WorldWideScience

Sample records for bioinstrumentation

  1. Bioinstrumentation

    CERN Document Server

    Enderle, John

    2006-01-01

    This short book provides basic information about bioinstrumentation and electric circuit theory. Many biomedical instruments use a transducer or sensor to convert a signal created by the body into an electric signal. Our goal here is to develop expertise in electric circuit theory applied to bioinstrumentation. We begin with a description of variables used in circuit theory, charge, current, voltage, power and energy. Next, Kirchhoff's current and voltage laws are introduced, followed by resistance, simplifications of resistive circuits and voltage and current calculations. Circuit analysis te

  2. Development of a microcontrolled bioinstrumentation system for active control of leg prostheses.

    Science.gov (United States)

    Delis, Alberto Lopez; da Rocha, Adson Ferreira; Dos Santos, Icaro; Sene, Iwens Gervasio; Salomoni, Sauro; Borges, Geovany Araujo

    2008-01-01

    This article describes the design of a microcontrolled bioinstrumentation system for active control of leg prostheses, using 4-channel electromyographic signal (EMG) detection and a single-channel electrogoniometer. The system is part of a control and instrumentation architecture in which a master processor controls the tasks of slave microcontrollers, through a RS-485 interface. Several signal processing methods are integrated in the system, for feature extraction (Recursive Least Squares), feature projection (Self Organizing Maps), and pattern classification (Levenberg-Marquardt Neural Network). The acquisition of EMG signals and additional mechanical information could help improving the precision in the control of leg prostheses. PMID:19163184

  3. High-Performance Bioinstrumentation for Real-Time Neuroelectrochemical Traumatic Brain Injury Monitoring

    Science.gov (United States)

    Papadimitriou, Konstantinos I.; Wang, Chu; Rogers, Michelle L.; Gowers, Sally A. N.; Leong, Chi L.; Boutelle, Martyn G.; Drakakis, Emmanuel M.

    2016-01-01

    Traumatic brain injury (TBI) has been identified as an important cause of death and severe disability in all age groups and particularly in children and young adults. Central to TBIs devastation is a delayed secondary injury that occurs in 30–40% of TBI patients each year, while they are in the hospital Intensive Care Unit (ICU). Secondary injuries reduce survival rate after TBI and usually occur within 7 days post-injury. State-of-art monitoring of secondary brain injuries benefits from the acquisition of high-quality and time-aligned electrical data i.e., ElectroCorticoGraphy (ECoG) recorded by means of strip electrodes placed on the brains surface, and neurochemical data obtained via rapid sampling microdialysis and microfluidics-based biosensors measuring brain tissue levels of glucose, lactate and potassium. This article progresses the field of multi-modal monitoring of the injured human brain by presenting the design and realization of a new, compact, medical-grade amperometry, potentiometry and ECoG recording bioinstrumentation. Our combined TBI instrument enables the high-precision, real-time neuroelectrochemical monitoring of TBI patients, who have undergone craniotomy neurosurgery and are treated sedated in the ICU. Electrical and neurochemical test measurements are presented, confirming the high-performance of the reported TBI bioinstrumentation.

  4. The Journey to Fielded BioInstrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Jr., R M

    2005-02-24

    Over the last ten years, a team at Lawrence Livermore National Laboratory created fieldable instruments that performed identification/quantification via bioassays. These instruments have been based on molecular surface-recognition assays, such as immunoassays, and on nucleic-acid-based assays, such as the polymerase chain reaction. In 1996, we participated in the Joint Field Trials 3, employing both immunoassays as well as the polymerase chair reaction. In 1998, we participated in the Joint Field Trials 4, using only the real-time polymerase chain reaction, as implemented on a 10-chamber instrument. Our hand-held, real-time PCR instrument, known as HANAA has been commercialized as the Bioseeq{reg_sign}, by Smiths Detection. More recently, teams from LLNL have built and fielded an autonomous pathogen detection system (APDS).

  5. Biomedical technology transfer: Bioinstrumentation for cardiology, neurology, and the circulatory system

    Science.gov (United States)

    1976-01-01

    Developments in applying aerospace medical technology to the design and production of medical equipment and instrumentation are reported. Projects described include intercranial pressure transducers, leg negative pressure devices, a synthetic speech prosthesis for victims of cerebral palsy, and a Doppler blood flow instrument. Commercialization activities for disseminating and utilizing NASA technology, and new biomedical problem areas are discussed.

  6. Fundamental of biomedical engineering

    CERN Document Server

    Sawhney, GS

    2007-01-01

    About the Book: A well set out textbook explains the fundamentals of biomedical engineering in the areas of biomechanics, biofluid flow, biomaterials, bioinstrumentation and use of computing in biomedical engineering. All these subjects form a basic part of an engineer''s education. The text is admirably suited to meet the needs of the students of mechanical engineering, opting for the elective of Biomedical Engineering. Coverage of bioinstrumentation, biomaterials and computing for biomedical engineers can meet the needs of the students of Electronic & Communication, Electronic & Instrumenta

  7. USSR space life sciences digest

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, C.S.; Donnelly, K.L.

    1980-01-01

    Research in exobiology, life sciences technology, space biology, and space medicine and physiology, primarily using data gathered on the Salyut 6 orbital space station, is reported. Methods for predicting, diagnosing, and preventing the effects of weightlessness are discussed. Psychological factors are discussed. The effects of space flight on plants and animals are reported. Bioinstrumentation advances are noted.

  8. A guide on instrument of biochemistry and molecular biology

    International Nuclear Information System (INIS)

    This book is about instrument on biochemistry and molecular biology, which consists of six chapters. It deals with introduction of advanced bio-instrument, common utilization and maintain, explanation of each instrument like capillary electrophoresis, interactive laser cytometer, personal computer and software, an electron microscope and DNA/RNS synthesis instrument, large equipment and special system like information system and network, analysis system for genome and large spectro graph, outside donation, examples for common utilization and appendix on data like application form for use.

  9. Early changes of cortical blood flow, brain temperature and electrical activity after whole-body irradiation of the monkey (Macaca fascicularis) (dose range: 3-20 Gy)

    International Nuclear Information System (INIS)

    A polyparametric investigation was carried out on 31 monkeys chronically wearing bioinstrumentation allowing to get and process simultaneously local brain blood flow, cerebral temperature, and energies in various frequency bands of the brain electrical activity. This method, which supplied data during several consecutive days, made it possible to study both the biological rhythms at the level of the various parameters, and their fast variations. The effects of whole-body gamma or neutron-gamma irradiation were studied in the 3-20 Gy dose range. Immediate changes after exposure demonstrated different radiosensitivities at the level of the rhythms of the various parameters, and/or their recovery, as well as dose-effect relationships

  10. VI Latin American Congress on Biomedical Engineering

    CERN Document Server

    Hadad, Alejandro

    2015-01-01

    This volume presents the proceedings of the CLAIB 2014, held in Paraná, Entre Ríos, Argentina 29, 30 & 31 October 2014. The proceedings, presented by the Regional Council of Biomedical Engineering for Latin America (CORAL) offer research findings, experiences and activities between institutions and universities to develop Bioengineering, Biomedical Engineering and related sciences. The conferences of the American Congress of Biomedical Engineering are sponsored by the International Federation for Medical and Biological Engineering (IFMBE), Society for Engineering in Biology and Medicine (EMBS) and the Pan American Health Organization (PAHO), among other organizations and international agencies and bringing together scientists, academics and biomedical engineers in Latin America and other continents in an environment conducive to exchange and professional growth. The Topics include: - Bioinformatics and Computational Biology - Bioinstrumentation; Sensors, Micro and Nano Technologies - Biomaterials, Tissu...

  11. Publications of the planetary biology program for 1975: A special bibliography. [on NASA programs and research projects on extraterrestrial life

    Science.gov (United States)

    Souza, K. A. (Compiler); Young, R. S. (Compiler)

    1976-01-01

    The Planetary Biology Program of the National Aeronautics and Space Administration is the first and only integrated program to methodically investigate the planetary events which may have been responsible for, or related to, the origin, evolution, and distribution of life in the universe. Research supported by this program is divided into the seven areas listed below: (1) chemical evolution, (2) organic geochemistry, (3) life detection, (4) biological adaptation, (5) bioinstrumentation, (6) planetary environments, and (7) origin of life. The arrangement of references in this bibliography follows the division of research described above. Articles are listed alphabetically by author under the research area with which they are most closely related. Only those publications which resulted from research supported by the Planetary Biology Program and which bear a 1975 publication date have been included. Abstracts and theses are not included because of the preliminary and abbreviated nature of the former and the frequent difficulty of obtaining the latter.

  12. 6th European Conference of the International Federation for Medical and Biological Engineering

    CERN Document Server

    Vasic, Darko

    2015-01-01

    This volume presents the Proceedings of the 6th European Conference of the International Federation for Medical and Biological Engineering (MBEC2014), held in Dubrovnik September 7 – 11, 2014. The general theme of MBEC 2014 is "Towards new horizons in biomedical engineering" The scientific discussions in these conference proceedings include the following themes: - Biomedical Signal Processing - Biomedical Imaging and Image Processing - Biosensors and Bioinstrumentation - Bio-Micro/Nano Technologies - Biomaterials - Biomechanics, Robotics and Minimally Invasive Surgery - Cardiovascular, Respiratory and Endocrine Systems Engineering - Neural and Rehabilitation Engineering - Molecular, Cellular and Tissue Engineering - Bioinformatics and Computational Biology - Clinical Engineering and Health Technology Assessment - Health Informatics, E-Health and Telemedicine - Biomedical Engineering Education

  13. Advances in industrial ergonomics and safety II

    Energy Technology Data Exchange (ETDEWEB)

    Das, B. (ed.) (Technical University of Nova Scotia, Halifax, NS (Canada). Dept. of Industrial Engineering)

    1990-01-01

    135 papers were presented at the conference in 20 sessions with the following headings: aging and industrial performance; back injury and rehabilitation; bioinstrumentation and electromyography; cumulative trauma disorders; engineering anthropometry; equipment design and ergonomics; human computer interaction; human performance and worker satisfaction; human strength and testing; industrial accidents and prevention; industrial biomechanics; injuries in health care; manual materials handling; noise and vibration effects; occupational health and safety; robotics and agricultural machinery safety; statistics and modelling in ergonomics; work environment; workplace safety analysis; and workstation design. Papers are included entitled: A model for analyzing mining machine illumination systems' by R.L. Unger, A.F. Glowacki and E.W. Rossi, 'Ergonomic design guidelines for underground coal mining equipment by E.J. Conway and R. Unger, and Hot work environment and human strain - a relation proposed by K. Bhattacharya and S. Raja.

  14. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 1

    Science.gov (United States)

    Krishen, Kumar (Compiler)

    1994-01-01

    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry.

  15. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2

    Science.gov (United States)

    Krishen, Kumar (Compiler)

    1994-01-01

    This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.

  16. Micro benchtop optics by bulk silicon micromachining

    Science.gov (United States)

    Lee, Abraham P.; Pocha, Michael D.; McConaghy, Charles F.; Deri, Robert J.

    2000-01-01

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  17. [Spinal cord injuries caused by extraspinal gunshot. A historical, experimental and therapeutic approach].

    Science.gov (United States)

    Jourdan, P; Breteau, J P; Volff, P

    1994-01-01

    A careful study of all clinical observations reported by various authors during one century teaches us that spinal cord wounds caused by a missile path away from the spine have always had vague and mysterious mechanisms. We have simulate shots near the cervical spine included in gelatin and we have shot at pigs weighing 100 kilograms, previously anaesthetized and bio-instrumented according to J. Breteau methodology. So, we have been able to reproduce medullary wounds by shooting in the nape of the neck, away from the cervical spine. The knowledge of all mechanisms of balistic wounds, the analysis of the results obtained and a histological examination of wounded medulla leads us to the conclusion that this type of medullary wound distance from the spinal cord, is not specific and that, in fact, the missile causes an ordinary medullary contusion. While waiting for forthcoming medicinal progress, a management of treatment is suggested. PMID:7723926

  18. 2003 Biology and Biotechnology Research Program Overview and Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Prange, C

    2003-03-01

    LLNL conducts multidisciplinary bioscience to fill national needs. Our primary roles are to: develop knowledge and tools which enhance national security, including biological, chemical and nuclear capabilities, and energy and environmental security; develop understanding of genetic and biochemical processes to enhance disease prevention, detection and treatment; develop unique biochemical measurement and computational modeling capabilities which enable understanding of biological processes; and develop technology and tools which enhance healthcare. We execute our roles through integrated multidisciplinary programs that apply our competencies in: microbial and mammalian genomics--the characterization of DNA, the genes it encodes, their regulation and function and their role in living systems; protein function and biochemistry - the structure, function, and interaction of proteins and other molecules involved in the integrated biochemical function of the processes of life; computational modeling and understanding of biochemical systems--the application of high-speed computing technology to simulate and visualize complex, integrated biological processes; bioinformatics--databasing, networking, and analysis of biological data; and bioinstrumentation--the application of physical and engineering technologies to novel biological and biochemical measurements, laboratory automation, medical device development, and healthcare technologies. We leverage the Laboratory's exceptional capabilities in the physical, computational, chemical, environmental and engineering sciences. We partner with industry and universities to utilize their state-of-the art technology and science and to make our capabilities and discoveries available to the broader research community.

  19. A Practical Tablet-Based Hearing Aid Configuration as an Exemplar Project for Students of Instrumentation.

    Science.gov (United States)

    Simeoni, Ricardo

    2015-06-11

    This paper presents the configuration and digital signal processing details of a tablet-based hearing aid transmitting wirelessly to standard earphones, whereby the tablet performs full sound processing rather than solely providing a means of setting adjustment by streaming to conventional digital hearing aids. The presented device confirms the recognized advantages of this tablet-based approach (e.g., in relation to cost, frequency domain processing, amplification range, versatility of functionality, component battery rechargeability), and flags the future wider-spread availability of such hearing solutions within mainstream healthcare. The use of a relatively high sampling frequency was found to be beneficial for device performance, while the use of optional off-the-shelf add-on components (e.g., data acquisition device, high fidelity microphone, compact wireless transmitter/receiver, wired headphones) are also discussed in relation to performance optimization. The easy-to-follow configuration utilized is well suited to student learning/research instrumentation projects within the health and biomedical sciences. In this latter regard, the presented device was pedagogically integrated into a flipped classroom approach for the teaching of bioinstrumentation within an Allied Health Sciences School, with the subsequent establishment of positive student engagement outcomes. PMID:26779329

  20. Sensor Systems for Space Life Sciences

    Science.gov (United States)

    Somps, Chris J.; Hines, John W.; Connolly, John P. (Technical Monitor)

    1995-01-01

    Sensors 2000! (S2K!) is a NASA Ames Research Center engineering initiative designed to provide biosensor and bio-instrumentation systems technology expertise to NASA's life sciences spaceflight programs. S2K! covers the full spectrum of sensor technology applications, ranging from spaceflight hardware design and fabrication to advanced technology development, transfer and commercialization. S2K! is currently developing sensor systems for space biomedical applications on BION (a Russian biosatellite focused on Rhesus Monkey physiology) and NEUROLAB (a Space Shuttle flight devoted to neuroscience). It's Advanced Technology Development-Biosensors (ATD-B) project focuses efforts in five principle areas: biotelemetry Systems, chemical and biological sensors, physiological sensors, advanced instrumentation architectures, and data and information management. Technologies already developed and tested included, application-specific sensors, preamplifier hybrids, modular programmable signal conditioners, power conditioning and distribution systems, and a fully implantable dual channel biotelemeter. Systems currently under development include a portable receiver system compatible with an off-the-shelf analog biotelemeter, a 4 channel digital biotelemetry system which monitors pH, a multichannel, g-processor based PCM biotelemetry system, and hand-held personal monitoring systems. S2K! technology easily lends itself to telescience and telemedicine applications as a front-end measurement and data acquisition device, suitable for obtaining and configuring physiological information, and processing that information under control from a remote location.

  1. Physiological Responses to Thermal Stress and Exercise

    Science.gov (United States)

    Iyota, Hiroyuki; Ohya, Akira; Yamagata, Junko; Suzuki, Takashi; Miyagawa, Toshiaki; Kawabata, Takashi

    The simple and noninvasive measuring methods of bioinstrumentation in humans is required for optimization of air conditioning and management of thermal environments, taking into consideration the individual specificity of the human body as well as the stress conditions affecting each. Changes in human blood circulation were induced with environmental factors such as heat, cold, exercise, mental stress, and so on. In this study, the physiological responses of human body to heat stress and exercise were investigated in the initial phase of the developmental research. We measured the body core and skin temperatures, skin blood flow, and pulse wave as the indices of the adaptation of the cardiovascular system. A laser Doppler skin blood flowmetry using an optical-sensor with a small portable data logger was employed for the measurement. These results reveal the heat-stress and exercise-induced circulatory responses, which are under the control of the sympathetic nerve system. Furthermore, it was suggested that the activity of the sympathetic nervous system could be evaluated from the signals of the pulse wave included in the signals derived from skin blood flow by means of heart rate variability assessments and detecting peak heights of velocity-plethysmogram.

  2. Final Science Reports of the US Experiments Flown on the Russian Biosatellite Cosmos 2229

    Science.gov (United States)

    Connolly, James P. (Editor); Skidmore, Michael G. (Editor); Helwig, Denice A. (Editor)

    1997-01-01

    Cosmos 2229 was launched on December 29, 1992, containing a biological payload including two young male rhesus monkeys, insects, amphibians, and cell cultures. The biosatellite was launched from the Plesetsk Cosmodrome in Russia for a mission duration of 11.5 days. The major research objectives were: (1) Study of adaptive response mechanisms of mammals during flight; and (2) Study of physiological mechanisms underlying vestibular, motor system and brain function in primates during early and later adaptation phases. American scientists and their Russian collaborators conducted 11 experiments on this mission which included extensive preflight and postflight studies with rhesus monkeys. Biosamples and data were subsequently transferred to the United States. The U.S. responsibilities for this flight included the development of experiment protocols, the fabrication of some flight instrumentation and experiment-specific ground-based hardware, the conducting of preflight and postflight testing and the analysis of biospecimens and data for the U.S. experiments. A description of the Cosmos 2229 mission is presented in this report including preflight, on-orbit and postflight activities. The flight and ground-based bioinstrumentation which was developed by the U.S. and Russia is also described, along with the associated preflight testing ot the U.S. hardware. Final Science Reports for the experiments are also included.

  3. A practical tablet-based hearing aid configuration as an exemplar project for students of instrumentation

    Directory of Open Access Journals (Sweden)

    Ricardo Simeoni

    2015-06-01

    Full Text Available This paper presents the configuration and digital signal processing details of a tablet-based hearing aid transmitting wirelessly to standard earphones, whereby the tablet performs full sound processing rather than solely providing a means of setting adjustment by streaming to conventional digital hearing aids. The presented device confirms the recognized advantages of this tablet-based approach (e.g., in relation to cost, frequency domain processing, amplification range, versatility of functionality, component battery rechargeability, and flags the future wider-spread availability of such hearing solutions within mainstream healthcare. The use of a relatively high sampling frequency was found to be beneficial for device performance, while the use of optional off-the-shelf add-on components (e.g., data acquisition device, high fidelity microphone, compact wireless transmitter/ receiver, wired headphones are also discussed in relation to performance optimization. The easy-to-follow configuration utilized is well suited to student learning/research instrumentation projects within the health and biomedical sciences. In this latter regard, the presented device was pedagogically integrated into a flipped classroom approach for the teaching of bioinstrumentation within an Allied Health Sciences School, with the subsequent establishment of positive student engagement outcomes.

  4. US experiments flown on the Soviet biosatellite Cosmos 2044. Volume 1: Mission description, experiments K-7-01 - K-7-15

    Science.gov (United States)

    Connolly, James P. (Editor); Grindeland, Richard E. (Editor); Ballard, Rodney W. (Editor)

    1994-01-01

    Cosmos 2044 was launched on September 15, 1989, containing radiation dosimetry experiments and a biological payload including two young male rhesus monkeys, ten adult male Wistar rats, insects, amphibians, protozoa, cell cultures, worms, plants and fish. The biosatellite was launched from the Plesetsk Cosmodrome in the Soviet Union for a mission duration of 14 days, as planned. The major research objectives were: (1) Study adaptive response mechanisms of mammals during flight; (2) Study physiological mechanisms underlying vestibular, motor system and brain function in primates during early and later adaptation phases; (3) Study the tissue regeneration processes of mammals; (4) Study the development of single-celled organisms, cell cultures and embryos in microgravity; (5) Study radiation characteristics during the mission and investigate doses, fluxes and spectra of cosmic radiation for various types of shielding. American and Soviet specialists jointly conducted 29 experiments on this mission including extensive preflight and post flight studies with rhesus monkeys, and tissue processing and cell culturing post flight. Biosamples and data were subsequently transferred to the United States. The U.S. responsibilities for this flight included development of flight and ground-based hardware, the preparation of rat tissue sample procedures, the verification testing of hardware and experiment procedures, and the post flight analysis of biospecimens and data for the joint experiments. The U.S. investigations included four primate experiments, 24 rat experiments, and one radiation dosimetry experiment. Three scientists investigated tissue repair during flight for a subgroup of rats injured preflight by surgical intervention. A description of the Cosmos 2044 mission is presented in this report including preflight, on-orbit and post flight activities. The flight and ground-based bioinstrumentation which was developed by the U.S. and U.S.S.R. is also described, along with

  5. A Randomized, Double-blind, Placebo-controlled Clinical Trial Evaluating an Oral Anti-aging Skin Care Supplement for Treating Photodamaged Skin

    Science.gov (United States)

    Sigler, Monya L.; Hino, Peter D.; Moigne, Anne Le; Dispensa, Lisa

    2016-01-01

    Objective: Evaluate an anti-aging skin care supplement on the appearance of photodamaged skin. Design: Randomized, double-blind, placebo-controlled clinical trial. Following a one-month washout period, subjects received two anti-aging skin care formula tablets (total daily dose: marine complex 210mg, vitamin C 54mg, zinc 4mg) or placebo daily for 16 weeks. Subjects were restricted from products/procedures that may affect the condition/appearance of skin, including direct facial sun or tanning bed exposure. Participants utilized a standardized facial cleanser and SPF15 moisturizer. Setting: Single study center (Texas, United States; June-November 2007). Participants: Healthy women aged 35 to 60 years (mean, 50 years), Fitzpatrick skin type I-IV, modified Glogau type II—III. Measurements: Subjects were assessed at Weeks 6, 12, and 16 on clinical grading (0-10 VAS), bioinstrumentation, digital photography, and self-assessments. Analysis of variance with treatment in the model was used for between-group comparisons (alpha P≤0.05). Results: Eighty-two anti-aging skin care formula subjects and 70 placebo subjects completed the study. Significant differences in change from baseline to Week 16 scores were observed for clinical grading of overall facial appearance (0.26; P<0.0001), radiant complexion (0.59; P<0.0001), periocular wrinkles (0.08; P<0.05), visual (0.56; P<0.0001) and tactile (0.48; P<0.0001) roughness, and mottled hyperpigmentation (0.15; P<0.001) favoring the subjects in the anti-aging skin care supplement group. Ultrasound skin density (Week 16) was significantly reduced for placebo versus anti-aging skin care supplement group (-1.4% vs. 0%; P<0.01). Other outcomes were not significant. Mild gastrointestinal symptoms possibly related to the anti-aging skin care supplement (n=1) and placebo (n=2) were observed. Conclusion: Women with photodamaged skin receiving anti-aging skin care supplement showed significant improvements in the appearance of facial