WorldWideScience

Sample records for biological cupric complexes

  1. Leaching of complex sulphide concentrate in acidic cupric chloride solutions

    Institute of Scientific and Technical Information of China (English)

    M. TCHOUMOU; M. ROYNETTE

    2007-01-01

    The chemical analysis of a complex sulphide concentrate by emission spectrometry and X-ray diffraction shows that it contains essentially copper, lead, zinc and iron in the form of chalcopyrite, sphalerite and galena. A small amount of pyrite is also present in the ore but does not be detected with X-ray diffraction. The cupric chloride leaching of the sulphide concentrate at various durations and solid/liquid ratios at 100 ℃ shows that the rate of dissolution of the ore is the fastest in the first several hours, and after 12 h it does not evolve significantly. If oxygen is excluded from the aqueous cupric chloride solution during the leaching experiment at 100 ℃, the pyrite in the ore will not be leached. The determination of principal dissolved metals in the leaching liquor by flame atomic absorption spectrometry, and the chemical analysis of solid residues by emission spectrometry and X-ray diffraction allow to conclude that the rate of dissolution of the minerals contained in the complex sulphide concentrate are in the order of galena>sphalerite>chalcopyrite.

  2. Evolution of biological complexity

    OpenAIRE

    Adami, Christoph; Ofria, Charles; Collier, Travis C.

    2000-01-01

    In order to make a case for or against a trend in the evolution of complexity in biological evolution, complexity needs to be both rigorously defined and measurable. A recent information-theoretic (but intuitively evident) definition identifies genomic complexity with the amount of information a sequence stores about its environment. We investigate the evolution of genomic complexity in populations of digital organisms and monitor in detail the evolutionary transitions that increase complexit...

  3. Promotion of hexadecyltrimethyleamine bromide to the damage of Alexandrium sp. LC3 by cupric glutamate

    Institute of Scientific and Technical Information of China (English)

    LI Hao; MIAO Jin-lai; CUI Feng-xia; LI Guang-you

    2006-01-01

    The effect of hexadecyltrimethyleamine bromide (HDTMAB) on the removal of A lexandrium sp. LC3 under cupric glutamate stress was investigated. Toxic effect of cupric glutamate on A lexandrium sp. LC3 was significantly promoted in the presence of HDTMAB, especially at 3.0 cmc of HDTMAB. It was found that the sulfhydryl group content of the cell decreased, while the malonaldehyde content and membrane permeability increased when Alexandrium sp. LC3 was treated with HDTMAB and cupric glutamate complex, compared with cupric glutamate alone. The data suggest that HDTMAB might stimulate the damage of A lexandrium sp. LC3 by enhancing the membrane permeability.

  4. In complex biology, prior knowledge is power

    OpenAIRE

    Ideker, Trey; Dutkowski, Janusz; Hood, Leroy

    2011-01-01

    Complexity is the grand challenge for science and engineering in the 21st century. We suggest that biology is a discipline that is uniquely situated to tackle complexity, through a diverse array of technologies for characterizing molecular structure, interactions and function. A major difficulty in the analysis of complex biological systems is dealing with the low signal-to-noise inherent to nearly all large-scale biological data sets. We discuss powerful bioinformatic concepts for boosting s...

  5. Cupric natural zeolites as microbic ides

    International Nuclear Information System (INIS)

    The Escherichia coli and the Candida albicans are considered contamination indicators for what these organisms reflect the water quality. The natural zeolites by their characteristics and properties, they could incorporate to a waters treatment system, as ion exchange, adsorbents and/or microbiocid agents, representing an alternative method of low cost. Inside this investigation work was found that depending on the microorganism type, it varies the quantity of cupric zeolite that is required to carry out the water disinfection, being great for the case of yeasts than the bacteria s. In addition to that marked differences are presented in the required time to reach this process. The characterization of the natural zeolite material, sodium and cupric, was realized by means of scanning electron microscopy, determining the elementary composition (Energy Dispersive Spectroscopy) of each one of them, and by X-ray diffraction. (Author)

  6. Modelling biological complexity: a physical scientist's perspective

    OpenAIRE

    Coveney, Peter V.; Fowler, Philip W.

    2005-01-01

    We discuss the modern approaches of complexity and self-organization to understanding dynamical systems and how these concepts can inform current interest in systems biology. From the perspective of a physical scientist, it is especially interesting to examine how the differing weights given to philosophies of science in the physical and biological sciences impact the application of the study of complexity. We briefly describe how the dynamics of the heart and circadian rhythms, canonical exa...

  7. In-vacuum scattered light reduction with cupric oxide surfaces for sensitive fluorescence detection

    OpenAIRE

    Norrgard, Eric B.; Sitaraman, Nathan; Barry, John F.; McCarron, Daniel J.; Steinecker, Matthew H.; DeMille, David

    2016-01-01

    We demonstrate a simple and easy method for producing low-reflectivity surfaces that are ultra-high vacuum compatible, may be baked to high temperatures, and are easily applied even on complex surface geometries. Black cupric oxide (CuO) surfaces are chemically grown in minutes on any copper surface, allowing for low-cost, rapid prototyping and production. The reflective properties are measured to be comparable to commercially available products for creating optically black surfaces. We descr...

  8. Understanding biological complexity: lessons from the past.

    Science.gov (United States)

    Weiss, James N; Qu, Zhilin; Garfinkel, Alan

    2003-01-01

    Advances in molecular biology now permit complex biological systems to be tracked at an exquisite level of detail. The information flow is so great, however, that using intuition alone to draw connections is unrealistic. Thus, the need to integrate mathematical biology with experimental biology is greater than ever. To achieve this integration, obstacles that have traditionally prevented effective communication between theoreticians and experimentalists must be overcome, so that experimentalists learn the language of mathematics and dynamical modeling and theorists learn the language of biology. Fifty years ago Alan Hodgkin and Andrew Huxley published their quantitative model of the nerve action potential; in the same year, Alan Turing published his work on pattern formation in activator-inhibitor systems. These classic studies illustrate two ends of the spectrum in mathematical biology: the detailed model approach and the minimal model approach. When combined, they are highly synergistic in analyzing the mechanisms underlying the behavior of complex biological systems. Their effective integration will be essential for unraveling the physical basis of the mysteries of life. PMID:12522106

  9. Building phenomenological models of complex biological processes

    Science.gov (United States)

    Daniels, Bryan; Nemenman, Ilya

    2009-11-01

    A central goal of any modeling effort is to make predictions regarding experimental conditions that have not yet been observed. Overly simple models will not be able to fit the original data well, but overly complex models are likely to overfit the data and thus produce bad predictions. Modern quantitative biology modeling efforts often err on the complexity side of this balance, using myriads of microscopic biochemical reaction processes with a priori unknown kinetic parameters to model relatively simple biological phenomena. In this work, we show how Bayesian model selection (which is mathematically similar to low temperature expansion in statistical physics) can be used to build coarse-grained, phenomenological models of complex dynamical biological processes, which have better predictive powers than microscopically correct, but poorely constrained mechanistic molecular models. We illustrate this on the example of a multiply-modifiable protein molecule, which is a simplified description of multiple biological systems, such as an immune receptors and an RNA polymerase complex. Our approach is similar in spirit to the phenomenological Landau expansion for the free energy in the theory of critical phenomena.

  10. Free cupric ions in contaminated agricultural soils around a copper mine in eastern Nanjing City, China

    Institute of Scientific and Technical Information of China (English)

    LUO Xiao-san; ZHOU Dong-mei; WANG Yu-jun

    2006-01-01

    To determine the environmental free metal ion activity was a recent hot issue. A method to measure low-level free cupric ion activity in soil solution extracted with 0.01 mol/L KNO3 was developed by using cupric ion-selective electrode (ISE) and calibrating with Cu-buffer solution. Three copper buffers including iminodiacetic acid (IDA), ethylenediamine (EN), and glycine (Gly)were compared for calibrating the Cu-ISE curves in the range of free cupric ions (pCu2+) 7-13. The Cu-EN buffer showed the best electrode response and thus was applied as the calibration buffer. The pCu2+ of 39 contaminated agricultural soils around a copper mine was measured, ranging from 5.03 to 9.20. Most Cu in the soil solutions was found to be complexed with dissolved soil organic matters, averaging 98.1%. The proportion of free Cu2+ ions in the soil solutions decreased with the increasing of solution pH. Soluble Cu and free Cu2+ ions concentrations were analyzed by multiple linear regressions to evaluate the effects of soil properties on metal levels and speciation. The results showed that soil solution pH was the most significant factor influencing pCu2+ (with R2 value of 0.76), while not important for the soluble Cu concentration.

  11. Parameterized complexity analysis in computational biology.

    Science.gov (United States)

    Bodlaender, H L; Downey, R G; Fellows, M R; Hallett, M T; Wareham, H T

    1995-02-01

    Many computational problems in biology involve parameters for which a small range of values cover important applications. We argue that for many problems in this setting, parameterized computational complexity rather than NP-completeness is the appropriate tool for studying apparent intractability. At issue in the theory of parameterized complexity is whether a problem can be solved in time O(n alpha) for each fixed parameter value, where alpha is a constant independent of the parameter. In addition to surveying this complexity framework, we describe a new result for the Longest Common Subsequence problem. In particular, we show that the problem is hard for W[t] for all t when parameterized by the number of strings and the size of the alphabet. Lower bounds on the complexity of this basic combinatorial problem imply lower bounds on more general sequence alignment and consensus discovery problems. We also describe a number of open problems pertaining to the parameterized complexity of problems in computational biology where small parameter values are important. PMID:7796275

  12. Studies on the interaction of cupric isonicotinohydrazide with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Divakar, S.; Vasudevachari, M.B.; Antony, A.; Easwaran, K.R.K.

    1987-06-30

    The interaction of cupric isonicotinohydrazide (Cu/sup II/INH), antiviral compound, with calf thymus DNA was investigated by circular dichroism (CD) and nuclear magnetic resonance (NMR). Gel electrophoresis of DNA incubated with Cu/sup II/INH showed cleavage of DNA to various extents. This cleavage was found to be time and concentration dependent. In the presence of Cu/sup II/INH the positive CD band at 274 nm disappeared and the negative band at 246 nm showed a decrease in the mean residual ellipticity value, indicating binding of Cu/sup II/INH to DNA. /sup 31/P NMR studies indicated that the binding of copper in Cu/sup II/INH is to the phosphate oxygen of the DNA backbone. The binding of Cu/sup II/INH was also found to be reversible. Addition of ethylenediaminetetraacetic acid to the Cu/sup II/INH-DNA complex resulted in breaking of the complex and restoring the original structure features of the B family of DNA in the resulting fragments. At the concentration level of Cu/sup II/INH employed, both CuSO/sub 4/ and INH independently did not show any interaction with DNA.

  13. Stochastic Physics, Complex Systems and Biology

    CERN Document Server

    Qian, Hong

    2012-01-01

    In complex systems, the interplay between nonlinear and stochastic dynamics gives rise to an evolution process in Darwinian sense with punctuated equilibrium, random "mutations" and "adaptations". The emergent discrete states in such a system, i.e., attractors, have natural robustness against both internal and external perturbations. Epigenetic states of a biological cell, a mesoscopic nonlinear stochastic open biochemical system, could be understood through such a framework.

  14. Complex biological and bio-inspired systems

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    The understanding and characterization ofthe fundamental processes of the function of biological systems underpins many of the important challenges facing American society, from the pathology of infectious disease and the efficacy ofvaccines, to the development of materials that mimic biological functionality and deliver exceptional and novel structural and dynamic properties. These problems are fundamentally complex, involving many interacting components and poorly understood bio-chemical kinetics. We use the basic science of statistical physics, kinetic theory, cellular bio-chemistry, soft-matter physics, and information science to develop cell level models and explore the use ofbiomimetic materials. This project seeks to determine how cell level processes, such as response to mechanical stresses, chemical constituents and related gradients, and other cell signaling mechanisms, integrate and combine to create a functioning organism. The research focuses on the basic physical processes that take place at different levels ofthe biological organism: the basic role of molecular and chemical interactions are investigated, the dynamics of the DNA-molecule and its phylogenetic role are examined and the regulatory networks of complex biochemical processes are modeled. These efforts may lead to early warning algorithms ofpathogen outbreaks, new bio-sensors to detect hazards from pathomic viruses to chemical contaminants. Other potential applications include the development of efficient bio-fuel alternative-energy processes and the exploration ofnovel materials for energy usages. Finally, we use the notion of 'coarse-graining,' which is a method for averaging over less important degrees of freedom to develop computational models to predict cell function and systems-level response to disease, chemical stress, or biological pathomic agents. This project supports Energy Security, Threat Reduction, and the missions of the DOE Office of Science through its efforts to

  15. Biological activity of ruthenium nitrosyl complexes.

    Science.gov (United States)

    Tfouni, Elia; Truzzi, Daniela Ramos; Tavares, Aline; Gomes, Anderson Jesus; Figueiredo, Leonardo Elias; Franco, Douglas Wagner

    2012-01-01

    Nitric oxide plays an important role in various biological processes, such as neurotransmission, blood pressure control, immunological responses, and antioxidant action. The control of its local concentration, which is crucial for obtaining the desired effect, can be achieved with exogenous NO-carriers. Coordination compounds, in particular ruthenium(III) and (II) amines, are good NO-captors and -deliverers. The chemical and photochemical properties of several ruthenium amine complexes as NO-carriers in vitro and in vivo have been reviewed. These nitrosyl complexes can stimulate mice hippocampus slices, promote the lowering of blood pressure in several in vitro and in vivo models, and control Trypanosoma cruzi and Leishmania major infections, and they are also effective against tumor cells in different models of cancer. These complexes can be activated chemically or photochemically, and the observed biological effects can be attributed to the presence of NO in the compound. Their efficiencies are explained on the basis of the [Ru(II)NO(+)](3+)/[Ru(II)NO(0)](2+) reduction potential, the specific rate constant for NO liberation from the [RuNO](2+) moiety, and the quantum yield of NO release. PMID:22178685

  16. Life: An Introduction to Complex Systems Biology

    CERN Document Server

    Kaneko, Kunihiko

    2006-01-01

    What is life? Has molecular biology given us a satisfactory answer to this question? And if not, why, and how to carry on from there? This book examines life not from the reductionist point of view, but rather asks the question: what are the universal properties of living systems and how can one construct from there a phenomenological theory of life that leads naturally to complex processes such as reproductive cellular systems, evolution and differentiation? The presentation has been deliberately kept fairly non-technical so as to address a broad spectrum of students and researchers from the natural sciences and informatics.

  17. Integrative Systems Biology: Elucidating Complex Traits

    DEFF Research Database (Denmark)

    Pers, Tune Hannes

    human traits and disease. e esis is structured as follows. Chapter  presents a few introductory remarks to integrative systems biology, and Chapter  gives a brief description of human genetic variation and GWA analysis. Chapters - present the main topics in the esis (integrative methodologies for...... body-mass index associated gene products coalesce onto distinct protein complexes, and show that these putative risk modules incriminate novel candidate obesitysusceptibility genes. e last overall line of research presented here, provides examples on how networks of human metabolism may serve as a...

  18. [From the mechanical complexity in biology].

    Science.gov (United States)

    Uribe, Libia Herrero

    2008-03-01

    From the mechanical complexity in biology. Through history, each century has brought new discoveries and beliefs that have resulted in different perspectives to study life organisms. In this essay, 1 define three periods: in the first, organisms were studied in the context of their environment, in the second, on the basis of physical and chemical laws, and on the third, systemically. My analysis starts with primitive humans, continues to Aristoteles and Newton, Lamarck and Darwin, the DNA doble helix discovery, and the beginnings of reduccionism in science. I propose that life is paradigmatical, that it obeys physical and chemical laws but cannot be explained by them I review the systemic theory, autopoiesis, discipative structures and non- linear dynamics. 1 propose that the deterministic, lineal and quantitative paradigm of nature are not the only way to study nature and invite the reader to explore the complexity paradigm. PMID:18624253

  19. Existence of biological uncertainty principle implies that we can never find 'THE' measure for biological complexity

    OpenAIRE

    Banerji, Anirban

    2009-01-01

    There are innumerable 'biological complexity measure's. While some patterns emerge from these attempts to represent biological complexity, a single measure to encompass the seemingly countless features of biological systems, still eludes the students of Biology. It is the pursuit of this paper to discuss the feasibility of finding one complete and objective measure for biological complexity. A theoretical construct (the 'Thread-Mesh model') is proposed here to describe biological reality. It ...

  20. In-vacuum scattered light reduction with cupric oxide surfaces for sensitive fluorescence detection

    CERN Document Server

    Norrgard, Eric B; Barry, John F; McCarron, Daniel J; Steinecker, Matthew H; DeMille, David

    2016-01-01

    We demonstrate a simple and easy method for producing low-reflectivity surfaces that are ultra-high vacuum compatible, may be baked to high temperatures, and are easily applied even on complex surface geometries. Black cupric oxide (CuO) surfaces are chemically grown in minutes on any copper surface, allowing for low-cost, rapid prototyping and production. The reflective properties are measured to be comparable to commercially available products for creating optically black surfaces. We describe a vacuum apparatus which uses multiple blackened copper surfaces for sensitive, low-background detection of molecules using laser-induced fluorescence.

  1. In-vacuum scattered light reduction with black cupric oxide surfaces for sensitive fluorescence detection.

    Science.gov (United States)

    Norrgard, E B; Sitaraman, N; Barry, J F; McCarron, D J; Steinecker, M H; DeMille, D

    2016-05-01

    We demonstrate a simple and easy method for producing low-reflectivity surfaces that are ultra-high vacuum compatible, may be baked to high temperatures, and are easily applied even on complex surface geometries. Black cupric oxide (CuO) surfaces are chemically grown in minutes on any copper surface, allowing for low-cost, rapid prototyping, and production. The reflective properties are measured to be comparable to commercially available products for creating optically black surfaces. We describe a vacuum apparatus which uses multiple blackened copper surfaces for sensitive, low-background detection of molecules using laser-induced fluorescence. PMID:27250404

  2. Physico-Chemical Studies on the Consumption of Copper Arsenate: Thermometric Studies on the Composition of Cupric Arsenate

    Directory of Open Access Journals (Sweden)

    M. S. Bhadraver

    1962-10-01

    Full Text Available The formation and composition of cupric arsenate complexes has been studied by the thermometric measurements involving thermometric titrations between CuSO45H2O and disodium hydrogen-arsenate at several concentration of the reactants both by direct and reverse methods.In the direct method thermometric titration curves suggest the formation of CuHAsO4 greenish blue ppt. whereas in the reverse titration the formation of CuHAsO4 is supported.

  3. Noncommutative Biology: Sequential Regulation of Complex Networks

    Science.gov (United States)

    Letsou, William; Cai, Long

    2016-01-01

    Single-cell variability in gene expression is important for generating distinct cell types, but it is unclear how cells use the same set of regulatory molecules to specifically control similarly regulated genes. While combinatorial binding of transcription factors at promoters has been proposed as a solution for cell-type specific gene expression, we found that such models resulted in substantial information bottlenecks. We sought to understand the consequences of adopting sequential logic wherein the time-ordering of factors informs the final outcome. We showed that with noncommutative control, it is possible to independently control targets that would otherwise be activated simultaneously using combinatorial logic. Consequently, sequential logic overcomes the information bottleneck inherent in complex networks. We derived scaling laws for two noncommutative models of regulation, motivated by phosphorylation/neural networks and chromosome folding, respectively, and showed that they scale super-exponentially in the number of regulators. We also showed that specificity in control is robust to the loss of a regulator. Lastly, we connected these theoretical results to real biological networks that demonstrate specificity in the context of promiscuity. These results show that achieving a desired outcome often necessitates roundabout steps. PMID:27560383

  4. Biologically-Inspired Concepts for Self-Management of Complexity

    Science.gov (United States)

    Sterritt, Roy; Hinchey, G.

    2006-01-01

    Inherent complexity in large-scale applications may be impossible to eliminate or even ameliorate despite a number of promising advances. In such cases, the complexity must be tolerated and managed. Such management may be beyond the abilities of humans, or require such overhead as to make management by humans unrealistic. A number of initiatives inspired by concepts in biology have arisen for self-management of complex systems. We present some ideas and techniques we have been experimenting with, inspired by lesser-known concepts in biology that show promise in protecting complex systems and represent a step towards self-management of complexity.

  5. Complexity, Analysis and Control of Singular Biological Systems

    CERN Document Server

    Zhang, Qingling; Zhang, Xue

    2012-01-01

    Complexity, Analysis and Control of Singular Biological Systems follows the control of real-world biological systems at both ecological and phyisological levels concentrating on the application of now-extensively-investigated singular system theory. Much effort has recently been dedicated to the modelling and analysis of developing bioeconomic systems and the text establishes singular examples of these, showing how proper control can help to maintain sustainable economic development of biological resources. The book begins from the essentials of singular systems theory and bifurcations before tackling  the use of various forms of control in singular biological systems using examples including predator-prey relationships and viral vaccination and quarantine control. Researchers and graduate students studying the control of complex biological systems are shown how a variety of methods can be brought to bear and practitioners working with the economics of biological systems and their control will also find the ...

  6. Electrochemical Analysis of the Concentration of Cupric Chloride Complex in CuCl2-NaCl Solution at Room Temperature%室温氯化铜-氯化钠溶液中铜氯络合物浓度的电化学分析

    Institute of Scientific and Technical Information of China (English)

    张艳清; 李和平; 刘庆友; 徐丽萍; 张磊

    2011-01-01

    The electrochemical reaction mechanism of CuCl2-NaCl weak acid solution was studied by the Tafel method and linear potential sweep voltammetry at room temperature. The exchange current densities at different concentration ratios of CuCl2-NaCl solution were obtained from their polarization curves and the coordination number of the electrochemical reduction complex was calculated from electrochemical reaction order method. The electrochemical reduction on Pt electrode was further studied by linear potential sweep voltammetry. Finally, the concentration of the electrochemical reduction complex ion was calculated when the procedure was reversed. The results were shown that [ CuCl ]+ is the main cupric chloride complex in solution and the one for electrochemical reduction on Pt electrode. Two one-electron reduction steps of the copper chloride complex were observed on the surface of the Pt electrode. The first step was a one-electron-transfer reversible reduction process. The electrochemical reaction orders of [ CuCl ]+ and Cu in the system were both level one. In 4. 000 mol/L NaCl + 0. 100 mol/L CuCl2 solution, the concentration of the electrochemical reduction reactant ( [ CuCl ]+ ) was 0. 086 mol/L. The results provided important experimental evidences for electrochemical reduction mechanism of Cu + in aqueous solutions with highly concentrated chloride ions.This work can also be used as a reference for electrochemical analysis of dissolved metal complex in the fields ofmetallurgy, geology, geochemistry in the future.%运用Tafel极化曲线和线性电势扫描法研究了常温弱酸性CuCl2-NaCl溶液中铜氯络合物体系的电化学放电机理.通过测量不同浓度配比的CuCl2-NaCl溶液的极化曲线得到各自的交换电流密度,然后根据电化学反应级数法计算直接在电极上放电的Cu(Ⅱ)-Cl络合物的配位数.并且运用线性电势扫描法进一步研究了此络合物在铂电极上的还原反应,在体系可逆的情况下

  7. Ecological Complexity and the Success of Fungal Biological Control Agents

    OpenAIRE

    Knudsen, Guy R.; Louise-Marie C. Dandurand

    2014-01-01

    Fungal biological control agents against plant pathogens, especially those in soil, operate within physically, biologically, and spatially complex systems by means of a variety of trophic and nontrophic interspecific interactions. However, the biocontrol agents themselves are also subject to the same types of interactions, which may reduce or in some cases enhance their efficacy against target plant pathogens. Characterization of these ecologically complex systems is challenging, but a number...

  8. Stochastic Physics, Complex Systems and Biology

    OpenAIRE

    Qian, Hong

    2012-01-01

    In complex systems, the interplay between nonlinear and stochastic dynamics, e.g., J. Monod's necessity and chance, gives rise to an evolutionary process in Darwinian sense, in terms of discrete jumps among attractors, with punctuated equilibrium, spontaneous random "mutations" and "adaptations". On an evlutionary time scale it produces sustainable diversity among individuals in a homogeneous population rather than convergence as usually predicted by a deterministic dynamics. The emergent dis...

  9. Study of structural and optical properties of cupric oxide nanoparticles

    Science.gov (United States)

    Dhineshbabu, N. R.; Rajendran, V.; Nithyavathy, N.; Vetumperumal, R.

    2015-09-01

    In this study, cupric oxide (CuO) nanoparticles were synthesized via sonochemical method. The samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscope, and transmission electron microscopy. The spherical CuO nanoparticles were dispersed in sodium hexametaphosphate under sonication (25 kHz) to analyze the particle size distribution and UV absorption spectra. Using these absorption spectra, we further examined the CuO nanoparticle to explore the possibility of using them as a material for applications such as solar cell and textile production.

  10. Cupric citrate as growth promoter for broiler chickens in different rearing stages

    International Nuclear Information System (INIS)

    Feeding cupric citrate as alternative to cupric sulfate to broilers has been suggested in the literature. Day-old male broiler chicks (1,200) were used in an experiment to evaluate the efficacy of cupric citrate supplementation (75 mg Cu kg-1) during the 1-21, 22-42 or 1-42 d periods in comparison to an unsupplemented diet and a diet supplemented with cupric sulfate (200 mg Cu kg-1, 1-42 d). A randomized block design was used, with five treatments, six replicates and 40 birds per pen. The diets, based on corn and soybean meal, and water were offered ad libitum during the 42-day experimental period. Over the entire period, there was no effect of copper supplementation (P > 0.05) on bird live weight, weight gain, feed intake, feed conversion and mortality. Cupric citrate supplementation on the 22-42 d period resulted in worse feed conversion as compared to broilers receiving cupric sulfate (2.014 vs. 1.967, P < 0.05). Copper residues in the litter were reduced when broilers were fed cupric citrate, as compared to cupric sulfate (P < 0.01). The absence of response to copper supplementation can be attributed to the environmental and sanitary rearing conditions

  11. Novel On-Site Cupric Oxide Recovery Process from Waste Containing Copper

    Science.gov (United States)

    Kobayashi, Takuya; Kano, Kazunori; Suzuki, Toshihiro; Kobayashi, Atsushi

    2013-05-01

    Although the copper-containing waste from semiconductor or printed circuit board (PCB) manufacturing contains a high concentration of copper, it is usually transported and treated outside of the factories. We studied a novel treatment technology for on-site recycling in the factories. In this technology, cupric oxide with a low-chloride-content was obtained from waste with a high copper concentration, such as cupric chloride etchant waste and cupric sulfate plating waste. In the proposed method, copper-containing waste mixed with H2O2 solution is added to NaOH solution by stepwise addition. In laboratory experiments, we optimized the reaction conditions and obtained low-chloride-content CuO from actual cupric chloride etchant waste and cupric sulfate plating waste. Based on the laboratory experiments, we constructed the first practical plant at a PCB factory and obtained low-chloride-content CuO.

  12. Mössbauer study of some biological iron complexes

    Indian Academy of Sciences (India)

    Sikander Ali; Alimuddin; V R Reddy

    2005-12-01

    Some biological complexes containing iron are investigated experimentally at room temperature using the Mössbauer resonance. The complexes show quadrupole doublet and Kramer's degeneracy is found to exist. The electric field gradient, difference in -electron densities and quadrupole coupling constant have been calculated in each case. These parameters are used to obtain information on the surroundings of the Mössbauer atom.

  13. Complex fluids in biological systems experiment, theory, and computation

    CERN Document Server

    2015-01-01

    This book serves as an introduction to the continuum mechanics and mathematical modeling of complex fluids in living systems. The form and function of living systems are intimately tied to the nature of surrounding fluid environments, which commonly exhibit nonlinear and history dependent responses to forces and displacements. With ever-increasing capabilities in the visualization and manipulation of biological systems, research on the fundamental phenomena, models, measurements, and analysis of complex fluids has taken a number of exciting directions. In this book, many of the world’s foremost experts explore key topics such as: Macro- and micro-rheological techniques for measuring the material properties of complex biofluids and the subtleties of data interpretation Experimental observations and rheology of complex biological materials, including mucus, cell membranes, the cytoskeleton, and blood The motility of microorganisms in complex fluids and the dynamics of active suspensions Challenges and solut...

  14. Mechanistic modeling confronts the complexity of molecular cell biology

    OpenAIRE

    Phair, Robert D.

    2014-01-01

    Mechanistic modeling has the potential to transform how cell biologists contend with the inescapable complexity of modern biology. I am a physiologist–electrical engineer–systems biologist who has been working at the level of cell biology for the past 24 years. This perspective aims 1) to convey why we build models, 2) to enumerate the major approaches to modeling and their philosophical differences, 3) to address some recurrent concerns raised by experimentalists, and then 4) to imagine a fu...

  15. Learning to discriminate complex movements: biological versus artificial trajectories

    OpenAIRE

    Jastorff, Jan; Kourtzi, Zoe; Giese, Martin A

    2006-01-01

    The recognition of complex body movements and actions is a fundamental visual capacity very important for social communication. It seems possible that movement recognition is based on a general capability of the visual system to learn complex visual motion patterns. Alternatively, this visual function might exploit specialized mechanisms for the analysis of biologically relevant movements, for example, of humans or animals. To investigate this question, we trained human observers to discrimin...

  16. Systems Biology Approaches to Epidemiological Studies of Complex Diseases

    OpenAIRE

    Li, Hongzhe

    2013-01-01

    Systems biology approaches to epidemiological studies of complex diseases include collection of genetic, genomic, epigenomic and metagenomic data in large-scale epidemiological studies of complex phenotypes. Designs and analyses of such studies raise many statistical challenges. This paper reviews some issues related to integrative analysis of such high dimensional and inter-related data sets and outline some possible solutions. I focus my review on integrative approaches for genome-wide gene...

  17. Modeling of metal–oxide semiconductor: Analytical bond-order potential for cupric oxide

    International Nuclear Information System (INIS)

    Atomistic potentials for cupric element and cupric oxide are derived based on the analytical bond-order scheme that was presented by Brenner [Brenner D W, “Erratum: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films”, Phys. Rev. B 1992, 46 1948]. In this paper, for the pure cupric element, the energy and structural parameters for several bulk phases as well as dimmer structure are well reproduced. The reference data are taken from our density functional theory calculations and the available experiments. The model potential also provides a good description of the bulk properties of various solid structures of cupric oxide compound structures, including cohesive energies, lattice parameters, and elastic constants. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Finding optimal interaction interface alignments between biological complexes

    KAUST Repository

    Cui, Xuefeng

    2015-06-13

    Motivation: Biological molecules perform their functions through interactions with other molecules. Structure alignment of interaction interfaces between biological complexes is an indispensable step in detecting their structural similarities, which are keys to understanding their evolutionary histories and functions. Although various structure alignment methods have been developed to successfully access the similarities of protein structures or certain types of interaction interfaces, existing alignment tools cannot directly align arbitrary types of interfaces formed by protein, DNA or RNA molecules. Specifically, they require a \\'blackbox preprocessing\\' to standardize interface types and chain identifiers. Yet their performance is limited and sometimes unsatisfactory. Results: Here we introduce a novel method, PROSTA-inter, that automatically determines and aligns interaction interfaces between two arbitrary types of complex structures. Our method uses sequentially remote fragments to search for the optimal superimposition. The optimal residue matching problem is then formulated as a maximum weighted bipartite matching problem to detect the optimal sequence order-independent alignment. Benchmark evaluation on all non-redundant protein-DNA complexes in PDB shows significant performance improvement of our method over TM-align and iAlign (with the \\'blackbox preprocessing\\'). Two case studies where our method discovers, for the first time, structural similarities between two pairs of functionally related protein-DNA complexes are presented. We further demonstrate the power of our method on detecting structural similarities between a protein-protein complex and a protein-RNA complex, which is biologically known as a protein-RNA mimicry case. © The Author 2015. Published by Oxford University Press.

  19. From globally coupled maps to complex-systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Kunihiko, E-mail: kaneko@complex.c.u-tokyo.ac.jp [Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, The University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2015-09-15

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  20. From globally coupled maps to complex-systems biology

    Science.gov (United States)

    Kaneko, Kunihiko

    2015-09-01

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  1. One-step preparation of magnetic imprinted nanoparticles adopting dopamine-cupric ion as a co-monomer for the specific recognition of bovine hemoglobin.

    Science.gov (United States)

    Gao, Ruixia; Zhang, Lili; Hao, Yi; Cui, Xihui; Liu, Dechun; Zhang, Min; Tang, Yuhai

    2015-10-01

    A novel magnetic core-shell polydopamine-cupric ion complex imprinted polymer was prepared in one-step through surface imprinting technology, which could specifically recognize bovine hemoglobin from the real blood samples. The polymerization conditions and adsorption performance of the resultant nanomaterials were investigated in detail. The results showed that the cupric ion played an important role in the recognition of template proteins. The saturating adsorption capacity of this kind of imprinted polymers was 2.23 times greater than those of imprinted polymers without cupric ion. The imprinting factor of the imprinted materials was as high as 4.23 for the template molecule. The selective separation bovine hemoglobin from the real blood sample is successfully applied. In addition, the prepared materials had excellent stability and no obvious deterioration after five adsorption-regeneration cycles. Easy preparation, rapid separation, high binding capacity and satisfactory selectivity for the template protein make this polymer attractive in the separation of high-abundance proteins. PMID:26332617

  2. Kirigami artificial muscles with complex biologically inspired morphologies

    International Nuclear Information System (INIS)

    In this paper we present bio-inspired smart structures which exploit the actuation of flexible ionic polymer composites and the kirigami design principle. Kirigami design is used to convert planar actuators into active 3D structures capable of large out-of-plane displacement and that replicate biological mechanisms. Here we present the burstbot, a fluid control and propulsion mechanism based on the atrioventricular cuspid valve, and the vortibot, a spiral actuator based on Vorticella campanula, a ciliate protozoa. Models derived from biological counterparts are used as a platform for design optimization and actuator performance measurement. The symmetric and asymmetric fluid interactions of the burstbot are investigated and the effectiveness in fluid transport applications is demonstrated. The vortibot actuator is geometrically optimized as a camera positioner capable of 360° scanning. Experimental results for a one-turn spiral actuator show complex actuation derived from a single degree of freedom control signal. (paper)

  3. Investigation of oxygen states and reactivities on a nanostructured cupric oxide surface

    International Nuclear Information System (INIS)

    Nanostructured copper (II) oxide was formed on clean copper foil at room temperature using activated oxygen produced by RF discharge. CuO particles of approximately 10-20 nm were observed on the surface by Scanning Tunneling Microscopy (STM). The copper states and oxygen species of the model cupric oxide were studied by means of X-ray Photoelectron Spectroscopy (XPS). These oxide particles demonstrated abnormally high reactivity with carbon monoxide (CO) at temperatures below 100 deg. C. The XPS data showed that the interaction of CO with the nanostructured cupric oxide resulted in reduction of the CuO particles to Cu2O species. The reactivity of the nanostructured cupric oxide to CO was studied at 80 deg. C using XPS in step-by-step mode. The initial reactivity was estimated to be 5 x 10-5 and was steadily reduced down to 5 x 10-9 as the exposure was increased. O1s spectral analysis allowed us to propose that the high initial reactivity was caused by the presence of non-lattice oxygen states on the surface of the nanostructured CuO. We established that reoxidation of the partially reduced nanostructured cupric oxide by molecular oxygen O2 restored the highly reactive oxygen form on the surface. These results allowed us to propose that the nanostructured cupric oxide could be used for low temperature catalytic CO oxidation. Some hypotheses concerning the nature of the non-lattice oxygen species with high reactivity are also discussed.

  4. Complex Behavior in Simple Models of Biological Coevolution

    Science.gov (United States)

    Rikvold, Per Arne

    We explore the complex dynamical behavior of simple predator-prey models of biological coevolution that account for interspecific and intraspecific competition for resources, as well as adaptive foraging behavior. In long kinetic Monte Carlo simulations of these models we find quite robust 1/f-like noise in species diversity and population sizes, as well as power-law distributions for the lifetimes of individual species and the durations of quiet periods of relative evolutionary stasis. In one model, based on the Holling Type II functional response, adaptive foraging produces a metastable low-diversity phase and a stable high-diversity phase.

  5. Discovering large network motifs from a complex biological network

    International Nuclear Information System (INIS)

    Graph structures representing relationships between entries have been studied in statistical analysis, and the results of these studies have been applied to biological networks, whose nodes and edges represent proteins and the relationships between them, respectively. Most of the studies have focused on only graph structures such as scale-free properties and cliques, but the relationships between nodes are also important features since most of the proteins perform their functions by connecting to other proteins. In order to determine such relationships, the problem of network motif discovery has been addressed; network motifs are frequently appearing graph structures in a given graph. However, the methods for network motif discovery are highly restrictive for the application to biological network because they can only be used to find small network motifs or they do not consider noise and uncertainty in observations. In this study, we introduce a new index to measure network motifs called AR index and develop a novel algorithm called ARIANA for finding large motifs even when the network has noise. Experiments using a synthetic network verify that our method can find better network motifs than an existing algorithm. By applying ARIANA to a real complex biological network, we find network motifs associated with regulations of start time of cell functions and generation of cell energies and discover that the cell cycle proteins can be categorized into two different groups.

  6. Biological Computation as the Revolution of Complex Engineered Systems

    CERN Document Server

    Gómez-Cruz, Nelson Alfonso

    2011-01-01

    Provided that there is no theoretical frame for complex engineered systems (CES) as yet, this paper claims that bio-inspired engineering can help provide such a frame. Within CES bio-inspired systems play a key role. The disclosure from bio-inspired systems and biological computation has not been sufficiently worked out, however. Biological computation is to be taken as the processing of information by living systems that is carried out in polynomial time, i.e., efficiently; such processing however is grasped by current science and research as an intractable problem (for instance, the protein folding problem). A remark is needed here: P versus NP problems should be well defined and delimited but biological computation problems are not. The shift from conventional engineering to bio-inspired engineering needs bring the subject (or problem) of computability to a new level. Within the frame of computation, so far, the prevailing paradigm is still the Turing-Church thesis. In other words, conventional engineering...

  7. Ligand Induced Anionic Cuprous Cyanide Framework for Cupric Ion Turn on Luminescence Sensing and Photocatalytic Degradation of Organic Dyes.

    Science.gov (United States)

    Xu, Xiao-Yan; Chen, Qiu-Cheng; Yu, Ya-Dong; Huang, Xiao-Chun

    2016-01-01

    A new microporous luminescent coordination polymer [(CH3)2NH2]·[Cu2(CN)3] (1) with channels occupied by dimethylamine cations was synthesized due to the inducing effect of 2-(2'-pyridyl)imidazole. Complex 1 exhibits bright-green emission in the solid state, and its emission intensity would be significantly enhanced, especially by DMAc and cupric ion after immersing the as-synthesized crystals of 1 into common organic solvents or methanol solutions of various metal ions. In addition, 1 exhibits photocatalytic activity for the degradation of RhB and MB under natural light and is stable during the photocatalysis process. Thus, 1 can act as a multifunctional material for selectively sensing of Cu(2+) and effectively photocatalytic degradation of dyes. PMID:26671534

  8. Fluorescence study on the interaction between apoCopC and cupric

    Institute of Scientific and Technical Information of China (English)

    PANG Erguo; ZHAO Yaqin; YANG Binsheng

    2005-01-01

    The interaction between apoCopC and cupric was investigated by fluorescence spectra, in phosphate (20 mmol/L) buffer at pH 6.0. Results suggest that the environment is measured to be hydrophobic completely around tryptophan (83). At the same time, apoCopC fluorescence at 320 nm was significantly quenched with the addition of cupric and the 1:1 stoichiometric ratio of apoCopC to cupric was confirmed by fluorescence. In addition, the conditional binding constants were calculated to be Kcu-Copc = (1.8(0.58)× 1013 mol-1 L on the basis of the results of fluorescence titration curves. The apoCopC has the ability to bind specifically cupricion.

  9. Effects of Alpha- Tocopherol on the Velocity of Low Density Lipoprotein Oxidation by Cupric Ions

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Ghaffari

    2010-10-01

    Full Text Available We studied the effect of different concentrations of alpha-tocopherol on in vitro cupric ions induced oxidation of low density lipoproteins (LDL. Human native LDL (50 µg protein/ml oxidation was induced by 10 µmol/L of CuSO4. Conjugated dienes were measured spectrophotometrically for up to 440 minutes. The length of the lag phase (Tlag, maximum velocity of the reaction (Vmax and the maximum amount of generated dienes were obtained from kinetic data. Alpha-tocopherol increased Tlag and decreased Vmax with a dependence upon concentration (0-100 µmol/L. There was no difference between the Dmax obtained with cupric ions alone or in the presence of the various concentrations of alpha-tocopherol. The results suggest that alpha-tocopherol may decrease free radicals presence in LDL and thus decrease velocity of LDL oxidation by cupric ions. This mechanism may be a reason for alpha-tocopherol effect in ameliorating atherosclerosis.

  10. The Evolution of Biological Complexity in Digital Organisms

    Science.gov (United States)

    Ofria, Charles

    2013-03-01

    When Darwin first proposed his theory of evolution by natural selection, he realized that it had a problem explaining the origins of traits of ``extreme perfection and complication'' such as the vertebrate eye. Critics of Darwin's theory have latched onto this perceived flaw as a proof that Darwinian evolution is impossible. In anticipation of this issue, Darwin described the perfect data needed to understand this process, but lamented that such data are ``scarcely ever possible'' to obtain. In this talk, I will discuss research where we use populations of digital organisms (self-replicating and evolving computer programs) to elucidate the genetic and evolutionary processes by which new, highly-complex traits arise, drawing inspiration directly from Darwin's wistful thinking and hypotheses. During the process of evolution in these fully-transparent computational environments we can measure the incorporation of new information into the genome, a process akin to a natural Maxwell's Demon, and identify the original source of any such information. We show that, as Darwin predicted, much of the information used to encode a complex trait was already in the genome as part of simpler evolved traits, and that many routes must be possible for a new complex trait to have a high probability of successfully evolving. In even more extreme examples of the evolution of complexity, we are now using these same principles to examine the evolutionary dynamics the drive major transitions in evolution; that is transitions to higher-levels of organization, which are some of the most complex evolutionary events to occur in nature. Finally, I will explore some of the implications of this research to other aspects of evolutionary biology and as well as ways that these evolutionary principles can be applied toward solving computational and engineering problems.

  11. Acute Copper and Cupric Ion Toxicity in an Estuarine Microbial Community

    OpenAIRE

    Jonas, Robert B.

    1989-01-01

    Copper was acutely toxic to the estuarine microbial community of Middle Marshes, N.C. Under ambient water quality conditions, 10 μg of added total copper [Cu(II)] liter−1 reduced the CFU bacterial abundance by up to 60% and inhibited the amino acid turnover rate (AATR) by as much as 30%. Copper toxicity, however, was a quantitative function of free cupric ion (Cu2+) activity that was not directly related to Cu(II) or ligand-bound copper. By using a nitrilotriacetic acid-cupric ion buffer to c...

  12. Heterogeneous magnetic state in nanocrystalline cupric oxide CuO

    Science.gov (United States)

    Yermakov, A. Ye.; Uimin, M. A.; Korolyov, A. V.; Mikhalev, K. N.; Pirogov, A. N.; Teplykh, A. E.; Shchegoleva, N. N.; Gaviko, V. S.; Byzov, I. V.; Maikov, V. V.

    2015-02-01

    This paper presents the results of investigations of the structural state and magnetic properties of nanocrystalline cupric oxide samples with average particle sizes of approximately 40 and 13 nm, which were synthesized by the electric explosion and gas phase methods, respectively. The samples have been studied using X-ray diffraction, neutron diffraction, magnetic measurements, high-resolution transmission electron microscopy, and copper nuclear magnetic resonance. It has been shown that, in the initial state, regardless of the synthesis method, CuO nanoparticles are characterized by a heterogeneous magnetic state, i.e., by the existence of long-range antiferromagnetic order, spontaneous magnetization, especially at low temperatures, and paramagnetic centers in the material. The ferromagnetic contribution is probably caused by the formation of magnetic polaron states due to the phase separation induced in the system by excess charge carriers as a result of the existence of point defects (vacancies in the anion sublattice) in the nanocrystalline state. In this state, there is an inhomogeneously broadened nuclear magnetic resonance spectrum, which is a superposition of the spectrum of the initial antiferromagnetic matrix and the spectrum of ferromagnetically ordered regions. At high concentrations of ferromagnetically ordered regions, the antiferromagnetic matrix exhibits a nuclear magnetic resonance spectrum of CuO nanoparticles, predominantly from regions with the ferromagnetic phase. The appearance of magnetization can also be partly due to the frustration of spins in CuO, and this state is presumably localized near the most imperfect surface of the nanoparticles. The magnetic susceptibility of nanoparticles in the initial state in strong magnetic fields is significantly higher than that for the annealed samples, which, most likely, is associated with the influence of the high concentration of magnetic polarons. No correlation between the ferromagnetic

  13. Dermal tumorigen PAH and complex mixtures for biological research

    International Nuclear Information System (INIS)

    Thirteen commercially available, commonly reported four-five ring dermal tumorigen PAHs, were determined in a set of complex mixtures consisting of crude and upgraded coal liquids, and petroleum crude oils and their distillate fractions. Semi-preparative scale, normal phase high performance liquid chromatographic fractionation followed by capillary column gas chromatography or gas chromatography-mass spectroscopy were used for the measurements. Deuterated or carbon-14 labeled PAH served as internal standards or allowed recovery corrections. Approaches for the preparation and measurement of radiolabeled PAH were examined to provide chemical probes for biological study. Synthetic routes for production of 14C labeled dihydrobenzo[a]pyrene and 14C- or 3H 10-azabenzo[a]pyrene are being studied to provide tracers for fundamental studies in tracheal transplant and skin penetration systems. (DT)

  14. The biology of aging and lymphoma: a complex interplay.

    Science.gov (United States)

    Sarkozy, Clémentine; Salles, Gilles; Falandry, Claire

    2015-07-01

    The probability to develop non-Hodgkin lymphoma grows with age. The biological links between aging and lymphoma are not well described in the literature, and different hypothesis may be raised to explain this complex relationship. First, the impact of chronological age favoring the accumulation of genetic alterations can contribute to the multisteps proces of lymphomagenesis. Then, the age-related defects in cancer protection and the age-related clonal restriction in hematopoietic stem cell may also promote lymphoma development. Finally, the senescent and immunosenescence phenotype might represent a key process explaining this link. In this review, we will explore the current available clinical data and their ability to apply to age-related regulation pathways. PMID:26003736

  15. Complex systems of biological interest stability under ionising radiations

    International Nuclear Information System (INIS)

    This PhD work presents the study of stability of molecular systems of biological interest in the gas phase after interaction with ionising radiations. The use of ionising radiation can probe the physical chemistry of complex systems at the molecular scale and thus consider their intrinsic properties. Beyond the fundamental aspect, this work is part of the overall understanding of radiation effects on living organisms and in particular the use of ionizing radiation in radiotherapy. Specifically, this study focused on the use of low-energy multiply charged ions (tens of keV) provided by the GANIL (Caen), which includes most of the experiments presented. In addition, experiments using VUV photons were also conducted at synchrotron ELETTRA (Trieste, Italy). The bio-molecular systems studied are amino acids and nucleic acid constituents. Using an experimental crossed beams device allows interaction between biomolecules and ionising radiation leads mainly to the ionization and fragmentation of the system. The study of its relaxation dynamics is by time-of-flight mass spectrometry coupled to a coincidences measurements method. It is shown that an approach combining experiment and theory allows a detailed study of the fragmentation dynamics of complex systems. The results indicate that fragmentation is generally governed by the Coulomb repulsion but the intramolecular rearrangements involve specific relaxation mechanisms. (author)

  16. Bridging Mechanistic and Phenomenological Models of Complex Biological Systems.

    Directory of Open Access Journals (Sweden)

    Mark K Transtrum

    2016-05-01

    Full Text Available The inherent complexity of biological systems gives rise to complicated mechanistic models with a large number of parameters. On the other hand, the collective behavior of these systems can often be characterized by a relatively small number of phenomenological parameters. We use the Manifold Boundary Approximation Method (MBAM as a tool for deriving simple phenomenological models from complicated mechanistic models. The resulting models are not black boxes, but remain expressed in terms of the microscopic parameters. In this way, we explicitly connect the macroscopic and microscopic descriptions, characterize the equivalence class of distinct systems exhibiting the same range of collective behavior, and identify the combinations of components that function as tunable control knobs for the behavior. We demonstrate the procedure for adaptation behavior exhibited by the EGFR pathway. From a 48 parameter mechanistic model, the system can be effectively described by a single adaptation parameter τ characterizing the ratio of time scales for the initial response and recovery time of the system which can in turn be expressed as a combination of microscopic reaction rates, Michaelis-Menten constants, and biochemical concentrations. The situation is not unlike modeling in physics in which microscopically complex processes can often be renormalized into simple phenomenological models with only a few effective parameters. The proposed method additionally provides a mechanistic explanation for non-universal features of the behavior.

  17. Deciphering The Complex Biological Interactions Of Nitric Oxide In Cancer

    Directory of Open Access Journals (Sweden)

    S. Perwez Hussain

    2015-08-01

    Full Text Available NO• is a free radical and is involved in a number of critical physiological processes including vasodilation, neurotransmission, immune regulation and inflammation. There are convincing evidence suggesting a role of NO• in the development and progression of different cancer types. However, the role of NO• in tumorigenesis is highly complex and both pro- and anti-neoplastic functions have been reported, which largely depends on the amount of NO•, cell types, cellular microenvironment, its interaction with other reactive species and presence of metals. An interesting interaction occurs between NO• and p53 tumor suppressor, in which NO•-induced DNA damage causes the stabilization and accumulation of p53, which in turn, transrepresses inducible nitric oxide synthase (NOS2 in a negative feedback loop. In chronic inflammatory diseases, for example ulcerative colitis, NO• induces p53 stabilization and the initiation of DNA-damage response pathway, and also generation of p53 mutation and subsequent clonal selection of p53 mutant cells. Genetic deletion of NOS2 in p53-deficient mice can either suppress or enhance lymphomagenesis depending on the inflammatory microenvironment. These findings highlight the importance of understanding the complex biological interaction of NO• in the context of the molecular makeup of each individual cancer to design NO•-targeted treatment strategies.

  18. Bridging Mechanistic and Phenomenological Models of Complex Biological Systems

    Science.gov (United States)

    Transtrum, Mark K.; Qiu, Peng

    2016-01-01

    The inherent complexity of biological systems gives rise to complicated mechanistic models with a large number of parameters. On the other hand, the collective behavior of these systems can often be characterized by a relatively small number of phenomenological parameters. We use the Manifold Boundary Approximation Method (MBAM) as a tool for deriving simple phenomenological models from complicated mechanistic models. The resulting models are not black boxes, but remain expressed in terms of the microscopic parameters. In this way, we explicitly connect the macroscopic and microscopic descriptions, characterize the equivalence class of distinct systems exhibiting the same range of collective behavior, and identify the combinations of components that function as tunable control knobs for the behavior. We demonstrate the procedure for adaptation behavior exhibited by the EGFR pathway. From a 48 parameter mechanistic model, the system can be effectively described by a single adaptation parameter τ characterizing the ratio of time scales for the initial response and recovery time of the system which can in turn be expressed as a combination of microscopic reaction rates, Michaelis-Menten constants, and biochemical concentrations. The situation is not unlike modeling in physics in which microscopically complex processes can often be renormalized into simple phenomenological models with only a few effective parameters. The proposed method additionally provides a mechanistic explanation for non-universal features of the behavior. PMID:27187545

  19. Waters of Hydration of Cupric Hydrates: A Comparison between Heating and Absorbance Methods

    Science.gov (United States)

    Barlag, Rebecca; Nyasulu, Frazier

    2011-01-01

    The empirical formulas of four cupric hydrates are determined by measuring the absorbance in aqueous solution. The Beer-Lambert Law is verified by constructing a calibration curve of absorbance versus known Cu[superscript 2+](aq) concentration. A solution of the unknown hydrate is prepared by using 0.2-0.3 g of hydrate, and water is added such…

  20. Complex network problems in physics, computer science and biology

    Science.gov (United States)

    Cojocaru, Radu Ionut

    There is a close relation between physics and mathematics and the exchange of ideas between these two sciences are well established. However until few years ago there was no such a close relation between physics and computer science. Even more, only recently biologists started to use methods and tools from statistical physics in order to study the behavior of complex system. In this thesis we concentrate on applying and analyzing several methods borrowed from computer science to biology and also we use methods from statistical physics in solving hard problems from computer science. In recent years physicists have been interested in studying the behavior of complex networks. Physics is an experimental science in which theoretical predictions are compared to experiments. In this definition, the term prediction plays a very important role: although the system is complex, it is still possible to get predictions for its behavior, but these predictions are of a probabilistic nature. Spin glasses, lattice gases or the Potts model are a few examples of complex systems in physics. Spin glasses and many frustrated antiferromagnets map exactly to computer science problems in the NP-hard class defined in Chapter 1. In Chapter 1 we discuss a common result from artificial intelligence (AI) which shows that there are some problems which are NP-complete, with the implication that these problems are difficult to solve. We introduce a few well known hard problems from computer science (Satisfiability, Coloring, Vertex Cover together with Maximum Independent Set and Number Partitioning) and then discuss their mapping to problems from physics. In Chapter 2 we provide a short review of combinatorial optimization algorithms and their applications to ground state problems in disordered systems. We discuss the cavity method initially developed for studying the Sherrington-Kirkpatrick model of spin glasses. We extend this model to the study of a specific case of spin glass on the Bethe

  1. From structure of the complex to understanding of the biology

    International Nuclear Information System (INIS)

    The most extensive structural information on viruses relates to apparently icosahedral virions and is based on X-ray crystallography and on cryo-electron microscopy single-particle reconstructions. This paper concerns itself with the study of the macromolecular complexes that constitute viruses, using structural hybrid techniques. The most extensive structural information on viruses relates to apparently icosahedral virions and is based on X-ray crystallography and on cryo-electron microscopy (cryo-EM) single-particle reconstructions. Both techniques lean heavily on imposing icosahedral symmetry, thereby obscuring any deviation from the assumed symmetry. However, tailed bacteriophages have icosahedral or prolate icosahedral heads that have one obvious unique vertex where the genome can enter for DNA packaging and exit when infecting a host cell. The presence of the tail allows cryo-EM reconstructions in which the special vertex is used to orient the head in a unique manner. Some very large dsDNA icosahedral viruses also develop special vertices thought to be required for infecting host cells. Similarly, preliminary cryo-EM data for the small ssDNA canine parvovirus complexed with receptor suggests that these viruses, previously considered to be accurately icosahedral, might have some asymmetric properties that generate one preferred receptor-binding site on the viral surface. Comparisons are made between rhinoviruses that bind receptor molecules uniformly to all 60 equivalent binding sites, canine parvovirus, which appears to have a preferred receptor-binding site, and bacteriophage T4, which gains major biological advantages on account of its unique vertex and tail organelle

  2. From structure of the complex to understanding of the biology

    Energy Technology Data Exchange (ETDEWEB)

    Rossmann, Michael G., E-mail: mr@purdue.edu [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Arisaka, Fumio [Graduate School and School of Bioscience and Biotechnology, Tokyo Institute of Technology, 5249 Nagatsuta-cho, Yokohama 226-8501-B39 (Japan); Battisti, Anthony J.; Bowman, Valorie D.; Chipman, Paul R.; Fokine, Andrei; Hafenstein, Susan [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Kanamaru, Shuji [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Graduate School and School of Bioscience and Biotechnology, Tokyo Institute of Technology, 5249 Nagatsuta-cho, Yokohama 226-8501-B39 (Japan); Kostyuchenko, Victor A. [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Mesyanzhinov, Vadim V.; Shneider, Mikhail M. [Laboratory of Molecular Bioengineering, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow, 117997 (Russian Federation); Morais, Marc C.; Leiman, Petr G. [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Palermo, Laura M.; Parrish, Colin R. [James A. Baker Institute, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 (United States); Xiao, Chuan [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States)

    2007-01-01

    The most extensive structural information on viruses relates to apparently icosahedral virions and is based on X-ray crystallography and on cryo-electron microscopy single-particle reconstructions. This paper concerns itself with the study of the macromolecular complexes that constitute viruses, using structural hybrid techniques. The most extensive structural information on viruses relates to apparently icosahedral virions and is based on X-ray crystallography and on cryo-electron microscopy (cryo-EM) single-particle reconstructions. Both techniques lean heavily on imposing icosahedral symmetry, thereby obscuring any deviation from the assumed symmetry. However, tailed bacteriophages have icosahedral or prolate icosahedral heads that have one obvious unique vertex where the genome can enter for DNA packaging and exit when infecting a host cell. The presence of the tail allows cryo-EM reconstructions in which the special vertex is used to orient the head in a unique manner. Some very large dsDNA icosahedral viruses also develop special vertices thought to be required for infecting host cells. Similarly, preliminary cryo-EM data for the small ssDNA canine parvovirus complexed with receptor suggests that these viruses, previously considered to be accurately icosahedral, might have some asymmetric properties that generate one preferred receptor-binding site on the viral surface. Comparisons are made between rhinoviruses that bind receptor molecules uniformly to all 60 equivalent binding sites, canine parvovirus, which appears to have a preferred receptor-binding site, and bacteriophage T4, which gains major biological advantages on account of its unique vertex and tail organelle.

  3. Multimode lasers as analogs of complex biological systems (a survey)

    Science.gov (United States)

    Danilov, O. B.; Rosanov, N. N.; Solov'ev, N. A.; Soms, L. N.

    2016-04-01

    Simulating the activity of complex biological systems, in particular, the human brain, is a topical problem the solution of which is necessary both for understanding their functioning and for developing new classes of computational system based on operating principles of the brain. Some features and analogies that can be found in the operation of laser systems and brain and used for developing new generation computational systems are discussed. The appropriateness of such analogies is justified by the fact that both laser systems and the brain are open (interacting with the environment) dissipative spatially distributed nonlinear systems. Therefore, laser optical systems and, in particular, systems with dissipative optical solitons offer an opportunity to experimentally and theoretically model some important cognitive brain functions. One of particularities of the brain operation is the ability to manipulate images. Proceeding from this, in this work, problems related to generation and amplification with laser of spatial structures (images), as well as to amplification of signals coming to it from outside are discussed.

  4. A microfluidic dialysis device for complex biological mixture SERS analysis

    KAUST Repository

    Perozziello, Gerardo

    2015-08-01

    In this paper, we present a microfluidic device fabricated with a simple and inexpensive process allowing rapid filtering of peptides from a complex mixture. The polymer microfluidic device can be used for sample preparation in biological applications. The device is fabricated by micromilling and solvent assisted bonding, in which a microdialysis membrane (cut-off of 12-14 kDa) is sandwiched in between an upper and a bottom microfluidic chamber. An external frame connects the microfluidic device to external tubes, microvalves and syringe pumps. Bonding strength and interface sealing are pneumatically tested. Microfluidic protocols are also described by using the presented device to filter a sample composed of specific peptides (MW 1553.73 Da, at a concentration of 1.0 ng/μl) derived from the BRCA1 protein, a tumor-suppressor molecule which plays a pivotal role in the development of breast cancer, and albumin (MW 66.5 kDa, at a concentration of 35 μg/μl), the most represented protein in human plasma. The filtered samples coming out from the microfluidic device were subsequently deposited on a SERS (surface enhanced Raman scattering) substrate for further analysis by Raman spectroscopy. By using this approach, we were able to sort the small peptides from the bigger and highly concentrated protein albumin and to detect them by using a label-free technique at a resolution down to 1.0 ng/μl.

  5. PREFACE: Complex Networks: from Biology to Information Technology

    Science.gov (United States)

    Barrat, A.; Boccaletti, S.; Caldarelli, G.; Chessa, A.; Latora, V.; Motter, A. E.

    2008-06-01

    The field of complex networks is one of the most active areas in contemporary statistical physics. Ten years after seminal work initiated the modern study of networks, interest in the field is in fact still growing, as indicated by the ever increasing number of publications in network science. The reason for such a resounding success is most likely the simplicity and broad significance of the approach that, through graph theory, allows researchers to address a variety of different complex systems within a common framework. This special issue comprises a selection of contributions presented at the workshop 'Complex Networks: from Biology to Information Technology' held in July 2007 in Pula (Cagliari), Italy as a satellite of the general conference STATPHYS23. The contributions cover a wide range of problems that are currently among the most important questions in the area of complex networks and that are likely to stimulate future research. The issue is organised into four sections. The first two sections describe 'methods' to study the structure and the dynamics of complex networks, respectively. After this methodological part, the issue proceeds with a section on applications to biological systems. The issue closes with a section concentrating on applications to the study of social and technological networks. The first section, entitled Methods: The Structure, consists of six contributions focused on the characterisation and analysis of structural properties of complex networks: The paper Motif-based communities in complex networks by Arenas et al is a study of the occurrence of characteristic small subgraphs in complex networks. These subgraphs, known as motifs, are used to define general classes of nodes and their communities by extending the mathematical expression of the Newman-Girvan modularity. The same line of research, aimed at characterising network structure through the analysis of particular subgraphs, is explored by Bianconi and Gulbahce in Algorithm

  6. Synthesis, characterization and biological activity of uranyl thiosemicarbazone complexes

    International Nuclear Information System (INIS)

    A new thiosemicarbazone namely phenacyl thioacetic acid thiosemicarbazone was synthesized and its UO22+ complexes were prepared. The synthesized ligand and complexes were characterized by elemental analyses, spectral (IR, 1H NMR and Mass) studies. In all complexes the ligand coordinates through carboxylic oxygen, azomethine nitrogen and thiolate sulfur. Antimicrobial screening of the free ligand and its complexes showed that, the free ligand and metal complexes possess antimicrobial activities towards two types of bacteria and two types of fungi. (author)

  7. Phylogenetic and biological species diversity within the Neurospora tetrasperma complex.

    Science.gov (United States)

    Menkis, A; Bastiaans, E; Jacobson, D J; Johannesson, H

    2009-09-01

    The objective of this study was to explore the evolutionary history of the morphologically recognized filamentous ascomycete Neurospora tetrasperma, and to reveal the genetic and reproductive relationships among its individuals and populations. We applied both phylogenetic and biological species recognition to a collection of strains representing the geographic and genetic diversity of N. tetrasperma. First, we were able to confirm a monophyletic origin of N. tetrasperma. Furthermore, we found nine phylogenetic species within the morphospecies. When using the traditional broad biological species recognition all investigated strains of N. tetrasperma constituted a single biological species. In contrast, when using a quantitative measurement of the reproductive success, incorporating characters such as viability and fertility of offspring, we found a high congruence between the phylogenetic and biological species recognition. Taken together, phylogenetically and biologically defined groups of individuals exist in N. tetrasperma, and these should be taken into account in future studies of its life history traits. PMID:19682307

  8. Thermodynamics of interface formation between Hexa-Peri Hexabenzocoronene and Cupric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Manwani, Krishna; Panda, Emila, E-mail: emila@iitgn.ac.in

    2015-02-27

    A thermodynamic formalism has been developed to predict the formation of an ultra-thin interfacial layer at a solid–solid interface. To derive the thermodynamic expressions at crystalline–crystalline as well as crystalline–amorphous interfaces, as used in this study, Miedema's semi-empirical approach is used. This formalism is then applied to understand the interfacial layer formation between the organic Hexa-Peri Hexabenzocoronene and inorganic Cupric oxide layers at room temperature. It is found that, graphene interfacial layer formation is thermodynamically favorable. This prediction is in agreement with the experimental observations from literature. - Highlights: • Formalism was developed to predict ultra-thin interfacial layer between solids. • This is unique to similar and dissimilar systems with scarce thermodynamic data. • Applicability was tested to Hexa-Peri Hexabenzocoronene–Cupric oxide interface. • Model predicted graphene interfacial layer is concurrent with experimental results.

  9. Cupric natural zeolites as microbic ides;Zeolitas naturales cupricas como microbicidas

    Energy Technology Data Exchange (ETDEWEB)

    Contreras A, D.; Olguin G, M. T.; Alcantara D, D.; Burrola A, C., E-mail: teresa.olguin@inin.gob.m [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2009-07-01

    The Escherichia coli and the Candida albicans are considered contamination indicators for what these organisms reflect the water quality. The natural zeolites by their characteristics and properties, they could incorporate to a waters treatment system, as ion exchange, adsorbents and/or microbiocid agents, representing an alternative method of low cost. Inside this investigation work was found that depending on the microorganism type, it varies the quantity of cupric zeolite that is required to carry out the water disinfection, being great for the case of yeasts than the bacteria s. In addition to that marked differences are presented in the required time to reach this process. The characterization of the natural zeolite material, sodium and cupric, was realized by means of scanning electron microscopy, determining the elementary composition (Energy Dispersive Spectroscopy) of each one of them, and by X-ray diffraction. (Author)

  10. The Synthesis of Highly Aligned Cupric Oxide Nanowires by Heating Copper Foil

    Directory of Open Access Journals (Sweden)

    Jianbo Liang

    2011-01-01

    Full Text Available We have investigated the effects of grain size and orientation of copper substrates for the growth of cupric oxide nanowires by thermal oxidation method. Long, less-roughness, high-density, and aligned cupric oxide nanowires have been synthesized by heating (200 oriented copper foils with small grain size in air gas. Long and aligned nanowires of diameter around 80 nm can only be formed within a short temperature range from 400 to 700°C. On the other hand, uniform, smooth-surface, and aligned nanowires were not formed in the case of larger crystallite size of copper foils with (111 and (200 orientation. Smaller grain size of copper foil with (200 orientation is favorable for the growth of highly aligned, smooth surface, and larger-diameter nanowires by thermal oxidation method.

  11. Intrinsic properties of cupric oxide nanoparticles enable effective filtration of arsenic from water

    OpenAIRE

    McDonald, Kyle J.; Brandon Reynolds; Reddy, K J

    2015-01-01

    The contamination of arsenic in human drinking water supplies is a serious global health concern. Despite multiple years of research, sustainable arsenic treatment technologies have yet to be developed. This study demonstrates the intrinsic abilities of cupric oxide nanoparticles (CuO-NP) towards arsenic adsorption and the development of a point-of-use filter for field application. X-ray diffraction and X-ray photoelectron spectroscopy experiments were used to examine adsorption, desorption, ...

  12. Effects of Alpha- Tocopherol on the Velocity of Low Density Lipoprotein Oxidation by Cupric Ions

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Ghaffari

    2010-09-01

    Full Text Available "nWe studied the effect of different concentrations of alpha-tocopherol on in vitro cupric ions induced oxidation of low density lipoproteins (LDL. Human native LDL (50 µg protein/ml oxidation was induced by 10 µmol/L of CuSO4. Conjugated dienes were measured spectrophotometrically for up to 440 minutes. The length of the lag phase (Tlag, maximum velocity of the reaction (Vmax and the maximum amount of generated dienes were obtained from kinetic data. Alpha-tocopherol increased Tlag and decreased Vmax with a dependence upon concentration (0-100 µmol/L. There was no difference between the Dmax obtained with cupric ions alone or in the presence of the various concentrations of alpha-tocopherol. The results suggest that alpha-tocopherol may decrease free radicals presence in LDL and thus decrease velocity of LDL oxidation by cupric ions. This mechanism may be a reason for alpha-tocopherol effect in ameliorating atherosclerosis.

  13. Biological Properties Of Benzopyran-Based Platinum (Ii Complexes

    Directory of Open Access Journals (Sweden)

    Malinowska Katarzyna

    2014-04-01

    Full Text Available The aim of the study was to analyze the physicochemical synthesized complex 3 [(1,3- thiazol -2- ylimino methyl]-4H- chromene -4 -one with tetrachloroplatinate(II dipotassium and determination peroxidase activity and glutathione (GPX in red blood cells of cancer patients and healthy subjects. Materials and methods. Tests were carried out with the approval of the Bioethics Committee No. RNN/260/08/KB. Blood was collected into tubes with anticoagulant (heparin lithium. Determination of glutathione peroxidase activity was performed by methods of Little and O’Brien in 20 person groups hospitalized at the Department of General and Colorectal Surgery Veterans General Hospital in Łódź. Results. The study was an increase of activity in the control without the compound and after the introduction of the complex relative to the treatment groups. In healthy subjects, without the use of glutathione peroxidase complex averaged 73.25 ± 23.88 U / g Hb after application of the compound corresponds to the reference group 81.01 ± 25.94 U / g Hb. In contrast, in patients without the use of the complex activity amounted to 42.85 ± 27.49 U / g Hb. In the study group, which uses synthesized complex GPX activity corresponds to 67.72 ± 13.44 U / g Hb. Conclusions. The obtained results underline that the introduction of significant blood antioxidant complex research has a significant impact on the results of the determinations. Statistically significant (p < 0.05 difference occurred in both test and no relation to the administration of the complex in relation to the control of 1. 2.

  14. Lateral diffusion of lipids in complex biological membranes.

    OpenAIRE

    O'Leary, T. J.

    1987-01-01

    Lateral diffusion of lipids in biological membranes may be influenced by polypeptides, proteins, and other nonlipid membrane constituents. Using concepts from scaled-particle theory, we extend the free-volume model for lipid diffusion to membranes having an arbitrarily large number of components. This theory clarifies the interpretation of the free-volume theory, better reproduces the free-area dependence of lipid lateral diffusion rates, and quantitatively predicts the experimental observati...

  15. Analysis of complex networks from biology to linguistics

    CERN Document Server

    Dehmer, Matthias

    2009-01-01

    Mathematical problems such as graph theory problems are of increasing importance for the analysis of modelling data in biomedical research such as in systems biology, neuronal network modelling etc. This book follows a new approach of including graph theory from a mathematical perspective with specific applications of graph theory in biomedical and computational sciences. The book is written by renowned experts in the field and offers valuable background information for a wide audience.

  16. Cupric ion substituted LiFePO4/C composites with enhanced electrochemical performance for Li-ion batteries

    International Nuclear Information System (INIS)

    Cupric ion substituted LiFePO4/C composites were successfully synthesized via a two-step solid state reaction method. The SEM mapping demonstrates that cupric is well substituted in LiFePO4. Interestingly, the XRD spectra indicate that the substituted cupric could enlarge the interplanar distance of planes that parallelled to [010] direction of LiFePO4 crystallines, which could widens the diffusion channels of Li+ along [010] direction. For further research, Lithium ion storage behavior of as-synthesized cupric ion substituted LiFePO4/C products were investigated via various electrochemical strategies, and the highest capacity of 152.4, 144.4, 126.7 and 110.5 mAh g−1 was achieved by LiFe0.985Cu0.015PO4/C at discharge rate of 1, 2, 5, and 10 C, respectively. Compared the result with that of LiFePO4/C, we can see that cupric ion substituted LiFePO4/C composites show enhanced electrochemical activity for Li+ storage with decreased overpotential and increased high rate capability for electrochemical reaction

  17. Autocatalysis as the Natural Philosophy Underlying Complexity and Biological Evolution

    Directory of Open Access Journals (Sweden)

    Güngör Gündüz

    2011-06-01

    Full Text Available The importance and different aspects of autocatalysis in evolution was analyzed. The behaviour of autocatalytic reactions mainly the Lotka-Volterra and the Schlögl equations were discussed in terms of phase change, entropy, and their oscillation frequency. The increase of complexity as the general direction of evolution was examined on some patterns in terms of both their entropy and information content. In addition, the relation between stability and functionality, stability and cohesion were discussed. It was concluded that evolution drifts in the direction of increasing complexity as a kind of natural philosophy to counteract the increase of entropy in the universe.

  18. Physicochemical and biological properties of new steroid metal complexes

    International Nuclear Information System (INIS)

    The aim of this investigation was to prepare stable steroid metal chelates by chemical conversion of the natural steroid hormones testerone, 5α-dihydrotestosterone (5α-DHT) and estradiol and to characterize these by means of their spectroscopic and other physico-chemical properties. In addition, various measuring techniques for the qualitative and quantitative study of complex stabilities and hydrolytic properties were employed. The distribution of some tritiated steroid metal complexes in the tissues of rats was tested using whole animal autoradiography, mainly with a view to identifying whether selective concentration occurs in certain organs. (orig.)

  19. North Mississippi Refuges Complex Biological Program 'Pulse-Check' Review - DRAFT REPORT

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Biological review for the three refuges of the North Mississippi Refuges Complex is presented. Review is based on an assessment of addressing goals and objectives...

  20. The physicochemical and biological properties of Zinc(II) complexes

    Czech Academy of Sciences Publication Activity Database

    Szunyogová, E.; Mudroňová, D.; Gyoryova, K.; Nemcová, R.; Kovářová, Jana; Piknová, L.

    2007-01-01

    Roč. 88, č. 2 (2007), s. 355-361. ISSN 1388-6150 Institutional research plan: CEZ:AV0Z40500505 Keywords : antimicrobial activity * complexes * IR spectra Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.483, year: 2007

  1. Complexity, Post-genomic Biology and Gene Expression Programs

    Science.gov (United States)

    Williams, Rohan B. H.; Luo, Oscar Junhong

    Gene expression represents the fundamental phenomenon by which information encoded in a genome is utilised for the overall biological objectives of the organism. Understanding this level of information transfer is therefore essential for dissecting the mechanistic basis of form and function of organisms. We survey recent developments in the methodology of the life sciences that is relevant for understanding the organisation and function of the genome and review our current understanding of the regulation of gene expression, and finally, outline some new approaches that may be useful in understanding the organisation of gene regulatory systems.

  2. Studies of cell toxicity of complexes of magnetic fluids and biological macromolecules

    International Nuclear Information System (INIS)

    In this study, we performed a comparative investigation of the binding properties of two surface-coated (carboxymethyldextran/glucuronic acid), magnetite-based biocompatible magnetic fluids with different biological macromolecules (BSA, HSA, and LDL). We also investigated the in vitro toxicity of the complex formed between the magnetic fluid and the biological macromolecule in the neoplastic cell line J774-A

  3. Studies of cell toxicity of complexes of magnetic fluids and biological macromolecules

    Science.gov (United States)

    Macaroff, Patrícia P.; Oliveira, Daniela M.; Ribeiro, Karina F.; Lacava, Zulmira G. M.; Lima, Emília C. D.; Morais, Paulo C.; Tedesco, Antonio C.

    2005-05-01

    In this study, we performed a comparative investigation of the binding properties of two surface-coated (carboxymethyldextran/glucuronic acid), magnetite-based biocompatible magnetic fluids with different biological macromolecules (BSA, HSA, and LDL). We also investigated the in vitro toxicity of the complex formed between the magnetic fluid and the biological macromolecule in the neoplastic cell line J774-A.

  4. Overcoming Problems in the Measurement of Biological Complexity

    CERN Document Server

    Cebrian, Manuel; Ortega, Alfonso

    2010-01-01

    In a genetic algorithm, fluctuations of the entropy of a genome over time are interpreted as fluctuations of the information that the genome's organism is storing about its environment, being this reflected in more complex organisms. The computation of this entropy presents technical problems due to the small population sizes used in practice. In this work we propose and test an alternative way of measuring the entropy variation in a population by means of algorithmic information theory, where the entropy variation between two generational steps is the Kolmogorov complexity of the first step conditioned to the second one. As an example application of this technique, we report experimental differences in entropy evolution between systems in which sexual reproduction is present or absent.

  5. Spectrophotometric total reducing sugars assay based on cupric reduction.

    Science.gov (United States)

    Başkan, Kevser Sözgen; Tütem, Esma; Akyüz, Esin; Özen, Seda; Apak, Reşat

    2016-01-15

    As the concentration of reducing sugars (RS) is controlled by European legislation for certain specific food and beverages, a simple and sensitive spectrophotometric method for the determination of RS in various food products is proposed. The method is based on the reduction of Cu(II) to Cu(I) with reducing sugars in alkaline medium in the presence of 2,9-dimethyl-1,10-phenanthroline (neocuproine: Nc), followed by the formation of a colored Cu(I)-Nc charge-transfer complex. All simple sugars tested had the linear regression equations with almost equal slope values. The proposed method was successfully applied to fresh apple juice, commercial fruit juices, milk, honey and onion juice. Interference effect of phenolic compounds in plant samples was eliminated by a solid phase extraction (SPE) clean-up process. The method was proven to have higher sensitivity and precision than the widely used dinitrosalicylic acid (DNS) colorimetric method. PMID:26592591

  6. Life Is Simple—Biologic Complexity Is an Epiphenomenon

    Directory of Open Access Journals (Sweden)

    John S. Torday

    2016-04-01

    Full Text Available Life originated from unicellular organisms by circumventing the Second Law of Thermodynamics using the First Principles of Physiology, namely negentropy, chemiosmosis and homeostatic regulation of calcium and lipids. It is hypothesized that multicellular organisms are merely contrivances or tools, used by unicellular organisms as agents for the acquisition of epigenetic inheritance. The First Principles of Physiology, which initially evolved in unicellular organisms are the exapted constraints that maintain, sustain and perpetuate that process. To ensure fidelity to this mechanism, we must return to the first principles of the unicellular state as the determinants of the primary level of selection pressure during the life cycle. The power of this approach is reflected by examples of its predictive value. This perspective on life is a “game changer”, mechanistically rendering transparent many dogmas, teleologies and tautologies that constrain the current descriptive view of Biology.

  7. Life Is Simple-Biologic Complexity Is an Epiphenomenon.

    Science.gov (United States)

    Torday, John S

    2016-01-01

    Life originated from unicellular organisms by circumventing the Second Law of Thermodynamics using the First Principles of Physiology, namely negentropy, chemiosmosis and homeostatic regulation of calcium and lipids. It is hypothesized that multicellular organisms are merely contrivances or tools, used by unicellular organisms as agents for the acquisition of epigenetic inheritance. The First Principles of Physiology, which initially evolved in unicellular organisms are the exapted constraints that maintain, sustain and perpetuate that process. To ensure fidelity to this mechanism, we must return to the first principles of the unicellular state as the determinants of the primary level of selection pressure during the life cycle. The power of this approach is reflected by examples of its predictive value. This perspective on life is a "game changer", mechanistically rendering transparent many dogmas, teleologies and tautologies that constrain the current descriptive view of Biology. PMID:27128951

  8. 氯化铜脱除硫化氢气体制硫磺研究%H2S Removal with Cupric Chloride for Producing Sulfur

    Institute of Scientific and Technical Information of China (English)

    张俊丰; 童志权

    2006-01-01

    A novel technology of removing H2S with cupric chloride solution was developed in this paper. Cupric as the form of CuS deposition, the CuS produced was then oxidized by excessive cupric ion in another reactor meanwhile cupric ion that has been consumed can be recovered by the oxidization of CuCl2- with oxygen in air,and the solution can be circulated. Moreover, the leaching kinetics of CuS by cupric ion was studied. The removal efficiency of H2S is close to 100%, and the required operating condition is mild. Compared with other wet oxidization methods, no raw material is consumed except O2 in air, the process has no secondary pollution and no problem of degradation and scale, and the absorbent is much stable and reliable.

  9. Approaching complexity by stochastic methods: From biological systems to turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Rudolf [Institute for Theoretical Physics, University of Muenster, D-48149 Muenster (Germany); Peinke, Joachim [Institute of Physics, Carl von Ossietzky University, D-26111 Oldenburg (Germany); Sahimi, Muhammad [Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1211 (United States); Reza Rahimi Tabar, M., E-mail: mohammed.r.rahimi.tabar@uni-oldenburg.de [Department of Physics, Sharif University of Technology, Tehran 11155-9161 (Iran, Islamic Republic of); Institute of Physics, Carl von Ossietzky University, D-26111 Oldenburg (Germany); Fachbereich Physik, Universitaet Osnabrueck, Barbarastrasse 7, 49076 Osnabrueck (Germany)

    2011-09-15

    This review addresses a central question in the field of complex systems: given a fluctuating (in time or space), sequentially measured set of experimental data, how should one analyze the data, assess their underlying trends, and discover the characteristics of the fluctuations that generate the experimental traces? In recent years, significant progress has been made in addressing this question for a class of stochastic processes that can be modeled by Langevin equations, including additive as well as multiplicative fluctuations or noise. Important results have emerged from the analysis of temporal data for such diverse fields as neuroscience, cardiology, finance, economy, surface science, turbulence, seismic time series and epileptic brain dynamics, to name but a few. Furthermore, it has been recognized that a similar approach can be applied to the data that depend on a length scale, such as velocity increments in fully developed turbulent flow, or height increments that characterize rough surfaces. A basic ingredient of the approach to the analysis of fluctuating data is the presence of a Markovian property, which can be detected in real systems above a certain time or length scale. This scale is referred to as the Markov-Einstein (ME) scale, and has turned out to be a useful characteristic of complex systems. We provide a review of the operational methods that have been developed for analyzing stochastic data in time and scale. We address in detail the following issues: (i) reconstruction of stochastic evolution equations from data in terms of the Langevin equations or the corresponding Fokker-Planck equations and (ii) intermittency, cascades, and multiscale correlation functions.

  10. Biological and nonbiological complex drugs for multiple sclerosis in Latin America: regulations and risk management.

    Science.gov (United States)

    Carrá, Adriana; Macías Islas, Miguel Angel; Tarulla, Adriana; Bichuetti, Denis Bernardi; Finkelsztejn, Alessandro; Fragoso, Yara Dadalti; Árcega-Revilla, Raul; Cárcamo Rodríguez, Claudia; Durán, Juan Carlos; Bonitto, Juan García; León, Rosalba; Oehninger Gatti, Carlos; Orozco, Geraldine; Vizcarra Escobar, Darwin

    2015-06-01

    Biological drugs and nonbiological complex drugs with expired patents are followed by biosimilars and follow-on drugs that are supposedly similar and comparable with the reference product in terms of quality, safety and efficacy. Unlike simple molecules that can be copied and reproduced, biosimilars and follow-on complex drugs are heterogeneous and need specific regulations from health and pharmacovigilance agencies. A panel of 14 Latin American experts on multiple sclerosis from nine different countries met to discuss the recommendations regarding biosimilars and follow-on complex drugs for treating multiple sclerosis. Specific measures relating to manufacturing, therapeutic equivalence assessment and pharmacovigilance reports need to be implemented before commercialization. Physical, chemical, biological and immunogenic characterizations of the new product need to be available before clinical trials start. The new product must maintain the same immunogenicity as the original. Automatic substitution of biological and complex drugs poses unacceptable risks to the patient. PMID:25924772

  11. Synthesis, characterization and exploration of the catalytic, supramolecular and biological applications of dinuclear complexes

    OpenAIRE

    Johnpeter, Justin Paul Raj; Therrien, Bruno

    2014-01-01

    The work presented in this thesis involves the synthesis and characterization of dinuclear ruthenium, rhodium and iridium complexes. The catalytic, supramolecular and biological applications of these dinuclear complexes will be discussed. In the first part, the synthesis of sawhorse-type diruthenium tetracarbonyl complexes and their catalytic applications in the supercritical carbon dioxide (scCO2) are presented. Synthesis of sawhorse-type molecular tweezers derived from pyrenyl and porphyrin...

  12. Biological correlates of complex posttraumatic stress disorder—state of research and future directions

    Directory of Open Access Journals (Sweden)

    Zoya Marinova

    2015-04-01

    Full Text Available Complex posttraumatic stress disorder (PTSD presents with clinical features of full or partial PTSD (re-experiencing a traumatic event, avoiding reminders of the event, and a state of hyperarousal together with symptoms from three additional clusters (problems in emotional regulation, negative self-concept, and problems in interpersonal relations. Complex PTSD is proposed as a new diagnostic entity in ICD-11 and typically occurs after prolonged and complex trauma. Here we shortly review current knowledge regarding the biological correlates of complex PTSD and compare it to the relevant findings in PTSD. Recent studies provide support to the validity of complex PTSD as a separate diagnostic entity; however, data regarding the biological basis of the disorder are still very limited at this time. Further studies focused on complex PTSD biological correlates and replication of the initial findings are needed, including neuroimaging, neurobiochemical, genetic, and epigenetic investigations. Identification of altered biological pathways in complex PTSD may be critical to further understand the pathophysiology and optimize treatment strategies.

  13. Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids

    International Nuclear Information System (INIS)

    Graphical abstract: -- Highlights: •Derivatization of diamond nanopowder as IMAC and RP. •Characterization with SEM, EDX and FT-IR. •Phosphopeptide enrichment from standard as well as real samples. •Desalting and human serum profiling with reproducible results. •MALDI-MS analysis with database identification. -- Abstract: Diamond is known for its high affinity and biocompatibility towards biomolecules and is used exclusively in separation sciences and life science research. In present study, diamond nanopowder is derivatized as Immobilized Metal Ion Affinity Chromatographic (IMAC) material for the phosphopeptides enrichment and as Reversed Phase (C-18) media for the desalting of complex mixtures and human serum profiling through MALDI-TOF-MS. Functionalized diamond nanopowder is characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Diamond-IMAC is applied to the standard protein (β-casein), spiked human serum, egg yolk and non-fat milk for the phosphopeptides enrichment. Results show the selectivity of synthesized IMAC-diamond immobilized with Fe3+ and La3+ ions. To comprehend the elaborated use, diamond-IMAC is also applied to the serum samples from gall bladder carcinoma for the potential biomarkers. Database search is carried out by the Mascot program ( (www.matrixscience.com)) for the assignment of phosphorylation sites. Diamond nanopowder is thus a separation media with multifunctional use and can be applied to cancer protein profiling for the diagnosis and biomarker identification

  14. Major Histocompatibility Complex (MHC) markers in conservation biology.

    Science.gov (United States)

    Ujvari, Beata; Belov, Katherine

    2011-01-01

    Human impacts through habitat destruction, introduction of invasive species and climate change are increasing the number of species threatened with extinction. Decreases in population size simultaneously lead to reductions in genetic diversity, ultimately reducing the ability of populations to adapt to a changing environment. In this way, loss of genetic polymorphism is linked with extinction risk. Recent advances in sequencing technologies mean that obtaining measures of genetic diversity at functionally important genes is within reach for conservation programs. A key region of the genome that should be targeted for population genetic studies is the Major Histocompatibility Complex (MHC). MHC genes, found in all jawed vertebrates, are the most polymorphic genes in vertebrate genomes. They play key roles in immune function via immune-recognition and -surveillance and host-parasite interaction. Therefore, measuring levels of polymorphism at these genes can provide indirect measures of the immunological fitness of populations. The MHC has also been linked with mate-choice and pregnancy outcomes and has application for improving mating success in captive breeding programs. The recent discovery that genetic diversity at MHC genes may protect against the spread of contagious cancers provides an added impetus for managing and protecting MHC diversity in wild populations. Here we review the field and focus on the successful applications of MHC-typing for conservation management. We emphasize the importance of using MHC markers when planning and executing wildlife rescue and conservation programs but stress that this should not be done to the detriment of genome-wide diversity. PMID:21954351

  15. Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Dilshad [Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Najam-ul-Haq, Muhammad, E-mail: najamulhaq@bzu.edu.pk [Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, A-6020 Innsbruck (Austria); Jabeen, Fahmida; Ashiq, Muhammad N.; Athar, Muhammad [Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Rainer, Matthias; Huck, Christian W.; Bonn, Guenther K. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, A-6020 Innsbruck (Austria)

    2013-05-02

    Graphical abstract: -- Highlights: •Derivatization of diamond nanopowder as IMAC and RP. •Characterization with SEM, EDX and FT-IR. •Phosphopeptide enrichment from standard as well as real samples. •Desalting and human serum profiling with reproducible results. •MALDI-MS analysis with database identification. -- Abstract: Diamond is known for its high affinity and biocompatibility towards biomolecules and is used exclusively in separation sciences and life science research. In present study, diamond nanopowder is derivatized as Immobilized Metal Ion Affinity Chromatographic (IMAC) material for the phosphopeptides enrichment and as Reversed Phase (C-18) media for the desalting of complex mixtures and human serum profiling through MALDI-TOF-MS. Functionalized diamond nanopowder is characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Diamond-IMAC is applied to the standard protein (β-casein), spiked human serum, egg yolk and non-fat milk for the phosphopeptides enrichment. Results show the selectivity of synthesized IMAC-diamond immobilized with Fe{sup 3+} and La{sup 3+} ions. To comprehend the elaborated use, diamond-IMAC is also applied to the serum samples from gall bladder carcinoma for the potential biomarkers. Database search is carried out by the Mascot program ( (www.matrixscience.com)) for the assignment of phosphorylation sites. Diamond nanopowder is thus a separation media with multifunctional use and can be applied to cancer protein profiling for the diagnosis and biomarker identification.

  16. Major Histocompatibility Complex (MHC Markers in Conservation Biology

    Directory of Open Access Journals (Sweden)

    Katherine Belov

    2011-08-01

    Full Text Available Human impacts through habitat destruction, introduction of invasive species and climate change are increasing the number of species threatened with extinction. Decreases in population size simultaneously lead to reductions in genetic diversity, ultimately reducing the ability of populations to adapt to a changing environment. In this way, loss of genetic polymorphism is linked with extinction risk. Recent advances in sequencing technologies mean that obtaining measures of genetic diversity at functionally important genes is within reach for conservation programs. A key region of the genome that should be targeted for population genetic studies is the Major Histocompatibility Complex (MHC. MHC genes, found in all jawed vertebrates, are the most polymorphic genes in vertebrate genomes. They play key roles in immune function via immune-recognition and -surveillance and host-parasite interaction. Therefore, measuring levels of polymorphism at these genes can provide indirect measures of the immunological fitness of populations. The MHC has also been linked with mate-choice and pregnancy outcomes and has application for improving mating success in captive breeding programs. The recent discovery that genetic diversity at MHC genes may protect against the spread of contagious cancers provides an added impetus for managing and protecting MHC diversity in wild populations. Here we review the field and focus on the successful applications of MHC-typing for conservation management. We emphasize the importance of using MHC markers when planning and executing wildlife rescue and conservation programs but stress that this should not be done to the detriment of genome-wide diversity.

  17. Humin-based complexes and study of their biological activity under irradiation

    International Nuclear Information System (INIS)

    Full text : Several experimental studies have indicated that humin acids has features such as antioxidant activity, antiradiation activity and other. It is known that the humin acids are biologically active organic compounds with characteristics of high polyfunctional and complexing acids. The biological activity of these compounds is connected with presence of phenolic and hydroxyl groups. The main goal of this research is to increase biological activity and sorption properties of humin acids and obtaining of their modified and enriched forms with organic minerals and their analysis on model plant objects. Humin acids solutions can stimulate the life activity of irradiated plants with critical doses and plants growing in the polluted soils with radionuclides

  18. Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology.

    Science.gov (United States)

    Sudhir, Putty-Reddy; Chen, Chung-Hsuan

    2016-01-01

    A protein complex consists of two or more proteins that are linked together through protein-protein interactions. The proteins show stable/transient and direct/indirect interactions within the protein complex or between the protein complexes. Protein complexes are involved in regulation of most of the cellular processes and molecular functions. The delineation of protein complexes is important to expand our knowledge on proteins functional roles in physiological and pathological conditions. The genetic yeast-2-hybrid method has been extensively used to characterize protein-protein interactions. Alternatively, a biochemical-based affinity purification coupled with mass spectrometry (AP-MS) approach has been widely used to characterize the protein complexes. In the AP-MS method, a protein complex of a target protein of interest is purified using a specific antibody or an affinity tag (e.g., DYKDDDDK peptide (FLAG) and polyhistidine (His)) and is subsequently analyzed by means of MS. Tandem affinity purification, a two-step purification system, coupled with MS has been widely used mainly to reduce the contaminants. We review here a general principle for AP-MS-based characterization of protein complexes and we explore several protein complexes identified in pluripotent stem cell biology and cancer biology as examples. PMID:27011181

  19. From Synthesis to Biological Impact of Pd (II) Complexes: Synthesis, Characterization, and Antimicrobial and Scavenging Activity

    Science.gov (United States)

    Sharma, Nitin Kumar; Ameta, Rakesh Kumar; Singh, Man

    2016-01-01

    The Pd (II) complexes with a series of halosubstituted benzylamine ligands (BLs) have been synthesized and characterized with different spectroscopic technique such as FTIR, UV/Vis, LCMS, 1H, and 13C NMR. Their molecular sustainability in different solvents such as DMSO, DMSO : H2O, and DMSO : PBS at physiological condition (pH 7.2) was determined by UV/Vis spectrophotometer. The in vitro antibacterial and antifungal activities of the complexes were investigated against Gram-positive and Gram-negative microbes and two different fungi indicated their significant biological potential. Additionally, their antioxidant activity has been analyzed with DPPH• free radical through spectrophotometric method and the result inferred them as an antioxidant. The stronger antibacterial and antioxidant activities of the synthesized complexes suggested them as a stronger antimicrobial agent. Our study advances the biological importance of palladium (II) amine complexes in the field of antimicrobial and antioxidant activities. PMID:27119023

  20. Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia

    OpenAIRE

    Javier Macia; Romilde Manzoni; Núria Conde; Arturo Urrios; Eulàlia de Nadal; Ricard Solé; Francesc Posas

    2016-01-01

    Engineered synthetic biological devices have been designed to perform a variety of functions from sensing molecules and bioremediation to energy production and biomedicine. Notwithstanding, a major limitation of in vivo circuit implementation is the constraint associated to the use of standard methodologies for circuit design. Thus, future success of these devices depends on obtaining circuits with scalable complexity and reusable parts. Here we show how to build complex computational devices...

  1. Some biologically active oxovanadium(IV) complexes of triazole derived Schiff bases: their synthesis, characterization and biological properties.

    Science.gov (United States)

    Chohan, Zahid H; Sumrra, Sajjad H

    2010-10-01

    A series of biologically active oxovanadium(IV) complexes of triazole derived Schiff bases L(1)-L(5) have been synthesized and characterized by their physical, analytical, and spectral data. The synthesized ligands potentially act as bidentate, in which the oxygen of furfural and nitrogen of azomethine coordinate with the oxovanadium atom to give a stoichiometry of vanadyl complexes 1:2 (M:L) in a square-pyramidal geometry. In vitro antibacterial and antifungal activities on different species of pathogenic bacteria (E. coli, S. flexneri, P. aeruginosa, S. typhi, S. aureus, and B. subtilis) and fungi (T. longifusus, C. albicans, A. flavus, M. canis, F. solani, and C. glabrata) have been studied. All compounds showed moderate to significant antibacterial activity against one or more bacterial strains and good antifungal activity against most of the fungal strains. The brine shrimp bioassay was also carried out to check the cytotoxicity of coordinated and uncoordinated synthesized compounds. PMID:20429776

  2. Temperature preference as an indicator of the chronic toxicity of cupric ions to Mozambique Tilapia

    Energy Technology Data Exchange (ETDEWEB)

    Welch, T.J.; Stauffer, J.R. Jr.; Morgan, R.P. II (Univ. of Maryland, Frostburg (USA))

    1989-11-01

    Evaluation of the effects of environmental contaminants on aquatic communities has focused primarily on acute bioassays. These bioassays provide rapid and reproducible concentration response curves based on death as an endpoint. In recent years, however, emphasis has shifted towards monitoring sublethal effects of toxicants. Temperature is an easily quantifiable parameter influencing both the behavior and survival of fishes. As poikilotherms, fish use behavioral responses to help regulate body temperature. Fish thermoregulatory behavior may be altered by various toxic substances. Some researchers found that a 24 hr exposure of sublethal concentrations of copper caused a significant decrease in preferred temperature of fathead minnows (Pimephales promelas), although the results were confounded due to variations in copper concentrations. In this study, the authors examined the feasibility of using acute temperature preference tests to assess the chronic toxicity of low concentrations of free cupric ions to Mozambique tilapia, Oreochromis mossambicus (Peters).

  3. Microstructural and electrical properties of PVA/PVP polymer blend films doped with cupric sulphate

    Science.gov (United States)

    Hemalatha, K.; Mahadevaiah, Gowtham, G. K.; Urs, G. Thejas; Somashekarappa, H.; Somashekar, R.

    2016-05-01

    A series of polyvinyl alcohol (PVA)/polyvinyl pyrrolidone (PVP) polymer blends added with different concentrations of cupric sulphate (CuSO4) were prepared by solution casting method and were subjected to X-ray diffraction (XRD) and Ac conductance measurements. An attempt has been made to study the changes in crystal imperfection parameters in PVA/PVP blend films with the increase in concentration of CuSO4. Results show that decrease in micro crystalline parameter values is accompanied with increase in the amorphous content in the film which is the reason for film to have more flexibility, biodegradability and good ionic conductivity. AC conductance measurements in these films show that the conductivity increases as the concentration of CuSO4 increases. These films were suitable for electro chemical applications.

  4. Inference, simulation, modeling, and analysis of complex networks, with special emphasis on complex networks in systems biology

    Science.gov (United States)

    Christensen, Claire Petra

    Across diverse fields ranging from physics to biology, sociology, and economics, the technological advances of the past decade have engendered an unprecedented explosion of data on highly complex systems with thousands, if not millions of interacting components. These systems exist at many scales of size and complexity, and it is becoming ever-more apparent that they are, in fact, universal, arising in every field of study. Moreover, they share fundamental properties---chief among these, that the individual interactions of their constituent parts may be well-understood, but the characteristic behaviour produced by the confluence of these interactions---by these complex networks---is unpredictable; in a nutshell, the whole is more than the sum of its parts. There is, perhaps, no better illustration of this concept than the discoveries being made regarding complex networks in the biological sciences. In particular, though the sequencing of the human genome in 2003 was a remarkable feat, scientists understand that the "cellular-level blueprints" for the human being are cellular-level parts lists, but they say nothing (explicitly) about cellular-level processes. The challenge of modern molecular biology is to understand these processes in terms of the networks of parts---in terms of the interactions among proteins, enzymes, genes, and metabolites---as it is these processes that ultimately differentiate animate from inanimate, giving rise to life! It is the goal of systems biology---an umbrella field encapsulating everything from molecular biology to epidemiology in social systems---to understand processes in terms of fundamental networks of core biological parts, be they proteins or people. By virtue of the fact that there are literally countless complex systems, not to mention tools and techniques used to infer, simulate, analyze, and model these systems, it is impossible to give a truly comprehensive account of the history and study of complex systems. The author

  5. Preparation and biological evaluation of technetium-99m-phenylethylamine complexes

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, A.A.; Stahl, A.E.; Pomilio, A.B. [Buenos Aires Univ. (Argentina). Facultad de Ciencias Exactas y Naturales; Calvino, M.A.; Ferrari, C.C. [Buenos Aires Univ. (Argentina). Facultad de Ciencias Exactas y Naturales]|[INEUCI-CONICET, FCEN, UBA (Argentina)

    1995-06-01

    Biological and chemical characteristics of {sup 99m}Tc-phenethylamines complexes are presented. 2-(4,5-Dimethoxy-2-nitrophenyl)ethylamine, 2-(3, 4-dimethoxyphenyl)ethylamine and 2-(2-amino-4,5-dimethoxyphenyl)-ethylamine were used as ligands. A preliminary evaluation of these {sup 99m}Tc-complexes as dopamine receptor radioligands was also performed. Net charges at each atom were also calculated by a semiempirical ZINDO/1 method for comparison of free ligands parameters with those of the respective technetium-complexes. (Author).

  6. Chemometric and Statistical Analyses of ToF-SIMS Spectra of Increasingly Complex Biological Samples

    Energy Technology Data Exchange (ETDEWEB)

    Berman, E S; Wu, L; Fortson, S L; Nelson, D O; Kulp, K S; Wu, K J

    2007-10-24

    Characterizing and classifying molecular variation within biological samples is critical for determining fundamental mechanisms of biological processes that will lead to new insights including improved disease understanding. Towards these ends, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to examine increasingly complex samples of biological relevance, including monosaccharide isomers, pure proteins, complex protein mixtures, and mouse embryo tissues. The complex mass spectral data sets produced were analyzed using five common statistical and chemometric multivariate analysis techniques: principal component analysis (PCA), linear discriminant analysis (LDA), partial least squares discriminant analysis (PLSDA), soft independent modeling of class analogy (SIMCA), and decision tree analysis by recursive partitioning. PCA was found to be a valuable first step in multivariate analysis, providing insight both into the relative groupings of samples and into the molecular basis for those groupings. For the monosaccharides, pure proteins and protein mixture samples, all of LDA, PLSDA, and SIMCA were found to produce excellent classification given a sufficient number of compound variables calculated. For the mouse embryo tissues, however, SIMCA did not produce as accurate a classification. The decision tree analysis was found to be the least successful for all the data sets, providing neither as accurate a classification nor chemical insight for any of the tested samples. Based on these results we conclude that as the complexity of the sample increases, so must the sophistication of the multivariate technique used to classify the samples. PCA is a preferred first step for understanding ToF-SIMS data that can be followed by either LDA or PLSDA for effective classification analysis. This study demonstrates the strength of ToF-SIMS combined with multivariate statistical and chemometric techniques to classify increasingly complex biological samples

  7. Cupric and cuprous oxide by reactive ion beam sputter deposition and the photosensing properties of cupric oxide metal–semiconductor–metal Schottky photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Min-Jyun; Lin, Yong-Chen; Chao, Liang-Chiun, E-mail: lcchao@mail.ntust.edu.tw; Lin, Pao-Hung; Huang, Bohr-Ran

    2015-08-15

    Highlights: • CuO and Cu{sub 2}O were deposited by reactive ion beam sputter deposition. • Single phase CuO thin film is obtained with Ar:O{sub 2} = 2:1. • CuO MSM PD shows photoresponse from 400 nm to 1.30 μm. • CuO MSM PD is RC limited with a decay time less than 1 μs. - Abstract: Cupric (CuO) and cuprous (Cu{sub 2}O) oxide thin films have been deposited by reactive ion beam sputter deposition at 400 °C with an Ar:O{sub 2} ratio from 2:1 to 12:1. With an Ar:O{sub 2} ratio of 2:1, single phase polycrystalline CuO thin films were obtained. Decreasing oxygen flow rate results in CuO + Cu{sub 2}O and Cu{sub 2}O + Cu mixed thin films. As Ar:O{sub 2} ratio reaches 12:1, Cu{sub 2}O nanorods with diameter of 250 nm and length longer than 1 μm were found across the sample. Single phase CuO thin film exhibits an indirect band gap of 1.3 eV with a smooth surface morphology. CuO metal–semiconductor–metal (MSM) Schottky photodiodes (PD) were fabricated by depositing Cu interdigitated electrodes on CuO thin films. Photosensing properties of the CuO PD were characterized from 350 to 1300 nm and a maximum responsivity of 43 mA/W was found at λ = 700 nm. The MSM PD is RC limited with a decay time constant less than 1 μs.

  8. Degeneracy: a link between evolvability, robustness and complexity in biological systems

    CERN Document Server

    Whitacre, James

    2010-01-01

    A full accounting of biological robustness remains elusive; both in terms of the mechanisms by which robustness is achieved and the forces that have caused robustness to grow over evolutionary time. Although its importance to topics such as ecosystem services and resilience is well recognized, the broader relationship between robustness and evolution is only starting to be fully appreciated. A renewed interest in this relationship has been prompted by evidence that mutational robustness can play a positive role in the discovery of future adaptive innovations (evolvability) and evidence of an intimate relationship between robustness and complexity in biology. This paper offers a new perspective on the mechanics of evolution and the origins of complexity, robustness, and evolvability. Here we explore the hypothesis that degeneracy, a partial overlap in the functioning of multi-functional components, plays a central role in the evolution and robustness of complex forms. In support of this hypothesis, we present ...

  9. Engineering and control of biological systems: A new way to tackle complex diseases.

    Science.gov (United States)

    Menolascina, Filippo; Siciliano, Velia; di Bernardo, Diego

    2012-07-16

    The ongoing merge between engineering and biology has contributed to the emerging field of synthetic biology. The defining features of this new discipline are abstraction and standardisation of biological parts, decoupling between parts to prevent undesired cross-talking, and the application of quantitative modelling of synthetic genetic circuits in order to guide their design. Most of the efforts in the field of synthetic biology in the last decade have been devoted to the design and development of functional gene circuits in prokaryotes and unicellular eukaryotes. Researchers have used synthetic biology not only to engineer new functions in the cell, but also to build simpler models of endogenous gene regulatory networks to gain knowledge of the "rules" governing their wiring diagram. However, the need for innovative approaches to study and modify complex signalling and regulatory networks in mammalian cells and multicellular organisms has prompted advances of synthetic biology also in these species, thus contributing to develop innovative ways to tackle human diseases. In this work, we will review the latest progress in synthetic biology and the most significant developments achieved so far, both in unicellular and multicellular organisms, with emphasis on human health. PMID:22580058

  10. Physical properties and biological activities of hesperetin and naringenin in complex with methylated β-cyclodextrin

    Directory of Open Access Journals (Sweden)

    Waratchada Sangpheak

    2015-12-01

    Full Text Available The aim of this work is to improve physical properties and biological activities of the two flavanones hesperetin and naringenin by complexation with β-cyclodextrin (β-CD and its methylated derivatives (2,6-di-O-methyl-β-cyclodextrin, DM-β-CD and randomly methylated-β-CD, RAMEB. The free energies of inclusion complexes between hesperetin with cyclodextrins (β-CD and DM-β-CD were theoretically investigated by molecular dynamics simulation. The free energy values obtained suggested a more stable inclusion complex with DM-β-CD. The vdW force is the main guest–host interaction when hesperetin binds with CDs. The phase solubility diagram showed the formation of a soluble complex of AL type, with higher increase in solubility and stability when hesperetin and naringenin were complexed with RAMEB. Solid complexes were prepared by freeze-drying, and the data from differential scanning calorimetry (DSC confirmed the formation of inclusion complexes. The data obtained by the dissolution method showed that complexation with RAMEB resulted in a better release of both flavanones to aqueous solution. The flavanones-β-CD/DM-β-CD complexes demonstrated a similar or a slight increase in anti-inflammatory activity and cytotoxicity towards three different cancer cell lines. The overall results suggested that solubilities and bioactivities of both flavanones were increased by complexation with methylated β-CDs.

  11. Physical properties and biological activities of hesperetin and naringenin in complex with methylated β-cyclodextrin

    Science.gov (United States)

    Sangpheak, Waratchada; Kicuntod, Jintawee; Schuster, Roswitha; Rungrotmongkol, Thanyada; Wolschann, Peter; Kungwan, Nawee; Viernstein, Helmut

    2015-01-01

    Summary The aim of this work is to improve physical properties and biological activities of the two flavanones hesperetin and naringenin by complexation with β-cyclodextrin (β-CD) and its methylated derivatives (2,6-di-O-methyl-β-cyclodextrin, DM-β-CD and randomly methylated-β-CD, RAMEB). The free energies of inclusion complexes between hesperetin with cyclodextrins (β-CD and DM-β-CD) were theoretically investigated by molecular dynamics simulation. The free energy values obtained suggested a more stable inclusion complex with DM-β-CD. The vdW force is the main guest–host interaction when hesperetin binds with CDs. The phase solubility diagram showed the formation of a soluble complex of AL type, with higher increase in solubility and stability when hesperetin and naringenin were complexed with RAMEB. Solid complexes were prepared by freeze-drying, and the data from differential scanning calorimetry (DSC) confirmed the formation of inclusion complexes. The data obtained by the dissolution method showed that complexation with RAMEB resulted in a better release of both flavanones to aqueous solution. The flavanones-β-CD/DM-β-CD complexes demonstrated a similar or a slight increase in anti-inflammatory activity and cytotoxicity towards three different cancer cell lines. The overall results suggested that solubilities and bioactivities of both flavanones were increased by complexation with methylated β-CDs. PMID:26877798

  12. Phytochemical profile and ABTS cation radical scavenging, cupric reducing antioxidant capacity and anticholinesterase activities of endemic Ballota nigra L. subsp. anatolica P.H. Davis from Turkey

    Directory of Open Access Journals (Sweden)

    Abdulselam Ertaş

    2014-07-01

    Full Text Available Objective: To evaluate the chemical compositions and biological activities of an endemic Ballota nigra L. subsp. anatolica P.H. Davis. Methods: Essential oil and fatty acid composition were determined by GC/MS analysis. ABTS cation radical decolourisation and cupric reducing antioxidant capacity assays were carried out to indicate the antioxidant activity. The anticholinesterase potential of the extracts were determined by Ellman method. Results: The major compounds in the fatty acid composition of the petroleum ether extract were identified as palmitic (36.0% and linoleic acids (14.3%. The major components of essential oil were 1-hexacosanol (26.7%, germacrene-D (9.3% and caryophyllene oxide (9.3%. The water extract indicated higher ABTS cation radical scavenging activity than α-tocopherol and BHT, at 100 µg/ mL. The acetone extract showed 71.58 and 44.71% inhibitory activity against butyrylcholinesterase and acetylcholinesterase enzyme at 200 µg/mL, respectively. Conclusions: The water and acetone extracts of Ballota nigra subsp. anatolica can be investigated in terms of both phytochemical and biological aspects to find natural active compounds.

  13. Characterization and biological activities of two copper(II) complexes with dipropylenetriamine and diamine as ligands

    Science.gov (United States)

    AL-Noaimi, Mousa; Choudhary, Mohammad I.; Awwadi, Firas F.; Talib, Wamidh H.; Hadda, Taibi Ben; Yousuf, Sammer; Sawafta, Ashraf; Warad, Ismail

    2014-06-01

    Two new mixed-ligand copper(II) complexes, [Cu(dipn)(Nsbnd N)]Br2(1-2) [dipn = dipropylenetriamine, Nsbnd N = ethylenediamine (en) (1) and propylenediamine (pn) (2)], have been synthesized. These complexes were characterized by spectroscopic and thermal techniques. Crystal structure for 2 shows a distorted trigonal-bipyramidal geometry around Cu(II) ion with one solvate water molecule. Antimicrobial and antiproliferative assays were conducted to evaluate the biological activities of these complexes. The complexes exhibit a promising antimicrobial effect against an array of microbes at 200 μg/mL concentration. The antiproliferative assay shows a high potential of these complexes to target Human keratinocyte cell line with IC50 values of 155 and 152 μM. The absorption spectrum of 2 in water was modeled by time-dependent density functional theory (TD-DFT).

  14. Transition metal complexes of some biologically active ligands; synthesis characterization and bioactivities

    International Nuclear Information System (INIS)

    Transition/representative transition metals complexes of biologically active chelating agent 1,2-dipyrolodinoethane were synthesized and characterized through spectral and analytical data. The complexes are of the formula (M(L)X/sub 2/). Where (M = Co (II), Ni (II), Cu (II), Zn (II), Hg (II) and Cd (II) and X = CI, Br, NO/sub 3/). Tetrahedral geometry has been proposed to these-metal complexes with the help of magnetic measurements, elemental analysis, chemical stoichiometry and spectroscopic data Antibacterial activity of the ligand and its metal complexes were screened against Eschereschi coli, Klebsiello pneumonia, Proteus mirabilis, Proteus vulhari, Streptococcus pneumonia, Salmonella Iyphi, Bacilh,s anthrax, Streptococcus fecalis and Staphylococcus aureus. Complexes were found to be active against Eschereschi coli, Klebsiella pneumonia, Proteus mirabilis and Proteus vulharis. (author)

  15. Exploitation of complex network topology for link prediction in biological interactomes

    KAUST Repository

    Alanis Lobato, Gregorio

    2014-06-01

    The network representation of the interactions between proteins and genes allows for a holistic perspective of the complex machinery underlying the living cell. However, the large number of interacting entities within the cell makes network construction a daunting and arduous task, prone to errors and missing information. Fortunately, the structure of biological networks is not different from that of other complex systems, such as social networks, the world-wide web or power grids, for which growth models have been proposed to better understand their structure and function. This means that we can design tools based on these models in order to exploit the topology of biological interactomes with the aim to construct more complete and reliable maps of the cell. In this work, we propose three novel and powerful approaches for the prediction of interactions in biological networks and conclude that it is possible to mine the topology of these complex system representations and produce reliable and biologically meaningful information that enriches the datasets to which we have access today.

  16. Mn(II) complexes with bipyridine, phenanthroline and benzoic acid: Biological and catalase-like activity

    Indian Academy of Sciences (India)

    Ibrahim Kani; Özlem Atlier; Kiymet Güven

    2016-04-01

    Five mononuclear Mn(II) complexes, [Mn(phen)2(ClO4)2] (1), [Mn(phen)3](ClO4)2(H2CO3)2(2), [Mn(bipy)2(ClO4)2] (3), [Mn(bipy)3](ClO4)2) (4), and Mn(phen)2(ba)(H2O)](ClO4)(CH3OH) (5), where bipy = 2,2’-bipyridine, phen = 1,10-phenanthroline, and ba = benzoic acid were prepared and characterized by Xray, IR and UV-Vis spectroscopies, and their catalase-like and biological activities were studied. The presence of two different types and the number of chelating NN-donor neutral ligands allowed for analysis of their effects on the catalase and biological activities. It was observed that the presence and number of phen ligands improved the activity more than the bipy ligand. Complexes 1 and 2, which contain more basic phen ligands, disproportionate H2O2 faster than complexes 3 and 4, which contain less basic bipy ligands. The in vitro antimicrobial activities of all the complexes were also tested against seven bacterial strains by microdilution tests. All the bacterial isolates demonstrated sensitivity to the complexes and the antifungal (anticandidal) activities of the Mn(II) complexes were remarkably higher than the reference drug ketoconazole.

  17. Spectroscopic, Thermal and Biological Studies on Some Trivalent Ruthenium and Rhodium NS Chelating Thiosemicarbazone Complexes

    Directory of Open Access Journals (Sweden)

    Vinod K. Sharma

    2007-03-01

    Full Text Available The synthetic, spectroscopic, and biological studies of sixteen ring-substituted 4-phenylthiosemicarbazones and 4-nitrophenyl-thiosemicarbazones of anisaldehyde, 4-chlorobenzaldehyde, 4-fluorobenzaldehyde, and vanillin with ruthenium(III and rhodium(III chlorides are reported here. Their structures were determined on the basis of the elemental analyses, spectroscopic data (IR, electronic, H1 and C13 NMR along with magnetic susceptibility measurements, molar conductivity and thermogravimetric analyses. Electrical conductance measurement revealed a 1:3 electrolytic nature of the complexes. The resulting colored products are monomeric in nature. On the basis of the above studies, three ligands were suggested to be coordinated to each metal atom by thione sulphur and azomethine nitrogen to form low-spin octahedral complexes with ruthenium(III while forming diamagnetic complexes with rhodium(III. Both ligands and their complexes have been screened for their bactericidal activities and the results indicate that they exhibit a significant activity.

  18. Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia

    Science.gov (United States)

    Urrios, Arturo; de Nadal, Eulàlia; Solé, Ricard; Posas, Francesc

    2016-01-01

    Engineered synthetic biological devices have been designed to perform a variety of functions from sensing molecules and bioremediation to energy production and biomedicine. Notwithstanding, a major limitation of in vivo circuit implementation is the constraint associated to the use of standard methodologies for circuit design. Thus, future success of these devices depends on obtaining circuits with scalable complexity and reusable parts. Here we show how to build complex computational devices using multicellular consortia and space as key computational elements. This spatial modular design grants scalability since its general architecture is independent of the circuit’s complexity, minimizes wiring requirements and allows component reusability with minimal genetic engineering. The potential use of this approach is demonstrated by implementation of complex logical functions with up to six inputs, thus demonstrating the scalability and flexibility of this method. The potential implications of our results are outlined. PMID:26829588

  19. Synthesis, characterization and biological studies of a charge transfer complex: 2-Aminopyridinium-4-methylbenzenesulfonate

    Science.gov (United States)

    Vadivelan, Ganesan; Saravanabhavan, Munusamy; Murugesan, Venkatesan; Sekar, Marimuthu

    2015-06-01

    A single crystal charge transfer (CT) complex, 2-aminopyridinium-4-methylbenzenesulfonate (APTS) was synthesized and recrystallized by slow solvent evaporation solution growth method at room temperature. The complex has been characterized with the elemental analysis, UV-visible, infrared (IR), 1H and 13C nuclear magnetic resonance (NMR) spectra. Thermogravimetric (TG) and differential thermal analysis (DTA) were reported the thermal behaviour of the complex. Single crystal XRD studies showed that the orthorhombic nature of the crystal with space group Pbca. The biological activities of CT complex, such as DNA binding and antioxidant activity has been carried out. The results indicated that the compound could interact with DNA through intercalation and show significant capacity of scavenging with 2,2-diphenyl-2-picryl-hydrazyl (DPPH).

  20. Schiff base triphenylphosphine palladium (II) complexes: Synthesis, structural elucidation, electrochemical and biological evaluation

    Science.gov (United States)

    Shabbir, Muhammad; Akhter, Zareen; Ahmad, Iqbal; Ahmed, Safeer; Shafiq, Maryam; Mirza, Bushra; McKee, Vickie; Munawar, Khurram Shahzad; Ashraf, Ahmad Raza

    2016-08-01

    The complexes N-(2-oxidophenyl)salicylideneiminatotriphenylphosphine palladium(II) (1) and N-(2-sulfidophenyl)salicylideneiminato triphenylphosphine palladium(II) (2) of tridentate Schiff bases derived from salicylaldehyde and an amino- or thiophenol, have been synthesized and characterized by various spectroscopic, analytical and electro-analytical techniques. X-ray single crystal analysis of complex 1 has revealed its square planar geometry. The thermal analysis has shown the absence of coordinated water and final degradation product is PdO. The alkaline phosphatase studies have indicated that enzymatic activity is concentration dependent which is inversely proportional to the concentration of the compounds. The biological assays (brine shrimp cytotoxicity, DPPH) have reflected their biologically active and mild antioxidant nature. However, results of DNA protection assay have shown that they possess moderate protective activity against hydroxyl free radicals (rad OH). The voltammetric studies ascertain two-electron reduction of the compounds through purely diffusion controlled process and reveal intercalative mode of drug DNA interactions.

  1. Chemical and biological properties of a cationic Tc-tetraamine complex

    Energy Technology Data Exchange (ETDEWEB)

    Blaeuenstein, P.; Pfeiffer, G.; Schubiger, P.A. (Eidgenoessisches Inst. fuer Reaktorforschung, Wuerenlingen (Switzerland)); Anderegg, G.; Zollinger, K. (Eidgenoessische Technische Hochschule, Zurich (Switzerland). Inst. of Organic Chemistry); May, K. (Eidgenoessische Technische Hochschule, Zurich (Switzerland). Lab. fuer Radiochemie); Proso, Z.; Ianovici, E.; Lerch, P. (Ecole Polytechnique Federale, Lausanne (Switzerland). Lab. d' Electrochimie et de Radiochimie)

    1985-04-01

    The complex of /sup 99/Tc with the ligand 1,4,8,11-tetraazaundecane (2,3,2-tet) was prepared and was compared with the similar /sup 99/Tc complexes with ethylenediamine and 1,4,8,11-tetraazacyclotetradecane. The results are all consistent with the formula (TcO/sub 2/(2,3,2-tet))/sup +/. The biological behavior was tested with sup(99m)Tc in Wistar rats. A fast clearance via the kidneys was found, and no accumulation in any other organ was observed.

  2. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels.

    Science.gov (United States)

    Hinton, Thomas J; Jallerat, Quentin; Palchesko, Rachelle N; Park, Joon Hyung; Grodzicki, Martin S; Shue, Hao-Jan; Ramadan, Mohamed H; Hudson, Andrew R; Feinberg, Adam W

    2015-10-01

    We demonstrate the additive manufacturing of complex three-dimensional (3D) biological structures using soft protein and polysaccharide hydrogels that are challenging or impossible to create using traditional fabrication approaches. These structures are built by embedding the printed hydrogel within a secondary hydrogel that serves as a temporary, thermoreversible, and biocompatible support. This process, termed freeform reversible embedding of suspended hydrogels, enables 3D printing of hydrated materials with an elastic modulus hardware and software tools. Proof-of-concept structures based on femurs, branched coronary arteries, trabeculated embryonic hearts, and human brains were mechanically robust and recreated complex 3D internal and external anatomical architectures. PMID:26601312

  3. Oxidative leaching process with cupric ion in hydrochloric acid media for recovery of Pd and Rh from spent catalytic converters

    OpenAIRE

    Nogueira, C. A.; Paiva, A. P.; P.C. Oliveira; Costa, Maria Clara; Costa, Ana M. Rosa da

    2014-01-01

    The recycling of platinum-group metals from wastes such as autocatalytic converters is getting growing attention due to the scarcity of these precious metals and the market pressure originated by increase of demand in current and emerging applications. Hydrometallurgical treatment of such wastes is an alternative way to the most usual pyrometallurgical processes based on smelter operations. This paper focuses on the development of a leaching process using cupric chloride as oxidising agent, i...

  4. Complex dynamics in biological systems arising from multiple limit cycle bifurcation.

    Science.gov (United States)

    Yu, P; Lin, W

    2016-12-01

    In this paper, we study complex dynamical behaviour in biological systems due to multiple limit cycles bifurcation. We use simple epidemic and predator-prey models to show exact routes to new types of bistability, that is, bistability between equilibrium and periodic oscillation, and bistability between two oscillations, which may more realistically describe the real situations. Bifurcation theory and normal form theory are applied to investigate the multiple limit cycles bifurcating from Hopf critical point. PMID:27042877

  5. Biological and chemical behavior of 99m-Tc-MDP complexes

    International Nuclear Information System (INIS)

    Technetium MDP complexes have their usefulness in diagnostic medicine, where when radiolabeled they assist physicians in the early detection of metastatic (cancerous) and inflammatory bone disease. They are also useful therapeutic agents in many disorders of bone mineralization such as osteoporosis and Paget's disease. Understanding the mechanism of diagnostic and therapeutic mode of action relies extensively on the basic science investigations of the chemical and biological behavior of these compounds

  6. Large, dynamic, multi-protein complexes: a challenge for structural biology

    Czech Academy of Sciences Publication Activity Database

    Rozycki, B.; Bouřa, Evžen

    2014-01-01

    Roč. 26, č. 46 (2014), 463103/1-463103/11. ISSN 0953-8984 R&D Projects: GA MŠk LO1302 EU Projects: European Commission(XE) 333916 - STARPI4K Institutional support: RVO:61388963 Keywords : protein structure * multi-protein complexes * hybrid methods of structural biology Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.346, year: 2014

  7. Unwinding RNA’s Secrets: Advances in the Biology, Physics, and Modeling of Complex RNAs

    OpenAIRE

    Herschlag, Daniel; Chu, Vincent B.

    2008-01-01

    The rapid development of our understanding of the diverse biological roles fulfilled by non-coding RNA has motivated interest in the basic macromolecular behavior, structure, and function of RNA. We focus on two areas in the behavior of complex RNAs. First, we present advances in the understanding of how RNA folding is accomplished in vivo by presenting a mechanism for the action of DEAD-box proteins. Members of this family are intimately associated with almost all cellular processes involvin...

  8. Physical properties evaluation of various substrates coated cupric oxide thin films by dip method

    International Nuclear Information System (INIS)

    Highlights: ► Stoichiometric CuO thin films are successfully synthesized by dip coating method. ► The effects of various substrates on film properties are analysed. ► Improved microstructural properties are achieved for dip coated films. ► Lower band gap (1.08 eV) suitable for solar cell applications is achieved. - Abstract: In this work, we have reported on dip coated cupric oxide (CuO) films prepared at various substrates such as glass, indium doped tin oxide (ITO), silicon and polymer, respectively. The film thickness was estimated using surface profilometer and found to be in the range of ∼520–640 nm. The dip coated films structural, morphological, optical and topographical properties were studied. The dip coated CuO structural properties were studied using X-ray diffraction (XRD) studies. X-ray diffraction patterns revealed that the deposited films were polycrystalline monoclinic structure with predominant orientation of (−1 1 1) crystallographical lattice plane. The microstructural properties of crystallite size (D), dislocation density (δ), microstrain (ε) and stacking fault probability (α) for preferential orientations were calculated and discussed in detail. The surface morphology and elemental analyses were characterized using scanning electron microscopy and energy dispersive analysis by X-ray spectroscopy, respectively. Morphological studies revealed that the uniform morphology with nano sheet shaped grains covered the entire surface of the film prepared at glass substrate. Optical properties of CuO films were analyzed by transmission and linear absorption coefficient using UV–Vis–NIR wavelength region. Tauc’s plot was used to determine the band gap of the films and found to be 1.08 eV for glass substrate. The optical constants such as optical conductivity (σ), average excitation energy (Eo), oscillator strength (Ed), effective mass (m∗), plasma frequency (ωp), static dielectric constant (ε∞) and carrier concentration (N

  9. Classification and Cluster Analysis of Complex Time-of-Flight Secondary Ion Mass Spectrometry for Biological Samples

    OpenAIRE

    Reichenbach, Stephen E; Tian, Xue; Tao, Qingping; Henderson, Alex

    2009-01-01

    Identifying and separating subtly different biological samples is one of the most critical tasks in biological analysis. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is becoming a popular and important technique in the analysis of biological samples, because it can detect molecular information and characterize chemical composition. ToF-SIMS spectra of biological samples are enormously complex with large mass ranges and many peaks. As a result the classification and cluster analys...

  10. Ruthenium(ii) complexes with dppz: from molecular photoswitch to biological applications.

    Science.gov (United States)

    Li, Guanying; Sun, Lingli; Ji, Liangnian; Chao, Hui

    2016-09-14

    The DNA photoswitch [Ru(bpy)2dppz](2+) (bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine) has attracted much attention and become a powerful tool for studying the interaction of metal polypyridyl complexes with DNA. A large number of Ru-dppz complexes have been designed for a wide range of uses in many fields. In this perspective, we first introduce the latest results of Ru-dppz complexes that bind with DNA. The mechanisms of the light-switch effect and the structural modifications of Ru-dppz systems are also briefly introduced. We also review the recent advances in biological applications of the Ru-dppz system in DNA binders, cellular imaging, anticancer drugs, protein aggregation detection and chemosensors. PMID:27426487

  11. Solid state structures of cadmium complexes with relevance for biological systems.

    Science.gov (United States)

    Carballo, Rosa; Castiñeiras, Alfonso; Domínguez-Martín, Alicia; García-Santos, Isabel; Niclós-Gutiérrez, Juan

    2013-01-01

    This chapter provides a review of the literature on structural information from crystal structures determined by X-ray diffractometry of cadmium(II) complexes containing ligands of potential biological interest. These ligands fall into three broad classes, (i) those containing N-donors such as purine or pyrimidine bases and derivatives of adenine, guanine or cytosine, (ii) those containing carboxylate groups such as α-amino acids, in particular the twenty essential ones, the water soluble vitamins (B-complex) or the polycarboxylates of EDTA type ligands, and (iii) S-donors such as thiols/thiolates or dithiocarbamates. A crystal and molecular structural analysis has been carried out for some representative complexes of these ligands, specifically addressing the coordination mode of ligands, the coordination environment of cadmium and, in some significant cases, the intermolecular interactions. PMID:23430774

  12. Antibacterial activity of hybrid chitosan-cupric oxide nanoparticles on cotton fabric.

    Science.gov (United States)

    Dhineshbabu, Nattanmi Raman; Rajendran, Venkatachalam

    2016-02-01

    In this study, cupric oxide (CuO) nanoparticles were prepared using sonochemical method. The prepared nanoparticles were studied using X-ray diffraction (XRD) pattern, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) methods. The colloidal chitosan (CS) solution was prepared using ultrasound irradiation method and simultaneously mixed with CuO nanoparticles. The coatings of colloidal solution with and without CuO nanoparticles were studied through TEM images. The cotton fabrics were separately soaked in the prepared nanoparticle-containing (hybrid) solutions by sonication method followed by pad-dry-cure method. The structural, functional, and morphological analyses of the coated and uncoated fabrics were performed using XRD, FTIR-attenuated total reflectance, and SEM analyses, respectively. The hybrid-coated cotton fabrics showed better antibacterial activity against Staphylococcus aureus and Escherichia coli. The bioactivity performance of the coated fabrics was in the order of CuO-coated fabric > CS-coated fabric. PMID:26766868

  13. Shape-Dependent Surface Reactivity and Antimicrobial Activity of Nano-Cupric Oxide.

    Science.gov (United States)

    Gilbertson, Leanne M; Albalghiti, Eva M; Fishman, Zachary S; Perreault, François; Corredor, Charlie; Posner, Jonathan D; Elimelech, Menachem; Pfefferle, Lisa D; Zimmerman, Julie B

    2016-04-01

    Shape of engineered nanomaterials (ENMs) can be used as a design handle to achieve controlled manipulation of physicochemical properties. This tailored material property approach necessitates the establishment of relationships between specific ENM properties that result from such manipulations (e.g., surface area, reactivity, or charge) and the observed trend in behavior, from both a functional performance and hazard perspective. In this study, these structure-property-function (SPF) and structure-property-hazard (SPH) relationships are established for nano-cupric oxide (n-CuO) as a function of shape, including nanospheres and nanosheets. In addition to comparing these shapes at the nanoscale, bulk CuO is studied to compare across length scales. The results from comprehensive material characterization revealed correlations between CuO surface reactivity and bacterial toxicity with CuO nanosheets having the highest surface reactivity, electrochemical activity, and antimicrobial activity. While less active than the nanosheets, CuO nanoparticles (sphere-like shape) demonstrated enhanced reactivity compared to the bulk CuO. This is in agreement with previous studies investigating differences across length-scales. To elucidate the underlying mechanisms of action to further explain the shape-dependent behavior, kinetic models applied to the toxicity data. In addition to revealing different CuO material kinetics, trends in observed response cannot be explained by surface area alone. The compiled results contribute to further elucidate pathways toward controlled design of ENMs. PMID:26943499

  14. Intrinsic properties of cupric oxide nanoparticles enable effective filtration of arsenic from water

    Science.gov (United States)

    McDonald, Kyle J.; Reynolds, Brandon; Reddy, K. J.

    2015-06-01

    The contamination of arsenic in human drinking water supplies is a serious global health concern. Despite multiple years of research, sustainable arsenic treatment technologies have yet to be developed. This study demonstrates the intrinsic abilities of cupric oxide nanoparticles (CuO-NP) towards arsenic adsorption and the development of a point-of-use filter for field application. X-ray diffraction and X-ray photoelectron spectroscopy experiments were used to examine adsorption, desorption, and readsorption of aqueous arsenite and arsenate by CuO-NP. Field experiments were conducted with a point-of-use filter, coupled with real-time arsenic monitoring, to remove arsenic from domestic groundwater samples. The CuO-NP were regenerated by desorbing arsenate via increasing pH above the zero point of charge. Results suggest an effective oxidation of arsenite to arsenate on the surface of CuO-NP. Naturally occurring arsenic was effectively removed by both as-prepared and regenerated CuO-NP in a field demonstration of the point-of-use filter. A sustainable arsenic mitigation model for contaminated water is proposed.

  15. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions.

    Science.gov (United States)

    Itoh, Shinobu

    2015-07-21

    Active-oxygen species generated on a copper complex play vital roles in several biological and chemical oxidation reactions. Recent attention has been focused on the reactive intermediates generated at the mononuclear copper active sites of copper monooxygenases such as dopamine β-monooxygenase (DβM), tyramine β-monooxygenase (TβM), peptidylglycine-α-hydroxylating monooxygenase (PHM), and polysaccharide monooxygenases (PMO). In a simple model system, reaction of O2 and a reduced copper(I) complex affords a mononuclear copper(II)-superoxide complex or a copper(III)-peroxide complex, and subsequent H(•) or e(-)/H(+) transfer, which gives a copper(II)-hydroperoxide complex. A more reactive species such as a copper(II)-oxyl radical type species could be generated via O-O bond cleavage of the peroxide complex. However, little had been explored about the chemical properties and reactivity of the mononuclear copper-active-oxygen complexes due to the lack of appropriate model compounds. Thus, a great deal of effort has recently been made to develop efficient ligands that can stabilize such reactive active-oxygen complexes in synthetic modeling studies. In this Account, I describe our recent achievements of the development of a mononuclear copper(II)-(end-on)superoxide complex using a simple tridentate ligand consisting of an eight-membered cyclic diamine with a pyridylethyl donor group. The superoxide complex exhibits a similar structure (four-coordinate tetrahedral geometry) and reactivity (aliphatic hydroxylation) to those of a proposed reactive intermediate of copper monooxygenases. Systematic studies based on the crystal structures of copper(I) and copper(II) complexes of the related tridentate supporting ligands have indicated that the rigid eight-membered cyclic diamine framework is crucial for controlling the geometry and the redox potential, which are prerequisites for the generation of such a unique mononuclear copper(II)-(end-on)superoxide complex

  16. Synthesis, Characterization and Biological Evaluation of Transition Metal Complexes Derived from N, S Bidentate Ligands

    Directory of Open Access Journals (Sweden)

    Enis Nadia Md Yusof

    2015-05-01

    Full Text Available Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC with 2-methoxybenzaldehyde (2MB and 3-methoxybenzaldehyde (3MB. The ligands were reacted separately with acetates of Cu(II, Ni(II and Zn(II yielding 1:2 (metal:ligand complexes. The metal complexes formed were expected to have a general formula of [M(NS2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1 and S2M3MBH (2 were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7 and estrogen receptor-negative (MDA-MB-231 breast cancer cell lines. Only the Cu(II complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II complexes have a strong DNA binding affinity.

  17. Metal Complexes of Macrocyclic Schiff-Base Ligand: Preparation, Characterisation, and Biological Activity

    Science.gov (United States)

    Ahmed, Riyadh M.; Yousif, Enaam I.; Hasan, Hasan A.; Al-Jeboori, Mohamad J.

    2013-01-01

    A new macrocyclic multidentate Schiff-base ligand Na4L consisting of two submacrocyclic units (10,21-bis-iminomethyl-3,6,14,17-tricyclo[17.3.1.18,12]tetracosa-1(23),2,6,8,10,12(24),13,17,19,21,-decaene-23,24-disodium) and its tetranuclear metal complexes with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) are reported. Na4L was prepared via a template approach, which is based on the condensation reaction of sodium 2,4,6-triformyl phenolate with ethylenediamine in mole ratios of 2 : 3. The tetranuclear macrocyclic-based complexes were prepared from the reaction of the corresponding metal chloride with the ligand. The mode of bonding and overall geometry of the compounds were determined through physicochemical and spectroscopic methods. These studies revealed tetrahedral geometries about Mn, Co, and Zn atoms. However, square planar geometries have been suggested for NiII and CuII complexes. Biological activity of the ligand and its metal complexes against Gram positive bacterial strain Staphylococcus aureus and Gram negative bacteria Escherichia coli revealed that the metal complexes become more potentially resistive to the microbial activities as compared to the free ligand. However, these metal complexes do not exhibit any effects on the activity of Pseudomonas aeruginosa bacteria. There is therefore no inhibition zone. PMID:23935414

  18. Optimization of dielectrophoretic separation and concentration of pathogens in complex biological samples

    Science.gov (United States)

    Bisceglia, E.; Cubizolles, M.; Mallard, F.; Pineda, F.; Francais, O.; Le Pioufle, B.

    2013-05-01

    Sample preparation is a key issue of modern analytical methods for in vitro diagnostics of diseases with microbiological origins: methods to separate bacteria from other elements of the complex biological samples are of great importance. In the present study, we investigated the DEP force as a way to perform such a de-complexification of the sample by extracting micro-organisms from a complex biological sample under a highly non-uniform electric field in a micro-system based on an interdigitated electrodes array. Different parameters were investigated to optimize the capture efficiency, such as the size of the gap between the electrodes and the height of the capture channel. These parameters are decisive for the distribution of the electric field inside the separation chamber. To optimize these relevant parameters, we performed numerical simulations using COMSOL Multiphysics and correlated them with experimental results. The optimization of the capture efficiency of the device has first been tested on micro-organisms solution but was also investigated on human blood samples spiked with micro-organisms, thereby mimicking real biological samples.

  19. Classification of complex biological aging images using fuzzy Kolmogorov–Sinai entropy

    International Nuclear Information System (INIS)

    With the rapid advancement of biomedical imaging device technology, the role of image processing coupled with pattern recognition, which is the science of classification of objects into a number categories or classes, is increasingly becoming important for the study of biological and medical images. As a matter of fact, the term Bioimage Informatics has been coined in the community of bioinformatics to emphasize the essential application of computational methods in assisting life-science researchers in the quantitative analysis of large volumes of images. This paper presents the formulation of the Kolmogorov–Sinai entropy under the mechanism of fuzzy uncertainty as an effective image feature for complex pattern classification. In this study, the particular focus is on classifying biological images relating to aging. The performance of the proposed method was tested against several current challenging image datasets that are benchmarks for comparing image classification techniques for overcoming the limited capacity of existing automated biological image analysis. The results demonstrate the superiority of the use of the new image feature for classifying difficult image objects in current biology. (paper)

  20. Treatment of complex biological mixtures with pulsed electric fields An energy transfer characterization

    International Nuclear Information System (INIS)

    Sewage sludge from waste water treatment plants is a complex biological mixture and a problematic by-product because of valorisation restrictions. In order to limit its production, pulsed electric fields (PEF) were studied because of their biological effects and their potentially physico-chemical action. This work demonstrated a paradoxical phenomenon: cell lysis triggered a respirometric activation followed by a delayed lethality. This phenomenon was related to the leakage of internal compounds which were immediately bio-assimilated. At high energy expense, the plasmic membrane permeabilization led to cell death. Practically, with the technical configuration of the equipment, no hydrolysis was detected. This limitation decreases the interest for excess sludge reduction, but for the same reason, PEF cold sterilization technique can be assessed as a promising process. The representation of the electric energy transfer from electrodes to cell was exchanged by the study of mass transfer from the biological cell to the surrounding media under an electromotive force. Thus, the survival rate was modelled by a Sherwood number taking account of electrical, biological and hydraulic parameters. (author)

  1. Biological significance of complex N-glycans in plants and their impact on plant physiology

    Directory of Open Access Journals (Sweden)

    Richard eStrasser

    2014-07-01

    Full Text Available Asparagine (N-linked protein glycosylation is a ubiquitous co- and post-translational modification which can alter the biological function of proteins and consequently affects the development, growth and physiology of organisms. Despite an increasing knowledge of N-glycan biosynthesis and processing, we still understand very little about the biological function of individual N-glycan structures in plants. In particular, the N-glycan processing steps mediated by Golgi-resident enzymes create a structurally diverse set of protein-linked carbohydrate structures. Some of these complex N-glycan modifications like the presence of beta1,2-xylose, core alpha1,3-fucose or the Lewis a-epitope are characteristic for plants and are evolutionary highly conserved. In mammals, complex N-glycans are involved in different cellular processes including molecular recognition and signalling events. By contrast, the complex N-glycan function is still largely unknown in plants. Here, in this short review I focus on important recent developments and discuss their implications for future research in plant glycobiology and plant biotechnology.

  2. Monitoring prion protein expression in complex biological samples by SERS for diagnostic applications

    International Nuclear Information System (INIS)

    Surface-enhanced Raman spectroscopy (SERS) allows a new insight into the analysis of cell physiology. In this work, the difficulty of producing suitable substrates that, besides permitting the amplification of the Raman signal, do not interact with the biological material causing alteration, has been overcome by a combined method of hydrothermal green synthesis and thermal annealing. The SERS analysis of the cell membrane has been performed with special attention to the cellular prion protein PrPC. In addition, SERS has also been used to reveal the prion protein-Cu(II) interaction in four different cell models (B104, SH-SY5Y, GN11, HeLa), expressing PrPC at different levels. A significant implication of the current work consists of the intriguing possibility of revealing and quantifying prion protein expression in complex biological samples by a cheap SERS-based method, replacing the expensive and time-consuming immuno-assay systems commonly employed.

  3. Shadows of complexity: what biological networks reveal about epistasis and pleiotropy.

    Science.gov (United States)

    Tyler, Anna L; Asselbergs, Folkert W; Williams, Scott M; Moore, Jason H

    2009-02-01

    Pleiotropy, in which one mutation causes multiple phenotypes, has traditionally been seen as a deviation from the conventional observation in which one gene affects one phenotype. Epistasis, or gene-gene interaction, has also been treated as an exception to the Mendelian one gene-one phenotype paradigm. This simplified perspective belies the pervasive complexity of biology and hinders progress toward a deeper understanding of biological systems. We assert that epistasis and pleiotropy are not isolated occurrences, but ubiquitous and inherent properties of biomolecular networks. These phenomena should not be treated as exceptions, but rather as fundamental components of genetic analyses. A systems level understanding of epistasis and pleiotropy is, therefore, critical to furthering our understanding of human genetics and its contribution to common human disease. Finally, graph theory offers an intuitive and powerful set of tools with which to study the network bases of these important genetic phenomena. PMID:19204994

  4. Combined electron-beam and biological treatment of dyeing complex wastewater. Pilot plant experiments

    International Nuclear Information System (INIS)

    Pilot plant (output 1000 m3 day-1) with ELV electron accelerator (energy 1 MeV, beam power 40 kW) is in operation from October 1998. Combined electron-beam and biological treatment was used for purification of dyeing complex wastewater under continuous flow conditions. The main results of pilot-scale experiments consisted in the fact that decrease in total content of pollutants after biological treatment was substantially influenced by preliminary electron-beam treatment (mainly, because of radiolytic conversions of terephthalic acid being a main pollutant of the wastewater). Equal purification degree corresponded to 17 h of bio-treatment without preliminary irradiation and about 8 h of bio-treatment with preliminary electron-beam treatment at absorbed dose 1-2 kGy

  5. Synthesis, Spectroscopic Characterization and Biological Activities of Transition Metal Complexes Derived from a Tridentate Schiff Base

    Directory of Open Access Journals (Sweden)

    J. Senthil Kumaran

    2013-01-01

    Full Text Available A new series of Cu (II, Ni (II, Co (II and Zn (II complexes have been synthesized from the Schiff base derived from 4-hydroxy-3-methoxybenzylidine-4-aminoantipyrine and 2-aminophenol. The structural features have been determined from their elemental analysis, magnetic susceptibility, molar conductance, Mass, IR, UV-Vis, 1H-NMR, 13C-NMR and ESR spectral studies. The redox behavior of the copper complex has been studied by cyclic voltammetry. The data confirm that the complexes have composition of ML2 type. The electronic absorption spectral data of the complexes propose an octahedral geometry around the central metal ion. All the metal complexes with DNA structure were guided by the presence of inter-molecular C–H⋯O and C–H⋯N hydrogen bonds. The biological activity of the synthesized compounds were tested against the bacterial species such as Bacillus subtilis, Staphylococcus aureus, Proteus vulgaris and fungal species such as Candida albicans by the well-diffusion method.

  6. Biological activities of selected peptides: skin penetration ability of copper complexes with peptides.

    Science.gov (United States)

    Mazurowska, Lena; Mojski, Miroslaw

    2008-01-01

    This study concerning the permeability through skin barriers of copper complexes with peptides is an important part of the research on their biological activity. The transport of copper complexes through the skin is essential in treatment of dermatological dysfunctions connected to the deficiency of these elements in the skin. During the last several years, a special interest in transepidermal copper delivery has been observed. This is the reason why copper compounds have been used as active compounds in care cosmetics. Yet, the transport process of copper complexes with tripeptides, glycyl-histidyl-lysine GHK, or gamma-glutamyl-cysteinyl-glycine GSH through the stratum corneum has received very little attention in the literature so far. The penetration ability of GHK-Cu and GSH-Cu through the stratum corneum and the influence of the complexes with tripeptide on the copper ion transport process is the key factor in their cosmetic and pharmaceutical activity. The in vitro penetration process was studied in the model system, a Franz diffusion cell with a liposome membrane, where liquid crystalline systems of physicochemical properties similar to the ones of the intercellular cement of stratum corneum were used as a standard model of a skin barrier. The results obtained demonstrated that copper complexes permeate through the membranes modeling the horny lipid layer and showed the influence of peptides on the dynamics of copper ion diffusion. PMID:18350235

  7. Biological effects of ruthenium, osmium and copper complexes with tumour inhibiting ligands

    International Nuclear Information System (INIS)

    Many substances active against neoplastic cells lack solubility and bioavailability. Standard therapies using well-known platin analogues, among them cisplatin, can only cure a few types of malignances and have serious side effects. A major problem with many tumours is the occurrence of acquired and/or intrinsic resistance. In this study as an alternative to platinum agents, new complexes of ruthenium, osmium and copper complexes with pronouncedly biologically active ligands (indolobenzazepines, indolochinolines, chinoxalinones, flavones and benzimidazolyl-pyrazolo-pyridines) were under investigation in order to improve the desired destructive impact on cancer cells. Formulation complexes with transition metal centers which are binding to DNA or other biomolecules and biologically active ligands may yield synergistic effects, enhance the solubility of ligands and act against cancer cells in two ways. Modification of these complexes by changing the metal center and different ligands as well as an alteration of substituents were investigated in order to find a stable, well soluble and optimal structure for biomolecule interaction. The cell cycle regulated by cyclin-dependent kinases (Cdks) and their modulators is a major target of cancer therapy. Many ATP antagonists were synthesized, but among them there are only a few that have reached the stage of clinical trials. All complexes investigated here were tested as to their cytotoxic potency with three cancer cell lines (A549, CH1, SW480), some of them with three additional ones (LNCaP, T47D, N87) by an MTT assay. The results of structure-activity relationships of different cell lines were compared. All compounds under investigation showed cytotoxic potency with IC50 values in the micromolar to nanomolar range. Results with respect to selected compounds were then compared as to their influence on the cell cycle which was in most cases rather weak, and as to the induction of apoptosis (Annexin/PI stain), both measured

  8. The Synergistic Biologic Activity of Oleanolic and Ursolic Acids in Complex with Hydroxypropyl-γ-Cyclodextrin

    Directory of Open Access Journals (Sweden)

    Codruţa Soica

    2014-04-01

    Full Text Available Oleanolic and ursolic acids are natural triterpenic compounds with pentacyclic cholesterol-like structures which gives them very low water solubility, a significant disadvantage in terms of bioavailability. We previously reported the synthesis of inclusion complexes between these acids and cyclodextrins, as well as their in vivo evaluation on chemically induced skin cancer experimental models. In this study the synergistic activity of the acid mixture included inside hydroxypropyl-gamma-cyclodextrin (HPGCD was monitored using in vitro tests and in vivo skin cancer models. The coefficient of drug interaction (CDI was used to characterize the interactions as synergism, additivity or antagonism. Our results revealed an increased antitumor activity for the mixture of the two triterpenic acids, both single and in complex with cyclodextrin, thus proving their complementary biologic activities.

  9. Mueller matrix polarimetry for the characterization of complex random medium like biological tissues

    Indian Academy of Sciences (India)

    Nirmalya Ghosh; Jalpa Soni; M F G Wood; M A Wallenberg; I A Vitkin

    2010-12-01

    The polarization parameters of light scattered from biological tissues contain wealth of morphological and functional information of potential biomedical importance. But, in optically thick turbid media such as tissues, numerous complexities due to multiple scattering and simultaneous occurrences of many polarization events present formidable challenges, in terms of both accurate measurement and unique interpretation of the individual polarimetry characteristics. We have developed and validated an expanded Mueller matrix decomposition approach to overcome this problem. The approach was validated theoretically with a polarization-sensitive Monte Carlo light propagation model and experimentally by recording Mueller matrices from tissue-like complex random medium. In this paper, we discuss our comprehensive turbid polarimetry platform consisting of the experimental polarimetry system, forward Monte Carlo modelling and inverse polar decomposition analysis. Initial biomedical applications of this novel general method for polarimetry analysis in random media are also presented.

  10. Role of Histone-Modifying Enzymes and Their Complexes in Regulation of Chromatin Biology.

    Science.gov (United States)

    DesJarlais, Renee; Tummino, Peter J

    2016-03-22

    In 1964, Alfrey and colleagues proposed that acetylation and methylation of histones may regulate RNA synthesis and described "the possibility that relatively minor modifications of histone structure, taking place on the intact protein molecule, offer a means of switching-on or off RNA synthesis at different loci along the chromosome" [Allfrey, V., Faulkner, R., and Mirsky, A. (1964) Proc. Natl. Acad. Sci. U.S.A. 51, 786]. Fifty years later, this prescient description provides a simple but conceptually accurate model for the biological role of histone post-translational modifications (PTMs). The basic unit of chromosomes is the nucleosome, with double-stranded DNA wrapped around a histone protein oligomer. The "tails" of histone proteins are post-translationally modified, which alters the physical properties of nucleosomes in a manner that impacts gene accessibility for transcription and replication. Enzymes that catalyze the addition and removal of histone PTMs, histone-modifying enzymes (HMEs), are present in large protein complexes, with DNA-binding proteins, ATP-dependent chromatin remodeling enzymes, and epigenetic reader proteins that bind to post-translationally modified histone residues [Arrowsmith, C. H., Bountra, C., Fish, P. V., Lee, K., and Schapira, M. (2012) Nat. Rev. Drug Discovery 11, 384-400]. The activity of HME complexes is coordinated with that of other chromatin-associated complexes that, together, regulate gene transcription, DNA repair, and DNA replication. In this context, the enzymes that catalyze addition and removal of histone PTMs are an essential component of the highly regulated mechanism for accessing compacted DNA. To fully understand the function of HMEs, the structure of nucleosomes, their natural substrate, will be described. Each major class of HMEs subsequently will be discussed with regard to its biochemistry, enzymatic mechanism, and biological function in the context of a prototypical HME complex. PMID:26745824

  11. Synthesis, characterization and biological evaluation of novel Ru(II)-arene complexes containing intercalating ligands.

    Science.gov (United States)

    Nikolić, Stefan; Rangasamy, Loganathan; Gligorijević, Nevenka; Aranđelović, Sandra; Radulović, Siniša; Gasser, Gilles; Grgurić-Šipka, Sanja

    2016-07-01

    Three new ruthenium(II)-arene complexes, namely [(η(6)-p-cymene)Ru(Me2dppz)Cl]PF6 (1), [(η(6)-benzene)Ru(Me2dppz)Cl]PF6 (2) and [(η(6)-p-cymene)Ru(aip)Cl]PF6 (3) (Me2dppz=11,12-dimethyldipyrido[3,2-a:2',3'-c]phenazine; aip=2-(9-anthryl)-1H-imidazo[4,5-f] [1,10] phenanthroline) have been synthesized and characterized using different spectroscopic techniques including elemental analysis. The complexes were found to be well soluble and stable in DMSO. The biological activity of the three complexes was tested in three different human cancer cell lines (A549, MDA-MB-231 and HeLa) and in one human non-cancerous cell line (MRC-5). Complexes 1 and 3, carrying η(6)-p-cymene as the arene ligand, were shown to be toxic in all cell lines in the low micromolar/subnanomolar range, with complex 1 being the most cytotoxic complex of the series. Flow cytometry analysis revealed that complex 1 caused concentration- and time-dependent arrest of the cell cycle in G2-M and S phases in HeLa cells. This event is followed by the accumulation of the sub-G1 DNA content after 48h, in levels higher than cisplatin and in the absence of phosphatidylserine externalization. Fluorescent microscopy and acridine orange/ethidium bromide staining revealed that complex 1 induced both apoptotic and necrotic cell morphology characteristics. Drug-accumulation and DNA-binding studies performed by inductively coupled plasma mass spectrometry in HeLa cells showed that the total ruthenium uptake increased in a time- and concentration-dependent manner, and that complex 1 accumulated more efficiently than cisplatin at equimolar concentrations. The introduction of a Me2dppz ligand into the ruthenium(II)-p-cymene scaffold was found to allow the discovery of a strongly cytotoxic complex with significantly higher cellular uptake and DNA-binding properties than cisplatin. PMID:26818702

  12. Systematic metabolite annotation and identification in complex biological extracts : combining robust mass spectrometry fragmentation and nuclear magnetic resonance spectroscopy

    OpenAIRE

    Hooft, van, J.A.

    2012-01-01

    Detailed knowledge of the chemical content of organisms, organs, tissues, and cells is needed to fully characterize complex biological systems. The high chemical variety of compounds present in biological systems is illustrated by the presence of a large variety of compounds, ranging from apolar lipids, semi-polar phenolic conjugates, toward polar sugars. A molecules’ chemical structure forms the basis to understand its biological function. The chemical identification process of small m...

  13. Combined HPLC-CUPRAC (cupric ion reducing antioxidant capacity) assay of parsley, celery leaves, and nettle.

    Science.gov (United States)

    Yildiz, Leyla; Başkan, Kevser Sözgen; Tütem, Esma; Apak, Reşat

    2008-10-19

    This study aims to identify the essential antioxidant compounds present in parsley (Petroselinum sativum) and celery (Apium graveolens) leaves belonging to the Umbelliferae (Apiaceae) family, and in stinging nettle (Urtica dioica) belonging to Urticaceae family, to measure the total antioxidant capacity (TAC) of these compounds with CUPRAC (cupric ion reducing antioxidant capacity) and ABTS spectrophotometric methods, and to correlate the TAC with high performance liquid chromatography (HPLC) findings. The CUPRAC spectrophotometric method of TAC assay using copper(II)-neocuproine (2,9-dimethyl-1,10-phenanthroline) as the chromogenic oxidant was developed in our laboratories. The individual antioxidant constituents of plant extracts were identified and quantified by HPLC on a C18 column using a modified mobile phase of gradient elution comprised of MeOH-0.2% o-phosphoric acid and UV detection for polyphenols at 280 nm. The TAC values of HPLC-quantified antioxidant constituents were found, and compared for the first time with those found by CUPRAC. The TAC of HPLC-quantified compounds accounted for a relatively high percentage of the observed CUPRAC capacities of plant extracts, namely 81% of nettle, 60-77% of parsley (in different hydrolyzates of extract and solid sample), and 41-57% of celery leaves (in different hydrolyzates). The CUPRAC total capacities of the 70% MeOH extracts of studied plants (in the units of mmol trolox g(-1)plant) were in the order: celery leaves>nettle>parsley. The TAC calculated with the aid of HPLC-spectrophotometry did not compensate for 100% of the CUPRAC total capacities, because all flavonoid glycosides subjected to hydrolysis were either not detectable with HPLC, or not converted to the corresponding aglycons (i.e., easily detectable and quantifiable with HPLC) during the hydrolysis step. PMID:18804638

  14. Systematic metabolite annotation and identification in complex biological extracts : combining robust mass spectrometry fragmentation and nuclear magnetic resonance spectroscopy

    NARCIS (Netherlands)

    Hooft, van der J.J.J.

    2012-01-01

    Detailed knowledge of the chemical content of organisms, organs, tissues, and cells is needed to fully characterize complex biological systems. The high chemical variety of compounds present in biological systems is illustrated by the presence of a large variety of compounds, ranging from apolar lip

  15. Design, spectral characterization and biological studies of transition metal(II) complexes with triazole Schiff bases

    Science.gov (United States)

    Hanif, Muhammad; Chohan, Zahid H.

    2013-03-01

    A new series of three biologically active triazole derived Schiff base ligands L1-L3 have been synthesized in equimolar reaction of 3-amino-1H-1,2,4-triazole with pyrrol-2-carboxaldehyde, 4-bromo-thiophene-2-carboxaldehyde, and 5-iodo-2-hydroxy benzaldehyde. The prepared Schiff bases were used for further complex formation reaction with different metal elements like Co(II), Ni(II), Cu(II) and Zn(II) as chlorides by using a molar ratio of ligand:metal as 2:1. The structure and bonding nature of all the compounds were identified by their physical, spectral and analytical data. All the metal(II) complexes possessed an octahedral geometry except the Cu(II) complexes which showed a distorted octahedral geometry. All the synthesized compounds, were studied for their in vitro antibacterial, and antifungal activities, against four Gram-negative (Escherichia coli, Shigella sonnei, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and against six fungal strains (Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata) by using agar-well diffusion method. It has been shown that all the synthesized compounds showed moderate to significant antibacterial activity against one or more bacterial strains. In vitro Brine Shrimp bioassay was also carried out to investigate the cytotoxic properties of these compounds. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination.

  16. Biological properties of novel ruthenium- and osmium-nitrosyl complexes with azole heterocycles.

    Science.gov (United States)

    Novak, Maria S; Büchel, Gabriel E; Keppler, Bernhard K; Jakupec, Michael A

    2016-06-01

    Since the discovery that nitric oxide (NO) is a physiologically relevant molecule, there has been great interest in the use of metal nitrosyl compounds as antitumor pharmaceuticals. Particularly interesting are those complexes which can deliver NO to biological targets. Ruthenium- and osmium-based compounds offer lower toxicity compared to other metals and show different mechanisms of action as well as different spectra of activity compared to platinum-based drugs. Novel ruthenium- and osmium-nitrosyl complexes with azole heterocycles were studied to elucidate their cytotoxicity and possible interactions with DNA. Apoptosis induction, changes of mitochondrial transmembrane potential and possible formation of reactive oxygen species were investigated as indicators of NO-mediated damage by flow cytometry. Results suggest that ruthenium- and osmium-nitrosyl complexes with the general formula (indazolium)[cis/trans-MCl4(NO)(1H-indazole)] have pronounced cytotoxic potency in cancer cell lines. Especially the more potent ruthenium complexes strongly induce apoptosis associated with depolarization of mitochondrial membranes, and elevated reactive oxygen species levels. Furthermore, a slight yet not unequivocal trend to accumulation of intracellular cyclic guanosine monophosphate attributable to NO-mediated effects was observed. PMID:26961253

  17. New neutral and lipophilic technetium complexes based on a cytectrene moiety. Synthesis, characterization and biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    El Aissi, Radhia [National Centre of Sciences and Nuclear Technology, Sidi Thabet (Tunisia). Radiopharmaceutical Unit; CNRS, Laboratoire de Synthese et Physico-Chimie de Molecules d' Interet Biologique, SPCMIB, UMR 5068, Toulouse (France); Toulouse Univ., UPS, Laboratoire de Synthese et Physico-Chimie de Molecules d' Interet Biologique, SPCMIB, UMR 5068, Toulouse (France); Malek-Saied, Nadia; Saidi, Mouldi [National Centre of Sciences and Nuclear Technology, Sidi Thabet (Tunisia). Radiopharmaceutical Unit; Mallet-Ladeira, Sonia [Toulouse Univ., UPS et CNRS, FR2599 (France). Inst. de Chimie de Toulouse; Coulais, Yvon [Toulouse Univ. (France). Lab. ' ' Traceurs et traitement de l' image' ' ; Benoist, Eric [CNRS, Laboratoire de Synthese et Physico-Chimie de Molecules d' Interet Biologique, SPCMIB, UMR 5068, Toulouse (France); Toulouse Univ., UPS, Laboratoire de Synthese et Physico-Chimie de Molecules d' Interet Biologique, SPCMIB, UMR 5068, Toulouse (France)

    2015-05-01

    The synthesis, characterization and biological evaluation of five neutral and lipophilic {sup 99m}Tc-complexes, so-called cytectrenes, obtained from N-substitutedferrocenecarboxamide derivatives are reported. N-substituted ferrocenecarboxamide starting materials were obtained in two steps, with good yield and were fully characterized by classical spectroscopic methods including X-ray diffraction analysis for one of them. Using a microwave strategy for the {sup 99m}Tc-radiolabelling step, each cytectrene were obtained quickly (radiolabelling time < 5 min), from modest to good yield. The {sup 99m}Tc-complexes, characterized by HPLC comparison with cold rhenium complex analogues, are stable, neutral and lipophilic (logP{sub o/w} ranged between 1.8 and 2.9). Unfortunately, despite such suitable features, in vivo studies of two of them gave poor results, in terms of brain uptake. Both radiocompounds exhibited the maximum brain accumulation of 0.31% ID/g and 0.26% ID/g at 5 min post-injection, respectively, followed by a very fast washout from the brain (0.06% ID/g and 0.07% ID/g at 30 min post-injection, respectively). Although our ligand systems exhibited high stability against exchange reactions with blood proteins, the high radioactivity level in stomach, increasing with time, suggests in vivo decomposition of our complex to pertechnetate.

  18. Spectroscopic studies and biological activity of some transition metal complexes of unusual Schiff base

    Science.gov (United States)

    Abu Al-Nasr, Ahmad K.; Ramadan, Ramadan M.

    2013-03-01

    Unusual Schiff base ligand, 4-ethanimidoyl-6-[(1E)-N-(2-hydroxy-4-methylphenyl)ethanimidoyl]benzene-1,3-diol, L, was synthesized via catalytic process involving the interaction of some metal ions with a macrocyclic Schiff base (MSB). The transition metal derivatives [ML(H2O)4](NO3)3, M = Cr(III) and Fe(III), [NiL(H2O)4](NO3)2, [ML(H2O)2](NO3)2, M = Zn(II) and Cd(II), [Cl2Pd(μ-Cl)2PdL], [PtL(Cl)2] and [PtL(Cl)4] were also synthesized from the corresponding metal species with L. The Schiff bases and complexes were characterized by elemental analysis, mass spectrometry, IR and 1H NMR spectroscopy. The crystal structure of L was determined by X-ray analysis. The spectroscopic studies revealed a variety of structure arrangements for the complexes. The biological activities of L and metal complexes against the Escherchia coli as Gram-negative bacteria and Staphylococcus aureus as Gram-positive bacteria, and the two fungus Aspergillus flavus and Candida albicans were screened. The cytotoxicity of [PtL(Cl)2] complex, a cis-platin analogous, was checked as an antitumor agent on two breast cancer cell lines (MCF7 and T47D) and human liver carcinoma cell line (HepG2).

  19. Biological properties of novel ruthenium- and osmium-nitrosyl complexes with azole heterocycles

    KAUST Repository

    Novak, Maria S.

    2016-03-09

    Since the discovery that nitric oxide (NO) is a physiologically relevant molecule, there has been great interest in the use of metal nitrosyl compounds as antitumor pharmaceuticals. Particularly interesting are those complexes which can deliver NO to biological targets. Ruthenium- and osmium-based compounds offer lower toxicity compared to other metals and show different mechanisms of action as well as different spectra of activity compared to platinum-based drugs. Novel ruthenium- and osmium-nitrosyl complexes with azole heterocycles were studied to elucidate their cytotoxicity and possible interactions with DNA. Apoptosis induction, changes of mitochondrial transmembrane potential and possible formation of reactive oxygen species were investigated as indicators of NO-mediated damage by flow cytometry. Results suggest that ruthenium- and osmium-nitrosyl complexes with the general formula (indazolium)[cis/trans-MCl4(NO)(1H-indazole)] have pronounced cytotoxic potency in cancer cell lines. Especially the more potent ruthenium complexes strongly induce apoptosis associated with depolarization of mitochondrial membranes, and elevated reactive oxygen species levels. Furthermore, a slight yet not unequivocal trend to accumulation of intracellular cyclic guanosine monophosphate attributable to NO-mediated effects was observed.

  20. New neutral and lipophilic technetium complexes based on a cytectrene moiety. Synthesis, characterization and biological evaluation

    International Nuclear Information System (INIS)

    The synthesis, characterization and biological evaluation of five neutral and lipophilic 99mTc-complexes, so-called cytectrenes, obtained from N-substitutedferrocenecarboxamide derivatives are reported. N-substituted ferrocenecarboxamide starting materials were obtained in two steps, with good yield and were fully characterized by classical spectroscopic methods including X-ray diffraction analysis for one of them. Using a microwave strategy for the 99mTc-radiolabelling step, each cytectrene were obtained quickly (radiolabelling time < 5 min), from modest to good yield. The 99mTc-complexes, characterized by HPLC comparison with cold rhenium complex analogues, are stable, neutral and lipophilic (logPo/w ranged between 1.8 and 2.9). Unfortunately, despite such suitable features, in vivo studies of two of them gave poor results, in terms of brain uptake. Both radiocompounds exhibited the maximum brain accumulation of 0.31% ID/g and 0.26% ID/g at 5 min post-injection, respectively, followed by a very fast washout from the brain (0.06% ID/g and 0.07% ID/g at 30 min post-injection, respectively). Although our ligand systems exhibited high stability against exchange reactions with blood proteins, the high radioactivity level in stomach, increasing with time, suggests in vivo decomposition of our complex to pertechnetate.

  1. New water-soluble ruthenium(II) cytotoxic complex: biological activity and cellular distribution.

    Science.gov (United States)

    Morais, Tânia S; Santos, Filipa C; Jorge, Tiago F; Côrte-Real, Leonor; Madeira, Paulo J Amorim; Marques, Fernanda; Robalo, M Paula; Matos, António; Santos, Isabel; Garcia, M Helena

    2014-01-01

    A novel water soluble organometallic compound, [RuCp(mTPPMSNa)(2,2'-bipy)][CF3SO3] (TM85, where Cp=η(5)-cyclopentadienyl, mTPPMS=diphenylphosphane-benzene-3-sulfonate and 2,2'-bipy=2,2'-bipyridine) is presented herein. Studies of interactions with relevant proteins were performed to understand the behavior and mode of action of this complex in the biological environment. Electrochemical and fluorescence studies showed that TM85 strongly binds to albumin. Studies carried out to study the formation of TM85 which adducts with ubiquitin and cytochrome c were performed by electrospray ionization mass spectrometry (ESI-MS). Antitumor activity was evaluated against a variety of human cancer cell lines, namely A2780, A2780cisR, MCF7, MDAMB231, HT29, PC3 and V79 non-tumorigenic cells and compared with the reference drug cisplatin. TM85 cytotoxic effect was reduced in the presence of endocytosis modulators at low temperatures, suggesting an energy-dependent mechanism consistent with endocytosis. Ultrastructural analysis by transmission electron microscopy (TEM) revealed that TM85 targets the endomembranar system disrupting the Golgi and also affects the mitochondria. Disruption of plasma membrane observed by flow cytometry could lead to cellular damage and cell death. On the whole, the biological activity evaluated herein combined with the water solubility property suggests that complex TM85 could be a promising anticancer agent. PMID:24145065

  2. Y-12 National Security Complex Biological Monitoring and Abatement Program 2007 Calendar Yeare Report

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, M.J.; Greeley, M. S. Jr.; Morris, G. W.; Roy, W. K.; Ryan, M. G.; Smith, J. G.; Southworth, G. R.

    2008-07-01

    The National Pollutant Discharge Elimination System (NPDES) permit issued for the Oak Ridge Y-12 National Security Complex (Y-12 Complex) which became effective May 1, 2006, continued a requirement for a Biological Monitoring and Abatement Program (BMAP). The BMAP was originally developed in 1985 to demonstrate that the effluent limitations established for the Y-12 Complex protected the classified uses of the receiving stream (East Fork Poplar Creek: EFPC), in particular, the growth and propagation of aquatic life (Loar et al. 1989). The objectives of the current BMAP are similar, specifically to assess stream ecological conditions relative to regulatory limits and criteria, to assess ecological impacts as well as recovery in response to Y-12 operations, and to investigate the causes of continuing impacts. The BMAP consists of three tasks that reflect complementary approaches to evaluating the effects of the Y-12 Complex discharges on the biotic integrity of EFPC. These tasks include: (1) bioaccumulation monitoring, (2) benthic macroinvertebrate community monitoring, and (3) fish community monitoring. As required by the NPDES permit, the BMAP benthic macroinvertebrate community monitoring task includes studies to annually evaluate the receiving stream's biological integrity in comparison to TN Water Quality Criteria. BMAP monitoring is currently being conducted at five primary EFPC sites, although sites may be excluded or added depending upon the specific objectives of the various tasks. Criteria used in selecting the sites include: (1) location of sampling sites used in other studies, (2) known or suspected sources of downstream impacts, (3) proximity to U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR) boundaries, (4) appropriate habitat distribution, and (5) access. The primary sampling sites include upper EFPC at kilometers (EFKs) 24.4 and 23.4 [upstream and downstream of Lake Reality (LR) respectively]; EFK 18.7 (also EFK 18.2 and 19), located

  3. Biological evaluation of transdichloridoplatinum(II) complexes with 3- and 4-acetylpyridine in comparison to cisplatin

    International Nuclear Information System (INIS)

    In our previous study we reported the synthesis and cytotoxicity of two trans-platinum(II) complexes: trans-[PtCl2(3-acetylpyridine)2] (1) and trans-[PtCl2(4-acetylpyridine)2] (2), revealing significant cytotoxic potential of 2. In order to evaluate the mechanism underlying biological activity of both trans-Pt(II) isomers, comparative studies versus cisplatin were performed in HeLa, MRC-5 and MS1 cells. The cytotoxic activity of the investigated complexes was determined using SRB assay. The colagenolytic activity was determined using gelatin zymography, while the effect of platinum complexes on matrix metalloproteinases 2 and 9 mRNA expression was evaluated by quantitative real-time PCR. Apoptotic potential and cell cycle alterations were determined by FACS analyses. Western blot analysis was used to evaluate the effect on expression of DNA-repair enzyme ERCC1, and quantitative real-time PCR was used for the ERCC1 mRNA expression analysis. In vitro antiangiogenic potential was determined by tube formation assay. Platinum content in intracellular DNA and proteins was determined by inductively coupled plasma-optical emission spectrometry. Compound 2 displayed an apparent cytoselective profile, and flow cytometry analysis in HeLa cells indicated that 2 exerted antiproliferative effect through apoptosis induction, while 1 induced both apoptosis and necrosis. Action of 1 and 2, as analyzed by quantitative real-time PCR and Western blot, was associated with down-regulation of ERCC1. Both trans-complexes inhibited MMP-9 mRNA expression in HeLa, while 2 significantly abrogated in vitro tubulogenesis in MS1 cells. The ability of 2 to induce multiple and selective in vitro cytotoxic effects encourages further investigations of trans-platinum(II) complexes with substituted pyridines

  4. Cupric ion release and cytotoxicity for Yuangong Cu-IUDs and the release behavior of indomethacin for medicated 220 Cu-IUD

    Institute of Scientific and Technical Information of China (English)

    CAO BianMei; XI TingFei; ZHENG YuDong; YANG LiFeng; ZHENG Qi

    2009-01-01

    These years Yuangong copper-bearing intrauterine devices (Cu-IUDs) have been used because of less side effects in use. The corrosion of copper is essential to the success of contraception,and the release behavior of indomethacin from medicated Cu-IUD is related to its therapeutic effect. In this study,analytical methods were established to investigate the release behavior of cupric ion of three kinds of Yuangong Cu-IUDs and indomethacin of medicated Yuangong 220 Cu-IUD. Cu-IUDs were incubated in simulated uterine solution (SUS). The concentrations of cupric ion and indomethacin were analyzed by flame atomic absorption spectrometer (FAAS) for 60 days and UV/vis-3310 spectrophotometer for 60 days,respectively. The morphology of copper after corrosion was characterized by SEM. In addition,we detected cytotoxicity by MTT of L929 mouse fibroblasts cells caused by extracts of the three Yuangong Cu-IUDs. The release behavior of cupric ion for three kinds of Yuangong Cu-IUDs was biphasic,which consisted of the initial burst release and then slow and constant release. In vitro release experiment confirmed a biphasic release of indomethacin from Yuangong 220. The copper wire of Yuangong Cu-IUDs showed uneven corrosion. The RGR value of Yuangong 365 Cu-IUD was smaller than that of medicated Yuangong 220 Cu-IUD and RGR value of medicated Yuangong 220 Cu-IUD was smaller than that of Yuangong 300 Cu-IUD. The cupric ion release and indomethacin release showed biphasic. Indomethacin increased the cupric ion release rate and might diminish the adverse effects caused by burst release of cupric ion. The toxicity grade of these three Yuangong Cu-IUDs was 4. We should canvass the adverse events of Cu-IUDs based on practical experiments,and try our best to reduce the toxicity of Cu-IUDs.

  5. Y-12 National Security Complex Biological Monitoring And Abatement Program 2008 Calendar Year Report

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, M. J.; Greeley Jr., M. S.; Mathews, T. J.; Morris, G. W.; Roy, W. K.; Ryon, M. G.; Smith, J. G.; Southworth, G. R.

    2009-07-01

    The National Pollutant Discharge Elimination System (NPDES) permit issued for the Oak Ridge Y-12 National Security Complex (Y-12 Complex) which became effective May 1, 2006, continued a requirement for a Biological Monitoring and Abatement Program (BMAP). The BMAP was originally developed in 1985 to demonstrate that the effluent limitations established for the Y-12 Complex protected the classified uses of the receiving stream (East Fork Poplar Creek: EFPC), in particular, the growth and propagation of aquatic life (Loar et al. 1989). The objectives of the current BMAP are similar, specifically to assess stream ecological conditions relative to regulatory limits and criteria, to assess ecological impacts as well as recovery in response to Y-12 operations, and to investigate the causes of continuing impacts. The BMAP consists of three tasks that reflect complementary approaches to evaluating the effects of the Y-12 Complex discharges on the biotic integrity of EFPC. These tasks include: (1) bioaccumulation monitoring, (2) benthic macroinvertebrate community monitoring, and (3) fish community monitoring. As required by the NPDES permit, the BMAP benthic macroinvertebrate community monitoring task includes studies to annually evaluate the receiving stream's biological integrity in comparison to TN Water Quality Criteria. BMAP monitoring is currently being conducted at five primary EFPC sites, although sites may be excluded or added depending upon the specific objectives of the various tasks. Criteria used in selecting the sites include: (1) location of sampling sites used in other studies, (2) known or suspected sources of downstream impacts, (3) proximity to U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR) boundaries, (4) appropriate habitat distribution, and (5) access. The primary sampling sites include upper EFPC at kilometers (EFKs) 24.4 and 23.4 [upstream and downstream of Lake Reality (LR) respectively]; EFK 18.7 (also EFK 18.2 and 19), located off

  6. Solid-State Synthesis, Characterization, and Biological Activity of the Bioinorganic Complex of Aspartic Acid and Arsenic Triiodide

    Directory of Open Access Journals (Sweden)

    Guo-Qing Zhong

    2013-01-01

    Full Text Available The bioinorganic complex of aspartic acid and arsenic triiodide was synthesized by a solid-state reaction at room temperature. The formula of the complex is AsI3[HOOCCH2CH(NH2COOH]2.5. The crystal structure of the complex belongs to monoclinic system with lattice parameters: a=1.0019 nm, b=1.5118 nm, c=2.1971 nm, and β=100.28°. The infrared spectra can demonstrate the complex formation between the arsenic ion and aspartic acid, and the complex may be a dimer with bridge structure. The result of primary biological test indicates that the complex possesses better biological activity for the HL-60 cells of the leukemia than arsenic triiodide.

  7. Complex Biological Event Extraction from Full Text using Signatures of Linguistic and Semantic Features

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, Liam R.; Domico, Kelly O.; Corley, Courtney D.; Webb-Robertson, Bobbie-Jo M.

    2011-06-24

    Building on technical advances from the BioNLP 2009 Shared Task Challenge, the 2011 challenge sets forth to generalize techniques to other complex biological event extraction tasks. In this paper, we present the implementation and evaluation of a signature-based machine-learning technique to predict events from full texts of infectious disease documents. Specifically, our approach uses novel signatures composed of traditional linguistic features and semantic knowledge to predict event triggers and their candidate arguments. Using a leave-one out analysis, we report the contribution of linguistic and shallow semantic features in the trigger prediction and candidate argument extraction. Lastly, we examine evaluations and posit causes for errors of infectious disease track subtasks.

  8. Translating inter-individual genetic variation to biological function in complex phenotypes

    DEFF Research Database (Denmark)

    Yadav, Rachita

    , Chapter 1 provides an introduction to various methodologies utilised in this thesis work. Subsequently, chapters 2, 3 and 4 in the second section, address finding causal variations in childhood asthma. Chapter 2 focuses on a genome wide association study (GWAS) performed on asthma exacerbation case cohort...... changing proteome and phosphor-proteome in chemotherapy resistant breast cancer cell lines with high TIMP-1 gene expression. In summary, this thesis work demonstrates applications of various omic variations at different levels of complexity and their integration using systems biology based methodologies to...... associate them to multifactorial phenotypes. These studies help in revealing pivotal mechanistic details concerning the phenotypes, which can be further utilized in drug designing and disease management....

  9. Recovery Management in All Optical Networks Using Biologically-Inspired Complex Adaptive System

    Directory of Open Access Journals (Sweden)

    Inadyuti Dutt

    2013-01-01

    Full Text Available All-Optical Networks have the ability to display varied advantages like performance efficiency, throughput etc but their efficiency depends on their survivability as they are attack prone. These attacks can be categorised as active or passive because they try to access information within the network or alter the information in the network. The attack once detected has to be recovered by formulating back-up or alternative paths. The proposed heuristic uses biologically inspired Complex Adaptive System, inspired by Natural Immune System. The study shows that natural immune system exhibit unique behaviour of detecting foreign bodies in our body and removing them on their first occurrences. This phenomenon is being utilised in the proposed heuristic for recovery management in All-optical Network

  10. A simulation method for determining the optical response of highly complex photonic structures of biological origin

    CERN Document Server

    Dolinko, Andrés E

    2013-01-01

    We present a method based on a time domain simulation of wave propagation that allows studying the optical response of a broad range of dielectric photonic structures. This method is particularly suitable for dealing with complex biological structures. One of the main features of the proposed approach is the simple and intuitive way of defining the setup and the photonic structure to be simulated, which can be done by feeding the simulation with a digital image of the structure. We also develop a set of techniques to process the behavior of the evolving waves within the simulation. These techniques include a direction filter, that permits decoupling of waves travelling simultaneously in different directions, a dynamic differential absorber, to cancel the waves reflected at the edges of the simulation space, a multi-frequency excitation scheme based on a filter that allows decoupling waves of different wavelengths travelling simultaneously, and a near-to-far-field approach to evaluate the resulting wavefield o...

  11. Modeling Complex Biological Flows in Multi-Scale Systems using the APDEC Framework

    Energy Technology Data Exchange (ETDEWEB)

    Trebotich, D

    2006-06-24

    We have developed advanced numerical algorithms to model biological fluids in multiscale flow environments using the software framework developed under the SciDAC APDEC ISIC. The foundation of our computational effort is an approach for modeling DNA-laden fluids as ''bead-rod'' polymers whose dynamics are fully coupled to an incompressible viscous solvent. The method is capable of modeling short range forces and interactions between particles using soft potentials and rigid constraints. Our methods are based on higher-order finite difference methods in complex geometry with adaptivity, leveraging algorithms and solvers in the APDEC Framework. Our Cartesian grid embedded boundary approach to incompressible viscous flow in irregular geometries has also been interfaced to a fast and accurate level-sets method within the APDEC Framework for extracting surfaces from volume renderings of medical image data and used to simulate cardio-vascular and pulmonary flows in critical anatomies.

  12. Preparation and Biological Properties of Platinum(II Complex-Loaded Copolymer PLA-TPGS

    Directory of Open Access Journals (Sweden)

    Ha Phuong Thu

    2013-01-01

    Full Text Available A new nanodrug system containing bis(menthone thiosemicarbazonato Platinum(II complex (Pt-thiomen encapsulated with the block copolymers polylactide-d-α-tocopheryl polyethylene glycol 1000 succinate (PLA-TPGS was prepared by a modified solvent extraction/evaporation technique. The characteristics of the nanoparticles including surface morphology, size distribution, structure, and biological activities such as antimicrobial and cytotoxic activities were in vitro investigated. The spherical nanoparticles were around 50 nm in size with core-shell structure and narrow-size distribution. The encapsulated Pt-thiomen can avoid interaction with proteins in the blood plasma. The inhibitory activity of Pt-thiomen-loaded PLA-TPGS nanoparticles on the growth of some bacteria, fungi, and Hep-G2 cells suggests a possibility of developing PLA-TPGS-Pt-thiomen nanoparticles as one of the potential chemotherapeutic agents.

  13. Bions: a family of biomimetic mineralo-organic complexes derived from biological fluids.

    Directory of Open Access Journals (Sweden)

    Cheng-Yeu Wu

    Full Text Available Mineralo-organic nanoparticles form spontaneously in human body fluids when the concentrations of calcium and phosphate ions exceed saturation. We have shown previously that these mineralo-organic nanoparticles possess biomimetic properties and can reproduce the whole phenomenology of the so-called nanobacteria-mineralized entities initially described as the smallest microorganisms on earth. Here, we examine the possibility that various charged elements and ions may form mineral nanoparticles with similar properties in biological fluids. Remarkably, all the elements tested, including sodium, magnesium, aluminum, calcium, manganese, iron, cobalt, nickel, copper, zinc, strontium, and barium form mineralo-organic particles with bacteria-like morphologies and other complex shapes following precipitation with phosphate in body fluids. Upon formation, these mineralo-organic particles, which we term bions, invariably accumulate carbonate apatite during incubation in biological fluids; yet, the particles also incorporate additional elements and thus reflect the ionic milieu in which they form. Bions initially harbor an amorphous mineral phase that gradually converts to crystals in culture. Our results show that serum produces a dual inhibition-seeding effect on bion formation. Using a comprehensive proteomic analysis, we identify a wide range of proteins that bind to these mineral particles during incubation in medium containing serum. The two main binding proteins identified, albumin and fetuin-A, act as both inhibitors and seeders of bions in culture. Notably, bions possess several biomimetic properties, including the possibility to increase in size and number and to be sub-cultured in fresh culture medium. Based on these results, we propose that bions represent biological, mineralo-organic particles that may form in the body under both physiological and pathological homeostasis conditions. These mineralo-organic particles may be part of a

  14. Monitoring prion protein expression in complex biological samples by SERS for diagnostic applications

    Energy Technology Data Exchange (ETDEWEB)

    Manno, D; Filippo, E; Fiore, R; Serra, A [Dipartimento di Scienza dei Materiali, Universita del Salento, Lecce (Italy); Urso, E; Rizzello, A; Maffia, M [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Universita del Salento, Lecce (Italy)

    2010-04-23

    Surface-enhanced Raman spectroscopy (SERS) allows a new insight into the analysis of cell physiology. In this work, the difficulty of producing suitable substrates that, besides permitting the amplification of the Raman signal, do not interact with the biological material causing alteration, has been overcome by a combined method of hydrothermal green synthesis and thermal annealing. The SERS analysis of the cell membrane has been performed with special attention to the cellular prion protein PrP{sup C}. In addition, SERS has also been used to reveal the prion protein-Cu(II) interaction in four different cell models (B104, SH-SY5Y, GN11, HeLa), expressing PrP{sup C} at different levels. A significant implication of the current work consists of the intriguing possibility of revealing and quantifying prion protein expression in complex biological samples by a cheap SERS-based method, replacing the expensive and time-consuming immuno-assay systems commonly employed.

  15. Dissecting Complex and Multifactorial Nature of Alzheimer's Disease Pathogenesis: a Clinical, Genomic, and Systems Biology Perspective.

    Science.gov (United States)

    Talwar, Puneet; Sinha, Juhi; Grover, Sandeep; Rawat, Chitra; Kushwaha, Suman; Agarwal, Rachna; Taneja, Vibha; Kukreti, Ritushree

    2016-09-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by loss of memory and other cognitive functions. AD can be classified into familial AD (FAD) and sporadic AD (SAD) based on heritability and into early onset AD (EOAD) and late onset AD (LOAD) based on age of onset. LOAD cases are more prevalent with genetically complex architecture. In spite of significant research focused on understanding the etiological mechanisms, search for diagnostic biomarker(s) and disease-modifying therapy is still on. In this article, we aim to comprehensively review AD literature on established etiological mechanisms including role of beta-amyloid and apolipoprotein E (APOE) along with promising newer etiological factors such as epigenetic modifications that have been associated with AD suggesting its multifactorial nature. As genomic studies have recently played a significant role in elucidating AD pathophysiology, a systematic review of findings from genome-wide linkage (GWL), genome-wide association (GWA), genome-wide expression (GWE), and epigenome-wide association studies (EWAS) was conducted. The availability of multi-dimensional genomic data has further coincided with the advent of computational and network biology approaches in recent years. Our review highlights the importance of integrative approaches involving genomics and systems biology perspective in elucidating AD pathophysiology. The promising newer approaches may provide reliable means of early and more specific diagnosis and help identify therapeutic interventions for LOAD. PMID:26351077

  16. Synthesis, spectroscopic and biological studies of transition metal complexes of novel schiff bases derived from amoxicillin and sugars

    International Nuclear Information System (INIS)

    Fe (II), Co (II) and Ni (II) metal complexes of new Schiff bases derived from amoxicillin with sugars (D-Glucose, D-Galactose and D-Mannose) have been synthesized and characterized by elemental analysis, FTIR, electronic absorption, and atomic absorption spectroscopy, magnetic moment measurements and thermal analysis. It has been found that Schiff bases behave as bi-dentate ligands forming complexes with 1:2 (metal:ligand) stoichiometry. The complexes were neutral as confirmed by their low conductance values. The biological applications of complexes have been studied on two gram negative (Escherichia coli and Pseudomonas aeruginosa) and two gram positive (Bacillus subtilis and Staphylococcus aureus) microorganisms by Agar diffusion disc method. It has been found that all the complexes have higher biological activities than the pure amoxicillin. (author)

  17. Synthesis, structure and biological activity of nickel(II) complexes of 5-methyl 2-furfural thiosemicarbazone.

    Science.gov (United States)

    Jouad, E M; Larcher, G; Allain, M; Riou, A; Bouet, G M; Khan, M A; Thanh, X D

    2001-09-01

    5-Methyl 2-furfuraldehyde thiosemicarbazone (M5HFTSC) with nickel(II) leads to three types of complexes: [Ni(M5HFTSC)(2)X(2)], [Ni(M5FTSC)(2)] and [Ni(M5FTSC)(2)] x 2DMF. In the first type the ligand remains in thione form, while in the two other, the anionic thiolato form is involved. The species [Ni(M5HFTSC)(2)X(2)] has been characterized spectroscopically. The structures of [Ni(M5FTSC)(2)] x 2DMF and [Ni(M5FTSC)(2)] have been solved using X-ray diffraction. Biological studies of [Ni(M5HFTSC)(2)Cl(2)] have been carried out in vitro for antifungal activity on human pathogenic fungi, Aspergillus fumigatus and Candida albicans, and in vivo for toxicity on mice. The results are compared to those of the ligand, the metal salt and a similar copper complex [Cu(M5HFTSC)Cl(2)]. PMID:11566328

  18. Reduction theories elucidate the origins of complex biological rhythms generated by interacting delay-induced oscillations.

    Directory of Open Access Journals (Sweden)

    Ikuhiro Yamaguchi

    Full Text Available Time delay is known to induce sustained oscillations in many biological systems such as electroencephalogram (EEG activities and gene regulations. Furthermore, interactions among delay-induced oscillations can generate complex collective rhythms, which play important functional roles. However, due to their intrinsic infinite dimensionality, theoretical analysis of interacting delay-induced oscillations has been limited. Here, we show that the two primary methods for finite-dimensional limit cycles, namely, the center manifold reduction in the vicinity of the Hopf bifurcation and the phase reduction for weak interactions, can successfully be applied to interacting infinite-dimensional delay-induced oscillations. We systematically derive the complex Ginzburg-Landau equation and the phase equation without delay for general interaction networks. Based on the reduced low-dimensional equations, we demonstrate that diffusive (linearly attractive coupling between a pair of delay-induced oscillations can exhibit nontrivial amplitude death and multimodal phase locking. Our analysis provides unique insights into experimentally observed EEG activities such as sudden transitions among different phase-locked states and occurrence of epileptic seizures.

  19. Attomolar detection of botulinum toxin type A in complex biological matrices.

    Directory of Open Access Journals (Sweden)

    Karine Bagramyan

    Full Text Available BACKGROUND: A highly sensitive, rapid and cost efficient method that can detect active botulinum neurotoxin (BoNT in complex biological samples such as foods or serum is desired in order to 1 counter the potential bioterrorist threat 2 enhance food safety 3 enable future pharmacokinetic studies in medical applications that utilize BoNTs. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a botulinum neurotoxin serotype A assay with a large immuno-sorbent surface area (BoNT/A ALISSA that captures a low number of toxin molecules and measures their intrinsic metalloprotease activity with a fluorogenic substrate. In direct comparison with the "gold standard" mouse bioassay, the ALISSA is four to five orders of magnitudes more sensitive and considerably faster. Our method reaches attomolar sensitivities in serum, milk, carrot juice, and in the diluent fluid used in the mouse assay. ALISSA has high specificity for the targeted type A toxin when tested against alternative proteases including other BoNT serotypes and trypsin, and it detects the holotoxin as well as the multi-protein complex form of BoNT/A. The assay was optimized for temperature, substrate concentration, size and volume proportions of the immuno-sorbent matrix, enrichment and reaction times. Finally, a kinetic model is presented that is consistent with the observed improvement in sensitivity. CONCLUSIONS/SIGNIFICANCE: The sensitivity, specificity, speed and simplicity of the BoNT ALISSA should make this method attractive for diagnostic, biodefense and pharmacological applications.

  20. Detection of two isomeric binding configurations in a protein-aptamer complex with a biological nanopore.

    Science.gov (United States)

    Van Meervelt, Veerle; Soskine, Misha; Maglia, Giovanni

    2014-12-23

    Protein-DNA interactions play critical roles in biological systems, and they often involve complex mechanisms and dynamics that are not easily measured by ensemble experiments. Recently, we showed that folded proteins can be internalized inside ClyA nanopores and studied by ionic current recordings at the single-molecule level. Here, we use ClyA nanopores to sample the interaction between the G-quadruplex fold of the thrombin binding aptamer (TBA) and human thrombin (HT). Surprisingly, the internalization of the HT:TBA complex inside the nanopore induced two types of current blockades with distinguished residual current and lifetime. Using single nucleobase substitutions to TBA we showed that these two types of blockades originate from TBA binding to thrombin with two isomeric orientations. Voltage dependencies and the use of ClyA nanopores with two different diameters allowed assessing the effect of the applied potential and confinement and revealed that the two binding configurations of TBA to HT display different lifetimes. These results show that the ClyA nanopores can be used to probe conformational heterogeneity in protein:DNA interactions. PMID:25493908

  1. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  2. Novel Biologically Potent Diorganosilicon(IV Complexes of Indole-2,3-Dione Derivatives

    Directory of Open Access Journals (Sweden)

    R. V. Singh

    2004-01-01

    Full Text Available The aim of the present study is to synthesize some novel ecofriendly fungicides and bactericides of indole-2,3-dione derivatives, having important pharmacodynamic significance. The ligands used in the present account are derived by the condensation of 1,3-dihydro-3-[2-(phenyl-2-oxoethylidene]-2H-indol-2- one, 1,3-dihydro-3-[2-(4-nitrophenyl-2-oxoethylidene]-2H-indol-2-one and 1,3-dihydro-3-[2-(4-nitro-3-methylphenyl- 2-oxoethylidene]-2H-indol-2-one with hydrazinecarboxamide and hydrazinecarbothioamide. These imines, on interaction with diorganosilicon(IV chlorides, yield complexes having Si–O or Si–S and Si←N bonds. The structure of these compounds have been elucidated by elemental microanalyses and spectral [(UV, (IR, 1H, 13C and 29Si NMR] studies which unerringly point to a trigonal bipyramidal and octahedral geometries for unimolar and bimolar reactions, respectively. The potency of the synthesized compounds have been assessed by growth inhibiting potential of the complexes against variety of fungal and bacterial strains and male albino rats. The results of these biological studies have been compared with the standard fungicide, Bavistin. The studies demonstrate that, 1,3-dihydro-3-[2-(4-nitrophenyl-2-oxoethylidene]-2H-indol-2-onehydrazincarbothioamide and its diphenylsilicon(IV complexes have comparable antimicrobial activity and are less toxic to male albino rats than Bavistin.

  3. The biological networks in studying cell signal transduction complexity: The examples of sperm capacitation and of endocannabinoid system

    OpenAIRE

    Nicola Bernabò; Barbara Barboni; Mauro Maccarrone

    2014-01-01

    Cellular signal transduction is a complex phenomenon, which plays a central role in cell surviving and adaptation. The great amount of molecular data to date present in literature, together with the adoption of high throughput technologies, on the one hand, made available to scientists an enormous quantity of information, on the other hand, failed to provide a parallel increase in the understanding of biological events. In this context, a new discipline arose, the systems biology, aimed to ma...

  4. Synthesis, structural elucidation, biological, antioxidant and nuclease activities of some 5-Fluorouracil-amino acid mixed ligand complexes

    Science.gov (United States)

    Shobana, Sutha; Subramaniam, Perumal; Mitu, Liviu; Dharmaraja, Jeyaprakash; Arvind Narayan, Sundaram

    2015-01-01

    Some biologically active mixed ligand complexes (1-9) have been synthesized from 5-Fluorouracil (5-FU; A) and amino acids (B) such as glycine (gly), L-alanine (ala) and L-valine (val) with Ni(II), Cu(II) and Zn(II) ions. The synthesized mixed ligand complexes (1-9) were characterized by various physico-chemical, spectral, thermal and morphological studies. 5-Fluorouracil and its mixed ligand complexes have been tested for their in vitro biological activities against some pathogenic bacterial and fungal species by the agar well diffusion method. The in vitro antioxidant activities of 5-Fluorouracil and its complexes have also been investigated by using the DPPH assay method. The results demonstrate that Cu(II) mixed ligand complexes (4-6) exhibit potent biological as well as antioxidant activities compared to 5-Fluorouracil and Ni(II) (1-3) and Zn(II) (7-9) mixed ligand complexes. Further, the cleaving activities of CT DNA under aerobic conditions show moderate activity with the synthesized Cu(II) and Ni(II) mixed ligand complexes (1-6) while no activity is seen with Zn(II) complexes (7-9). Binding studies of CT DNA with these complexes show a decrease in intensity of the charge transfer band to the extent of 5-15% along with a minor red shift. The free energy change values (Δ‡G) calculated from intrinsic binding constants indicate that the interaction between mixed ligand complex and DNA is spontaneous.

  5. Ecological complexity in a coffee agroecosystem: spatial heterogeneity, population persistence and biological control.

    Directory of Open Access Journals (Sweden)

    Heidi Liere

    Full Text Available BACKGROUND: Spatial heterogeneity is essential for the persistence of many inherently unstable systems such as predator-prey and parasitoid-host interactions. Since biological interactions themselves can create heterogeneity in space, the heterogeneity necessary for the persistence of an unstable system could be the result of local interactions involving elements of the unstable system itself. METHODOLOGY/PRINCIPAL FINDINGS: Here we report on a predatory ladybird beetle whose natural history suggests that the beetle requires the patchy distribution of the mutualism between its prey, the green coffee scale, and the arboreal ant, Azteca instabilis. Based on known ecological interactions and the natural history of the system, we constructed a spatially-explicit model and showed that the clustered spatial pattern of ant nests facilitates the persistence of the beetle populations. Furthermore, we show that the dynamics of the beetle consuming the scale insects can cause the clustered distribution of the mutualistic ants in the first place. CONCLUSIONS/SIGNIFICANCE: From a theoretical point of view, our model represents a novel situation in which a predator indirectly causes a spatial pattern of an organism other than its prey, and in doing so facilitates its own persistence. From a practical point of view, it is noteworthy that one of the elements in the system is a persistent pest of coffee, an important world commodity. This pest, we argue, is kept within limits of control through a complex web of ecological interactions that involves the emergent spatial pattern.

  6. Cu(II AND Zn(II COMPLEX COMPOUNDS WITH BIGUANIDES AROMATIC DERIVATIVES. SYNTHESIS, CHARACTERIZATION, BIOLOGICAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Ticuţa Negreanu-Pîrjol

    2011-05-01

    Full Text Available In this paper we report the synthesis, physical-chemical characterization and antimicrobial activity of some new complex compounds of hetero-aromatic biguanides ligands, chlorhexidine base (CHX and chlorhexidine diacetate (CHXac2 with metallic ions Cu(II and Zn(II, in different molar ratio. The synthesized complexes were characterized by elemental chemical analysis and differential thermal analysis. The stereochemistry of the metallic ions was determined by infrared spectra, UV-Vis, EPR spectroscopy and magnetic susceptibility in the aim to establish the complexes structures. The biological activity of the new complex compounds was identified in solid technique by measuring minimum inhibition diameter of bacterial and fungal culture, against three standard pathogen strains, Escherichia coli ATCC 25922, Staphilococcus aureus ATCC 25923 and Candida albicans ATCC 10231. The results show an increased specific antimicrobial activity for the complexes chlorhexidine:Cu(II 1:1 and 1:2 compared with the one of the Zn(II complexes.

  7. Studies of Complex Biological Systems with Applications to Molecular Medicine: The Need to Integrate Transcriptomic and Proteomic Approaches

    Directory of Open Access Journals (Sweden)

    Elena Silvestri

    2011-01-01

    Full Text Available Omics approaches to the study of complex biological systems with potential applications to molecular medicine are attracting great interest in clinical as well as in basic biological research. Genomics, transcriptomics and proteomics are characterized by the lack of an a priori definition of scope, and this gives sufficient leeway for investigators (a to discern all at once a globally altered pattern of gene/protein expression and (b to examine the complex interactions that regulate entire biological processes. Two popular platforms in “omics” are DNA microarrays, which measure messenger RNA transcript levels, and proteomic analyses, which identify and quantify proteins. Because of their intrinsic strengths and weaknesses, no single approach can fully unravel the complexities of fundamental biological events. However, an appropriate combination of different tools could lead to integrative analyses that would furnish new insights not accessible through one-dimensional datasets. In this review, we will outline some of the challenges associated with integrative analyses relating to the changes in metabolic pathways that occur in complex pathophysiological conditions (viz. ageing and altered thyroid state in relevant metabolically active tissues. In addition, we discuss several new applications of proteomic analysis to the investigation of mitochondrial activity.

  8. Synthesis, structure, and biological evaluation of a copper(ii) complex with fleroxacin and 1,10-phenanthroline.

    Science.gov (United States)

    Xiao, Ying; Wang, Qing; Huang, Yanmei; Ma, Xiangling; Xiong, Xinnuo; Li, Hui

    2016-07-01

    A novel mixed-ligand Cu(ii) complex combined with the quinolone drug fleroxacin and 1,10-phenanthroline was synthesized in this work. The crystal structure of the complex was characterized via X-ray crystallography, which was the first reported single crystal complex of fleroxacin. Results showed that Cu(ii) was coordinated through pyridone oxygen and one carboxylate oxygen atom of fleroxacin, as well as two nitrogen atoms from 1,10-phenanthroline. Various characterization methods, including Fourier transform infrared, elementary analysis, thermogravimetry, and X-ray powder diffraction, were applied. The Cu(ii)-quinolone complex exhibited favorable biological activities, and was proved to be capable of transforming supercoiled PUC19 DNA into nicked form under hydrolytic conditions. The obtained pseudo-Michaelis-Menten kinetic parameter was 12.64 h(-1), which corresponded to a million-fold rate enhancement in DNA cleavage. In addition, the interaction capacity of the complex with human serum albumin (HSA) was investigated. The results demonstrated a moderately intense combination between HSA and the complex. The complex evidently quenched the fluorescence of HSA. Approximately 19.2% of the quenching was attributed to Förster resonance energy transfer (FRET), whereas the rest was caused by ground-state complex formation (molar ratio of HSA : complex = 1 : 2). The energy of the complex was excited during FRET, which increased the fluorescence of the complex by approximately 18%. PMID:27301999

  9. Analysis of undergraduate students' conceptual models of a complex biological system across a diverse body of learners

    Science.gov (United States)

    Dirnbeck, Matthew R.

    Biological systems pose a challenge both for learners and teachers because they are complex systems mediated by feedback loops; networks of cause-effect relationships; and non-linear, hierarchical, and emergent properties. Teachers and scientists routinely use models to communicate ideas about complex systems. Model-based pedagogies engage students in model construction as a means of practicing higher-order reasoning skills. One such modeling paradigm describes systems in terms of their structures, behaviors, and functions (SBF). The SBF framework is a simple modeling language that has been used to teach about complex biological systems. Here, we used student-generated SBF models to assess students' causal reasoning in the context of a novel biological problem on an exam. We compared students' performance on the modeling problem, their performance on a set of knowledge/comprehension questions, and their performance on a set of scientific reasoning questions. We found that students who performed well on knowledge and understanding questions also constructed more networked, higher quality models. Previous studies have shown that learners' mental maps increase in complexity with increased expertise. We wanted to investigate if biology students with varying levels of training in biology showed a similar pattern when constructing system models. In a pilot study, we administered the same modeling problem to two additional groups of students: 1) an animal physiology course for students pursuing a major in biology (n=37) and 2) an exercise physiology course for non-majors (n=27). We found that there was no significant difference in model organization across the three student populations, but there was a significant difference in the ability to represent function between the three populations. Between the three groups the non-majors had the lowest function scores, the introductory majors had the middle function scores, and the upper division majors had the highest function

  10. The chemical biology of Cu(II) complexes with imidazole or thiazole containing ligands: Synthesis, crystal structures and comparative biological activity.

    Science.gov (United States)

    Lewis, Adam; McDonald, Molly; Scharbach, Stephanie; Hamaway, Stefan; Plooster, Melissa; Peters, Kyle; Fox, Kristin M; Cassimeris, Lynne; Tanski, Joseph M; Tyler, Laurie A

    2016-04-01

    The synthesis and characterization of two copper(II) complexes containing 2-(2-pyridyl)benzimidazole (PyBIm) are reported with the biological activity of these two complexes and a third Cu(II) complex containing 2-(2-pyridyl)benzothiazole (PyBTh). Complex 1, [Cu(PyBIm)(NO3)(H2O)](NO3), is a four coordinate, distorted square planar species with one ligand (N,N), nitrate and water bound to Cu(II). The [Cu(PyBIm)3](BF4)2 complex (2) has distorted octahedral geometry with a 3:1 Py(BIm) ligand to metal ratio. The distorted trigonal bi-pyramidal geometry of compound 3, [Cu(PyBTh)2(H2O)](BF4)2, is comprised of two PyBTh ligands and one water. Biological activity of 1-3 has been assessed by analyzing DNA interaction, nuclease ability, cytotoxic activity and antibacterial properties. Complex 3 exhibits potent concentration dependent SC-DNA cleavage forming single- and double-nicked DNA in contrast to the weak activity of complexes 1 and 2. Mechanistic studies indicate that all complexes utilize an oxidative mechanism however 1 and 2 employ O2(-) as the principal reactive oxygen species while the highly active 3 utilizes (1)O2. The interaction between 1-3 and DNA was investigated using fluorescence emission spectroscopy and revealed all complexes strongly intercalate DNA with Kapp values of 2.65×10(6), 1.85×10(6) and 2.72×10(6)M(-1), respectively. Cytotoxic effects of 1-3 were examined using HeLa and K562 cells and show cell death in the micromolar range with the activity of 1≈2 and were slightly higher than 3. Similar reactivity was observed in the antibacterial studies with E. coli and S. aureus. A detailed comparative analysis of the three complexes is presented. PMID:26828284

  11. Complex monitoring system for analytical detection and biological evaluation of soil micropollutants for a sustainable environment

    International Nuclear Information System (INIS)

    Complete text of publication follows. In the development of a complex soil contamination monitoring system including the detection of agriculture-related micropollutants, heavy metal contamination and ecotoxicity, a survey has been carried out in Bekes county (Hungary) using different techniques for the characterisation of soil and surface water status. Besides the representativity-optimisation of the sampling technique, in situ sensoric methods, instrumental analysis, biological tests (soil biology, ecotoxicity and mutagenicity) were also applied, and results obtained were presented in a spatial informatics system. The target group, indicators and methodology is in compliance with recommendations of the EEA monitoring working group. Contamination in arable lands and industrial areas has been investigated in 13 plots with 5 replications. Sampling has been carried out by using drilling machine and contaminant concentrations of soil profiles have been characterised down to ground water table. Pesticide residues were monitored by using GC-MS. Target analytes included triazine, phenoxyacetic acid, acetanilide and dinitroaniline herbicides, chlorinated hydrocarbon (CHC), organophosphate and carbamate insecticides, an insect hormonal agonist and a triazole fungicide. Besides banned persistent CHC insecticides (DDT, HCH, etc.), atrazine and acetochlor herbicides are common contaminants in Hungary, reaching 200 ng/g and 300 ng/ml concentration in the soil and surface water samples studied, and trifluralin and metolachlor were also detected in some cases. Heavy metal contamination was detected by ICP AES, and within-plot heterogeneities were studied throughout soil profiles. Nickel has been fund as a relatively common contaminant in arable lands in the area; however relation to fertilisers could not be confirmed. Even in small spatial scale (50x50 meters) a very high variability has been demonstrated in half of the experimental plots. The effects of pesticide residues in

  12. Towards targeting anticancer drugs: ruthenium(ii)-arene complexes with biologically active naphthoquinone-derived ligand systems.

    Science.gov (United States)

    Kubanik, Mario; Kandioller, Wolfgang; Kim, Kunwoo; Anderson, Robert F; Klapproth, Erik; Jakupec, Michael A; Roller, Alexander; Söhnel, Tilo; Keppler, Bernhard K; Hartinger, Christian G

    2016-08-16

    Anticancer active metal complexes with biologically active ligands have the potential to interact with more than one biological target, which could help to overcome acquired and/or intrinsic resistance of tumors to small molecule drugs. In this paper we present the preparation of 2-hydroxy-[1,4]-naphthoquinone-derived ligands and their coordination to a Ru(II)(η(6)-p-cymene)Cl moiety. The synthesis of oxime derivatives resulted in the surprising formation of nitroso-naphthalene complexes, as confirmed by X-ray diffraction analysis. The compounds were shown to be stable in aqueous solution but reacted with glutathione and ascorbic acid rather than undergoing reduction. One-electron reduction with pulse radiolysis revealed different behavior for the naphthoquinone and nitroso-naphthalene complexes, which was also observed in in vitro anticancer assays. PMID:27214822

  13. Synthesis, Structure and Biological Activity of Zn(II) Complex with Tris(benzimidazol-2-yl-methyl)amine Ligand

    Institute of Scientific and Technical Information of China (English)

    LIU,Xiao-Lan(刘小兰); ZHAO,Ru(赵茹); LIU,Xiao-Hong(刘晓红); YUE,Jun-Jie(岳俊杰); YIN,Yu-Xin(尹宇新); SUN,Yun(孙云); SUN,Ming(孙命)

    2004-01-01

    A new Zn(II) mononuclear complex with tris(benzimidazol-2-yl-methyl)amine (NTB) was synthesized with stoichiometry of [Zn(NTB)NO3]NO3·DIPY·DMF (DIPY∶4,4'-dipyridyl). The complex was characterized by elemental analysis, UV and IR spectra. The crystal structure was determined by using X-ray diffraction analysis. The crystal structure indicates that four N atoms and one O atom coordinate to zinc ion to construct a distorted trigonal-dipyramid configuration. Three nonprotonated N atoms from imidazole groups are in the equatorial plane, one alkylamino N atom and one O atom from in the axial directions. The biological activity assay shows that this complex presents certain biological activity by means of pyrogallol autoxidation and it can be called a model compound of superoxide dismutase (SOD).

  14. Assessing the Possibility of Biological Complexity on Other Worlds, with an Estimate of the Occurrence of Complex Life in the Milky Way Galaxy

    Directory of Open Access Journals (Sweden)

    Louis N. Irwin

    2014-05-01

    Full Text Available Rational speculation about biological evolution on other worlds is one of the outstanding challenges in astrobiology. With the growing confirmation that multiplanetary systems abound in the universe, the prospect that life occurs redundantly throughout the cosmos is gaining widespread support. Given the enormous number of possible abodes for life likely to be discovered on an ongoing basis, the prospect that life could have evolved into complex, macro-organismic communities in at least some cases merits consideration. Toward that end, we here propose a Biological Complexity Index (BCI, designed to provide a quantitative estimate of the relative probability that complex, macro-organismic life forms could have emerged on other worlds. The BCI ranks planets and moons by basic, first-order characteristics detectable with available technology. By our calculation only 11 (~1.7% of the extrasolar planets known to date have a BCI above that of Europa; but by extrapolation, the total of such planets could exceed 100 million in our galaxy alone. This is the first quantitative assessment of the plausibility of complex life throughout the universe based on empirical data. It supports the view that the evolution of complex life on other worlds is rare in frequency but large in absolute number.

  15. Synthesis, spectroscopic and biological studies of transition metal complexes of novel schiff bases derived from cephradine and sugars

    International Nuclear Information System (INIS)

    Fe(II), Co(II) and Ni(II) metal complexes of novel schiff bases derived from Cephradine and sugars (D-Glucose, L. Arabinose and D-Galactose) were synthesized and characterized by elemental analysis, magnetic susceptibility, thermal analysis, electronic absorption and FT-IR spectral studies. It has been found that schiff bases behave as bi-dentate-ligands forming complexes with 1:2 (metal:ligand) stoichiometry. the neutral nature of the complexes was confirmed by their low conductance values. The biological activities of complexes have been evaluated against two gram negative (Escherichia coli and Pseudomonas aeruginosa) and two gram positive (Bacillus subtilis and staphylococcus aureus) bacteria by Agar diffusion disc method. It has been found that the complexes have higher activity as compared to the pure Cephradine against the same bacteria. (author)

  16. Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology

    OpenAIRE

    Putty-Reddy Sudhir; Chung-Hsuan Chen

    2016-01-01

    A protein complex consists of two or more proteins that are linked together through protein–protein interactions. The proteins show stable/transient and direct/indirect interactions within the protein complex or between the protein complexes. Protein complexes are involved in regulation of most of the cellular processes and molecular functions. The delineation of protein complexes is important to expand our knowledge on proteins functional roles in physiological and pathological conditions. T...

  17. Realistic primary and new productions in a 3D global biogeochemical model: biological complexity or physical forcing?

    Science.gov (United States)

    Popova, E. E.; Coward, A. C.

    2003-04-01

    A nitrogen-based, five compartment biological model has been coupled to a one degree OCCAM (Ocean Circulation and Climate Advanced Modelling Project) model with a KPP ("K profile parameterisation") of the vertical mixing. The biological model state variables are Phytoplankton, Zooplankton, Detritus, Nitrate, and Ammonium. A comparison of the solution with global satellite ocean colour shows that the model is capable of a realistic description of the main seasonal and regional patterns of the surface chlorophyll. Agreement is also good for satellite derived estimates of primary production. In situ data available from local study sites (such as BATS, NABE, India, Papa) are used for the detailed comparison of the model output with the observed ecosystem dynamics in different biological provinces. We discuss performance of the physical and biological model in contrasting areas of the World Ocean. In spite of the biological model being a very simple one, we are able to reproduce the major differences between ecosystem dynamics of these areas. We believe that the success of any global biogeochemical model is dependent first of all on the correct representation of the upper mixed layer (UML) dynamics. Without being able to reproduce contrasting UML regimes in different areas of the World Ocean (such as difference between the North Atlantic and Southern Ocean, or North Atlantic and North Pacific), increased complexity biological models are in danger of producing the right results by the wrong reason.

  18. Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes

    Science.gov (United States)

    Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M. Arif

    2016-05-01

    We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica.

  19. Synthesis, structural characterization and biological studies of some nalidixic acid-metal complexes: Metalloantibiotic complexes of some divalent and trivalent metal ions

    Science.gov (United States)

    Al-Khodir, Fatima A. I.; Refat, Moamen S.

    2015-08-01

    This article describes the synthesis, characterization, computational and biological assessments of some divalent and trivalent metal (Ca(II), Fe(III), Pd(II) and Au(III)) complexes of nalidixic acid (nixH). The structures of these complexes were assigned using elemental analyses and spectral measurements e.g., IR, Raman, 1H NMR, 13C NMR and electronic techniques. These results indicated that, nalidixic acid reacts as a bidentate ligand bound to the metal ion through the oxygen atoms of carbonyl and carboxylate groups. The molar conductance measurements of the complexes in DMSO correspond to be non-electrolyte nature. Thus, these complexes may be formulated as [Ca(nix)(Cl)(H2O)3]. H2O, [Fe(nix)(Cl)2(H2O)2]·3H2O, [Pd(nix)(Cl)(H2O)] and [Au(nix)(Cl)2]. Base on the Coats-Redfern and Horowitz-Metzeger methods, the kinetic thermodynamic parameters (E∗, ΔS∗, ΔH∗ and ΔG∗) of the thermal decomposition reactions have been calculated from thermogravimetric curves of TG and DTG. The nano-scale range of the nalidixic acid complexes have been discussed using X-ray powder diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) analyzer. The computational studies for the synthesized complexes have been estimated.

  20. Copper(II) and nickel(II) complexes of benzyloxybenzaldehyde-4-phenyl-3-thiosemicarbazone: Synthesis, characterization and biological activity

    Science.gov (United States)

    Prathima, B.; Subba Rao, Y.; Adinarayana Reddy, S.; Reddy, Y. P.; Varada Reddy, A.

    2010-09-01

    Benzyloxybenzaldehyde-4-phenyl-3-thiosemicarbazone ligand (L) has been synthesized from benzyloxybenzaldehyde and 4-phenyl-3-thiosemicarbazide. Complexes of this ligand with chlorides of Cu(II) and Ni(II) have been prepared. The structure of the ligand (L) is proposed based on elemental analysis, IR and 1H NMR spectra. Its complexes with Cu(II) and Ni(II) ions are characterized from the studies of electronic as well as EPR spectra. On the basis of electronic and EPR studies, rhombically distorted octahedral structure has been proposed for Cu(II) complex while the Ni(II) complex has been found to acquire an octahedral structure. The ligand and their metal complexes have been tested in vitro for their biological effects. Their antibacterial activities against Gram-negative bacteria ( Escherichia coli and Klebsiella pneumoniae) and Gram-positive bacteria ( Staphylococcus aureus and Bacillus subtilis) have been investigated. The prepared metal complexes exhibit higher antibacterial activities than the parent ligand. The in vitro antioxidant activity of free ligand and its metal(II) complexes have also been investigated and the results however reveal that the ligand exhibits greater antioxidant activity than its complexes.

  1. Preparation, Physicochemical Characterization and Biological Evaluation of some Hesperidin Metal Complexes

    OpenAIRE

    Daoud, Safa; Afifi, Fatma U.; Amal G Al-Bakri; Kasabri, Violet; Hamdan, Imad I

    2014-01-01

    The ability of hesperidin (HP) to form complexes with five metals; cobalt, nickel, zinc, calcium and magnesium was investigated. The complexation was studied using U.V spectroscopic titration, in methanol as well as aqueous buffer solutions (physiological conditions). Potential complexes were studied by IR and NMR spectroscopy, melting point and their solubility were also evaluated. The interaction of HP and its metal complexes with DNA was investigated by U.V spectroscopy. HP and its potenti...

  2. Biological properties of aerococci and bacilli as a component of new associate-probiotic complex

    Directory of Open Access Journals (Sweden)

    S. I. Valchuk

    2015-03-01

    Full Text Available Dysbioses of the gastrointestinal tract are common among people of all ages and genders. Development of this pathology is associated with a number of complications, from indigestion to occurrence of malignant disease. Therefore, there is a need in development of measures of their prevention and correction. Probiotics are used as drugs against dysbiosis. Most of the presently known probiotics contain bacterial cells of one species, although combination preparations feature higher efficiency. At the same time, there are difficulties in construction of these drugs, primarily due to incompatibility of physiological properties of microorganisms and mutually antagonistic action of their components. The aim was to examine the compatibility of Bacillus subtilis and Aerococcus viridans in a single preparation, their antagonistic activity against different strains of test-cultures and general antagonism directed on different groups of bacteria for subsequent formation of associative probiotic complex. Properties of aerococci strains were studied and A. viridans 167 strain was selected for inclusion into the probiotic preparation. The tested strain showed the highest indicators of production of hydrogen peroxide, which is one of the mechanisms of antagonistic effect against opportunistic pathogens. General study of biological properties of aerococci strains showed that producing of hydrogen peroxide and superoxide radical in them was conditioned by functioning of NAD-independent lactatoxidase. It has been determined that antioxidant defense of aerococci from the action of endogenous and active excretable forms of oxygen was provided by activity of superoxide-dismutase and GSH-peroxidase. The method of deferred antagonism found no depressing mutual action between probiotic strains of B. subtilis 3 and A. viridans 167 at their joint cultivation. Inhibition of growth at the joint application of A. viridans 167 and B. subtilis 3 strains was recorded for both

  3. Solid State Structures of Alkali Metal Ion Complexes Formed by Low-Molecular-Weight Ligands of Biological Relevance.

    Science.gov (United States)

    Aoki, Katsuyuki; Murayama, Kazutaka; Hu, Ning-Hai

    2016-01-01

    This chapter provides structural data, mainly metal binding sites/modes, observed in crystal structures of alkali metal ion complexes containing low-molecular-weight ligands of biological relevance, mostly obtained from the Cambridge Structural Database (the CSD version 5.35 updated to February 2014). These ligands include (i) amino acids and small peptides, (ii) nucleic acid constituents (excluding quadruplexes and other oligonucleotides), (iii) simple carbohydrates, and (iv) naturally occurring antibiotic ionophores. For some representative complexes of these ligands, some details on the environment of the metal coordination and structural characteristics are described. PMID:26860299

  4. Removal of Trace Elements by Cupric Oxide Nanoparticles from Uranium In Situ Recovery Bleed Water and Its Effect on Cell Viability

    OpenAIRE

    Schilz, Jodi R.; Reddy, K J; Nair, Sreejayan; Thomas E Johnson; Tjalkens, Ronald B.; Krueger, Kem P.; Clark, Suzanne

    2015-01-01

    In situ recovery (ISR) is the predominant method of uranium extraction in the United States. During ISR, uranium is leached from an ore body and extracted through ion exchange. The resultant production bleed water (PBW) contains contaminants such as arsenic and other heavy metals. Samples of PBW from an active ISR uranium facility were treated with cupric oxide nanoparticles (CuO-NPs). CuO-NP treatment of PBW reduced priority contaminants, including arsenic, selenium, uranium, and vanadium. U...

  5. Molecular Mechanisms Used by Tumors to Escape Immune Recognition: Immunogenetherapy and the Cell Biology of Major Histocompatibility Complex Class I

    OpenAIRE

    Restifo, Nicholas P; Kawakami, Yutaka; Marincola, Franco; Shamamian, Peter; Taggarse, Akash; ESQUIVEL, FERNANDO; Rosenberg, Steven A.

    1993-01-01

    In this article, we explore the hypothesis that tumor cells can escape recognition by CD8+ T cells via deficiencies in antigen processing and presentation. Aspects of the molecular and cellular biology of major histocompatibility complex class I are reviewed. Evidence for histology-specific molecular mechanisms in the antigen-processing and -presentation deficiencies observed in some human and murine tumors is presented. Mechanisms identified include down-regulation of antigen processing, los...

  6. The biological networks in studying cell signal transduction complexity: The examples of sperm capacitation and of endocannabinoid system

    Science.gov (United States)

    Bernabò, Nicola; Barboni, Barbara; Maccarrone, Mauro

    2014-01-01

    Cellular signal transduction is a complex phenomenon, which plays a central role in cell surviving and adaptation. The great amount of molecular data to date present in literature, together with the adoption of high throughput technologies, on the one hand, made available to scientists an enormous quantity of information, on the other hand, failed to provide a parallel increase in the understanding of biological events. In this context, a new discipline arose, the systems biology, aimed to manage the information with a computational modeling-based approach. In particular, the use of biological networks has allowed the making of huge progress in this field. Here we discuss two possible application of the use of biological networks to explore cell signaling: the study of the architecture of signaling systems that cooperate in determining the acquisition of a complex cellular function (as it is the case of the process of activation of spermatozoa) and the organization of a single specific signaling systems expressed by different cells in different tissues (i.e. the endocannabinoid system). In both the cases we have found that the networks follow a scale free and small world topology, likely due to the evolutionary advantage of robustness against random damages, fastness and specific of information processing, and easy navigability. PMID:25379139

  7. A preliminary biological assessment of Long Lake National Wildlife Refuge Complex, North Dakota

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report represents an initial biological assessment of wetland conditions on Long Lake National Wildlife Refuge (NWR), Slade NWR, and Florence Lake NWR that was...

  8. Introduction to symposium: Arthropods and wildlife conservation: synergy in complex biological systems

    Science.gov (United States)

    The symposium will discuss the effects of arthropods and other stressors on wildlife conservation programs. Speakers with affiliations in wildlife biology, parasitology and entomology will be included in the program. Research of national and international interest will be presented....

  9. openBIS: a flexible framework for managing and analyzing complex data in biology research

    OpenAIRE

    Bauch Angela; Adamczyk Izabela; Buczek Piotr; Elmer Franz-Josef; Enimanev Kaloyan; Glyzewski Pawel; Kohler Manuel; Pylak Tomasz; Quandt Andreas; Ramakrishnan Chandrasekhar; Beisel Christian; Malmström Lars; Aebersold Ruedi; Rinn Bernd

    2011-01-01

    Abstract Background Modern data generation techniques used in distributed systems biology research projects often create datasets of enormous size and diversity. We argue that in order to overcome the challenge of managing those large quantitative datasets and maximise the biological information extracted from them, a sound information system is required. Ease of integration with data analysis pipelines and other computational tools is a key requirement for it. Results We have developed openB...

  10. Biological significance of complex N-glycans in plants and their impact on plant physiology

    OpenAIRE

    Strasser, Richard

    2014-01-01

    Asparagine (N)-linked protein glycosylation is a ubiquitous co- and post-translational modification which can alter the biological function of proteins and consequently affects the development, growth, and physiology of organisms. Despite an increasing knowledge of N-glycan biosynthesis and processing, we still understand very little about the biological function of individual N-glycan structures in plants. In particular, the N-glycan-processing steps mediated by Golgi-resident enzymes create...

  11. Physicochemical and biological study of a renal scintigraphy agent: the DMSA - 99mTc complex

    International Nuclear Information System (INIS)

    This research thesis deals with the study of the dimercaptosuccinic acid (DMSA) marked with 99mTc, a recently developed scintigraphy agent used for the kidney isotopic exploration. The author notably studied the relationships between the physicochemical properties of solutions of dimercaptosuccinic acid marked with 99mTc and the biological distribution of 99mTc in order to reach a better understanding of the biological mechanism which results in technetium fixation to the kidney

  12. Efficient Sample Preparation from Complex Biological Samples Using a Sliding Lid for Immobilized Droplet Extractions

    OpenAIRE

    Casavant, Benjamin P.; Guckenberger, David J.; Beebe, David J.; Berry, Scott M

    2014-01-01

    Sample preparation is a major bottleneck in many biological processes. Paramagnetic particles (PMPs) are a ubiquitous method for isolating analytes of interest from biological samples and are used for their ability to thoroughly sample a solution and be easily collected with a magnet. There are three main methods by which PMPs are used for sample preparation: (1) removal of fluid from the analyte-bound PMPs, (2) removal of analyte-bound PMPs from the solution, and (3) removal of the substrate...

  13. Radiocharacterization of the 99mTc-rufloxacin complex and biological evaluation in Staphylococcus aureus infected rat model

    International Nuclear Information System (INIS)

    99mTc-rufloxacin (99mTc-RUN) complex was prepared by reaction of different amounts of reduced sodium pertechnetate with different amount of Rufloxacin (RUN) antibiotic for the in vivo scintigraphic localization of the Staphylococcus aureus (S. aureus) infectious foci in Male Wister Rats (MWR) model. The 99mTc-RUN complex was radiochemically and biologically characterized in terms of radiochemical stability in saline, serum, in vitro binding with S. aureus and biodistribution in artificially infected with S. aureus MWR. The 99mTc-RUN complex showed stability more than 90% up to 240 min in normal saline with a maximum stability value of 98.10 ± 0.18% at 30 min after reconstitution. At 37 deg C the complex showed in vitro permanence in serum up to 16 h with 13.90% side products during incubation. The 99mTc-RUN complex showed saturated in vitro binding with S. aureus at different intervals with a maximum uptake value of 71.50%. Infected to normal muscle, infected to inflamed and inflamed to normal muscles ratios were approximately 6.04, 4.31 and 1.40. Based on the stability of the complex in saline, serum, in vitro binding with S. aureus and biodistribution results, the 99mTc-RUN complex is recommended for in vivo scintigraphic localization of the S. aureus in vivo infectious foci in human. (author)

  14. Influence of the nucleobase on the physicochemical characteristics and biological activities of Sb{sup V}-ribonucleoside complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Claudio S.; Demicheli, Cynthia, E-mail: demichel@netuno.lcc.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Quimica; Rocha, Iara C.M. da; Melo, Maria N. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Parasitologia; Monte Neto, Rubens L.; Frezard, Frederic [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisiologia e Biofisica

    2010-07-01

    The influence of the nucleobase (uracyl, U; cytosine, C; adenine, A; guanine, G) on the physicochemical characteristics and in vitro biological activities of Sb{sup V}-ribonucleoside complexes has been investigated. The 1:1 Sb-U and Sb-C complexes were characterized by NMR and ESI-MS spectroscopies and elemental analysis. The stability constant and the apparent association and dissociation rate constants of 1:1 Sb{sup V}-U, Sb{sup V}-C and Sb{sup V}-A complexes were determined. Although Sb{sup V} most probably binds via oxygen atoms to the same 2' and 3' positions in the different nucleosides, the ribose conformational changes and the physicochemical characteristics of the complex depend on the nucleobase. The nucleobase had a strong influence on the cytotoxicity against macrophages and the antileishmanial activity of the Sb{sup V}-ribonucleoside complexes. The Sb{sup V}-purine complexes were more cytotoxic and more effective against Leishmania chagasi than the Sb{sup V}-pyrimidine complexes, supporting the model that the interaction of Sb{sup V} with purine nucleosides may mediate the antileishmanial activity of pentavalent antimonial drugs. (author)

  15. Interaction of drug based copper(II) complexes with Herring Sperm DNA and their biological activities

    Science.gov (United States)

    Patel, Mohan N.; Patel, Chintan R.; Joshi, Hardik N.

    2012-11-01

    Square pyramidal Cu(II) complexes with NS donor ligand and ciprofloxacin have been synthesized and characterized using analytical and spectral techniques. The synthesized complexes have been tested for their antimicrobial activity using double dilution technique in terms of minimum inhibitory concentration (MIC) and colony forming unit (CFU). The DNA binding ability of the complexes with Sperm Herring DNA has been performed using absorption titration and viscosity measurement. The nuclease activity of complexes with plasmid DNA (pUC19) has been carried out using agarose gel electrophoresis technique. Synthesized complexes have been tested for their SOD mimic activity using NBT/NADH/PMS system. The cytotoxic properties of metal complexes have been evaluated using brine shrimp lethality bioassay.

  16. Palladium polypyridyl complexes: synthesis, characterization, DNA interaction and biological activity on Leishmania (L.) mexicana

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Maribel [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela). Centro de Quimica; Betancourt, Adelmo [Universidad de Carabobo, Valencia (Venezuela). Facultad Experimental de Ciencia y Tecnologia. Dept. de Quimica; Hernandez, Clara [Universidad de Carabobo Sede Aragua, Maracay (Venezuela). Facultad de Ciencias de la Salud. Dept. de Ciencias Basicas; Marchan, Edgar [Universidad de Oriente, Cumana (Venezuela). Inst. de Investigaciones en Biomedicina y Ciencias Aplicadas. Nucleo de Sucre

    2008-07-01

    This paper describes the search for new potential chemotherapeutic agents based on transition metal complexes with planar ligands. In this study, palladium polypyridyl complexes were synthesized and characterized by elemental analysis, NMR, UV-VIS and IR spectroscopies. The interaction of the complexes with DNA was also investigated by spectroscopic methods. All metal-to-ligand charge transfer (MLCT) bands of the palladium polypyridyl complexes exhibited hypochromism and red shift in the presence of DNA. The binding constant and viscosity data suggested that the complexes [PdCl{sub 2}(phen)] and [PdCl{sub 2}(phendiamine)] interact with DNA by electrostatic forces. Additionally, these complexes induced an important leishmanistatic effect on L. (L.) mexicana promastigotes at the final concentration of 10 {mu}mol L{sup -1} in 48 h. (author)

  17. Palladium polypyridyl complexes: synthesis, characterization, DNA interaction and biological activity on Leishmania (L.) mexicana

    International Nuclear Information System (INIS)

    This paper describes the search for new potential chemotherapeutic agents based on transition metal complexes with planar ligands. In this study, palladium polypyridyl complexes were synthesized and characterized by elemental analysis, NMR, UV-VIS and IR spectroscopies. The interaction of the complexes with DNA was also investigated by spectroscopic methods. All metal-to-ligand charge transfer (MLCT) bands of the palladium polypyridyl complexes exhibited hypochromism and red shift in the presence of DNA. The binding constant and viscosity data suggested that the complexes [PdCl2(phen)] and [PdCl2(phendiamine)] interact with DNA by electrostatic forces. Additionally, these complexes induced an important leishmanistatic effect on L. (L.) mexicana promastigotes at the final concentration of 10 μmol L-1 in 48 h. (author)

  18. Biological correlates of complex posttraumatic stress disorder*state of research and future directions

    OpenAIRE

    Marinova, Zoya; Maercker, Andreas

    2015-01-01

    Complex posttraumatic stress disorder (PTSD) presents with clinical features of full or partial PTSD (re-experiencing a traumatic event, avoiding reminders of the event, and a state of hyperarousal) together with symptoms from three additional clusters (problems in emotional regulation, negative self-concept, and problems in interpersonal relations). Complex PTSD is proposed as a new diagnostic entity in ICD-11 and typically occurs after prolonged and complex trauma. Here we shortly review cu...

  19. openBIS: a flexible framework for managing and analyzing complex data in biology research

    Directory of Open Access Journals (Sweden)

    Bauch Angela

    2011-12-01

    Full Text Available Abstract Background Modern data generation techniques used in distributed systems biology research projects often create datasets of enormous size and diversity. We argue that in order to overcome the challenge of managing those large quantitative datasets and maximise the biological information extracted from them, a sound information system is required. Ease of integration with data analysis pipelines and other computational tools is a key requirement for it. Results We have developed openBIS, an open source software framework for constructing user-friendly, scalable and powerful information systems for data and metadata acquired in biological experiments. openBIS enables users to collect, integrate, share, publish data and to connect to data processing pipelines. This framework can be extended and has been customized for different data types acquired by a range of technologies. Conclusions openBIS is currently being used by several SystemsX.ch and EU projects applying mass spectrometric measurements of metabolites and proteins, High Content Screening, or Next Generation Sequencing technologies. The attributes that make it interesting to a large research community involved in systems biology projects include versatility, simplicity in deployment, scalability to very large data, flexibility to handle any biological data type and extensibility to the needs of any research domain.

  20. Ternary complexes in solution: complex formation between copper(II), zinc(II), cadmium(II) and ligands of biological importance

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, K.; Ram Prasad, D.; Nigam, P.C. (Indian Inst. of Tech., Kanpur. Dept. of Chemistry)

    1984-01-01

    The stability constants of ternary complexes of the MAL type have been determined for Cu(II), Zn(II) and Cd(II). The ligands chosen for this study belong to the biologically important ones viz. Bipyridyl (A) and nitrilotriacetic acid (L). Log Ksub(MAL) values for Cu(II), Zn(II) and Cd(II) are 11.42, 10.67 and 9.72, respectively, at temp. = 25/sup 0/C and ..mu.. = 0.1 M (KNO/sub 3/); the order is discussed.

  1. Symphonia globulifera, a widespread source of complex metabolites with potent biological activities.

    Science.gov (United States)

    Fromentin, Yann; Cottet, Kevin; Kritsanida, Marina; Michel, Sylvie; Gaboriaud-Kolar, Nicolas; Lallemand, Marie-Christine

    2015-01-01

    Symphonia globulifera has been widely used in traditional medicine and has therefore been subjected to several phytochemical studies in the American and African continents. Interestingly, some disparities have been observed concerning its metabolic profile. Several phytochemical studies of S. globulifera have led to the identification of more than 40 compounds, including several polycyclic polyprenylated acylphloroglucinols. Biological evaluations have pointed out the promising biological activities of these secondary metabolites, mostly as antiparasitic or antimicrobial, confirming the traditional use of this plant. The purpose of this review is to describe the natural occurrence, botanical aspects, ethnomedicinal use, structure, and biogenesis, as well as biological activities of compounds isolated from this species according to their provenance. PMID:25590372

  2. Novel Bis-β-diketone-type Ligand and Its Copper and Zinc Complexes for Two-photon Biological Imaging

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shuang-sheng; XUE Xuan; WEI Dong; JIANG Bo; WANG Jia-feng; LU Cheng-hua

    2012-01-01

    A curcumin derivative ligand,1,7-bis(3-methoxyl-4-oxyethylacetate)phenyl-1,6-heptadiene-3,5-diketone (diethyl acetatecurcumin,abbreviated as HL),and its Cu(Ⅱ) and Zn(Ⅱ) complexes have been synthesized and characterized by elemental analyses,infrared(IR),1H NMR and molar conductivity.The experimental results show that the resulting complexes bear strong two-photon excited fluorescence(TPEF) in N,N-dimethyformamide solvent,which has been proven to be potentially useful for two-photon microscopy imaging in living cells.In addition,cytotoxicity tests show that the low-micromolar concentrations of metal-ligand complex(ML2) did not cause significant reduction in cell viability over a pcriod of,at least,24 h and should be safe for further biological studies.

  3. Synthesis, physical characterization and biological evaluation of Schiff base M(II complexes

    Directory of Open Access Journals (Sweden)

    Mahasin Alias

    2014-04-01

    Full Text Available Metal (II complexes of Cu, Ni, and Co with Schiff base derived from potassium 2-N (4-N,N-dimethylaminobenzyliden- 4-trithiocarbonate 1,3,4-thiadiazole (L were synthesized and characterized by standard physico-chemical procedures i.e. (metal analysis A.A, elemental chemical analysis C.H.N.S, FTIR, UV–vis, thermal analysis TGA, magnetic susceptibility and conductometric measurements. On the basis of these studies, a six coordinated octahedral geometry for all these complexes has been proposed. The Schiff base ligand and its complexes were also tested for their antibacterial activity to assess their inhibiting potential against Pseudomonas aeruginosa (as gram negative bacteria and Staphylococcus aureus (as gram positive bacteria using two different concentrations (5 and 10 mM. The results showed the Ni(II complex have the higher rate in antibacterial activity than other complexes and ligand when compared them with ampicillin as standard drug.

  4. Spectroscopic and biological studies on newly synthesized nickel(II) complexes of semicarbazones and thiosemicarbazones

    Science.gov (United States)

    Chandra, Sulekh; Gupta, Lokesh Kumar

    2005-12-01

    Nickel(II) complexes, having the general composition Ni(L) 2X 2, have been synthesized [where L: isopropyl methyl ketone semicarbazone (LLA), isopropyl methyl ketone thiosemicarbazone (LLB), 4-aminoacetophenone semicarbazone (LLC) and 4-aminoacetophenone thiosemicarbazone (LLD) and X = Cl -, 1/2SO 42-]. All the Ni(II) complexes reported here have been characterized by elemental analyses, magnetic moments, IR, electronic and mass spectral studies. All the complexes were found to have magnetic moments corresponding to two unpaired electrons. The possible geometries of the complexes were assigned on the basis of electronic and infrared spectral studies. Newly synthesized ligand and its nickel(II) complexes have been screened against different bacterial and fungal growth.

  5. Chemical and biological evaluation of scandium(III)-polyaminopolycarboxylate complexes as potential PET agents and radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Huclier-Markai, S.; Sabatie, A.; Ribet, S. [Univ. de Nantes (France). Lab. Subatech; Kubicek, V.; Hermann, P. [Charles Univ., Prague (Czech Republic). Dept. of Inorganic Chemistry; Paris, M. [Univ. de Nantes (France). Inst. des Materiaux; Vidaud, C. [CEA/DSV/iBEB/SBTN, Bagnols sur Ceze (France). Lab. d' Etude des Proteines Cibles; Cutler, C.S. [Univ. of Missouri, Columbia, MO (United States). Reserach Reactor Center

    2011-07-01

    Scandium isotopes ({sup 44}Sc, {sup 47}Sc) are more available and their properties are convenient for either PET imaging or radiotherapy. To use them in nuclear medicine, ligands forming complexes with a high stability are necessary. Available experimental data on stability constants for complexes of ligands such as EDTA, DTPA, DOTA, NOTA and TETA with various metal ions have been published. But scandium is the exception since scarce data is available in the literature. Values of stability constants of Sc(III) with the ligands were determined by free-ion selective radiotracer extraction, complemented by {sup 45}Sc NMR and potentiometry data. The thermodynamic stability of the Sc-complexes increases in the order TETA < NOTA < EDTA < DTPA < DOTA. The in vitro stability of the Sc(III) complexes was studied in the presence of hydroxyapatite and rat serum to estimate their in vivo stability. The most stable complex was shown to be Sc-DOTA.

  6. Oxidative leaching process with cupric ion in hydrochloric acid media for recovery of Pd and Rh from spent catalytic converters

    International Nuclear Information System (INIS)

    Highlights: • A new leaching process based on Cu2+/HCl media for recovering Pd and Rh from spent autocatalytic converters is presented. • Palladium and rhodium were efficiently leached, with attained maximum yields of 95% and 86%, respectively. • Temperature, time, and HCl and Cu2+ concentrations were found to be significant factors in the leaching of Pd and Rh. - Abstract: The recycling of platinum-group metals from wastes such as autocatalytic converters is getting growing attention due to the scarcity of these precious metals and the market pressure originated by increase of demand in current and emerging applications. Hydrometallurgical treatment of such wastes is an alternative way to the most usual pyrometallurgical processes based on smelter operations. This paper focuses on the development of a leaching process using cupric chloride as oxidising agent, in HCl media, for recovery of palladium and rhodium from a spent catalyst. The chloride media allows the adequate conditions for oxidising and solubilising the metals, as demonstrated by equilibrium calculations based on thermodynamic data. The experimental study of the leaching process revealed that Pd solubilisation is clearly easier than that of Rh. The factors temperature, time, and HCl and Cu2+ concentrations were significant regarding Pd and Rh leaching, the latter requiring higher factor values to achieve the same results. Leaching yields of 95% Pd and 86% Rh were achieved under optimised conditions (T = 80 °C, t = 4 h, [HCl] = 6 M, [Cu2+] = 0.3 M)

  7. Oxidative leaching process with cupric ion in hydrochloric acid media for recovery of Pd and Rh from spent catalytic converters

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, C.A., E-mail: carlos.nogueira@lneg.pt [Laboratório Nacional de Energia e Geologia, I.P., Campus do Lumiar, 1649-038 Lisboa (Portugal); Paiva, A.P., E-mail: appaiva@fc.ul.pt [Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa (Portugal); Oliveira, P.C. [Laboratório Nacional de Energia e Geologia, I.P., Campus do Lumiar, 1649-038 Lisboa (Portugal); Costa, M.C., E-mail: mcorada@ualg.pt [Centro de Ciências do Mar, Departamento de Química e Farmácia, Faculdade de Ciências e de Tecnologia, Campus de Gambelas, 8005-139 Faro (Portugal); Costa, A.M. Rosa da, E-mail: amcosta@ualg.pt [Centro de Investigação em Química do Algarve, Departamento de Química e Farmácia, Faculdade de Ciências e de Tecnologia, Campus de Gambelas, 8005-139 Faro (Portugal)

    2014-08-15

    Highlights: • A new leaching process based on Cu{sup 2+}/HCl media for recovering Pd and Rh from spent autocatalytic converters is presented. • Palladium and rhodium were efficiently leached, with attained maximum yields of 95% and 86%, respectively. • Temperature, time, and HCl and Cu{sup 2+} concentrations were found to be significant factors in the leaching of Pd and Rh. - Abstract: The recycling of platinum-group metals from wastes such as autocatalytic converters is getting growing attention due to the scarcity of these precious metals and the market pressure originated by increase of demand in current and emerging applications. Hydrometallurgical treatment of such wastes is an alternative way to the most usual pyrometallurgical processes based on smelter operations. This paper focuses on the development of a leaching process using cupric chloride as oxidising agent, in HCl media, for recovery of palladium and rhodium from a spent catalyst. The chloride media allows the adequate conditions for oxidising and solubilising the metals, as demonstrated by equilibrium calculations based on thermodynamic data. The experimental study of the leaching process revealed that Pd solubilisation is clearly easier than that of Rh. The factors temperature, time, and HCl and Cu{sup 2+} concentrations were significant regarding Pd and Rh leaching, the latter requiring higher factor values to achieve the same results. Leaching yields of 95% Pd and 86% Rh were achieved under optimised conditions (T = 80 °C, t = 4 h, [HCl] = 6 M, [Cu{sup 2+}] = 0.3 M)

  8. Co(II) and Cd(II) Complexes Derived from Heterocyclic Schiff-Bases: Synthesis, Structural Characterisation, and Biological Activity

    Science.gov (United States)

    Ahmed, Riyadh M.; Yousif, Enaam I.; Al-Jeboori, Mohamad J.

    2013-01-01

    New monomeric cobalt and cadmium complexes with Schiff-bases, namely, N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]furan-2-carbohydrazide (L1) and N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]thiophene-2-carbohydrazide (L2) are reported. Schiff-base ligands L1 and L2 were derived from condensation of 3-hydroxy-4-methoxybenzaldehyde (iso-vanillin) with furan-2-carboxylic acid hydrazide and thiophene-2-carboxylic acid hydrazide, respectively. Complexes of the general formula [M(L)2]Cl2 (where M = Co(II) or Cd(II), L = L1 or L2) have been obtained from the reaction of the corresponding metal chloride with the ligands. The ligands and their metal complexes were characterised by spectroscopic methods (FTIR, UV-Vis, 1H, and 13C NMR spectra), elemental analysis, metal content, magnetic measurement, and conductance. These studies revealed the formation of four-coordinate complexes in which the geometry about metal ion is tetrahedral. Biological activity of the ligands and their metal complexes against gram positive bacterial strain Bacillus (G+) and gram negative bacteria Pseudomonas (G−) revealed that the metal complexes become less resistive to the microbial activities as compared to the free ligands. PMID:24027449

  9. Complexation of biological ligands with lanthanides(III) for MRI: Structure, thermodynamic and methods

    International Nuclear Information System (INIS)

    New cyclic ligands derived from sugars and amino-acids form a scaffold carrying a coordination sphere of oxygen atoms suitable to complex Ln(III) ions. In spite of their rather low molecular weights, the complexes display surprisingly high relaxivity values, especially at high field. The ACX and BCX ligands, which are acidic derivatives of modified and cyclo-dextrins, form mono and bimetallic complexes with Ln(III). The LnACX and LnBCX complexes show affinities towards Ln(III) similar to those of tri-acidic ligands. In the bimetallic Lu2ACX complex, the cations are deeply embedded in the cavity of the ligand, as shown by the X-ray structure. In aqueous solution, the number of water molecules coordinated to the cation in the LnACX complex depends on the nature and concentration of the alkali ions of the supporting electrolyte, as shown by luminescence and relaxometric measurements. There is only one water molecule coordinated in the LnBCX complex, which enables us to highlight an important second sphere contribution to relaxivity. The NMR study of the RAFT peptidic ligand shows the complexation of Ln(III), with an affinity similar to those of natural ligands derived from calmodulin. The relaxometric study also shows an important second sphere contribution to relaxivity. To better understand the intricate molecular factors affecting relaxivity, we developed new relaxometric methods based on probe solutes. These methods allow us to determine the charge of the complex, weak affinity constants, trans-metallation constants, and the electronic relaxation rate. (author)

  10. Determination and validation of the elastic moduli of small and complex biological samples: bone and keratin in bird beaks.

    Science.gov (United States)

    Soons, Joris; Herrel, Anthony; Aerts, Peter; Dirckx, Joris

    2012-06-01

    In recent years, there has been a surge in the development of finite-element (FE) models aimed at testing biological hypotheses. For example, recent modelling efforts suggested that the beak in Darwin's finches probably evolved in response to fracture avoidance. However, knowledge of the material properties of the structures involved is crucial for any model. For many biological structures, these data are not available and may be difficult to obtain experimentally given the complex nature of biological structures. Beaks are interesting as they appear to be highly optimized in some cases. In order to understand the biomechanics of this small and complex structure, we have been developing FE models that take into account the bilayered structure of the beak consisting of bone and keratin. Here, we present the results of efforts related to the determination and validation of the elastic modulus of bone and keratin in bird beaks. The elastic moduli of fresh and dried samples were obtained using a novel double-indentation technique and through an inverse analysis. A bending experiment is used for the inverse analysis and the validation of the measurements. The out-of-plane displacements during loading are measured using digital speckle pattern interferometry. PMID:22090286

  11. Preliminary radiochemical and biological studies on the liposome encapsulated platinum-[125I]iodohistamine complex

    International Nuclear Information System (INIS)

    The platinum-iodohistamine complex with in vitro cytostatic activity toward colon and mammary cancer cells has been synthesised recently in our laboratory. The pharmacokinetics of radioactive complex analogues, labelled with I-131 and I-125, has been examined in murine model of spontaneous mammary adenocarcinoma. The present work is devoted to the examination of the potential use of liposomes as a carrier system for the radioactive platinum-[*I]iodohistamine complex in vivo. Encapsulations of the Pt-125I]iodohistamine were studied using a different molar ratio of the complex and liposomes with positive surface charge, as well as various incubation procedures. Biodistribution of the initial and the liposomal form of the complex were studied in C3H tumour-bearing mice with spontaneously developed and transplantable (16C) mammary adenocarcinoma. Comparative biodistribution studies in C3H/16C mice and in mice with spontaneously developed mammary tumour have shown that in the former model pharmacokinetics of the Pt-[125 I]iodohistamine complex is more predictable and more similar to that observed for cisplatin. Therefore, the transplantable tumour model is more advantageous for the complex and its liposomal form evaluation. In C3H/16C mice, significant differences in the biodistribution between the radioactive platinum complex and its liposomal form were observed. The concentration of the activity in blood after 2 h p.i.v. was two times lower for the encapsulated complex, and the uptake of the radioactivity by liver, spleen, and lungs was twice as high as that obtained for the free Pt-[125I]iodohistamine preparation. The radioactivity in tumour was almost constant for liposomal platinum complex (ca. 2% ID/g), although it was two times lower compared to the initial platinum complex. The results of the present study indicate that platinum-[*I]iodohistamine can be efficiently incorporated into cationic liposomes (c. 40%). However, the uptake of the encapsulated complex by

  12. DNA structure, binding mechanism and biology functions of polypyridyl complexes in biomedicine

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    There is considerable research interest and vigorous debate about the DNA binding of polypyridyl complexes including the electron transfer involving DNA. In this review, based on the fluorescence quenching experiments, it was proposed that DNA might serve as a conductor. From the time-interval CD spectra, the different binding rates of D- and L-enantiomer to calf thymus DNA were observed. The factors influencing the DNA-binding of polypyridyl complexes, and the potential bio-functions of the complexes are also discussed.

  13. Dynamics on and of complex networks applications to biology, computer science, and the social sciences

    CERN Document Server

    Ganguly, Niloy; Mukherjee, Animesh

    2009-01-01

    This self-contained book systematically explores the statistical dynamics on and of complex networks having relevance across a large number of scientific disciplines. The theories related to complex networks are increasingly being used by researchers for their usefulness in harnessing the most difficult problems of a particular discipline. The book is a collection of surveys and cutting-edge research contributions exploring the interdisciplinary relationship of dynamics on and of complex networks. Towards this goal, the work is thematically organized into three main sections: Part I studies th

  14. Structural Biology of Proteins of the Multi-enzyme Assembly Human Pyruvate Dehydrogenase Complex

    Science.gov (United States)

    2003-01-01

    Objectives and research challenges of this effort include: 1. Need to establish Human Pyruvate Dehydrogenase Complex protein crystals; 2. Need to test value of microgravity for improving crystal quality of Human Pyruvate Dehydrogenase Complex protein crystals; 3. Need to improve flight hardware in order to control and understand the effects of microgravity on crystallization of Human Pyruvate Dehydrogenase Complex proteins; 4. Need to integrate sets of national collaborations with the restricted and specific requirements of flight experiments; 5. Need to establish a highly controlled experiment in microgravity with a rigor not yet obtained; 6. Need to communicate both the rigor of microgravity experiments and the scientific value of results obtained from microgravity experiments to the national community; and 7. Need to advance the understanding of Human Pyruvate Dehydrogenase Complex structures so that scientific and commercial advance is identified for these proteins.

  15. Synthesis characterization and biological evaluation of a novel mixed ligand 99mTc complex as potential brain imaging agent

    International Nuclear Information System (INIS)

    One approach in the design of neutral oxotechnetium complexes is based on the simultaneous substitution of a tridentate dianionic ligand and a monodentate monoanionic coligand on a [Tc(V)O]+3 precursor. Following this ''mixed ligand'' concept, a novel 99mTc complex with N,N-bis(2-mercaptoethyl)-N'N'-diethylethylenediamine as ligand and 1-octanethiol as coligand is prepared and evaluated as potential brain radiopharmaceutical. Preparation of the complex at tracer level was accomplished by using 99mTc-glucoheptonate as precursor. The substitution was optimized and a coligand/ligand ratio of 5 was selected. Under this conditions the labeling yield was over 80% and a major product (with radiochemical purity > 80%) was isolated by HPLC methods and used for biological evaluation. Chemical characterization at carrier level was developed using the corresponding rhenium complex as structural model. The Re complex was also prepared by substitution method and isolated as a crystalline product. The crystals were characterized by UV-vis and IR spectra and elemental analysis. Results were consistent with the expected ReOLC structure. X ray crystallographic study demonstrated that the complex adopts a distorted trigonal bipyramidal geometry. The basal plane is defined by the SS atoms of the ligand and the oxo group, while the N of the ligand and the S of the colligand occupy the two apical positions. All sulphur atoms underwent ionization leading to the formation of a neutral compound. 99Tc complex was also prepared. Although it was not isolated due to the small amount of reagents employed, the HPLC profile was identical to the one observed for the rhenium complex suggesting the same chemical structure. Biodistribution in mice demonstrated early brain uptake, fast blood clearance, excretion through hepatobiliary system and a brain/blood ratio that increased significantly with time. (author)

  16. Nanoparticular iron complex drugs for parenteral administration - physicochemical characterization, biological distribution and pharmacological safety

    OpenAIRE

    Fütterer, Sören

    2014-01-01

    Iron deficiency is the most common deficiency disease worldwide with many patients who require intravenous iron. Within the last years new kind of parenteral iron complexes as well as generic preparations entered the market. There is a high demand for methods clarifying benefit to risk profiles of old and new iron complexes. It is also necessary to disclose interchangeability between originator and intended copies to avoid severe anaphylactic and anaphylactoid side reaction and assure equival...

  17. The dynamics of complex systems. Studies and applications in computer science and biology

    OpenAIRE

    Guyeux, Christophe

    2013-01-01

    Our research has focused on the study of complex dynamics and on their use in both information security and bioinformatics. Our first work has been on chaotic discrete dynamical systems, and links have been established between these dynamics on the one hand, and either random or complex behaviors. Applications on information security are on the pseudorandom numbers generation, hash functions, informationhiding, and on security aspects on wireless sensor networks. On the bioinformatics level, ...

  18. The TCP1γ subunit of Leishmania donovani forms a biologically active homo-oligomeric complex.

    Science.gov (United States)

    Bhaskar; Mitra, Kalyan; Kuldeep, Jitendra; Siddiqi, Mohammad Imran; Goyal, Neena

    2015-12-01

    Chaperonins are a class of molecular chaperons that encapsulate nascent or stress-denatured proteins and assist their intracellular assembly and folding in an ATP-dependent manner. The ubiquitous eukaryotic chaperonin, TCP1 ring complex is a hetero-oligomeric complex comprising two rings, each formed of eight subunits that may have distinct substrate recognition and ATP hydrolysis properties. In Leishmania, only the TCP1γ subunit has been cloned and characterized. It exhibited differential expression at various growth stages of promastigotes. In the present study, we expressed the TCP1γ subunit in Escherichia coli to investigate whether it forms chaperonin-like complexes and plays a role in protein folding. LdTCP1γ formed high-molecular-weight complexes within E. coli cells as well as in Leishmania cell lysates. The recombinant protein is arranged into two back-to-back rings of seven subunits each, as predicted by homology modelling and observed by negative staining electron microscopy. This morphology is consistent with that of the oligomeric double-ring group I chaperonins found in mitochondria. The LdTCP1γ homo-oligomeric complex hydrolysed ATP, and was active as assayed by luciferase refolding. Thus, the homo-oligomer performs chaperonin reactions without partner subunit(s). Further, co-immunoprecipitation studies revealed that LdTCP1γ interacts with actin and tubulin proteins, suggesting that the complex may have a role in maintaining the structural dynamics of the cytoskeleton of parasites. PMID:26395202

  19. Metal complexes of the fourth generation quinolone antimicrobial drug gatifloxacin: Synthesis, structure and biological evaluation

    Science.gov (United States)

    Sadeek, Sadeek A.; El-Shwiniy, Walaa H.

    2010-08-01

    Three metal complexes of the fourth generation quinolone antimicrobial agent gatifloxacin (GFLX) with Y(ΙΙΙ), Zr(ΙV) and U(VΙ) have been prepared and characterized with physicochemical and spectroscopic techniques. In these complexes, gatifloxacin acts as a bidentate deprotonated ligand bound to the metal through the ketone oxygen and a carboxylato oxygen. The complexes are six-coordinated with distorted octahedral geometry. The kinetic parameters for gatifloxacin and the three prepared complexes have been evaluated from TGA curves by using Coats-Redfern (CR) and Horowitz-Metzeger (HM) methods. The calculated bond length and force constant, F(U dbnd O), for the UO 2 bond in uranyl complex are 1.7522 Å and 639.46 N m -1. The antimicrobial activity of the complexes has been tested against microorganisms, three bacterial species, such as Staphylococcus aureus ( S. aureus), Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) and two fungi species, penicillium ( P. rotatum) and trichoderma ( T. sp.), showing that they exhibit higher activity than free ligand.

  20. Tris(thioimidazolyl)borate-zinc-thiolate complexes for the modeling of biological thiolate alkylations.

    Science.gov (United States)

    Ibrahim, Mohamed M; Seebacher, Jan; Steinfeld, Gunther; Vahrenkamp, Heinrich

    2005-11-14

    The S3Zn-SR coordination of thiolate-alkylating enzymes such as the Ada DNA repair protein was reproduced in tris(thioimidazolyl)borate-zinc-thiolate complexes Tti(R)Zn-SR'. Four different Tti(R) ligands and nine different thiolates were employed, yielding a total of 12 new complexes. In addition, one Tti(R)Zn-SH complex and two thiolate-bridged [Tti(R)-SEt-Tti(R)]+ complexes were obtained. A selection of six thiolate complexes was converted with methyl iodide to the corresponding methyl thioethers and Tti(R)Zn-I. According to a kinetic analysis these reactions are second-order processes, which implies that the alkylations are likely to occur at the zinc-bound thiolates. They are much faster than the alkylations of zinc thiolates with N3 or N2S tripod ligands. The most reactive thiolate, Tti(Xyl)Zn-SEt, reacts slowly with trimethyl phosphate in a nonpolar medium at room temperature, yielding methyl-ethyl-thioether and Tti(Xyl)Zn-OPO(OMe)2 which can be converted back to the thiolate complex with NaSEt. This is the closest reproduction of the Ada repair process so far. PMID:16270993

  1. Alkali Metal Ion Complexes with Phosphates, Nucleotides, Amino Acids, and Related Ligands of Biological Relevance. Their Properties in Solution.

    Science.gov (United States)

    Crea, Francesco; De Stefano, Concetta; Foti, Claudia; Lando, Gabriele; Milea, Demetrio; Sammartano, Silvio

    2016-01-01

    Alkali metal ions play very important roles in all biological systems, some of them are essential for life. Their concentration depends on several physiological factors and is very variable. For example, sodium concentrations in human fluids vary from quite low (e.g., 8.2 mmol dm(-3) in mature maternal milk) to high values (0.14 mol dm(-3) in blood plasma). While many data on the concentration of Na(+) and K(+) in various fluids are available, the information on other alkali metal cations is scarce. Since many vital functions depend on the network of interactions occurring in various biofluids, this chapter reviews their complex formation with phosphates, nucleotides, amino acids, and related ligands of biological relevance. Literature data on this topic are quite rare if compared to other cations. Generally, the stability of alkali metal ion complexes of organic and inorganic ligands is rather low (usually log K  Na(+) > K(+) > Rb(+) > Cs(+). For example, for citrate it is: log K ML = 0.88, 0.80, 0.48, 0.38, and 0.13 at 25 °C and infinite dilution. Some considerations are made on the main aspects related to the difficulties in the determination of weak complexes. The importance of the alkali metal ion complexes was also studied in the light of modelling natural fluids and in the use of these cations as probes for different processes. Some empirical relationships are proposed for the dependence of the stability constants of Na(+) complexes on the ligand charge, as well as for correlations among log K values of NaL, KL or LiL species (L = generic ligand). PMID:26860301

  2. Propolis: A Complex Natural Product with a Plethora of Biological Activities That Can Be Explored for Drug Development.

    Science.gov (United States)

    Silva-Carvalho, Ricardo; Baltazar, Fátima; Almeida-Aguiar, Cristina

    2015-01-01

    The health industry has always used natural products as a rich, promising, and alternative source of drugs that are used in the health system. Propolis, a natural resinous product known for centuries, is a complex product obtained by honey bees from substances collected from parts of different plants, buds, and exudates in different geographic areas. Propolis has been attracting scientific attention since it has many biological and pharmacological properties, which are related to its chemical composition. Several in vitro and in vivo studies have been performed to characterize and understand the diverse bioactivities of propolis and its isolated compounds, as well as to evaluate and validate its potential. Yet, there is a lack of information concerning clinical effectiveness. The goal of this review is to discuss the potential of propolis for the development of new drugs by presenting published data concerning the chemical composition and the biological properties of this natural compound from different geographic origins. PMID:26106433

  3. Finding complex biological relationships in recent PubMed articles using Bio-LDA.

    Directory of Open Access Journals (Sweden)

    Huijun Wang

    Full Text Available The overwhelming amount of available scholarly literature in the life sciences poses significant challenges to scientists wishing to keep up with important developments related to their research, but also provides a useful resource for the discovery of recent information concerning genes, diseases, compounds and the interactions between them. In this paper, we describe an algorithm called Bio-LDA that uses extracted biological terminology to automatically identify latent topics, and provides a variety of measures to uncover putative relations among topics and bio-terms. Relationships identified using those approaches are combined with existing data in life science datasets to provide additional insight. Three case studies demonstrate the utility of the Bio-LDA model, including association predication, association search and connectivity map generation. This combined approach offers new opportunities for knowledge discovery in many areas of biology including target identification, lead hopping and drug repurposing.

  4. Synthesis, structural characterization and biological activity of a trinuclear zinc(II) complex: DNA interaction study and antimicrobial activity

    Indian Academy of Sciences (India)

    Bhaskar Biswas; Niranjan Kole; Moumita Patra; Shampa Dutta; Mousumi Ganguly

    2013-11-01

    A trinuclear zinc(II) complex [Zn3L2(-O2CCH3)2(H2O)2]·H2O·2CH3OH (1) was synthesized from an in situ reaction between zinc acetate and a Schiff base ligand (H2L = 2-((2-hydroxyphenylimino) methyl)-6-methoxyphenol). The ligand was prepared by (1:1) condensation of ortho-vanillin and ortho-aminophenol. The ligand and zinc(II) complex were characterized by elemental analysis, Fourier Transform Infrared (FTIR), 1H-Nuclear Magnetic Resonance (NMR), UV-Vis spectroscopy, Powder X-ray Diffraction (PXRD) and thermogravimetric analysis. 1 crystallizes in P-1 space group with = 11.9241(3) Å, = 12.19746 Å, = 20.47784 Å with unit cell volume is 2674.440 (Å)3. Binding property of the complex with calf thymus DNA (CT-DNA) has been investigated using absorption and emission studies. Thermal melting and viscosity experiments were further performed to determine the mode of binding of 1 with CT-DNA. Spectroscopic and viscosity investigations revealed an intercalative binding mode of 1 with CT-DNA. The ligand and its zinc complex were screened for their biological activity against bacterial species and fungi. Activity data show that the metal complex has more antibacterial and antifungal activity than the parent Schiff base ligand and against those bacterial or fungi species.

  5. Synthesis, structural characterization and biological activities of organotin(IV) complexes with 5-allyl-2-hydroxy-3-methoxybenzaldehyde-4-thiosemicarbazone

    Indian Academy of Sciences (India)

    Rosenani A Haque; M A Salam

    2015-09-01

    The organotin(IV) complexes [MeSnCl(L)] (2), [BuSnCl(L)] (3), [PhSnCl(L)] (4) and [Me2Sn(L)] (5) were synthesized by reacting organotin(IV) chloride(s) with 5-allyl-2-hydroxy-3-methoxybenzaldehyde- 4-thiosemicarbazone [H2L], (1)] in presence of KOH in 1:2:1 molar ratio (metal salt: base:ligand). All the complexes have been characterized by elemental analyses, UV-Vis, FT-IR, 1H, 13C and 119Sn NMR spectral studies. The molecular structure of complex 5 has been confirmed by single crystal X-ray diffraction analysis. The ligand, H2L coordinates to Sn(IV) in thiolate form through phenoxide-O, azomethine-N and thiolate-S atoms. The C-Sn-C angle measured from coupling constant 1 (119Sn, 13C) for dimethyltin(IV) complex 5 is 123.4°. The 2 (119Sn, 1H) coupling constant values for complex 2 and 5 are 72.4 and 76.3 Hz, respectively. Proposed geometry for five coordinated Sn(IV) atom is a strongly distorted trigonal bipyramid. Biological studies were preformed in vitro against four bacterial strains which have shown better activities and potential as antibacterial agents.

  6. Phylogenetics and genetic diversity of the Cotesia flavipes complex of parasitoid wasps (Hymenoptera: Braconidae), biological control agents of lepidopteran stemborers.

    Science.gov (United States)

    Muirhead, Kate A; Murphy, Nicholas P; Sallam, Nader; Donnellan, Stephen C; Austin, Andrew D

    2012-06-01

    The Cotesia flavipes complex of parasitoid wasps (Hymenoptera: Braconidae) are economically important for the biological control of lepidopteran stemboring pests associated with gramineous crops. Some members of the complex successfully parasitize numerous stemborer pest species, however certain geographic populations have demonstrated variation in the range of hosts that they parasitize. In addition, the morphology of the complex is highly conserved and considerable confusion surrounds the identity of species and host-associated biotypes. We generated nucleotide sequence data for two mtDNA genes (COI, 16S) and three anonymous nuclear loci (CfBN, CfCN, CfEN) for the C. flavipes complex. To analyze genetic variation and relationships among populations we used (1) concatenated mtDNA and nDNA data, (2) a nDNA multilocus network approach, and (3) two species tree inference methods, i.e. Bayesian estimation of species trees (BEST) and Bayesian inference of species trees from multilocus data with (*)BEAST. All phylogenetic analyses provide strong support for monophyly of the complex and the presence of at least four species, C. chilonis (from China and Japan), C. sesamiae (from Africa), C. flavipes (originating from the Indo-Asia region but introduced into Africa and the New World), and C. nonagriae (from Australia and Papua New Guinea). Haplotype diversity of geographic populations relates to historical biogeographic barriers and biological control introductions, and reflects previous reports of ecological variation in these species. Strong discordance was found between the mitochondrial and nuclear markers in the Papua New Guinea haplotypes, which may be an outcome of hybridization and introgression of C. flavipes and C. nonagriae. The position of Cotesia flavipes from Japan was not well supported in any analysis and was the sister taxon to C. nonagriae (mtDNA, (*)BEAST), C. flavipes (nDNA) or C. flavipes+C. nonagriae (BEST) and, may represent a cryptic species. The

  7. Pheromone-inducible conjugation in Enterococcus faecalis: A model for the evolution of biological complexity?

    OpenAIRE

    Kozlowicz, Briana K.; Dworkin, Martin; Dunny, Gary M.

    2006-01-01

    Pheromone-inducible transfer of the plasmid pCF10 in Enterococcus faecalis is regulated using a complicated network of proteins and RNAs. The plasmid itself has been assembled from parts garnered from a variety of sources, and many aspects of the system resemble a biological kluge. Recently several new functions of various pCF10 gene products that participate in regulation of plasmid transfer have been identified. The results indicate that selective pressures controlling the evolution of the ...

  8. Spectroscopic, Thermal and Biological Studies on Some Trivalent Ruthenium and Rhodium NS Chelating Thiosemicarbazone Complexes

    OpenAIRE

    Vinod K Sharma; Shipra Srivastava; Ankita Srivastava

    2007-01-01

    The synthetic, spectroscopic, and biological studies of sixteen ring-substituted 4-phenylthiosemicarbazones and 4-nitrophenyl-thiosemicarbazones of anisaldehyde, 4-chlorobenzaldehyde, 4-fluorobenzaldehyde, and vanillin with ruthenium(III) and rhodium(III) chlorides are reported here. Their structures were determined on the basis of the elemental analyses, spectroscopic data (IR, electronic, 1H and 13C NMR) along with magnetic susceptibility measurements, molar conductivity and thermogravimetr...

  9. Ecological Complexity in a Coffee Agroecosystem: Spatial Heterogeneity, Population Persistence and Biological Control

    OpenAIRE

    Heidi Liere; Doug Jackson; John Vandermeer

    2012-01-01

    BACKGROUND: Spatial heterogeneity is essential for the persistence of many inherently unstable systems such as predator-prey and parasitoid-host interactions. Since biological interactions themselves can create heterogeneity in space, the heterogeneity necessary for the persistence of an unstable system could be the result of local interactions involving elements of the unstable system itself. METHODOLOGY/PRINCIPAL FINDINGS: Here we report on a predatory ladybird beetle whose natural history ...

  10. Modulation of the Biological Activity of a Tobacco LTP1 by Lipid Complexation

    OpenAIRE

    Buhot, Nathalie; Gomès, Eric; Milat, Marie-Louise; Ponchet, Michel; Marion, Didier; Lequeu, José; Delrot, Serge; Coutos-Thévenot, Pierre; Blein, Jean-Pierre

    2004-01-01

    Plant lipid transfer proteins (LTPs) are small, cysteine-rich proteins secreted into the extracellular space. They belong to the pathogenesis-related proteins (PR-14) family and are believed to be involved in several physiological processes including plant disease resistance, although their precise biological function is still unknown. Here, we show that a recombinant tobacco LTP1 is able to load fatty acids and jasmonic acid. This LTP1 binds to specific plasma membrane sites, previously char...

  11. Total Integrated Sample Preparation for Microfluidic Immunoassays in Complex Biological Matrices

    OpenAIRE

    Apori, Akwasi Asare

    2011-01-01

    A high-throughput protein analysis platform with integrated sample preparation is developed to address the identified technology gaps in biomarker validation, clinical and point-of-care diagnostics. The goals of the technology are to automate and integrate protein sample preparation with electrokinetic separations, implement immunoassays capable of processing raw biological fluids, and perform high-throughput protein assays targeted for disease diagnosis.Integration of multiple functions is ...

  12. Ruthenium(II) chalconate complexes: Synthesis, characterization, catalytic, and biological studies

    Science.gov (United States)

    Muthukumar, M.; Viswanathamurthi, P.

    2009-10-01

    A series of new hexa-coordinated ruthenium(II) carbonyl complexes of the type [RuCl(CO)(EPh 3)(B)(L)] (E = P or As; B = PPh 3, AsPh 3 or Py; L = 2'-hydroxychalcones) have been prepared by reacting [RuHCl(CO)(EPh 3) 2(B)] (E = P or As; B = PPh 3, AsPh 3 or Py) with 2'-hydroxychalcones in benzene under reflux. The new complexes have been characterized by analytical and spectral (IR, electronic, 1H, 31P and 13C NMR) data. Based on the above data, an octahedral structure has been assigned for all the complexes. The new complexes exhibit catalytic activity for the oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine- N-oxide (NMO) as co-oxidant and also found efficient catalyst in the transfer hydrogenation of ketones. The antifungal properties of the complexes have also been examined and compared with standard Bavistin.

  13. Structural biology of DNA repair: spatial organisation of the multicomponent complexes of nonhomologous end joining.

    Science.gov (United States)

    Ochi, Takashi; Sibanda, Bancinyane Lynn; Wu, Qian; Chirgadze, Dimitri Y; Bolanos-Garcia, Victor M; Blundell, Tom L

    2010-01-01

    Nonhomologous end joining (NHEJ) plays a major role in double-strand break DNA repair, which involves a series of steps mediated by multiprotein complexes. A ring-shaped Ku70/Ku80 heterodimer forms first at broken DNA ends, DNA-dependent protein kinase catalytic subunit (DNA-PKcs) binds to mediate synapsis and nucleases process DNA overhangs. DNA ligase IV (LigIV) is recruited as a complex with XRCC4 for ligation, with XLF/Cernunnos, playing a role in enhancing activity of LigIV. We describe how a combination of methods-X-ray crystallography, electron microscopy and small angle X-ray scattering-can give insights into the transient multicomponent complexes that mediate NHEJ. We first consider the organisation of DNA-PKcs/Ku70/Ku80/DNA complex (DNA-PK) and then discuss emerging evidence concerning LigIV/XRCC4/XLF/DNA and higher-order complexes. We conclude by discussing roles of multiprotein systems in maintaining high signal-to-noise and the value of structural studies in developing new therapies in oncology and elsewhere. PMID:20862368

  14. Structural and biological evaluation of some metal complexes of vanillin-4N-(2-pyridyl) thiosemicarbazone

    Science.gov (United States)

    Yousef, T. A.; Abu El-Reash, G. M.; Al-Jahdali, M.; El-Rakhawy, El-Bastawesy R.

    2013-12-01

    The synthesis and characterization of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) and U(VI)O2 complexes of vanillin-4N-(2-pyridyl) thiosemicarbazone (H2PVT) are reported. Theoretical calculations have been performed to obtain IR spectra of ligand and its complexes using AM1, Zindo/1, MM+ and PM3, methods. The Schiff base and its metal complexes have been screened for antibacterial Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis and Staphylococcus saprophyticus. H2VPT shows no apparent digestion effect on the egg albumin while Mn(II), Hg(II) and Cu(II) complexes exhibited a considerable digestion effect following the order Cu(II) > Mn(II) > Hg(II). Moreover, Ni(II) and Co(II) complexes revealed strong digestion effect. Fe(II), Mn(II), Cu(II), Zn(II) and Ni(II) acted as metal co- SOD enzyme factors, which are located in different compartments of the cell.

  15. Derivatives of phosphate Schiff base transition metal complexes: synthesis, studies and biological activity

    Science.gov (United States)

    El-Wahab, Z. H. Abd; El-Sarrag, M. R.

    2004-01-01

    We report the synthesis and structural characterization of series of tetra- and hexacoordinate metal chelate complexes of phosphate Schiff base ligands having the general composition LMX n·H 2O and L 2MX n (L=phosphate Schiff base ligand; M=Ag +, Mn 2+, Cu 2+, Zn 2+, Cd 2+, Hg 2+, or Fe 3+ and X=NO 3-, Br - or Cl -). The structure of the prepared compounds was investigated using elemental analysis, IR, 1H and 31P NMR, UV-vis, mass spectra, solid reflectance, magnetic susceptibility and conductance measurements as well as conductometric titration. In all the complexes studied, the ligands act as a chelate ligand with coordination involving the phosphateO-atom and the azomethineN-atom. IR, solid reflectance spectra and magnetic moment measurement are used to infer the structure and to illustrate the coordination capacity of ligand. IR spectra show the presence of coordinated nitrate and water molecule, the magnetic moments of all complexes show normal magnetic behavior and the electronic spectra of the metal complexes indicate a tetra- and octahedral structure for Mn 2+, octahedral structure of Fe 3+ and both square-planar and distorted octahedral structure for Cu 2+ complexes. Antimicrobial activity of the ligands and their complexes were tested using the disc diffusion method and the chosen strains include Staphylococcus aureus, Pseudomonas aereuguinosa, Klebsiella penumoniae, Escherichia coli, Microsporum canis, Trichophyton mentagrophyte and Trichophyton rubrum. Some known antibiotics are included for the sake of comparison and the chosen antibiotic are Amikacin, Doxycllin, Augmantin, Sulperazon, Unasyn, Septrin, Cefobid, Ampicillin, Nitrofurantion, Traivid and Erythromycin.

  16. Microwave Synthesis, Basic Spectral and Biological Evaluation of Some Copper (II) Mesoporphyrinic Complexes

    OpenAIRE

    Rica Boscencu; Mihaela Ilie; Radu Socoteanu; Anabela Sousa Oliveira; Carolina Constantin; Monica Neagu; Gina Manda; Luis Filipe Vieira Ferreira

    2010-01-01

    Cu(II) complexes with asymmetrical and symmetrical porphyrinic ligands were synthesized with superior yields using microwave irradiation. The paper presents the synthesis of 5-(3-hydroxyphenyl)-10,15,20-tris-(4-carboxymethylphenyl)-21,23-Cu(II)-porphine in comparison to its symmetrical complex 5,10,15,20-meso-tetrakis-(4-carboxy-methylphenyl)-21,23-Cu(II) porphine. The two compounds were characterized by FT-IR, UV–Vis and EPR spectroscopy, which fully confirmed the structures. The spectral mo...

  17. Biological activity of ruthenium and osmium arene complexes with modified paullones in human cancer cells

    OpenAIRE

    Mühlgassner, Gerhard; Bartel, Caroline; Schmid, Wolfgang F.; Jakupec, Michael A.; Arion, Vladimir B; BERNHARD K. KEPPLER

    2012-01-01

    In an attempt to combine the ability of indolobenzazepines (paullones) to inhibit cyclin-dependent kinases (Cdks) and that of platinum-group metal ions to interact with proteins and DNA, ruthenium(II) and osmium(II) arene complexes with paullones were prepared, expecting synergies and an increase of solubility of paullones. Complexes with the general formula [MIICl(η 6-p-cymene)L]Cl, where M = Ru (1, 3) or Os (2, 4), and L = L 1 (1, 2) or L 2 (3, 4), L 1  = N-(9-bromo-7,12-dihydroindolo[3,2-d...

  18. Synthesis, characterization and biological properties of thienyl derived triazole Schiff bases and their oxovanadium(IV) complexes.

    Science.gov (United States)

    Chohan, Zahid H; Sumrra, Sajjad H

    2012-04-01

    A new series of biologically active thienyl derived triazole Schiff bases and their oxovanadium(IV) complexes have been synthesized and characterized on the basis of physical (m.p., magnetic susceptibility and conductivity), spectral (IR, ¹H and ¹³C NMR, electronic and mass spectrometry) and microanalytical data. All the Schiff base ligands and their oxovanadium(IV) complexes have been subjected to in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa, Salmonella enterica serover typhi) and two Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacterial strains and, for in vitro antifungal activity against Trichophyton longifucus, Candida albican, Aspergillus flavus, Microscopum canis, Fusarium solani and Candida glabrata. Brine shrimp bioassay was also carried out to check the cytotoxic nature of these compounds. PMID:21635212

  19. Designed Regular Tetragon-Shaped RNA-Protein Complexes with Ribosomal Protein L1 for Bionanotechnology and Synthetic Biology.

    Science.gov (United States)

    Ohno, Hirohisa; Inoue, Tan

    2015-05-26

    RNA nanotechnology has been established by employing the molecular architecture of RNA structural motifs. Here, we report two designed RNA-protein complexes (RNPs) composed of ribosomal protein L1 (RPL1) and its RNA-binding motif that are square-shaped nano-objects. The formation and the shape of the objects were confirmed by gel electrophoresis analysis and atomic force microscopy, respectively. Any protein can be attached to the RNA via a fusion protein with RPL1, indicating that it can be used as a scaffold for loading a variety of functional proteins or for building higher-order structures. In summary, the RNP object will serve as a useful tool in the fields of bionanotechnology and synthetic biology. Moreover, the RNP interaction enhances the RNA stability against nucleases, rendering these complexes stable in cells. PMID:25933202

  20. Applying complex models to poultry production in the future--economics and biology.

    Science.gov (United States)

    Talpaz, H; Cohen, M; Fancher, B; Halley, J

    2013-09-01

    The ability to determine the optimal broiler feed nutrient density that maximizes margin over feeding cost (MOFC) has obvious economic value. To determine optimal feed nutrient density, one must consider ingredient prices, meat values, the product mix being marketed, and the projected biological performance. A series of 8 feeding trials was conducted to estimate biological responses to changes in ME and amino acid (AA) density. Eight different genotypes of sex-separate reared broilers were fed diets varying in ME (2,723-3,386 kcal of ME/kg) and AA (0.89-1.65% digestible lysine with all essential AA acids being indexed to lysine) levels. Broilers were processed to determine carcass component yield at many different BW (1.09-4.70 kg). Trial data generated were used in model constructed to discover the dietary levels of ME and AA that maximize MOFC on a per broiler or per broiler annualized basis (bird × number of cycles/year). The model was designed to estimate the effects of dietary nutrient concentration on broiler live weight, feed conversion, mortality, and carcass component yield. Estimated coefficients from the step-wise regression process are subsequently used to predict the optimal ME and AA concentrations that maximize MOFC. The effects of changing feed or meat prices across a wide spectrum on optimal ME and AA levels can be evaluated via parametric analysis. The model can rapidly compare both biological and economic implications of changing from current practice to the simulated optimal solution. The model can be exploited to enhance decision making under volatile market conditions. PMID:23960140

  1. RYBP and Cbx7 Define Specific Biological Functions of Polycomb Complexes in Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Lluis Morey

    2013-01-01

    Full Text Available The Polycomb repressive complex 1 (PRC1 is required for decisions of stem cell fate. In mouse embryonic stem cells (ESCs, two major variations of PRC1 complex, defined by the mutually exclusive presence of Cbx7 or RYBP, have been identified. Here, we show that although the genomic localization of the Cbx7- and RYBP-containing PRC1 complexes overlaps in certain genes, it can also be mutually exclusive. At the molecular level, Cbx7 is necessary for recruitment of Ring1B to chromatin, whereas RYBP enhances the PRC1 enzymatic activity. Genes occupied by RYBP show lower levels of Ring1B and H2AK119ub and are consequently more highly transcribed than those bound by Cbx7. At the functional level, we show that genes occupied by RYBP are primarily involved in the regulation of metabolism and cell-cycle progression, whereas those bound by Cbx7 predominantly control early-lineage commitment of ESCs. Altogether, our results indicate that different PRC1 subtypes establish a complex pattern of gene regulation that regulates common and nonoverlapping aspects of ESC pluripotency and differentiation.

  2. PLANT LIPIDOMICS: DISCERNING BIOLOGICAL FUNCTION BY PROFILING PLANT COMPLEX LIPIDS USING MASS SPECTROMETRY

    Science.gov (United States)

    Since 2002, plant biologists have begun to apply mass spectrometry to the comprehensive analysis of complex lipids. Such lipidomic analyses have been used to uncover roles for lipids in plant response to stresses and to identify in vivo functions of genes involved in lipid metabolism....

  3. Biological factors underlying regularity and chaos in aquatic ecosystems: Simple models of complex dynamics

    Indian Academy of Sciences (India)

    A B Medvinsky; S V Petrovskii; D A Tikhonov; I A Tikhonova; G R Ivanitsky; E Venturino; H Malchow

    2001-03-01

    This work is focused on the processes underlying the dynamics of spatially inhomogeneous plankton communities. We demonstrate that reaction—diffusion mathematical models are an appropriate tool for searching and understanding basic mechanisms of complex spatio-temporal plankton dynamics and fractal properties of planktivorous fish school walks.

  4. Large, dynamic, multi-protein complexes: a challenge for structural biology

    Czech Academy of Sciences Publication Activity Database

    Bouřa, Evžen; Rozycki, B.

    2015-01-01

    Roč. 44, Suppl 1 (2015), S52. ISSN 0175-7571. [EBSA European Biophysics Congress /10./. 18.07.2015-22.07.2015, Dresden] Institutional support: RVO:61388963 Keywords : multi-protein complexes * protein structure * EROS hybrid method Subject RIV: CE - Biochemistry

  5. COMPLEX HOST-PARASITE SYSTEMS IN MARTES: IMPLICATIONS FOR CONSERVATION BIOLOGY OF ENDEMIC FAUNAS.

    Science.gov (United States)

    Complex assemblages of hosts and parasites reveal insights about biogeography and ecology and inform us about processes which serve to structure faunal diversity and the biosphere in space and time. Exploring aspects of parasite diversity among martens (species of Martes) and other mustelids reveal...

  6. The biological behaviour of technetium complexes with particular reference to brain tumours

    International Nuclear Information System (INIS)

    Ionic radionuclide complexes and in particular technetium compounds have long been the reagents of choice for the detection of brain tumours. Despite their lack of tumour specificity detection rates in the region of 80% can be routinely achieved. The most widely-used reagent to date has been sodium pertechnetate but recently a number of other technetium complexes such as DTPA, citrate and glucoheptonate with a more rapid blood clearance and better tumour to blood ratios than pertechnetate have been proposed as alternatives. All of these reagents are anionic complexes of reduced technetium which do not bind to any extent to plasma proteins or to enzymes. They do, however, satisfy the requirements of the ionic model proposed by Van der Pompe which has been outlined in the previous chapter. In the study reported here a number of technetium complexes, citrate, glucoheptonate and n-acetyl cysteine have been compared with pertechnetate with regard to their uptake in a transplantable rhabdomyosarcoma in the rat. The results obtained have then been used to provide a possible explanation for observed differences in clinical performance between these reagents. (Auth.)

  7. Microwave assisted synthesis, characterization and biological evaluation of palladium and platinum complexes with azomethines

    Science.gov (United States)

    Sharma, Krishna; Singh, Ritu; Fahmi, Nighat; Singh, R. V.

    2010-01-01

    Reactions of 3-acetyl-2,5-dimethylthiophene with thiosemicarbazide and semicarbazide hydrochloride resulted in the formation of new heterocyclic ketimines, 3-acetyl-2,5-dimethylthiophene thiosemicarbazone (C 9H 13N 3OS 2 or L 1H) and 3-acetyl-2,5- dimethylthiophene semicarbazone (C 9H 13N 3OS or L 2H), respectively. The Pd(II) and Pt(II) complexes have been synthesized by mixing metal salts in 1:2 molar ratios with these ligands by using microwave as well as conventional heating method for comparison purposes. The authenticity of these ligands and their complexes has been established on the basis of elemental analysis, melting point determinations, molecular weight determinations, IR, 1H NMR and UV spectral studies. These studies showed that the ligands coordinate to the metal atom in a monobasic bidentate manner and square planar environment around the metal atoms has been proposed to the complexes. Both the ligands and their complexes have been screened for their antimicrobial activities. The antiamoebic activity of both the ligands and their palladium compounds against the protozoan parasite Entamoeba histolytica has been tested.

  8. Novel antineoplastic platinum(IV) complexes: synthesis, characterization, biological investigations and structure-activity relationships

    International Nuclear Information System (INIS)

    Platinum(II) complexes represent one of the most widely used classes of cytostatics in anticancer chemotherapy. Their clinical effectiveness is accompanied by severe doselimiting side effects, intrinsic and/or acquired tumor resistance and the inconvenient and cost intensive way of intravenous administration. Platinum(IV) complexes also possess antitumor activity and their physicochemical and chemical properties could be utilized in order to overcome the main drawbacks of platinum(II)-based drugs. The successful design of platinum(IV) chemotherapeutics requires a careful examination of their pharmacology and toxicology, the formulation of structure-activity relationships and the development of new synthetic approaches. Within this PhD work, novel bis-, tris- and tetrakis(carboxylato)platinum(IV) complexes, designed as prodrugs for cis-[Pt(EtNH2)2Cl2] (cisplatin analogue with higher lipophilicity), carboplatin and nedaplatin were synthesized. For this purpose, the respective platinum(II) complexes were oxidized with H2O2 in aqueous media and further carboxylated using different cyclic anhydrides (succinic, glutaric, 3-methylglutaric and 3,3-dimethylglutaric anhydride). The resulting compounds were subsequently derivatized by activation of their free carboxylic groups with CDI (1,1’-carbonyldiimidazol), followed by reaction with various amines or alcohols, yielding the desired amides and esters, respectively. All complexes were fully characterized, using multinuclear (1H, 13C, 15N and 195Pt) 1D and 2D NMR spectroscopy, elemental analysis, ESI-MS, ATR-FTIR, HPLC and exemplarily X-ray diffraction for some of the compounds. In vitro cytotoxicity of the novel complexes was examined in four human tumor cell lines originating from ovarian carcinoma (CH1 and SK-OV-3), colon carcinoma (SW480) and non-small cell lung cancer (A549) by means of the MTT colorimetrical assay. Comparative analysis of the lipophilicity, electrochemistry and rate of reduction by ascorbic acid of

  9. Comparison of biological activities of human antithrombins with high-mannose or complex-type nonfucosylated N-linked oligosaccharides.

    Science.gov (United States)

    Yamada, Tsuyoshi; Kanda, Yutaka; Takayama, Makoto; Hashimoto, Akitoshi; Sugihara, Tsutomu; Satoh-Kubota, Ai; Suzuki-Takanami, Eri; Yano, Keiichi; Iida, Shigeru; Satoh, Mitsuo

    2016-05-01

    The structure of the N-linked oligosaccharides attached to antithrombin (AT) has been shown to affect its anticoagulant activity and pharmacokinetics. Human AT has biantennary complex-type oligosaccharides with the unique feature of lacking a core fucose, which affects its biological activities by changing its heparin-binding affinity. In human plasma, AT circulates as a mixture of the α-form bearing four oligosaccharides and the β-form lacking an oligosaccharide at Asn135. However, it remains unclear how the immature high-mannose-type oligosaccharides produced by mammalian cells affect biological activities of AT. Here, we succeeded in directly comparing the activities between the high-mannose and complex types. Interestingly, although there were no substantial differences in thrombin inhibitory activity, the high-mannose type showed higher heparin-binding affinity. The anticoagulant activities were increased by heparin and correlated with the heparin-binding affinity, resulting in the strongest anticoagulant activity being displayed in the β-form with the high-mannose type. In pharmacokinetic profiling, the high-mannose type showed a much shorter plasma half-life than the complex type. The β-form was found to have a prolonged plasma half-life compared with the α-form for the high-mannose type; conversely, the α-form showed a longer half-life than the β-form for the complex-type. The present study highlights that AT physiological activities are strictly controlled not only by a core fucose at the reducing end but also by the high-mannose-type structures at the nonreducing end. The β-form with the immature high-mannose type appears to function as a more potent anticoagulant than the AT typically found in human plasma, once it emerges in the blood. PMID:26747427

  10. Bone morphogenetic protein in complex cervical spine surgery: A safe biologic adjunct?

    OpenAIRE

    Lebl, Darren R.

    2013-01-01

    The advent of recombinant DNA technology has substantially increased the intra-operative utilization of biologic augmentation in spine surgery over the past several years after the Food and Drug Administration approval of the bone morphogenetic protein (BMP) class of molecules for indications in the lumbar spine. Much less is known about the potential benefits and risks of the “off-label” use of BMP in the cervical spine. The history and relevant literature pertaining to the use of the “off-l...

  11. CoreFlow: A computational platform for integration, analysis and modeling of complex biological data

    OpenAIRE

    Pasculescu, Adrian; Schoof, Erwin; Creixell, Pau; Zheng, Yong; Olhovsky, Marina; Tian, Ruijun; So, Jonathan; Vanderlaan, Rachel D.; Pawson, Tony; Linding, Rune; Colwill, Karen

    2014-01-01

    A major challenge in mass spectrometry and other large-scale applications is how to handle, integrate, and model the data that is produced. Given the speed at which technology advances and the need to keep pace with biological experiments, we designed a computational platform, CoreFlow, which provides programmers with a framework to manage data in real-time. It allows users to upload data into a relational database (MySQL), and to create custom scripts in high-level languages such as R, Pytho...

  12. Unraveling human complexity and disease with systems biology and personalized medicine

    OpenAIRE

    Naylor, Stephen; Jake Y Chen

    2010-01-01

    We are all perplexed that current medical practice often appears maladroit in curing our individual illnesses or disease. However, as is often the case, a lack of understanding, tools and technologies are the root cause of such situations. Human individuality is an often-quoted term but, in the context of human biology, it is poorly understood. This is compounded when there is a need to consider the variability of human populations. In the case of the former, it is possible to quantify human ...

  13. 3D-dynamic visualization of complex molecular cell biology processes : 1-year university students' understanding of visualizations of signal transduction

    OpenAIRE

    Jacobsson, Johan Lars Henrik

    2008-01-01

    This study deals with the use of 3D-dynamic visualizations for teaching complex molecular cell biology concepts. The focus is on signal transduction, which is a concept that constitutes an important part of biological systems. 3D-dynamic visualizations (animations) were produced and shown for a total of 24 students attending a course in molecular cell biology at Karlstad University, Sweden. Data were collected by questionnaires and interviews which were structured around the understandability...

  14. Biomolecular Interactions and Biological Responses of Emerging Two-Dimensional Materials and Aromatic Amino Acid Complexes.

    Science.gov (United States)

    Mallineni, Sai Sunil Kumar; Shannahan, Jonathan; Raghavendra, Achyut J; Rao, Apparao M; Brown, Jared M; Podila, Ramakrishna

    2016-07-01

    The present work experimentally investigates the interaction of aromatic amino acids viz., tyrosine, tryptophan, and phenylalnine with novel two-dimensional (2D) materials including graphene, graphene oxide (GO), and boron nitride (BN). Photoluminescence, micro-Raman spectroscopy, and cyclic voltammetry were employed to investigate the nature of interactions and possible charge transfer between 2D materials and amino acids. Graphene and GO were found to interact strongly with aromatic amino acids through π-π stacking, charge transfer, and H-bonding. Particularly, it was observed that both physi and chemisorption are prominent in the interactions of GO/graphene with phenylalanine and tryptophan while tyrosine exhibited strong chemisorption on graphene and GO. In contrast, BN exhibited little or no interactions, which could be attributed to localized π-electron clouds around N atoms in BN lattice. Lastly, the adsorption of amino acids on 2D materials was observed to considerably change their biological response in terms of reactive oxygen species generation. More importantly, these changes in the biological response followed the same trends observed in the physi and chemisorption measurements. PMID:27281436

  15. Present Day Biology seen in the Looking Glass of Physics of Complexity

    Science.gov (United States)

    Schuster, P.

    Darwin's theory of variation and selection in its simplest form is directly applicable to RNA evolution in vitro as well as to virus evolution, and it allows for quantitative predictions. Understanding evolution at the molecular level is ultimately related to the central paradigm of structural biology: sequence⇒ structure ⇒ function. We elaborate on the state of the art in modeling and understanding evolution of RNA driven by reproduction and mutation. The focus will be laid on the landscape concept—originally introduced by Sewall Wright—and its application to problems in biology. The relation between genotypes and phenotypes is the result of two consecutive mappings from a space of genotypes called sequence space onto a space of phenotypes or structures, and fitness is the result of a mapping from phenotype space into non-negative real numbers. Realistic landscapes as derived from folding of RNA sequences into structures are characterized by two properties: (i) they are rugged in the sense that sequences lying nearby in sequence space may have very different fitness values and (ii) they are characterized by an appreciable degree of neutrality implying that a certain fraction of genotypes and/or phenotypes cannot be distinguished in the selection process. Evolutionary dynamics on realistic landscapes will be studied as a function of the mutation rate, and the role of neutrality in the selection process will be discussed.

  16. PHYTOLECTINS AND DIAZOTROPHS ARE THE POLYFUNCTIONAL COMPONENTS OF THE COMPLEX BIOLOGICAL COMPOSITIONS

    Directory of Open Access Journals (Sweden)

    Kyrychenko E. V.

    2014-02-01

    Full Text Available The role of lectins and diazotrophic microorganisms as polyfunctional components for creation of new lectin-bacterial biological composition with a view to practical application of agro biotechnology were discussed on the base of literature data and personal author’s experimental results. Phytolectins characterized by varied biological activity such as bioeffector, adap togen, growth-regulatory, fungicide and com munication to the components of a system «plant–soil–microorganisms» in molecular, cellular, organism and systemic levels of organization and functioning of agrophytocenosis. Rhizobacteria have many positive effects on plants and soil, the most determinative among the effects are the ability to fix molecular nitrogen of atmosphere, synthesis of hormonal and antibiotical substances, mobilization of sparingly soluble soil phosphates and decomposition of hazardous chemical compounds. It was justified creation of a new class of lectin-bacterial compositions on a base of phytolectins and diazotrophic microorganisms for increasing of productive potential of symbioses and associations, adaptable plasticity and plants protection and soil ecology improvement as well.

  17. Biological effects of clustered DNA damage produced by heavy ion beams with its complexity

    International Nuclear Information System (INIS)

    Heavy ion beams produce denser ionized region around their track, and cause accumulated damage cluster in the target DNA molecule, termed ''clustered DNA damage.'' Although any ionizing radiations can generate clustered DNA damage with respective degree, heavy ion beam might very effectively produce clustered DNA damage for a reason as mentioned thereinbefore. However, we have less knowledge about molecular mechanism how clustered DNA damage is involved in the degree of biological consequence, and relationship between the species of ionizing radiation and the result. Our previous in vitro study showed that the yields of clustered DNA damage in the target DNA was in inverse proportion to the linear energy transfer (LET) of irradiated radiation (J. Radiat. Res., 49; 133-146, 2008). This result suggests that the yield is not simply responsible to the biological consequence. Therefore, we focused on the structure of clustered DNA damage induced by heavy ion beams in this study. We evaluated the number of damaged site in the designed target oligonucleotides irradiated by gamma-rays, carbon ions and iron ions beams. Also, we estimated the intracellular yields of clustered DNA damage consisted of oxidative base lesions (clustered base damage), because we investigated only DSB not clustered base damage in the previous study. (author)

  18. Scalable Binder-Free Supersonic Cold Spraying of Nanotextured Cupric Oxide (CuO) Films as Efficient Photocathodes.

    Science.gov (United States)

    Lee, Jong Gun; Kim, Do-Yeon; Lee, Jong-Hyuk; Kim, Min-Woo; An, Seongpil; Jo, Hong Seok; Nervi, Carlo; Al-Deyab, Salem S; Swihart, Mark T; Yoon, Sam S

    2016-06-22

    We demonstrate production of nanotextured p-type cupric oxide (CuO) films via a low-cost scalable supersonic cold spray method in open air conditions. Simply sweeping the spray nozzle across a substrate produced a large-scale CuO film. When used as hydrogen evolution photocathodes, these films produced photocurrent densities (PCD) of up to 3.1 mA/cm(2) under AM1.5 illumination, without the use of a cocatalyst or any additional heterojunction layers. Cu2O particles were supersonically sprayed onto an indium tin oxide (ITO) coated soda lime glass (SLG) substrate, without any solvent or binder. Annealing in air converted the Cu2O films to CuO, with a corresponding decrease in the bandgap and increase in the fraction of the solar spectrum absorbed. Annealing at 600 °C maximized the PCD. Increasing the supersonic gas velocity from ∼450 to ∼700 m/s produced denser films with greater surface roughness, in turn producing higher PCD. The nanoscale texture of the films, which resembles the skin of a dinosaur, enhanced their performance, leading to one of the highest PCD values in the literature. We characterized the films by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and transmission electron microscopy to elucidate the origins of their outstanding performance. This supersonic cold spraying deposition has the potential to be used on a commercial scale for low cost mass production. PMID:27232695

  19. Synthesis and biological distribution of 99mTc-norfloxacin complex, a novel agent for detecting sites of infection

    International Nuclear Information System (INIS)

    The optimization of the radiolabeling yield of ciprofloxacin analogous, norfloxacin, with technetium-99m (99mTc) was described. Dependence of the labeling yield of 99mTc-norfloxacin complex on the concentration of norfloxacin, SnCl2 · 2H2O content, pH of the reaction mixture and reaction time was studied. Norfloxacin was labeled with 99mTc at pH 3 with a labeling yield of 95.4% by using 5 mg norfloxacin, 50 μg SnCl2 · 2H2O and 30 min reaction time. The formed 99mTc-norfloxacin complex was stable for a time up to 3 h. Biological distribution of 99mTc-norfloxacin complex was investigated in experimentally induced inflammation rats using Staphylococcus aureus (bacterial infection model) and heat killed Staphylococcus aureus and turpentine oil (sterile inflammation model). In case of bacterial infection, the T/NT value for 99mTc-norfloxacin complex was found to be 6.9 ± 0.4 which was higher than that of the commercially available 99mTc-ciprofloxacin under the same experimental condition. (author)

  20. Biological investigation of the platinum(II)-[*I]iodohistamine complexes of potential synergistic anti-cancer activity

    International Nuclear Information System (INIS)

    Cisplatin chemotherapy in combination with external irradiation or with low-dose continuos internal radiotherapy produces significant supra-additive treatment effects towards several tumor cells. The purpose of our research is to develop a new class of platinum-based anticancer drugs containing moieties of synergistic potency such as platinum core and a radiotherapeutic isotope which, delivered directly to the tumorous cells by a specifically designed vectors, should produce a local enhancement of therapeutic dose. Thus, we have synthesized a new platinum-iodohistamine complex and its radioactive analogues labeled with I-125 and I-131. In the present study some biological properties of those compounds have been investigated. The in vitro screening study pointed out that non-radioactive platinum-iodohistamine complex possesses high cytostatic activity against COLO-205 cells, and moderate activity against HL-60 cell line. No cytotoxicity was observed against MOLT-4 and L-1210 cells, as well as against VERO normal cells. The biodistribution of intravenously administered radioactive platinum-[131I]-iodohistamine complex to normal rats revealed the highest accumulation in the liver (c.a. 40%ID). Intraperitoneal injections of the complex to tumor-bearing C3H mice resulted in scattering of the dose in the organs (mainly in GIT, liver, kidney). The retention of radioactive complex in neoplastic tissue was 3-4 times higher than in normal muscular tissue, although exhibited the tendency to decrease with time post injection. The results of the present study show promising features of the newly developed platinum-iodohistamine complexes and justify prospective investigation of in vivo anticancer potency on animal models of solid tumors

  1. A dinuclear ruthenium(II) complex as a one- and two-photon luminescent probe for biological Cu(2+) detection.

    Science.gov (United States)

    Zhang, Pingyu; Pei, Lingmin; Chen, Yu; Xu, Wenchao; Lin, Qitian; Wang, Jinquan; Wu, Jingheng; Shen, Yong; Ji, Liangnian; Chao, Hui

    2013-11-11

    A new dinuclear Ru(II) polypyridyl complex, [(bpy)2 Ru(H2 bpip)Ru(bpy)2 ](4+) (RuH2 bpip, bpy=2,2-bipyridine, H2 bpip=2,6-pyridyl(imidazo[4,5-f][1,10]phenanthroline), was developed to act as a one- and two-photon luminescent probe for biological Cu(2+) detection. This Ru(II) complex shows a significant two-photon absorption cross section (400 GM) and displays a remarkable one- and two-photon luminescence switch in the presence of Cu(2+) ions. Importantly, RuH2 bpip can selectively recognise Cu(2+) in aqueous media in the presence of other abundant cellular cations (such as Na(+) , K(+) , Mg(2+) , and Ca(2+) ), trace metal ions in organisms (such as Zn(2+) , Ag(+) , Fe(3+) , Fe(2+) , Ni(2+) , Mn(2+) , and Co(2+) ), prevalent toxic metal ions in the environment (such as Cd(2+) , Hg(2+) , and Cr(3+) ), and amino acids, with high sensitivity (detection limit≤3.33×10(-8)  M) and a rapid response time (≤15 s). The biological applications of RuH2 bpip were also evaluated and it was found to exhibit low cytotoxicity, good water solubility, and membrane permeability; RuH2 bpip was, therefore, employed as a sensing probe for the detection of Cu(2+) in living cells and zebrafish. PMID:24166837

  2. SYNTHESIS AND BIOLOGICAL ACTIVITY OF BUTANONE THIOSEMICARBAZONE AND THEIR METALLIC COMPLEXES

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar

    2013-01-01

    Full Text Available In present work, Ligand butanone thiosemicarbazone and their 11 complexes of the type ML2X2, ML2X’, where M = Cu(II, Cd(II, Co(II, Zn(II, Hg(II; L = butanone thiosemicarbazone; X = Cl, NO3 or CH3COO; X’ = SO4 have been synthesized and characterized with the help of infra-red and ultra-violet spectroscopy. The spectral data revealed that the thiosemicarbazone act as bidentate ligand, making use of thionic sulphur and the azomethine nitrogen atom for co-ordination to the central metal atom. All the compounds have been screened for their antibacterial activity against Gram positive bacteria Staphylococcus aureus, Staphylococcus epidermidis and Gram negative bacteria Escherichia coli and Pseudomonas aeruginosa. Some of complexes exhibited appreciable activity.

  3. NFsim: A versatile rule-based simulator for complex biological systems

    Science.gov (United States)

    Sneddon, Michael; Faeder, James; Emonet, Thierry

    2010-03-01

    Traditional methods for biochemical reaction simulation require the enumeration of every possible molecular species and reaction channel, which can be tedious and often impossible for many large or complex systems. We have developed NFsim, a new software platform for exact stochastic simulation of large biochemical reaction networks. By using an agent-based representation of molecules and rules to define interactions, the performance of NFsim is independent of the size of the reaction network. Rates in NFsim can be defined as mathematical or conditional functions of the system to facilitate coarse-graining and general specification of complex models. Here we demonstrate NFsim's novel capabilities with general models of multi-site phosphorylation proteins, receptor signaling and aggregation in the immune system, actin filament assembly, and bacterial chemotaxis signaling.

  4. Freshwater fish internals as a promising source of biologically active lipid complexes

    Directory of Open Access Journals (Sweden)

    Samoilovа D. A.

    2015-12-01

    Full Text Available The research on development of technology of fat extraction from freshwater fish entrails has been carried out. The study of mass composition of freshwater fish internals has shown that the highest content of fat (averaged 13,8 % is typical for internals of fish like carp, perch, silver carp, pike. The higher content is typical for silver carp (14.4 % permitting the possibility of its use as a source of lipid complexes. The chemical composition of the internal organs of researched objects has been studied; to justify the rational modes of extracting lipid complexes from freshwater fish internals the methods of extracting fat (thermal, enzymatic and low temperature have been tested. The quality indicators of raw fat have been analyzed and the conclusion on possibility of combining the ways of oil extraction in order to increase its output and improve the quality characteristics has been made

  5. Protease inhibitors as possible pitfalls in proteomic analyses of complex biological samples

    OpenAIRE

    Clifton, James; Huang, Feilei; Rucevic, Marijana; Cao, Lulu; Hixson, Douglas; Josic, Djuro

    2011-01-01

    Sample preparation, especially protein and peptide fractionation prior to identification by mass spectrometry (MS) are typically applied to reduce sample complexity. The second key element in this process is proteolytic digestion that is performed mostly by trypsin. Optimization of this step is an important factor in order to achieve both speed and better performance of proteomic analysis, and tryptic digestion prior to the MS analysis is topic of many studies. To date, only few studies pay a...

  6. From 'omics' to complex disease: a systems biology approach to gene-environment interactions in cancer

    OpenAIRE

    Knox Sarah S

    2010-01-01

    Abstract Background Cancer is a complex disease that involves a sequence of gene-environment interactions in a progressive process that cannot occur without dysfunction in multiple systems, including DNA repair, apoptotic and immune functions. Epigenetic mechanisms, responding to numerous internal and external cues in a dynamic ongoing exchange, play a key role in mediating environmental influences on gene expression and tumor development. Hypothesis The hypothesis put forth in this paper add...

  7. Properties of Random Complex Chemical Reaction Networks and Their Relevance to Biological Toy Models

    OpenAIRE

    Bigan, Erwan; Steyaert, Jean-Marc; Douady, Stéphane

    2013-01-01

    We investigate the properties of large random conservative chemical reaction networks composed of elementary reactions endowed with either mass-action or saturating kinetics, assigning kinetic parameters in a thermodynamically-consistent manner. We find that such complex networks exhibit qualitatively similar behavior when fed with external nutrient flux. The nutrient is preferentially transformed into one specific chemical that is an intrinsic property of the network. We propose a self-consi...

  8. Binuclear biologically active Co(II) complexes with octazamacrocycle and aliphatic dicarboxylates

    Science.gov (United States)

    Tanasković, S. B.; Vučković, G.; Antonijević-Nikolić, M.; Stanojković, T.; Gojgić-Cvijović, G.

    2012-12-01

    Four new cationic Co(II) complexes with N,N',N'',N'''-tetrakis (2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane (tpmc) and dianion of one the aliphatic dicarboxylic acids: butanedioic acid (succinic) acid = succH2, pentanedioic (glutaric) acid = gluH2, hexanedioic acid (adipic) acid = adipH2 or decanedioic acid (sebacic) acid = sebH2 of general formula [Co2(L)(tpmc)](ClO4)2ṡxY, L2- = succ, x = 1, Y = H2O; L = glu, x = 1, Y = H2O; L = adip, x = 1.5, Y = H2O; L = seb, x = 1, Y = CH3CN were isolated. The composition and charge are proposed based on elemental analyses (C, H, N) and electrical conductivity measurements. UV-Vis and FTIR spectral data and magnetic moments were in accordance with high-spin Co(II) state. It is proposed that in all complexes Co(II) is hexa-coordinated out of cyclam ring and that both carboxylic groups from dicarboxylate bridge participate in coordination. Oxygens from one group are most likely bonded to the same Co(II) ion thus forming a four-membered ring. The in vitro antibacterial/antiproliferative activities of the complexes were in some cases enhanced compared with the simple Co(II) salt and free ligands, tested as controls.

  9. Synthesis, Characterization, Luminescence and Biological Activity of Two Lanthanide Complexes Involving Mixed Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Deyun; Guo, Haifu; Qin, Liang [Zhaoqing Univ., Zhaoqing (China); Xu, Jun [Jinan Univ., Guangzhou (China)

    2013-09-15

    Two new isostructural dinuclear complexes, Ln{sub 2}(4-cpa){sub 6}(bpy){sub 2} (Ln = Eu (1); Tb (2), 4-cpa = 4-chlorophenyl-acetate, bpy = 2,2'-bipyridine), have been hydrothermally synthesized and characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis (TGA), powder X-ray diffraction and single-crystal X-ray diffraction. The lanthanide ions are bridged by two bidentate and two terdentate carboxylate groups to give centrosymmetric dimers with Ln···Ln separations of 3.967(2) and 3.956(3) A, respectively. Each metal atom is nine-coordinate and exhibits a distorted tricapped trigonal prismatic geometry. Three-dimensional fluorescence spectra show that both 1 and 2 emit bright red and green luminescence at room temperature, with long lifetimes of up to 0.369 ms (at 614 nm) and 0.432 ms (at 543 nm), respectively. Moreover, poor luminescence efficiency has been noted for complex 2. The 4-Hcpa ligand and complexes 1-2 have been screened for their phytogrowth-inhibitory activities against Brassica napus L. and Echinochloa crusgalli L., and the results are compared with the activity of quizalofop-P-ethyl.

  10. Design, Synthesis, and Biological Features of Platinum(II) Complexes with Rigid Steric Hindrance.

    Science.gov (United States)

    Wang, Zhimei; Yu, Haiyan; Gou, Shaohua; Chen, Feihong; Fang, Lei

    2016-05-01

    A series of platinum(II) complexes, with N-monosubstituted 1R,2R-diaminocyclohexane bearing methoxy-substituted benzyl groups as carrier ligands, were designed and synthesized. The newly prepared compounds, with chloride anions as leaving groups, were found to be very active against the tested cancer cell lines, including a cisplatin-resistant cell line. Despite their efficacy against tumor cells, they also showed low toxicity to a human normal liver cell line. Among them, complex 1 had superior cytotoxic activity against A549, HCT-116, MCF-7, SGC7901, and SGC7901/CDDP cancer cell lines. The DNA binding assay is of further special interest, as an unusual monofunctional binding mode was found, due to the introduction of a rigid substituted aromatic ring in the 1R,2R-diaminocyclohexane framework as steric hindrance. The linkage of complex 1 with DNA was stable and insensitive to nucleophilic attack. Moreover, studies including cellular uptake, gel electrophoresis, apoptosis and cell cycle, and Western blot analysis have provided insight into the high potency of this compound. PMID:27074104

  11. STRUCTURE AND SOME BIOLOGICAL PROPERTIES OF Fe(III COMPLEXES WITH NITROGEN-CONTAINING LIGANDS

    Directory of Open Access Journals (Sweden)

    Ion Bulhac

    2016-06-01

    Full Text Available Four coordination compounds of iron(III with ligands based on hydrazine and sulfadiazine: FeCl3·digsemi·2H2O (I (digsemi-semicarbazide diacetic acid dihydrazide, [Fe(HLSO4] (II (НL - sulfadiazine, [Fe(H2L1(H2O2](NO33·5H2O (III (H2L1-2,6-diacetylpyridine bis(nicotinoylhydrazone and [Fe(H2L2(H2O2](NO33•1.5H2O (IV (H2L2 - 2,6-diacetylpyridine bis(isonicotinoylhydrazone were synthesized. The spectroscopic and structural characterisation as well as their biological, properties are presented.

  12. Biological Activity and Molecular Structures of Bis(benzimidazole and Trithiocyanurate Complexes

    Directory of Open Access Journals (Sweden)

    Pavel Kopel

    2015-06-01

    Full Text Available 1-(1H-Benzimidazol-2-yl-N-(1H-benzimidazol-2-ylmethylmethanamine (abb and 2-(1H-benzimidazol-2-ylmethylsulfanylmethyl-1H-benzimidazole (tbb have been prepared and characterized by elemental analysis. These bis(benzimidazoles have been further used in combination with trithiocyanuric acid for the preparation of complexes. The crystal and molecular structures of two of them have been solved. Each nickel atom in the structure of trinuclear complex [Ni3(abb3(H2O3(μ-ttc](ClO43·3H2O·EtOH (1, where ttcH3 = trithiocyanuric acid, is coordinated with three N atoms of abb, the N,S donor set of ttc anion and an oxygen of a water molecule. The crystal of [(tbbH2(ttcH22(ttcH3(H2O] (2 is composed of a protonated bis(benzimidazole, two ttcH2 anions, ttcH3 and water. The structure is stabilized by a network of hydrogen bonds. These compounds were primarily synthesized for their potential antimicrobial activity and hence their possible use in the treatment of infections caused by bacteria or yeasts (fungi. The antimicrobial and antifungal activity of the prepared compounds have been evaluated on a wide spectrum of bacterial and yeast strains and clinical specimens isolated from patients with infectious wounds and the best antimicrobial properties were observed in strains after the use of ligand abb and complex 1, when at least 80% growth inhibition was achieved.

  13. Biological activity of ruthenium and osmium arene complexes with modified paullones in human cancer cells.

    Science.gov (United States)

    Mühlgassner, Gerhard; Bartel, Caroline; Schmid, Wolfgang F; Jakupec, Michael A; Arion, Vladimir B; Keppler, Bernhard K

    2012-11-01

    In an attempt to combine the ability of indolobenzazepines (paullones) to inhibit cyclin-dependent kinases (Cdks) and that of platinum-group metal ions to interact with proteins and DNA, ruthenium(II) and osmium(II) arene complexes with paullones were prepared, expecting synergies and an increase of solubility of paullones. Complexes with the general formula [M(II)Cl(η(6)-p-cymene)L]Cl, where M=Ru (1, 3) or Os (2, 4), and L=L(1) (1, 2) or L(2) (3, 4), L(1)=N-(9-bromo-7,12-dihydroindolo[3,2-d][1]-benzazepin-6(5H)-yliden-N'-(2-hydroxybenzylidene)azine and L(2)=N-(9-bromo-7,12-dihydroindolo[3,2-d][1]benzazepin-6-yl)-N'-[3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl-methylene]azinium chloride (L(2)(*)HCl), were now investigated regarding cytotoxicity and accumulation in cancer cells, impact on the cell cycle, capacity of inhibiting DNA synthesis and inducing apoptosis as well as their ability to inhibit Cdk activity. The MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) assay yielded IC(50) values in the nanomolar to low micromolar range. In accordance with cytotoxicity data, the BrdU assay showed that 1 is the most and 4 the least effective of these compounds regarding inhibition of DNA synthesis. Effects on the cell cycle are minor, although concentration-dependent inhibition of Cdk2/cyclin E activity was observed in cell-free experiments. Induction of apoptosis is most pronounced for complex 1, accompanied by a low fraction of necrotic cells, as observed by annexin V-fluorescein isothiocyanate/propidium iodide staining and flow cytometric analysis. PMID:23037896

  14. Synthesis, characterization and biological activity of trans-platinum(II) complexes with chloroquine

    OpenAIRE

    Navarro, Maribel; Castro, William; Higuera-Padilla, Angel R; Sierraalta, Anibal; Abad, María Jesús; Taylor, Peter; Sánchez-Delgado, Roberto A.

    2011-01-01

    Three platinum-chloroquine complexes, trans-Pt(CQDP)2(I)2 [1], trans-Pt(CQDP)2(Cl)2 [2] and trans-Pt(CQ)2(Cl)2 [3], were prepared and their most probable structure was established through a combination of spectroscopic analysis and density functional theory (DFT) calculations. Their interaction with DNA was studied and their activity against 6 tumor cell lines was evaluated. Compounds 1 and 2 interact with DNA primarily through electrostatic contacts and hydrogen bonding, with a minor contrib...

  15. Vanadium(V) complexes of a tripodal ligand, their characterisation and biological implications.

    Science.gov (United States)

    Maurya, Mannar R; Uprety, Bhawna; Avecilla, Fernando; Adão, Pedro; Costa Pessoa, J

    2015-10-28

    The reaction of the tripodal tetradentate dibasic ligand 6,6'-(2-(pyridin-2-yl)ethylazanediyl)bis(methylene)bis(2,4-di-tert-butylphenol), H2L(1)I, with [V(IV)O(acac)2] in CH3CN gives the V(V)O-complex, [V(V)O(acac)(L(1))] 1. Crystallisation of 1 in CH3CN at ∼0 °C gives dark blue crystals of 1, while at room temperature it affords dark green crystals of [{V(V)O(L(1))}2μ-O] 3. Upon prolonged treatment of 1 in MeOH, [V(V)O(OMe)(MeOH)(L(1))] 2 is obtained. All three complexes were analysed by single-crystal X-ray diffraction, depicting a distorted octahedral geometry around vanadium. In the reaction of H2L(1) with V(IV)OSO4 partial hydrolysis of the tripodal ligand results in the elimination of the pyridyl fragment of L(1) and the formation of H[V(V)O2(L(2))] 4 containing the ONO tridentate ligand 6,6'-azanediylbis(methylene)bis(2,4-di-tert-butylphenol), H2L(2)II. Compound 4, which was not fully characterised, undergoes dimerization in acetone yielding the hydroxido-bridged [{V(V)O(L(2))}2μ-(OH)2] 5 having a distorted octahedral geometry around each vanadium. In contrast, from a solution of 4 in acetonitrile, the dinuclear compound [{V(V)O(L(2))}2μ-O] 6 is obtained, with a trigonal bipyramidal geometry around each vanadium. The methoxido complex 2 is successfully employed as a functional catechol-oxidase mimic in the oxidation of catechol to o-quinone under air. The process was confirmed to follow a Michaelis-Menten type kinetics with respect to catechol, the Vmax and KM values obtained being 7.66 × 10(-6) M min(-1) and 0.0557 M, respectively, and the turnover frequency is 0.0541 min(-1). A similar reaction with the bulkier 3,5-di-tert-butylcatechol proceeded at a much slower rate. Complex 2 was also used as a catalyst precursor for the oxidative bromination of thymol in aqueous medium. The selectivity shows quite interesting trends, namely when not using excess of the primary oxidizing agent, H2O2, the para mono-brominated product corresponds to ∼93% of the

  16. SYNTHESIS AND BIOLOGICAL ACTIVITY OF BUTANONE THIOSEMICARBAZONE AND THEIR METALLIC COMPLEXES

    OpenAIRE

    Sandeep Kumar; Nitin Kumar

    2013-01-01

    In present work, Ligand butanone thiosemicarbazone and their 11 complexes of the type ML2X2, ML2X’, where M = Cu(II), Cd(II), Co(II), Zn(II), Hg(II); L = butanone thiosemicarbazone; X = Cl, NO3 or CH3COO; X’ = SO4 have been synthesized and characterized with the help of infra-red and ultra-violet spectroscopy. The spectral data revealed that the thiosemicarbazone act as bidentate ligand, making use of thionic sulphur and the azomethine nitrogen atom for co-ordination to the central metal a...

  17. Structural, thermal, morphological and biological studies of proton-transfer complexes formed from 4-aminoantipyrine with quinol and picric acid

    Science.gov (United States)

    Adam, Abdel Majid A.

    2013-03-01

    4-Aminoantipyrine (4AAP) is widely used in the pharmaceutical industry, biochemical experiments and environmental monitoring. However, residual amounts of 4AAP in the environment may pose a threat to human health. To provide basic data that can be used to extract or eliminate 4AAP from the environment, the proton-transfer complexes of 4AAP with quinol (QL) and picric acid (PA) were synthesized and spectroscopically investigated. The interactions afforded two new proton-transfer salts named 1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-aminium-4-hydroxyphenolate and 1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-aminium-2,4,6-trinitrophenolate for QL and PA, respectively, via a 1:1 stoichiometry. Elemental analysis (CHN), electronic absorption, spectrophotometric titration, IR, Raman, 1H NMR and X-ray diffraction were used to characterize the new products. The thermal stability of the synthesized CT complexes was investigated using thermogravimetric (TG) analyses, and the morphology and particle size of these complexes were obtained from scanning electron microscopy (SEM). It was found that PA and 4AAP immediately formed a yellow precipitate with a remarkable sponge-like morphology and good thermal stability up to 180 °C. Finally, the biological activities of the newly synthesized CT complexes were tested for their antibacterial and antifungal activities. The results indicated that the [(4AAP)(QL)] complex exhibited strong antimicrobial activities against various bacterial and fungal strains compared with standard drugs.

  18. Synthesis, characterization and biological evaluation of labile intercalative ruthenium(ii) complexes for anticancer drug screening.

    Science.gov (United States)

    Huang, Huaiyi; Zhang, Pingyu; Chen, Yu; Qiu, Kangqiang; Jin, Chengzhi; Ji, Liangnian; Chao, Hui

    2016-08-16

    DNA binding and DNA transcription inhibition is regarded as a promising strategy for cancer chemotherapy. Herein, chloro terpyridyl Ru(ii) complexes, [Ru(tpy)(N^N)Cl](+) (Ru1, N^N = 2,2'-bipyridine; Ru2, N^N = 3-(pyrazin-2-yl)-as-triazino[5,6-f]acenaphthylene; Ru3, N^N = 3-(pyrazin-2-yl)-as-triazino[5,6-f]phenanthrene; Ru4, N^N = 3-(pyrazin-2-yl)-as-triazino[5,6-f]pyrene) were prepared as DNA intercalative and covalent binding anticancer agents. The chloro ligand hydrolysis slowly and the octanol and water partition coefficient of Ru2-Ru4 were between 0.6 and 1.2. MALDI-TOF mass, DNA gel electrophoresis confirmed covalent and intercalative DNA binding modes of Ru2-Ru4, while Ru1 can only bind DNA covalently. As a result, Ru2-Ru4 exhibited stronger DNA transcription inhibition activity, higher cell uptake efficiency and better anticancer activity than Ru1. Ru4 was the most toxic complex toward all cancer cells which inhibited DNA replication and transcription. AO/EB, Annexin V/PI, nuclear staining, JC-1 assays further confirmed that Ru2-Ru4 induced cancer cell death by an apoptosis mechanism. PMID:27294337

  19. The impact of the Almalyk Industrial Complex on soil chemical and biological properties

    Energy Technology Data Exchange (ETDEWEB)

    Shukurov, Nosir [Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900 (Israel); Institute of Geology and Geophysics, Academy of Sciences of Uzbekistan, 49, N. Khodjibaev Street, Tashkent 700041 (Uzbekistan); Pen-Mouratov, Stanislav [Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900 (Israel); Steinberger, Yosef [Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900 (Israel)]. E-mail: steinby@mail.biu.ac.il

    2005-07-15

    The effect of heavy metals on soil free-living nematodes, microbial biomass (C{sub mic}) and basal respiration (BR) was studied along a 15 km downwind deposition gradient, originating at the Almalyk Industrial Complex. Soil samples from 0-10 and 10-20 cm layers were collected at 5 km intervals. A significant decrease in heavy metal deposition was found going from the source in the downwind direction and with depth. The soil microbial biomass, basal respiration and derived microbial indices for soil samples from the Almalyk industrial area were analysed. The lowest soil microbial biomass and total number of free-living nematodes were found in soil samples near the industrial complex, with a high heavy metal and weak total organic carbon (C{sub org}) content. The highest C{sub mic} was found in the soil samples collected 15 km from the pollution source. BR displayed similar results. The derived indices, metabolic quotient (qCO{sub 2}) and microbial ratio (C{sub mic}/C{sub org}), revealed significant differences with distance, confirming environmental stress in the first and second locations. The present study elucidates the importance of soil nematode and microbial populations as suitable tools for bio-monitoring the effect of heavy metals on soil systems. - Soil nematodes and microbes are suitable biomonitors for metals in soils.

  20. The impact of the Almalyk Industrial Complex on soil chemical and biological properties

    International Nuclear Information System (INIS)

    The effect of heavy metals on soil free-living nematodes, microbial biomass (Cmic) and basal respiration (BR) was studied along a 15 km downwind deposition gradient, originating at the Almalyk Industrial Complex. Soil samples from 0-10 and 10-20 cm layers were collected at 5 km intervals. A significant decrease in heavy metal deposition was found going from the source in the downwind direction and with depth. The soil microbial biomass, basal respiration and derived microbial indices for soil samples from the Almalyk industrial area were analysed. The lowest soil microbial biomass and total number of free-living nematodes were found in soil samples near the industrial complex, with a high heavy metal and weak total organic carbon (Corg) content. The highest Cmic was found in the soil samples collected 15 km from the pollution source. BR displayed similar results. The derived indices, metabolic quotient (qCO2) and microbial ratio (Cmic/Corg), revealed significant differences with distance, confirming environmental stress in the first and second locations. The present study elucidates the importance of soil nematode and microbial populations as suitable tools for bio-monitoring the effect of heavy metals on soil systems. - Soil nematodes and microbes are suitable biomonitors for metals in soils

  1. Cupric Oxide (CuO) Oxidation Detects Pyrogenic Carbon in Burnt Organic Matter and Soils

    Science.gov (United States)

    Hatten, Jeff; Goñi, Miguel

    2016-01-01

    Wildfire greatly impacts the composition and quantity of organic carbon stocks within watersheds. Most methods used to measure the contributions of fire altered organic carbon–i.e. pyrogenic organic carbon (Py-OC) in natural samples are designed to quantify specific fractions such as black carbon or polyaromatic hydrocarbons. In contrast, the CuO oxidation procedure yields a variety of products derived from a variety of precursors, including both unaltered and thermally altered sources. Here, we test whether or not the benzene carboxylic acid and hydroxy benzoic acid (BCA) products obtained by CuO oxidation provide a robust indicator of Py-OC and compare them to non-Py-OC biomarkers of lignin. O and A horizons from microcosms were burned in the laboratory at varying levels of fire severity and subsequently incubated for 6 months. All soils were analyzed for total OC and N and were analyzed by CuO oxidation. All BCAs appeared to be preserved or created to some degree during burning while lignin phenols appeared to be altered or destroyed to varying extents dependent on fire severity. We found two specific CuO oxidation products, o-hydroxybenzoic acid (oBd) and 1,2,4-benzenetricarboxylic acid (BTC2) that responded strongly to burn severity and withstood degradation during post-burning microbial incubations. Interestingly, we found that benzene di- and tricarboxylic acids (BDC and BTC, respectively) were much more reactive than vanillyl phenols during the incubation as a possible result of physical protection of vanillyl phenols in the interior of char particles or CuO oxidation derived BCAs originating from biologically available classes of Py-OC. We found that the ability of these compounds to predict relative Py-OC content in burned samples improved when normalized by their respective BCA class (i.e. benzene monocarboxylic acids (BA) and BTC, respectively) and when BTC was normalized to total lignin yields (BTC:Lig). The major trends in BCAs imparted by burning

  2. Synthesis, crystal, and biological activity of a novel carbene silver(I) complex with imidazole derivative

    Energy Technology Data Exchange (ETDEWEB)

    Jiu-Fu, Lu, E-mail: jiufulu@163.com; Hong-Guang, Ge; Juan, Shi [Chemical Engineering College, Shaanxi University of Technology (China)

    2015-12-15

    Reaction of 2-(1-methyl-1,2-dihydroimidazol-3-yl)acetonitrile tetrafluoroborate with silver oxide in dichloromethane readily yields [Ag(DIM){sub 2}]BF{sub 4}, where DIM is 2-(1-methyl-1, 2-dihydroimidazol-3-yl)acetonitrile, representing a carbene organic ligand. The title compound was characterized by elemental analysis, IR, MS and single crystal X-ray diffraction. The crystal is of monoclinic system, space group C2/c with a = 14.010(18), b = 8.303(11), c = 14.936(20) Å, β = 93.910(4)°, V = 1639(4) Å{sup 3}, Z = 4, D{sub x} = 1.771 g/cm{sup 3}, F (000) = 864, µ(MoK{sub α}) = 1.278 mm{sup –1}. The final R{sup 1} = 0.0711 and wR{sup 2} = 0.1903 for reflections with I > 2σ(I). In addition, the preliminary biological test showed that the title compound had anti-fungus yeast activity.

  3. Water Complexes Take Part in Biological Effect Created by Weak Combined Magnetic Field

    Science.gov (United States)

    Sheykina, Nadiia

    2016-07-01

    It was revealed experimentally that at small level of magnetic field's noise (less than 4µT/Hz0.5) the dependence of gravitropc reaction of cress roots on frequency had a fine structure/ The peak that corresponded to the cyclotron frequency of Ca2+ ions for the static component of combined magnetic field that was equal to 40µT became split up into three peaks ( f1 = 31/3Hz, f2 = 32.5Hz i f3 = 34 Hz./ . The frequency f1 corresponded to the Ca2+ ion (theoretical value 31.6 Hz), the frequency f2 corresponded to the hydronium ion H3O+ (theoretical value 32.9 Hz), the frequency f3 corresponded to OH- ion (theoretical value 35 Hz). Taking into account the influence of combined magnetic field on hydronium ions and Del Giudice' hypothesis one may throw away doubts about the possibility of ion cyclotron resonance. The hydronium ions are unusual because they have a long free path length. It was revealed that pH of the distillated water changed under the treatment in combined magnetic field tuned to cyclotron frequency of hydronium ion. Such changes in pH had to lead to the biological effects on the molecular ,cell and organism levels.

  4. The Role of Model Integration in Complex Systems Modelling An Example from Cancer Biology

    CERN Document Server

    Patel, Manish

    2010-01-01

    Model integration – the process by which different modelling efforts can be brought together to simulate the target system – is a core technology in the field of Systems Biology. In the work presented here model integration was addressed directly taking cancer systems as an example. An in-depth literature review was carried out to survey the model forms and types currently being utilised. This was used to formalise the main challenges that model integration poses, namely that of paradigm (the formalism on which a model is based), focus (the real-world system the model represents) and scale. A two-tier model integration strategy, including a knowledge-driven approach to address model semantics, was developed to tackle these challenges. In the first step a novel description of models at the level of behaviour, rather than the precise mathematical or computational basis of the model, is developed by distilling a set of abstract classes and properties. These can accurately describe model behaviour and hence d...

  5. Synthesis, crystal, and biological activity of a novel carbene silver(I) complex with imidazole derivative

    Science.gov (United States)

    Jiu-Fu, Lu; Hong-Guang, Ge; Juan, Shi

    2015-12-01

    Reaction of 2-(1-methyl-1,2-dihydroimidazol-3-yl)acetonitrile tetrafluoroborate with silver oxide in dichloromethane readily yields [Ag( DIM)2]BF4, where DIM is 2-(1-methyl-1, 2-dihydroimidazol-3-yl)acetonitrile, representing a carbene organic ligand. The title compound was characterized by elemental analysis, IR, MS and single crystal X-ray diffraction. The crystal is of monoclinic system, space group C2/ c with a = 14.010(18), b = 8.303(11), c = 14.936(20) Å, β = 93.910(4)°, V = 1639(4) Å3, Z = 4, D x = 1.771 g/cm3, F (000) = 864, µ(Mo K α) = 1.278 mm-1. The final R 1 = 0.0711 and wR 2 = 0.1903 for reflections with I > 2σ( I). In addition, the preliminary biological test showed that the title compound had anti-fungus yeast activity.

  6. Chemical and biological profiles of novel copper(II) complexes containing S-donor ligands for the treatment of cancer.

    Science.gov (United States)

    Giovagnini, Lorena; Sitran, Sergio; Montopoli, Monica; Caparrotta, Laura; Corsini, Maddalena; Rosani, Claudia; Zanello, Piero; Dou, Q Ping; Fregona, Dolores

    2008-07-21

    In the last years, we have synthesized some new platinum(II), palladium(II), gold(I/III) complexes with dithiocarbamato derivatives as potential anticancer drugs, to obtain compounds with superior chemotherapeutic index in terms of increased bioavailability, higher cytotoxicity, and lower side effects than cisplatin. On the basis of the obtained encouraging results, we have been studying the interaction of CuCl2 with methyl-/ethyl-/tert-butylsarcosine-dithiocarbamato moieties in a 1:2 molar ratio; we also synthesized and studied the N,N-dimethyl- and pyrrolidine-dithiocarbamato copper complexes for comparison purposes. The reported compounds have been successfully isolated, purified, and fully characterized by means of several spectroscopic techniques. Moreover, the electrochemical properties of the designed compounds have been studied through cyclic voltammetry. In addition, the behavior in solution was followed by means of UV-vis technique to check the stability with time in physiological conditions. To evaluate their in vitro cytotoxic properties, preliminary biological assays (MTT test) have been carried out on a panel of human tumor cell lines. The results show that cytotoxicity levels of all of the tested complexes are comparable or even greater than that of the reference drug (cisplatin). PMID:18572881

  7. Lanthanide metal complex-based membrane electrodes for sensing of biological amino alcohols

    International Nuclear Information System (INIS)

    Electrodes selective for amino alcohols were prepared by incorporating lanthanide tris(β-diketonates) in PVC membranes, which formed 1:1 highly coordinated complexes with amino alcohols. Several electrodes gave near-Nernstian slopes for 2-amino-3-methyl-1-butanol in the linear concentration range of 1.0 x 10-1 to 1.0 x 10-3 M, while the low detection limits of these electrodes were order of ∼10-4 M. Although the observed response profiles were significantly dependent on the natures of the targeted amino alcohols, the electrodes exhibited stable potentiometric signals in the pH range of 6-12 in short time period of 20 s. The related monoalcohol, diol, and zwitterionic amino acid substrates gave no response, indicating that the present type of lanthanide tris(β-diketonates) were applicable in potentiometric sensing of amino alcohols

  8. A Numerical Algorithm for Complex Biological Flow in Irregular Microdevice Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, A; Miller, G H; Marshall, T; Liepmann, D; Gulati, S; Trebotich, D; Colella, P

    2003-12-15

    We present a numerical algorithm to simulate non-Newtonian flow in complex microdevice components. The model consists of continuum viscoelastic incompressible flow in irregular microscale geometries. Our numerical approach is the projection method of Bell, Colella and Glaz (BCG) to impose the incompressibility constraint coupled with the polymeric stress splitting discretization of Trebotich, Colella and Miller (TCM). In this approach we exploit the hyperbolic structure of the equations of motion to achieve higher resolution in the presence of strong gradients and to gain an order of magnitude in the timestep. We also extend BCG and TCM to an embedded boundary method to treat irregular domain geometries which exist in microdevices. Our method allows for particle representation in a continuum fluid. We present preliminary results for incompressible viscous flow with comparison to flow of DNA and simulants in microchannels and other components used in chem/bio microdevices.

  9. Preparation of technetium-99-DMS renal complex in solution and its chemical and biological characterization

    International Nuclear Information System (INIS)

    99Tc-DMS solution was prepared by double isotope labelling, purified by molecular sieving through Sepharose 2B column, and checked by chromatographic and spectrophotometric methods, as well as by assessment of its biodistribution in rats. The preparations, obtained in a series of nine experiments, showed high renal uptake (30-40% of injected dose per organ) and could be used for further investigations of Tc-DMS biochemical behaviour in kidney tissue at subcellular level. Radioactive concentrations of purified 99Tc-DMS preparations were 37-74 Bq/ml and absorption maxima at 412-425 nm (yellow complex). By application of sup(99m)Tc, 99Tc-DMS preparation in rats, good renal scans have been obtained. (author)

  10. Activation T-DNA tagging. Gene isolation and molecular dissection of complex biological pathways

    International Nuclear Information System (INIS)

    Activation tagging is a powerful means of isolating plant genes whose products are involved in complex biochemical processes. The dominant mutation produced allows direct selection for a defined phenotype. Plasmid rescue can be used to recover both the T-DNA and the flanking plant sequences containing the tagged gene. Activation tagging has been used to create a number of differing tobacco mutants, including those whose cells are characterized by their ability to grow in culture in the absence of auxin in the media. The tagged genes in this case are, in effect, cellular proto-oncogenes and are likely to play a role in the auxin biosynthetic and perception pathway. (author). 16 refs

  11. Improving biological understanding and complex trait prediction by integrating prior information in genomic feature models

    DEFF Research Database (Denmark)

    Edwards, Stefan McKinnon

    In this thesis we investigate an approach to integrate external data into the analysis of genetic variants. The goal is similar to that of gene-set enrichment tests, but relies on the robust statistical framework of linear mixed models. This approach has allowed us to integrate virtually any......, we also use cross validations to estimate the predictive ability of a set. --- The thesis consists of 3 chapters introducing the methodology of linear mixed models, their application, and evaluation by means of test statistics. Then 3 manuscripts in which we investigate the usage of our approach in...... demonstrates the successful application of an integrative approach for enhancing the systems genetics analysis of complex traits. The results shows that by using informed subsets of genetic variants, it is possible to increase the predictive ability in populations of low relatedness; a valuable prospect for...

  12. Labeling of thymidine analog with an organometallic complex of technetium-99m for diagnostic of cancer: radiochemical and biological evaluation

    International Nuclear Information System (INIS)

    Thymidine analogs have been labeled with different radioisotopes due to their potential in monitoring the uncontrollable cell proliferation. Considering that the radioisotopes technetium-99m still keep a privileged position as a marker due to its chemical and nuclear properties, this dissertation was constituted by the developed of a new technique of labeling of thymidine analog with 99mTc, by means of the organometallic complex. The aims of this research were: synthesis of the organometallic complex technetium-99m-carbonyl, thymidine labeling with this precursor, evaluation of stability, and radiochemical e biological evaluation with healthy and tumor-bearing animals. The preparation of the organometallic precursor, using the CO gas, was easily achieved, as well as the labeling of thymidine with this precursor, resulting itself a radiochemical pureness of ≥ 97% and ≥ 94%, respectively. Chromatography systems with good levels of trustworthiness were used, ensuring the qualification and quantification of the radiochemical samples. The result of in vitro testing of lipophilicity disclosed that the radiolabeled complex is hydrophilic, with a partition coefficient (log P) of -1.48. The precursor complex and the radiolabeled have good radiochemical stability up to 6 h in room temperature. The cysteine and histidine challenge indicated losses between 8 and 1 1 % for concentrations until 300 mM. The biodistribution assay in healthy mice revealed rapid blood clearance and low uptake by general organs with renal and hepatobiliary excretion. The tumor concentration was low with values of 0.28 and 0.18 %ID/g for lung and breast cancer, respectively. The results imply more studies in other tumor models or the modification of the structure of the organic molecule that act like ligand. (author)

  13. Preparation and biological distribution of 99mTc-cefazolin complex, a novel agent for detecting sites of infection

    International Nuclear Information System (INIS)

    The optimization of the radiolabeling yield of cefazolin with 99mTc was described. Dependence of the labeling yield of 99mTc-cefazolin complex on the amounts of cefazolin and SnCl2·2H2O, pH and reaction time was studied. Cefazolin was labeled with 99mTc with a labeling yield of 89.5 % by using 1 mg cefazolin, 5 μg SnCl2·2H2O at pH 4 and 30 min reaction time. The radiochemical purity of 99mTc-cefazolin was evaluated with ITLC. The formed 99mTc-cefazolin complex was stable for a time up to 3 h, after that the labeling yield decreased 64.0 % at 8 h. Biological distribution of 99mTc-cefazolin complex was investigated in experimentally induced inflammation mice, in the left thigh, using Staphylococcus aureus (bacterial infection model) and turpentine oil (sterile inflammation model). Both thighs of the mice were dissected and counted and the ratio of bacterial infected thigh/contralateral thigh was then evaluated. In case of bacterial infection, T/NT for 99mTc-cefazolin complex was 8.57 ± 0.4 after 0.5 h, which was higher than that of the commercially available 99mTc-ciprofloxacin under the same experimental conditions. The ability of 99mTc-cefazolin to differentiate between septic and aseptic inflammation indicates that 99mTc-cefazolin could undergo further clinical trials to be used for imaging sites of infection. (author)

  14. Biological studies of samarium-153 bleomycin complex in human breast cancer murine xenografts for therapeutic applications

    International Nuclear Information System (INIS)

    In this work, a potential therapeutic DNA targeting agent, 153Sm-bleomycin complex (153Sm-BLM), was developed and the tumor accumulation studies were performed using single photon emission computed tomography (SPECT) and scarification studies. 153Sm-BLM was prepared at optimized conditions (room temperature, 4-8 h, 0.1 mg bleomycin for 740-3700 MBq 153SmCl3, radiochemical purity over 98%, HPLC, specific activity = 55 TBq/mmol). 153Sm-BLM was administered into human breast cancer murine xenografts and the biodistribution and imaging studies were performed up to 48 h. 153Sm-BLM demonstrated superior tumor accumulation properties in contrast with the other radiolabeled bleomycins with tumor:blood ratios of 41, 72 and 182 at 4, 24 and 48 h, respectively, and tumor:muscle ratios of 23, 33 and > 1490 at 4, 24 and 48 h, respectively, while administered intravenously. The SPECT images also demonstrated the obvious tumor uptake at the chest region of the breast-tumor bearing mice. These initial experiments demonstrate significant accumulation of 153Sm-BLM in tumor tissues. (orig.)

  15. A differential genome-wide transcriptome analysis: impact of cellular copper on complex biological processes like aging and development.

    Directory of Open Access Journals (Sweden)

    Jörg Servos

    explain the underlying mechanisms controlling complex biological processes like aging and development.

  16. Measurement issues associated with quantitative molecular biology analysis of complex food matrices for the detection of food fraud.

    Science.gov (United States)

    Burns, Malcolm; Wiseman, Gordon; Knight, Angus; Bramley, Peter; Foster, Lucy; Rollinson, Sophie; Damant, Andrew; Primrose, Sandy

    2016-01-01

    Following a report on a significant amount of horse DNA being detected in a beef burger product on sale to the public at a UK supermarket in early 2013, the Elliott report was published in 2014 and contained a list of recommendations for helping ensure food integrity. One of the recommendations included improving laboratory testing capacity and capability to ensure a harmonised approach for testing for food authenticity. Molecular biologists have developed exquisitely sensitive methods based on the polymerase chain reaction (PCR) or mass spectrometry for detecting the presence of particular nucleic acid or peptide/protein sequences. These methods have been shown to be specific and sensitive in terms of lower limits of applicability, but they are largely qualitative in nature. Historically, the conversion of these qualitative techniques into reliable quantitative methods has been beset with problems even when used on relatively simple sample matrices. When the methods are applied to complex sample matrices, as found in many foods, the problems are magnified resulting in a high measurement uncertainty associated with the result which may mean that the assay is not fit for purpose. However, recent advances in the technology and the understanding of molecular biology approaches have further given rise to the re-assessment of these methods for their quantitative potential. This review focuses on important issues for consideration when validating a molecular biology assay and the various factors that can impact on the measurement uncertainty of a result associated with molecular biology approaches used in detection of food fraud, with a particular focus on quantitative PCR-based and proteomics assays. PMID:26631264

  17. Biologic surveys for the Sandia National Laboratories, Coyote Canyon Test Complex, Kirtland Air Force Base, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.M. [4115 Allen Dr., Kingsville, TX (United States); Knight, P.J. [Marron and Associates, Inc., Corrales, NM (United States)

    1994-05-25

    This report provides results of a comprehensive biologic survey performed in Coyote Canyon Test Complex (CCTC), Sandia National Laboratories (SNL), Bernalillo County, New Mexico, which was conducted during the spring and summer of 1992 and 1993. CCTC is sited on land owned by the Department of Energy (DOE) and Kirtland Air Force Base and managed by SNL. The survey covered 3,760 acres of land, most of which is rarely disturbed by CCTC operations. Absence of grazing by livestock and possibly native ungulates, and relative to the general condition of private range lands throughout New Mexico, and relative to other grazing lands in central New Mexico. Widely dispersed, low intensity use by SNL as well as prohibition of grazing has probably contributed to abundance of special status species such as grama grass cactus within the CCTC area. This report evaluates threatened and endangered species found in the area, as well as comprehensive assessment of biologic habitats. Included are analyses of potential impacts and mitigative measures designed to reduce or eliminate potential impacts. Included is a summary of CCTC program and testing activities.

  18. Cell-cell channels, viruses, and evolution: via infection, parasitism, and symbiosis toward higher levels of biological complexity.

    Science.gov (United States)

    Baluska, Frantisek

    2009-10-01

    Between prokaryotic cells and eukaryotic cells there is dramatic difference in complexity which represents a problem for the current version of the cell theory, as well as for the current version of evolution theory. In the past few decades, the serial endosymbiotic theory of Lynn Margulis has been confirmed. This results in a radical departure from our understanding of living systems: the eukaryotic cell represents de facto"cells-within-cell." Higher order "cells-within-cell" situations are obvious at the eukaryotic cell level in the form of secondary and tertiary endosymbiosis, or in the male and female gametophytes of higher plants. The next challenge of the current version of the cell theory is represented by the fact that the multicellular fungi and plants are, in fact, supracellular assemblies as their cells are not physically separated from each other. Moreover, there are also examples of alliances and mergings between multicellular organisms. Infection, especially the viral one, but also bacterial and fungal infections, followed by symbiosis, is proposed to act as the major force that drives the biological evolution toward higher complexity. PMID:19845631

  19. DeepQuanTR: MALDI-MS-based label-free quantification of proteins in complex biological samples.

    Science.gov (United States)

    Fugmann, Tim; Neri, Dario; Roesli, Christoph

    2010-07-01

    The quantification of changes in protein abundance in complex biological specimens is essential for proteomic studies in basic and applied research. Here we report on the development and validation of the DeepQuanTR software for identification and quantification of differentially expressed proteins using LC-MALDI-MS. Following enzymatic digestion, HPLC peptide separation and normalization of MALDI-MS signal intensities to the ones of internal standards, the software extracts peptide features, adjusts differences in HPLC retention times and performs a relative quantification of features. The annotation of multiple peptides to the corresponding parent protein allows the definition of a Protein Quant Value, which is related to protein abundance and which allows inter-sample comparisons. The performance of DeepQuanTR was evaluated by analyzing 24 samples deriving from human serum spiked with different amounts of four proteins and eight complex samples of vascular proteins, derived from surgically resected human kidneys with cancer following ex vivo perfusion with a reactive ester biotin derivative. The identification and experimental validation of proteins, which were differentially regulated in cancerous lesions as compared with normal kidney, was used to demonstrate the power of DeepQuanTR. This software, which can easily be used with established proteomic methodologies, facilitates the relative quantification of proteins derived from a wide variety of different samples. PMID:20455210

  20. Determination of size- and number-based concentration of silica nanoparticles in a complex biological matrix by online techniques.

    Science.gov (United States)

    Bartczak, Dorota; Vincent, Phil; Goenaga-Infante, Heidi

    2015-06-01

    We propose for the first time methodology for the determination of a number-based concentration of silica (SiO2) nanoparticles (NP) in biological serum using nanoparticle tracking analysis (NTA) as the online detector for asymmetric flow field-flow fractionation (AF4). The degree of selectivity offered by AF4 was found necessary to determine reliably number-based concentration of the measured NP in the complex matrix with a relative measurement error of 5.1% (as relative standard deviation, n = 3) and without chemical sample pretreatment. The simultaneous online coupling to other size and concentration detectors, such as multiangle light scattering (MALS) and ICPMS, for the measurement of the same NP suspension, was used to confirm the particle size determined with NTA and the equivalent particle number determined by AF4/NTA, respectively. The size- and number-based concentration data obtained by independent techniques were in a good agreement. The developed methodology can easily be extended to other types of particles or particle suspensions and other complex matrices provided that the particle size is above the limit of detection for NTA. PMID:25970520

  1. Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 2: Complex urban VOCs and model PM

    Directory of Open Access Journals (Sweden)

    H. E. Jeffries

    2012-12-01

    Full Text Available This is the second study in a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOCs, particulate matter (PM, and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber, both in the dark and in sunlight. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model living receptors. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects from cells exposed to chamber air relative to cells exposed to clean air. Our exposure systems permit side-by-side, gas-only- and PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure for either gases or PM. In Part 1 (Ebersviller et al., 2012a, we demonstrated the existence of PM "effect modification" (NAS, 2004 for the case of a single gas-phase toxicant and an inherently non-toxic PM (mineral oil aerosol, MOA. That is, in the presence of the single gas-phase toxicant in the dark, the initially non-toxic PM became toxic to lung cells in the PM-only-biological exposure system. In this Part 2 study, we used sunlit-reactive systems to create a large variety of gas-phase toxicants from a complex mixture of oxides of nitrogen and 54 VOCs representative of those measured in US city air. In these mostly day-long experiments, we have designated the period in the dark just after injection (but before sunrise as the "Fresh" condition and the period in the dark after sunset as the "Aged" condition. These two conditions were used to expose cells and to collect chemical characterization samples. We used the same inherently non-toxic PM from the Part 1 study as the target PM

  2. Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 2: Complex urban VOCs and model PM

    Directory of Open Access Journals (Sweden)

    S. Ebersviller

    2012-03-01

    Full Text Available This is the second study in a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOCs, particulate matter (PM, and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber, both in the dark and in sunlight. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model living receptors. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects from cells exposed to chamber air relative to cells exposed to clean air. Our exposure systems permit side-by-side, gas-only- and PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure for either gases or PM.

    In Part 1 (Ebersviller et al., 2012a, we demonstrated the existence of PM "effect modification" (NAS, 2004 for the case of a single gas-phase toxicant and an inherently non-toxic PM (mineral oil aerosol, MOA. That is, in the presence of the single gas-phase toxicant in the dark, the initially non-toxic PM became toxic to lung cells in the PM-only-biological exposure system. In this Part 2 study, we used sunlit-reactive systems to create a large variety of gas-phase toxicants from a complex mixture of oxides of nitrogen and 54 VOCs representative of those measured in US city air. In these mostly day-long experiments, we have designated the period in the dark just after injection (but before sunrise as the "Fresh" condition and the period in the dark after sunset as the "Aged" condition. These two conditions were used to expose cells and to collect chemical characterization samples. We used the same inherently non-toxic PM from the Part 1 study as the

  3. Gaseous VOCs rapidly modify particulate matter and its biological effects - Part 2: Complex urban VOCs and model PM

    Science.gov (United States)

    Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y.-H.; Jaspers, I.; Jeffries, H. E.

    2012-12-01

    This is the second study in a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOCs), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber, both in the dark and in sunlight. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model living receptors. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. Our exposure systems permit side-by-side, gas-only- and PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure for either gases or PM. In Part 1 (Ebersviller et al., 2012a), we demonstrated the existence of PM "effect modification" (NAS, 2004) for the case of a single gas-phase toxicant and an inherently non-toxic PM (mineral oil aerosol, MOA). That is, in the presence of the single gas-phase toxicant in the dark, the initially non-toxic PM became toxic to lung cells in the PM-only-biological exposure system. In this Part 2 study, we used sunlit-reactive systems to create a large variety of gas-phase toxicants from a complex mixture of oxides of nitrogen and 54 VOCs representative of those measured in US city air. In these mostly day-long experiments, we have designated the period in the dark just after injection (but before sunrise) as the "Fresh" condition and the period in the dark after sunset as the "Aged" condition. These two conditions were used to expose cells and to collect chemical characterization samples. We used the same inherently non-toxic PM from the Part 1 study as the target PM for "effect

  4. Diagnostic nanoparticle targeting of the EGF-receptor in complex biological conditions using single-domain antibodies

    Science.gov (United States)

    Zarschler, K.; Prapainop, K.; Mahon, E.; Rocks, L.; Bramini, M.; Kelly, P. M.; Stephan, H.; Dawson, K. A.

    2014-05-01

    For effective localization of functionalized nanoparticles at diseased tissues such as solid tumours or metastases through biorecognition, appropriate targeting vectors directed against selected tumour biomarkers are a key prerequisite. The diversity of such vector molecules ranges from proteins, including antibodies and fragments thereof, through aptamers and glycans to short peptides and small molecules. Here, we analyse the specific nanoparticle targeting capabilities of two previously suggested peptides (D4 and GE11) and a small camelid single-domain antibody (sdAb), representing potential recognition agents for the epidermal growth factor receptor (EGFR). We investigate specificity by way of receptor RNA silencing techniques and look at increasing complexity in vitro by introducing increasing concentrations of human or bovine serum. Peptides D4 and GE11 proved problematic to employ and conjugation resulted in non-receptor specific uptake into cells. Our results show that sdAb-functionalized particles can effectively target the EGFR, even in more complex bovine and human serum conditions where targeting specificity is largely conserved for increasing serum concentration. In human serum however, an inhibition of overall nanoparticle uptake is observed with increasing protein concentration. For highly affine targeting ligands such as sdAbs, targeting a receptor such as EGFR with low serum competitor abundance, receptor recognition function can still be partially realised in complex conditions. Here, we stress the value of evaluating the targeting efficiency of nanoparticle constructs in realistic biological milieu, prior to more extensive in vivo studies.For effective localization of functionalized nanoparticles at diseased tissues such as solid tumours or metastases through biorecognition, appropriate targeting vectors directed against selected tumour biomarkers are a key prerequisite. The diversity of such vector molecules ranges from proteins, including

  5. A comparison of the application of a biological and phenetic species concept in the Hebeloma crustuliniforme complex within a phylogenetic framework

    DEFF Research Database (Denmark)

    Aanen, Duur Kornelis; Kuyper, T.W.

    2004-01-01

    A method is presented to derive an operational phenetic species concept for the Hebeloma crustuliniforme complex in northwestern Europe. The complex was found to consist of at least 22 biological species (intercompatibility groups; ICGs). Almost none of these biological species could be recognised...... criterion of monophyly and allowing paraphyletic groupings of biological species as phenetic species would result in the recognition of three phenetic species. A tree, with the five ICGs of the previously defined morphospecies H. crustuliniforme (1, 2, 3, 4 and 5) constrained as a monophyletic group, can...... not be rejected. This constrained tree, together with the relaxed criterion that allows for paraphyletic groupings of biological species, leads to the recognition of four phenetic species, viz. H. crustuliniforme, H. helodes, H. incarnatulum and H. velutipes. These phenetic species are described and a...

  6. Complexity

    CERN Document Server

    Gershenson, Carlos

    2011-01-01

    The term complexity derives etymologically from the Latin plexus, which means interwoven. Intuitively, this implies that something complex is composed by elements that are difficult to separate. This difficulty arises from the relevant interactions that take place between components. This lack of separability is at odds with the classical scientific method - which has been used since the times of Galileo, Newton, Descartes, and Laplace - and has also influenced philosophy and engineering. In recent decades, the scientific study of complexity and complex systems has proposed a paradigm shift in science and philosophy, proposing novel methods that take into account relevant interactions.

  7. Sulphation of cuprous and cupric oxide dusts and heterogeneous copper matte particles in simulated flash smelting heat recovery boiler conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ranki-Kilpinen, T.

    2004-07-01

    composition. An increase in oxygen concentration expands the favourable temperature range and lowers the most optimal sulphate formation temperature; on the contrary an increase in sulphur dioxide concentration raises the favourable sulphation temperature. On the basis of the present experiments pure cupric oxide behaves like cuprous oxide, but the conversion degrees are slightly lower and there is not such a clear enhance in the sulphation rate at a certain temperature. Fine, heterogeneous partially oxidised matte reacts significantly faster compared to synthetic oxides. The reason for more effective sulphation is suggested to be the smaller particle size and more detailed morphology (larger specific surface area). In the heat recovery boiler dust particles must have a sufficient residence time in the gas phase at a correct temperature range to allow the dust particles to reach complete conversion in the radiation section before they enter the boiler convection section and come into contact with the convection tube banks. Enough oxygen has to be supplied to the appropriate zone to ensure effective sulphation at the right place. Also, mixing of the oxygen must be efficient. (orig.)

  8. Synthesis of iminophosphine and phosphinoiminol cyclometallated Pt (II) and Pt (IV) chloro complexes and studies into their biological and photophysical properties

    OpenAIRE

    O'Donoghue, John Daniel

    2013-01-01

    This thesis focuses on the synthesis and analysis of novel chloride based platinum complexes derived from iminophosphine and phosphinoamide ligands, along with studies on their reactivity towards substitution and oxidation reactions. Also explored here are the potential applications of these complexes for biological and luminescent purposes. Chapter one provides an extensive overview of platinum coordination chemistry with examples of various mixed donor ligands along with the history of plat...

  9. Biological Role of Anions (Sulfate, Nitrate , Oxalate and Acetate) on the Antibacterial Properties of Cobalt (II) and Nickel(II) Complexes With Pyrazinedicarboxaimide Derived, Furanyl and Thienyl Compounds

    OpenAIRE

    Chohan, Zahid H.; Praveen, M.

    1999-01-01

    A number of biologically active complexes of cobalt(II) and nickel(II) with pyrazinedicarboxaimido derived thienyl and furanyl compounds having the same metal ion but different anions such as sulphate, nitrate, oxalate and acetate have been synthesized and characterized on the basis of their physical, spectral and analytical data. In order to evaluate the role of anions on their antibacterial properties, these ligands and their synthesized metal complexes with various anions have been screene...

  10. Rapid Isolation and Determination of Flavones in Biological Samples Using Zinc Complexation Coupled with High-Performance Liquid Chromatography.

    Science.gov (United States)

    Sun, Chenghe; Wang, Hecheng; Wang, Yingping; Xiao, Shengyuan

    2016-01-01

    Chlorophyll-type contaminants are commonly encountered in the isolation and determination of flavones of plant aerial plant parts. Heme is also a difficult background substance in whole blood analysis. Both chlorophyll and heme are porphyrin type compounds. In this study, a rapid method for isolating flavones with 5-hydroxyl or ortho-hydroxyl groups from biological samples was developed based on the different solubilities of porphyrin-metal and flavone-metal complexes. It is important that other background substances, e.g., proteins and lipids, are also removed from flavones without an additional processing. The recoveries of scutellarin, baicalin, baicalein, wogonoside and wogonin, which are the primary constituents of Scutellaria baicalensis (skullcaps) were 99.65% ± 1.02%, 98.98% ± 0.73%, 99.65% ± 0.03%, 97.59% ± 0.09% and 95.19% ± 0.47%, respectively. As a sample pretreatment procedure, this method was coupled to high-performance liquid chromatography (HPLC) with good separation, sensitivity and linearity and was applied to determine the flavone content in different aerial parts of S. baicalensis and in dried blood spot samples. PMID:27537870

  11. Rapid Isolation and Determination of Flavones in Biological Samples Using Zinc Complexation Coupled with High-Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Chenghe Sun

    2016-08-01

    Full Text Available Chlorophyll-type contaminants are commonly encountered in the isolation and determination of flavones of plant aerial plant parts. Heme is also a difficult background substance in whole blood analysis. Both chlorophyll and heme are porphyrin type compounds. In this study, a rapid method for isolating flavones with 5-hydroxyl or ortho-hydroxyl groups from biological samples was developed based on the different solubilities of porphyrin-metal and flavone-metal complexes. It is important that other background substances, e.g., proteins and lipids, are also removed from flavones without an additional processing. The recoveries of scutellarin, baicalin, baicalein, wogonoside and wogonin, which are the primary constituents of Scutellaria baicalensis (skullcaps were 99.65% ± 1.02%, 98.98% ± 0.73%, 99.65% ± 0.03%, 97.59% ± 0.09% and 95.19% ± 0.47%, respectively. As a sample pretreatment procedure, this method was coupled to high-performance liquid chromatography (HPLC with good separation, sensitivity and linearity and was applied to determine the flavone content in different aerial parts of S. baicalensis and in dried blood spot samples.

  12. A systematic investigation on biological activities of a novel double zwitterionic Schiff base Cu(II) complex

    Science.gov (United States)

    Thalamuthu, S.; Annaraj, B.; Neelakantan, M. A.

    2014-01-01

    Double zwitterionic amino acid Schiff base, o-vanillylidene-L-histidine (OVHIS) and its copper complex (CuOVHIS) have been synthesized and characterized. CuOVHIS has distorted octahedral geometry, and OVHIS coordinates the copper ion in a tetradentate manner (N2O2). The pKa of OVHIS in aqueous solution was studied by potentiometric and spectrophotometric methods. DNA binding behavior of the compounds was investigated using spectrophotometric, cyclic voltammetric, and viscosity methods. The efficacy of DNA cleaving nature was tested on pUC19 DNA. The in vitro biological activity was tested against various micro organisms. The effect of CuOVHIS on the surface feature of Escherichia coli was analyzed by SEM. DPPH assay studies revealed that CuOVHIS has higher antioxidant activity. OVHIS inhibits proliferation of HCT117 cells with half maximal inhibition (IC50) of 71.15 ± 0.67. Chelation of OVHIS with Cu(II) ion enhances the inhibition of proliferation action (IC50 = 53.14 ± 0.67).

  13. BioDMET: a physiologically based pharmacokinetic simulation tool for assessing proposed solutions to complex biological problems.

    Science.gov (United States)

    Graf, John F; Scholz, Bernhard J; Zavodszky, Maria I

    2012-02-01

    We developed a detailed, whole-body physiologically based pharmacokinetic (PBPK) modeling tool for calculating the distribution of pharmaceutical agents in the various tissues and organs of a human or animal as a function of time. Ordinary differential equations (ODEs) represent the circulation of body fluids through organs and tissues at the macroscopic level, and the biological transport mechanisms and biotransformations within cells and their organelles at the molecular scale. Each major organ in the body is modeled as composed of one or more tissues. Tissues are made up of cells and fluid spaces. The model accounts for the circulation of arterial and venous blood as well as lymph. Since its development was fueled by the need to accurately predict the pharmacokinetic properties of imaging agents, BioDMET is more complex than most PBPK models. The anatomical details of the model are important for the imaging simulation endpoints. Model complexity has also been crucial for quickly adapting the tool to different problems without the need to generate a new model for every problem. When simpler models are preferred, the non-critical compartments can be dynamically collapsed to reduce unnecessary complexity. BioDMET has been used for imaging feasibility calculations in oncology, neurology, cardiology, and diabetes. For this purpose, the time concentration data generated by the model is inputted into a physics-based image simulator to establish imageability criteria. These are then used to define agent and physiology property ranges required for successful imaging. BioDMET has lately been adapted to aid the development of antimicrobial therapeutics. Given a range of built-in features and its inherent flexibility to customization, the model can be used to study a variety of pharmacokinetic and pharmacodynamic problems such as the effects of inter-individual differences and disease-states on drug pharmacokinetics and pharmacodynamics, dosing optimization, and inter

  14. Study on the preparation and biological evaluation of 99mTc-gatifloxacin and 99mTc-cefepime complexes

    International Nuclear Information System (INIS)

    The aim of this work is the development of new radiopharmaceuticals for imaging infection and inflammation in human. Gatifloxacin (fluoroquinolone derivative) and cefepime (cephalosporine derivative) are antibiotics used to treat bacterial infections were investigated to label with one of the most important radioactive isotopes (technetium-99m). The reaction parameters that affect the labeling yield such as substrate concentration, stannous chloride dihydrate concentration, pH of the reaction mixture, and reaction time were studied to optimize the labeling conditions. Maximum radiochemical yield of 99mTc-gatifloxacin (90 ± 1.8%) complex was obtained by using 50 μg SnCl2 · 2H2O and 2.5 mg gatifloxacin at pH 10 while 99mTc-cefepime was prepared at pH 8 with a maximum radiochemical yield of 98 ± 1.4% by adding 99mTc to 5 mg cefepime in the presence of 50 μg SnCl2 · 2H2O. Biological distribution of 99mTc-gatifloxacin and 99mTc-cefepime was carried out in experimentally induced infection rats, in the left thigh, using Escherichia coli. Both thighs of the rats were dissected and counted and the ratio of bacterial infected thigh/contralateral thigh was then evaluated. T/NT for both 99mTc-gatifloxacin and 99mTc-cefepime was found to be 4.5 ± 0.3 and 8.4 ± 0.1, respectively, which was higher than that of the commercially available 99mTc-ciprofloxacin. The abscess to normal muscle ratio indicated that 99mTc-cefepime could be used for infection imaging. Besides, in vitro studies showed that 99mTc-cefepime can differentiate between bacterial infection and sterile inflammation. (author)

  15. Synthesis, spectroscopic, photoluminescence properties and biological evaluation of novel Zn(II) and Al(III) complexes of NOON tetradentate Schiff bases

    Science.gov (United States)

    Abdel Aziz, Ayman A.; Badr, Ibrahim H. A.; El-Sayed, Ibrahim S. A.

    2012-11-01

    Novel mononuclear Zn(II) and Al(III) complexes were synthesized from the reactions of Zn(OAc)2·2H2O and anhydrous AlCl3 with neutral N2O2 donor tetradentate Schiff bases; N,N'bis(salicylaldehyde)4,5-dimethyl-1,2-phenylenediamine (H2L1) and N,N'bis(salicylaldehyde)4,5-dichloro-1,2-phenylenediamine (H2L2). The new complexes were fully characterized by using micro analyses (CHN), FT-IR, 1H NMR, UV-Vis spectra and thermal analysis. The analytical data have been showed that, the stoichiometry of the complexes is 1:1. Spectroscopic data suggested tetrahedral and square pyramidal geometries for Zn(II) and Al(III) complexes, respectively. The synthesized Zn(II), and Al(III) complexes exhibited intense fluorescence emission in the visible region upon UV-excitation in methylene chloride solution at ambient temperature. This high fluorescence emission was assigned to the strong coordination of the ligands to the small and the highly charged Zn(II) and Al(III) ions. Such strong coordination seems to extend the π-conjugation of the complexes. Thermal analysis measurements indicated that the complexes have good thermal stability. As a potential application the biological activity (e.g., antimicrobial action) of the prepared ligands and complexes was assessed by in-vitro testing of their effect on the growth of various strains of bacteria and fungi.

  16. Synthesis of the 99mTc(CO)3-trovafloxacin dithiocarbamate complex and biological characterization in artificially methicillin-resistant Staphylococcus aureus infected rats model

    International Nuclear Information System (INIS)

    Synthesis of the 99mTc(CO)3-trovafloxacin dithiocarbamate (99mTc(CO)3-TVND) complex and biological characterization in artificially Staphylococcus aureus (S. aureus) infected rats model was assessed. The suitability of the complex was evaluated and compared with 99mTcN-TVND, in terms of radiochemical immovability in saline, in vitro permanence in serum, in vitro binding with S. aureus and biodistribution in Male Sprague-Dawley rats (MSDR). After 30 min of the reconstitution both the complexes showed maximum radiochemical stabilities in saline and remain more than 90% stable up to 120 min. However the 99mTc(CO)3-TVND showed to some extent higher stability than 99mTcN-TVND complex. In serum 1.75% less de-tagging was observed than 99mTcN-TVND complex. Both the complexes showed saturated in vitro binding with S. aureus and no significant difference were observed between the uptakes. Six fold uptakes were noted in the infected muscle as compared to the inflamed and normal muscles of the MDSR. The uptake of the 99mTc(CO)3-TVND in infected muscle of the MSDR was 2.25% high as compared to the 99mTcN-TVND complex. Based on radiochemical stabilities in saline, serum, in vitro binding with MRSA and significantly higher uptake in the infected muscle, we recommend both the complexes for in vivo investigation of the MRSA infection in human. (author)

  17. Radiosynthesis and biological evaluation of the {sup 99m}Tc-tricarbonyl moxifloxacin dithiocarbamate complex as a potential Staphylococcus aureus infection radiotracer

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Syed Qaiser, E-mail: ssqaiser2002@yahoo.co [Nuclear Medicine Research Laboratory (NMRL), University of Peshawar, Peshawar, KPK (Pakistan); Khan, Muhammad Rafiullah [Phytopharmaceutical and Neutraceuticals Research Laboratory (PNRL), University of Peshawar, Peshawar, KPK (Pakistan)

    2011-04-15

    In the present investigation, radiosynthesis of the {sup 99m}Tc-tricarbonyl moxifloxacin dithiocarbamate complex ({sup 99m}Tc(CO){sub 3}-MXND) and its biological evaluation in male Wister rats (MWR) artificially infected with Staphylococcus aureus (S. aureus) was assessed. The {sup 99m}Tc(CO){sub 3}-MXND complex was radiochemically examined in terms of stability in saline and in serum and biologically its in-vitro binding with S. aureus and percent absorption in MWR models. Radiochemically the {sup 99m}Tc(CO){sub 3}-MXND complex showed more than 90% stability in saline up to 240 min and in serum 14.95% undesirable species was appeared within 16 h. In-vitro the {sup 99m}Tc(CO){sub 3}-MXND complex showed saturated binding with S. aureus. In MWR artificially infected with live S. aureus the complex showed about six fold higher uptakes in the infected muscle as compared to the normal muscle. However, insignificant change in the uptake of {sup 99m}Tc(CO){sub 3}-MXND complex in the infected and inflamed or normal muscle was observed in the MWR infected with heat killed S. aureus. The {sup 99m}Tc(CO){sub 3}-MXND complex disappeared from the circulatory system and appeared in the urinary system within 60-90 min followed by excretion through normal route of urinary system. Based on the elevated and stable radiochemical succumb in saline, serum, saturated in-vitro binding with S. aureus and higher accumulation in the target organ of the MWR, we recommend the {sup 99m}Tc(CO){sub 3}-MXND complex for radio-localization of the infection induced by S. aureus in human.

  18. Radiosynthesis and biological evaluation of the 99mTc-tricarbonyl moxifloxacin dithiocarbamate complex as a potential Staphylococcus aureus infection radiotracer

    International Nuclear Information System (INIS)

    In the present investigation, radiosynthesis of the 99mTc-tricarbonyl moxifloxacin dithiocarbamate complex (99mTc(CO)3-MXND) and its biological evaluation in male Wister rats (MWR) artificially infected with Staphylococcus aureus (S. aureus) was assessed. The 99mTc(CO)3-MXND complex was radiochemically examined in terms of stability in saline and in serum and biologically its in-vitro binding with S. aureus and percent absorption in MWR models. Radiochemically the 99mTc(CO)3-MXND complex showed more than 90% stability in saline up to 240 min and in serum 14.95% undesirable species was appeared within 16 h. In-vitro the 99mTc(CO)3-MXND complex showed saturated binding with S. aureus. In MWR artificially infected with live S. aureus the complex showed about six fold higher uptakes in the infected muscle as compared to the normal muscle. However, insignificant change in the uptake of 99mTc(CO)3-MXND complex in the infected and inflamed or normal muscle was observed in the MWR infected with heat killed S. aureus. The 99mTc(CO)3-MXND complex disappeared from the circulatory system and appeared in the urinary system within 60-90 min followed by excretion through normal route of urinary system. Based on the elevated and stable radiochemical succumb in saline, serum, saturated in-vitro binding with S. aureus and higher accumulation in the target organ of the MWR, we recommend the 99mTc(CO)3-MXND complex for radio-localization of the infection induced by S. aureus in human.

  19. Biological 12C-13C fractionation increases with increasing community-complexity in soil microcosms

    DEFF Research Database (Denmark)

    Yang, Weijun; Magid, Jakob; Christensen, Søren; Ronn, Regin; Ambus, Per; Ekelund, Flemming

    2014-01-01

    -rates and determine the trophic level of organisms in biological systems. While it is widely accepted that 15N-accumulates in natural food-chains, it is disputed to which extent this is the case for C-13. We constructed sand-microcosms inoculated with a dilution series of soil organisms and amended with...... glucose as the source of organic carbon. We demonstrated that the proportion of C-13 in respiratory CO2 correlated inversely with community complexity. Our results therefore suggest that increasing community complexity, with increasing synergy, competition and predation, facilitates increasing C-12-C-13...

  20. Biological Role of Anions (Sulfate, Nitrate , Oxalate and Acetate) on the Antibacterial Properties of Cobalt (II) and Nickel(II) Complexes With Pyrazinedicarboxaimide Derived, Furanyl and Thienyl Compounds.

    Science.gov (United States)

    Chohan, Z H; Praveen, M

    1999-01-01

    A number of biologically active complexes of cobalt(II) and nickel(II) with pyrazinedicarboxaimido derived thienyl and furanyl compounds having the same metal ion but different anions such as sulphate, nitrate, oxalate and acetate have been synthesized and characterized on the basis of their physical, spectral and analytical data. In order to evaluate the role of anions on their antibacterial properties, these ligands and their synthesized metal complexes with various anions have been screened against bacterial species Escherichia coil,Pseudomonas aeruginosa and Staphylococcus aureus. The title studies have proved a definitive role of anions in increasing the antibacterial properties. PMID:18475887

  1. The GLOBE 3D Genome Platform - towards a novel system-biological paper tool to integrate the huge complexity of genome organization and function.

    Science.gov (United States)

    Knoch, Tobias A; Lesnussa, Michael; Kepper, Nick; Eussen, Hubert B; Grosveld, Frank G

    2009-01-01

    Genomes are tremendous co-evolutionary holistic systems for molecular storage, processing and fabrication of information. Their system-biological complexity remains, however, still largely mysterious, despite immense sequencing achievements and huge advances in the understanding of the general sequential, three-dimensional and regulatory organization. Here, we present the GLOBE 3D Genome Platform a completely novel grid based virtual "paper" tool and in fact the first system-biological genome browser integrating the holistic complexity of genomes in a single easy comprehensible platform: Based on a detailed study of biophysical and IT requirements, every architectural level from sequence to morphology of one or several genomes can be approached in a real and in a symbolic representation simultaneously and navigated by continuous scale-free zooming within a unique three-dimensional OpenGL and grid driven environment. In principle an unlimited number of multi-dimensional data sets can be visualized, customized in terms of arrangement, shape, colour, and texture etc. as well as accessed and annotated individually or in groups using internal or external data bases/facilities. Any information can be searched and correlated by importing or calculating simple relations in real-time using grid resources. A general correlation and application platform for more complex correlative analysis and a front-end for system-biological simulations both using again the huge capabilities of grid infrastructures is currently under development. Hence, the GLOBE 3D Genome Platform is an example of a grid based approach towards a virtual desktop for genomic work combining the three fundamental distributed resources: i) visual data representation, ii) data access and management, and iii) data analysis and creation. Thus, the GLOBE 3D Genome Platform is the novel system-biology oriented information system urgently needed to access, present, annotate, and to simulate the holistic genome

  2. Scientific Opinion on the safety and efficacy of copper compounds (E4) as feed additives for all species: cupric chelate of amino acids hydrate, based on a dossier submitted by Zinpro Animal Nutrition Inc.

    OpenAIRE

    EFSA Panel on Additives and Products or Substances used in Animal Feed

    2013-01-01

    Cupric chelate of amino acids hydrate is safe for all animal species/categories up to the authorised maximum of total copper content in complete feed. Consumption surveys include copper from foodstuffs of animal origin. Since the supplementation of animal feed with copper-containing compounds has not essentially changed over the last decade, no change in the contribution of foodstuffs originating from supplemented animals to the overall copper intake of consumers is expected. No concerns for ...

  3. Formation of ternary complexes with MgATP: effects on the detection of Mg2+ in biological samples by bidentate fluorescent sensors.

    Science.gov (United States)

    Schwartz, Sarina C; Pinto-Pacheco, Brismar; Pitteloud, Jean-Philippe; Buccella, Daniela

    2014-03-17

    Fluorescent indicators based on β-keto-acid bidentate coordination motifs display superior metal selectivity profiles compared to current o-aminophenol-N,N,O-triacetic acid (APTRA) based chelators for the study of biological magnesium. These low denticity chelators, however, may allow for the formation of ternary complexes with Mg(2+) and common ligands present in the cellular milieu. In this work, absorption, fluorescence, and NMR spectroscopy were employed to study the interaction of turn-on and ratiometric fluorescent indicators based on 4-oxo-4H-quinolizine-3-carboxylic acid with Mg(2+) and ATP, the most abundant chelator of biological magnesium, thus revealing the formation of ternary complexes under conditions relevant to fluorescence imaging. The formation of ternary species elicits comparable or greater optical changes than those attributed to the formation of binary complexes alone. Dissociation of the fluorescent indicators from both ternary and binary species have apparent equilibrium constants in the low millimolar range at pH 7 and 25 °C. These results suggest that these bidentate sensors are incapable of distinguishing between free Mg(2+) and MgATP based on ratio or intensity-based steady-state fluorescence measurements, thus posing challenges in the interpretation of results from fluorescence imaging of magnesium in nucleotide-rich biological samples. PMID:24593871

  4. Design, spectral characterization, DFT and biological studies of transition metal complexes of Schiff base derived from 2-aminobenzamide, pyrrole and furan aldehyde

    Science.gov (United States)

    Tyagi, Prateek; Chandra, Sulekh; Saraswat, B. S.; Sharma, Deepansh

    2015-05-01

    A series of two biologically active Schiff base ligands L1, L2 have been synthesized in equimolar reaction of 2-aminobenzamide with pyrrol-2-carboxaldehyde and furan-2-carboxaldehyde. The synthesized Schiff bases were used for complexation with different metal ions like Co(II), Ni(II) and Cu(II) by using a molar ratio of ligand: metal as 2:1. The characterization of newly formed complexes was done by 1H NMR, UV-Vis, TGA, IR, mass spectrophotometry, EPR and molar conductivity studies. The thermal studies suggested that the complexes are more stable as compared to ligand. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31+g(d,p) basis set. On the basis of the spectral studies an octahedral geometry has been assigned for Co(II) and Ni(II) complexes and distorted octahedral geometry for Cu(II) complexes. All the synthesized compounds, were studied for their in vitro antimicrobial activities, against four bacterial strains and two fungal strains by using serial dilution method. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination.

  5. Potentiometric studies on ternary complexes involving some divalent transition metal ions, gallic acid and biologically abundant aliphatic dicarboxylic acids in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Abdelatty Mohamed Radalla

    2015-06-01

    Full Text Available Formation of binary and ternary complexes of the divalent transition metal ions, Cu2+, Ni2+, Co2+ and Zn2+ with gallic acid and the biologically important aliphatic dicarboxylic acids (adipic, succinic, malic, malonic, maleic, tartaric and oxalic acids were investigated by means of the potentiometric technique at 25 °C and I = 0.10 mol dm−3 NaNO3. The acid-base properties of the ligands were investigated and discussed. The acidity constants of gallic acid and aliphatic dicarboxylic acids were determined and used for determining the stability constants of the binary and ternary complexes formed in the aqueous medium under the above experimental conditions. The formation of the different 1:1 and 1:2 binary complexes and 1:1:1 ternary complexes are inferred from the corresponding potentiometric pH-metric titration curves. The ternary complex formation was found to occur in a stepwise manner. The stability constants of these binary and ternary systems were calculated. The values of Δ log K, percentage of relative stabilization (%R.S. and log X were evaluated and discussed. The concentration distribution of the various complex species formed in solution was evaluated and discussed. The mode of chelation of ternary complexes formed was ascertained by conductivity measurements.

  6. Biological evaluation of 153Sm and 166Ho complexes with macrocyclic ligands containing acetate pendant arms as potential agents for therapy

    International Nuclear Information System (INIS)

    For the development of therapeutic radiopharmaceuticals it is essential to choose the appropriate beta-emitter as well as the carrier biomolecule. Different carrier biomolecules, namely antibodies and peptides, have been linked to different beta-emitters (153Sm, 166Ho and 177Lu) using tetraaza macrocycles as bifunctional chelators. The cavity size of these chelators, the rigidity of the macrocyclic backbone and the nature of the pendant arms seems to play an important role on the thermodynamic stability and kinetic inertness of the radiocomplexes and on their biological behaviour. In our research group we have been exploring the possibility of using tetraazamacrocycles with different cavity size, pendant arms and rigidity for preparing 153Sm and 166Ho complexes useful for therapeutical applications and/or bone pain palliation. In this communication we present the results obtained when we reacted trita and teta with 153Sm and 166Ho. The complexes are formed in good yields (> 98%), are hydrophilic and present an overall negative charges, as well as low plasmatic protein binding. Good in vitro stability in physiological media and human serum was also found for all the complexes. The biodistribution studies in mice are also presented and have shown that 153Sm/166Ho-trita and 166Ho-teta have rapid tissue clearance, comparably to the corresponding dota complexes. In contrast, 153Sm-teta has a significant lower total excretion and a significant liver and muscle uptake. Our results indicate that 153Sm/166Ho-trita form very stable complexes in vivo. However, teta, which has a larger cavity size, forms less stable complexes with the larger ion Sm3+. The biological profile of 153Sm/166Ho-trita is very interesting for the evaluation of these complexes as therapeutical agents when conjugated to biomolecules

  7. Spectroscopic and biological approach of Ni(II) and Cu(II) complexes of 2-pyridinecarboxaldehyde thiosemicarbazone

    Science.gov (United States)

    Chandra, Sulekh; Raizada, Smriti; Tyagi, Monika; Sharma, Praveen Kumar

    2008-03-01

    Ni(II) and Cu(II) complexes having the general composition [M(L) 2X 2] [where L = 2-pyridinecarboxaldehyde thiosemicarbazone, M = Ni(II) and Cu(II), X = Cl -, NO 3- and 1/2 SO 42-] have been synthesized. All the metal complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, EPR and electronic spectral studies. The magnetic moment measurements of the complexes indicate that all the complexes are of high-spin type. On the basis of spectral studies an octahedral geometry has been assigned for Ni(II) complexes whereas tetragonal geometry for Cu(II) except [Cu(L) 2SO 4] which posseses five coordinated geometry. The ligand and its metal complexes were screened against phytopathogenic fungi and bacteria in vitro.

  8. Theoretical investigation, biological evaluation and VEGFR2 kinase studies of metal(II) complexes derived from hydrotris(methimazolyl)borate.

    Science.gov (United States)

    Jayakumar, S; Mahendiran, D; Srinivasan, T; Mohanraj, G; Kalilur Rahiman, A

    2016-02-01

    The reaction of soft tripodal scorpionate ligand, sodium hydrotris(methimazolyl)borate with M(ClO4)2·6H2O [MMn(II), Ni(II), Cu(II) or Zn(II)] in methanol leads to the cleavage of B-N bond followed by the formation of complexes of the type [M(MeimzH)4](ClO4)2·H2O (1-4), where MeimzH=methimazole. All the complexes were fully characterized by spectro-analytical techniques. The molecular structure of the zinc(II) complex (4) was determined by X-ray crystallography, which supports the observed deboronation reaction in the scorpionate ligand with tetrahedral geometry around zinc(II) ion. The electronic spectra of complexes suggested tetrahedral geometry for manganese(II) and nickel(II) complexes, and square-planar geometry for copper(II) complex. Frontier molecular orbital analysis (HOMO-LUMO) was carried out by B3LYP/6-31G(d) to understand the charge transfer occurring in the molecules. All the complexes exhibit significant antimicrobial activity against Gram (-ve) and Gram (+ve) bacterial as well as fungal strains, which are quite comparable to standard drugs streptomycin and clotrimazole. The copper(II) complex (3) showed excellent free radical scavenging activity against DPPH in all concentration with IC50 value of 30μg/mL, when compared to the other complexes. In the molecular docking studies, all the complexes showed hydrophobic, π-π and hydrogen bonding interactions with BSA. The cytotoxic activity of the complexes against human hepatocellular liver carcinoma (HepG2) cells was assessed by MTT assay, which showed exponential responses toward increasing concentration of complexes. PMID:26735002

  9. Synthesis, spectral, characterization, catalytic and biological studies of new RuII N2O Schiff base complexes

    International Nuclear Information System (INIS)

    Complexes of the type (RuCl(CO)(B)(L)) (B = PPh3, AsPh3, py or pip; L monobasic tridentate Schiff base) have been synthesized by the reaction of equimolar amounts of (RuHCl(CO)(EPh3)2(B)) and Schiff bases in benzene. The resulting complexes have been characterized by analytical and spectral (IR, electronic, NMR) data. An octahedral structure has been assigned to all these complexes. The new complexes have been exhibit catalytic activity for the oxidation of benzyl alcohol and cyclohexanol in the presence of N-methylmorpholine-N-oxide as co-oxidant. (author)

  10. Ion-molecule interactions of biological importance. A vibrational spectroscopic study of magnesium complexes with hydroxylated quinones

    International Nuclear Information System (INIS)

    Luteoskyrin and rugulosin are two naturally occurring yellow pigments with hydroxylated bis-anthraquinonic structures. They cause serious liver disorders in man due to the formation of complexes of the type pigment-Mg2+-DNA. In order to elucidate the structure of these complexes we have studied the vibrational spectra of some model systems, namely 1-hydroxy- and 1,4-dihydroxyanthraquinone, their magnesium chelate complexes, and a series of simpler complexes as the acetylacetonates of some divalent metals. Complete vibrational assignment are proposed for anthraquinone-9,10, the two hydroxylated and deureroxylated derivatives and their magnesium complexes. The substitution of 26Mg in place of 24Mg in these complexes enabled us to assign the Mg-O vibrations; their number corresponds to a hexa-coordinated metal in the acetylacetonate case and to a tetra-coordinated structure in the anthraquinone-olates complexes. The position of the ν C=0 and ν C-0 vibrations bands in the complexes shows that the bonds in the chelated ring of Mg(1-O-AQ)2 retains their single and double bond characteristic whereas in the CMg(1,4-O2,-AQ)n a resonating structure appears in the ring. The study of the IR and R spectra of the complexes enabled a tetrahedral structure to be proposed for the oxygens around the magnesium. Finally it was noted that the Mg-O bonds possessed a high degree of covalent character. (author)

  11. Biological evaluation of 99mTC cis-Pt iminoacetic acid complexes as tumour imaging agents

    International Nuclear Information System (INIS)

    The biodistributions of three new 99mTc labelled cis-platinum bifunctional tumour imaging agents were examined in mice bearing a certain type of sarcoma between 15 minutes and 24 hours post injection. The three complexes were excreted primarily via the renal pathway into the urine but at quite different rates. All complexes had some affinity for the tumour, but complexes III had the greatest, with tumour to blood and tumour to muscle rates at 24 hours in excess of 10:1 and 18:1. Biodistribution results were calculated using Tiscon Program. Suggesting that the three complexes may be useful as tumour imaging agents. (M.E.L.)

  12. Half-sandwich ruthenium-arene complexes with thiosemicarbazones: Synthesis and biological evaluation of [(η6-p-cymene)Ru(piperonal thiosemicarbazones)Cl]Cl complexes

    OpenAIRE

    Beckford, Floyd; Dourth, Deidra; Shaloski, Michael; Didion, Jacob; Thessing, Jeffrey; Woods, Jason; Crowell, Vernon; Gerasimchuk, Nikolay; Gonzalez-Sarrías, Antonio; Seeram, Navindra P.

    2011-01-01

    The synthesis and characterization of a number of organometallic ruthenium(II) complexes containing a series of bidentate thiosemicarbazone ligands derived from piperonal is reported. The structure of compounds have been confirmed by spectroscopic analysis (IR and NMR) as well as X-ray crystallographic analysis of [(η6-p-cymene)Ru(pPhTSC)Cl]Cl (4) (pPhTSC is piperonal-N(4)-phenylthiosemicarbazone). The interaction of the complexes ([(η6-p-cymene)Ru(pEtTSC)Cl]Cl) (3) (pEtTSC is piperonal-N(4)-...

  13. Determination of mercury levels in biological samples using the incomplete cubane-type sulfur-bridged nitrilotriacetato molybdenum complex by a spectrophotometer.

    Science.gov (United States)

    Aikoh, H; Yamate, M; Takahashi, M; Shibahara, T

    1997-01-01

    Spectrophotometric determination of mercury levels in biological samples was investigated using incomplete cubane-type sulfur-bridged molybdenum complex, K2[Mo3S4(Hnta)3] 9H2O, ("NTA" complex; H3nta = nitrilotri acetic acid). The urine or organs of mice, which were either exposed to metallic mercury vapor or injected intraperitoneally with mercuric ion, were decomposed from four to twelve hours with a mixed solution of potassium permanganate and sulfuric acid. After the pretreatment, mercury in the urine and organs of mice was captured by the "NTA" complex. Absorbance of the resultant solution in the urine or organs of mice was also measured by a spectrophotometer under conditions similar to that of the exhalation. PMID:9353959

  14. Synthesis, spectral characterization, molecular modeling, thermal study and biological evaluation of transition metal complexes of a bidentate Schiff base ligand

    Science.gov (United States)

    Chandra, Sulekh; Bargujar, Savita; Nirwal, Rita; Qanungo, Kushal; Sharma, Saroj K.

    2013-09-01

    Complexes of copper(II) and nickel(II) of general composition M(L)2X2, have been synthesized [where L = 3-Bromoacetophenone thiosemicarbazone and X = CH3COO-, Cl- and NO3-]. All the complexes were characterized by elemental analysis, magnetic moments, IR, electronic and EPR spectral studies. The ligand behaved as bidentate and coordinated through sulfur of sbnd Cdbnd S group and nitrogen atoms of sbnd Cdbnd N group. The copper(II) and nickel(II) complexes were found to have magnetic moments 1.94-2.02 BM, 2.96-3.02 BM respectively which was corresponding to one and two unpaired electrons respectively. The molar conductance of the complexes in solution of DMSO lies in the range of 10-20 Ω-1 cm2 mol-1 indicating their non-electrolytic behavior. On the basis of EPR, electronic and infrared spectral studies, tetragonal geometry has been assigned for copper(II) complexes and an octahedral geometry for nickel(II) complexes. The values of Nephelauxetic parameter β lie in the range 0.19-0.37 which indicated the covalent character in metal ligand ‘σ' bond. Synthesized ligand and its copper(II) and nickel(II) complexes have also been screened against different bacterial and fungal species which suggested that complexes are more active than the ligands in antimicrobial activities.

  15. Synthesis, photoluminescence and biological properties of terbium(III) complexes with hydroxyketone and nitrogen containing heterocyclic ligands

    Science.gov (United States)

    Poonam; Kumar, Rajesh; Boora, Priti; Khatkar, Anurag; Khatkar, S. P.; Taxak, V. B.

    2016-01-01

    The ternary terbium(III) complexes [Tb(HDAP)3ṡbiq], [Tb(HDAP)3ṡdmph] and [Tb(HDAP)3ṡbathophen] were prepared by using methoxy substituted hydroxyketone ligand HDAP (2-hydroxy-4,6-dimethoxyacetophenone) and an ancillary ligand 2,2-biquinoline or 5,6-dimethyl-1,10-phenanthroline or bathophenanthroline respectively. The ligand and synthesized complexes were characterised based on elemental analysis, FT-IR and 1H NMR. Thermal behaviour of the synthesized complexes illustrates the general decomposition patterns of the complexes by thermogravimetric analysis. Photophysical properties such as excitation spectra, emission spectra and luminescence decay curves of the complexes were investigated in detail. The main green emitting peak at 548 nm can be attributed to 5D4 → 7F5 of Tb3+ ion. Thus, these complexes might be used to make a bright green light-emitting diode for display purpose. In addition the in vitro antibacterial activities of HDAP and its Tb(III) complexes against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and antifungal activities against Candida albicans and Aspergillus niger are reported. The Tb3+ complexes were found to be more potent antimicrobial agent as compared to the ligand. Among all these complexes, [Tb(HDAP)3ṡbathophen] exhibited excellent antimicrobial activity which proves its potential usefulness as an antimicrobial agent. Furthermore, in vitro antioxidant activity tests were carried out by using DPPH method which indicates that the complexes have considerable antioxidant activity when compared with the standard ascorbic acid.

  16. Biologically active new Fe(II, Co(II, Ni(II, Cu(II, Zn(II and Cd(II complexes of N-(2-thienylmethylenemethanamine

    Directory of Open Access Journals (Sweden)

    C. SPÎNU

    2008-04-01

    Full Text Available Iron(II, cobalt(II, nickel (II, copper (II, zinc(II and cadmium(II complexes of the type ML2Cl2, where M is a metal and L is the Schiff base N-(2-thienylmethylenemethanamine (TNAM formed by the condensation of 2-thiophenecarboxaldehyde and methylamine, were prepared and characterized by elemental analysis as well as magnetic and spectroscopic measurements. The elemental analyses suggest the stoichiometry to be 1:2 (metal:ligand. Magnetic susceptibility data coupled with electronic, ESR and Mössbauer spectra suggest a distorted octahedral structure for the Fe(II, Co(II and Ni(II complexes, a square-planar geometry for the Cu(II compound and a tetrahedral geometry for the Zn(II and Cd(II complexes. The infrared and NMR spectra of the complexes agree with co-ordination to the central metal atom through nitrogen and sulphur atoms. Conductance measurements suggest the non-electrolytic nature of the complexes, except for the Cu(II, Zn(II and Cd(II complexes, which are 1:2 electrolytes. The Schiff base and its metal chelates were screened for their biological activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and the metal chelates were found to possess better antibacterial activity than that of the uncomplexed Schiff base.

  17. Synthesis of technetium-99m labeled clinafloxacin (99mTc-CNN) complex and biological evaluation as a potential Staphylococcus aureus infection imaging agent

    International Nuclear Information System (INIS)

    In the present study synthesis of the 99mTc-CNN complex and its efficacy as a prospective Staphylococcus aureus (S. aureus) infection imaging agent was assessed. The 99mTc-CNN complex was characterized in terms of stability in saline, serum, in vitro binding with S. aureus and in vivo percent absorption in male Wister rats (MWR) infected with live and heat killed S. aureus. Radiochemically the 99mTc-CNN complex showed stable behavior in saline and serum at different intervals. At 30 min after reconstitution the complex showed maximum radiochemical purity (RCP) yield of 97.55 ± 0.22%. The RCP yield decreased to 90.50 ± 0.18% within 240 min. In serum, 18.15% unwanted side product was appeared within 16 h of the incubation. In vitro saturated binding with S. aureus was observed at different intervals with a 62.00% maximum at 90 min. Normal percent in vivo uptake was observed in MWR artificially infected with live S. aureus with a five times higher in the infected muscle as compared to the inflamed and normal muscles. No difference in the percent uptake of the complex in MWR infected with heat killed S. aureus in the infected, inflamed and normal muscles were observed. Based on the promising in vitro and in vivo radiochemical and biological characteristics, we recommend the 99mTc-CNN complex for in vivo localization of the S. aureus infectious foci. (author)

  18. Removal of Trace Elements by Cupric Oxide Nanoparticles from Uranium In Situ Recovery Bleed Water and Its Effect on Cell Viability.

    Science.gov (United States)

    Schilz, Jodi R; Reddy, K J; Nair, Sreejayan; Johnson, Thomas E; Tjalkens, Ronald B; Krueger, Kem P; Clark, Suzanne

    2015-01-01

    In situ recovery (ISR) is the predominant method of uranium extraction in the United States. During ISR, uranium is leached from an ore body and extracted through ion exchange. The resultant production bleed water (PBW) contains contaminants such as arsenic and other heavy metals. Samples of PBW from an active ISR uranium facility were treated with cupric oxide nanoparticles (CuO-NPs). CuO-NP treatment of PBW reduced priority contaminants, including arsenic, selenium, uranium, and vanadium. Untreated and CuO-NP treated PBW was used as the liquid component of the cell growth media and changes in viability were determined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in human embryonic kidney (HEK 293) and human hepatocellular carcinoma (Hep G2) cells. CuO-NP treatment was associated with improved HEK and HEP cell viability. Limitations of this method include dilution of the PBW by growth media components and during osmolality adjustment as well as necessary pH adjustment. This method is limited in its wider context due to dilution effects and changes in the pH of the PBW which is traditionally slightly acidic however; this method could have a broader use assessing CuO-NP treatment in more neutral waters. PMID:26132311

  19. Removal of Trace Elements by Cupric Oxide Nanoparticles from Uranium In Situ Recovery Bleed Water and Its Effect on Cell Viability

    Science.gov (United States)

    Schilz, Jodi R.; Reddy, K. J.; Nair, Sreejayan; Johnson, Thomas E.; Tjalkens, Ronald B.; Krueger, Kem P.; Clark, Suzanne

    2015-01-01

    In situ recovery (ISR) is the predominant method of uranium extraction in the United States. During ISR, uranium is leached from an ore body and extracted through ion exchange. The resultant production bleed water (PBW) contains contaminants such as arsenic and other heavy metals. Samples of PBW from an active ISR uranium facility were treated with cupric oxide nanoparticles (CuO-NPs). CuO-NP treatment of PBW reduced priority contaminants, including arsenic, selenium, uranium, and vanadium. Untreated and CuO-NP treated PBW was used as the liquid component of the cell growth media and changes in viability were determined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in human embryonic kidney (HEK 293) and human hepatocellular carcinoma (Hep G2) cells. CuO-NP treatment was associated with improved HEK and HEP cell viability. Limitations of this method include dilution of the PBW by growth media components and during osmolality adjustment as well as necessary pH adjustment. This method is limited in its wider context due to dilution effects and changes in the pH of the PBW which is traditionally slightly acidic however; this method could have a broader use assessing CuO-NP treatment in more neutral waters. PMID:26132311

  20. Synthesis, Characterization, and Biological Activity of Some Transition Metal Complexes of N-Benzoyl-N′-2-thiophenethiocarbohydrazide

    Directory of Open Access Journals (Sweden)

    Mahendra Yadav

    2012-01-01

    Full Text Available In the present study, Mn(II, Fe(II, Ni(II, and Cu(II complexes of N-benzoyl -N′-2-thiophenethiocarbohydrazide (H2 BTTH have been synthesized and characterized by elemental analysis, magnetic susceptibility measurements, infrared, NMR, electronic, and ESR spectral studies. The complexes were found to have compositions [Mn(H BTTH2], [Ni(BTTH(H2O2], [Cu(BTTH], and [Fe(H BTTH2EtOH]. The antibacterial and antifungal properties of H2 BTTH and its metal complexes have been screened against several bacteria and fungi.

  1. Self-organized Mn2+-Block Copolymer Complexes and Their Use for In Vivo MR Imaging of Biological Processes

    OpenAIRE

    Pothayee, Nikorn; Chen, Der-Yow; Aronova, Maria A.; Qian, Chunqi; Bouraoud, Nadia; Dodd, Stephen; Leapman, Richard D.; Koretsky, Alan P.

    2014-01-01

    Manganese-block copolymer complexes (MnBCs) that contain paramagnetic Mn ions complexed with ionic-nonionic poly(ethylene oxide-b-poly(methacrylate) have been developed for use as a T1-weighted MRI contrast agent. By encasing Mn ion within ionized polymer matrices, r1 values could be increased by 250–350 % in comparison with free Mn ion at relative high fields of 4.7 to 11.7 T. MnBCs were further manipulated by treatment with NaOH to achieve more stable complexes (iMnBCs). iMnBCs delayed rele...

  2. Spectral, magnetic and biological studies of 1,4-dibenzoyl-3-thiosemicarbazide complexes with some first row transition metal ions

    Indian Academy of Sciences (India)

    Nand K Singh; Saty B Singh; Anuraag Shrivastav; Sukh M Singh

    2001-08-01

    The ligand 1,4-dibenzoyl-3-thiosemicarbazide (DBtsc) forms complexes [M(DBtsc-H)(SCN)] [M = Mn(II), Co(II) or Zn(II)], [M(DBtscH)(SCN)(H2O)] [M = Ni(II) or Cu(II)], [M(DBtsc-H)Cl] [M = Co(II), Ni(II), Cu(II) or Zn(II)] and [Mn(DBtsc)Cl2], which have been characterized by elemental analyses, magnetic susceptibility measurements, UV/Vis, IR, 1H and 13C NMR and FAB mass spectral data. Room temperature ESR spectra of the Mn(II) and Cu(II) complexes yield values, characteristic of tetrahedral and square planar complexes respectively. DBtsc and its soluble complexes have been screened against several bacteria, fungi and tumour cell lines.

  3. Biological and Spectral Studies of Newly Synthesized Triazole Schiff Bases and Their Si(IV, Sn(IV Complexes

    Directory of Open Access Journals (Sweden)

    Kiran Singh

    2011-01-01

    Full Text Available The Schiff bases HL1-3 have been prepared by the reaction of 5-bromothiophene-2-carboxaldehyde with 4-amino-5-mercapto-3-methyl/propyl/isopropyl-s-triazole, respectively. Organosilicon(IV and organotin(IV complexes of formulae (CH32MCl(L1-3, (CH32M(L1-32 were synthesized from the reaction of (CH32MCl2 and the Schiff bases in 1 : 1 and 1 : 2 molar ratio, where M=Si and Sn. The synthesized Schiff bases and their metal complexes have been characterized with the aid of various physicochemical techniques like elemental analyses, molar conductance, UV, IR, 1H, 13C, 29Si, and 119Sn NMR spectroscopy. Based on these studies, the trigonal bipyramidal and octahedral geometries have been proposed for these complexes. The ligands and their metal complexes have been screened in vitro against some bacteria and fungi.

  4. Systems Biology for Smart Crops and Agricultural Innovation: Filling the Gaps between Genotype and Phenotype for Complex Traits Linked with Robust Agricultural Productivity and Sustainability.

    Science.gov (United States)

    Kumar, Anil; Pathak, Rajesh Kumar; Gupta, Sanjay Mohan; Gaur, Vikram Singh; Pandey, Dinesh

    2015-10-01

    In recent years, rapid developments in several omics platforms and next generation sequencing technology have generated a huge amount of biological data about plants. Systems biology aims to develop and use well-organized and efficient algorithms, data structure, visualization, and communication tools for the integration of these biological data with the goal of computational modeling and simulation. It studies crop plant systems by systematically perturbing them, checking the gene, protein, and informational pathway responses; integrating these data; and finally, formulating mathematical models that describe the structure of system and its response to individual perturbations. Consequently, systems biology approaches, such as integrative and predictive ones, hold immense potential in understanding of molecular mechanism of agriculturally important complex traits linked to agricultural productivity. This has led to identification of some key genes and proteins involved in networks of pathways involved in input use efficiency, biotic and abiotic stress resistance, photosynthesis efficiency, root, stem and leaf architecture, and nutrient mobilization. The developments in the above fields have made it possible to design smart crops with superior agronomic traits through genetic manipulation of key candidate genes. PMID:26484978

  5. Dual-Emissive Cyclometalated Iridium(III) Polypyridine Complexes as Ratiometric Biological Probes and Organelle-Selective Bioimaging Reagents.

    Science.gov (United States)

    Zhang, Kenneth Yin; Liu, Hua-Wei; Tang, Man-Chung; Choi, Alex Wing-Tat; Zhu, Nianyong; Wei, Xi-Guang; Lau, Kai-Chung; Lo, Kenneth Kam-Wing

    2015-07-01

    In this Article, we present a series of cyclometalated iridium(III) polypyridine complexes of the formula [Ir(N^C)2(N^N)](PF6) that showed dual emission under ambient conditions. The structures of the cyclometalating and diimine ligands were changed systematically to investigate the effects of the substituents on the dual-emission properties of the complexes. On the basis of the photophysical data, the high-energy (HE) and low-energy (LE) emission features of the complexes were assigned to triplet intraligand ((3)IL) and triplet charge-transfer ((3)CT) excited states, respectively. Time-dependent density functional theory (TD-DFT) calculations supported these assignments and indicated that the dual emission resulted from the interruption of the communication between the higher-lying (3)IL and the lower-lying (3)CT states by a triplet amine-to-ligand charge-transfer ((3)NLCT) state. Also, the avidin-binding properties of the biotin complexes were studied by emission titrations, and the results showed that the dual-emissive complexes can be utilized as ratiometric probes for avidin. Additionally, all the complexes exhibited efficient cellular uptake by live HeLa cells. The MTT and Annexin V assays confirmed that no cell death and early apoptosis occurred during the cell imaging experiments. Interestingly, laser-scanning confocal microscopy revealed that the complexes were selectively localized on the cell membrane, mitochondria, or both, depending on the nature of the substituents of the ligands. The results of this work will contribute to the future development of dual-emissive transition metal complexes as ratiometric probes and organelle-selective bioimaging reagents. PMID:26087119

  6. STRUCTURE AND REDOX TRANSFORMATIONS OF IRON(III COMPLEXES WITH SOME BIOLOGICALLY IMPORTANT INDOLE-3-ALKANOIC ACIDS IN AQUEOUS SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Krisztina Kovács

    2007-06-01

    Full Text Available Interactions of a series of indole-3-alkanoic acids (with n-alkanoic acid side-chains from C1 to C4 with iron(III in acidic aqueous solutions have been shown to comprise two parallel processes including complexation and redox transformations giving iron(II hexaaquo complexes. The structure and composition of the reaction products are discussed, as analysed using a combination of instrumental techniques including 57Fe Mössbauer, vibrational and HNMR spectroscopies.

  7. Studies on some metal complexes of quinoxaline based unsymmetric ligand: Synthesis, spectral characterization, in vitro biological and molecular modeling studies.

    Science.gov (United States)

    Dhanaraj, Chellaian Justin; Johnson, Jijo

    2016-08-01

    Mononuclear Co(II), Ni(II), Cu(II) and Zn(II) complexes of an unsymmetric Schiff base ligand, 3-(-(3-(-3,5-dichloro-2-hydroxybenzylideneamino)propylimino)methyl)quinoxalin-2(1H) -one (L) were synthesized and characterized by various analytical and spectral techniques. The molar conductance values of metal complexes indicate non-electrolytic behavior of the metal complexes. The Schiff base act as tetra dentate ONNO donor ligand in Co(II), Ni(II), Zn(II) complexes and tridentate NNO donor in Cu(II) complex. Thermal stabilities of the newly synthesized compounds were determined by thermal analysis. Crystallinity, average grain size and unit cell parameters were determined from powder X-ray diffraction study. Electrochemical behaviors of the compounds were examined by cyclic voltammetry technique. The Schiff base and its complexes have been screened for their in vitro antimicrobial activities against some bacterial and fungal strains by disc diffusion method. The interaction of the compounds with calf thymus DNA (CT DNA) has been investigated by electronic absorption spectral titration and viscosity measurement (hydrodynamic) methods. Furthermore, the pUC18 DNA cleavage activities of the complexes have been explored. The compounds were also subjected to in vitro antioxidant, anticancer activity screening, druglikeness and bioactivity predictions using Molinspiration software. Molecular docking studies of the present compounds were carried out against B-DNA dodecamer d(CGCGAATTCGCG)2 and vascular endothelial growth factor receptor (VEGFR-2) kinase. Quantum chemical calculations were done with DFT method to determine the optimum geometry of the ligand and its metal complexes. From the quantum chemical parameters, the reactivity parameters of the compounds were established. PMID:27236046

  8. Synthesis, crystal structure, spectral characterization and biological exploration of water soluble Cu(II) complexes of vitamin B6 derivative.

    Science.gov (United States)

    Annaraj, B; Neelakantan, M A

    2015-09-18

    The synthesis and characterization of Copper(II) complexes of a Schiff base derived from vitamin B6 component (pyridoxal) and ethanol amine [CuL2] (1), and its mixed ligand complexes [Cu(L)(N,N')]NO3, where N,N' is bipyridine (2) and 1,10-phenanthroline (3) are reported, including the X-ray crystal structures of [CuL2] (1). The crystal structure of 1 has square planar geometry with ligand to the metal ratio 2:1. The molecules are assembled in 3D supramolecular structure through hydrogen bonding interactions. DNA is considered as the major pharmacological target of metal based drugs, the objective of the present work includes the understanding of DNA binding mode of the synthesized compounds. The complexes bind with DNA through non intercalative interaction has been evidenced from the results of UV-Visible and fluorescence spectral titrations. It is further validated by molecular docking studies. Bovine serum albumin (BSA) binding studies revealed that the complexes can strongly quench the intrinsic fluorescence of BSA through a static quenching mechanism. The complexes promote the DNA cleavage even in the absence of additives which follows the order 2 > 1 > 3. Further, the complexes show potential cytotoxicity towards human breast cancer cell MCF-7 and induce the cell death. PMID:26241872

  9. Synthesis and Spectroscopic Characterization of Some New Axially Ligated Indium(III Macrocyclic Complexes and Their Biological Activities

    Directory of Open Access Journals (Sweden)

    Gauri D. Bajju

    2014-01-01

    Full Text Available The synthesis and spectroscopic characterization of new axially ligated indium(III porphyrin complexes were reported. Chloroindium(III porphyrin (TPPIn-Cl was obtained in good yield by treating the corresponding free base with indium trichloride. The action of the different phenols on chloroderivatives (TPPIn-Cl led to the corresponding phenolato complexes (TPPIn-X. These derivatives were characterized on the basis of mass spectrometry, 1H-NMR, IR, and UV-visible data. The separation and isolation of these derivatives have been achieved through chromatography. The spectral properties of free base porphyrin and its corresponding metallated and axially ligated indium(III porphyrin compounds were compared with each other. A detailed analysis of UV-Vis, 1H-NMR, and IR suggested the transformation from free base porphyrin to indium(III porphyrin. Besides, 13C-NMR and fluorescence spectra were also reported and interpreted. The stability of these derivatives has also been studied through thermogravimetry. The complexes were also screened for anticancerous activities. Among all the complexes, 4-MePhO-InTPP shows highest anticancerous activity. The title complexe, TPPIn-X (where X = different phenolates, represents a five-coordinate indium(III porphyrin complex in a square-pyramidal geometry with the phenolate anion as the axial ligand.

  10. Synthesis, spectral characterization, molecular modeling, biological activity and potentiometric studies of 4-amino-5-mercapto-3-methyl-S-triazole Schiff's base complexes

    Science.gov (United States)

    Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Alharbi, Suliman A.

    2015-03-01

    The Schiff's base derived from condensation of s-triazole (4-amino-5-mercapto-3-methyl-S-triazole) with pyridine-2-aldehyde and their corresponding Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. The isolated solid complexes were characterized by elemental analyses, molar conductance, spectral (IR, UV-Vis, 1H NMR, mass), magnetic moment and thermal measurements. The IR spectral data suggest that the ligand coordinate in a tridentate manner (SNN) via the one thiol (SH), one pyridine ring and the azomethine (Cdbnd N) groups. The data show that the complexes have composition of ML2 type. The activation of thermodynamic parameters are calculated using Coats-Redfern, Horowitz-Metzger (HM), and Piloyan-Novikova (PN). The octahedral geometry of the complexes is confirmed using DFT method from DMOL3 calculations and ligand field parameters. Protonation constants of Schiff base and stability constants of their binary metal complexes have been determined potentiometrically in 50% DMSO-water media at 25 °C and ionic strength 0.10 M potassium nitrate. The biological activity of these compounds against various fungi has been investigated.

  11. Comprehensive biological effects of a complex field poly-metallic pollution gradient on the New Zealand mudsnail Potamopyrgus antipodarum (Gray)

    International Nuclear Information System (INIS)

    The Lot River is known to be contaminated by metals, mainly cadmium and zinc, due to a former Zn ore treatment plant in the watershed of the Riou-Mort, a tributary of the Lot River. Many studies have been performed to characterize contamination, but few have assessed its consequences on the biological responses of organisms along the gradient. We exposed adult and juvenile New Zealand freshwater mudsnails Potamopyrgus antipodarum at several sites along the gradient of metal contamination for 28 days. Biological responses were monitored at different levels: individual (survival, growth and fecundity), tissue and biochemical (energy status and vertebrate-like sex steroid levels) to better understand the toxicity mechanisms involved. Accumulation of Cd and Zn was high during exposure. Most of the biological effects observed could be linked to this contamination and were concentration-dependent. Histological lesions of the digestive gland were observed, with hypertrophy of calcium cells and vacuolization of digestive cells. Such effects are likely to explain the decrease of energy status (triglycerides and proteins), juvenile growth and adult fecundity observed at the most polluted site. However the magnitude of the fall in fecundity cannot be attributed only to these tissular effects, indicating another mode of action of Cd or possible confounding factors. Steroid accumulation in snails indicated only organic pollution. Histopathological effects proved the most sensitive endpoint to metal (Cd and Zn) contamination.

  12. Synthesis, characterization and biological properties of ruthenium(III) Schiff base complexes derived from 3-hydroxyquinoxaline-2-carboxaldehyde and salicylaldehyde

    International Nuclear Information System (INIS)

    Ruthenium(III) complexes of the Schiff bases derived from 3-hydroxyguinoxaline-2-carboxaldehyde and o-phenylenediamine, o-aminophenol or 2-aminobenzimidazole (qpd, qap and qab, respectively) and the Schiff bases derived from salicylaldehyde and o-phenylenediamine, o-aminophenol or 2-aminobenzimidazole (salpd, salap and salab, respectively) have been prepared and characterized by elemental, spectral (FT IR, UV-vis. EPR and FAB mass), thermogravimetric, conductance and magnetic moment analyses. The complexes exhibit the following molecular formulae: (Ru2(qpd)Cl4(H2O)2)2H2O, (Ru2(qap)2Cl2(H2O)2)H2O, (Ru2(qab)2Cl4(H2O)2)3H2O, (Ru2(salpd)3Cl2(H2O)2), (Ru2(salap)4Cl2).H2O and (Ru(salab)(H2O)4)Cl2H2O. An octahedral structure has been tentatively proposed for all the new complexes. The synthesized ligands and complexes have been tested for in vitro growth inhibitory activity against gram positive bacteria Kiebsiella pneumoniae, gram negative bacteria Eseherichia coli and Pseudomonas aeruginosa. The complexes are active while the ligands are inactive towards the bacteria under study. (author)

  13. Synthesis, Spectral Characterization, and Biological Evaluation of Transition Metal Complexes of Bidentate N, O Donor Schiff Bases

    Directory of Open Access Journals (Sweden)

    Sajjad Hussain Sumrra

    2014-01-01

    Full Text Available New series of three bidentate N, O donor type Schiff bases (L1–(L3 were prepared by using ethylene-1,2-diamine with 5-methyl furfural, 2-anisaldehyde, and 2-hydroxybenzaldehyde in an equimolar ratio. These ligands were further complexed with Co(II, Cu(II, Ni(II, and Zn(II metals to produce their new metal complexes having an octahedral geometry. These compounds were characterized on the basis of their physical, spectral, and analytical data. Elemental analysis and spectral data of the uncomplexed ligands and their metal(II complexes were found to be in good agreement with their structures, indicating high purity of all the compounds. All ligands and their metal complexes were screened for antimicrobial activity. The results of antimicrobial activity indicated that metal complexes have significantly higher activity than corresponding ligands. This higher activity might be due to chelation process which reduces the polarity of metal ion by coordinating with ligands.

  14. Biologically relevant mono- and di-nuclear manganese II/III/IV complexes of mononegative pentadentate ligands

    DEFF Research Database (Denmark)

    Baffert, Carole; Collomb, Marie-Nöelle; Deronzier, Alain; Kjærgaard-Knudsen, Sanne; Latour, Jean-Marc; Lund, Kirsten H.; McKenzie, Christine J.; Mortensen, Martin; Nielsen, Lars Preuss; Thorup, Niels

    Manganese(II) complexes of mononegative pentadentate N4O ligands [Mn2(mgbpen)(2)(H2O)(2)](ClO4)(2) (1), (mgbpen(-) = N-methyl-N'-glycyl-N,N'-bis(2-pyridylmethyl)ethane-1,2-diamine) and [Mn-2(bzgbpen)(2)(H2O)(2)](ClO4)(2) ( 2), (bzgbpen(-)=N-benzyl-N'-glycyl-N,N'-bis(2-pyridylmethyl)ethane-1......,2-diamine) have been prepared. The crystal structure of the Mn(II)-aqua complex of 1, shows it to be dimeric via (mu-kappaO)-bridging through one carboxylate oxygen atom of each of the two ligands. The non-coordinated carboxylate oxygen atoms are H-bonded to the water ligands on the adjacent Mn ion. The......-bridged dimanganese(III) and di-mu-oxo-dimanganese(II) complexes, depending on solvent. The [Mn(III)-OR](+), R = H or CH3 complexes are generated in water or methanol, respectively, and are potentially useful spectroscopic models for active Mn-lipoxygenases. In acetonitrile, di-mu-oxo-dimanganese(II) complexes are...

  15. Synthesis and spectral characterization of 2'-hydroxy chalconate complexes of ruthenium(II) and their catalytic and biological applications

    Science.gov (United States)

    Muthukumar, M.; Viswanathamurthi, P.; Natarajan, K.

    2008-10-01

    The reactions of [RuHCl(CO)(B)(EPh 3) 2] (B = EPh 3 or pyridine; E = P or As) and 2'-hydroxychalcones in 1:2 ratio led to the formation of [Ru(CO)(B)(L) 2] (B = PPh 3, AsPh 3 or Py; L = 2'-hydroxychalcones). The new complexes have been characterized by analytical and spectral (IR, electronic and 1H NMR) data. They have been assigned an octahedral structure. The new complexes were found to catalyze the oxidation of alcohols to aldehydes using N-methylmorpholine- N-oxide as co-oxidant. All the new complexes were found to be active against bacteria such as E. coli, Salmonella typhi and fungi Aspergillus niger. The activity was compared with standard Streptomycin or Bavistin.

  16. Biologically relevant mono- and di-nuclear manganese II/III/IV complexes of mononegative pentadentate ligands

    DEFF Research Database (Denmark)

    Baffert, Carole; Collomb, Marie-Nöelle; Deronzier, Alain;

    2003-01-01

    magnetic coupling interaction is weak and antiferromagnetic, J = -1.3(1) cm(-1). The dimeric structures of 1 and 2 are retained in solution and can exist in the gas phase. Complexes 1 and 2 are air stable but can be oxidised by (BuOOH)-Bu-t to give unstable mononuclear Mn(III) complexes, or oxo...... the highest oxidation state products detected, and these are formed via shorter-lived intermediate mu-oxo-dimanganese(III) compounds. The rate of formation of the various oxidized products is slower in the case of the bzgbpen(-) systems which contains a bulkier non-coordinating arm. The oxidised...... complexes were characterised by UV-visible spectroscopy, ESI mass spectrometry and cyclic voltammetry. In addition, III-IV and II-III species were electrochemically generated. Thus the new mononegative pentadentate ligand systems display significant flexibility in the range of Mn oxidation states and...

  17. The Design, Synthesis and Study of Mixed-Metal Ru,Rh and Os, Rh Complexes with Biologically Relevant Reactivity

    OpenAIRE

    Wang, Jing

    2013-01-01

    A series of mixed-metal bimetallic complexes [(TL)2M(dpp)RhCl2(TL)]3 (M = Ru and Os, terminal ligands (TL) = phen, Ph2phen, Me2phen and bpy, terminal ligands (TL) = phen, bpy and Me2bpy ), which couple one Ru or Os polyazine light absorber (LA) to a cis-RhIIICl2 center through a dpp bridging ligand (BL), were synthesized using a building block method. These are related to previously studied trimetallic systems [{(TL)2M(dpp)2RhCl2]5+, but the bimetallics are synthetically more complex to prepa...

  18. Synthesis, biological evaluation and biodistribution of the 99mTc-Garenoxacin complex in artificially infected rats

    International Nuclear Information System (INIS)

    The labeling of garenoxacin (GXN) with technetium-99m (99mTc) using different concentrations of GXN, sodium pertechnetate (Na99mTcO4), stannous chloride dihydrate (SnCl2 · 2H2O) at different pH was investigated and evaluated in terms of in-vitro stability in saline, serum, binding with multi-resistant Staphylococcus aureus (MDRSA) and penicillin-resistant Streptococci (PRSC) and its biodistribution in artificially MDRSA and PRSC infected rats. 99mTc-GXN complex with 97.45 ± 0.18% radiochemical stability was prepared by mixing 3 mg of GXN with 3 mCi of Na99mTcO4 in the presence of 150 μL of SnCl2 · 2H2O (1 μg/μL in 0.01 N HCl) at a pH 5.6. The radiochemical stability of the complex was evaluated in normal saline up to 240 min of reconstitution. It was observed that the complex showed maximum RCP values after 30 min of the reconstitution and remained more than 90% up to 240 min. The complex showed radiochemical stability in normal saline at 37 deg C up to 16 h with a 17.80% de-tagging. The complex showed saturated in-vitro binding with living MDRSA and PRSC as compared to the insignificant binding with heat killed MDRSA and PRSC. Biodistribution behavior of the complex was assessed in artificially infected with living and heat killed MDRSA and PRSC rats. It was observed that the accumulation of the complex in the infected (live MDRSA and PRSC) tissue of the rats was almost five fold than in the inflamed and normal tissue. The high radiochemical stability in normal saline at room temperature, promising in-vitro stability in serum at 37 deg C, saturated in-vitro binding with living MDRSA and PRSC, specific biodistribution behavior and high infected (target) to normal (non-target) tissue and low inflamed (non-target) to normal (non-target) tissue ratios we recommend 99mTc-GXN complex for in-vivo localization of infection caused by MDRSA and PRSC effective stains. (author)

  19. Insight into the mechanism of biological methanol activation based on the crystal structure of the methanol-cobalamin methyltransferase complex

    OpenAIRE

    Hagemeier, Christoph H.; Kr̈er, Markus; Thauer, Rudolf K.; Warkentin, Eberhard; Ermler, Ulrich

    2006-01-01

    Some methanogenic and acetogenic microorganisms have the catalytic capability to cleave heterolytically the CO bond of methanol. To obtain insight into the elusive enzymatic mechanism of this challenging chemical reaction we have investigated the methanol-activating MtaBC complex from Methanosarcina barkeri composed of the zinc-containing MtaB and the 5-hydroxybenzimidazolylcobamide-carrying MtaC subunits. Here we report the 2.5-Å crystal structure of this complex organized as a (MtaBC)2 hete...

  20. Synthesis and biological evaluation of novel 99mTc labeled ornidazole xanthate complexes as potential hypoxia imaging agents

    International Nuclear Information System (INIS)

    In this study, ornidazole xanthate (ONXT) ligand was successfully synthesized and its 99mTc-nitrido core, 99mTc-oxo core and [99mTc(CO)3]+ core complexes were prepared with high yields. The tumor cell experiments and the biodistribution in mice bearing S180 tumor showed that all of the complexes had a certain hypoxic selectivity and tumor uptake. Among them, 99mTcO-ONXT exhibited the highest tumor uptake and tumor/muscle ratio. Planar scintigraphic imaging studies showed the tumor detection was observable, suggesting it would be a potential radiotracer to target tumor hypoxia. (author)

  1. Enhancement of the binding affinity of methylene blue to site I in human serum albumin by cupric and ferric ions.

    Science.gov (United States)

    He, Ling-Ling; Wang, Yong-Xia; Wu, Xiao-Xia; Liu, Xian-Ping; Wang, Xin; Liu, Bin; Wang, Xin

    2015-12-01

    In this work, the binding characteristics of methylene blue (MB) to human serum albumin (HSA) and the influence of Cu(2+) and Fe(3+) on the binding affinity of MB to HSA were investigated using fluorescence, absorption, circular dichroism (CD) spectroscopy and molecular modelling. The results of competitive binding experiments using the site probes ketoprofen and ibuprofen as specific markers suggested that MB was located in site I within sub-domain IIA of HSA. The molecular modelling results agreed with the results of competitive site marker experiments and the results of CD spectra indicated that the interaction between MB and HSA caused the conformational changes in HSA. The binding affinity of MB to HSA was enhanced but to a different extent in the presence of Cu(2+) and Fe(3+), respectively, which indicated that the influence of different metal ions varied. Enhancement of the binding affinity of MB to HSA in the presence of Cu(2+) is due to the formation of Cu(2+)-HSA complex leading to the conformational changes in HSA, whereas in the presence of Fe(3+), enhancement of the binding affinity is due to the greater stability of the Fe(3+)-HSA-MB complex compared with the MB-HSA complex. PMID:25833007

  2. The synthesis, radiolabeling and first biological evaluation of a new {sup 166}Ho-complex for radiotherapy of bone metastases

    Energy Technology Data Exchange (ETDEWEB)

    Zolghadri, S. [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Faculty of Energy Engineering and Physics; Jalilian, A.R.; Naseri, Z.; Yousefnia, H.; Bahrami-Samani, A.; Fazaeli, Y.; Pouladi, M.; Ghannadi-Maragheh, M. [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Afarideh, H. [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Faculty of Energy Engineering and Physics

    2013-08-01

    In this study, the {sup 166}Ho-triethylene tetramine hexa (methylene phosphonic acid) ({sup 166}Ho-TTHMP) complex was prepared as a bone palliation agent. The complex was successfully prepared using an in-house synthesized TTHMP ligand and [{sup 166}Ho]HoCl{sub 3}. Ho-166 chloride was obtained by thermal neutron irradiation (1 x 10{sup 13} n cm{sup -2} s{sup -1}) of natural Ho(NO{sub 3}){sub 3} samples, followed by radiolabeling and stability studies. Biodistribution studies were also performed in wild type rats. The complex was prepared with the specific activity of 3-5 GBq/mg and a high radiochemical purity > 99%, (checked by ITLC). The {sup 166}Ho-TTHMP complex was stable in the final preparation and in the presence of human serum (> 90%) up to 72 h. The biodistribution of {sup 166}Ho-TTHMP in wild-type rats demonstrated significant bone uptake compared to {sup 166}HoCl{sub 3} up to 48 h. SPECT imaging of the radiolabeled compound was demonstrated to be in complete accordance with the biodistribution data. The major uptake was observed for long bones including thigh bones as well as skull and also knee and vertebrae. Primary properties of {sup 166}Ho-TTHMP demonstrate that this new therapeutic agent can be a good choice for metastatic bone pains. (orig.)

  3. Synthesis, structural characterization and in vitro biological screening of some homoleptic copper(II) complexes with substituted guanidines.

    Science.gov (United States)

    Murtaza, Ghulam; Rauf, Muhammad Khawar; Badshah, Amin; Ebihara, Masahiro; Said, Muhammad; Gielen, Marcel; de Vos, Dick; Dilshad, Erum; Mirza, Bushra

    2012-02-01

    A series of homoleptic copper(II) complexes (1a-8a) with N,N',N″-trisubstituted guanidines, [Cu(II){PhCONHC(NHR)NPh}(2)] (where R = phenyl (1a), n-butyl (2a), sec-butyl (3a), cyclohexyl (4a), 1-naphthyl (5a), 2,4-dichlorophenyl (6a), 3,4-dichlorophenyl (7a), and 3,5-dichlorophenyl (8a)) have been synthesized and characterized by elemental analyses, FT-IR, UV-visible, (1)H and (13)C NMR spectroscopy, and single crystal X-ray diffraction analysis. The X-ray crystal structures revealed that the complexes 2a and 4a are mononuclear in the solid state and that the geometry around the copper atom is nearly square planar. In both the cases, N,N',N″-trisubstituted guanidine ligands have been coordinated to the Cu(II) through the oxygen and nitrogen atoms. The synthesized guanidines and their complexes were initially screened for their anti-microbial activities, and Brine Shrimps Lethality assay. The complexes were also screened for in vitro cytotoxicity activity in human cell lines carcinomas A498, EVSAT, H226, IGROV, M19, MCF-7 and WIDR. The results show a moderate level of cytotoxicity against these seven human cancer cell lines as compared with standard chemotherapeutic drugs. PMID:22177420

  4. Kinetic studies on the oxidation of oxyhemoglobin by biologically active iron thiosemicarbazone complexes: relevance to iron-chelator-induced methemoglobinemia.

    Science.gov (United States)

    Basha, Maram T; Rodríguez, Carlos; Richardson, Des R; Martínez, Manuel; Bernhardt, Paul V

    2014-03-01

    The oxidation of oxyhemoglobin to methemoglobin has been found to be facilitated by low molecular weight iron(III) thiosemicarbazone complexes. This deleterious reaction, which produces hemoglobin protein units unable to bind dioxygen and occurs during the administration of iron chelators such as the well-known 3-aminopyridine-2-pyridinecarbaldehyde thiosemicarbazone (3-AP; Triapine), has been observed in the reaction with Fe(III) complexes of some members of the 3-AP structurally-related thiosemicarbazone ligands derived from di-2-pyridyl ketone (HDpxxT series). We have studied the kinetics of this oxidation reaction in vitro using human hemoglobin and found that the reaction proceeds with two distinct time-resolved steps. These have been associated with sequential oxidation of the two different oxyheme cofactors in the α and β protein chains. Unexpected steric and hydrogen-bonding effects on the Fe(III) complexes appear to be the responsible for the observed differences in the reaction rate across the series of HDpxxT ligand complexes used in this study. PMID:24317633

  5. Biological Impact of Pd (II) Complexes: Synthesis, Spectral Characterization, In Vitro Anticancer, CT-DNA Binding, and Antioxidant Activities

    Science.gov (United States)

    Sharma, Nitin Kumar; Ameta, Rakesh Kumar; Singh, Man

    2016-01-01

    A new series of Pd (II) complexes of methyl substituted benzylamine ligands (BLs) has been synthesized and characterized via spectroscopic techniques such as UV/Vis. FTIR, LCMS, 1H, and 13C NMR. The UV/Vis study in DMSO, DMSO + water, and DMSO + PBS buffer (pH = 7.2) confirmed their molecular sustainability in liquids. Their in vitro anticancer activity against breast cancer cell lines such as MCF-7 and MDA-MB-231 makes them interesting for in vivo analysis. Their stronger DNA binding activity (DBA) compared with free ligand suggested them as a good DNA binder. DBA was further confirmed by physicochemical studies such as surface tension and viscosity of complex + DNA which inferred the disruption of DNA and intercalation of complexes, respectively. Their % binding activity, % disruption of DNA base pairs (DNABP), and % intercalating strength are reported in this paper for the first time for better understanding of DNA binding mechanism. Along with this, their scavenging activity (SA) determined through DPPH free radical and the results indicate good antioxidant behaviour of complexes. PMID:26989511

  6. Synthesis of uranyl(II), vanadyl(II) and zirconyl urate complexes, spectral, thermal and biological studies

    Science.gov (United States)

    El-Megharbel, Samy M.; El-Metwaly, Nashwa M.; Refat, Moamen S.

    2015-10-01

    Three urate chelations were obtained when uric acid was reacted with UO2(CH3COO)2H2O, VOSO4·XH2O and ZrOCl2·XH2O salts with neutralized with 0.1 M NaOH aqueous media. The 1:2 metal-to-ligand complexes [(UO2)2(C5H2N4O3)2](H2O), [(ZrO)2(H2O)2(C5H2N4O3)2] and [VO((C5H3N4O3)2] were characterized by elemental analyses, molar conductivity, (infrared, Raman and UV-vis) spectra, effective magnetic moment in Bohr magnetons, and thermal analysis (TG/DTG). The urate ligand coordinates as mononegative bidentate donor towards the mononuclear central vanadium atom and coordinated as binegative tetradentate mode towards the binuclear dioxouranium and zirconyl centers. The antibacterial activity of the metal complexes were tested against some kind of bacteria and fungi strains and compared with uric acid. The ligand, ZrO(II) and UO2(II) complex showed a week potential degradation on calf thymus DNA, whereas VO(II) complex slightly degraded the DNA.

  7. Biological and pathological studies of new synthetic copper complex in mice inoculated with tumours and exposed to gamma irradiation

    International Nuclear Information System (INIS)

    New derivatives of neutral copper complexes, particularly copper salicylate complexes having the formula Cu [ C6H4(OH) CO O]2 ROH in which ROH represent an alkanol, were prepared and characterized through IR spectroscopy and mass spectroscopy. The compounds have the same surface active properties. Cu(II) bis (salicylate) octanol (Cu-Bisod) and Cu(II) bis (salicylate) dodecanol (Cu-BISOD) were chosen in this study to evaluate their effects as antitumour agents. The compounds were administered i.p in mice bearing solid tumour of ehrlich carcinoma with four successive doses, 25 mg/kg for each dose alone or 20 min before a fractionated dose of gamma-irradiation (1.5 Gy x 4). The effects of these copper complexes were examined on solid ehrlich cells tumour growing in vivo as well in vitro systems.The study was also extended to show the effect of treatment on the histopathology of the tumour cells beside some liver histological studies. This investigation represents a preliminary study which might clarify the role of copper complexes compounds as an antitumour agents

  8. Metal based biologically active compounds: design, synthesis, and antibacterial/antifungal/cytotoxic properties of triazole-derived Schiff bases and their oxovanadium(IV) complexes.

    Science.gov (United States)

    Chohan, Zahid H; Sumrra, Sajjad H; Youssoufi, Moulay H; Hadda, Taibi B

    2010-07-01

    A new series of oxovanadium(IV) complexes have been designed and synthesized with a new class of triazole Schiff bases derived from the reaction of 3,5-diamino-1,2,4-triazole with 2-hydroxy-1-naphthaldehyde, pyrrole-2-carboxaldehyde, pyridine-2-carboxaldehyde and acetyl pyridine-2-carboxaldehyde, respectively. Physical (magnetic susceptibility, molar conductance), spectral (IR, (1)H NMR, (13)C NMR, mass and electronic) and analytical data have established the structures of these synthesized Schiff bases and their oxovanadium(IV) complexes. The Schiff bases, predominantly act as bidentate and coordinate with the vanadium(IV) metal to give a stoichiometric ratio of 1:2 [M:L], forming a general formulae, [M(L-H)(2)] and [M(L)(2)]SO(4) where L = (L(1))-(L(4)) and M = VO(IV) of these complexes in a square-pyramidal geometry. In order to evaluate the biological activity of Schiff bases and to assess the role of vanadium(IV) metal on biological activity, the triazole Schiff bases and their oxovanadium(IV) complexes have been studied for in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexenari, Pseudomonas aeruginosa, Salmonella typhi) and two Gram-positive (Staphylococcus aureus, Bacillus subtilis) bacterial strains, in vitro antifungal activity against Trichophyton longifucus, Candida albican, Aspergillus flavus, Microscopum canis, Fusarium solani and Candida glaberata. The simple Schiff bases showed weaker to significant activity against one or more bacterial and fungal strains. In most of the cases higher activity was exhibited upon coordination with vanadium(IV) metal. Brine shrimp bioassay was also carried out for in vitro cytotoxic properties against Artemia salina. PMID:20338672

  9. Rationally designed mutations convert complexes of human recombinant T cell receptor ligands into monomers that retain biological activity

    OpenAIRE

    Huan, Jianya Y; Meza-Romero, Roberto; Mooney, Jeffery L.; Yuan K. Chou; Edwards, David M.; Rich, Cathleen; Link, Jason M.; Vandenbark, Arthur A.; Bourdette, Dennis N.; Bächinger, Hans-Peter; Burrows, Gregory G.

    2004-01-01

    Single-chain human recombinant T cell receptor ligands derived from the peptide binding/TCR recognition domain of human HLA-DR2b (DRA*0101/DRB1*1501) produced in Escherichia coli with and without amino-terminal extensions containing antigenic peptides have been described previously. While molecules with the native sequence retained biological activity, they formed higher order aggregates in solution. In this study, we used site-directed mutagenesis to modify the β-sheet platform of the DR2-de...

  10. Rationally designed mutations convert complexes of human recombinant T cell receptor ligands into monomers that retain biological activity

    Science.gov (United States)

    Huan, Jianya Y; Meza-Romero, Roberto; Mooney, Jeffery L; Chou, Yuan K; Edwards, David M; Rich, Cathleen; Link, Jason M; Vandenbark, Arthur A; Bourdette, Dennis N; Bächinger, Hans-Peter; Burrows, Gregory G

    2012-01-01

    Single-chain human recombinant T cell receptor ligands derived from the peptide binding/TCR recognition domain of human HLA-DR2b (DRA*0101/DRB1*1501) produced in Escherichia coli with and without amino-terminal extensions containing antigenic peptides have been described previously. While molecules with the native sequence retained biological activity, they formed higher order aggregates in solution. In this study, we used site-directed mutagenesis to modify the β-sheet platform of the DR2-derived RTLs, obtaining two variants that were monomeric in solution by replacing hydrophobic residues with polar (serine) or charged (aspartic acid) residues. Size exclusion chromatography and dynamic light scattering demonstrated that the modified RTLs were monomeric in solution, and structural characterization using circular dichroism demonstrated the highly ordered secondary structure of the RTLs. Peptide binding to the `empty' RTLs was quantified using biotinylated peptides, and functional studies showed that the modified RTLs containing covalently tethered peptides were able to inhibit antigen-specific T cell proliferation in vitro, as well as suppress experimental autoimmune encephalomyelitis in vivo. These studies demonstrated that RTLs encoding the Ag-binding/TCR recognition domain of MHC class II molecules are innately very robust structures, capable of retaining potent biological activity separate from the Ig-fold domains of the progenitor class II structure, with prevention of aggregation accomplished by modification of an exposed surface that was buried in the progenitor structure. PMID:22973070

  11. Rationally designed mutations convert complexes of human recombinant T cell receptor ligands into monomers that retain biological activity.

    Science.gov (United States)

    Huan, Jianya Y; Meza-Romero, Roberto; Mooney, Jeffery L; Chou, Yuan K; Edwards, David M; Rich, Cathleen; Link, Jason M; Vandenbark, Arthur A; Bourdette, Dennis N; Bächinger, Hans-Peter; Burrows, Gregory G

    2005-01-01

    Single-chain human recombinant T cell receptor ligands derived from the peptide binding/TCR recognition domain of human HLA-DR2b (DRA*0101/DRB1*1501) produced in Escherichia coli with and without amino-terminal extensions containing antigenic peptides have been described previously. While molecules with the native sequence retained biological activity, they formed higher order aggregates in solution. In this study, we used site-directed mutagenesis to modify the β-sheet platform of the DR2-derived RTLs, obtaining two variants that were monomeric in solution by replacing hydrophobic residues with polar (serine) or charged (aspartic acid) residues. Size exclusion chromatography and dynamic light scattering demonstrated that the modified RTLs were monomeric in solution, and structural characterization using circular dichroism demonstrated the highly ordered secondary structure of the RTLs. Peptide binding to the `empty' RTLs was quantified using biotinylated peptides, and functional studies showed that the modified RTLs containing covalently tethered peptides were able to inhibit antigen-specific T cell proliferation in vitro, as well as suppress experimental autoimmune encephalomyelitis in vivo. These studies demonstrated that RTLs encoding the Ag-binding/TCR recognition domain of MHC class II molecules are innately very robust structures, capable of retaining potent biological activity separate from the Ig-fold domains of the progenitor class II structure, with prevention of aggregation accomplished by modification of an exposed surface that was buried in the progenitor structure. PMID:22973070

  12. Overview of the taxonomy and of the major secondary metabolites and their biological activities related to human health of the Laurencia complex (Ceramiales, Rhodophyta from Brazil

    Directory of Open Access Journals (Sweden)

    Mutue T. Fujii

    2011-04-01

    Full Text Available In Brazil, the Laurencia complex is represented by twenty taxa: Laurencia s.s. with twelve species, Palisada with four species (including Chondrophycus furcatus now that the proposal of its transference to Palisada is in process, and Osmundea and Yuzurua with two species each. The majority of the Brazilian species of the Laurencia complex have been phylogenetically analyzed by 54 rbcL sequences, including five other Rhodomelacean species as outgroups. The analysis showed that the Laurencia complex is monophyletic with high posterior probability value. The complex was separated into five clades, corresponding to the genera: Chondrophycus, Laurencia, Osmundea, Palisada, and Yuzurua. A bibliographical survey of the terpenoids produced by Brazilian species showed that only six species of Laurencia and five of Palisada (including C. furcatcus have been submitted to chemical analysis with 48 terpenoids (47 sesquiterpenes and one triterpene isolated. No diterpenes were found. Of the total, 23 sesquiterpenes belong to the bisabolane class and eighteen to the chamigrene type, whose biochemical precursor is bisabolane, two are derived from lauranes and four are triquinols. Despite the considerable number of known terpenes and their ecological and pharmacological importance, few experimental biological studies have been performed. In this review, only bioactivities related to human health were considered.

  13. Metal complexes of Schiff base derived from sulphametrole and o-vanilin . Synthesis, spectral, thermal characterization and biological activity

    Science.gov (United States)

    Mohamed, Gehad G.; Sharaby, Carmen M.

    2007-04-01

    Metal complexes of Schiff base derived from condensation of o-vanilin (3-methoxysalicylaldehyde) and sulfametrole [ N1-(4-methoxy-1,2,5-thiadiazole-3-yl)sulfanilamide] (H 2L) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA). From the elemental analyses data, the complexes were proposed to have the general formulae [M 2X 3(HL)(H 2O) 5]· yH 2O (where M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), X = Cl, y = 0-3); [Fe 2Cl 5(HL)(H 2O) 3]·2H 2O; [(FeSO 4) 2(H 2L)(H 2O) 4] and [(UO 2) 2(NO 3) 3(HL)(H 2O)]·2H 2O. The molar conductance data reveal that all the metal chelates were non-electrolytes. The IR spectra show that, H 2L is coordinated to the metal ions in a tetradentate manner with ON and NO donor sites of the azomethine-N, phenolic-OH, enolic sulphonamide-OH and thiadiazole-N. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, Δ H*, Δ S* and Δ G* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligand, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Salmonella typhi, Bacillus subtillus, Staphylococcus aureus and Fungi ( Aspergillus terreus and Aspergillus flavus). The activity data show that the metal complexes to be more potent/antimicrobial than the parent Shciff base ligand against one or more microbial species.

  14. Is vanadate reduced by thiols under biological conditions? Changing the redox potential of V(V)/V(IV) by complexation in aqueous solution.

    Science.gov (United States)

    Crans, Debbie C; Zhang, Boyan; Gaidamauskas, Ernestas; Keramidas, Anastasios D; Willsky, Gail R; Roberts, Chris R

    2010-05-01

    Although dogma states that vanadate is readily reduced by glutathione, cysteine, and other thiols, there are several examples documenting that vanadium(V)-sulfur complexes can form and be observed. This conundrum has impacted life scientists for more than two decades. Investigation of this problem requires an understanding of both the complexes that form from vanadium(IV) and (V) and a representative thiol in aqueous solution. The reactions of vanadate and hydrated vanadyl cation with 2-mercaptoethanol have been investigated using multinuclear NMR, electron paramagnetic resonance (EPR), and UV-vis spectroscopy. Vanadate forms a stable complex of 2:2 stoichiometry with 2-mercaptoethanol at neutral and alkaline pH. In contrast, vanadate can oxidize 2-mercaptoethanol; this process is favored at low pH and high solute concentrations. The complex that forms between aqueous vanadium(IV) and 2-mercaptoethanol has a 1:2 stoichiometry and can be observed at high pH and high 2-mercaptoethanol concentration. The solution structures have been deduced based on coordination induced chemical shifts and speciation diagrams prepared. This work demonstrates that both vanadium(IV) and (V)-thiol complexes form and that redox chemistry also takes place. Whether reduction of vanadate takes place is governed by a combination of parameters: pH, solute- and vanadate-concentrations and the presence of other complexing ligands. On the basis of these results it is now possible to understand the distribution of vanadium in oxidation states (IV) and (V) in the presence of glutathione, cysteine, and other thiols and begin to evaluate the forms of the vanadium compounds that exert a particular biological effect including the insulin-enhancing agents, antiamoebic agents, and interactions with vanadium binding proteins. PMID:20359175

  15. Extensions of sampling-based approaches to path planning in complex cost spaces: applications to robotics and structural biology

    OpenAIRE

    Devaurs, Didier

    2014-01-01

    Planifier le chemin d’un robot dans un environnement complexe est un problème crucial en robotique. Les méthodes de planification probabilistes peuvent résoudre des problèmes complexes aussi bien en robotique, qu’en animation graphique, ou en biologie structurale. En général, ces méthodes produisent un chemin évitant les collisions, sans considérer sa qualité. Récemment, de nouvelles approches ont été créées pour générer des chemins de bonne qualité : en robotique, cela peut être le chemin le...

  16. Monomeric mixed cadmium-2,2‧-dipyridylamine complex derived from ferrocenecarboxylic acid: Structural, electrochemical and biological studies

    Science.gov (United States)

    Senthilkumar, Kabali; Gopalakrishnan, Mohan; Palanisami, Nallasamy

    2015-09-01

    A mixed Cd(II) complex {[Cd(FcCOO)2(dpyam)(H2O)][Cd(dpyam)2 (H2O)2]·(ClO4)2·CH3OH} (1) (where FcCOO = ferrocenecarboxylic acid and dpyam = 2,2‧-dipyridylamine), has been synthesized and characterized by FT-IR, 1H & 13C NMR, UV-Vis spectroscopy and elemental analysis. The molecular structure of compound 1 has been determined by the single crystal X-ray diffraction technique, which consists of mixed two different cadmium(II) complexes and two uncoordinated perchlorate ions. The crystal packing shows that the compound 1 self-assembled by intermolecular hydrogen bonding via pyridyl N-H⋯O and coordinated water O⋯H-O-H⋯O, to afford the molecule 2D supramolecular network. Compound 1 exhibits high-energy intraligand (π-π∗) fluorescence emission. In electrochemical studies of compound 1 shows negative potential compared with ferrocenecarboxylic acid due to formation of coordination complex with Cd ions. The antibacterial study against the distinct bacterial strains show compound 1 has significant activity.

  17. Monomeric mixed cadmium-2,2'-dipyridylamine complex derived from ferrocenecarboxylic acid: Structural, electrochemical and biological studies.

    Science.gov (United States)

    Senthilkumar, Kabali; Gopalakrishnan, Mohan; Palanisami, Nallasamy

    2015-09-01

    A mixed Cd(II) complex {[Cd(FcCOO)2(dpyam)(H2O)][Cd(dpyam)2 (H2O)2]·(ClO4)2·CH3OH} (1) (where FcCOO=ferrocenecarboxylic acid and dpyam=2,2'-dipyridylamine), has been synthesized and characterized by FT-IR, (1)H &(13)C NMR, UV-Vis spectroscopy and elemental analysis. The molecular structure of compound 1 has been determined by the single crystal X-ray diffraction technique, which consists of mixed two different cadmium(II) complexes and two uncoordinated perchlorate ions. The crystal packing shows that the compound 1 self-assembled by intermolecular hydrogen bonding via pyridyl N-H⋯O and coordinated water O⋯H-O-H⋯O, to afford the molecule 2D supramolecular network. Compound 1 exhibits high-energy intraligand (π-π(∗)) fluorescence emission. In electrochemical studies of compound 1 shows negative potential compared with ferrocenecarboxylic acid due to formation of coordination complex with Cd ions. The antibacterial study against the distinct bacterial strains show compound 1 has significant activity. PMID:25879985

  18. Preparation, spectral and biological investigation of formaldehyde-based ligand containing piperazine moiety and its various polymer metal complexes

    Science.gov (United States)

    Khan, Shamim Ahmad; Nishat, Nahid; Parveen, Shadma; Rasool, Raza

    2011-10-01

    A novel tetradentate salicylic acid-formaldehyde ligand containing piperazine moiety (SFP) was synthesized by condensation of salicylic acid, formaldehyde and piperazine in presence of base catalyst, which was subjected for the preparation of coordination polymers with metal ions like manganese(II), cobalt(II), copper(II), nickel(II) and zinc(II). All the synthesized polymeric compounds were characterized by elemental analysis, IR, 1H NMR and electronic spectral studies. The thermal stability was determined by thermogravimetric analysis and thermal data revealed that all the polymer metal complexes show good thermal stability than their parent ligand. Electronic spectral data and magnetic moment values revealed that polymer metal complexes of Mn(II), Co(II) and Ni(II) show an octahedral geometry while Cu(II) and Zn(II) show distorted octahedral and tetrahedral geometry respectively. The antimicrobial screening of the ligand and coordination polymers was done by using Agar well diffusion method against various bacteria and fungi. It was evident from the data that antibacterial and antifungal activity increased on chelation and all the polymer metal complexes show excellent antimicrobial activity than their parent ligand.

  19. Radiosynthesis and biological evolution of 99mTc(CO)3-sitafloxacin dithiocarbamate complex. A promising Staphylococcus aureus infection radiotracer

    International Nuclear Information System (INIS)

    Radio-complexation of sitafloxacin dithiocarbamate (SFDE) with technetium-99m (99mTc) using [99mTc(OH2)3(CO)3]+ precursor was investigated and compared with the 99mTc labeled SFDE prepared through 99mTcN core. The 99mTc(CO)3-SFDE radiocomplex was assessed in terms of radiochemical purity (RCP), eternalness in serum, in vitro binding with Staphylococcus aureus (S. aureus) and biodistribution in artificially Staphylococcus aureus infected rats (SAIR). The feasibility of the 99mTc(CO)3-SFDE radiocomplex as a suitable S. aureus infection radiotracer was evaluated in SAIR. The complex showed maximum RCP of 98.45 ± 0.21% in saline and was remained tagged more than 90% up to 4 h. The complex was found stable in serum and after 16 h only 17.95% de-tagged radio-fractions was observed. Similar saturated in vitro binding behaviour was observed for both the radiocomplexes (99mTc(CO)3-SFDE and 99mTcN-SFDE) with living S. aureus. Both the radiocomplexes showed almost similar in vivo biodistribution in SAIR. Significantly higher but similar infected to normal muscle ratio was observed for both the radiocomplexes in SAIR. The results of radiochemical purity (RCP), eternalness in serum, in vitro binding and in vivo biodistribution in SAIR posed the 99mTc(CO)3-SFDE radiocomplex as suitable S. aureus infection radiotracer. (author)

  20. New tridentate azo-azomethines and their copper(II) complexes: Synthesis, solvent effect on tautomerism, electrochemical and biological studies

    Science.gov (United States)

    Sarigul, Munire; Deveci, Pervin; Kose, Muhammet; Arslan, Ugur; Türk Dagi, Hatice; Kurtoglu, Mukerrem

    2015-09-01

    In this study, three azo-azomethines and their copper(II) complexes were prepared and characterized by analytical and spectroscopic methods. The complexes prepared were found to be mononuclear and the chelation of the ligands to the copper(II) ions occurs through two phenolic oxygens and a nitrogen atom of the azomethine group of the ligand. The tautomeric behaviors of the azo-azomethines in solution were studied by UV-Vis. spectra in three organic solvents with different polarity (CHCl3, DMSO and DMF) at room temperature. The redox behaviors of the azo-azomethines and their Cu(II) complexes were investigated by cyclic voltammetry (CV) in DMSO solution containing 0.1 M tetrabutylammonium tetrafluoroborate (TBATFB) as supporting electrolyte. Additionally, the antibacterial activity was also evaluated by the broth microdilution methods against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. The compounds were found to be less effective against all bacteria tested than two reference antibiotics (ampicillin and gentamicin).

  1. Synthetic, structural and biological studies of organosilicon(IV complexes of Schiff bases derived from pyrrole-2-carboxaldehyde

    Directory of Open Access Journals (Sweden)

    KIRAN SING

    2010-07-01

    Full Text Available Selected new organosilicon(IV complexes having the general formula R2SiCl[L] and R2Si[L] 2 were synthesized by the reactions of Me2SiCl2 with Schiff bases (5-mercapto-4-[(1H-pyrrol-2ylmethyleneamino]-s-triazole, 5-mercapto-3-methyl-4-[(1H-pyrrol-2ylmethyleneamino]-s-triazole and 3-ethyl-5-mercapto-4-[(1H-pyrrol-2ylmethyleneamino]-s-triazole in 1:1 and 1:2 molar ratios. All of the compounds were characterized by elemental analysis, molar conductance, and IR, UV, 1H-, 13C- and 29Si-NMR spectral studies. All the spectral data suggest an involvement with an azomethine nitrogen in coordination to the central silicon atom. With the help of above-mentioned spectral studies, penta and hexacoordinated environments around the central silicon atoms in the 1:1 and 1:2 complexes, respectively, are proposed. Finally, the free ligands and their metal complexes were tested in vitro against some pathogenic bacteria and fungi to assess their antimicrobial properties.

  2. Cupric citrate as growth promoter for broiler chickens in different rearing stages Citrato cúprico como promotor de crescimento de frangos de corte diferentes em fases de criação

    Directory of Open Access Journals (Sweden)

    Mônica Maria de Almeida Brainer

    2003-01-01

    Full Text Available Feeding cupric citrate as alternative to cupric sulfate to broilers has been suggested in the literature. Day-old male broiler chicks (1,200 were used in an experiment to evaluate the efficacy of cupric citrate supplementation (75 mg Cu kg-1 during the 1-21, 22-42 or 1-42 d periods in comparison to an unsupplemented diet and a diet supplemented with cupric sulfate (200 mg Cu kg-1, 1-42 d. A randomized block design was used, with five treatments, six replicates and 40 birds per pen. The diets, based on corn and soybean meal, and water were offered ad libitum during the 42-day experimental period. Over the entire period, there was no effect of copper supplementation (P > 0.05 on bird live weight, weight gain, feed intake, feed conversion and mortality. Cupric citrate supplementation on the 22-42 d period resulted in worse feed conversion as compared to broilers receiving cupric sulfate (2.014 vs. 1.967, P Citrato cúprico foi apontado como alternativa ao sulfato cúprico como promotor de crescimento na dieta de frangos. Este trabalho avaliou a eficácia do citrato cúprico em diferentes fases da criação de frangos de corte. Foram utilizados 1200 pintos machos, em um experimento em blocos casualizados, com cinco tratamentos, seis repetições e 40 aves por parcela. Os tratamentos consistiram de uma dieta não suplementada ou suplementada com citrato cúprico anidro (75 mg Cu kg-1 de 1 a 21 dias, de 22 a 42 dias ou de 1 a 42 dias, ou com sulfato cúprico pentahidratado (200 mg Cu kg-1 de 1 a 42 dias. Foram avaliados o desempenho das aves e o resíduo de cobre na cama. Dietas, à base de milho e farelo de soja, e água foram fornecidas à vontade durante todo o período experimental. Não houve efeito da suplementação de cobre (P > 0,05 sobre o peso vivo, ganho de peso, consumo de ração, conversão alimentar e mortalidade mais refugagem. Os frangos que receberam citrato cúprico na ração a partir dos 22 dias tiveram, no período 22-42 dias

  3. Laser-induced damage in biological tissue: Role of complex and dynamic optical properties of the medium

    Science.gov (United States)

    Ahmed, Elharith M.

    Since its invention in the early 1960's, the laser has been used as a tool for surgical, therapeutic, and diagnostic purposes. To achieve maximum effectiveness with the greatest margin of safety it is important to understand the mechanisms of light propagation through tissue and how that light affects living cells. Lasers with novel output characteristics for medical and military applications are too often implemented prior to proper evaluation with respect to tissue optical properties and human safety. Therefore, advances in computational models that describe light propagation and the cellular responses to laser exposure, without the use of animal models, are of considerable interest. Here, a physics-based laser-tissue interaction model was developed to predict the spatial and temporal temperature and pressure rise during laser exposure to biological tissues. Our new model also takes into account the dynamic nature of tissue optical properties and their impact on the induced temperature and pressure profiles. The laser-induced retinal damage is attributed to the formation of microbubbles formed around melanosomes in the retinal pigment epithelium (RPE) and the damage mechanism is assumed to be photo-thermal. Selective absorption by melanin creates these bubbles that expand and collapse around melanosomes, destroying cell membranes and killing cells. The Finite Element (FE) approach taken provides suitable ground for modeling localized pigment absorption which leads to a non-uniform temperature distribution within pigmented cells following laser pulse exposure. These hot-spots are sources for localized thermo-elastic stresses which lead to rapid localized expansions that manifest themselves as microbubbles and lead to microcavitations. Model predictions for the interaction of lasers at wavelengths of 193, 694, 532, 590, 1314, 1540, 2000, and 2940 nm with biological tissues were generated and comparisons were made with available experimental data for the retina

  4. Scientific Opinion on the safety and efficacy of copper compounds (E4 as feed additives for all species: cupric chelate of amino acids hydrate, based on a dossier submitted by Zinpro Animal Nutrition Inc.

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2013-02-01

    Full Text Available Cupric chelate of amino acids hydrate is safe for all animal species/categories up to the authorised maximum of total copper content in complete feed. Consumption surveys include copper from foodstuffs of animal origin. Since the supplementation of animal feed with copper-containing compounds has not essentially changed over the last decade, no change in the contribution of foodstuffs originating from supplemented animals to the overall copper intake of consumers is expected. No concerns for consumer safety are expected from the use of cupric chelate of amino acids hydrate in animal nutrition, which would substitute for other copper sources. The additive should be considered as a skin and eye irritant and, owing to its amino acid/peptide component, as a skin/respiratory sensitiser. Potential risks to soil organisms have been identified as a result of the application of piglet manure. Levels of copper in other types of manure are too low to create a potential risk within the timescale considered. There might also be a potential environmental concern related to the contamination of sediment resulting from drainage and the run-off of copper to surface water. In order to draw a final conclusion, further model validation is needed and some further refinement to the assessment of copper-based feed additives in livestock needs to be considered, for which additional data would be required. The use of copper-containing additives in aquaculture up to the authorised maximum of total copper content in complete feeds is not expected to pose an appreciable risk to the environment. The extent to which copper-resistant bacteria contribute to the overall antibiotic resistance situation cannot be quantified at present. Cupric chelate of amino acids hydrate is recognised as an efficacious source of copper to meet animal requirements.

  5. Preparation of aminodextran-CdS nanoparticle complexes and biologically active antibody-aminodextran-CdS nanoparticle conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Sondi, I.; Siiman, O.; Koester, S.; Matijevic, E.

    2000-04-04

    Stable aqueous dispersions consisting of CdS nanoparticles having modal diameters, ranging between 2 and 8 nm, were prepared with amino-derivatized polysaccharides (aminodextrans, hence abbreviated as Amdex) as the stabilizing agents. The size, stability, and luminescence intensity of such dispersions were shown to be dependent on the types of the cadmium salts and aminodextrans used, as well as on the reactant concentrations. Specifically, it was demonstrated that the degree of substitution of amino groups in the aminodextran molecules greatly affected the properties of the dispersions; i.e., with higher degree of substitution, smaller CdS particles and higher luminescence intensity were achieved. It was also shown that the Amdex-CdS nanoparticle complexes could be activated and conjugated with antibody by conventional means. Molecular weight ranges of the Amdex and their complexes with CdS nanoparticles and the purity of antibody-Amdex-CdS nanoparticle conjugates were determined by polyacrylamide gel electrophoresis combined with Coomassie blue staining of resultant gel bands. The purified conjugate of the aminodextran-CdS nanoparticle complex with anti-CD4 monoclonal antibody was mixed with a whole blood control, followed by indirect sheep antimouse antibody-phycoerythrin (SAM-PE) labeling of washed cells incubated with T4-5X-Amdex-CdS. Red blood cells were then lysed and quenched, and the resulting mixture, which was run on a flow cytometer with 488.0 nm argon ion laser excitation, suggested that the T4 antibody from the conjugate was present specifically on lymphocytes.

  6. Synthesis and biological evaluation of novel folic acid receptor-targeted, β-cyclodextrin-based drug complexes for cancer treatment.

    Directory of Open Access Journals (Sweden)

    Juan-Juan Yin

    Full Text Available Drug targeting is an active area of research and nano-scaled drug delivery systems hold tremendous potential for the treatment of neoplasms. In this study, a novel cyclodextrin (CD-based nanoparticle drug delivery system has been assembled and characterized for the therapy of folate receptor-positive [FR(+] cancer. Water-soluble folic acid (FA-conjugated CD carriers (FACDs were successfully synthesized and their structures were confirmed by 1D/2D nuclear magnetic resonance (NMR, matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS, high performance liquid chromatography (HPLC, Fourier transform infrared spectroscopy (FTIR, and circular dichroism. Drug complexes of adamatane (Ada and cytotoxic doxorubicin (Dox with FACD were readily obtained by mixed solvent precipitation. The average size of FACD-Ada-Dox was 1.5-2.5 nm. The host-guest association constant K a was 1,639 M(-1 as determined by induced circular dichroism and the hydrophilicity of the FACDs was greatly enhanced compared to unmodified CD. Cellular uptake and FR binding competitive experiments demonstrated an efficient and preferentially targeted delivery of Dox into FR-positive tumor cells and a sustained drug release profile was seen in vitro. The delivery of Dox into FR(+ cancer cells via endocytosis was observed by confocal microscopy and drug uptake of the targeted nanoparticles was 8-fold greater than that of non-targeted drug complexes. Our docking results suggest that FA, FACD and FACD-Ada-Dox could bind human hedgehog interacting protein that contains a FR domain. Mouse cardiomyocytes as well as fibroblast treated with FACD-Ada-Dox had significantly lower levels of reactive oxygen species, with increased content of glutathione and glutathione peroxidase activity, indicating a reduced potential for Dox-induced cardiotoxicity. These results indicate that the targeted drug complex possesses high drug association and sustained drug release

  7. One-pot regio- and stereoselective synthesis of α'-methoxy-γ-pyrones: biological evaluation as mitochondrial respiratory complex inhibitors.

    Science.gov (United States)

    Rosso, Helena; De Paolis, Michaël; Collin, Valérie C; Dey, Sriloy; Hecht, Sidney M; Prandi, Cristina; Richard, Vincent; Maddaluno, Jacques

    2011-11-18

    The one-pot construction of functionalized α'-methoxy-γ-pyrones is detailed. Starting from α,α'-dimethoxy-γ-pyrone, molecular diversity is attained by a regio- and stereoselective desymmetrization using allyllithium followed by vinylogous aldol reaction. Mechanistic considerations including density functional theory calculations and insightful experiments have been gathered to shed light on this complex multistep process. To illustrate the versatility of this methodology, some of the molecules prepared were evaluated for their ability to inhibit NADH-oxidase and NADH-ubiquinone oxidoreductase. In the process, a potent new inihibitor of NADH-oxidase activity (IC(50) 44 nM) was identified. PMID:22011074

  8. Synthesis of 99mTcV ≡ N-Pazufloxacin dithiocarbamate complex and biological evaluation in Wister rats artificially infected with Escherichia coli

    International Nuclear Information System (INIS)

    99mTc ≡ N-Pazufloxacin dithiocarbamate (99mTc ≡ N-PZN) complex was synthesized through the [99mTc ≡ N]2+ core and its aptness was radiochemically and biologically evaluated in terms of radiochemical purity (RCP) in saline, in vitro stability in serum, in vitro bacterial uptake and percent in vivo uptake in male Wister rats (MWR) artificially infected with alive and heat killed Escherichia coli (E. coli). The 99mTc ≡ N-PZN complex showed more than 90% RCP up to 4 h after reconstitution in normal saline at room temperature with a maximum RCP value of 98.40 ± 0.28% (at 30 min). At 37 deg C in serum the complex showed stable behaviour up to 4 h with the appearance of 15.95% undesirable by products within 16 h of the incubation. The complex showed saturated in vitro binding with E. coli with a maximum uptake of 74.25 ± 0.50% (at 90 min). Normal biodistribution behaviour was noted with a sixfold higher accumulation in the muscle of the MWR, artificially infected with live E. coli as compared to the MWR infected with heat killed E. coli, inflamed and normal muscle. The high RCP in saline, elevated in vitro stability in serum, saturated in vitro binding with E. coli and the sixfold higher accumulation in the infected (live) muscle of the MWR as compared to the inflamed and normal muscle, recognized the aptness of the 99mTc ≡ N-PZND complex as a prospective E. coli in vivo infection radiotracer. (author)

  9. Water-soluble Ru(II)- and Ru(III)-halide-PTA complexes (PTA=1,3,5-triaza-7-phosphaadamantane): Chemical and biological properties.

    Science.gov (United States)

    Battistin, F; Scaletti, F; Balducci, G; Pillozzi, S; Arcangeli, A; Messori, L; Alessio, E

    2016-07-01

    Four structurally related Ru(II)-halide-PTA complexes, of general formula trans- or cis-[Ru(PTA)4X2] (PTA=1,3,5-triaza-7-phosphaadamantane, X=Cl (1, 2), Br (3, 4), were prepared and characterized. Whereas compounds 1 and 2 are known, the corresponding bromo derivatives 3 and 4 are new. The Ru(III)-PTA compound trans-[RuCl4(PTAH)2]Cl (5, PTAH=PTA protonated at one N atom), structurally similar to the well-known Ru(III) anticancer drug candidates (Na)trans-[RuCl4(ind)2] (NKP-1339, ind=indazole) and (Him)trans-[RuCl4(dmso-S)(im)] (NAMI-A, im=imidazole), was also prepared and similarly investigated. Notably, the presence of PTA confers to all complexes an appreciable solubility in aqueous solutions at physiological pH. The chemical behavior of compounds 1-5 in water and in physiological buffer, their interactions with two model proteins - cytochrome c and ribonuclease A - as well as with a single strand oligonucleotide (5'-CGCGCG-3'), and their in vitro cytotoxicity against a human colon cancer cell line (HCT-116) and a myeloid leukemia (FLG 29.1) were investigated. Upon dissolution in the buffer, sequential halide replacement by water molecules was observed for complexes 1-4, with relatively slow kinetics, whereas the Ru(III) complex 5 is more inert. All tested compounds manifested moderate antiproliferative properties, the cis compounds 2 and 4 being slightly more active than the trans ones (1 and 3). Mass spectrometry experiments evidenced that all complexes exhibit a far higher reactivity towards the reference oligonucleotide than towards model proteins. The chemical and biological profiles of compounds 1-5 are compared to those of established ruthenium drug candidates in clinical development. PMID:26920229

  10. Structure of a prereaction complex between the nerve agent sarin, its biological target acetylcholinesterase, and the antidote HI-6

    Science.gov (United States)

    Allgardsson, Anders; Berg, Lotta; Akfur, Christine; Hörnberg, Andreas; Linusson, Anna; Ekström, Fredrik J.

    2016-01-01

    Organophosphorus nerve agents interfere with cholinergic signaling by covalently binding to the active site of the enzyme acetylcholinesterase (AChE). This inhibition causes an accumulation of the neurotransmitter acetylcholine, potentially leading to overstimulation of the nervous system and death. Current treatments include the use of antidotes that promote the release of functional AChE by an unknown reactivation mechanism. We have used diffusion trap cryocrystallography and density functional theory (DFT) calculations to determine and analyze prereaction conformers of the nerve agent antidote HI-6 in complex with Mus musculus AChE covalently inhibited by the nerve agent sarin. These analyses reveal previously unknown conformations of the system and suggest that the cleavage of the covalent enzyme–sarin bond is preceded by a conformational change in the sarin adduct itself. Together with data from the reactivation kinetics, this alternate conformation suggests a key interaction between Glu202 and the O-isopropyl moiety of sarin. Moreover, solvent kinetic isotope effect experiments using deuterium oxide reveal that the reactivation mechanism features an isotope-sensitive step. These findings provide insights into the reactivation mechanism and provide a starting point for the development of improved antidotes. The work also illustrates how DFT calculations can guide the interpretation, analysis, and validation of crystallographic data for challenging reactive systems with complex conformational dynamics. PMID:27140636

  11. Structure of a prereaction complex between the nerve agent sarin, its biological target acetylcholinesterase, and the antidote HI-6.

    Science.gov (United States)

    Allgardsson, Anders; Berg, Lotta; Akfur, Christine; Hörnberg, Andreas; Worek, Franz; Linusson, Anna; Ekström, Fredrik J

    2016-05-17

    Organophosphorus nerve agents interfere with cholinergic signaling by covalently binding to the active site of the enzyme acetylcholinesterase (AChE). This inhibition causes an accumulation of the neurotransmitter acetylcholine, potentially leading to overstimulation of the nervous system and death. Current treatments include the use of antidotes that promote the release of functional AChE by an unknown reactivation mechanism. We have used diffusion trap cryocrystallography and density functional theory (DFT) calculations to determine and analyze prereaction conformers of the nerve agent antidote HI-6 in complex with Mus musculus AChE covalently inhibited by the nerve agent sarin. These analyses reveal previously unknown conformations of the system and suggest that the cleavage of the covalent enzyme-sarin bond is preceded by a conformational change in the sarin adduct itself. Together with data from the reactivation kinetics, this alternate conformation suggests a key interaction between Glu202 and the O-isopropyl moiety of sarin. Moreover, solvent kinetic isotope effect experiments using deuterium oxide reveal that the reactivation mechanism features an isotope-sensitive step. These findings provide insights into the reactivation mechanism and provide a starting point for the development of improved antidotes. The work also illustrates how DFT calculations can guide the interpretation, analysis, and validation of crystallographic data for challenging reactive systems with complex conformational dynamics. PMID:27140636

  12. Systems Biology Approach to the Dissection of the Complexity of Regulatory Networks in the S. scrofa Cardiocirculatory System

    Directory of Open Access Journals (Sweden)

    Paolo Martini

    2013-11-01

    Full Text Available Genome-wide experiments are routinely used to increase the understanding of the biological processes involved in the development and maintenance of a variety of pathologies. Although the technical feasibility of this type of experiment has improved in recent years, data analysis remains challenging. In this context, gene set analysis has emerged as a fundamental tool for the interpretation of the results. Here, we review strategies used in the gene set approach, and using datasets for the pig cardiocirculatory system as a case study, we demonstrate how the use of a combination of these strategies can enhance the interpretation of results. Gene set analyses are able to distinguish vessels from the heart and arteries from veins in a manner that is consistent with the different cellular composition of smooth muscle cells. By integrating microRNA elements in the regulatory circuits identified, we find that vessel specificity is maintained through specific miRNAs, such as miR-133a and miR-143, which show anti-correlated expression with their mRNA targets.

  13. Study of the interaction of multiply charged ions and complex systems of biological interest: effects of the molecular environment

    International Nuclear Information System (INIS)

    This PhD thesis describes the experimental study of the interaction between slow multiply charged ions (tens of keV) and molecular systems of biological interest (amino acids and nucleobases). It is the aim to identify and to better understand the effect of a molecular environment on different collision induced phenomena. To do so, the time of flight spectra of cationic products emerging from collisions with isolated molecules as well as clusters are compared. It is shown that the molecular environment protects the molecule as it allows to distribute the transferred energies and charges over the whole system (global decrease of the fragmentation and quenching of some fragmentation channels). Furthermore, in the case of adenine clusters, the molecular environment weakens some intramolecular bonds. Moreover, products of chemical reactions are observed concerning proton transfer processes in hydrated cluster of adenine and the formation of peptides bonds between beta-alanine molecules in a cluster. The latter finding is studied as a function of the cluster size and type of the projectile. Some criteria for peptide bond formation, such as flexibility and geometry of the molecule, are investigated for different amino acids. (author)

  14. DFT calculations, spectroscopic, thermal analysis and biological activity of Sm(III) and Tb(III) complexes with 2-aminobenzoic and 2-amino-5-chloro-benzoic acids

    Science.gov (United States)

    Essawy, Amr A.; Afifi, Manal A.; Moustafa, H.; El-Medani, S. M.

    2014-10-01

    The complexes of Sm(III) and Tb(III) with 2-aminobenzoic acid (anthranilic acid, AA) and 2-amino-5-chlorobenzoic acid (5-chloroanthranilic acid, AACl) were synthesized and characterized based on elemental analysis, IR and mass spectroscopy. The data are in accordance with 1:3 [Metal]:[Ligand] ratio. On the basis of the IR analysis, it was found that the metals were coordinated to bidentate anthranilic acid via the ionised oxygen of the carboxylate group and to the nitrogen of amino group. While in 5-chloroanthranilic acid, the metals were coordinated oxidatively to the bidentate carboxylate group without bonding to amino group; accordingly, a chlorine-affected coordination and reactivity-diversity was emphasized. Thermal analyses (TGA) and biological activity of the complexes were also investigated. Density Functional Theory (DFT) calculations at the B3LYP/6-311++G (d,p)_ level of theory have been carried out to investigate the equilibrium geometry of the ligand. The optimized geometry parameters of the complexes were evaluated using SDDALL basis set. Moreover, total energy, energy of HOMO and LUMO and Mullikan atomic charges were calculated. In addition, dipole moment and orientation have been performed and discussed.

  15. Reprint of: Application of micro-thin-layer chromatography as a simple fractionation tool for fast screening of raw extracts derived from complex biological, pharmaceutical and environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Zarzycki, Pawel K., E-mail: pawel_k_z@hotmail.com [Section of Toxicology and Bioanalytics, Department of Civil and Environmental Engineering, Koszalin University of Technology, Sniadeckich 2, 75-453 Koszalin (Poland); Slaczka, Magdalena M.; Zarzycka, Magdalena B.; Wlodarczyk, Elzbieta; Baran, Michal J. [Section of Toxicology and Bioanalytics, Department of Civil and Environmental Engineering, Koszalin University of Technology, Sniadeckich 2, 75-453 Koszalin (Poland)

    2012-02-24

    The main goal of present paper is to demonstrate the separation and detection capability of micro-TLC technique involving simple one step liquid extraction protocols of complex materials without multi-steps sample pre-purification. In the present studies target components (cyanobacteria pigments, lipids and fullerenes) were isolated from heavy loading complex matrices including spirulina dried cells, birds' feathers and fatty oils as well as soot samples derived from biomass fuel and fossils-fired home heating systems. In each case isocratic separation protocol involving less that 1 mL of one component or binary mixture mobile phases can be completed within time of 5-8 min. Sensitive detection of components of interest was performed via fluorescence or staining techniques using iodine or phosphomolybdic acid. Described methodology can be applied for fast fractionation or screening of whole range of target substances as well as chemo-taxonomic studies and fingerprinting of complex mixtures, which are present in raw biological or environmental samples.

  16. Application of micro-thin-layer chromatography as a simple fractionation tool for fast screening of raw extracts derived from complex biological, pharmaceutical and environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Zarzycki, Pawel K., E-mail: pawel_k_z@hotmail.com [Section of Toxicology and Bioanalytics, Department of Civil and Environmental Engineering, Koszalin University of Technology, Sniadeckich 2, 75-453 Koszalin (Poland); Slaczka, Magdalena M.; Zarzycka, Magdalena B.; Wlodarczyk, Elzbieta; Baran, Michal J. [Section of Toxicology and Bioanalytics, Department of Civil and Environmental Engineering, Koszalin University of Technology, Sniadeckich 2, 75-453 Koszalin (Poland)

    2011-03-04

    The main goal of present paper is to demonstrate the separation and detection capability of micro-TLC technique involving simple one step liquid extraction protocols of complex materials without multi-steps sample pre-purification. In the present studies target components (cyanobacteria pigments, lipids and fullerenes) were isolated from heavy loading complex matrices including spirulina dried cells, birds' feathers and fatty oils as well as soot samples derived from biomass fuel and fossils-fired home heating systems. In each case isocratic separation protocol involving less that 1 mL of one component or binary mixture mobile phases can be completed within time of 5-8 min. Sensitive detection of components of interest was performed via fluorescence or staining techniques using iodine or phosphomolybdic acid. Described methodology can be applied for fast fractionation or screening of whole range of target substances as well as chemo-taxonomic studies and fingerprinting of complex mixtures, which are present in raw biological or environmental samples.

  17. Complex chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Gon; Kim, Jae Sang; Kim, Jin Eun; Lee, Boo Yeon

    2006-06-15

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  18. Complex chemistry

    International Nuclear Information System (INIS)

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  19. Essential veterinary education in the cultural, political and biological complexities of international trade in animals and animal products.

    Science.gov (United States)

    Brown, C C

    2009-08-01

    Globalisation has changed the veterinary profession in many ways and academic institutes may need to re-tool to help future professionals deal with the changes in a successful and productive way. The remarkably expanded and expanding volume of trade and traffic in animals and animal products means that to be effective veterinarians must grasp some of the complexities inherent in this trade. Being able to engage productively in cross-cultural dialogue will be important in negotiations over livestock shipments and also within the context of the delivery of medical services to companion animals in societies that are becoming increasingly diverse. Understanding the political landscapes that influence trade decisions will help to expedite agreements and facilitate the transfer of goods and materials that involve animal health. Disease emergence will continue to occur, and an awareness of the factors responsible and the response measures to undertake will help to contain any damage. PMID:20128459

  20. Breast tumor targeting with {sup 99m}Tc-HYNIC-PR81 complex as a new biologic radiopharmaceutical

    Energy Technology Data Exchange (ETDEWEB)

    Salouti, Mojtaba [Department of Medical Physics, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Rajabi, Hossein [Department of Medical Physics, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)], E-mail: hrajabi@modares.ac.ir; Babaei, Mohammad Hossein [Department of Radioisotope, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Rasaee, Mohammad Javad [Department of Medical Biotechnology, School of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2008-10-15

    Human epithelial mucin, MUC1, is commonly overexpressed in adenocarcinoma that includes more than 80% of breast cancers. The PR81 is a murine anti-MUC1 monoclonal antibody (MAb) that was prepared against the human breast cancer. We developed an indirect method for labeling of this antibody with {sup 99m}Tc in order to use the new preparation in immunoscintigraphy studies of BALB/c mice bearing breast tumors. The {sup 99m}Tc-PR81 complex was prepared using the HYNIC as a chelator and tricine as a coligand. The labeling efficiency determined by instant thin-layer chromatography (ITLC) was 89.2%{+-}4.7%, and radiocolloides measured by cellulose nitrate electrophoresis were 3.4%{+-}0.9%. The in vitro stability of labeled product was determined at room temperature by ITLC and in human serum by gel filtration chromatography - 88.3%{+-}4.6% and 79.8%{+-}5.7% over 24 h, respectively. The integrity of labeled MAb was checked by means of sodium dodecyl sulfate polyacrylamide gel electrophoresis, and no significant fragmentation was seen. The results of cell binding studies showed that both labeled and unlabeled PR81 were able to compete for binding to MCF 7 cells. Biodistribution studies performed in female BALB/c mice with breast tumor xenografts at 4, 16 and 24 h after the {sup 99m}Tc-HYNIC-PR81 injection demonstrated a specific localization of the compound at the site of tumors and minimum accumulation in non target organs. The tumor imaging was performed in BALB/c mice with breast xenograft tumors at 4, 8, 12, 16, 20, 24, 28, 32 and 36 h after the complex injection. The tumors were visualized with high sensitivity after 8 h. The findings showed that the new radiopharmaceutical is a promising candidate for radioimmunoscintigraphy of the human breast cancer.

  1. Chemical and biological evaluation of {sup 153}Sm and {sup 46/47}Sc complexes of indazolebisphosphonates for targeted radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Maria, E-mail: mneves@itn.p [Instituto Tecnologico e Nuclear, Sacavem (Portugal); Teixeira, Fatima C.; Antunes, Ines [INETI-Departamento de Tecnologia de Industrias Quimicas, Lisboa (Portugal); Majkowska, Agnieszka [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Gano, Lurdes [Instituto Tecnologico e Nuclear, Sacavem (Portugal); Santos, Ana Cristina [IBB-Instituto de Biofisica e Biomatematica, Coimbra (Portugal)

    2011-01-15

    Introduction: Novel 1-hydroxy-1,1-bisphosphonates derived from indazole and substituted at the C-3 position were labeled with the radionuclides {sup 46}Sc and {sup 153}Sm. Several parameters such as molar ligand concentration, pH, reaction time and temperature were studied. The radiolabelling yield, reaction kinetics and stability were assessed and radiocomplexes were evaluated by in vitro and in vivo experiments. Methods: The radionuclides {sup 46}Sc and {sup 153}Sm were obtained by neutron irradiation of natural Sc{sub 2}O{sub 3} and enriched {sup 152}Sm{sub 2}O{sub 3} (98.4%) targets at the neutron flux of 3x10{sup 14} n cm{sup -2} s{sup -1}. The radiolabelling yield, reaction kinetics and stability were accomplished by ascending instant thin layer chromatography. The radiocomplexes were submitted to in vitro experiments (hydroxyapatite binding and lipophilicity) and biodistribution studies in animal models. Results: The radionuclides {sup 46}Sc and {sup 153}Sm were produced with specific activities of 100 and 430 MBq mg{sup -1}, respectively. High radiochemical yields were achieved and the hydrophilic radiocomplexes have shown high degree of binding to hydroxyapatite. Biodistribution studies at 1, 3 and 24 h of the 4 radiocomplexes under study, have showed a similar biodistribution profile with a relatively high bone uptake, slow clearance from blood and a very slow rate of total radioactivity excretion from the whole animal body. Conclusion: We have developed a new class of indazolebisphosphonates complexes with radioisotopes of samarium and scandium. All complexes have shown high degree of binding to hydroxyapatite, which could be attributed to the ionized phosphonate groups. The bone uptake and the bone-to-muscle ratios were relatively low.

  2. Insight into the mechanism of biological methanol activation based on the crystal structure of the methanol-cobalamin methyltransferase complex.

    Science.gov (United States)

    Hagemeier, Christoph H; Krer, Markus; Thauer, Rudolf K; Warkentin, Eberhard; Ermler, Ulrich

    2006-12-12

    Some methanogenic and acetogenic microorganisms have the catalytic capability to cleave heterolytically the C O bond of methanol. To obtain insight into the elusive enzymatic mechanism of this challenging chemical reaction we have investigated the methanol-activating MtaBC complex from Methanosarcina barkeri composed of the zinc-containing MtaB and the 5-hydroxybenzimidazolylcobamide-carrying MtaC subunits. Here we report the 2.5-A crystal structure of this complex organized as a (MtaBC)(2) heterotetramer. MtaB folds as a TIM barrel and contains a novel zinc-binding motif. Zinc(II) lies at the bottom of a funnel formed at the C-terminal beta-barrel end and ligates to two cysteinyl sulfurs (Cys-220 and Cys-269) and one carboxylate oxygen (Glu-164). MtaC is structurally related to the cobalamin-binding domain of methionine synthase. Its corrinoid cofactor at the top of the Rossmann domain reaches deeply into the funnel of MtaB, defining a region between zinc(II) and the corrinoid cobalt that must be the binding site for methanol. The active site geometry supports a S(N)2 reaction mechanism, in which the C O bond in methanol is activated by the strong electrophile zinc(II) and cleaved because of an attack of the supernucleophile cob(I)amide. The environment of zinc(II) is characterized by an acidic cluster that increases the charge density on the zinc(II), polarizes methanol, and disfavors deprotonation of the methanol hydroxyl group. Implications of the MtaBC structure for the second step of the reaction, in which the methyl group is transferred to coenzyme M, are discussed. PMID:17142327

  3. Quantum Biology

    CERN Document Server

    Sergi, Alessandro

    2009-01-01

    A critical assessment of the recent developments of molecular biology is presented. The thesis that they do not lead to a conceptual understanding of life and biological systems is defended. Maturana and Varela's concept of autopoiesis is briefly sketched and its logical circularity avoided by postulating the existence of underlying {\\it living processes}, entailing amplification from the microscopic to the macroscopic scale, with increasing complexity in the passage from one scale to the other. Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces, is criticized. It is suggested that the correct interpretation of quantum dispersion forces (van der Waals, hydrogen bonding, and so on) as quantum coherence effects hints at the necessity of including long-ranged forces (or mechanisms for them) in condensed matter theories of biological processes. Some quantum effects in biology are reviewed and quantum mechanics is acknowledge...

  4. Study of natural biota of and biologic recovery possibilities for closed tunnels of the Degelen mountain complex

    International Nuclear Information System (INIS)

    Processes of degradation due to nuclear testing affected all the components of the ecosystems stems of the Degelen Mountain Complex. The composition of the vegetative cover of the Degelen Mountains distinguishes by the diversity of vegetation due to significant differentiation of ecological conditions of vegetation growth. Here the following types of vegetation are present: steppe, meadow, forest, bushes, and desert. The peculiarity of vegetation is the presence of large forest areas (containing birch, aspen-birch, and poplar-aspen areas) in narrow mountain valleys and the certain locations of the main fragments of forests typical for them. In accordance with the methodology of the vertical zoning, the following zones have been determined on the territory of the Degelen Mountains: 1) a zone of mountainous meadow and motley-feather steppe; 2) a zone of bushes. During the field work of the Inst. of Radiation Safety and Ecology (IRSE) on analysis of Degelen Mountains' flora 387 species of vascular plants of 58 families have been found. This data permits to characterize the structure and the patterns of the specific flora on the representative area of the Degelen Mountains on the southeast edge of the Central Kazakstan Low Hills. The assessment of flora taxonomic diversity, the quantitative set of species and families reflects the specific properties inherent in flora of the Degelen Mountains of the east edge of the Central Kazakstan Low Hills. The floristic composition of the Degelen Mountain Complex is more rich as compared to that one of the other two test fields of the former STS: Experimental Field - 148 species, Balapan - 192 species. Data of ecological, geological and butanic studies allowed to determine the main types of anthropogenic destruction of the ecosystem and the nature of their spatial distribution, the major cenosis-forming species for every type of anthropogenic residence and the radioecological growth amplitude of the dominant cenosis

  5. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  6. Cytotoxic trans-platinum(II) complex with 3-hydroxymethylpyridine: Synthesis, X-ray structure and biological activity evaluation.

    Science.gov (United States)

    Grabner, Sabina; Modec, Barbara; Bukovec, Nataša; Bukovec, Peter; Čemažar, Maja; Kranjc, Simona; Serša, Gregor; Sčančar, Janez

    2016-08-01

    To assess the potential cytostatic properties of Pt(II) complexes with 3-hydroxymethylpyridine (3-hmpy) as the only carrier ligand, novel cis-[PtCl2(3-hmpy)2] (1) and trans-[PtCl2(3-hmpy)2] (2) have been prepared. Elemental analysis, FTIR spectroscopy, multinuclear NMR spectroscopy and X-ray crystallography were used to determine their structures. Based on the results obtained with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay and clonogenic assay on T24 human bladder carcinoma cells (T24), the most potent compound 2 was further tested for cytotoxicity in human ovarian carcinoma cell lines - cisplatin sensitive (IGROV 1) and its resistant subclone (IGROV 1/RDDP). The cytotoxicity of compound 2 in IGROV 1/RDDP is comparable to cisplatin. Furthermore, compound 2 induced severe conformational changes in plasmid DNA, which resulted in a delayed onset of apoptosis in T24 cells, and higher amounts of Pt in tumours and serum compared to cisplatin. In addition, in vivo antitumour effectiveness was comparable to that of cisplatin with a smaller reduction of animals' body weight, thus demonstrating that it is a promising transplatin analogue which deserves further studies. PMID:27189143

  7. Real-Time Agent-Based Modeling Simulation with in-situ Visualization of Complex Biological Systems

    Science.gov (United States)

    Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y. K.

    2016-01-01

    We present an efficient and scalable scheme for implementing agent-based modeling (ABM) simulation with In Situ visualization of large complex systems on heterogeneous computing platforms. The scheme is designed to make optimal use of the resources available on a heterogeneous platform consisting of a multicore CPU and a GPU, resulting in minimal to no resource idle time. Furthermore, the scheme was implemented under a client-server paradigm that enables remote users to visualize and analyze simulation data as it is being generated at each time step of the model. Performance of a simulation case study of vocal fold inflammation and wound healing with 3.8 million agents shows 35× and 7× speedup in execution time over single-core and multi-core CPU respectively. Each iteration of the model took less than 200 ms to simulate, visualize and send the results to the client. This enables users to monitor the simulation in real-time and modify its course as needed. PMID:27547508

  8. LEMS: a language for expressing complex biological models in concise and hierarchical form and its use in underpinning NeuroML 2.

    Science.gov (United States)

    Cannon, Robert C; Gleeson, Padraig; Crook, Sharon; Ganapathy, Gautham; Marin, Boris; Piasini, Eugenio; Silver, R Angus

    2014-01-01

    Computational models are increasingly important for studying complex neurophysiological systems. As scientific tools, it is essential that such models can be reproduced and critically evaluated by a range of scientists. However, published models are currently implemented using a diverse set of modeling approaches, simulation tools, and computer languages making them inaccessible and difficult to reproduce. Models also typically contain concepts that are tightly linked to domain-specific simulators, or depend on knowledge that is described exclusively in text-based documentation. To address these issues we have developed a compact, hierarchical, XML-based language called LEMS (Low Entropy Model Specification), that can define the structure and dynamics of a wide range of biological models in a fully machine readable format. We describe how LEMS underpins the latest version of NeuroML and show that this framework can define models of ion channels, synapses, neurons and networks. Unit handling, often a source of error when reusing models, is built into the core of the language by specifying physical quantities in models in terms of the base dimensions. We show how LEMS, together with the open source Java and Python based libraries we have developed, facilitates the generation of scripts for multiple neuronal simulators and provides a route for simulator free code generation. We establish that LEMS can be used to define models from systems biology and map them to neuroscience-domain specific simulators, enabling models to be shared between these traditionally separate disciplines. LEMS and NeuroML 2 provide a new, comprehensive framework for defining computational models of neuronal and other biological systems in a machine readable format, making them more reproducible and increasing the transparency and accessibility of their underlying structure and properties. PMID:25309419

  9. LEMS: A language for expressing complex biological models in concise and hierarchical form and its use in underpinning NeuroML 2

    Directory of Open Access Journals (Sweden)

    Robert C Cannon

    2014-09-01

    Full Text Available Computational models are increasingly important for studying complex neurophysiological systems. As scientific tools, it is essential that such models can be reproduced and critically evaluated by a range of scientists. However, published models are currently implemented using a diverse set of modelling approaches, simulation tools, and computer languages making them inaccessible and difficult to reproduce. Models also typically contain concepts that are tightly linked to domain-specific simulators, or depend on knowledge that is described exclusively in text-based documentation. To address these issues we have developed a compact, hierarchical, XML-based language called LEMS (Low Entropy Model Specification, that can define the structure and dynamics of a wide range of biological models in a fully machine readable format. We describe how LEMS underpins the latest version of NeuroML and show that this framework can define models of ion channels, synapses, neurons and networks. Unit handling, often a source of error when reusing models, is built into the core of the language by specifying physical quantities in models in terms of the base dimensions. We show how LEMS, together with the open source Java and Python based libraries we have developed, facilitates the generation of scripts for multiple neuronal simulators and provides a route for simulator free code generation. We establish that LEMS can be used to define models from systems biology and map them to neuroscience-domain specific simulators, enabling models to be shared between these traditionally separate disciplines. LEMS and NeuroML 2 provide a new, comprehensive framework for defining computational models of neuronal and other biological systems in a machine readable format, making them more reproducible and increasing the transparency and accessibility of their underlying structure and properties.

  10. Determination of Lignin in Marine Sediment Using Alkaline Cupric Oxide Oxidation-Solid Phase Extraction-on-Column Derivatization-Gas Chromatography

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ting; LI Xianguo; SUN Shuwen; LAN Haiqing; DU Peirui; WANG Min

    2013-01-01

    Lignin serves as one of the most important molecular fossils for tracing Terrestrial Organic Matters (TOMs) in marine environment.Extraction and derivatization of lignin oxidation products (LOPs) are crucial for accurate quantification of lignin in marine sediment.Here we report a modification of the conventional alkaline cupric oxide (CuO) oxidation method,the modification consisting in a solid phase extraction (SPE) and a novel on-column derivatization being employed for better efficiency and reproducibility.In spiking blanks,recoveries with SPE for the LOPs are between 77.84% and 99.57% with relative standard deviations (RSDs) ranging from 0.57% to 8.04% (n=3),while those with traditional liquid-liquid extraction (LLE) are from 44.52% to 86.16% with RSDs being from 0.53% to 13.14% (n=3).Moreover,the reproducibility is greatly improved with SPE,with less solvent consumption and shorter processing time.The average efficiency of on-column derivatization for LOPs is 100.8%±0.68%,which is significantly higher than those of in-vial or in-syringe derivatization,thus resulting in still less consumption of derivatizing reagents.Lignin in the surface sediments sampled from the south of Yangtze River estuary,China,was determined with the established method.Recoveries of 72.66% to 85.99% with standard deviation less than 0.01mg/10g dry weight are obtained except for p-hydroxybenzaldehyde.The lignin content ∑8 (produced from 10g dry sediment) in the research area is between 0.231 and 0.587mg.S/V and C/V ratios (1.028±0.433 and 0.192 ±0.066,respectively) indicate that the TOMs in this region are originated from a mixture of woody and nonwoody angiosperm plants; the high values of (Ad/A1)v suggest that the TOMs has been highly degraded.

  11. Assessment of crosstalks between the Snf1 kinase complex and sphingolipid metabolism in S. cerevisiae via systems biology approaches.

    Science.gov (United States)

    Borklu Yucel, Esra; Ulgen, Kutlu O

    2013-11-01

    Sphingolipids are essential building blocks of the plasma membranes and are highly bioactive in the regulation of diverse cellular functions and pathological processes, a fact which renders the sphingolipid metabolism an important research area. In this study, a computational framework was recruited for the reconstruction of a functional interaction network for sphingolipid metabolism in Baker's yeast, SSN. Gene Ontology (GO) annotations were integrated with functional interaction data of the BIOGRID database and the reconstructed protein interaction network was subjected to topological and descriptive analyses. SSN was of a scale-free nature, following a power law model with γ=1.41. Prominent processes of SSN revealed that the reconstructed network encapsulated the involvement of sphingolipid metabolism in vital cellular processes such as energy homeostasis, cell growth and/or death and synthesis of building blocks. To investigate the potential of SSN for predicting signal transduction pathways regulating and/or being regulated by sphingolipid biosynthesis in yeast, a case study involving the S. cerevisiae counterpart of AMP-activated protein kinase, the Snf1 kinase complex, was conducted. The mutant strain lacking the catalytic α subunit, snf1Δ/snf1Δ, had elevated inositol phosphorylceramide and mannosyl-inositol phosphorylceramide levels, and decreased mannosyl-diinositol phosphorylceramide levels compared to the wild type strain, revealing that Snf1p has a regulatory role in the sphingolipid metabolism. Transcriptome data belonging to that strain available in the literature were mapped onto SSN and the correlated SSN was further investigated to evaluate the possible crosstalk machineries where sphingolipids and Snf1p function in coordination, in other words the crosstalk points between sphingolipid-mediated and Snf1 kinase signalling. The subsequent investigation of the discovered candidate crosstalk processes by performing sensitivity experiments imply a

  12. Biological Control of Pathogens Causing Root Rot Complex in Field Pea Using Clonostachys rosea Strain ACM941.

    Science.gov (United States)

    Xue, Allen G

    2003-03-01

    ABSTRACT Pea root rot complex (PRRC), caused by Alternaria alternata, Aphanomyces euteiches, Fusarium oxysporum f. sp. pisi, F. solani f. sp. pisi, Mycosphaerella pinodes, Pythium spp., Rhizoctonia solani, and Sclerotinia sclerotiorum, is a major yield-limiting factor for field pea production in Canada. A strain of Clonostachys rosea (syn. Gliocladium roseum), ACM941 (ATCC 74447), was identified as a mycoparasite against these pathogens. When grown near the pathogen, ACM941 often was stimulated to produce lateral branches that grew directly toward the pathogen mycelium, typically entwining around the pathogen mycelium. When applied to the seed, ACM941 propagated in the rhizosphere and colonized the seed coat, hypocotyl, and roots as the plant developed and grew. ACM941 significantly reduced the recovery of all fungal pathogens from infected seed, increased in vitro seed germination by 44% and seedling emergence by 22%, and reduced root rot severity by 76%. The effects were similar to those of thiram fungicide, which increased germination and emergence by 33 and 29%, respectively, and reduced root rot severity by 65%. When soil was inoculated with selected PRRC pathogens in a controlled environment, seed treatment with ACM941 significantly increased emergence by 26, 38, 28, 13, and 21% for F. oxysporum f. sp. pisi, F. solani f. sp. pisi, M. pinodes, R. solani, and S. sclerotiorum, respectively. Under field conditions from 1995 to 1997, ACM941 increased emergence by 17, 23, 22, 13, and 18% and yield by 15, 6, 28, 6, and 19% for the five respective pathogens. The seed treatment effects of ACM941 on these PRRC pathogens were greater or statistically equivalent to those achieved with thiram. Results of this study suggest that ACM941 is an effective bioagent in controlling PRRC and is an alternative to existing chemical products. PMID:18944343

  13. Report on the research conducted under the funding of the Sloan foundation postdoctoral fellowship in Computational Molecular Biology [Systematic study of protein-protein complexes] Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sheinerman, Felix

    2001-06-01

    A central question in molecular biology is what structural features are common at protein-protein interfaces and what energetic factors define the affinity and specificity of protein-protein association. Analysis of structural and mutational data on protein-protein interfaces revealed that protein-protein interfaces of different functional classes contain many more energetically important charged and polar residues than was previously thought. Since, in the context of protein folding studies, polar interactions are believed to destabilize the folded proteins, this observation raised the question as to the forces that determine the stability of protein complexes. To investigate this issue in detail, the authors developed a number of partitioning schemes that allowed them to investigate the role of selected residues, ion pairs, and networks of polar interactions in protein-protein association. The methods developed were applied to the analysis of four different protein-protein interfaces: the ribonuclease barnase and its inhibitor barstar, the human growth hormone and its receptor, subtype N9 influenze virus neuraminidase and NC41 antibody, and the Ras Binding Domain of kinase cRaf and a Ras homologue Rap1A. The calculations revealed a surprising variability in how polar interactions affect the stability of different complexes. The finding that positions of charged and polar residues on protein-protein interfaces are optimized with respect to electrostatic interactions suggests that this property can be employed for the discrimination between native conformations and trial complexes generated by a docking algorithm. Analysis indicated the presence of SH2 domains in Janus family of non-receptor protein tyrosine kinases.

  14. FY 1997 report on the results of the industrial technology R and D project. Development of technology to use biological resources such as the complex biological system (Development of biological use petroleum substitution fuel production technology); 1997 nendo fukugo seibutsukei nado seibutsu shigen riyo gijutsu kaihatsu seika hokokusho. Seibutsu riyo sekiyu daitai nenryo seizo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Experimental researches were conducted and the FY 1997 results were reported with the aim of establishing analytical technology for the complex biological system by which the complex biological system can be analyzed in such a state as it is using the molecular biological method. In the study of the molecular genetic analytical technology, PCR primers used for amplification of topoisomerase II genes of the whole eukaryote was designed. As to the histochemical analytical technology, a study was made on the new constitution microorganism detection method by the hybridization method and the antibody specific dyeing method, and the following were conducted: manifestation in quantity of colibacillus and the recovery, refining, and construction of peptide library by fuzzy display method. Concerning the functional analytical technology, technological researches were made such as the environmental adaptation mechanism of high thermophile and the information transfer mechanism among bacteria through cell membranes for elucidation of the special environment detection/response mechanism and the special environment adaptation/resistance mechanism. As to the separation/culture technology, various anaerobic microorganisms were separated from marine sponge for the development of a method of culturing in 3D matrices. (NEDO)

  15. Biological Significance of Photoreceptor Photocycle Length: VIVID Photocycle Governs the Dynamic VIVID-White Collar Complex Pool Mediating Photo-adaptation and Response to Changes in Light Intensity.

    Directory of Open Access Journals (Sweden)

    Arko Dasgupta

    2015-05-01

    Full Text Available Most organisms on earth sense light through the use of chromophore-bearing photoreceptive proteins with distinct and characteristic photocycle lengths, yet the biological significance of this adduct decay length is neither understood nor has been tested. In the filamentous fungus Neurospora crassa VIVID (VVD is a critical player in the process of photoadaptation, the attenuation of light-induced responses and the ability to maintain photosensitivity in response to changing light intensities. Detailed in vitro analysis of the photochemistry of the blue light sensing, FAD binding, LOV domain of VVD has revealed residues around the site of photo-adduct formation that influence the stability of the adduct state (light state, that is, altering the photocycle length. We have examined the biological significance of VVD photocycle length to photoadaptation and report that a double substitution mutant (vvdI74VI85V, previously shown to have a very fast light to dark state reversion in vitro, shows significantly reduced interaction with the White Collar Complex (WCC resulting in a substantial photoadaptation defect. This reduced interaction impacts photoreceptor transcription factor WHITE COLLAR-1 (WC-1 protein stability when N. crassa is exposed to light: The fast-reverting mutant VVD is unable to form a dynamic VVD-WCC pool of the size required for photoadaptation as assayed both by attenuation of gene expression and the ability to respond to increasing light intensity. Additionally, transcription of the clock gene frequency (frq is sensitive to changing light intensity in a wild-type strain but not in the fast photo-reversion mutant indicating that the establishment of this dynamic VVD-WCC pool is essential in general photobiology and circadian biology. Thus, VVD photocycle length appears sculpted to establish a VVD-WCC reservoir of sufficient size to sustain photoadaptation while maintaining sensitivity to changing light intensity. The great diversity

  16. X-ray Absorption Spectroscopy and Coherent X-ray Diffraction Imaging for Time-Resolved Investigation of the Biological Complexes: Computer Modelling towards the XFEL Experiment

    Science.gov (United States)

    Bugaev, A. L.; Guda, A. A.; Yefanov, O. M.; Lorenz, U.; Soldatov, A. V.; Vartanyants, I. A.

    2016-05-01

    The development of the next generation synchrotron radiation sources - free electron lasers - is approaching to become an effective tool for the time-resolved experiments aimed to solve actual problems in various fields such as chemistry’ biology’ medicine’ etc. In order to demonstrate’ how these experiments may be performed for the real systems to obtain information at the atomic and macromolecular levels’ we have performed a molecular dynamics computer simulation combined with quantum chemistry calculations for the human phosphoglycerate kinase enzyme with Mg containing substrate. The simulated structures were used to calculate coherent X-ray diffraction patterns’ reflecting the conformational state of the enzyme, and Mg K-edge X-ray absorption spectra, which depend on the local structure of the substrate. These two techniques give complementary information making such an approach highly effective for time-resolved investigation of various biological complexes, such as metalloproteins or enzymes with metal-containing substrate, to obtain information about both metal-containing active site or substrate and the atomic structure of each conformation.

  17. The `What is a system' reflection interview as a knowledge integration activity for high school students' understanding of complex systems in human biology

    Science.gov (United States)

    Tripto, Jaklin; Ben-Zvi Assaraf, Orit; Snapir, Zohar; Amit, Miriam

    2016-03-01

    This study examined the reflection interview as a tool for assessing and facilitating the use of 'systems language' amongst 11th grade students who have recently completed their first year of high school biology. Eighty-three students composed two concept maps in the 10th grade-one at the beginning of the school year and one at its end. The first part of the interview is dedicated to guiding the students through comparing their two concept maps and by means of both explicit and non-explicit teaching. Our study showed that the explicit guidance in comparing the two concept maps was more effective than the non-explicit, eliciting a variety of different, more specific, types of interactions and patterns (e.g. 'hierarchy', 'dynamism', 'homeostasis') in the students' descriptions of the human body system. The reflection interview as a knowledge integration activity was found to be an effective tool for assessing the subjects' conceptual models of 'system complexity', and for identifying those aspects of a system that are most commonly misunderstood.

  18. Characterization and reactivity of the weakly bound complexes of the [H, N, S]− anionic system with astrophysical and biological implications

    International Nuclear Information System (INIS)

    We investigate the lowest electronic states of doublet and quartet spin multiplicity states of HNS− and HSN− together with their parent neutral triatomic molecules. Computations were performed using highly accurate ab initio methods with a large basis set. One-dimensional cuts of the full-dimensional potential energy surfaces (PESs) along the interatomic distances and bending angle are presented for each isomer. Results show that the ground anionic states are stable with respect to the electron detachment process and that the long range parts of the PESs correlating to the SH− + N, SN− + H, SN + H−, NH + S−, and NH− + S are bound. In addition, we predict the existence of long-lived weakly bound anionic complexes that can be formed after cold collisions between SN− and H or SH− and N. The implications for the reactivity of these species are discussed; specifically, it is shown that the reactions involving SH−, SN−, and NH− lead either to the formation of HNS− or HSN− in their electronic ground states or to autodetachment processes. Thus, providing an explanation for why the anions, SH−, SN−, and NH−, have limiting detectability in astrophysical media despite the observation of their corresponding neutral species. In a biological context, we suggest that HSN− and HNS− should be incorporated into H2S-assisted heme-catalyzed reduction mechanism of nitrites in vivo

  19. Networks in Cell Biology = Modelling cell biology with networks

    OpenAIRE

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, M.

    2010-01-01

    The science of complex biological networks is transforming research in areas ranging from evolutionary biology to medicine. This is the first book on the subject, providing a comprehensive introduction to complex network science and its biological applications. With contributions from key leaders in both network theory and modern cell biology, this book discusses the network science that is increasingly foundational for systems biology and the quantitative understanding of living systems. It ...

  20. Synthetic biology: insights into biological computation.

    Science.gov (United States)

    Manzoni, Romilde; Urrios, Arturo; Velazquez-Garcia, Silvia; de Nadal, Eulàlia; Posas, Francesc

    2016-04-18

    Organisms have evolved a broad array of complex signaling mechanisms that allow them to survive in a wide range of environmental conditions. They are able to sense external inputs and produce an output response by computing the information. Synthetic biology attempts to rationally engineer biological systems in order to perform desired functions. Our increasing understanding of biological systems guides this rational design, while the huge background in electronics for building circuits defines the methodology. In this context, biocomputation is the branch of synthetic biology aimed at implementing artificial computational devices using engineered biological motifs as building blocks. Biocomputational devices are defined as biological systems that are able to integrate inputs and return outputs following pre-determined rules. Over the last decade the number of available synthetic engineered devices has increased exponentially; simple and complex circuits have been built in bacteria, yeast and mammalian cells. These devices can manage and store information, take decisions based on past and present inputs, and even convert a transient signal into a sustained response. The field is experiencing a fast growth and every day it is easier to implement more complex biological functions. This is mainly due to advances in in vitro DNA synthesis, new genome editing tools, novel molecular cloning techniques, continuously growing part libraries as well as other technological advances. This allows that digital computation can now be engineered and implemented in biological systems. Simple logic gates can be implemented and connected to perform novel desired functions or to better understand and redesign biological processes. Synthetic biological digital circuits could lead to new therapeutic approaches, as well as new and efficient ways to produce complex molecules such as antibiotics, bioplastics or biofuels. Biological computation not only provides possible biomedical and

  1. Systems interface biology

    OpenAIRE

    Francis J Doyle; Stelling, Jörg

    2006-01-01

    The field of systems biology has attracted the attention of biologists, engineers, mathematicians, physicists, chemists and others in an endeavour to create systems-level understanding of complex biological networks. In particular, systems engineering methods are finding unique opportunities in characterizing the rich behaviour exhibited by biological systems. In the same manner, these new classes of biological problems are motivating novel developments in theoretical systems approaches. Henc...

  2. Rapid ionic liquid-based ultrasound assisted dual magnetic microextraction to preconcentrate and separate cadmium-4-(2-thiazolylazo)-resorcinol complex from environmental and biological samples.

    Science.gov (United States)

    Khan, Sumaira; Kazi, Tasneem Gul; Soylak, Mustafa

    2014-04-01

    A rapid and innovative microextraction technique named as, ionic liquid-based ultrasound-assisted dual magnetic microextraction (IL-UA-DMME) was developed for the preconcentration and extraction of trace cadmium from environmental and biological samples, prior to analyzed by flame atomic absorption spectrometry (FAAS). The proposed method has many obvious advantages, including evading the use of organic solvents and achieved high extraction yields by the combination of dispersive liquid-liquid microextraction (DLLME) and magnetic mediated-solid phase extraction (MM-SPE). In this approach ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] play an important role to extract the cadmium-4-(2-thiazolylazo)-resorcinol (Cd-TAR) complex from acid digested sample solutions and ultrasonic irradiation was applied to assist emulsification. After then, dispersed small amount of Fe3O4 magnetic nanoparticles (MNPs) in sample solutions to salvaged the IL and complete phase separation was attained. Some analytical parameters that influencing the efficiency of proposed (IL-UA-DMME) method, such as pH, volume of IL, ligand concentration, ultra-sonication time, amount of Fe3O4 MNPs, sample volume and matrix effect were optimized. Limit of detection (LOD) and enrichment factor (EF) of the method under optimal experimental conditions were found to be 0.40μgL(-1) and 100, respectively. The relative standard deviation (RSD) of 50μgL(-1) Cd was 4.29%. The validity and accuracy of proposed method, was assessed to analyzed certified reference materials of fortified lake water TMDA-54.4, SPS-WW2 waste water, spinach leaves 1570a and also checked by standard addition method. The obtained values showed good agreement with the certified values and sufficiently high recovery were found in the range of 98.1-101% for Cd. The proposed method was facile, rapid and successfully applied for the determination of Cd in environmental and different biological samples. PMID

  3. Heteroaryl Chalcones: Design, Synthesis, X-ray Crystal Structures and Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2013-10-01

    Full Text Available Chalcone derivatives have attracted increasing attention due to their numerous pharmacological activities. Changes in their structures have displayed high degree of diversity that has proven to result in a broad spectrum of biological activities. The present study highlights the synthesis of some halogen substituted chalcones 3(a–i containing the 5-chlorothiophene moiety, their X-ray crystal structures and the evaluation of possible biological activities such as antibacterial, antifungal and reducing power abilities. The results indicate the tested compounds show a varied range of inhibition values against all the tested microbial strains. Compound 3c with a p-fluoro substituent on the phenyl ring exhibits elevated antimicrobial activity, whereas the compounds 3e and 3f displayed the least antimicrobial activities. The compounds 3d, 3e, 3f and 3i showed good ferric and cupric reducing abilities, and the compounds 3b and 3c showed the weakest reducing power in the series.

  4. Heteroaryl chalcones: design, synthesis, X-ray crystal structures and biological evaluation.

    Science.gov (United States)

    Kumar, C S Chidan; Loh, Wan-Sin; Ooi, Chin Wei; Quah, Ching Kheng; Fun, Hoong-Kun

    2013-01-01

    Chalcone derivatives have attracted increasing attention due to their numerous pharmacological activities. Changes in their structures have displayed high degree of diversity that has proven to result in a broad spectrum of biological activities. The present study highlights the synthesis of some halogen substituted chalcones 3(a-i) containing the 5-chlorothiophene moiety, their X-ray crystal structures and the evaluation of possible biological activities such as antibacterial, antifungal and reducing power abilities. The results indicate the tested compounds show a varied range of inhibition values against all the tested microbial strains. Compound 3c with a p-fluoro substituent on the phenyl ring exhibits elevated antimicrobial activity, whereas the compounds 3e and 3f displayed the least antimicrobial activities. The compounds 3d, 3e, 3f and 3i showed good ferric and cupric reducing abilities, and the compounds 3b and 3c showed the weakest reducing power in the series. PMID:24132195

  5. Characterization and reactivity of the weakly bound complexes of the [H, N, S]{sup −} anionic system with astrophysical and biological implications

    Energy Technology Data Exchange (ETDEWEB)

    Trabelsi, T.; Ajili, Y.; Ben Yaghlane, S.; Jaidane, N.-E. [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications–LSAMA, Université de Tunis El Manar, Tunis (Tunisia); Mogren Al-Mogren, M. [Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Francisco, J. S. [Department of Chemistry and Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 47906 (United States); Hochlaf, M., E-mail: hochlaf@univ-mlv.fr [Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 Blvd. Descartes, 77454 Marne-la-Vallée (France)

    2015-07-21

    We investigate the lowest electronic states of doublet and quartet spin multiplicity states of HNS{sup −} and HSN{sup −} together with their parent neutral triatomic molecules. Computations were performed using highly accurate ab initio methods with a large basis set. One-dimensional cuts of the full-dimensional potential energy surfaces (PESs) along the interatomic distances and bending angle are presented for each isomer. Results show that the ground anionic states are stable with respect to the electron detachment process and that the long range parts of the PESs correlating to the SH{sup −} + N, SN{sup −} + H, SN + H{sup −}, NH + S{sup −}, and NH{sup −} + S are bound. In addition, we predict the existence of long-lived weakly bound anionic complexes that can be formed after cold collisions between SN{sup −} and H or SH{sup −} and N. The implications for the reactivity of these species are discussed; specifically, it is shown that the reactions involving SH{sup −}, SN{sup −}, and NH{sup −} lead either to the formation of HNS{sup −} or HSN{sup −} in their electronic ground states or to autodetachment processes. Thus, providing an explanation for why the anions, SH{sup −}, SN{sup −}, and NH{sup −}, have limiting detectability in astrophysical media despite the observation of their corresponding neutral species. In a biological context, we suggest that HSN{sup −} and HNS{sup −} should be incorporated into H{sub 2}S-assisted heme-catalyzed reduction mechanism of nitrites in vivo.

  6. Informing Biological Design by Integration of Systems and Synthetic Biology

    OpenAIRE

    Smolke, Christina D.; Silver, Pamela A.

    2011-01-01

    Synthetic biology aims to make the engineering of biology faster and more predictable. In contrast, systems biology focuses on the interaction of myriad components and how these give rise to the dynamic and complex behavior of biological systems. Here, we examine the synergies between these two fields.

  7. Ruthenium(III) S-methylisothiosemicarbazone Schiff base complexes bearing PPh3/AsPh3 coligand: synthesis, structure and biological investigations, including antioxidant, DNA and protein interaction, and in vitro anticancer activities.

    Science.gov (United States)

    Prakash, Govindan; Manikandan, Rajendran; Viswanathamurthi, Periasamy; Velmurugan, Krishnaswamy; Nandhakumar, Raju

    2014-09-01

    New Ru(III) isothiosemicarbazone complexes [RuCl(EPh3)L(1-4)] (E=P or As) were obtained from the reactions between [RuCl3(EPh3)3] and bis(salicylaldehyde)-S-methylisothiosemicarbazone (H2L(1-3))/bis(2-hydroxy-naphthaldehyde)-S-methylisothiosemicarbazone (H2L(4)) ligands. The new complexes were characterized by using elemental analyses and various spectral (UV-Vis, IR, (1)H NMR, FAB-Mass and EPR) methods. The redox properties of the complexes were studied by using cyclic voltammetric method. The new complexes were subjected to various biological investigations such as antioxidant assays involving DPPH radical, hydroxyl radical, nitric oxide radical and hydrogen peroxide, DNA/protein interaction studies and in vitro cytotoxic studies against human breast cancer cell line (MCF-7). New complexes showed excellent free radicals scavenging ability and could bind with DNA via intercalation. Protein binding studies using fluorescence spectroscopy showed that the new complexes could bind strongly with bovine serum albumin (BSA). Photo cleavage experiments using DNA of E-coli bacterium exhibited the DNA cleavage ability of the complexes. Further, the in vitro anticancer activity studies on the new complexes against MCF-7 cell line exhibited the ability of Ru(III) isothiosemicarbazone complexes to suppress the development of malignant neoplastic disease cells. PMID:24911273

  8. The stability and the hydrological behavior of biological soil crusts is significantly affected by the complex nature of their polysaccharidic matrix

    Science.gov (United States)

    De Philippis, Roberto

    2015-04-01

    Biological crusts (BSCs) are complex microbial associations constituted by cells and microbial filaments embedded in a polysaccharidic matrix (EPS) that binds them together and with soil particles. EPSs of BSCs play a key role in structuring the soil and in affecting the hydrological processes taking place at the topsoil in desert environments. Recently, the amphiphilic nature of the EPSs, due to the contemporaneous presence in the macromolecules of hydrophilic and hydrophobic constituents, was put in relation with their capability to contribute to the structuring of the soil particles in BSCs and to hydrological behavior of the crusts. Indeed, in the EPSs the hydrophobicity due to the non-polar constituents (i.e. deoxysugars, ester-linked fatty acids, non polar aminoacids) was associated with the adhesion of the microbial cells to solid surfaces and to the clogging of micropores in the crusts. On the other hand, the hydrophilic constituents of the EPSs (i.e. acidic sugars, ketal-linked pyruvic acid, sulphate groups etc) were suggested to determine the final water content and distribution in the soil. The presence of BSCs facilitates the uptake of moisture from the atmosphere and at the same time contributes to enriching the soils with organic matter. In this lecture, the role of the EPSs in affecting the hydrological behavior of BSCs will be discussed by comparing the results obtained with natural and artificially induced BSCs also in relation with the texture of the soils. Furthermore, the contribution to the structuring of the soils of the polysaccharidic matrix of the crusts will be discussed moving from the different characteristics of two operationally-defined EPS fractions, the colloidal (C-EPS) and the EDTA extractable (tightly bound, TB-EPS) fractions. In BSCs, C-EPSs are loosely bound to cells and sediments while TB-EPSs are tightly bound to the crustal biotic and abiotic constituents of the crusts. The results obtained in a recent study suggest that the

  9. Biological Threats

    Science.gov (United States)

    ... Workplace Plans School Emergency Plans Main Content Biological Threats Biological agents are organisms or toxins that can ... for Disease Control and Prevention . Before a Biological Threat Unlike an explosion, a biological attack may or ...

  10. Cu(II complexes of an ionic liquid-based Schiff base [1-{2-(2-hydroxy benzylidene amino ethyl}-3-methyl­imidazolium]Pf6: Synthesis, characterization and biological activities

    Directory of Open Access Journals (Sweden)

    Saha Sanjoy

    2015-01-01

    Full Text Available Two Cu(II complexes of an ionic liquid based Schiff base 1-{2-(2-hydroxybenzylideneamino ethyl}-3-methylimidazolium hexaflurophosphate, were prepared and characterized by different analytical and spectroscopic methods such as elemental analysis, magnetic susceptibility, UV-Vis, IR, NMR and mass spectroscopy. The Schiff base ligand was found to act as a potential bidentate chelating ligand with N, O donor sites and formed 1:2 metal chelates with Cu(II salts. The synthesized Cu(II complexes were tested for biological activity.

  11. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  12. Synthesis,characterization,and biological activities of Pt(Ⅱ) and Pd(Ⅱ)complexes with 2',3',4',5,7-pentahydroxy flavone

    Institute of Scientific and Technical Information of China (English)

    TANG Hui'An; WANG Xiaofang; YANG Sheng; WANG Liufang

    2004-01-01

    Pt(Ⅱ) and Pd(Ⅱ) complexes with 2',3',4',5,7-pentahydroxy-flavone were synthesized and characterized by elemental analysis, molar conductance, IR, 1HNMR, TG-DTA, UV-Vis spectroscopic techniques, and fluorescence analysis.The scavenging effect on the superoxide radical ( O-2 ) and the inhibitory effect on lipid peroxides were also investigated.Both the ligand and the complexes exhibit scavenging effect on superoxide radicals, and the effect of the complexes is greater than that of the ligand. The Pt(Ⅱ) complex exhibits the strongest scavenging efficiency. Both Pt(Ⅱ) and Pd(Ⅱ) complexes have the inhibitory effect on lipid peroxides, and the effect of the complexes is greater than that of the ligand, but the Pt(Ⅱ) complex has a high effect of promoting lipid peroxides.

  13. Synthesis, spectroscopic characterization and biological evaluation studies of Schiff's base derived from naphthofuran-2-carbohydrazide with 8-formyl-7-hydroxy-4-methyl coumarin and its metal complexes

    Science.gov (United States)

    Halli, M. B.; Sumathi, R. B.; Kinni, Mallikarjun

    2012-12-01

    Metal complexes of the type ML2, where M = Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) and L = Schiff's base derived from the condensation of naphthofuran-2-carbohydrazide with 8-formyl-7-hydroxy-4-methyl coumarin have been synthesized. The chelation of the complexes have been elucidated in the light of analytical, IR, UV-vis, 1H NMR, mass, ESR spectral data, thermal and magnetic studies. The measured molar conductance values indicate that, the complexes are non-electrolytic in nature. The redox behavior of one of the synthesized metal complexes was investigated by cyclic voltammetry. The Schiff's base and its metal complexes have been screened for their in vitro antibacterial and antifungal activities by MIC method. The DNA cleavage activities of all the complexes were studied by agarose gel electrophoresis method. In addition, the free ligand along with its complexes has been studied for their antioxidant activity.

  14. Bioinformatics and School Biology

    Science.gov (United States)

    Dalpech, Roger

    2006-01-01

    The rapidly changing field of bioinformatics is fuelling the need for suitably trained personnel with skills in relevant biological "sub-disciplines" such as proteomics, transcriptomics and metabolomics, etc. But because of the complexity--and sheer weight of data--associated with these new areas of biology, many school teachers feel…

  15. Synthesis, spectroscopic characterization, electrochemistry and biological evaluation of some binuclear transition metal complexes of bicompartmental ONO donor ligands containing benzo[b]thiophene moiety

    Science.gov (United States)

    Mahendra Raj, K.; Vivekanand, B.; Nagesh, G. Y.; Mruthyunjayaswamy, B. H. M.

    2014-02-01

    A series of new binucleating Cu(II), Co(II), Ni(II) and Zn(II) complexes of bicompartmental ligands with ONO donor were synthesized. The ligands were obtained by the condensation of 3-chloro-6-substituted benzo[b]thiophene-2-carbohydrazides and 4,6-diacetylresorcinol. The synthesized ligands and their complexes were characterized by elemental analysis and various spectroscopic techniques. Elemental analysis, IR, 1H NMR, ESI-mass, UV-Visible, TG-DTA, magnetic measurements, molar conductance and powder-XRD data has been used to elucidate their structures. The bonding sites are the oxygen atom of amide carbonyl, azomethine nitrogen and phenolic oxygen for ligands 1 and 2. The binuclear nature of the complexes was confirmed by ESR spectral data. TG-DTA studies for some complexes showed the presence of coordinated water molecules and the final product is the metal oxide. All the complexes were investigated for their electrochemical activity, only the Cu(II) complexes showed the redox property. Cu(II) complexes were square planar, whereas Co(II), Ni(II) and Zn(II) complexes were octahedral. Powder-XRD pattern have been studied in order to test the degree of crystallinity of the complexes and unit cell calculations were made. In order to evaluate the effect of antimicrobial activity of metal ions upon chelation, both the ligands and their metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The results showed that the metal complexes were found to be more active than free ligands. The DNA cleaving capacities of all the complexes were analyzed by agarose gel electrophoresis method against supercoiled plasmid DNA. Among the compounds tested for antioxidant capacity, ligand 1 displayed excellent activity than its metal complexes.

  16. Synthesis, metal complexation and biological evaluation of a novel semi-rigid bifunctional chelating agent for 99mTc labelling

    OpenAIRE

    Le Gal, Julien; Michaud, Sandra; Gressier, Marie; Coulais, Yvon; Benoist, Eric

    2006-01-01

    A novel bifunctional chelating agent bearing an aromatic ring has been synthesised and characterised. This ligand formed well-defined oxorhenium complexes. The analogous 99mTcO-complex was obtained in an excellent yield with high radiochemical purity (>95%). The biodistribution of the 99mTo-complex after intravenous injection studied in normal rats showed that the activity was excreted mainly via renal-urinary pathway indicating its use for labelling peptides with 99mTc.

  17. Synthesis, spectral characterization and biological evaluation of copper(II) and nickel(II) complexes with thiosemicarbazones derived from a bidentate Schiff base

    Science.gov (United States)

    Chandra, Sulekh; Bargujar, Savita; Nirwal, Rita; Yadav, Neesha

    2013-04-01

    Complexes of copper(II) and nickel(II) of general composition M(L)2X2, have been synthesized with the ligand 1-Tetralone thiosemicarbazone (where L = 1-Tetralone thiosemicarbazone and X=Cl,1/2SO42-). The molar conductance of the complexes in fresh solution of DMSO lies in the range of 10-20 Ω-1 cm2 mol-1 indicating their non-electrolytic behavior. Thus, the complexes may be formulated as [M(L2)X2]. Ligand was characterized by mass, NMR, IR and single crystallographic studies. All the complexes were characterized by elemental analyses, magnetic moments, IR, electronic and EPR spectral studies. The IR spectral data of ligand indicated the involvement of sulfur and azomethine nitrogen in coordination to the central metal ion. The copper(II) and nickel(II) complexes were found to have magnetic moments1.93-1.96 BM and 2.91-2.94 BM corresponding to one and two unpaired electrons respectively. On the basis of molar conductance, EPR, electronic and infrared spectral studies, a tetragonal geometry has been assigned for Cu(II) chloride complex and trigonal bipyramidal to Cu(II) sulfate complex but an octahedral geometry for Ni(II) complexes. Newly synthesized ligand and its Cu(II) and Ni(II) complexes have also been screened against different bacterial and fungal species.

  18. Synthesis, Biological, and Quantum Chemical Studies of Zn(II and Ni(II Mixed-Ligand Complexes Derived from N,N-Disubstituted Dithiocarbamate and Benzoic Acid

    Directory of Open Access Journals (Sweden)

    Anthony C. Ekennia

    2016-01-01

    Full Text Available Some mixed-ligand complexes of Zn(II and Ni(II derived from the sodium salt of N-alkyl-N-phenyl dithiocarbamate and benzoic acid have been prepared. The complexes are represented as ZnMDBz, ZnEDBz, NiMDBz, and NiEDBz (MD: N-methyl-N-phenyl dithiocarbamate, ED: N-ethyl-N-phenyl dithiocarbamate, and Bz: benzoate; and their coordination behavior was characterized on the basis of elemental analyses, IR, electronic spectra, magnetic and conductivity measurements, and quantum chemical calculations. The magnetic moment measurement and electronic spectra were in agreement with the four proposed coordinate geometries for nickel and zinc complexes and were corroborated by the theoretical quantum chemical calculations. The quantum chemically derived thermodynamics parameters revealed that the formation of N-methyl-N-phenyl dithiocarbamate complexes is more thermodynamically favourable than that of the N-ethyl-N-phenyl dithiocarbamate complexes. The bioefficacy of the mixed-ligand complexes examined against different microbes showed moderate to high activity against the test microbes. The anti-inflammatory and antioxidant studies of the metal complexes showed that the ethyl substituted dithiocarbamate complexes exhibited better anti-inflammatory and antioxidant properties than the methyl substituted dithiocarbamate complexes.

  19. Spectroscopic and Biological Studies on Newly Synthesized Cobalt (II and Nickel (II Complexes with 2-Acetyl Coumarone Semicarbazone and 2-Acetyl Coumarone Thiosemicarbazone

    Directory of Open Access Journals (Sweden)

    Sanjay Goel

    2013-01-01

    Full Text Available Co(II and Ni(II complexes of general composition ML2X2 (M = Co(II, Ni(II; X = Cl−, NO3 − were synthesized by the condensation of metal salts with semicarbazone/thiosemicarbazone derived from 2-acetyl coumarone. The ligands and metal complexes were characterized by NMR, elemental analysis, molar conductance, magnetic susceptibility measurements, IR, and atomic absorption spectral studies. On the basis of electronic, molar conductance and infrared spectral studies, the complexes were found to have square planar geometry. The Schiff bases and their metal complexes were tested for their antibacterial and antioxidant activities.

  20. Matrix effects during magnetic sector-field inductively coupled plasma mass spectrometry Uranium isotope ratio measurements in complex environmental/biological samples

    International Nuclear Information System (INIS)

    Sample matrix effects on mass discrimination during inductively coupled plasma mass spectrometry (ICP-MS) isotope ratio measurements are rarely reported. However, they can lead to errors larger than the uncertainty claimed on the ratio results when not properly taken into account or corrected for. For instance, up to 1% matrix specific effects were experienced during an isotope dilution mass spectrometry campaign we carried out for the certification of the Cd amount content in some food digest samples (7% acidity and salt content around 450μg g-1). Specific nuclear safeguards programs were designed for the monitoring of declared and non-declared nuclear activities and important efforts are currently deployed to better understand the consequences on human health of the dispersion of depleted uranium in the environment. The interest in developing and/or improving measurement capabilities for uranium isotope ratios and uranium content in environmental and biological samples has therefore considerably increased in the last decade. However, procedure validation is rarely addressed with these developments even though, for instance, non-disputable uncertainty statements are absolutely crucial to underpin correctly the important decisions of political, economical, military or medical nature that can arise from these results. This is why we produced simulated urine samples (complex matrix made of organic and inorganic components) with certified n(234U)/n(238U), n(235U)/n(238U) and n(236U)/n(238U) ratios. These, which will eventually be commercially available for validation purposes, will first be used as test materials for an international interlaboratory comparison organised by IRMM and this exercise, named NUSIMEP-4 and open for participation to anyone]. This presentation will introduce magnetic sector-field inductively coupled plasma mass spectrometry (ICP-MS) uranium isotope ratio measurements on real human urine samples and in the NUSIMEP-4 test materials. These were

  1. Reproductive biology of the flatfish Etropus crossotus (Pleuronectiformes: Paralichthyidae in the Paranaguá Estuarine Complex, Paraná State, subtropical region of Brazil

    Directory of Open Access Journals (Sweden)

    Elton Celton de Oliveira

    2011-01-01

    Full Text Available The present work studied the reproduction of the flatfish Etropus crossotus in the Paranaguá Estuarine Complex, Paraná State, subtropical region of Brazil. Monthly collections of biological material occurred from October 2008 to October 2009, at seven sampling sites, through ten-minute otter trawl surveys in the shallow infralittoral areas of the estuary. Temperature, water salinity, photoperiod, and rainfall data were also recorded. Ovarian histology was used to: 1 - describe ovarian development microscopically, 2 - make the quantitative analyses of both sexes more precise. The maturation curve, the frequency of gonadal maturation states and the condition factor verified that the reproductive period occurred from October to January. The frequency of young and adult individuals established that the recruitment period occurred in January and February. There were no significant differences in the sex ratio during the study period. The studied species completes its entire life cycle in an estuary and its reproduction is well-synchronized with the temporal variations implicit in subtropical regions.O presente trabalho estudou a reprodução do linguado Etropus crossotus no complexo estuarino de Paranaguá, região subtropical do Brasil. Coletas mensais de material biológico ocorreram de outubro de 2008 a outubro de 2009, em sete pontos amostrais, através da realização de dez minutos de arrasto de porta no infralitoral raso do estuário. Ainda, foram obtidos dados de temperatura e salinidade da água, fotoperíodo e pluviosidade para caracterização do ambiente. A histologia de ovário foi utilizada para: 1- descrever microscopicamente o desenvolvimento ovariano, 2- conferir precisão aos resultados das análises quantitativas de ambos os sexos. Através da curva de maturação, da frequência de estádios de maturação gonadal e do fator de condição verificou-se que o período reprodutivo ocorreu de outubro a janeiro. A partir da frequ

  2. Synthesis, spectral characterization and biological activities of Mn(II) and Co(II) complexes with benzyloxybenzaldehyde-4-phenyl-3-thiosemicarbazone

    Science.gov (United States)

    Prathima, B.; Subba Rao, Y.; Ramesh, G. N.; Jagadeesh, M.; Reddy, Y. P.; Chalapathi, P. V.; Varada Reddy, A.

    2011-06-01

    Mn(II) and Co(II) complexes of benzyloxybenzaldehyde-4-phenyl-3-thiosemicarbazone have been synthesized and characterized by the investigations of electronic and EPR spectra and X-ray diffraction. Based on the spectral studies, an octahedral geometry is assigned for the Mn(II) and Co(II) complexes. X-ray powder diffraction studies reveal that Mn(II) and Co(II) complexes have triclinic crystal lattices. The unit cell parameters of the Mn(II) complex are a = 11.0469 Å, b = 6.2096 Å, c = 7.4145 Å, α = 90.646°, β = 95.127°, γ = 104.776°, V = 489.7 Å 3 and those of Co(II) complex are a = 9.3236 Å, b = 10.2410 Å, c = 7.8326 Å, α = 90.694°, β = 99.694°, γ = 100.476°, V = 724.2 Å 3. When the free ligand and its metal complexes are subjected to antibacterial activity, the metal complexes are proved to be more active than the ligand. However with regard to in vitro antioxidant activity, the ligand exhibits greater antioxidant activity than its metal(II) complexes.

  3. Synthesis, Characterization, and Biological Studies of Binuclear Copper(II Complexes of (2E-2-(2-Hydroxy-3-Methoxybenzylidene-4N-Substituted Hydrazinecarbothioamides

    Directory of Open Access Journals (Sweden)

    P. Murali Krishna

    2013-01-01

    Full Text Available Four novel binuclear copper(II complexes [1–4] of (2E-2-(2-hydroxy-3-methoxybenzylidene-4N-substituted hydrazinecarbothioamides, (OH(OCH3C6H4CH=NNHC(SNHR, where R = H (L1, Me (L2, Et (L3, or Ph (L4, have been synthesized and characterized. The FT-IR spectral data suggested the attachment of copper(II ion to ligand moiety through the azomethine nitrogen, thioketonic sulphur, and phenolic-O. The spectroscopic characterization indicates the dissociation of dimeric complex into mononuclear [Cu(LCl] units in polar solvents like DMSO, where L is monoanionic thiosemicarbazone. The DNA binding properties of the complexes with calf thymus (CT DNA were studied by spectroscopic titration. The complexes show binding affinity to CT DNA with binding constant (Kb values in the order of 106 M−1. The ligands and their metal complexes were tested for antibacterial and antifungal activities by agar disc diffusion method. Except for complex 4, all complexes showed considerable activity almost equal to the activity of ciprofloxacin. These complexes did not show any effect on Gram-negative bacteria, whereas they showed moderate activity for Gram-positive strains.

  4. Studies on complexation of a tridentate ONS Schiff base with lighter and heavier metals ions, and investigation into their biological properties

    International Nuclear Information System (INIS)

    Several new complexes of a tridentate ONS Schiff base derived from the condensation of S-benzyldithiocarbazate with salicylaldehyde have been characterised by elemental analyses, molar conductivity measurements, infrared, and electronic spectral studies. The tridentate Schiff base (HONSH) behaves as a dinegatively charged ligand coordinating through the thiolo sulphur, the azomethine nitrogen atom and the hydroxyl oxygen atom. It forms mono-ligand complexes of the general formula, [M(ONS)X], [M = Ni(II), Cu(II), Cr(III), Sb(III), Zn(II), Zr(IV) or U(VI) and X = H2O, Cl]. The ligand produced bis-chelated complex with Th(IV) of composition, [Th(ONS)2]. Square-planar structures were proposed for the Ni(II) and Cu(II) complexes. Antimicrobial tests indicated that the Schiff base and five of the metal complexes of Cu(II), Ni(II), U(VI), Zn(II) and Sb(III) were found to be strongly active against bacteria. Ni(II) and Sb(III) complexes were the most effective against Pseudomonas aeruginosa (gram negative) while the Cu(II) complex proved to be the best against Bacillus cereus (gram positive bacteria). Antifungal activities were also noted with the Schiff base and the U(VI) complex. These compounds have shown results against Candida albicans fungi. But none of these compounds were effective against Aspergillus ochraceous fungi. (author)

  5. Complexity An Introduction

    CERN Document Server

    Parwani, R R

    2002-01-01

    This article summarises a Web-book on "Complexity" that was developed to introduce undergraduate students to interesting complex systems in the biological, physical and social sciences, and the common tools, principles and concepts used for their study.

  6. Synthesis, spectral and biological studies of new Mn(II and Fe(II complexes of 2,3-Butanedione 3-monoxime

    Directory of Open Access Journals (Sweden)

    V. H. Rajurkar

    2014-12-01

    Full Text Available Reaction between 2,3-Butanedione 3-monoxime, 3-aminophenol and some hydrated metal salts of MnII and FeII give complexes of the type [ML22(H2O]. The ligand and the complexes were characterized by elemental analysis, magnetic susceptibility measurements, spectral (U.V.Vis., I.R., 1H N.M.R. analysis and X-ray powder diffraction studies. Spectral studies indicate bidentate nature of the ligand and coordination occurs through oxime oxygen after deprotonation and nitrogen of azomethine. The spectral and magnetic studies suggest octahedral geometries for both the complexes. A triclinic system was proposed by X-ray powder diffraction study of Schiff base and metal complex. Anti-bacterial and anti-fungal activity have been studied using the agar well diffusion method and ditch diffusion method. The activity data shows that the metal complexes are more potent antibacterial and antifungal than the parent Schiff base ligand.

  7. Synthesis, spectroscopic characterization, electrochemistry and biological evaluation of some metal (II) complexes with ONO donor ligand containing benzo[b]thiophene and coumarin moieties

    Science.gov (United States)

    Mahendra Raj, K.; Mruthyunjayaswamy, B. H. M.

    2014-09-01

    Schiff base ligand 3-chloro-N‧-((7-hydroxy-4-methyl-2-oxo-2H-chromen-8-yl)methylene)benzo[b]thiophene-2-carbohydrazide and its Cu(II), Co(II), Ni(II) and Zn(II) complexes were synthesized, characterized by elemental analysis and various physico-chemical techniques like, IR, 1H NMR, ESI-mass, UV-Visible, thermogravimetry - differential thermal analysis, magnetic measurements and molar conductance. Spectral analysis indicates octahedral geometry for all the complexes. Cu(II) complex have 1:1 stoichiometry of the type [M(L)(Cl)(H2O)2], whereas Co(II), Ni(II) and Zn(II) complexes have 1:2 stoichiometric ratio of the type [M(L)2]. The bonding sites are the oxygen atom of amide carbonyl, nitrogen of azomethine function and phenolic oxygen of the Schiff base ligand via deprotonation. The thermogravimetry - differential thermal analysis studies gave evidence for the presence of coordinated water molecules in the composition of Cu(II) complex which was further supported by IR measurements. All the complexes were investigated for their electrochemical activity, but only the Cu(II) complex showed the redox property. In order to evaluate the effect of antimicrobial potency of metal ions upon chelation, ligand and its metal complexes along with their respective metal chlorides were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The results showed that the metal complexes were found to be more active than free ligand. Ligand and its complexes were screened for free radical scavenging activity by DPPH method and DNA cleavage activity using Calf-thymus DNA (Cat. No-105850).

  8. The preparation of forage-grade cupric sulfate with copper oxide ore containing arsenic%含砷氧化铜矿氨浸法制备饲料级硫酸铜

    Institute of Scientific and Technical Information of China (English)

    易求实

    2001-01-01

    采用NH3—(NH4)2SO4浸取氧化铜矿,通过(NH4)2S分离重金属,硫酸亚铁除砷等措施净化浸出液制备硫酸铜饲料添加剂,对浸取条件作了试验研究,对除砷机理进行了分析讨论。总结了氨—硫酸铵浸取剂的优点。%A process for preparing forage-grade cupric sulfate from copper oxide ore containing arsenic was proposed.It includes copper oxide ore leaching with NH3-(NH4)2SO4 solution,separating heavy metals with (NH4)2S and removing arsenic with ferrous sulfate.The leaching conditions are researched and the mechanism for removing arsenic is analyzed.The advantages of ammonia and ammonium sulphate leaching are summarized.

  9. Catalytic Decomposition of Nitric Oxide over Nano-sized PbTiO3 Supported Cupric Oxide%纳米晶PbTiO3负载CuO催化NO分解

    Institute of Scientific and Technical Information of China (English)

    邢丽; 薛念华; 陈向科; 郭学锋; 丁维平; 陈懿

    2005-01-01

    A large specific surface area perovskite-type mixed oxide PbTiO3 supported cupric oxide was synthesized as a catalyst for NO decomposition and characterized by techniques such as XPS, XRD,H2-TPR before and after NO deconlposition reactions. The catalytic properties were tested with a fix-bed micro-reactor. The results showed that the PbTiO3 was inactive for the reactions, but 1wt % Cu/PbTiO3 catalyst gave fairly good activities for NO decomposition at temperature as low as 473K. Copper species were found well-dispersed but weakly interacted with the support before NO decomposition, and the NO decomposition caused significant change in the environment of the copper species, which became Cu(Ⅰ) and most probably incorporated into surface crystal lattice of the nano-sized PbTiO3. In NO reaction, a large amount of oxygen atoms from the decomposition of NO penetrated into the nano-sized PbTiO3 support and caused small expansion of crystal lattice. The transport of oxygen between the copper species and the catalyst support may be helpful to speed up the kinetic regeneration of active metal sites from oxygen occupancy and resulted in good catalytic performance.

  10. Synthesis, crystal structure and spectroscopy of bioactive Cd(II) polymeric complex of the non-steroidal anti-inflammatory drug diclofenac sodium: Antiproliferative and biological activity

    Science.gov (United States)

    Tabrizi, Leila; Chiniforoshan, Hossein; McArdle, Patrick

    2015-02-01

    The interaction of Cd(II) with the non-steroidal anti-inflammatory drug diclofenac sodium (Dic) leads to the formation of the complex [Cd2(L)41.5(MeOH)2(H2O)]n(L = Dic), 1, which has been isolated and structurally characterized by X-ray crystallography. Diclofenac sodium and its metal complex 1 have also been evaluated for antiproliferative activity in vitro against the cells of three human cancer cell lines, MCF-7 (breast cancer cell line), T24 (bladder cancer cell line), A-549 (non-small cell lung carcinoma), and a mouse fibroblast L-929 cell line. The results of cytotoxic activity in vitro expressed as IC50 values indicated the diclofenac sodium and cadmium chloride are non active or less active than the metal complex of diclofenac (1). Complex 1 was also found to be a more potent cytotoxic agent against T-24 and MCF-7 cancer cell lines than the prevalent benchmark metallodrug, cisplatin, under the same experimental conditions. The superoxide dismutase activity was measured by Fridovich test which showed that complex 1 shows a low value in comparison with Cu complexes. The binding properties of this complex to biomolecules, bovine or human serum albumin, are presented and evaluated. Antibacterial and growth inhibitory activity is also higher than that of the parent ligand compound.

  11. Synthesis and characterization of mixed-ligand diimine-piperonal thiosemicarbazone complexes of ruthenium(II): Biophysical investigations and biological evaluation as anticancer and antibacterial agents

    Science.gov (United States)

    Beckford, Floyd A.; Thessing, Jeffrey; Shaloski, Michael, Jr.; Canisius Mbarushimana, P.; Brock, Alyssa; Didion, Jacob; Woods, Jason; Gonzalez-Sarrías, Antonio; Seeram, Navindra P.

    2011-04-01

    We have used a novel microwave-assisted method developed in our laboratories to synthesize a series of ruthenium-thiosemicarbazone complexes. The new thiosemicarbazone ligands are derived from benzo[ d][1,3]dioxole-5-carbaldehyde (piperonal) and the complexes are formulated as [(diimine) 2Ru(TSC)](PF 6) 2 (where the TSC is the bidentate thiosemicarbazone ligand). The diimine in the complexes is either 2,2'-bipyridine or 1,10-phenanthroline. The complexes have been characterized by spectroscopic means (NMR, IR and UV-Vis) as well as by elemental analysis. We have studied the biophysical characteristics of the complexes by investigating their anti-oxidant ability as well as their ability to disrupt the function of the human topoisomerase II enzyme. The complexes are moderately strong binders of DNA with binding constants of 10 4 M -1. They are also strong binders of human serum albumin having binding constants on the order of 10 4 M -1. The complexes show good in vitro anticancer activity against human colon cancer cells, Caco-2 and HCT-116 and indeed show some cytotoxic selectivity for cancer cells. The IC 50 values range from 7 to 159 μM (after 72 h drug incubation). They also have antibacterial activity against Gram-positive strains of pathogenic bacteria with IC 50 values as low as 10 μM; little activity was seen against Gram-negative strains. It has been established that all the compounds are catalytic inhibitors of human topoisomerase II.

  12. Synthesis, crystal structures, molecular docking, and in vitro biological activities evaluation of transition metal complexes with 4-(3,4-dichlorophenyl) piperazine-1-carboxylic acid

    Science.gov (United States)

    Chen, Zhi-Jian; Chen, Ya-Na; Xu, Chun-Na; Zhao, Shan-Shan; Cao, Qi-Yue; Qian, Shao-Song; Qin, Jie; Zhu, Hai-Liang

    2016-08-01

    Three novel mononuclear complexes, [MⅡ(L)2·2H2O], (M = Cu, Ni or Cd; HL = 4-(3,4-dichlorophenyl)piperazine-1-carboxylic acid)were synthesized and structurally determined by single-crystal X-ray diffraction. Molecular docking study preliminarily revealed that complex 1 had potential urease inhibitory activity. In accordance with the result of calculation, in vitro tests of the inhibitory activities of complexes 1-3 against jack bean urease showed complex 1 (IC50 = 8.17 ± 0.91 μM) had better inhibitory activities than the positive reference acetohydroxamic acid (AHA) (IC50 = 26.99 ± 1.43 μM), while complexes 2 and 3 showed no inhibitory activities., kinetics study was carried out to explore the mechanism of the inhibiting of the enzyme, and the result indicated that complex 1 was a competitive inhibitor of urease. Albumin binding experiment and in vitro toxicity evaluation of complex 1 were implemented to explore its Pharmacological properties.

  13. Preparation, spectral, thermal, and biological properties of zinc(II) 4-chloro- and 5-chlorosalicylate complexes with methyl 3-pyridylcarbamate and phenazone

    Czech Academy of Sciences Publication Activity Database

    Bujdošová, Z.; Gyoryova, K.; Hudecová, D.; Kovářová, Jana; Halás, L.

    2010-01-01

    Roč. 64, č. 5 (2010), s. 584-591. ISSN 0366-6352 Institutional research plan: CEZ:AV0Z40500505 Keywords : zinc(II) chlorosalicylate * methyl 3-pyridylcarbamate * phenazone * thermal stability * biological properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.754, year: 2010

  14. Synthesis, physicochemical characterization, DFT calculation and biological activities of Fe(III) and Co(II)-omeprazole complexes. Potential application in the Helicobacter pylori eradication

    Science.gov (United States)

    Russo, Marcos G.; Vega Hissi, Esteban G.; Rizzi, Alberto C.; Brondino, Carlos D.; Salinas Ibañez, Ángel G.; Vega, Alba E.; Silva, Humberto J.; Mercader, Roberto; Narda, Griselda E.

    2014-03-01

    The reaction between the antiulcer agent omeprazole (OMZ) with Fe(III) and Co(II) ions was studied, observing a high ability to form metal complexes. The isolated microcrystalline solid complexes were characterized by elemental analysis, X-ray powder diffraction (XRPD), Scanning Electron Microscopy (SEM), magnetic measurements, thermal study, FTIR, UV-Visible, Mössbauer, electronic paramagnetic resonance (EPR), and DFT calculations. The metal-ligand ratio for both complexes was 1:2 determined by elemental and thermal analysis. FTIR spectroscopy showed that OMZ acts as a neutral bidentate ligand through the pyridinic nitrogen of the benzimidazole ring and the oxygen atom of the sulfoxide group, forming a five-membered ring chelate. Electronic, Mössbauer, and EPR spectra together with magnetic measurements indicate a distorted octahedral geometry around the metal ions, where the coordination sphere is completed by two water molecules. SEM and XRPD were used to characterize the morphology and the crystal nature of the complexes. The most favorable conformation for the Fe(III)-OMZ and Co(II)-OMZ complexes was obtained by DFT calculations by using B3LYP/6-31G(d)&LanL2DZ//B3LYP/3-21G(d)&LanL2DZ basis set. Studies of solubility along with the antibacterial activity against Helicobacter pylori for OMZ and its Co(II) and Fe(III) complexes are also reported. Free OMZ and both metal complexes showed antibacterial activity against H. pylori. Co(II)-OMZ presented a minimal inhibitory concentration ˜32 times lower than that of OMZ and ˜65 lower than Fe(III)-OMZ, revealing its promising potential use for the treatment of gastric pathologies associated with the Gram negative bacteria. The morphological changes observed in the cell membrane of the bacteria after the incubation with the metal-complexes were also analyzed by SEM microscopy. The antimicrobial activity of the complexes was proved by the viability test.

  15. SPECTROSCOPIC AND BIOLOGICAL STUDIES ON NEWLY SYNTHESIZED COPPER (II AND NICKEL (II COMPLEXES WITH p -DIMETHYLAMINOBANZALDEHYDE SEMICARBAZONE AND p -DIMETHYLAMINOBANZALDEHYDE THIOSEMICARBAZONE

    Directory of Open Access Journals (Sweden)

    Sulekh Chandra

    2012-08-01

    Full Text Available Cu (II and Ni (II complexes of general composition [ML2]X2(M = Cu(II, Ni(II; X = Cl-, NO3- weresynthesized by the condensation of metal salts with semicarbazone / thiosemicarbazone derived from p-dimethylaminobanzaldehyde. The metal complexes were characterized by elemental analysis, molar conductance, magneticsusceptibility measurements, IR and atomic absorption spectral studies. On the basis of electronic and infrared spectralstudies, the metal complexes were found to have tetrahedral geometry. The Schiff bases and their metal complexeswere tested for their antibacterial and antioxidant activities

  16. Synthesis, Characterization, Crystal Structure, and Biological Studies of a Cadmium(II) Complex with a Tridentate Ligand 4'-Chloro-2,2':6',2''-Terpyridine.

    Science.gov (United States)

    Saghatforoush, L A; Valencia, L; Chalabian, F; Ghammamy, Sh

    2011-01-01

    A new Cd(II) complex with the ligand 4'-chloro-2,2'6',2''-terpyridine (Cltpy), [Cd(Cltpy)(I)(2)], has been synthesized and characterized by CHN elemental analysis, (1)H-NMR, (13)C-NMR, and IR spectroscopy and structurally analyzed by X-ray single-crystal diffraction. The single-crystal X-ray analyses show that the coordination number in complex is five with three terpyridine (Cltpy) N-donor atoms and two iodine atoms. The antibacterial activities of Cltpy and its Cd(II) complex are tested against different bacteria. PMID:21738495

  17. Synthesis, Spectrial and Biological Activity of New Complexes of N-Pheny1-N-(2-Pyride1) Thiourea with Mn+2, Fe+2, Co+2 and Cu+2

    International Nuclear Information System (INIS)

    Four new complexes of N-Pheny1-N-(2-Pyridy1) Thiourea (2PPTU) with Mn+2, Fe+2, Co+2 and Cu+2 have been synthesized and characterized by elemental analysis, spectral methods (IR and UV) and conductivity measurements. It is suggested that the ligand (2PPTU) forms neutral complexes with these ions of the general formula M(2PPTU)2 X2, where M is a metal ion and X is chloride, sulfate or nitrate. The effects of these complexes against several microorganisms (i.e. Pseudomonas Aeruginosa, Salmonella Typhi and Staphylococcus Aureus) have been tested. It was found that the Manganese, Iron and Copper complexes showed moderate activity against these organisms. ( Author's) 20 refs., 4 Tabs

  18. Synthesis, Characterization, and Biological Activities of Pendant Arm-Pyridyltetrazole Copper(II) Complexes: DNA Binding/Cleavage Activity and Cytotoxic Studies.

    Science.gov (United States)

    Mustafa, Shaik; Rao, Bommuluri Umamaheswara; Surendrababu, Manubolu Surya; Raju, Kalidindi Krishnam; Rao, Gollapalli Nageswara

    2015-10-01

    2-(1H-Tetrazol-5-yl)pyridine (L) has been reacted separately with Me2NCH2CH2Cl⋅HCl and ClCH2CH2OH to yield two regioisomers in each case, N,N-dimethyl-2-[5-(pyridin-2-yl)-1H-tetrazol-1-yl]ethanamine (L1)/N,N-dimethyl-2-[5-(pyridin-2-yl)-2H-tetrazol-2-yl]ethanamine (L2) and 2-[5-(pyridin-2-yl)-1H-tetrazol-1-yl]ethanol (L3)/2-[5-(pyridin-2-yl)-2H-tetrazol-2-yl]ethanol (L4), respectively. These ligands, L1-L4, have been coordinated with CuCl2 ⋅H2O in 1 : 1 composition to furnish the corresponding complexes 1-4. EPR Spectra of Cu complexes 1 and 3 were characteristic of square planar geometry, with nuclear hyperfine spin 3/2. Single X-ray crystallographic studies of 3 revealed that the Cu center has a square planar structure. DNA binding studies were carried out by UV/VIS absorption; viscosity and thermal denaturation studies revealed that each of these complexes are avid binders of calf thymus DNA. Investigation of nucleolytic cleavage activities of the complexes was carried out on double-stranded pBR322 circular plasmid DNA by using a gel electrophoresis experiment under various conditions, where cleavage of DNA takes place by oxidative free-radical mechanism (OH(⋅)). In vitro anticancer activities of the complexes against MCF-7 (human breast adenocarcinoma) cells revealed that the complexes inhibit the growth of cancer cells. The IC50 values of the complexes showed that Cu complexes exhibit comparable cytotoxic activities compared to the standard drug cisplatin. PMID:26460557

  19. Synthesis, interactions, molecular structure, biological properties and molecular docking studies on Mn, Co, Zn complexes containing acetylacetone and pyridine ligands with DNA duplex.

    Science.gov (United States)

    Thamilarasan, V; Sengottuvelan, N; Stalin, N; Srinivasan, P; Chakkaravarthi, G

    2016-07-01

    Three metal complexes (1-3) of the type [Mn(acac)2(py)·H2O] (1), [Co(acac)2(py)·H2O] (2) and [Zn(acac)2(py)·H2O] (3), [Where acac=acetylacetone, py=pyridine] were synthesized and characterized by spectral (UV-vis, FT-IR, ESI-mass) analysis. The structure of complex 2 has been determined by single crystal X-ray diffraction studies and the configuration of ligand-coordinated to metal(II) ion was well described as distorted octahedral coordination geometry. The interaction of the complexes with CT-DNA has been explored by absorption, fluorescence, circular dichromism spectroscopy, viscosity measurements and molecular docking studies. The intrinsic binding constant Kb of complexes 1-3 with CT-DNA obtained from UV-vis absorption spectral studies were 2.1×10(4), 2.1×10(5) and 1.98×10(4)M(-1), respectively, which revealed that the complexes could interact with CT-DNA through groove binding. The results indicated that the complexes (1-3) were able to bind to DNA with different binding affinity, in the order: 2>1>3. The interaction of the compounds with bovine serum albumins were also investigated using fluorescence methods and the gel electrophoresis assay demonstrates weak cleavage ability of the pBR322 plasmid DNA in the presence of the metal complexes (1-3) with various activators. Further, the in vitro cytotoxic effect of the complexes were examined on cancerous cell line, with human breast cancer cells MCF-7. PMID:27104666

  20. Is Vanadate Reduced by Thiols under Biological Conditions?: Changing The Redox Potential of V(V)/V(IV) by Complexation in Aqueous solution

    OpenAIRE

    Crans, Debbie C.; Zhang, Boyan; Gaidamauskas, Ernestas; Keramidas, Anastasios D.; Willsky, Gail R; Roberts, Chris R.

    2010-01-01

    Although dogma states that vanadate is readily reduced by glutathione, cysteine and other thiols, there are several examples documenting that vanadium(V)-sulfur complexes can form and be observed. This conundrum has impacted life scientists for more than two decades. Investigation of this problem requires an understanding of both the complexes that form from vanadium(IV) and (V) and a representative thiol in aqueous solution. The reactions of vanadate and hydrated vanadyl cation with 2-mercap...

  1. Complexation of biological ligands with lanthanides(III) for MRI: Structure, thermodynamic and methods; Complexation des cations lanthanides trivalents par des ligands d'origine biologique pour l'IRM: Structure, thermodynamique et methodes

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, C

    2006-07-15

    New cyclic ligands derived from sugars and amino-acids form a scaffold carrying a coordination sphere of oxygen atoms suitable to complex Ln(III) ions. In spite of their rather low molecular weights, the complexes display surprisingly high relaxivity values, especially at high field. The ACX and BCX ligands, which are acidic derivatives of modified and cyclo-dextrins, form mono and bimetallic complexes with Ln(III). The LnACX and LnBCX complexes show affinities towards Ln(III) similar to those of tri-acidic ligands. In the bimetallic Lu2ACX complex, the cations are deeply embedded in the cavity of the ligand, as shown by the X-ray structure. In aqueous solution, the number of water molecules coordinated to the cation in the LnACX complex depends on the nature and concentration of the alkali ions of the supporting electrolyte, as shown by luminescence and relaxometric measurements. There is only one water molecule coordinated in the LnBCX complex, which enables us to highlight an important second sphere contribution to relaxivity. The NMR study of the RAFT peptidic ligand shows the complexation of Ln(III), with an affinity similar to those of natural ligands derived from calmodulin. The relaxometric study also shows an important second sphere contribution to relaxivity. To better understand the intricate molecular factors affecting relaxivity, we developed new relaxometric methods based on probe solutes. These methods allow us to determine the charge of the complex, weak affinity constants, trans-metallation constants, and the electronic relaxation rate. (author)

  2. Tricarbonyl (99m)Tc(i) and Re(i)-thiosemicarbazone complexes: synthesis, characterization and biological evaluation for targeting bacterial infection.

    Science.gov (United States)

    Nayak, Dipak Kumar; Baishya, Rinku; Natarajan, Ramalingam; Sen, Tuhinadri; Debnath, Mita Chatterjee

    2015-09-28

    Methyl, ethyl and phenyl nitrofuryl thiosemicarbazone ligands (, and respectively) were radiolabeled with freshly prepared aqueous solution of a fac[(99m)Tc(CO)3(H2O)3](+) precursor. The radiochemical yield was around 98% as determined by thin layer chromatography and HPLC. The complexes exhibited substantial stability. The corresponding Re(i) complexes were prepared from a Re(CO)5Br precursor to understand the coordination behavior of the ligands against a tricarbonyl rhenium(i) precursor. The rhenium(i) complexes were characterized by means of IR, NMR and mass spectroscopic studies as well as by X-ray crystallography, and correlated with the technetium complexes by means of HPLC studies. Electrochemical reduction of monomeric Re(CO)3-complexes of nitrofuryl ethyl thiosemicarbazone was also studied using cyclic voltammetry. Biodistribution studies of (99m)Tc(CO)3-labeled thiosemicarbazones in rats intramuscularly infected with S. aureus exhibited substantial in vivo stability of the complex and moderate accumulation at the site of focal infection. PMID:26289802

  3. Pyrone-based Cu(II) complexes, their characterization, DFT based conformational drift from square planar to square pyramidal geometry and biological activities

    Indian Academy of Sciences (India)

    Pradeep Kumar Vishwakarma; Jan Mohammad Mir; Ram Charitra Maurya

    2016-04-01

    This work deals with the synthesis and characterization of a series of three -Dehydroacetic acid- 4-phenyl-3-thiosemicarbazide (H2dha-ptsc) Schiff base Cu(II) complexes based on combined experimental and theoretical approach, having the general composition formula as [Cu(dha-ptsc)(L-L)], where L-L is H2O, 2,2-bipyridine (bipy) or 1,10-phenanthroline (phen). H2O containing complex acts as origin for the latter two complexes and in due course, the geometry of the complex changes from square planar to square pyramidal. DFT calculations were carried out for both the geometrical forms. B3LYP/LANL2DZ level of theory was used to carry out the required computations. From the overall DFT computations, square pyramidal geometry was found to be more stable as compared to the square planar conformation for the complexes under investigation. Super oxide dismutation, thermal behaviour and electrochemical activity were also studied. The results have shown satisfactory super oxide scavenging potential, high degree of thermal resistance and efficient redox properties for the title complexes. Moreover, charge analysis and nonlinear optical properties were computed to establish a comprehensive note of atomic constituents differing in nature of charge delocalization.

  4. New insight into the structural, electrochemical and biological aspects of macroacyclic Cu(II) complexes derived from S-substituted dithiocarbazate schiff bases.

    Science.gov (United States)

    Low, May Lee; Maigre, Laure; Tahir, Mohamed Ibrahim M; Tiekink, Edward R T; Dorlet, Pierre; Guillot, Régis; Ravoof, Thahira Begum; Rosli, Rozita; Pagès, Jean-Marie; Policar, Clotilde; Delsuc, Nicolas; Crouse, Karen A

    2016-09-14

    Copper (II) complexes synthesized from the products of condensation of S-methyl- and S-benzyldithiocarbazate with 2,5-hexanedione (SMHDH2 and SBHDH2 respectively) have been characterized using various physicochemical (elemental analysis, molar conductivity, magnetic susceptibility) and spectroscopic (infrared, electronic) methods. The structures of SMHDH2, its copper (II) complex, CuSMHD, and the related CuSBHD complex as well as a pyrrole byproduct, SBPY, have been determined by single crystal X-ray diffraction. In order to provide more insight into the behaviour of the complexes in solution, electron paramagnetic resonance (EPR) and electrochemical experiments were performed. Antibacterial activity and cytotoxicity were evaluated. The compounds, dissolved in 0.5% and 5% DMSO, showed a wide range of antibacterial activity against 10 strains of Gram-positive and Gram-negative bacteria. Investigations of the effects of efflux pumps and membrane penetration on antibacterial activity are reported herein. Antiproliferation activity was observed to be enhanced by complexation with copper. Preliminary screening showed Cu complexes are strongly active against human breast adenocarcinoma cancer cell lines MDA-MB-231 and MCF-7. PMID:27183379

  5. Synthesis, crystal structure and characterization of new biologically active Cu(II) complexes with ligand derived from N-substituted sulfonamide

    Indian Academy of Sciences (India)

    ADRIANA CORINA HANGAN; ALEXANDRU TURZA; ROXANA LIANA STAN; BOGDAN SEVASTRE; EMÖKE PÁLL; SÎNZIANA CETEAN; LUMINI¸TA SIMONA OPREAN

    2016-05-01

    A new N-sulfonamide ligand (HL1= N-(5-(4-methoxyphenyl)-[1,3,4]–thiadiazole–2-yl)-toluenesulfonamide)and two Cu(II) complexes, $[Cu(L1)­_{2}(py)_{2}]$ (C1) and $[Cu(L2)_{2}(py)_{2}(H_{2}O)]$ (C2) (HL2 = N-(5-(4-methylphenyl)-[1,3,4]–thiadiazole–2-yl)-benzenesulfonamide) were synthesized. The X-ray crystal structuresof the complexes were determined. In the complex C1, the Cu(II) ion is four-coordinated, forming a $CuN_{4}$ chromophore and in the complex C2, the Cu(II) ion is five-coordinated, forming a $CuN_{4}O$ chromophore. Theligand acts as monodentate, coordinating the Cu(II) ion through a single $N_{thiadiazole}$ atom. The molecules fromthe reaction medium (pyridine and water) are also involved in the coordination of the Cu(II) ion. The complexesC1 and C2 are square-planar and a slightly distorted square pyramidal, respectively. The compounds werecharacterized by FT-IR, electronic, EPR spectroscopic and magnetic methods. The nuclease binding activitystudies of the synthesized complexes confirm their capacity to cleave the DNA molecule. The cytotoxicitystudies were carried out on melanoma cell line WM35 which confirm that both compounds inhibit the growthof these cells. They have a higher activity compared to a platinum drug, carboplatin.

  6. Preparation and spectroscopic characterization of novel cyclodiphosph(V)azane of N1-2-pyrimidinylsulfanilamide complexes . Magnetic, thermal and biological activity studies

    Science.gov (United States)

    Sharaby, Carmen M.; Mohamed, Gehad G.; Omar, M. M.

    2007-04-01

    Hexachlorocyclophosph(V)azane of sulfadiazine, (sulfupyrimidine) [ N1-2-pyrimidinylsulfanilamide] (H 2L 1), was prepared and reacted with sulfur and glycine to give (H 2L 2) and (H 2L 3) ligands, respectively. The prepared ligands; H 2L 1, H 2L 2 and H 2L 3, react in 1:2 [ligands]:[metal ions] molar ratio with transition metals to give coloured complexes in a relatively good yields. The complexes were characterized using different physicochemical techniques, namely elemental analyses, IR, UV-vis, mass, 1H NMR, molar conductance, magnetic, solid reflectance and thermal analysis. The spectral data reveal that all the ligands behave as neutral bidentate ligands and coordinated to the metal ions via pyrimidine-N and enolic sulfonamide OH. The molar conductance data reveal that the complexes are non-electrolytes while UV-vis, solid reflectance and magnetic moment data have been shown that the complexes have octahedral geometry. The thermal behaviour of the complexes is studied and the thermodynamic activation parameters are calculated. The ligands and their complexes show high to moderate bactericidal activity.

  7. Biological in vitro and in vivo studies of a series of new asymmetrical cationic [99mTc(N)(DTC-Ln)(PNP)]+ complex (DTC-Ln = alicyclic dithiocarbamate and PNP = diphosphinoamine).

    Science.gov (United States)

    Bolzati, Cristina; Cavazza-Ceccato, Mario; Agostini, Stefania; Refosco, Fiorenzo; Yamamichi, Yoshihiro; Tokunaga, Shinji; Carta, Davide; Salvarese, Nicola; Bernardini, Daniele; Bandoli, Giuliano

    2010-05-19

    (99m)Tc(N)-DBODC5 is a cationic mixed compound under clinical investigation as potential myocardial imaging agent. In spite of this, analogously to the other cationic (99m)Tc-agents, presents a relatively low first-pass extraction. Thus, modification of (99m)Tc(N)-DBODC(5) direct to increase its first-pass extraction keeping unaltered the favorable imaging properties would be desirable. This work describes the synthesis and biological evaluation of a series of novel cationic (99m)Tc-nitrido complexes, of general formula [(99m)TcN(DTC-Ln)(PNP)](+) (DTC-Ln= alicyclic dithiocarbamates; PNP = diphosphinoamine), as potential radiotracers for myocardial perfusion imaging. The synthesis of cationic (99m)Tc-(N)-complexes were accomplished in two steps. Biodistribution studies were performed in rats and compared with the distribution profiles of (99m)Tc(N)-DBODC5 and (99m)Tc-Sestamibi. The metabolisms of the most promising compounds were evaluated by HPLC methods. Biological studies revealed that most of the complexes have a high initial and persistent heart uptake with rapid clearance from nontarget tissues. Among tested compounds, 2 and 12 showed improved heart uptake with respect to the gold standard (99m)Tc-complexes with favorable heart-to-liver and slightly lower heart-to-lung ratios. Chromatographic profiles of (99m)Tc(N)-radioactivity extracted from tissues and fluids were coincident with the native compound evidencing remarkable in vivo stability of these agents. This study shows that the incorporation of alicyclic dithiocarbamate in the [(99m)Tc(N)(PNP)](+) building block yields to a significant increase of the heart uptake at early injection point suggesting that the first-pass extraction fraction of these novel complexes may be increased with respect to the other cationic (99m)Tc-agents keeping almost unaltered the favorable target/nontarget ratios. PMID:20402465

  8. Microcalorimetric study about biological effect of a synthetic complex: La(Glu)(Im){sub 6}(ClO{sub 4}){sub 3}.4HClO{sub 4}.4H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Xue-Chuan [School of Chemistry and Material Science, Liaoning Shihua University, Fushun 113001 (China); Tan, Zhi-Cheng, E-mail: tzc@dicp.ac.cn [Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023 (China); China Ionic Liquid Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023 (China); Gao, Xiao-Han [School of Chemistry and Material Science, Liaoning Shihua University, Fushun 113001 (China); Yang, Li-Ni [Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023 (China)

    2010-10-20

    A complex of lanthanum perchloric acid coordinated with glutamic acid, La(Glu)(Im){sub 6}(ClO{sub 4}){sub 3}.4HClO{sub 4}.4H{sub 2}O was synthesized and characterized. The biological effect of the complex was evaluated by microcalorimetry on the growth of E. coli DH5{alpha}. Power-time curves of the growth metabolism of E. coli DH5{alpha} were studied using a TAM Air Isothermal Microcalorimeter at 37 {sup o}C. From the power-time curves, the parameters such as growth rate constants (k), inhibitory ratio (I), the maximum heat power (P{sub m}) and the time of the maximum heat power (t{sub m}) were obtained. The results show that the concentrations of the complex affect obviously the growth metabolism of E. coli DH5{alpha}. The stimulatory effect on growth of E. coli DH5{alpha} was observed when the concentration of the complex was kept in the range of (0-0.5 {mu}g mL{sup -1}). In contrast to the lower concentration, in the case of higher concentration of the complex (0.5-5.0 {mu}g mL{sup -1}), an inhibitory effect occurred.

  9. Microcalorimetric study about biological effect of a synthetic complex: La(Glu)(Im)6(ClO4)3.4HClO4.4H2O

    International Nuclear Information System (INIS)

    A complex of lanthanum perchloric acid coordinated with glutamic acid, La(Glu)(Im)6(ClO4)3.4HClO4.4H2O was synthesized and characterized. The biological effect of the complex was evaluated by microcalorimetry on the growth of E. coli DH5α. Power-time curves of the growth metabolism of E. coli DH5α were studied using a TAM Air Isothermal Microcalorimeter at 37 oC. From the power-time curves, the parameters such as growth rate constants (k), inhibitory ratio (I), the maximum heat power (Pm) and the time of the maximum heat power (tm) were obtained. The results show that the concentrations of the complex affect obviously the growth metabolism of E. coli DH5α. The stimulatory effect on growth of E. coli DH5α was observed when the concentration of the complex was kept in the range of (0-0.5 μg mL-1). In contrast to the lower concentration, in the case of higher concentration of the complex (0.5-5.0 μg mL-1), an inhibitory effect occurred.

  10. Charge transfer complex of some nervous and brain drugs - Part 1: Synthesis, spectroscopic, analytical and biological studies on the reaction between haloperidol antipsychotic drugs with π-acceptors

    Science.gov (United States)

    El-Habeeb, Abeer A.; Al-Saif, Foziah A.; Refat, Moamen S.

    2013-02-01

    Donor-acceptor interactions between the electron donor haloperidol (HPL) and π-acceptors like 7,7,8,8-tetracyanoquinodimethane (TCNQ) and picric acid (PA) have been studied spectrophotometrically in CH3OH solvent. The donor-acceptor (charge transfer complexes) were discussed in terms of formation constant (KCT), molar extinction coefficient (ɛCT), standard free energy (ΔGo), oscillator strength (ƒ), transition dipole moment (μ), resonance energy (RN) and ionization potential (ID). The stoichiometry of these complexes was found to be 1:1 M ratio and having the formulas [(HPL)(TCNQ)] and [(HPL)(PA)], respectively. The charge transfer interaction was successfully applied to determine of HPL drug using mentioned common π-acceptors also, the results obtained herein are satisfactory for estimation of HPL compound in the pharmaceutical form. The formed solid charge-transfer complexes were also isolated and characterized using elemental analysis, conductivity, (infrared, Raman, and 1H NMR) spectra and X-ray powder diffraction (XRD). The experimental data of elemental analyses are in agreement with calculated data. The infrared spectra of both HPL complexes are confirming the participation of sbnd OH of 4-hydroxy-1-piperidyl moiety in the donor-acceptor chelation. The morphological surface of the resulted charge transfer complexes were investigated using scanning electron microscopy (SEM). The thermogravimetric analysis (TG/DTG) and differential scanning calorimetry (DSC) techniques were performed to give knowledge about the thermal stability behavior of the synthesized charge transfer complexes. Thermodynamic parameters were computed from the thermal decomposition data. These complexes were also tested for their antimicrobial activity against six different microorganisms, and the results were compared with the parent drug.

  11. COMPLEX DYNAMICS OF ONE-PREY MULTI-PREDATOR SYSTEM WITH DEFENSIVE ABILITY OF PREY AND IMPULSIVE BIOLOGICAL CONTROL ON PREDATORS

    OpenAIRE

    YONGZHEN PEI; CHANGGUO LI; LANSUN CHEN; CHUNHUA WANG

    2005-01-01

    This work investigates the dynamic behaviors of one-prey multi-predator model with defensive ability of the prey by introducing impulsive biological control strategy. By using the Floquent theorem and the small amplitude perturbation method, it is proved that there exists an asymptotically stable pest-eradication periodic solution when the impulsive period is less than some critical value, and a permanence condition is established via the method of comparison involving multiple Liapunov funct...

  12. Spectroscopic studies, thermal analyses and biological evaluation of new V(IV), Zr(IV) and U(VI) moxifloxacin complexes

    Science.gov (United States)

    Sadeek, Sadeek A.; El-Shwiniy, Walaa H.; Zordok, Wael A.; Kotb, Essam

    2011-12-01

    The synthesis and characterization of the new solid complexes [VO(MOX) 2H 2O]SO 4·11H 2O, [ZrO(MOX) 2Cl]Cl·15H 2O and [UO 2(MOX) 3](NO 3) 2·3H 2O formed in the interaction of moxifloxacin (MOX) with VOSO 4·H 2O, ZrOCl 2·8H 2O and UO 2(NO 3) 2·6H 2O in methanol and acetone as a solvents at room temperature were reported. The isolated solid complexes have been characterized with melting points, elemental analysis, molar conductance, magnetic moments studies, spectral (UV-Visible, IR and 1HNMR) as well as thermal analyses (TGA and DTG). The results support the formation of the complexes and indicate that moxifloxacin reacts as a bidentate ligand chelate to the metal ion through the pyridone oxygen and one carboxylato oxygen. The kinetic parameters of thermogravimetric (TGA) and its differential (DTG), such as activation energies, E*, enthalpies, Δ H*, entropies, Δ S* and Gibbs free energies, Δ G*, have been evaluated by using Coats-Redfern (CR) and Horowitz-Metzeger (HM) methods. The proposed structure of the ligand and their complexes were detected by using the density functional theory (DFT) at the B3LYP/CEP-31G level of theory. The bond stretching force constant and length of the U dbnd O for the [UO 2(MOX) 3](NO 3) 2·3H 2O complex were calculated. The antibacterial activity of the free moxifloxacin ligand and their metal complexes have been tested against some selected bacterial strains such as: Streptococcus aureus K1, Bacillus subtilis K22, Brevibacterium otitidis K76, Escherichia coli K32, Pseudomonas aeruginosa SW1 and Klebsiella oxytoca K42. The complexes showed good antibacterial effect to the selected bacterial strains as compared to the free ligand and Zr(IV) complex is very highly significant compared with the other two complexes.

  13. Synthesis and biological evaluation of novel 99mTcN-labeled bisnitroimidazole complexes containing monoamine-monoamide dithiol as potential tumor hypoxia markers

    International Nuclear Information System (INIS)

    Tumor hypoxia can decrease the efficacy of clinical therapy due to resistance toward radiation damage and chemotherapy, thus detection of tumor hypoxia by radiolabeled hypoxia markers is important for the control of tumor. Radiopharmaceuticals with two bioreductive groups, such as propylene amine oxime-bisnitroimidazole or monoamine-monoamide dithiol (MAMA) -bisnitroimidazole, have potential to improve hypoxia selectivity. In order to obtain radiopharmaceuticals with better features, we synthesized two novel [99mTcN]2+ complexes with bisnitroimidazole moieties and MAMA ligand for targeting tumor hypoxia. Their physicochemical characters and biodistribution were also investigated. Both the [99mTcN]2+ complexes show good stability and hydrophilicity. They show faster clearance from blood and soft tissues, better tumor retention and favorable tumor-to-tissue ratios compared with a control complex without nitroimidazole group. In addition, both of them show more favorable biodistribution patterns than the corresponding [99mTcO]3+ complexes. These results indicate that the 99mTcN-labeled MAMA-bisnitroimidazole complexes would have potential to image tumor hypoxia in vivo. (author)

  14. Labeling , in -Vitro Stability and Biological Distribution of 188 Re- Ethylenediamine- N,N,N,N,-tetrakis (Methylene Phosphonic) Acid complex

    International Nuclear Information System (INIS)

    Labeling of ethylenediamine-N,N,N,N-tetrakis (methylene phosphonic) acid (EDTMP) with rhenium -188 was investigated. Stannous chloride was used as a reducing agent for the reduction of 188 ReO4. Dependence of the yield of 188Re-EDTMP complex upon the concentration of EDTMP, tin (II) content, reaction time, amount of antioxidant, Ph, reaction temperature and adding of carrier was examined. The optimum condition that given high labeling yield of 188 Re-EDTMP complex (95.8% with carrier - free rhenium and 97% with carrier-added rhenium) was achieved using 40 mg EDTMP, 0.8 mg Sn(II),Ph=0.8, reaction temperature 100 degree and 5 min reaction time. the amount of carrier added equal to 200 μg KReO4 Furthermore, 188Re-EDTMP complex prepared at 100 degree is more stable than that prepared at 30 degree and the carrier added 188R-EDTMP complex is more stable than the no carrier added complex

  15. Cinnamaldehyde and cuminaldehyde thiosemicarbazones and their copper(II) and nickel(II) complexes: a study to understand their biological activity.

    Science.gov (United States)

    Bisceglie, Franco; Pinelli, Silvana; Alinovi, Rossella; Goldoni, Matteo; Mutti, Antonio; Camerini, Alessandro; Piola, Lorenzo; Tarasconi, Pieralberto; Pelosi, Giorgio

    2014-11-01

    This paper reports the synthesis and characterization of trans-cinnamaldehyde thiosemicarbazone (Htcin), cuminaldehyde thiosemicarbazone (Htcum) and their copper and nickel complexes. All the compounds, which on healthy cells (human fibroblasts) show a neglectable cytotoxicity, were screened in vitro in cell line U937 for their antileukemic activity. These compounds, in spite of their molecular similarity, present variegated behaviors. Htcin shows no inhibition activity in U935 cells, while both its metal complexes inhibit proliferation with IC50 at μM concentrations. The other ligand, Htcum, and its metal complexes, besides inhibiting proliferation, induce apoptosis. The cell cycle analysis highlights a G2/M checkpoint stop suggesting a possible direct action on DNA or on topoisomerase IIa. From CD and UV spectroscopy experiments, the DNA results to be not the main target of all these molecules, while both copper complexes are effective topoisomerase IIa inhibitors. All of these molecules activate caspase-9 and caspase-3, while caspase-8 activity is significantly induced by both cinnamaldehyde metal complexes. Tests on PgP and intracellular metal concentrations (determined by mean of atomic absorption spectrometry) show that the compounds tend to accumulate in the cytoplasm and that the cells do not manage to pump out copper and nickel ions. PMID:25108184

  16. Coordination Chemistry of Polyaromatic Thiosemicarbazones 2: Synthesis and Biological Activity of Zinc, Cobalt, and Copper Complexes of 1-(Naphthalene-2-ylethanone Thiosemicarbazone

    Directory of Open Access Journals (Sweden)

    Marc-Andre LeBlanc

    2011-01-01

    Full Text Available A novel thiosemicarbazone from 2-acetonaphthone (represented as acnTSC has been synthesized and its basic coordination chemistry with zinc(II, cobalt(II, and copper(II explored. The complexes were characterized by elemental analysis and various spectroscopic techniques and are best formulated as [M(acnTSC2Cl2] with the metal likely in an octahedral environment. The anticancer activity of the complexes was determined against a panel of human colon cancer cells (HCT-116 and Caco-2. The compounds bind to DNA via an intercalative mode with binding constants of 9.7×104 M-1, 1.8×105 M-1, and 9.5×104 M-1 for the zinc, cobalt, and copper complexes, respectively.

  17. Coordination Chemistry of Polyaromatic Thiosemicarbazones 2: Synthesis and Biological Activity of Zinc, Cobalt, and Copper Complexes of 1-(Naphthalene-2-yl)ethanone Thiosemicarbazone

    Science.gov (United States)

    LeBlanc, Marc-Andre; Gonzalez-Sarrías, Antonio; Beckford, Floyd A.; Mbarushimana, P. Canisius; Seeram, Navindra P.

    2012-01-01

    A novel thiosemicarbazone from 2-acetonaphthone (represented as acnTSC) has been synthesized and its basic coordination chemistry with zinc(II), cobalt(II), and copper(II) explored. The complexes were characterized by elemental analysis and various spectroscopic techniques and are best formulated as [M(acnTSC)2Cl2] with the metal likely in an octahedral environment. The anticancer activity of the complexes was determined against a panel of human colon cancer cells (HCT-116 and Caco-2). The compounds bind to DNA via an intercalative mode with binding constants of 9.7 × 104 M−1, 1.8 × 105 M−1, and 9.5 × 104 M−1 for the zinc, cobalt, and copper complexes, respectively. PMID:22303515

  18. Magnetic property, DFT calculation, and biological activity of bis[(μ(2)-chloro)chloro(1,10-phenanthroline)copper(II)] complex.

    Science.gov (United States)

    Mroueh, Mohammad; Daher, Costantine; Hariri, Essa; Demirdjian, Sally; Isber, Samih; Choi, Eun Sang; Mirtamizdoust, Babak; Hammud, Hassan H

    2015-04-25

    The dinuclear complex bis[(μ(2)-chloro)chloro(1,10-phenanthroline)copper(II)] (1) was synthesized, and characterized by X-ray, FTIR and thermal analysis. The fitting of magnetic susceptibility and magnetization curve of (1) indicates the occurrence of weak antiferromagnetic exchange interaction between copper(II) ions. The electronic structure has been also determined by density functional theory (DFT) method. Complex (1) displayed potent anticancer activity against B16 (Melanoma), MDA-MB-32 (Breast Adenocarcinoma), A549 (Lung Adenocarcinoma), HT-29 (Colon Adenocarcinoma) and SF (Astrocytoma) cell lines with an average IC50 value of 0.726 μg/ml compared to 4.88 μg/ml for cisplatin. Complex (1) has a better therapeutic index and toxicological profile than cisplatin, and has demonstrated a potential chemotherapeutic property. PMID:25753321

  19. Coordination Chemistry of Polyaromatic Thiosemicarbazones 2: Synthesis and Biological Activity of Zinc, Cobalt, and Copper Complexes of 1-(Naphthalene-2-yl)ethanone Thiosemicarbazone

    OpenAIRE

    Marc-Andre LeBlanc; Antonio Gonzalez-Sarrías; Beckford, Floyd A.; P. Canisius Mbarushimana; Seeram, Navindra P.

    2011-01-01

    A novel thiosemicarbazone from 2-acetonaphthone (represented as acnTSC) has been synthesized and its basic coordination chemistry with zinc(II), cobalt(II), and copper(II) explored. The complexes were characterized by elemental analysis and various spectroscopic techniques and are best formulated as [M(acnTSC)2Cl2] with the metal likely in an octahedral environment. The anticancer activity of the complexes was determined against a panel of human colon cancer cells (HCT-116 and Caco-2). The co...

  20. Synthesis, Biological, and Quantum Chemical Studies of Zn(II) and Ni(II) Mixed-Ligand Complexes Derived from N,N-Disubstituted Dithiocarbamate and Benzoic Acid

    OpenAIRE

    Anthony C. Ekennia; Damian C. Onwudiwe; Aderoju A Osowole; Olasunkanmi, Lukman O.; Eno E. Ebenso

    2016-01-01

    Some mixed-ligand complexes of Zn(II) and Ni(II) derived from the sodium salt of N-alkyl-N-phenyl dithiocarbamate and benzoic acid have been prepared. The complexes are represented as ZnMDBz, ZnEDBz, NiMDBz, and NiEDBz (MD: N-methyl-N-phenyl dithiocarbamate, ED: N-ethyl-N-phenyl dithiocarbamate, and Bz: benzoate); and their coordination behavior was characterized on the basis of elemental analyses, IR, electronic spectra, magnetic and conductivity measurements, and quantum chemical calculatio...