. Este trabalho avaliou a eficácia do citrato cúprico em diferentes fases da criação de frangos de corte. Foram utilizados 1200 pintos machos, em um experimento em blocos casualizados, com cinco tratamentos, seis repetições e 40 aves por parcela. Os tratamentos consistiram de uma dieta não suplementada ou suplementada com citrato cúprico anidro (75 mg Cu kg-1 de 1 a 21 dias, de 22 a 42 dias ou de 1 a 42 dias, ou com sulfato cúprico pentahidratado (200 mg Cu kg-1 de 1 a 42 dias. Foram avaliados o desempenho das aves e o resíduo de cobre na cama. Dietas, à base de milho e farelo de soja, e água foram fornecidas à vontade durante todo o período experimental. Não houve efeito da suplementação de cobre (P > 0,05 sobre o peso vivo, ganho de peso, consumo de ração, conversão alimentar e mortalidade mais refugagem. Os frangos que receberam citrato cúprico na ração a partir dos 22 dias tiveram, no período 22-42 dias

  7. Laser-induced damage in biological tissue: Role of complex and dynamic optical properties of the medium

    Science.gov (United States)

    Ahmed, Elharith M.

    Since its invention in the early 1960's, the laser has been used as a tool for surgical, therapeutic, and diagnostic purposes. To achieve maximum effectiveness with the greatest margin of safety it is important to understand the mechanisms of light propagation through tissue and how that light affects living cells. Lasers with novel output characteristics for medical and military applications are too often implemented prior to proper evaluation with respect to tissue optical properties and human safety. Therefore, advances in computational models that describe light propagation and the cellular responses to laser exposure, without the use of animal models, are of considerable interest. Here, a physics-based laser-tissue interaction model was developed to predict the spatial and temporal temperature and pressure rise during laser exposure to biological tissues. Our new model also takes into account the dynamic nature of tissue optical properties and their impact on the induced temperature and pressure profiles. The laser-induced retinal damage is attributed to the formation of microbubbles formed around melanosomes in the retinal pigment epithelium (RPE) and the damage mechanism is assumed to be photo-thermal. Selective absorption by melanin creates these bubbles that expand and collapse around melanosomes, destroying cell membranes and killing cells. The Finite Element (FE) approach taken provides suitable ground for modeling localized pigment absorption which leads to a non-uniform temperature distribution within pigmented cells following laser pulse exposure. These hot-spots are sources for localized thermo-elastic stresses which lead to rapid localized expansions that manifest themselves as microbubbles and lead to microcavitations. Model predictions for the interaction of lasers at wavelengths of 193, 694, 532, 590, 1314, 1540, 2000, and 2940 nm with biological tissues were generated and comparisons were made with available experimental data for the retina

  8. Scientific Opinion on the safety and efficacy of copper compounds (E4 as feed additives for all species: cupric chelate of amino acids hydrate, based on a dossier submitted by Zinpro Animal Nutrition Inc.

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2013-02-01

    Full Text Available Cupric chelate of amino acids hydrate is safe for all animal species/categories up to the authorised maximum of total copper content in complete feed. Consumption surveys include copper from foodstuffs of animal origin. Since the supplementation of animal feed with copper-containing compounds has not essentially changed over the last decade, no change in the contribution of foodstuffs originating from supplemented animals to the overall copper intake of consumers is expected. No concerns for consumer safety are expected from the use of cupric chelate of amino acids hydrate in animal nutrition, which would substitute for other copper sources. The additive should be considered as a skin and eye irritant and, owing to its amino acid/peptide component, as a skin/respiratory sensitiser. Potential risks to soil organisms have been identified as a result of the application of piglet manure. Levels of copper in other types of manure are too low to create a potential risk within the timescale considered. There might also be a potential environmental concern related to the contamination of sediment resulting from drainage and the run-off of copper to surface water. In order to draw a final conclusion, further model validation is needed and some further refinement to the assessment of copper-based feed additives in livestock needs to be considered, for which additional data would be required. The use of copper-containing additives in aquaculture up to the authorised maximum of total copper content in complete feeds is not expected to pose an appreciable risk to the environment. The extent to which copper-resistant bacteria contribute to the overall antibiotic resistance situation cannot be quantified at present. Cupric chelate of amino acids hydrate is recognised as an efficacious source of copper to meet animal requirements.

  9. Biological oxygen sensing via two-photon absorption by an Ir(III) complex using a femtosecond fiber laser

    Science.gov (United States)

    Moritomo, Hiroki; Fujii, Akinari; Suzuki, Yasutaka; Yoshihara, Toshitada; Tobita, Seiji; Kawamata, Jun

    2016-09-01

    Near-infrared two-photon absorption of the phosphorescent Ir(III) complex (2,4-pentanedionato-κO 2,κO 4)bis[2-(6-phenanthridinyl-κN)benzo[b]thien-3-yl-κC]iridium (BTPHSA) was characterized. It exhibited a 800-1200 nm two-photon absorption band, and thus could be electronically excited by 1030-nm femtosecond Ti:sapphire and Yb-doped fiber lasers. By using BTPHSA, oxygen concentrations in human embryonic kidney 293 (HEK293) cells were imaged. These results demonstrate two-photon oxygen sensing of live tissues via easily operable excitation sources.

  10. Synthesis and biological evaluation of novel folic acid receptor-targeted, β-cyclodextrin-based drug complexes for cancer treatment.

    Directory of Open Access Journals (Sweden)

    Juan-Juan Yin

    Full Text Available Drug targeting is an active area of research and nano-scaled drug delivery systems hold tremendous potential for the treatment of neoplasms. In this study, a novel cyclodextrin (CD-based nanoparticle drug delivery system has been assembled and characterized for the therapy of folate receptor-positive [FR(+] cancer. Water-soluble folic acid (FA-conjugated CD carriers (FACDs were successfully synthesized and their structures were confirmed by 1D/2D nuclear magnetic resonance (NMR, matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS, high performance liquid chromatography (HPLC, Fourier transform infrared spectroscopy (FTIR, and circular dichroism. Drug complexes of adamatane (Ada and cytotoxic doxorubicin (Dox with FACD were readily obtained by mixed solvent precipitation. The average size of FACD-Ada-Dox was 1.5-2.5 nm. The host-guest association constant K a was 1,639 M(-1 as determined by induced circular dichroism and the hydrophilicity of the FACDs was greatly enhanced compared to unmodified CD. Cellular uptake and FR binding competitive experiments demonstrated an efficient and preferentially targeted delivery of Dox into FR-positive tumor cells and a sustained drug release profile was seen in vitro. The delivery of Dox into FR(+ cancer cells via endocytosis was observed by confocal microscopy and drug uptake of the targeted nanoparticles was 8-fold greater than that of non-targeted drug complexes. Our docking results suggest that FA, FACD and FACD-Ada-Dox could bind human hedgehog interacting protein that contains a FR domain. Mouse cardiomyocytes as well as fibroblast treated with FACD-Ada-Dox had significantly lower levels of reactive oxygen species, with increased content of glutathione and glutathione peroxidase activity, indicating a reduced potential for Dox-induced cardiotoxicity. These results indicate that the targeted drug complex possesses high drug association and sustained drug release

  11. Biologically relevant mono- and di-nuclear manganese II/III/IV complexes of mononegative pentadentate ligands

    DEFF Research Database (Denmark)

    Baffert, Carole; Collomb, Marie-Nöelle; Deronzier, Alain;

    2003-01-01

    Manganese(II) complexes of mononegative pentadentate N4O ligands [Mn2(mgbpen)(2)(H2O)(2)](ClO4)(2) (1), (mgbpen(-) = N-methyl-N'-glycyl-N,N'-bis(2-pyridylmethyl)ethane-1,2-diamine) and [Mn-2(bzgbpen)(2)(H2O)(2)](ClO4)(2) ( 2), (bzgbpen(-)=N-benzyl-N'-glycyl-N,N'-bis(2-pyridylmethyl)ethane-1...... are the highest oxidation state products detected, and these are formed via shorter-lived intermediate mu-oxo-dimanganese(III) compounds. The rate of formation of the various oxidized products is slower in the case of the bzgbpen(-) systems which contains a bulkier non-coordinating arm. The oxidised complexes...... were characterised by UV-visible spectroscopy, ESI mass spectrometry and cyclic voltammetry. In addition, III-IV and II-III species were electrochemically generated. Thus the new mononegative pentadentate ligand systems display significant flexibility in the range of Mn oxidation states and species...

  12. Water-soluble Ru(II)- and Ru(III)-halide-PTA complexes (PTA=1,3,5-triaza-7-phosphaadamantane): Chemical and biological properties.

    Science.gov (United States)

    Battistin, F; Scaletti, F; Balducci, G; Pillozzi, S; Arcangeli, A; Messori, L; Alessio, E

    2016-07-01

    Four structurally related Ru(II)-halide-PTA complexes, of general formula trans- or cis-[Ru(PTA)4X2] (PTA=1,3,5-triaza-7-phosphaadamantane, X=Cl (1, 2), Br (3, 4), were prepared and characterized. Whereas compounds 1 and 2 are known, the corresponding bromo derivatives 3 and 4 are new. The Ru(III)-PTA compound trans-[RuCl4(PTAH)2]Cl (5, PTAH=PTA protonated at one N atom), structurally similar to the well-known Ru(III) anticancer drug candidates (Na)trans-[RuCl4(ind)2] (NKP-1339, ind=indazole) and (Him)trans-[RuCl4(dmso-S)(im)] (NAMI-A, im=imidazole), was also prepared and similarly investigated. Notably, the presence of PTA confers to all complexes an appreciable solubility in aqueous solutions at physiological pH. The chemical behavior of compounds 1-5 in water and in physiological buffer, their interactions with two model proteins - cytochrome c and ribonuclease A - as well as with a single strand oligonucleotide (5'-CGCGCG-3'), and their in vitro cytotoxicity against a human colon cancer cell line (HCT-116) and a myeloid leukemia (FLG 29.1) were investigated. Upon dissolution in the buffer, sequential halide replacement by water molecules was observed for complexes 1-4, with relatively slow kinetics, whereas the Ru(III) complex 5 is more inert. All tested compounds manifested moderate antiproliferative properties, the cis compounds 2 and 4 being slightly more active than the trans ones (1 and 3). Mass spectrometry experiments evidenced that all complexes exhibit a far higher reactivity towards the reference oligonucleotide than towards model proteins. The chemical and biological profiles of compounds 1-5 are compared to those of established ruthenium drug candidates in clinical development. PMID:26920229

  13. Reprint of: Application of micro-thin-layer chromatography as a simple fractionation tool for fast screening of raw extracts derived from complex biological, pharmaceutical and environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Zarzycki, Pawel K., E-mail: pawel_k_z@hotmail.com [Section of Toxicology and Bioanalytics, Department of Civil and Environmental Engineering, Koszalin University of Technology, Sniadeckich 2, 75-453 Koszalin (Poland); Slaczka, Magdalena M.; Zarzycka, Magdalena B.; Wlodarczyk, Elzbieta; Baran, Michal J. [Section of Toxicology and Bioanalytics, Department of Civil and Environmental Engineering, Koszalin University of Technology, Sniadeckich 2, 75-453 Koszalin (Poland)

    2012-02-24

    The main goal of present paper is to demonstrate the separation and detection capability of micro-TLC technique involving simple one step liquid extraction protocols of complex materials without multi-steps sample pre-purification. In the present studies target components (cyanobacteria pigments, lipids and fullerenes) were isolated from heavy loading complex matrices including spirulina dried cells, birds' feathers and fatty oils as well as soot samples derived from biomass fuel and fossils-fired home heating systems. In each case isocratic separation protocol involving less that 1 mL of one component or binary mixture mobile phases can be completed within time of 5-8 min. Sensitive detection of components of interest was performed via fluorescence or staining techniques using iodine or phosphomolybdic acid. Described methodology can be applied for fast fractionation or screening of whole range of target substances as well as chemo-taxonomic studies and fingerprinting of complex mixtures, which are present in raw biological or environmental samples.

  14. Application of micro-thin-layer chromatography as a simple fractionation tool for fast screening of raw extracts derived from complex biological, pharmaceutical and environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Zarzycki, Pawel K., E-mail: pawel_k_z@hotmail.com [Section of Toxicology and Bioanalytics, Department of Civil and Environmental Engineering, Koszalin University of Technology, Sniadeckich 2, 75-453 Koszalin (Poland); Slaczka, Magdalena M.; Zarzycka, Magdalena B.; Wlodarczyk, Elzbieta; Baran, Michal J. [Section of Toxicology and Bioanalytics, Department of Civil and Environmental Engineering, Koszalin University of Technology, Sniadeckich 2, 75-453 Koszalin (Poland)

    2011-03-04

    The main goal of present paper is to demonstrate the separation and detection capability of micro-TLC technique involving simple one step liquid extraction protocols of complex materials without multi-steps sample pre-purification. In the present studies target components (cyanobacteria pigments, lipids and fullerenes) were isolated from heavy loading complex matrices including spirulina dried cells, birds' feathers and fatty oils as well as soot samples derived from biomass fuel and fossils-fired home heating systems. In each case isocratic separation protocol involving less that 1 mL of one component or binary mixture mobile phases can be completed within time of 5-8 min. Sensitive detection of components of interest was performed via fluorescence or staining techniques using iodine or phosphomolybdic acid. Described methodology can be applied for fast fractionation or screening of whole range of target substances as well as chemo-taxonomic studies and fingerprinting of complex mixtures, which are present in raw biological or environmental samples.

  15. Essential veterinary education in the cultural, political and biological complexities of international trade in animals and animal products.

    Science.gov (United States)

    Brown, C C

    2009-08-01

    Globalisation has changed the veterinary profession in many ways and academic institutes may need to re-tool to help future professionals deal with the changes in a successful and productive way. The remarkably expanded and expanding volume of trade and traffic in animals and animal products means that to be effective veterinarians must grasp some of the complexities inherent in this trade. Being able to engage productively in cross-cultural dialogue will be important in negotiations over livestock shipments and also within the context of the delivery of medical services to companion animals in societies that are becoming increasingly diverse. Understanding the political landscapes that influence trade decisions will help to expedite agreements and facilitate the transfer of goods and materials that involve animal health. Disease emergence will continue to occur, and an awareness of the factors responsible and the response measures to undertake will help to contain any damage. PMID:20128459

  16. Chemical and biological evaluation of {sup 153}Sm and {sup 46/47}Sc complexes of indazolebisphosphonates for targeted radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Maria, E-mail: mneves@itn.p [Instituto Tecnologico e Nuclear, Sacavem (Portugal); Teixeira, Fatima C.; Antunes, Ines [INETI-Departamento de Tecnologia de Industrias Quimicas, Lisboa (Portugal); Majkowska, Agnieszka [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Gano, Lurdes [Instituto Tecnologico e Nuclear, Sacavem (Portugal); Santos, Ana Cristina [IBB-Instituto de Biofisica e Biomatematica, Coimbra (Portugal)

    2011-01-15

    Introduction: Novel 1-hydroxy-1,1-bisphosphonates derived from indazole and substituted at the C-3 position were labeled with the radionuclides {sup 46}Sc and {sup 153}Sm. Several parameters such as molar ligand concentration, pH, reaction time and temperature were studied. The radiolabelling yield, reaction kinetics and stability were assessed and radiocomplexes were evaluated by in vitro and in vivo experiments. Methods: The radionuclides {sup 46}Sc and {sup 153}Sm were obtained by neutron irradiation of natural Sc{sub 2}O{sub 3} and enriched {sup 152}Sm{sub 2}O{sub 3} (98.4%) targets at the neutron flux of 3x10{sup 14} n cm{sup -2} s{sup -1}. The radiolabelling yield, reaction kinetics and stability were accomplished by ascending instant thin layer chromatography. The radiocomplexes were submitted to in vitro experiments (hydroxyapatite binding and lipophilicity) and biodistribution studies in animal models. Results: The radionuclides {sup 46}Sc and {sup 153}Sm were produced with specific activities of 100 and 430 MBq mg{sup -1}, respectively. High radiochemical yields were achieved and the hydrophilic radiocomplexes have shown high degree of binding to hydroxyapatite. Biodistribution studies at 1, 3 and 24 h of the 4 radiocomplexes under study, have showed a similar biodistribution profile with a relatively high bone uptake, slow clearance from blood and a very slow rate of total radioactivity excretion from the whole animal body. Conclusion: We have developed a new class of indazolebisphosphonates complexes with radioisotopes of samarium and scandium. All complexes have shown high degree of binding to hydroxyapatite, which could be attributed to the ionized phosphonate groups. The bone uptake and the bone-to-muscle ratios were relatively low.

  17. Insight into the mechanism of biological methanol activation based on the crystal structure of the methanol-cobalamin methyltransferase complex.

    Science.gov (United States)

    Hagemeier, Christoph H; Krer, Markus; Thauer, Rudolf K; Warkentin, Eberhard; Ermler, Ulrich

    2006-12-12

    Some methanogenic and acetogenic microorganisms have the catalytic capability to cleave heterolytically the C O bond of methanol. To obtain insight into the elusive enzymatic mechanism of this challenging chemical reaction we have investigated the methanol-activating MtaBC complex from Methanosarcina barkeri composed of the zinc-containing MtaB and the 5-hydroxybenzimidazolylcobamide-carrying MtaC subunits. Here we report the 2.5-A crystal structure of this complex organized as a (MtaBC)(2) heterotetramer. MtaB folds as a TIM barrel and contains a novel zinc-binding motif. Zinc(II) lies at the bottom of a funnel formed at the C-terminal beta-barrel end and ligates to two cysteinyl sulfurs (Cys-220 and Cys-269) and one carboxylate oxygen (Glu-164). MtaC is structurally related to the cobalamin-binding domain of methionine synthase. Its corrinoid cofactor at the top of the Rossmann domain reaches deeply into the funnel of MtaB, defining a region between zinc(II) and the corrinoid cobalt that must be the binding site for methanol. The active site geometry supports a S(N)2 reaction mechanism, in which the C O bond in methanol is activated by the strong electrophile zinc(II) and cleaved because of an attack of the supernucleophile cob(I)amide. The environment of zinc(II) is characterized by an acidic cluster that increases the charge density on the zinc(II), polarizes methanol, and disfavors deprotonation of the methanol hydroxyl group. Implications of the MtaBC structure for the second step of the reaction, in which the methyl group is transferred to coenzyme M, are discussed. PMID:17142327

  18. Study of natural biota of and biologic recovery possibilities for closed tunnels of the Degelen mountain complex

    International Nuclear Information System (INIS)

    Processes of degradation due to nuclear testing affected all the components of the ecosystems stems of the Degelen Mountain Complex. The composition of the vegetative cover of the Degelen Mountains distinguishes by the diversity of vegetation due to significant differentiation of ecological conditions of vegetation growth. Here the following types of vegetation are present: steppe, meadow, forest, bushes, and desert. The peculiarity of vegetation is the presence of large forest areas (containing birch, aspen-birch, and poplar-aspen areas) in narrow mountain valleys and the certain locations of the main fragments of forests typical for them. In accordance with the methodology of the vertical zoning, the following zones have been determined on the territory of the Degelen Mountains: 1) a zone of mountainous meadow and motley-feather steppe; 2) a zone of bushes. During the field work of the Inst. of Radiation Safety and Ecology (IRSE) on analysis of Degelen Mountains' flora 387 species of vascular plants of 58 families have been found. This data permits to characterize the structure and the patterns of the specific flora on the representative area of the Degelen Mountains on the southeast edge of the Central Kazakstan Low Hills. The assessment of flora taxonomic diversity, the quantitative set of species and families reflects the specific properties inherent in flora of the Degelen Mountains of the east edge of the Central Kazakstan Low Hills. The floristic composition of the Degelen Mountain Complex is more rich as compared to that one of the other two test fields of the former STS: Experimental Field - 148 species, Balapan - 192 species. Data of ecological, geological and butanic studies allowed to determine the main types of anthropogenic destruction of the ecosystem and the nature of their spatial distribution, the major cenosis-forming species for every type of anthropogenic residence and the radioecological growth amplitude of the dominant cenosis

  19. Design strategies to improve the sensitivity of photoactive metal carbonyl complexes (photoCORMs) to visible light and their potential as CO-donors to biological targets.

    Science.gov (United States)

    Chakraborty, Indranil; Carrington, Samantha J; Mascharak, Pradip K

    2014-08-19

    The recent surprising discovery of the beneficial effects of carbon monoxide (CO) in mammalian physiology has drawn attention toward site-specific delivery of CO to biological targets. To avoid difficulties in handling of this noxious gas in hospital settings, researchers have focused their attention on metal carbonyl complexes as CO-releasing molecules (CORMs). Because further control of such CO delivery through light-triggering can be achieved with photoactive metal carbonyl complexes (photoCORMs), we and other groups have attempted to isolate such complexes in the past few years. Typical metal carbonyl complexes release CO when exposed to UV light, a fact that often deters their use in biological systems. From the very beginning, our effort therefore was directed toward identifying design principles that could lead to photoCORMs that release CO upon illumination with low-power (5-15 mW/cm(2)) visible and near-IR light. In our work, we have utilized Mn(I), Re(I), and Ru(II) centers (all d(6) ground state configuration) to ensure overall stability of the carbonyl complexes. We also hypothesized that transfer of electron density from the electron-rich metal centers to π* MOs of the ligand frame via strong metal-to-ligand charge transfer (MLCT) transitions in the visible/near-IR region would weaken metal-CO back-bonding and promote rapid CO photorelease. This expectation has been realized in a series of carbonyl complexes derived from a variety of designed ligands and smart choice of ligand/coligand combinations. Several principles have emerged from our systematic approach to the design of principal ligands and the choice of auxiliary ligands (in addition to the number of CO) in synthesizing these photoCORMs. In each case, density functional theory (DFT) and time-dependent DFT (TDDFT) study afforded insight into the dependence of the CO photorelease from a particular photoCORM on the wavelength of light. Results of these theoretical studies indicate that extended

  20. A preorganized metalloreceptor for alkaline earth ions showing calcium versus magnesium selectivity in water: biological activity of selected metal complexes.

    Science.gov (United States)

    Amatori, Stefano; Ambrosi, Gianluca; Fanelli, Mirco; Formica, Mauro; Fusi, Vieri; Giorgi, Luca; Macedi, Eleonora; Micheloni, Mauro; Paoli, Paola; Rossi, Patrizia

    2014-08-25

    The N,N'-bis[(3-hydroxy-4-pyron-2-yl)methyl]-N,N'-dimethylethylendiamine (Malten = L) forms the highly stable [CuH(-2)L] species in water, in which the converging maltol oxygen atoms form an electron-rich area able to host hard metal ions. When considering the alkaline earth series (AE), the [Cu(H(-2)L)] species binds all metal ions, with the exception of Mg(2+), exhibiting the relevant property to discriminate Ca(2+) versus Mg(2+) at physiological pH 7.4; the binding of the AE metal is visible to the naked eye. The stability constant values of the trinuclear [AE{Cu(H(-2)L)}2](2+) species formed reach the maximum for Ca(2+) (log K=7.7). Ca(2+) also forms a tetranuclear [Ca{Cu(H(-2)L)}]2(4+) species at a high Ca(2+) concentration. Tri- and tetranuclear calcium complexes show blue- and pink-colored crystals, respectively. [Cu(H(-2)L)] is the most active species in inducing DNA alterations. The DNA damages are compatible with its hydrolytic cleavages.

  1. Real-Time Agent-Based Modeling Simulation with in-situ Visualization of Complex Biological Systems

    Science.gov (United States)

    Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y. K.

    2016-01-01

    We present an efficient and scalable scheme for implementing agent-based modeling (ABM) simulation with In Situ visualization of large complex systems on heterogeneous computing platforms. The scheme is designed to make optimal use of the resources available on a heterogeneous platform consisting of a multicore CPU and a GPU, resulting in minimal to no resource idle time. Furthermore, the scheme was implemented under a client-server paradigm that enables remote users to visualize and analyze simulation data as it is being generated at each time step of the model. Performance of a simulation case study of vocal fold inflammation and wound healing with 3.8 million agents shows 35× and 7× speedup in execution time over single-core and multi-core CPU respectively. Each iteration of the model took less than 200 ms to simulate, visualize and send the results to the client. This enables users to monitor the simulation in real-time and modify its course as needed. PMID:27547508

  2. Cytotoxic trans-platinum(II) complex with 3-hydroxymethylpyridine: Synthesis, X-ray structure and biological activity evaluation.

    Science.gov (United States)

    Grabner, Sabina; Modec, Barbara; Bukovec, Nataša; Bukovec, Peter; Čemažar, Maja; Kranjc, Simona; Serša, Gregor; Sčančar, Janez

    2016-08-01

    To assess the potential cytostatic properties of Pt(II) complexes with 3-hydroxymethylpyridine (3-hmpy) as the only carrier ligand, novel cis-[PtCl2(3-hmpy)2] (1) and trans-[PtCl2(3-hmpy)2] (2) have been prepared. Elemental analysis, FTIR spectroscopy, multinuclear NMR spectroscopy and X-ray crystallography were used to determine their structures. Based on the results obtained with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay and clonogenic assay on T24 human bladder carcinoma cells (T24), the most potent compound 2 was further tested for cytotoxicity in human ovarian carcinoma cell lines - cisplatin sensitive (IGROV 1) and its resistant subclone (IGROV 1/RDDP). The cytotoxicity of compound 2 in IGROV 1/RDDP is comparable to cisplatin. Furthermore, compound 2 induced severe conformational changes in plasmid DNA, which resulted in a delayed onset of apoptosis in T24 cells, and higher amounts of Pt in tumours and serum compared to cisplatin. In addition, in vivo antitumour effectiveness was comparable to that of cisplatin with a smaller reduction of animals' body weight, thus demonstrating that it is a promising transplatin analogue which deserves further studies. PMID:27189143

  3. Structure of trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action

    Energy Technology Data Exchange (ETDEWEB)

    Baram, David; Pyetan, Erez; Sittner, Assa; Auerbach-Nevo, Tamar; Bashan, Anat; Yonath, Ada (WIS-I)

    2010-07-13

    Trigger factor (TF), the first chaperone in eubacteria to encounter the emerging nascent chain, binds to the large ribosomal subunit in the vicinity of the protein exit tunnel opening and forms a sheltered folding space. Here, we present the 3.5-{angstrom} crystal structure of the physiological complex of the large ribosomal subunit from the eubacterium Deinococcus radiodurans with the N-terminal domain of TF (TFa) from the same organism. For anchoring, TFa exploits a small ribosomal surface area in the vicinity of proteins L23 and L29, by using its 'signature motif' as well as additional structural elements. The molecular details of TFa interactions reveal that L23 is essential for the association of TF with the ribosome and may serve as a channel of communication with the nascent chain progressing in the tunnel. L29 appears to induce a conformational change in TFa, which results in the exposure of TFa hydrophobic patches to the opening of the ribosomal exit tunnel, thus increasing its affinity for hydrophobic segments of the emerging nascent polypeptide. This observation implies that, in addition to creating a protected folding space for the emerging nascent chain, TF association with the ribosome prevents aggregation by providing a competing hydrophobic environment and may be critical for attaining the functional conformation necessary for chaperone activity.

  4. LEMS: A language for expressing complex biological models in concise and hierarchical form and its use in underpinning NeuroML 2

    Directory of Open Access Journals (Sweden)

    Robert C Cannon

    2014-09-01

    Full Text Available Computational models are increasingly important for studying complex neurophysiological systems. As scientific tools, it is essential that such models can be reproduced and critically evaluated by a range of scientists. However, published models are currently implemented using a diverse set of modelling approaches, simulation tools, and computer languages making them inaccessible and difficult to reproduce. Models also typically contain concepts that are tightly linked to domain-specific simulators, or depend on knowledge that is described exclusively in text-based documentation. To address these issues we have developed a compact, hierarchical, XML-based language called LEMS (Low Entropy Model Specification, that can define the structure and dynamics of a wide range of biological models in a fully machine readable format. We describe how LEMS underpins the latest version of NeuroML and show that this framework can define models of ion channels, synapses, neurons and networks. Unit handling, often a source of error when reusing models, is built into the core of the language by specifying physical quantities in models in terms of the base dimensions. We show how LEMS, together with the open source Java and Python based libraries we have developed, facilitates the generation of scripts for multiple neuronal simulators and provides a route for simulator free code generation. We establish that LEMS can be used to define models from systems biology and map them to neuroscience-domain specific simulators, enabling models to be shared between these traditionally separate disciplines. LEMS and NeuroML 2 provide a new, comprehensive framework for defining computational models of neuronal and other biological systems in a machine readable format, making them more reproducible and increasing the transparency and accessibility of their underlying structure and properties.

  5. LEMS: a language for expressing complex biological models in concise and hierarchical form and its use in underpinning NeuroML 2.

    Science.gov (United States)

    Cannon, Robert C; Gleeson, Padraig; Crook, Sharon; Ganapathy, Gautham; Marin, Boris; Piasini, Eugenio; Silver, R Angus

    2014-01-01

    Computational models are increasingly important for studying complex neurophysiological systems. As scientific tools, it is essential that such models can be reproduced and critically evaluated by a range of scientists. However, published models are currently implemented using a diverse set of modeling approaches, simulation tools, and computer languages making them inaccessible and difficult to reproduce. Models also typically contain concepts that are tightly linked to domain-specific simulators, or depend on knowledge that is described exclusively in text-based documentation. To address these issues we have developed a compact, hierarchical, XML-based language called LEMS (Low Entropy Model Specification), that can define the structure and dynamics of a wide range of biological models in a fully machine readable format. We describe how LEMS underpins the latest version of NeuroML and show that this framework can define models of ion channels, synapses, neurons and networks. Unit handling, often a source of error when reusing models, is built into the core of the language by specifying physical quantities in models in terms of the base dimensions. We show how LEMS, together with the open source Java and Python based libraries we have developed, facilitates the generation of scripts for multiple neuronal simulators and provides a route for simulator free code generation. We establish that LEMS can be used to define models from systems biology and map them to neuroscience-domain specific simulators, enabling models to be shared between these traditionally separate disciplines. LEMS and NeuroML 2 provide a new, comprehensive framework for defining computational models of neuronal and other biological systems in a machine readable format, making them more reproducible and increasing the transparency and accessibility of their underlying structure and properties. PMID:25309419

  6. Biological Control of Pathogens Causing Root Rot Complex in Field Pea Using Clonostachys rosea Strain ACM941.

    Science.gov (United States)

    Xue, Allen G

    2003-03-01

    ABSTRACT Pea root rot complex (PRRC), caused by Alternaria alternata, Aphanomyces euteiches, Fusarium oxysporum f. sp. pisi, F. solani f. sp. pisi, Mycosphaerella pinodes, Pythium spp., Rhizoctonia solani, and Sclerotinia sclerotiorum, is a major yield-limiting factor for field pea production in Canada. A strain of Clonostachys rosea (syn. Gliocladium roseum), ACM941 (ATCC 74447), was identified as a mycoparasite against these pathogens. When grown near the pathogen, ACM941 often was stimulated to produce lateral branches that grew directly toward the pathogen mycelium, typically entwining around the pathogen mycelium. When applied to the seed, ACM941 propagated in the rhizosphere and colonized the seed coat, hypocotyl, and roots as the plant developed and grew. ACM941 significantly reduced the recovery of all fungal pathogens from infected seed, increased in vitro seed germination by 44% and seedling emergence by 22%, and reduced root rot severity by 76%. The effects were similar to those of thiram fungicide, which increased germination and emergence by 33 and 29%, respectively, and reduced root rot severity by 65%. When soil was inoculated with selected PRRC pathogens in a controlled environment, seed treatment with ACM941 significantly increased emergence by 26, 38, 28, 13, and 21% for F. oxysporum f. sp. pisi, F. solani f. sp. pisi, M. pinodes, R. solani, and S. sclerotiorum, respectively. Under field conditions from 1995 to 1997, ACM941 increased emergence by 17, 23, 22, 13, and 18% and yield by 15, 6, 28, 6, and 19% for the five respective pathogens. The seed treatment effects of ACM941 on these PRRC pathogens were greater or statistically equivalent to those achieved with thiram. Results of this study suggest that ACM941 is an effective bioagent in controlling PRRC and is an alternative to existing chemical products. PMID:18944343

  7. Assessment of crosstalks between the Snf1 kinase complex and sphingolipid metabolism in S. cerevisiae via systems biology approaches.

    Science.gov (United States)

    Borklu Yucel, Esra; Ulgen, Kutlu O

    2013-11-01

    Sphingolipids are essential building blocks of the plasma membranes and are highly bioactive in the regulation of diverse cellular functions and pathological processes, a fact which renders the sphingolipid metabolism an important research area. In this study, a computational framework was recruited for the reconstruction of a functional interaction network for sphingolipid metabolism in Baker's yeast, SSN. Gene Ontology (GO) annotations were integrated with functional interaction data of the BIOGRID database and the reconstructed protein interaction network was subjected to topological and descriptive analyses. SSN was of a scale-free nature, following a power law model with γ=1.41. Prominent processes of SSN revealed that the reconstructed network encapsulated the involvement of sphingolipid metabolism in vital cellular processes such as energy homeostasis, cell growth and/or death and synthesis of building blocks. To investigate the potential of SSN for predicting signal transduction pathways regulating and/or being regulated by sphingolipid biosynthesis in yeast, a case study involving the S. cerevisiae counterpart of AMP-activated protein kinase, the Snf1 kinase complex, was conducted. The mutant strain lacking the catalytic α subunit, snf1Δ/snf1Δ, had elevated inositol phosphorylceramide and mannosyl-inositol phosphorylceramide levels, and decreased mannosyl-diinositol phosphorylceramide levels compared to the wild type strain, revealing that Snf1p has a regulatory role in the sphingolipid metabolism. Transcriptome data belonging to that strain available in the literature were mapped onto SSN and the correlated SSN was further investigated to evaluate the possible crosstalk machineries where sphingolipids and Snf1p function in coordination, in other words the crosstalk points between sphingolipid-mediated and Snf1 kinase signalling. The subsequent investigation of the discovered candidate crosstalk processes by performing sensitivity experiments imply a

  8. Quantum Biology

    CERN Document Server

    Sergi, Alessandro

    2009-01-01

    A critical assessment of the recent developments of molecular biology is presented. The thesis that they do not lead to a conceptual understanding of life and biological systems is defended. Maturana and Varela's concept of autopoiesis is briefly sketched and its logical circularity avoided by postulating the existence of underlying {\\it living processes}, entailing amplification from the microscopic to the macroscopic scale, with increasing complexity in the passage from one scale to the other. Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces, is criticized. It is suggested that the correct interpretation of quantum dispersion forces (van der Waals, hydrogen bonding, and so on) as quantum coherence effects hints at the necessity of including long-ranged forces (or mechanisms for them) in condensed matter theories of biological processes. Some quantum effects in biology are reviewed and quantum mechanics is acknowledge...

  9. Determination of Lignin in Marine Sediment Using Alkaline Cupric Oxide Oxidation-Solid Phase Extraction-on-Column Derivatization-Gas Chromatography

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ting; LI Xianguo; SUN Shuwen; LAN Haiqing; DU Peirui; WANG Min

    2013-01-01

    Lignin serves as one of the most important molecular fossils for tracing Terrestrial Organic Matters (TOMs) in marine environment.Extraction and derivatization of lignin oxidation products (LOPs) are crucial for accurate quantification of lignin in marine sediment.Here we report a modification of the conventional alkaline cupric oxide (CuO) oxidation method,the modification consisting in a solid phase extraction (SPE) and a novel on-column derivatization being employed for better efficiency and reproducibility.In spiking blanks,recoveries with SPE for the LOPs are between 77.84% and 99.57% with relative standard deviations (RSDs) ranging from 0.57% to 8.04% (n=3),while those with traditional liquid-liquid extraction (LLE) are from 44.52% to 86.16% with RSDs being from 0.53% to 13.14% (n=3).Moreover,the reproducibility is greatly improved with SPE,with less solvent consumption and shorter processing time.The average efficiency of on-column derivatization for LOPs is 100.8%±0.68%,which is significantly higher than those of in-vial or in-syringe derivatization,thus resulting in still less consumption of derivatizing reagents.Lignin in the surface sediments sampled from the south of Yangtze River estuary,China,was determined with the established method.Recoveries of 72.66% to 85.99% with standard deviation less than 0.01mg/10g dry weight are obtained except for p-hydroxybenzaldehyde.The lignin content ∑8 (produced from 10g dry sediment) in the research area is between 0.231 and 0.587mg.S/V and C/V ratios (1.028±0.433 and 0.192 ±0.066,respectively) indicate that the TOMs in this region are originated from a mixture of woody and nonwoody angiosperm plants; the high values of (Ad/A1)v suggest that the TOMs has been highly degraded.

  10. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  11. Biological therapy for dentin-pulp complex regeneration and repair%生物治疗在牙髓损伤修复中的应用研究

    Institute of Scientific and Technical Information of China (English)

    罗传霞

    2012-01-01

    Safe and effective approaches for dentin-pulp complex regeneration and repair are the focus of scientist's research around the conservative dentistry. Whereas, all current therapies have limitations. Gene therapy and stem cell-based therapy which are brand-new biological therapies build more favorable situation for tissue regeneration and repair comparing with traditional treatment. This review will summarize current knowledge of gene-and stem cell-based therapies for dentin-pulp complex regeneration and repair.%安全有效的活髓保存治疗方法一直是牙体牙髓病学研究的热点,但现有的治疗方法都存在许多不足.生物治疗近年来发展迅速,其中基因治疗和干细胞治疗能有效促进组织的修复与再生,在牙髓损伤修复中已有不少应用研究,本文就这方面的研究进展作一综述.

  12. New Markov-autocorrelation indices for re-evaluation of links in chemical and biological complex networks used in metabolomics, parasitology, neurosciences, and epidemiology.

    Science.gov (United States)

    González-Díaz, Humberto; Riera-Fernández, Pablo

    2012-12-21

    The development of new methods for the computational re-evaluation of links in chemical and biological complex networks is very important to save time and resources. The Moreau-Broto autocorrelation indices (MBis) are well-known topological indices (TIs) used in QSAR/QSPR studies to encode the structural information contained in molecular graphs. In addition, MBis and similar autocorrelation measures have been used to study other systems like, for example, proteins. In the present work, MBis are combined with Markov chains to develop a general class of stochastic MBis of order k (MB(k)) that is used to encode the structural information contained in different types of large complex networks. The MB(k) values obtained for the nodes (centralities) of these networks are used as input variables to seek QSPR-like equations (by means of linear discriminant analysis) in which the outputs are numerical scores S(L(ij)) that allow us to discriminate between connected and nonconnected nodes and therefore re-evaluate the connectivity of the whole network. The models developed in this work produced the following results in terms of overall accuracy for network reconstruction: metabolic networks (72.10%), parasite-host networks (88.70%), CoCoMac brain cortex coactivation network (81.89%), and fasciolosis spreading network (86.39%).

  13. Report on the research conducted under the funding of the Sloan foundation postdoctoral fellowship in Computational Molecular Biology [Systematic study of protein-protein complexes] Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sheinerman, Felix

    2001-06-01

    A central question in molecular biology is what structural features are common at protein-protein interfaces and what energetic factors define the affinity and specificity of protein-protein association. Analysis of structural and mutational data on protein-protein interfaces revealed that protein-protein interfaces of different functional classes contain many more energetically important charged and polar residues than was previously thought. Since, in the context of protein folding studies, polar interactions are believed to destabilize the folded proteins, this observation raised the question as to the forces that determine the stability of protein complexes. To investigate this issue in detail, the authors developed a number of partitioning schemes that allowed them to investigate the role of selected residues, ion pairs, and networks of polar interactions in protein-protein association. The methods developed were applied to the analysis of four different protein-protein interfaces: the ribonuclease barnase and its inhibitor barstar, the human growth hormone and its receptor, subtype N9 influenze virus neuraminidase and NC41 antibody, and the Ras Binding Domain of kinase cRaf and a Ras homologue Rap1A. The calculations revealed a surprising variability in how polar interactions affect the stability of different complexes. The finding that positions of charged and polar residues on protein-protein interfaces are optimized with respect to electrostatic interactions suggests that this property can be employed for the discrimination between native conformations and trial complexes generated by a docking algorithm. Analysis indicated the presence of SH2 domains in Janus family of non-receptor protein tyrosine kinases.

  14. FY 1997 report on the results of the industrial technology R and D project. Development of technology to use biological resources such as the complex biological system (Development of biological use petroleum substitution fuel production technology); 1997 nendo fukugo seibutsukei nado seibutsu shigen riyo gijutsu kaihatsu seika hokokusho. Seibutsu riyo sekiyu daitai nenryo seizo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Experimental researches were conducted and the FY 1997 results were reported with the aim of establishing analytical technology for the complex biological system by which the complex biological system can be analyzed in such a state as it is using the molecular biological method. In the study of the molecular genetic analytical technology, PCR primers used for amplification of topoisomerase II genes of the whole eukaryote was designed. As to the histochemical analytical technology, a study was made on the new constitution microorganism detection method by the hybridization method and the antibody specific dyeing method, and the following were conducted: manifestation in quantity of colibacillus and the recovery, refining, and construction of peptide library by fuzzy display method. Concerning the functional analytical technology, technological researches were made such as the environmental adaptation mechanism of high thermophile and the information transfer mechanism among bacteria through cell membranes for elucidation of the special environment detection/response mechanism and the special environment adaptation/resistance mechanism. As to the separation/culture technology, various anaerobic microorganisms were separated from marine sponge for the development of a method of culturing in 3D matrices. (NEDO)

  15. Biological Significance of Photoreceptor Photocycle Length: VIVID Photocycle Governs the Dynamic VIVID-White Collar Complex Pool Mediating Photo-adaptation and Response to Changes in Light Intensity.

    Directory of Open Access Journals (Sweden)

    Arko Dasgupta

    2015-05-01

    Full Text Available Most organisms on earth sense light through the use of chromophore-bearing photoreceptive proteins with distinct and characteristic photocycle lengths, yet the biological significance of this adduct decay length is neither understood nor has been tested. In the filamentous fungus Neurospora crassa VIVID (VVD is a critical player in the process of photoadaptation, the attenuation of light-induced responses and the ability to maintain photosensitivity in response to changing light intensities. Detailed in vitro analysis of the photochemistry of the blue light sensing, FAD binding, LOV domain of VVD has revealed residues around the site of photo-adduct formation that influence the stability of the adduct state (light state, that is, altering the photocycle length. We have examined the biological significance of VVD photocycle length to photoadaptation and report that a double substitution mutant (vvdI74VI85V, previously shown to have a very fast light to dark state reversion in vitro, shows significantly reduced interaction with the White Collar Complex (WCC resulting in a substantial photoadaptation defect. This reduced interaction impacts photoreceptor transcription factor WHITE COLLAR-1 (WC-1 protein stability when N. crassa is exposed to light: The fast-reverting mutant VVD is unable to form a dynamic VVD-WCC pool of the size required for photoadaptation as assayed both by attenuation of gene expression and the ability to respond to increasing light intensity. Additionally, transcription of the clock gene frequency (frq is sensitive to changing light intensity in a wild-type strain but not in the fast photo-reversion mutant indicating that the establishment of this dynamic VVD-WCC pool is essential in general photobiology and circadian biology. Thus, VVD photocycle length appears sculpted to establish a VVD-WCC reservoir of sufficient size to sustain photoadaptation while maintaining sensitivity to changing light intensity. The great diversity

  16. The `What is a system' reflection interview as a knowledge integration activity for high school students' understanding of complex systems in human biology

    Science.gov (United States)

    Tripto, Jaklin; Ben-Zvi Assaraf, Orit; Snapir, Zohar; Amit, Miriam

    2016-03-01

    This study examined the reflection interview as a tool for assessing and facilitating the use of 'systems language' amongst 11th grade students who have recently completed their first year of high school biology. Eighty-three students composed two concept maps in the 10th grade-one at the beginning of the school year and one at its end. The first part of the interview is dedicated to guiding the students through comparing their two concept maps and by means of both explicit and non-explicit teaching. Our study showed that the explicit guidance in comparing the two concept maps was more effective than the non-explicit, eliciting a variety of different, more specific, types of interactions and patterns (e.g. 'hierarchy', 'dynamism', 'homeostasis') in the students' descriptions of the human body system. The reflection interview as a knowledge integration activity was found to be an effective tool for assessing the subjects' conceptual models of 'system complexity', and for identifying those aspects of a system that are most commonly misunderstood.

  17. X-ray Absorption Spectroscopy and Coherent X-ray Diffraction Imaging for Time-Resolved Investigation of the Biological Complexes: Computer Modelling towards the XFEL Experiment

    Science.gov (United States)

    Bugaev, A. L.; Guda, A. A.; Yefanov, O. M.; Lorenz, U.; Soldatov, A. V.; Vartanyants, I. A.

    2016-05-01

    The development of the next generation synchrotron radiation sources - free electron lasers - is approaching to become an effective tool for the time-resolved experiments aimed to solve actual problems in various fields such as chemistry’ biology’ medicine’ etc. In order to demonstrate’ how these experiments may be performed for the real systems to obtain information at the atomic and macromolecular levels’ we have performed a molecular dynamics computer simulation combined with quantum chemistry calculations for the human phosphoglycerate kinase enzyme with Mg containing substrate. The simulated structures were used to calculate coherent X-ray diffraction patterns’ reflecting the conformational state of the enzyme, and Mg K-edge X-ray absorption spectra, which depend on the local structure of the substrate. These two techniques give complementary information making such an approach highly effective for time-resolved investigation of various biological complexes, such as metalloproteins or enzymes with metal-containing substrate, to obtain information about both metal-containing active site or substrate and the atomic structure of each conformation.

  18. Effect of Cu(2+)-complexation on the scavenging ability of chrysin towards photogenerated singlet molecular oxygen (O2((1)Δg)). Possible biological implications.

    Science.gov (United States)

    Muñoz, Vanesa A; Ferrari, Gabriela V; Montaña, M Paulina; Miskoski, Sandra; García, Norman A

    2016-09-01

    Visible-light irradiation of aqueous-ethanolic solutions of Riboflavin (Rf) in the individual presence of the flavone chrysin (Chr) and its complex with Cu(2+) ([Chr2Cu]; 2:1 L:M) generates singlet molecular oxygen O2((1)Δg), that concomitantly interact with both flavone derivatives. Overall (kt) and reactive (kr) rate constants in the order of 10(7)M(-1)s(-1) were determined for the process. Metal chelation greatly enhances the scavenging ability of [Chr2Cu] towards O2((1)Δg) through a mechanism dominated, in >80%, by the physical component. In this way, practically all O2((1)Δg) is deactivated by the complex without significant loss of the quencher. The isolated flavone quenches O2((1)Δg) in a prevailing reactive fashion. The very low value exhibited by [Chr2Cu] for the kr/kt ratio constitutes a positive quality for antioxidative protectors in biological media, where elevated local concentration and high reactivity of significant molecules make them initial targets for O2((1)Δg) aggression. Finally, two interesting properties in the field of free radicals scavenging by [Chr2Cu] must be mentioned. In first place metal chelation itself, in the obvious sense of free metal ion withdrawal from the oxidizable medium, prevents the initiation of a free radical-mediated oxidation processes through mechanisms of Fenton or lipid peroxidation. In addition, the incorporation of Cu adds to [Chr2Cu] the ability of a free radical scavenger, already described for similar Cu-chelate compounds. This collection of beneficial properties positions the complex as a remarkably promising bioprotector towards ROS-mediated oxidation. A quantification of the efficiency on the initial anti-oxidative effect exerted by Chr and [Chr2Cu] towards tryptophan was carried out. The amino acid is an archetypal molecular model, commonly employed to monitor oxidative degradation of proteinaceous media. It was efficiently photoprotected against O2((1)Δg)-mediated photooxidation by [Chr2Cu]. PMID

  19. Networks in Cell Biology = Modelling cell biology with networks

    OpenAIRE

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, M.

    2010-01-01

    The science of complex biological networks is transforming research in areas ranging from evolutionary biology to medicine. This is the first book on the subject, providing a comprehensive introduction to complex network science and its biological applications. With contributions from key leaders in both network theory and modern cell biology, this book discusses the network science that is increasingly foundational for systems biology and the quantitative understanding of living systems. It ...

  20. Rapid ionic liquid-based ultrasound assisted dual magnetic microextraction to preconcentrate and separate cadmium-4-(2-thiazolylazo)-resorcinol complex from environmental and biological samples.

    Science.gov (United States)

    Khan, Sumaira; Kazi, Tasneem Gul; Soylak, Mustafa

    2014-04-01

    A rapid and innovative microextraction technique named as, ionic liquid-based ultrasound-assisted dual magnetic microextraction (IL-UA-DMME) was developed for the preconcentration and extraction of trace cadmium from environmental and biological samples, prior to analyzed by flame atomic absorption spectrometry (FAAS). The proposed method has many obvious advantages, including evading the use of organic solvents and achieved high extraction yields by the combination of dispersive liquid-liquid microextraction (DLLME) and magnetic mediated-solid phase extraction (MM-SPE). In this approach ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] play an important role to extract the cadmium-4-(2-thiazolylazo)-resorcinol (Cd-TAR) complex from acid digested sample solutions and ultrasonic irradiation was applied to assist emulsification. After then, dispersed small amount of Fe3O4 magnetic nanoparticles (MNPs) in sample solutions to salvaged the IL and complete phase separation was attained. Some analytical parameters that influencing the efficiency of proposed (IL-UA-DMME) method, such as pH, volume of IL, ligand concentration, ultra-sonication time, amount of Fe3O4 MNPs, sample volume and matrix effect were optimized. Limit of detection (LOD) and enrichment factor (EF) of the method under optimal experimental conditions were found to be 0.40μgL(-1) and 100, respectively. The relative standard deviation (RSD) of 50μgL(-1) Cd was 4.29%. The validity and accuracy of proposed method, was assessed to analyzed certified reference materials of fortified lake water TMDA-54.4, SPS-WW2 waste water, spinach leaves 1570a and also checked by standard addition method. The obtained values showed good agreement with the certified values and sufficiently high recovery were found in the range of 98.1-101% for Cd. The proposed method was facile, rapid and successfully applied for the determination of Cd in environmental and different biological samples. PMID

  1. Heteroaryl Chalcones: Design, Synthesis, X-ray Crystal Structures and Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2013-10-01

    Full Text Available Chalcone derivatives have attracted increasing attention due to their numerous pharmacological activities. Changes in their structures have displayed high degree of diversity that has proven to result in a broad spectrum of biological activities. The present study highlights the synthesis of some halogen substituted chalcones 3(a–i containing the 5-chlorothiophene moiety, their X-ray crystal structures and the evaluation of possible biological activities such as antibacterial, antifungal and reducing power abilities. The results indicate the tested compounds show a varied range of inhibition values against all the tested microbial strains. Compound 3c with a p-fluoro substituent on the phenyl ring exhibits elevated antimicrobial activity, whereas the compounds 3e and 3f displayed the least antimicrobial activities. The compounds 3d, 3e, 3f and 3i showed good ferric and cupric reducing abilities, and the compounds 3b and 3c showed the weakest reducing power in the series.

  2. Synthetic biology: insights into biological computation.

    Science.gov (United States)

    Manzoni, Romilde; Urrios, Arturo; Velazquez-Garcia, Silvia; de Nadal, Eulàlia; Posas, Francesc

    2016-04-18

    Organisms have evolved a broad array of complex signaling mechanisms that allow them to survive in a wide range of environmental conditions. They are able to sense external inputs and produce an output response by computing the information. Synthetic biology attempts to rationally engineer biological systems in order to perform desired functions. Our increasing understanding of biological systems guides this rational design, while the huge background in electronics for building circuits defines the methodology. In this context, biocomputation is the branch of synthetic biology aimed at implementing artificial computational devices using engineered biological motifs as building blocks. Biocomputational devices are defined as biological systems that are able to integrate inputs and return outputs following pre-determined rules. Over the last decade the number of available synthetic engineered devices has increased exponentially; simple and complex circuits have been built in bacteria, yeast and mammalian cells. These devices can manage and store information, take decisions based on past and present inputs, and even convert a transient signal into a sustained response. The field is experiencing a fast growth and every day it is easier to implement more complex biological functions. This is mainly due to advances in in vitro DNA synthesis, new genome editing tools, novel molecular cloning techniques, continuously growing part libraries as well as other technological advances. This allows that digital computation can now be engineered and implemented in biological systems. Simple logic gates can be implemented and connected to perform novel desired functions or to better understand and redesign biological processes. Synthetic biological digital circuits could lead to new therapeutic approaches, as well as new and efficient ways to produce complex molecules such as antibiotics, bioplastics or biofuels. Biological computation not only provides possible biomedical and

  3. Synthetic biology: insights into biological computation.

    Science.gov (United States)

    Manzoni, Romilde; Urrios, Arturo; Velazquez-Garcia, Silvia; de Nadal, Eulàlia; Posas, Francesc

    2016-04-18

    Organisms have evolved a broad array of complex signaling mechanisms that allow them to survive in a wide range of environmental conditions. They are able to sense external inputs and produce an output response by computing the information. Synthetic biology attempts to rationally engineer biological systems in order to perform desired functions. Our increasing understanding of biological systems guides this rational design, while the huge background in electronics for building circuits defines the methodology. In this context, biocomputation is the branch of synthetic biology aimed at implementing artificial computational devices using engineered biological motifs as building blocks. Biocomputational devices are defined as biological systems that are able to integrate inputs and return outputs following pre-determined rules. Over the last decade the number of available synthetic engineered devices has increased exponentially; simple and complex circuits have been built in bacteria, yeast and mammalian cells. These devices can manage and store information, take decisions based on past and present inputs, and even convert a transient signal into a sustained response. The field is experiencing a fast growth and every day it is easier to implement more complex biological functions. This is mainly due to advances in in vitro DNA synthesis, new genome editing tools, novel molecular cloning techniques, continuously growing part libraries as well as other technological advances. This allows that digital computation can now be engineered and implemented in biological systems. Simple logic gates can be implemented and connected to perform novel desired functions or to better understand and redesign biological processes. Synthetic biological digital circuits could lead to new therapeutic approaches, as well as new and efficient ways to produce complex molecules such as antibiotics, bioplastics or biofuels. Biological computation not only provides possible biomedical and

  4. Systems interface biology

    OpenAIRE

    Francis J Doyle; Stelling, Jörg

    2006-01-01

    The field of systems biology has attracted the attention of biologists, engineers, mathematicians, physicists, chemists and others in an endeavour to create systems-level understanding of complex biological networks. In particular, systems engineering methods are finding unique opportunities in characterizing the rich behaviour exhibited by biological systems. In the same manner, these new classes of biological problems are motivating novel developments in theoretical systems approaches. Henc...

  5. Characterization and reactivity of the weakly bound complexes of the [H, N, S]{sup −} anionic system with astrophysical and biological implications

    Energy Technology Data Exchange (ETDEWEB)

    Trabelsi, T.; Ajili, Y.; Ben Yaghlane, S.; Jaidane, N.-E. [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications–LSAMA, Université de Tunis El Manar, Tunis (Tunisia); Mogren Al-Mogren, M. [Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Francisco, J. S. [Department of Chemistry and Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 47906 (United States); Hochlaf, M., E-mail: hochlaf@univ-mlv.fr [Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 Blvd. Descartes, 77454 Marne-la-Vallée (France)

    2015-07-21

    We investigate the lowest electronic states of doublet and quartet spin multiplicity states of HNS{sup −} and HSN{sup −} together with their parent neutral triatomic molecules. Computations were performed using highly accurate ab initio methods with a large basis set. One-dimensional cuts of the full-dimensional potential energy surfaces (PESs) along the interatomic distances and bending angle are presented for each isomer. Results show that the ground anionic states are stable with respect to the electron detachment process and that the long range parts of the PESs correlating to the SH{sup −} + N, SN{sup −} + H, SN + H{sup −}, NH + S{sup −}, and NH{sup −} + S are bound. In addition, we predict the existence of long-lived weakly bound anionic complexes that can be formed after cold collisions between SN{sup −} and H or SH{sup −} and N. The implications for the reactivity of these species are discussed; specifically, it is shown that the reactions involving SH{sup −}, SN{sup −}, and NH{sup −} lead either to the formation of HNS{sup −} or HSN{sup −} in their electronic ground states or to autodetachment processes. Thus, providing an explanation for why the anions, SH{sup −}, SN{sup −}, and NH{sup −}, have limiting detectability in astrophysical media despite the observation of their corresponding neutral species. In a biological context, we suggest that HSN{sup −} and HNS{sup −} should be incorporated into H{sub 2}S-assisted heme-catalyzed reduction mechanism of nitrites in vivo.

  6. Synthesis and characterization of some metal complexes derived from azo compound of 4,4‧-methylenedianiline and antipyrine: Evaluation of their biological activity on some land snail species

    Science.gov (United States)

    AbouEl-Enein, Saeyda A.; Emam, Sanaa M.; Polis, Magdy W.; Emara, Esam M.

    2015-11-01

    A novel series of metal complexes of the azo dye; bis-(1,5-dimethyl-4-[(E)-(3-methylphenyl)diazenyl]-2-phenyl-1,2-dihydro-3H-pyrazol-3-one) derived from 4,4‧-methylenedianiline and antipyrine was synthesized and characterized by different spectral, thermal and analytical methods. The tetradentate ligand reacts with the metal ions as a half unit. All complexes display an octahedral geometry, except Pd(II) complex (7) which has a square planar one. The thermal studies reveal that the complexes have higher thermal stability comparable with that of the free ligand. The activation thermodynamic parameters, such as activation energy (E*), enthalpy of activation (ΔH*), entropy of activation (ΔS*) and Gibbs free energy (ΔG*) have been calculated using DTG curves. The ESR spectra of the solid Cu(II) complexes showed an axial symmetry with 2B1g as a ground state and hyperfine structure. The biological activities of the ligand, as well as its metal complexes have been tested in vitro against two land snail species; Eobania vermiculata and Monacha obstructa. The results show that all the tested compounds have significant biological activities against the two tested land snail species with different sensitivity levels.

  7. ECO-BIOLOGICAL SYSTEM MODELING

    Directory of Open Access Journals (Sweden)

    T. I. Burak

    2015-01-01

    Full Text Available The methodology for computer modeling of complex eco-biological models is presented in this paper. It is based on system approach of J. Forrester. Developed methodology is universal for complex ecological and biological systems. Modeling algorithm considers specialties of eco-biological systems and shows adequate and accurate results in practice. 

  8. Informing Biological Design by Integration of Systems and Synthetic Biology

    OpenAIRE

    Smolke, Christina D.; Silver, Pamela A.

    2011-01-01

    Synthetic biology aims to make the engineering of biology faster and more predictable. In contrast, systems biology focuses on the interaction of myriad components and how these give rise to the dynamic and complex behavior of biological systems. Here, we examine the synergies between these two fields.

  9. Synthesis, Biological, Spectral, and Thermal Investigations of Cobalt(II and Nickel(II Complexes of N-Isonicotinamido-2′,4′-Dichlorobenzalaldimine

    Directory of Open Access Journals (Sweden)

    Ram K. Agarwal

    2006-01-01

    octahedral geometry has been suggested for all the complexes. The metal complexes were screened for their antifungal and antibacterial activities on different species of pathogenic fungi and bacteria and their biopotency has been discussed.

  10. The stability and the hydrological behavior of biological soil crusts is significantly affected by the complex nature of their polysaccharidic matrix

    Science.gov (United States)

    De Philippis, Roberto

    2015-04-01

    Biological crusts (BSCs) are complex microbial associations constituted by cells and microbial filaments embedded in a polysaccharidic matrix (EPS) that binds them together and with soil particles. EPSs of BSCs play a key role in structuring the soil and in affecting the hydrological processes taking place at the topsoil in desert environments. Recently, the amphiphilic nature of the EPSs, due to the contemporaneous presence in the macromolecules of hydrophilic and hydrophobic constituents, was put in relation with their capability to contribute to the structuring of the soil particles in BSCs and to hydrological behavior of the crusts. Indeed, in the EPSs the hydrophobicity due to the non-polar constituents (i.e. deoxysugars, ester-linked fatty acids, non polar aminoacids) was associated with the adhesion of the microbial cells to solid surfaces and to the clogging of micropores in the crusts. On the other hand, the hydrophilic constituents of the EPSs (i.e. acidic sugars, ketal-linked pyruvic acid, sulphate groups etc) were suggested to determine the final water content and distribution in the soil. The presence of BSCs facilitates the uptake of moisture from the atmosphere and at the same time contributes to enriching the soils with organic matter. In this lecture, the role of the EPSs in affecting the hydrological behavior of BSCs will be discussed by comparing the results obtained with natural and artificially induced BSCs also in relation with the texture of the soils. Furthermore, the contribution to the structuring of the soils of the polysaccharidic matrix of the crusts will be discussed moving from the different characteristics of two operationally-defined EPS fractions, the colloidal (C-EPS) and the EDTA extractable (tightly bound, TB-EPS) fractions. In BSCs, C-EPSs are loosely bound to cells and sediments while TB-EPSs are tightly bound to the crustal biotic and abiotic constituents of the crusts. The results obtained in a recent study suggest that the

  11. Cu(II complexes of an ionic liquid-based Schiff base [1-{2-(2-hydroxy benzylidene amino ethyl}-3-methyl­imidazolium]Pf6: Synthesis, characterization and biological activities

    Directory of Open Access Journals (Sweden)

    Saha Sanjoy

    2015-01-01

    Full Text Available Two Cu(II complexes of an ionic liquid based Schiff base 1-{2-(2-hydroxybenzylideneamino ethyl}-3-methylimidazolium hexaflurophosphate, were prepared and characterized by different analytical and spectroscopic methods such as elemental analysis, magnetic susceptibility, UV-Vis, IR, NMR and mass spectroscopy. The Schiff base ligand was found to act as a potential bidentate chelating ligand with N, O donor sites and formed 1:2 metal chelates with Cu(II salts. The synthesized Cu(II complexes were tested for biological activity.

  12. Synthesis,characterization,and biological activities of Pt(Ⅱ) and Pd(Ⅱ)complexes with 2',3',4',5,7-pentahydroxy flavone

    Institute of Scientific and Technical Information of China (English)

    TANG Hui'An; WANG Xiaofang; YANG Sheng; WANG Liufang

    2004-01-01

    Pt(Ⅱ) and Pd(Ⅱ) complexes with 2',3',4',5,7-pentahydroxy-flavone were synthesized and characterized by elemental analysis, molar conductance, IR, 1HNMR, TG-DTA, UV-Vis spectroscopic techniques, and fluorescence analysis.The scavenging effect on the superoxide radical ( O-2 ) and the inhibitory effect on lipid peroxides were also investigated.Both the ligand and the complexes exhibit scavenging effect on superoxide radicals, and the effect of the complexes is greater than that of the ligand. The Pt(Ⅱ) complex exhibits the strongest scavenging efficiency. Both Pt(Ⅱ) and Pd(Ⅱ) complexes have the inhibitory effect on lipid peroxides, and the effect of the complexes is greater than that of the ligand, but the Pt(Ⅱ) complex has a high effect of promoting lipid peroxides.

  13. Synthesis, spectroscopic characterization, electrochemistry and biological evaluation of some binuclear transition metal complexes of bicompartmental ONO donor ligands containing benzo[b]thiophene moiety

    Science.gov (United States)

    Mahendra Raj, K.; Vivekanand, B.; Nagesh, G. Y.; Mruthyunjayaswamy, B. H. M.

    2014-02-01

    A series of new binucleating Cu(II), Co(II), Ni(II) and Zn(II) complexes of bicompartmental ligands with ONO donor were synthesized. The ligands were obtained by the condensation of 3-chloro-6-substituted benzo[b]thiophene-2-carbohydrazides and 4,6-diacetylresorcinol. The synthesized ligands and their complexes were characterized by elemental analysis and various spectroscopic techniques. Elemental analysis, IR, 1H NMR, ESI-mass, UV-Visible, TG-DTA, magnetic measurements, molar conductance and powder-XRD data has been used to elucidate their structures. The bonding sites are the oxygen atom of amide carbonyl, azomethine nitrogen and phenolic oxygen for ligands 1 and 2. The binuclear nature of the complexes was confirmed by ESR spectral data. TG-DTA studies for some complexes showed the presence of coordinated water molecules and the final product is the metal oxide. All the complexes were investigated for their electrochemical activity, only the Cu(II) complexes showed the redox property. Cu(II) complexes were square planar, whereas Co(II), Ni(II) and Zn(II) complexes were octahedral. Powder-XRD pattern have been studied in order to test the degree of crystallinity of the complexes and unit cell calculations were made. In order to evaluate the effect of antimicrobial activity of metal ions upon chelation, both the ligands and their metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The results showed that the metal complexes were found to be more active than free ligands. The DNA cleaving capacities of all the complexes were analyzed by agarose gel electrophoresis method against supercoiled plasmid DNA. Among the compounds tested for antioxidant capacity, ligand 1 displayed excellent activity than its metal complexes.

  14. Biological Threats

    Science.gov (United States)

    ... Workplace Plans School Emergency Plans Main Content Biological Threats Biological agents are organisms or toxins that can ... for Disease Control and Prevention . Before a Biological Threat Unlike an explosion, a biological attack may or ...

  15. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  16. Synthesis, spectral characterization and biological evaluation of copper(II) and nickel(II) complexes with thiosemicarbazones derived from a bidentate Schiff base

    Science.gov (United States)

    Chandra, Sulekh; Bargujar, Savita; Nirwal, Rita; Yadav, Neesha

    2013-04-01

    Complexes of copper(II) and nickel(II) of general composition M(L)2X2, have been synthesized with the ligand 1-Tetralone thiosemicarbazone (where L = 1-Tetralone thiosemicarbazone and X=Cl,1/2SO42-). The molar conductance of the complexes in fresh solution of DMSO lies in the range of 10-20 Ω-1 cm2 mol-1 indicating their non-electrolytic behavior. Thus, the complexes may be formulated as [M(L2)X2]. Ligand was characterized by mass, NMR, IR and single crystallographic studies. All the complexes were characterized by elemental analyses, magnetic moments, IR, electronic and EPR spectral studies. The IR spectral data of ligand indicated the involvement of sulfur and azomethine nitrogen in coordination to the central metal ion. The copper(II) and nickel(II) complexes were found to have magnetic moments1.93-1.96 BM and 2.91-2.94 BM corresponding to one and two unpaired electrons respectively. On the basis of molar conductance, EPR, electronic and infrared spectral studies, a tetragonal geometry has been assigned for Cu(II) chloride complex and trigonal bipyramidal to Cu(II) sulfate complex but an octahedral geometry for Ni(II) complexes. Newly synthesized ligand and its Cu(II) and Ni(II) complexes have also been screened against different bacterial and fungal species.

  17. Synthesis, Biological, and Quantum Chemical Studies of Zn(II and Ni(II Mixed-Ligand Complexes Derived from N,N-Disubstituted Dithiocarbamate and Benzoic Acid

    Directory of Open Access Journals (Sweden)

    Anthony C. Ekennia

    2016-01-01

    Full Text Available Some mixed-ligand complexes of Zn(II and Ni(II derived from the sodium salt of N-alkyl-N-phenyl dithiocarbamate and benzoic acid have been prepared. The complexes are represented as ZnMDBz, ZnEDBz, NiMDBz, and NiEDBz (MD: N-methyl-N-phenyl dithiocarbamate, ED: N-ethyl-N-phenyl dithiocarbamate, and Bz: benzoate; and their coordination behavior was characterized on the basis of elemental analyses, IR, electronic spectra, magnetic and conductivity measurements, and quantum chemical calculations. The magnetic moment measurement and electronic spectra were in agreement with the four proposed coordinate geometries for nickel and zinc complexes and were corroborated by the theoretical quantum chemical calculations. The quantum chemically derived thermodynamics parameters revealed that the formation of N-methyl-N-phenyl dithiocarbamate complexes is more thermodynamically favourable than that of the N-ethyl-N-phenyl dithiocarbamate complexes. The bioefficacy of the mixed-ligand complexes examined against different microbes showed moderate to high activity against the test microbes. The anti-inflammatory and antioxidant studies of the metal complexes showed that the ethyl substituted dithiocarbamate complexes exhibited better anti-inflammatory and antioxidant properties than the methyl substituted dithiocarbamate complexes.

  18. Spectroscopic and Biological Studies on Newly Synthesized Cobalt (II and Nickel (II Complexes with 2-Acetyl Coumarone Semicarbazone and 2-Acetyl Coumarone Thiosemicarbazone

    Directory of Open Access Journals (Sweden)

    Sanjay Goel

    2013-01-01

    Full Text Available Co(II and Ni(II complexes of general composition ML2X2 (M = Co(II, Ni(II; X = Cl−, NO3 − were synthesized by the condensation of metal salts with semicarbazone/thiosemicarbazone derived from 2-acetyl coumarone. The ligands and metal complexes were characterized by NMR, elemental analysis, molar conductance, magnetic susceptibility measurements, IR, and atomic absorption spectral studies. On the basis of electronic, molar conductance and infrared spectral studies, the complexes were found to have square planar geometry. The Schiff bases and their metal complexes were tested for their antibacterial and antioxidant activities.

  19. Complexity An Introduction

    CERN Document Server

    Parwani, R R

    2002-01-01

    This article summarises a Web-book on "Complexity" that was developed to introduce undergraduate students to interesting complex systems in the biological, physical and social sciences, and the common tools, principles and concepts used for their study.

  20. Bioinformatics and School Biology

    Science.gov (United States)

    Dalpech, Roger

    2006-01-01

    The rapidly changing field of bioinformatics is fuelling the need for suitably trained personnel with skills in relevant biological "sub-disciplines" such as proteomics, transcriptomics and metabolomics, etc. But because of the complexity--and sheer weight of data--associated with these new areas of biology, many school teachers feel…

  1. Reproductive biology of the flatfish Etropus crossotus (Pleuronectiformes: Paralichthyidae in the Paranaguá Estuarine Complex, Paraná State, subtropical region of Brazil

    Directory of Open Access Journals (Sweden)

    Elton Celton de Oliveira

    2011-01-01

    Full Text Available The present work studied the reproduction of the flatfish Etropus crossotus in the Paranaguá Estuarine Complex, Paraná State, subtropical region of Brazil. Monthly collections of biological material occurred from October 2008 to October 2009, at seven sampling sites, through ten-minute otter trawl surveys in the shallow infralittoral areas of the estuary. Temperature, water salinity, photoperiod, and rainfall data were also recorded. Ovarian histology was used to: 1 - describe ovarian development microscopically, 2 - make the quantitative analyses of both sexes more precise. The maturation curve, the frequency of gonadal maturation states and the condition factor verified that the reproductive period occurred from October to January. The frequency of young and adult individuals established that the recruitment period occurred in January and February. There were no significant differences in the sex ratio during the study period. The studied species completes its entire life cycle in an estuary and its reproduction is well-synchronized with the temporal variations implicit in subtropical regions.O presente trabalho estudou a reprodução do linguado Etropus crossotus no complexo estuarino de Paranaguá, região subtropical do Brasil. Coletas mensais de material biológico ocorreram de outubro de 2008 a outubro de 2009, em sete pontos amostrais, através da realização de dez minutos de arrasto de porta no infralitoral raso do estuário. Ainda, foram obtidos dados de temperatura e salinidade da água, fotoperíodo e pluviosidade para caracterização do ambiente. A histologia de ovário foi utilizada para: 1- descrever microscopicamente o desenvolvimento ovariano, 2- conferir precisão aos resultados das análises quantitativas de ambos os sexos. Através da curva de maturação, da frequência de estádios de maturação gonadal e do fator de condição verificou-se que o período reprodutivo ocorreu de outubro a janeiro. A partir da frequ

  2. Preparation of Bacillus subtilis-astragalus Complex Biological Reagent%黄芪多糖-枯草芽孢杆菌合生元菌液的研制

    Institute of Scientific and Technical Information of China (English)

    文宇婷; 边连全; 杜欣; 潘树德

    2012-01-01

    研究黄芪多糖-枯草芽孢杆菌合生元菌液制备过程中,黄芪多糖的最适添加量以及合生元菌液的最适培养时间.将活化后的枯草芽孢杆菌ACCC 11025菌液以1%的接种量分别加入含黄芪多糖浓度为0,0.5,1,1.5,2,2.5,3,6,10mg· mL-1的液体培养基中,分别置37℃、120r· min-1以及32℃、120r· min-1培养箱中培养,每隔0·5h检测菌液OD值.结果表明:添加浓度为1.5mg· mL-1黄芪多糖的培养基中,枯草芽孢杆菌ACCC 11025菌液浓度达到最高,分别比对照组和10mg·L-1组提高13.8%和148.8%(p<0.05);在5.5h代时最小,为1.22h,黄芪多糖-枯草芽孢杆菌合生元黄芪多糖最适添加量为1.5mg·mL-1,最适培养时间为5.5h.%This experiment was conducted to study the preparation of Bacillus subtilis—astragalus complex biological reagent,the optimal ratio of the APS and Bacillus subtilis and the best training time. Inoculate the activated Bacillus subtilis into the liquid medium, which contained different concentrations of APS. The concentrations of APS were 0, 0.5, 1, 1.5, 2, 2.5, 3, 6, lOmg-mL"1 respectively. Then train them in the 37t, 120r-min~' incubator. Measurement was made every 0.5h at 540nm absorbance. The results showed that the number of Bacillus subtilis in the liquid medium with 1.5mg'mL"' concentration of APS was the highest, and the effect was significantly (p<0.05).The best training time was 5.5h. These results indicated that the optimum dosage of APS for Bacillus subtilis ACCC11025 is 1.5mg-mL~', and the optimum incubation time is 5.5h.

  3. Synthesis, spectral characterization and biological activities of Mn(II) and Co(II) complexes with benzyloxybenzaldehyde-4-phenyl-3-thiosemicarbazone

    Science.gov (United States)

    Prathima, B.; Subba Rao, Y.; Ramesh, G. N.; Jagadeesh, M.; Reddy, Y. P.; Chalapathi, P. V.; Varada Reddy, A.

    2011-06-01

    Mn(II) and Co(II) complexes of benzyloxybenzaldehyde-4-phenyl-3-thiosemicarbazone have been synthesized and characterized by the investigations of electronic and EPR spectra and X-ray diffraction. Based on the spectral studies, an octahedral geometry is assigned for the Mn(II) and Co(II) complexes. X-ray powder diffraction studies reveal that Mn(II) and Co(II) complexes have triclinic crystal lattices. The unit cell parameters of the Mn(II) complex are a = 11.0469 Å, b = 6.2096 Å, c = 7.4145 Å, α = 90.646°, β = 95.127°, γ = 104.776°, V = 489.7 Å 3 and those of Co(II) complex are a = 9.3236 Å, b = 10.2410 Å, c = 7.8326 Å, α = 90.694°, β = 99.694°, γ = 100.476°, V = 724.2 Å 3. When the free ligand and its metal complexes are subjected to antibacterial activity, the metal complexes are proved to be more active than the ligand. However with regard to in vitro antioxidant activity, the ligand exhibits greater antioxidant activity than its metal(II) complexes.

  4. Synthesis, Characterization, and Biological Studies of Binuclear Copper(II Complexes of (2E-2-(2-Hydroxy-3-Methoxybenzylidene-4N-Substituted Hydrazinecarbothioamides

    Directory of Open Access Journals (Sweden)

    P. Murali Krishna

    2013-01-01

    Full Text Available Four novel binuclear copper(II complexes [1–4] of (2E-2-(2-hydroxy-3-methoxybenzylidene-4N-substituted hydrazinecarbothioamides, (OH(OCH3C6H4CH=NNHC(SNHR, where R = H (L1, Me (L2, Et (L3, or Ph (L4, have been synthesized and characterized. The FT-IR spectral data suggested the attachment of copper(II ion to ligand moiety through the azomethine nitrogen, thioketonic sulphur, and phenolic-O. The spectroscopic characterization indicates the dissociation of dimeric complex into mononuclear [Cu(LCl] units in polar solvents like DMSO, where L is monoanionic thiosemicarbazone. The DNA binding properties of the complexes with calf thymus (CT DNA were studied by spectroscopic titration. The complexes show binding affinity to CT DNA with binding constant (Kb values in the order of 106 M−1. The ligands and their metal complexes were tested for antibacterial and antifungal activities by agar disc diffusion method. Except for complex 4, all complexes showed considerable activity almost equal to the activity of ciprofloxacin. These complexes did not show any effect on Gram-negative bacteria, whereas they showed moderate activity for Gram-positive strains.

  5. Synthesis, spectroscopic characterization, solid state d.c. electrical conductivity and biological studies of some lanthanide(III chloride complexes with a heterocyclic Schiff base ligand

    Directory of Open Access Journals (Sweden)

    K. Mohanan

    2016-07-01

    Full Text Available Condensation of 2-hydroxy-1-naphthaldehyde with 2-amino-3-carboxyethyl-4,5-dimethylthiophene in 1:1 molar ratio, yielded a potentially tridentate Schiff base viz. 2-[N-(2′-hydroxy-1-naphthylideneamino]-3-carboxyethyl-4,5-dimethylthiophene (HNAT. This ligand formed complexes with lanthanum(III, cerium(III, praseodymium(III, neodymium(III, samarium(III, europium(III and gadolinium(III chloride under well defined conditions. These complexes were characterized through elemental analysis, molar conductance, magnetic moment measurements, IR, UV–Vis, FAB mass and 1H NMR spectral studies. Analytical data showed that all the metal complexes exhibited 1:1 metal–ligand ratio. Molar conductance values adequately confirmed the non-electrolytic nature of the metal complexes. The proton NMR spectral observations supplement the IR spectral assignments. The spectral data revealed that the ligand acted as neutral tridentate, coordinating to the metal ion through azomethine nitrogen, ester carbonyl and naphtholate oxygen without deprotonation. The ligand and its lanthanum(III chloride complex were subjected to XRD studies. The lanthanum(III chloride complex has undergone a facile transesterification reaction. The solid state d.c. electrical conductivity of some selected complexes were measured as a function of temperature, indicating the semiconducting nature of the metal complexes. The antimicrobial activities were examined by disk diffusion method against some pathogenic bacterial and fungal species.

  6. A new bioactive Schiff base ligands derived from propylazo-N-pyrimidin-2-yl-benzenesulfonamides Mn(II) and Cu(II) complexes: Synthesis, thermal and spectroscopic characterization biological studies and 3D modeling structures

    Science.gov (United States)

    Tawfik, Abdelrazak M.; El-ghamry, Mosad A.; Abu-El-Wafa, Samy M.; Ahmed, Naglaa M.

    2012-11-01

    New series of Schiff base ligand H2L and their Cu(II) and Mn(II) complexes derived from azosulfapyrimidine were synthesized and characterized by elemental and thermal studies conductance measurements IR, electronic and EPR spectra. 3D modeling of the ligand indicate that azo group does not participate in complex formation and surface potential on one of the ligand under study indicate that electron density around azomethine groups are much higher than the azo group therefore coordination takes place around azomethine groups. The variety in the geometrical structures depends on the nature of both the metal ions and the Schiff base ligands. The thermo kinetic parameters are calculated and discussed. The biological activities of the ligands and complexes have been screened in vitro against some bacteria and fungi to study their capacity to inhibit their growth and to study the toxicity of the compounds.

  7. Synthesis, spectroscopic characterization, electrochemistry and biological evaluation of some metal (II) complexes with ONO donor ligand containing benzo[b]thiophene and coumarin moieties

    Science.gov (United States)

    Mahendra Raj, K.; Mruthyunjayaswamy, B. H. M.

    2014-09-01

    Schiff base ligand 3-chloro-N‧-((7-hydroxy-4-methyl-2-oxo-2H-chromen-8-yl)methylene)benzo[b]thiophene-2-carbohydrazide and its Cu(II), Co(II), Ni(II) and Zn(II) complexes were synthesized, characterized by elemental analysis and various physico-chemical techniques like, IR, 1H NMR, ESI-mass, UV-Visible, thermogravimetry - differential thermal analysis, magnetic measurements and molar conductance. Spectral analysis indicates octahedral geometry for all the complexes. Cu(II) complex have 1:1 stoichiometry of the type [M(L)(Cl)(H2O)2], whereas Co(II), Ni(II) and Zn(II) complexes have 1:2 stoichiometric ratio of the type [M(L)2]. The bonding sites are the oxygen atom of amide carbonyl, nitrogen of azomethine function and phenolic oxygen of the Schiff base ligand via deprotonation. The thermogravimetry - differential thermal analysis studies gave evidence for the presence of coordinated water molecules in the composition of Cu(II) complex which was further supported by IR measurements. All the complexes were investigated for their electrochemical activity, but only the Cu(II) complex showed the redox property. In order to evaluate the effect of antimicrobial potency of metal ions upon chelation, ligand and its metal complexes along with their respective metal chlorides were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The results showed that the metal complexes were found to be more active than free ligand. Ligand and its complexes were screened for free radical scavenging activity by DPPH method and DNA cleavage activity using Calf-thymus DNA (Cat. No-105850).

  8. Synthesis and characterization of mixed-ligand diimine-piperonal thiosemicarbazone complexes of ruthenium(II): Biophysical investigations and biological evaluation as anticancer and antibacterial agents

    Science.gov (United States)

    Beckford, Floyd A.; Thessing, Jeffrey; Shaloski, Michael, Jr.; Canisius Mbarushimana, P.; Brock, Alyssa; Didion, Jacob; Woods, Jason; Gonzalez-Sarrías, Antonio; Seeram, Navindra P.

    2011-04-01

    We have used a novel microwave-assisted method developed in our laboratories to synthesize a series of ruthenium-thiosemicarbazone complexes. The new thiosemicarbazone ligands are derived from benzo[ d][1,3]dioxole-5-carbaldehyde (piperonal) and the complexes are formulated as [(diimine) 2Ru(TSC)](PF 6) 2 (where the TSC is the bidentate thiosemicarbazone ligand). The diimine in the complexes is either 2,2'-bipyridine or 1,10-phenanthroline. The complexes have been characterized by spectroscopic means (NMR, IR and UV-Vis) as well as by elemental analysis. We have studied the biophysical characteristics of the complexes by investigating their anti-oxidant ability as well as their ability to disrupt the function of the human topoisomerase II enzyme. The complexes are moderately strong binders of DNA with binding constants of 10 4 M -1. They are also strong binders of human serum albumin having binding constants on the order of 10 4 M -1. The complexes show good in vitro anticancer activity against human colon cancer cells, Caco-2 and HCT-116 and indeed show some cytotoxic selectivity for cancer cells. The IC 50 values range from 7 to 159 μM (after 72 h drug incubation). They also have antibacterial activity against Gram-positive strains of pathogenic bacteria with IC 50 values as low as 10 μM; little activity was seen against Gram-negative strains. It has been established that all the compounds are catalytic inhibitors of human topoisomerase II.

  9. Synthesis, crystal structures, molecular docking, and in vitro biological activities evaluation of transition metal complexes with 4-(3,4-dichlorophenyl) piperazine-1-carboxylic acid

    Science.gov (United States)

    Chen, Zhi-Jian; Chen, Ya-Na; Xu, Chun-Na; Zhao, Shan-Shan; Cao, Qi-Yue; Qian, Shao-Song; Qin, Jie; Zhu, Hai-Liang

    2016-08-01

    Three novel mononuclear complexes, [MⅡ(L)2·2H2O], (M = Cu, Ni or Cd; HL = 4-(3,4-dichlorophenyl)piperazine-1-carboxylic acid)were synthesized and structurally determined by single-crystal X-ray diffraction. Molecular docking study preliminarily revealed that complex 1 had potential urease inhibitory activity. In accordance with the result of calculation, in vitro tests of the inhibitory activities of complexes 1-3 against jack bean urease showed complex 1 (IC50 = 8.17 ± 0.91 μM) had better inhibitory activities than the positive reference acetohydroxamic acid (AHA) (IC50 = 26.99 ± 1.43 μM), while complexes 2 and 3 showed no inhibitory activities., kinetics study was carried out to explore the mechanism of the inhibiting of the enzyme, and the result indicated that complex 1 was a competitive inhibitor of urease. Albumin binding experiment and in vitro toxicity evaluation of complex 1 were implemented to explore its Pharmacological properties.

  10. Synthesis and Characterisation of Copper(II Complexes with Tridentate NNO Functionalized Ligand: Density Function Theory Study, DNA Binding Mechanism, Optical Properties, and Biological Application

    Directory of Open Access Journals (Sweden)

    Madhumita Hazra

    2014-01-01

    Full Text Available The photo physical properties of two mononuclear pentacoordinated copper(II complexes formulated as [Cu(L(Cl(H2O] (1 and [Cu(L(Br(H2O] (2 HL = (1-[(3-methyl-pyridine-2-ylimino-methyl]-naphthalen-2-ol were synthesized and characterized by elemental, physicochemical, and spectroscopic methods. The density function theory calculations are used to investigate the electronic structures and the electronic properties of ligand and complex. The interactions of copper(II complexes towards calf thymus DNA were examined with the help of absorption, viscosity, and fluorescence spectroscopic techniques at pH 7.40. All spectroscopy's result indicates that complexes show good binding activity to calf thymus DNA through groove binding. The optical absorption and fluorescence emission properties of microwires were characterized by fluorescence microscope. From a spectroscopic viewpoint, all compounds strongly emit green light in the solid state. The microscopy investigation suggested that microwires exhibited optical waveguide behaviour which are applicable as fluorescent nanomaterials and can be used as building blocks for miniaturized photonic devices. Antibacterial study reveals that complexes are better antimicrobial agents than free Schiff base due to bacterial cell penetration by chelation. Moreover, the antioxidant study of the ligand and complexes is evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH free-radical assays, which demonstrate that the complexes are of higher antioxidant activity than free ligand.

  11. Synthesis, crystal structure and spectroscopy of bioactive Cd(II) polymeric complex of the non-steroidal anti-inflammatory drug diclofenac sodium: Antiproliferative and biological activity

    Science.gov (United States)

    Tabrizi, Leila; Chiniforoshan, Hossein; McArdle, Patrick

    2015-02-01

    The interaction of Cd(II) with the non-steroidal anti-inflammatory drug diclofenac sodium (Dic) leads to the formation of the complex [Cd2(L)41.5(MeOH)2(H2O)]n(L = Dic), 1, which has been isolated and structurally characterized by X-ray crystallography. Diclofenac sodium and its metal complex 1 have also been evaluated for antiproliferative activity in vitro against the cells of three human cancer cell lines, MCF-7 (breast cancer cell line), T24 (bladder cancer cell line), A-549 (non-small cell lung carcinoma), and a mouse fibroblast L-929 cell line. The results of cytotoxic activity in vitro expressed as IC50 values indicated the diclofenac sodium and cadmium chloride are non active or less active than the metal complex of diclofenac (1). Complex 1 was also found to be a more potent cytotoxic agent against T-24 and MCF-7 cancer cell lines than the prevalent benchmark metallodrug, cisplatin, under the same experimental conditions. The superoxide dismutase activity was measured by Fridovich test which showed that complex 1 shows a low value in comparison with Cu complexes. The binding properties of this complex to biomolecules, bovine or human serum albumin, are presented and evaluated. Antibacterial and growth inhibitory activity is also higher than that of the parent ligand compound.

  12. Synthesis, physicochemical characterization, DFT calculation and biological activities of Fe(III) and Co(II)-omeprazole complexes. Potential application in the Helicobacter pylori eradication

    Science.gov (United States)

    Russo, Marcos G.; Vega Hissi, Esteban G.; Rizzi, Alberto C.; Brondino, Carlos D.; Salinas Ibañez, Ángel G.; Vega, Alba E.; Silva, Humberto J.; Mercader, Roberto; Narda, Griselda E.

    2014-03-01

    The reaction between the antiulcer agent omeprazole (OMZ) with Fe(III) and Co(II) ions was studied, observing a high ability to form metal complexes. The isolated microcrystalline solid complexes were characterized by elemental analysis, X-ray powder diffraction (XRPD), Scanning Electron Microscopy (SEM), magnetic measurements, thermal study, FTIR, UV-Visible, Mössbauer, electronic paramagnetic resonance (EPR), and DFT calculations. The metal-ligand ratio for both complexes was 1:2 determined by elemental and thermal analysis. FTIR spectroscopy showed that OMZ acts as a neutral bidentate ligand through the pyridinic nitrogen of the benzimidazole ring and the oxygen atom of the sulfoxide group, forming a five-membered ring chelate. Electronic, Mössbauer, and EPR spectra together with magnetic measurements indicate a distorted octahedral geometry around the metal ions, where the coordination sphere is completed by two water molecules. SEM and XRPD were used to characterize the morphology and the crystal nature of the complexes. The most favorable conformation for the Fe(III)-OMZ and Co(II)-OMZ complexes was obtained by DFT calculations by using B3LYP/6-31G(d)&LanL2DZ//B3LYP/3-21G(d)&LanL2DZ basis set. Studies of solubility along with the antibacterial activity against Helicobacter pylori for OMZ and its Co(II) and Fe(III) complexes are also reported. Free OMZ and both metal complexes showed antibacterial activity against H. pylori. Co(II)-OMZ presented a minimal inhibitory concentration ˜32 times lower than that of OMZ and ˜65 lower than Fe(III)-OMZ, revealing its promising potential use for the treatment of gastric pathologies associated with the Gram negative bacteria. The morphological changes observed in the cell membrane of the bacteria after the incubation with the metal-complexes were also analyzed by SEM microscopy. The antimicrobial activity of the complexes was proved by the viability test.

  13. The preparation of forage-grade cupric sulfate with copper oxide ore containing arsenic%含砷氧化铜矿氨浸法制备饲料级硫酸铜

    Institute of Scientific and Technical Information of China (English)

    易求实

    2001-01-01

    采用NH3—(NH4)2SO4浸取氧化铜矿,通过(NH4)2S分离重金属,硫酸亚铁除砷等措施净化浸出液制备硫酸铜饲料添加剂,对浸取条件作了试验研究,对除砷机理进行了分析讨论。总结了氨—硫酸铵浸取剂的优点。%A process for preparing forage-grade cupric sulfate from copper oxide ore containing arsenic was proposed.It includes copper oxide ore leaching with NH3-(NH4)2SO4 solution,separating heavy metals with (NH4)2S and removing arsenic with ferrous sulfate.The leaching conditions are researched and the mechanism for removing arsenic is analyzed.The advantages of ammonia and ammonium sulphate leaching are summarized.

  14. Catalytic Decomposition of Nitric Oxide over Nano-sized PbTiO3 Supported Cupric Oxide%纳米晶PbTiO3负载CuO催化NO分解

    Institute of Scientific and Technical Information of China (English)

    邢丽; 薛念华; 陈向科; 郭学锋; 丁维平; 陈懿

    2005-01-01

    A large specific surface area perovskite-type mixed oxide PbTiO3 supported cupric oxide was synthesized as a catalyst for NO decomposition and characterized by techniques such as XPS, XRD,H2-TPR before and after NO deconlposition reactions. The catalytic properties were tested with a fix-bed micro-reactor. The results showed that the PbTiO3 was inactive for the reactions, but 1wt % Cu/PbTiO3 catalyst gave fairly good activities for NO decomposition at temperature as low as 473K. Copper species were found well-dispersed but weakly interacted with the support before NO decomposition, and the NO decomposition caused significant change in the environment of the copper species, which became Cu(Ⅰ) and most probably incorporated into surface crystal lattice of the nano-sized PbTiO3. In NO reaction, a large amount of oxygen atoms from the decomposition of NO penetrated into the nano-sized PbTiO3 support and caused small expansion of crystal lattice. The transport of oxygen between the copper species and the catalyst support may be helpful to speed up the kinetic regeneration of active metal sites from oxygen occupancy and resulted in good catalytic performance.

  15. 纳米氢氧化铜催化糠醛加氢反应工艺条件考察%STUDY ON THE PROCESS CONDITIONS OF FURFURAL HYDROGENATION CATALYZED BY NANOMETER CUPRIC HYDROXIDE

    Institute of Scientific and Technical Information of China (English)

    廉金超

    2013-01-01

    以纳米氢氧化铜为催化剂,对糠醛加氢制糠醇反应工艺条件进行考察,最终优化了反应工艺条件,即在反应温度为200℃、反应压力为6 MPa、糠醛与催化剂质量比为200 g/g、反应时间为3h的条件下,糠醛转化率为97%,糠醇选择性为96.6%.%The process conditions of furfural hydrogenation to furfuryl alcohol with nanometer cu-pric hydroxide catalyst were investigated and optimum process conditions were obtained as follows: a reaction temperature of 200 ℃ , a reaction pressure of 6 MPa, a reaction time of 3 h and the mass ratio of furfural to catalyst was 200 g/g, under such conditions the conversion of furfural reached 97% and the selectivity to furfuryl alcohol was 96. 6%.

  16. Determination of cyclodextrins in biological fluids by high-performance liquid chromatography with negative colorimetric detection using post-column complexation with phenolphthalein

    NARCIS (Netherlands)

    Frijlink, H.W.; Visser, J.; Drenth, B.F.H.

    1987-01-01

    A rapid and sensitive high-performance liquid chromatographic method for the analysis of beta- and gamma-cyclodextrin in aqueous biological fluids such as plasma, urine, or tissue homogenate is described. The chromatographic system consists of a microBondapak Phenyl column as stationary phase and a

  17. SPECTROSCOPIC AND BIOLOGICAL STUDIES ON NEWLY SYNTHESIZED COPPER (II AND NICKEL (II COMPLEXES WITH p -DIMETHYLAMINOBANZALDEHYDE SEMICARBAZONE AND p -DIMETHYLAMINOBANZALDEHYDE THIOSEMICARBAZONE

    Directory of Open Access Journals (Sweden)

    Sulekh Chandra

    2012-08-01

    Full Text Available Cu (II and Ni (II complexes of general composition [ML2]X2(M = Cu(II, Ni(II; X = Cl-, NO3- weresynthesized by the condensation of metal salts with semicarbazone / thiosemicarbazone derived from p-dimethylaminobanzaldehyde. The metal complexes were characterized by elemental analysis, molar conductance, magneticsusceptibility measurements, IR and atomic absorption spectral studies. On the basis of electronic and infrared spectralstudies, the metal complexes were found to have tetrahedral geometry. The Schiff bases and their metal complexeswere tested for their antibacterial and antioxidant activities

  18. Complexation of biological ligands with lanthanides(III) for MRI: Structure, thermodynamic and methods; Complexation des cations lanthanides trivalents par des ligands d'origine biologique pour l'IRM: Structure, thermodynamique et methodes

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, C

    2006-07-15

    New cyclic ligands derived from sugars and amino-acids form a scaffold carrying a coordination sphere of oxygen atoms suitable to complex Ln(III) ions. In spite of their rather low molecular weights, the complexes display surprisingly high relaxivity values, especially at high field. The ACX and BCX ligands, which are acidic derivatives of modified and cyclo-dextrins, form mono and bimetallic complexes with Ln(III). The LnACX and LnBCX complexes show affinities towards Ln(III) similar to those of tri-acidic ligands. In the bimetallic Lu2ACX complex, the cations are deeply embedded in the cavity of the ligand, as shown by the X-ray structure. In aqueous solution, the number of water molecules coordinated to the cation in the LnACX complex depends on the nature and concentration of the alkali ions of the supporting electrolyte, as shown by luminescence and relaxometric measurements. There is only one water molecule coordinated in the LnBCX complex, which enables us to highlight an important second sphere contribution to relaxivity. The NMR study of the RAFT peptidic ligand shows the complexation of Ln(III), with an affinity similar to those of natural ligands derived from calmodulin. The relaxometric study also shows an important second sphere contribution to relaxivity. To better understand the intricate molecular factors affecting relaxivity, we developed new relaxometric methods based on probe solutes. These methods allow us to determine the charge of the complex, weak affinity constants, trans-metallation constants, and the electronic relaxation rate. (author)

  19. Synthesis, physico-chemical characterization and biological activity of copper(ii and nickel(ii complexes with l-benzoyl-2-methylbenzimidazole derivatives

    Directory of Open Access Journals (Sweden)

    Podunavac-Kuzmanović Sanja O.

    2002-01-01

    Full Text Available Chlorides of copper(II and nickel(ll react with 1-benzoyl-2-methylbenzimidazole or 1-(4-chlorobenzoyl-2-methylbenzimidazole to give complexes of the type [M(LnCln(H20∙Cln (M = Cu or Ni; L = (1-benzoyl-2-methylbenzimidazole or 1-(4-chlorobenzoyl-2-methylbenzimidazole; n=O, 1 or 2. The complexes were synthesized and characterized by elemental analysis, molar conductivity magnetic susceptibility measurements and IR spectra. These studies suggest that all the complexes possess an octahedral stereochemistry. The antibacterial activity of (1-benzoyl-2-methylbenzimidazole or 1-(4-chlorobenzoyl-2-methylbenzimidazole and their complexes was evaluated against Escherichia coli and Bacillus sp.

  20. Complexes With Biologically Active Ligands. Part 111. Synthesis and Carbonic Anhydrase Inhibitory Activity of Metal Complexes of 4,5-Disubstituted-3-Mercapto-1,2,4-Triazole Derivatives

    Science.gov (United States)

    Scozzafava, Andrea; Cavazza, Christine; Saramet, Ioana; Briganti, Fabrizio; Banciu, Mircea D.

    1998-01-01

    Complexes containing five 4,5-disubstituted-3-mercapto-1,2,4-triazoles and Zn(II), Hg(II) and Cu(I) were synthesized and characterized by standard procedures (elemental analysis; IR, electronic and NMR spectroscopy, conductimetry and TG analysis). Both the thione as well as the thiolate forms of the ligands were evidenced to interact with the metal ions in the prepared complexes. The original mercaptans and their metal complexes behave as inhibitors of three carbonic anhydrase (CA) isozymes, CA I, II and IV, but did not lower intraocular pressure in rabbits in animal models of glaucoma. PMID:18475819

  1. Complexes with biologically active ligands. Part 11. Synthesis and carbonic anhydrase inhibitory activity of metal complexes of 4,5-disubstituted-3-mercapto-1,2,4-triazole derivatives.

    Science.gov (United States)

    Scozzafava, A; Cavazza, C; Supuran, C T; Saramet, I; Briganti, F; Banciu, M D

    1998-01-01

    Complexes containing five 4,5-disubstituted-3-mercapto-1,2,4-triazoles and Zn(II), Hg(II) and Cu(I) were synthesized and characterized by standard procedures (elemental analysis; IR, electronic and NMR spectroscopy, conductimetry and TG analysis). Both the thione as well as the thiolate forms of the ligands were evidenced to interact with the metal ions in the prepared complexes. The original mercaptans and their metal complexes behave as inhibitors of three carbonic anhydrase (CA) isozymes, CA I, II and IV, but did not lower intraocular pressure in rabbits in animal models of glaucoma.

  2. Synthesis, Characterization, and Biological Activities of Pendant Arm-Pyridyltetrazole Copper(II) Complexes: DNA Binding/Cleavage Activity and Cytotoxic Studies.

    Science.gov (United States)

    Mustafa, Shaik; Rao, Bommuluri Umamaheswara; Surendrababu, Manubolu Surya; Raju, Kalidindi Krishnam; Rao, Gollapalli Nageswara

    2015-10-01

    2-(1H-Tetrazol-5-yl)pyridine (L) has been reacted separately with Me2NCH2CH2Cl⋅HCl and ClCH2CH2OH to yield two regioisomers in each case, N,N-dimethyl-2-[5-(pyridin-2-yl)-1H-tetrazol-1-yl]ethanamine (L1)/N,N-dimethyl-2-[5-(pyridin-2-yl)-2H-tetrazol-2-yl]ethanamine (L2) and 2-[5-(pyridin-2-yl)-1H-tetrazol-1-yl]ethanol (L3)/2-[5-(pyridin-2-yl)-2H-tetrazol-2-yl]ethanol (L4), respectively. These ligands, L1-L4, have been coordinated with CuCl2 ⋅H2O in 1 : 1 composition to furnish the corresponding complexes 1-4. EPR Spectra of Cu complexes 1 and 3 were characteristic of square planar geometry, with nuclear hyperfine spin 3/2. Single X-ray crystallographic studies of 3 revealed that the Cu center has a square planar structure. DNA binding studies were carried out by UV/VIS absorption; viscosity and thermal denaturation studies revealed that each of these complexes are avid binders of calf thymus DNA. Investigation of nucleolytic cleavage activities of the complexes was carried out on double-stranded pBR322 circular plasmid DNA by using a gel electrophoresis experiment under various conditions, where cleavage of DNA takes place by oxidative free-radical mechanism (OH(⋅)). In vitro anticancer activities of the complexes against MCF-7 (human breast adenocarcinoma) cells revealed that the complexes inhibit the growth of cancer cells. The IC50 values of the complexes showed that Cu complexes exhibit comparable cytotoxic activities compared to the standard drug cisplatin. PMID:26460557

  3. Complexes With Biologically Active Ligands. Part 4. Coordination Compounds of Chlorothiazide With Transition Metal Ions Behave as Strong Carbonic Anhydrase Inhibitors

    OpenAIRE

    Supuran, Claudiu T.

    1996-01-01

    Complexes of the diuretic benzothiadiazine derivative chlorothiazide (6-chloro-7-sulfamoyl- 1,2,4-benzothiadiazine-1,1-dioxide) with V(IV); Fe(II); Co(II); Ni(II); Cu(II), Ag(I) and U(VI) were prepared and characterized by elemental analysis, spectroscopic, thermogravimetric, magnetic and conductimetric measurements. The complexes behave as effective inhibitors for two isozymes (I and II) of carbonic anhydrase (CA).

  4. Is Vanadate Reduced by Thiols under Biological Conditions?: Changing The Redox Potential of V(V)/V(IV) by Complexation in Aqueous solution

    OpenAIRE

    Crans, Debbie C.; Zhang, Boyan; Gaidamauskas, Ernestas; Keramidas, Anastasios D.; Willsky, Gail R; Roberts, Chris R.

    2010-01-01

    Although dogma states that vanadate is readily reduced by glutathione, cysteine and other thiols, there are several examples documenting that vanadium(V)-sulfur complexes can form and be observed. This conundrum has impacted life scientists for more than two decades. Investigation of this problem requires an understanding of both the complexes that form from vanadium(IV) and (V) and a representative thiol in aqueous solution. The reactions of vanadate and hydrated vanadyl cation with 2-mercap...

  5. Synthesis, crystal structure and characterization of new biologically active Cu(II) complexes with ligand derived from N-substituted sulfonamide

    Indian Academy of Sciences (India)

    ADRIANA CORINA HANGAN; ALEXANDRU TURZA; ROXANA LIANA STAN; BOGDAN SEVASTRE; EMÖKE PÁLL; SÎNZIANA CETEAN; LUMINI¸TA SIMONA OPREAN

    2016-05-01

    A new N-sulfonamide ligand (HL1= N-(5-(4-methoxyphenyl)-[1,3,4]–thiadiazole–2-yl)-toluenesulfonamide)and two Cu(II) complexes, $[Cu(L1)­_{2}(py)_{2}]$ (C1) and $[Cu(L2)_{2}(py)_{2}(H_{2}O)]$ (C2) (HL2 = N-(5-(4-methylphenyl)-[1,3,4]–thiadiazole–2-yl)-benzenesulfonamide) were synthesized. The X-ray crystal structuresof the complexes were determined. In the complex C1, the Cu(II) ion is four-coordinated, forming a $CuN_{4}$ chromophore and in the complex C2, the Cu(II) ion is five-coordinated, forming a $CuN_{4}O$ chromophore. Theligand acts as monodentate, coordinating the Cu(II) ion through a single $N_{thiadiazole}$ atom. The molecules fromthe reaction medium (pyridine and water) are also involved in the coordination of the Cu(II) ion. The complexesC1 and C2 are square-planar and a slightly distorted square pyramidal, respectively. The compounds werecharacterized by FT-IR, electronic, EPR spectroscopic and magnetic methods. The nuclease binding activitystudies of the synthesized complexes confirm their capacity to cleave the DNA molecule. The cytotoxicitystudies were carried out on melanoma cell line WM35 which confirm that both compounds inhibit the growthof these cells. They have a higher activity compared to a platinum drug, carboplatin.

  6. Tricarbonyl (99m)Tc(i) and Re(i)-thiosemicarbazone complexes: synthesis, characterization and biological evaluation for targeting bacterial infection.

    Science.gov (United States)

    Nayak, Dipak Kumar; Baishya, Rinku; Natarajan, Ramalingam; Sen, Tuhinadri; Debnath, Mita Chatterjee

    2015-09-28

    Methyl, ethyl and phenyl nitrofuryl thiosemicarbazone ligands (, and respectively) were radiolabeled with freshly prepared aqueous solution of a fac[(99m)Tc(CO)3(H2O)3](+) precursor. The radiochemical yield was around 98% as determined by thin layer chromatography and HPLC. The complexes exhibited substantial stability. The corresponding Re(i) complexes were prepared from a Re(CO)5Br precursor to understand the coordination behavior of the ligands against a tricarbonyl rhenium(i) precursor. The rhenium(i) complexes were characterized by means of IR, NMR and mass spectroscopic studies as well as by X-ray crystallography, and correlated with the technetium complexes by means of HPLC studies. Electrochemical reduction of monomeric Re(CO)3-complexes of nitrofuryl ethyl thiosemicarbazone was also studied using cyclic voltammetry. Biodistribution studies of (99m)Tc(CO)3-labeled thiosemicarbazones in rats intramuscularly infected with S. aureus exhibited substantial in vivo stability of the complex and moderate accumulation at the site of focal infection. PMID:26289802

  7. New insight into the structural, electrochemical and biological aspects of macroacyclic Cu(II) complexes derived from S-substituted dithiocarbazate schiff bases.

    Science.gov (United States)

    Low, May Lee; Maigre, Laure; Tahir, Mohamed Ibrahim M; Tiekink, Edward R T; Dorlet, Pierre; Guillot, Régis; Ravoof, Thahira Begum; Rosli, Rozita; Pagès, Jean-Marie; Policar, Clotilde; Delsuc, Nicolas; Crouse, Karen A

    2016-09-14

    Copper (II) complexes synthesized from the products of condensation of S-methyl- and S-benzyldithiocarbazate with 2,5-hexanedione (SMHDH2 and SBHDH2 respectively) have been characterized using various physicochemical (elemental analysis, molar conductivity, magnetic susceptibility) and spectroscopic (infrared, electronic) methods. The structures of SMHDH2, its copper (II) complex, CuSMHD, and the related CuSBHD complex as well as a pyrrole byproduct, SBPY, have been determined by single crystal X-ray diffraction. In order to provide more insight into the behaviour of the complexes in solution, electron paramagnetic resonance (EPR) and electrochemical experiments were performed. Antibacterial activity and cytotoxicity were evaluated. The compounds, dissolved in 0.5% and 5% DMSO, showed a wide range of antibacterial activity against 10 strains of Gram-positive and Gram-negative bacteria. Investigations of the effects of efflux pumps and membrane penetration on antibacterial activity are reported herein. Antiproliferation activity was observed to be enhanced by complexation with copper. Preliminary screening showed Cu complexes are strongly active against human breast adenocarcinoma cancer cell lines MDA-MB-231 and MCF-7. PMID:27183379

  8. Pyrone-based Cu(II) complexes, their characterization, DFT based conformational drift from square planar to square pyramidal geometry and biological activities

    Indian Academy of Sciences (India)

    Pradeep Kumar Vishwakarma; Jan Mohammad Mir; Ram Charitra Maurya

    2016-04-01

    This work deals with the synthesis and characterization of a series of three -Dehydroacetic acid- 4-phenyl-3-thiosemicarbazide (H2dha-ptsc) Schiff base Cu(II) complexes based on combined experimental and theoretical approach, having the general composition formula as [Cu(dha-ptsc)(L-L)], where L-L is H2O, 2,2-bipyridine (bipy) or 1,10-phenanthroline (phen). H2O containing complex acts as origin for the latter two complexes and in due course, the geometry of the complex changes from square planar to square pyramidal. DFT calculations were carried out for both the geometrical forms. B3LYP/LANL2DZ level of theory was used to carry out the required computations. From the overall DFT computations, square pyramidal geometry was found to be more stable as compared to the square planar conformation for the complexes under investigation. Super oxide dismutation, thermal behaviour and electrochemical activity were also studied. The results have shown satisfactory super oxide scavenging potential, high degree of thermal resistance and efficient redox properties for the title complexes. Moreover, charge analysis and nonlinear optical properties were computed to establish a comprehensive note of atomic constituents differing in nature of charge delocalization.

  9. Biological evaluation of a cytotoxic 2-substituted benzimidazole copper(II) complex: DNA damage, antiproliferation and apoptotic induction activity in human cervical cancer cells.

    Science.gov (United States)

    Qiao, Xin; Ma, Zhong-Ying; Shao, Jia; Bao, Wei-Guo; Xu, Jing-Yuan; Qiang, Zhao-Yan; Lou, Jian-Shi

    2014-02-01

    Exploring novel chemotherapeutic agents is a great challenge in cancer medicine. To that end, 2-substituted benzimidazole copper(II) complex, [Cu(BMA)Cl2]·(CH3OH) (1) [BMA = N,N'-bis(benzimidazol-2-yl-methyl)amine], was synthesized and its cytotoxicity was characterized. The interaction between complex 1 and calf thymus DNA was detected by spectroscopy methods. The binding constant (K b = 1.24 × 10(4 )M(-1)) and the apparent binding constant (K app = 6.67 × 10(6 )M(-1)) of 1 indicated its moderate DNA affinity. Complex 1 induced single strand breaks of pUC19 plasmid DNA in the presence of H2O2 through an oxidative pathway. Cytotoxicity studies proved that complex 1 could inhibit the proliferation of human cervical carcinoma cell line HeLa in both time- and dose-dependent manners. The results of nuclei staining by Hoechst 33342 and alkaline single-cell gel electrophoresis proved that complex 1 caused cellular DNA damage in HeLa cells. Furthermore, treatment of HeLa cells with 1 resulted in S-phase arrest, loss of mitochondrial potential, and up-regulation of caspase-3 and -9 in HeLa cells, suggesting that complex 1 was capable of inducing apoptosis in cancer cells through the intrinsic mitochondrial pathway.

  10. Synthesis, spectroscopic studies, thermal analyses, biological activity of tridentate coordinated transition metal complexes of bi(pyridyl-2-ylmethyl)amine]ligand

    Science.gov (United States)

    Abd El-Halim, Hanan F.; Mohamed, Gehad G.

    2016-01-01

    A new tridentate acyclic pincer ligand, [bi(pyridin-2-methyl)amine] (bpma, HL), was synthesized and reacted to form complexes with copper(II), nickel(II), iron(II), cobalt(II) and zinc(II) ions. Both the ligand and its complexes were characterized using elemental analysis, molar conductance, infrared, 1H-NMR-spectroscopy, mass and thermal analyses. According to the spectroscopic data, all of the complexes share the same coordination environment around the metal atoms, consisting two nitrogen-pyridine entities, one nitrogen-methylamine entity, one/two water molecules and/or one/two chloride or bromide ions. Complexes also showed molar conductivity according to the presence of two halide anions outer the coordination sphere except Co(II) and Zn(II) complexes are non electrolytes. Analysis indicates that the metal ions have trigonal bipyramidal structure. Cu(II), Ni(II), Fe(II), Co(II), and Zn(II) metal complexes were screened for their antibacterial activity against Bacillus subtilis, Staphylococcus aureus (G+) and Escherichia coli, and Pseudomonas aeruginosa (G-) bacteria. They showed remarkable antimicrobial activity.

  11. Solid and solution NMR studies of the complexation of Ag + with the trans isomer of captopril: Biological activities of this high blood pressure drug along with its Ag + complex

    Science.gov (United States)

    Isab, Anvarhusein A.; Wazeer, Mohamed I. M.

    2006-09-01

    Complexation of Ag + with captopril, 1-[(2 S)-3-mercapto-2-methylpropionyl]- L-proline, has been studied by 1H and 13C-NMR spectroscopy. The equilibrium constants for the trans to cis isomers of captopril bound to Ag + were measured by 1H NMR spectroscopy. It is observed that the trans isomer of the drug binds more strongly to Ag + between pH 5 and 8, as shown by the broadening of the trans isomer's resonances in 13C NMR spectra on complexation. A monodentate complexation of the trans captopril with Ag + via the thiol site is proposed based on the solid-state NMR and IR data. A superior antimicrobial activity is exhibited by the Cap-Ag(I) complex compared to captopril ligand itself against Heterotrotropic Plate Counts (HPC), Pseudomonas aeruginosa and Fecal streptococcus bacteria.

  12. Biological in vitro and in vivo studies of a series of new asymmetrical cationic [99mTc(N)(DTC-Ln)(PNP)]+ complex (DTC-Ln = alicyclic dithiocarbamate and PNP = diphosphinoamine).

    Science.gov (United States)

    Bolzati, Cristina; Cavazza-Ceccato, Mario; Agostini, Stefania; Refosco, Fiorenzo; Yamamichi, Yoshihiro; Tokunaga, Shinji; Carta, Davide; Salvarese, Nicola; Bernardini, Daniele; Bandoli, Giuliano

    2010-05-19

    (99m)Tc(N)-DBODC5 is a cationic mixed compound under clinical investigation as potential myocardial imaging agent. In spite of this, analogously to the other cationic (99m)Tc-agents, presents a relatively low first-pass extraction. Thus, modification of (99m)Tc(N)-DBODC(5) direct to increase its first-pass extraction keeping unaltered the favorable imaging properties would be desirable. This work describes the synthesis and biological evaluation of a series of novel cationic (99m)Tc-nitrido complexes, of general formula [(99m)TcN(DTC-Ln)(PNP)](+) (DTC-Ln= alicyclic dithiocarbamates; PNP = diphosphinoamine), as potential radiotracers for myocardial perfusion imaging. The synthesis of cationic (99m)Tc-(N)-complexes were accomplished in two steps. Biodistribution studies were performed in rats and compared with the distribution profiles of (99m)Tc(N)-DBODC5 and (99m)Tc-Sestamibi. The metabolisms of the most promising compounds were evaluated by HPLC methods. Biological studies revealed that most of the complexes have a high initial and persistent heart uptake with rapid clearance from nontarget tissues. Among tested compounds, 2 and 12 showed improved heart uptake with respect to the gold standard (99m)Tc-complexes with favorable heart-to-liver and slightly lower heart-to-lung ratios. Chromatographic profiles of (99m)Tc(N)-radioactivity extracted from tissues and fluids were coincident with the native compound evidencing remarkable in vivo stability of these agents. This study shows that the incorporation of alicyclic dithiocarbamate in the [(99m)Tc(N)(PNP)](+) building block yields to a significant increase of the heart uptake at early injection point suggesting that the first-pass extraction fraction of these novel complexes may be increased with respect to the other cationic (99m)Tc-agents keeping almost unaltered the favorable target/nontarget ratios. PMID:20402465

  13. Microcalorimetric study about biological effect of a synthetic complex: La(Glu)(Im)6(ClO4)3.4HClO4.4H2O

    International Nuclear Information System (INIS)

    A complex of lanthanum perchloric acid coordinated with glutamic acid, La(Glu)(Im)6(ClO4)3.4HClO4.4H2O was synthesized and characterized. The biological effect of the complex was evaluated by microcalorimetry on the growth of E. coli DH5α. Power-time curves of the growth metabolism of E. coli DH5α were studied using a TAM Air Isothermal Microcalorimeter at 37 oC. From the power-time curves, the parameters such as growth rate constants (k), inhibitory ratio (I), the maximum heat power (Pm) and the time of the maximum heat power (tm) were obtained. The results show that the concentrations of the complex affect obviously the growth metabolism of E. coli DH5α. The stimulatory effect on growth of E. coli DH5α was observed when the concentration of the complex was kept in the range of (0-0.5 μg mL-1). In contrast to the lower concentration, in the case of higher concentration of the complex (0.5-5.0 μg mL-1), an inhibitory effect occurred.

  14. Microcalorimetric study about biological effect of a synthetic complex: La(Glu)(Im){sub 6}(ClO{sub 4}){sub 3}.4HClO{sub 4}.4H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Xue-Chuan [School of Chemistry and Material Science, Liaoning Shihua University, Fushun 113001 (China); Tan, Zhi-Cheng, E-mail: tzc@dicp.ac.cn [Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023 (China); China Ionic Liquid Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023 (China); Gao, Xiao-Han [School of Chemistry and Material Science, Liaoning Shihua University, Fushun 113001 (China); Yang, Li-Ni [Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023 (China)

    2010-10-20

    A complex of lanthanum perchloric acid coordinated with glutamic acid, La(Glu)(Im){sub 6}(ClO{sub 4}){sub 3}.4HClO{sub 4}.4H{sub 2}O was synthesized and characterized. The biological effect of the complex was evaluated by microcalorimetry on the growth of E. coli DH5{alpha}. Power-time curves of the growth metabolism of E. coli DH5{alpha} were studied using a TAM Air Isothermal Microcalorimeter at 37 {sup o}C. From the power-time curves, the parameters such as growth rate constants (k), inhibitory ratio (I), the maximum heat power (P{sub m}) and the time of the maximum heat power (t{sub m}) were obtained. The results show that the concentrations of the complex affect obviously the growth metabolism of E. coli DH5{alpha}. The stimulatory effect on growth of E. coli DH5{alpha} was observed when the concentration of the complex was kept in the range of (0-0.5 {mu}g mL{sup -1}). In contrast to the lower concentration, in the case of higher concentration of the complex (0.5-5.0 {mu}g mL{sup -1}), an inhibitory effect occurred.

  15. Spectroscopic studies, thermal analyses and biological evaluation of new V(IV), Zr(IV) and U(VI) moxifloxacin complexes

    Science.gov (United States)

    Sadeek, Sadeek A.; El-Shwiniy, Walaa H.; Zordok, Wael A.; Kotb, Essam

    2011-12-01

    The synthesis and characterization of the new solid complexes [VO(MOX) 2H 2O]SO 4·11H 2O, [ZrO(MOX) 2Cl]Cl·15H 2O and [UO 2(MOX) 3](NO 3) 2·3H 2O formed in the interaction of moxifloxacin (MOX) with VOSO 4·H 2O, ZrOCl 2·8H 2O and UO 2(NO 3) 2·6H 2O in methanol and acetone as a solvents at room temperature were reported. The isolated solid complexes have been characterized with melting points, elemental analysis, molar conductance, magnetic moments studies, spectral (UV-Visible, IR and 1HNMR) as well as thermal analyses (TGA and DTG). The results support the formation of the complexes and indicate that moxifloxacin reacts as a bidentate ligand chelate to the metal ion through the pyridone oxygen and one carboxylato oxygen. The kinetic parameters of thermogravimetric (TGA) and its differential (DTG), such as activation energies, E*, enthalpies, Δ H*, entropies, Δ S* and Gibbs free energies, Δ G*, have been evaluated by using Coats-Redfern (CR) and Horowitz-Metzeger (HM) methods. The proposed structure of the ligand and their complexes were detected by using the density functional theory (DFT) at the B3LYP/CEP-31G level of theory. The bond stretching force constant and length of the U dbnd O for the [UO 2(MOX) 3](NO 3) 2·3H 2O complex were calculated. The antibacterial activity of the free moxifloxacin ligand and their metal complexes have been tested against some selected bacterial strains such as: Streptococcus aureus K1, Bacillus subtilis K22, Brevibacterium otitidis K76, Escherichia coli K32, Pseudomonas aeruginosa SW1 and Klebsiella oxytoca K42. The complexes showed good antibacterial effect to the selected bacterial strains as compared to the free ligand and Zr(IV) complex is very highly significant compared with the other two complexes.

  16. Synthesis and biological evaluation of novel 99mTcN-labeled bisnitroimidazole complexes containing monoamine-monoamide dithiol as potential tumor hypoxia markers

    International Nuclear Information System (INIS)

    Tumor hypoxia can decrease the efficacy of clinical therapy due to resistance toward radiation damage and chemotherapy, thus detection of tumor hypoxia by radiolabeled hypoxia markers is important for the control of tumor. Radiopharmaceuticals with two bioreductive groups, such as propylene amine oxime-bisnitroimidazole or monoamine-monoamide dithiol (MAMA) -bisnitroimidazole, have potential to improve hypoxia selectivity. In order to obtain radiopharmaceuticals with better features, we synthesized two novel [99mTcN]2+ complexes with bisnitroimidazole moieties and MAMA ligand for targeting tumor hypoxia. Their physicochemical characters and biodistribution were also investigated. Both the [99mTcN]2+ complexes show good stability and hydrophilicity. They show faster clearance from blood and soft tissues, better tumor retention and favorable tumor-to-tissue ratios compared with a control complex without nitroimidazole group. In addition, both of them show more favorable biodistribution patterns than the corresponding [99mTcO]3+ complexes. These results indicate that the 99mTcN-labeled MAMA-bisnitroimidazole complexes would have potential to image tumor hypoxia in vivo. (author)

  17. Cinnamaldehyde and cuminaldehyde thiosemicarbazones and their copper(II) and nickel(II) complexes: a study to understand their biological activity.

    Science.gov (United States)

    Bisceglie, Franco; Pinelli, Silvana; Alinovi, Rossella; Goldoni, Matteo; Mutti, Antonio; Camerini, Alessandro; Piola, Lorenzo; Tarasconi, Pieralberto; Pelosi, Giorgio

    2014-11-01

    This paper reports the synthesis and characterization of trans-cinnamaldehyde thiosemicarbazone (Htcin), cuminaldehyde thiosemicarbazone (Htcum) and their copper and nickel complexes. All the compounds, which on healthy cells (human fibroblasts) show a neglectable cytotoxicity, were screened in vitro in cell line U937 for their antileukemic activity. These compounds, in spite of their molecular similarity, present variegated behaviors. Htcin shows no inhibition activity in U935 cells, while both its metal complexes inhibit proliferation with IC50 at μM concentrations. The other ligand, Htcum, and its metal complexes, besides inhibiting proliferation, induce apoptosis. The cell cycle analysis highlights a G2/M checkpoint stop suggesting a possible direct action on DNA or on topoisomerase IIa. From CD and UV spectroscopy experiments, the DNA results to be not the main target of all these molecules, while both copper complexes are effective topoisomerase IIa inhibitors. All of these molecules activate caspase-9 and caspase-3, while caspase-8 activity is significantly induced by both cinnamaldehyde metal complexes. Tests on PgP and intracellular metal concentrations (determined by mean of atomic absorption spectrometry) show that the compounds tend to accumulate in the cytoplasm and that the cells do not manage to pump out copper and nickel ions. PMID:25108184

  18. Labeling , in -Vitro Stability and Biological Distribution of 188 Re- Ethylenediamine- N,N,N,N,-tetrakis (Methylene Phosphonic) Acid complex

    International Nuclear Information System (INIS)

    Labeling of ethylenediamine-N,N,N,N-tetrakis (methylene phosphonic) acid (EDTMP) with rhenium -188 was investigated. Stannous chloride was used as a reducing agent for the reduction of 188 ReO4. Dependence of the yield of 188Re-EDTMP complex upon the concentration of EDTMP, tin (II) content, reaction time, amount of antioxidant, Ph, reaction temperature and adding of carrier was examined. The optimum condition that given high labeling yield of 188 Re-EDTMP complex (95.8% with carrier - free rhenium and 97% with carrier-added rhenium) was achieved using 40 mg EDTMP, 0.8 mg Sn(II),Ph=0.8, reaction temperature 100 degree and 5 min reaction time. the amount of carrier added equal to 200 μg KReO4 Furthermore, 188Re-EDTMP complex prepared at 100 degree is more stable than that prepared at 30 degree and the carrier added 188R-EDTMP complex is more stable than the no carrier added complex

  19. Structural, spectral and biological studies of binuclear tetradentate metal complexes of N3O Schiff base ligand synthesized from 4,6-diacetylresorcinol and diethylenetriamine.

    Science.gov (United States)

    Emara, Adel A A

    2010-09-15

    The binuclear Schiff base, H2L, ligand was synthesized by reaction of 4,6-diacetylresorcinol with diethylenetriamine in the molar ratio 1:2. The coordination behavior of the H2L towards Cu(II), Ni(II), Co(II), Zn(II), Fe(III), Cr(III), VO(IV) and UO2(VI) ions has been investigated. The elemental analyses, magnetic moments, thermal studies and IR, electronic, 1H NMR, ESR and mass spectra were used to characterize the isolated ligand and its metal complexes. The ligand acts as dibasic with two N3O-tetradentate sites and can coordinate with two metal ions to form binuclear complexes. The bonding sites are the nitrogen atoms of the azomethine and amine groups and the oxygen atoms of the phenolic groups. The metal complexes exhibit either square planar, tetrahedral, square pyramid or octahedral structures. The Schiff base ligand and its metal complexes were tested against four pathogenic bacteria (Staphylococcus aureus and Streptococcus pyogenes) as Gram-positive bacteria, and (Pseudomonas fluorescens and Pseudomonas phaseolicola) as Gram-negative bacteria and two pathogenic fungi (Fusarium oxysporum and Aspergillus fumigatus) to assess their antimicrobial properties. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms. PMID:20627808

  20. Coordination Chemistry of Polyaromatic Thiosemicarbazones 2: Synthesis and Biological Activity of Zinc, Cobalt, and Copper Complexes of 1-(Naphthalene-2-yl)ethanone Thiosemicarbazone

    Science.gov (United States)

    LeBlanc, Marc-Andre; Gonzalez-Sarrías, Antonio; Beckford, Floyd A.; Mbarushimana, P. Canisius; Seeram, Navindra P.

    2012-01-01

    A novel thiosemicarbazone from 2-acetonaphthone (represented as acnTSC) has been synthesized and its basic coordination chemistry with zinc(II), cobalt(II), and copper(II) explored. The complexes were characterized by elemental analysis and various spectroscopic techniques and are best formulated as [M(acnTSC)2Cl2] with the metal likely in an octahedral environment. The anticancer activity of the complexes was determined against a panel of human colon cancer cells (HCT-116 and Caco-2). The compounds bind to DNA via an intercalative mode with binding constants of 9.7 × 104 M−1, 1.8 × 105 M−1, and 9.5 × 104 M−1 for the zinc, cobalt, and copper complexes, respectively. PMID:22303515

  1. Coordination Chemistry of Polyaromatic Thiosemicarbazones 2: Synthesis and Biological Activity of Zinc, Cobalt, and Copper Complexes of 1-(Naphthalene-2-ylethanone Thiosemicarbazone

    Directory of Open Access Journals (Sweden)

    Marc-Andre LeBlanc

    2011-01-01

    Full Text Available A novel thiosemicarbazone from 2-acetonaphthone (represented as acnTSC has been synthesized and its basic coordination chemistry with zinc(II, cobalt(II, and copper(II explored. The complexes were characterized by elemental analysis and various spectroscopic techniques and are best formulated as [M(acnTSC2Cl2] with the metal likely in an octahedral environment. The anticancer activity of the complexes was determined against a panel of human colon cancer cells (HCT-116 and Caco-2. The compounds bind to DNA via an intercalative mode with binding constants of 9.7×104 M-1, 1.8×105 M-1, and 9.5×104 M-1 for the zinc, cobalt, and copper complexes, respectively.

  2. Spectroscopic studies and biological evaluation of some transition metal complexes of azo Schiff-base ligand derived from (1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one) and 5-((4-chlorophenyl)diazenyl)-2-hydroxybenzaldehyde

    Science.gov (United States)

    Anitha, C.; Sheela, C. D.; Tharmaraj, P.; Sumathi, S.

    2012-10-01

    A series of metal(II) complexes of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the azo Schiff base ligand 4-((E)-4-((E)-(4-chlorophenyl)diazenyl)-2-hydroxybenzylideneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (CDHBAP) and characterized by elemental analysis, spectral (IR, UV-Vis, 1H NMR, ESR and EI-mass), magnetic moment measurements, molar conductance, DNA, SEM, X-ray crystallography and fluorescence studies. The electronic absorption spectra and magnetic susceptibility measurements of the complexes indicate square pyramidal geometry for VO(II) and octahedral geometry for all the other complexes. The important infrared (IR) spectral bands corresponding to the active groups in the ligand and the solid complexes under investigation were studied and implies that CDHBAP is coordinated to the metal ions in a neutral tridentate manner. The redox behavior of copper(II) and vanadyl(II) complexes have been studied by cyclic voltammetry. The nuclease activity of the above metal(II) complexes shows that the complexes cleave DNA. All the synthesized complexes can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The antibacterial and antifungal activities of the synthesized ligand and its metal complexes were screened against bacterial species (Staphylococcus aureus, Salmonella typhi, Escherichia coli, Bacillus subtilis, Shigella sonnie) and fungi (Candida albicans, Aspergillus niger, Rhizoctonia bataicola). Amikacin and Ketoconozole were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with the parent Schiff base ligand against bacterial and fungal species. The second harmonic generation (SHG) efficiency of the ligand was measured and the NLO (non-linear optical) properties of the ligand are expected to result in the realization of advanced optical devices in optical fiber

  3. Quantum chemical investigation for structures and bonding analysis of molybdenum tetracarbonyl complexes with N-heterocyclic carbene and analogues: helpful information for plant biology research

    OpenAIRE

    Nguyen, Thi Ai Nhung; Huynh, Thi Phuong Loan; Pham Van, Tat

    2015-01-01

    Quantum chemical calculations at the gradient-corrected (BP86) density-functional calculations with various basis sets (SVP, TZVPP) have been carried out for Mo(CO)4 complexes of Nheterocyclic carbene and analogues-NHEMe (called tetrylenes) with E = C, Si, Ge, Sn, Pb. The equilibrium structures of complexes [Mo(CO)4-NHEMe] (Mo4-NHEMe) exhibit an interesting trend which the lightest adduct Mo4-NHCMe has a trigonal bipyramidal coordination mode where the ligand NHCMe occupies an equatorial posi...

  4. Coordination Chemistry of Polyaromatic Thiosemicarbazones 2: Synthesis and Biological Activity of Zinc, Cobalt, and Copper Complexes of 1-(Naphthalene-2-yl)ethanone Thiosemicarbazone

    OpenAIRE

    Marc-Andre LeBlanc; Antonio Gonzalez-Sarrías; Beckford, Floyd A.; P. Canisius Mbarushimana; Seeram, Navindra P.

    2011-01-01

    A novel thiosemicarbazone from 2-acetonaphthone (represented as acnTSC) has been synthesized and its basic coordination chemistry with zinc(II), cobalt(II), and copper(II) explored. The complexes were characterized by elemental analysis and various spectroscopic techniques and are best formulated as [M(acnTSC)2Cl2] with the metal likely in an octahedral environment. The anticancer activity of the complexes was determined against a panel of human colon cancer cells (HCT-116 and Caco-2). The co...

  5. Backbone dynamics of a biologically active human FGF-1 monomer, complexed to a hexasaccharide heparin-analogue, by {sup 15}N NMR relaxation methods

    Energy Technology Data Exchange (ETDEWEB)

    Canales-Mayordomo, Angeles; Fayos, Rosa [Centro de Investigaciones Biologicas, CSIC, Departamento de Estructura y Funcion de Proteinas (Spain); Angulo, Jesus; Ojeda, Rafael [Instituto de Investigaciones Quimicas, CSIC, Grupo de Carbohidratos (Spain); Martin-Pastor, Manuel [Unidad de RM y Unidad de RMN de Biomoleculas Asociada al CSIC, Laboratorio de Estructura e Estructura de Biomoleculas Jose Carracido (Spain); Nieto, Pedro M.; Martin-Lomas, Manuel [Instituto de Investigaciones Quimicas, CSIC, Grupo de Carbohidratos (Spain); Lozano, Rosa; Gimenez-Gallego, Guillermo; Jimenez-Barbero, Jesus [Centro de Investigaciones Biologicas, CSIC, Departamento de Estructura y Funcion de Proteinas (Spain)], E-mail: jjbarbero@cib.csic.es

    2006-08-15

    The binding site and backbone dynamics of a bioactive complex formed by the acidic fibroblast growth factor (FGF-1) and a specifically designed heparin hexasaccharide has been investigated by HSQC and relaxation NMR methods. The comparison of the relaxation data for the free and bound states has allowed showing that the complex is monomeric, and still induces mutagenesis, and that the protein backbone presents reduced motion in different timescale in its bound state, except in certain points that are involved in the interaction with the fibroblast growth factor receptor (FGFR)

  6. Synthesis, Biological, and Quantum Chemical Studies of Zn(II) and Ni(II) Mixed-Ligand Complexes Derived from N,N-Disubstituted Dithiocarbamate and Benzoic Acid

    OpenAIRE

    Anthony C. Ekennia; Damian C. Onwudiwe; Aderoju A Osowole; Olasunkanmi, Lukman O.; Eno E. Ebenso

    2016-01-01

    Some mixed-ligand complexes of Zn(II) and Ni(II) derived from the sodium salt of N-alkyl-N-phenyl dithiocarbamate and benzoic acid have been prepared. The complexes are represented as ZnMDBz, ZnEDBz, NiMDBz, and NiEDBz (MD: N-methyl-N-phenyl dithiocarbamate, ED: N-ethyl-N-phenyl dithiocarbamate, and Bz: benzoate); and their coordination behavior was characterized on the basis of elemental analyses, IR, electronic spectra, magnetic and conductivity measurements, and quantum chemical calculatio...

  7. Synthesis, spectroscopic characterization, photochemical and photophysical properties and biological activities of ruthenium complexes with mono- and bi-dentate histamine ligand.

    Science.gov (United States)

    Cardoso, Carolina R; de Aguiar, Inara; Camilo, Mariana R; Lima, Márcia V S; Ito, Amando S; Baptista, Maurício S; Pavani, Christiane; Venâncio, Tiago; Carlos, Rose M

    2012-06-14

    The monodentate cis-[Ru(phen)(2)(hist)(2)](2+)1R and the bidentate cis-[Ru(phen)(2)(hist)](2+)2A complexes were prepared and characterized using spectroscopic ((1)H, ((1)H-(1)H)COSY and ((1)H-(13)C)HSQC NMR, UV-vis, luminescence) techniques. The complexes presented absorption and emission in the visible region, as well as a tri-exponential emission decay. The complexes are soluble in aqueous and non-aqueous solution with solubility in a buffer solution of pH 7.4 of 1.14 × 10(-3) mol L(-1) for (1R + 2A) and 6.43 × 10(-4) mol L(-1) for 2A and lipophilicity measured in an aqueous-octanol solution of -1.14 and -0.96, respectively. Photolysis in the visible region in CH(3)CN converted the starting complexes into cis-[Ru(phen)(2)(CH(3)CN)(2)](2+). Histamine photorelease was also observed in pure water and in the presence of BSA (1.0 × 10(-6) mol L(-1)). The bidentate coordination of the histamine to the ruthenium center in relation to the monodentate coordination increased the photosubstitution quantum yield by a factor of 3. Pharmacological studies showed that the complexes present a moderate inhibition of AChE with an IC(50) of 21 μmol L(-1) (referred to risvagtini, IC(50) 181 μmol L(-1) and galantamine IC(50) 0.006 μmol L(-1)) with no appreciable cytotoxicity toward to the HeLa cells (50% cell viability at 925 μmol L(-1)). Cell uptake of the complexes into HeLa cells was detected by fluorescence confocal microscopy. Overall, the observation of a luminescent complex that penetrates the cell wall and has low cytotoxicity, but is reactive photochemically, releasing histamine when irradiated with visible light, are interesting features for application of these complexes as phototherapeutic agents. PMID:22539182

  8. Synthesis, spectroscopic characterization, solid state d.c. electrical conductivity and biological studies of some lanthanide(III) chloride complexes with a heterocyclic Schiff base ligand

    OpenAIRE

    K. Mohanan; N. Subhadrambika; R. Selwin Joseyphus; Swathy, S. S.; V.P. Nisha

    2016-01-01

    Condensation of 2-hydroxy-1-naphthaldehyde with 2-amino-3-carboxyethyl-4,5-dimethylthiophene in 1:1 molar ratio, yielded a potentially tridentate Schiff base viz. 2-[N-(2′-hydroxy-1-naphthylidene)amino]-3-carboxyethyl-4,5-dimethylthiophene (HNAT). This ligand formed complexes with lanthanum(III), cerium(III), praseodymium(III), neodymium(III), samarium(III), europium(III) and gadolinium(III) chloride under well defined conditions. These complexes were characterized through elemental analysis,...

  9. Ternary oxovanadium(IV) complexes of ONO-donor Schiff base and polypyridyl derivatives as protein tyrosine phosphatase inhibitors: synthesis, characterization, and biological activities.

    Science.gov (United States)

    Yuan, Caixia; Lu, Liping; Gao, Xiaoli; Wu, Yanbo; Guo, Maolin; Li, Ying; Fu, Xueqi; Zhu, Miaoli

    2009-08-01

    A series of oxovanadium complexes with mixed ligands, a tridentate ONO-donor Schiff base ligand [viz., salicylidene anthranilic acid (SAA)], and a bidentate NN ligand [viz., 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq), dipyrido[3,2-a:2',3'-c]phenazine (dppz), or 7-methyldipyrido[3,2-a:2',3'-c]phenazine (dppm)], have been synthesized and characterized by elemental analysis, electrospray ionization mass spectrometry, UV-vis spectroscopy, Fourier transform IR spectroscopy, EPR spectroscopy, and X-ray crystallography. Crystal structures of both complexes, [V(IV)O(SAA)(bpy)].0.25bpy and [V(IV)O(SAA)(phen)].0.33H(2)O, reveal that oxovanadium(IV) is coordinated with one nitrogen and two oxygen atoms from the Schiff base and two nitrogen atoms from the bidentate planar ligands, in a distorted octahedral geometry (VO(3)N(3)). The oxidation state of V(IV) with d(1) configuration was confirmed by EPR spectroscopy. The speciation of VO-SAA-bpy in aqueous solution was investigated by potentiomtreic pH titrations, and the results revealed that the main species are two ternary complexes at a pH range of 7.0-7.4, and one is the isolated crystalline complex. The complexes have been found to be potent inhibitors against human protein tyrosine phosphatase 1B (PTP1B) (IC(50) approximately 30-61 nM), T-cell protein tyrosine phosphatase (TCPTP), and Src homology phosphatase 1 (SHP-1) in vitro. Interestingly, the [V(IV)O(SAA)(bpy)] complex selectively inhibits PTP1B over the other two phosphatases (approximate ninefold selectivity against SHP-1 and about twofold selectivity against TCPTP). Kinetics assays suggest that the complexes inhibit PTP1B in a competitive and reversible manner. These suggest that the complexes may be promising candidates as novel antidiabetic agents. PMID:19290551

  10. Cu(II, Ni(II, and Zn(II Complexes of Salan-Type Ligand Containing Ester Groups: Synthesis, Characterization, Electrochemical Properties, and In Vitro Biological Activities

    Directory of Open Access Journals (Sweden)

    P. Jeslin Kanaga Inba

    2013-01-01

    Full Text Available A salen ligand on reduction and N-alkylation affords a novel [N2O2] chelating ligand containing ester groups [L = diethyl-2,2′-(propane-1,3-diylbis((2-hydroxy-3-methoxy benzylazanediyldiacetate]. The purity of the ligand was confirmed by NMR and HPLC chromatograms. Its Cu(II, Ni(II, and Zn(II complexes were synthesized and characterized by a combination of elemental analysis, IR, NMR, UV-Vis, and mass spectral data, and thermogravimetric analysis (TG/DTA. The magnetic moments, UV-Vis, and EPR spectral studies support square planar geometry around the Cu(II and Ni(II ions. A tetrahedral geometry is observed in four-coordinate zinc with bulky N-alkylated salan ligand. The redox properties of the copper complex were examined in DMSO by cyclic voltammetry. The voltammograms show quasireversible process. The interaction of metal complexes with CT DNA was investigated by UV-Vis absorption titration, ethidium bromide displacement assay, cyclic voltammetry methods, and agarose gel electrophoresis. The apparent binding constant values suggest moderate intercalative binding modes between the complexes and DNA. The in vitro antioxidant and antimicrobial potentials of the synthesized compounds were also determined.

  11. Preparation and preliminary biological evaluation of radiogallium-labeled DTPA-amlodipine complex for possible L-type calcium channel imaging

    International Nuclear Information System (INIS)

    A DTPA-conjugated amlodipine analog (DTPA-AMLO) 3, was prepared for possible voltage gated calcium channel imaging after radiolabeling with Ga-67. [67Ga]-DTPA-AMLO complex was prepared starting [67Ga]gallium chloride and DTPA-AMLO in 60-90 min at 50-60 C in phosphate buffer. The partition co-efficient and stability of the tracer was determined in final solution (25 C) and presence of human serum (37 C) up to 24 h. The biodistribution of the labeled compound in wild-type rats were determined up to 72 h using organ counting and SPECT. The radiolabled complex was prepared in high radiochemical purity (>96%, RTLC and >98% HPLC) and significant specific activity (7-10 GBq/mmol). The log P for the complex was calculated as -0.594, consistent with a water soluble complex. The tracer is mostly washed out through kidneys which were in full compliance with the amlodipine metabolism and imaging studies demonstrated the same behavior. The tracer uptake in organs with smooth muscles was observed in stomach, colon as well as intestine.

  12. Reactivity and Biological Properties of a Series of Cytotoxic PtI2(amine)(2) Complexes, Either cis or trans Configured

    NARCIS (Netherlands)

    Messori, Luigi; Cubo, Leticia; Gabbiani, Chiara; Alvarez-Valdes, Amparo; Michelucci, Elena; Pieraccini, Giuseppe; Rios-Luci, Carla; Leon, Leticia G.; Padron, Jose M.; Navarro-Ranninger, Carmen; Casini, Angela; Quiroga, Adoracion G.

    2012-01-01

    Six diiodido-diamine platinum(II) complexes, either cis or trans configured, were prepared, differing only in the nature of the amine ligand (isopropylamine, dimethylamine, or methylamine), and their antiproliferative properties were evaluated against a panel of human tumor cell lines. Both series o

  13. Preparation and preliminary biological evaluation of radiogallium-labeled DTPA-amlodipine complex for possible L-type calcium channel imaging

    Energy Technology Data Exchange (ETDEWEB)

    Firuzyar, Tahereh; Shafiee-Ardestani, Mehdi; Khalaj, Ali [Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of). Faculty of Pharmacy; Jalilian, Amir R.; Fazaeli, Yousef; Aboudzadeh, Mohammad Reza [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of). Radiopharmacy Research Group

    2014-07-01

    A DTPA-conjugated amlodipine analog (DTPA-AMLO) 3, was prepared for possible voltage gated calcium channel imaging after radiolabeling with Ga-67. [{sup 67}Ga]-DTPA-AMLO complex was prepared starting [{sup 67}Ga]gallium chloride and DTPA-AMLO in 60-90 min at 50-60 C in phosphate buffer. The partition co-efficient and stability of the tracer was determined in final solution (25 C) and presence of human serum (37 C) up to 24 h. The biodistribution of the labeled compound in wild-type rats were determined up to 72 h using organ counting and SPECT. The radiolabled complex was prepared in high radiochemical purity (>96%, RTLC and >98% HPLC) and significant specific activity (7-10 GBq/mmol). The log P for the complex was calculated as -0.594, consistent with a water soluble complex. The tracer is mostly washed out through kidneys which were in full compliance with the amlodipine metabolism and imaging studies demonstrated the same behavior. The tracer uptake in organs with smooth muscles was observed in stomach, colon as well as intestine.

  14. Synthesis, Spectroscopy, Thermal Analysis, Magnetic Properties and Biological Activity Studies of Cu(II and Co(II Complexes with Schiff Base Dye Ligands

    Directory of Open Access Journals (Sweden)

    Saeid Amani

    2012-05-01

    Full Text Available Three azo group-containing Schiff base ligands, namely 1-{3-[(3-hydroxy-propyliminomethyl]-4-hydroxyphenylazo}-4-nitrobenzene (2a, 1-{3-[(3-hydroxypropyl-iminomethyl]-4-hydroxyphenylazo}-2-chloro-4-nitrobenzene (2b and 1-{3-[(3-hydroxy-propyliminomethyl]-4-hydroxyphenylazo}-4-chloro-3-nitrobenzene (2c were prepared. The ligands were characterized by elemental analysis, FTIR spectroscopy, UV-Vis spectroscopy, 13C- and 1H-NMR spectroscopy and thermogravimetric analysis. Next the corresponding copper(II and cobalt(II metal complexes were synthesized and characterized by the physicochemical and spectroscopic methods of elemental analysis, FTIR spectroscopy, UV-Vis spectroscopy, magnetic moment measurements, and thermogravimetric analysis (TGA and (DSC. The room temperature effective magnetic moments of complexes are 1.45, 1.56, 1.62, 2.16, 2.26 and 2.80 B.M. for complexes 3a, 3b, 3c, 4a 4b, and 4c, respectively, indicating that the complexes are paramagnetic with considerable electronic communication between the two metal centers.

  15. Systems biology of lignin biosynthesis in Populus trichocarpa: heteromeric 4-coumaric acid:coenzyme A ligase protein complex formation, regulation, and numerical modeling.

    Science.gov (United States)

    Chen, Hsi-Chuan; Song, Jina; Wang, Jack P; Lin, Ying-Chung; Ducoste, Joel; Shuford, Christopher M; Liu, Jie; Li, Quanzi; Shi, Rui; Nepomuceno, Angelito; Isik, Fikret; Muddiman, David C; Williams, Cranos; Sederoff, Ronald R; Chiang, Vincent L

    2014-03-01

    As a step toward predictive modeling of flux through the pathway of monolignol biosynthesis in stem differentiating xylem of Populus trichocarpa, we discovered that the two 4-coumaric acid:CoA ligase (4CL) isoforms, 4CL3 and 4CL5, interact in vivo and in vitro to form a heterotetrameric protein complex. This conclusion is based on laser microdissection, coimmunoprecipitation, chemical cross-linking, bimolecular fluorescence complementation, and mass spectrometry. The tetramer is composed of three subunits of 4CL3 and one of 4CL5. 4CL5 appears to have a regulatory role. This protein-protein interaction affects the direction and rate of metabolic flux for monolignol biosynthesis in P. trichocarpa. A mathematical model was developed for the behavior of 4CL3 and 4CL5 individually and in mixtures that form the enzyme complex. The model incorporates effects of mixtures of multiple hydroxycinnamic acid substrates, competitive inhibition, uncompetitive inhibition, and self-inhibition, along with characteristic of the substrates, the enzyme isoforms, and the tetrameric complex. Kinetic analysis of different ratios of the enzyme isoforms shows both inhibition and activation components, which are explained by the mathematical model and provide insight into the regulation of metabolic flux for monolignol biosynthesis by protein complex formation.

  16. Biology of two members of the Euwallacea fornicatus species complex (Coleoptera: Curculionidae: Scolytinae), recently invasive in the U.S.A., reared on an ambrosia beetle artificial diet

    Science.gov (United States)

    1. Diet and rearing protocols were developed for two members of the cryptic Euwallacea fornicatus species complex, polyphagous shot hole borer (PSHB) and tea shot hole borer (TSHB) (Coleoptera: Curculionidae: Scolytinae), using sawdust from boxelder Acer negundo and avocado Persea americana. 2. Bio...

  17. Spectroscopic and biological approach of Ni(II), Cu(II) and Co(II) complexes of 4-methoxy/ethoxybenzaldehyde thiosemicarbazone glyoxime.

    Science.gov (United States)

    Babahan, Ilknur; Eyduran, Fatih; Coban, Esin Poyrazoglu; Orhan, Nil; Kazar, Didem; Biyik, Halil

    2014-01-01

    Two novel vicinal dioxime ligands containing (4-methoxybenzaldehyde thiosemicarbazone glyoxime (L(1)H2) or 4-ethoxybenzaldehyde thiosemicarbazone glyoxime (L(2)H2)) thiosemicarbazone units were synthesized and characterized using (1)H NMR, (13)C NMR, HMQC, MS, infrared and, UV-VIS. spectroscopy, elemental analysis, and magnetic susceptibility measurements. Mononuclear nickel(II), copper(II) and cobalt(II) complexes with a metal:ligand ratio of 1:2 for L(1)H2 and L(2)H2 were also synthesized. The effect of pH and solvent on the absorption spectra of both ligands and complexes was determined. IR spectra show that the ligands act in a bidentate manner and coordinates N4 donor groups of the ligands to Ni(II), Cu(II) and Co(II) ions. The detection of H-bonding (O-H⋯O) in the [M(LH)2] metal complexes by IR spectra supported the square-planar MN4 coordination of mononuclear complexes. The antimicrobial activities of compounds L(1)H2, L(2)H2, and their Ni(II), Cu(II) and Co(II) complexes were evaluated using the disc diffusion method against 12 bacteria and 4 yeasts. The minimal inhibitory concentrations (MICs) against 7 bacteria and 3 yeasts were also determined. Among the test compounds attempted, L(1)H2, [Ni(L1H)2], [Cu(L1H)2], L2H2, [Ni(L2H)2] and [Cu(L2H)2] showed some activities against certain Gram-positive bacteria and some of the yeasts tested. PMID:24239764

  18. Synthesis, radiolabeling and in vivo biological evaluation of {sup 99m}Tc-labeled MAG{sub 3}-based bisnitroimidazole complexes as tumor hypoxia markers

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Lei; Chu, Taiwei [Peking Univ., Beijing (China). Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry

    2014-04-01

    Hypoxia, as a common phenomenon in solid tumors, is of interest for its relationship with resistance to tumor therapies and malignant progression of tumor. The noninvasive nuclear medical imaging technique using hypoxia markers is an important method for the detection of tumor hypoxia. The aim of current study is designing tumor hypoxia markers with hypoxia selectivity and improved properties. Two MAG{sub 3}-based bisnitroimidazole compounds were synthesized and purified by semi-preparative HPLC. Both the MAG{sub 3} derivatives were labeled with {sup 99m}Tc-oxo-technetium core via stannous tartrate exchange method in high yields (> 95%). The {sup 99m}Tc-MAG{sub 3} complexes were stable at 37 C, 4 h after preparation, and were more hydrophilic than {sup 99m}Tc-MAMA complexes. As biodistribution results showed, clearances of background activity for both the complexes were fast and they were excreted mainly through the hepatobiliary tract and part of renal tract. Although tumor uptakes of {sup 99m}Tc-MAG{sub 3}-B2NIL were lower than those of {sup 99m}Tc-MAG{sub 3}-B4NIL, tumor-to-blood ratios of {sup 99m}Tc-MAG{sub 3}-B2NIL showed an increasing trend and were better than those of {sup 99m}Tc-MAG{sub 3}-B4NIL after 2 h due to their different blood clearances. Tumor-to-muscle ratios of {sup 99m}Tc-MAG{sub 3}-B2NIL and {sup 99m}Tc-MAG{sub 3}-B4NIL were similar. Comparing with {sup 99m}Tc-MAMA complexes, {sup 99m}Tc-MAG{sub 3}-B2NIL with better tumor-to-blood ratios exhibits improved feature for hypoxia imaging, though it has lower tumor uptake than {sup 99m}Tc-MAMA complexes. (orig.)

  19. Synthesis, characterization and biological relevance of some metal (II) complexes with oxygen, nitrogen and oxygen (ONO) donor Schiff base ligand derived from thiazole and 2-hydroxy-1-naphthaldehyde

    Science.gov (United States)

    Nagesh, G. Y.; Mruthyunjayaswamy, B. H. M.

    2015-04-01

    The novel Schiff base ligand 2-((2-hydroxynaphthalen-1-yl)methylene)-N-(4-phenylthiazol-2-yl)hydrazinecarboxamide (L) obtained by the condensation of N-(4-phenylthiazol-2-yl)hydrazinecarboxamide with 2-hydroxy-1-naphthaldehyde and its newly synthesized Cu(II), Co(II), Ni(II), Zn(II) and Cd(II) complexes have been characterized by microanalysis, molar conductance, IR, 1H NMR, ESI-mass, UV-Visible, TGA/DTA, ESR and powder X-ray diffraction data to explicate their structures. The IR results confirmed the tridentate binding of the ligand involving oxygen atom of amide carbonyl, azomethine nitrogen and naphthol oxygen. 1H NMR spectral data of the ligand (L) and its Zn(II) complex agreed well with the proposed structures. Thermogravimetric studies for Cu(II) and Ni(II) complexes indicated the presence of coordinated water molecules and the final product is the metal oxide. In order to appraise the effect of antimicrobial activity of metal ions upon chelation, the newly synthesized ligand and its metal complexes were screened for their antimicrobial activity by minimum inhibitory concentration (MIC) method. The DNA cleavage activities were studied using plasmid DNA pBR322 (Bangal re Genei, Bengaluru, Cat. No 105850) as a target molecule by agarose gel electrophoresis method. The brine shrimp bioassay was also carried out to study the in vitro cytotoxicity properties against Artemia salina. Furthermore, the antioxidant activity were determined in vitro by reduction of 1,1-diphenyl-2-picryl hydrazyl (DPPH). The ligand exhibited better in vitro-antioxidant activity than its metal complexes.

  20. Synthesis, electrochemical, structural, spectroscopic and biological activities of mixed ligand copper (II) complexes with 2-{[(Z)-(5-bromo-2-hydroxyphenyl)methylidene]amino}benzoic acid and nitrogenous bases

    Science.gov (United States)

    Choudhary, Mukesh; Patel, R. N.; Rawat, S. P.

    2014-02-01

    Three new copper (II) complexes viz. [Cu(L1)(bipy)]ṡ2H2O 1, [Cu(L1)(dmp)]ṡCH3CN 2, [Cu(L1)(phen)] 3 where L1H2 = 2-{[(Z)-(5-bromo-2-hydroxyphenyl)methylidene]amino}benzoic acid, bipy = 2,2‧-bipyridine; dmp = 2,9-dimethyl 1,10-phenanthroline, phen = 1,10-phenanthroline have been synthesized and characterized by physic-chemical and spectroscopic methods. The solid-state structures of 1 and 2 were determined by single crystal X-ray crystallography, which revealed distorted square pyramidal geometry. In solid-state structure, 1 is self-assembled via intermolecular π…π stacking and the distances between centroids of aromatic ring is 3.525 Å. L1H2 is a diprotic tridentate Schiff base ligand having ONO donor site. Infrared spectra, ligand field spectra and magnetic susceptibility measurements agree with the observed crystal structures. The EPR spectra of these complexes in frozen DMSO solutions showed a single at g ca. 2. The trend in g-value (g|| > g⊥ > 2.0023) suggests that the unpaired electron on copper (II) has d character. Copper (II) complexes 1-3 yielded an irreversible couple corresponding to the Cu (II)/Cu (I) redox process. Superoxide dismutase activity of all these complexes has been revealed to catalyze the dismutation of superoxide (O2-) and IC50 values were evaluated and discussed. Antimicrobial and antifungal activities of these complexes were also investigated.