WorldWideScience

Sample records for biological chemistry

  1. Theoretical chemistry periodicities in chemistry and biology

    CERN Document Server

    Eyring, Henry

    1978-01-01

    Theoretical Chemistry: Periodicities in Chemistry and Biology, Volume 4 covers the aspects of theoretical chemistry. The book discusses the stably rotating patterns of reaction and diffusion; the chemistry of inorganic systems exhibiting nonmonotonic behavior; and population cycles. The text also describes the mathematical modeling of excitable media in neurobiology and chemistry; oscillating enzyme reactions; and oscillatory properties and excitability of the heart cell membrane. Selected topics from the theory of physico-chemical instabilities are also encompassed. Chemists, mechanical engin

  2. Chemistry and biology data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Chemical monitoring data and biological data from field collected samples. This dataset is associated with the following publication: Biales , A., D. Denton , D....

  3. Combining supramolecular chemistry with biology.

    Science.gov (United States)

    Uhlenheuer, Dana A; Petkau, Katja; Brunsveld, Luc

    2010-08-01

    Supramolecular chemistry has primarily found its inspiration in biological molecules, such as proteins and lipids, and their interactions. Currently the supramolecular assembly of designed compounds can be controlled to great extent. This provides the opportunity to combine these synthetic supramolecular elements with biomolecules for the study of biological phenomena. This tutorial review focuses on the possibilities of the marriage of synthetic supramolecular architectures and biological systems. It highlights that synthetic supramolecular elements are for example ideal platforms for the recognition and modulation of proteins and cells. The unique features of synthetic supramolecular systems with control over size, shape, valency, and interaction strength allow the generation of structures fitting the demands to approach the biological problems at hand. Supramolecular chemistry has come full circle, studying the biology and its molecules which initially inspired its conception.

  4. A bridge between chemistry and biology.

    Science.gov (United States)

    Kikuchi, Kazuya; Kakeya, Hideaki

    2006-08-01

    Chemical biology is an interdisciplinary field that is undergoing rapid expansion around the globe. Recently, the Japanese Society for Chemical Biology sponsored its inaugural scientific meeting to discuss research at the interface of chemistry and biology.

  5. Biological Chemistry of Hydrogen Selenide.

    Science.gov (United States)

    Cupp-Sutton, Kellye A; Ashby, Michael T

    2016-11-22

    There are no two main-group elements that exhibit more similar physical and chemical properties than sulfur and selenium. Nonetheless, Nature has deemed both essential for life and has found a way to exploit the subtle unique properties of selenium to include it in biochemistry despite its congener sulfur being 10,000 times more abundant. Selenium is more easily oxidized and it is kinetically more labile, so all selenium compounds could be considered to be "Reactive Selenium Compounds" relative to their sulfur analogues. What is furthermore remarkable is that one of the most reactive forms of selenium, hydrogen selenide (HSe(-) at physiologic pH), is proposed to be the starting point for the biosynthesis of selenium-containing molecules. This review contrasts the chemical properties of sulfur and selenium and critically assesses the role of hydrogen selenide in biological chemistry.

  6. Biological Chemistry of Hydrogen Selenide

    Directory of Open Access Journals (Sweden)

    Kellye A. Cupp-Sutton

    2016-11-01

    Full Text Available There are no two main-group elements that exhibit more similar physical and chemical properties than sulfur and selenium. Nonetheless, Nature has deemed both essential for life and has found a way to exploit the subtle unique properties of selenium to include it in biochemistry despite its congener sulfur being 10,000 times more abundant. Selenium is more easily oxidized and it is kinetically more labile, so all selenium compounds could be considered to be “Reactive Selenium Compounds” relative to their sulfur analogues. What is furthermore remarkable is that one of the most reactive forms of selenium, hydrogen selenide (HSe− at physiologic pH, is proposed to be the starting point for the biosynthesis of selenium-containing molecules. This review contrasts the chemical properties of sulfur and selenium and critically assesses the role of hydrogen selenide in biological chemistry.

  7. Allicin: Chemistry and Biological Properties

    Directory of Open Access Journals (Sweden)

    Jan Borlinghaus

    2014-08-01

    Full Text Available Allicin (diallylthiosulfinate is a defence molecule from garlic (Allium sativum L. with a broad range of biological activities. Allicin is produced upon tissue damage from the non-proteinogenic amino acid alliin (S-allylcysteine sulfoxide in a reaction that is catalyzed by the enzyme alliinase. Current understanding of the allicin biosynthetic pathway will be presented in this review. Being a thiosulfinate, allicin is a reactive sulfur species (RSS and undergoes a redox-reaction with thiol groups in glutathione and proteins that is thought to be essential for its biological activity. Allicin is physiologically active in microbial, plant and mammalian cells. In a dose-dependent manner allicin can inhibit the proliferation of both bacteria and fungi or kill cells outright, including antibiotic-resistant strains like methicillin-resistant Staphylococcus aureus (MRSA. Furthermore, in mammalian cell lines, including cancer cells, allicin induces cell-death and inhibits cell proliferation. In plants allicin inhibits seed germination and attenuates root-development. The majority of allicin’s effects are believed to be mediated via redox-dependent mechanisms. In sub-lethal concentrations, allicin has a variety of health-promoting properties, for example cholesterol- and blood pressure-lowering effects that are advantageous for the cardio-vascular system. Clearly, allicin has wide-ranging and interesting applications in medicine and (green agriculture, hence the detailed discussion of its enormous potential in this review. Taken together, allicin is a fascinating biologically active compound whose properties are a direct consequence of the molecule’s chemistry.

  8. A marriage of chemistry and biology

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ 1 Feature: Harvard Institute of Chemistry and Cell Biology (ICCB) One of the major challenges of post-genomic world is how to identify functions of all the proteins encoded by our genome and speed up the process of drug discovery. Harvard Institute of Chemistry and Cell Biology (ICCB) was set up in 1998 to meet this challenge by pursuing a novel field called "Chemical Biology". ICCB is headed by world-renowned chemist Dr. Stuart Schreiber and biologist Dr. Tim Mitchison. Currently ICCB consists of 14 laboratories from the Department of Cell Biology, Harvard Medical School, at Boston and the Department of Chemistry, Harvard University, at Cambridge. Three core facilities, High-throughput Screening, Analytical Chemistry and Biological/Chemical Informatics, are open to the whole Harvard research community for identification of novel chemical ligands for interested biology. ICCB currently employs about 50 researchers and occupies around 10000 sq. ft. of lab space at Harvard Medical School campus. ICCB is supported by grants from NCI and NIGMS as well as by private funding from Merck, Merck KGaA, and the Keck foundation.

  9. Practical approaches to biological inorganic chemistry

    CERN Document Server

    Louro, Ricardo O

    2012-01-01

    The book reviews the use of spectroscopic and related methods to investigate the complex structures and mechanisms of biological inorganic systems that contain metals. Each chapter presents an overview of the technique including relevant theory, clearly explains what it is and how it works and then presents how the technique is actually used to evaluate biological structures. Practical examples and problems are included to illustrate each technique and to aid understanding. Designed for students and researchers who want to learn both the basics, and more advanced aspects of bioinorganic chemistry. It includes many colour illustrations enable easier visualization of molecular mechanisms and structures. It provides worked examples and problems that are included to illustrate and test the reader's understanding of each technique. It is written by a multi-author team who use and teach the most important techniques used today to analyse complex biological structures.

  10. The biological inorganic chemistry of zinc ions.

    Science.gov (United States)

    Krężel, Artur; Maret, Wolfgang

    2016-12-01

    The solution and complexation chemistry of zinc ions is the basis for zinc biology. In living organisms, zinc is redox-inert and has only one valence state: Zn(II). Its coordination environment in proteins is limited by oxygen, nitrogen, and sulfur donors from the side chains of a few amino acids. In an estimated 10% of all human proteins, zinc has a catalytic or structural function and remains bound during the lifetime of the protein. However, in other proteins zinc ions bind reversibly with dissociation and association rates commensurate with the requirements in regulation, transport, transfer, sensing, signalling, and storage. In contrast to the extensive knowledge about zinc proteins, the coordination chemistry of the "mobile" zinc ions in these processes, i.e. when not bound to proteins, is virtually unexplored and the mechanisms of ligand exchange are poorly understood. Knowledge of the biological inorganic chemistry of zinc ions is essential for understanding its cellular biology and for designing complexes that deliver zinc to proteins and chelating agents that remove zinc from proteins, for detecting zinc ion species by qualitative and quantitative analysis, and for proper planning and execution of experiments involving zinc ions and nanoparticles such as zinc oxide (ZnO). In most investigations, reference is made to zinc or Zn(2+) without full appreciation of how biological zinc ions are buffered and how the d-block cation Zn(2+) differs from s-block cations such as Ca(2+) with regard to significantly higher affinity for ligands, preference for the donor atoms of ligands, and coordination dynamics. Zinc needs to be tightly controlled. The interaction with low molecular weight ligands such as water and inorganic and organic anions is highly relevant to its biology but in contrast to its coordination in proteins has not been discussed in the biochemical literature. From the discussion in this article, it is becoming evident that zinc ion speciation is

  11. Spilanthol: occurrence, extraction, chemistry and biological activities

    Directory of Open Access Journals (Sweden)

    Alan F. Barbosa

    2016-02-01

    Full Text Available Abstract Spilanthol (C14H23NO, 221.339 g/mol is a bioactive compound that is found in many different plants that are used as traditional remedies throughout the world. It is present in Heliopsis longipes and several species in the genus Acmella, including A. oleracea L., also known as paracress and jambu. Its leaves and flowers have sensory properties (pungency, tingling, numbing, mouth-watering that make it a popular spice and ingredient in several Brazilian dishes. Spilanthol can exert a variety of biological and pharmacological effects including analgesic, neuroprotective, antioxidant, antimutagenic, anti-cancer, anti-inflammatory, antimicrobial, antilarvicidal and insecticidal activities. So, the aim of this review is to present a literature review on the spilanthol that describes its occurrence, chemistry, extraction and biological activities.

  12. Complexity through Recombination: From Chemistry to Biology

    Directory of Open Access Journals (Sweden)

    Carolina Díaz Arenas

    2010-12-01

    Full Text Available Recombination is a common event in nature, with examples in physics, chemistry, and biology. This process is characterized by the spontaneous reorganization of structural units to form new entities. Upon reorganization, the complexity of the overall system can change. In particular the components of the system can now experience a new response to externally applied selection criteria, such that the evolutionary trajectory of the system is altered. In this work we explore the link between chemical and biological forms of recombination. We estimate how the net system complexity changes, through analysis of RNA-RNA recombination and by mathematical modeling. Our results underscore the importance of recombination in the origins of life on the Earth and its subsequent evolutionary divergence.

  13. Exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology.

    Science.gov (United States)

    Ojima, Iwao

    2013-07-05

    Over the last three decades, my engagement in "fluorine chemistry" has evolved substantially because of the multidisciplinary nature of the research programs. I began my research career as a synthetic chemist in organometallic chemistry and homogeneous catalysis directed toward organic synthesis. Then, I was brought into a very unique world of "fluorine chemistry" in the end of 1970s. I started exploring the interface of fluorine chemistry and transition metal homogeneous catalysis first, which was followed by amino acids, peptides, and peptidomimetics for medicinal chemistry. Since then, I have been exploring the interfaces of fluorine chemistry and multidisciplinary fields of research involving medicinal chemistry, chemical biology, cancer biology, and molecular imaging. This perspective intends to cover my fruitful endeavor in the exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology in a chronological order to show the evolution of my research interest and strategy.

  14. Nonlinear Oscillations in Biology and Chemistry

    CERN Document Server

    1986-01-01

    This volume contains the proceedings of a meeting entitled 'Nonlinear Oscillations in Biology and Chemistry', which was held at the University of Utah May 9-11,1985. The papers fall into four major categories: (i) those that deal with biological problems, particularly problems arising in cell biology, (ii) those that deal with chemical systems, (iii) those that treat problems which arise in neurophysiology, and (iv), those whose primary emphasis is on more general models and the mathematical techniques involved in their analysis. Except for the paper by Auchmuty, all are based on talks given at the meeting. The diversity of papers gives some indication of the scope of the meeting, but the printed word conveys neither the degree of interaction between the participants nor the intellectual sparks generated by that interaction. The meeting was made possible by the financial support of the Department of Mathe­ matics of the University of Utah. I am indebted to Ms. Toni Bunker of the Department of Mathematics for...

  15. From coordination chemistry to biological chemistry of aluminium.

    Science.gov (United States)

    Kiss, Tamas

    2013-11-01

    The paper gives a review on the importance of distribution of Al in biological fluids, primarily in the lights of the works of the author in Al chemistry. It starts with studies of interactions of Al(III) with small biomolecules, such as aliphatic and aromatic hydroxycarboxylic acids, and inorganic and organic phosphates. A significant part of this review deals with the problems of description of the biospeciation of Al(III) in serum, where besides the thermodynamic conditions the role of time is also considered in the case of this sluggish metal ion. The Al(III) complexes of the other large group of biomolecules, proteins and their building blocks (oligo)peptides and amino acids are also discussed, where the role of the type of the side chain donors and the extent of preorganisation are considered in the efficiency of metal ion binding. The application of low molecular mass chelator molecules in restoring the dysfunctioning metal ion (including Al(III)) homeostasis in the treatment of Alzheimer's disease is also discussed in the paper.

  16. Amanita muscaria: chemistry, biology, toxicology, and ethnomycology.

    Science.gov (United States)

    Michelot, Didier; Melendez-Howell, Leda Maria

    2003-02-01

    The fly agaric is a remarkable mushroom in many respects; these are its bearing, history, chemical components and the poisoning that it provokes when consumed. The 'pantherina' poisoning syndrome is characterized by central nervous system dysfunction. The main species responsible are Amanita muscaria and A. pantherina (Amanitaceae); however, some other species of the genus have been suspected for similar actions. Ibotenic acid and muscimol are the active components, and probably, some other substances detected in the latter species participate in the psychotropic effects. The use of the mushroom started in ancient times and is connected with mysticism. Current knowledge on the chemistry, toxicology, and biology relating to this mushroom is reviewed, together with distinctive features concerning this unique species.

  17. Integrated Chemistry and Biology for First-Year College Students

    Science.gov (United States)

    Abdella, Beth R. J.; Walczak, Mary M.; Kandl, Kim A.; Schwinefus, Jeffrey J.

    2011-01-01

    A three-course sequence for first-year students that integrates beginning concepts in biology and chemistry has been designed. The first two courses that emphasize chemistry and its capacity to inform biological applications are described here. The content of the first course moves from small to large particles with an emphasis on membrane…

  18. The Eighth Central European Conference "Chemistry towards Biology": Snapshot.

    Science.gov (United States)

    Perczel, András; Atanasov, Atanas G; Sklenář, Vladimír; Nováček, Jiří; Papoušková, Veronika; Kadeřávek, Pavel; Žídek, Lukáš; Kozłowski, Henryk; Wątły, Joanna; Hecel, Aleksandra; Kołkowska, Paulina; Koča, Jaroslav; Svobodová-Vařeková, Radka; Pravda, Lukáš; Sehnal, David; Horský, Vladimír; Geidl, Stanislav; Enriz, Ricardo D; Matějka, Pavel; Jeništová, Adéla; Dendisová, Marcela; Kokaislová, Alžběta; Weissig, Volkmar; Olsen, Mark; Coffey, Aidan; Ajuebor, Jude; Keary, Ruth; Sanz-Gaitero, Marta; van Raaij, Mark J; McAuliffe, Olivia; Waltenberger, Birgit; Mocan, Andrei; Šmejkal, Karel; Heiss, Elke H; Diederich, Marc; Musioł, Robert; Košmrlj, Janez; Polański, Jarosław; Jampílek, Josef

    2016-10-17

    The Eighth Central European Conference "Chemistry towards Biology" was held in Brno, Czech Republic, on August 28-September 1, 2016 to bring together experts in biology, chemistry and design of bioactive compounds; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topics of the conference covered "Chemistry towards Biology", meaning that the event welcomed chemists working on biology-related problems, biologists using chemical methods, and students and other researchers of the respective areas that fall within the common scope of chemistry and biology. The authors of this manuscript are plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting.

  19. Recent advances in the chemistry and biology of pyridopyrimidines.

    Science.gov (United States)

    Buron, F; Mérour, J Y; Akssira, M; Guillaumet, G; Routier, S

    2015-05-05

    The interest in pyridopyrimidine cores for pharmaceutical products makes this scaffold a highly useful building block for organic chemistry. These derivatives have found applications in various areas of medicine such as anticancer, CNS, fungicidal, antiviral, anti-inflammatory, antimicrobial, and antibacterial therapies. This review mainly focuses on the progress achieved since 2004 in the chemistry and biological activity of pyridopyrimidines.

  20. Acknowledgments to reviewers of World Journal of Biological Chemistry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Many reviewers have contributed their expertise and time to the peer review, a critical process to ensure the quality of World Journal of Biological Chemistry. The editors and authors of the articles submitted to the journal are grateful

  1. Acknowledgments to reviewers of World Journal of Biological Chemistry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Many reviewers have contributed their expertise and time to the peer review,a critical process to ensure thequality of World Journal of Biological Chemistry.The editors and authors of the articles submitted to the journal are grateful

  2. Acknowledgments to reviewers of World Journal of Biological Chemistry

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Many reviewers have contributed their expertise and time to the peer review,a critical process to ensure the quality of World Journal of Biological Chemistry.The editors and authors of the articles submitted to the journal are

  3. AINSE conference on radiation biology and chemistry. Conference handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The conference handbook contains 60 oral and poster presentations dealing with recent advances in radiation chemistry applied to biological studies, radiopharmaceuticals, radiosensitizers as well as to solid state chemical physics.

  4. Scents and sensibility: how biology perceives chemistry

    Directory of Open Access Journals (Sweden)

    Stuart Firestein

    2014-07-01

    odor can be detected by several receptors and any given receptor can bind any of several presumably related odors. In our analogy, the keys fit very loosely to differing degrees into many locks. Chemists are particularly interested in those parts of a molecule that are likely to participate in various sorts of reactions and synthetic manipulations. These would include such things as the functional group (aldehyde, acid, ester, etc. or if there are double bonds or charge carrying atoms. However, what is relevant to the synthetic chemist may not be important to the biological system, and in particular to the odor receptor protein. Thus we should begin by taking a biological approach to odor chemistry. For example the definition of an odorant cannot be made chemically – many chemical compounds that appear nearly identical to a known odorant may have a different smell or none at all. The only definition of an odorant is that it binds to an odor receptor to give rise to a biological response. Precisely what parts of a chemical compound influence that binding is one of the most challenging questions in biology. The actual perception of an odorant depends on the particular combination of receptors that are activated. In a complex mixture of tens to hundreds of different odor molecules this can quickly become a very complicated matrix of activated receptors with an astronomical number of combinations. An open question is whether evolution has perhaps found a simplified way of performing this apparently incalculable task. One possible solution would be the existence of a few dozen common chemical structures that would serve as primary features from which all other odors are constructed. This would be similar to the way the visual system can perceive thousands of hues of light by combining only three (blue, green and red primary “colors” or wavelengths. Although the idea of primaries in olfaction has been discussed for several decades it was largely abandoned after the

  5. Analytical Chemistry at the Interface Between Materials Science and Biology

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Janese C. [Iowa State Univ., Ames, IA (United States)

    2000-09-21

    Likedlessentid sciences, anal~cd chetis~continues toreinvent itself. Moving beyond its traditional roles of identification and quantification, analytical chemistry is now expanding its frontiers into areas previously reserved to other disciplines. This work describes several research efforts that lie at the new interfaces between analytical chemistry and two of these disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detection of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry’s newest forays into these disciplines. The introduction section to this dissertation provides a literature review on several of the key aspects of this work. In advance of the materials science discussion, a brief introduction into electrochemically-modulated liquid chromatography (EMLC) and sol-gel chemistry is provided. In advance of the biological discussions, brief overviews of scanning force microscopy (SFM) and the oxidative chemistry used to construct our biological arrays are provided. This section is followed by four chapters, each of which is presented as a separate manuscript, and focuses on work that describes some of our cross-disciplinary efforts within materials science and biology. This dissertation concludes with a general summary and future prospectus.

  6. Synthetic biology, inspired by synthetic chemistry.

    Science.gov (United States)

    Malinova, V; Nallani, M; Meier, W P; Sinner, E K

    2012-07-16

    The topic synthetic biology appears still as an 'empty basket to be filled'. However, there is already plenty of claims and visions, as well as convincing research strategies about the theme of synthetic biology. First of all, synthetic biology seems to be about the engineering of biology - about bottom-up and top-down approaches, compromising complexity versus stability of artificial architectures, relevant in biology. Synthetic biology accounts for heterogeneous approaches towards minimal and even artificial life, the engineering of biochemical pathways on the organismic level, the modelling of molecular processes and finally, the combination of synthetic with nature-derived materials and architectural concepts, such as a cellular membrane. Still, synthetic biology is a discipline, which embraces interdisciplinary attempts in order to have a profound, scientific base to enable the re-design of nature and to compose architectures and processes with man-made matter. We like to give an overview about the developments in the field of synthetic biology, regarding polymer-based analogs of cellular membranes and what questions can be answered by applying synthetic polymer science towards the smallest unit in life, namely a cell.

  7. Cell-free biology: exploiting the interface between synthetic biology and synthetic chemistry.

    Science.gov (United States)

    Harris, D Calvin; Jewett, Michael C

    2012-10-01

    Just as synthetic organic chemistry once revolutionized the ability of chemists to build molecules (including those that did not exist in nature) following a basic set of design rules, cell-free synthetic biology is beginning to provide an improved toolbox and faster process for not only harnessing but also expanding the chemistry of life. At the interface between chemistry and biology, research in cell-free synthetic systems is proceeding in two different directions: using synthetic biology for synthetic chemistry and using synthetic chemistry to reprogram or mimic biology. In the coming years, the impact of advances inspired by these approaches will make possible the synthesis of nonbiological polymers having new backbone compositions, new chemical properties, new structures, and new functions.

  8. Organic chemistry and biology of the interstellar medium

    Science.gov (United States)

    Sagan, C.

    1973-01-01

    Interstellar organic chemistry is discussed as the field of study emerging from the discovery of microwave lines of formaldehyde and of hydrogen cyanide in the interstellar medium. The reliability of molecular identifications and comparisons of interstellar and cometary compounds are considered, along with the degradational origin of simple organics. It is pointed out that the contribution of interstellar organic chemistry to problems in biology is not substantive but analogical. The interstellar medium reveals the operation of chemical processes which, on earth and perhaps on vast numbers of planets throughout the universe, led to the origin of life, but the actual molecules of the interstellar medium are unlikely to play any significant biological role.

  9. Gas Plasma Surface Chemistry for Biological Assays.

    Science.gov (United States)

    Sahagian, Khoren; Larner, Mikki

    2015-01-01

    Biological systems respond to and interact with surfaces. Gas plasma provides a scalable surface treatment method for designing interactive surfaces. There are many commercial examples of plasma-modified products. These include well plates, filtration membranes, dispensing tools, and medical devices. This chapter presents an overview of gas plasma technology and provides a guide to using gas plasma for modifying surfaces for research or product development.

  10. Acknowledgments to reviewers of World Journal of Biological Chemistry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Many reviewers have contributed their expertise and time to the peer review, a critical process to ensure the quality of World Journal of Biological Chemistry. The editors and authors of the articles submitted to the journal are grateful to the following reviewers for

  11. Acknowledgments to reviewers of World Journal of Biological Chemistry

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Many reviewers have contributed their expertise and time to the peer review, a critical process to ensure the quality of World Journal of Biological Chemistry. The editors and authors of the articles submitted to the journal are grateful to the following reviewers for evaluating the articles (including those published in this issue and those rejected for this issue) during the last editing time period.

  12. Acknowledgments to reviewers of World Journal of Biological Chemistry

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Many reviewers have contributed their expertise and time to the peer review,a critical process to ensure the quality of World Journal of Biological Chemistry.The editors and authors of the articles submitted to the journal are grateful to the following reviewers for evaluating the articles(including those published in this issue and those

  13. Acknowledgments to reviewers of World Journal of Biological Chemistry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Many reviewers have contributed their expertise and time to the peer review, a critical process to ensure the quality of World Journal of Biological Chemistry. The editors and authors of the articles submitted to the journal are grateful to the following reviewers for evaluating the articles (including those published in this issue and those rejected for this issue) during the last editing time period.

  14. Acknowledgments to reviewers of World Journal of Biological Chemistry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Many reviewers have contributed their expertise and time to the peer review,a critical process to ensure the quality of World Journal of Biological Chemistry.The editors and authors of the articles submitted to the journal are grateful to the

  15. Acknowledgments to reviewers of World Journal of Biological Chemistry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Many reviewers have contributed their expertise and time to the peer review, a critical process to ensure the quality of World Journal of Biological Chemistry. The editors and authors of the articles submitted to the journal are grateful to the following reviewers for evaluating the articles (including those published in this issue and those rejected for this issue) during the last editing time period.

  16. Acknowledgments to reviewers of World Journal of Biological Chemistry

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Many reviewers have contributed their expertise and time to the peer review, a critical process to ensure the quality of World Journal of Biological Chemistry. The editors and authors of the articles submitted to the journal are grateful to the following reviewers for evaluating the

  17. Making Science Real: Photo-Sharing in Biology and Chemistry

    Science.gov (United States)

    Waycott, Jenny; Dalgarno, Barney; Kennedy, Gregor; Bishop, Andrea

    2012-01-01

    In this paper, we examine students' reflections about the value of two photo-sharing activities that were implemented in undergraduate Biology and Chemistry subjects. Both activities aimed, broadly, to provide support for authentic and meaningful learning experiences in undergraduate science. Although the activities were similar--both required…

  18. The Biology and Chemistry of Brewing: An Interdisciplinary Course

    Science.gov (United States)

    Hooker, Paul D.; Deutschman, William A.; Avery, Brian J.

    2014-01-01

    For the past nine years, we have been offering an interdisciplinary course for science majors: The Biology and Chemistry of Brewing. This course is primarily laboratory- and inquiry-based; from a total of 24 h of student/instructor contact time, approximately 6 h are devoted to lecture, and the other 18 h are divided between laboratory exercises,…

  19. Stochasticity in processes fundamentals and applications to chemistry and biology

    CERN Document Server

    Schuster, Peter

    2016-01-01

    This book has developed over the past fifteen years from a modern course on stochastic chemical kinetics for graduate students in physics, chemistry and biology. The first part presents a systematic collection of the mathematical background material needed to understand probability, statistics, and stochastic processes as a prerequisite for the increasingly challenging practical applications in chemistry and the life sciences examined in the second part. Recent advances in the development of new techniques and in the resolution of conventional experiments at nano-scales have been tremendous: today molecular spectroscopy can provide insights into processes down to scales at which current theories at the interface of physics, chemistry and the life sciences cannot be successful without a firm grasp of randomness and its sources. Routinely measured data is now sufficiently accurate to allow the direct recording of fluctuations. As a result, the sampling of data and the modeling of relevant processes are doomed t...

  20. Applications of Inorganic Chemistry in Biology: An Interdisciplinary Graduate Course

    Science.gov (United States)

    Farrell, Nicholas; Ross, Paul; Roat, Rosette M.

    1998-06-01

    Inorganic chemistry faculty at Virginia Commonwealth University (VCU) are offering an advanced, interdisciplinary, graduate course entitled "Applications of Inorganic Chemistry in Biology". The course utilizes examples from bioinorganic chemistry to introduce advanced topics in synthesis, structural analysis, and analytical methods that are practiced by inorganic chemists. Emphasis is placed on the structure and function of trace and ultratrace transition metals in biological systems and on the use of metals for medicinal purposes. Instrumental techniques such as electron paramagnetic resonance, Mössbauer spectroscopy, and X-ray crystallography are explained in the detail necessary to familiarize students with their use for analysis of bioinorganic systems and their models. Students have take-home examinations during the term and write a term paper describing a metalloprotein whose X-ray structure data is listed in Brookhaven protein data base. The paper follows the same course pattern of classroom discussion of a bioinorganic system, concentrating on the coordination geometry and nearest neighbor contacts of the metal-binding site in the protein, substrate binding site, and relevance to the metalloprotein or enzyme function, mechanism of action of the enzyme or protein, spectroscopic studies on the metal-binding site, and model studies for the protein's metal-binding site. The instructors conclude that their basic goals for the course - introduction to advanced inorganic chemistry topics using bioinorganic examples with emphasis on primary literature sources and computer-assisted displays - are being accomplished.

  1. Chemistry and biology of the caged Garcinia xanthones.

    Science.gov (United States)

    Chantarasriwong, Oraphin; Batova, Ayse; Chavasiri, Warinthorn; Theodorakis, Emmanuel A

    2010-09-03

    Natural products have been a great source of many small molecule drugs for various diseases. In spite of recent advances in biochemical engineering and fermentation technologies that allow us to explore microorganisms and the marine environment as alternative sources of drugs, more than 70 % of the current small molecule therapeutics derive their structures from plants used in traditional medicine. Natural-product-based drug discovery relies heavily on advances made in the sciences of biology and chemistry. Whereas biology aims to investigate the mode of action of a natural product, chemistry aims to overcome challenges related to its supply, bioactivity, and target selectivity. This review summarizes the explorations of the caged Garcinia xanthones, a family of plant metabolites that possess a unique chemical structure, potent bioactivities, and a promising pharmacology for drug design and development.

  2. Contextualization and technologies in the Biology and Chemistry textbooks

    Directory of Open Access Journals (Sweden)

    Rozana Gomes de Abreu

    2005-12-01

    Full Text Available We analyze Biology and Chemistry school textbooks to understand how conceptions of contextualization and technologies are overtaken and hybridized. We consider that textbooks produce meanings (senses and signifieds in curricular policies. These are cultural productions that were hybridized and recontextualized according to Basil Bernstein and Stephen Ball. We argue that the focus on contextualization and technologies expressed in those textbooks are hybridized from several influences and they do not represent a consensus about those conceptions.

  3. Acknowledgments to reviewers of World Journal of Biological Chemistry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Many reviewers have contributed their expertise and time to the peer review,a critical process to ensure the quality of World Journal of Biological Chemistry.The editors and authors of the articles submitted to the journal are grateful to the following reviewers for evaluating the articles(including those published in this issue and those rejected for this issue)during the last editing time period.

  4. Acknowledgments to reviewers of World Journal of Biological Chemistry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Many reviewers have contributed their expertise and time to the peer review,a critical process to ensure the quality of World Journal of Biological Chemistry.The editors and authors of the articles submitted to the journal are grateful to the following reviewers for evaluating the articles(including those published in this issue and those rejected for this issue)during the last editing time period.

  5. Acknowledgments to reviewers of World Journal of Biological Chemistry

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Many reviewers have contributed their expertise and time to the peer review,a critical process to ensure the quality of World Journal of Biological Chemistry.The editors and authors of the articles submitted to the journal are grateful to the following reviewers for evaluating the articles(including those published in this issue and those rejected for this issue)during the last editing time period.

  6. Acknowledgments to reviewers of World Journal of Biological Chemistry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Many reviewers have contributed their expertise and time to the peer review,a critical process to ensure the quality of World Journal of Biological Chemistry. The editors and authors of the articles submitted to the journal are grateful to the following reviewers for evaluating the articles (including those published in this issue and those rejected for this issue) during the last editing time period.

  7. Acknowledgments to reviewers of World Journal of Biological Chemistry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Many reviewers have contributed their expertise and time to the peer review,a critical process to ensure the quality of World Journal of Biological Chemistry.The editors and authors of the articles submitted to the journal are grateful to the following reviewers for evaluating the articles(including those published in this issue and those rejected for this issue) during the last editing time period.

  8. Acknowledgments to reviewers of World Journal of Biological Chemistry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Many reviewers have contributed their expertise and time to the peer review,a critical process to ensure the quality of World Journal of Biological Chemistry.The editors and authors of the articles submitted to the journal are grateful to the following reviewers for evaluating the articles (including those published in this issue and those rejected for this issue) during the last editing time period.

  9. Acknowledgments to reviewers of World Journal of Biological Chemistry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Many reviewers have contributed their expertise and time to the peer review, a critical process to ensure the quality of World Journal of Biological Chemistry. The editors and authors of the articles submitted to the journal are grateful to the following reviewers for evaluating the articles (including those published in this issue and those rejected for this issue) during the last editing time period. Yiider Tseng, PhD, Associate Professor, Department of Chemical Engineering, University of Florida, Room 223, Museum Road,

  10. Acknowledgments to reviewers of World Journal of Biological Chemistry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Many reviewers have contributed their expertise and time to the peer review, a critical process to ensure the quality of World Journal of Biological Chemistry. The editors and authors of the articles submitted to the journal are grateful to the following reviewers for evaluating the articles (including those published in this issue and those rejected for this issue) during the last editing time period. Antonio Brunetti, MD, PhD, Professor, Cattedra di Endocrinolo-

  11. Acknowledgments to reviewers of World Journal of Biological Chemistry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Many reviewers have contributed their expertise and time to the peer review, a critical process to ensure the quality of World Journal of Biological Chemistry. The editors and authors of the articles submitted to the journal are grateful to the following reviewers for evaluating the articles (including those published in this issue and those rejected for this issue) during the last editing time period. Hiroaki Itamochi, MD, PhD, Junior Associate Professor, Department of Obstetrics and Gynecology, Tottori University School of

  12. The future of discovery chemistry: quo vadis? Academic to industrial--the maturation of medicinal chemistry to chemical biology.

    Science.gov (United States)

    Hoffmann, Torsten; Bishop, Cheryl

    2010-04-01

    At Roche, we set out to think about the future role of medicinal chemistry in drug discovery in a project involving both Roche internal stakeholders and external experts in drug discovery chemistry. To derive a coherent strategy, selected scientists were asked to take extreme positions and to derive two orthogonal strategic options: chemistry as the traditional mainstream science and chemistry as the central entrepreneurial science. We believe today's role of medicinal chemistry in industry has remained too narrow. To provide the innovation that industry requires, medicinal chemistry must play its part and diversify at pace with our increasing understanding of chemical biology and network pharmacology.

  13. Organic Chemistry and Biology: Chemical Biology Through the Eyes of Collaboration

    Science.gov (United States)

    Hruby, Victor J.

    2011-01-01

    From a scientific perspective, efforts to understand biology including what constitutes health and disease has become a chemical problem. However, chemists and biologists “see” the problems of understanding biology from different perspectives, and this has retarded progress in solving the problems especially as they relate to health and disease. This suggests that close collaboration between chemists and biologists is not only necessary but essential for progress in both the biology and chemistry that will provide solutions to the global questions of biology. This perspective has directed my scientific efforts for the past 45 years, and in this overview I provide my perspective of how the applications of synthetic chemistry, structural design, and numerous other chemical principles have intersected in my collaborations with biologists to provide new tools, new science, and new insights that were only made possible and fruitful by these collaborations. PMID:20000552

  14. Organic chemistry and biology: chemical biology through the eyes of collaboration.

    Science.gov (United States)

    Hruby, Victor J

    2009-12-18

    From a scientific perspective, efforts to understand biology including what constitutes health and disease has become a chemical problem. However, chemists and biologists "see" the problems of understanding biology from different perspectives, and this has retarded progress in solving the problems especially as they relate to health and disease. This suggests that close collaboration between chemists and biologists is not only necessary but essential for progress in both the biology and chemistry that will provide solutions to the global questions of biology. This perspective has directed my scientific efforts for the past 45 years, and in this overview I provide my perspective of how the applications of synthetic chemistry, structural design, and numerous other chemical principles have intersected in my collaborations with biologists to provide new tools, new science, and new insights that were only made possible and fruitful by these collaborations.

  15. Charge Migration in DNA Perspectives from Physics, Chemistry, and Biology

    CERN Document Server

    Chakraborty, Tapash

    2007-01-01

    Charge migration through DNA has been the focus of considerable interest in recent years. A deeper understanding of the nature of charge transfer and transport along the double helix is important in fields as diverse as physics, chemistry and nanotechnology. It has also important implications in biology, in particular in DNA damage and repair. This book presents contributions from an international team of researchers active in this field. It contains a wide range of topics that includes the mathematical background of the quantum processes involved, the role of charge transfer in DNA radiation damage, a new approach to DNA sequencing, DNA photonics, and many others. This book should be of value to researchers in condensed matter physics, chemical physics, physical chemistry, and nanoscale sciences.

  16. 2010 Tetrapyrroles, Chemistry & Biology of Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Angela Wilks

    2010-07-30

    The objective of the Chemistry & Biology of Tetrapyrroles Gordon Conference is to bring together researchers from diverse disciplines that otherwise would not interact. By bringing biologists, chemists, engineers and clinicians with a common interest in tetrapyrroles the conference provides a forum for cross-disciplinary ideas and collaboration. The perspective provided by biologists, chemists, and clinicians working in fields such as newly discovered defects in human porphyrin metabolism, the myriad of strategies for light harvesting in photosynthetic organisms, novel tetrapyrroles that serve as auxiliary chromophores or enzyme cofactors, synthetic strategies in the design of novel tetrapyrrole scaffolds, and tetrapyrrole based cell signaling and regulatory systems, makes this conference unique in the field. Over the years the growing evidence for the role of tetrapyrroles and their reactive intermediates in cell signaling and regulation has been of increasing importance at this conference. The 2010 conference on Chemistry & Biology of Tetrapyrroles will focus on many of these new frontiers as outlined in the preliminary program listed. Speakers will emphasize unpublished results and new findings in the field. The oral sessions will be followed by the highly interactive afternoon poster sessions. The poster sessions provide all conferees with the opportunity to present their latest research and to exchange ideas in a more informal setting. As in the past, this opportunity will continue during the nightly social gathering that takes place in the poster hall following the evening lectures. All conferees are encouraged to submit and present posters. At the conference the best poster in the areas of biology, chemistry and medicine will be selected by a panel of previous conference chairs.

  17. Dynamic light scattering with applications to chemistry, biology, and physics

    CERN Document Server

    Berne, Bruce J

    2000-01-01

    Lasers play an increasingly important role in a variety of detection techniques, making inelastic light scattering a tool of growing value in the investigation of dynamic and structural problems in chemistry, biology, and physics. Until the initial publication of this work, however, no monograph treated the principles behind current developments in the field.This volume presents a comprehensive introduction to the principles underlying laser light scattering, focusing on the time dependence of fluctuations in fluid systems; it also serves as an introduction to the theory of time correlation f

  18. Acknowledgments to reviewers of World Journal of Biological Chemistry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Many reviewers have contributed their expertise and time to the peer review, a critical process to ensure the quality of World Journal of Biological Chemistry. The editors and authors of the articles submitted to the journal are grateful to the following reviewers for evaluating the articles (including those published in this issue and those rejected for this issue) during the last editing time period. Gaetano Cairo, PhD, Professor, Department Human Morphology and Biomedical Sciences-Città Studi-Via Mangiagalli 31, Milano, 20133, Italy

  19. The Chemistry and Biological Activities of Mimosine: A Review.

    Science.gov (United States)

    Nguyen, Binh Cao Quan; Tawata, Shinkichi

    2016-08-01

    Mimosine [β-[N-(3-hydroxy-4-oxypyridyl)]-α-aminopropionic acid] is a non-protein amino acid found in the members of Mimosoideae family. There are a considerable number of reports available on the chemistry, methods for estimation, biosynthesis, regulation, and degradation of this secondary metabolite. On the other hand, over the past years of active research, mimosine has been found to have various biological activities such as anti-cancer, antiinflammation, anti-fibrosis, anti-influenza, anti-virus, herbicidal and insecticidal activities, and others. Mimosine is a leading compound of interest for use in the development of RAC/CDC42-activated kinase 1 (PAK1)-specific inhibitors for the treatment of various diseases/disorders, because PAK1 is not essential for the growth of normal cells. Interestingly, the new roles of mimosine in malignant glioma treatment, regenerative dentistry, and phytoremediation are being emerged. These identified properties indicate an exciting future for this amino acid. The present review is focused on the chemistry and recognized biological activities of mimosine in an attempt to draw a link between these two characteristics. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Platensimycin and platencin: Inspirations for chemistry, biology, enzymology, and medicine.

    Science.gov (United States)

    Rudolf, Jeffrey D; Dong, Liao-Bin; Shen, Ben

    2016-11-16

    Natural products have served as the main source of drugs and drug leads, and natural products produced by microorganisms are one of the most prevalent sources of clinical antibiotics. Their unparalleled structural and chemical diversities provide a basis to investigate fundamental biological processes while providing access to a tremendous amount of chemical space. There is a pressing need for novel antibiotics with new mode of actions to combat the growing challenge of multidrug resistant pathogens. This review begins with the pioneering discovery and biological activities of platensimycin (PTM) and platencin (PTN), two antibacterial natural products isolated from Streptomyces platensis. The elucidation of their unique biochemical mode of action, structure-activity relationships, and pharmacokinetics is presented to highlight key aspects of their biological activities. It then presents an overview of how microbial genomics has impacted the field of PTM and PTN and revealed paradigm-shifting discoveries in terpenoid biosynthesis, fatty acid metabolism, and antibiotic and antidiabetic therapies. It concludes with a discussion covering the future perspectives of PTM and PTN in regard to natural products discovery, bacterial diterpenoid biosynthesis, and the pharmaceutical promise of PTM and PTN as antibiotics and for the treatment of metabolic disorders. PTM and PTN have inspired new discoveries in chemistry, biology, enzymology, and medicine and will undoubtedly continue to do so.

  1. Computational chemistry, systems biology and toxicology. Harnessing the chemistry of life: revolutionizing toxicology. a commentary.

    Science.gov (United States)

    Kimber, Ian; Humphris, Colin; Westmoreland, Carl; Alepee, Nathalie; Negro, Gianni Dal; Manou, Irene

    2011-04-01

    There is a continuing interest in, and increasing imperatives for, the development of alternative methods for toxicological evaluations that do not require the use of animals. Although a significant investment has resulted in some achievements, progress has been patchy and there remain many challenges. Among the most significant hurdles is developing non-animal methods that would permit assessment of the potential for a chemical or drug to cause adverse health effects following repeated systemic exposure. Developing approaches to address this challenge has been one of the objectives of the European Partnership for Alternative Approaches to Animal Testing (EPAA). The EPAA is a unique partnership between the European Commission and industry that has interests in all aspects of reducing, refining and replacing the use of animals (the '3Rs'). One possible strategy that emerged from a broad scientific debate sponsored by the EPAA was the opportunity for developing entirely new paradigms for toxicity testing based upon harnessing the increasing power of computational chemistry in combination with advanced systems biology. This brief commentary summarizes a workshop organized by the EPAA in 2010, that had the ambitious title of 'Harnessing the Chemistry of Life: Revolutionizing Toxicology'. At that workshop international experts in chemistry, systems biology and toxicology sought to map out how best developments in these sciences could be exploited to design new strategies for toxicity testing using adverse effects in the liver as an initial focus of attention. Here we describe the workshop design and outputs, the primary purpose being to stimulate debate about the need to align different areas of science with toxicology if new and truly innovative approaches to toxicity testing are to be developed.

  2. Consideration of coastal carbonate chemistry in understanding biological calcification

    Science.gov (United States)

    Fassbender, Andrea J.; Sabine, Christopher L.; Feifel, Kirsten M.

    2016-05-01

    Correlations between aragonite saturation state (ΩAr) and calcification have been identified in many laboratory manipulation experiments aiming to assess biological responses to ocean acidification (OA). These relationships have been used with projections of ΩAr under continued OA to evaluate potential impacts on marine calcifiers. Recent work suggests, however, that calcification in some species may be controlled by the ratio of bicarbonate to hydrogen ion, or the substrate-to-inhibitor ratio (SIR), rather than ΩAr. SIR and ΩAr are not always positively correlated in the natural environment, which means that ΩAr can be a poor indicator of the calcifying environment when ΩAr->1. Highly variable carbonate chemistry in the coastal zone challenges our ability to monitor fluctuations in ΩAr, SIR, and the ΩAr-SIR relationship making it difficult to assess biological OA exposures and vulnerability. Careful consideration of natural variability throughout ocean environments is required to accurately determine the influence of OA on biological calcification.

  3. Natural product synthesis at the interface of chemistry and biology.

    Science.gov (United States)

    Hong, Jiyong

    2014-08-11

    Nature has evolved to produce unique and diverse natural products that possess high target affinity and specificity. Natural products have been the richest sources for novel modulators of biomolecular function. Since the chemical synthesis of urea by Wöhler, organic chemists have been intrigued by natural products, leading to the evolution of the field of natural product synthesis over the past two centuries. Natural product synthesis has enabled natural products to play an essential role in drug discovery and chemical biology. With the introduction of novel, innovative concepts and strategies for synthetic efficiency, natural product synthesis in the 21st century is well poised to address the challenges and complexities faced by natural product chemistry and will remain essential to progress in biomedical sciences.

  4. Micro-segmented flow applications in chemistry and biology

    CERN Document Server

    Cahill, Brian

    2014-01-01

    The book is dedicated to the method and application potential of micro segmented flow. The recent state of development of this powerful technique is presented in 12 chapters by leading researchers from different countries. In the first section, the principles of generation and manipulation of micro-fluidic segments are explained. In the second section, the micro continuous-flow synthesis of different types of nanomaterials is shown as a typical example for the use of advantages of the technique in chemistry. In the third part, the particular importance of the technique in biotechnical applications is presented demonstrating the progress for miniaturized cell-free processes, for molecular biology and DNA-based diagnostis and sequencing as well as for the development of antibiotics and the evaluation of toxic effects in medicine and environment.

  5. Androgen receptor modulators: a marriage of chemistry and biology.

    Science.gov (United States)

    McEwan, Iain J

    2013-06-01

    Androgenic steroids are important for male development in utero and secondary sexual characteristics at puberty. In addition, androgens play a role in non-reproductive tissues, such as bone and muscle in both sexes. The actions of the androgens testosterone and dihydrotestosterone are mediated by a single receptor protein, the androgen receptor. Over the last 60-70 years there has been considerable research interest in the development of inhibitors of androgen receptor for the management of diseases such as prostate cancer. However, more recently, there is also a growing appreciation of the need for selective androgen modulators that would demonstrate tissue-selective agonist or antagonist activity. The chemistry and biology of selective agonists, antagonists and selective androgen receptor modulators will be discussed in this review.

  6. Alcohol Pharmacology Education Partnership: Using Chemistry and Biology Concepts to Educate High School Students about Alcohol

    Science.gov (United States)

    Godin, Elizabeth A.; Kwiek, Nicole; Sikes, Suzanne S.; Halpin, Myra J.; Weinbaum, Carolyn A.; Burgette, Lane F.; Reiter, Jerome P.; Schwartz-Bloom, Rochelle D.

    2014-01-01

    We developed the Alcohol Pharmacology Education Partnership (APEP), a set of modules designed to integrate a topic of interest (alcohol) with concepts in chemistry and biology for high school students. Chemistry and biology teachers (n = 156) were recruited nationally to field-test APEP in a controlled study. Teachers obtained professional…

  7. Students’ experienced coherence between chemistry and biology in context-based secondary science education

    NARCIS (Netherlands)

    Boer, H.J.; Prins, Gjalt; Goedhart, M.J.; Boersma, Kerst

    2014-01-01

    In current biology and chemistry secondary school practice, coherence between the subjects chemistry and biology is underexposed or even ignored. This is incongruent with the current scientific practice, in which the emphasis is shifting towards inter- and multidisciplinarity. These problems have be

  8. Analyzing Students' Understanding of Models and Modeling Referring to the Disciplines Biology, Chemistry, and Physics

    Science.gov (United States)

    Krell, Moritz; Reinisch, Bianca; Krüger, Dirk

    2015-01-01

    In this study, secondary school students' (N?=?617; grades 7 to 10) understanding of models and modeling was assessed using tasks which explicitly refer to the scientific disciplines of biology, chemistry, and physics and, as a control, to no scientific discipline. The students' responses are interpreted as their biology-, chemistry-, and…

  9. Topological data analysis: A promising big data exploration tool in biology, analytical chemistry and physical chemistry.

    Science.gov (United States)

    Offroy, Marc; Duponchel, Ludovic

    2016-03-03

    An important feature of experimental science is that data of various kinds is being produced at an unprecedented rate. This is mainly due to the development of new instrumental concepts and experimental methodologies. It is also clear that the nature of acquired data is significantly different. Indeed in every areas of science, data take the form of always bigger tables, where all but a few of the columns (i.e. variables) turn out to be irrelevant to the questions of interest, and further that we do not necessary know which coordinates are the interesting ones. Big data in our lab of biology, analytical chemistry or physical chemistry is a future that might be closer than any of us suppose. It is in this sense that new tools have to be developed in order to explore and valorize such data sets. Topological data analysis (TDA) is one of these. It was developed recently by topologists who discovered that topological concept could be useful for data analysis. The main objective of this paper is to answer the question why topology is well suited for the analysis of big data set in many areas and even more efficient than conventional data analysis methods. Raman analysis of single bacteria should be providing a good opportunity to demonstrate the potential of TDA for the exploration of various spectroscopic data sets considering different experimental conditions (with high noise level, with/without spectral preprocessing, with wavelength shift, with different spectral resolution, with missing data).

  10. Chemistry, physico-chemistry and applications linked to biological activities of β-glucans.

    Science.gov (United States)

    Barsanti, Laura; Passarelli, Vincenzo; Evangelista, Valtere; Frassanito, Anna Maria; Gualtieri, Paolo

    2011-03-01

    β-Glucans is the common name given to a group of chemically heterogeneous polysaccharides. They are long- or short-chain polymers of (1-->3)-β-linked glucose moieties which may be branched, with the branching chains linked to the backbone by a (1-->6)-β linkage. β-(1-->3)-Glucans are widely distributed in bacteria, algae, fungi and plants, where they are involved in cell wall structure and other biological function. β-Glucans have been shown to provide a remarkable range of health benefits, and are especially important against the two most common conventional causes of death in industrialized countries, i.e. cardiovascular diseases (where they promote healthy cholesterol and blood glucose levels) and cancer (where they enhance immune system functions). This Highlight provides a comprehensive and up-to-date commentary on β-glucans, their chemistry, physico-chemistry, functional role in immunological responses, and possible applications as therapeutic tools. In addition, we discuss the mechanism behind their health benefits, which are not yet fully understood.

  11. Exploration of the central dogma at the interface of chemistry and biology: 2010 Yale Chemical Biology Symposium.

    Science.gov (United States)

    Zhou, Alice Qinhua

    2010-09-01

    Ever since the term "central dogma" was coined in 1958, researchers have sought to control information flow from nucleic acids to proteins. Talks delivered by Drs. Anna Pyle and Hiroaki Suga at this year's Chemical Biology Symposium at Yale in May 2010 applauded recent advances in this area, at the interface between chemistry and biology.

  12. Analysis of High School Physics, Chemistry and Biology Curriculums in Terms of Scientific Literacy Themes

    Science.gov (United States)

    Erdogan, Melek Nur; Koseoglu, Fitnat

    2012-01-01

    The purpose of this study is to analyze 9th grade physics, chemistry and biology curriculums, which were implemented by the Ministry of Education since the academic year 2008-2009, in terms of scientific literacy themes and the balance of these themes and also to examine the quality of statements about objectives. Physics, chemistry, and biology…

  13. Coordination chemistry and biological activity of 5'-OH modified quinoline-B12 derivatives.

    Science.gov (United States)

    Zelenka, Karel; Brandl, Helmut; Spingler, Bernhard; Zelder, Felix

    2011-10-14

    The consequences of structural modifications at the 5'-OH ribofuranotide moiety of quinoline modified B12 derivatives are discussed in regard of the coordination chemistry, the electrochemical properties and the biological behaviour of the compound.

  14. Single Molecule Spectroscopy in Chemistry, Physics and Biology Nobel Symposium

    CERN Document Server

    Gräslund, Astrid; Widengren, Jerker

    2010-01-01

    Written by the leading experts in the field, this book describes the development and current state-of-the-art in single molecule spectroscopy. The application of this technique, which started 1989, in physics, chemistry and biosciences is displayed.

  15. Electron spin interactions in chemistry and biology fundamentals, methods, reactions mechanisms, magnetic phenomena, structure investigation

    CERN Document Server

    Likhtenshtein, Gertz

    2016-01-01

    This book presents the versatile and pivotal role of electron spin interactions in nature. It provides the background, methodologies and tools for basic areas related to spin interactions, such as spin chemistry and biology, electron transfer, light energy conversion, photochemistry, radical reactions, magneto-chemistry and magneto-biology. The book also includes an overview of designing advanced magnetic materials, optical and spintronic devices and photo catalysts. This monograph appeals to scientists and graduate students working in the areas related to spin interactions physics, biophysics, chemistry and chemical engineering.

  16. EFFECTS OF 5E LEARNING CYCLE ON STUDENTS ACHIEVEMENT IN BIOLOGY AND CHEMISTRY

    Directory of Open Access Journals (Sweden)

    Patrick Osawaru Ajaja,

    2012-01-01

    Full Text Available The major purpose of this study was to determine the effects of learning cycle as an instructional strategy on biology andchemistry students achievement. To guide this study, six research hypotheses were stated and tested at 0.05 level ofsignificance. The design of this study was 2x2x3x6 Pre-test Post-test non-equivalent control group quasi experimental design.These included two instructional groups (experimental and control groups, sex (male and female, repeated testing (Pre,Post and follow-up tests, and six weeks of experience. The samples of the study included six senior secondary schools, 112science students, and 12 biology and chemistry teachers. The instruments used for this study were: teacher’s questionnaireon knowledge and use of learning cycle (KULC; and Biology and Chemistry Achievement Test (BCAT. The data collected wereanalyzed with simple percentage, Analysis of Covariance (ANCOVA and student t-test statistics. The major findings of thestudy included that only 30.43% and 26.31% of biology and chemistry teachers have the knowledge that learning cycle is aninstructional method; all the biology and chemistry teachers sampled have never used learning cycle as an instructionalmethod; learning cycle had a significant effect on students achievement in biology and chemistry; students taught withlearning cycle significantly achieved better in biology/chemistry Post-test than those taught with lecture method; the posttestscores of students in the learning cycle group increased over the period of experience; non-significant difference in Posttestscores between males and females taught with learning cycle; non-significant interaction effect between method andsex on achievement; and a significant higher retention of biology and chemistry knowledge by students taught with learningcycle than those taught with lecture method. It was concluded that the method seems an appropriate instructional modelthat could be used to solve the problems of

  17. How chemistry supports cell biology: the chemical toolbox at your service.

    Science.gov (United States)

    Wijdeven, Ruud H; Neefjes, Jacques; Ovaa, Huib

    2014-12-01

    Chemical biology is a young and rapidly developing scientific field. In this field, chemistry is inspired by biology to create various tools to monitor and modulate biochemical and cell biological processes. Chemical contributions such as small-molecule inhibitors and activity-based probes (ABPs) can provide new and unique insights into previously unexplored cellular processes. This review provides an overview of recent breakthroughs in chemical biology that are likely to have a significant impact on cell biology. We also discuss the application of several chemical tools in cell biology research.

  18. Connecting biology and organic chemistry introductory laboratory courses through a collaborative research project.

    Science.gov (United States)

    Boltax, Ariana L; Armanious, Stephanie; Kosinski-Collins, Melissa S; Pontrello, Jason K

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an interdisciplinary, medically relevant, project intended to help students see connections between chemistry and biology. Second term organic chemistry laboratory students designed and synthesized potential polymer inhibitors or inducers of polyglutamine protein aggregation. The use of novel target compounds added the uncertainty of scientific research to the project. Biology laboratory students then tested the novel potential pharmaceuticals in Huntington's disease model assays, using in vitro polyglutamine peptide aggregation and in vivo lethality studies in Drosophila. Students read articles from the primary literature describing the system from both chemical and biological perspectives. Assessment revealed that students emerged from both courses with a deeper understanding of the interdisciplinary nature of biology and chemistry and a heightened interest in basic research. The design of this collaborative project for introductory biology and organic chemistry labs demonstrated how the local interests and expertise at a university can be drawn from to create an effective way to integrate these introductory courses. Rather than simply presenting a series of experiments to be replicated, we hope that our efforts will inspire other scientists to think about how some aspect of authentic work can be brought into their own courses, and we also welcome additional collaborations to extend the scope of the scientific exploration.

  19. A Course in Biophysics: An Integration of Physics, Chemistry, and Biology

    Science.gov (United States)

    Giancoli, Douglas C.

    1971-01-01

    Describes an interdisciplinary course for advanced undergraduates in the physical and biological sciences. The goal is to understand a living cell from the most basic standpoint possible. The ideas of physics, chemistry, and molecular biology are all essential to the course, which leads to a unified view of the sciences. (PR)

  20. Solving Biology's Iron Chemistry Problem with Ferritin Protein Nanocages.

    Science.gov (United States)

    Theil, Elizabeth C; Tosha, Takehiko; Behera, Rabindra K

    2016-05-17

    cage symmetry (3-fold and 4-fold axes) and amino acid conservation coincide with function, shown by amino acid substitution effects. 3-Fold symmetry axes control Fe(2+) entry (enzyme catalysis of Fe(2+)/O2 oxidoreduction) and Fe(2+) exit (reductive ferritin mineral dissolution); 3-fold symmetry axes influence Fe(2+)exit from dissolved mineral; bacterial ferritins diverge slightly in Fe/O2 reaction mechanisms and intracage paths of iron-oxy complexes. Biosynthesis rates of ferritin protein change with Fe(2+) and O2 concentrations, dependent on DNA-binding, and heme binding protein, Bach 1. Increased cellular O2 indirectly stabilizes ferritin DNA/Bach 1 interactions. Heme, Fe-protoporphyrin IX, decreases ferritin DNA-Bach 1 binding, causing increased ferritin mRNA biosynthesis (transcription). Direct Fe(2+) binding to ferritin mRNA decreases binding of an inhibitory protein, IRP, causing increased ferritin mRNA translation (protein biosynthesis). Newly synthesized ferritin protein consumes Fe(2+) in biomineral, decreasing Fe(2)(+) and creating a regulatory feedback loop. Ferritin without iron is "apoferritin". Iron removal from ferritin, experimentally, uses biological reductants, for example, NADH + FMN, or chemical reductants, for example, thioglycolic acid, with Fe(2+) chelators; physiological mechanism(s) are murky. Clear, however, is the necessity of ferritin for terrestrial life by conferring oxidant protection (plants, animals, and bacteria), virulence (bacteria), and embryonic survival (mammals). Future studies of ferritin structure/function and Fe(2+)/O2 chemistry will lead to new ferritin uses in medicine, nutrition, and nanochemistry.

  1. Current parallel chemistry principles and practice: application to the discovery of biologically active molecules.

    Science.gov (United States)

    Edwards, Paul J

    2009-11-01

    This article describes the use of parallel chemistry techniques for drug discovery, based on publications from January 2006 to December 2008. Chemical libraries that yielded active compounds across a range of biological targets are presented, together with synthetic details when appropriate. Background information for the biological targets involved and any SAR that could be discerned within members of a library series also is discussed. New technological developments, as applied to library design and synthesis and, more generally, in the discovery of biologically active entities, are highlighted. In addition, the likely future directions for parallel chemistry in its ability to impact upon drug discovery are also presented.

  2. A tracer aided study on silicon chemistry in biological systems

    NARCIS (Netherlands)

    Brasser, H.J.

    2009-01-01

    Silicon (Si) is omnipresent in nature, and it is involved in important but diverse roles in a broad range of organisms, including diatoms, higher plants and humans. Some organisms, like the diatoms, need high amounts of silicon, and master silicon chemistry to a high extend using several enzymes. Ot

  3. Metrology in physics, chemistry, and biology: differing perceptions.

    Science.gov (United States)

    Iyengar, Venkatesh

    2007-04-01

    The association of physics and chemistry with metrology (the science of measurements) is well documented. For practical purposes, basic metrological measurements in physics are governed by two components, namely, the measure (i.e., the unit of measurement) and the measurand (i.e., the entity measured), which fully account for the integrity of a measurement process. In simple words, in the case of measuring the length of a room (the measurand), the SI unit meter (the measure) provides a direct answer sustained by metrological concepts. Metrology in chemistry, as observed through physical chemistry (measures used to express molar relationships, volume, pressure, temperature, surface tension, among others) follows the same principles of metrology as in physics. The same basis percolates to classical analytical chemistry (gravimetry for preparing high-purity standards, related definitive analytical techniques, among others). However, certain transition takes place in extending the metrological principles to chemical measurements in complex chemical matrices (e.g., food samples), as it adds a third component, namely, indirect measurements (e.g., AAS determination of Zn in foods). This is a practice frequently used in field assays, and calls for additional steps to account for traceability of such chemical measurements for safeguarding reliability concerns. Hence, the assessment that chemical metrology is still evolving.

  4. Seeking the chemical roots of darwinism: bridging between chemistry and biology.

    Science.gov (United States)

    Pross, Addy

    2009-08-24

    Chemistry and biology are intimately connected sciences yet the chemistry-biology interface remains problematic and central issues regarding the very essence of living systems remain unresolved. In this essay we build on a kinetic theory of replicating systems that encompasses the idea that there are two distinct kinds of stability in nature-thermodynamic stability, associated with "regular" chemical systems, and dynamic kinetic stability, associated with replicating systems. That fundamental distinction is utilized to bridge between chemistry and biology by demonstrating that within the parallel world of replicating systems there is a second law analogue to the second law of thermodynamics, and that Darwinian theory may, through scientific reductionism, be related to that second law analogue. Possible implications of these ideas to the origin of life problem and the relationship between chemical emergence and biological evolution are discussed.

  5. Density functional theory across chemistry, physics and biology.

    Science.gov (United States)

    van Mourik, Tanja; Bühl, Michael; Gaigeot, Marie-Pierre

    2014-03-13

    The past decades have seen density functional theory (DFT) evolve from a rising star in computational quantum chemistry to one of its major players. This Theme Issue, which comes half a century after the publication of the Hohenberg-Kohn theorems that laid the foundations of modern DFT, reviews progress and challenges in present-day DFT research. Rather than trying to be comprehensive, this Theme Issue attempts to give a flavour of selected aspects of DFT.

  6. Chemistry meets biology in colitis-associated carcinogenesis

    OpenAIRE

    Mangerich, Aswin; Dedon, Peter C.; Fox, James G.; Steven R. Tannenbaum; Wogan, Gerald N.

    2013-01-01

    The intestine comprises an exceptional venue for a dynamic and complex interplay of numerous chemical and biological processes. Here, multiple chemical and biological systems, including the intestinal tissue itself, its associated immune system, the gut microbiota, xenobiotics, and metabolites meet and interact to form a sophisticated and tightly regulated state of tissue homoeostasis. Disturbance of this homeostasis can cause inflammatory bowel disease (IBD) – a chronic disease of multifacto...

  7. Chemistry and biology of self-cleaving ribozymes

    Science.gov (United States)

    Jimenez, Randi M.; Polanco, Julio A.; Lupták, Andrej

    2015-01-01

    Self-cleaving ribozymes were discovered thirty years ago, but their biological distribution and catalytic mechanisms are only beginning to be defined. Each ribozyme family is defined by a distinct structure with unique active sites accelerating the same transesterification reaction across the families. Biochemical studies show that general acid-base catalysis is the most common mechanism of self-cleavage, but metal ions and metabolites can be employed as cofactors. Ribozymes have been discovered in highly diverse genomic contexts throughout nature, from viroids to vertebrates. Their biological roles include self-scission during rolling-circle replication of RNA genomes, co-transcriptional processing of retrotransposons, and metabolite-dependent gene expression regulation in bacteria. Other examples, including highly conserved mammalian ribozymes, suggest that many new biological roles are yet to be discovered. PMID:26481500

  8. Morpho-chemistry and functionality of diseased biological tissues

    Science.gov (United States)

    Lange, Marta; Cicchi, Riccardo; Pavone, Francesco

    2014-09-01

    Heart and cardiovascular diseases are one of the most common in the world, in particular - arthrosclerosis. The aim of the research is to distinguish pathological and healthy tissue regions in biological samples, in this case - to distinguish collagen and lipid rich regions within the arterial wall. In the work a specific combination of such methods are used: FLIM and SHG in order to evaluate the biological tissue morphology and functionality, so that this research could give a contribution for creating a new biological tissue imaging standard in the closest future. During the study the most appropriate parameter for fluorescence lifetime decay was chosen in order to evaluate lifetime decay parameters and the isotropy of the arterial wall and deposition, using statistical methods FFT and GLCM. The research gives a contribution or the future investigations for evaluating lipid properties when it can de-attach from the arterial wall and cause clotting in the blood vessel or even a stroke.

  9. ZINC: a free tool to discover chemistry for biology.

    Science.gov (United States)

    Irwin, John J; Sterling, Teague; Mysinger, Michael M; Bolstad, Erin S; Coleman, Ryan G

    2012-07-23

    ZINC is a free public resource for ligand discovery. The database contains over twenty million commercially available molecules in biologically relevant representations that may be downloaded in popular ready-to-dock formats and subsets. The Web site also enables searches by structure, biological activity, physical property, vendor, catalog number, name, and CAS number. Small custom subsets may be created, edited, shared, docked, downloaded, and conveyed to a vendor for purchase. The database is maintained and curated for a high purchasing success rate and is freely available at zinc.docking.org.

  10. Elucidating the coordination chemistry and mechanism of biological nitrogen fixation.

    Science.gov (United States)

    Dance, Ian

    2007-08-03

    How does the enzyme nitrogenase reduce the inert molecule N2 to NH3 under ambient conditions that are so different from the energy-expensive conditions of the best industrial practices? This review focuses on recent theoretical investigations of the catalytic site, the iron-molybdenum cofactor FeMo-co, and the way in which it is hydrogenated by protons and electrons and then binds N2. Density functional calculations provide reaction profiles and activation energies for possible mechanistic steps. This establishes a conceptual framework and the principles for the coordination chemistry of FeMo-co that are essential to the chemical mechanism of catalysis. The model advanced herein explains relevant experimental data.

  11. Biological Actions of Artemisinin: Insights from Medicinal Chemistry Studies

    Directory of Open Access Journals (Sweden)

    Jian Li

    2010-03-01

    Full Text Available Artemisinins have become essential antimalarial drugs for increasingly widespread drug-resistant malaria strains. Although tremendous efforts have been devoted to decipher how this class of molecules works, their exact antimalarial mechanism is still an enigma. Several hypotheses have been proposed to explain their actions, including alkylation of heme by carbon-centered free radicals, interference with proteins such as the sarcoplasmic/endoplasmic calcium ATPase (SERCA, as well as damaging of normal mitochondrial functions. Besides artemisinins, other endoperoxides with various backbones have also been synthesized, some of which showed comparable or even higher antimalarial effects. It is noteworthy that among these artemisinin derivatives, some enantiomers displayed similar in vitro malaria killing efficacy. In this article, the proposed mechanisms of action of artemisinins are reviewed in light of medicinal chemistry findings characterized by efficacy-structure studies, with the hope of gaining more insight into how these potent drugs work.

  12. The chemistry and biology of guanidine natural products.

    Science.gov (United States)

    Berlinck, Roberto G S; Romminger, Stelamar

    2016-03-01

    The present review discusses the isolation, structure determination, synthesis, biosynthesis and biological activities of secondary metabolites bearing a guanidine group. Topics include non-ribosomal peptides, alkaloids, guanidine-bearing terpenes, polyketides and shikimic acid derivatives from natural sources. A critical analysis of some yet underdeveloped aspects of guanidine metabolites is also presented.

  13. Click chemistry mediated functionalization of vertical nanowires for biological applications

    DEFF Research Database (Denmark)

    Vutti, Surendra; Schoffelen, Sanne; Bolinsson, Jessica;

    2016-01-01

    is of general interest for biological studies. The attachment of a peptide substrate provided NW arrays for the detection of protease activity. In addition, green fluorescent protein was immobilized in a site-specific manner and recognized by antibody binding to demonstrate the proof-of-concept for the use...

  14. Essential concepts and underlying theories from physics, chemistry, and mathematics for "biochemistry and molecular biology" majors.

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry, and Mathematics that all Biochemistry or Molecular Biology majors must understand to complete their major coursework. The allied fields working group created a survey to validate foundational concepts from Physics, Chemistry, and Mathematics identified from participant feedback at various workshops. One-hundred twenty participants responded to the survey and 68% of the respondents answered yes to the question: "We have identified the following as the core concepts and underlying theories from Physics, Chemistry, and Mathematics that Biochemistry majors or Molecular Biology majors need to understand after they complete their major courses: 1) mechanical concepts from Physics, 2) energy and thermodynamic concepts from Physics, 3) critical concepts of structure from chemistry, 4) critical concepts of reactions from Chemistry, and 5) essential Mathematics. In your opinion, is the above list complete?" Respondents also delineated subcategories they felt should be included in these broad categories. From the results of the survey and this analysis the allied fields working group constructed a consensus list of allied fields concepts, which will help inform Biochemistry and Molecular Biology educators when considering the ASBMB recommended curriculum for Biochemistry or Molecular Biology majors and in the development of appropriate assessment tools to gauge student understanding of how these concepts relate to biochemistry and molecular biology.

  15. Biological inorganic chemistry at the beginning of the 21st century.

    Science.gov (United States)

    Gray, Harry B

    2003-04-01

    Advances in bioinorganic chemistry since the 1970s have been driven by three factors: rapid determination of high-resolution structures of proteins and other biomolecules, utilization of powerful spectroscopic tools for studies of both structures and dynamics, and the widespread use of macromolecular engineering to create new biologically relevant structures. Today, very large molecules can be manipulated at will, with the result that certain proteins and nucleic acids themselves have become versatile model systems for elucidating biological function.

  16. The Chemistry and Biology of Nakiterpiosin – C-nor-D-Homosteroids

    Science.gov (United States)

    Gao, Shuanhu; Wang, Qiaoling; Wang, Gelin; Lomenick, Brett; Liu, Jie; Fan, Chih-Wei; Deng, Lih-Wen; Huang, Jing; Lum, Lawrence

    2012-01-01

    Isolated from the sponge Terpios hoshinota that causes coral black disease, nakiterpiosin was the first C-nor-D-homosteroid discovered from a marine source. We provide in this account an overview of the chemistry and biology of this natural product. We also include a short history of the synthesis of C-nor-D-homosteroids and the results of some unpublished biological studies of nakiterpiosin. PMID:23226922

  17. The Chemistry and Biology of Nakiterpiosin - C-nor-D-Homosteroids.

    Science.gov (United States)

    Gao, Shuanhu; Wang, Qiaoling; Wang, Gelin; Lomenick, Brett; Liu, Jie; Fan, Chih-Wei; Deng, Lih-Wen; Huang, Jing; Lum, Lawrence; Chen, Chuo

    2012-10-01

    Isolated from the sponge Terpios hoshinota that causes coral black disease, nakiterpiosin was the first C-nor-D-homosteroid discovered from a marine source. We provide in this account an overview of the chemistry and biology of this natural product. We also include a short history of the synthesis of C-nor-D-homosteroids and the results of some unpublished biological studies of nakiterpiosin.

  18. Physical Chemistry for the Chemical and Biological Sciences (by Raymond Chang)

    Science.gov (United States)

    Pounds, Andrew

    2001-05-01

    This book does offer an alternative approach to physical chemistry that is particularly well suited for those who want to pursue a course of study more focused on the biological sciences. It could also be an excellent choice for schools that mainly serve preprofessional programs or for schools that have split physical chemistry tracks to independently serve the B.S. and B.A. degrees. Since the book focuses on single-variable mathematics, schools that require only one year of calculus for their chemistry degree could also think about adopting it. However, in general, the use of the text as a drop-in replacement for physical chemistry for the B.S. degree is questionable owing to its lack of focus on quantum mechanics and its implications for spectroscopy.

  19. Click Chemistry Mediated Functionalization of Vertical Nanowires for Biological Applications.

    Science.gov (United States)

    Vutti, Surendra; Schoffelen, Sanne; Bolinsson, Jessica; Buch-Månson, Nina; Bovet, Nicolas; Nygård, Jesper; Martinez, Karen L; Meldal, Morten

    2016-01-11

    Semiconductor nanowires (NWs) are gaining significant importance in various biological applications, such as biosensing and drug delivery. Efficient and controlled immobilization of biomolecules on the NW surface is crucial for many of these applications. Here, we present for the first time the use of the Cu(I) -catalyzed alkyne-azide cycloaddition and its strain-promoted variant for the covalent functionalization of vertical NWs with peptides and proteins. The potential of the approach was demonstrated in two complementary applications of measuring enzyme activity and protein binding, which is of general interest for biological studies. The attachment of a peptide substrate provided NW arrays for the detection of protease activity. In addition, green fluorescent protein was immobilized in a site-specific manner and recognized by antibody binding to demonstrate the proof-of-concept for the use of covalently modified NWs for diagnostic purposes using minute amounts of material.

  20. Chemistry and Biological Activities of Flavonoids: An Overview

    OpenAIRE

    Shashank Kumar; Pandey, Abhay K

    2013-01-01

    There has been increasing interest in the research on flavonoids from plant sources because of their versatile health benefits reported in various epidemiological studies. Since flavonoids are directly associated with human dietary ingredients and health, there is need to evaluate structure and function relationship. The bioavailability, metabolism, and biological activity of flavonoids depend upon the configuration, total number of hydroxyl groups, and substitution of functional groups about...

  1. The relative role of "A" level chemistry, physics and biology in the medical course.

    Science.gov (United States)

    Tomilson, R W; Clack, G B; Pettingale, K W; Anderson, J; Ryan, K C

    1977-03-01

    The performance of 209 students in the 2nd MBBS, first clinical year and final MBBS examinations has been compared retrospectively with their grades in chemistry, physics and biology at "A" level. The mean grade has also been determined for students from different social classes and secondary education. Significant differences in marks for biology were found between successful and not so successful students, especially in the pre-clinical part of the course. Significnat differences in marks and significant correlations were also found for physics but not to any great extent for chemistry. The relative role of these three basic sciences in the medical course is discussed. The suggestion is made that there is a need for a re-appraisal of the privleged position of chemistry and an unquestioned science requirement for entry to medical school.

  2. Design, Development, and Psychometric Analysis of a General, Organic, and Biological Chemistry Topic Inventory Based on the Identified Main Chemistry Topics Relevant to Nursing Clinical Practice

    Science.gov (United States)

    Brown, Corina E.

    2013-01-01

    This two-stage study focused on the undergraduate nursing course that covers topics in general, organic, and biological (GOB) chemistry. In the first stage, the central objective was to identify the main concepts of GOB chemistry relevant to the clinical practice of nursing. The collection of data was based on open-ended interviews of both nursing…

  3. Using Biocatalysis to Integrate Organic Chemistry into a Molecular Biology Laboratory Course

    Science.gov (United States)

    Beers, Mande; Archer, Crystal; Feske, Brent D.; Mateer, Scott C.

    2012-01-01

    Current cutting-edge biomedical investigation requires that the researcher have an operational understanding of several diverse disciplines. Biocatalysis is a field of science that operates at the crossroads of organic chemistry, biochemistry, microbiology, and molecular biology, and provides an excellent model for interdisciplinary research. We…

  4. Resource Letter TTSM-1: Teaching thermodynamics and statistical mechanics in introductory physics, chemistry, and biology

    CERN Document Server

    Dreyfus, Benjamin W; Meltzer, David E; Sawtelle, Vashti

    2014-01-01

    This Resource Letter draws on discipline-based education research from physics, chemistry, and biology to collect literature on the teaching of thermodynamics and statistical mechanics in the three disciplines. While the overlap among the disciplinary literatures is limited at present, we hope this Resource Letter will spark more interdisciplinary interaction.

  5. Biodiesel and Integrated STEM: Vertical Alignment of High School Biology/Biochemistry and Chemistry

    Science.gov (United States)

    Burrows, Andrea C.; Breiner, Jonathan M.; Keiner, Jennifer; Behm, Chris

    2014-01-01

    This article explores the vertical alignment of two high school classes, biology and chemistry, around the core concept of biodiesel fuel production. High school teachers and university faculty members investigated biodiesel as it relates to societal impact through a National Science Foundation Research Experience for Teachers. Using an action…

  6. Preservice Teachers' Epistemological Beliefs in Physics, Chemistry, and Biology: A Mixed Study

    Science.gov (United States)

    Topcu, Mustafa Sami

    2013-01-01

    The purposes of the study were to assess preservice teachers' domain-specific epistemological beliefs and to investigate whether preservice teachers distinguish disciplinary differences (physics, chemistry, and biology) in domain-specific epistemological beliefs. Mixed-method research design guided the present research. The researcher explored…

  7. Essential Concepts and Underlying Theories from Physics, Chemistry, and Mathematics for "Biochemistry and Molecular Biology" Majors

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A.; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry,…

  8. Pre-Service Science Teachers' Pedagogical Content Knowledge in the Physics, Chemistry, and Biology Topics

    Science.gov (United States)

    Bektas, Oktay

    2015-01-01

    This study investigated pre-service science teachers' pedagogical content knowledge in the physics, chemistry, and biology topics. These topics were the light and sound, the physical and chemical changes, and reproduction, growth, and evolution. Qualitative research design was utilized. Data were collected from 33 pre-service science teachers…

  9. Using Metaphor Theory to Examine Conceptions of Energy in Biology, Chemistry, and Physics

    Science.gov (United States)

    Lancor, Rachael

    2014-01-01

    Energy is one of the most important unifying themes in science. Yet the way energy is conceptualized varies depending on context. In this paper, the discourse used to explain the role of energy in systems from biology, chemistry, and physics is examined from the perspective of metaphor theory. Six substance metaphors for energy are identified in…

  10. Connecting Biology and Organic Chemistry Introductory Laboratory Courses through a Collaborative Research Project

    Science.gov (United States)

    Boltax, Ariana L.; Armanious, Stephanie; Kosinski-Collins, Melissa S.; Pontrello, Jason K.

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an…

  11. Job Satisfaction Levels of Secondary School Physics, Chemistry and Biology Teachers

    Science.gov (United States)

    Maskan, A. Kadir

    2014-01-01

    The purpose of this study is to determine the job satisfaction levels of the teachers participating in the study and to investigate whether their job satisfaction levels differ with respect to certain variables. The participants of the study were 297 science teachers (physics: 104, chemistry: 105, biology: 87 and 1 N/A) from secondary schools in…

  12. The Gravity of Regenerative Medicine; Physics, Chemistry & Biology behind it

    Directory of Open Access Journals (Sweden)

    Dedeepiya V

    2008-01-01

    Full Text Available The in-vitro expansion of cells of the organs/tissues and their re-implantation into the affected region/ tissue for treating cell/organ failure have been in practice for long, but in limited specialties. The in-vitro cell culture protocols use variety of biological reagents derived from animal sources and recombinant technologies. However, the optimal quantity of such biological components such as growth factors, cytokines etc.,needed for such cells to be grown in a non-physiological environment is still unknown. The use of such biological components have started to stir a controversy of late, due to the recognition of its potential hazards such as spread of prion diseases and contamination with non-human sialic acid proteins. Therefore synthetic reproducible biomaterials are gaining popularity in cell culture and tissue engineering. The biomaterials made of several chemical components based on physical parameters are starting to change certain concepts about the niche of cell culture and that of stem cell expansion and differentiation to specific lineages. Engler et al have already proven that a simple change in the matrix elasticity alone could change the lineage of the cells. Spencer et al have reported that a change in bioelectricity could change the morphogenesis during development. NCRM has been involved in cell culture and tissue engineering using approximately 240 different materials ranging from polymer hydrogel, gel with adherent inserts, nano composite materials, nano-coating technologies, nano-sheets and nano-films. These materials are used in cell culture in different hybrid combinations such as Floating 3D cell culture without adherent components in a homogenous hydrogel. Floating 3D cell culture with anchorage inserts. Flat surface- 2D adherent cell culture. Combined flat surface 2D cell culture (for differentiating cells and floating 3D culture (for undifferentiated cells. These combinations have started yielding several

  13. Piquing Student Interest with Pharmacology: An Interdisciplinary Program Helps High School Students Learn Biology and Chemistry Principles

    Science.gov (United States)

    Halpin, Myra J.; Hoeffler, Leanne; Schwartz-Bloom, Rochelle D.

    2005-01-01

    To help students learn science concepts, Pharmacology Education Partnership (PEP)--a science education program that incorporates relevant topics related to drugs and drug abuse into standard biology and chemistry curricula was developed. The interdisciplinary PEP curriculum provides six modules to teach biology and chemistry principles within the…

  14. ROSics: chemistry and proteomics of cysteine modifications in redox biology.

    Science.gov (United States)

    Kim, Hee-Jung; Ha, Sura; Lee, Hee Yoon; Lee, Kong-Joo

    2015-01-01

    Post-translational modifications (PTMs) occurring in proteins determine their functions and regulations. Proteomic tools are available to identify PTMs and have proved invaluable to expanding the inventory of these tools of nature that hold the keys to biological processes. Cysteine (Cys), the least abundant (1-2%) of amino acid residues, are unique in that they play key roles in maintaining stability of protein structure, participating in active sites of enzymes, regulating protein function and binding to metals, among others. Cys residues are major targets of reactive oxygen species (ROS), which are important mediators and modulators of various biological processes. It is therefore necessary to identify the Cys-containing ROS target proteins, as well as the sites and species of their PTMs. Cutting edge proteomic tools which have helped identify the PTMs at reactive Cys residues, have also revealed that Cys residues are modified in numerous ways. These modifications include formation of disulfide, thiosulfinate and thiosulfonate, oxidation to sulfenic, sulfinic, sulfonic acids and thiosulfonic acid, transformation to dehydroalanine (DHA) and serine, palmitoylation and farnesylation, formation of chemical adducts with glutathione, 4-hydroxynonenal and 15-deoxy PGJ2, and various other chemicals. We present here, a review of relevant ROS biology, possible chemical reactions of Cys residues and details of the proteomic strategies employed for rapid, efficient and sensitive identification of diverse and novel PTMs involving reactive Cys residues of redox-sensitive proteins. We propose a new name, "ROSics," for the science which describes the principles of mode of action of ROS at molecular levels.

  15. Synthesis at the interface of chemistry and biology.

    Science.gov (United States)

    Wu, Xu; Schultz, Peter G

    2009-09-09

    As the focus of synthesis increasingly shifts from its historical emphasis on molecular structure to function, improved strategies are clearly required for the generation of molecules with defined physical, chemical, and biological properties. In contrast, living organisms are remarkably adept at producing molecules and molecular assemblies with an impressive array of functions - from enzymes and antibodies to the photosynthetic center. Thus, the marriage of Nature's synthetic strategies, molecules, and biosynthetic machinery with more traditional synthetic approaches might enable the generation of molecules with properties difficult to achieve by chemical strategies alone. Here we illustrate the potential of this approach and overview some opportunities and challenges in the coming years.

  16. Chemistry and biology of the compounds that modulate cell migration.

    Science.gov (United States)

    Tashiro, Etsu; Imoto, Masaya

    2016-03-01

    Cell migration is a fundamental step for embryonic development, wound repair, immune responses, and tumor cell invasion and metastasis. Extensive studies have attempted to reveal the molecular mechanisms behind cell migration; however, they remain largely unclear. Bioactive compounds that modulate cell migration show promise as not only extremely powerful tools for studying the mechanisms behind cell migration but also as drug seeds for chemotherapy against tumor metastasis. Therefore, we have screened cell migration inhibitors and analyzed their mechanisms for the inhibition of cell migration. In this mini-review, we introduce our chemical and biological studies of three cell migration inhibitors: moverastin, UTKO1, and BU-4664L.

  17. Chemistry and Biology of Essential Oils of Genus Boswellia

    Directory of Open Access Journals (Sweden)

    Hidayat Hussain

    2013-01-01

    Full Text Available The properties of Boswellia plants have been exploited for millennia in the traditional medicines of Africa, China, and especially in the Indian Ayurveda. In Western countries, the advent of synthetic drugs has obscured the pharmaceutical use of Boswellia, until it was reported that an ethanolic extract exerts anti-inflammatory and antiarthritic effects. Frankincense was commonly used for medicinal purposes. This paper aims to provide an overview of current knowledge of the volatile constituents of frankincense, with explicit consideration concerning the diverse Boswellia species. Altogether, more than 340 volatiles in Boswellia have been reported in the literature. In particular, a broad diversity has been found in the qualitative and quantitative composition of the volatiles with respect to different varieties of Boswellia. A detailed discussion of the various biological activities of Boswellia frankincense is also presented.

  18. Chemistry and biology of terpene trilactones from Ginkgo biloba.

    Science.gov (United States)

    Strømgaard, Kristian; Nakanishi, Koji

    2004-03-19

    Ginkgo biloba, the ginkgo tree, is the oldest living tree, with a long history of use in traditional Chinese medicine. In recent years, the leaf extracts have been widely sold as phytomedicine in Europe and as a dietary supplement worldwide. Effects of Ginkgo biloba extracts have been postulated to include improvement of memory, increased blood circulation, as well as beneficial effects to sufferers of Alzheimer's disease. The most unique components of the extracts are the terpene trilactones, that is, ginkgolides and bilobalide. These structurally complex molecules have been attractive targets for total synthesis. Terpene trilactones are believed to be partly responsible for the neuromodulatory properties of Ginkgo biloba extracts, and several biological effects of the terpene trilactones have been discovered in recent years, making them attractive pharmacological tools that could provide insight into the effects of Ginkgo biloba extracts.

  19. Chemistry and biology of reactive oxygen species in signaling or stress responses.

    Science.gov (United States)

    Dickinson, Bryan C; Chang, Christopher J

    2011-07-18

    Reactive oxygen species (ROS) are a family of molecules that are continuously generated, transformed and consumed in all living organisms as a consequence of aerobic life. The traditional view of these reactive oxygen metabolites is one of oxidative stress and damage that leads to decline of tissue and organ systems in aging and disease. However, emerging data show that ROS produced in certain situations can also contribute to physiology and increased fitness. This Perspective provides a focused discussion on what factors lead ROS molecules to become signal and/or stress agents, highlighting how increasing knowledge of the underlying chemistry of ROS can lead to advances in understanding their disparate contributions to biology. An important facet of this emerging area at the chemistry-biology interface is the development of new tools to study these small molecules and their reactivity in complex biological systems.

  20. The chemistry and biological activity of heterocycle-fused quinolinone derivatives: A review.

    Science.gov (United States)

    Shiro, Tomoya; Fukaya, Takayuki; Tobe, Masanori

    2015-06-05

    Among all heterocycles, the heterocycle-fused quinolinone scaffold is one of the privileged structures in drug discovery as heterocycle-fused quinolinone derivatives exhibit various biological activities allowing them to act as anti-inflammatory, anticancer, antidiabetic, and antipsychotic agents. This wide spectrum of biological activity has attracted a great deal of attention in the field of medicinal chemistry. In this review, we provide a comprehensive description of the biological and pharmacological properties of various heterocycle-fused quinolinone scaffolds and discuss the synthetic methods of some of their derivatives.

  1. Recent developments and applications of clickable photoprobes in medicinal chemistry and chemical biology.

    Science.gov (United States)

    Lapinsky, David J; Johnson, Douglas S

    2015-01-01

    Photoaffinity labeling is a well-known biochemical technique that has grown significantly since the turn of the century, principally due to its combination with bioorthogonal/click chemistry reactions. This review highlights new developments and applications of clickable photoprobes in medicinal chemistry and chemical biology. In particular, recent examples of clickable photoprobes for target identification, activity- or affinity-based protein profiling (ABPP or AfBPP), characterization of sterol- or lipid-protein interactions and characterization of ligand-binding sites are presented.

  2. Chemistry and biological activities of flavonoids: an overview.

    Science.gov (United States)

    Kumar, Shashank; Pandey, Abhay K

    2013-01-01

    There has been increasing interest in the research on flavonoids from plant sources because of their versatile health benefits reported in various epidemiological studies. Since flavonoids are directly associated with human dietary ingredients and health, there is need to evaluate structure and function relationship. The bioavailability, metabolism, and biological activity of flavonoids depend upon the configuration, total number of hydroxyl groups, and substitution of functional groups about their nuclear structure. Fruits and vegetables are the main dietary sources of flavonoids for humans, along with tea and wine. Most recent researches have focused on the health aspects of flavonoids for humans. Many flavonoids are shown to have antioxidative activity, free radical scavenging capacity, coronary heart disease prevention, hepatoprotective, anti-inflammatory, and anticancer activities, while some flavonoids exhibit potential antiviral activities. In plant systems, flavonoids help in combating oxidative stress and act as growth regulators. For pharmaceutical purposes cost-effective bulk production of different types of flavonoids has been made possible with the help of microbial biotechnology. This review highlights the structural features of flavonoids, their beneficial roles in human health, and significance in plants as well as their microbial production.

  3. Chemistry and Biological Activities of Flavonoids: An Overview

    Directory of Open Access Journals (Sweden)

    Shashank Kumar

    2013-01-01

    Full Text Available There has been increasing interest in the research on flavonoids from plant sources because of their versatile health benefits reported in various epidemiological studies. Since flavonoids are directly associated with human dietary ingredients and health, there is need to evaluate structure and function relationship. The bioavailability, metabolism, and biological activity of flavonoids depend upon the configuration, total number of hydroxyl groups, and substitution of functional groups about their nuclear structure. Fruits and vegetables are the main dietary sources of flavonoids for humans, along with tea and wine. Most recent researches have focused on the health aspects of flavonoids for humans. Many flavonoids are shown to have antioxidative activity, free radical scavenging capacity, coronary heart disease prevention, hepatoprotective, anti-inflammatory, and anticancer activities, while some flavonoids exhibit potential antiviral activities. In plant systems, flavonoids help in combating oxidative stress and act as growth regulators. For pharmaceutical purposes cost-effective bulk production of different types of flavonoids has been made possible with the help of microbial biotechnology. This review highlights the structural features of flavonoids, their beneficial roles in human health, and significance in plants as well as their microbial production.

  4. Life as physics and chemistry: A system view of biology.

    Science.gov (United States)

    Baverstock, Keith

    2013-04-01

    Cellular life can be viewed as one of many physical natural systems that extract free energy from their environments in the most efficient way, according to fundamental physical laws, and grow until limited by inherent physical constraints. Thus, it can be inferred that it is the efficiency of this process that natural selection acts upon. The consequent emphasis on metabolism, rather than replication, points to a metabolism-first origin of life with the adoption of DNA template replication as a second stage development. This order of events implies a cellular regulatory system that pre-dates the involvement of DNA and might, therefore, be based on the information acquired as peptides fold into proteins, rather than on genetic regulatory networks. Such an epigenetic cell regulatory model, the independent attractor model, has already been proposed to explain the phenomenon of radiation induced genomic instability. Here it is extended to provide an epigenetic basis for the morphological and functional diversity that evolution has yielded, based on natural selection of the most efficient free energy transduction. Empirical evidence which challenges the current genetic basis of cell and molecular biology and which supports the above proposal is discussed.

  5. Understanding recognition and self-assembly in biology using the chemist's toolbox. Insight into medicinal chemistry.

    Science.gov (United States)

    Quirolo, Z B; Benedini, L A; Sequeira, M A; Herrera, M G; Veuthey, T V; Dodero, V I

    2014-01-01

    Medicinal chemistry is intimately connected with basic science such as organic synthesis, chemical biology and biophysical chemistry among other disciplines. The reason of such connections is due to the power of organic synthesis to provide designed molecules; chemical biology to give tools to discover biological and/or pathological pathways and biophysical chemistry which provides the techniques to characterize and the theoretical background to understand molecular behaviour. The present review provides some selective examples of these research areas. Initially, template dsDNA organic synthesis and the spatio-temporal control of transcription are presenting following by the supramolecular entities used in drug delivery, such as liposomes and liquid crystal among others. Finally, peptides and protein self-assembly is connected with biomaterials and as an important event in the balance between health and disease. The final aim of the present review is to show the power of chemical tools not only for the synthesis of new molecules but also to improve our understanding of recognition and self-assembly in the biological context.

  6. Design, synthesis, and biological evaluation of novel histone deacetylase 1 inhibitors through click chemistry.

    Science.gov (United States)

    Sun, Qiao; Yao, Yiwu; Liu, Chunping; Li, Hua; Yao, Hequan; Xue, Xiaowen; Liu, Jinsong; Tu, Zhengchao; Jiang, Sheng

    2013-06-01

    We report the design, synthesis, and biological evaluation of a new series of HDAC1 inhibitors using click chemistry. Compound 17 bearing a phenyl ring at meta-position was identified to show much better selectivity for HDAC1 over HDAC7 than SAHA. The compond 17 also showed better in vitro anticancer activities against several cancer cell lines than that of SAHA. This work could serve as a foundation for further exploration of selective HDAC inhibitors using the compound 17 molecular scaffold.

  7. Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity

    Directory of Open Access Journals (Sweden)

    Hee Jae Shin

    2013-08-01

    Full Text Available Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed.

  8. Designing a 'neotissue' using the principles of biology, chemistry and engineering.

    Science.gov (United States)

    Nannaparaju, Madhusudhan; Oragui, Emeka; Khan, Wasim S

    2012-01-01

    The traditional methods of treating musculoskeletal injuries and disorders are not completely effective and have several limitations. Tissue engineering involves using the principles of biology, chemistry and engineering to design a 'neotissue' that augments a malfunctioning in vivo tissue. The main requirements for functional engineered tissue include reparative cellular components that proliferate on a scaffold grown within a bioreactor that provides specific biochemical and physical signals to regulate cell differentiation and tissue assembly. In this review we provide an overview of the biology of common musculoskeletal tissue and discuss their common pathologies. We also describe the commonly used stem cells, scaffolds and bioreactors and evaluate their role in issue engineering.

  9. Inorganic sulfur-nitrogen compounds: from gunpowder chemistry to the forefront of biological signaling.

    Science.gov (United States)

    Cortese-Krott, Miriam M; Butler, Anthony R; Woollins, J Derek; Feelisch, Martin

    2016-04-14

    The reactions between inorganic sulfur and nitrogen-bearing compounds to form S-N containing species have a long history and, besides assuming importance in industrial synthetic processes, are of relevance to microbial metabolism; waste water treatment; aquatic, soil and atmospheric chemistry; and combustion processes. The recent discovery that hydrogen sulfide and nitric oxide exert often similar, sometimes mutually dependent effects in a variety of biological systems, and that the chemical interaction of these two species leads to formation of S-N compounds brought this chemistry to the attention of physiologists, biochemists and physicians. We here provide a perspective about the potential role of S-N compounds in biological signaling and briefly review their chemical properties and bioactivities in the context of the chronology of their discovery. Studies of the biological role of NO revealed why its chemistry is ideally suited for the tasks Nature has chosen for it; realising how the distinctive properties of sulfur can enrich this bioactivity does much to revive 'die Freude am experimentellen Spiel' of the pioneers in this field.

  10. Introducing chemical biology applications to introductory organic chemistry students using series of weekly assignments.

    Science.gov (United States)

    Kanin, Maralee R; Pontrello, Jason K

    2016-01-01

    Calls to bring interdisciplinary content and examples into introductory science courses have increased, yet strategies that involve course restructuring often suffer from the need for a significant faculty commitment to motivate change. Minimizing the need for dramatic course reorganization, the structure, reactivity, and chemical biology applications of classes of biological monomers and polymers have been integrated into introductory organic chemistry courses through three series of semester-long weekly assignments that explored (a) Carbohydrates and Oligosaccharides, (b) Amino Acids, Peptides, and Proteins, and (c) Nucleosides, Nucleotides, and Nucleic Acids. Comparisons of unannounced pre- and post tests revealed improved understanding of a reaction introduced in the assignments, and course examinations evaluated cumulative assignment topics. Course surveys revealed that demonstrating biologically relevant applications consistently throughout the semesters enhanced student interest in the connection between basic organic chemistry content and its application to new and unfamiliar bio-related examples. Covering basic material related to these classes of molecules outside of the classroom opened lecture time to allow the instructor to further build on information developed through the weekly assignments, teaching advanced topics and applications typically not covered in an introductory organic chemistry lecture course. Assignments were implemented as homework, either with or without accompanying discussion, in both laboratory and lecture organic courses within the context of the existing course structures.

  11. Synthetic biology and biomimetic chemistry as converging technologies fostering a new generation of smart biosensors.

    Science.gov (United States)

    Scognamiglio, Viviana; Antonacci, Amina; Lambreva, Maya D; Litescu, Simona C; Rea, Giuseppina

    2015-12-15

    Biosensors are powerful tunable systems able to switch between an ON/OFF status in response to an external stimulus. This extraordinary property could be engineered by adopting synthetic biology or biomimetic chemistry to obtain tailor-made biosensors having the desired requirements of robustness, sensitivity and detection range. Recent advances in both disciplines, in fact, allow to re-design the configuration of the sensing elements - either by modifying toggle switches and gene networks, or by producing synthetic entities mimicking key properties of natural molecules. The present review considered the role of synthetic biology in sustaining biosensor technology, reporting examples from the literature and reflecting on the features that make it a useful tool for designing and constructing engineered biological systems for sensing application. Besides, a section dedicated to bioinspired synthetic molecules as powerful tools to enhance biosensor potential is reported, and treated as an extension of the concept of biomimetic chemistry, where organic synthesis is used to generate artificial molecules that mimic natural molecules. Thus, the design of synthetic molecules, such as aptamers, biomimetics, molecular imprinting polymers, peptide nucleic acids, and ribozymes were encompassed as "products" of biomimetic chemistry.

  12. Taming sulfur dioxide: a breakthrough for its wide utilization in chemistry and biology.

    Science.gov (United States)

    Bisseret, Philippe; Blanchard, Nicolas

    2013-09-07

    Although sulfur dioxide (SO2) has been used as a reagent for organic chemistry for more than one hundred years, being endowed with quite a distinct and varied reactivity profile, which allows the synthesis of a large range of compounds, its notorious toxicity as well as its gaseous state have impeded its frequent utilization by chemists. We summarize recent studies in this emerging area aimed at stimulating its utilization in organic (including organometallic) chemistry thanks to the development of innocuous, bench-stable reliable SO2 donors. Proof-of-concept experiments have also been recently performed in biology with the design of organic SO2 donors having controlled release profiles under physiological conditions, either active against mycobacteria or used for clarifying the role of endogenously produced SO2 in living cells.

  13. Interconnection of reactive oxygen species chemistry across the interfaces of atmospheric, environmental, and biological processes.

    Science.gov (United States)

    Anglada, Josep M; Martins-Costa, Marilia; Francisco, Joseph S; Ruiz-López, Manuel F

    2015-03-17

    Oxidation reactions are ubiquitous and play key roles in the chemistry of the atmosphere, in water treatment processes, and in aerobic organisms. Ozone (O3), hydrogen peroxide (H2O2), hydrogen polyoxides (H2Ox, x > 2), associated hydroxyl and hydroperoxyl radicals (HOx = OH and HO2), and superoxide and ozonide anions (O2(-) and O3(-), respectively) are the primary oxidants in these systems. They are commonly classified as reactive oxygen species (ROS). Atmospheric chemistry is driven by a complex system of chain reactions of species, including nitrogen oxides, hydroxyl and hydroperoxide radicals, alkoxy and peroxy radicals, and ozone. HOx radicals contribute to keeping air clean, but in polluted areas, the ozone concentration increases and creates a negative impact on plants and animals. Indeed, ozone concentration is used to assess air quality worldwide. Clouds have a direct effect on the chemical composition of the atmosphere. On one hand, cloud droplets absorb many trace atmospheric gases, which can be scavenged by rain and fog. On the other hand, ionic species can form in this medium, which makes the chemistry of the atmosphere richer and more complex. Furthermore, recent studies have suggested that air-cloud interfaces might have a significant impact on the overall chemistry of the troposphere. Despite the large differences in molecular composition, concentration, and thermodynamic conditions among atmospheric, environmental, and biological systems, the underlying chemistry involving ROS has many similarities. In this Account, we examine ROS and discuss the chemical characteristics common to all of these systems. In water treatment, ROS are key components of an important subset of advanced oxidation processes. Ozonation, peroxone chemistry, and Fenton reactions play important roles in generating sufficient amounts of hydroxyl radicals to purify wastewater. Biochemical processes within living organisms also involve ROS. These species can come from pollutants in

  14. Connecting synthetic chemistry decisions to cell and genome biology using small-molecule phenotypic profiling.

    Science.gov (United States)

    Wagner, Bridget K; Clemons, Paul A

    2009-12-01

    Discovering small-molecule modulators for thousands of gene products requires multiple stages of biological testing, specificity evaluation, and chemical optimization. Many cellular profiling methods, including cellular sensitivity, gene expression, and cellular imaging, have emerged as methods to assess the functional consequences of biological perturbations. Cellular profiling methods applied to small-molecule science provide opportunities to use complex phenotypic information to prioritize and optimize small-molecule structures simultaneously against multiple biological endpoints. As throughput increases and cost decreases for such technologies, we see an emerging paradigm of using more information earlier in probe-discovery and drug-discovery efforts. Moreover, increasing access to public datasets makes possible the construction of 'virtual' profiles of small-molecule performance, even when multiplexed measurements were not performed or when multidimensional profiling was not the original intent. We review some key conceptual advances in small-molecule phenotypic profiling, emphasizing connections to other information, such as protein-binding measurements, genetic perturbations, and cell states. We argue that to maximally leverage these measurements in probe-discovery and drug-discovery requires a fundamental connection to synthetic chemistry, allowing the consequences of synthetic decisions to be described in terms of changes in small-molecule profiles. Mining such data in the context of chemical structure and synthesis strategies can inform decisions about chemistry procurement and library development, leading to optimal small-molecule screening collections.

  15. Fundamental and functional aspects of mesoscopic architectures with examples in physics, cell biology, and chemistry.

    Science.gov (United States)

    Kalay, Ziya

    2011-08-01

    How small can a macroscopic object be made without losing its intended function? Obviously, the smallest possible size is determined by the size of an atom, but it is not so obvious how many atoms are required to assemble an object so small, and yet that performs the same function as its macroscopic counterpart. In this review, we are concerned with objects of intermediate nature, lying between the microscopic and the macroscopic world. In physics and chemistry literature, this regime in-between is often called mesoscopic, and is known to bear interesting and counterintuitive features. After a brief introduction to the concept of mesoscopic systems from the perspective of physics, we discuss the functional aspects of mesoscopic architectures in cell biology, and supramolecular chemistry through many examples from the literature. We argue that the biochemistry of the cell is largely regulated by mesoscopic functional architectures; however, the significance of mesoscopic phenomena seems to be quite underappreciated in biological sciences. With this motivation, one of our main purposes here is to emphasize the critical role that mesoscopic structures play in cell biology and biochemistry.

  16. Emerging trends at the interface of chemistry and biology: Applications to the design of human therapeutics

    Indian Academy of Sciences (India)

    Santanu Bhattacharya; Raghavan Varadarajan

    2010-03-01

    This article describes recent developments in the design and implementation of various strategies towards the development of novel therapeutics using first principles from biology and chemistry. Strategies for multi-target therapeutics and network analysis with a focus on cancer and HIV are discussed. Methods for gene and siRNA delivery are presented along with challenges and opportunities for siRNA therapeutics. Advances in protein design methodology and screening are described, with a focus on their application to the design of antibody based therapeutics. Future advances in this area relevant to vaccine design are also mentioned.

  17. What is the purpose of launching World Journal of Biological Chemistry?

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The first issue of World Journal of Biological Chemistry (WJBC ), whose preparatory work was initiated on July 01, 2009, will be published on January 26, 2010. The WJBC Editorial Board has now been established and consists of 341 distinguished experts from 37 countries. Our purpose of launching WJBC is to publish peer-reviewed, high-quality articles via an open-access online publishing model, thereby acting as a platform for communication between peers and the wider public, and maximizing the benefits to editorial board members, authors and readers.

  18. A review on biological sources, chemistry and pharmacological activities of pinostrobin.

    Science.gov (United States)

    Patel, Neeraj K; Jaiswal, Gaurav; Bhutani, Kamlesh K

    2016-09-01

    Pinostrobin, a dietary bioflavonoid discovered more than 6 decades ago in the heart-wood of pine (Pinus strobus), has depicted many pharmacological activities including anti-viral, anti-oxidant, anti-leukaemic, anti-inflammatory and anti-aromatase activities. It is an inhibitor of sodium channel and Ca(2+) signalling pathways and also inhibits intestinal smooth muscle contractions. In spite of the fact that pinostrobin has an application as functional foods, till-to-date no comprehensive review on pinostrobin has been carried out. Hence, the present review deals with the biological sources, chemistry and pharmacological activities of pinostrobin.

  19. Research Data in Core Journals in Biology, Chemistry, Mathematics, and Physics.

    Directory of Open Access Journals (Sweden)

    Ryan P Womack

    Full Text Available This study takes a stratified random sample of articles published in 2014 from the top 10 journals in the disciplines of biology, chemistry, mathematics, and physics, as ranked by impact factor. Sampled articles were examined for their reporting of original data or reuse of prior data, and were coded for whether the data was publicly shared or otherwise made available to readers. Other characteristics such as the sharing of software code used for analysis and use of data citation and DOIs for data were examined. The study finds that data sharing practices are still relatively rare in these disciplines' top journals, but that the disciplines have markedly different practices. Biology top journals share original data at the highest rate, and physics top journals share at the lowest rate. Overall, the study finds that within the top journals, only 13% of articles with original data published in 2014 make the data available to others.

  20. Review and needs in actinide chemistry in relation with biological purposes

    Energy Technology Data Exchange (ETDEWEB)

    Ansoborlo, E.; Moulin, V.; Bion, L.; Doizi, D.; Moulin, C.; Cote, G.; Madic, C.; Van der Lee, J

    2004-07-01

    In case of accidental release of radionuclides in the environment, actinides could occur and may present an healthy risk for human beings. In order to study their behavior in human organism (metabolism, retention, excretion), it is of prime importance to know solution actinide chemistry, and more particularly thermodynamic constants, which will allow to determine their speciation: speciation governs biological availability and toxicity of elements and is also of great interest for decorporation purposes. In this framework, a CEA working group on speciation has been created in order to share data both on thermodynamic constants and on speciation analytical methods, interesting chemists, environmentalists and biologists. It has been focused, in a first time, on actinides. The purpose of this paper is to present the state of the art on actinide speciation within biological media and to focus on the lack of information in order to orientate future research. (authors)

  1. Teleology in biology, chemistry and physics education: what primary teachers should know

    Directory of Open Access Journals (Sweden)

    KOSTAS KAMPOURAKIS

    2007-01-01

    Full Text Available Recent research in cognitive psychology suggests that children develop intuitions that may clash with what is accepted by scientists, thus making certain scientific concepts difficult to understand. Children possess intuitions about design and purpose that make them provide teleological explanations to many different sorts of tasks. One possible explanation for the origin of the bias to view objects as made for something derives from an early sensitivity to intentional agents and to their behavior as intentional object users and object makers. What is important is that teleological explanations may not be exclusively restricted in biological phenomena, as commonly assumed. Consequently, primary school teachers should take that into account when teaching biology, chemistry or physics concepts and try to refrain from enforcing students’ teleological intuitions.

  2. [Research progress and trend analysis of biology and chemistry of Taxus medicinal resources].

    Science.gov (United States)

    Hao, Da-Cheng; Xiao, Pei-Gen; Peng, Yong; Liu, Ming; Huo, Li

    2012-07-01

    Taxus is the source plant of anti-cancer drug paclitaxel and its biosynthetic precursor, analogs and derivatives, which has been studying for decades. There are many endemic Taxus species in China, which have been studied in the field of multiple disciplines. Based on the recent studies of the researchers, this review comments on the study of Taxus biology and chemistry. The bibliometric method is used to quantify the global scientific production of Taxus-related research, and identify patterns and tendencies of Taxus-related articles. Gaps are present in knowledge about the genomics, epigenomics, transcriptomics, proteomics, metabolomics and bioinformatics of Taxus and their endophytic fungi. Systems biology and various omics technologies will play an increasingly important role in the coming decades.

  3. Research Data in Core Journals in Biology, Chemistry, Mathematics, and Physics.

    Science.gov (United States)

    Womack, Ryan P

    2015-01-01

    This study takes a stratified random sample of articles published in 2014 from the top 10 journals in the disciplines of biology, chemistry, mathematics, and physics, as ranked by impact factor. Sampled articles were examined for their reporting of original data or reuse of prior data, and were coded for whether the data was publicly shared or otherwise made available to readers. Other characteristics such as the sharing of software code used for analysis and use of data citation and DOIs for data were examined. The study finds that data sharing practices are still relatively rare in these disciplines' top journals, but that the disciplines have markedly different practices. Biology top journals share original data at the highest rate, and physics top journals share at the lowest rate. Overall, the study finds that within the top journals, only 13% of articles with original data published in 2014 make the data available to others.

  4. Integrative Biological Chemistry Program Includes The Use Of Informatics Tools, GIS And SAS Software Applications.

    Science.gov (United States)

    D'Souza, Malcolm J; Kashmar, Richard J; Hurst, Kent; Fiedler, Frank; Gross, Catherine E; Deol, Jasbir K; Wilson, Alora

    Wesley College is a private, primarily undergraduate minority-serving institution located in the historic district of Dover, Delaware (DE). The College recently revised its baccalaureate biological chemistry program requirements to include a one-semester Physical Chemistry for the Life Sciences course and project-based experiential learning courses using instrumentation, data-collection, data-storage, statistical-modeling analysis, visualization, and computational techniques. In this revised curriculum, students begin with a traditional set of biology, chemistry, physics, and mathematics major core-requirements, a geographic information systems (GIS) course, a choice of an instrumental analysis course or a statistical analysis systems (SAS) programming course, and then, students can add major-electives that further add depth and value to their future post-graduate specialty areas. Open-sourced georeferenced census, health and health disparity data were coupled with GIS and SAS tools, in a public health surveillance system project, based on US county zip-codes, to develop use-cases for chronic adult obesity where income, poverty status, health insurance coverage, education, and age were categorical variables. Across the 48 contiguous states, obesity rates are found to be directly proportional to high poverty and inversely proportional to median income and educational achievement. For the State of Delaware, age and educational attainment were found to be limiting obesity risk-factors in its adult population. Furthermore, the 2004-2010 obesity trends showed that for two of the less densely populated Delaware counties; Sussex and Kent, the rates of adult obesity were found to be progressing at much higher proportions when compared to the national average.

  5. Using biocatalysis to integrate organic chemistry into a molecular biology laboratory course.

    Science.gov (United States)

    Beers, Mande; Archer, Crystal; Feske, Brent D; Mateer, Scott C

    2012-01-01

    Current cutting-edge biomedical investigation requires that the researcher have an operational understanding of several diverse disciplines. Biocatalysis is a field of science that operates at the crossroads of organic chemistry, biochemistry, microbiology, and molecular biology, and provides an excellent model for interdisciplinary research. We have developed an inquiry-based module that uses the mutagenesis of the yeast reductase, YDL124w, to study the bioorganic synthesis of the taxol side-chain, a pharmacologically important molecule. Using related structures, students identify regions they think will affect enzyme stereoselective, design and generate site-specific mutants, and then characterize the effect of these changes on enzyme activity. This laboratory activity gives our students experience, working in a scientific discipline outside of biology and exposes them to techniques and equipment they do not normally work with in a molecular biology course. These inter-disciplinary experiences not only show the relevance of other sciences to biology, but also give our students the ability to communicate more effectively with scientists outside their discipline.

  6. Gas-Phase Covalent And Non-Covalent Ion/ion Chemistry Of Biological Macromolecules

    OpenAIRE

    Stutzman, John Robert

    2013-01-01

    Gas-phase ion/ion chemistry involves the interaction of oppositely charged ions inside of the mass spectrometer. During this gas-phase chemistry, particle transfer (i.e., proton and electron) or synthesis can occur at rapid reaction rates. Particle transfer represents a mature area of ion/ion chemistry, while selective covalent modification represents a fairly new area of gas-phase chemistry. Gas-phase covalent chemistry is based on traditional solution phase organic chemistry. The work de...

  7. Bioorthogonal chemistry:a covalent strategy for the study of biological systems

    Institute of Scientific and Technical Information of China (English)

    LIM; Reyna; K.V.

    2010-01-01

    The development of genetically encoded,wavelength-tunable fluorescent proteins has provided a powerful imaging tool to the study of protein dynamics and functions in cellular and organismal biology.However,many biological functions are not directly encoded in the protein primary sequence,e.g.,dynamic regulation afforded by protein posttranslational modifications such as phosphorylation.To meet this challenge,an emerging field of bioorthogonal chemistry has promised to offer a versatile strategy to selectively label a biomolecule of interest and track their dynamic regulations in its native habitat.This strategy has been successfully applied to the studies of all classes of biomolecules in living systems,including proteins,nucleic acids,carbohydrates,and lipids.Whereas the incorporation of a bioorthogonal reporter site-selectively into a biomolecule through either genetic or metabolic approaches has been well established,the development of bioorthogonal reactions that allow fast ligation of exogenous chemical probes with the bioorthogonal reporter in living systems remains in its early stage.Here,we review the recent development of bioorthogonal reactions and their applications in various biological systems,with a detailed discussion about our own work―the development of the tetrazole-based,photoinducible 1,3-dipolar cycloaddition reaction.

  8. Fluorescent oligo and poly-thiophenes and their utilization for recording biological events of diverse origin—when organic chemistry meets biology

    OpenAIRE

    Åslund, Andreas; Nilsson, K. Peter R.; Konradsson, Peter

    2009-01-01

    The technique of using luminescent oligo-thiophenes and luminescent conjugated poly-thiophenes to monitor biological processes has gained increased interest from scientists within different research areas, ranging from organic chemistry and photo-physics to biology since its introduction. The technique is generally straightforward and requires only standard equipment, and the result is available within minutes from sample preparation. In this review, the syntheses of oligo and polythiophenes ...

  9. The role of energy in the emergence of biology from chemistry.

    Science.gov (United States)

    Dibrova, Daria V; Chudetsky, Michail Y; Galperin, Michael Y; Koonin, Eugene V; Mulkidjanian, Armen Y

    2012-10-01

    Any scenario of the transition from chemistry to biology should include an "energy module" because life can exist only when supported by energy flow(s). We addressed the problem of primordial energetics by combining physico-chemical considerations with phylogenomic analysis. We propose that the first replicators could use abiotically formed, exceptionally photostable activated cyclic nucleotides both as building blocks and as the main energy source. Nucleoside triphosphates could replace cyclic nucleotides as the principal energy-rich compounds at the stage of the first cells, presumably because the metal chelates of nucleoside triphosphates penetrated membranes much better than the respective metal complexes of nucleoside monophosphates. The ability to exploit natural energy flows for biogenic production of energy-rich molecules could evolve only gradually, after the emergence of sophisticated enzymes and ion-tight membranes. We argue that, in the course of evolution, sodium-dependent membrane energetics preceded the proton-based energetics which evolved independently in bacteria and archaea.

  10. Using Metaphor Theory to Examine Conceptions of Energy in Biology, Chemistry, and Physics

    Science.gov (United States)

    Lancor, Rachael

    2014-06-01

    Energy is one of the most important unifying themes in science. Yet the way energy is conceptualized varies depending on context. In this paper, the discourse used to explain the role of energy in systems from biology, chemistry, and physics is examined from the perspective of metaphor theory. Six substance metaphors for energy are identified in pedagogical discourse (i.e., textbooks and the science education literature): energy as a substance that can be accounted for, can flow, can be carried, can change forms, can be lost, and can be an ingredient, a product or stored in some way. Each of these conceptual metaphors highlight and obscure various characteristics of energy, and provide a set of frameworks that each afford a different understanding of the energy concept.

  11. Enhancing Student Success in Biology, Chemistry, and Physics by Transforming the Faculty Culture

    Science.gov (United States)

    Jackson, Howard; Smith, Leigh; Koenig, Kathleen; Beyette, Jill; Kinkle, Brian; Vonderheide, Anne

    We present preliminary results of an effort to enhance undergraduate student success in the STEM disciplines. We explore a multistep approach that reflects recent literature and report initial results by each of the Departments of Biology, Chemistry, and Physics of implementing several change strategies. The central elements of our approach involve identified departmental Teaching and Learning Liaisons, a unique faculty development component by our teaching center, a vertical integration of leadership across department heads, the Dean, and the Provost, and the explicit acknowledgement that change happens locally. Teaching and Learning lunches across the departments have attracted an attendance of ~65% of the faculty. The use of Learning Assistants in classrooms has also increased sharply. Modest changes in the student success rates have been observed. These efforts and others at the decanal and provostal levels promise changes in student success. We acknowledge the financial support of the National Science Foundation through DUE 1544001 and 1431350.

  12. Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet.

    Science.gov (United States)

    Wende, Kristian; Williams, Paul; Dalluge, Joe; Gaens, Wouter Van; Aboubakr, Hamada; Bischof, John; von Woedtke, Thomas; Goyal, Sagar M; Weltmann, Klaus-Dieter; Bogaerts, Annemie; Masur, Kai; Bruggeman, Peter J

    2015-06-06

    The mechanism of interaction of cold nonequilibrium plasma jets with mammalian cells in physiologic liquid is reported. The major biological active species produced by an argon RF plasma jet responsible for cell viability reduction are analyzed by experimental results obtained through physical, biological, and chemical diagnostics. This is complemented with chemical kinetics modeling of the plasma source to assess the dominant reactive gas phase species. Different plasma chemistries are obtained by changing the feed gas composition of the cold argon based RF plasma jet from argon, humidified argon (0.27%), to argon/oxygen (1%) and argon/air (1%) at constant power. A minimal consensus physiologic liquid was used, providing isotonic and isohydric conditions and nutrients but is devoid of scavengers or serum constituents. While argon and humidified argon plasma led to the creation of hydrogen peroxide dominated action on the mammalian cells, argon-oxygen and argon-air plasma created a very different biological action and was characterized by trace amounts of hydrogen peroxide only. In particular, for the argon-oxygen (1%), the authors observed a strong negative effect on mammalian cell proliferation and metabolism. This effect was distance dependent and showed a half life time of 30 min in a scavenger free physiologic buffer. Neither catalase and mannitol nor superoxide dismutase could rescue the cell proliferation rate. The strong distance dependency of the effect as well as the low water solubility rules out a major role for ozone and singlet oxygen but suggests a dominant role of atomic oxygen. Experimental results suggest that O reacts with chloride, yielding Cl2(-) or ClO(-). These chlorine species have a limited lifetime under physiologic conditions and therefore show a strong time dependent biological activity. The outcomes are compared with an argon MHz plasma jet (kinpen) to assess the differences between these (at least seemingly) similar plasma sources.

  13. Critical-Thinking Grudge Match: Biology vs. Chemistry--Examining Factors That Affect Thinking Skill in Nonmajors Science

    Science.gov (United States)

    Quitadamo, Ian J.; Kurtz, Martha J.; Cornell, Caitlyn Nicole; Griffith, Lindsay; Hancock, Julie; Egbert, Brandi

    2011-01-01

    Chemistry students appear to bring significantly higher critical-thinking skill to their nonmajors course than do biology students. Knowing student preconceptions and thinking ability is essential to learning growth and effective teaching. Of the factors investigated, ethnicity and high school physics had the largest impact on critical-thinking…

  14. Practical Work in Biology, Chemistry and Physics at Lower Secondary and General Upper Secondary Schools in Slovenia

    Science.gov (United States)

    Sorgo, Andrej; Spernjak, Andreja

    2012-01-01

    Syllabi in the science subjects, biology, chemistry and physics at lower and general upper secondary school are compared in the light of their underlying philosophies, goals, objectives and recognized importance in science teaching. Even though all syllabi were prepared within the same framework, great differences among syllabi concerning…

  15. Water as Life, Death, and Power: Building an Integrated Interdisciplinary Course Combining Perspectives from Anthropology, Biology, and Chemistry

    Science.gov (United States)

    Willermet, Cathy; Mueller, Anja; Juris, Stephen J.; Drake, Eron; Upadhaya, Samik; Chhetri, Pratik

    2013-01-01

    In response to a request from a campus student organization, faculty from three fields came together to develop and teach an integrated interdisciplinary course on water issues and social activism. This course, "Water as Life, Death, and Power", brought together topics from the fields of anthropology, biology and chemistry to explore…

  16. Two Methods of Determining Total Phenolic Content of Foods and Juices in a General, Organic, and Biological (GOB) Chemistry Lab

    Science.gov (United States)

    Shaver, Lee Alan; Leung, Sam H.; Puderbaugh, Amy; Angel, Stephen A.

    2011-01-01

    The determination of total phenolics in foods and fruit juices was used successfully as a laboratory experiment in our undergraduate general, organic, and biological (GOB) chemistry course. Two different colorimetric methods were used over three years and comparative student results indicate that a ferrous ammonium sulfate (FAS) indicator…

  17. Mentha suaveolens Ehrh. (Lamiaceae Essential Oil and Its Main Constituent Piperitenone Oxide: Biological Activities and Chemistry

    Directory of Open Access Journals (Sweden)

    Mijat Božović

    2015-05-01

    Full Text Available Since herbal medicines play an important role in the treatment of a wide range of diseases, there is a growing need for their quality control and standardization. Mentha suaveolens Ehrh. (MS is an aromatic herb with fruit and a spearmint flavor, used in the Mediterranean areas as a traditional medicine. It has an extensive range of biological activities, including cytotoxic, antimicrobial, antioxidant, anti-inflammatory, hypotensive and insecticidal properties, among others. This study aims to review the scientific findings and research reported to date on MS that prove many of the remarkable various biological actions, effects and some uses of this species as a source of bioactive natural compounds. On the other hand, piperitenone oxide (PO, the major chemical constituent of the carvone pathway MS essential oil, has been reported to exhibit numerous bioactivities in cells and animals. Thus, this integrated overview also surveys and interprets the present knowledge of chemistry and analysis of this oxygenated monoterpene, as well as its beneficial bioactivities. Areas for future research are suggested.

  18. Substrate chemistry influences the morphology and biological function of adsorbed extracellular matrix assemblies.

    Science.gov (United States)

    Sherratt, Michael J; Bax, Daniel V; Chaudhry, Shazia S; Hodson, Nigel; Lu, Jian R; Saravanapavan, Priya; Kielty, Cay M

    2005-12-01

    In addition to mediating cell signalling events, native extracellular matrix (ECM) assemblies interact with other ECM components, act as reservoirs for soluble signalling molecules and perform structural roles. The potential of native ECM assemblies in the manufacture of biomimetic materials has not been fully exploited due, in part, to the effects of substrate interactions on their morphology. We have previously demonstrated that the ECM components, fibrillin and type VI collagen microfibrils, exhibit substrate dependent morphologies on chemically and topographically variable heterogeneous surfaces. Using both cleaning and coating approaches on silicon wafers and glass coverslips we have produced chemically homogeneous, topographically similar substrates which cover a large amphiphilic range. Extremes of substrate amphiphilicity induced morphological changes in periodicity, curvature and lateral spreading which may mask binding sites or disrupt domain structure. Biological functionality, as assayed by the ability to support cell spreading, was significantly reduced for fibrillin microfibrils adsorbed on highly hydrophilic substrates (contact angle 20.7 degrees) compared with less hydrophilic (contact angle 38.3 degrees) and hydrophobic (contact angle 92.8 degrees) substrates. With an appropriate choice of surface chemistry, multifunctional ECM assemblies retain their native morphology and biological functionality.

  19. A mini review on chemistry and biology of Holoptelea integrifolia Roxb. Planch (Ulmaceae)

    Institute of Scientific and Technical Information of China (English)

    Dinesh Kumar; Karunesh Kumar; Jyoti Gupta; Navita Bishnoi; Sunil Kumar

    2012-01-01

    Holoptelea integrifolia Roxb. (Indian Elm) is a very useful and popular traditional medicinal plant in India. During the last three decades, apart from the chemistry of plant compounds, considerable progress regarding the biological activity and medicinal applications of Indian Elm has been achieved. Ethno-medically, the leaves and stem bark of this plant have been used by tribes as antiviral, antioxidant, antimicrobial, abortifacient preparations and in the management of cancer. Recent studies on plant show that it has potential to fight against tumor and obesity as well. Phytochemical investigation shows the presence of chemical constituents such as terpenoids, alkaloids, glycosides, carbohydrates, steroids, sterols, saponins, tannins, proteins and flavanoids. The isolated principles such as β-amyrin, β-sitosterol, holoptelin-A, holoptelin-B, hederagenin, hexacosanol, β-D-glucose, friedelin, epifriedelin, 2-amino naphthoquinone, 1,4-naphthalenedione, are considered as responsible for various activities. This review highlights the traditional uses, reported biological/pharmacological activities, isolated compounds and therapeutic applications of Holoptelea integrifolia which might be helpful for scientists and researchers to find out new chemical entities responsible for its claimed traditional uses.

  20. Mentha suaveolens Ehrh. (Lamiaceae) Essential Oil and Its Main Constituent Piperitenone Oxide: Biological Activities and Chemistry.

    Science.gov (United States)

    Božović, Mijat; Pirolli, Adele; Ragno, Rino

    2015-05-13

    Since herbal medicines play an important role in the treatment of a wide range of diseases, there is a growing need for their quality control and standardization. Mentha suaveolens Ehrh. (MS) is an aromatic herb with fruit and a spearmint flavor, used in the Mediterranean areas as a traditional medicine. It has an extensive range of biological activities, including cytotoxic, antimicrobial, antioxidant, anti-inflammatory, hypotensive and insecticidal properties, among others. This study aims to review the scientific findings and research reported to date on MS that prove many of the remarkable various biological actions, effects and some uses of this species as a source of bioactive natural compounds. On the other hand, piperitenone oxide (PO), the major chemical constituent of the carvone pathway MS essential oil, has been reported to exhibit numerous bioactivities in cells and animals. Thus, this integrated overview also surveys and interprets the present knowledge of chemistry and analysis of this oxygenated monoterpene, as well as its beneficial bioactivities. Areas for future research are suggested.

  1. Processes that Drove the Transition from Chemistry to Biology: Concepts and Evidence

    Science.gov (United States)

    Pohorille, Andrew

    2012-01-01

    Two properties are particularly germane to the transition from chemistry to biology. One is the emergence of complex molecules (polymers) capable of performing non-trivial functions, such as catalysis, energy transduction or transport across cell walls. The other is the ability of several functions to work in concert to provide reproductive advantage to systems hosting these functions. Biological systems exhibit these properties at remarkable levels of efficiency and accuracy in a way that appears effortless. However, dissection of these properties reveals great complexities that are involved. This opens a question: how a simple, ancestral system could have acquired the required properties? Other questions follow. What are the chances that a functional polymer emerges at random? What is the minimum structural complexity of a polymer to carry out a function at a reasonable level of efficiency? Can we identify concrete, protobiologically plausible mechanisms that yield advantageous coupling between different functions? These and similar questions are at the core of the main topic of this session: how soulless chemistry became life? Clearly, we do not have complete answers to any of these questions. However, in recent years a number of new and sometimes unexpected clues have been brought to light. Of particular interest are proteins because they are the main functional polymers in contemporary cells. The emergence of protein functions is a puzzle. It is widely accepted that a well ]defined, compact structure (fold) is a prerequisite for function. It is equally widely accepted that compact folds are rare among random amino acid polymers. Then, how did protein functionality start? According to one hypothesis well folded were preceded by their poorly folded, yet still functional ancestors. Only recently, however, experimental evidence supporting this hypothesis has been presented. In particular, a small enzyme capable of ligating two RNA fragments with the rate of 106

  2. Biophysical chemistry.

    Science.gov (United States)

    Häussinger, Daniel; Pfohl, Thomas

    2010-01-01

    Biophysical chemistry at the Department of Chemistry, University of Basel, covers the NMR analysis of protein-protein interaction using paramagnetic tags and sophisticated microscopy techniques investigating the dynamics of biological matter.

  3. Combinatorial chemistry

    DEFF Research Database (Denmark)

    Nielsen, John

    1994-01-01

    An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds.......An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds....

  4. DNA as information: at the crossroads between biology, mathematics, physics and chemistry

    Science.gov (United States)

    2016-01-01

    On the one hand, biology, chemistry and also physics tell us how the process of translating the genetic information into life could possibly work, but we are still very far from a complete understanding of this process. On the other hand, mathematics and statistics give us methods to describe such natural systems—or parts of them—within a theoretical framework. Also, they provide us with hints and predictions that can be tested at the experimental level. Furthermore, there are peculiar aspects of the management of genetic information that are intimately related to information theory and communication theory. This theme issue is aimed at fostering the discussion on the problem of genetic coding and information through the presentation of different innovative points of view. The aim of the editors is to stimulate discussions and scientific exchange that will lead to new research on why and how life can exist from the point of view of the coding and decoding of genetic information. The present introduction represents the point of view of the editors on the main aspects that could be the subject of future scientific debate. PMID:26857674

  5. DNA as information: at the crossroads between biology, mathematics, physics and chemistry.

    Science.gov (United States)

    Cartwright, Julyan H E; Giannerini, Simone; González, Diego L

    2016-03-13

    On the one hand, biology, chemistry and also physics tell us how the process of translating the genetic information into life could possibly work, but we are still very far from a complete understanding of this process. On the other hand, mathematics and statistics give us methods to describe such natural systems-or parts of them-within a theoretical framework. Also, they provide us with hints and predictions that can be tested at the experimental level. Furthermore, there are peculiar aspects of the management of genetic information that are intimately related to information theory and communication theory. This theme issue is aimed at fostering the discussion on the problem of genetic coding and information through the presentation of different innovative points of view. The aim of the editors is to stimulate discussions and scientific exchange that will lead to new research on why and how life can exist from the point of view of the coding and decoding of genetic information. The present introduction represents the point of view of the editors on the main aspects that could be the subject of future scientific debate.

  6. A causal analysis relating previous achievement, attitudes, discourse, and intervention to achievement in biology and chemistry

    Science.gov (United States)

    Gooding, C. Thomas; Swift, J. Nathan; Schell, Robert E.; Swift, Patricia R.; McCroskery, James H.

    This study described the relationship of 38 variates to achievement in high school biology and chemistry classes. Forty-four teachers prepared audio tape recordings of discussions throughout a nine-month period. Equal-sized groups received treatment consisting of wait time feedback and/or supportive intervention, a form of peer coaching. Other variables were initial measures, which included the variates of class size and previous science grade, pre- and posttest scores on student attitudes and perceptions, and prediscourse and discourse analyses, which included the variates of wait times, actions, and response durations. While previous research has shown that wait time feedback and supportive intervention are effective means of changing teacher behavior, the results of the present study revealed that previous student achievement and the attitudes of students accounted for 70% of the variation in the final examination scores (New York State Regents) on the basis of only the first three weeks of data collection on the variables assessed. Generally, little emphasis on higher-level thinking, wait time, or problem solving was found at the beginning of the school year, and only minimal changes resulted from the application of the treatment variables. Pressures for content coverage and preparation for externally imposed statewide examinations that emphasize memory-level learning augured against the changes that the independent variables were designed to produce.

  7. REDOX CHEMISTRY OF MOLYBDENUM IN NATURAL WATERS AND ITS INVOLVEMENT IN BIOLOGICAL EVOLUTION

    Directory of Open Access Journals (Sweden)

    Deli eWang

    2012-12-01

    Full Text Available The transition element molybdenum (Mo possesses diverse valances (+II to +VI, and is involved in forming cofactors in more than 60 enzymes in biology. Redox switching of the element in these enzymes catalyzes a series of metabolic reactions in both prokaryotes and eukaryotes, and the element therefore plays a fundamental role in the global carbon, nitrogen, and sulfur cycling. In the present oxygenated waters, oxidized Mo(VI predominates thermodynamically, whilst reduced Mo species are mainly confined within specific niches including cytoplasm. Only recently has the reduced Mo(V been separated from Mo(VI in sulfidic mats and even in some reducing waters. Given the presence of reduced Mo(V in contemporary anaerobic habitats, it seems that reduced Mo species were present in the ancient reducing ocean (probably under both ferrigenous and sulfidic conditions, prompting the involvement of Mo in enzymes including nitrogenase and nitrate reductase. During the global transition to oxic conditions, reduced Mo species were constrained to specific anaerobic habitats, and efficient uptake systems of oxidized Mo(VI became a selective advantage both for prokaryotic and eukaryotic cells. Some prokaryotes are still able to directly utilize reduced Mo if any exists in ambient environments. In total, this mini-review describes the redox chemistry and biogeochemistry of Mo over the Earth’s history.

  8. The Quantitative and Qualitative Analysis of Cohorts' Early Enrollment in Physics: concurrent with enrollment in mathematics, biology and chemistry

    Science.gov (United States)

    Lynch, Robert Bruce Rodes

    Cohorts of 48 entering biological science majors was recruited in the fall of 2007 and again in 2008 and 2009 for the Interdisciplinary Science Experience (ISE). These ISE students enrolled in their own sections of standard courses of physics, chemistry, and biology. In these courses average ISE student out-performed their non-cohort peers by up to a full letter grade. A qualitative analysis of ISE student interviews illuminates the student experience and shows how the ISE students perceived themselves to be different than their non-cohort peers. Quantitative modeling of student performance shows that higher grades are correlated with multiple factors. These factors includes admissions characteristics such as high school GPA, and SAT scores, as well as demographic information. These trends support and elaborate on the selection narratives told by participants. Additionally the quantitative model found that higher student performance is predicted by structural aspects of the ISE program, specifically the timing of course, enrolling as a freshmen in many of their courses, and the sequencing of physics and chemistry courses. There is a statistically significant benefit to student performance in general and organic chemistry courses associated with completing the first quarter of the Physics for Bio-Science majors prior to enrollment. Further the combination of quantitative and qualitative data suggest that there is a epistemological transfer of problem solving skills and outlook from the physics to the chemistry courses.

  9. Towards the virtual artery: a multiscale model for vascular physiology at the physics-chemistry-biology interface

    Science.gov (United States)

    Hoekstra, Alfons G.; Alowayyed, Saad; Lorenz, Eric; Melnikova, Natalia; Mountrakis, Lampros; van Rooij, Britt; Svitenkov, Andrew; Závodszky, Gábor; Zun, Pavel

    2016-11-01

    This discussion paper introduces the concept of the Virtual Artery as a multiscale model for arterial physiology and pathologies at the physics-chemistry-biology (PCB) interface. The cellular level is identified as the mesoscopic level, and we argue that by coupling cell-based models with other relevant models on the macro- and microscale, a versatile model of arterial health and disease can be composed. We review the necessary ingredients, both models of arteries at many different scales, as well as generic methods to compose multiscale models. Next, we discuss how this can be combined into the virtual artery. Finally, we argue that the concept of models at the PCB interface could or perhaps should become a powerful paradigm, not only as in our case for studying physiology, but also for many other systems that have such PCB interfaces. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  10. The influence of the biological pump on ocean chemistry: implications for long-term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems.

    Science.gov (United States)

    Meyer, K M; Ridgwell, A; Payne, J L

    2016-05-01

    The net export of organic matter from the surface ocean and its respiration at depth create vertical gradients in nutrient and oxygen availability that play a primary role in structuring marine ecosystems. Changes in the properties of this 'biological pump' have been hypothesized to account for important shifts in marine ecosystem structure, including the Cambrian explosion. However, the influence of variation in the behavior of the biological pump on ocean biogeochemistry remains poorly quantified, preventing any detailed exploration of how changes in the biological pump over geological time may have shaped long-term shifts in ocean chemistry, biogeochemical cycling, and ecosystem structure. Here, we use a 3-dimensional Earth system model of intermediate complexity to quantitatively explore the effects of the biological pump on marine chemistry. We find that when respiration of sinking organic matter is efficient, due to slower sinking or higher respiration rates, anoxia tends to be more prevalent and to occur in shallower waters. Consequently, the Phanerozoic trend toward less bottom-water anoxia in continental shelf settings can potentially be explained by a change in the spatial dynamics of nutrient cycling rather than by any change in the ocean phosphate inventory. The model results further suggest that the Phanerozoic decline in the prevalence ocean anoxia is, in part, a consequence of the evolution of larger phytoplankton, many of which produce mineralized tests. We hypothesize that the Phanerozoic trend toward greater animal abundance and metabolic demand was driven more by increased oxygen concentrations in shelf environments than by greater food (nutrient) availability. In fact, a lower-than-modern ocean phosphate inventory in our closed system model is unable to account for the Paleozoic prevalence of bottom-water anoxia. Overall, these model simulations suggest that the changing spatial distribution of photosynthesis and respiration in the oceans has

  11. The common extremalities in biology and physics maximum energy dissipation principle in chemistry, biology, physics and evolution

    CERN Document Server

    Moroz, Adam

    2011-01-01

    This book is the first unified systemic description of dissipative phenomena, taking place in biology, and non-dissipative (conservative) phenomena, which is more relevant to physics. Fully updated and revised, this new edition extends our understanding of nonlinear phenomena in biology and physics from the extreme / optimal perspective. The first book to provide understanding of physical phenomena from a biological perspective and biological phenomena from a physical perspectiveDiscusses emerging fields and analysisProvides examples

  12. Conference Report: ESF-COST High-Level Research Conference Natural Products Chemistry, Biology and Medicine III.

    Science.gov (United States)

    Catino, Arthur

    2010-12-01

    Natural Products Chemistry, Biology and Medicine III was the third conference in a series of events sponsored by the European Science Foundation (ESF) and the European Cooperation in the field of Scientific and Technical Research (COST). Scientists came together from within and outside the EU to present cutting-edge developments in chemical synthesis. Research areas included the synthesis of natural products, methods development, isolation/structural elucidation and chemical biology. As our capacity to produce new chemotherapeutic agents relies on chemical synthesis, this year's conference has never been so timely. This report highlights several of the scientific contributions presented during the meeting.

  13. Scanning near-field optical microscopy on rough surfaces: applications in chemistry, biology, and medicine

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Shear-force apertureless scanning near-field optical microscopy (SNOM with very sharp uncoated tapered waveguides relies on the unexpected enhancement of reflection in the shear-force gap. It is the technique for obtaining chemical (materials contrast in the optical image of “real world” surfaces that are rough and very rough without topographical artifacts, and it is by far less complicated than other SNOM techniques that can only be used for very flat surfaces. The experimental use of the new photophysical effect is described. The applications of the new technique are manifold. Important mechanistic questions in solid-state chemistry (oxidation, diazotization, photodimerization, surface hydration, hydrolysis are answered with respect to simultaneous AFM (atomic force microscopy and detailed crystal packing. Prehistoric petrified bacteria and concomitant pyrite inclusions are also investigated with local RAMAN SNOM. Polymer beads and unstained biological objects (rabbit heart, shrimp eye allow for nanoscopic analysis of cell organelles. Similarly, human teeth and a cancerous tissue are analyzed. Bladder cancer tissue is clearly differentiated from healthy tissue without staining and this opens a new highly promising diagnostic tool for precancer diagnosis. Industrial applications are demonstrated at the corrosion behavior of dental alloys (withdrawal of a widely used alloy, harmless substitutes, improvement of paper glazing, behavior of blood bags upon storage, quality assessment of metal particle preparations for surface enhanced RAMAN spectroscopy, and determination of diffusion coefficient and light fastness in textile fiber dyeing. The latter applications include fluorescence SNOM. Local fluorescence SNOM is also used in the study of partly aggregating dye nanoparticles within resin/varnish preparations. Unexpected new insights are obtained in all of the various fields that cannot be obtained by other techniques.

  14. Click chemistry patents and their impact on drug discovery and chemical biology.

    Science.gov (United States)

    Xu, Hua; Jones, Lyn H

    2015-01-01

    First introduced by K Barry Sharpless in 2001, the term 'click chemistry' soon became a widely used description of chemical reactions that proceed rapidly, cleanly and in a manner that is often compatible with aqueous solutions. Click chemistry is frequently employed throughout the process of drug discovery, and greatly helps advance research programs in the pharmaceutical industry. It facilitates library synthesis to support medicinal chemistry optimization, helps identify the targets and off-targets of drug candidates, and can facilitate the determination of drug efficacy in clinical trials. In the last decade, a large number of patent applications covering the various types and utilities of click chemistry have been filed. In this review, we provide the first analysis of click chemistry applications.

  15. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

    Science.gov (United States)

    Foffi, G; Pastore, A; Piazza, F; Temussi, P A

    2013-08-02

    conference held in Ascona from 10 to 14 June 2012. In the unique scenario of the Maggiore lake and absorbed in the magic atmosphere of the Centro Stefano Franscini (CSF) at Monte Verità, we enjoyed three-and-a-half days of intense and inspiring activity, where not only many of the most prominent scientists working on macromolecular crowding, but also experts in closely related fields such as colloids and soft matter presented their work. The meeting was intended and has been organized to bring theoreticians and experimentalists together in the attempt to promote an active dialogue. Moreover, we wanted different disciplines to be represented, notably physics and chemistry, besides biology, as cross-fertilization is proving an increasingly fundamental source of inspiration and advancement. This issue of Physical Biology (PB) features a selection of the oral contributions presented at the conference, expanded in the form of research or review articles. PB, one of the scientific journals of the Institute of Physics (IOP), is one of the most dynamic and lively forums active at the interface between biology on one side, and physics and mathematics on the other. As its mission is stated by IOP, PB 'focuses on research in which physics-based approaches lead to new insights into biological systems at all scales of space and time, and all levels of complexity'. For these reasons, and also in view of its high reputation and broad readership, PB appears to be the ideal place for disseminating the thriving pieces of research presented at the conference. We are extremely grateful to PB and its kind and efficient editorial staff who helped make this issue a great scientific follow-up to the conference. The opening lecture of the conference, the first of four day-opening keynote lectures, was given by Allen P Minton from NIH (USA), possibly the most influential among the pioneers in the field. He provided a lucid and well-thought-out overview of the concept of macromolecular crowding

  16. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012)

    Science.gov (United States)

    Foffi, G.; Pastore, A.; Piazza, F.; Temussi, P. A.

    2013-08-01

    held in Ascona from 10 to 14 June 2012. In the unique scenario of the Maggiore lake and absorbed in the magic atmosphere of the Centro Stefano Franscini (CSF) at Monte Verità, we enjoyed three-and-a-half days of intense and inspiring activity, where not only many of the most prominent scientists working on macromolecular crowding, but also experts in closely related fields such as colloids and soft matter presented their work. The meeting was intended and has been organized to bring theoreticians and experimentalists together in the attempt to promote an active dialogue. Moreover, we wanted different disciplines to be represented, notably physics and chemistry, besides biology, as cross-fertilization is proving an increasingly fundamental source of inspiration and advancement. This issue of Physical Biology (PB) features a selection of the oral contributions presented at the conference, expanded in the form of research or review articles. PB, one of the scientific journals of the Institute of Physics (IOP), is one of the most dynamic and lively forums active at the interface between biology on one side, and physics and mathematics on the other. As its mission is stated by IOP, PB 'focuses on research in which physics-based approaches lead to new insights into biological systems at all scales of space and time, and all levels of complexity'. For these reasons, and also in view of its high reputation and broad readership, PB appears to be the ideal place for disseminating the thriving pieces of research presented at the conference. We are extremely grateful to PB and its kind and efficient editorial staff who helped make this issue a great scientific follow-up to the conference. The opening lecture of the conference, the first of four day-opening keynote lectures, was given by Allen P Minton from NIH (USA), possibly the most influential among the pioneers in the field. He provided a lucid and well-thought-out overview of the concept of macromolecular crowding through an

  17. Sustainable Materials Management (SMM) Web Academy Webinar: Compost from Food Waste: Understanding Soil Chemistry and Soil Biology on a College/University Campus

    Science.gov (United States)

    This page contains information about the Sustainable Materials Management (SMM) Web Academy Webinar Series titled Compost from Food Waste:Understanding Soil Chemistry and Soil Biology on a College/University Campus

  18. FOREWORD: Third Nordic Symposium on Computer Simulation in Physics, Chemistry, Biology and Mathematics

    Science.gov (United States)

    Kaski, K.; Salomaa, M.

    1990-01-01

    These are Proceedings of the Third Nordic Symposium on Computer Simulation in Physics, Chemistry, Biology, and Mathematics, held August 25-26, 1989, at Lahti (Finland). The Symposium belongs to an annual series of Meetings, the first one of which was arranged in 1987 at Lund (Sweden) and the second one in 1988 at Kolle-Kolle near Copenhagen (Denmark). Although these Symposia have thus far been essentially Nordic events, their international character has increased significantly; the trend is vividly reflected through contributions in the present Topical Issue. The interdisciplinary nature of Computational Science is central to the activity; this fundamental aspect is also responsible, in an essential way, for its rapidly increasing impact. Crucially important to a wide spectrum of superficially disparate fields is the common need for extensive - and often quite demanding - computational modelling. For such theoretical models, no closed-form (analytical) solutions are available or they would be extremely difficult to find; hence one must rather resort to the Art of performing computational investigations. Among the unifying features in the computational research are the methods of simulation employed; methods which frequently are quite closely related with each other even for faculties of science that are quite unrelated. Computer simulation in Natural Sciences is presently apprehended as a discipline on its own right, occupying a broad region somewhere between the experimental and theoretical methods, but also partially overlapping with and complementing them. - Whichever its proper definition may be, the computational approach serves as a novel and an extremely versatile tool with which one can equally well perform "pure" experimental modelling and conduct "computational theory". Computational studies that have earlier been made possible only through supercomputers have opened unexpected, as well as exciting, novel frontiers equally in mathematics (e.g., fractals

  19. Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology.

    Science.gov (United States)

    Galdeano, Carles; Ciulli, Alessio

    2016-09-01

    Targeting epigenetic proteins is a rapidly growing area for medicinal chemistry and drug discovery. Recent years have seen an explosion of interest in developing small molecules binding to bromodomains, the readers of acetyl-lysine modifications. A plethora of co-crystal structures has motivated focused fragment-based design and optimization programs within both industry and academia. These efforts have yielded several compounds entering the clinic, and many more are increasingly being used as chemical probes to interrogate bromodomain biology. High selectivity of chemical probes is necessary to ensure biological activity is due to an on-target effect. Here, we review the state-of-the-art of bromodomain-targeting compounds, focusing on the structural basis for their on-target selectivity or lack thereof. We also highlight chemical biology approaches to enhance on-target selectivity.

  20. The importance of radiation chemistry to radiation and free radical biology (The 2008 Silvanus Thompson Memorial Lecture).

    Science.gov (United States)

    Wardman, P

    2009-02-01

    Biological effects of radiation are manifest over timescales extending to years. However, many chemical events are complete in milliseconds; after this time, adding oxygen to irradiated hypoxic cells no longer enhances radiosensitivity. This does not mean that damage pathways cannot be modified; the potential gain from chemical modulation of early events is as large as any associated with later pathways, and the prognostic importance of variations in levels of small molecules active in fast free radical pathways is as important as any associated with genetic make-up. Reactive oxygen species are much invoked in the wider context, but are frequently undefined and seldom measured unambiguously. Radiation chemistry has much to offer to both radiation and free radical biology. An appreciation of the interlinked parameters of time, spatial distribution and yield is well developed, as are methods to generate specific radicals in known concentrations and to monitor their reactions directly. Intense clinical interest in the 1980s in hypoxic cell radiosensitizers, developed from radiation chemical studies, has waned, but the goal of eliminating hypoxic radioresistance remains attractive. Nitric oxide may be more important than oxygen in determining hypoxic radiosensitivity, and radiation chemistry provides the tools to understand the mechanisms and the limitations of in vitro models. Imaging hypoxia in tumours relies heavily on free radical chemistry and radiolysis methods to understand the mechanistic basis for diagnostic agents. Quantitation of the chemical reactivity of free radicals is a cornerstone of radiation chemistry via the language, concepts and mathematics of chemical kinetics, which are equally applicable to understanding the molecular pathways in radiobiology.

  1. Research spotlight: Microwave chemistry enabling the synthesis of biologically relevant amines.

    Science.gov (United States)

    Spencer, John

    2010-02-01

    Microwave-mediated chemistry, involving the reduction of nitroarenes with molybdenum hexacarbonyl as a stoichiometric reducing agent, has been employed in the synthesis of a range of anilines. Many of these reactions exhibit high levels of chemoselectivity, tolerating unsaturation, steric hindrance and halide substituents (I, Br, Cl or F), although the latter, under certain circumstances, can be displaced in concomitant S(N)Ar/reduction processes. The reduction chemistry has been combined with palladium-catalyzed coupling and also used in the synthesis of important intermediates to kinase inhibitors or molecules with submicromolar antitrypanosomal activity. In selected cases, microwave-mediated routes have been compared with thermal (traditional oil bath) and flow reactor-mediated chemistries.

  2. Syntheses of Sulfo-Glycodendrimers Using Click Chemistry and Their Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Tomohiro Fukuda

    2012-10-01

    Full Text Available A series of novel glycol-clusters containing sulfonated N-acetyl-D-glucosamine (GlcNAc have been synthesized using click chemistry. Three dendrimers with aromatic dendrons were synthesized using chlorination, azidation and click chemistries. The resulting dendrimers were modified with azide-terminated sulfonated GlcNAc using click chemistry. The sulfonated dendrimers showed affinity for proteins, including the lectin wheat germ agglutinin and amyloid beta peptide (1-42. The dendrimers of G1 and G2 in particular showed the largest affinity for the proteins. The addition of the sulfonated GlcNAc dendrimers of G1 and G2 exhibited an inhibition effect on the aggregation of the amyloid beta peptide, reduced the b-sheet conformation, and led to a reduction in the level of nanofiber formation.

  3. Application of Ion Mobility Spectrometry (IMS) in forensic chemistry and toxicology with focus on biological matrices

    Science.gov (United States)

    Bernhard, Werner; Keller, Thomas; Regenscheit, Priska

    1995-01-01

    The IMS (Ion Mobility Spectroscopy) instrument 'Ionscan' takes advantage of the fact that trace quantities of illicit drugs are adsorbed on dust particles on clothes, in cars and on other items of evidence. The dust particles are collected on a membrane filter by a special attachment on a vacuum cleaner. The sample is then directly inserted into the spectrometer and can be analyzed immediately. We show casework applications of a forensic chemistry and toxicology laboratory. One new application of IMS in forensic chemistry is the detection of psilocybin in dried mushrooms without any further sample preparation.

  4. Chemistry and biology of indoles and indazoles: a mini-review.

    Science.gov (United States)

    Ali, Nasir Ali Shafakat; Dar, Bashir Ahmad; Pradhan, Vidya; Farooqui, Mazahar

    2013-10-01

    The present review article is related with the method of preparation, importance and medicinal application of indole and indazoles. The studies of heterocycles is an evergreen field in the branch of organic chemistry and always attract the attention of chemists working not only in the area of natural products but also in the synthetic chemistry. Moreover many useful drugs have emerged from the successful investigation carried out in this branch. The derivatives of indoles and indazoles exhibits antibacterial, anticancer, antionidants, anti-inflammatory, antidiabetic, antiviral, atniproliferative, antituberculosis, antispermetogenic activity, antipsychotic drugs etc.

  5. Oxygen chemistry in biology: Vibrational spectroscopy, stable isotopes, and future applications

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, G.T. [Michigan State Univ., East Lansing, MI (United States)

    1994-12-01

    Dioxygen is an ideally suited substrate for enzymatic manipulation in oxidation-reduction chemistry and in substrate transformation. It is a powerful oxidant with a midpoint potential of 0.815 at neutral pH; at the same time, however, it exists in a triplet state in its most stable electronic configuration. This latter property confers kinetic inertness as a result of spin-conservation restrictions on reaction chemistry. If these restrictions can be overcome and controlled, dioxygen`s high redox potential can be used to maximize efficiency in free-energy conversion processes and to effect activation of relatively inert substrates.

  6. Integrating Biology into the General Chemistry Laboratory: Fluorometric Analysis of Chlorophyll "a"

    Science.gov (United States)

    Wesolowski, Meredith C.

    2014-01-01

    A laboratory experiment that introduces fluorometry of chlorophyll "a" at the general chemistry level is described. The use of thin-layer chromatography to isolate chlorophyll "a" from spirulina and leaf matter enables quantification of small amounts of chlorophyll "a" via fluorometry. Student results were reasonably…

  7. Chemical and biological warfare: Biology, chemistry, and toxicology. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The bibliography contains citations concerning the physiological effects, physicochemical effects, and toxicology of chemical and biological warfare agents. Citations discuss toxic chemicals, chemical agent simulants, detoxification and decontamination, environmental toxicity, and land pollution. Detection techniques and warning systems are examined in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  8. Chemical and biological warfare: Biology, chemistry, and toxicology. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The bibliography contains citations concerning the physiological effects, physicochemical effects, and toxicology of chemical and biological warfare agents. Citations discuss toxic chemicals, chemical agent simulants, detoxification and decontamination, environmental toxicity, and land pollution. Detection techniques and warning systems are examined in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Computational chemistry

    OpenAIRE

    2000-01-01

    Computational chemistry has come of age. With significant strides in computer hardware and software over the last few decades, computational chemistry has achieved full partnership with theory and experiment as a tool for understanding and predicting the behavior of a broad range of chemical, physical, and biological phenomena. The Nobel Prize award to John Pople and Walter Kohn in 1998 highlighted the importance of these advances in computational chemistry. With massively parallel computers ...

  10. The effect of nanoparticle size, shape, and surface chemistry on biological systems.

    Science.gov (United States)

    Albanese, Alexandre; Tang, Peter S; Chan, Warren C W

    2012-01-01

    An understanding of the interactions between nanoparticles and biological systems is of significant interest. Studies aimed at correlating the properties of nanomaterials such as size, shape, chemical functionality, surface charge, and composition with biomolecular signaling, biological kinetics, transportation, and toxicity in both cell culture and animal experiments are under way. These fundamental studies will provide a foundation for engineering the next generation of nanoscale devices. Here, we provide rationales for these studies, review the current progress in studies of the interactions of nanomaterials with biological systems, and provide a perspective on the long-term implications of these findings.

  11. Isolation, biological activity, synthesis, and medicinal chemistry of the pederin/mycalamide family of natural products.

    Science.gov (United States)

    Mosey, R Adam; Floreancig, Paul E

    2012-09-01

    This review highlights the broad range of science that has arisen from the isolation of pederin, the mycalamides, theopederins, and onnamides, and psymberin. Specific topics include structure determination, biological activity, synthesis, and analog preparation and analysis.

  12. Terpenes from the soft corals of the genus Sarcophyton: chemistry and biological activities.

    Science.gov (United States)

    Liang, Lin-Fu; Guo, Yue-Wei

    2013-12-01

    This review covers structural diversity and biological activities of terpenes from soft corals of the genus of Sarcophyton, reported from 1995 to July, 2011. During this period, besides undefined species, 16 species of the genus Sarcophyton, from different geographical areas, had been chemically examined. Two hundred and five terpenes had been isolated from this genus, including eleven sesquiterpenes, 165 diterpenes, 29 biscembranoids, some of which had novel skeletons. They exhibited various biological features, such as antifeedant, anti-inflammatory, antiviral, and antifouling activities.

  13. Cu(II) coordination chemistry of patellamide derivatives: possible biological functions of cyclic pseudopeptides.

    Science.gov (United States)

    Comba, Peter; Dovalil, Nina; Gahan, Lawrence R; Haberhauer, Gebhard; Hanson, Graeme R; Noble, Christopher J; Seibold, Björn; Vadivelu, Prabha

    2012-02-27

    Two synthetic derivatives of the naturally occurring cyclic pseudooctapeptides patellamide  A-F and ascidiacyclamide, that is, H(4)pat(2), H(4)pat(3), as well as their Cu(II) complexes are described. These cyclic peptide derivatives differ from the naturally occurring macrocycles by the variation of the incorporated heterocyclic donor groups and the configuration of the amino acids connecting the heterocycles. The exchange of the oxazoline and thiazole groups by dimethylimidazoles or methyloxazoles leads to more rigid macrocycles, and the changes in the configuration of the side chains leads to significant differences in the folding of the cyclic peptides. These variations allow a detailed study of the various possible structural changes on the chemistry of the Cu(II) complexes formed. The coordination of Cu(II) with these macrocyclic species was monitored by high-resolution electrospray mass spectrometry (ESI-MS), spectrophotometric (UV/Vis) and circular dichroic (CD) titrations, and electron paramagnetic resonance (EPR) spectroscopy. Density functional theory (DFT) calculations and molecular mechanics (MM) simulations have been used to model the structures of the Cu(II) complexes and provide a detailed understanding of their geometric preferences and conformational flexibility. This is related to the Cu(II) coordination chemistry and the reactivity of the dinuclear Cu(II) complexes towards CO(2) fixation. The variation observed between the natural and various synthetic peptide systems enables conclusions about structure-reactivity correlations, and our results also provide information on why nature might have chosen oxazolines and thiazoles as incorporated heterocycles.

  14. 2D-RNA-coupling numbers: a new computational chemistry approach to link secondary structure topology with biological function.

    Science.gov (United States)

    González-Díaz, Humberto; Agüero-Chapin, Guillermín; Varona, Javier; Molina, Reinaldo; Delogu, Giovanna; Santana, Lourdes; Uriarte, Eugenio; Podda, Gianni

    2007-04-30

    Methods for prediction of proteins, DNA, or RNA function and mapping it onto sequence often rely on bioinformatics alignment approach instead of chemical structure. Consequently, it is interesting to develop computational chemistry approaches based on molecular descriptors. In this sense, many researchers used sequence-coupling numbers and our group extended them to 2D proteins representations. However, no coupling numbers have been reported for 2D-RNA topology graphs, which are highly branched and contain useful information. Here, we use a computational chemistry scheme: (a) transforming sequences into RNA secondary structures, (b) defining and calculating new 2D-RNA-coupling numbers, (c) seek a structure-function model, and (d) map biological function onto the folded RNA. We studied as example 1-aminocyclopropane-1-carboxylic acid (ACC) oxidases known as ACO, which control fruit ripening having importance for biotechnology industry. First, we calculated tau(k)(2D-RNA) values to a set of 90-folded RNAs, including 28 transcripts of ACO and control sequences. Afterwards, we compared the classification performance of 10 different classifiers implemented in the software WEKA. In particular, the logistic equation ACO = 23.8 . tau(1)(2D-RNA) + 41.4 predicts ACOs with 98.9%, 98.0%, and 97.8% of accuracy in training, leave-one-out and 10-fold cross-validation, respectively. Afterwards, with this equation we predict ACO function to a sequence isolated in this work from Coffea arabica (GenBank accession DQ218452). The tau(1)(2D-RNA) also favorably compare with other descriptors. This equation allows us to map the codification of ACO activity on different mRNA topology features. The present computational-chemistry approach is general and could be extended to connect RNA secondary structure topology to other functions.

  15. Grasping the nature of the cell interior: from Physiological Chemistry to Chemical Biology.

    Science.gov (United States)

    Kyne, Ciara; Crowley, Peter B

    2016-08-01

    Current models of the cell interior emphasise its crowded, chemically complex and dynamically organised structure. Although the chemical composition of cells is known, the cooperative intermolecular interactions that govern cell ultrastructure are poorly understood. A major goal of biochemistry is to capture these myriad interactions in vivo. We consider the landmark discoveries that have shaped this objective, starting from the vitalist framework established by early natural philosophers. Through this historical revisionism, we extract important lessons for the bioinspired chemists of today. Scientific specialisation tends to insulate seminal ideas and hamper the unification of paradigms across biology. Therefore, we call for interdisciplinary collaboration in grappling with the complex cell interior. Recent successes in integrative structural biology and chemical biology demonstrate the power of hybrid approaches. The future roles of the (bio)chemist and model systems are also discussed as starting points for in vivo explorations.

  16. Chemistry and biology of radiotracers that target changes in sympathetic and parasympathetic nervous systems in heart disease.

    Science.gov (United States)

    Eckelman, William C; Dilsizian, Vasken

    2015-06-01

    Following the discovery of the sympathetic and parasympathetic nervous system, numerous adrenoceptor drugs were radiolabeled and potent radioligands were prepared in order to image the β-adrenergic and the muscarinic systems. But the greatest effort has been in preparing noradrenaline analogs, such as norepinephrine, (11)C-metahydroxyephedrine, and (123)I-metaiodobenzylguanidine that measure cardiac sympathetic nerve varicosities. Given the technical and clinical challenges in designing and validating targeted adrenoceptor-binding radiotracers, namely the heavily weighted flow dependence and relatively low target-to-background ratio, both requiring complicated mathematic analysis, and the inability of targeted adrenoceptor radioligands to have an impact on clinical care of heart disease, the emphasis has been on radioligands monitoring the norepinephrine pathway. The chemistry and biology of such radiotracers, and the clinical and prognostic impact of these innervation imaging studies in patients with heart disease, are examined.

  17. 'Nothing of chemistry disappears in biology': the Top 30 damage-prone endogenous metabolites.

    Science.gov (United States)

    Lerma-Ortiz, Claudia; Jeffryes, James G; Cooper, Arthur J L; Niehaus, Thomas D; Thamm, Antje M K; Frelin, Océane; Aunins, Thomas; Fiehn, Oliver; de Crécy-Lagard, Valérie; Henry, Christopher S; Hanson, Andrew D

    2016-06-15

    Many common metabolites are intrinsically unstable and reactive, and hence prone to chemical (i.e. non-enzymatic) damage in vivo Although this fact is widely recognized, the purely chemical side-reactions of metabolic intermediates can be surprisingly hard to track down in the literature and are often treated in an unprioritized case-by-case way. Moreover, spontaneous chemical side-reactions tend to be overshadowed today by side-reactions mediated by promiscuous ('sloppy') enzymes even though chemical damage to metabolites may be even more prevalent than damage from enzyme sloppiness, has similar outcomes, and is held in check by similar biochemical repair or pre-emption mechanisms. To address these limitations and imbalances, here we draw together and systematically integrate information from the (bio)chemical literature, from cheminformatics, and from genome-scale metabolic models to objectively define a 'Top 30' list of damage-prone metabolites. A foundational part of this process was to derive general reaction rules for the damage chemistries involved. The criteria for a 'Top 30' metabolite included predicted chemical reactivity, essentiality, and occurrence in diverse organisms. We also explain how the damage chemistry reaction rules ('operators') are implemented in the Chemical-Damage-MINE (CD-MINE) database (minedatabase.mcs.anl.gov/#/top30) to provide a predictive tool for many additional potential metabolite damage products. Lastly, we illustrate how defining a 'Top 30' list can drive genomics-enabled discovery of the enzymes of previously unrecognized damage-control systems, and how applying chemical damage reaction rules can help identify previously unknown peaks in metabolomics profiles.

  18. Investigating Membranes: Using Artificial Membranes to Convey Chemistry and Biology Concepts

    Science.gov (United States)

    Zrelak, Yoshi; McCallister, Gary

    2009-01-01

    While not organic in nature, quick-"growing" artificial membranes can be a profound visual aid when teaching students about cellular processes and the chemical nature of membranes. Students are often intrigued when they see biological and chemical concepts come to life before their eyes. In this article, the authors share their approach to growing…

  19. On-Demand Targeting: Investigating Biology with Proximity-Directed Chemistry.

    Science.gov (United States)

    Long, Marcus J C; Poganik, Jesse R; Aye, Yimon

    2016-03-23

    Proximity enhancement is a central chemical tenet underpinning an exciting suite of small-molecule toolsets that have allowed us to unravel many biological complexities. The leitmotif of this opus is "tethering"-a strategy in which a multifunctional small molecule serves as a template to bring proteins/biomolecules together. Scaffolding approaches have been powerfully applied to control diverse biological outcomes such as protein-protein association, protein stability, activity, and improve imaging capabilities. A new twist on this strategy has recently appeared, in which the small-molecule probe is engineered to unleash controlled amounts of reactive chemical signals within the microenvironment of a target protein. Modification of a specific target elicits a precisely timed and spatially controlled gain-of-function (or dominant loss-of-function) signaling response. Presented herein is a unique personal outlook conceptualizing the powerful proximity-enhanced chemical biology toolsets into two paradigms: "multifunctional scaffolding" versus "on-demand targeting". By addressing the latest advances and challenges in the established yet constantly evolving multifunctional scaffolding strategies as well as in the emerging on-demand precision targeting (and related) systems, this Perspective is aimed at choosing when it is best to employ each of the two strategies, with an emphasis toward further promoting novel applications and discoveries stemming from these innovative chemical biology platforms.

  20. Environmental chemistry. Seventh edition

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States)

    1999-11-01

    This book presents a basic understanding of environmental chemistry and its applications. In addition to providing updated materials in this field, the book emphasizes the major concepts essential to the practice of environmental chemistry. Topics of discussion include the following: toxicological chemistry; toxicological chemistry of chemical substances; chemical analysis of water and wastewater; chemical analysis of wastes and solids; air and gas analysis; chemical analysis of biological materials and xenobiotics; fundamentals of chemistry; and fundamentals of organic chemistry.

  1. Concepts of neuroendocrine cardiology and neuroendocrine immunology, chemistry and biology of signal molecules.

    Science.gov (United States)

    Galoyan, Armen

    2010-12-01

    Discovery of neurosecretion of cardioactive neurohormones produced by hypothalamic nuclei (NSO and NPV), as well as the biosynthesis of several immunomodulators (signal molecules of the neuroendocrine immune system of brain), deciphering of their chemical structure and study of their biological properties led to the foundation of two important trends of neurobiology: neuroendocrine immunology and cardiology. Hormone formation by atrium ganglionary nerve cells and auriculum establishment of neurohumoral interactions between hypothalamic and atrium neurosecretion indicated the existence of the system neuroendocrine hypothalamus--endocrine heart. Study of their biological properties promoted creation of powerful neurohormonal preparations for the treatment of immune, cardio-vascular, neurodegenerative, infectious and tumor diseases. Concepts suggested by us on neuroendocrine cardiology and immunology, create large perspectives for development of the theory and its implementation in medicine.

  2. A practical guide to working with H2S at the interface of chemistry and biology.

    Science.gov (United States)

    Hartle, Matthew D; Pluth, Michael D

    2016-11-07

    Hydrogen sulfide (H2S) is the most recently accepted endogenously produced gasotransmitter and is now implicated in a variety of physiological functions. In this tutorial review, our goal is to provide researchers new to the field of H2S chemical biology with practical considerations, pitfalls, and best practices to enable smooth entry into investigations focused on biological H2S. We present practical handling and safety considerations for working with this reactive biomolecule, and cover basic roles of H2S biogenesis and action. Experimental methods for modulating H2S levels, including enzymatic knockout, RNA silencing, enzymatic inhibition, and use of small molecule H2S donors are highlighted. Complementing H2S modulation techniques, we also highlight current strategies for H2S detection and quantification.

  3. Natural Proline-Rich Cyclopolypeptides from Marine Organisms: Chemistry, Synthetic Methodologies and Biological Status

    Directory of Open Access Journals (Sweden)

    Wan-Yin Fang

    2016-10-01

    Full Text Available Peptides have gained increased interest as therapeutics during recent years. More than 60 peptide drugs have reached the market for the benefit of patients and several hundreds of novel therapeutic peptides are in preclinical and clinical development. The key contributor to this success is the potent and specific, yet safe, mode of action of peptides. Among the wide range of biologically-active peptides, naturally-occurring marine-derived cyclopolypeptides exhibit a broad range of unusual and potent pharmacological activities. Because of their size and complexity, proline-rich cyclic peptides (PRCPs occupy a crucial chemical space in drug discovery that may provide useful scaffolds for modulating more challenging biological targets, such as protein-protein interactions and allosteric binding sites. Diverse pharmacological activities of natural cyclic peptides from marine sponges, tunicates and cyanobacteria have encouraged efforts to develop cyclic peptides with well-known synthetic methods, including solid-phase and solution-phase techniques of peptide synthesis. The present review highlights the natural resources, unique structural features and the most relevant biological properties of proline-rich peptides of marine-origin, focusing on the potential therapeutic role that the PRCPs may play as a promising source of new peptide-based novel drugs.

  4. Actin Immobilization on Chitin for Purifying Myosin II: A Laboratory Exercise That Integrates Concepts of Molecular Cell Biology and Protein Chemistry

    Science.gov (United States)

    de Souza, Marcelle Gomes; Grossi, Andre Luiz; Pereira, Elisangela Lima Bastos; da Cruz, Carolina Oliveira; Mendes, Fernanda Machado; Cameron, Luiz Claudio; Paiva, Carmen Lucia Antao

    2008-01-01

    This article presents our experience on teaching biochemical sciences through an innovative approach that integrates concepts of molecular cell biology and protein chemistry. This original laboratory exercise is based on the preparation of an affinity chromatography column containing F-actin molecules immobilized on chitin particles for purifying…

  5. What are they thinking? Automated analysis of student writing about acid-base chemistry in introductory biology.

    Science.gov (United States)

    Haudek, Kevin C; Prevost, Luanna B; Moscarella, Rosa A; Merrill, John; Urban-Lurain, Mark

    2012-01-01

    Students' writing can provide better insight into their thinking than can multiple-choice questions. However, resource constraints often prevent faculty from using writing assessments in large undergraduate science courses. We investigated the use of computer software to analyze student writing and to uncover student ideas about chemistry in an introductory biology course. Students were asked to predict acid-base behavior of biological functional groups and to explain their answers. Student explanations were rated by two independent raters. Responses were also analyzed using SPSS Text Analysis for Surveys and a custom library of science-related terms and lexical categories relevant to the assessment item. These analyses revealed conceptual connections made by students, student difficulties explaining these topics, and the heterogeneity of student ideas. We validated the lexical analysis by correlating student interviews with the lexical analysis. We used discriminant analysis to create classification functions that identified seven key lexical categories that predict expert scoring (interrater reliability with experts = 0.899). This study suggests that computerized lexical analysis may be useful for automatically categorizing large numbers of student open-ended responses. Lexical analysis provides instructors unique insights into student thinking and a whole-class perspective that are difficult to obtain from multiple-choice questions or reading individual responses.

  6. Biomimeticity in tissue engineering scaffolds through synthetic peptide modifications-altering chemistry for enhanced biological response.

    Science.gov (United States)

    Sreejalekshmi, Kumaran G; Nair, Prabha D

    2011-02-01

    Biomimetic and bioactive biomaterials are desirable as tissue engineering scaffolds by virtue of their capability to mimic natural environments of the extracellular matrix. Biomimeticity has been achieved by the incorporation of synthetic short peptide sequences into suitable materials either by surface modification or by bulk incorporation. Research in this area has identified several novel synthetic peptide segments, some of them with cell-specific interactions, which may serve as potential candidates for use in explicit tissue applications. This review focuses on the developments and prospective directions of incorporating short synthetic peptide sequences onto scaffolds for tissue engineering, with emphasis on the chemistry of peptide immobilization and subsequent cell responses toward modified scaffolds. The article provides a decision-tree-type flow chart indicating the most probable cellular events on a given peptide-modified scaffold along with the consolidated list of synthetic peptide sequences, supports as well as cell types used in various tissue engineering studies, and aims to serve as a quick reference guide to peptide chemists and material scientists interested in the field.

  7. Ecteinascidins. A review of the chemistry, biology and clinical utility of potent tetrahydroisoquinoline antitumor antibiotics.

    Science.gov (United States)

    Le, V H; Inai, M; Williams, R M; Kan, T

    2015-02-01

    The ecteinascidin family comprises a number of biologically active compounds, containing two to three tetrahydroisoquinoline subunits. Although isolated from marine tunicates, these compounds share a common pentacyclic core with several antimicrobial compounds found in terrestrial bacteria. Among the tetrahydroisoquinoline natural products, ecteinascidin 743 (Et-743) stands out as the most potent antitumor antibiotics that it is recently approved for treatment of a number of soft tissue sarcomas. In this article, we will review the backgrounds, the mechanism of action, the biosynthesis, and the synthetic studies of Et-743. Also, the development of Et-743 as an antitumor drug is discussed.

  8. EFFECTS OF 5E LEARNING CYCLE ON STUDENTS ACHIEVEMENT IN BIOLOGY AND CHEMISTRY

    OpenAIRE

    Patrick Osawaru Ajaja,; Ochuko Eravwoke Urhievwejire

    2012-01-01

    The major purpose of this study was to determine the effects of learning cycle as an instructional strategy on biology andchemistry students achievement. To guide this study, six research hypotheses were stated and tested at 0.05 level ofsignificance. The design of this study was 2x2x3x6 Pre-test Post-test non-equivalent control group quasi experimental design.These included two instructional groups (experimental and control groups), sex (male and female), repeated testing (Pre,Post and follo...

  9. Chemistry and Biological Activities of Essential Oils from Melaleuca L. Species

    Directory of Open Access Journals (Sweden)

    Luiz Claudio Almeida Barbosa

    2013-03-01

    Full Text Available Essential oils from species Melaleuca genus, especially M. alternifolia (Maiden & Betche Cheel, have been widely used worldwide in various industries. This review is a contribution to Melaleuca knowledge and describes five important essential oil-producing species and two subspecies of Melaleuca in terms of their essential oil chemical composition, medicinal applications, and leaf morphoanatomy. Some relationships between essential oil composition of these species and important biological activities are presented. Useful parameters for the certification of the essential oils are also highlighted.

  10. Site-selective protein-modification chemistry for basic biology and drug development

    Science.gov (United States)

    Krall, Nikolaus; da Cruz, Filipa P.; Boutureira, Omar; Bernardes, Gonçalo J. L.

    2016-02-01

    Nature has produced intricate machinery to covalently diversify the structure of proteins after their synthesis in the ribosome. In an attempt to mimic nature, chemists have developed a large set of reactions that enable post-expression modification of proteins at pre-determined sites. These reactions are now used to selectively install particular modifications on proteins for many biological and therapeutic applications. For example, they provide an opportunity to install post-translational modifications on proteins to determine their exact biological roles. Labelling of proteins in live cells with fluorescent dyes allows protein uptake and intracellular trafficking to be tracked and also enables physiological parameters to be measured optically. Through the conjugation of potent cytotoxicants to antibodies, novel anti-cancer drugs with improved efficacy and reduced side effects may be obtained. In this Perspective, we highlight the most exciting current and future applications of chemical site-selective protein modification and consider which hurdles still need to be overcome for more widespread use.

  11. Integrated Ecological River Health Assessments, Based on Water Chemistry, Physical Habitat Quality and Biological Integrity

    Directory of Open Access Journals (Sweden)

    Ji Yoon Kim

    2015-11-01

    Full Text Available This study evaluated integrative river ecosystem health using stressor-based models of physical habitat health, chemical water health, and biological health of fish and identified multiple-stressor indicators influencing the ecosystem health. Integrated health responses (IHRs, based on star-plot approach, were calculated from qualitative habitat evaluation index (QHEI, nutrient pollution index (NPI, and index of biological integrity (IBI in four different longitudinal regions (Groups I–IV. For the calculations of IHRs values, multi-metric QHEI, NPI, and IBI models were developed and their criteria for the diagnosis of the health were determined. The longitudinal patterns of the river were analyzed by a self-organizing map (SOM model and the key major stressors in the river were identified by principal component analysis (PCA. Our model scores of integrated health responses (IHRs suggested that mid-stream and downstream regions were impaired, and the key stressors were closely associated with nutrient enrichment (N and P and organic matter pollutions from domestic wastewater disposal plants and urban sewage. This modeling approach of IHRs may be used as an effective tool for evaluations of integrative ecological river health..

  12. Peptide B12: emerging trends at the interface of inorganic chemistry, chemical biology and medicine.

    Science.gov (United States)

    Zelder, Felix; Zhou, Kai; Sonnay, Marjorie

    2013-01-28

    The sophisticated and efficient delivery of vitamin B(12) ("B(12)") into cells offers promise for B(12)-bioconjugates in medicinal diagnosis and therapy. It is therefore surprising that rather little attention is presently paid to an alternative strategy in drug design: the development of structurally perfect, but catalytically inactive semi-artificial B(12) surrogates. Vitamin B(12) cofactors catalyse important biological transformations and are indispensible for humans and most other forms of life. This strong metabolic dependency exhibits enormous medicinal opportunities. Inhibitors of B(12) dependent enzymes are potential suppressors of fast proliferating cancer cells. This perspective article focuses on the design and study of backbone modified B(12) derivatives, particularly on peptide B(12) derivatives. Peptide B(12) is a recently introduced class of biomimetic cobalamins bearing an artificial peptide backbone with adjustable coordination and redox-properties. Pioneering biological studies demonstrated reduced catalytic activity, combined with inhibitory potential that is encouraging for future efforts in turning natural cofactors into new anti-proliferative agents.

  13. Electrophoretic separation techniques and their hyphenation to mass spectrometry in biological inorganic chemistry.

    Science.gov (United States)

    Holtkamp, Hannah; Grabmann, Gerlinde; Hartinger, Christian G

    2016-04-01

    Electrophoretic methods have been widely applied in research on the roles of metal complexes in biological systems. In particular, CE, often hyphenated to a sensitive MS detector, has provided valuable information on the modes of action of metal-based pharmaceuticals, and more recently new methods have been added to the electrophoretic toolbox. The range of applications continues to expand as a result of enhanced CE-to-MS interfacing, with sensitivity often at picomolar level, and evolved separation modes allowing for innovative sample analysis. This article is a followup to previous reviews about CE methods in metallodrug research (Electrophoresis, 2003, 24, 2023-2037; Electrophoresis, 2007, 28, 3436-3446; Electrophoresis, 2012, 33, 622-634), also providing a comprehensive overview of metal species studied by electrophoretic methods hyphenated to MS. It highlights the latest CE developments, takes a sneak peek into gel electrophoresis, traces biomolecule labeling, and focuses on the importance of early-stage drug development.

  14. The chemistry and biological activity of herbs used in Flor-Essence herbal tonic and Essiac.

    Science.gov (United States)

    Tamayo, C; Richardson, M A; Diamond, S; Skoda, I

    2000-02-01

    The herbal mixtures, Essiac and Flor-Essence, are sold as nutritional supplements and used by patients to treat chronic conditions, particularly cancer. Evidence of anticancer activity for the herbal teas is limited to anecdotal reports recorded for some 40 years in Canada. Individual case reports suggest that the tea improves quality of life, alleviates pain, and in some cases, impacts cancer progression among cancer patients. Experimental studies with individual herbs have shown evidence of biological activity including antioxidant, antioestrogenic, immunostimulant, antitumour, and antiocholeretic actions. However, research that demonstrates these positive effects in the experimental setting has not been translated to the clinical arena. Currently, no clinical studies of Essiac or Flor-essence are published, but a clinical study is being planned at the British Columbia Cancer Agency by the University of Texas-Center for Alternative Medicine (UT-CAM) and Tzu-Chi Institute for Complementary and Alternative Medicine.

  15. Biological chemistry as a foundation of DNA genealogy: the emergence of "molecular history".

    Science.gov (United States)

    Klyosov, A A

    2011-05-01

    This paper presents the basis of DNA genealogy, a new field of science, which is currently emerging as an unusual blend of biochemistry, history, linguistics, and chemical kinetics. The methodology of the new approach is comprised of chemical (biological) kinetics applied to a pattern of mutations in non-recombinant fragments of DNA (Y chromosome and mtDNA, the latter not being considered in this overview). The goal of the analysis is to translate DNA mutation patterns into time spans to the most recent common ancestors of a given population or tribe and to the dating of ancient migration routes. To illustrate this approach, time spans to the common ancestors are calculated for ethnic Russians, that is Eastern Slavs (R1a1 tribe), Western Slavs (I1 and I2 tribes), and Northern (or Uralic) Slavs (N1c tribe), which were found to live around 4600 years before present (R1a1), 3650 ybp (I1), 3000 and 10,500 ybp (I2, two principal DNA lineages), and 3525 ybp (N1c) (confidence intervals are given in the main text). The data were compared with the respective dates for the nearest common ancestor of the R1a1 "Indo-European" population in India, who lived 4050 years before present, whose descendants represent the majority of the upper castes in India today (up to 72%). Furthermore, it was found that the haplotypes of ethnic Russians of the R1a1 haplogroup (up to 62% of the population in the Russian Federation) and those of the R1a1 Indians (more than 100 million today) are practically identical to each other, up to 67-marker haplotypes. This essentially solves a 200-year-old mystery of who were the Aryans who arrived in India around 3500 years before the present. Haplotypes and time spans to the ancient common ancestors were also compared for the ethnic Russians of haplogroups I1 and I2, on one hand, and the respective I1 and I2 populations in Eastern and Western Europe and Scandinavia, on the other. It is suggested that the approach described in this overview lays the

  16. Biological soil crusts on initial soils: organic carbon dynamics and chemistry under temperate climatic conditions

    Directory of Open Access Journals (Sweden)

    A. Dümig

    2013-01-01

    Full Text Available Numerous studies have been carried out on the community structure and diversity of biological soil crusts (BSCs as well as their important functions on ecosystem processes. However, the amount of BSC-derived organic carbon (OC input into soils and its chemical composition under natural conditions has rarely been investigated. In this study, different development stages of algae- and moss-dominated BSCs were investigated on a~natural (<17 yr old BSCs and experimental sand dune (<4 yr old BSCs in northeastern Germany. We determined the OC accumulation in BSC-layers and the BSC-derived OC input into the underlying substrates for bulk materials and fractions <63 μm. The chemical composition of OC was characterized by applying solid-state 13C NMR spectroscopy and analysis of the carbohydrate-C signature.14C contents were used to assess the origin and dynamic of OC in BSCs and underlying substrates. Our results indicated a rapid BSC establishment and development from algae- to moss-dominated BSCs within only 4 yr under this temperate climate. The distribution of BSC types was presumably controlled by the surface stability according to the position in the slope. We found no evidence that soil properties influenced the BSC distribution on both sand dunes. 14C contents clearly indicated the existence of two OC pools in BSCs and substrates, recent BSC-derived OC and lignite-derived "old" OC (biologically refractory. The input of recent BSC-derived OC strongly decreased the mean residence time of total OC. The downward translocation of OC into the underlying substrates was only found for moss-dominated BSCs at the natural sand dune which may accelerate soil formation at these spots. BSC-derived OC mainly comprised O-alkyl C (carbohydrate-C and to a lesser extent also alkyl C and N-alkyl C in varying compositions. Accumulation of alkyl C was only detected in BSCs at the experimental dune which may induce a~lower water

  17. Toward the laboratory identification of [O,N,S,S] isomers: Implications for biological NO chemistry

    Science.gov (United States)

    Ayari, Tarek; Jaidane, Nejm-Eddine; Al Mogren, Muneerah Mogren; Francisco, Joseph S.; Hochlaf, Majdi

    2016-06-01

    Benchmark ab initio calculations are performed to investigate the stable isomers of [O,N,S,S]. These computations are carried out using coupled cluster (RCCSD(T)) and explicitly correlated coupled cluster methods (RCCSD(T)-F12). In addition to the already known cis isomer of SSNO, nine other stable forms are predicted. The most stable isomer is cis-OSNS. Nine structures are chain bent-bent with relatively large dipole moments which make them detectable, as cis-SSNO, by infrared, far-infrared, and microwave spectroscopies. We found also a C2v isomer (NS2O). Since these species are strongly suggested to play an important role as intermediates during the bioactive reaction products of the NO/H2S interaction, the rotational and vibrational spectroscopic parameters are presented to help aid the in vivo identification and assignment of these spectra. Results from this work show that [O,N,S,S] may play key roles during nitric oxide transport and deliver in biological media, as well as, provide an explanation for the weak characteristic of disulfide bridges within proteins.

  18. Rapid Detection of Biological and Chemical Threat Agents Using Physical Chemistry, Active Detection, and Computational Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Myung; Dong, Li; Fu, Rong; Liotta, Lance; Narayanan, Aarthi; Petricoin, Emanuel; Ross, Mark; Russo, Paul; Zhou, Weidong; Luchini, Alessandra; Manes, Nathan; Chertow, Jessica; Han, Suhua; Kidd, Jessica; Senina, Svetlana; Groves, Stephanie

    2007-01-01

    Basic technologies have been successfully developed within this project: rapid collection of aerosols and a rapid ultra-sensitive immunoassay technique. Water-soluble, humidity-resistant polyacrylamide nano-filters were shown to (1) capture aerosol particles as small as 20 nm, (2) work in humid air and (3) completely liberate their captured particles in an aqueous solution compatible with the immunoassay technique. The immunoassay technology developed within this project combines electrophoretic capture with magnetic bead detection. It allows detection of as few as 150-600 analyte molecules or viruses in only three minutes, something no other known method can duplicate. The technology can be used in a variety of applications where speed of analysis and/or extremely low detection limits are of great importance: in rapid analysis of donor blood for hepatitis, HIV and other blood-borne infections in emergency blood transfusions, in trace analysis of pollutants, or in search of biomarkers in biological fluids. Combined in a single device, the water-soluble filter and ultra-sensitive immunoassay technique may solve the problem of early warning type detection of aerosolized pathogens. These two technologies are protected with five patent applications and are ready for commercialization.

  19. Modification of chitosan derivatives of environmental and biological interest: a green chemistry approach.

    Science.gov (United States)

    Abdelaal, Magdy Y; Sobahi, Tariq R; Al-Shareef, Hossa F

    2013-04-01

    Chitosan is a non-toxic polyaminosaccharide that is available in a variety of useful forms, and its chemical and biological properties make it a very attractive biomaterial that could be used in a wide variety of medicinal applications. This work focuses on the preparation of different chitosan derivatives by treatment with ethyl cellulose, cellulose triacetate and different carbohydrates in both neutral and slightly acidic media. It also addresses modification with glycidyltrimethyl ammonium chloride, phthalic anhydride and succinic acid derivatives. The obtained derivatives were crosslinked with glutaraldehyde. Thermo-gravimetric (TGA) and FT-IR spectroscopic analyses and electron scanning microscopy (SEM) were used to characterize the obtained products and demonstrate the success of the chitosan-modification process. The obtained products were tested for their ability to uptake transition metal ions from aqueous solutions, and their ion-uptake efficiency was determined with the aid of the ICP-AES technique. The bioactivity of some selected products was tested to study the effect of their concentrations on selected microorganisms. Burkholderia cepaci, Aspergillus niger, and Candida albicans were selected as representative examples of bacteria, yeasts and fungi, respectively.

  20. An impression on current developments in the technology, chemistry, and biological activities of ginger (Zingiber officinale Roscoe).

    Science.gov (United States)

    Kubra, I Rahath; Rao, L Jagan Mohan

    2012-01-01

    Ginger rhizome (Zingiber officinale Roscoe) is widely cultivated as a spice for its aromatic and pungent components. The essential oil and oleoresins from ginger are valuable products responsible for the characteristic flavor and pungency. Both are used in several food products such as soft beverages and also in many types of pharmaceutical formulations. More than 100 compounds have been reported from ginger, some of which are isolated and characterized, others are tentatively identified by GC-MS and / or LC-MS. [6]-Gingerol, the major gingerol in ginger rhizomes, has been found to possess many interesting pharmacological and physiological activities, such as anti-inflammatory, analgesic, and cardiotonic effects. Ginger is considered as "generally recognized as safe" (GRAS) by Food and Drug Administration (FDA), USA. Due to all these properties, ginger has gained considerable attention in developed countries in recent years, especially for its use in the treatment of inflammatory conditions. The present review is a persuasive presentation of the current information on processing, chemistry, biological activities, and medicinal uses of ginger. Further studies are required for the validation of the beneficial uses. Formulation for novel products and new usages may emerge in the years to come, based on the revealed results of various studies.

  1. Cobalt complexes as internal standards for capillary zone electrophoresis-mass spectrometry studies in biological inorganic chemistry.

    Science.gov (United States)

    Holtkamp, Hannah U; Morrow, Stuart J; Kubanik, Mario; Hartinger, Christian G

    2017-01-02

    Run-by-run variations are very common in capillary electrophoretic (CE) separations and cause imprecision in both the migration times and the peak areas. This makes peak and kinetic trend identification difficult and error prone. With the aim to identify suitable standards for CE separations which are compatible with the common detectors UV, ESI-MS, and ICP-MS, the Co(III) complexes [Co(en)3]Cl3, [Co(acac)3] and K[Co(EDTA)] were evaluated as internal standards in the reaction of the anticancer drug cisplatin and guanosine 5'-monophosphate as an example of a classical biological inorganic chemistry experiment. These Co(III) chelate complexes were considered for their stability, accessibility, and the low detection limit for Co in ICP-MS. Furthermore, the Co(III) complexes are positively and negatively charged as well as neutral, allowing the detection in different areas of the electropherograms. The background electrolytes were chosen to cover a wide pH range. The compatibility to the separation conditions was dependent on the ligands attached to the Co(III) centers, with only the acetylacetonato (acac) complex being applicable in the pH range 2.8-9.0. Furthermore, because of being charge neutral, this compound could be used as an electroosmotic flow (EOF) marker. In general, employing Co complexes resulted in improved data sets, particularly with regard to the migration times and peak areas, which resulted, for example, in higher linear ranges for the quantification of cisplatin.

  2. AN INTEGRATIVE WAY OF TEACHING MOLECULAR CELL BIOLOGY AND PROTEIN CHEMISTRY USING ACTIN IMMOBILIZATION ON CHITIN FOR PURIFYING MYOSIN II.

    Directory of Open Access Journals (Sweden)

    M.G. Souza

    2007-05-01

    Full Text Available Our intent is to present our experience on teaching Molecular Cell Biology andProtein Chemistry at UNIRIO through an innovative approach that includes myosin IIextraction and purification. We took advantage of the properties of muscle contractionand propose a simple method for purifying myosin II by affinity chromatography. Thisoriginal method is based on the preparation of an affinity column containing actinmolecules covalently bound to chitin particles. We propose a three-week syllabus thatincludes lectures and bench experimental work. The syllabus favors the activelearning of protein extraction and purification, as well as, of scientific concepts suchas muscle contraction, cytoskeleton structure and its importance for the living cell. Italso promotes the learning of the biotechnological applications of chitin and theapplications of protein immobilization in different industrial fields. Furthermore, theactivities also target the development of laboratorial technical abilities, thedevelopment of problem solving skills and the ability to write up a scientific reportfollowing the model of a scientific article. It is very important to mention that thissyllabus can be used even in places where a facility such as ultra-centrifugation islacking.

  3. NATO Advanced Study Institute on Mixed-Valence Compounds : Theory and Applications in Chemistry, Physics, Geology, and Biology

    CERN Document Server

    1980-01-01

    It has been a decade since two seminal reviews demonstrated that mixed-valence compounds share many unique and fascinating features. The insight pro­ vided by those early works has promoted a great deal of both experimental and theoretical study. As a result of extensive efforts, our understanding of the bonding and properties of mixed-valence compounds has advanced substantially. There has been no compre­ hensive treatment of mixed-valence compounds since 1967, and the meeting convened at Oxford in September, 1979, provided a unique opportunity to examine the subject and its many ramifications. Mixed-valence compounds play an important role in many fields. Although the major impact of the subject has been in chemistry, its importance has become increasingly clear in solid state physics, geology, and biology. Extensive interest and effort in the field of molecular metals has demonstrated that mixed-valency is a prerequisite for high elec­ trical conductivity. The intense colors of many minerals have been s...

  4. Factors associated with computer and Internet technology implementation in biology, chemistry, and physics education in Turkish secondary schools

    Science.gov (United States)

    Ozer, Melike

    The main purposes of the research were to identify computer and Internet use by biology, chemistry and physics teachers in Turkish secondary schools and identify factors associated with computer and Internet technology. To this end, survey documents were sent by the Provincial Directorate of National Education to 250 selected schools' administrators for further distribution. Administrators were asked to complete the "Computer and Internet Use: School Survey," and to distribute the "Science Teacher Computer and Internet Use" surveys to the two teachers who teach science class. Surveys were then returned to the General Directorate of Educational Technologies. Research findings showed that computer and Internet use has not occurred effectively. Computers were first introduced to Turkish schools in 1984; unfortunately the current situation of computer and Internet use in science education is not at the projected earlier point in time. Considering the fact that science teachers' participation in technology-related professional development program is higher than other subject teachers, the use of computer and Internet technologies in Turkish secondary schools is still at its early stages. Lack of computer knowledge and not knowing how to integrate computers into education were the major factors reported. With regard to computer and Internet use, a regression model for Turkish schools, which includes access and knowledge, explains a large part of the variance in study results. There was a significant relationship between computer attitude (computer liking, usefulness, and confidence) and computer and Internet use. Although there was a significant negative relationship between Internet and computer uses and the attitudinal component, computer anxiety, it did not deter individuals from expressing a desire to engage in computer use in education.

  5. Chemistry and biology of oligovalent β-(1→2)-linked oligomannosides: new insights into carbohydrate-based adjuvants in immunotherapy.

    Science.gov (United States)

    Mukherjee, Chinmoy; Mäkinen, Kaarina; Savolainen, Johannes; Leino, Reko

    2013-06-10

    A series of oligovalent carbohydrate assemblies (ranging from mono- to pentavalent), derived from three structurally different β-linked or β-(1→2)-linked mannosides, has been chemically synthesized, and the respective compounds have been biologically evaluated in order to investigate their immunostimulatory properties. The Crich methodology for β-mannosylation was successfully utilized to introduce the β-linkages, and a click chemistry protocol was utilized to generate the oligovalent derivatives. A convenient protecting group strategy involving the simultaneous use of both p-methoxybenzyl and benzylidene groups was employed, which allowed a simple and cost-effective global deprotection step. The immunomodulatory properties of the synthesized multivalent mannosides were evaluated by assessing cytokine production in human white blood cell cultures. The Th2-type cytokines interleukin-4 and interleukin-5 (IL-4 and IL-5), the Th1 cytokine interferon-γ (IFN-γ), the Treg cytokine IL-10, and the pro-inflammatory cytokine tumor necrosis factor (TNF) were included in the screening. A single trivalent acetylated mannobiose derivative was identified as a potent inducer of Treg and Th1 immune response, resulting in strong IL-10 and moderate IFN-γ productions dose-dependently, while inducing no Th2 cytokine response. The immunomodulatory properties of this trivalent mannoside were further studied in vitro in allergen (Bet v)-stimulated human peripheral blood mononuclear cell cultures of birch pollen allergic subjects. Stimulation with birch pollen induced strong IL-4 and IL-5 responses, which could be suppressed by the trivalent acetylated mannobiose derivative. The IL-10 response was also suppressed, whereas the production of IFN-γ was strongly enhanced. The results suggest that the identified lead compound has suppressive effects on the Th2-type allergic inflammatory response and shows potential as a possible lead adjuvant for the specific immunotherapy of

  6. [Investigation of biologically active compounds at the Department of Organic Chemistry of University of Debrecen 1992-2009. Part III].

    Science.gov (United States)

    Antus, Sándor

    2010-01-01

    The author briefly reviews the beginning of the carbohydrate chemistry in Hungary with special regard to the results achieved at the Department of Organic Chemistry of University of Debrecen and summarizes the most important synthetic and pharmaceutical results obtained in this field between 1992-2009, part III.

  7. Biosynthetic inorganic chemistry.

    Science.gov (United States)

    Lu, Yi

    2006-08-25

    Inorganic chemistry and biology can benefit greatly from each other. Although synthetic and physical inorganic chemistry have been greatly successful in clarifying the role of metal ions in biological systems, the time may now be right to utilize biological systems to advance coordination chemistry. One such example is the use of small, stable, easy-to-make, and well-characterized proteins as ligands to synthesize novel inorganic compounds. This biosynthetic inorganic chemistry is possible thanks to a number of developments in biology. This review summarizes the progress in the synthesis of close models of complex metalloproteins, followed by a description of recent advances in using the approach for making novel compounds that are unprecedented in either inorganic chemistry or biology. The focus is mainly on synthetic "tricks" learned from biology, as well as novel structures and insights obtained. The advantages and disadvantages of this biosynthetic approach are discussed.

  8. From China to the world: Science China Chemistry celebrates the International Year of Chemistry

    Institute of Scientific and Technical Information of China (English)

    ZHU XiaoWen; XUE Zi-Ling

    2012-01-01

    1 Introduction Science China Chemistry is considered the best and most comprehensive chemistry journal in China,Its primary mission is to communicate the results of basic and innovative chemistry research.The subject areas include physical chemistry,organic chemistry,inorganic chemistry,polymer chemistry,biological chemistry,environmental chemistry,and chemical engineering in the form of Feature Articles,Reviews,Communications,Articles,and News & Comments.

  9. What Are They Thinking? Automated Analysis of Student Writing about Acid-Base Chemistry in Introductory Biology

    Science.gov (United States)

    Haudek, Kevin C.; Prevost, Luanna B.; Moscarella, Rosa A.; Merrill, John; Urban-Lurain, Mark

    2012-01-01

    Students' writing can provide better insight into their thinking than can multiple-choice questions. However, resource constraints often prevent faculty from using writing assessments in large undergraduate science courses. We investigated the use of computer software to analyze student writing and to uncover student ideas about chemistry in an…

  10. Changes in stream chemistry and biology in response to reduced levels of acid deposition during 1987-2003 in the Neversink River Basin, Catskill Mountains

    Science.gov (United States)

    Burns, Douglas A.; Riva-Murray, K.; Bode, R.W.; Passy, S.

    2008-01-01

    Atmospheric acid deposition has decreased in the northeastern United States since the 1970s, resulting in modest increases in pH, acid-neutralizing capacity (ANC), and decreases in inorganic monomeric aluminum (AlIM) concentrations since stream chemistry monitoring began in the 1980s in the acid-sensitive upper Neversink River basin in the Catskill Mountains of New York. Stream pH has increased by 0.01 units/year during 1987-2003 at three sites in the Neversink basin as determined by Seasonal Kendall trend analysis. In light of this observed decrease in stream acidity, we sampled 12 stream sites within the Neversink River watershed for water chemistry, macroinvertebrates, fish, and periphytic diatoms in 2003 to compare with a similar data set collected in 1987. Metrics and indices that reflect sensitivity to stream acidity were developed with these biological data to determine whether changes in stream biota over the intervening 16 years parallel those of stream chemistry. Statistical comparisons of data on stream chemistry and an acid biological assessment profile (Acid BAP) derived from invertebrate data showed no significant differences between the two years. For pH and ANC, however, values in 2003 were generally lower than those in 1987; this difference likely resulted from higher streamflow in summer 2003. Despite these likely flow-induced changes in summer 2003, an ordination and cluster analysis of macroinvertebrate taxa based on the Acid BAP indicated that the most acidic sites in the upstream half of the East Branch Neversink River form a statistically significant separate cluster consistent with less acidic stream conditions. This analysis is consistent with limited recovery of invertebrate species in the most acidic reaches of the river, but will require additional improvement in stream chemistry before a stronger conclusion can be drawn. Data on the fish and periphytic diatom communities in 2003 indicate that slimy sculpin had not extended their habitat

  11. Advances in quantum chemistry

    CERN Document Server

    Sabin, John R

    2013-01-01

    Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine.Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features

  12. Quantum chemistry calculation-aided structural optimization of combretastatin A-4-like tubulin polymerization inhibitors: improved stability and biological activity.

    Science.gov (United States)

    Jiang, Junhang; Zheng, Canhui; Zhu, Kongkai; Liu, Jia; Sun, Nannan; Wang, Chongqing; Jiang, Hualiang; Zhu, Ju; Luo, Cheng; Zhou, Youjun

    2015-03-12

    A potent combretastatin A-4 (CA-4) like tubulin polymerization inhibitor 22b was found with strong antitumor activity previously. However, it easily undergoes cis-trans isomerization under natural light, and the resulting decrease in activity limits its further applications. In this study, we used quantum chemistry calculations to explore the molecular basis of its instability. Aided by the calculations, two rounds of structural optimization of 22b were conducted. Accelerated quantitative light stability testing confirmed that the stability of these designed compounds was significantly improved as predicted. Among them, compounds 1 and 3b displayed more potent inhibitory activity on tumor cell growth than 22b. In addition, the potent in vivo antitumor activity of compound 1 was confirmed. Quantum chemistry calculations were used in the optimization of stilbene-like molecules, providing new insight into stilbenoid optimization and important implications for the future development of novel CA-4-like tubulin polymerization inhibitors.

  13. Prion-like nanofibrils of small molecules (PriSM): A new frontier at the intersection of supramolecular chemistry and cell biology.

    Science.gov (United States)

    Zhou, Jie; Du, Xuewen; Xu, Bing

    2015-01-01

    Formed by non-covalent interactions and not defined at genetic level, the assemblies of small molecules in biology are complicated and less explored. A common morphology of the supramolecular assemblies of small molecules is nanofibrils, which coincidentally resembles the nanofibrils formed by proteins such as prions. So these supramolecular assemblies are termed as prion-like nanofibrils of small molecules (PriSM). Emerging evidence from several unrelated fields over the past decade implies the significance of PriSM in biology and medicine. This perspective aims to highlight some recent advances of the research on PriSM. This paper starts with description of the intriguing similarities between PriSM and prions, discusses the paradoxical features of PriSM, introduces the methods for elucidating the biological functions of PriSM, illustrates several examples of beneficial aspects of PriSM, and finishes with the promises and current challenges in the research of PriSM. We anticipate that the research of PriSM will contribute to the fundamental understanding at the intersection of supramolecular chemistry and cell biology and ultimately lead to a new paradigm of molecular (or supramolecular) therapeutics for biomedicine.

  14. On the emergence of biology from chemistry: a discontinuist perspective from the point of view of stability and regulation.

    Science.gov (United States)

    Bich, Leonardo; Damiano, Luisa

    2012-10-01

    In this paper we argue that molecular evolution, and the evolution of prebiotic and early biological systems are qualitatively different processes, in which a crucial role is played respectively by structural stability and by dynamical mechanisms of regulation and integration. These different features entail also distinct modalities of interaction between system and environment that need to be taken into consideration when discussing molecular and biological evolution and selection.

  15. Sixty Years of Chemistry at CAS

    Institute of Scientific and Technical Information of China (English)

    WAN Li-Jun

    2011-01-01

    @@ As one of the fundamental and key disciplines of natural sciences, chemistry deals with the properties, composition, structure, transformation and applications of substances.It could be further divided into several branches, such as inorganic chemistry, organic chemistry, physical chemistry, polymer chemistry, analytical chemistry and chemical engineering.In recent years, many new branches and fields have emerged amide the continuous development of chemistry and its interdisciplinary research with mathematics, physics, astronomy, earth science, biology, medical science, materials science, and environmental science.

  16. Well-defined hydrophilic molecularly imprinted polymer microspheres for efficient molecular recognition in real biological samples by facile RAFT coupling chemistry.

    Science.gov (United States)

    Zhao, Man; Chen, Xiaojing; Zhang, Hongtao; Yan, Husheng; Zhang, Huiqi

    2014-05-12

    A facile and highly efficient new approach (namely RAFT coupling chemistry) to obtain well-defined hydrophilic molecularly imprinted polymer (MIP) microspheres with excellent specific recognition ability toward small organic analytes in the real, undiluted biological samples is described. It involves the first synthesis of "living" MIP microspheres with surface-bound vinyl and dithioester groups via RAFT precipitation polymerization (RAFTPP) and their subsequent grafting of hydrophilic polymer brushes by the simple coupling reaction of hydrophilic macro-RAFT agents (i.e., hydrophilic polymers with a dithioester end group) with vinyl groups on the "living" MIP particles in the presence of a free radical initiator. The successful grafting of hydrophilic polymer brushes onto the obtained MIP particles was confirmed by SEM, FT-IR, static contact angle and water dispersion studies, elemental analyses, and template binding experiments. Well-defined MIP particles with densely grafted hydrophilic polymer brushes (∼1.8 chains/nm(2)) of desired chemical structures and molecular weights were readily obtained, which showed significantly improved surface hydrophilicity and could thus function properly in real biological media. The origin of the high grafting densities of the polymer brushes was clarified and the general applicability of the strategy was demonstrated. In particular, the well-defined characteristics of the resulting hydrophilic MIP particles allowed the first systematic study on the effects of various structural parameters of the grafted hydrophilic polymer brushes on their water-compatibility, which is of great importance for rationally designing more advanced real biological sample-compatible MIPs.

  17. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  18. Bringing an "old" biological buffer to coordination chemistry: new 1D and 3D coordination polymers with [Cu(4)(Hbes)(4)] cores for mild hydrocarboxylation of alkanes.

    Science.gov (United States)

    Kirillov, Alexander M; Coelho, Jaime A S; Kirillova, Marina V; da Silva, M Fátima C Guedes; Nesterov, Dmytro S; Gruenwald, Katrin R; Haukka, Matti; Pombeiro, Armando J L

    2010-07-19

    New water-soluble 1D and 3D Cu(II)/Na coordination polymers 1-3 bearing unprecedented [Cu(4)(Hbes)(4)] cores have been easily generated by aqueous-medium self-assembly and fully characterized, thus opening up the use of the common biological buffer H(3)bes, (HO(3)SCH(2)CH(2))N(CH(2)CH(2)OH)(2), in synthetic coordination chemistry. Apart from representing the first isolated and structurally characterized coordination compounds derived from H(3)bes, 1-3 show a remarkable promoting effect in the mild aqueous-medium hydrocarboxylation, by CO and H(2)O, of gaseous alkanes (C(3)H(8) and n-C(4)H(10)) to the corresponding carboxylic acids, which are obtained in up to 95% yields based on the alkane.

  19. The Breath of Chemistry

    DEFF Research Database (Denmark)

    Josephsen, Jens

    The present preliminary text is a short thematic presentation in biological inorganic chemistry meant to illustrate general and inorganic (especially coordination) chemistry in biochemistry. The emphasis is on molecular models to explain features of the complicated mechanisms essential to breathing...

  20. Bioorganic and bioinorganic chemistry.

    Science.gov (United States)

    Constable, Edwin C; Housecroft, Catherine E; Creus, Marc; Gademann, Karl; Giese, Bernd; Ward, Thomas R; Woggon, Wolf D; Chougnet, Antoinette

    2010-01-01

    The interdisciplinary projects in bioinorganic and bioorganic chemistry of the Department of Chemistry, University of Basel led to the preparation of new systems that mimic biologically important processes and to the discovery of compounds from natural sources which are very promising with respect to medical applications. The advances in these areas are reported here.

  1. Medicinal Chemistry/Pharmacology in Sophomore Organic Chemistry.

    Science.gov (United States)

    Harrison, Aline M.

    1989-01-01

    Discussed is a series of lectures designed to illustrate the use of general organic chemical principles in molecular biology, introduce current research in interdisciplinary areas to the beginner, increase interest in organic chemistry, and bridge the gap between traditional organic chemistry, biology, and the consumer. An outline is presented.…

  2. Carbonate chemistry dynamics and biological processes along a river-sea gradient (Gulf of Trieste, northern Adriatic Sea)

    Science.gov (United States)

    Ingrosso, Gianmarco; Giani, Michele; Cibic, Tamara; Karuza, Ana; Kralj, Martina; Del Negro, Paola

    2016-03-01

    In this paper we investigated, for two years and with a bi-monthly frequency, how physical, chemical, and biological processes affect the marine carbonate system in a coastal area characterized by high alkalinity riverine discharge (Gulf of Trieste, northern Adriatic Sea, Mediterranean Sea). By combining synoptic measurements of the carbonate system with in situ determinations of the primary production (14C incorporation technique) and secondary prokaryotic carbon production (3H-leucine incorporation) along a river-sea gradient, we showed that the conservative mixing between river endmember and off-shore waters was the main driver of the dissolved inorganic carbon (DIC) distribution and seasonal variation. However, during spring and summer seasons also the influence of biological uptake and release of DIC was significant. In the surface water of June 2012, the spreading and persistence of nutrient-rich freshwater stimulated the primary production (3.21 μg C L- 1 h- 1) and net biological DIC decrease (- 100 μmol kg- 1), reducing the dissolved CO2 concentration and increasing the pHT. Below the pycnocline of August 2012, instead, an elevated bacterial carbon production rate (0.92 μg C L- 1 h- 1) was related with net DIC increase (92 μmol kg- 1), low dissolved oxygen concentration, and strong pHT reduction, suggesting the predominance of bacterial heterotrophic respiration over primary production. The flux of carbon dioxide estimated at the air-sea interface exerted a low influence on the seasonal variation of the carbonate system. A complex temporal and spatial dynamic of the air-sea CO2 exchange was also detected, due to the combined effects of seawater temperature, river discharge, and water circulation. On annual scale the system was a sink of atmospheric CO2. However, in summer and during elevated riverine discharges, the area close to the river's mouth acted as a source of carbon dioxide. Also the wind speed was crucial in controlling the air-sea CO2

  3. Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

    2012-07-25

    This report summarizes a 2011 workshop that addressed the potential role of rapid, time-resolved electron microscopy measurements in accelerating the solution of important scientific and technical problems. A series of U.S. Department of Energy (DOE) and National Academy of Science workshops have highlighted the critical role advanced research tools play in addressing scientific challenges relevant to biology, sustainable energy, and technologies that will fuel economic development without degrading our environment. Among the specific capability needs for advancing science and technology are tools that extract more detailed information in realistic environments (in situ or operando) at extreme conditions (pressure and temperature) and as a function of time (dynamic and time-dependent). One of the DOE workshops, Future Science Needs and Opportunities for Electron Scattering: Next Generation Instrumentation and Beyond, specifically addressed the importance of electron-based characterization methods for a wide range of energy-relevant Grand Scientific Challenges. Boosted by the electron optical advancement in the last decade, a diversity of in situ capabilities already is available in many laboratories. The obvious remaining major capability gap in electron microscopy is in the ability to make these direct in situ observations over a broad spectrum of fast (µs) to ultrafast (picosecond [ps] and faster) temporal regimes. In an effort to address current capability gaps, EMSL, the Environmental Molecular Sciences Laboratory, organized an Ultrafast Electron Microscopy Workshop, held June 14-15, 2011, with the primary goal to identify the scientific needs that could be met by creating a facility capable of a strongly improved time resolution with integrated in situ capabilities. The workshop brought together more than 40 leading scientists involved in applying and/or advancing electron microscopy to address important scientific problems of relevance to DOE’s research

  4. Abiotic synthesis of RNA in water: a common goal of prebiotic chemistry and bottom-up synthetic biology.

    Science.gov (United States)

    Cafferty, Brian J; Hud, Nicholas V

    2014-10-01

    For more than half a century chemists have searched for a plausible prebiotic synthesis of RNA. The initial advances of the 1960s and 1970s were followed by decades of measured progress and a growing pessimism about overcoming remaining challenges. Fortunately, the past few years have provided a number of important advances, including new abiotic routes for the synthesis of nucleobases, nucleosides, and nucleotides. Recent discoveries also provide additional support for the hypothesis that RNA is the product of evolution, being preceded by ancestral genetic polymers, or pre-RNAs, that are synthesized more easily than RNA. In some cases, parallel searches for plausible prebiotic routes to RNA and pre-RNAs have provided more than one experimentally verified synthesis of RNA substructures and possible predecessors. Just as the synthesis of a contemporary biological molecule cannot be understood without knowledge of cellular metabolism, it is likely that an integrated approach that takes into account both plausible prebiotic reactions and plausible prebiotic environments will ultimately provide the most satisfactory and unifying chemical scenarios for the origin of nucleic acids. In this context, recent advances towards the abiotic synthesis of RNA and candidates for pre-RNAs are beginning to suggest that some molecules (e.g., urea) were multi-faceted contributors to the origin of nucleic acids, and the origin of life.

  5. The Chemistry and Biological Activities of Natural Products from Northern African Plant Families: From Taccaceae to Zygophyllaceae.

    Science.gov (United States)

    Ntie-Kang, Fidele; Njume, Leonel E; Malange, Yvette I; Günther, Stefan; Sippl, Wolfgang; Yong, Joseph N

    2016-04-01

    Traditional medicinal practices have a profound influence on the daily lives of people living in developing countries, particularly in Africa, since the populations cannot generally afford the cost of Western medicines. We have undertaken to investigate the correlation between the uses of plants in Traditional African medicine and the biological activities of the derived natural products, with the aim to validate the use of traditional medicine in Northern African communities. The literature is covered for the period 1959-2015 and part III of this review series focuses on plant families with names beginning with letters T to Z. The authors have focused on curating data from journals in natural products and phytomedicine. Within each journal home page, a query search based on country name was conducted. All articles "hits" were then verified, one at a time, that the species was harvested within the Northern African geographical regions. The current data partly constitutes the bases for the development of the Northern African natural compounds database. The review discusses 284 plant-based natural compounds from 34 species and 11 families. It was observed that the ethnobotanical uses of less than 40 % of the plant species surveyed correlated with the bioactivities of compounds identified.

  6. Herbal Therapies for Type 2 Diabetes Mellitus: Chemistry, Biology, and Potential Application of Selected Plants and Compounds

    Directory of Open Access Journals (Sweden)

    Cicero L. T. Chang

    2013-01-01

    Full Text Available Diabetes mellitus has been recognized since antiquity. It currently affects as many as 285 million people worldwide and results in heavy personal and national economic burdens. Considerable progress has been made in orthodox antidiabetic drugs. However, new remedies are still in great demand because of the limited efficacy and undesirable side effects of current orthodox drugs. Nature is an extraordinary source of antidiabetic medicines. To date, more than 1200 flowering plants have been claimed to have antidiabetic properties. Among them, one-third have been scientifically studied and documented in around 460 publications. In this review, we select and discuss blood glucose-lowering medicinal herbs that have the ability to modulate one or more of the pathways that regulate insulin resistance, β-cell function, GLP-1 homeostasis, and glucose (reabsorption. Emphasis is placed on phytochemistry, anti-diabetic bioactivities, and likely mechanism(s. Recent progress in the understanding of the biological actions, mechanisms, and therapeutic potential of compounds and extracts of plant origin in type 2 diabetes is summarized. This review provides a source of up-to-date information for further basic and clinical research into herbal therapy for type 2 diabetes. Emerging views on therapeutic strategies for type 2 diabetes are also discussed.

  7. Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli.

    Science.gov (United States)

    Alberti, Sebastián; Soler-Illia, Galo J A A; Azzaroni, Omar

    2015-04-11

    This review presents and discusses recent advances in the emerging field of "gated nanochemistry", outlining the substantial progress made so far. The development of hybrid mesoporous silica with complex tailored pore nanoarchitectures bridges the gap between molecular materials and the requirements of nanodevices for controlled nanoscale chemistry. In the last decade, membranes, particles and thin film porous architectures have been designed, synthesized and selectively modified by molecular, polymeric, organometallic or biologically active groups. The exquisite manipulation of mesopore morphology and interconnection combined with molecular or supramolecular functionalities, and the intrinsic biological compatibility of silica have made these materials a potential platform for selective sensing and drug delivery. The wide répertoire of these hard-soft architectures permit us to envisage sophisticated intelligent nano-systems that respond to a variety of external stimuli such as pH, redox potential, molecule concentration, temperature, or light. Transduction of these stimuli into a predefined response implies exploiting spatial and physico-chemical effects such as charge distribution, steric constraints, equilibria displacements, or local changes in ionic concentration, just to name a few examples. As expected, this "positional mesochemistry" can be only attained through the concerted control of assembly, surface tailoring and, confinement conditions, thus giving birth to a new class of stimuli-responsive materials with modulable transport properties. As a guiding framework the emerging field of "gated nanochemistry" offers methodologies and tools for building up stimuli-sensitive porous architectures equipped with switchable entities whose transport properties can be triggered at will. The gated nanoscopic hybrid materials discussed here not only herald a new era in the integrative design of "smart" drug delivery systems, but also give the reader a perspective of

  8. Lead Discovery, Chemistry Optimization, and Biological Evaluation Studies of Novel Biamide Derivatives as CB2 Receptor Inverse Agonists and Osteoclast Inhibitors

    Science.gov (United States)

    Yang, Peng; Myint, Kyaw-Zeyar; Tong, Qin; Feng, Rentian; Cao, Haiping; Almehizia, Abdulrahman A.; Alqarni, Mohammed Hamed; Wang, Lirong; Bartlow, Patrick; Gao, Yingdai; Gertsch, Jürg; Teramachi, Jumpei; Kurihara, Noriyoshi; Roodman, Garson David; Cheng, Tao; Xie, Xiang-Qun

    2014-01-01

    N,N′-((4-(Dimethylamino)phenyl)methylene)bis(2-phenylacetamide) was discovered by using 3D pharmacophore database searches and was biologically confirmed as a new class of CB2 inverse agonists. Subsequently, 52 derivatives were designed and synthesized through lead chemistry optimization by modifying the rings A–C and the core structure in further SAR studies. Five compounds were developed and also confirmed as CB2 inverse agonists with the highest CB2 binding affinity (CB2 Ki of 22–85 nM, EC50 of 4–28 nM) and best selectivity (CB1/CB2 of 235- to 909-fold). Furthermore, osteoclastogenesis bioassay indicated that PAM compounds showed great inhibition of osteoclast formation. Especially, compound 26 showed 72% inhibition activity even at the low concentration of 0.1 µM. The cytotoxicity assay suggested that the inhibition of PAM compounds on osteoclastogenesis did not result from its cytotoxicity. Therefore, these PAM derivatives could be used as potential leads for the development of a new type of antiosteoporosis agent. PMID:23072339

  9. Comparative chemistry and biological properties of the solid residues from hydrodistillation of Spanish populations of Rosmarinus officinalis L.

    Directory of Open Access Journals (Sweden)

    Sánchez-Vioque, R.

    2015-06-01

    Full Text Available Solid residues from the hydrodistillation of selected Spanish populations of rosemary (Rosmarinus officinalis L. have been analyzed for their polyphenol composition, and antioxidant and bioplaguicide activities. The objective was to evaluate and select the most suitable plant materials as sources of natural antioxidants and crop protectants. Total polyphenol content and polyphenol composition of rosemary populations were very dependent on the growth location: populations from Aranjuez showed a higher content of total polyphenols and were richer in rosmarinic acid as compared with their equivalent populations from Cuenca, whereas these latter were characterized by an overall higher content in genkwanin and carnosol. Most of the antioxidant activities were highly correlated with the total content of polyphenols although some polyphenols like carnosic acid and carnosol seemed to favor such activities. The extracts from R. officinalis were strong antifeedants against Leptinotarsa decemlineata Say and moderate against Spodoptera littoralis Boisd and Myzus persicae Sulzer, according to their feeding ecologies. The biological effects of the active samples cannot be accounted by their chemical composition, suggesting additive or synergistic effects. Both the phytotoxic and stimulating effects on Lactuca sativa L., and Lolium perenne L. leaf and/or root growth were observed.Se ha analizado la composición en polifenoles y las actividades antioxidante y bioplaguicida de los residuos sólidos procedentes de la hidrodestilación de poblaciones seleccionadas de romero (Rosmarinus officinalis L.. El objetivo fue evaluar y seleccionar los materiales vegetales más adecuados como fuente de antioxidantes y bioplaguicidas naturales. El contenido total y la composición en polifenoles de las poblaciones de romero dependieron mucho de la localidad de cultivo: las poblaciones de Aranjuez mostraron un mayor contenido en polifenoles y fueron más ricas en

  10. Temperature-controlled micro-TLC: a versatile green chemistry and fast analytical tool for separation and preliminary screening of steroids fraction from biological and environmental samples.

    Science.gov (United States)

    Zarzycki, Paweł K; Slączka, Magdalena M; Zarzycka, Magdalena B; Bartoszuk, Małgorzata A; Włodarczyk, Elżbieta; Baran, Michał J

    2011-11-01

    whole range of target substances as well as chemo-taxonomic studies and fingerprinting of complex mixtures, which are present in biological or environmental samples. Due to low consumption of eluent (usually 0.3-1mL/run) mainly composed of water-alcohol binary mixtures, this method can be considered as environmentally friendly and green chemistry focused analytical tool, supplementary to analytical protocols involving column chromatography or planar micro-fluidic devices.

  11. Colour Chemistry

    Science.gov (United States)

    Griffiths, J.; Rattee, I. D.

    1973-01-01

    Discusses the course offerings in pure color chemistry at two universities and the three main aspects of study: dyestuff chemistry, color measurement, and color application. Indicates that there exists a constant challenge to ingenuity in the subject discipline. (CC)

  12. Chemistry Dashboard

    Science.gov (United States)

    The Chemistry Dashboard is part of a suite of dashboards developed by EPA to help evaluate the safety of chemicals. The Chemistry Dashboard provides access to a variety of information on over 700,000 chemicals currently in use.

  13. Chemistry Notes

    Science.gov (United States)

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  14. Heterocyclic chemistry

    OpenAIRE

    Hemming, Karl

    2011-01-01

    Recent progress in the synthesis of heterocyclic compounds is presented\\ud 2010 offered highlights in pericyclic chemistry, particularly 1,3-dipolar cycloaddition chemistry, asymmetric synthesis, gold catalysis, organocatalysis, hydroamination, C–H activation and multicomponent reactions.

  15. Positronium chemistry

    CERN Document Server

    Green, James

    1964-01-01

    Positronium Chemistry focuses on the methodologies, reactions, processes, and transformations involved in positronium chemistry. The publication first offers information on positrons and positronium and experimental methods, including mesonic atoms, angular correlation measurements, annihilation spectra, and statistical errors in delayed coincidence measurements. The text then ponders on positrons in gases and solids. The manuscript takes a look at the theoretical chemistry of positronium and positronium chemistry in gases. Topics include quenching, annihilation spectrum, delayed coincidence

  16. Forensic chemistry.

    Science.gov (United States)

    Bell, Suzanne

    2009-01-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  17. The Handling Strategies for the Knowledge of Physics and Chemistry in Junior Biology Textbooks of the Phoenix Science Press Edition%苏科版初中生物教材中理化知识的处理策略

    Institute of Scientific and Technical Information of China (English)

    吴飞

    2015-01-01

    苏科版初中生物教材中涉及到相关物理、化学知识,对初中学生而言是难以理解的.如果教师处理不当会影响学生学习生物学的兴趣和主动性.因而,教师在教学过程中注意处理好相关理化知识就显得尤为重要.通过重视相关理化知识、合理定位、简化处理和恰当活化等策略,不仅可化解学生学习的难点,还能充实生物课堂教学,提高教学效果.%The knowledge about physics and chemistry in the Junior high school biology textbooks of the Phoenix Science Press Edition is alien to junior middle school students, which will cause confusion of the students if the teachers cannot deal with the problems in an appropriate manner. As a result, the students may find it difficult to comprehend the figures or the expressions concerning physics and chemistry. Thus, it is of essential importance for biology teachers to explore the ways to cope with the concerning physical and chemical knowledge and try to apply the knowledge of physics and chemistry in their teaching process of biology teaching. Only in this way can the teaching aim be actually realized.

  18. Eleventh international symposium on radiopharmaceutical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document contains abstracts of papers which were presented at the Eleventh International Symposium on Radiopharmaceutical Chemistry. Sessions included: radiopharmaceuticals for the dopaminergic system, strategies for the production and use of labelled reactive small molecules, radiopharmaceuticals for measuring metabolism, radiopharmaceuticals for the serotonin and sigma receptor systems, labelled probes for molecular biology applications, radiopharmaceuticals for receptor systems, radiopharmaceuticals utilizing coordination chemistry, radiolabelled antibodies, radiolabelling methods for small molecules, analytical techniques in radiopharmaceutical chemistry, and analytical techniques in radiopharmaceutical chemistry.

  19. Chemistry in microelectronics

    CERN Document Server

    Le Tiec, Yannick

    2013-01-01

    Microelectronics is a complex world where many sciences need to collaborate to create nano-objects: we need expertise in electronics, microelectronics, physics, optics and mechanics also crossing into chemistry, electrochemistry, as well as biology, biochemistry and medicine. Chemistry is involved in many fields from materials, chemicals, gases, liquids or salts, the basics of reactions and equilibrium, to the optimized cleaning of surfaces and selective etching of specific layers. In addition, over recent decades, the size of the transistors has been drastically reduced while the functionalit

  20. Organic chemistry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-15

    This book with sixteen chapter explains organic chemistry on linkage isomerism such as alkane, cycloalkane, alkene, aromatic compounds, stereo selective isomerization, aromatic compounds, stereo selective isomerization, organic compounds, stereo selective isomerization, organic halogen compound, alcohol, ether, aldehyde and ketone, carboxylic acid, dicarboxylic acid, fat and detergent, amino, carbohydrate, amino acid and protein, nucleotide and nucleic acid and spectroscopy, a polymer and medical chemistry. Each chapter has introduction structure and characteristic and using of organic chemistry.

  1. Bioinorganic Chemistry

    OpenAIRE

    Bertini, Ivano; Gray, Harry B.; Lippard, Stephen J.; Valentine, Joan Selverstone

    1994-01-01

    This book covers material that could be included in a one-quarter or one-semester course in bioinorganic chemistry for graduate students and advanced undergraduate students in chemistry or biochemistry. We believe that such a course should provide students with the background required to follow the research literature in the field. The topics were chosen to represent those areas of bioinorganic chemistry that are mature enough for textbook presentation. Although each chapter presents material...

  2. Chemistry Technology

    Data.gov (United States)

    Federal Laboratory Consortium — Chemistry technology experts at NCATS engage in a variety of innovative translational research activities, including:Design of bioactive small molecules.Development...

  3. Uranium triamidoamine chemistry.

    Science.gov (United States)

    Gardner, Benedict M; Liddle, Stephen T

    2015-07-01

    Triamidoamine (Tren) complexes of the p- and d-block elements have been well-studied, and they display a diverse array of chemistry of academic, industrial and biological significance. Such in-depth investigations are not as widespread for Tren complexes of uranium, despite the general drive to better understand the chemical behaviour of uranium by virtue of its fundamental position within the nuclear sector. However, the chemistry of Tren-uranium complexes is characterised by the ability to stabilise otherwise reactive, multiply bonded main group donor atom ligands, construct uranium-metal bonds, promote small molecule activation, and support single molecule magnetism, all of which exploit the steric, electronic, thermodynamic and kinetic features of the Tren ligand system. This Feature Article presents a current account of the chemistry of Tren-uranium complexes.

  4. Air Composition and Chemistry

    Science.gov (United States)

    Brimblecombe, Peter

    1996-01-01

    This book is about the atmosphere and humanity's influence on it. For this new edition, Brimblecombe has rewritten and updated much of the book. In the early chapters, he discusses the geochemical, biological and maritime sources of the trace gases. Next, he examines the chemistry of atmospheric gases, suspended particles, and rainfall. After dealing with the natural atmosphere, he examines the sources of air pollution and its effects, with all scenarios updated from the last edition. Scenarios include decline in health, damage to plants and animals, indoor pollution, and acid rain. The final chapters, also revised, are concerned with the chemistry and evolution of the atmospheres of the planets of the solar system. Students with an interest in chemistry and the environmental sciences will find this book highly valuable.

  5. Conference on the Physics, Chemistry and Biology of Water (3rd) Held in West Dover, Vermont on October 16-19, 2008 (Abstracts)

    Science.gov (United States)

    2008-10-27

    confinement, photocatalytic water splitting, recyclable hydrogen, thermoluminescence, nanofluids, nanochannels. aqueous hydroxide ion transport , IR...11:50 Andrei Tokmakoff MIT The dynamics of aqueous hydroxide ion transport from 2D IR spectroscopy 12:25 Lunch TOGETHER Session F-II Short-range...aqueous solutions of Homeopathic Medicine V.Elia and E.Napoli Department of Chemistry University "Federico IT’ of Naples , Complesso Universitario di

  6. Computational Systems Chemical Biology

    OpenAIRE

    Oprea, Tudor I.; Elebeoba E. May; Leitão, Andrei; Tropsha, Alexander

    2011-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically-based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology, SCB (Oprea et al., 2007).

  7. Quantum chemistry

    CERN Document Server

    Lowe, John P

    1993-01-01

    Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,

  8. Etymology of transition metal biomolecules as a learning aid in Biological Chemistry; A etimologia de biomoleculas com metais de transicao como auxiliar na aprendizagem de Quimica Biologica

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jose A.L. da, E-mail: pcd1950@ist.utl.pt [Universidade Tecnica de Lisboa (Portugal). Instituto Superior Tecnico. Centro de Quimico Estrutural

    2013-11-01

    Numerous functional biomolecules are associated with metals, i.e. the metallobiomolecules; more specifically, some are dependent on transition metals required for several crucial biological roles. Nevertheless, their names can lead to ambiguous interpretations concerning the properties and performances of this group of biological molecules. Their etymology may be useful by providing a more perceptive insight into their features. However, etymology can lead to incongruous conclusions, requiring an especially careful approach to prevent errors. Examples illustrating these subjects shall be examined (author)

  9. Physical and biological controls on the carbonate chemistry of coral reef waters: effects of metabolism, wave forcing, sea level, and geomorphology.

    Directory of Open Access Journals (Sweden)

    James L Falter

    Full Text Available We present a three-dimensional hydrodynamic-biogeochemical model of a wave-driven coral-reef lagoon system using the circulation model ROMS (Regional Ocean Modeling System coupled with the wave transformation model SWAN (Simulating WAves Nearshore. Simulations were used to explore the sensitivity of water column carbonate chemistry across the reef system to variations in benthic reef metabolism, wave forcing, sea level, and system geomorphology. Our results show that changes in reef-water carbonate chemistry depend primarily on the ratio of benthic metabolism to the square root of the onshore wave energy flux as well as on the length and depth of the reef flat; however, they are only weakly dependent on channel geometry and the total frictional resistance of the reef system. Diurnal variations in pCO(2, pH, and aragonite saturation state (Ω(ar are primarily dependent on changes in net production and are relatively insensitive to changes in net calcification; however, net changes in pCO(2, pH, and Ω(ar are more strongly influenced by net calcification when averaged over 24 hours. We also demonstrate that a relatively simple one-dimensional analytical model can provide a good description of the functional dependence of reef-water carbonate chemistry on benthic metabolism, wave forcing, sea level, reef flat morphology, and total system frictional resistance. Importantly, our results indicate that any long-term (weeks to months net offsets in reef-water pCO(2 relative to offshore values should be modest for reef systems with narrow and/or deep lagoons. Thus, the long-term evolution of water column pCO(2 in many reef environments remains intimately connected to the regional-scale oceanography of offshore waters and hence directly influenced by rapid anthropogenically driven increases in pCO(2.

  10. Introductory Chemistry

    OpenAIRE

    Baron, Mark; Gonzalez-Rodriguez, Jose; Stevens, Gary; Gray, Nathan; Atherton, Thomas; Winn, Joss

    2010-01-01

    Teaching and Learning resources for the 1st Year Introductory Chemistry course (Forensic Science). 30 credits. These are Open Educational Resources (OER), made available for re-use under a Creative Commons license.

  11. Nuclear Chemistry.

    Science.gov (United States)

    Chemical and Engineering News, 1979

    1979-01-01

    Provides a brief review of the latest developments in nuclear chemistry. Nuclear research today is directed toward increased activity in radiopharmaceuticals and formation of new isotopes by high-energy, heavy-ion collisions. (Author/BB)

  12. Materials Chemistry

    CERN Document Server

    Fahlman, Bradley D

    2011-01-01

    The 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field. The 2nd edition continues to offer innovative coverage and practical perspective throughout. After briefly defining materials chemistry and its history, seven chapters discuss solid-state chemistry, metals, semiconducting materials, organic "soft" materials, nanomaterials, and materials characterization. All chapters have been thoroughly updated and expanded with, for example, new sections on ‘soft lithographic’ patterning, ‘click chemistry’ polymerization, nanotoxicity, graphene, as well as many biomaterials applications. The polymer and ‘soft’ materials chapter represents the largest expansion for the 2nd edition. Each ch...

  13. Green Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Collison, Melanie

    2011-05-15

    Green chemistry is the science of chemistry used in a way that will not use or create hazardous substances. Dr. Rui Resendes is working in this field at GreenCentre Canada, an offshoot of PARTEQ Innovations in Kingston, Ontario. GreenCentre's preliminary findings suggest their licensed product {sup S}witchable Solutions{sup ,} featuring 3 classes of solvents and a surfactant, may be useful in bitumen oil sands extraction.

  14. Cluster Chemistry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Cansisting of eight scientists from the State Key Laboratory of Physical Chemistry of Solid Surfaces and Xiamen University, this creative research group is devoted to the research of cluster chemistry and creation of nanomaterials.After three-year hard work, the group scored a series of encouraging progresses in synthesis of clusters with special structures, including novel fullerenes, fullerene-like metal cluster compounds as well as other related nanomaterials, and their properties study.

  15. Philosophy of Mathematical Chemistry: A Personal Perspective

    Directory of Open Access Journals (Sweden)

    Subhash C. Basak

    2013-07-01

    Full Text Available This article discusses the nature of mathematical chemistry, discrete mathematical chemistry in particular. Molecules and macromolecules can be represented by model objects using methods of discrete mathematics, e.g., graphs and matrices. Mathematical formalisms are further applied on the model objects to distill various quantitative characteristics. The end product of such an exercise can be a better understanding of chemistry, the development of quantitative scales for qualitative notions of chemistry, or an illumination of the structural basis of chemical and biological properties. The aforementioned aspects of mathematical chemistry are discussed based on my own practitioner’s perspective.

  16. Exploring natural product chemistry and biology with multicomponent reactions. 5. Discovery of a novel tubulin-targeting scaffold derived from the rigidin family of marine alkaloids.

    Science.gov (United States)

    Frolova, Liliya V; Magedov, Igor V; Romero, Anntherese E; Karki, Menuka; Otero, Isaiah; Hayden, Kathryn; Evdokimov, Nikolai M; Banuls, Laetitia Moreno Y; Rastogi, Shiva K; Smith, W Ross; Lu, Shi-Long; Kiss, Robert; Shuster, Charles B; Hamel, Ernest; Betancourt, Tania; Rogelj, Snezna; Kornienko, Alexander

    2013-09-12

    We developed synthetic chemistry to access the marine alkaloid rigidins and over 40 synthetic analogues based on the 7-deazaxanthine, 7-deazaadenine, 7-deazapurine, and 7-deazahypoxanthine skeletons. Analogues based on the 7-deazahypoxanthine skeleton exhibited nanomolar potencies against cell lines representing cancers with dismal prognoses, tumor metastases, and multidrug resistant cells. Studies aimed at elucidating the mode(s) of action of the 7-deazahypoxanthines in cancer cells revealed that they inhibited in vitro tubulin polymerization and disorganized microtubules in live HeLa cells. Experiments evaluating the effects of the 7-deazahypoxanthines on the binding of [(3)H]colchicine to tubulin identified the colchicine site on tubulin as the most likely target for these compounds in cancer cells. Because many microtubule-targeting compounds are successfully used to fight cancer in the clinic, we believe the new chemical class of antitubulin agents represented by the 7-deazahypoxanthine rigidin analogues have significant potential as new anticancer agents.

  17. Synthesis and preliminary biological evaluation of the first (99m)Tc(I)-specific semi-rigid tridentate ligand based on a click chemistry strategy.

    Science.gov (United States)

    Guizani, Sihem; Malek Saied, Nadia; Picard, Claude; Benoist, Eric; Saidi, Mouldi

    2014-03-01

    A novel bifunctional chelating agent based on a click chemistry strategy has been synthesized and characterized on the basis of spectroscopic techniques. The metal chelating part of this new class of tridentate N2O ligand combined a triazole unit and an aromatic ring. This latter semi-rigid framework induced a pre-organization of the chelating cavity, improving the stability of the corresponding metallic complexes (M = (99m) Tc, Re). Thus, the (99m) Tc(CO)3 complex, obtained with good yield and excellent radiochemical purity (>90%), exhibited a high in vitro serum stability. Tissue biodistribution in normal mice showed a rapid clearance, no long-term retention in organs and no in vivo reoxidation of technetium-99m, making this compound a promising (99m)Tc-chelating system.

  18. Coordination Chemistry of Polyaromatic Thiosemicarbazones 2: Synthesis and Biological Activity of Zinc, Cobalt, and Copper Complexes of 1-(Naphthalene-2-ylethanone Thiosemicarbazone

    Directory of Open Access Journals (Sweden)

    Marc-Andre LeBlanc

    2011-01-01

    Full Text Available A novel thiosemicarbazone from 2-acetonaphthone (represented as acnTSC has been synthesized and its basic coordination chemistry with zinc(II, cobalt(II, and copper(II explored. The complexes were characterized by elemental analysis and various spectroscopic techniques and are best formulated as [M(acnTSC2Cl2] with the metal likely in an octahedral environment. The anticancer activity of the complexes was determined against a panel of human colon cancer cells (HCT-116 and Caco-2. The compounds bind to DNA via an intercalative mode with binding constants of 9.7×104 M-1, 1.8×105 M-1, and 9.5×104 M-1 for the zinc, cobalt, and copper complexes, respectively.

  19. Forensic Chemistry Training

    Directory of Open Access Journals (Sweden)

    Zuhal GERÇEK

    2012-01-01

    Full Text Available Increasing the types of terrorism and crime nowadays, the importance of the forensic sciences can be bett er understood. Forensic science is the application of the wide spectrum of science to answer the question of legal system. It contains the application of the principles, techniques and methods of basic sciences and its main aim is the determination of the physical facts which are important in legal situations. Forensic chemistry is the branch of chemistry which performs the chemical analysis of evidences that used in the courts. Forensic chemist is the professional chemist who analyzes the evidences from crime scene and reaches a result by application of tests. Th us, they have to have a special education. In forensic laboratories candidates who have chemistry/biochemistry undergraduate degree and took biology and forensic chemistry lectures are preferred. It is necessary to design graduate and undergraduate education to train a forensic chemist. Science education should be at the core of the undergraduate education. In addition to this strong laboratory education on both science and forensic science should be given. Th e graduate program of forensic science example should contain forensic science subjects, strong academic lectures on special subjects and research and laboratory components.

  20. Prion-like nanofibrils of small molecules (PriSM): A new frontier at the intersection of supramolecular chemistry and cell biology

    OpenAIRE

    Zhou, Jie; Du, Xuewen; Xu, Bing

    2015-01-01

    Formed by non-covalent interactions and not defined at genetic level, the assemblies of small molecules in biology are complicated and less explored. A common morphology of the supramolecular assemblies of small molecules is nanofibrils, which coincidentally resembles the nanofibrils formed by proteins such as prions. So these supramolecular assemblies are termed as prion-like nanofibrils of small molecules (PriSM). Emerging evidence from several unrelated fields over the past decade implies ...

  1. Polymer Chemistry

    Science.gov (United States)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  2. Medicinal electrochemistry: integration of electrochemistry, medicinal chemistry and computational chemistry.

    Science.gov (United States)

    Almeida, M O; Maltarollo, V G; de Toledo, R A; Shim, H; Santos, M C; Honorio, K M

    2014-01-01

    Over the last centuries, there were many important discoveries in medicine that were crucial for gaining a better understanding of several physiological processes. Molecular modelling techniques are powerful tools that have been successfully used to analyse and interface medicinal chemistry studies with electrochemical experimental results. This special combination can help to comprehend medicinal chemistry problems, such as predicting biological activity and understanding drug action mechanisms. Electrochemistry has provided better comprehension of biological reactions and, as a result of many technological improvements, the combination of electrochemical techniques and biosensors has become an appealing choice for pharmaceutical and biomedical analyses. Therefore, this review will briefly outline the present scope and future advances related to the integration of electrochemical and medicinal chemistry approaches based on various applications from recent studies.

  3. Carbohydrates in Supramolecular Chemistry.

    Science.gov (United States)

    Delbianco, Martina; Bharate, Priya; Varela-Aramburu, Silvia; Seeberger, Peter H

    2016-02-24

    Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.

  4. Nuclear analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  5. Preface: Special Issue of the 5th International Symposium on Biological and Environmental Chemistry of DMS(P) and Related Compounds, Goa, India, 19–22 October 2010

    Digital Repository Service at National Institute of Oceanography (India)

    Stefels, J.; Shenoy, D.M.; Simo, R.; Malin, G.; Levasseur, M.; Belviso, S.; DileepKumar, M.

    • Dileep Kumar Published online: 4 August 2012 � Springer Science+Business Media B.V. 2012 This Special Issue of Biogeochemistry contains a selection of papers presented at the 5th International Symposium on Biological and Environmental Chem- istry of DMS... will be held in Barcelona, Spain, will be announced soon. Two major publications in the 80s stimulated the work of this truly international DMS research com- munity. Shaw (1983) was the first to propose a link between ocean biota and Earth’s radiation budget...

  6. Site-specific antibody-liposome conjugation through copper-free click chemistry: a molecular biology approach for targeted photodynamic therapy (Conference Presentation)

    Science.gov (United States)

    Obaid, Girgis; Wang, Yucheng; Kuriakose, Jerrin; Broekgaarden, Mans; Alkhateeb, Ahmed; Bulin, Anne-Laure; Hui, James; Tsourkas, Andrew; Hasan, Tayyaba

    2016-03-01

    Nanocarriers, such as liposomes, have the ability to potentiate photodynamic therapy (PDT) treatment regimens by the encapsulation of high payloads of photosensitizers and enhance their passive delivery to tumors through the enhanced permeability and retention effect. By conjugating targeting moieties to the surface of the liposomal nanoconstructs, cellular selectivity is imparted on them and PDT-based therapies can be performed with significantly higher dose tolerances, as off-target toxicity is simultaneously reduced.1 However, the maximal benefits of conventional targeted nanocarriers, including liposomes, are hindered by practical limitations including chemical instability, non-selective conjugation chemistry, poor control over ligand orientation, and loss of ligand functionality following conjugation, amongst others.2 We have developed a robust, physically and chemically stable liposomal nanoplatform containing benzoporphyrin derivative photosensitizer molecules within the phospholipid bilayer and an optimized surface density of strained cyclooctyne moieties for `click' conjugation to azido-functionalized antibodies.3 The clinical chimeric anti-EGFR antibody Cetuximab is site-specifically photocrosslinked to a recombinant bioengineered that recognizes the antibody's Fc region, containing a terminal azide.4 The copper-free click conjugation of the bioengineered Cetuximab derivative to the optimized photosensitizing liposome provides exceptional control over the antibody's optimal orientation for cellular antigen binding. Importantly, the reaction occurs rapidly under physiological conditions, bioorthogonally (selectively in the presence of other biomolecules) and without the need for toxic copper catalysis.3 Such state-of-the-art conjugation strategies push the boundaries of targeted photodynamic therapy beyond the limitations of traditional chemical coupling techniques to produce more robust and effective targeted therapeutics with applications beyond

  7. Computational chemistry

    Science.gov (United States)

    Arnold, J. O.

    1987-01-01

    With the advent of supercomputers, modern computational chemistry algorithms and codes, a powerful tool was created to help fill NASA's continuing need for information on the properties of matter in hostile or unusual environments. Computational resources provided under the National Aerodynamics Simulator (NAS) program were a cornerstone for recent advancements in this field. Properties of gases, materials, and their interactions can be determined from solutions of the governing equations. In the case of gases, for example, radiative transition probabilites per particle, bond-dissociation energies, and rates of simple chemical reactions can be determined computationally as reliably as from experiment. The data are proving to be quite valuable in providing inputs to real-gas flow simulation codes used to compute aerothermodynamic loads on NASA's aeroassist orbital transfer vehicles and a host of problems related to the National Aerospace Plane Program. Although more approximate, similar solutions can be obtained for ensembles of atoms simulating small particles of materials with and without the presence of gases. Computational chemistry has application in studying catalysis, properties of polymers, all of interest to various NASA missions, including those previously mentioned. In addition to discussing these applications of computational chemistry within NASA, the governing equations and the need for supercomputers for their solution is outlined.

  8. 酿酒专业《生物化学》课程混和式教学设计与实施的探讨%Teaching Design of Blended Learning in Biologic Chemistry of the Wine Professional Students

    Institute of Scientific and Technical Information of China (English)

    张亚洲; 吴琴; 刘海林

    2016-01-01

    以酿酒专业学生的《生物化学》课程为例,针对该课程的特点和存在的问题,阐述了在日常教学中使用混合式教学的必要性,并对生物化学中混合式教学进行了教学设计,如前期分析、教学资源的设计、学习活动的设计和学习评价等几个方面。结果发现通过《生物化学》的混合式教学改革可以在一定的程度上提高学生在学习上的主动性和积极性,并取得较好的教学成果。%With the diversification of education resources and teaching methods, it is a new idea and method for the teaching reform of higher education. Taking the Biological Chemistry course of the wine professional students as an example, the necessity of using blended teaching from several aspects in daily teaching was expounded, such as the design of pre-analysis, the design of teaching resources, and the design and evaluation of learning activity.

  9. Chemical Biology is.....

    OpenAIRE

    2007-01-01

    Chemical Biology is a relatively new field, and as such is not yet simply or succinctly defined. It includes such a wide range of fundamental problems that this commentary could only include just a few snapshots of potential areas of interest. Overarching themes and selected recent successes and ideas in chemical biology are described to illustrate broadly the scope of the field, but should not be taken as exhaustive. The Chemical Biology Section of Chemistry Central Journal is pleased to rec...

  10. Surface chemistry

    CERN Document Server

    Desai, KR

    2008-01-01

    The surface Chemistry of a material as a whole is crucially dependent upon the Nature and type of surfaces exposed on crystallites. It is therefore vitally important to independently Study different, well - defined surfaces through surface analytical techniques. In addition to composition and structure of surface, the subject also provides information on dynamic light scattering, micro emulsions, colloid Stability control and nanostructures. The present book endeavour to bring before the reader that the understanding and exploitation of Solid state phenomena depended largely on the ability to

  11. Bioscience methodologies in physical chemistry an engineering and molecular approach

    CERN Document Server

    D'Amore, Alberto

    2013-01-01

    The field of bioscience methodologies in physical chemistry stands at the intersection of the power and generality of classical and quantum physics with the minute molecular complexity of chemistry and biology. This book provides an application of physical principles in explaining and rationalizing chemical and biological phenomena. It does not stick to the classical topics that are conventionally considered as part of physical chemistry; instead it presents principles deciphered from a modern point of view, which is the strength of this book.

  12. From Metalloproteins to Coordination Chemistry: A Learning Exercise to Teach Transition Metal Chemistry

    Science.gov (United States)

    Reglinski, John; Graham, Duncan; Kennedy, Alan R.; Gibson, Lorraine T.

    2004-01-01

    An exercise is organized to reinforce the fundamental rules of coordination chemistry through a biological study of metalloproteins. The work, which is divided into four well-defined activities, involves a major application of computer databases to address chemical problems.

  13. Ultrafast chemistry in complex and confined systems

    Indian Academy of Sciences (India)

    Partha Dutta; Kankan Bhattacharyya

    2004-01-01

    Self-organized molecular assemblies play a crucial role in many natural and biological processes. Recent applications of ultrafast laser spectroscopy and computer simulations revealed that chemistry in a confined environment is fundamentally different from that in ordinary solutions. Many recent examples of slow dynamics in constrained environments and their biological implications are discussed.

  14. Teaching Green and Sustainable Chemistry: A Revised One-Semester Course Based on Inspirations and Challenges

    Science.gov (United States)

    Marteel-Parrish, Anne E.

    2014-01-01

    An elective course, "Toward the Greening of Our Minds": Green and Sustainable Chemistry, has been offered at Washington College since 2005. This new course without laboratory is designed for chemistry and biology majors and minors who have previously taken two semesters of general chemistry and organic chemistry. Due to the popularity of…

  15. Science Update: Inorganic Chemistry

    Science.gov (United States)

    Rawls, Rebecca

    1978-01-01

    This first in a series of articles describing the state of the art of various branches of chemistry reviews inorganic chemistry, including bioinorganic, photochemistry, organometallic, and solid state chemistries. (SL)

  16. Bioinorganic Chemistry of the Alkali Metal Ions.

    Science.gov (United States)

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced.

  17. Astronomical chemistry.

    Science.gov (United States)

    Klemperer, William

    2011-01-01

    The discovery of polar polyatomic molecules in higher-density regions of the interstellar medium by means of their rotational emission detected by radioastronomy has changed our conception of the universe from essentially atomic to highly molecular. We discuss models for molecule formation, emphasizing the general lack of thermodynamic equilibrium. Detailed chemical kinetics is needed to understand molecule formation as well as destruction. Ion molecule reactions appear to be an important class for the generally low temperatures of the interstellar medium. The need for the intrinsically high-quality factor of rotational transitions to definitively pin down molecular emitters has been well established by radioastronomy. The observation of abundant molecular ions both positive and, as recently observed, negative provides benchmarks for chemical kinetic schemes. Of considerable importance in guiding our understanding of astronomical chemistry is the fact that the larger molecules (with more than five atoms) are all organic.

  18. Combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  19. Systems chemistry

    NARCIS (Netherlands)

    Ludlow, R. Frederick; Otto, Sijbren

    2008-01-01

    The study of complex mixtures of interacting synthetic molecules has historically not received much attention from chemists, even though research into complexity is well established in the neighbouring fields. However, with the huge recent interest in systems biology and the availability of modern a

  20. Advanced Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry laboratory The Advanced Chemistry Laboratory (ACL) is a unique facility designed for working with the most super toxic compounds known...

  1. Science Update: Inorganic Chemistry.

    Science.gov (United States)

    Rawls, Rebecca

    1981-01-01

    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  2. Qu’est-ce qui fait courir les filles vers la classe préparatoire scientifique Biologie, Chimie, Physique et Sciences de la Terre (BCPST ? What attracts girls in science classes: Biology, Chemistry, Physics and Earth Studies?

    Directory of Open Access Journals (Sweden)

    Christine Fontanini

    2011-10-01

    Full Text Available Cet article a pour objectif de comprendre pourquoi les filles sont nombreuses (70 % à s’engager vers la classe préparatoire scientifique Biologie, Chimie, Physique, Sciences de la Terre (BCPST alors qu’elles restent minoritaires dans les autres préparations scientifiques (Pons, 2007. Comment se sont construits pour ces étudiants et étudiantes, leur projet et leur parcours scolaire vers cette classe préparatoire « bio-véto » ? Quelles sont leurs motivations pour cette filière menant aux professions de vétérinaire et d’ingénieur agronome ? Quelles sont les écoles les plus convoitées ? Quels sont leurs projets professionnels ? Sont-ils différents entre les filles et les garçons ? Pour tenter de répondre à ces questions, nous avons mené une recherche par questionnaire, courant septembre 2008, auprès de 163 élèves de 4 classes préparatoires BCPST de première année (113 filles et 50 garçons des 3 lycées toulousains proposant cette filière dans l’académie. Les filles sont largement majoritaires en classes préparatoires BCPST car leurs débouchés apparaissent comme plus attractifs pour les filles, notamment les écoles vétérinaires.This paper examines why girls are more numerous (70% in the scientific preparatory classes BCPST (Biology, Chemistry, Physics and Earth whereas they are a minority in the other scientific preparatory classes (Pons, 2007. How have female and male built their occupational preferences and their school choices for this preparatory class “biology – vet science”? What are their motivations for this pathway which prepares for veterinarian and agricultural engineer? What are the most desired schools? What are their professional plans? Are they different between girls and boys? In order to answer these questions, a questionnaire survey was conducted in September 2008, on a sample of 163 pupils (113 girls and 50 boys from 4 first year preparatory classes BCPST in 3 Toulousian high

  3. Biochemistry in Biology and Chemistry Courses.

    Science.gov (United States)

    Wood, E. J.

    1987-01-01

    Discusses the state of biochemistry education in the United Kingdom. Gives an overview of the current educational system. Lists the problems of the school children, the school teachers, and the university teachers and emphasizes problems in the school syllabi. Suggests solutions to these problems. (CW)

  4. Virtual Laboratories in Chemistry, Biochemistry, & Molecular Biology

    DEFF Research Database (Denmark)

    May, Michael; Achiam, Marianne

    2013-01-01

    Report (state-of-the-art review) from a research and development project on virtual laboratories supported by Markedmodningsfonden (tidl. "Fornyelsesfonden")(2012-2014). http://markedsmodningsfonden.dk/projekt/0/34/495....

  5. Miniaturizing chemistry and biology in microdroplets.

    Science.gov (United States)

    Kelly, Bernard T; Baret, Jean-Christophe; Taly, Valerie; Griffiths, Andrew D

    2007-05-14

    By compartmentalizing reactions in aqueous microdroplets of water-in-oil emulsions, reaction volumes can be reduced by factors of up to 10(9) compared to conventional microtitre-plate based systems. This allows massively parallel processing of as many as 10(10) reactions in a total volume of only 1 ml of emulsion. This review describes the use of emulsions for directed evolution of proteins and RNAs, and for performing polymerase chain reactions (PCRs). To illustrate these applications we describe certain specific experiments, each of which exemplifies a different facet of the technique, in some detail. These examples include directed evolution of Diels-Alderase and RNA ligase ribozymes and several classes of protein enzymes, including DNA polymerases, phosphotriesterases, beta-galactosidases and thiolactonases. We also describe the application of emulsion PCR to screen for rare mutations and for new ultra-high throughput sequencing technologies. Finally, we discuss the recent development of microfluidic tools for making and manipulating microdroplets and their likely impact on the future development of the field.

  6. Chemistry and biological activity of AAL toxins.

    Science.gov (United States)

    Winter, C K; Gilchrist, D G; Dickman, M B; Jones, C

    1996-01-01

    AAL toxins and fumonisins comprise a family of highly reactive, chemically related mycotoxins that disrupt cellular homeostasis in both plant and animal tissues. Two critical issues to resolve are the detection of the entire family in food matricies and the mode of cellular disruption. Analysis of the entire set of chemical congeners in food matrices is difficult but has been achieved by a combination of different HPLC and mass spectrometry strategies. The mode of cellular disruption is unknown but likely involves changes associated with the inhibition of ceramide synthase in both plants and animals. Toxin treated cells exhibit morphological and biochemical changes characteristic of apoptosis. Further evaluation of the specific genetic and biochemical changes that occur during toxin-induced cell death may aid in understanding the mole of the action of these mycotoxins.

  7. Lewisite: its chemistry, toxicology, and biological effects.

    Science.gov (United States)

    Goldman, M; Dacre, J C

    1989-01-01

    Lewisite is an organic arsenical war gas which is a vesicant with attendant toxicities due to its ability to combine with thiol groups which are essential for activity of a variety of enzymes. Although Lewisite has been designated as a "suspected carcinogen," the indictment is not supported by the available scientific evidence. Indeed, the unwarranted conclusion is based on one specific case history of a former German soldier whose lower right leg was exposed to liquid Lewisite in 1940 with subsequent development of intraepidermal squamous cell carcinoma, and the examination of death certificates of former workers at a Japanese factory that manufactured a variety of war gases including mustard gas, hydrocyanic acid, chloracetophenome, phosgene, diphenylcyanarsine and Lewisite. It is difficult to comprehend why Lewisite was selected out of this group of toxic chemicals as one of those responsible for respiratory cancer in these workers. It would appear to be a difficult task, indeed, to disengage a specific worker from one of the other of several gases at the workplace and assign a specific gas-induced death. The evidence that organic arsenicals are carcinogenic is weak. Although the weight of evidence is such that inorganic arsenical derivatives are considered weak mutagens, the evidence that organic arsenicals are mutagenic is poor. Recent examination of the mutagenic potential of Lewisite using the Ames test has shown that Lewisite is not mutagenic under these circumstances. While oral administration of arsenical compounds, whether inorganic or organic, does not induce teratogenicity except at very high dose levels which are associated with some degree of maternal toxicity, parenteral administration has been associated with teratogenicity but information of maternal toxicity has not always been available. Indeed, maternal toxicity should be considered as an important diagnostic tool in assessing whether a chemical is teratogenic. The significance of parenteral routes for inducing teratogenicity is also problematical. Recently, Lewisite has been shown not to be teratogenic in either rats or rabbits. A monograph on arsenic, succinctly states that "no human epidemiological investigations have been conducted on the carcinogenicity of organic arsenic compounds" (WHO 1981). Indeed, the lack of such evidence eminating from epidemiological sources or from animal studies is resounding. At present, there is no evidence that Lewisite is either carcinogenic, mutagenic or teratogenic. A review of toxicological studies of other organic arsenicals has produced no evidence that they might be carcinogenic, mutagenic or teratogenic.

  8. How does biology emerge from chemistry?

    DEFF Research Database (Denmark)

    Wieczorek, Rafal

    2012-01-01

    Proper theory for the origins-of-life should propose a logical chain of events that would start with prebiotic soup and end with a living organism. RNA-world seems to be the only theory for the origin-of-life that succeeds at this task. Despite heavy criticism directed at it no alternative theori...

  9. Rhodiola plants: Chemistry and biological activity

    Directory of Open Access Journals (Sweden)

    Hsiu-Mei Chiang

    2015-09-01

    Full Text Available Rhodiola is a genus of medicinal plants that originated in Asia and Europe and are used traditionally as adaptogens, antidepressants, and anti-inflammatory remedies. Rhodiola plants are rich in polyphenols, and salidroside and tyrosol are the primary bioactive marker compounds in the standardized extracts of Rhodiola rosea. This review article summarizes the bioactivities, including adaptogenic, antifatigue, antidepressant, antioxidant, anti-inflammatory, antinoception, and anticancer activities, and the modulation of immune function of Rhodiola plants and its two constituents, as well as their potential to prevent cardiovascular, neuronal, liver, and skin disorders.

  10. Nitrogen Compounds in Radiation Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Sims, H.E. [NNL Sellafield (United Kingdom); Dey, G.R. [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Vaudey, C.E.; Peaucelle, C. [Institut de Physique Nucleaire de Lyon - IPNL, 69 - Lyon (France); Boucher, J.L. [Lab. de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS 45 rue des Saints Peres, 75270 Paris cedex 06, Univ Paris 5, 75 (France); Toulhoat, N. [Institut de Physique Nucleaire de Lyon (France); Commissariat a l' Energie Atomique CEA/DEN, Centre de Saclay (France); Bererd, N. [Institut de Physique Nucleaire de Lyon (France); IUT Departement Chimie, Universite Claude Bernard Lyon 1 (France); Koppenol, W.H. [Department of Chemistry and Applied Biosciences, ETH Zurich (Switzerland); Janata, E. [Helmholtz-Zentrum fuer Materialien und Energie, Solar Energy Research, Berlin (Germany); Dauvois, V.; Durand, D.; Legand, S.; Roujou, J.L.; Doizi, D.; Dannoux, A.; Lamouroux, C. [Laboratoire de Speciation des Radionucleides et des Molecules, DEN/DPC/Service d' Etude du Comportement des Radionucleides, CEA Saclay, 91 - Gif sur yvette (France)

    2009-07-01

    Water radiolysis in presence of N{sub 2} is probably the topic the most controversy in the field of water radiolysis. It still exists a strong discrepancy between the different reports of ammonia formation by water radiolysis in presence of N{sub 2} and moreover in absence of oxygen there is no agreement on the formation or not of nitrogen oxide like NO{sub 2}- and NO{sub 3}-. These discrepancies come from multiple sources: - the complexity of the reaction mechanisms where nitrogen is involved - the experimental difficulties - and, the irradiation conditions. The aim of the workshop is to capitalize the knowledge needed to go further in simulations and understanding the problems caused (or not) by the presence of nitrogen / water in the environment of radioactive materials. Implications are evident in terms of corrosion, understanding of biological systems and atmospheric chemistry under radiation. Topics covered include experimental and theoretical approaches, application and fundamental researches: - Nitrate and Ammonia in radiation chemistry in nuclear cycle; - NOx in biological systems and atmospheric chemistry; - Formation of Nitrogen compounds in Nuclear installations; - Nitrogen in future power plant projects (Gen4, ITER...) and large particle accelerators. This document gathers the transparencies available for 7 of the presentations given at this workshop. These are: - H.E SIMS: 'Radiation Chemistry of Nitrogen Compounds in Nuclear Power Plant'; - G.R. DEY: 'Nitrogen Compounds Formation in the Radiolysis of Aqueous Solutions'; - C.E. VAUDEY et al.: 'Radiolytic corrosion of nuclear graphite studied with the dedicated gas irradiation cell of IPNL'; - J.L. BOUCHER: 'Roles and biosynthesis of NO in eukaryotes and prokaryotes'; - W.H. KOPPENOL: 'Chemistry of NOx'; - E. JANATA: 'Yield of OH in N{sub 2}O saturated aqueous solution'; - V. DAUVOIS: 'Analytical strategy for the study of radiolysis gases'

  11. Synthetic Biology in Health and Disease

    NARCIS (Netherlands)

    Passel, van M.W.J.; Lam, C.M.C.; Martins dos Santos, V.A.P.; Suarez Diez, M.

    2014-01-01

    Synthetic biology draws on the understanding from genetics, biology, chemistry, physics, engineering, and computational sciences to (re-)design and (re-)engineer biological functions. Here we address how synthetic biology can be possibly deployed to promote health and tackle disease. We discuss how

  12. The effect of a county's public high school summer remediation program on student gains on end-of-course standard of learning tests in Algebra I, Biology, Chemistry, Geometry and World History and Geography II

    Science.gov (United States)

    Aiken, Brenda L.

    The Commonwealth of Virginia requires high school students to receive a passing grade in core courses and a passing score on End-of-Course Standards of Learning (EOC SOL) tests to receive verified credits that lead to a Virginia high school diploma. These tests are believed to accurately reflect what students should know and be able to do in order to experience success in their endeavors beyond high school. For some students remediation is required to experience success on EOC SOL tests. This study sought to determine the effect of a County's public high school summer remediation program on student gains on EOC SOL tests in Algebra I, Biology, Chemistry, Geometry, and World History and Geography II. Specifically, the purpose of the study sought to determine the following: (a) If significant gains were made by students who attended the summer remediation program; (b) If significant gains were made by students who did not attend the summer remediation program; (c) If there were differences in gain scores of students who attended and those who did not attend the summer remediation program; and (d) If there were differences in gain scores among students who attended the summer remediation program related to school site, gender, ethnicity, learning ability group, socioeconomic status, and level of English proficiency. The results of the study indicate that students who attended and those who did not attend the summer remediation program made significant gains. However, the gains for students who attended the summer remediation program were significantly greater than the gains made by students who did not attend. The study also found that there were no significant differences in gain scores among students who attended the summer remediation program related to gender, ethnicity, learning ability group, socioeconomic status, and level of English proficiency. There were significant differences in Algebra I gain scores related to school site. Recommendations for

  13. Facile design of biomaterials by 'click' chemistry

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2012-01-01

    The advent of the so‐called ‘click chemistry’ a decade ago has significantly improved the chemical toolbox for producing novel biomaterials. This review focuses primarily on the application of Cu(I)‐catalysed azide–alkyne 1,3‐cycloadditon in the preparation of numerous, diverse biomaterials...... chemistry is elaborated. The present state of creating functional and biologically active surfaces by click chemistry is presented. Finally, conducting surfaces based on an azide‐functionalized polymer with prospective biological sensor potential are introduced. Copyright © 2012 Society of Chemical Industry...

  14. Green chemistry: A tool in Pharmaceutical Chemistry

    OpenAIRE

    Smita Talaviya; Falguni Majumdar

    2012-01-01

    Green chemistry expresses an area of research developing from scientific discoveries about pollution awareness and it utilizes a set of principles that reduces or eliminates the use or generation of hazardous substances in all steps of particular synthesis or process. Chemists and medicinal scientists can greatly reduce the risk to human health and the environment by following all the valuable principles of green chemistry. The most simple and direct way to apply green chemistry in pharmaceut...

  15. From Matter to Life:Chemistry?Chemistry!

    Institute of Scientific and Technical Information of China (English)

    Jean-Marie; LEHN

    2007-01-01

    1 Results Animate as well as inanimate matter,living organisms as well as materials,are formed of molecules and of the organized entities resulting from the interaction of molecules with each other.Chemistry provides the bridge between the molecules of inanimate matter and the highly complex molecular architectures and systems which make up living organisms. Synthetic chemistry has developed a very powerful set of methods for constructing ever more complex molecules.Supramolecular chemistry seeks to con...

  16. PEROXYNITRITE CHEMISTRY

    Energy Technology Data Exchange (ETDEWEB)

    Lymar, S.V.

    2000-11-29

    This century old area of research has been experiencing a renaissance during the last decade, with the annual number of publications on the subject increasing from only one in 1990 to nearly 200 in the late-1990s. This renewed interest is stimulated by the discovery of biological roles of nitric oxide, distinguished by the 1998 Nobel prize, and the recognition that the conversion of nitric oxide into peroxynitrite may play major roles in human diseases associated with oxidative stress and in cellular defense against invading pathogens. Peroxynitrite (ONOO{sup {minus}})is a structural isomer of nitrate (NO{sub 3}{sup {minus}}) that contains a peroxo bond. The physiological route to ONOO{sup {minus}} is provided by the combination of nitric oxide ({center_dot}NO) with superoxide ({center_dot}O{sub 2}{sup {minus}}), an extremely rapid reaction occurring upon every encounter of these radicals (the upper dot denotes radical species). Both {center_dot}NO and {center_dot}O{sub 2}{sup {minus}} are the oxygen metabolic products simultaneously generated in a number of cell types within a human body. Compared to its precursors, peroxynitrite is a much stronger oxidant capable of oxidizing proteins, nucleic acids, and lipids.

  17. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    Science.gov (United States)

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  18. PrefaceThe Seventh Sino-US Chemistry Professors Conference: Bridging International Research Communities in Chemistry

    Institute of Scientific and Technical Information of China (English)

    CHEN Xi; SUO Zucai; HUANG Zhen; PU Lin

    2012-01-01

    The seventh Sino-US Chemistry Professors Conference,co-organized by Guizhou University (Professor Baoan Song as the chairman) and CAPA (The Chinese-American Chemistry & Chemical Biology Professors Association,USA;Professor Chuan He as the co-chairman) was successfully held in Huaxi,Guizhou,China on June 28-30,2011.Over 200 professors from China and abroad participated in this conference with three parallel sessions on synthetic chemistry,natural products,synthetic materials,medicinal chemistry,and chemical biology.There were 106 oral presentations and 15 poster presentations in this conference.We are indebted to our local hosts,Professor Baoan Song,the conference sectaries Professor Song Yang and Professor Cai-Guang Yang,and the staffs and students in the Center for Research and Development for Fine Chemicals of Guizhou University,for arranging the meeting in the historic Huaxi Guesthouse and their hospitality during the conference.

  19. Decoration of silk fibroin by click chemistry for biomedical application.

    Science.gov (United States)

    Zhao, Hongshi; Heusler, Eva; Jones, Gabriel; Li, Linhao; Werner, Vera; Germershaus, Oliver; Ritzer, Jennifer; Luehmann, Tessa; Meinel, Lorenz

    2014-06-01

    Silkfibroin (SF) has an excellent biocompatibility and its remarkable structure translates into exciting mechanical properties rendering this biomaterial particularly fascinating for biomedical application. To further boost the material's biological/preclinical impact, SF is decorated with biologics, typically by carbodiimide/N-hydroxysuccinimide coupling (EDC/NHS). For biomedical application, this chemistry challenges the product risk profile due to the formation of covalent aggregates, particularly when decoration is with biologics occurring naturally in humans as these aggregates may prime for autoimmunity. Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC; click chemistry) provides the necessary specificity to avoid such intermolecular, covalent aggregates. We present a blueprint outlining the necessary chemistry rendering SF compatible with CuAAC and with a particular focus on structural consequences. For that, the number of SF carboxyl groups (carboxyl-SF; required for EDC/NHS chemistry) or azido groups (azido-SF; required for click chemistry) was tailored by means of diazonium coupling of the SF tyrosine residues. Structural impact on SF and decorated SF was characterized by Fourier transform infrared spectroscopy (FTIR). The click chemistry yielded a better controlled product as compared to the EDC/NHS chemistry with no formation of inter- and intramolecular crosslinks as demonstrated for SF decorated with fluorescent model compounds or a biologic, fibroblast growth factor 2 (FGF2), respectively. In conclusion, SF can readily be translated into a scaffold compatible with click chemistry yielding decorated products with a better risk profile for biomedical application.

  20. [Recent advancement of photonic-crystal-based analytical chemistry].

    Science.gov (United States)

    Chen, Yun; Guo, Zhenpeng; Wang, Jinyi; Chen, Yi

    2014-04-01

    Photonic crystals are a type of novel materials with ordered structure, nanopores/channels and optical band gap. They have hence important applications in physics, chemistry, biological science and engineering fields. This review summarizes the recent advancement of photonic crystals in analytical chemistry applications, with focus on sensing and separating fields happening in the nearest 5 years.

  1. Organic Chemistry Trivia: A Way to Interest Nonchemistry Majors

    Science.gov (United States)

    Farmer, Steven C.

    2011-01-01

    The use of in-class stories is an excellent way to keep a class interested in subject matter. Many organic chemistry classes are populated by nonchemistry majors, such as pre-med, pre-pharm, and biology students. Trivia questions are presented that are designed to show how organic chemistry is an important subject to students regardless of their…

  2. Green chemistry: A tool in Pharmaceutical Chemistry

    Directory of Open Access Journals (Sweden)

    Smita Talaviya

    2012-07-01

    Full Text Available Green chemistry expresses an area of research developing from scientific discoveries about pollution awareness and it utilizes a set of principles that reduces or eliminates the use or generation of hazardous substances in all steps of particular synthesis or process. Chemists and medicinal scientists can greatly reduce the risk to human health and the environment by following all the valuable principles of green chemistry. The most simple and direct way to apply green chemistry in pharmaceuticals is to utilize eco-friendly, non-hazardous, reproducible and efficient solvents and catalysts in synthesis of drug molecules, drug intermediates and in researches involving synthetic chemistry. Microwave synthesis is also an important tool of green chemistry by being an energy efficient process.

  3. Environmental chemistry: Volume A

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T.F.

    1999-08-01

    This is an extensive introduction to environmental chemistry for engineering and chemical professionals. The contents of Volume A include a brief review of basic chemistry prior to coverage of litho, atmo, hydro, pedo, and biospheres.

  4. Advanced Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry laboratoryThe Advanced Chemistry Laboratory (ACL) is a unique facility designed for working with the most super toxic compounds known...

  5. Organometallic Chemistry of Molybdenum.

    Science.gov (United States)

    Lucas, C. Robert; Walsh, Kelly A.

    1987-01-01

    Suggests ways to avoid some of the problems students have learning the principles of organometallic chemistry. Provides a description of an experiment used in a third-year college chemistry laboratory on molybdenum. (TW)

  6. Chemistry for Potters.

    Science.gov (United States)

    Denio, Allen A.

    1980-01-01

    Relates pottery making to chemistry by providing chemical information about clay, its origin, composition, properties, and changes that occur during firing; also describes glaze compositions, examples of redox chemistry, salt glazing, crystalline glazes, and problems in toxicity. (CS)

  7. CHINESE JOURNAL OF CHEMISTRY

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@Chinese Journal of Chemistry is an international journal published in English by the Chinese Chemical Society with its editorial office hosted by Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences.

  8. Organic chemistry experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Seok Sik

    2005-02-15

    This book deals with organic chemistry experiments, it is divided five chapters, which have introduction, the way to write the experiment report and safety in the laboratory, basic experiment technic like recrystallization and extraction, a lot of organic chemistry experiments such as fischer esterification, ester hydrolysis, electrophilic aromatic substitution, aldol reaction, benzoin condensation, wittig reaction grignard reaction, epoxidation reaction and selective reduction. The last chapter introduces chemistry site on the internet and way to find out reference on chemistry.

  9. ADVANCES IN ORGANIC, BIOORGANIC AND NATURAL PRODUCTS CHEMISTRY IN THE INSTITUTE OF CHEMISTRY OF THE ACADEMY OF SCIENCES OF MOLDOVA

    Directory of Open Access Journals (Sweden)

    Pavel F. Vlad

    2009-06-01

    Full Text Available This overview deals with the advances in the investigation in the fi eld of organic, bioorganic and naturalproducts chemistry as well as the biologically active compounds in the Institute of Chemistry of the Academy of Sciences of Moldova.

  10. Green Chemistry and Education.

    Science.gov (United States)

    Hjeresen, Dennis L.; Schutt, David L.; Boese, Janet M.

    2000-01-01

    Many students today are profoundly interested in the sustainability of their world. Introduces Green Chemistry and its principles with teaching materials. Green Chemistry is the use of chemistry for pollution prevention and the design of chemical products and processes that are environmentally benign. (ASK)

  11. Computational systems chemical biology.

    Science.gov (United States)

    Oprea, Tudor I; May, Elebeoba E; Leitão, Andrei; Tropsha, Alexander

    2011-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology (SCB) (Nat Chem Biol 3: 447-450, 2007).The overarching goal of computational SCB is to develop tools for integrated chemical-biological data acquisition, filtering and processing, by taking into account relevant information related to interactions between proteins and small molecules, possible metabolic transformations of small molecules, as well as associated information related to genes, networks, small molecules, and, where applicable, mutants and variants of those proteins. There is yet an unmet need to develop an integrated in silico pharmacology/systems biology continuum that embeds drug-target-clinical outcome (DTCO) triplets, a capability that is vital to the future of chemical biology, pharmacology, and systems biology. Through the development of the SCB approach, scientists will be able to start addressing, in an integrated simulation environment, questions that make the best use of our ever-growing chemical and biological data repositories at the system-wide level. This chapter reviews some of the major research concepts and describes key components that constitute the emerging area of computational systems chemical biology.

  12. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani

    2014-10-01

    Alternative transportation fuels, preferably from renewable sources, include alcohols with up to five or even more carbon atoms. They are considered promising because they can be derived from biological matter via established and new processes. In addition, many of their physical-chemical properties are compatible with the requirements of modern engines, which make them attractive either as replacements for fossil fuels or as fuel additives. Indeed, alcohol fuels have been used since the early years of automobile production, particularly in Brazil, where ethanol has a long history of use as an automobile fuel. Recently, increasing attention has been paid to the use of non-petroleum-based fuels made from biological sources, including alcohols (predominantly ethanol), as important liquid biofuels. Today, the ethanol fuel that is offered in the market is mainly made from sugar cane or corn. Its production as a first-generation biofuel, especially in North America, has been associated with publicly discussed drawbacks, such as reduction in the food supply, need for fertilization, extensive water usage, and other ecological concerns. More environmentally friendly processes are being considered to produce alcohols from inedible plants or plant parts on wasteland. While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides ethanol, many linear and branched members of the alcohol family, from methanol to hexanols, have been studied, with a particular emphasis on butanols. These fuels and their combustion properties, including their ignition, flame propagation, and extinction characteristics, their pyrolysis and oxidation reactions, and their potential to produce pollutant emissions have been intensively investigated in dedicated experiments on the laboratory and the engine scale

  13. Using Clinical Cases to Teach General Chemistry

    Science.gov (United States)

    Dewprashad, Brahmadeo; Kosky, Charles; Vaz, Geraldine S.; Martin, Charlotte L.

    2004-01-01

    A clinical study was designed and used to show the relationship of health and medicine, in a typical clinical scenario, where many chemical principles are involved and that an integrated knowledge of chemistry and biology is essential to the understanding, diagnosing and treating of illnesses. A case study would be a positive learning experience…

  14. The chemistry of D3-trishomocubane

    Science.gov (United States)

    Levandovsky, I. A.; Sharapa, D. I.; Cherenkova, O. A.; Gaidai, A. V.; Shubina, T. E.

    2010-12-01

    Data on the chemistry of D3-trishomocubane and its derivatives are described systematically. Different versions of construction of D3-trishomocubane cage are presented. The methods of synthesis of mono-, di- and poly-substituted D3-trishomocubanes and their heteroanalogues as well as their properties are considered. Data on biological activity of homocubanes are generalized.

  15. Surface chemistry essentials

    CERN Document Server

    Birdi, K S

    2013-01-01

    Surface chemistry plays an important role in everyday life, as the basis for many phenomena as well as technological applications. Common examples range from soap bubbles, foam, and raindrops to cosmetics, paint, adhesives, and pharmaceuticals. Additional areas that rely on surface chemistry include modern nanotechnology, medical diagnostics, and drug delivery. There is extensive literature on this subject, but most chemistry books only devote one or two chapters to it. Surface Chemistry Essentials fills a need for a reference that brings together the fundamental aspects of surface chemistry w

  16. The New Color of Chemistry: Green Chemistry

    Directory of Open Access Journals (Sweden)

    Zuhal GERÇEK

    2012-01-01

    Full Text Available Green chemistry which is the new application of chemistry rules provides solutions to problems that mankind is faced with climate changes, sustainable agriculture, energy, toxics, depletion of natural sources e.g. designing new chemicals and processes that production and utilization of hazardous matters. So, it is the indispensible tool for sustainable development. Current and future chemists should consider the human health and ecological issues in their professional life. In order to provide a solution for this requirement, green chemistry rules and under standings should be primarily taken in the university curriculum and at all educational levels.

  17. Quantum Nanobiology and Biophysical Chemistry

    DEFF Research Database (Denmark)

    2013-01-01

    An introduction was provided in the first issue by way of an Editorial to this special two issue volume of Current Physical Chemistry – “Quantum Nanobiology and Biophysical Chemistry” [1]. The Guest Editors would like to thank all the authors and referees who have contributed to this second issue....... demonstrate extremely low detection performance of acyl-homoserine lactone in a biologically relevant system using surface enhanced Raman spectroscopy. Sugihara and Bondar evaluate the influence of methyl-groups and the protein environment on retinal geometries in rhodopsin and bacteriorhodopsin, two...

  18. Opportunities in plant synthetic biology.

    Science.gov (United States)

    Cook, Charis; Martin, Lisa; Bastow, Ruth

    2014-05-01

    Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology.

  19. Mukilteo water sensor time series - Field work coupling measurements of carbon chemistry and distribution of free-living organisms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To estimate the carbon chemistry conditions experienced by free-living organisms, we will conduct coupled biological/carbon chemistry sampling for key zooplankton...

  20. The New Color of Chemistry: Green Chemistry

    OpenAIRE

    Zuhal GERÇEK

    2012-01-01

    Green chemistry which is the new application of chemistry rules provides solutions to problems that mankind is faced with climate changes, sustainable agriculture, energy, toxics, depletion of natural sources e.g. designing new chemicals and processes that production and utilization of hazardous matters. So, it is the indispensible tool for sustainable development. Current and future chemists should consider the human health and ecological issues in their professional life. In order to provid...

  1. Physics, radiology, and chemistry. An introduction to natural science. Textbook for the medical professions and nursing training centres. 7. rev. ed. Physik, Strahlenkunde und Chemie. Eine Einfuehrung in diese Naturwissenschaften. Studienbuch fuer Angehoerige der Heilberufe und Krankenpflegeschulen

    Energy Technology Data Exchange (ETDEWEB)

    Linde, O.K.; Knigge, H.J.

    1986-01-01

    This book is an introduction to physics and chemistry especially for medical personnel. After a general introduction, measurement methods, mechanics including mechanics of solid bodies, fluids and gases, heat, optics, acoustics, electricity, radiations including their biological effects, general chemistry, inorganic and organic chemistry are treated. Every chapter contains exercises mostly in connection with medical and biological effects. Furthermore, connections with biology and medicine are considered. The chapters on physiological chemistry, computer and information theory, chemistry and ecology, and metabolism have been rewritten. (HP).

  2. The Chemistry of Curcumin: From Extraction to Therapeutic Agent

    Directory of Open Access Journals (Sweden)

    Kavirayani Indira Priyadarsini

    2014-12-01

    Full Text Available Curcumin, a pigment from turmeric, is one of the very few promising natural products that has been extensively investigated by researchers from both the biological and chemical point of view. While there are several reviews on the biological and pharmacological effects of curcumin, chemistry reviews are comparatively scarcer. In this article, an overview of different aspects of the unique chemistry research on curcumin will be discussed. These include methods for the extraction from turmeric, laboratory synthesis methods, chemical and photochemical degradation and the chemistry behind its metabolism. Additionally other chemical reactions that have biological relevance like nucleophilic addition reactions, and metal chelation will be discussed. Recent advances in the preparation of new curcumin nanoconjugates with metal and metal oxide nanoparticles will also be mentioned. Directions for future investigations to be undertaken in the chemistry of curcumin have also been suggested.

  3. The chemistry of curcumin: from extraction to therapeutic agent.

    Science.gov (United States)

    Priyadarsini, Kavirayani Indira

    2014-12-01

    Curcumin, a pigment from turmeric, is one of the very few promising natural products that has been extensively investigated by researchers from both the biological and chemical point of view. While there are several reviews on the biological and pharmacological effects of curcumin, chemistry reviews are comparatively scarcer. In this article, an overview of different aspects of the unique chemistry research on curcumin will be discussed. These include methods for the extraction from turmeric, laboratory synthesis methods, chemical and photochemical degradation and the chemistry behind its metabolism. Additionally other chemical reactions that have biological relevance like nucleophilic addition reactions, and metal chelation will be discussed. Recent advances in the preparation of new curcumin nanoconjugates with metal and metal oxide nanoparticles will also be mentioned. Directions for future investigations to be undertaken in the chemistry of curcumin have also been suggested.

  4. Expanding coordination chemistry from protein to protein assembly.

    Science.gov (United States)

    Sanghamitra, Nusrat J M; Ueno, Takafumi

    2013-05-14

    Bioinorganic chemistry is of growing importance in the fields of nanomaterial science and biotechnology. Coordination of metals by biological systems is a crucial step in intricate enzymatic reactions such as photosynthesis, nitrogen fixation and biomineralization. Although such systems employ protein assemblies as molecular scaffolds, the important roles of protein assemblies in coordination chemistry have not been systematically investigated and characterized. Many researchers are joining the field of bioinorganic chemistry to investigate the inorganic chemistry of protein assemblies. This area is emerging as an important next-generation research field in bioinorganic chemistry. This article reviews recent progress in rational design of protein assemblies in coordination chemistry for integration of catalytic reactions using metal complexes, preparation of mineral biomimetics, and mechanistic investigations of biomineralization processes with protein assemblies. The unique chemical properties of protein assemblies in the form of cages, tubes, and crystals are described in this review.

  5. Algorithmic Strategies in Combinatorial Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    GOLDMAN,DEBORAH; ISTRAIL,SORIN; LANCIA,GIUSEPPE; PICCOLBONI,ANTONIO; WALENZ,BRIAN

    2000-08-01

    Combinatorial Chemistry is a powerful new technology in drug design and molecular recognition. It is a wet-laboratory methodology aimed at ``massively parallel'' screening of chemical compounds for the discovery of compounds that have a certain biological activity. The power of the method comes from the interaction between experimental design and computational modeling. Principles of ``rational'' drug design are used in the construction of combinatorial libraries to speed up the discovery of lead compounds with the desired biological activity. This paper presents algorithms, software development and computational complexity analysis for problems arising in the design of combinatorial libraries for drug discovery. The authors provide exact polynomial time algorithms and intractability results for several Inverse Problems-formulated as (chemical) graph reconstruction problems-related to the design of combinatorial libraries. These are the first rigorous algorithmic results in the literature. The authors also present results provided by the combinatorial chemistry software package OCOTILLO for combinatorial peptide design using real data libraries. The package provides exact solutions for general inverse problems based on shortest-path topological indices. The results are superior both in accuracy and computing time to the best software reports published in the literature. For 5-peptoid design, the computation is rigorously reduced to an exhaustive search of about 2% of the search space; the exact solutions are found in a few minutes.

  6. Programming Surface Chemistry with Engineered Cells.

    Science.gov (United States)

    Zhang, Ruihua; Heyde, Keith C; Scott, Felicia Y; Paek, Sung-Ho; Ruder, Warren C

    2016-09-16

    We have developed synthetic gene networks that enable engineered cells to selectively program surface chemistry. E. coli were engineered to upregulate biotin synthase, and therefore biotin synthesis, upon biochemical induction. Additionally, two different functionalized surfaces were developed that utilized binding between biotin and streptavidin to regulate enzyme assembly on programmable surfaces. When combined, the interactions between engineered cells and surfaces demonstrated that synthetic biology can be used to engineer cells that selectively control and modify molecular assembly by exploiting surface chemistry. Our system is highly modular and has the potential to influence fields ranging from tissue engineering to drug development and delivery.

  7. Striving toward a More "Precise" Chemistry

    Institute of Scientific and Technical Information of China (English)

    YAO Jiannian

    2011-01-01

    @@ On multiple temporal and spatial scales, chemistry explores the composition, structure and form of matter, its physical properties and biological activity as well as the chemical changes and synthesis reactions, striving to describe the colorful world of matter and reveal the molecular secrets of matter transformations and life processes using its theories and its unique language.As a fundamental and creative discipline of science, chemistry not only helps us to understand the nature of substances and make high-performing materials to serve economic development, but is distinctively characterized by the ability to invent novel and marvelous matters.

  8. Orbital interactions in chemistry

    CERN Document Server

    Albright, Thomas A; Whangbo, Myung-Hwan

    2013-01-01

    Explains the underlying structure that unites all disciplines in chemistry Now in its second edition, this book explores organic, organometallic, inorganic, solid state, and materials chemistry, demonstrating how common molecular orbital situations arise throughout the whole chemical spectrum. The authors explore the relationships that enable readers to grasp the theory that underlies and connects traditional fields of study within chemistry, thereby providing a conceptual framework with which to think about chemical structure and reactivity problems. Orbital Interactions

  9. Group theory and chemistry

    CERN Document Server

    Bishop, David M

    1993-01-01

    Group theoretical principles are an integral part of modern chemistry. Not only do they help account for a wide variety of chemical phenomena, they simplify quantum chemical calculations. Indeed, knowledge of their application to chemical problems is essential for students of chemistry. This complete, self-contained study, written for advanced undergraduate-level and graduate-level chemistry students, clearly and concisely introduces the subject of group theory and demonstrates its application to chemical problems.To assist chemistry students with the mathematics involved, Professor Bishop ha

  10. Green Chemistry Pedagogy

    Science.gov (United States)

    Kolopajlo, Larry

    2017-02-01

    This chapter attempts to show how the practice of chemistry teaching and learning is enriched by the incorporation of green chemistry (GC) into lectures and labs. To support this viewpoint, evidence from a wide range of published papers serve as a cogent argument that GC attracts and engages both science and nonscience students, enhances chemistry content knowledge, and improves the image of the field, while preparing the world for a sustainable future. Published pedagogy associated with green and sustainable chemistry is critically reviewed and discussed.

  11. Science Update: Analytical Chemistry.

    Science.gov (United States)

    Worthy, Ward

    1980-01-01

    Briefly discusses new instrumentation in the field of analytical chemistry. Advances in liquid chromatography, photoacoustic spectroscopy, the use of lasers, and mass spectrometry are also discussed. (CS)

  12. Physics and Biology Collaborate to Color the World

    Science.gov (United States)

    Liu, Dennis W. C.

    2013-01-01

    To understand how life works, it is essential to understand physics and chemistry. Most biologists have a clear notion of where chemistry fits into their life sciences research and teaching. Although we are physical beings, physics does not always find a place in the biology curriculum. Physics informs and enlightens biology in myriad dimensions,…

  13. Research Progress of Biological Thermodynamic, Ionic Liquid, Functional Solution Chemistry%生物热力学、离子液体、溶液化学研究现状

    Institute of Scientific and Technical Information of China (English)

    王凤产

    2012-01-01

    This article summarizes research articles reported in Journal of Henan Normal University: natural science edition about biothernodynamics, ionic liquid, function solution chemistry and so on, and analyzes the research status and development tendency of these fields.%综述了近年来“河南师范大学学报:自然科学版”报道生物热力学、离子液体、功能溶液化学等领域的研究文章,分析了这些领域的研究现状和发展趋势.

  14. Chemistry in Microfluidic Channels

    Science.gov (United States)

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  15. Exercises in Computational Chemistry

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens

    2016-01-01

    A selection of HyperChem© PC-exercises in computational chemistry. Answers to most questions are appended (Roskilde University 2014-16).......A selection of HyperChem© PC-exercises in computational chemistry. Answers to most questions are appended (Roskilde University 2014-16)....

  16. Physical Chemistry of Molecular

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Established in 2009, the group consists of six researchers and more than 70 research assistants and graduate students from the CAS Key Laboratory of Molecular Nanostructures and Nanotechnologies at the CAS Institute of Chemistry.Its research focuses on the physical chemistry involved in molecular assembly, molecular nanostructures, functional nanomaterials and conceptual nano-devices.

  17. Mathematics and Chemistry

    Science.gov (United States)

    Henson, R.; Stumbles, A.

    1977-01-01

    The relationship between mathematics and chemistry has been changing rapidly in recent years. Some chemistry teachers have experienced difficulties in their teaching with the introduction of modern mathematics in the schools. Some suggestions for reinforcing the concepts and language of modern mathematics are put forth. (Author/MA)

  18. Chemistry of americium

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, W.W.

    1976-01-01

    Essential features of the descriptive chemistry of americium are reviewed. Chapter titles are: discovery, atomic and nuclear properties, collateral reading, production and uses, chemistry in aqueous solution, metal, alloys, and compounds, and, recovery, separation, purification. Author and subject indexes are included. (JCB)

  19. Annual Report 1984. Chemistry Department

    DEFF Research Database (Denmark)

    Funck, Jytte; Nielsen, Ole John

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, an......, analytical- and organic chemistry, environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general.......This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry...

  20. The aesthetics of chemical biology.

    Science.gov (United States)

    Parsons, Glenn

    2012-12-01

    Scientists and philosophers have long reflected on the place of aesthetics in science. In this essay, I review these discussions, identifying work of relevance to chemistry and, in particular, to the field of chemical biology. Topics discussed include the role of aesthetics in scientific theory choice, the aesthetics of molecular images, the beauty-making features of molecules, and the relation between the aesthetics of chemical biology and the aesthetics of industrial design.

  1. ChemProt: A disease chemical biology database

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Oprea, Tudor I.

    2013-01-01

    The integration of chemistry, biology, and informatics to study drug actions across multiple biological targets, pathways, and biological systems is an emerging paradigm in drug discovery. Rather than reducing a complex system to simplistic models, fields such as chemogenomics and translational...... chemical biology, drug repurposing, and off-target effects prediction....

  2. Life is physics and chemistry and communication.

    Science.gov (United States)

    Witzany, Guenther

    2015-04-01

    Manfred Eigen extended Erwin Schroedinger's concept of "life is physics and chemistry" through the introduction of information theory and cybernetic systems theory into "life is physics and chemistry and information." Based on this assumption, Eigen developed the concepts of quasispecies and hypercycles, which have been dominant in molecular biology and virology ever since. He insisted that the genetic code is not just used metaphorically: it represents a real natural language. However, the basics of scientific knowledge changed dramatically within the second half of the 20th century. Unfortunately, Eigen ignored the results of the philosophy of science discourse on essential features of natural languages and codes: a natural language or code emerges from populations of living agents that communicate. This contribution will look at some of the highlights of this historical development and the results relevant for biological theories about life.

  3. Descriptive Inorganic Chemistry (by Geoff Rayner-Canham)

    Science.gov (United States)

    Rabinovich, Daniel

    1998-06-01

    Geoff Rayner-Canham. W. H. Freeman: New York, 1996. 492 pp. ISBN: 0-7167-2819-2. $67.95. There are plenty of good inorganic chemistry books on the market, from venerable reference works (e.g., Cotton and Wilkinson's Advanced Inorganic Chemistry, Greenwood and Earnshaw's Chemistry of the Elements) to "comprehensive" two-semester textbooks (e.g., Huheey, Keiter, and Keiter's Inorganic Chemistry: Principles of Structure and Reactivity, Douglas, McDaniel, and Alexander's Concepts and Models of Inorganic Chemistry). Undergraduate students, especially those new to inorganic chemistry, frequently find these books overwhelming in depth and length (not to mention weight!). Alternatively, some shorter books with less ambitious goals present an oversimplified view of the field or sacrifice conceptual material on behalf of sections on environmental, industrial, or biological chemistry. Rayner-Canham's Descriptive Inorganic Chemistry, a one-semester book aimed specifically at the introductory (sophomore) level, provides an excellent balance of theory and descriptive material, with a fresh look at traditional and current areas of interest in inorganic chemistry.

  4. 探讨生物学变异在临床化学检验的质量规范设定和结果评价中的应用%Application of biological variation in the evaluation of quality standard clinical chemistry set and result

    Institute of Scientific and Technical Information of China (English)

    占松涛

    2014-01-01

    Objective Biological variation are discussed in the quality of clinical chemistry test specification set up and applied value in the evaluation of results. Methods For urea, creatinine, total bilirubin, total protein, albumin, three acyl glycerol, glucose and other 23 biochemical events, according to the indoor quality control, biological data and qualitative evaluation between two room, calculating the actual deviation and variation coefficient, the actual total error, the actual changes and reference value. Results A total of 23 biochemical events after clinical chemistry examination, to achieve the best CV quality specification requirements of 9, 11 appropriate level requirements of the project, the lowest level for project 2, was greater than the CV quality specification requirements of the project of one. In different reference value change of differential probability. Conclusion Learn quality specifications as biological variation of evaluation standard, to a more comprehensive and objective analysis of various biological project, for the clinical interpretation of test results.%目的:探讨分析生物学变异在临床化学检验的质量规范设定和在结果评价中的应用价值。方法对总胆红素、总蛋白、尿素、肌酐、清蛋白、三酰甘油、葡萄糖等23个生化项目,根据其室内质控、生物学数据以及两次室间质评,计算其实际变异系数、实际总误差、实际偏差和参考变化值。结果23个生化项目经过临床化学检查,达到最佳CV质量规范要求的占9项,适当水平要求的项目占11项,最低水平要求项目占2项,大于CV质量规范要求的项目占1项,在不同差值概率中的参考变化值不同。结论把质量规范作为生物变异学的评价标准,能够对各个生化项目进行更为全面客观的分析,利于临床对检验结果的解读。

  5. A review of the chemistry and uses of crocins and crocetin, the carotenoid natural dyes in saffron, with particular emphasis on applications as colorants including their use as biological stains.

    Science.gov (United States)

    Bathaie, S Z; Farajzade, A; Hoshyar, R

    2014-08-01

    The perennial flowering plant, saffron crocus (Crocus sativus L.), is the source of the most expensive spice in the world. The dried stigmas of saffron flowers are the source of a natural dye, saffron, which has been used from ancient times for dyeing silk and fabric rugs, and for painting; it also has been used for cooking and in medicine. The yellow compounds present in the dye include crocins, which are 20-carbon water soluble glycosyl derivatives of the carotenoid, crocetin, and the dicarboxylic acid itself. We review the chemistry of these compounds and discuss various applications of saffron as a natural dye. We review in particular the use of saffron or its constituents in histopathologic techniques.

  6. Biological and Chemical Security

    Energy Technology Data Exchange (ETDEWEB)

    Fitch, P J

    2002-12-19

    The LLNL Chemical & Biological National Security Program (CBNP) provides science, technology and integrated systems for chemical and biological security. Our approach is to develop and field advanced strategies that dramatically improve the nation's capabilities to prevent, prepare for, detect, and respond to terrorist use of chemical or biological weapons. Recent events show the importance of civilian defense against terrorism. The 1995 nerve gas attack in Tokyo's subway served to catalyze and focus the early LLNL program on civilian counter terrorism. In the same year, LLNL began CBNP using Laboratory-Directed R&D investments and a focus on biodetection. The Nunn-Lugar-Domenici Defense Against Weapons of Mass Destruction Act, passed in 1996, initiated a number of U.S. nonproliferation and counter-terrorism programs including the DOE (now NNSA) Chemical and Biological Nonproliferation Program (also known as CBNP). In 2002, the Department of Homeland Security was formed. The NNSA CBNP and many of the LLNL CBNP activities are being transferred as the new Department becomes operational. LLNL has a long history in national security including nonproliferation of weapons of mass destruction. In biology, LLNL had a key role in starting and implementing the Human Genome Project and, more recently, the Microbial Genome Program. LLNL has over 1,000 scientists and engineers with relevant expertise in biology, chemistry, decontamination, instrumentation, microtechnologies, atmospheric modeling, and field experimentation. Over 150 LLNL scientists and engineers work full time on chemical and biological national security projects.

  7. Coordination Supramolecular Chemistry and Crystal Engineering

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Consisting of five young researchers from the Sun Yat-Sen University in Guangzhou, the research group has been devoted to the interdisciplinary research in chemistry, materials science and chemical biology.To be specific, the focus of their research is to develop new functional molecular materials through rational molecular design and crystal engineering, including porous materials (or porous coordination polymers), electronic and magnetic molecular materials, bio-mimic materials, and supramolecular catalytical materials.

  8. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 1 covers papers on the advances of gas phase ion chemistry. The book discusses the advances in flow tubes and the measurement of ion-molecule rate coefficients and product distributions; the ion chemistry of the earth's atmosphere; and the classical ion-molecule collision theory. The text also describes statistical methods in reaction dynamics; the state selection by photoion-photoelectron coincidence; and the effects of temperature and pressure in the kinetics of ion-molecule reactions. The energy distribution in the unimolecular decomposition of ions, as well

  9. Mathematics for physical chemistry

    CERN Document Server

    Mortimer, Robert G

    2013-01-01

    Mathematics for Physical Chemistry is the ideal supplementary text for practicing chemists and students who want to sharpen their mathematics skills while enrolled in general through physical chemistry courses. This book specifically emphasizes the use of mathematics in the context of physical chemistry, as opposed to being simply a mathematics text. This 4e includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The early chapters are constructed around a sequence of mathematical topics, wit

  10. Experiments in physical chemistry

    CERN Document Server

    Wilson, J M; Denaro, A R

    1968-01-01

    Experiments in Physical Chemistry, Second Edition provides a compilation of experiments concerning physical chemistry. This book illustrates the link between the theory and practice of physical chemistry. Organized into three parts, this edition begins with an overview of those experiments that generally have a simple theoretical background. Part II contains experiments that are associated with more advanced theory or more developed techniques, or which require a greater degree of experimental skill. Part III consists of experiments that are in the nature of investigations wherein these invest

  11. Spatially Resolved Artificial Chemistry

    DEFF Research Database (Denmark)

    Fellermann, Harold

    2009-01-01

    Although spatial structures can play a crucial role in chemical systems and can drastically alter the outcome of reactions, the traditional framework of artificial chemistry is a well-stirred tank reactor with no spatial representation in mind. Advanced method development in physical chemistry has...... made a class of models accessible to the realms of artificial chemistry that represent reacting molecules in a coarse-grained fashion in continuous space. This chapter introduces the mathematical models of Brownian dynamics (BD) and dissipative particle dynamics (DPD) for molecular motion and reaction...

  12. Fluorine in medicinal chemistry.

    Science.gov (United States)

    Swallow, Steven

    2015-01-01

    Since its first use in the steroid field in the late 1950s, the use of fluorine in medicinal chemistry has become commonplace, with the small electronegative fluorine atom being a key part of the medicinal chemist's repertoire of substitutions used to modulate all aspects of molecular properties including potency, physical chemistry and pharmacokinetics. This review will highlight the special nature of fluorine, drawing from a survey of marketed fluorinated pharmaceuticals and the medicinal chemistry literature, to illustrate key concepts exploited by medicinal chemists in their attempts to optimize drug molecules. Some of the potential pitfalls in the use of fluorine will also be highlighted.

  13. Medicinal Chemistry Perspective of Fused Isoxazole Derivatives.

    Science.gov (United States)

    Barmade, Mahesh A; Murumkar, Prashant R; Sharma, Mayank Kumar; Yadav, Mange Ram

    2016-01-01

    Nitrogen containing heterocyclic rings with an oxygen atom is considered as one of the best combination in medicinal chemistry due to their diversified biological activities. Isoxazole, a five membered heterocyclic azole ring is found in naturally occuring ibetonic acid along with some of the marketed drugs such as valdecoxib, flucloxacillin, cloxacillin, dicloxacillin, and danazol. It is also significant for showing antipsychotic activity in risperidone and anticonvulsant activity in zonisamide, the marketed drugs. This review article covers research articles reported till date covering biological activity along with SAR of fused isoxazole derivatives.

  14. Chemistry inside an epistemological community box! Discursive exclusions and inclusions in Swedish National tests in Chemistry

    Science.gov (United States)

    Ståhl, Marie; Hussénius, Anita

    2016-04-01

    This study examined the Swedish national tests in chemistry for implicit and explicit values. The chemistry subject is understudied compared to biology and physics and students view chemistry as their least interesting science subject. The Swedish national science assessments aim to support equitable and fair evaluation of students, to concretize the goals in the chemistry syllabus and to increase student achievement. Discourse and multimodal analyses, based on feminist and critical didactic theories, were used to examine the test's norms and values. The results revealed that the chemistry discourse presented in the tests showed a traditional view of science from the topics discussed (for example, oil and metal), in the way women, men and youth are portrayed, and how their science interests are highlighted or neglected. An elitist view of science emerges from the test, with distinct gender and age biases. Students could interpret these biases as a message that only "the right type" of person may come into the chemistry epistemological community, that is, into this special sociocultural group that harbours a common view about this knowledge. This perspective may have an impact on students' achievement and thereby prevent support for an equitable and fair evaluation. Understanding the underlying evaluative meanings that come with science teaching is a question of democracy since it may affect students' feelings of inclusion or exclusion. The norms and values harboured in the tests will also affect teaching since the teachers are given examples of how the goals in the syllabus can be concretized.

  15. Click chemistry: 1,2,3-triazoles as pharmacophores.

    Science.gov (United States)

    Agalave, Sandip G; Maujan, Suleman R; Pore, Vandana S

    2011-10-04

    The copper(I)-catalyzed 1,2,3-triazole-forming reaction between azides and terminal alkynes has become the gold standard of 'click chemistry' due to its reliability, specificity, and biocompatibility. Applications of click chemistry are increasingly found in all aspects of drug discovery; they range from lead finding through combinatorial chemistry and target-templated in vitro chemistry, to proteomics and DNA research by using bioconjugation reactions. The triazole products are more than just passive linkers; they readily associate with biological targets, through hydrogen-bonding and dipole interactions. The present review will focus mainly on the recent literature for applications of this reaction in the field of medicinal chemistry, in particular on use of the 1,2,3-triazole moiety as pharmacophore.

  16. Cannabinoids: occurrence and medicinal chemistry.

    Science.gov (United States)

    Appendino, G; Chianese, G; Taglialatela-Scafati, O

    2011-01-01

    With an inventory of several hundreds secondary metabolites identified, Cannabis sativa L. (hemp) is one of the phytochemically best characterized plant species. The biomedical relevance of hemp undoubtedly underlies the wealth of data on its constituents and their biological activities, and cannabinoids, a class of unique meroterpenoids derived from the alkylation of an olivetollike alkyl resorcinol with a monoterpene unit, are the most typical constituents of Cannabis. In addition to the well-known psychotropic properties of Δ(9)-THC, cannabinoids have been reported to show potential in various fields of medicine, with the capacity to address unmet needs like the relief of chemotherapy-derived nausea and anorexia, and symptomatic mitigation of multiple sclerosis. Many of the potential therapeutic uses of cannabinoids are related to the interaction with (at least) two cannabinoid G-protein coupled receptors (CB1 and CB2). However, a number of activities, like the antibacterial or the antitumor properties are non totally dependent or fully independent from the interaction with these proteins. These pharmacological activities are particularly interesting since, in principle, they could be easily dissociated by the unwanted psychotropic effects. This review aims at giving readers a survey of the more recent advances in both phytochemistry of C. sativa, the medicinal chemistry of cannabinoids, and their distribution in plants, highlighting the impact that research in these hot fields could have for modern medicinal chemistry and pharmacology.

  17. Palladium-mediated intracellular chemistry

    Science.gov (United States)

    Yusop, Rahimi M.; Unciti-Broceta, Asier; Johansson, Emma M. V.; Sánchez-Martín, Rosario M.; Bradley, Mark

    2011-03-01

    Many important intracellular biochemical reactions are modulated by transition metals, typically in the form of metalloproteins. The ability to carry out selective transformations inside a cell would allow researchers to manipulate or interrogate innumerable biological processes. Here, we show that palladium nanoparticles trapped within polystyrene microspheres can enter cells and mediate a variety of Pd0-catalysed reactions, such as allylcarbamate cleavage and Suzuki-Miyaura cross-coupling. The work provides the basis for the customization of heterogeneous unnatural catalysts as tools to carry out artificial chemistries within cells. Such in cellulo synthesis has potential for a plethora of applications ranging from cellular labelling to synthesis of modulators or inhibitors of cell function.

  18. Chemistry in the News: 1997 Nobel Prizes in Chemistry and Medicine

    Science.gov (United States)

    1997-12-01

    Chemistry The Royal Swedish Academy of Sciences has awarded the 1997 Nobel Prize in Chemistry with one half to Paul D. Boyer (University of California, Los Angeles, USA) and John E. Walker (Medical Research Council Laboratory of Molecular Biology, Cambridge, UK) for elucidation of the mechanism of action of ATP synthase, which catalyzes the synthesis of adenosine triphosphate (ATP); and one half to Jens C. Skou (Aarhus University, Denmark) for the first discovery of an ion-transporting enzyme, Na+,K+-ATPase. The three laureates have performed pioneering work on enzymes that catalyze reactions of the "high-energy" compound adenosine triphosphate (ATP).

  19. Biological applications of nanobiotechnology.

    Science.gov (United States)

    de Morais, Michele Greque; Martins, Vilásia Guimarães; Steffens, Daniela; Pranke, Patricia; da Costa, Jorge Alberto Vieira

    2014-01-01

    Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices derived from engineering, physics, chemistry, and biology. Nanotechnology has opened up by rapid advances in science and technology, creating new opportunities for advances in the fields of medicine, electronics, foods, and the environment. Nanoscale structures and materials (nanoparticles, nanowires, nanofibers, nanotubes) have been explored in many biological applications (biosensing, biological separation, molecular imaging, anticancer therapy) because their novel properties and functions differ drastically from their bulk counterparts. Their high volume/surface ratio, improved solubility, and multifunctionality open many new possibilities. The objective of this review is to describe the potential benefits and impacts of the nanobiotechnology in different areas.

  20. Indicators: Soil Chemistry

    Science.gov (United States)

    The chemical makeup of the soil can provide information on wetland condition, wetland water quality and services being provided by the wetland ecosystem. Analyzing soil chemistry reveals if the soil is contaminated with a toxic chemical or heavy metal.

  1. Chemistry for Kids.

    Science.gov (United States)

    Sato, Sanae; Majoros, Bela

    1988-01-01

    Reports two methods for interesting children in chemistry. Describes a method for producing large soap bubbles and films for study. Examines the use of simple stories to explain common chemical concepts with example given. Lists titles of available stories. (ML)

  2. Beauty in chemistry

    Directory of Open Access Journals (Sweden)

    Peter Atkins

    2006-03-01

    Full Text Available Though hard going for the general reader and highly personal in its selectivity, Elegant Solutions: Ten Beautiful Experiments in Chemistry provides reflections of a thoughtful author that will delight chemists

  3. Microfluidics in inorganic chemistry.

    Science.gov (United States)

    Abou-Hassan, Ali; Sandre, Olivier; Cabuil, Valérie

    2010-08-23

    The application of microfluidics in chemistry has gained significant importance in the recent years. Miniaturized chemistry platforms provide controlled fluid transport, rapid chemical reactions, and cost-saving advantages over conventional reactors. The advantages of microfluidics have been clearly established in the field of analytical and bioanalytical sciences and in the field of organic synthesis. It is less true in the field of inorganic chemistry and materials science; however in inorganic chemistry it has mostly been used for the separation and selective extraction of metal ions. Microfluidics has been used in materials science mainly for the improvement of nanoparticle synthesis, namely metal, metal oxide, and semiconductor nanoparticles. Microfluidic devices can also be used for the formulation of more advanced and sophisticated inorganic materials or hybrids.

  4. Uncertainty in chemistry.

    Science.gov (United States)

    Menger, Fredric M

    2010-09-01

    It might come as a disappointment to some chemists, but just as there are uncertainties in physics and mathematics, there are some chemistry questions we may never know the answer to either, suggests Fredric M. Menger.

  5. Chemistry at large

    Directory of Open Access Journals (Sweden)

    Jeremy. K.M. Sanders

    2007-06-01

    Full Text Available A new book introduces young researchers to supramolecular chemistry, starting from the basics and working up to the more complicated aspects of the topic. While the text is inspiring for new graduates, it lacks a critical view.

  6. Enzymes in Analytical Chemistry.

    Science.gov (United States)

    Fishman, Myer M.

    1980-01-01

    Presents tabular information concerning recent research in the field of enzymes in analytic chemistry, with methods, substrate or reaction catalyzed, assay, comments and references listed. The table refers to 128 references. Also listed are 13 general citations. (CS)

  7. Water Chemistry: Seeking Information

    Science.gov (United States)

    Delfino, Joseph J.

    1977-01-01

    A survey of the available literature in water chemistry is presented. Materials surveyed include: texts, reference books, bibliographic resources, journals, American Chemical Society publications, proceedings, unpublished articles, and reports. (BT)

  8. Forensic Chemistry Training

    OpenAIRE

    GERÇEK, Zuhal

    2012-01-01

    Increasing the types of terrorism and crime nowadays, the importance of the forensic sciences can be bett er understood. Forensic science is the application of the wide spectrum of science to answer the question of legal system. It contains the application of the principles, techniques and methods of basic sciences and its main aim is the determination of the physical facts which are important in legal situations. Forensic chemistry is the branch of chemistry which performs the chemical analy...

  9. Click chemistry with DNA

    OpenAIRE

    El-Sagheer, Afaf H.; Brown, Tom

    2010-01-01

    The advent of click chemistry has led to an influx of new ideas in the nucleic acids field. The copper catalysed alkyne–azide cycloaddition (CuAAC) reaction is the method of choice for DNA click chemistry due to its remarkable efficiency. It has been used to label oligonucleotides with fluorescent dyes, sugars, peptides and other reporter groups, to cyclise DNA, to synthesise DNA catenanes, to join oligonucleotides to PNA, and to produce analogues of DNA with modified nucleobases and backbone...

  10. Impact of surface chemistry

    OpenAIRE

    2010-01-01

    The applications of molecular surface chemistry in heterogeneous catalyst technology, semiconductor-based technology, medical technology, anticorrosion and lubricant technology, and nanotechnology are highlighted in this perspective. The evolution of surface chemistry at the molecular level is reviewed, and the key roles of surface instrumentation developments for in situ studies of the gas–solid, liquid–solid, and solid–solid interfaces under reaction conditions are emphasized.

  11. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 2 covers the advances in gas phase ion chemistry. The book discusses the stabilities of positive ions from equilibrium gas-phase basicity measurements; the experimental methods used to determine molecular electron affinities, specifically photoelectron spectroscopy, photodetachment spectroscopy, charge transfer, and collisional ionization; and the gas-phase acidity scale. The text also describes the basis of the technique of chemical ionization mass spectrometry; the energetics and mechanisms of unimolecular reactions of positive ions; and the photodissociation

  12. Fundamentals of quantum chemistry

    CERN Document Server

    House, J E

    2004-01-01

    An introduction to the principles of quantum mechanics needed in physical chemistry. Mathematical tools are presented and developed as needed and only basic calculus, chemistry, and physics is assumed. Applications include atomic and molecular structure, spectroscopy, alpha decay, tunneling, and superconductivity. New edition includes sections on perturbation theory, orbital symmetry of diatomic molecules, the Huckel MO method and Woodward/Hoffman rules as well as a new chapter on SCF and Hartree-Fock methods. * This revised text clearly presents basic q

  13. Applications of supramolecular chemistry

    CERN Document Server

    Schneider, Hans-Jörg

    2012-01-01

    ""The time is ripe for the present volume, which gathers thorough presentations of the numerous actually realized or potentially accessible applications of supramolecular chemistry by a number of the leading figures in the field. The variety of topics covered is witness to the diversity of the approaches and the areas of implementation…a broad and timely panorama of the field assembling an eminent roster of contributors.""-Jean-Marie Lehn, 1987 Noble Prize Winner in Chemistry

  14. All biology is computational biology

    Science.gov (United States)

    2017-01-01

    Here, I argue that computational thinking and techniques are so central to the quest of understanding life that today all biology is computational biology. Computational biology brings order into our understanding of life, it makes biological concepts rigorous and testable, and it provides a reference map that holds together individual insights. The next modern synthesis in biology will be driven by mathematical, statistical, and computational methods being absorbed into mainstream biological training, turning biology into a quantitative science. PMID:28278152

  15. Meeting Report: Synthetic Biology Jamboree for Undergraduates

    Science.gov (United States)

    Campbell, A. Malcolm

    2005-01-01

    The field of synthetic biology (the name is derived from an analogy to synthetic chemistry) has recognized itself as a "field" only since about 2002. Synthetic biology has gotten some high-profile attention recently, but most people are not aware the field even exists. Synthetic biologists apply engineering principles to genomic circuits to…

  16. News: Synthetic biology leading to specialty chemicals

    Science.gov (United States)

    Synthetic biology can combine the disciplines of biology, engineering, and chemistry productively to form molecules of great scientific and commercial value. Recent advances in the new field are explored for their connection to new tools that have been used to elucidate productio...

  17. Quantum Effects in Biological Systems

    CERN Document Server

    2016-01-01

    Since the last decade the study of quantum mechanical phenomena in biological systems has become a vibrant field of research. Initially sparked by evidence of quantum effects in energy transport that is instrumental for photosynthesis, quantum biology asks the question of how methods and models from quantum theory can help us to understand fundamental mechanisms in living organisms. This approach entails a paradigm change challenging the related disciplines: The successful framework of quantum theory is taken out of its low-temperature, microscopic regimes and applied to hot and dense macroscopic environments, thereby extending the toolbox of biology and biochemistry at the same time. The Quantum Effects in Biological Systems conference is a platform for researchers from biology, chemistry and physics to present and discuss the latest developments in the field of quantum biology. After meetings in Lisbon (2009), Harvard (2010), Ulm (2011), Berkeley (2012), Vienna (2013), Singapore (2014) and Florence (2015),...

  18. Marine molecular biology: an emerging field of biological sciences.

    Science.gov (United States)

    Thakur, Narsinh L; Jain, Roopesh; Natalio, Filipe; Hamer, Bojan; Thakur, Archana N; Müller, Werner E G

    2008-01-01

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. However, the value of molecular techniques for addressing problems in marine biology has only recently begun to be cherished. It has been proven that the exploitation of molecular biological techniques will allow difficult research questions about marine organisms and ocean processes to be addressed. Marine molecular biology is a discipline, which strives to define and solve the problems regarding the sustainable exploration of marine life for human health and welfare, through the cooperation between scientists working in marine biology, molecular biology, microbiology and chemistry disciplines. Several success stories of the applications of molecular techniques in the field of marine biology are guiding further research in this area. In this review different molecular techniques are discussed, which have application in marine microbiology, marine invertebrate biology, marine ecology, marine natural products, material sciences, fisheries, conservation and bio-invasion etc. In summary, if marine biologists and molecular biologists continue to work towards strong partnership during the next decade and recognize intellectual and technological advantages and benefits of such partnership, an exciting new frontier of marine molecular biology will emerge in the future.

  19. Clinical chemistry: challenges for analytical chemistry and the nanosciences from medicine.

    Science.gov (United States)

    Durner, Jürgen

    2010-02-01

    Clinical chemistry and laboratory medicine can look back over more than 150 years of eventful history. The subject encompasses all the medicinal disciplines as well as the remaining natural sciences. Clinical chemistry demonstrates how new insights from basic research in biochemical, biological, analytical chemical, engineering, and information technology can be transferred into the daily routine of medicine to improve diagnosis, therapeutic monitoring, and prevention. This Review begins with a presentation of the development of clinical chemistry. Individual steps between the drawing of blood and interpretation of laboratory data are then illustrated; here not only are pitfalls described, but so are quality control systems. The introduction of new methods and trends into medicinal analysis is explored, along with opportunities and problems associated with personalized medicine.

  20. Chemistry beyond positivism.

    Science.gov (United States)

    Brandt, Werner W

    2003-05-01

    Chemistry is often thought to be quite factual, and therefore might be considered close to the "positivist" ideal of a value-free science. A closer look, however, reveals that the field is coupled to the invisible realm of values, meanings, and purpose in various ways, and chemists interact with that realm loosely and unevenly. Tacit knowledge is one important locus of such interactions. We are concerned in this essay with two questions. What is the nature of the knowledge when we are in the early stages of discovery? and In what ways does the hidden reality we are seeking affect our search for an understanding of it? The first question is partly answered by Polanyi's theory of tacit knowledge, while the second one leads us to realize the limitations of our language when discussing "reality"-or certain chemical experimental results. A strictly positivist approach is of little use, but so is the opposite, the complete disregard of facts. The contrast between positivism and non-formulable aspects of scientific reasoning amounts to a paradox that needs to be analyzed and can lead to a "connected" chemistry. This in turn resembles networks described by Schweber and is more concerned than the chemistry "as it is" with aspects such as the image of chemistry, the challenges chemists face as citizens, and chemistry in liberal education.

  1. Nanoindentation of biological composites

    Science.gov (United States)

    Dickinson, M.

    2009-08-01

    This investigation studied the effect of storage conditions on the mechanical properties as measured by nanoindentation of mineralised tissue samples. The three storage solutions were Hanks balanced salt solution, phosphate buffered saline and deionised water and all had a significant effect on the surface properties, namely hardness and modulus of enamel, dentin and bone tested. The effect was significant with a greater than 70% reduction in surface mechanical properties after 8 days immersion in the solutions. This study highlights the importance of testing biological tissues immediately after extraction, and the possible structural and chemistry changes that may occur by artificially storing the tissues.

  2. Cellular uptake: lessons from supramolecular organic chemistry.

    Science.gov (United States)

    Gasparini, Giulio; Bang, Eun-Kyoung; Montenegro, Javier; Matile, Stefan

    2015-07-04

    The objective of this Feature Article is to reflect on the importance of established and emerging principles of supramolecular organic chemistry to address one of the most persistent problems in life sciences. The main topic is dynamic covalent chemistry on cell surfaces, particularly disulfide exchange for thiol-mediated uptake. Examples of boronate and hydrazone exchange are added for contrast, comparison and completion. Of equal importance are the discussions of proximity effects in polyions and counterion hopping, and more recent highlights on ring tension and ion pair-π interactions. These lessons from supramolecular organic chemistry apply to cell-penetrating peptides, particularly the origin of "arginine magic" and the "pyrenebutyrate trick," and the currently emerging complementary "disulfide magic" with cell-penetrating poly(disulfide)s. They further extend to the voltage gating of neuronal potassium channels, gene transfection, and the delivery of siRNA. The collected examples illustrate that the input from conceptually innovative chemistry is essential to address the true challenges in biology beyond incremental progress and random screening.

  3. Reaction chemistry of cerium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    It is truly ironic that a synthetic organic chemist likely has far greater knowledge of the reaction chemistry of cerium(IV) than an inorganic colleague. Cerium(IV) reagents have long since been employed as oxidants in effecting a wide variety of organic transformations. Conversely, prior to the late 1980s, the number of well characterized cerium(IV) complexes did not extend past a handful of known species. Though in many other areas, interest in the molecular chemistry of the 4f-elements has undergone an explosive growth over the last twenty years, the chemistry of cerium(IV) has for the most part been overlooked. This report describes reactions of cerium complexes and structure.

  4. Mathematics for physical chemistry

    CERN Document Server

    Mortimer, Robert G

    2005-01-01

    Mathematics for Physical Chemistry, Third Edition, is the ideal text for students and physical chemists who want to sharpen their mathematics skills. It can help prepare the reader for an undergraduate course, serve as a supplementary text for use during a course, or serve as a reference for graduate students and practicing chemists. The text concentrates on applications instead of theory, and, although the emphasis is on physical chemistry, it can also be useful in general chemistry courses. The Third Edition includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The first ten chapters are constructed around a sequence of mathematical topics, with a gradual progression into more advanced material. The final chapter discusses mathematical topics needed in the analysis of experimental data.* Numerous examples and problems interspersed throughout the presentations * Each extensive chapter contains a preview, objectives, and ...

  5. Biology Today. Thinking Chemically about Biology.

    Science.gov (United States)

    Flannery, Maura C.

    1990-01-01

    Discussed are applications of biochemistry. Included are designed drugs, clever drugs, carcinogenic structures, sugary wine, caged chemicals, biomaterials, marine chemistry, biopolymers, prospecting bacteria, and plant chemistry. (CW)

  6. The Study of Biological Inorganic Chemistry Problems in Translational Medicine%转化医学研究中的生物无机化学问题探讨

    Institute of Scientific and Technical Information of China (English)

    张金超; 胡毅; 余四旺; 高愈希; 张海松

    2013-01-01

    Translational medicine is an emerging concept in the fields of biomedical research and healthcare since twenty-first century.It is a two-way process from the basic research to clinical application with direct feedbacks in between.It is not a new subject,but emphasizes a concept.It stems from an unmet need in clinical medicine.At present,translational medical research is mainly involved in the following areas:cancer,cardiovascular diseases,metabolic disorders,psychiatric disorders,diseases of the locomotor system,genetic diseases,organ transplantation,tissue engineering,disease diagnosis,drug research and development,personalized therapy,stem cell research,animal model studies and immunology etc.This article reviews the bioinorganic chemistry problems involved in the disease diagnosis,tissue engineering,individual therapy,drug research and development and disease mechanisms.Finally,the development of this new area and important issues to be studied are outlooked.%转化医学是进入21世纪以来国际生物医学及健康领域出现的新概念.它是基础研究到临床应用的双向过程,是临床实践与基础研究之间的循环式的研究体系,它不是一门新的学科,只是强调一种理念,是特定时代背景的产物.目前,转化医学研究主要涉及以下领域:肿瘤、心脑血管疾病、代谢疾病、精神疾病、运动系统疾病、遗传病、器官移植、组织工程、疾病诊断、药物研发、个体化治疗、干细胞研究、动物模型研究以及免疫学等.本文综述了在疾病诊断、组织工程领域、个体化治疗、新药研发以及发病机制中涉及到的生物无机化学问题.最后,展望了该新领域今后的发展方向和亟待研究的重要问题.

  7. Chemistry and lithography

    CERN Document Server

    Okoroanyanwu, Uzodinma

    2011-01-01

    This is a unique book, combining chemistry and physics with technology and history in a way that is both enlightening and lively. No other book in the field of lithography has as much breadth. Highly recommended for anyone interested in the broad application of chemistry to lithography. --Chris Mack, Gentleman Scientist. This book provides a comprehensive treatment of the chemical phenomena in lithography in a manner that is accessible to a wide readership. The book presents topics on the optical and charged particle physics practiced in lithography, with a broader view of how the marriage bet

  8. Dynamic Combinatorial Chemistry

    DEFF Research Database (Denmark)

    Lisbjerg, Micke

    This thesis is divided into seven chapters, which can all be read individually. The first chapter, however, contains a general introduction to the chemistry used in the remaining six chapters, and it is therefore recommended to read chapter one before reading the other chapters. Chapter 1...... is a general introductory chapter for the whole thesis. The history and concepts of dynamic combinatorial chemistry are described, as are some of the new and intriguing results recently obtained. Finally, the properties of a broad range of hexameric macrocycles are described in detail. Chapter 2 gives...

  9. Chemistry WebBook

    Science.gov (United States)

    SRD 69 NIST Chemistry WebBook (Web, free access)   The NIST Chemistry WebBook contains: Thermochemical data for over 7000 organic and small inorganic compounds; thermochemistry data for over 8000 reactions; IR spectra for over 16,000 compounds; mass spectra for over 33,000 compounds; UV/Vis spectra for over 1600 compounds; electronic and vibrational spectra for over 5000 compounds; constants of diatomic molecules(spectroscopic data) for over 600 compounds; ion energetics data for over 16,000 compounds; thermophysical property data for 74 fluids.

  10. Solvent effects in chemistry

    CERN Document Server

    Buncel, Erwin

    2015-01-01

    This book introduces the concepts, theory and experimental knowledge concerning solvent effects on the rate and equilibrium of chemical reactions of all kinds.  It begins with basic thermodynamics and kinetics, building on this foundation to demonstrate how a more detailed understanding of these effects may be used to aid in determination of reaction mechanisms, and to aid in planning syntheses. Consideration is given to theoretical calculations (quantum chemistry, molecular dynamics, etc.), to statistical methods (chemometrics), and to modern day concerns such as ""green"" chemistry, where ut

  11. Progress in physical chemistry

    CERN Document Server

    Hempelmann, Rolf

    2008-01-01

    Progress in Physical Chemistry is a collection of recent ""Review Articles"" published in the ""Zeitschrift für Physikalische Chemie"". The second volume of Progress in Physical Chemistry is a collection of thematically closely related minireview articles written by the members of the Collaborative Research Centre (SFB) 277 of the German Research Foundation (DFG). These articles are based on twelve years of intense coordinated research efforts. Central topics are the synthesis and the characterization of interface-dominated, i.e. nanostructured materials, mainly in the solid state but also as

  12. The chemistry of silicon

    CERN Document Server

    Rochow, E G; Emeléus, H J; Nyholm, Ronald

    1975-01-01

    Pergamon Texts in Organic Chemistry, Volume 9: The Chemistry of Silicon presents information essential in understanding the chemical properties of silicon. The book first covers the fundamental aspects of silicon, such as its nuclear, physical, and chemical properties. The text also details the history of silicon, its occurrence and distribution, and applications. Next, the selection enumerates the compounds and complexes of silicon, along with organosilicon compounds. The text will be of great interest to chemists and chemical engineers. Other researchers working on research study involving s

  13. Spins in chemistry

    CERN Document Server

    McWeeny, Roy

    2004-01-01

    Originally delivered as a series of lectures, this volume systematically traces the evolution of the ""spin"" concept from its role in quantum mechanics to its assimilation into the field of chemistry. Author Roy McWeeny presents an in-depth illustration of the deductive methods of quantum theory and their application to spins in chemistry, following the path from the earliest concepts to the sophisticated physical methods employed in the investigation of molecular structure and properties. Starting with the origin and development of the spin concept, the text advances to an examination of sp

  14. Synthetic Aziridines in Medicinal Chemistry: A Mini-Review.

    Science.gov (United States)

    Singh, Girija S

    2016-01-01

    Azaheterocyclic compounds are well-known to have diverse types of biological activity. Among them, azacyclopropanes, commonly referred as aziridines, occupy a prominent place in synthetic organic and medicinal chemistry due to its occurrence in natural resources, complexity involved in synthesis due to ring-strain, building blocks in organic synthesis, and its biological properties. Several novel compounds containing aziridine ring have been designed and synthesized recently by medicinal chemists for evaluating their biological profile. A number of compounds are reported as cysteine protease inhibitors, antibacterial, antifungal, anticancer, antileishmanial, and antimalarial agents. This review article summarizes the biological activity of such compounds. The preparation of such compounds is also described.

  15. Is Chemistry Attractive for Pupils? Czech Pupils' Perception of Chemistry

    Science.gov (United States)

    Kubiatko, Milan

    2015-01-01

    Chemistry is an important subject due to understanding the composition and structure of the things around us. The main aim of the study was to find out the perception of chemistry by lower secondary school pupils. The partial aims were to find out the influence of gender, year of study and favorite subject on the perception of chemistry. The…

  16. Turkish Prospective Chemistry Teachers' Beliefs about Chemistry Teaching

    Science.gov (United States)

    Boz, Yezdan; Uzuntiryaki, Esen

    2006-01-01

    In order to study the beliefs of Turkish prospective chemistry teachers about teaching chemistry, semi-structured interviews were conducted with 12 prospective teachers. Analysis of the interviews revealed that most of the prospective teachers held intermediate (transition between constructivist and traditional) beliefs about chemistry teaching.…

  17. Top Down Chemistry Versus Bottom up Chemistry

    Science.gov (United States)

    Oka, Takeshi; Witt, Adolf N.

    2016-06-01

    The idea of interstellar top down chemistry (TDC), in which molecules are produced from decomposition of larger molecules and dust in contrast to ordinary bottom up chemistry (BUC) in which molecules are produced synthetically from smaller molecules and atoms in the ISM, has been proposed in the chemistry of PAH and carbon chain molecules both for diffusea,c and dense cloudsb,d. A simple and natural idea, it must have occurred to many people and has been in the air for sometime. The validity of this hypothesis is apparent for diffuse clouds in view of the observed low abundance of small molecules and its rapid decrease with molecular size on the one hand and the high column densities of large carbon molecules demonstrated by the many intense diffuse interstellar bands (DIBs) on the other. Recent identification of C60^+ as the carrier of 5 near infrared DIBs with a high column density of 2×1013 cm-2 by Maier and others confirms the TDC. This means that the large molecules and dust produced in the high density high temperature environment of circumstellar envelopes are sufficiently stable to survive decompositions due to stellar UV radiaiton, cosmic rays, C-shocks etc. for a long time (≥ 10^7 year) of their migration to diffuse clouds and seems to disagree with the consensus in the field of interstellar grains. The stability of molecules and aggregates in the diffuse interstellar medium will be discussed. Duley, W. W. 2006, Faraday Discuss. 133, 415 Zhen,J., Castellanos, P., Paardekooper, D. M., Linnartz, H., Tielens, A. G. G. M. 2014, ApJL, 797, L30 Huang, J., Oka, T. 2015, Mol. Phys. 113, 2159 Guzmán, V. V., Pety, J., Goicoechea, J. R., Gerin, M., Roueff, E., Gratier, P., Öberg, K. I. 2015, ApJL, 800, L33 L. Ziurys has sent us many papers beginning Ziurys, L. M. 2006, PNAS 103, 12274 indicating she had long been a proponent of the idea. Campbell, E. K., Holz, M., Maier, J. P., Gerlich, D., Walker, G. A. H., Bohlender, D, 2016, ApJ, in press Draine, B. T. 2003

  18. Organics in environmental ices: sources, chemistry, and impacts

    Directory of Open Access Journals (Sweden)

    D. Voisin

    2012-04-01

    Full Text Available The physical, chemical, and biological processes involving organics in ice in the environment impact a number of atmospheric and biogeochemical cycles. Organic material in snow or ice may be biological in origin, deposited from aerosols or atmospheric gases, or formed chemically in situ. In this manuscript, we review the current state of knowledge regarding the sources, properties, and chemistry of organic materials in environmental ices. Several outstanding questions remain to be resolved and fundamental data gathered before a comprehensive, accurate model of organic species in the cryosphere will be possible. For example, more information is needed regarding the quantitative impacts of chemical and biological processes, ice morphology, and snow formation on the fate of organic material in cold regions. Interdisciplinary work at the interfaces of chemistry, physics and biology is needed in order to fully characterize the nature and evolution of organics in the cryosphere and predict the effects of climate change on the Earth's carbon cycle.

  19. Chemistry: A Science of Discovery and Creation

    Institute of Scientific and Technical Information of China (English)

    Chunli

    2011-01-01

    @@ Chemistry is the science of the structure, properties and transformation of matter.It is also a science that creates new materials and explores new applications.Together with such disciplines as mathematics, physics and biology, it constitutes the foundation of the natural sciences.As shown by its development daring the past century, this branch of scientific knowledge has played a crucial role in inventing novel and intriguing materials, and become the key to access the "inexhaustible" treasure of resources in the natural world.Meanwhile, chemistry keeps pace with the progress of human society, and plays an irreplaceable role in promoting the advancement of science and society and the improvement of human life.

  20. Accessing Specific Peptide Recognition by Combinatorial Chemistry

    DEFF Research Database (Denmark)

    Li, Ming

    Molecular recognition is at the basis of all processes for life, and plays a central role in many biological processes, such as protein folding, the structural organization of cells and organelles, signal transduction, and the immune response. Hence, my PhD project is entitled “Accessing Specific...... Peptide Recognition by Combinatorial Chemistry”. Molecular recognition is a specific interaction between two or more molecules through noncovalent bonding, such as hydrogen bonding, metal coordination, van der Waals forces, π−π, hydrophobic, or electrostatic interactions. The association involves kinetic....... Combinatorial chemistry was invented in 1980s based on observation of functional aspects of the adaptive immune system. It was employed for drug development and optimization in conjunction with high-throughput synthesis and screening. (chapter 2) Combinatorial chemistry is able to rapidly produce many thousands...

  1. Surface chemistry driven actuation in nanoporous gold

    Energy Technology Data Exchange (ETDEWEB)

    Biener, J; Wittstock, A; Zepeda-Ruiz, L; Biener, M M; Zielasek, V; Kramer, D; Viswanath, R N; Weissmuller, J; Baumer, M; Hamza, A V

    2008-04-14

    Although actuation in biological systems is exclusively powered by chemical energy, this concept has not been realized in man-made actuator technologies, as these rely on generating heat or electricity first. Here, we demonstrate that surface-chemistry driven actuation can be realized in high surface area materials such as nanoporous gold. For example, we achieve reversible strain amplitudes in the order of a few tenths of a percent by alternating exposure of nanoporous Au to ozone and carbon monoxide. The effect can be explained by adsorbate-induced changes of the surface stress, and can be used to convert chemical energy directly into a mechanical response thus opening the door to surface-chemistry driven actuator and sensor technologies.

  2. An approach to teaching general chemistry II that highlights the interdisciplinary nature of science.

    Science.gov (United States)

    Sumter, Takita Felder; Owens, Patrick M

    2011-01-01

    The need for a revised curriculum within the life sciences has been well-established. One strategy to improve student preparation in the life sciences is to redesign introductory courses like biology, chemistry, and physics so that they better reflect their disciplinary interdependence. We describe a medically relevant, context-based approach to teaching second semester general chemistry that demonstrates the interdisciplinary nature of biology and chemistry. Our innovative method provides a model in which disciplinary barriers are diminished early in the undergraduate science curriculum. The course is divided into three principle educational modules: 1) Fundamentals of General Chemistry, 2) Medical Approaches to Inflammation, and 3) Neuroscience as a connector of chemistry, biology, and psychology. We accurately anticipated that this modified approach to teaching general chemistry would enhance student interest in chemistry and bridge the perceived gaps between biology and chemistry. The course serves as a template for context-based, interdisciplinary teaching that lays the foundation needed to train 21st century scientists.

  3. Crossing the Boundaries within Computational Chemistry: From Molecular Dynamics to Cheminformatics and back.

    Science.gov (United States)

    Riniker, Sereina

    2014-09-01

    The research in the group for computational chemistry at the ETH Zurich focuses on the development of methods and software for classical molecular dynamics simulations and cheminformatics, and their application to biological and chemical questions. Here, important advances and challenges in these subfields of computational chemistry are reviewed and potential opportunities for cross-fertilization are outlined.

  4. An Undergraduate Laboratory Experiment in Bioinorganic Chemistry: Ligation States of Myoglobin

    Science.gov (United States)

    Bailey, James A.

    2011-01-01

    Although there are numerous inorganic model systems that are readily presented as undergraduate laboratory experiments in bioinorganic chemistry, there are few examples that explore the inorganic chemistry of actual biological molecules. We present a laboratory experiment using the oxygen-binding protein myoglobin that can be easily incorporated…

  5. A Bridge between Two Cultures: Uncovering the Chemistry Concepts Relevant to the Nursing Clinical Practice

    Science.gov (United States)

    Brown, Corina E.; Henry, Melissa L. M.; Barbera, Jack; Hyslop, Richard M.

    2012-01-01

    This study focused on the undergraduate course that covers basic topics in general, organic, and biological (GOB) chemistry at a mid-sized state university in the western United States. The central objective of the research was to identify the main topics of GOB chemistry relevant to the clinical practice of nursing. The collection of data was…

  6. Preface The Sino-US chemistry professors conference:history and outlook

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    On June 29–30, 2009, the Fifth Sino-US Chemistry Professors Conference, co-organized by Lanzhou University and the Chinese-American Chemistry & Chemical Biology Professors Association (CAPA, USA), was held in Lanzhou. About 150 professors from China, USA and other countries

  7. Charting an Alternate Pathway to Reaction Orders and Rate Laws in Introductory Chemistry Courses

    Science.gov (United States)

    Rushton, Gregory T.; Criswell, Brett A.; McAllister, Nicole D.; Polizzi, Samuel J.; Moore, Lamesha A.; Pierre, Michelle S.

    2014-01-01

    Reaction kinetics is an axiomatic topic in chemistry that is often addressed as early as the high school course and serves as the foundation for more sophisticated conversations in college-level organic, physical, and biological chemistry courses. Despite the fundamental nature of reaction kinetics, students can struggle with transforming their…

  8. One hundred years of the Division of Agricultural and Food Chemistry

    Science.gov (United States)

    The Division of Agricultural and Food Chemistry (AGFD)of the American Chemical Society was 100 years old in 2008. ACS grouped papers into sections at its national meetings starting in 1904, including one dealing with agricultural, biological, and sanitary chemistry. This section became AGFD on Dec...

  9. Polymer Chemistry in High School.

    Science.gov (United States)

    Stucki, Roger

    1984-01-01

    Discusses why polymer chemistry should be added to the general chemistry curriculum and what topics are appropriate (listing traditional with related polymer topics). Also discusses when and how these topics should be taught. (JN)

  10. Water Chemistry Laboratory Manual.

    Science.gov (United States)

    Jenkins, David; And Others

    This manual of laboratory experiments in water chemistry serves a dual function of illustrating fundamental chemical principles of dilute aqueous systems and of providing the student with some familiarity with the chemical measurements commonly used in water and wastewater analysis. Experiments are grouped in categories on the basis of similar…

  11. Chemistry and Popperism.

    Science.gov (United States)

    Akeroyd, F. Michael

    1984-01-01

    Discusses the relationship of Karl Popper's theories to chemistry, examining scientific statements and verisimilitude (which indicates that newer theories should have a higher degree of truth content compared with older theories). Also provides examples illustrating the use of Agassi's criteria for assessing currently fashionable theories. (JN)

  12. Supramolecular Chemistry in Water

    NARCIS (Netherlands)

    Oshovsky, Gennady V.; Reinhoudt, David N.; Verboom, Willem

    2007-01-01

    Supramolecular chemistry in water is a constantly growing research area because noncovalent interactions in aqueous media are important for obtaining a better understanding and control of the major processes in nature. This Review offers an overview of recent advances in the area of water-soluble sy

  13. Online organic chemistry

    Science.gov (United States)

    Janowicz, Philip A.

    This is a comprehensive study of the many facets of an entirely online organic chemistry course. Online homework with structure-drawing capabilities was found to be more effective than written homework. Online lecture was found to be just as effective as in-person lecture, and students prefer an online lecture format with shorter Webcasts. Online office hours were found to be effective, and discussion sessions can be placed online as well. A model was created that explains 36.1% of student performance based on GPA, ACT Math score, grade in previous chemistry course, and attendance at various forms of discussion. Online exams have been created which test problem-solving skills and is instantly gradable. In these exams, students can submit answers until time runs out for different numbers of points. These facets were combined effectively to create an entirely online organic chemistry course which students prefer over the in-person alternative. Lastly, there is a vision for where online organic chemistry is going and what can be done to improve education for all.

  14. Array processors in chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ostlund, N.S.

    1980-01-01

    The field of attached scientific processors (''array processors'') is surveyed, and an attempt is made to indicate their present and possible future use in computational chemistry. The current commercial products from Floating Point Systems, Inc., Datawest Corporation, and CSP, Inc. are discussed.

  15. Analytical Chemistry Laboratory

    Science.gov (United States)

    Anderson, Mark

    2013-01-01

    The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.

  16. Supramolecular analytical chemistry.

    Science.gov (United States)

    Anslyn, Eric V

    2007-02-02

    A large fraction of the field of supramolecular chemistry has focused in previous decades upon the study and use of synthetic receptors as a means of mimicking natural receptors. Recently, the demand for synthetic receptors is rapidly increasing within the analytical sciences. These classes of receptors are finding uses in simple indicator chemistry, cellular imaging, and enantiomeric excess analysis, while also being involved in various truly practical assays of bodily fluids. Moreover, one of the most promising areas for the use of synthetic receptors is in the arena of differential sensing. Although many synthetic receptors have been shown to yield exquisite selectivities, in general, this class of receptor suffers from cross-reactivities. Yet, cross-reactivity is an attribute that is crucial to the success of differential sensing schemes. Therefore, both selective and nonselective synthetic receptors are finding uses in analytical applications. Hence, a field of chemistry that herein is entitled "Supramolecular Analytical Chemistry" is emerging, and is predicted to undergo increasingly rapid growth in the near future.

  17. Computational chemistry at Janssen.

    Science.gov (United States)

    van Vlijmen, Herman; Desjarlais, Renee L; Mirzadegan, Tara

    2016-12-19

    Computer-aided drug discovery activities at Janssen are carried out by scientists in the Computational Chemistry group of the Discovery Sciences organization. This perspective gives an overview of the organizational and operational structure, the science, internal and external collaborations, and the impact of the group on Drug Discovery at Janssen.

  18. Online Organic Chemistry

    Science.gov (United States)

    Janowicz, Philip A.

    2010-01-01

    This is a comprehensive study of the many facets of an entirely online organic chemistry course. Online homework with structure-drawing capabilities was found to be more effective than written homework. Online lecture was found to be just as effective as in-person lecture, and students prefer an online lecture format with shorter Webcasts. Online…

  19. Evaluating Environmental Chemistry Textbooks.

    Science.gov (United States)

    Hites, Ronald A.

    2001-01-01

    A director of the Indiana University Center for Environmental Science Research reviews textbooks on environmental chemistry. Highlights clear writing, intellectual depth, presence of problem sets covering both the qualitative and quantitative aspects of the material, and full coverage of the topics of concern. Discusses the director's own approach…

  20. Chemistry in Protoplanetary Disks

    CERN Document Server

    Henning, Thomas

    2013-01-01

    This comprehensive review summarizes our current understanding of the evolution of gas, solids and molecular ices in protoplanetary disks. Key findings related to disk physics and chemistry, both observationally and theoretically, are highlighted. We discuss which molecular probes are used to derive gas temperature, density, ionization state, kinematics, deuterium fractionation, and study organic matter in protoplanetary disks.

  1. Chemistry and Heritage

    Science.gov (United States)

    Vittoria Barbarulo, Maria

    2014-05-01

    Chemistry is the central science, as it touches every aspect of the society we live in and it is intertwined with many aspects of our culture; in particular, the strong link between Chemistry and Archaeology and Art History is being explored, offering a penetrating insight into an area of growing interest from an educational point of view. A series of vital and vibrant examples (i.e., ancient bronzes composition, colour changes due to natural pigment decomposition, marble degradation) has been proposed, on one hand, to improve student understanding of the relationship between cultural and scientific issues arising from the examination, the conservation, and the maintenance of cultural Heritage, on the other, to illustrate the role of the underlying Chemistry. In some case studies, a survey of the most relevant atmospheric factors, which are involved in the deterioration mechanisms, has also been presented to the students. First-hand laboratory experiences have been providing an invaluable means of discovering the full and varied world of Chemistry. Furthermore, the promotion of an interdisciplinary investigation of a famous painting or fresco, involving the study of its nature and significance, the definition of its historical context, any related literature, the chemical knowledge of the materials used, may be an excellent occasion to experiment the Content and Language Integrated Learning (CLIL). The aim of this approach is to convey the important message that everyone has the responsibility to care for and preserve Heritage for the benefit of present and future generations.

  2. Nobel Prize in Chemistry

    Science.gov (United States)

    2000-01-01

    The Royal Swedish Academy has awarded the 1999 Nobel Prize in Chemistry to Ahmed H. Zewail (California Institute of Technology, Pasadena, CA) "for his studies of the transition states of chemical reactions using femtosecond spectroscopy". Zewail's work has taken the study of the rates and mechanisms of chemical reactions to the ultimate degree of detail - the time scale of bond making and bond breaking.

  3. The Chemistry of Griseofulvin

    DEFF Research Database (Denmark)

    Petersen, Asger Bjørn; Rønnest, Mads Holger; Larsen, Thomas Ostenfeld

    2014-01-01

    Specific synthetic routes are presented in schemes to illustrate the chemistry, and the analogs are presented in a table format to give an accessible overview of the structures. Several patents have been published regarding the properties of griseofulvin and its derivatives including synthesis...

  4. Symmetry in chemistry

    CERN Document Server

    Jaffé, Hans H

    1977-01-01

    This book, devoted exclusively to symmetry in chemistry and developed in an essentially nonmathematical way, is a must for students and researchers. Topics include symmetry elements and operations, multiple symmetry operations, multiplication tables and point groups, group theory applications, and crystal symmetry. Extensive appendices provide useful tables.

  5. Computational chemistry at Janssen

    Science.gov (United States)

    van Vlijmen, Herman; Desjarlais, Renee L.; Mirzadegan, Tara

    2016-12-01

    Computer-aided drug discovery activities at Janssen are carried out by scientists in the Computational Chemistry group of the Discovery Sciences organization. This perspective gives an overview of the organizational and operational structure, the science, internal and external collaborations, and the impact of the group on Drug Discovery at Janssen.

  6. Chemistry Education and Mythology

    Directory of Open Access Journals (Sweden)

    Sule Aycan

    2005-01-01

    Full Text Available This study aimed to investigate the effect of mythological story in teaching chemistry. To this end the students in the class were divided into two homogenous groups. While the first group was thought in a traditional way, using a mythological story thought the second group. The story used was based on a Mountain just opposite the faculty.

  7. Chemistry Is Fun.

    Science.gov (United States)

    Yaniv, D; And Others

    1982-01-01

    Encouraging scientific thinking through open-ended experiments, allowing students access to common chemical instrumentation, and introduction to laboratory techniques are goals of a high school science laboratory program. Course content (general, inorganic, and organic chemistry), limitations, and course evaluation are discussed. (Author/JN)

  8. Green chemistry metrics

    Science.gov (United States)

    Synthetic chemists have always had an objective to achieve reliable and high-yielding routes to the syntheses of targeted molecules. The importance of minimal waste generation has emphasized the use of green chemistry principles and sustainable development. These directions lead ...

  9. Biological computation

    CERN Document Server

    Lamm, Ehud

    2011-01-01

    Introduction and Biological BackgroundBiological ComputationThe Influence of Biology on Mathematics-Historical ExamplesBiological IntroductionModels and Simulations Cellular Automata Biological BackgroundThe Game of Life General Definition of Cellular Automata One-Dimensional AutomataExamples of Cellular AutomataComparison with a Continuous Mathematical Model Computational UniversalitySelf-Replication Pseudo Code Evolutionary ComputationEvolutionary Biology and Evolutionary ComputationGenetic AlgorithmsExample ApplicationsAnalysis of the Behavior of Genetic AlgorithmsLamarckian Evolution Genet

  10. Effects of hydraulic shellfish harvesting on benthic communities and sediment chemistry 2009-2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The effects of hydraulic shellfish harvesting on the ecology of biological communities and chemistry of benthic sediments were investigated through a series of...

  11. The EPA Comptox Chemistry Dashboard: A Web-Based Data Integration Hub for Toxicology Data (SOT)

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) Computational Toxicology Program integrates advances in biology, chemistry, and computer science to help prioritize chemicals for further research based on potential human health risks. This work involves computational and data drive...

  12. Mathematical problems for chemistry students

    CERN Document Server

    Pota, Gyorgy

    2011-01-01

    Mathematical Problems for Chemistry Students has been compiled and written (a) to help chemistrystudents in their mathematical studies by providing them with mathematical problems really occurring in chemistry (b) to help practising chemists to activate their applied mathematical skills and (c) to introduce students and specialistsof the chemistry-related fields (physicists, mathematicians, biologists, etc.) intothe world of the chemical applications.Some problems of the collection are mathematical reformulations of those in the standard textbooks of chemistry, others we

  13. Click chemistry for rapid labeling and ligation of RNA.

    Science.gov (United States)

    Paredes, Eduardo; Das, Subha R

    2011-01-03

    The copper(I)-promoted azide-alkyne cycloaddition reaction (click chemistry) is shown to be compatible with RNA (with free 2'-hydroxyl groups) in spite of the intrinsic lability of RNA. RNA degradation is minimized through stabilization of the Cu(I) in aqueous buffer with acetonitrile as cosolvent and no other ligand; this suggests the general possibility of "ligandless" click chemistry. With the viability of click chemistry validated on synthetic RNA bearing "click"-reactive alkynes, the scope of the reaction is extended to in-vitro-transcribed or, indeed, any RNA, as a click-reactive azide is incorporated enzymatically. Once clickable groups are installed on RNA, they can be rapidly click labeled or conjugated together in click ligations, which may be either templated or nontemplated. In click ligations the resultant unnatural triazole-linked RNA backbone is not detrimental to RNA function, thus suggesting a broad applicability of click chemistry in RNA biological studies.

  14. Division of Analytical Chemistry, 1998

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1999-01-01

    The article recounts the 1998 activities of the Division of Analytical Chemistry (DAC- formerly the Working Party on Analytical Chemistry, WPAC), which body is a division of the Federation of European Chemical Societies (FECS). Elo Harald Hansen is the Danish delegate, representing The Danish...... Chemical Society/The Society for Analytical Chemistry....

  15. Applications of Azide-Based Bioorthogonal Click Chemistry in Glycobiology

    Directory of Open Access Journals (Sweden)

    Xiu Zhang

    2013-06-01

    Full Text Available Click chemistry is a powerful chemical reaction with excellent bioorthogonality features: biocompatible, rapid and highly specific in biological environments. For glycobiology, bioorthogonal click chemistry has created a new method for glycan non-invasive imaging in living systems, selective metabolic engineering, and offered an elite chemical handle for biological manipulation and glycomics studies. Especially the [3 + 2] dipolar cycloadditions of azides with strained alkynes and the Staudinger ligation of azides and triarylphosphines have been widely used among the extant click reactions. This review focuses on the azide-based bioorthogonal click chemistry, describing the characteristics and development of these reactions, introducing some recent applications in glycobiology research, especially in glycan metabolic engineering, including glycan non-invasive imaging, glycomics studies and viral surface manipulation for drug discovery as well as other applications like activity-based protein profiling and carbohydrate microarrays.

  16. Applications of azide-based bioorthogonal click chemistry in glycobiology.

    Science.gov (United States)

    Zhang, Xiu; Zhang, Yan

    2013-06-19

    Click chemistry is a powerful chemical reaction with excellent bioorthogonality features: biocompatible, rapid and highly specific in biological environments. For glycobiology, bioorthogonal click chemistry has created a new method for glycan non-invasive imaging in living systems, selective metabolic engineering, and offered an elite chemical handle for biological manipulation and glycomics studies. Especially the [3 + 2] dipolar cycloadditions of azides with strained alkynes and the Staudinger ligation of azides and triarylphosphines have been widely used among the extant click reactions. This review focuses on the azide-based bioorthogonal click chemistry, describing the characteristics and development of these reactions, introducing some recent applications in glycobiology research, especially in glycan metabolic engineering, including glycan non-invasive imaging, glycomics studies and viral surface manipulation for drug discovery as well as other applications like activity-based protein profiling and carbohydrate microarrays.

  17. Development and application of bond cleavage reactions in bioorthogonal chemistry.

    Science.gov (United States)

    Li, Jie; Chen, Peng R

    2016-03-01

    Bioorthogonal chemical reactions are a thriving area of chemical research in recent years as an unprecedented technique to dissect native biological processes through chemistry-enabled strategies. However, current concepts of bioorthogonal chemistry have largely centered on 'bond formation' reactions between two mutually reactive bioorthogonal handles. Recently, in a reverse strategy, a collection of 'bond cleavage' reactions has emerged with excellent biocompatibility. These reactions have expanded our bioorthogonal chemistry repertoire, enabling an array of exciting new biological applications that range from the chemically controlled spatial and temporal activation of intracellular proteins and small-molecule drugs to the direct manipulation of intact cells under physiological conditions. Here we highlight the development and applications of these bioorthogonal cleavage reactions. Furthermore, we lay out challenges and propose future directions along this appealing avenue of research.

  18. Examination on Expert Chemistry Teachers’ Secondary School Chemistry Textbook Usage

    Directory of Open Access Journals (Sweden)

    Canan NAKİBOĞLU

    2009-04-01

    Full Text Available The purpose of the study is to determine how chemistry textbooks used by expert chemistry teachers are used during teaching process in secondary education, and to find how prospective chemistry teachers evaluate the situation mentioned. Thus, a project concerned with how expert chemistry teachers use them in their classes was carried out. Based on the research context, an interview that was used to interview with expert chemistry teachers by prospective chemistry teachers was prepared by the author. Next, prospective chemistry teachers were asked to evaluate how expert chemistry teachers used textbooks. The sample group of the study consisted of 21 expert high school chemistry teachers working at schools in Balıkesir and 21 prospective chemistry teachers studying at Education Faculty of Balıkesir University during 2007-2008 academic years. The findings of the study revealed that expert chemistry teachers did not use textbooks during their teaching process while they used them as the sources of problems and exercises at the end of units. Furthermore, it was found that University Entrance Exam (OSS had an effect on how to use the textbooks by teachers.

  19. Topic Sequence and Emphasis Variability of Selected Organic Chemistry Textbooks

    Science.gov (United States)

    Houseknecht, Justin B.

    2010-01-01

    Textbook choice has a significant effect upon course success. Among the factors that influence this decision, two of the most important are material organization and emphasis. This paper examines the sequencing of 19 organic chemistry topics, 21 concepts and skills, and 7 biological topics within nine of the currently available organic textbooks.…

  20. Eppur si muove! The 2013 Nobel Prize in Chemistry.

    Science.gov (United States)

    Smith, Jeremy C; Roux, Benoît

    2013-12-01

    The 2013 Nobel Prize in Chemistry has been awarded to Martin Karplus, Michael Levitt, and Arieh Warshel for their work on developing computational methods to study complex chemical systems. Their work has led to mechanistic critical insights into chemical systems both large and small and has enabled progress in a number of different fields, including structural biology.

  1. E pluribus tres: the 2009 nobel prize in chemistry.

    Science.gov (United States)

    Carter, Charles W

    2009-12-01

    This year's Nobel Prize in Chemistry celebrates a multitude of research areas, making the difficult selection of those most responsible for providing atomic details of the nanomachine that makes proteins according to genetic instructions. The Ribosome and RNA polymerase (recognized in 2006) structures highlight a puzzling asymmetry at the origins of biology.

  2. The chemistry of D{sub 3}-trishomocubane

    Energy Technology Data Exchange (ETDEWEB)

    Levandovsky, I A; Sharapa, D I; Cherenkova, O A; Gaidai, A V [National Technical University of Ukraine ' Kyiv Polytechnic Institute' , Kiev (Ukraine); Shubina, T E [Computer-Chemie-Centrum, Friedrich-Alexander-Universitaet, Erlangen-Nuernberg (Germany)

    2010-12-29

    Data on the chemistry of D{sub 3}-trishomocubane and its derivatives are described systematically. Different versions of construction of D{sub 3}-trishomocubane cage are presented. The methods of synthesis of mono-, di- and poly-substituted D{sub 3}-trishomocubanes and their heteroanalogues as well as their properties are considered. Data on biological activity of homocubanes are generalized.

  3. Towards "Bildung"-Oriented Chemistry Education

    Science.gov (United States)

    Sjöström, Jesper

    2013-01-01

    This paper concerns "Bildung"-oriented chemistry education, based on a reflective and critical discourse of chemistry. It is contrasted with the dominant type of chemistry education, based on the mainstream discourse of chemistry. "Bildung"-oriented chemistry education includes not only content knowledge in chemistry, but also…

  4. Principles of Chemistry (by Michael Munowitz)

    Science.gov (United States)

    Kovac, Reviewed By Jeffrey

    2000-05-01

    At a time when almost all general chemistry textbooks seem to have become commodities designed by marketing departments to offend no one, it is refreshing to find a book with a unique perspective. Michael Munowitz has written what I can only describe as a delightful chemistry book, full of conceptual insight, that uses a novel and interesting pedagogic strategy. This is a book that has much to recommend it. This is the best-written general chemistry book I have ever read. An editor with whom I have worked recently remarked that he felt his job was to help authors make their writing sing. Well, the writing in Principles of Chemistry sings with the full, rich harmonies and creative inventiveness of the King's Singers or Chanticleer. Here is the first sentence of the introduction: "Central to any understanding of the physical world is one discovery of paramount importance, a truth disarmingly simple yet profound in its implications: matter is not continuous." This is prose to be savored and celebrated. Principles of Chemistry has a distinct perspective on chemistry: the perspective of the physical chemist. The focus is on simplicity, what is common about molecules and reactions; begin with the microscopic and build bridges to the macroscopic. The author's perspective is clear from the organization of the book. After three rather broad introductory chapters, there are four chapters that develop the quantum mechanical theory of atoms and molecules, including a strong treatment of molecular orbital theory. Unlike many books, Principles of Chemistry presents the molecular orbital approach first and introduces valence bond theory later only as an approximation for dealing with more complicated molecules. The usual chapters on descriptive inorganic chemistry are absent (though there is an excellent chapter on organic and biological molecules and reactions as well as one on transition metal complexes). Instead, descriptive chemistry is integrated into the development of

  5. Controlling Chemistry in Dynamic Nanoscale Systems

    DEFF Research Database (Denmark)

    Jesorka, Aldo; Lizana, Ludvig; Konkoli, Zoran

    2011-01-01

    Spatial organization and shape dynamics are inherent properties of biological cells and cell interiors. There are strong indications that these features are important for the in vivo control of reaction parameters in biochemical transformations. Nanofluidic model devices founded on surfactant...... of the concept. Controlled release of chol-DNA molecules from SU-8 surfaces gives the possibility to dynamically change surface and/or solution properties in micro and nanoreactor applications, opening access to stable 2D chemistry on surface-based devices with potential for easy interfacing with conventional...

  6. Chemistry and biochemistry of dietary polyphenols.

    Science.gov (United States)

    Tsao, Rong

    2010-12-01

    Polyphenols are the biggest group of phytochemicals, and many of them have been found in plant-based foods. Polyphenol-rich diets have been linked to many health benefits. This paper is intended to review the chemistry and biochemistry of polyphenols as related to classification, extraction, separation and analytical methods, their occurrence and biosynthesis in plants, and the biological activities and implications in human health. The discussions are focused on important and most recent advances in the above aspects, and challenges are identified for future research.

  7. Glycoconjugates of Quinolines: Application in Medicinal Chemistry.

    Science.gov (United States)

    Oliveri, Valentina; Vecchio, Graziella

    2016-09-02

    Compounds with the quinoline scaffold are widely investigated and offer a variety of therapeutical properties. A number of quinoline derivatives have been synthesized and among these there are glycoconjugated derivatives. Based on the interest for this family of compounds, we reviewed the different biological activities (molecular probes, antiinfective, antiproliferative, antiaggregant and antioxidant) and the potential applications in medicinal chemistry of quinoline glycoconjugates. This review wants to show an example of the glycoconjugation strategy which arose not only to modify the water solubility of the quinolines but also to influence their activity and targeting properties.

  8. Sulfonimidamides in Medicinal and Agricultural Chemistry.

    Science.gov (United States)

    Chinthakindi, Praveen K; Naicker, Tricia; Thota, Niranjan; Govender, Thavendran; Kruger, Hendrik G; Arvidsson, Per I

    2016-12-13

    The synthesis and evaluation of structural analogues and isosteres are of central importance in medicinal and agricultural chemistry. The sulfonamide functional group represents one of the most important amide isosteres in contemporary drug design, and about 500 such compounds have overcome both the pharmacological and regulatory hurdles that precede studies in humans. The mono aza analogues of sulfonamides, that is, sulfonimidamides, are rapidly gaining popularity as a novel functional group among synthetic chemists involved in the design of biologically active compounds for both pharmaceutical and agrochemical applications. Herein, we review these recent developments to showcase the promise of this functional group.

  9. The medicinal chemistry of genus Aralia.

    Science.gov (United States)

    Clement, Jason A; Clement, Ella S H

    2015-01-01

    The genus Aralia contains many plants used medicinally in Asia and the Americas. Although many members of this genus are used medicinally, the vast majority of this genus has not been explored chemically. The species of Aralia that have been explored chemically have yielded compounds of several classes, including triterpenoid saponins, sterols, diterpenoids, and acetylenic lipids. Many of the biologically active components found in genus Aralia have been evaluated for their potential as lead compounds for drug discovery. This review will explore the medicinal chemistry of compounds reported from genus Aralia, and future prospects for this genus will be considered.

  10. [Biological weapons].

    Science.gov (United States)

    Kerwat, K; Becker, S; Wulf, H; Densow, D

    2010-08-01

    Biological weapons are weapons of mass destruction that use pathogens (bacteria, viruses) or the toxins produced by them to target living organisms or to contaminate non-living substances. In the past, biological warfare has been repeatedly used. Anthrax, plague and smallpox are regarded as the most dangerous biological weapons by various institutions. Nowadays it seems quite unlikely that biological warfare will be employed in any military campaigns. However, the possibility remains that biological weapons may be used in acts of bioterrorism. In addition all diseases caused by biological weapons may also occur naturally or as a result of a laboratory accident. Risk assessment with regard to biological danger often proves to be difficult. In this context, an early identification of a potentially dangerous situation through experts is essential to limit the degree of damage.

  11. Quo vadis, analytical chemistry?

    Science.gov (United States)

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed.

  12. [Gaubius and medical chemistry].

    Science.gov (United States)

    van Gijn, Jan; Gijselhart, Joost P

    2011-01-01

    Hieronymus David Gaub (1705-1780) was the son of a protestant cloth merchant in Heidelberg. Disliking a pietistic boarding school in Halle, Germany, he came to stay with a paternal uncle who was a physician in Amsterdam. Hieronymus studied medicine in Harderwijk and in Leiden, under the guidance of Herman Boerhaave (1668-1738). In 1731 he was appointed reader (and in 1734 professor) in chemistry at the Leiden medical faculty. After Boerhaave's death he also taught medicine, but without access to hospital beds. Gaubius correctly envisaged that chemistry would become an important discipline in medicine, but was limited by the technical constraints of his time. In his textbook of general pathology (1758) he attributed disease to disturbances of not only fluids, but also solid parts, although symptoms remained the basis of his classification. The book would remain influential for several decades, until the advent of pathological anatomy.

  13. Chemistry space–time

    Directory of Open Access Journals (Sweden)

    David A. Winkler

    2015-12-01

    Full Text Available As Einstein identified so clearly, space and time are intimately related. We discuss the relationship between time and Euclidean space using spectroscopic and radioastronomical studies of interstellar chemistry as an example. Given the finite speed of light, we are clearly studying chemical reactions occurring tens of thousands of years ago that may elucidate the primordial chemistry of this planet several billion years ago. We also explore space of a different kind – chemical space, with many more dimensions than the four we associate as space–time. Vast chemical spaces also need very efficient (computational methods for their exploration to overcome this ‘curse of dimensionality’. We discuss methods by which the time to explore these new spaces can be very substantially reduced, opening the discovery useful new materials that are the key to our future.

  14. Bubble and foam chemistry

    CERN Document Server

    Pugh, Robert J

    2016-01-01

    This indispensable guide will equip the reader with a thorough understanding of the field of foaming chemistry. Assuming only basic theoretical background knowledge, the book provides a straightforward introduction to the principles and properties of foams and foaming surfactants. It discusses the key ideas that underpin why foaming occurs, how it can be avoided and how different degrees of antifoaming can be achieved, and covers the latest test methods, including laboratory and industrial developed techniques. Detailing a variety of different kinds of foams, from wet detergents and food foams, to polymeric, material and metal foams, it connects theory to real-world applications and recent developments in foam research. Combining academic and industrial viewpoints, this book is the definitive stand-alone resource for researchers, students and industrialists working on foam technology, colloidal systems in the field of chemical engineering, fluid mechanics, physical chemistry, and applied physics.

  15. Organic Chemistry in Space

    Science.gov (United States)

    Charnley, Steven

    2009-01-01

    Astronomical observations, theoretical modeling, laboratory simulation and analysis of extraterrestrial material have enhanced our knowledge of the inventory of organic matter in the interstellar medium (ISM) and on small bodies such as comets and asteroids (Ehrenfreund & Charnley 2000). Comets, asteroids and their fragments, meteorites and interplanetary dust particles (IDPs), contributed significant amounts of extraterrestrial organic matter to the young Earth. This material degraded and reacted in a terrestrial prebiotic chemistry to form organic structures that may have served as building blocks for life on the early Earth. In this talk I will summarize our current understanding of the organic composition and chemistry of interstellar clouds. Molecules of astrobiological relevance include the building blocks of our genetic material: nucleic acids, composed of subunits such as N-heterocycles (purines and pyrimidines), sugars and amino acids. Signatures indicative of inheritance of pristine and modified interstellar material in comets and meteorites will also be discussed.

  16. Tropical Soil Chemistry

    DEFF Research Database (Denmark)

    Borggaard, Ole K.

    and environmental protection. Tropical Soil Chemistry by Ole K. Borggaard provides an overview of the composition, occurrence, properties, processes, formation, and environmental vulnerability of various tropical soil types (using American Soil Taxonomy for classification). The processes and the external factors......A new book that is particularly relevant as tropical countries experience increased pressure on land resources to improve agricultural production. To ensure sustainable land use, the potentials and limitations of different kinds of tropical soils must be known in relation to crop production...... soil chemical issues are also presented to assess when, why, and how tropical soils differ from soils in other regions. This knowledge can help agricultural specialists in the tropics establish sustainable crop production. Readers are assumed to be familiar with basic chemistry, physics...

  17. Storylines in intercalation chemistry.

    Science.gov (United States)

    Lerf, A

    2014-07-21

    Intercalation chemistry will soon be a hundred years old. The period of greatest activity in this field of solid state chemistry and physics was from about 1970 to 1990. The intercalation reactions are defined as topotactic solid state reactions and the products--the intercalation compounds--are clearly distinguished from inclusion and interstitial compounds. After a short historical introduction emphasizing the pioneering work of Ulrich Hofmann, the central topics and concepts will be reviewed and commented on. The most important ones, in my view, are: dichalcogenide intercalation compounds, the electrochemical intercalation and the search for new battery electrodes, the physics of graphite intercalation compounds, and the staging and interstratification phenomena. The relation to other fields of actual research and the demands for forthcoming research will also be addressed.

  18. Quantum mechanics in chemistry

    CERN Document Server

    Schatz, George C

    2002-01-01

    Intended for graduate and advanced undergraduate students, this text explores quantum mechanical techniques from the viewpoint of chemistry and materials science. Dynamics, symmetry, and formalism are emphasized. An initial review of basic concepts from introductory quantum mechanics is followed by chapters examining symmetry, rotations, and angular momentum addition. Chapter 4 introduces the basic formalism of time-dependent quantum mechanics, emphasizing time-dependent perturbation theory and Fermi's golden rule. Chapter 5 sees this formalism applied to the interaction of radiation and matt

  19. Analytical Chemistry in Russia.

    Science.gov (United States)

    Zolotov, Yuri

    2016-09-06

    Research in Russian analytical chemistry (AC) is carried out on a significant scale, and the analytical service solves practical tasks of geological survey, environmental protection, medicine, industry, agriculture, etc. The education system trains highly skilled professionals in AC. The development and especially manufacturing of analytical instruments should be improved; in spite of this, there are several good domestic instruments and other satisfy some requirements. Russian AC has rather good historical roots.

  20. Green chemistry: development trajectory

    Science.gov (United States)

    Moiseev, I. I.

    2013-07-01

    Examples of applications of green chemistry methods in heavy organic synthesis are analyzed. Compounds, which can be produced by the processing of the biomass, and the criteria for the selection of the most promising products are summarized. The current status of the ethanol production and processing is considered. The possibilities of the use of high fatty acid triglycerides, glycerol, succinic acid, and isoprene are briefly discussed. The bibliography includes 67 references.

  1. Transferases in Polymer Chemistry

    Science.gov (United States)

    van der Vlist, Jeroen; Loos, Katja

    Transferases are enzymes that catalyze reactions in which a group is transferred from one compound to another. This makes these enzymes ideal catalysts for polymerization reactions. In nature, transferases are responsible for the synthesis of many important natural macromolecules. In synthetic polymer chemistry, various transferases are used to synthesize polymers in vitro. This chapter reviews some of these approaches, such as the enzymatic polymerization of polyesters, polysaccharides, and polyisoprene.

  2. Imidazole: Having Versatile Biological Activities

    Directory of Open Access Journals (Sweden)

    Amita Verma

    2013-01-01

    Full Text Available Imidazoles have occupied a unique position in heterocyclic chemistry, and its derivatives have attracted considerable interests in recent years for their versatile properties in chemistry and pharmacology. Imidazole is nitrogen-containing heterocyclic ring which possesses biological and pharmaceutical importance. Thus, imidazole compounds have been an interesting source for researchers for more than a century. The imidazole ring is a constituent of several important natural products, including purine, histamine, histidine, and nucleic acid. Being a polar and ionisable aromatic compound, it improves pharmacokinetic characteristics of lead molecules and thus is used as a remedy to optimize solubility and bioavailability parameters of proposed poorly soluble lead molecules. There are several methods used for the synthesis of imidazole-containing compounds, and also their various structure reactions offer enormous scope in the field of medicinal chemistry. The imidazole derivatives possess extensive spectrum of biological activities such as antibacterial, anticancer, antitubercular, antifungal, analgesic, and anti-HIV activities. This paper aims to review the biological activities of imidazole during the past years.

  3. Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, J.H. (ed.)

    1987-06-01

    This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry.

  4. DNA-encoded chemistry: enabling the deeper sampling of chemical space.

    Science.gov (United States)

    Goodnow, Robert A; Dumelin, Christoph E; Keefe, Anthony D

    2017-02-01

    DNA-encoded chemical library technologies are increasingly being adopted in drug discovery for hit and lead generation. DNA-encoded chemistry enables the exploration of chemical spaces four to five orders of magnitude more deeply than is achievable by traditional high-throughput screening methods. Operation of this technology requires developing a range of capabilities including aqueous synthetic chemistry, building block acquisition, oligonucleotide conjugation, large-scale molecular biological transformations, selection methodologies, PCR, sequencing, sequence data analysis and the analysis of large chemistry spaces. This Review provides an overview of the development and applications of DNA-encoded chemistry, highlighting the challenges and future directions for the use of this technology.

  5. Medicinal Radiopharmaceutical Chemistry of Metal Radiopharmaceuticals

    Science.gov (United States)

    Saw, Maung Maung

    2012-06-01

    Metal complexes have been used as medicinal compounds. Metals have advantageous features over organic compounds. Significant applications of metal complexes are in the field of nuclear medicine. Radiopharmaceuticals are drugs containing radioisotopes used for diagnostic and therapeutic purposes. The generalized targeting strategy for molecular imaging probe consists of three essential parts: (i) reporter unit or payload, (ii) carrier, and (iii) targeting system. Medicinal radiopharmaceutical chemistry pays special consideration to radioisotopes, as a reporter unit for diagnostic application or as a payload for therapeutic application. Targeting is achieved by a few approaches but the most common is the bifunctional chelator approach. While designing a radiopharmaceutical, a range of issues needs to be considered including properties of metal radioisotopes, bifunctional chelators, linkers, and targeting molecules. Designing radiopharmaceuticals requires consideration of two key words: "compounds of biological interest" and "fit for intended use." The ultimate goal is the development of new diagnostic methods and treatment. Diagnostic metal radiopharmaceuticals are used for SPECT and PET applications. Technetium chemistry constitutes a major portion of SPECT and gallium chemistry constitutes a major portion of PET. Therapeutic radiopharmaceuticals can be constructed by using alpha-, beta minus-, or Auger electron-emitting radiometals. Special uses of medicinal radiopharmaceuticals include internal radiation therapy, brachytherapy, immunoPET, radioimmunotherapy, and peptide receptor radionuclide imaging and therapy.

  6. Physics and Its Interfaces with Medicinal Chemistry and Drug Design

    Science.gov (United States)

    Santos, Ricardo N.; Andricopulo, Adriano D.

    2013-08-01

    Medicinal chemistry is a multidisciplinary subject that integrates knowledge from a variety of fields of science, including, but not limited to, chemistry, biology, and physics. The area of drug design involves the cooperative work of scientists with a diverse range of backgrounds and technical skills, trying to tackle complex problems using an integration of approaches and methods. One important contribution to this field comes from physics through studies that attempt to identify and quantify the molecular interactions between small molecules (drugs) and biological targets (receptors), such as the forces that govern the interactions, the thermodynamics of the drug-receptor interactions, and so on. In this context, the interfaces of physics, medicinal chemistry, and drug design are of vital importance for the development of drugs that not only have the right chemistry but also the right intermolecular properties to interact at the macromolecular level, providing useful information about the principles and molecular mechanisms underlying the therapeutic action of drugs. This article highlights some of the most important connections between physics and medicinal chemistry in the design of new drugs.

  7. Spotlight on medicinal chemistry education.

    Science.gov (United States)

    Pitman, Simone; Xu, Yao-Zhong; Taylor, Peter; Turner, Nicholas; Coaker, Hannah; Crews, Kasumi

    2014-05-01

    The field of medicinal chemistry is constantly evolving and it is important for medicinal chemists to develop the skills and knowledge required to succeed and contribute to the advancement of the field. Future Medicinal Chemistry spoke with Simone Pitman (SP), Yao-Zhong Xu (YX), Peter Taylor (PT) and Nick Turner (NT) from The Open University (OU), which offers an MSc in Medicinal Chemistry. In the interview, they discuss the MSc course content, online teaching, the future of medicinal chemistry education and The OU's work towards promoting widening participation. SP is a Qualifications Manager in the Science Faculty at The OU. She joined The OU in 1993 and since 1998 has been involved in the Postgraduate Medicinal Chemistry provision at The OU. YX is a Senior Lecturer in Bioorganic Chemistry at The OU. He has been with The OU from 2001, teaching undergraduate courses of all years and chairing the master's course on medicinal chemistry. PT is a Professor of Organic Chemistry at The OU and has been involved with the production and presentation of The OU courses in Science and across the university for over 30 years, including medicinal chemistry modules at postgraduate level. NT is a Lecturer in Analytical Science at The OU since 2009 and has been involved in the production of analytical sciences courses, as well as contributing to the presentation of a number of science courses including medicinal chemistry.

  8. Glycans in Medicinal Chemistry: An Underexploited Resource.

    Science.gov (United States)

    Fernández-Tejada, Alberto; Cañada, F Javier; Jiménez-Barbero, Jesús

    2015-08-01

    The biological relevance of glycans as mediators of key physiological processes, including disease-related mechanisms, makes them attractive targets for a wide range of medical applications. Despite their important biological roles, especially as molecular recognition elements, carbohydrates have not been fully exploited as therapeutics mainly due to the scarcity of structure-activity correlations and their non-drug-like properties. A more detailed understanding of the complex carbohydrate structures and their associated functions should contribute to the development of new glycan-based pharmaceuticals. Recent significant progress in oligosaccharide synthesis and chemical glycobiology has renewed the interest of the medicinal chemistry community in carbohydrates. This promises to increase our possibilities to harness them in drug discovery efforts for the development of new and more effective, synthetic glycan-based therapeutics and vaccines.

  9. Applications of asymmetric organocatalysis in medicinal chemistry.

    Science.gov (United States)

    Alemán, José; Cabrera, Silvia

    2013-01-21

    In the last decade, organocatalysis, the use of small chiral organic molecules as catalysts, has proven to be a valuable and attractive tool for the synthesis of enantiomerically enriched molecules. A number of organocatalysts and processes, such as one-pot, tandem, cascade or multicomponent reactions, have been reported to date. Furthermore, the many advantages of organocatalysis - robust, non-toxic, affordable, inert atmosphere, easy reaction manipulation, etc. - allow the preparation of bioactive compounds using simple and metal-free procedures, thus avoiding false positives in the biological evaluation. This mini-review focuses on medicinal chemistry programs that have synthesized biologically active compounds using one or more organocatalytic steps. In this respect, the potential of organocatalytic methods for enabling the chemical synthesis of important medicinal targets will be highlighted.

  10. [Computational chemistry in structure-based drug design].

    Science.gov (United States)

    Cao, Ran; Li, Wei; Sun, Han-Zi; Zhou, Yu; Huang, Niu

    2013-07-01

    Today, the understanding of the sequence and structure of biologically relevant targets is growing rapidly and researchers from many disciplines, physics and computational science in particular, are making significant contributions to modern biology and drug discovery. However, it remains challenging to rationally design small molecular ligands with desired biological characteristics based on the structural information of the drug targets, which demands more accurate calculation of ligand binding free-energy. With the rapid advances in computer power and extensive efforts in algorithm development, physics-based computational chemistry approaches have played more important roles in structure-based drug design. Here we reviewed the newly developed computational chemistry methods in structure-based drug design as well as the elegant applications, including binding-site druggability assessment, large scale virtual screening of chemical database, and lead compound optimization. Importantly, here we address the current bottlenecks and propose practical solutions.

  11. Recent developments in the chemistry of quinazolinone alkaloids.

    Science.gov (United States)

    Kshirsagar, U A

    2015-09-28

    Quinazolinones, an important class of fused heterocyclic alkaloids has attracted high attention in organic and medicinal chemistry due to their significant and wide range of biological activities. There are approximately 150 naturally occurring quinazolinone alkaloids known till 2005. Several new quinazolinone alkaloids (∼55) have been isolated in the last decade. Natural quinazolinones with exotic structural features and remarkable biological activities have incited a lot of activities in the synthetic community towards the development of new synthetic strategies and approaches for the total synthesis of quinazolinone alkaloids. This review is focused on these advances in the chemistry of quinazolinone alkaloids in the last decade. This article covers the newly isolated quinazolinone natural products with their biological activities and the recently reported total syntheses of quinazolinone alkaloids from 2006 to 2015.

  12. Glassy state on the undergraduate course in chemistry (physical chemistry).

    OpenAIRE

    Yamaki, SB; Pedroso, AG; ATVARS, TDZ

    2002-01-01

    We consider the relevance of the study of the glassy state properties and the glass transition as important topics of the physical chemistry for undergraduate courses of Chemistry. Two of the most important theoretical approaches for the description of the glassy state, the thermodynamic and the kinetic models, are summarized with emphasis on the physical chemistry aspects. Examples illustrating the glass transition of some materials are also presented.

  13. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry

    OpenAIRE

    Marek Tobiszewski; Mariusz Marć; Agnieszka Gałuszka; Jacek Namieśnik

    2015-01-01

    The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-establis...

  14. From organic chemistry to fat and oil chemistry*

    OpenAIRE

    Deffense Etienne

    2009-01-01

    With his work on animal fat and identification of fatty acids, Chevreul was a pioneer in organic chemistry. As Chevreul, I had a passion for organic chemistry too. It was then, an honour and a pleasure to present in 2008 at EFL in Athens this presentation entitled “From organic chemistry to fat and oil chemistry” because my background in organic chemistry helped me all along my professional career to understand and implement new developments related to oil and fat technology and processing. A...

  15. An Evaluation of Chemistry I Textbook by Chemistry Teachers

    Directory of Open Access Journals (Sweden)

    Abdullah AYDIN

    2010-04-01

    Full Text Available Textbooks are one of the most consulted sources in the processes of teaching- learning and assessment. It is indispensable to prepare textbooks in accordance with the curriculum to ensure effective teaching and learning. “Teacher evaluation questionnaire” consistingof 20 questions has been prepared to evaluate secondary level IXth class chemistry textbook in terms of its content. This questionnaire was carried out with 31 secondary level chemistry teachers who work in the public schools and 19 chemistry teachers who work in the private courses. According to the results obtained, chemistry teachers think that there are some deficiencies and obstacles in the application of this textbook.

  16. Quantification of air plasma chemistry for surface disinfection

    Science.gov (United States)

    Pavlovich, Matthew J.; Clark, Douglas S.; Graves, David B.

    2014-12-01

    Atmospheric-pressure air plasmas, created by a variety of discharges, are promising sources of reactive species for the emerging field of plasma biotechnology because of their convenience and ability to operate at ambient conditions. One biological application of ambient-air plasma is microbial disinfection, and the ability of air plasmas to decontaminate both solid surfaces and liquid volumes has been thoroughly established in the literature. However, the mechanism of disinfection and which reactive species most strongly correlate with antimicrobial effects are still not well understood. We describe quantitative gas-phase measurements of plasma chemistry via infrared spectroscopy in confined volumes, focusing on air plasma generated via surface micro-discharge (SMD). Previously, it has been shown that gaseous chemistry is highly sensitive to operating conditions, and the measurements we describe here extend those findings. We quantify the gaseous concentrations of ozone (O3) and nitrogen oxides (NO and NO2, or NOx) throughout the established ‘regimes’ for SMD air plasma chemistry: the low-power, ozone-dominated mode; the high-power, nitrogen oxides-dominated mode; and the intermediate, unstable transition region. The results presented here are in good agreement with previously published experimental studies of aqueous chemistry and parameterized models of gaseous chemistry. The principal finding of the present study is the correlation of bacterial inactivation on dry surfaces with gaseous chemistry across these time and power regimes. Bacterial decontamination is most effective in ‘NOx mode’ and less effective in ‘ozone mode’, with the weakest antibacterial effects in the transition region. Our results underscore the dynamic nature of air plasma chemistry and the importance of careful chemical characterization of plasma devices intended for biological applications.

  17. The Eighth Central European Conference “Chemistry towards Biology”: Snapshot

    Directory of Open Access Journals (Sweden)

    András Perczel

    2016-10-01

    Full Text Available The Eighth Central European Conference “Chemistry towards Biology” was held in Brno, Czech Republic, on August 28–September 1, 2016 to bring together experts in biology, chemistry and design of bioactive compounds; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topics of the conference covered “Chemistry towards Biology”, meaning that the event welcomed chemists working on biology-related problems, biologists using chemical methods, and students and other researchers of the respective areas that fall within the common scope of chemistry and biology. The authors of this manuscript are plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting.

  18. The Eighth Central European Conference “Chemistry towards Biology”: Snapshot†

    Science.gov (United States)

    Perczel, András; Atanasov, Atanas G.; Sklenář, Vladimír; Nováček, Jiří; Papoušková, Veronika; Kadeřávek, Pavel; Žídek, Lukáš; Kozłowski, Henryk; Watły, Joanna; Hecel, Aleksandra; Kołkowska, Paulina; Koča, Jaroslav; Svobodová-Vařeková, Radka; Pravda, Lukáš; Sehnal, David; Horský, Vladimír; Geidl, Stanislav; Enriz, Ricardo D.; Matějka, Pavel; Jeništová, Adéla; Dendisová, Marcela; Kokaislová, Alžběta; Weissig, Volkmar; Olsen, Mark; Coffey, Aidan; Ajuebor, Jude; Keary, Ruth; Sanz-Gaitero, Marta; van Raaij, Mark J.; McAuliffe, Olivia; Waltenberger, Birgit; Mocan, Andrei; Šmejkal, Karel; Heiss, Elke H.; Diederich, Marc; Musioł, Robert; Košmrlj, Janez; Polanński, Jarosław; Jampílek, Josef

    2017-01-01

    The Eighth Central European Conference “Chemistry towards Biology” was held in Brno, Czech Republic, on 28 August–1 September 2016 to bring together experts in biology, chemistry and design of bioactive compounds; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topics of the conference covered “Chemistry towards Biology”, meaning that the event welcomed chemists working on biology-related problems, biologists using chemical methods, and students and other researchers of the respective areas that fall within the common scope of chemistry and biology. The authors of this manuscript are plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting. PMID:27763518

  19. Calix 2007:9th International Conference on Calixarene Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Jeffery Davis

    2011-09-09

    The DOE funds helped support an International Conference, Calix 2007, whose focus was on Supramolecular Chemistry. The conference was held at the University of Maryland from August 6-9, 2007 (Figure 1). The conference website is at www.chem.umd.edu/Conferences/Calix2007. This biannual conference had previously been held in the Czech Republic (2005), Canada (2003), Netherlands (2001), Australia (1999), Italy (1997), USA (Fort Worth, 1995) Japan (1993) and Germany (1991). Calixarenes are cup-shaped compounds that are a major part of Supramolecular Chemistry, for which Cram, Lehn and Pederson were awarded a Nobel Prize 20 years ago. Calixarene chemistry has expanded greatly in the last 2 decades, as these compounds are used in synthetic and mechanistic chemistry, separations science, materials science, nanoscience and biological chemistry. The organizing committee was quite happy that Calix 2007 encompassed the broad scope and interdisciplinary nature of the field. Our goal was to bring together leading scientists interested in calixarenes, molecular recognition, nanoscience and supramolecular chemistry. We believe that new research directions and collaborations resulted from an exchange of ideas between conferees. This grant from the DOE was crucial toward achieving that goal, as the funds helped cover some of the registration and accommodations costs for the speakers.

  20. Teaching High School Chemistry in the Context of Pharmacology Helps Both Teachers and Students Learn.

    Science.gov (United States)

    Schwartz-Bloom, Rochelle D; Halpin, Myra J; Reiter, Jerome P

    2011-06-01

    Few studies demonstrate the impact of teaching chemistry embedded in a context that has relevance to high school students. We build upon our prior work showing that pharmacology topics (i.e., drugs), which are inherently interesting to high school students, provide a useful context for teaching chemistry and biology. In those studies, teachers were provided professional development for the Pharmacology Education Partnership (PEP) in an onsite venue (either five-day or one-day workshop). Given financial difficulties to travel, teachers have asked for alternatives for professional development. Thus, we developed the same PEP training workshop using a distance learning (DL) (two-way live video) approach. In this way, 121 chemistry and biology teachers participated in the DL workshops to learn how to incorporate the PEP modules into their teaching. They field-tested the modules over the year in high school chemistry and biology classes. Teacher knowledge of chemistry and biology increased significantly after the workshop and was maintained for at least a year. Their students (N = 2309) demonstrated a significant increase in knowledge of chemistry and biology concepts, with higher scores as the number of modules used increased. The increase in both teacher and student knowledge in these subjects was similar to that found previously when teachers were provided with onsite professional development.