WorldWideScience

Sample records for biogas recovery systems

  1. Sludge storage lagoon biogas recovery and use

    Energy Technology Data Exchange (ETDEWEB)

    Muller, D.; Norville, C. (Memphis and Shelby County Div. of Planning and Development, TN (United States))

    1991-07-01

    The City of Memphis has two wastewater treatment plants. The SWTP employs two large anaerobic digestion sludge lagoons as part of the overall sludge treatment system. Although these lagoons are effective in concentrating and digesting sludge, they can generate offensive odors. The SWTP uses aerobic digesters to partially stabilize the sludge and help reduce objectionable odors before it enters the lagoons. The anaerobic digestion of sludge in the lagoons results in the dispersion of a large quantity of biogas into the atmosphere. The City realized that if the lagoons could be covered, the odor problem could be resolved, and at the same, time, biogas could be recovered and utilized as a source of energy. In 1987, the City commissioned ADI International to conduct a feasibility study to evaluate alternative methods of covering the lagoons and recovering and utilizing the biogas. The study recommended that the project be developed in two phases: (1) recovery of the biogas and (2) utilization of the biogas. Phase 1 consists of covering the two lagoons with an insulated membrane to control odor and temperature and collect the biogas. Phase 1 was found to be economically feasible and offered a unique opportunity for the City to save substantial operating costs at the treatment facility. The Memphis biogas recovery project is the only application in the world where a membrane cover has been used on a municipal wastewater sludge lagoon. It is also the largest lagoon cover system in the world.

  2. Potential for nutrient recovery and biogas production from blackwater, food waste and greywater in urban source control systems.

    Science.gov (United States)

    Kjerstadius, H; Haghighatafshar, S; Davidsson, Å

    2015-01-01

    In the last decades, the focus on waste and wastewater treatment systems has shifted towards increased recovery of energy and nutrients. Separation of urban food waste (FW) and domestic wastewaters using source control systems could aid this increase; however, their effect on overall sustainability is unknown. To obtain indicators for sustainability assessments, five urban systems for collection, transport, treatment and nutrient recovery from blackwater, greywater and FW were investigated using data from implementations in Sweden or northern Europe. The systems were evaluated against their potential for biogas production and nutrient recovery by the use of mass balances for organic material, nutrients and metals over the system components. The resulting indicators are presented in units suitable for use in future sustainability studies or life-cycle assessment of urban waste and wastewater systems. The indicators show that source control systems have the potential to increase biogas production by more than 70% compared with a conventional system and give a high recovery of phosphorus and nitrogen as biofertilizer. The total potential increase in gross energy equivalence for source control systems was 20-100%; the greatest increase shown is for vacuum-based systems.

  3. Technical evaluation of a tank-connected food waste disposer system for biogas production and nutrient recovery.

    Science.gov (United States)

    Davidsson, Å; Bernstad Saraiva, A; Magnusson, N; Bissmont, M

    2017-07-01

    In this study, a tank-connected food waste disposer system with the objective to optimise biogas production and nutrient recovery from food waste in Malmö was evaluated. The project investigated the source-separation ratio of food waste through waste composition analyses, determined the potential biogas production in ground food waste, analysed the organic matter content and the limiting components in ground food waste and analysed outlet samples to calculate food waste losses from the separation tank. It can be concluded that the tank-connected food waste disposer system in Malmö can be used for energy recovery and optimisation of biogas production. The organic content of the collected waste is very high and contains a lot of energy rich fat and protein, and the methane potential is high. The results showed that approximately 38% of the food waste dry matter is collected in the tank. The remaining food waste is either found in residual waste (34% of the dry matter) or passes the tank and goes through the outlet to the sewer (28%). The relatively high dry matter content in the collected fraction (3-5% DM) indicates that the separation tank can thicken the waste substantially. The potential for nutrient recovery is rather limited considering the tank content. Only small fractions of the phosphorus (15%) and nitrogen (21%) are recyclable by the collected waste in the tank. The quality of the outlet indicates a satisfactory separation of particulate organic matter and fat. The organic content and nutrients, which are in dissolved form, cannot be retained in the tank and are rather led to the sewage via the outlet. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Sludge storage lagoon biogas recovery and use. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Muller, D.; Norville, C. [Memphis and Shelby County Div. of Planning and Development, TN (United States)

    1991-07-01

    The City of Memphis has two wastewater treatment plants. The SWTP employs two large anaerobic digestion sludge lagoons as part of the overall sludge treatment system. Although these lagoons are effective in concentrating and digesting sludge, they can generate offensive odors. The SWTP uses aerobic digesters to partially stabilize the sludge and help reduce objectionable odors before it enters the lagoons. The anaerobic digestion of sludge in the lagoons results in the dispersion of a large quantity of biogas into the atmosphere. The City realized that if the lagoons could be covered, the odor problem could be resolved, and at the same, time, biogas could be recovered and utilized as a source of energy. In 1987, the City commissioned ADI International to conduct a feasibility study to evaluate alternative methods of covering the lagoons and recovering and utilizing the biogas. The study recommended that the project be developed in two phases: (1) recovery of the biogas and (2) utilization of the biogas. Phase 1 consists of covering the two lagoons with an insulated membrane to control odor and temperature and collect the biogas. Phase 1 was found to be economically feasible and offered a unique opportunity for the City to save substantial operating costs at the treatment facility. The Memphis biogas recovery project is the only application in the world where a membrane cover has been used on a municipal wastewater sludge lagoon. It is also the largest lagoon cover system in the world.

  5. An innovative bioelectrochemical-anaerobic digestion-coupled system for in-situ ammonia recovery and biogas enhancement: process performance and microbial ecology

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    Ammonia (NH4+/NH3) inhibition during anaerobic digestion process is one of the most frequent problems existing in biogas plants, resulting in unstable process and reduced biogas production. In this study, we developed a novel hybrid system, consisted of a submersed microbial resource recovery cell...... (SMRC) and a continuous stirred tank reactor (CSTR), to prevent ammonia toxicity during anaerobic digestion by in-situ ammonia recovery and electricity production. In batch experiment, the ammonia concentration in the CSTR decreased from 6 to 0.7 g-N/L with an average recovery rate of 0.18 g...... of ammonia recovery on the microbial community composition in the integrated system. Results clearly indicate the great potential of the SMRC-CSTR-coupled system for efficient and cost-effective ammonia recovery, energy production and treatment of ammonia-rich residues....

  6. Recovery of Nutrients from Biogas Digestate with Biochar and Clinoptilolite

    DEFF Research Database (Denmark)

    Kocatürk, Nazli Pelin

    necessitates the subsequent distribution of nutrients. The liquid fraction of digestate can be used as fertiliser in agricultural crop production systems and the most common practice of utilising the liquid fraction of digestate is direct field application in the vicinity of the biogas plant. However, direct......The increasing number of biogas plants over the last decades has brought the need to improve techniques to handle digestate, the by-product of anaerobic digestion in biogas plants. Separation of digestate into liquid and solid fractions is often applied in centralised biogas plants, which...... application may result in practical problems such as need for high storage volume, and environmental problems as a result of nutrient losses in the environment. To overcome such problems, recovery and concentration of nutrients from the liquid fraction may be a desirable option which, would also result...

  7. Enhanced biogas recovery by applying post-digestion in large-scale centralized biogas plants

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Hejnfelt, Anette; Ellegaard, L.

    2006-01-01

    The main objective of this study was to investigate the degradation efficiency of centralized biogas plants and provide guidance for the design of more efficient digester and post-digestion systems. These centralized biogas plants in Denmark digest manure together with organic waste from the food...... industry to generate biogas, which is used for electricity and thermal energy. A total of 20 such plants are currently active in Denmark, most of which were included in the investigation. From the plants, samples were obtained from various steps of the process. Samples were analysed and the residual biogas...... potential determined by batch post-digestion at various temperature levels. Results were correlated with plant characteristics and production statistics in order to judge the efficiency of various digestion concepts. A simplified model based on a two-step biogas production process was developed...

  8. System for obtaining biogas. System zur Gewinnung von Biogas

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1985-01-17

    The invention refers to a system for obtaining biogas from organic substances in at least one drum reactor, which is situated in a container accepting a liquid and which is driven so that it rotates preferably around its horizontal drum axis. It is distinguished by the fact that for at least one drum reactor acting as the main reactor there is at least one further reactor ahead of it for the pre-treatment or pre-fermentation of the substances.

  9. Methanation and energy recovery from biogas: mutually beneficial?

    International Nuclear Information System (INIS)

    Couturier, Ch.

    2000-01-01

    Biogas is credited with a development potential of 18 million tons of oil equivalent by 2020 for the European Union. In terms of scale, this corresponds to the quantity of natural gas consumed today in France. Ten per cent of these resources are today being used, with wide variations from one country to another. If we compare this production to the population levels, it is the Northern European countries of Denmark, Sweden and the Netherlands which emerge at the top of the list. Recovery of biogas is proportionally three times higher in these states than in France or in Belgium and six times that of Southern Europe. At a time when biogas appears in the European 'campaign for takeoff' as a sector likely to produce 'MW' in the short term, the identification of factors (including subsidies, purchase prices for energy and tax incentives) that have influenced the growth of methanation and recovery of biogas in certain countries hold valuable lessons for us all. (authors)

  10. Energy systems analysis of biogas systems; Energianalys av biogassystem

    Energy Technology Data Exchange (ETDEWEB)

    Berglund, Maria; Boerjesson, Paal

    2003-05-01

    The aim of this study was to calculate the net energy output and energy efficiency, from a life-cycle perspective and for Swedish conditions, in anaerobic digestion of various raw materials. Our calculations are based on literature reviews concerning the total primary energy input required for the production of biogas (i.e. direct and indirect energy inputs, e.g. when producing and distributing diesel fuels, electricity, fertilisers) as well as the biogas yield from various raw materials. Our analyses include handling and transportation of raw materials, operation of the biogas plants, and transportation and spreading of digested residues, as well as the biogas yield from manure, ley crops, tops and leaves of sugar beets, straw, municipal organic waste, slaughter waste, and grease separator sludge. All calculations concern individual raw materials. The net energy input required to run a biogas system (i.e. centralised biogas plant) typically corresponds to approximately 20-40% of the energy content in the produced biogas. Theoretically, the raw materials could be transported for some 200 km (manure) up to 700 km (slaughter waste) before the net energy output becomes negative. The variations in energy efficiency between studied biogas systems depend mainly on the type of raw material studied and the calculation methods used. Raw materials with high water content and low biogas yield (e.g. manure) require rather large energy inputs compared to the amount of biogas produced. Energy demanding handling of the raw materials, such as ley crops, could correspond to as much as approximately 40% of the net energy input. Varying energy efficiency in different parts of the biogas system, but most of all, changes in the biogas yield, could considerably affect the total net energy output. In general, operation of the biogas plant is the most energy demanding process in the biogas systems, corresponding to some 40-80% of the net energy input in the biogas systems. This implies

  11. Agricultural biogas systems. Quality and security

    International Nuclear Information System (INIS)

    Serafimova, K.

    2007-01-01

    This article takes a look at agricultural biogas installations and how improved basic conditions and incentives offered by industry and commerce are showing initial effects. The author is of the opinion that more dynamics in the market are necessary in order to allow contributions to be made to the protection of the climate whilst creating value locally at the same time. The article reviews the current market situation and examines questions which are to be answered in the quality assurance area for agricultural biogas systems in Switzerland. Co-fermentation is proposed as a standard technology. Market development, plant locations and plant management aspects are discussed.

  12. Waste heat recovery system

    International Nuclear Information System (INIS)

    Phi Wah Tooi

    2010-01-01

    Full text: The Konzen in-house designed anaerobic digester system for the POME (Palm Oil Mill Effluent) treatment process is one of the registered Clean Development Mechanism (CDM) projects in Malaysia. It is an organic wastewater treatment process which achieves excellent co-benefits objectives through the prevention of water pollution and reduction of greenhouse gas emissions, which is estimated to be 40,000 to 50,000 t-CO 2 per year. The anaerobic digester was designed in mesophile mode with temperature ranging from 37 degree Celsius to 45 degree Celsius. A microorganisms growth is optimum under moderately warm temperature conditions. The operating temperature of the anaerobic digester needs to be maintained constantly. There are two waste heat recovery systems designed to make the treatment process self-sustaining. The heat recovered will be utilised as a clean energy source to heat up the anaerobic digester indirectly. The first design for the waste heat recovery system utilises heat generated from the flue gas of the biogas flaring system. A stainless steel water tank with an internal water layer is installed at the top level of the flare stack. The circulating water is heated by the methane enriched biogas combustion process. The second design utilizes heat generated during the compression process for the biogas compressor operation. The compressed biogas needs to be cooled before being recycled back into the digester tank for mixing purposes. Both the waste heat recovery systems use a design which applies a common water circulation loop and hot water tank to effectively become a closed loop. The hot water tank will perform both storage and temperature buffer functions. The hot water is then used to heat up recycled sludge from 30 degree Celsius to 45 degree Celsius with the maximum temperature setting at 50 degree Celsius. The recycled sludge line temperature will be measured and monitored by a temperature sensor and transmitter, which will activate the

  13. Sustainable dairy manure-based biogas? : A perspective from the combined biogas and agricultural production system

    NARCIS (Netherlands)

    Hoang, Dieu Linh; Davis, Christopher Bryan; Nonhebel, Sanderine

    2017-01-01

    Dairy manure-based biogas, an emerging source of renewable energy, is a result of a recycling process which often leads to the thought that manure production is the beginning of this biogas supply chain by energy producers. However, dairy manure is only a byproduct of an agricultural system whose

  14. biogas

    DEFF Research Database (Denmark)

    2015-01-01

    Functions for working with biogas data. Both low- and high-level functions are included for carrying out common tasks for analysis of biogas and related data. Molar mass and calculated oxygen demand (COD') can be determined from a chemical formula. Measured gas volume can be corrected for water...... vapor and to (possibly user-defined) standard temperature and pressure. Gas composition, cumulative production, or other variables can be interpolated to a specified time. Cumulative biogas and methane production (and rates) can be calculated using volumetric, manometric, or gravimetric methods for any...... be summarized in several different ways (e.g., omitting normalization) using the same function. Lastly, biogas and methane production can be predicted from substrate composition and additional, optional data....

  15. Anaerobic treatment with biogas recovery of beverage industry waste water

    International Nuclear Information System (INIS)

    Cacciari, E.; Zanoni, G.

    1992-01-01

    This paper briefly describes the application, by a leading Italian non-alcoholic beverage firm, of an up-flow anaerobic sludge blanket process in the treatment of waste water deriving from the production and bottling of beverages. In addition to describing the key design, operation and performance characteristics of the treatment process, the paper focuses on the economic benefits being obtained through the use of the innovative expansive sludge bed anaerobic digestion system which has proven itself to be particularly suitable for the treatment of food and beverage industry liquid wastes. The system, which has already been operating, with good results, for six months, has shown itself to be capable of yielding overall COD removal efficiencies of up to 94.8% and of producing about 0.43 Ncubic meters of biogas per kg of removed COD

  16. Environmental systems analysis of biogas systems; Miljoeanalys av biogassystem

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal; Berglund, Maria

    2003-05-01

    The purpose of this study is to analyse various biogas systems from an environmental point of view. The analyses are based on a systems analysis approach and an energy perspective. Biogas systems included are based on various combinations of substrates and final use of the biogas (heat, power and transportation fuel). The overall aims are to calculate fuel cycle emissions, quantify indirect environmental effects when various reference systems are replaced (e.g. current systems for waste treatment, agricultural production and energy generation), and to present data, calculations and results in a clear and transparent way, making the study useful for other environmental systems analyses. A general conclusion is that the environmental impact from biogas systems can vary significantly due to such factors as which substrate, energy service and reference system are chosen, and if indirect environmental effects and the need of systems enlargement are considered. The introduction of biogas systems normally leads to a reduced contribution of greenhouse gases, with some exceptions such as when biogas is used for heat and the alternative is combustion of the biomass. Biogas from manure seems to result in particularly large reductions due to indirect benefits in the form of reduced leakage of methane compared with conventional methods for handling and storing manure. A prerequisite is, however, that the losses of methane are small or that methane is combusted and thus converted into carbon dioxide. This study shows that the losses of methane can be up to 8-26%, due to what kind of biogas system is studied, before the contribution of greenhouse gases exceeds the contribution from reference systems based on fossil fuels. The contribution of emissions that leads to eutrophication and acidification is almost always reduced when biogas systems are introduced. The indirect environmental benefits could be significant for biogas based on sugar beet tops when leaving the beet tops at

  17. Biogas and Hydrogen Systems Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, Anelia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bush, Brian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Melaina, Marc [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-31

    This analysis provides an overview of the market for biogas-derived hydrogen and its use in transportation applications. It examines the current hydrogen production technologies from biogas, capacity and production, infrastructure, potential and demand, as well as key market areas. It also estimates the production cost of hydrogen from biogas and provides supply curves at a national level and at point source.

  18. Biogas Engine Waste Heat Recovery Using Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Alberto Benato

    2017-03-01

    Full Text Available Italy is a leading country in the biogas sector. Energy crops and manure are converted into biogas using anaerobic digestion and, then, into electricity using internal combustion engines (ICEs. Therefore, there is an urgent need for improving the efficiency of these engines taking the real operation into account. To this purpose, in the present work, the organic Rankine cycle (ORC technology is used to recover the waste heat contained in the exhaust gases of a 1 MWel biogas engine. The ICE behavior being affected by the biogas characteristics, the ORC unit is designed, firstly, using the ICE nameplate data and, then, with data measured during a one-year monitoring activity. The optimum fluid and the plant configuration are selected in both cases using an “in-house” optimization tool. The optimization goal is the maximization of the net electric power while the working fluid is selected among 115 pure fluids and their mixtures. Results show that a recuperative ORC designed using real data guarantees a 30% higher net electric power than the one designed with ICE nameplate conditions.

  19. System to the quantification of biogas; Sistema para quantificacao de biogas

    Energy Technology Data Exchange (ETDEWEB)

    Caetano, L. [UNESP, Ilha Solteira, SP (Brazil). Faculdade de Engenharia; Goldonio, J.S. [UNESP, Botucatu, SP (Brazil). Faculdade de Ciencias Agronomicas

    1987-12-31

    The search of an adequate methodology to determination of the volumetric ratios of biogas production is necessary, in consequence of the diversification of the equipments is discussed. The objective of this work is to purpose a system to determine the quantity of biogas produced at low quantity. Nine laboratory biodigesters were constructed with 10 liters of capacity operated in batch system. They are feed with 7 liters of waste cattle and water mixture, PH 6,2 and 8% of total solids and 37 deg C as average temperature. The biogas produced were stored in plastic gasometer until prefixed pressure and launching in air through a valve operated by an electronic circuit, coming back the pressure to the initial value and registering the pulse in a counter.The number of pulses in a determinate period give an idea of the Biodigester gas production and guarantee the success of measure system 18 refs, 10 figs., 3 tabs.

  20. The Usage of Biogas in Fuel Cell Systems; Utilizacion de Biogas en Pilas de Combustible

    Energy Technology Data Exchange (ETDEWEB)

    Perez Martinez, M.; Cuesta Santianes, M. J.; Nunez Crespi, S.; Cabrera Jimenez, J. A.

    2008-08-06

    The usage of biogas in fuel cell systems is nowadays considered as a promising alternative for energy production worldwide as it involves the use of a valuable residual biomass resource that could enable the obtention of combined heat, cold and power generation very efficiently, while additionally avoiding greenhouse gas emissions to the atmosphere. Both development lines (biogas and fuel cells) and their associated technologies are receiving a great support from the different states, pioneer countries being Japan and U.S.A. The objective of this study is to make a detail analysis of the state of the art of biogas-powered fuel cell systems worldwide. Most representative players in the field are identified through the search of the scientific publications, projects and patent documents in which they are involved. (Author) 18 refs.

  1. Electricity from biogas

    International Nuclear Information System (INIS)

    Augenstein, D.; Benemann, J.; Hughes, E.

    1994-01-01

    Biogas is a medium-Btu methane and carbon dioxide mix produced by bacterial decomposition of organic matter. Its sources include landfills, waste water sludges, and animal wastes. It can fuel energy applications, of which electricity generation is a frequently-preferred option. The greatest current U.S. biogas recovery and energy use is at landfills, where biogas at about 80 landfill sites fuels a total of approximately 300 MWe. Wastewater treatment plants and confined animal waste management systems support additional electric power production. Generation of electricity from biogas can present difficulties due to the generally small scale of the generating facility, variable energy content of the gas, fluctuating availability, contaminant problems, and often-demanding control needs. However, such difficulties are being successfully addressed and economics for electricity generation are often favorable as biogas can be essentially open-quotes freeclose quotes fuel. Biogas recovery and use has the additional advantage of mitigating a potent greenhouse gas. Biogas from U.S. landfills alone could fuel about 1% of U.S. electrical generation while giving climate change benefit equivalent to reducing CO 2 emissions in the electricity sector by more than 10%. Growth in landfill gas use will be facilitated by recent regulations, advances in equipment, and improved management techniques such as open-quotes controlled landfillingclose quotes. The potential for biogas recovery and electricity production from sewage sludges, animal wastes and other organic resources such as agricultural residues is uncertain but probably exceeds the estimate for landfills

  2. More value from food waste: Lactic acid and biogas recovery.

    Science.gov (United States)

    Kim, Mi-Sun; Na, Jeong-Geol; Lee, Mo-Kwon; Ryu, Hoyoung; Chang, Yong-Keun; Triolo, Jin M; Yun, Yeo-Myeong; Kim, Dong-Hoon

    2016-06-01

    Anaerobic digestion (AD) is one of the traditional technologies for treating organic solid wastes, but its economic benefit is sometimes questioned. To increase the economic feasibility of the treatment process, the aim of this study was to recover not only biogas from food waste but lactic acid (LA) as well. At first, LA fermentation of food waste (FW) was conducted using an indigenous mixed culture. During the operation, temperature was gradually increased from 35 °C to 55 °C, with the highest performance attained at 50 °C. At 50 °C and hydraulic retention time (HRT) of 1.0 d, LA concentration in the broth was 40 kg LA/m(3), corresponding to a yield of 1.6 mol LA/mol hexoseadded. Pyrosequencing results showed that Lactobacillus (97.6% of the total number of sequences) was the predominant species performing LA fermentation of FW. The fermented broth was then centrifuged and LA was extracted from the supernatant by the combined process of nanofiltration and water-splitting electrodialysis. The process could recover highly purified LA by removing 85% of mineral ions such as Na(+), K(+), Mg(2+), and Ca(2+) and 90% of residual carbohydrates. Meanwhile, the solid residue remained after centrifugation was further fermented to biogas by AD. At HRT 40 d (organic loading rate of 7 kg COD/m(3)/d), the highest volumetric biogas production rate of 3.5 m(3)/m(3)/d was achieved with a CH4 yield of 0.25 m(3) CH4/kg COD. The mass flow showed that 47 kg of LA and 54 m(3) of biogas could be recovered by the developed process from 1 ton of FW with COD removal efficiency of 70%. These products have a higher economic value 60 USD/ton FW compared to that of conventional AD (27 USD/ton FW). Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Life cycle assessment of agricultural biogas production systems

    International Nuclear Information System (INIS)

    Lansche, J.; Muller, J.

    2010-01-01

    Agricultural activities are large contributors to anthropogenic greenhouse gas emissions. This paper discussed the effectiveness of reducing agricultural emissions by using liquid manure to produce biogas. When using this technique, greenhouse gas emissions from manure storage are avoided and renewable energy is generated as heat and electricity in combined heat and power plants. The purpose of this study was to evaluate the environmental impacts of biogas production systems based on the methods of life cycle assessment. The traditional use of agricultural manures was compared with conventional energy production. The Gabi 4.3 software was used to create a model to evaluate the biogas production systems according to their environmental impact. In addition to the global warming potential, other impact categories were also used to evaluate the effects of the systems in eutrophication and acidification. It was concluded that environmental benefits can be obtained in terms of greenhouse gas emissions compared to electricity production from biogas with the typical German marginal electricity mix.

  4. Life cycle assessment of agricultural biogas production systems

    Energy Technology Data Exchange (ETDEWEB)

    Lansche, J.; Muller, J. [Hohenheim Univ., Stuttgart (Germany). Inst. of Agricultural Engineering, Tropical and Subtropical Group

    2010-07-01

    Agricultural activities are large contributors to anthropogenic greenhouse gas emissions. This paper discussed the effectiveness of reducing agricultural emissions by using liquid manure to produce biogas. When using this technique, greenhouse gas emissions from manure storage are avoided and renewable energy is generated as heat and electricity in combined heat and power plants. The purpose of this study was to evaluate the environmental impacts of biogas production systems based on the methods of life cycle assessment. The traditional use of agricultural manures was compared with conventional energy production. The Gabi 4.3 software was used to create a model to evaluate the biogas production systems according to their environmental impact. In addition to the global warming potential, other impact categories were also used to evaluate the effects of the systems in eutrophication and acidification. It was concluded that environmental benefits can be obtained in terms of greenhouse gas emissions compared to electricity production from biogas with the typical German marginal electricity mix.

  5. Net energy production and emissions mitigation of domestic wastewater treatment system: a comparison of different biogas-sludge use alternatives.

    Science.gov (United States)

    Chen, Shaoqing; Chen, Bin

    2013-09-01

    Wastewater treatment systems are increasingly designed for the recovery of valuable chemicals and energy in addition to waste stream disposal. Herein, the life-cycle energy production and emissions mitigation of a typical domestic wastewater treatment system were assessed, in which different combinations of biogas use and sludge processing lines for industrial or household applications were considered. The results suggested that the reuse of biogas and sludge was so important in the system's overall energy balance and environmental performance that it may offset the cost in the plant's installation and operation. Combined heat and power and household utilization were two prior options for net energy production, provided an ideal power conversion efficiency and biogas production. The joint application of household biogas use and sludge nutrient processing achieved both high net energy production and significant environmental remediation across all impact categories, representing the optimal tradeoff for domestic wastewater treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Emergy Analysis of Biogas Systems Based on Different Raw Materials

    Science.gov (United States)

    Wang, Yang; Lin, Cong; Li, Jing; Duan, Na; Li, Xue; Fu, Yanyan

    2013-01-01

    Environmental pollution and energy crisis restrict the development of China, and the utilization of renewable technology is an effective strategy to alleviate the damage. Biogas engineering has rapidly developed attributes to solve environmental problems and create a renewable energy product biogas. In this paper, two different biogas plants' materials were analyzed by emergy method. One of them is a biogas project whose degraded material is feces (BPF system), and the other is the one whose degraded material is corn straw (BPC system). As a result, the ecological-economic values of BPF and BPC are $28,300/yr and $8,100/yr, respectively. Considering currency, environment, and human inputs, both of the biogas projects have the ability of disposing waste and potential for development. The proportion of biogas output is much more than fertilizer output; so, fertilizer utilization should be emphasized in the future. In comparison, BPF is better than BPC in the aspects of ecological-economic benefits, environmental benefits, and sustainability. The reason is the difficulty of corn straw seasonal collection and degradation. Thus it is proposed that BPC should be combined with the other raw materials. PMID:23476134

  7. Emergy Analysis of Biogas Systems Based on Different Raw Materials

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2013-01-01

    Full Text Available Environmental pollution and energy crisis restrict the development of China, and the utilization of renewable technology is an effective strategy to alleviate the damage. Biogas engineering has rapidly developed attributes to solve environmental problems and create a renewable energy product biogas. In this paper, two different biogas plants’ materials were analyzed by emergy method. One of them is a biogas project whose degraded material is feces (BPF system, and the other is the one whose degraded material is corn straw (BPC system. As a result, the ecological-economic values of BPF and BPC are $28,300/yr and $8,100/yr, respectively. Considering currency, environment, and human inputs, both of the biogas projects have the ability of disposing waste and potential for development. The proportion of biogas output is much more than fertilizer output; so, fertilizer utilization should be emphasized in the future. In comparison, BPF is better than BPC in the aspects of ecological-economic benefits, environmental benefits, and sustainability. The reason is the difficulty of corn straw seasonal collection and degradation. Thus it is proposed that BPC should be combined with the other raw materials.

  8. Feasibility study for retrofitting biogas cogeneration systems to district heating in South Korea.

    Science.gov (United States)

    Chung, Mo; Park, Hwa-Choon

    2015-08-01

    A feasibility study was performed to assess the technical and economic merits of retrofitting biogas-based cogeneration systems to district heating networks. Three district heating plants were selected as candidates for accommodating heat recovery from nearby waste treatment stations, where a massive amount of biogas can be produced on a regular basis. The scenario involves constructing cogeneration systems in each waste treatment station and producing electricity and heat. The amounts of biogas production for each station are estimated based on the monthly treatment capacities surveyed over the most recent years. Heat produced by the cogeneration system is first consumed on site by the waste treatment system to keep the operating temperature at a proper level. If surplus heat is available, it will be transported to the nearest district heating plant. The year-round operation of the cogeneration system was simulated to estimate the electricity and heat production. We considered cost associated with the installation of the cogeneration system and piping as initial investments. Profits from selling electricity and recovering heat are counted as income, while costs associated with buying biogas are expenses. Simple payback periods of 2-10 years were projected under the current economic conditions of South Korea. We found that most of the proposed scenarios can contribute to both energy savings and environmental protection. © The Author(s) 2015.

  9. Farm scale biogas production; Gaardsbaserad biogasproduktion. System, ekonomi och klimatpaaverkan

    Energy Technology Data Exchange (ETDEWEB)

    Edstroem, Mats; Jansson, Lars-Erik; Lantz, Mikael; Johansson, Lars-Gunnar; Nordberg, Ulf; Nordberg, Aake

    2008-06-15

    The purpose of this study was to investigate economic conditions for farm-scale biogas production in Sweden and to calculate the nutrient and greenhouse gas benefits of such systems. To give a more general description of the agricultural sector's possibilities to produce biogas, a comparison is carried out for 3 different scales of production as follows: Alternative 1: Digestion of a small amount of liquid manure from cattle. Evolved biogas is used for heat production which is used to provide space heating and hot water for one or two cottages on the farm. Alternative 2: Digestion of a larger amount of liquid manure from pig production. The biogas is used for co-generation of heat and electricity. The heat produced is used to provide space heating and hot water on 3-4 cottages at the farm. Alternative 3: Production of approx. 6 GWh biogas/year for direct sale on the external gas market. The plant co-digests energy crops, manure and vegetable waste. In this case the following energy crops are compared: a) ensiled ley crop, ensiled maize and c) grain. In the economic analysis, most of the data used comes from German sources. Based on the current market prices for energy in Sweden, only plant alternatives where the biogas is upgraded for use as vehicle fuel are profitable for the farmer. However, one significant barrier is that there is currently no significant market for vehicle fuel-grade biogas in Sweden, makes it difficult for farmers building up new local market. The purchase price of electricity from biogas is lower in Sweden than the most countries in Europe. The current prevailing market price for electricity is on the other hand quite volatile and future price increases are likely. The debate about how to reduce GHG emissions from the agricultural has recently attracted increased interest in wider circles. It is also likely that the Swedish government will start an investment program for farm scale biogas production from year 2009. Taken together, this

  10. Effects of sludge recirculation rate and mixing time on performance of a prototype single-stage anaerobic digester for conversion of food wastes to biogas and energy recovery.

    Science.gov (United States)

    Ratanatamskul, Chavalit; Saleart, Tawinan

    2016-04-01

    Food wastes have been recognized as the largest waste stream and accounts for 39.25 % of total municipal solid waste in Thailand. Chulalongkorn University has participated in the program of in situ energy recovery from food wastes under the Ministry of Energy (MOE), Thailand. This research aims to develop a prototype single-stage anaerobic digestion system for biogas production and energy recovery from food wastes inside Chulalongkorn University. Here, the effects of sludge recirculation rate and mixing time were investigated as the main key parameters for the system design and operation. From the results obtained in this study, it was found that the sludge recirculation rate of 100 % and the mixing time of 60 min per day were the most suitable design parameters to achieve high efficiencies in terms of chemical oxygen demand (COD), total solids (TS), and total volatile solid (TVS) removal and also biogas production by this prototype anaerobic digester. The obtained biogas production was found to be 0.71 m(3)/kg COD and the composition of methane was 61.6 %. Moreover, the efficiencies of COD removal were as high as 82.9 % and TVS removal could reach 83.9 % at the optimal condition. Therefore, the developed prototype single-stage anaerobic digester can be highly promising for university canteen application to recover energy from food wastes via biogas production.

  11. Experimental study of flame stability in biogas premix system

    International Nuclear Information System (INIS)

    Diaz G, Carlos A; Amell A Andres; Cardona Luis F

    2008-01-01

    Utilization of new renewable energy sources have had a special interest in last years looking for decrease the dependence of fossil fuels and the environmental impact generated for them. This work studies experimentally the flame stability of a simulated biogas with a volumetric composition of 60% methane and 40% carbon dioxide. The objective of this study is to obtain information about design and interchangeability of gases in premixed combustion systems that operate with different fuel gases. The critical velocity gradient was the stability criteria used. Utilization of this criteria and the experimental method followed, using a partial premixed burner, stability flame diagram of biogas studied had been obtained. Presence of carbon dioxide has a negative effect in flame stability, decreasing significantly the laminar flame speed and consequently, the stability range of biogas burners because of apparition of blow off.

  12. Energy performance and greenhouse gas emissions of kelp cultivation for biogas and fertilizer recovery in Sweden.

    Science.gov (United States)

    Pechsiri, Joseph S; Thomas, Jean-Baptiste E; Risén, Emma; Ribeiro, Mauricio S; Malmström, Maria E; Nylund, Göran M; Jansson, Anette; Welander, Ulrika; Pavia, Henrik; Gröndahl, Fredrik

    2016-12-15

    The cultivation of seaweed as a feedstock for third generation biofuels is gathering interest in Europe, however, many questions remain unanswered in practise, notably regarding scales of operation, energy returns on investment (EROI) and greenhouse gas (GHG) emissions, all of which are crucial to determine commercial viability. This study performed an energy and GHG emissions analysis, using EROI and GHG savings potential respectively, as indicators of commercial viability for two systems: the Swedish Seafarm project's seaweed cultivation (0.5ha), biogas and fertilizer biorefinery, and an estimation of the same system scaled up and adjusted to a cultivation of 10ha. Based on a conservative estimate of biogas yield, neither the 0.5ha case nor the up-scaled 10ha estimates met the (commercial viability) target EROI of 3, nor the European Union Renewable Energy Directive GHG savings target of 60% for biofuels, however the potential for commercial viability was substantially improved by scaling up operations: GHG emissions and energy demand, per unit of biogas, was almost halved by scaling operations up by a factor of twenty, thereby approaching the EROI and GHG savings targets set, under beneficial biogas production conditions. Further analysis identified processes whose optimisations would have a large impact on energy use and emissions (such as anaerobic digestion) as well as others embodying potential for further economies of scale (such as harvesting), both of which would be of interest for future developments of kelp to biogas and fertilizer biorefineries. Copyright © 2016. Published by Elsevier B.V.

  13. Biogas production from poultry rendering plant anaerobic digesters: systems comparison

    Science.gov (United States)

    Animal wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. In this study, an evaluation of system p...

  14. Biogas barometer

    International Nuclear Information System (INIS)

    2014-01-01

    The energy recovery of biogas has kept on increasing in the European Union in 2013: +10.2%. Almost 13.4 million tep (tonnes of oil equivalent) of biogas primary energy was produced but the growth of the biogas sector is decreasing (it was 16.9% between 2011 and 2012). The growth for the coming years is expected to fall further because of political decisions in some countries to limit the use of land for farming purposes and to manage the biogas sector more efficiently. Germany ranks first for the production of biogas primary energy with 6717 ktep followed by United Kingdom with 1824 ktep. 2 tables give the production of electricity and heat from biogas in the E.U. member states in 2012 and 2013. The total production of electricity and heat from biogas in the E.U. in 2013 reached 53327 GWh and 432 ktep respectively. A list reviews the most significant companies working in Europe in the sector of methanation, 10 companies are listed among which 2 are Italian: AB Energy (Gruppo AB), BTS Italia and 8 are German: MT Energie, Envitec Biogas AG, Biogas Weser-Ems, Planet Biogastechnik, Schmack Biogas GmbH, Weltec Biopower GmbH, UTS Biogastechnik (Anaergia Group), Bioconstruct and BTS Italia. (A.C.)

  15. Bioelectrochemical systems serve anaerobic digestion process for process monitoring and biogas upgrading

    DEFF Research Database (Denmark)

    Jin, Xiangdan

    , resource recovery and waste remediation. Recently, new concepts of been proposed. The purpose of this work was to optimize the AD process using BES in two aspects: developing a new volatile fatty acid (VFA) monitoring system which can be used as the AD process indicator, and for improving biogas quality...... they were retained by the membrane. During the process, hydrogen (H2) was generated from water hydrolysis. The produced H2 could potentially contribute to the energy needs for operating the biosensor and thereby to a self-sustaining system. Moreover, the biosensor was successfully validated both......Wh/m3 raw biogas. Moreover, the generated H2 from water hydrolysis could potentially compensate for 23.4% of the energy consumption. It has been proved that the development of efficient, cheap, fast and reliable VFA monitoring with a wide detection range can be realized in BES which is...

  16. Recovery of nutrients from biogas digestate with biochar and clinoptilolite

    NARCIS (Netherlands)

    Kocaturk, N.P.

    2016-01-01

    The liquid fraction of digestate contains nutrients which makes it a valuable fertiliser in agricultural crop production systems. However, direct application of digestate may raise practical and environmental problems. Therefore, processes to concentrate nutrients have been proposed aiming not

  17. Economical and ecological benchmarking of biogas plant configurations for flexible power generation in future power supply systems

    International Nuclear Information System (INIS)

    Hahn, Henning

    2016-01-01

    With the share of intermittent renewable energies within the electricity system rising, balancing services from dispatchable power plants are of increasing importance. This study comparatively assesses the environmental and economic performance of biogas plant configurations, supplying biogas on demand for flexible power generation. A cost analysis of five configurations based on biogas storing and flexible biogas production concepts has been carried out. Results show that additional flexibility costs for a biogas supply of 8 hours per day range between 2 Euro to 11 Euro MWh -1 and for a 72 hour period without biogas demand from 9 Euro to 19 Euro MWh -1 . While biogas storage concepts were identified as favorable short-term supply configurations, flexible biogas production concepts profit from reduced storage requirements at plants with large biogas production capacities or for longer periods without biogas demand [1, 2]. Flexible biogas plant configurations indicate an increased energy demand to operate the operational enhancements compared to conventional biogas plants supplying biogas for baseload power generation. However, findings show that in contrast to an alternative supply of power generators with natural gas, biogas supplied on demand by adapted biogas plant configurations saves greenhouse gas emissions by 54 to 65 g CO 2-eq MJ -1 and primary energy by about 1.17 MJ MJ -1 . In this regard, configurations with flexible biogas production profit from reduced biogas storage requirements and achieve higher savings compared to configurations with continuous biogas production [1, 3].

  18. Biogas production from coumarin-rich plants--inhibition by coumarin and recovery by adaptation of the bacterial community.

    Science.gov (United States)

    Popp, Denny; Schrader, Steffi; Kleinsteuber, Sabine; Harms, Hauke; Sträuber, Heike

    2015-09-01

    Plants like sweet clover (Melilotus spp.) are not suitable as fodder for cattle because of harmful effects of the plant secondary metabolite coumarin. As an alternative usage, the applicability of coumarin-rich plants as substrates for biogas production was investigated. When coumarin was added to continuous fermentation processes codigesting grass silage and cow manure, it caused a strong inhibition noticeable as decrease of biogas production by 19% and increase of metabolite concentrations to an organic acids/alkalinity ratio higher than 0.3(gorganic acids) gCaCO3 (-1). Microbial communities of methanogenic archaea were dominated by the genera Methanosarcina (77%) and Methanoculleus (11%). This community composition was not influenced by coumarin addition. The bacterial community analysis unraveled a divergence caused by coumarin addition correlating with the anaerobic degradation of coumarin and the recovery of the biogas process. As a consequence, biogas production resumed similar to the coumarin-free control with a biogas yield of 0.34 LN g(volatile solids) (-1) and at initial metabolite concentrations (∼ 0.2 g(organic acids) gCaCO3 (-1)). Coumarin acts as inhibitor and as substrate during anaerobic digestion. Hence, coumarin-rich plants might be suitable for biogas production, but should only be used after adaptation of the microbial community to coumarin. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Feed-in of biogas into the natural gas distribution system. Legal topics, insurance topic and financial topics; Einspeisung von Biogas in das Erdgasnetz. Rechts-, Finanzierungs- und Versicherungsfragen

    Energy Technology Data Exchange (ETDEWEB)

    Degenhart, Heinrich; Hohlbein, Bernhard; Schomerus, Thomas (eds.)

    2012-11-01

    The book under consideration consists of the following contributions: (1) Legal topics, insurance topic and financial topics of the feed-in of biogas (I. Bleuel); (2) Feed-in of biogas in natural gas distribution systems - market and economic efficiency (J. Krassowski); (3) The Feed-in of biogas in the context of the environmental energy law (T. Mueller); (4) Regulation issues for the grid connection of biomass conversion plants (D. Konrad); (5) Design of contracts for the feed-in of biogas (H. von Bredow); (6) Liability insurance for biogas processing plants (K. Thiesen); (7) Procurement of equity capital (B. Drescher); (8) Opportunities and limits of external financing (A. Schuenemann).

  20. Food Waste to Energy: How Six Water Resource Recovery Facilities are Boosting Biogas Production and the Bottom Line

    Science.gov (United States)

    Water Resource Recovery Facilities (WRRFs) with anaerobic digestion have been harnessing biogas for heat and power since at least the 1920’s. A few are approaching “energy neutrality” and some are becoming “energy positive” through a combination of energy efficiency measures and...

  1. Energy and Exergy Analysis of Cogeration System with Biogas Engines

    OpenAIRE

    Doseva, Nadezhda; Chakyrova, Daniela

    2015-01-01

    In this paper, an existing cogeneration system driven by biogas internal combustion engines (ICE) is a subject of an investigation by energy and exergy analyses. The system is installed in the Varna Wastewater Treatment Plant (Varna WWTP), Bulgaria and its purpose is to utilize the methane produced as a byproduct of the solids stabilization process at Varna WWTP. Otherwise, the produced methane would pollute the environment. The presented paperhas been organised in the following way: first, i...

  2. Biogas recirculation for simultaneous calcium removal and biogas purification within an expanded granular sludge bed system treating leachate.

    Science.gov (United States)

    Luo, Jinghuan; Lu, Xueqin; Liu, Jianyong; Qian, Guangren; Lu, Yongsheng

    2014-12-01

    Biogas, generated from an expanded granular sludge bed (EGSB) reactor treating municipal solid waste (MSW) leachate, was recirculated for calcium removal from the leachate via a carbonation process with simultaneous biogas purification. Batch trials were performed to optimize the solution pH and imported biogas (CO2) for CaCO3 precipitation. With applicable pH of 10-11 obtained, continuous trials achieved final calcium concentrations of 181-375 mg/L (removal efficiencies≈92.8-96.5%) in the leachate and methane contents of 87.1-91.4% (purification efficiencies≈65.4-82.2%) in the biogas. Calcium-balance study indicates that 23-986 mg Ca/d was released from the bio-system under the carbonized condition where CaCO3 precipitating was moved outside the bioreactor, whereas 7918-9517 mg Ca/d was trapped into the system for the controlled one. These findings demonstrate that carbonation removal of calcium by biogas recirculation could be a promising alternative to pretreat calcium-rich MSW leachate and synergistically to improve methane content. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Investigation of thermal integration between biogas production and upgrading

    International Nuclear Information System (INIS)

    Zhang, Xiaojing; Yan, Jinying; Li, Hailong; Chekani, Shabnam; Liu, Loncheng

    2015-01-01

    Highlights: • Identify thermal characteristics of amine-based biogas upgrading for waste heat recovery. • Identify thermal characteristics of AD biogas production as sink for heat recovery. • Evaluation of thermal integration between biogas production and upgrading to improve overall energy efficiency. • Cost analysis applied for the economic feasibility of the thermal integration. • Using the principles of target design and system integration for connected thermal processes. - Abstract: Thermal integration of anaerobic digestion (AD) biogas production with amine-based chemical absorption biogas upgrading has been studied to improve the overall efficiency of the intergraded system. The thermal characteristics have been investigated for industrial AD raw biogas production and amine-based chemical absorption biogas upgrading. The investigation provides a basic understanding for the possibilities of energy saving through thermal integration. The thermal integration is carried out through well-defined cases based on the thermal characteristics of the biogas production and the biogas upgrading. The following factors are taken into account in the case study: thermal conditions of sub-systems, material and energy balances, cost issues and main benefits. The potential of heat recovery has been evaluated to utilise the waste heat from amine-based upgrading process for the use in the AD biogas production. The results show that the thermal integration has positive effects on improving the overall energy efficiency of the integrated biogas plant. Cost analysis shows that the thermal integration is economically feasible

  4. Biogas utilization

    Energy Technology Data Exchange (ETDEWEB)

    Moser, M.A. [Resource Conservation Management, Inc., Berkeley, CA (United States)

    1996-01-01

    Options for successfully using biogas depend on project scale. Almost all biogas from anaerobic digesters must first go through a gas handling system that pressurizes, meters, and filters the biogas. Additional treatment, including hydrogen sulfide-mercaptan scrubbing, gas drying, and carbon dioxide removal may be necessary for specialized uses, but these are complex and expensive processes. Thus, they can be justified only for large-scale projects that require high-quality biogas. Small-scale projects (less than 65 cfm) generally use biogas (as produced) as a boiler fuel or for fueling internal combustion engine-generators to produce electricity. If engines or boilers are selected properly, there should be no need to remove hydrogen sulfide. Small-scale combustion turbines, steam turbines, and fuel cells are not used because of their technical complexity and high capital cost. Biogas cleanup to pipeline or transportation fuel specifications is very costly, and energy economics preclude this level of treatment.

  5. Analysis of small-scale biogas utilization systems on Ontario cattle farms

    International Nuclear Information System (INIS)

    White, Andrew J.; Kirk, Donald W.; Graydon, John W.

    2011-01-01

    The production of biogas through the anaerobic digestion of cattle manure and its subsequent use in the generation of electricity on larger farms in Ontario is currently economically attractive. This is a result of the Ontario Feed-In Tariff (FIT) program, which provides incentivized rates for the production of electricity from biogas. Although larger farms can take advantage of the higher rates for electricity, there are substantially more smaller farms for which individually designed and engineered biogas systems would be prohibitively expensive. By employing the concept of modular biogas plants, this analysis evaluates the economics of small-scale biogas utilization systems. Dairy farms with at least 33 animals and beef farms with at least 78 animals can operate economically attractive biogas systems. This analysis shows that approximately 9000 additional Ontario cattle farms would be able to take advantage of the FIT program, which would add 120 MW e of renewable energy capacity to the Ontario electrical grid. (author)

  6. Environmental systems analysis of biogas systems-Part I: Fuel-cycle emissions

    International Nuclear Information System (INIS)

    Boerjesson, Pal; Berglund, Maria

    2006-01-01

    Fuel-cycle emissions of carbon dioxide (CO 2 ), carbon oxide (CO), nitrogen oxides (NO x ), sulphur dioxide (SO 2 ), hydrocarbons (HC), methane (CH 4 ), and particles are analysed from a life-cycle perspective for different biogas systems based on six different raw materials. The gas is produced in large- or farm-scale biogas plants, and is used in boilers for heat production, in turbines for co-generation of heat and electricity, or as a transportation fuel in light- and heavy-duty vehicles. The analyses refer mainly to Swedish conditions. The levels of fuel-cycle emissions vary greatly among the biogas systems studied, and are significantly affected by the properties of the raw material digested, the energy efficiency of the biogas production, and the status of the end-use technology. For example, fuel-cycle emission may vary by a factor of 3-4, and for certain gases by up to a factor of 11, between two biogas systems that provide an equivalent energy service. Extensive handling of raw materials, e.g. ley cropping or collection of waste-products such as municipal organic waste, is often a significant source of emissions. Emission from the production phase of the biogas exceeds the end-use emissions for several biogas systems and for specific emissions. Uncontrolled losses of methane, e.g. leakages from stored digestates or from biogas upgrading, increase the fuel-cycle emissions of methane considerably. Thus, it is necessary to clearly specify the biogas production system and end-use technology being studied in order to be able to produce reliable and accurate data on fuel-cycle emission

  7. Microbiological community in biogas systems and evaluation of microbial risks from gas usage

    Energy Technology Data Exchange (ETDEWEB)

    Vinneraas, B.; Nordin, A. [Swedish Univ. of Agricultural Sciences, Dept. of Biometry and Engineering, Uppsala (Sweden); Schoenning, C. [Swedish Inst. for Infectious Disease Control, Dept. of Parasitology, Mycology, Environmental Mirobiology and Water, Solna (Sweden)

    2007-12-15

    The plans for introducing biogas produced from organic waste to the pipe system for natural gas have raised concerns about the risk of transmitting disease via the gas. To assess this risk, condensate water from gas pipes and gas from different parts of biogas upgrading systems were sampled and cultured for microbial content. The number of microorganisms found in the biogas correspond to the densities in sampled natural gas. Since no pathogens were identified and since the exposure to gas from e. g. cookers and refueling of cars may only result in the inhalation of small volumes of gas, the risk of spreading disease via biogas was judged to be very low. (orig.)

  8. Life cycle assessment of coupling household biogas production to agricultural industry: A case study of biogas-linked persimmon cultivation and processing system

    International Nuclear Information System (INIS)

    Chen, Bin; Chen, Shaoqing

    2013-01-01

    Biogas plant construction has been boosted in rural China not only due to the immediate merit from biogas production but also the succeeding benefit from by-product utilization in agro-industry, both of which are significant strategies to address energy shortage and global warming issues. However, little work has been done to evaluate the coupling of biogas projects to traditional agrosystems from a life-cycle perspective, which is most important in process and system optimization in different senses. By taking persimmon cultivation and processing with supports from a household biogas plant as a case study, this study conducts a life cycle assessment of coupling biogas production to agro-industry in terms of energy, environmental and economic performance. The results suggest that each production stage following the biogas/digestate utilization chain (biogas operation-persimmon cultivation-product processing) is beneficial across all three aspects. However, a tradeoff only exists in utilizing digestate as top-dressing and employing biogas utilization as engine fuel, while biogas application in fresh-keeping and digestate reuse as base fertilizer fails to increase either energy production or greenhouse gas mitigation. The coupled system can be hopefully optimized through increasing fermentation efficiency and joint operation of biogas digesters. -- Highlights: •Biogas/digestate utilization is overall beneficial in all production stages. •Each bioresource application may not be profitable in all respects. •Tradeoffs in using biogas and digestate vary among different utilization ways. •Multi-user operation and fermentation efficiency elevation optimize system

  9. Nonrenewable energy cost and greenhouse gas emissions of a "pig-biogas-fish" system in China.

    Science.gov (United States)

    Yang, Qing; Wu, Xiaofang; Yang, Haiping; Zhang, Shihong; Chen, Hanping

    2012-01-01

    The purpose of this study is to assess the energy savings and emission reductions of the present rural biogas system in China. The life cycle assessment (LCA) method is used to analyze a "pig-biogas-fish" system in Jingzhou, Hubei Province, China. The nonrenewable energy cost and the greenhouse gas (GHG) emissions of the system, including the pigsty, the biogas digester, and the fishpond, are taken into account. The border definition is standardized because of the utilization of the database in this paper. The results indicate that the nonrenewable energy consumption intensity of the "pig-biogas-fish" system is 0.60 MJ/MJ and the equivalent CO₂ emission intensity is 0.05 kg CO₂-eq/MJ. Compared with the conventional animal husbandry system, the "pig-biogas-fish" system shows high renewability and GHG reduction benefit, which indicates that the system is a scientific and environmentally friendly chain combining energy and ecology.

  10. Biogas production supported by excess heat – A systems analysis within the food industry

    International Nuclear Information System (INIS)

    Broberg Viklund, Sarah; Lindkvist, Emma

    2015-01-01

    Highlights: • A systems analysis when moving from external to internal production and use of biogas at an industry. • The aim is to study the impacts on greenhouse gas emissions and economics from this switch. • The study compares the choice of using biogas or industrial excess heat to heat the digester. • Internal biogas production supported by excess heat has environmental and economic benefits. - Abstract: The aim of this paper was to study the effects on greenhouse gases and economics when a change is made in the use of industrial organic waste from external production and use of biogas (A) to internal production and use (B). The two different system solutions are studied through a systems analysis based on an industrial case. The baseline system (A) and a modified system (B) were compared and analysed. Studies show that industrial processes considered as integrated systems, including the exchange of resources between industries, can result in competitive advantages. This study focuses on the integration of internally produced biogas from food industry waste produced by a food company and the use of excess heat. Two alternative scenarios were studied: (1) the use of available excess heat to heat the biogas digester and (2) the use of a part of the biogas produced to heat the biogas digester. This study showed that the system solution, whereby excess heat rather than biogas is used to heat the biogas digester, was both environmentally and economically advantageous. However, the valuation of biomass affects the magnitude of the emissions reduction. Implementing this synergistic concept will contribute to the reaching of European Union climate targets

  11. Potential and emergence factors of biogas and by-product gas recovery. Synthesis

    International Nuclear Information System (INIS)

    Couturier, Ch.

    2004-11-01

    The aim of this study is to assess the energy potential of biomass (excluding energy crops), mainly biogas and biomass gases, for France, European Union, USA, China and India. The methodology is based on the identification of the organic matter flows, from agricultural and forestry areas, to their end use. This allows a limitation of double counts and forgotten flows, relevant to most usual methods. It has been tested successfully for France. Biogas potential for France is assumed to about 14 Mtoe, on a global biomass potential of about 51 Mtoe (accessible under 75 $ per barrel). Potential biomass resource in the industrialized countries is about one half of final consumption of fuels and electricity, among which a quarter from biogas. In China and India, biomass potential is of the same magnitude than final consumption of fuels and electricity. Forestry harvest is already intensive, and most of the increasing should be due to biogas, which is already a solution against deforestation. Most of biogas resources come from animal manure and crops residues. Anaerobic digestion allows the restitution of organic and mineral fertilizers to the soils. In the four areas of this study, biogas potential could rise from 11 Mtoe today, to 370 Mtoe in a long term perspective. (authors)

  12. Health risk assessment linked with purified biogas injection in a natural gas distribution system

    International Nuclear Information System (INIS)

    Leroux, Carole; Modelon, Hugues; Rousselle, Christophe; Zdanevitch, Isabelle; Evanno, Sebastien

    2009-06-01

    This document provides for the opinion of the French Agency for Environmental and Occupational Health and Safety (Afsset) expressed after the collective expertise carried out for the evaluation of the health risk linked with biogas injection in the natural gas distribution system. Following the recommendations issued by the Afsset, works have been started in order to collect the sludge-derived biogas and to analyse its composition. These data will be used to assess accidental risks (resulting from biogas valorisation, pipeline transport, industrial and domestic energy valorisation) as well as health risks for users (resulting from the injection in the natural gas distribution system)

  13. Computer Aided Analysis and Prototype Testing of an Improved Biogas Reactor For Biomass System

    Directory of Open Access Journals (Sweden)

    Jeremy (Zheng Li

    2015-05-01

    Full Text Available The alternative fuel resources substituting for conventional fuels are required due to less availability of fuel resources than demand in the market. A large amount of crude oil and petroleum products are required to be imported in many countries over the world. Also the environmental pollution is another serious problem when use petroleum products. Biogas, with the composition of 54.5% CH4, 39.5% CO2, and 6% other elements (i.e., H2, N2, H2S, and O2, is a clear green fuel that can substitute the regular petroleum fuels to reduce the pollutant elements. Biogas can be produced by performing enriching, scrubbing, and bottling processes. The purification process can be further applied to take away the pollutants in biogas. The pure biogas process analyzed in this research is compressed to 2950 psi while being filled into gas cylinder. The daily produced biogas capacity is around 5480 ft3 and the processing efficacy is affected by surrounding environment and other factors. The design and development of this biogas system is assisted through mathematical analysis, 3D modeling, computational simulation, and prototype testing. Both computer aided analysis and prototype testing show close results which validate the feasibility of this biogas system in biomass applications.

  14. The design of a PC-based real-time system for monitoring Methane and Oxygen concentration in biogas production

    Science.gov (United States)

    Yantidewi, M.; Muntini, M. S.; Deta, U. A.; Lestari, N. A.

    2018-03-01

    Limited fossil fuels nowadays trigger the development of alternative energy, one of which is biogas. Biogas is one type of bioenergy in the form of fermented gases of organic materials such as animal waste. The components of gases present in biogas and affect the biogas production are various, such as methane and oxygen. The biogas utilization will be more optimal if both gases concentration (in this case is methane and oxygen concentration) can be monitored. Therefore, this research focused on designing the monitoring system of methane and oxygen concentration in biogas production in real-time. The results showed that the instrument system was capable of monitoring and recording the data of gases (methane and oxygen) concentration in biogas production in every second.

  15. Recovery of biogas as a source of renewable energy from ice-cream production residues and wastewater.

    Science.gov (United States)

    Demirel, Burak; Orok, Murat; Hot, Elif; Erkişi, Selin; Albükrek, Metin; Onay, Turgut T

    2013-01-01

    Proper management of waste streams and residues from agro-industry is very important to prevent environmental pollution. In particular, the anaerobic co-digestion process can be used as an important tool for safe disposal and energy recovery from agro-industry waste streams and residues. The primary objective of this laboratory-scale study was to determine whether it was possible to recover energy (biogas) from ice-cream production residues and wastewater, through a mesophilic anaerobic co-digestion process. A high methane yield of 0.338 L CH4/gCOD(removed) could be achieved from anaerobic digestion of ice-cream wastewater alone, with almost 70% of methane in biogas, while anaerobic digestion of ice-cream production residue alone did not seem feasible. When wastewater and ice-cream production residue were anaerobically co-digested at a ratio of 9:1 by weight, the highest methane yield of 0.131 L CH4/gCOD(removed) was observed. Buffering capacity seemed to be imperative in energy recovery from these substrates in the anaerobic digestion process.

  16. Thermoelectric characterization of an intermediate temperature solid oxide fuel cell system directly fed by dry biogas

    International Nuclear Information System (INIS)

    De Lorenzo, G.; Corigliano, O.; Lo Faro, M.; Frontera, P.; Antonucci, P.; Zignani, S.C.; Trocino, S.; Mirandola, F.A.; Aricò, A.S.; Fragiacomo, P.

    2016-01-01

    Highlights: • Numerical Model (NM) of SOFC Cogenerative System (SCS) fed by dry biogas is set up. • NM simulates new Ni-Fe/CGO protective layer for direct CH 4 consumption at the anode. • NM simulates the anode carbonation phenomenon and is experimentally validated. • The performance parameters trends of SCS fed by three types of dry biogas are shown. • SEM images after 40 h of operation show that there is no anode carbon deposition. - Abstract: A properly manufactured intermediate temperature Solid Oxide Fuel Cell (SOFC) can be directly fed by dry biogas, considering also the electrochemical partial and total oxidation reactions of methane in the biogas at the anode. In this way the methane in the biogas is electrochemically consumed directly at the fuel cell without the need to mix the biogas with any reforming gas (steam, oxygen or carbon dioxide). In this article, a numerical model of an SOFC system with Ni-Fe/CGO electrocatalyst anode protective layer directly fed by dry biogas, in cogenerative arrangement and with anode exhaust gas recirculation is formulated. The influences of biogas composition, of fuel cell operating current density and of percentage of recirculated anode exhaust gas on the SOFC system performances were evaluated by calculation code. An SOFC test bench was set up to validate the calculation code results experimentally. Furthermore, the numerical model also considers the anode carbonation and evaluates the amount of carbon that can be formed in the anode at chemical equilibrium and quasi-equilibrium conditions associated with the specific anode protective layer used.

  17. Biogas from ley crops

    International Nuclear Information System (INIS)

    Dalemo, M.; Edstroem, M.; Thyselius, L.; Brolin, L.

    1993-01-01

    This report describes the cost of producing biogas from energy crops. Five process systems, sized 0.25-8 MW are studied. The cultivation of biogas-crops is made in three regions in Sweden. Also valued are the positive cultivation effects obtained when cereal dominated crop rotation is broken by biogas crops. 8 refs, 40 figs, 10 tabs

  18. Clever farmers give gas: model solutions for agricultural biogas systems. Results from the BMVEL (Federal Ministry for Consumers' Protection, Nutrition and Agriculture) model project 2004/2005: Moel solutions for environment-friendly and economical energy utilization with agricultural biogas systems

    International Nuclear Information System (INIS)

    Niebaum, A.; Jaeger, P.

    2005-01-01

    With the examples of biogas system concepts from practical agriculture, farmers, consultants, representatives of authorities and all those interested in biogas are shown successful and proved solutions concepts of generating energy from biogas. The project included agricultural enterprises with biogas systems who have implemented a biologically and technically efficient biomass utilization, who have optimized their operations by means of the biogas system, who have integrated their biogas system in their operational concept and who were able to harmonize the objectives of using a biogas system with the environment and the regional specificities

  19. Greenhouse Gas Mitigation of Rural Household Biogas Systems in China: A Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Jun Hou

    2017-02-01

    Full Text Available Rural household biogas (RHB systems are at a crossroads in China, yet there has been a lack of holistic evaluation of their energy and climate (greenhouse gas mitigation efficiency under typical operating conditions. We combined data from monitoring projects and questionnaire surveys across hundreds of households from two typical Chinese villages within a consequential life cycle assessment (LCA framework to assess net GHG (greenhouse gas mitigation by RHB systems operated in different contexts. We modelled biogas production, measured biogas losses and used survey data from biogas and non-biogas households to derive empirical RHB system substitution rates for energy and fertilizers. Our results indicate that poorly designed and operated RHB systems in northern regions of China may in fact increase farm household GHG emissions by an average of 2668 kg CO2-eq· year−1, compared with a net mitigation effect of 6336 kg CO2-eq per household and year in southern regions. Manure treatment (104 and 8513 kg CO2-eq mitigation and biogas leakage (-533 and -2489 kg CO2-eq emission are the two most important factors affecting net GHG mitigation by RHB systems in northern and southern China, respectively. In contrast, construction (−173 and −305 kg CO2-eq emission, energy substitution (−522 emission and 653 kg·CO2-eq mitigation and nutrient substitution (−1544 and −37 kg CO2-eq emission made small contributions across the studied systems. In fact, survey data indicated that biogas households had higher energy and fertilizer use, implying no net substitution effect. Low biogas yields in the cold northern climate and poor maintenance services were cited as major reasons for RHB abandonment by farmers. We conclude that the design and management of RHB systems needs to be revised and better adapted to local climate (e.g., digester insulation and household energy demand (biogas storage and micro power generators to avoid discharge of unburned biogas

  20. Microalgal Cultivation in Treating Liquid Digestate from Biogas Systems.

    Science.gov (United States)

    Xia, Ao; Murphy, Jerry D

    2016-04-01

    Biogas production via anaerobic digestion (AD) has rapidly developed in recent years. In addition to biogas, digestate is an important byproduct. Liquid digestate is the major fraction of digestate and may contain high levels of ammonia nitrogen. Traditional processing technologies (such as land application) require significant energy inputs and raise environmental risks (such as eutrophication). Alternatively, microalgae can efficiently remove the nutrients from digestate while producing high-value biomass that can be used for the production of biochemicals and biofuels. Both inorganic and organic carbon sources derived from biogas production can significantly improve microalgal production. Land requirement for microalgal cultivation is estimated as 3% of traditional direct land application of digestate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Increasing methane content in biogas and simultaneous value added product recovery using microbial electrosynthesis.

    Science.gov (United States)

    Das, Sovik; Chatterjee, Pritha; Ghangrekar, M M

    2018-03-01

    Electrosynthesis of multi-carbon compounds from the carbon dioxide present in biogas is a nascent approach towards purification of biogas. Microbial electrosynthesis (MES) cells, fabricated using different electrode materials, were operated using different electrolytes and mixed anaerobic culture as biocatalysts in the cathodic chamber under an applied cathode potential of -0.7 V vs standard hydrogen electrode (SHE). The rate of production of acetate, isobutyrate, propionate and 2-piperidinone from reduction of CO 2 in the cathodic chamber of the MES was 0.81 mM/day, 0.63 mM/day, 0.44 mM/day and 0.53 mM/day, respectively. As methane was also present in the biogas, methyl derivatives of these acids were also found in traces in catholyte. It was observed that the use of nickel foam as an anode, 1 M NiSO 4 solution as anolyte, graphite felt as a cathode, phosphate buffer solution as catholyte at a pH of 5.2 proved to be the best possible combination for MES for this study to get enhanced product yield at higher energy efficiency.

  2. Energy efficiency and sustainability of complex biogas systems: A 3-level emergetic evaluation

    International Nuclear Information System (INIS)

    Chen, Shaoqing; Chen, Bin

    2014-01-01

    Highlights: • The metabolism of complex biogas system increased from 2000 to 2008. • System renewability has been increased due to biogas utilization. • Electricity, diesels and infrastructure were the most efficient supplies. • All processes were challenged by high transformity and low sustainability. - Abstract: Biogas engineering and the biogas-linked agricultural industries as a whole has been used as both a developmental strategy for rural new emergy and an important part of renewable agriculture revolution in China. In this paper, we proposed a 3-level emergetic evaluation framework to investigate the energy efficiency and sustainability of a complex biogas system (CBS) in South China, comprising agro-industries such as planting, aquaculture, breeding and biogas. The framework is capable of tracking dynamical behaviors of the whole complex system (Level I), transformation processes (Level II) and resource components (Level III) simultaneously. Two new indicators, emergy contribution rate (ECR) and emergy supply efficiency (ESE) were developed to address the contribution and efficiency of resource components within each agro-industrial process. Our findings suggested the metabolism of the CBS were increased from 2000 to 2008, in which planting production was the biggest process in terms of total emergy input, while breeding was the most productive one with its highest total emergy yield. The CBS was under an industry transaction process stimulated by biogas construction, while the traditional agricultural activities still play an important role. For economic input, a trend towards a more renewable regime was found behind the total increase over time. With different preferences for renewable or non-renewable resources, planting and aquaculture production were proved natural donation-reliant, while breeding and biogas were economic input-dependent. Among all the economic inputs, electricity, diesels and infrastructure were the most efficient components

  3. Hygienic aspects of livestock manure management and biogas systems operated by small-scale pig farmers in Vietnam.

    Science.gov (United States)

    Huong, Luu Quynh; Madsen, Henry; Anh, Le Xuan; Ngoc, Pham Thi; Dalsgaard, Anders

    2014-02-01

    Biogas digesters are widely promoted and increasingly used to treat and generate gas from pig slurry worldwide. The objective of this study was to describe manure management practices with focus on biogas digestion among small scale pig farmers in Hue (50 farmers) and Hanoi (96 farmers) and to assess fecal contamination levels in biogas effluent. Results showed that 84% of the farmers in Hanoi and 42% in Hue used both pig slurry and human excreta for biogas production. Biogas digestion only reduced E. coli concentrations by 1 to 2 log units to 3.70 ± 0.84 Escherichia coli (log10) cfu/ml on average in effluent as compared with raw slurry. Biogas effluent was commonly used to fertilize vegetables or discharged directly into the garden or aquatic recipients. Reduced problems with bad smells and flies were reported as main reasons for establishing a biogas digester. Further studies are needed to assess human and animal health hazards associated with the discharge and use of biogas effluent from small-scale biogas systems. © 2013.

  4. Upgrading versus reforming: an energy and exergy analysis of two Solid Oxide Fuel Cell-based systems for a convenient biogas-to-electricity conversion

    International Nuclear Information System (INIS)

    Baldinelli, A.; Barelli, L.; Bidini, G.

    2017-01-01

    a high endothermic process steps, the membrane-based system is also convenient whether heat recovery is required, producing a combined heat-and-power efficiency of 74.8% versus 47.0% obtained in the other system. Moreover, the results of a sensitivity analysis of the impact of membrane and reforming operating parameters on the overall system performances justify the convenience of adopting the solution of biogas direct feeding. Even in the hypothesis of a poorly performing membrane and an optimized reformer, the membrane-based system exhibits a gain in the system energy and combined heat-and-power efficiency of 25.2% and 34.9% respectively, with regard to the reforming-based concept. The forcefulness of this result is reinforced by a preliminary evaluation of capital expenditures, which represents a further economic advantage beside the economic revenue coming from a higher energy conversion efficiency.

  5. A techno-economic evaluation of anaerobic biogas producing systems in developing countries.

    Science.gov (United States)

    Morgan, Hervan Marion; Xie, Wei; Liang, Jianghui; Mao, Hanping; Lei, Hanwu; Ruan, Roger; Bu, Quan

    2017-12-08

    Biogas production has been the focus of many individuals in the developing world; there have been several investigations that focus on improving the production process and product quality. In the developing world the lack of advanced technology and capital has hindered the development of energy production. Renewable energy has the potential to improve the standard of living for most of the 196 countries which are classified as developing economies. One of the easiest renewable energy compounds that can be produced is biogas (bio-methane). Biogas can be produced from almost any source of biomass through the anaerobic respiration of micro-organisms. Low budget energy systems are reviewed in this article along with various feedstock sources. Adapted gas purification and storage systems are also reviewed, along with the possible economic, social, health and environmental benefits of its implementation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Zigan, James A.

    2017-12-19

    A waste heat recovery system includes a Rankine cycle (RC) circuit having a pump, a boiler, an energy converter, and a condenser fluidly coupled via conduits in that order, to provide additional work. The additional work is fed to an input of a gearbox assembly including a capacity for oil by mechanically coupling to the energy converter to a gear assembly. An interface is positioned between the RC circuit and the gearbox assembly to partially restrict movement of oil present in the gear assembly into the RC circuit and partially restrict movement of working fluid present in the RC circuit into the gear assembly. An oil return line is fluidly connected to at least one of the conduits fluidly coupling the RC components to one another and is operable to return to the gear assembly oil that has moved across the interface from the gear assembly to the RC circuit.

  7. System comparison: trolleybus, diesel or (bio)gas bus?; Systemvergleich Trolley-, Diesel- und (Bio-)Gasbus

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made concerning the choice of new buses for the public transport system in Winterthur, Switzerland. The background to the report - the replacement of buses running on route 4 - is discussed. The study examines the financial and ecological aspects of three alternatives - trolleybuses running on the refurbished existing overhead wires, standard diesel buses and biogas-fueled buses. The three methods used for the ecological assessment of the variants are discussed and alternative variants that take account of fuel origins (electricity: hydropower or European mix, gas: natural gas or biogas) are described. The results of the economical and ecological assessments for the total of five variants are presented in detail and recommendations are made for the purchase of gas buses fuelled with biogas.

  8. Closing CO2 Loop in Biogas Production: Recycling Ammonia As Fertilizer.

    Science.gov (United States)

    He, Qingyao; Yu, Ge; Tu, Te; Yan, Shuiping; Zhang, Yanlin; Zhao, Shuaifei

    2017-08-01

    We propose and demonstrate a novel system for simultaneous ammonia recovery, carbon capture, biogas upgrading, and fertilizer production in biogas production. Biogas slurry pretreatment (adjusting the solution pH, turbidity, and chemical oxygen demand) plays an important role in the system as it significantly affects the performance of ammonia recovery. Vacuum membrane distillation is used to recover ammonia from biogas slurry at various conditions. The ammonia removal efficiency in vacuum membrane distillation is around 75% regardless of the ammonia concentration of the biogas slurry. The recovered ammonia is used for CO 2 absorption to realize simultaneous biogas upgrading and fertilizer generation. CO 2 absorption performance of the recovered ammonia (absorption capacity and rate) is compared with a conventional model absorbent. Theoretical results on biogas upgrading are also provided. After ammonia recovery, the treated biogas slurry has significantly reduced phytotoxicity, improving the applicability for agricultural irrigation. The novel concept demonstrated in this study shows great potential in closing the CO 2 loop in biogas production by recycling ammonia as an absorbent for CO 2 absorption associated with producing fertilizers.

  9. BEAP profiles as rapid test system for status analysis and early detection of process incidents in biogas plants.

    Science.gov (United States)

    Refai, Sarah; Berger, Stefanie; Wassmann, Kati; Hecht, Melanie; Dickhaus, Thomas; Deppenmeier, Uwe

    2017-03-01

    A method was developed to quantify the performance of microorganisms involved in different digestion levels in biogas plants. The test system was based on the addition of butyrate (BCON), ethanol (ECON), acetate (ACON) or propionate (PCON) to biogas sludge samples and the subsequent analysis of CH 4 formation in comparison to control samples. The combination of the four values was referred to as BEAP profile. Determination of BEAP profiles enabled rapid testing of a biogas plant's metabolic state within 24 h and an accurate mapping of all degradation levels in a lab-scale experimental setup. Furthermore, it was possible to distinguish between specific BEAP profiles for standard biogas plants and for biogas reactors with process incidents (beginning of NH 4 + -N inhibition, start of acidification, insufficient hydrolysis and potential mycotoxin effects). Finally, BEAP profiles also functioned as a warning system for the early prediction of critical NH 4 + -N concentrations leading to a drop of CH 4 formation.

  10. The effect of system parameters on the biogas production from anaerobic digestion of livestock wastes

    Science.gov (United States)

    Animal wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. In this study, an evaluation of system p...

  11. Identification of the microbiological community in biogas systems and evaluation of microbial risks from gas usage

    Energy Technology Data Exchange (ETDEWEB)

    Vinneraas, Bjoern [Swedish University of Agricultural Sciences, Department of Biometry and Engineering, Box 7032, SE-750 07 Uppsala (Sweden); Schoenning, Caroline [Swedish Institute for Infectious Disease Control, Department of Parasitology, Mycology, Environmental Mirobiology and Water, SE-171 82 Solna (Sweden); Nordin, Annika [National Veterinary Institute, Department of Wild Life, Fish and Environment, SE-751 89 Uppsala (Sweden)

    2006-08-31

    The plans for introducing biogas produced from organic waste to the pipe system for natural gas has raised concerns about the risk of transmitting disease via the gas. To assess this risk, condensate water from gas pipes and gas from different parts of a biogas upgrading system were sampled and cultured for microbial content. On average, 10{sup 5} cfu ml{sup -1} were found in the condensate water throughout the system, while in the gas between 10 and 100 cfu m{sup -3} were found. The microorganisms were subjected to further identification and found to represent a wide variety, e.g. fungi and spore-forming and non-spore-forming bacteria, including species such as Enterobacteriaceae. The number of microorganisms found in the biogas corresponded to the densities in sampled natural gas, which also held 10-100 cfu m{sup -3}. Since no pathogens were identified and since the exposure to gas from e.g. cookers and refuelling of cars may only result in the inhalation of small volumes of gas, the risk of spreading disease via biogas was judged to be very low. (author)

  12. Microaerobic desulphurisation unit: a new biological system for the removal of H₂S from biogas.

    Science.gov (United States)

    Ramos, I; Pérez, R; Fdz-Polanco, M

    2013-08-01

    A new biotechnology for the removal of H2S from biogas was devised. The desulphurisation conditions present in microaerobic digesters were reproduced inside an external chamber called a microaerobic desulphurisation unit (MDU). A 10 L-unit was inoculated with 1L of digested sludge in order to treat the biogas produced in a pilot digester. During the 128 d of research under such conditions, the average removal efficiency was 94%. The MDU proved to be robust against fluctuations in biogas residence time (57-107 min), inlet H2S concentration (0.17-0.39% v/v), O2/H2S supplied ratio (17.3-1.4 v/v), and temperature (20-35°C). Microbiological analysis confirmed the presence of at least three genera of sulphide-oxidising bacteria. Approximately 60% of all the H2S oxidised was recovered from the bottom of the system in the form of large solid S(0) sheets with 98% w/w of purity. Therefore, this system could become a cost-effective alternative to the conventional biotechniques for biogas desulphurisation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Exergy and economic analysis of organic rankine cycle hybrid system utilizing biogas and solar energy in rural area of China

    DEFF Research Database (Denmark)

    Zhao, Chunhua; Zheng, Siyu; Zhang, Ji

    2017-01-01

    Due to the existing huge biogas resource in the rural area of China, biogas is widely used for production and living. Cogeneration system provides an opportunity to realize the balanced utilization of the renewable energy such as biogas and solar energy. This paper presented a numerical investiga......Due to the existing huge biogas resource in the rural area of China, biogas is widely used for production and living. Cogeneration system provides an opportunity to realize the balanced utilization of the renewable energy such as biogas and solar energy. This paper presented a numerical...... circuits. The cogeneration supplied the power to the air-condition in summer condition and hot water, which is heated in the condenser, in winter condition. The system performance under the subcritical pressures has been assessed according to the energy-exergy and economic analysis with the organic working......℃. The exergy efficiency of organic Rankine cycle (ORC) system increases from 35.2% to 38.2%. Moreover, an economic analysis of the system is carried out. The results demonstrate that the profits generated from the reduction of biogas fuel and electricity consumption can lead to a significant saving, resulting...

  14. Total Energy Recovery System for Agribusiness. [Geothermally heated]. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Fogleman, S.F.; Fisher, L.A.; Black, A.R.; Singh, D.P.

    1977-05-01

    An engineering and economic study was made to determine a practical balance of selected agribusiness subsystems resulting in realistic estimated produce yields for a geothermally heated system known as the Total Energy Recovery System for Agribusiness. The subsystem cycles for an average application at an unspecified hydrothermal resources site in the western United States utilize waste and by-products from their companion cycles insofar as practicable. Based on conservative estimates of current controlled environment yields, produce wholesale market prices, production costs, and capital investment required, it appears that the family-operation-sized TERSA module presents the potential for marginal recovery of all capital investment costs. In addition to family- or small-cooperative-farming groups, TERSA has potential users in food-oriented corporations and large-cooperative-agribusiness operations. The following topics are considered in detail: greenhouse tomatoes and cucumbers; fish farming; mushroom culture; biogas generation; integration methodology; hydrothermal fluids and heat exchanger selection; and the system. 133 references. (MHR)

  15. Economical and ecological benchmarking of biogas plant configurations for flexible power generation in future power supply systems; Oekonomisches und oekologisches Benchmarking von Biogasanlagenkonfigurationen zur flexiblen Verstromung in zukuenftigen Stromversorgungssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Henning [Fraunhofer Institut fuer Windenergie und Energiesystemtechnik (IWES), Kassel (Germany). Bereich Energieverfahrenstechnik

    2016-08-01

    With the share of intermittent renewable energies within the electricity system rising, balancing services from dispatchable power plants are of increasing importance. This study comparatively assesses the environmental and economic performance of biogas plant configurations, supplying biogas on demand for flexible power generation. A cost analysis of five configurations based on biogas storing and flexible biogas production concepts has been carried out. Results show that additional flexibility costs for a biogas supply of 8 hours per day range between 2 Euro to 11 Euro MWh{sup -1} and for a 72 hour period without biogas demand from 9 Euro to 19 Euro MWh{sup -1}. While biogas storage concepts were identified as favorable short-term supply configurations, flexible biogas production concepts profit from reduced storage requirements at plants with large biogas production capacities or for longer periods without biogas demand [1, 2]. Flexible biogas plant configurations indicate an increased energy demand to operate the operational enhancements compared to conventional biogas plants supplying biogas for baseload power generation. However, findings show that in contrast to an alternative supply of power generators with natural gas, biogas supplied on demand by adapted biogas plant configurations saves greenhouse gas emissions by 54 to 65 g CO{sub 2-eq} MJ{sup -1} and primary energy by about 1.17 MJ MJ{sup -1}. In this regard, configurations with flexible biogas production profit from reduced biogas storage requirements and achieve higher savings compared to configurations with continuous biogas production [1, 3].

  16. Multicriteria analysis of the hybrid systems with biogas: fuzzy set and rules; Analise multicriterio de sistemas hibridos com biogas: conjuntos e regras fuzzy

    Energy Technology Data Exchange (ETDEWEB)

    Barin, A.; Canha, L.; Abaide, A.; Magnago, K. [Federal University of Santa Maria (UFSM), RS (Brazil)], E-mail: chbarin@gmail.com; Machado, R. [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia], E-mail: rquadros@sel.eesc.usp.br

    2009-07-01

    A multicriteria analysis to manage de renewable sources of energy is presented, identifying the most appropriate hybrid system to be used as distributed generation of electric energy using biogas. In this methodology, fuzzy sets and rules are defined simulated in the software MATLAB, where the main characteristics of the operation and application of hybrid systems of electric power generation are considered. The main generation system, that can use the biogas, as micro turbines and fuel cells, are evaluated. Afterwards, the systems of energy storage are analyzed: flywheel, H{sub 2} storage and conventional and redox batteries. For the development of the proposed methodology, it was considered the following criteria: efficiency, costs, technological maturity, environmental impacts, the amplitude of the system action (power range), useful life, co-generation possibility and operation temperature. A classification, by priority order, for the use of the sources and storages associated to the environment and cost scenarios is also presented.

  17. Innovative bioelectrochemical-anaerobic-digestion integrated system for ammonia recovery and bioenergy production from ammonia-rich residues

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    Ammonia (NH4+/NH3) inhibition during anaerobic digestion process is one of the most frequent problems existing in biogas plants, resulting in unstable process and reduced biogas production. In this study, we developed a novel hybrid system, consisted of a submersed microbial resource recovery cell...... (SMRC) and a continuous stirred tank reactor (CSTR), to prevent ammonia toxicity during anaerobic digestion by in-situ ammonia recovery and electricity production (Figure 1). In batch experiment, the ammonia concentration in the CSTR decreased from 6 to 0.7 g-N/L with an average recovery rate of 0.18 g...... of ammonia recovery on the microbial community composition in the integrated system. Results clearly indicate the great potential of the SMRC-CSTR-coupled system for efficient and cost-effective ammonia recovery, energy production and treatment of ammonia-rich residues....

  18. Nitrogen cycling in an ecological farming system of milk vetch culture - pig raising - biogas fermentation - rice culture

    NARCIS (Netherlands)

    Liu, J.R.; Berge, ten H.F.M.; Zhang, M.L.; Wu, J.F.; Guo, C.Z.; Liu, W.

    2002-01-01

    The [15]N - labeled technique was used to study the stock, transformation, fate and utilization efficiency of N in the farming-pig husbandry-biogas ecosystem in rice areas. It was shown that the crude protein digestibility of the ensilaged milk vetch by pig was 53.76%, the recovery rates of

  19. Effects of mixing system and pilot fuel quality on diesel-biogas dual fuel engine performance.

    Science.gov (United States)

    Bedoya, Iván Darío; Arrieta, Andrés Amell; Cadavid, Francisco Javier

    2009-12-01

    This paper describes results obtained from CI engine performance running on dual fuel mode at fixed engine speed and four loads, varying the mixing system and pilot fuel quality, associated with fuel composition and cetane number. The experiments were carried out on a power generation diesel engine at 1500 m above sea level, with simulated biogas (60% CH(4)-40% CO(2)) as primary fuel, and diesel and palm oil biodiesel as pilot fuels. Dual fuel engine performance using a naturally aspirated mixing system and diesel as pilot fuel was compared with engine performance attained with a supercharged mixing system and biodiesel as pilot fuel. For all loads evaluated, was possible to achieve full diesel substitution using biogas and biodiesel as power sources. Using the supercharged mixing system combined with biodiesel as pilot fuel, thermal efficiency and substitution of pilot fuel were increased, whereas methane and carbon monoxide emissions were reduced.

  20. A new degassing membrane coupled upflow anaerobic sludge blanket (UASB) reactor to achieve in-situ biogas upgrading and recovery of dissolved CH4 from the anaerobic effluent

    International Nuclear Information System (INIS)

    Luo, Gang; Wang, Wen; Angelidaki, Irini

    2014-01-01

    Highlights: • A new UASB configuration was developed by coupling with degassing membrane. • In-situ biogas upgrading was achieved with high methane content (>90%). • Decrease of dissolved methane in the anaerobic effluent was achieved. - Abstract: A new technology for in-situ biogas upgrading and recovery of CH 4 from the effluent of biogas reactors was proposed and demonstrated in this study. A vacuum degassing membrane module was used to desorb CO 2 from the liquid phase of a biogas reactor. The degassing membrane was submerged into a degassing unit (DU). The results from batch experiments showed that mixing intensity, transmembrane pressure, pH and inorganic carbon concentration affected the CO 2 desorption rate in the DU. Then, the DU was directly connected to an upflow anaerobic sludge blanket (UASB) reactor. The results showed the CH 4 content was only 51.7% without desorption of CO 2 , while it increased when the liquid of UASB was recycled through the DU. The CH 4 content increased to 71.6%, 90%, and 94% with liquid recirculation rate through the DU of 0.21, 0.42 and 0.63 L/h, respectively. The loss of methane due to dissolution in the effluent was reduced by directly pumping the reactor effluent through the DU. In this way, the dissolved CH 4 concentration in the effluent decreased from higher than 0.94 mM to around 0.13 mM, and thus efficient recovery of CH 4 from the anaerobic effluent was achieved. In the whole operational period, the COD removal efficiency and CH 4 yield were not obviously affected by the gas desorption

  1. Biogas of manure and sludge

    Science.gov (United States)

    Kraemer, F.; Gundermann, J.; Kofoed, E.; Nielsen, J.

    1981-01-01

    Biogas production from farmyard manures and sewage sludges is based on anaerobic processes (methane-bacteria) and aerobic processes (fermentative bacteria). Biogas product has high calorific value and a number of small, pilot-scale and full-scale municipal systems of biogas production is described inclusive technological solutions and cost-benefit analysis. Experience of electric power generators fueled by biogas is evaluated from the view point of competitiveness with other fuels.

  2. Future biogas plants. New systems and their economic potential; Fremtidens biogasfaellesanlaeg. Nye anlaegskoncepter og oekonomisk potentiale

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Johannes; Hjort-Gregersen, K.; Uellendahl, H.; Ahring, B.K.; Lau Baggesen, D.; Stockmarr, A.; Moeller, Henrik B.; Birkmose, T.

    2007-06-15

    The main objective of the project was the identification and analysis of new technical concepts for centralized biogas plants, which would make them less dependant on organic waste supplies, and thus be economically self sustained mainly on manure supplies. The analyses have been carried out as system analyses, where plant concepts have been evaluated in connection with agricultural areas. 8 scenarios where analyzed, of which 2 were reference scenarios. (au)

  3. Mathematical Modeling of Dual Layer Shell Type Recuperation System for Biogas Dehumidification

    Science.gov (United States)

    Gendelis, S.; Timuhins, A.; Laizans, A.; Bandeniece, L.

    2015-12-01

    The main aim of the current paper is to create a mathematical model for dual layer shell type recuperation system, which allows reducing the heat losses from the biomass digester and water amount in the biogas without any additional mechanical or chemical components. The idea of this system is to reduce the temperature of the outflowing gas by creating two-layered counter-flow heat exchanger around the walls of biogas digester, thus increasing a thermal resistance and the gas temperature, resulting in a condensation on a colder surface. Complex mathematical model, including surface condensation, is developed for this type of biogas dehumidifier and the parameter study is carried out for a wide range of parameters. The model is reduced to 1D case to make numerical calculations faster. It is shown that latent heat of condensation is very important for the total heat balance and the condensation rate is highly dependent on insulation between layers and outside temperature. Modelling results allow finding optimal geometrical parameters for the known gas flow and predicting the condensation rate for different system setups and seasons.

  4. Biogas everywhere

    International Nuclear Information System (INIS)

    Couturier, Ch.; Pegret-Rosa, A.S.; Leca, Ch.; Adlec, E.

    2009-01-01

    Since the publication in July 2006 of the new purchase tariff of electricity produced by biogas, the methanation channel is increasing. In the past ten years the number of biogas plants from domestic wastes, passed from 1 to 20. This document presents an economic analysis of the different sources of biogas, the performances and the injection of biogas in the public network of the gas utilities. (A.L.B.)

  5. The biogas

    International Nuclear Information System (INIS)

    Rigaud, Ch.; Laffargue, C.; Zebboud, I.

    2007-01-01

    Mixed of methane and carbon dioxide the biogas can be produced by many sources for the heat or the electricity production and the fuel production. This document aims to better understand the biogas, its characteristics, its valorization, the plants concerned, the installations and the regulation. It provides also an example of a biogas power plant and the biogas use in the farms. (A.L.B.)

  6. Introducing Recovery Style for Modeling and Analyzing System Recovery

    NARCIS (Netherlands)

    Sözer, Hasan; Tekinerdogan, B.; Kruchten, P.; Garlan, D.; Woods, E.

    An analysis of the existing approaches for representing architectural views reveals that they focus mainly on functional concerns and are limited when considering quality concerns. We introduce the recovery style for modeling the structure of the system related to the recovery concern. The recovery

  7. Development of an engine control system using city gas and biogas fuel mixture

    International Nuclear Information System (INIS)

    Yamasaki, Yudai; Kanno, Masanobu; Suzuki, Yoshitaka; Kaneko, Shigehiko

    2013-01-01

    Highlights: ► The gas engine control system was developed using both city gas and biogas flexibly. ► The developed control system corporates with an original controller. ► The target value of O 2 emission is decided by Wobbe index of mixture fuel and load. ► The controller achieved stable operation for fuel mix ratio and load changing. -- Abstract: In this paper, a gas engine system capable of stable operation at any mix ratio of city gas 13A and biogas was developed. The gas engine system consists of a spark-ignition gas engine, an additional electric throttle valve for fuel and our own control algorithm. The engine is a 3-cylinder 1.6-l engine that was originally used for co-generation, and the fuel throttle valve was added to respond to different fuel compositions. The control algorithm was also designed to adjust the fuel and air ratio to attain a higher generation efficiency and lower NOx emission with different mix ratios of city gas 13A, biogas and load. Before developing the controller, the effect of the mix ratio on generation efficiency and NOx emission was investigated under various load conditions. The following summarizes the experimental results: a control algorithm using the Wobbe index for mixed fuels was formulated; this index determines the target fuel-to-air ratio. Next, operation tests were performed under varying fuel mix ratios and loads by applying the control algorithm to the gas engine. The target engine rotational speed and exhaust O 2 concentration was realized in 5 s when the biogas fraction varied from 20% to 40% and from 70% to 40%. When the load was also varied from 9.4 kW to 0.5 kW and from 0.5 kW to 9.4 kW at a constant rate, the rotational speed and exhaust O 2 concentration achieved the target values in 20 s. Under both transient operation conditions, the engine system met the NOx emission requirement, and the results indicate that the simple hardware modification to a conventional gas engine and our original control

  8. Neural-fuzzy control system application for monitoring process response and control of anaerobic hybrid reactor in wastewater treatment and biogas production.

    Science.gov (United States)

    Waewsak, Chaiwat; Nopharatana, Annop; Chaiprasert, Pawinee

    2010-01-01

    Based on the developed neural-fuzzy control system for anaerobic hybrid reactor (AHR) in wastewater treatment and biogas production, the neural network with backpropagation algorithm for prediction of the variables pH, alkalinity (Alk) and total volatile acids (TVA) at present day time t was used as input data for the fuzzy logic to calculate the influent feed flow rate that was applied to control and monitor the process response at different operations in the initial, overload influent feeding and the recovery phases. In all three phases, this neural-fuzzy control system showed great potential to control AHR in high stability and performance and quick response. Although in the overloading operation phase II with two fold calculating influent flow rate together with a two fold organic loading rate (OLR), this control system had rapid response and was sensitive to the intended overload. When the influent feeding rate was followed by the calculation of control system in the initial operation phase I and the recovery operation phase III, it was found that the neural-fuzzy control system application was capable of controlling the AHR in a good manner with the pH close to 7, TVA/Alk 80% with biogas and methane yields at 0.45 and 0.30 m3/kg COD removed.

  9. Process flow model of solid oxide fuel cell system supplied with sewage biogas

    Science.gov (United States)

    Van herle, J.; Maréchal, F.; Leuenberger, S.; Membrez, Y.; Bucheli, O.; Favrat, D.

    A model for a 100 kW class solid oxide fuel cell (SOFC) system running on biogas from a sewage sludge digestion plant was implemented in a process flow scheme using external steam reforming. The model stack consisted of planar anode supported cells operated at 800 °C displaying state-of-the-art electrochemical performance (0.15 W/cm 2 at 80% fuel utilisation). Real annual data from an existing sewage plant were used as input to the model. From the input of 43 m 3/h biogas (63% CH 4), equivalent to 269 kW (higher heating value, HHV), the SOFC stack was calculated to deliver 131 kW el electricity (48.7%) using a steam-to-carbon ratio of 0.5. This would allow the sewage site to more than cover its own electrical needs, hence to depollute the waste stream at negative energy cost. In its current exploitation using a low efficient gas engine (130 kW), the site is only ≈50% self-sufficient. Special attention was given to the thermal balance of the stack. The stack developed heat (143 kW) could be balanced by endothermal reforming (78 kW) and by cathode excess air λ (=3), allowing a temperature difference between stack inlet and outlet of 200 K. The case was compared to other fuel scenarios. Steam-added biogas behaves basically identically to steam-reformed methane. For partial oxidation of biogas or pure hydrogen feeding, electrical efficiency drops to under 43% while λ needs to be raised to 4.5 to maintain the 200 K thermal gradient over the stack.

  10. Natural attenuation of biogas in landfill covers

    International Nuclear Information System (INIS)

    Cossu, R.; Privato, A.; Raga, R.

    2005-01-01

    In the risk evaluation of uncontrolled biogas emissions from landfills, the process of natural attenuation in landfill covers assumes a very important role. The capacity of biogas oxidation in the cover soils seems to be the most important control to mitigate the biogas emission during the aftercare period when the biogas collection system might fail. In the present paper laboratory experiences on lab columns to study the biogas oxidation are discussed [it

  11. Performance Analysis of a MCFC/MGT Hybrid Power System Bi-Fueled by City Gas and Biogas

    Directory of Open Access Journals (Sweden)

    Hongyu Huang

    2015-06-01

    Full Text Available This study evaluates the performance of a molten carbonate fuel cell and micro gas turbine (MCFC/MGT hybrid power system bi-fueled by city gas and biogas. The performance of the MCFC/MGT hybrid power system and MFCF/MGT hybrid power system response have been investigated experimentally and numerically. Results show that the MCFC, steam reformer, and catalytic combustor models are in agreement with the experimental results of the system fueled by city gas only and the system bi-fueled by city gas and biogas. The MFCF/MGT hybrid power system can have manifest operation with the addition of biogas at a flow rate of up to 150.0 Nm3·h−1, which is about 50% of the overall input heat value. In addition, the MCFC and MGT outputs decrease with the increase in the flow rate of added biogas, with an overall power generation efficiency ranging from 39.0% to 42.0%. Furthermore, the MCFC/MGT hybrid power system can be operated stably both at low amplitude with slow current change and large amplitude with rapid power conditions. Finally, the MCFC/MGT hybrid system bi-fueled by city gas and biogas may be applicable to the energy supply of the micro–grid network.

  12. Greenhouse gas emissions of an agro-biogas energy system: Estimation under the Renewable Energy Directive

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Roberto, E-mail: roberto.rana@unifg.it; Ingrao, Carlo; Lombardi, Mariarosaria; Tricase, Caterina

    2016-04-15

    Agro-biogas from energy crops and by-products is a renewable energy carrier that can potentially contribute to climate change mitigation. In this context, application of the methodology defined by the Renewable Energy Directive 2009/28/EC (RED) was performed in order to estimate the 100-year Global Warming Potential (GWP{sub 100}) associated with an agro-biogas supply chain (SC) in Southern Italy. Doing so enabled calculation of Greenhouse Gas (GHG) emission saving in order to verify if it is at least equal to 35% compared to the fossil fuel reference system, as specified by the RED. For the assessment, an attributional Life Cycle Assessment (LCA) approach (International Organization for Standardization (ISO), 2006a,b) was integrated with the RED methodology applied following the guidelines reported in COM(2010)11 and updated by SWD(2014)259 and Report EUR 27215 EN (2015). Moreover, primary data were collected with secondary data extrapolated from the Ecoinvent database system. Results showed that the GWP{sub 100} associated with electricity production through the biogas plant investigated was equal to 111.58 g CO{sub 2eq} MJ{sub e}{sup −1} and so a 40.01% GHG-emission saving was recorded compared to the RED reference. The highest contribution comes from biomass production and, in particular, from crop cultivation due to production of ammonium nitrate in the overall amount used for crop cultivation. Based upon the findings of the study, the GHG saving calculated slightly exceeds the related minimum proposed by the RED: therefore, improvements are needed anyway. In particular, the authors documented that through replacement of ammonium nitrate with urea the GHG-emission saving would increase to almost 68%, thus largely satisfying the RED limit. In addition, the study highlighted that conservation practices, such as NT, can significantly enable reduction of the GHG-emissions coming from agricultural activities. Therefore, those practices should be increasingly

  13. Nonrenewable Energy Cost and Greenhouse Gas Emissions of a “Pig-Biogas-Fish” System in China

    Directory of Open Access Journals (Sweden)

    Qing Yang

    2012-01-01

    Full Text Available The purpose of this study is to assess the energy savings and emission reductions of the present rural biogas system in China. The life cycle assessment (LCA method is used to analyze a “pig-biogas-fish” system in Jingzhou, Hubei Province, China. The nonrenewable energy cost and the greenhouse gas (GHG emissions of the system, including the pigsty, the biogas digester, and the fishpond, are taken into account. The border definition is standardized because of the utilization of the database in this paper. The results indicate that the nonrenewable energy consumption intensity of the “pig-biogas-fish” system is 0.60 MJ/MJ and the equivalent CO2 emission intensity is 0.05 kg CO2-eq/MJ. Compared with the conventional animal husbandry system, the “pig-biogas-fish” system shows high renewability and GHG reduction benefit, which indicates that the system is a scientific and environmentally friendly chain combining energy and ecology.

  14. Construction and evaluation of a system for removal CO{sub 2} contained in the biogas; Confeccao e avaliacao de um sistema de remocao do CO{sub 2} contido no biogas

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Samuel Nelson Melegari de; Neitzke, Guilherme; Magalhaes, Edney A.; Afonso, Adriano D. de Lima [Universidade Estadual do Oeste do Parana (UNIOESTE/CCET), Cascavel, PR (Brazil). Centro de Ciencias Exatas. Programa Institucional de Bolsas de Iniciacao Cientifica], Emails: ssouza@unioeste.br, guilherme_neitzke@yahoo.com.br

    2006-07-01

    The biogas is an alternative fuel produced by the biomass anaerobic digestion (organics wastes) and is composed by methane and carbon dioxide. The shift the composition of biogas is very important because increases its viability of use as bio fuel. The remotion of carbon dioxide (CO{sub 2}) to result in an increasing the concentration of methane (CH{sub 4}) in biogas composition and became the lower heating value higher. One decreasing the concentration of acid hydro sulphide (H{sub 2}S) reduce the corrosion produced during the use of biogas in thermal systems for the secondary energy production. This work aimed to develop a physical and chemical mechanism for remotion of CO{sub 2} from biogas. The device has made, was a absorption column stuffed, with 250 cm of high and 30 cm of diameter, using pipe of PVC rigid of 20 mm of diameter as stuff and water as solvent. It has been done test with inside pressure and gas flow in the column between 300 and 500 kPa and 190 and 670 cm{sup 3}/s. The original biogas has a concentration the 33%% of CO{sub 2}. With the utilization of the column's absorption was obtained reduction in CO{sub 2} concentration of 15%, which showed an increasing of 57% in the lower heating value of biogas per unit of mass. (author)

  15. Biogas and nutrients in an urban/rural circulation system; Biogas och vaextnaering i stad/land baserat kretslopp. Pilotfoersoek med organiskt avfall i Uppsala

    Energy Technology Data Exchange (ETDEWEB)

    Edstroem, M. [Swedish Inst. of Agricultural Engineering, Uppsala (Sweden)

    1995-12-31

    During 1993 and 1994, the Swedish Institute of Agricultural Engineering has cooperated with the Uppsala Public Works Office in studying a processing system where organic, nutrient-rich waste has been utilized for biogas production and the digested residue used as plant nutrient and soil conditioner. The study was conducted in the laboratory and on a pilot scale and the intention was to illustrate the biological, technical, environmental and economic consequences of a full-scale system of this kind. Areas treated are Waste composition, Collection, Laboratory experiments, Pilot experiments, Growth experiments using digested residue, Environmental effects, Full-scale description, Business economy, and National economy. 7 figs, 26 tabs

  16. An integrated approach for a dynamic energy and environmental system analysis of biogas production pathways

    NARCIS (Netherlands)

    W. Liu; F. Pierie; H.C. Moll

    2014-01-01

    Abstract written to Biogas Science for oral presentation. Regarding a new methodology for determining the energy efficiency, carbon footprint and environmental impact of anaerobic biogas production pathways. Additionally, results are given regarding the impacts of energy crops and waste products

  17. Experiences with biogas in Denmark

    DEFF Research Database (Denmark)

    Bundgaard, Sirid Sif; Kofoed-Wiuff, Anders

    This report is primarily based on the work of the Danish biogas task force, which was established as a result of the Energy Agreement of 22 March 2012. The purpose of the task force is to examine and support concrete biogas projects in order to facilitate the projected biogas development up to 2020....... The focus of the task force was on the practical integration of the new biogas production in energy system, including the utilization of gas, the necessary infrastructure and contractual relationships. The aim was to ensure effective and appropriate integration of biogas in the Danish energy supply, which...... was consistent with the policy objectives, both in regards to current challenges for specific biogas plants and the role of biogas flexible renewable energy form on longer term. The task force's final report was published in 2014....

  18. Biogas plants with 300 GWh yearly production - system, technology and economy; Biogasanlaeggningar med 300 GWh aarsproduktion - system, teknik och ekonomi

    Energy Technology Data Exchange (ETDEWEB)

    Benjaminsson, Johan; Linne, Marita [BioMil AB, Lund (Sweden)

    2007-09-15

    Systems, techniques and economy have been analysed for biogas plants with more than 300 GWh annual energy productions. There is so far no such concept in Sweden but in Germany, a so called biogas park with 450 GWh annual biogas production will be set in operation by autumn 2007. Substratum for 300 GWh gas production are crops which corresponds to a acreage need of 6,000-11,000 hectares for silage crops such as maize or grass. If the gas production is based on corn, the acreage need is about 14 000 hectares. That means that biogas production from silage gives a higher energy outcome per hectare in comparison to grain. According to calculations, grain affects the gas price more than silage. However, grain is easy available at the world market which can be related to digestion of silage that means long term contracts with farmers nearby the biogas plant in addition to a complex logistic system for supply. The grain price by end of 2006 affects the gas price with about 0,38 kr/kWh. Large scale harvesting and transportation of silage in addition to a system for different crops to be harvested and transported directly to the digestion chamber admit reduced handling cost. Silage is expected to affect the gas price with about 0,28 kr/kWh. The price development of grain and silage can be expected to follow each other. The grain prices for 2008 seems to be higher than the notations for 2006/2007. Developed technique for digestion of grain admits 6 kg DMo/m{sup 3} chamber volume, 24 hours. That means reduced size of the digestion chamber in comparison to conventional digestion technique. In Germany where silage is the main substratum, two stage digestion with a first laying chamber admits 4 kg DMo/m{sup 3} chamber volume, 24 hours and DM-content of 12 %. The specific digestion cost for crops is about 0,13 kr/kWh. Huge amounts of digestion residue have to be handled. Dewatering makes sense since the digestion process needs additional water. The phosphorous solid fraction can

  19. Composition and uses of anaerobic digestion derived biogas from wastewater treatment facilities in North America.

    Science.gov (United States)

    Lackey, Jillian C; Peppley, B; Champagne, P; Maier, A

    2015-08-01

    A study was conducted to determine the current knowledge of biogas production and its use at municipal wastewater treatment plants (WWTPs) across North America. Information was provided by municipal WWTPs across Canada and the US. It was determined that hydrogen sulfide (H2S) and silicon (Si) compounds had sufficient variability to be of concern. The only biogas production trend that could be identified was a possible seasonal relationship with sludge input and biogas production. Secondary analysis was performed to observe trends in biogas usage in urban areas larger than 150,000 in the US and 50,000 in Canada; 66% of facilities had anaerobic digestion systems and, of those, only 35% had an energy recovery system. Climatic, population, and socio-political influences on the trends were considered. The primary conclusion was that more data is required to perform significant analyses on biogas production and composition variation. © The Author(s) 2015.

  20. Autogenerative high pressure digestion: anaerobic digestion and biogas upgrading in a single step reactor system

    NARCIS (Netherlands)

    Lindeboom, R.E.F.; Fermoso, F.G.; Weijma, J.; Zagt, K.; Lier, van J.B.

    2011-01-01

    Conventional anaerobic digestion is a widely applied technology to produce biogas from organic wastes and residues. The biogas calorific value depends on the CH4 content which generally ranges between 55 and 65%. Biogas upgrading to so-called ‘green gas’, with natural gas quality, generally proceeds

  1. Advanced regenerative heat recovery system

    Science.gov (United States)

    Prasad, A.; Jasti, J. K.

    1982-02-01

    A regenerative heat recovery system was designed and fabricated to deliver 1500 scfm preheated air to a maximum temperature of 1600 F. Since this system is operating at 2000 F, the internal parts were designed to be fabricated with ceramic materials. This system is also designed to be adaptable to an internal metallic structure to operate in the range of 1100 to 1500 F. A test facility was designed and fabricated to test this system. The test facility is equipped to impose a pressure differential of up to 27 inches of water column in between preheated air and flue gas lines for checking possible leakage through the seals. The preliminary tests conducted on the advanced regenerative heat recovery system indicate the thermal effectiveness in the range of 60% to 70%. Bench scale studies were conducted on various ceramic and gasket materials to identify the proper material to be used in high temperature applications. A market survey was conducted to identify the application areas for this heat recovery system. A cost/benefit analysis showed a payback period of less than one and a half years.

  2. Greenhouse gas emissions of an agro-biogas energy system: Estimation under the Renewable Energy Directive.

    Science.gov (United States)

    Rana, Roberto; Ingrao, Carlo; Lombardi, Mariarosaria; Tricase, Caterina

    2016-04-15

    Agro-biogas from energy crops and by-products is a renewable energy carrier that can potentially contribute to climate change mitigation. In this context, application of the methodology defined by the Renewable Energy Directive 2009/28/EC (RED) was performed in order to estimate the 100-year Global Warming Potential (GWP100) associated with an agro-biogas supply chain (SC) in Southern Italy. Doing so enabled calculation of Greenhouse Gas (GHG) emission saving in order to verify if it is at least equal to 35% compared to the fossil fuel reference system, as specified by the RED. For the assessment, an attributional Life Cycle Assessment (LCA) approach (International Organization for Standardization (ISO), 2006a,b) was integrated with the RED methodology applied following the guidelines reported in COM(2010)11 and updated by SWD(2014)259 and Report EUR 27215 EN (2015). Moreover, primary data were collected with secondary data extrapolated from the Ecoinvent database system. Results showed that the GWP100 associated with electricity production through the biogas plant investigated was equal to 111.58gCO2eqMJe(-1) and so a 40.01% GHG-emission saving was recorded compared to the RED reference. The highest contribution comes from biomass production and, in particular, from crop cultivation due to production of ammonium nitrate in the overall amount used for crop cultivation. Based upon the findings of the study, the GHG saving calculated slightly exceeds the related minimum proposed by the RED: therefore, improvements are needed anyway. In particular, the authors documented that through replacement of ammonium nitrate with urea the GHG-emission saving would increase to almost 68%, thus largely satisfying the RED limit. In addition, the study highlighted that conservation practices, such as NT, can significantly enable reduction of the GHG-emissions coming from agricultural activities. Therefore, those practices should be increasingly adopted for cultivation of energy

  3. A heating system for piglets in farrowing house using waste heat from biogas engine

    Directory of Open Access Journals (Sweden)

    Payungsak Junyusen

    2008-12-01

    Full Text Available The aim of this study is to design and test a heating system for piglets in farrowing house by utilising the waste heat from a biogas engine as a heat source. The study was separated into three parts: the study on the biogas combined heat and power plant, the investigation on the properties of the heat panel, and the installation and testing of the heating system. From the experiment, the condition producing 60 kW of electrical power was a proper one, in which electrical efficiency and specific fuel consumption were 14% and 1.22 m3/kWh respectively. Generating both electricity and heat increased the overall efficiency to 37.7% and decreased the specific fuel consumption to 0.45 m3/kWh. The heat panel, which was made of a plastic material, had a thermal conductivity of 0.58 W/mC and the maximum compressive force and operating pressure of 8.1 kN and 0.35 bar respectively. The surface temperature of the panel was dependent on the inlet water temperature. When hot water of 44C was supplied into the farrowing house with room temperature of 26C, the average surface temperature was 33C. The developed heating system could provide heat for 4.3 farrowing houses. The payback period of this project was 2.5 years.

  4. Biogas systems for sisal and other agro-industrial residues

    Energy Technology Data Exchange (ETDEWEB)

    Jungersen, G. [Danish Technological Inst., Section for Biotechnology, Taastrup (Denmark)

    1997-12-31

    Most of the East-African agro-industries are generating very large quantities of organic residues from production and processing of different crops. In the East-African Region the most important of these crops are: Sisal, Sugar, Coffee, Cashew nuts and Pineapple. In other 3. world countries, Palm oil and Cassava (Tapioca starch) processing are main producers of organic waste products. Moreover, large quantities of organic residues are generated from other food processing activities like breweries, consumption of bananas etc. The following pages give examples of setups and system designs of anaerobic treatment systems for some of the residues mentioned above. When considering anaerobic treatment of sisal residues, which constitutes the main agro-industrial biomass resource in Tanzania, two major issues should be considered: Optimal reactor set-up and performance; And optionally, potential methods for pre-treatment of fibre fraction in order to increase the methane yield. The sisal liquid residues are degraded very fast and efficiently in UASB systems. At COD loading rates less than 11 kg COD/m{sup 3} x day, the reduction in organic matter is more than 90% and methane yields obtained are between 373 and 377 ml CH{sub 4}/g COD reduced. The treatment of sisal solid residues in CSTR systems has been examined both at mesophilic (37 deg. C) and thermophilic temperatures (55 deg. C.). (EG)

  5. Pre-treatment of substrates for biogas production - A systems analysis; Foerbehandling av biogassubstrat i systemanalys

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, My; Holmstroem, David; Lagerkvist, Anders; Bisaillon, Mattias

    2013-09-01

    The present expansion of biogas capacity responds to a growing demand for renewable vehicle fuels. Biodegradable wastes are attractive substrates and are also prioritized in national policy. The full potential of the substrates can rarely be used however. This is partly due to impurities, or the availability or degradation speed may be limiting the biogas yield. In both cases there is a need of pre-treatments. This work deals with the system impacts of pre-treatment aiming to remove impurities in food waste and pre-treatments aiming to improve the biogas yield of horse manure and ley. In the latter case steam explosion and extrusion were the treatments studied. Gas yields and the plant and system impacts on energy, climate and economic were studied. The system includes the biogas plant as well as the impact in supplementary systems for heat and power production. The three named substrates were identified to be highly prioritised due to their total potential and the improvements possible in its realisation. Existing information from literature and contacts has form the data basis, with the addition of a few supplementary analyses of substrates. The project has been operated by the authors with participation of a group of facility operators and external reviewers. Four plants have been visited during the study. Operators of digestion plants and all interested in developing the efficiency of biogas plants are the main target group for the study. The rate that the potential yield of food waste can be utilised depends largely on how efficiently contaminants can be separated without loss of substrate. In this case the separation degree has the main impact on the economy, but not a pronounced climate effect. For all types of pre-treatments the water content of substrates is important, a higher water content is detrimental to economy, energy demand and climate impact. For both the energy balance and the climate impact the generation of vehicle fuel has a large impact. An

  6. Description and modelling of the solar-hydrogen-biogas-fuel cell system in GlashusEtt

    Science.gov (United States)

    Hedström, L.; Wallmark, C.; Alvfors, P.; Rissanen, M.; Stridh, B.; Ekman, J.

    The need to reduce pollutant emissions and utilise the world's available energy resources more efficiently has led to increased attention towards e.g. fuel cells, but also to other alternative energy solutions. In order to further understand and evaluate the prerequisites for sustainable and energy-saving systems, ABB and Fortum have equipped an environmental information centre, located in Hammarby Sjöstad, Stockholm, Sweden, with an alternative energy system. The system is being used to demonstrate and evaluate how a system based on fuel cells and solar cells can function as a complement to existing electricity and heat production. The stationary energy system is situated on the top level of a three-floor glass building and is open to the public. The alternative energy system consists of a fuel cell system, a photovoltaic (PV) cell array, an electrolyser, hydrogen storage tanks, a biogas burner, dc/ac inverters, heat exchangers and an accumulator tank. The fuel cell system includes a reformer and a polymer electrolyte fuel cell (PEFC) with a maximum rated electrical output of 4 kW el and a maximum thermal output of 6.5 kW th. The fuel cell stack can be operated with reformed biogas, or directly using hydrogen produced by the electrolyser. The cell stack in the electrolyser consists of proton exchange membrane (PEM) cells. To evaluate different automatic control strategies for the system, a simplified dynamic model has been developed in MATLAB Simulink. The model based on measurement data taken from the actual system. The evaluation is based on demand curves, investment costs, electricity prices and irradiation. Evaluation criteria included in the model are electrical and total efficiencies as well as economic parameters.

  7. Biogas upgrading by injection of hydrogen in a two-stage Continuous Stirred-Tank Reactor system

    DEFF Research Database (Denmark)

    Bassani, Ilaria; Kougias, Panagiotis; Treu, Laura

    methanogens. In this study, a novel serial biogas reactor system is presented, in which the produced biogas from the first stage reactor was introduced in the second stage, where also H2 was injected. The effects of the H2 addition on the process performance and on the microbial community were investigated....... The profiles of the microbial communities prior and after the H2 addition showed distinct differences. Changes in the archaeal community and more specifically increase in the relative abundance of Methanobrevibacter sp. and Methanoculleus sp. indicated that the methanogenic pathway was clearly shifted from...

  8. Investigation of the prospect of energy self-sufficiency and technical performance of an integrated PEMFC (proton exchange membrane fuel cell), dairy farm and biogas plant system

    International Nuclear Information System (INIS)

    Guan, Tingting; Alvfors, Per; Lindbergh, Göran

    2014-01-01

    Highlights: • A PEMFC stack with a 40% of electrical efficiency will make the integrated PEMFC-CHP, biogas plant and dairy farm self-sufficient. • The quality of the reformate gas is good enough to support normal operation of the PEMFC-CHP. • The methane conversion rate and the content of the CH 4 in the biogas need to be balanced in order to obtain the best system performance. • Compared with a coal-fired CHP plant, the integrated system can avoid coal consumption and CO 2 emissions. - Abstract: A PEMFC fuelled with hydrogen is known for its high efficiency and low local emissions. However, the generation of hydrogen is always a controversial issue for the application of the PEMFC due to the use of fossil fuel and the possible carbon dioxide emissions. Presently, the PEMFC-CHP fed with renewable fuels, such as biogas, appears to be the most attractive energy converter–fuel combination. In this paper, an integrated PEMFC-CHP, a dairy farm and a biogas plant are studied. A PEMFC-CHP fed with reformate gas from the biogas plant generates electricity and heat to a dairy farm and a biogas plant, while the dairy farm delivers wet manure to the biogas plant as the feedstock for biogas production. This integrated system has been modelled for steady-state conditions by using Aspen Plus®. The results indicate that the wet manure production of a dairy farm with 300 milked cows can support a biogas plant to give 1280 MW h of biogas annually. Based on the biogas production, a PEMFC-CHP with a stack having an electrical efficiency of 40% generates 360 MW h electricity and 680 MW h heat per year, which is enough to cover the energy demand of the whole system while the total efficiency of the PEMFC-CHP system is 82%. The integrated PEMFC-CHP, dairy farm and biogas plant could make the dairy farm and the biogas plant self-sufficient in a sustainable way provided the PEMFC-CHP has the electrical efficiency stated above. The effect of the methane conversion rate and the

  9. An integrated prediction and optimization model of biogas production system at a wastewater treatment facility.

    Science.gov (United States)

    Akbaş, Halil; Bilgen, Bilge; Turhan, Aykut Melih

    2015-11-01

    This study proposes an integrated prediction and optimization model by using multi-layer perceptron neural network and particle swarm optimization techniques. Three different objective functions are formulated. The first one is the maximization of methane percentage with single output. The second one is the maximization of biogas production with single output. The last one is the maximization of biogas quality and biogas production with two outputs. Methane percentage, carbon dioxide percentage, and other contents' percentage are used as the biogas quality criteria. Based on the formulated models and data from a wastewater treatment facility, optimal values of input variables and their corresponding maximum output values are found out for each model. It is expected that the application of the integrated prediction and optimization models increases the biogas production and biogas quality, and contributes to the quantity of electricity production at the wastewater treatment facility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. BiogasMotor; BiogasMotor

    Energy Technology Data Exchange (ETDEWEB)

    Roubaud, A.; Favrat, D.

    2002-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of tests made at the Swiss Federal Institute of Technology in Lausanne with an unscavenged prechamber ignition system on a 150 kW co-generation engine fuelled with biogas. The engine's performance in terms of fuel conversion efficiency was observed and the reduction potential for exhaust emissions to a level below the Swiss limits was verified. The tests made, which used natural gas mixed with CO{sub 2} as simulated biogas fuel, are described. The results of the tests, including figures on NO{sub x}, CO and HC emissions, are presented and discussed. The authors conclude that biogas engines with unscavenged prechamber ignition could provide a significant boost in energy conversion efficiency whilst keeping emissions within the tough Swiss limits.

  11. Enhancing methane production in a farm-scale biogas production system

    Energy Technology Data Exchange (ETDEWEB)

    Kaparaju, P.

    2003-07-01

    Biogas technology with utilisation of biogas is increasingly applied in the agricultural sector to produce renewable energy and to minimise environmental emissions both resulting in reduction in greenhouse gas (GHG) emissions. The main objective of this thesis was to evaluate methods to enhance the methane production in a farm-scale biogas production system. Semi-continuous digestion of pig and dairy cow manures produced methane yields (m{sup 3} kg{sup -1} volatile solids (VS)) of about 0.31 and 0.14 respectively at 2 kgVS m{sup -3} d{sup -1} loading rate, 30 d hydraulic retention time (HRT) and 6.0% feed VS while in batches yields were 0.14, and 0.36 m3 kg{sup -1} VS for dairy cow and pig and manures respectively. These yields were lower than the theoretical yield of 0.4 m3 kg{sup -1} VS reported for cow manure. Possible co-substrates to enhance the methane production were investigated. Methane yields (m{sup 3} kg{sup -1} VS) in batch assays were 0.14 to 0.35 for three different energy crops and 0.32-0.39 for confectionery by-products. On full-scale application, cow manure alone and co-digestion with energy crops produced 0.22 m{sup 3} CH{sub 4} kg{sup -1} VS and co-digestion with confectionery by-products (20% of feed biomass) about 0.28 m{sup 3} kg{sup -1} VS. Laboratory co-digestion of pig manure with potato tuber or its industrial by- products (potato peel or potato stillage) at loading rate of 2 kg VS m-3 d-1 produced methane yields (m{sup 3} kg{sup -1} VS) of about 0.22 at 85:15 and 0.31 at 80:20 feed VS ratio (VS% pig manure to potato co-substrate) compared to 0.14 for pig manure alone. The batch incubation of digested materials from a farm biogas digester (35 deg C) and its associated post-storage tank indicated that both materials could still produce up to 0.20 m{sup 3} kg{sup -1} VS. The amount and rate was highly dependent on temperature. These results suggest that the untapped methane potential in the digested manure cannot effectively be recovered at

  12. Biogas utilization: Experimental investigation on biogas flameless combustion in lab-scale furnace

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Wahid, Mazlan Abdul

    2013-01-01

    Highlights: • High costs of biogas purification and low calorific value of biogas are the main obstacles of biogas utilization. • The energy of biogas can be extracted by flameless combustion without any modification in burner or combustion system. • The efficiency of biogas flameless combustion and conventional combustion were 53% and 32% respectively. • The temperature inside the biogas flameless chamber is uniform. • In biogas flameless combustion, NO x and CO 2 formation decrease drastically in comparison with traditional combustion. - Abstract: Biogas generated in the anaerobic digestion of biomass and organic wastes by micro-organisms can be applied for heating, transportation and power generation as a renewable energy source. However, low calorific value (LCV) of biogas is one the most important bottlenecks of biogas conversion into electrical or thermal energy. Indeed, the presence of corrosive gases such as H 2 S and water vapor in biogas components makes some dilemmas in biogas purification and utilization. In order to obtain the efficient biogas utilization method, different biogas resources, physical and chemical properties of biogas and biogas combustion characteristics should be considered. In this paper biogas was utilized in lab-scale flameless combustion furnace and the performance of flameless combustion chamber fueled by biogas has been presented. Results demonstrated that flameless combustion is one of the best feasible strategies for biogas utilization. Uniformity of temperature in the flameless furnace increases the durability of refractory and related equipment. Simplicity of the flameless burner, pollutant formation reduction and fuel consumption decreases are the main causes of biogas flameless combustion supremacy

  13. Microwave Plasma Hydrogen Recovery System

    Science.gov (United States)

    Atwater, James; Wheeler, Richard, Jr.; Dahl, Roger; Hadley, Neal

    2010-01-01

    A microwave plasma reactor was developed for the recovery of hydrogen contained within waste methane produced by Carbon Dioxide Reduction Assembly (CRA), which reclaims oxygen from CO2. Since half of the H2 reductant used by the CRA is lost as CH4, the ability to reclaim this valuable resource will simplify supply logistics for longterm manned missions. Microwave plasmas provide an extreme thermal environment within a very small and precisely controlled region of space, resulting in very high energy densities at low overall power, and thus can drive high-temperature reactions using equipment that is smaller, lighter, and less power-consuming than traditional fixed-bed and fluidized-bed catalytic reactors. The high energy density provides an economical means to conduct endothermic reactions that become thermodynamically favorable only at very high temperatures. Microwave plasma methods were developed for the effective recovery of H2 using two primary reaction schemes: (1) methane pyrolysis to H2 and solid-phase carbon, and (2) methane oligomerization to H2 and acetylene. While the carbon problem is substantially reduced using plasma methods, it is not completely eliminated. For this reason, advanced methods were developed to promote CH4 oligomerization, which recovers a maximum of 75 percent of the H2 content of methane in a single reactor pass, and virtually eliminates the carbon problem. These methods were embodied in a prototype H2 recovery system capable of sustained high-efficiency operation. NASA can incorporate the innovation into flight hardware systems for deployment in support of future long-duration exploration objectives such as a Space Station retrofit, Lunar outpost, Mars transit, or Mars base. The primary application will be for the recovery of hydrogen lost in the Sabatier process for CO2 reduction to produce water in Exploration Life Support systems. Secondarily, this process may also be used in conjunction with a Sabatier reactor employed to

  14. INNOVATIVE REMEDIATION AND MONITORING SYSTEM INSIDE AN AREA USED FOR PAPER SLUDGE RECOVERY

    Directory of Open Access Journals (Sweden)

    Valerio Marroni

    2010-12-01

    Full Text Available An innovative bioremediation technology and strategy were applied to a former-quarry area in Imola (BO – Italy concerned by an incorrect environmental restoration of paper sludge, with subsequent uncontrolled biogas production and migration to the adjacent area. An Emergency Plan was implemented by the isolation of the buried sludge area and a characterization project was performed to define an appropriate permanently safe recovery. An innovative biological in situ treatment, avoiding paper sludge removal, was adopted; it was based on the use of tailored compost and enzymes to reduce methane production and concentration. This was integrated by specific monitoring piezometers for both biogas (CH4, CO2 and oxygen monthly measurements, and also the application of a respirometric technique application to buried sludge for assessing its stabilisation under aerobic and anaerobic conditions. This communication describes the strategy used, the treatment and monitoring system and the results of 3 years field pilot application. Monitoring work is still in progress.

  15. Evaluation of energy efficiency of various biogas production and utilization pathways

    International Nuclear Information System (INIS)

    Poeschl, Martina; Ward, Shane; Owende, Philip

    2010-01-01

    The energy efficiency of different biogas systems, including single and co-digestion of multiple feedstock, different biogas utilization pathways, and waste-stream management strategies was evaluated. The input data were derived from assessment of existing biogas systems, present knowledge on anaerobic digestion process management and technologies for biogas system operating conditions in Germany. The energy balance was evaluated as Primary Energy Input to Output (PEIO) ratio, to assess the process energy efficiency, hence, the potential sustainability. Results indicate that the PEIO correspond to 10.5-64.0% and 34.1-55.0% for single feedstock digestion and feedstock co-digestion, respectively. Energy balance was assessed to be negative for feedstock transportation distances in excess of 22 km and 425 km for cattle manure and for Municipal Solid Waste, respectively, which defines the operational limits for respective feedstock transportation. Energy input was highly influenced by the characteristics of feedstock used. For example, agricultural waste, in most part, did not require pre-treatment. Energy crop feedstock required the respect cultivation energy inputs, and processing of industrial waste streams included energy-demanding pre-treatment processes to meet stipulated hygiene standards. Energy balance depended on biogas yield, the utilization efficiency, and energy value of intended fossil fuel substitution. For example, obtained results suggests that, whereas the upgrading of biogas to biomethane for injection into natural gas network potentially increased the primary energy input for biogas utilization by up to 100%; the energy efficiency of the biogas system improved by up to 65% when natural gas was substituted instead of electricity. It was also found that, system energy efficiency could be further enhanced by 5.1-6.1% through recovery of residual biogas from enclosed digestate storage units. Overall, this study provides bases for more detailed assessment

  16. Microbial Heat Recovery Cell (MHRC) System Concept

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    This factsheet describes a project that aimed to develop a microbial heat recovery cell (MHRC) system that combines a microbial reverse electrodialysis technology with waste heat recovery to convert industrial effluents into electricity and hydrogen.

  17. Technological Decision to Renewable Energy Usage Biogas for Off-grid Systems Consumption

    Directory of Open Access Journals (Sweden)

    Zubkova Marina

    2016-01-01

    Full Text Available This paper presents the results of the energy experiments based on electrochemical researches and the thermodynamic calculations, which are carried out on the hydrogenous fuel with the residual content of methane obtained from biogas selected organic waste. Energy indicators are examined in comparison to electrolysis hydrogen. The use of technical and electro physical indicators together with parameters of the fuel operating allowed assessing energy efficiency the module reformer - fuel cell running on a non-standard hydrogenous fuel. Numerical characteristic the efficiency of workflows fuel system reformer – fuel cell is about 39%. To operate the power installation with a predetermined capacity amount used of hydrogenous fuel is comparable to required electrolysis hydrogen amount. Shown the possibility of creation the systems of power supply based on new hydrogen technologies using renewable energy resources local waste. Confirms the relatively high efficiency the usage of hydrogenous fuel for the tasks of off-grid systems consumption.

  18. Biogas Opportunities Roadmap Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-12-01

    In support of the Obama Administration's Climate Action Plan, the U.S. Department of Energy, the U.S. Environmental Protection Agency, and U.S. Department of Agriculture jointly released the Biogas Opportunities Roadmap Progress Report, updating the federal government's progress to reduce methane emissions through biogas systems since the Biogas Opportunities Roadmap was completed by the three agencies in July 2014. The report highlights actions taken, outlines challenges and opportunities, and identifies next steps to the growth of a robust biogas industry.

  19. Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system

    International Nuclear Information System (INIS)

    Vergara-Fernandez, Alberto; Vargas, Gisela; Alarcon, Nelson; Velasco, Antonio

    2008-01-01

    The marine algae are considered an important biomass source; however, their utilization as energy source is still low around the world. The technical feasibility of marine algae utilization as a source of renewable energy was studied to laboratory scale. The anaerobic digestion of Macrocystis pyrifera, Durvillea antarctica and their blend 1:1 (w/w) was evaluated in a two-phase anaerobic digestion system, which consisted of an anaerobic sequencing batch reactor (ASBR) and an upflow anaerobic filter (UAF). The results show that 70% of the total biogas produced in the system was generated in the UAF, and both algae species have similar biogas productions of 180.4(±1.5) mL g -1 dry algae d -1 , with a methane concentration around 65%. The same methane content was observed in biogas yield of algae blend; however, a lower biogas yield was obtained. In conclusion, either algae species or their blend can be utilized to produce methane gas in a two-phase digestion system

  20. Transfer of Biogas Technology to Support Mixed Crop and Livestock Farming Systems in Indonesia

    DEFF Research Database (Denmark)

    Putra, Ahmad Romadhoni Surya

    Mixed crop and livestock (MCL) farming systems has been applied for many years to manage the limited resources owned by smallholder farmers. This farming practice is considered as the best practice to cultivate the limited resources by adopting an integrated life cycle approach within crop...... and livestock production. However, within this farming system, some externalities may appear because of the untreated livestock waste which may pollute air and the surrounding water environment at the farm. This may also affect greenhouse gas emission that potentially contributes to an increase of global...... such as reduction of air and water pollution and gas emission caused by manure. However, despite its multiple benefits, the biogas technology transfer is facing a slow rate of diffusion in most farm households in developing countries. This phenomenon calls for identification of reasons in order to develop solutions...

  1. Upscaling a district heating system based on biogas cogeneration and heat pumps

    NARCIS (Netherlands)

    van Leeuwen, Richard Pieter; Fink, J.; Smit, Gerardus Johannes Maria; de Wit, Jan B.

    2015-01-01

    The energy supply of the Meppel district Nieuwveense landen is based on biogas cogeneration, district heating, and ground source heat pumps. A centrally located combined heat and power engine (CHP) converts biogas from the municipal wastewater treatment facility into electricity for heat pumps and

  2. Heat recovery system series arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, Justin P.; Welch, Andrew M.; Dawson, Gregory R.; Minor, Eric N.

    2017-11-14

    The present disclosure is directed to heat recovery systems that employ two or more organic Rankine cycle (ORC) units disposed in series. According to certain embodiments, each ORC unit includes an evaporator that heats an organic working fluid, a turbine generator set that expands the working fluid to generate electricity, a condenser that cools the working fluid, and a pump that returns the working fluid to the evaporator. The heating fluid is directed through each evaporator to heat the working fluid circulating within each ORC unit, and the cooling fluid is directed through each condenser to cool the working fluid circulating within each ORC unit. The heating fluid and the cooling fluid flow through the ORC units in series in the same or opposite directions.

  3. Trend chart: biogas. First quarter 2016

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2016-05-01

    This publication presents the biogas industry situation of continental France and overseas territories during the first quarter 2016: total connected load of biogas power plants, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus power and type, evolution forecasts of biogas power generation, detailed regional results, biomethane injection in natural gas distribution systems, methodology used

  4. Trend chart: biogas. Forth quarter 2016

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2017-02-01

    This publication presents the biogas industry situation of continental France and overseas territories during the forth quarter 2016: total connected load of biogas power plants, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus power and type, evolution forecasts of biogas power generation, detailed regional results, biomethane injection in natural gas distribution systems, methodology used

  5. Trend chart: biogas. Second quarter 2016

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2016-08-01

    This publication presents the biogas industry situation of continental France and overseas territories during the Second quarter 2016: total connected load of biogas power plants, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus power and type, evolution forecasts of biogas power generation, detailed regional results, biomethane injection in natural gas distribution systems, methodology used

  6. Trend chart: biogas. Third quarter 2016

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2016-11-01

    This publication presents the biogas industry situation of continental France and overseas territories during the third quarter 2016: total connected load of biogas power plants, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus power and type, evolution forecasts of biogas power generation, detailed regional results, biomethane injection in natural gas distribution systems, methodology used

  7. Bounded Biofuels? Sustainability of Global Biogas Developments

    NARCIS (Netherlands)

    Mol, A.P.J.

    2014-01-01

    Compared to liquid biofuels biogas has hardly drawn any attention from social sciences researchers lately. Although the share of biogas and liquid biofuels in the energy portfolio of many countries are comparable, biogas systems are strongly place-based and are non-controversial in terms of

  8. Metagenomic analysis of a desulphurisation system used to treat biogas from vinasse methanisation.

    Science.gov (United States)

    Dias, Marcela França; Colturato, Luis Felipe; de Oliveira, João Paulo; Leite, Laura Rabelo; Oliveira, Guilherme; Chernicharo, Carlos Augusto; de Araújo, Juliana Calabria

    2016-04-01

    We investigated the response of microbial community to changes in H2S loading rate in a microaerated desulphurisation system treating biogas from vinasse methanisation. H2S removal efficiency was high, and both COD and DO seemed to be important parameters to biomass activity. DGGE analysis retrieved sequences of sulphide-oxidising bacteria (SOB), such as Thioalkalimicrobium sp. Deep sequencing analysis revealed that the microbial community was complex and remained constant throughout the experiment. Most sequences belonged to Firmicutes and Proteobacteria, and, to a lesser extent, Bacteroidetes, Chloroflexi, and Synergistetes. Despite the high sulphide removal efficiency, the abundance of the taxa of SOB was low, and was negatively affected by the high sulphide loading rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Capsule-type pe biogas digester: low-cost and environment friendly system

    International Nuclear Information System (INIS)

    Ahmad, S.; Khan, M.A.; Aslam, M.; Hussain, Z.

    2005-01-01

    production. The other prevailing problem with the commonly used biogas digester is that the gas pressure is low. In the PE Capsule-type digester, gas is stored in the used rubber tubes, where putting load on the tubes can easily increase the gas pressure. Thus pressure of the gas can be maintained very effectively. Adding inoculums of the methogenic bacteria can increase the production of the gas. Lime has to be added to increase the pH, because methogenic bacteria are effective in neutral to alkaline environment, instead of the acidic environment, which is commonly experienced after adding solid waste into the digester. Temperature is another important parameter for enhancing productivity of biogas. The system is cost-effective, as the total cost is around Rs. 10,000 for a unit producing gas to light a single burner for 40-100 hours. The technology transfer will be easy, as the private plastic companies can market such systems more effectively than the public sector. Four modules of this system more can be installed with the cost of one Indian-type model. (author)

  10. High-calorific biogas production from anaerobic digestion of food waste using a two-phase pressurized biofilm (TPPB) system.

    Science.gov (United States)

    Li, Yeqing; Liu, Hong; Yan, Fang; Su, Dongfang; Wang, Yafei; Zhou, Hongjun

    2017-01-01

    To obtain high calorific biogas via anaerobic digestion without additional upgrading equipment, a two-phase pressurized biofilm system was built up, including a conventional continuously stirred tank reactor and a pressurized biofilm anaerobic reactor (PBAR). Four different pressure levels (0.3, 0.6, 1.0 and 1.7MPa) were applied to the PBAR in sequence, with the organic loading rate maintained at 3.1g-COD/L/d. Biogas production, gas composition, process stability parameters were measured. Results showed that with the pressure increasing from 0.3MPa to 1.7MPa, the pH value decreased from 7.22±0.19 to 6.98±0.05, the COD removal decreased from 93.0±0.9% to 79.7±1.2% and the methane content increased from 80.5±1.5% to 90.8±0.8%. Biogas with higher calorific value of 36.2MJ/m 3 was obtained at a pressure of 1.7MPa. Pressure showed a significant effect on biogas production and gas quality in methanogenesis reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Thermodynamic assessment of integrated biogas-based micro-power generation system

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Barzegaravval, Hasan; Wahid, Mazlan Abdul; Ganjehkaviri, Abdolsaeid; Sies, Mohsin Mohd

    2016-01-01

    Highlights: • A thermodynamic modelling of an integrated biogas-based micro-power generation system is reported. • The impact of design parameters on the thermodynamic performance of the system is evaluated. • High turbine inlet temperatures lead the system to the higher energy and exergy efficiency and higher power generation. • Enhancement of GT isentropic efficiency incurs negative effects on the performance of air preheater and heat exchanger. • The rate of power generation increases by the enhancement of steam turbine pressure in ORC. - Abstract: In this paper, a thermodynamic modelling of an integrated biogas (60%CH 4 + 40%CO 2 ) micro-power generation system for electricity generation is reported. This system involves a gas turbine cycle and organic Rankine cycle (ORC) where the wasted heat of gas turbine cycle is recovered by closed ORC. The net output power of the micro-power generation system is fixed at 1.4 MW includes 1 MW power generated by GT and 0.4 MW by ORC. Energy and exergy assessments and related parametric studies are carried out, and parameters that influence on energy and exergy efficiency are evaluated. The performance of the system with respect to variation of design parameters such as combustion air inlet temperature, turbine inlet temperature, compressor pressure ratio, gas turbine isentropic efficiency and compressor isentropic efficiency (from the top cycle) and steam turbine inlet pressure, and condenser pressure (from bottoming cycle) is evaluated. The results reveal that by the increase of gas turbine isentropic efficiency, the outlet temperature of gas turbine decreases which incurs negative impacts on the performance of air preheater and heat exchanger, however the energy and exergy efficiency increases in the whole system. By the increase of air compressor pressure ratio, the energy and exergy of the combined cycle decreases. The exergy efficiency of ORC alters by the variation of gas turbine parameters which can be

  12. Biodigestion of the aquatics plants mixtures and biogas production; Biodigestao de misturas de plantas aquaticas e producao de biogas

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Roberto Guimaraes; Abreu, Fernando Luiz Barbuda de; Fernandes Filho, Jorge; Pereira, Maria Cristina Duarte Eiras [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica. Programa de Pos-Graduacao em Engenharia Mecanica]. E-mail: temrobe@vm.uff.br; Melo, Ricardo Bichara de [Light Servicos de Eletricidade S.A., Rio de Janeiro, RJ (Brazil). Gerencia de Estudos e Gestao de Geracao]. E-mail: rbmelo@light.com.br

    2004-07-01

    Several systems of generating electricity using water storage reservoirs. One problem that occurs constantly in these reservoirs is the accumulation of aquatic plants, such as Eichhornia crassipes, Eichhornia azurea, Pistia stratiotes and Salvinia that may cause serious problems for the system. Periodically, the biomass must be removed and disposed of appropriate form, so that does not cause contamination of soil, groundwater or allowing the proliferation of vectors. One possible destination is the use of biomass in a process of biodigestion, resulting in biogas. The bench of biodigester used in the experiment of biodigestion of aquatic plants is composed of a reactor containing the biomass, where the biogas is produced and a reservoir for the monitoring the production of biogas. The reactor is located inside a container containing water that can be heated by an electrical resistance, with the aim of maintaining the temperature inside the reactor around 35 deg C. The results of analysis of gas of the reactor was obtained using a gas chromatograph to CG MASTER of double ionization detector with a flame and thermal conductivity. These results show a percentage of 50% of methane in the biogas. Also, were analyzed the biomass in the biodigester for determination of humidity, total organic matter, waste mineral and organic carbon. The process of biodigestion of the mixture of aquatic plants: Eichhornia crassipes, Eichhornia azurea and Pistia stratiotes and Salvinia shows potential for obtaining biogas, with considerable levels of methane, in order to facilitate its recovery.

  13. Proposal of the system for the biogas purification using vitreous and natural zeolite membranes

    International Nuclear Information System (INIS)

    Ortega Viera, Lianys; Fernández SantanI, Elina; Alfonso Martínez, Félix Enrique; Aguiar RoqueI, Yania; Rodríguez Muñoz, Susana

    2017-01-01

    One way to reduce the effects of climate change is to replace fossil fuels with renewable energy such as biogas, but the amount of hydrogen sulphide in it represents an impediment to its use, because of its negative impacts on human health, materials of construction and the environment, being essential its reduction or elimination. For this reason, it was defined as aim to propose an effective method for the purification of biogas using membranes constructed from vitreous waste materials and natural cuban zeolite. This treatment requires four membranes with their supports and eight valves and could be used by small farmers for the purification of 1.4 m 3 of biogas per day, an amount necessary for the cooking of three meals of a family of five people, being the cost of the biogas purification process equal to 0.06%/m 3 . (author)

  14. Hybrid cogeneration system fueled with biogas obtained from urban sewage water

    Directory of Open Access Journals (Sweden)

    Laurentiu Călin

    2008-10-01

    Full Text Available When treating urban waste water, a large quantity of sludge is produced. This sludge may by used in fermentation tanks to obtain biogas with medium to high levels of methane, which is ideal for electric energy and heat production. The aim of this paper is to develop a theoretical study regarding the use of biogas in power and heat generation modules. Biogas can be used for fueling internal combustion engines or fuel cells, which in turn generate electricity. Waste heat contained in the exhaust gas can be recovered in order to maximize efficiency. The theoretical study presented in this paper evaluates electrical and overall efficiency of a biogas production installation inside an urban waste water treatment.

  15. Continuous recovery system for electrorefiner system

    Science.gov (United States)

    Williamson, Mark A.; Wiedmeyer, Stanley G.; Willit, James L.; Barnes, Laurel A.; Blaskovitz, Robert J.

    2014-06-10

    A continuous recovery system for an electrorefiner system may include a trough having a ridge portion and a furrow portion. The furrow portion may include a first section and a second section. An inlet and exit pipe may be connected to the trough. The inlet pipe may include an outlet opening that opens up to the first section of the furrow portion of the trough. The exit pipe may include an entrance opening that opens up to the second section of the furrow portion of the trough. A chain may extend through the inlet and exit pipes and along the furrow portion of the trough. The chain may be in a continuous loop form. A plurality of flights may be secured to the chain. Accordingly, the desired product may be continuously harvested from the electrorefiner system without having to halt the electrical power and/or remove the cathode and anode assemblies.

  16. Life Support Systems: Oxygen Generation and Recovery

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Life Support Systems project Oxygen Generation and Recovery technology development area encompasses several sub-tasks in an...

  17. Development of a low-cost biogas filtration system to achieve higher-power efficient AC generator

    Science.gov (United States)

    Mojica, Edison E.; Ardaniel, Ar-Ar S.; Leguid, Jeanlou G.; Loyola, Andrea T.

    2018-02-01

    The paper focuses on the development of a low-cost biogas filtration system for alternating current generator to achieve higher efficiency in terms of power production. A raw biogas energy comprises of 57% combustible element and 43% non-combustible elements containing carbon dioxide (36%), water vapor (5%), hydrogen sulfide (0.5%), nitrogen (1%), oxygen (0 - 2%), and ammonia (0 - 1%). The filtration system composes of six stages: stage 1 is the water scrubber filter intended to remove the carbon dioxide and traces of hydrogen sulfide; stage 2 is the silica gel filter intended to reduce the water vapor; stage 3 is the iron sponge filter intended to remove the remaining hydrogen sulfide; stage 4 is the sodium hydroxide solution filter intended to remove the elemental sulfur formed during the interaction of the hydrogen sulfide and the iron sponge and for further removal of carbon dioxide; stage 5 is the silica gel filter intended to further eliminate the water vapor gained in stage 4; and, stage 6 is the activated carbon filter intended to remove the carbon dioxide. The filtration system was able to lower the non-combustible elements by 72% and thus, increasing the combustible element by 54.38%. The unfiltered biogas is capable of generating 16.3 kW while the filtered biogas is capable of generating 18.6 kW. The increased in methane concentration resulted to 14.11% increase in the power output. The outcome resulted to better engine performance in the generation of electricity.

  18. A fuzzy approach to a multiple criteria and geographical information system for decision support on suitable locations for biogas plants

    DEFF Research Database (Denmark)

    Franco de los Rios, Camilo Andres; Bojesen, Mikkel; Hougaard, Jens Leth

    The purpose of this paper is to model the multi-criteria decision problem of identifying the most suitable facility locations for biogas plants under an integrated decision support methodology. Here the Geographical Information System (GIS) is used for measuring the attributes of the alternatives...... according to a given set of criteria. Measurements are taken in interval form, expressing the natural imprecision of common data, and the Fuzzy Weighted Overlap Dominance (FWOD) procedure is applied for aggregating and exploiting this kind of data, obtaining suitability degrees for every alternative....... The estimation of criteria weights, which is necessary for applying the FWOD procedure, is done by means of the Analytical Hierarchy Process (AHP), such that a combined AHP-FWOD methodology allows identifying the more suitable sites for building biogas plants. We show that the FWOD relevance-ranking procedure...

  19. EU Agro Biogas Project

    NARCIS (Netherlands)

    Amon, T.; Mayr, H.; Eder, M.; Hobbs, P.; Rao Ravella, S.; Roth, U.; Niebaum, A.; Doehler, H.; Weiland, P.; Abdoun, E.; Moser, A.; Lyson, M.; Heiermann, M.; Plöchl, M.; Budde, J.; Schattauer, A.; Suarez, T.; Möller, H.; Ward, A.; Hillen, F.; Sulima, P.; Oniszk-Polplawska, A.; Krampe, P.; Pastorek, Z.; Kara, J.; Mazancova, J.; Dooren, van H.J.C.; Wim, C.; Gioelli, F.; Balsari, P.

    2009-01-01

    EU-AGRO-BIOGAS is a European Biogas initiative to improve the yield of agricultural biogas plants in Europe, to optimise biogas technology and processes and to improve the efficiency in all parts of the production chain from feedstock to biogas utilisation. Leading European research institutions and

  20. Anaerobic bio filter systems to have the best yield of biogas with the treatment of piggery wastewater

    International Nuclear Information System (INIS)

    Athula, Jayamanne M. D. A.

    2006-01-01

    Animal husbandry is a leading food supplying industry for the mankind. Wastewater generation from animal husbandry is a real environmental threat for many countries. Piggery wastewater with high Chemical Oxygen Demand (COD is between 8000 to 15000 mg/lt) is having a very high potential of biogas production, under anaerobic condition. This research was based upon the fixing of series of Up flow Anaerobic Floating Filters (UAFF) to catch a maximum yield of biogas from piggery wastewater with better cleaning facility. These experiments achieved more than 90% of COD removal of piggery wastewater with better cleaning facility. Other analyzed results of the experiments shows that the removal rate of biological Oxygen Demand (BOD) also is more than 90% with 90% of avarrage removal rates of Suspended Solids (SS) and Total Solids (TS). Average volumetric biogas yield was reched up to 450 lts/Cum.day in the different loading rates held between 2.24 to 5.92 kg. COD/Cum.day. Encouraged by this attractive results of the lab-scale unit, and another medium scale unit installed at a piggery site, a few companies funded for developing full-scale units with low cost construction methodolgy. A few companies funded for developing full-scale units with low cost construction methodology. A few farmers for animalhusbandry. Centrl Environmental Authority of Sri Lanka (CEA) has lready monitored the parameters of the treated wastewater with this treatment system and satisfactory levels were ensured. A few private farmers for animal husbandry in Sri Lanka are now precticing this system satisfactory as a good start for a long journey towards the prospects of biogas energy with a clean farm environment. This UAFF syste can easily practice with other type of wastewaters from the field of animal husbandry. Some of them are cattle farms. poultry farms, Lamb and sheep farms etc. Technical paper with full data analysis is available with a pictorial power point presentation.(Author)

  1. Evaluation of the biogas potential using in the equipment utilized in milk production systems; Avaliacao do potencial do emprego do biogas nos equipamentos utilizados em sistemas de producao de leite

    Energy Technology Data Exchange (ETDEWEB)

    Hardoim, Paulo Cesar; Goncalves, Adriano Dicesar M.A. [Lavras Univ. Federal, MG (Brazil). Dept. de Engenharia

    2000-07-01

    The technology of the anaerobic digestion has been checked as one of the most efficient in the treatment of the dejection of bovine, however, the employment of the biogas as source of energy for the operation of the equipment still finds limitations of technological order. The present work evaluated, the great potential of the treatment anaerobic of the residues of bovine destined the production of milk as source energy renewably , inside of a concept of maintainable development and production rationalization without aggression to the Middle-Atmosphere. It also verified that technology is adapted as conservation strategy and efficient energy use. The employment of the anaerobic digestion in the treatment of the dejection is possible and desirable, once it contributes to preservation of the environment, it makes possible the modern confinement systems and it reduces the production cost. The residues of milk cows produced, can be used as resources of supplies, so much of energy as of fertilizer. In a confinement of 100 cows, a biodigester can produce a volume of 118 m{sup 3} of biogas. Volume this enough one to work a generating group of 15 kVa and this to assist with electric energy the demand of the milk installation and bomb of water. The total demand of biogas can working with these equipment is esteemed in 85,3m{sup 3} of biogas, what can be supplied with rest by the biodigester. (author)

  2. Characterization of microbial biofilms in a thermophilic biogas system by high-throughput metagenome sequencing.

    Science.gov (United States)

    Rademacher, Antje; Zakrzewski, Martha; Schlüter, Andreas; Schönberg, Mandy; Szczepanowski, Rafael; Goesmann, Alexander; Pühler, Alfred; Klocke, Michael

    2012-03-01

    DNAs of two biofilms of a thermophilic two-phase leach-bed biogas reactor fed with rye silage and winter barley straw were sequenced by 454-pyrosequencing technology to assess the biofilm-based microbial community and their genetic potential for anaerobic digestion. The studied biofilms matured on the surface of the substrates in the hydrolysis reactor (HR) and on the packing in the anaerobic filter reactor (AF). The classification of metagenome reads showed Clostridium as most prevalent bacteria in the HR, indicating a predominant role for plant material digestion. Notably, insights into the genetic potential of plant-degrading bacteria were determined as well as further bacterial groups, which may assist Clostridium in carbohydrate degradation. Methanosarcina and Methanothermobacter were determined as most prevalent methanogenic archaea. In consequence, the biofilm-based methanogenesis in this system might be driven by the hydrogenotrophic pathway but also by the aceticlastic methanogenesis depending on metabolite concentrations such as the acetic acid concentration. Moreover, bacteria, which are capable of acetate oxidation in syntrophic interaction with methanogens, were also predicted. Finally, the metagenome analysis unveiled a large number of reads with unidentified microbial origin, indicating that the anaerobic degradation process may also be conducted by up to now unknown species. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. System i Disaster Recovery Planning

    CERN Document Server

    Dolewski, Richard

    2008-01-01

    Mapping out all the preparations necessary for an effective disaster recovery plan and its safeguard-a continuous maintenance program-this guide is aimed at IT managers of small and medium businesses. The opening section covers the initial steps of auditing vulnerability, ranking essential IT functions, and reviewing the storage of tape backups, with the following discussion focused on the elements of the plan itself. The plan includes a mission statement, a definition of disaster, the assignment of staff to teams, methods of compensating for human error, and standards for documenting the step

  4. Ex-situ biogas upgrading and enhancement in different reactor systems

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Treu, Laura; Benavente, Daniela Peñailillo

    2017-01-01

    Biogas upgrading is envisioned as a key process for clean energy production. The current study evaluates the efficiency of different reactor configurations for ex-situ biogas upgrading and enhancement, in which externally provided hydrogen and carbon dioxide were biologically converted to methane...... for microbial growth was successful. High-throughput 16S rRNA sequencing revealed that the microbial community was resided by novel phylotypes belonging to the uncultured order MBA08 and to Bacteroidales. Moreover, only hydrogenotrophic methanogens were identified belonging to Methanothermobacter...

  5. Biogas production from UASB and polyurethane carrier reactors treating sisal processing wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rubindamayugi, M.S.T.; Salakana, L.K.P. [Univ. of Dar es Salaam, Faculty of Science, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    The fundamental benefits which makes anaerobic digestion technology (ADT) attractive to the poor developing include the low cost and energy production potential of the technology. In this study the potential of using UASB reactor and Polyurethane Carrier Reactor (PCR) as pollution control and energy recovery systems from sisal wastewater were investigated in lab-scale reactors. The PCR demonstrated the shortest startup period, whereas the UASB reactor showed the highest COD removal efficiency 79%, biogas production rate (4.5 l biogas/l/day) and process stability than the PCR under similar HRT of 15 hours and OLR of 8.2 g COD/l/day. Both reactor systems became overloaded at HRT of 6 hours and OLR of 15.7 g COD/l/day, biogas production ceased and reactors acidified to pH levels which are inhibiting to methanogenesis. Based on the combined results on reactor performances, the UASB reactor is recommended as the best reactor for high biogas production and treatment efficiency. It was estimated that a large-scale UASB reactor can be designed under the same loading conditions to produce 2.8 m{sup 3} biogas form 1 m{sup 3} of wastewater of 5.16 kg COD/m{sup 3}. Wastewater from one decortication shift can produce 9,446 m{sup 3} og biogas. The energy equivalent of such fuel energy is indicated. (au)

  6. Learning as the Construction and Re-Mediation of Activity Systems: Environmental Management in Biogas Production

    Science.gov (United States)

    Pereira Querol, Marco A.; Suutari, Timo; Seppanen, Laura

    2010-01-01

    The purpose of this paper is to present theoretical tools for understanding the dynamics of change and learning during the emergence and development of environmental management activities. The methodology consists of a historical analysis of a case of biogas production that took place in the Southwest region of Finland. The theoretical tools used…

  7. Economic assessment of biogas-to-electricity generation system with H2S removal by activated carbon in small pig farm

    International Nuclear Information System (INIS)

    Pipatmanomai, Suneerat; Kaewluan, Sommas; Vitidsant, Tharapong

    2009-01-01

    This study was conducted to assess the economic feasibility of electricity generation from biogas in small pig farms with and without the H 2 S removal prior to biogas utilisation. The 2% potassium iodide (KI) impregnated activated carbon selected as H 2 S adsorbent was introduced to a biogas-to-electricity generation system in a small pig farm in Thailand as a case study. With the average inlet H 2 S concentration of about 2400 ppm to the adsorption unit, the H 2 S removal efficiency could reach 100% with the adsorption capacity of 0.062 kg of H 2 S/kg of adsorbent. Under the reference scenario (i.e., 45% subsidy on digester installation and fixed electricity price at 0.06 Euro/kWh) and based on an assumption that the biogas was fully utilised for electricity generation in the system, the payback period for the system without H 2 S removal was about 4 years. With H 2 S removal, the payback period was within the economic life of digester but almost twice that of the case without H 2 S removal. The impact of electricity price could be clearly seen for the case of treated biogas. At the electricity price fixed at 0.07 Euro/kWh, the payback period for the case of treated biogas was reduced to about 5.5 years, with a trend to decrease at higher electricity prices. For both treated and untreated biogas, the governmental subsidy was the important factor determining the economics of the biogas-to-electricity systems. Without subsidy, the payback period increased to almost 7 years and about 11 years for the case of untreated and treated biogas, respectively, at the reference electricity price. Although the H 2 S removal added high operation cost to the system, it is still highly recommended not only for preventing engine corrosion but also for the environment benefit in which air pollution by H 2 S/SO 2 emission and impact on human health could be potentially reduced. (author)

  8. Gas storage and recovery system

    Science.gov (United States)

    Cook, Joseph S., Jr. (Inventor)

    1994-01-01

    A system for recovering and recycling gases is disclosed. The system is comprised of inlet and outlet flow lines, controllers, an inflatable enclosure, and inflatable rib stiffeners which are inflatable by the gas to be stored. The system does not present gas at an undesirable back pressure to the gas source. A filtering relief valve is employed which prevents environmental airborne contamination from flowing back into the system when the relief valve is closing. The system is for storing and re-using helium.

  9. Establishment of a biogas grid and interaction between a biogas grid and a natural gas grid

    Energy Technology Data Exchange (ETDEWEB)

    Kvist, T.

    2011-01-15

    The project has aimed to clarify the advantages and disadvantages of a large biogas net in Ringkoebing Skjern municipality in Denmark, which wants to become self-sufficient in renewable energy by 2020. It is estimated that the biogas potential in the municipality is about. 60 mill. m3 methane gas a year. Half of the methane will be generated by digesting 80 % of the area's slurry, while the other half will be produced from energy crops. It will require an area equivalent to 5 % of the municipality's farmland. The idea is to establish decentralized 60-80 and 1-3 large centralized biogas plants, and that the produced biogas is distributed to natural gas-fired decentralized power plants. Based on this framework, a number of issues for the establishment of a biogas net have been investigated. These are: - the relation between biogas production and demand; - biogas compared to the overall energy system, - purification and measurement of biogas; - conversion of natural gas-fired power plants to biogas; - the value of biogas for cogeneration plants; - design of a biogas distribution net; - ownership and accountability; - potential business models. (LN)

  10. GAS TURBINE ENGINES CONSUMING BIOGAS

    Directory of Open Access Journals (Sweden)

    Е. Ясиніцький

    2011-04-01

    Full Text Available A problem of implementation of biofuel for power plants of big capacity was considered in thisarticle. Up to date in the world practice a wide implementation of biogas plants of low and medialcapacity are integrated. It is explained by the big amount of enterprises in which relatively smallvolumes of organic sediment excrete in the process of its activity. An emphasis of article is on thatenterprises, which have big volumes of sediments for utilizing of which module system of medialcapacity biogas plants are non-effective. The possibility of using biogas and biomethane as a fuelfor gas turbine engine is described. The basic problems of this technology and ways of its solutionsare indicated. Approximate profitability of biogas due to example of compressor station locatednearby poultry factory was determined also. Such factors as process characteristics of engine withcapacity of 5 MW, approximate commercial price for natural gas and equipment costs due toofficial sources of “Zorg Ukraine” company was taken into consideration. The necessity forproviding researches on influence of biogas on the process characteristics of gas turbine engine andits reliability, constructing modern domestic purification system for biogas was shown.

  11. Evaluation of a handling system for ley crop used in biogas production. Capacities and costs for a centralised system

    Energy Technology Data Exchange (ETDEWEB)

    Vaagstroem, Lena

    2005-07-01

    Within the Vaextkraft project in Vaesteraas, Sweden, biogas is to be produced out of ley crop and organic waste. The aim of this study has been to estimate the capacities within the handling system used for the ley crop harvest, and the resources needed. For this purpose a model in the form of a calculation program in Excel was built. The model makes it possible to vary parameters such as transport system design, distance from fields to storage, dry matter content and yield. The results showed that it is essential to match the capacities between chopper and transport to minimise the time and cost connected to the harvest. To avoid creating costly bottlenecks in the Vaextkraft case the transport system has to consist of at least two trucks with trailers. The estimates made with the model suggests that the distance to storage is strongly linked to the dimensioning of the transport system, whereas the number of fields and their size has a lesser impact on harvest time and cost. Variation of the dry matter yield from a base scenario had an impact on the cost for harvesting, but not on the choice of transport system. The model couldn't detect any reliable differences in total costs due to the variation of dry matter content between 25-45%. The choice of chopping machinery in the Vaextkraft project leads to small timeliness costs. Together with a reasonable choice of transport system they will only constitute a few percent of the total costs for harvesting.

  12. Continuously-stirred anaerobic digester to convert organic wastes into biogas: system setup and basic operation.

    Science.gov (United States)

    Usack, Joseph G; Spirito, Catherine M; Angenent, Largus T

    2012-07-13

    Anaerobic digestion (AD) is a bioprocess that is commonly used to convert complex organic wastes into a useful biogas with methane as the energy carrier. Increasingly, AD is being used in industrial, agricultural, and municipal waste(water) treatment applications. The use of AD technology allows plant operators to reduce waste disposal costs and offset energy utility expenses. In addition to treating organic wastes, energy crops are being converted into the energy carrier methane. As the application of AD technology broadens for the treatment of new substrates and co-substrate mixtures, so does the demand for a reliable testing methodology at the pilot- and laboratory-scale. Anaerobic digestion systems have a variety of configurations, including the continuously stirred tank reactor (CSTR), plug flow (PF), and anaerobic sequencing batch reactor (ASBR) configurations. The CSTR is frequently used in research due to its simplicity in design and operation, but also for its advantages in experimentation. Compared to other configurations, the CSTR provides greater uniformity of system parameters, such as temperature, mixing, chemical concentration, and substrate concentration. Ultimately, when designing a full-scale reactor, the optimum reactor configuration will depend on the character of a given substrate among many other nontechnical considerations. However, all configurations share fundamental design features and operating parameters that render the CSTR appropriate for most preliminary assessments. If researchers and engineers use an influent stream with relatively high concentrations of solids, then lab-scale bioreactor configurations cannot be fed continuously due to plugging problems of lab-scale pumps with solids or settling of solids in tubing. For that scenario with continuous mixing requirements, lab-scale bioreactors are fed periodically and we refer to such configurations as continuously stirred anaerobic digesters (CSADs). This article presents a general

  13. Small-scale household biogas digesters

    DEFF Research Database (Denmark)

    Bruun, Sander; Jensen, Lars Stoumann; Khanh Vu, Van Thi

    2014-01-01

    There are a number of advantages to small-scale biogas production on farms, including savings on firewood or fossil fuels and reductions in odour and greenhouse gas emissions. For these reasons, governments and development aid agencies have supported the installation of biogas digesters. However......, biogas digesters are often poorly managed and there is a lack of proper distribution systems for biogas. This results in methane being released inadvertently through leaks in digesters and tubing, and intentionally when production exceeds demand. As methane has a global warming potential 25 times greater......% of the produced biogas is released, depending on the type of fuel that has been replaced. The limited information available as regards methane leaking from small-scale biogas digesters in developing countries indicates that emissions may be as high as 40%. With the best estimates of global numbers of small...

  14. Complementary cold water production for a dairy industry: the use of biogas generated in the effluent treatment station; Producao de agua gelada complementar para um laticinio: o uso do biogas produzido na estacao de tratamento de efluentes

    Energy Technology Data Exchange (ETDEWEB)

    Villela, I.A.C. [Faculdade de Engenharia Quimica de Lorena, SP (Brazil). Dept. de Matematica Aplicada]. E-mail: iraides@debas.faenquil.br; Napoleao, D.A.S.; Silveira, J.L. [UNESP, Guaratingueta, SP (Brazil). Dept. de Energia]. E-mails: diovana@feg.unesp.br; joseluz@feg.unesp.br

    2000-07-01

    In this paper is analysed the possibility energetic utilization of biogas in the effluent treatment station of a medium dairy industry located in Sao Paulo state, Brazil. In this station is produced about 80 N m3/h of biogas, with a molar composition of 62,5% of CH{sub 4}, 13,4% of N{sub 2}, 5% of CO, 2,4% of CO{sub 2}, 2,4% of steam H{sub 2}O e 14,1% of H{sub 2}S. The generated biogas is today burning in a flair, according the national rule, with evident losses of energetic utilization potential.. The purpose of this paper is the direct utilization of this biogas to run an absorption refrigeration system utilizing H{sub 2}O + NH{sub 3} mixture. The level of H{sub 2}S in the biogas permits the energy recovery of the available heating minimum temperature level up to 230 deg C, according to the pinch point proceeding.This potential of energy recovery permits a complementation of the cold water production (7,3 kg/s) at 1 deg C. So, is made the energetic analysis of the proposed installation showing the technical feasibility of the actual use of the generated biogas, to produce useful energy. (author)

  15. Flight Path Recovery System (FPRS) design study

    International Nuclear Information System (INIS)

    1978-09-01

    The study contained herein presents a design for a Flight Path Recovery System (FPPS) for use in the NURE Program which will be more accurate than systems presently used, provide position location data in digital form suitable for automatic data processing, and provide for flight path recovery in a more economic and operationally suitable manner. The design is based upon the use of presently available hardware and technoloy, and presents little, it any, development risk. In addition, a Flight Test Plan designed to test the FPRS design concept is presented

  16. Flight Path Recovery System (FPRS) design study

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    The study contained herein presents a design for a Flight Path Recovery System (FPPS) for use in the NURE Program which will be more accurate than systems presently used, provide position location data in digital form suitable for automatic data processing, and provide for flight path recovery in a more economic and operationally suitable manner. The design is based upon the use of presently available hardware and technoloy, and presents little, it any, development risk. In addition, a Flight Test Plan designed to test the FPRS design concept is presented.

  17. Taxonomy and functional roles of biogas microbiota binned from multiple metagenomes of anaerobic digestion systems

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Treu, Laura; Campanaro, Stefano

    Anaerobic digestion, a biologically mediated process, is a worldwide spread technology for biogas production. This work represents the first comprehensive catalogue of microbial genomes populating mesophilic and thermophilic biogas reactors treating manure, agro-industrial organic residues. High...... digesters and constitute the community core group. Interestingly, 42% of them were classified as belonging to the Syntrophomonadaceae family. A correlation between the community composition resilience and the microbial functional specialization was also established. The core functional properties were found...... to cover all the steps of the anaerobic digestion process, from hydrolysis to methanogenesis. On contrary, 4 groups of genomes were identified only in specific bioreactors and therefore were found to be dependent on the operational parameters. Despite specific, some of these genomes are crucial...

  18. Optimized construction of biogas plants; Optimierte Bauweise fuer Biogasanlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-19

    Within the conference of the International Trade Fair for Biogas Plant Technology at 21st February, 2012 in Berlin, the following lectures were held: (1) Optimized dimensions of containers for small systems of liquid manure (Manfred Thalmann); (2) Microferm mini biogas plants (Bart Brouwer); (3) Fermentation of stackable biomass in rural biogas plant - The DeNaBa system (Christian Deterding); (4) The Sauter Biogas System for the fermentation of liquid manure, solid dung, and other residual materials (Stefan Sauter); (5) Bio-electricity: Controllable power generation by means of biogas plants (Matthias Sonnleitner); (6) Reduction of the effort and increase of the yield using UDR fixed bed technology (Alfred van den Berg); (7) Prestressed concrete container for biogas plants: Area of application - quality - options (Harald Feldmann); (8) Corrosion protection of agricultural and communal biogas plants (Michael Normann); (9) Fundamentals of efficient and effective flow generation in biogas plants (Kay Rotalski); (10) Rotary piston screw pistons and eccentric screw pumps (Thorsten Gilles).

  19. Parachute Recovery Systems Design Manual

    Science.gov (United States)

    1991-03-01

    Norem . Proceedings of the 1969 Aerodynamic Deceleration Systems Conference. USAF. (USAF Report FTC.TR-69.11.) 5.74. D. F Wolf. ’A Simplified Dynamic...Clustered Parachutes in Freestream and With Wake and Ground Effects, by H. G. Heinrich and R. A. Norem . USAF, November 1966. (USAF Report AFFDL-TR-66-104

  20. Waste water heat recovery system

    OpenAIRE

    Markovi?, G.; Vranayov?, Z.; K?posztasov?, D.

    2016-01-01

    After heating and cooling, water heating is typically the second largest user of energy in the home. There are a lot of purposes and uses of hot water in buildings - showers, tubs, sinks, dishwashers and clothes washers etc. In most cases, these hot waste waters are discarded direct to sewer system. When we take into the account all of these purposes in every households, the wastewater retains a considerable portion of its initial energy ? energy that could be recovered and use...

  1. A Recovery System for Unmanned Underwater Vehicles

    Science.gov (United States)

    2017-09-28

    300170 1 of 10 A RECOVERY SYSTEM FOR UNMANNED UNDERWATER VEHICLES STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may...6 of 10 forces cannot be easily predicted and can be strong enough to require a significantly larger handling system and significantly more...the sea state, the ship handling system , the capture mechanism and the design of the capture mechanism 400. [0024] The water jets 100 will increase

  2. System Recovery in Large-Scale Distributed Storage Systems

    OpenAIRE

    Aga, Svein

    2008-01-01

    This report aims to describe and improve a system recovery process in large-scale storage systems. Inevitable, a recovery process results in the system being loaded with internal replication of data, and will extensively utilize several storage nodes. Such internal load can be categorized and generalized into a maintenance workload class. Obviously, a storage system will have external clients which also introduce load into the system. This can be users altering their data, uploading new cont...

  3. Uses and abuses of recovery: implementing recovery-oriented practices in mental health systems

    Science.gov (United States)

    Slade, Mike; Amering, Michaela; Farkas, Marianne; Hamilton, Bridget; O'Hagan, Mary; Panther, Graham; Perkins, Rachel; Shepherd, Geoff; Tse, Samson; Whitley, Rob

    2014-01-01

    An understanding of recovery as a personal and subjective experience has emerged within mental health systems. This meaning of recovery now underpins mental health policy in many countries. Developing a focus on this type of recovery will involve transformation within mental health systems. Human systems do not easily transform. In this paper, we identify seven mis-uses (“abuses”) of the concept of recovery: recovery is the latest model; recovery does not apply to “my” patients; services can make people recover through effective treatment; compulsory detention and treatment aid recovery; a recovery orientation means closing services; recovery is about making people independent and normal; and contributing to society happens only after the person is recovered. We then identify ten empirically-validated interventions which support recovery, by targeting key recovery processes of connectedness, hope, identity, meaning and empowerment (the CHIME framework). The ten interventions are peer support workers, advance directives, wellness recovery action planning, illness management and recovery, REFOCUS, strengths model, recovery colleges or recovery education programs, individual placement and support, supported housing, and mental health trialogues. Finally, three scientific challenges are identified: broadening cultural understandings of recovery, implementing organizational transformation, and promoting citizenship. PMID:24497237

  4. Effects of pre-treatment technologies on quantity and quality of source-sorted municipal organic waste for biogas recovery

    DEFF Research Database (Denmark)

    Hansen, Trine Lund; Jansen, J.l.C.; Davidsson, Å.

    2007-01-01

    , collection bag material (plastic or paper) and easily degradable organic matter. Furthermore, the particle size of the biomass was related to the pre-treatment technology. The content of plastic in the biomass depended both on the actual collection bag material used in the system and the pre......-treatment technology. The sampled reject consisted mostly of organic matter. For cities using plastic bags for the source-separated organic waste, the expected content of plastic in the reject was up to 10% wet weight (in some cases up to 20%). Batch tests for methane potential of the biomass samples showed only minor...

  5. General Atomic's radioactive gas recovery system

    International Nuclear Information System (INIS)

    Mahn, J.A.; Perry, C.A.

    1975-01-01

    General Atomic Company has developed a Radioactive Gas Recovery System for the HTGR which separates, for purposes of retention, the radioactive components from the non-radioactive reactor plant waste gases. This provides the capability for reducing to an insignificant level the amount of radioactivity released from the gas waste system to the atmosphere--a most significant improvement in reducing total activity release to the environment. (U.S.)

  6. Biogas upgrading to biomethane. Proceedings; Biogasaufbereitung zu Biomethan. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-05

    Within the 6th Hanauer Dialogue 'Biogas upgrading to biomethane' at 21st February, 2008, the following lectures were held: (a) Processing of biogas - an introduction (Michael Beil); (b) The climate protecting targets of the Federal Republic of Germany: Which role will play the upgrading of biogas, and which legal boundary conditions are created by the Federal Government? (Uwe Holzhammer); (c) Future strategy: CH{sub 4} grids (Juergen Schmid); (d) Biogas upgrading and biomethane utilization in Sweden (Anneli Petersson); (e) Biogas upgrading and utilization of bio methane in Switzerland (Arthur Wellinger); (f) Biogas upgrading by means of pressure swing adsorption (Alfons Schulte-Schulze Berndt); (g) Biogas upgrading by means of pressurized water washing (Ulf Richter); (h) Biogas upgrading for feeding in public grids. The case of biogas plant Bruck a.d. Leitha (Michael Harasek); (i) Biogas upgrading by means of chemical absorption according to the LP Cooab process (Jerome van Beek); (j) Practical experiences in unpressurized amine washing MT bio methane (Karsten Wuensche); (k) Biogas upgrading by means of organic physical washing with HAASE biogas amplifiers (Roland Kahn); (l) Upgrading using cryogenic technology; the GPP registered -system (Jeroen de Pater); (m) Micro Gas Distribution Systems: Alternatives to biogas upgrading and grid injection (Michael Beil, Bernd Krautkremer); (n) Feeding of exchange gas. The case of project Straelen and Kerpen (Frank Schaefer); (o) Feeding of biogas from the view of grid operators (Norbert Nordmeyer); BIOGASMAX: Biogas as Vehicle Fuel - Market Expansion to 2020 Air Quality (Michael Beil, Uwe Hoffstede); (p) Study: Feeding of biogas into the natural gas distribution system (Fachagentur Nachwachsende Rohstoffe).

  7. Modelling a demand driven biogas system for production of electricity at peak demand and for production of biomethane at other times.

    Science.gov (United States)

    O'Shea, R; Wall, D; Murphy, J D

    2016-09-01

    Four feedstocks were assessed for use in a demand driven biogas system. Biomethane potential (BMP) assays were conducted for grass silage, food waste, Laminaria digitata and dairy cow slurry. Semi-continuous trials were undertaken for all feedstocks, assessing biogas and biomethane production. Three kinetic models of the semi-continuous trials were compared. A first order model most accurately correlated with gas production in the pulse fed semi-continuous system. This model was developed for production of electricity on demand, and biomethane upgrading. The model examined a theoretical grass silage digester that would produce 435kWe in a continuous fed system. Adaptation to demand driven biogas required 187min to produce sufficient methane to run a 2MWe combined heat and power (CHP) unit for 60min. The upgrading system was dispatched 71min following CHP shutdown. Of the biogas produced 21% was used in the CHP and 79% was used in the upgrading system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Method for anaerobic fermentation and biogas production

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a method for biomass processing, anaerobic fermentation of the processed biomass, and the production biogas. In particular, the invention relates to a system and method for generating biogas from anaerobic fermentation of processed organic material that comprises...

  9. Mapping competing valorization pathways of biogas feedstocks

    NARCIS (Netherlands)

    Hoang, Dieu Linh; Davis, Christopher Bryan; Nonhebel, Sanderine; Dijkema, Gerhard

    2017-01-01

    Biomass can play a role in the transition to a sustainable energy system. In principle all biomass can be used for make biogas. However, biogas yields differ for the various biomass types. Next to this, biomass is also used for other needs like food and feed. These competing uses affect the price of

  10. Influence of solid-liquid separation strategy on biogas yield from a stratified swine production system.

    Science.gov (United States)

    Cestonaro do Amaral, André; Kunz, Airton; Radis Steinmetz, Ricardo Luis; Scussiato, Lucas Antunes; Tápparo, Deisi Cristina; Gaspareto, Taís Carla

    2016-03-01

    As the fourth largest swine producer and exporter, Brazil has increased its participation in the global swine production market. Generally, these units concentrate a large number of animals and generate effluents that must be correctly managed to prevent environmental impacts, being anaerobic digestion is an interesting alternative for treating these effluents. The low-volatile solid concentration in the manure suggests the need for solid-liquid separation as a tool to improve the biogas generation capacity. This study aimed to determine the influence of simplified and inexpensive solid-liquid separation strategies (screening and settling) and the different manures produced during each swine production phase (gestating and farrowing sow houses, nursery houses and finishing houses) on biogas and methane yield. We collected samples in two gestating sow houses (GSH-a and GSH-b), two farrowing sow houses (FSH-a and FSH-b), a nursery house (NH) and a finishing house (FH). Biochemical methane potential (BMP) tests were performed according to international standard procedures. The settled sludge fraction comprised 20-30% of the raw manure volume, which comprises 40-60% of the total methane yield. The methane potential of the settled sludge fraction was approximately two times higher than the methane potential of the supernatant fraction. The biogas yield differed among the raw manures from different swine production phases (GSH-a 326.4 and GSH-b 577.1; FSH-a 860.1 and FSH-b 479.2; NH -970.2; FH 474.5 NmLbiogas.gVS(-1)). The differences were relative to the production phase (feed type and feeding techniques) and the management of the effluent inside the facilities (water management). Brazilian swine production has increased his participation in the global market, been the fourth producer and the fourth exporter. The segregation of swine production in multiple sites has increased its importance, due to the possibilities to have more specialized units. Generally, these units

  11. Recovery of the immune system after exercise.

    Science.gov (United States)

    Peake, Jonathan M; Neubauer, Oliver; Walsh, Neil P; Simpson, Richard J

    2017-05-01

    The notion that prolonged, intense exercise causes an "open window" of immunodepression during recovery after exercise is well accepted. Repeated exercise bouts or intensified training without sufficient recovery may increase the risk of illness. However, except for salivary IgA, clear and consistent markers of this immunodepression remain elusive. Exercise increases circulating neutrophil and monocyte counts and reduces circulating lymphocyte count during recovery. This lymphopenia results from preferential egress of lymphocyte subtypes with potent effector functions [e.g., natural killer (NK) cells, γδ T cells, and CD8 + T cells]. These lymphocytes most likely translocate to peripheral sites of potential antigen encounter (e.g., lungs and gut). This redeployment of effector lymphocytes is an integral part of the physiological stress response to exercise. Current knowledge about changes in immune function during recovery from exercise is derived from assessment at the cell population level of isolated cells ex vivo or in blood. This assessment can be biased by large changes in the distribution of immune cells between blood and peripheral tissues during and after exercise. Some evidence suggests that reduced immune cell function in vitro may coincide with changes in vivo and rates of illness after exercise, but more work is required to substantiate this notion. Among the various nutritional strategies and physical therapies that athletes use to recover from exercise, carbohydrate supplementation is the most effective for minimizing immune disturbances during exercise recovery. Sleep is an important aspect of recovery, but more research is needed to determine how sleep disruption influences the immune system of athletes. Copyright © 2017 the American Physiological Society.

  12. Biogas Koczala. Biogas project in Koczala. Feasibility study. Technical report

    International Nuclear Information System (INIS)

    2004-08-01

    The present production of district heating in Koczala is based on coal. The district heating system is worn out technically and economically and according to the 2001 Energy Plan of Koczala the district heating plant shall be converted to a combination of a biogas fired CHP and a wood chip boiler. The overall objective of this project is to access the feasibility and viability construction an operation of a biogas plant owned by the co-operative agricultural company, Poldanor S.A. The feasibility study includes: 1) Availability of organic waste in the Koczala area, 2) Possibilities of using energy crops in the biogas plant, 3) Possibilities of receiving grants from the Polish National Fund for Environmental Protection, the new EU regional funds and through the joint implementation market (CO 2 quotas), 4) Alternative locations of the biogas plant and the CHP unit, 5) Alternative strategies for selling electricity and heat, 6) Organisational issues (ownership). This report concludes that implementing the biogas project is environmentally and financially feasible and viable. If organic waste and/or maize silage can be provided and gasified without problems, the plant can supply as well the Koczala farm as the fodder mill with steam and heat, and also supply Koczala district heating system with approx. 75% of yearly heat consumption. Furthermore, electricity is supplied to the fodder mill and the public grid. (BA)

  13. Integration of biogas into the rural energy supply of solar home system powered households in South Africa: A case study of Tsware, Mailula and Muropo vilages in Limpopo.

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2011-10-01

    Full Text Available This study indicates that it is technically feasible to combine solar home systems and biogas to meet the community's thermal needs, however more work needs to be done to arrive at the best possible financial implementation model. All participants...

  14. Aminosilicone solvent recovery methods and systems

    Energy Technology Data Exchange (ETDEWEB)

    Spiry, Irina Pavlovna; Perry, Robert James; Wood, Benjamin Rue; Singh, Surinder Prabhjot; Farnum, Rachel Lizabeth; Genovese, Sarah Elizabeth

    2018-02-13

    The present invention is directed to aminosilicone solvent recovery methods and systems. The methods and systems disclosed herein may be used to recover aminosilicone solvent from a carbon dioxide containing vapor stream, for example, a vapor stream that leaves an aminosilicone solvent desorber apparatus. The methods and systems of the invention utilize a first condensation process at a temperature from about 80.degree. C. to about 150.degree. C. and a second condensation process at a temperature from about 5.degree. C. to about 75.degree. C. The first condensation process yields recovered aminosilicone solvent. The second condensation process yields water.

  15. Recovery of the Education System in Myanmar

    Directory of Open Access Journals (Sweden)

    Martin Hayden And Richard Martin

    2013-10-01

    Full Text Available Myanmar's education system is in a very weakened state. The physical condition and human resource capacity of the system is poor by any standard, and teachers, whether in schools, colleges or universities, have few opportunities and little incentive for professional development. A process of recovery is getting underway, but it will take years before significant improvements are evident. Major cultural change is required in the style of leadership and management at all levels of government, and there is also a desperate need for more financial resources. This paper documents the current state of the education system in Myanmar and advances three priority areas for immediate attention.

  16. PROSES BRAZING Cu-Ag BERBAHAN BAKAR BIOGAS TERMURNIKAN

    Directory of Open Access Journals (Sweden)

    Ali Kusrijadi

    2015-01-01

    Full Text Available Pemanfaatan biogas sebagai salah satu alternatif bahan bakar  pada proses brazing merupakan langkah diversifikasi biogas, yang diharapkan dapat meningkatkan tingkat efisiensi dan keramahan teknologi. Permasalahan yang bersifat teknis dan menjadi kendala dalam pemanfaatan biogas ini adalah rendahnya konsentrasi CH4 dikarenakan adanya pengotor utama berupa air, karbondioksida dan asam disulfida. Penelitian dilakukan melalui dua tahap yaitu  tahap  pressureized storage process meliputi pemisahan komponen pengotor yang terdapat dalam biogas melalui teknik absorbsi sehingga dihasilkan biogas yang berkualitas gas alam terbarukan dan proses injeksi ke dalam suatu tangki penyimpanan, dan tahap selanjutnya adalah menggunakan biogas tersebut pada proses brazing logam Cu (tembaga dengan bahan tambah Ag (silver. Analisis hasil brazing dilakukan melalui analisis struktur mikro (metalografi untuk melihat kualitas tampak dari hasil brazing, serta analisis kekerasan mikro dan analisis parameter fisik standar terhadap hasil proses brazing. Penelitian ini telah menghasilkan perangkat alat pemurnian biogas yang dapat memurnikan biogas menjadi metana mendekati 100% dan sistem pengemasan (storage system  biogas bertekanan hingga 2 bar. Dari hasil analisis struktur mikro dan uji kekerasan mikro diketahui bahwa hasil proses brazing dengan biogas menghasilkan kualitas yang sama dengan hasil proses brazing dengan gas acetylene sehingga disimpulkan bahwa biogas dapat menjadi bahan bakar alternatif untuk proses brazing, khususnya untuk logam Cu dengan bahan tambah Ag.  Kata kunci : Biogas, Pressureized Storage, Brazing

  17. Hygienic aspects of livestock manure management and biogas systems operated by small-scale pig farmers in Vietnam

    DEFF Research Database (Denmark)

    Luu, Huong Quynh; Madsen, Henry; Anh, Le Xuan

    2014-01-01

    in effluent as compared with raw slurry. Biogas effluent was commonly used to fertilize vegetables or discharged directly into the garden or aquatic recipients. Reduced problems with bad smells and flies were reported as main reasons for establishing a biogas digester. Further studies are needed to assess...

  18. Biogas supply to the natural gas supply grid. Study; Einspeisung von Biogas in das Erdgasnetz. Studie

    Energy Technology Data Exchange (ETDEWEB)

    Klinski, S. [DBI Gas- und Umwelttechnik GmbH, Leipzig (Germany)

    2006-07-01

    Biogas supply to the public gas grid is a new option discussed in the most recent publication of Fachagentur Nachwachsende Rohstoffe (FNR) e.V. The biogas is purified, upgraded to natural gas quality and fed into an existing gas grid. Once there, it can be transported across long distances and also used for electric power generation at the consumer side. The study investigates inhowfar and in what instances this method is feasible and promising. It discusses the technical background and the regional potential of biogas. Seven model biogas systems are presented as examples. (orig.)

  19. Aspects of biogas utilisation

    International Nuclear Information System (INIS)

    Luning, L.

    1992-01-01

    Utilisation of biogas has received considerable attention over the last decade, its full potential has not been reached however. The paper discusses various options for utilisation of biogas and the limitations that may occur as far as they are associated with the characteristics of biogas. As a result the prospects for the future are presented. (au)

  20. Evaluation of biogas of waste from poultry

    International Nuclear Information System (INIS)

    Lobo Paes, Juliana; Ferreira Matos, Camila; Souza Pereira, Diego José de; Bruggianesi, Giancarlo; Silva Misquita, Ícaro da

    2015-01-01

    Most of the farms, the waste of agricultural production do not receive adequate treatment for the stabilization of organic matter and reduce its pollution potential. The anaerobic digestion is an alternative for the treatment of waste, as well as allowing the reduction of pollution potential and the health risks of waste to a minimum, promotes the generation of biogas used as a heat source for various uses on the farm. Thus, the aim of this work was to evaluate the biogas production efficiency from the chicken waste. For the supply of biodigesters, adopted the total solids content of 8% and discontinuous supply system. The biogas potential was determined on the basis of their daily production and explosive rate. It was observed that the biogas production started 24 hours after the start of supplying the digesters. The maximum biogas production was approximately 0.87 L after the ninth and the 54th day starting the digestion process. The average daily production of biogas generated from bird manure was 0.022 L, while the cumulative 0.91 L after 72 days of digestion. The explosive rate of biogas generated by poultry origin residues peaked at 51% after 32 days of the start of the digestion process. In this analysis, we found the presence of methane in the biogas produced in all substrates tested after 24 h of digestion, because it’s burning in the presence of an ignition source (Fire). (full text)

  1. A fuzzy approach to a multiple criteria and Geographical Information System for decision support on suitable locations for biogas plants

    DEFF Research Database (Denmark)

    Franco, Camilo; Bojesen, Mikkel; Hougaard, Jens Leth

    2015-01-01

    The purpose of this paper is to model the multi-criteria decision problem of identifying the most suitable facility locations for biogas plants under an integrated decision support methodology. Here the Geographical Information System (GIS) is used for measuring the attributes of the alternatives...... according to a given set of criteria. Measurements are taken in interval form, expressing the natural imprecision of common data, and the Fuzzy Weighted Overlap Dominance (FWOD) procedure is applied for aggregating and exploiting this kind of data, obtaining suitability degrees for every alternative....... The estimation of criteria weights, which is necessary for applying the FWOD procedure, is done by means of the Analytical Hierarchy Process (AHP), used jointly with the LLSM-AHP for the estimation of upper and lower bounds for the weights. Then, a combined AHP-FWOD methodology allows identifying the more...

  2. Nanostructured systems for enhanced oil recovery

    Science.gov (United States)

    Altunina, L. K.; Kuvshinov, V. A.; Kuvshinov, I. V.

    2015-10-01

    The reservoir energy or that of the injected heat carrier was used to generate in situ intelligent chemical systems—nanostructured gels, sols and oil-displacing surfactants systems, preserving for a long time in the reservoir a complex of the properties being optimal for oil displacement. The results of field tests and commercial application of physicochemical technologies using nanostructured systems for enhanced oil recovery in oilfields with difficult-to-recover reserves, including deposits of high-viscosity oils, have been presented. Field tests of new "cold" technologies on the deposit of high-viscosity oil in Usinskoye oilfield proved their high efficiency.

  3. Optimized production of vehicle gas - an environmental and energy system analyses of Soederaasens biogas plant.; Systemoptimerad produktion av fordonsgas - En miljoe- och energisystemanalys av Soederaasens biogasanlaeggning

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, Mikael; Ekman, Anna; Boerjesson, Paal

    2009-06-15

    In this study, an environmental and energy system analysis for a specific biogas plant is presented as well as suggestions and cost calculations for measures that could be implemented in order to optimise the system. The overarching purpose is also to present a model for similar studies of specific biogas plants. The analysis performed includes direct effects such as use of energy and emissions from the production of biogas, upgrading to vehicle gas, transport of substrate and digestate and storage and handling of digestate. Furthermore, indirect effects such as reduced methane leaching from conventional storage of manure, replacement of mineral fertilizers with digestate etc. are included as well. The energy balance for production and distribution of vehicle gas from Soederaasens biogas plant is calculated to 5,5 which could be compared to the energy balance for ethanol from wheat which is normally between 2 and 3. The greenhouse gas emissions are 16 gram CO{sub 2}-ekv./kWh, approximately 95 % lower compared to gasoline. In comparison, ethanol from wheat and RME reduce the emissions with some 80 % and 65 % respectively. The result is mainly affected of the methane leakage from the upgrading plant, reduced emissions of N{sub 2}O when digestate replaces mineral fertilizers and the assumptions made of how the electricity used in the system was produced. Regarding eutrophication, the emissions are calculated to 6 gram NO{sub 3}--ekv./kWh, primarily originating from storage and handling of digestate, which is somewhat lower than the reported emissions from production of ethanol and RME. Covering the digestate storages and produce process heat with wood chips, measures estimated to be cost neutral or even profitable for the biogas producer, is calculated to reduce the emissions of greenhouse gases to -13 gram/kWh. If all measures identified would be implemented, the emissions are reduced with 120 % with an extra cost of some 0.01 SEK/kWh vehicle gas

  4. Prospects and challenges for urban application of biogas installations in Sub-Saharan Africa

    International Nuclear Information System (INIS)

    Gebreegziabher, Zenebe; Naik, Linus; Melamu, Rethabile; Balana, Bedru Babulo

    2014-01-01

    Cities around the world generate substantial quantities of municipal solid waste, including organic residues. These organic residues can be managed productively and given value, or they can simply be wasted. Municipal solid waste management is a serious environmental and public health concern in developing countries. In addition, collecting, transporting and disposing of municipal solid wastes presents formidable challenges to many developing country cities. It is believed that the problems are likely to become even more pronounced as the level and pace of urbanization continue to grow rapidly. Moreover, cost recovery is a serious problem of municipal solid waste management in many cities in the developing world. This paper considers how anaerobic digestion can give value to organic residues and help reduce the problem of municipal waste management. Biogas technology has the potential to work for the growing urban populations of Africa as both an energy source and a waste management (minimization) tool that can be utilized both at a small or large scale. In this paper we review the potential roles of biogas in urban applications. Specifically, we review organic waste treatment methods as well as opportunities and challenges for urban application of biogas installations and identify the critical conditions for success of biogas in urban applications. - Highlights: • We review the potential of biogas technologies in urban organic waste management. • We discuss anaerobic digestion for urban waste treatment and energy provision. • Urban biogas systems need technical, socioeconomic and environmental assessment. • Climatic, economic and biowaste conditions in SSA provide opportunities for biogas. • Research in local contexts and case studies provide evidence to support policy

  5. Cost analysis of concepts for a demand oriented biogas supply for flexible power generation.

    Science.gov (United States)

    Hahn, Henning; Ganagin, Waldemar; Hartmann, Kilian; Wachendorf, Michael

    2014-10-01

    With the share of intermittent renewable energies within the electricity system rising, balancing services from dispatchable power plants are of increasing importance. Highlighting the importance of the need to keeping fuel costs for flexible power generation to a minimum, the study aims to identify favourable biogas plant configurations, supplying biogas on demand. A cost analysis of five configurations based on biogas storing and flexible biogas production concepts has been carried out. Results show that additional flexibility costs for a biogas supply of 8h per day range between 2€ and 11€MWh(-1) and for a 72h period without biogas demand from 9€ to 19€MWh(-1). While biogas storage concepts were identified as favourable short term supply configurations, flexible biogas production concepts profit from reduced storage requirements at plants with large biogas production capacities or for periods of several hours without biogas demand. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Brine and gas recovery from geopressured systems

    Energy Technology Data Exchange (ETDEWEB)

    Garg, S.K.; Riney, T.D.; Wallace, R.H. Jr.

    1986-01-01

    A series of parametric calculations was run with the geopressured - geothermal simulator MUSHRM to assess the effects of important formation, fluid and well parameters on brine and gas recovery from geopressured reservoir systems. The specific parameters considered are formation permeability, pore-fluid salinity, temperature and gas content, well radius and location with respect to reservoir boundaries, desired flow rate, and possible shale recharge. It was found that the total brine and gas recovered (as a fraction of the resource in situ) were most sensitive to formation permeability, pore-fluid gas content and shale recharge.

  7. BIOGAS PRODUCTION FROM ANIMAL MANURE

    Directory of Open Access Journals (Sweden)

    Z. RECEBLI

    2015-06-01

    Full Text Available An experimental study worked on a model biogas production unit which has 0.5 m3 fermentation tank capacities of a breeding farm in the Urla district of Izmir/Turkey. The farm animal quantity is 70 cattle and 1400 chicken. Animal wastes (poultry manure and bovine animals manure were anaerobically fermented in the tank. It is known in literature, the optimum fermentation occurs at 298-313 K temperatures. In this respect, experimentation was performed at summer season and average regional temperature was 307 K and so reaction does not require the extra heating for the optimization of process. Biogas production potential from bovine animal and poultry manure was separately studied. Firstly, 350 kg bovine animal manure blend (175 kg manure+175 kg water filled to the tank and the process occurred. Secondly, 375 kg poultry manure blend (50 kg manure+325 kg water was filled to the tank and the processes done. Then the biogas production rates was evaluated and compared for two processes. Results showed that daily 6.33 m3 and 0.83 m3 biogas productions were obtained from fermentation of bovine animal manure and poultry animal manure. Lower heating value of natural gas was known 34,000 kJ/m3 , and biogas LHV value waspredicted 21,000 kJ/m3 by the 62% CH4 content. By using biogas as a fuel to the heating or energy systems instead of natural gas about 0.35 $/m3 energy cost is saved.

  8. Upgrades to the ISS Water Recovery System

    Science.gov (United States)

    Kayatin, Matthew J.; Carter, Donald L.; Schunk, Richard G.; Pruitt, Jennifer M.

    2016-01-01

    The International Space Station Water Recovery System (WRS) is comprised of the Water Processor Assembly (WPA) and the Urine Processor Assembly (UPA). The WRS produces potable water from a combination of crew urine (first processed through the UPA), crew latent, and Sabatier product water. Though the WRS has performed well since operations began in November 2008, several modifications have been identified to improve the overall system performance. These modifications can reduce resupply and improve overall system reliability, which is beneficial for the ongoing ISS mission as well as for future NASA manned missions. The following paper details efforts to reduce the resupply mass of the WPA Multifiltration Bed, develop improved catalyst for the WPA Catalytic Reactor, evaluate optimum operation of UPA through parametric testing, and improve reliability of the UPA fluids pump and Distillation Assembly.

  9. Rankine cycle waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2015-09-22

    A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.

  10. Prospect of solar-PV/biogas/diesel generator hybrid energy system of an off-grid area in Bangladesh

    Science.gov (United States)

    Mandal, Soumya; Yasmin, Hosna; Sarker, M. R. I.; Beg, M. R. A.

    2017-12-01

    The study presents an analysis and suggests about how renewable sources of energy can be an alternative option to produce electricity in an off-grid area. A case study is done by surveying 235 households in an off-grid area. Techno-economic analysis of the hybrid energy system is employed by using Hybrid Optimization of Multiple Energy Resources (HOMER) software. Four solar-PV modules (each of 1kW), two biogas generators (each of 3kW), three diesel generators (each of 5kW), five batteries (each of 160 Ah) and 5kW converter is found to be the best configuration in terms of Cost of Energy (COE), environmental conditions and Renewable Fraction (RF). The Cost of Energy (COE), Net Present Cost (NPC), capital cost of this configuration is found BDT15.382, BDT10007224, and BDT2582433 respectively. The renewable fraction of this system is found 75% which indicates a lower emission compared with thegrid based system and stand-alone diesel system. Although the COE is higher than grid electricity, this system offers a cheaper option than using kerosene oil and solar home systems (SHSs).

  11. 10. Biogas conference Dresden. Anaerobic treatment of biological wastes. Proceedings

    International Nuclear Information System (INIS)

    Dornack, Christina; Liebetrau, Jan; Fassauer, Burkhardt; Nelles, Michael

    2015-01-01

    The biogas conference in Dresden will be held for the tenth time and is still the only conference in Germany, which focuses on the production of biogas solely from waste. This year, the implementation of paragraph 11 of the Recycling and Waste Management Act and the amendment of the Renewable Energies Act (EEG) in 2014, the chances of the waste management biogas technology will be spotlighted here. The efficiency and wise use of the end products of the biogas production - the biogas and fermentation residues are equally critical for the success of biogas technology as the emission reduction of biogas plants. In this context, the biogas technology will also be dependent in the future on legal requirements and funding instruments such as the EEG. For the technical implementation, the development of reliable system concepts with specific sinking biogas and electricity supply costs and with greater flexibility in terms of launching needs-based biogas and electricity production. The contributions in this paper discuss possible solutions and implementations from the perspective of politics, associations, research and practice. Innovative topics will be discussed, which will be decisive for the future of biogas production from organic wastes. [de

  12. A novel energy recovery system for parallel hybrid hydraulic excavator.

    Science.gov (United States)

    Li, Wei; Cao, Baoyu; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the proposed energy recovery system is calculated based on the mathematical models. Meanwhile, the simulation models of the proposed system and a conventional energy recovery system are built by AMESim software. The results show that the proposed system is more effective than the conventional energy saving system. At last, the main components of the proposed energy recovery system including accumulator and hydraulic motor are analyzed for improving the energy recovery efficiency. The measures to improve the energy recovery efficiency of the proposed system are presented.

  13. Future European biogas

    DEFF Research Database (Denmark)

    Meyer, A. K.P.; Ehimen, E. A.; Holm-Nielsen, J. B.

    2018-01-01

    Biogas is expected to play an important role in reaching the future energy policy targets of the European Union (EU). The sustainability of biogas substrates has however been recently critically discussed due to the increasing shares of agricultural land used for energy crop production.The aim...... of this study was to project and map the biomass and biogas energy potential from a selection of potentially sustainable agricultural residues, which have been documented to improve in biogas yields when co-digested in biogas production, for the EU28 in year 2030. The investigated types of residual biomasses...... were animal manure, straw by-products from cereal production, and excess grass from rotational and permanent grasslands and meadows. The biogas energy potential from the investigated biomass was projected to range from 1.2·103 to 2.3·103 PJ y-1 in year 2030 in the EU28, depending on the biomass...

  14. Biogas from algae, seaweed and seagrass?; Biogas aus Algen, Tang und Seegras?

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Holger [Fachhochschule Flensburg (Germany)

    2011-07-01

    Algae, seaweed and sea grass are discussed again and again as alternative sources for raw materials for agricultural biogas plants. The author of the contribution under consideration reports on the identification and optimization of the biogas potential of microalgae, macroalgae and flotsam (mixture of seaweed, seaweed, and so on). Algae, seaweed and sea grass can be fermented into biogas by means of an anaerobic process. The specific yield of biogas is small. The processing of these substrates requires a technical adjustment of the biogas plants. Thus, the effective use of these substrates will continue to fall. The achievable benefit highly depends on the location of the facilities and on the available substrates with the corresponding specific gas yields. The economic efficiency of these substrates in agricultural systems must be examined in each case.

  15. Basic Data on Biogas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Renewable gases such as biogas and biomethane are considered as key energy carrier when the society is replacing fossil fuels with renewable alternatives. In Sweden, almost 80 % of the fossil fuels are used in the transport sector. Therefore, the focus in Sweden has been to use the produced biogas in this sector as vehicle gas. Basic Data on Biogas contains an overview of production, utilisation, climate effects etc. of biogas from a Swedish perspective. The purpose is to give an easy overview of the current situation in Sweden for politicians, decision makers and interested public. 1.4 TWh of biogas is produced annually in Sweden at approximately 230 facilities. The 135 wastewater treatment plants that produce biogas contribute with around half of the production. In order to reduce the sludge volume, biogas has been produced at wastewater treatment plants for decades. New biogas plants are mainly co-digestion plants and farm plants. The land filling of organic waste has been banned since 2005, thus the biogas produced in landfills is decreasing.

  16. A review of the biogas industry in China

    International Nuclear Information System (INIS)

    Jiang Xinyuan; Sommer, Sven G.; Christensen, Knud V.

    2011-01-01

    This article presents an overview of the development and future perspectives of the Chinese biogas industry. The development of the industry has the potential to improve the rural environment and produce significant amounts of sustainable energy for China. Barriers to the development are the relatively weak environmental policies, imperfect financial policies and lack of long-term follow-up services. The rapid economic development of China has also seen a development in the scales of biogas plants constructed. Although the technology has been improved, this review has identified problems in the construction and operation of Chinese biogas plants, particularly in the efficiency of household systems. All levels of China's government acknowledge this and recent biogas projects have more focus on quality and less on the quantity. The intention is to gradually introduce stricter environmental policies, to provide better service systems, improve the financial policies that support the construction and follow-up service of biogas projects, promote the use of standardized engineering equipment and materials and standards for plant construction and production. This will promote the development of biogas projects at various scales further, and reduce the dependency on fossil fuels and emissions of greenhouse gases. - Highlights: → The biogas industry in China has great developing potential and necessity. → Barriers to the development of biogas industry in China were included in the article. → All scales of Biogas plants in China have developed rapidly in recent years. → Measures to promote the development of biogas projects further in China were proposed.

  17. Total Energy Recovery System for Agribusiness: Lake County study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fogleman, S.F.; Fisher, L.A.; Black, A.R.

    1978-04-01

    A brief summary is given of the results of a previously reported study designed to evaluate the costs and viability of combined thermodynamic and biologic cycles in a system known as the Total Energy Recovery System for Agribusiness (TERSA). This conceptual system involved the combined geothermally assisted activities of greenhouse crop and mushroom growing, fish farming, and biogas generation in an integrated biologic system such that the waste or by-products of each subsystem cycle were recovered to service input needs of companion cycles. An updated direct use geothermal system based on TERSA that is viable for implementation in Lake County is presented. Particular consideration is given to: location of geothermal resources, availability of land and irrigation quality water, compatibility of the specific direct use geothermal activities with adjacent and local uses. Private interest and opposition, and institutional factors as identified. Factors relevant to local TERSA implementation are discussed, followed by sites considered, selection criteria, site slection, and the modified system resulting. Particular attention is paid to attempt to make clear the process followed in applying this conceptual design to the specific task of realistic local implementation. Previous publications on geothermal energy and Lake County are referenced where specific details outside the scope of this study may be found. (JGB)

  18. A membrane based process for the upgrading of biogas to substituted natural gas (SNG) and recovery of carbondioxide for industrial use

    DEFF Research Database (Denmark)

    Norddahl, Birgir; dePreez, Jan

    2007-01-01

    A low pressure carbon molecular sieve (CMS) membrane based process to upgrade biogas from anaerobic digestion of agricultural waste to a substitute natural gas (SNG) has been tested on a pilot scale. The data extracted from the pilot plant was used to estimate membrane permeance and ideal...... natural gas can be mixed with NG in the national grid and the latter by-product is intended for the production of liquified CO2, suitable for use in greenhouses. At a pressure level of 8-16 barg, this process could offer simplicity and less investment and maintenance than other technologies....... selectivity of the CO2/CH4 gas pair. Four semi-commercial modules were tested. The results show that by using a membrane cascade and by carefully choosing the CMS modules, it is possible to produce a stream containing at least 90 vol-% CH4 and a by-product containing at least 60 vol-% CO2. The substituted...

  19. Amoxicillin in a biological water recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Morse, A.; Jackson, A.; Rainwater, K. [Texas Tech Univ., Water Resources Center, Lubbock, Texas (United States); Pickering, K. [Johnson Space Center, NASA, Houston, Texas (United States)

    2002-06-15

    considering a closed loop wastewater recovery system as a drinking water supply source. (author)

  20. Amoxicillin in a biological water recovery system

    International Nuclear Information System (INIS)

    Morse, A.; Jackson, A.; Rainwater, K.; Pickering, K.

    2002-01-01

    wastewater recovery system as a drinking water supply source. (author)

  1. Towards novel biogas upgrading processes

    Energy Technology Data Exchange (ETDEWEB)

    Privalova, E.

    2013-06-01

    Biogas production has considerable development possibilities not only in Finland but all over the world since it it the easiest way of creating value out of various waste fractions and represents an alternative source of renewable energy. Development of efficient biogas upgrading technology has become an important issue since it improves the quality of biogas and for example facilitating its injection into the natural gas pipelines. Moreover, such upgrading contributes to resolving the issue of increasing CO{sub 2} emissions and addresses the increasing climate change concerns. Together with traditional CO{sub 2} capturing technologies a new class of recently emerged sorbents such as ionic liquids is claimed as promising media for gas separations. In this thesis, an extensive comparison of the performance of different solvents in terms of CO{sub 2} capture has been performed. The focus of the present study was on aqueous amine solutions and their mixtures, traditional ionic liquids, 'switchable' ionic liquids and poly(ionic liquid)s in order to reveal the best option for biogas upgrading. The CO{sub 2} capturing efficiency for the most promising solvents achieved values around 50-60 L CO{sub 2}/L absorbent. These values are superior to currently widely applied water wash biogas upgrading system. Regeneration of the solvent mixtures appeared to be challenging since the loss of initial efficiency upon CO{sub 2} release was in excess of 20-40 vol %, especially in the case of aqueous amine solutions. In contrast, some of the ionic liquids displayed reversible behavior. Thus, for selected 'switchable' ionic and poly(ionic liquid)s the CO{sub 2} absorption/regeneration cycles were performed 3-4 times without any notable efficiency decrease. The viscosity issue, typical for ionic liquids upon CO{sub 2} saturation, was addressed and the information obtained was evaluated and related to the ionic interactions. The occurrence of volatile organic compounds

  2. Model Based Aircraft Upset Detection and Recovery System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes a system for detecting upset conditions and providing the corresponding control recovery actions to maintain flight integrity for general...

  3. Carbonaceous Asteroid Volatile Recovery (CAVoR) system, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Carbonaceous Asteroid Volatile Recovery (CAVoR) system extracts water and volatile organic compounds for propellant production, life support consumables, and...

  4. White Earth Biomass/Biogas Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Triplett, Michael

    2015-03-12

    The White Earth Nation examined the feasibility of cost savings and fossil energy reduction through the installation of biogas/biomass boiler at the tribal casino. The study rejected biogas options due to availability and site constraints, but found a favorable environment for technical and financial feasibility of installing a 5 MMBtu hot water boiler system to offset 60-70 percent of current fuel oil and propane usage.

  5. The Improvement of Carburater Efficiency Using Biogas-based Venturi

    Directory of Open Access Journals (Sweden)

    Lasmi Ni Ketut

    2016-01-01

    Full Text Available The elimination of the fossil fuel subsidy by the Indonesian government has caused an increase in fuel prices, and a solution to find a relatively cheap and environmentally friendly alternative energy is needed. Biogas is one of the sources of renewable energy that has a potential to be developed, especially in farming area where the abundant animal excrement is not yet optimally used and causes environmental problems. Addressing this issue, we have developed an innovation by making a biogas and air mixer instrument through venturi pipe, using the basic theory of fluid mechanism in order to increase the use of biogas as an electricity source. Usually, biogas-based electric generators use dual fuel system such as fossil fuel and biogas to perform combustion due to the low octane contained in the biogas. By replacing the readily available manufactured venturi with the modified venturi, optimal combustion can be reached with using only single fuel of biogas. The results of the experiments show that the biogas debit on carburetor increases from 13 to 439 watts consuming biogas fuel from 0.22 to 4.96 liter/minute, respectively. The amount of combusted biogas depends on the value of the load power. Within the scope of our results, the maximum voltage reached is about 211.13 – 211.76 volts which is feasible to use for 220 volts electrical appliances

  6. Farm Biogas Handbook; Gaardsbiogashandbok

    Energy Technology Data Exchange (ETDEWEB)

    Christensson, Kjell; Bjoernsson, Lovisa; Dahlgren, Stefan; Eriksson, Peter; Lantz, Mikael; Lindstroem, Johanna; Mickelaaker, Maria

    2009-04-15

    A very large share of the total raw material potential for biogas production will be found within the agriculture. The raw material potential of manure in Sweden amounts to 4 - 6 TWh. Within the agriculture there is moreover a big potential in the form of residues from plant cultivation and non-food crops (approximately 7 TWh) that can to be used for biogas production. The potential for biogas production from only residues and manure is around 8-10 TWh. An increased biogas production within the agriculture would give significant environmental effects. Among other things manure, that today is leaking methane gas to the atmosphere, can be fermented, and trough this process the methane losses will be reduced. When the produced biogas replaces fossil fuel, an overall environmental effect will be reached, that is highly significant. This manual deals with biogas plants for agriculture and such plants that do not have extensive transports of different raw materials, as manure, wastes etc. One of the starting points for this manual's set-up is a course plan that Biogas Syd made for the courses they give to farmers, advisors and others. The manual illustrates important aspects in planning and construction of biogas plants, from raw material and technology to dimensioning of plant, use of biogas and planning of local gas grids. We also think it is important to illustrate the legislation that encompasses construction work and operation of a biogas plant. Investment costs are also illustrated, but the book does not give any extensive economic calculations, since we believe that such calculations need their own manual in the form of calculation examples, based on various conditions. The final section is called 'Biogas on farm - from idea to reality' where the entire process from analysis and pre-planning to monitoring and control of plant during operation is briefly described

  7. Conversion of landfill biogas in electric energy. Forecasting and economic estimation reported in a case study in the province of Udine

    International Nuclear Information System (INIS)

    Goi, D.; Cirino, N.; Pivato, P.; Lizzi, G.; Dolcetti, G.

    2000-01-01

    This work presents an analysis about the recovery of electrical energy form biogas of a landfill in Province of Udine. Starting with an estimation of material composition of waste and adopting a simple stoichiometric-kinetic model, a theoretical evaluation of biogas production was conducted and subsequently results were compared to real data of biogas production estimated by electric energy produced. An economic examination about the electrical energy recovery from landfill biogas was also conducted by profit graphs [it

  8. RI and Target recovery system of Lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Choi, K. H.; Park, U. J.; Jung, S. H.; Kim, J. B.; Moon, J. H.; Nam, S. S.; Jang, K. D. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Separation of adjacent lanthanides is complicated process to obtain pure target nuclide. Several papers have reported that the ionic character change of lanthanides with appropriate chelating agents can isolate the target lanthanides. These specific agents to the metal ion are called as complexing agents including-HIBA, tartaric acid, mandelic acid, lactic acid etc. Radioisotope research division of KAERI has developed separating technique for target lanthanides, total 20mg scale, by using complexing agents and ion-pairing agents in cold state. The reactor-produced radiolanthanides have been pivotal for development of therapeutic radiopharmaceuticals. Some radiolanthanides show excellent theranostic effects in that they have proper Let (Linear Energy Transfer) to induce apoptosis for cancer treatment and gamma ray to use as a tracer for cancer diagnosis. This system was designed for automated separation of the (n,γ) reaction product. Especially, we are focused on getting the carrier free Ho-166 which is the first attempt at KAERI. Even though we have already developed to produce c.a Ho-166(carrier added form), we did not try to develop to produce carrier free Ho-166 since the separating process is difficult as well as production process follows double (n,γ) reaction. After HANARO is re-operated, we are schedule to produce n.c.a Ho by using this recovery system.

  9. Mass flow and energy balance plus economic analysis of a full-scale biogas plant in the rice-wine-pig system.

    Science.gov (United States)

    Li, Jiang; Kong, Chuixue; Duan, Qiwu; Luo, Tao; Mei, Zili; Lei, Yunhui

    2015-10-01

    This paper presents mass flow and energy balance as well as an economic analysis for a biogas plant in a rice-wine-pig system at a practical rather than laboratory scale. Results showed feeding amount was 65.30 t d(-1) (total solid matter (TSM) 1.3%) for the normal temperature continuous stirred tank reactor (CSTR), and 16.20 t d(-1) (TSM 8.4%) for the mesophilic CSTR. The digestion produced 80.50 t d(-1) of mass, with 76.41 t d(-1) flowing into rice fields and 4.49 t d(-1) into composting. Energy consumption of this plant fluctuated with seasons, and surplus energy was 823, 221 kWh/year. Thus, biogas plant was critical for material recycling and energy transformation of this agro-ecosystem. The economic analysis showed that the payback time of the plant was 10.9 years. It also revealed application of biogas as a conventional energy replacement would be attractive for a crop-wine-livestock ecosystem with anaerobic digestion of manure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The Biogas/Biofertilizer Business Handbook. Third Edition. Appropriate Technologies for Development. Reprint R-48.

    Science.gov (United States)

    Arnott, Michael

    This book describes one approach to building and operating biogas systems. The biogas systems include raw material preparation, digesters, separate gas storage tanks, use of the gas to run engines, and the use of the sludge as fertilizer. Chapters included are: (1) "Introduction"; (2) "Biogas Systems are Small Factories"; (3)…

  11. Energy Efficient Waste Heat Recovery from an Engine Exhaust System

    Science.gov (United States)

    2016-12-01

    AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE ENERGY EFFICIENT WASTE HEAT RECOVERY FROM AN ENGINE EXHAUST SYSTEM 5. FUNDING NUMBERS 6...release. Distribution is unlimited. ENERGY EFFICIENT WASTE HEAT RECOVERY FROM AN ENGINE EXHAUST SYSTEM Aaron R. VanDenBerg Lieutenant, United...HEAT RECOVERY DEVICES Ships mainly extract heat and energy from exhaust gases by using a waste heat boiler located in the actual exhaust duct. The

  12. Anaerobic bioconversion of organic waste into biogas by hot water treatment at near-critical conditions: application in bioregenerative life support.

    Science.gov (United States)

    Lissens, Geert; Verstraete, Willy; Albrecht, Tobias; Brunner, Gerd; Lasseur, Christophe

    2003-01-01

    The feasibility of nearly-complete conversion of lignocellulosic waste (70% food crops, 20% faecal matter and 10% green algae) into biogas was investigated in the context of a Life Support Project. The treatment comprised a series of processes, i.e. a mesophilic laboratory scale CSTR (continuously stirred tank reactor), an upflow biofilm reactor and a hydrothermolysis system in near-critical water. By the one-stage CSTR, a biogas yield of 75% with a specific biogas production of 0.37 l biogas g(-1) VSS (volatile suspended solids) added at a HRT (hydraulic retention time) of 20 d was obtained. Biogas yields further increased with 10-15% at HRT > 20 d, indicating the hydrolysis of lignocellulose to be the rate-limiting conversion step. The solids present in the CSTR-effluent were subsequently treated by hot water treatment (T approximately 310-350 degrees C, p approximately 240 bar), resulting in effective carbon liquefaction (50-60% without and 83% with carbon dioxide saturation) and complete hygienisation of the residue. Subsequent anaerobic digestion of the hydrolysate allowed further conversion of 48-60% on COD (chemical oxygen demand) basis. Thus, the total process yielded biogas corresponding with a COD conversion up to 90% of the original organic matter. It appears that mesophilic digestion in conjunction with hydrothermolysis at near-critical conditions offers interesting features for (nearly) complete, non-toxic and hygienic carbon and energy recovery from human waste in a bioregenerative life support context.

  13. An Introduction to Biogas Production on the Farm.

    Science.gov (United States)

    National Center for Appropriate Technology, Butte, MT.

    This three-section report provides introductory information about biogas production and its application to farm environments. The first section discusses the various components of a biogas production system (a system that converts organic wastes into a usable form of energy), explains the system's benefits and liabilities, and provides a brief…

  14. Distribution forms for biogas and natural gas in Sweden

    International Nuclear Information System (INIS)

    Benjaminsson, Johan; Nilsson, Ronny

    2009-11-01

    Since biogas and natural gas basically have the same characteristics, they can be distributed in the same system. In the parts of the country where there is an extensive natural gas distribution network, the infrastructure for natural gas can be used for distribution of biogas. In order to increase the use of renewable energy, it is a political ambition to increase the share of biogas in the natural gas network, and, in the long run, entirely replace natural gas with biogas. Much of biogas production in the country is, however, not reached by the existing natural gas network, and this is also the case for a large part of the potential for future biogas production. In these areas the gas is transported in more or less extensive local gas distribution networks and by truck in compressed or liquid form. Transport of compressed and liquefied gas is efficient in some cases and development of these systems is an ongoing process. A number of facilities are planned for production of large quantities of biogas, several hundred GWh/year, through digestion and gasification processes. These plants will be located either in conjunction with major gas consumers or in the vicinity of the existing natural gas grid. The potential for biogas production is, however, present throughout the country and in order to meet market demand biogas requires efficient distribution systems

  15. OSIRIS : Efficient and consistent recovery of compartmentalized operating systems

    NARCIS (Netherlands)

    Bhat, Koustubha; Vogt, Dirk; Kouwe, Erik Van Der; Gras, Ben; Sambuc, Lionel; Tanenbaum, Andrew S.; Bos, Herbert; Giuffrida, Cristiano

    2016-01-01

    Much research has gone into making operating systems more amenable to recovery and more resilient to crashes. Traditional solutions rely on partitioning the operating system (OS) to contain the effects of crashes within compartments and facilitate modular recovery. However, state dependencies among

  16. Backup and recovery plan for HANDI 2000 business management system

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.E.

    1998-09-29

    The purpose of this Backup and Recovery Plan (BRP) is to provide guidelines for backup and recovery requirements of HANDI 2000 [Hanford Data Integration 2000] file systems and databases. The methods used to accomplish this are not new. The intent is to use the existing processes and procedures where possible to meet the needs of the HANDI 2000 System.

  17. Biogas barometer - EurObserv'ER - December 2012

    International Nuclear Information System (INIS)

    2012-12-01

    +18,2 % biogas electricity production growth in 2011. Biogas energy recovery for both electricity and heat application has increased in the European Union. The magnitude of the reduction in the primary energy figure can be played down as it can be explained by a change in reporting method of the main producer country, Germany. New markets are starting to emerge in its footsteps, but the economic crisis and regulatory restrictions do not auger well for their expansion

  18. Model of the daily production of biogas from a Indian type digester using techniques of identification systems; Modelo da producao diaria de biogas de um biodigestor tipo indiano utilizando tecnicas de identificacao de sistemas

    Energy Technology Data Exchange (ETDEWEB)

    Borges Neto, Manuel Rangel [Centro Federal de Educacao Tecnologica de Petrolina (CEFET-PET), PE (Brazil)], e-mail: rangel@cefetpet.br; Carvalho, Paulo Cesar Marques de; Almeida, Otacilio da Mota [Universidade Federal do Ceara (PPGEE/UFC), Fortaleza, CE (Brazil). Programa de Pos Graduacao em Engenharia Eletrica

    2008-07-01

    This paper brings a study about utilization of curve adjustments and prediction models of biogas production from a biodigestor fed by sheep manure, to help in the development of a optimal controller to production and use of biogas generated by Indian type biodigestors applied to semiarid. From experimental data were applied simultaneously the Least Mean Squares and Recursive Least Squares methods algorithms and after proper analysis, to validation, a new experimental data set was used to the chosen model. (author)

  19. Quantitative Study of Biogas Generation Potential from Different Landfill Sites of Nepal

    Directory of Open Access Journals (Sweden)

    Bikash Adhikari

    2015-01-01

    Full Text Available This research paper was study of waste composition and quantitative analysis of biogas generation potential with its recovery at Sisdole, Pokhara and Karaute Dada landfill sites (LFS of Nepal. The waste management practice in LFS are significant deciding factors for the assessment of environmental impacts caused including the release of green house gases like methane, carbondioxide etc to the atmosphere, that could contribute significantly to global warming and climate change. The total waste disposed to Sisdole LFS, Pokhara LFS and Karaute Dada LFS are 410, 80 and 7.8 tons respectively.  The waste composition was studied onsite with waste reduction method and analyzed for their composition. The organic component of wastes was found high as 61.6%, 52.5% and 65% at Sisdole, Pokhara and Karaute Dada LFS respectively. The biogas potential at these landfill sites were 12157.78 cum, 851.99 cum and 169 cum of biogas per day in Sisdole, Pokhara and Karaute Dada LFS respectively. 4.68, 0.33 and 0.07 MW energy per day can be generated from these amounts of biogas produced in Sisdole, Pokhara and Karaute Dada LFS respectively. Proper gas collection system can be the source of income from these landfill sites and help to mitigate the adverse impact of methane that is being released from these landfill sites

  20. Improvement of Biogas Production from Orange Peel Waste by Leaching of Limonene

    Directory of Open Access Journals (Sweden)

    Rachma Wikandari

    2015-01-01

    Full Text Available Limonene is present in orange peel wastes and is known as an antimicrobial agent, which impedes biogas production when digesting the peels. In this work, pretreatment of the peels to remove limonene under mild condition was proposed by leaching of limonene using hexane as solvent. The pretreatments were carried out with homogenized or chopped orange peel at 20–40°C with orange peel waste and hexane ratio (w/v ranging from 1 : 2 to 1 : 12 for 10 to 300 min. The pretreated peels were then digested in batch reactors for 33 days. The highest biogas production was achieved by treating chopped orange peel waste and hexane ratio of 12 : 1 at 20°C for 10 min corresponding to more than threefold increase of biogas production from 0.061 to 0.217 m3 methane/kg VS. The solvent recovery was 90% using vacuum filtration and needs further separation using evaporation. The hexane residue in the peel had a negative impact on biogas production as shown by 28.6% reduction of methane and lower methane production of pretreated orange peel waste in semicontinuous digestion system compared to that of untreated peel.

  1. Improvement of Biogas Production from Orange Peel Waste by Leaching of Limonene

    Science.gov (United States)

    Wikandari, Rachma; Nguyen, Huong; Millati, Ria; Niklasson, Claes; Taherzadeh, Mohammad J.

    2015-01-01

    Limonene is present in orange peel wastes and is known as an antimicrobial agent, which impedes biogas production when digesting the peels. In this work, pretreatment of the peels to remove limonene under mild condition was proposed by leaching of limonene using hexane as solvent. The pretreatments were carried out with homogenized or chopped orange peel at 20–40°C with orange peel waste and hexane ratio (w/v) ranging from 1 : 2 to 1 : 12 for 10 to 300 min. The pretreated peels were then digested in batch reactors for 33 days. The highest biogas production was achieved by treating chopped orange peel waste and hexane ratio of 12 : 1 at 20°C for 10 min corresponding to more than threefold increase of biogas production from 0.061 to 0.217 m3 methane/kg VS. The solvent recovery was 90% using vacuum filtration and needs further separation using evaporation. The hexane residue in the peel had a negative impact on biogas production as shown by 28.6% reduction of methane and lower methane production of pretreated orange peel waste in semicontinuous digestion system compared to that of untreated peel. PMID:25866787

  2. Optimisation of biogas production through a two-stage automated anaerobic digester system developed by the CSIR in South Africa

    CSIR Research Space (South Africa)

    Mema, V

    2015-08-01

    Full Text Available with the aim of producing biogas as a renewable energy source plays a critical role in addressing the energy demand at a wastewater treatment works depending on the type of technology applied. Efficacy of anaerobic digestion process is highly dependent...

  3. Experimental evaluation of a diesel-biogas dual fuel engine operated on micro-trigeneration system for power, drying and cooling

    International Nuclear Information System (INIS)

    Cacua, Karen; Olmos-Villalba, Luis; Herrera, Bernardo; Gallego, Anderson

    2016-01-01

    Highlights: • A micro-trigeneration system based in a diesel-biogas dual fuel engine was obtained. • Heat from engine exhaust gases was used for drying and refrigeration applications. • Energy efficiency of the microtrigeneration system in dual mode was 40%. • Peppermint was dried in the microtrigeneration system. - Abstract: A micro-trigeneration system based on a diesel-biogas dual fuel engine was evaluated experimentally. In this system, waste heat from the engine exhaust was used for heating air using a heat pipe exchanger and for driving an absorption unit freezer. The air heated was used in a convective trays dryer designed to dry peppermint. The global energy efficiency of this system at the engine full load was 40% and 31% in diesel and dual mode, respectively, while the same efficiencies of the engine at the original single generation were 23% and 18%, respectively. On the other hand, a maximum diesel substitution level of 50% was achieved in dual mode.

  4. Effects of green manure herbage management and its digestate from biogas production on barley yield, N recovery, soil structure and earthworm populations

    DEFF Research Database (Denmark)

    Frøseth, Randi Berland; Bakken, Anne Kjersti; Bleken, Marina Azzaroli

    2014-01-01

    management on the yield and N recovery of a subsequent spring barley crop, and their short term effects on soil structure and earthworm populations. A field trial was run from 2008 to 2011 at four sites with contrasting soils under cold climate conditions. We compared several options for on-site herbage...... removing it. Digestate did not affect the earthworm population, but contributed to higher soil aggregate stability. In conclusion, for spring barley production after green manure ley, the digestate strategy increased N recovery and reduced the risk of N losses. The yield of the succeeding barley crop yield...

  5. Biogas from Agricultural Residues as Energy Source in Hybrid Concentrated Solar Power

    NARCIS (Netherlands)

    Corré, W.J.; Conijn, J.G.

    2016-01-01

    This paper explores the possibilities of sustainable biogas use for hybridisation of Concentrated Solar Power (HCSP) in Europe. The optimal system for the use of biogas from agricultural residues (manure and crop residues) in HCSP involves anaerobic digestion with upgrading of biogas to

  6. Flip-Flop Recovery System for sounding rocket payloads

    Science.gov (United States)

    Flores, A., Jr.

    1986-01-01

    The design, development, and testing of the Flip-Flop Recovery System, which protects sensitive forward-mounted instruments from ground impact during sounding rocket payload recovery operations, are discussed. The system was originally developed to reduce the impact damage to the expensive gold-plated forward-mounted spectrometers in two existing Taurus-Orion rocket payloads. The concept of the recovery system is simple: the payload is flipped over end-for-end at a predetermined time just after parachute deployment, thus minimizing the risk of damage to the sensitive forward portion of the payload from ground impact.

  7. A tool for analyzing the sustainability of biogas production chains

    NARCIS (Netherlands)

    H.C. Moll; F. Pierie; J. Broekhuijsen; prof. dr. Wim van Gemert

    2014-01-01

    Abstract written for an poster presentation at the EBA conference in Alkmaar. The flexibility of biogas makes it a very capable load balancer within decentralized smart energy systems. However, within this context the sustainability of biogas production is not fully understood. What is needed is a

  8. Hybrid Energy System Design of Micro Hydro-PV-biogas Based Micro-grid

    Science.gov (United States)

    Nishrina; Abdullah, A. G.; Risdiyanto, A.; Nandiyanto, ABD

    2017-03-01

    Hybrid renewable energy system is an arrangement of one or more sources of renewable energy and also conventional energy. This paper describes a simulation results of hybrid renewable power system based on the available potential in an educational institution in Indonesia. HOMER software was used to simulate and analyse both in terms of optimization and economic terms. This software was developed through 3 main principles; simulation, optimization, and sensitivity analysis. Generally, the presented results show that the software can demonstrate a feasible hybrid power system as well to be realized. The entire demand in case study area can be supplied by the system configuration and can be met by ¾ of electricity production. So, there are ¼ of generated energy became an excess electricity.

  9. Energy saving and recovery measures in integrated urban water systems

    Science.gov (United States)

    Freni, Gabriele; Sambito, Mariacrocetta

    2017-11-01

    The present paper describes different energy production, recovery and saving measures which can be applied in an integrated urban water system. Production measures are often based on the installation of photovoltaic systems; the recovery measures are commonly based on hydraulic turbines, exploiting the available pressure potential to produce energy; saving measures are based on substitution of old pumps with higher efficiency ones. The possibility of substituting some of the pipes of the water supply system can be also considered in a recovery scenario in order to reduce leakages and recovery part of the energy needed for water transport and treatment. The reduction of water losses can be obtained through the Active Leakage Control (ALC) strategies resulting in a reduction in energy consumption and in environmental impact. Measures were applied to a real case study to tested it the efficiency, i.e., the integrated urban water system of the Palermo metropolitan area in Sicily (Italy).

  10. Carbonaceous Asteroid Volatile Recovery (CAVoR) system, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Carbonaceous Asteroid Volatile Recovery (CAVoR) system produces water and hydrogen-rich syngas for propellant production, life support consumables, and...

  11. The social organization of agricultural biogas production and use

    International Nuclear Information System (INIS)

    Bluemling, Bettina; Mol, Arthur P.J.; Tu, Qin

    2013-01-01

    While for wind, solar energy or hydropower, energy supply happens directly from the source to the wind wheels, hydropower turbines or solar panels, in the case of biogas, energy production cannot directly take from the energy source, organic matter, but depends on the institutional structures and farmers′ practices involved for making energy available. With the production of bioenergy in rural areas, practices within agriculture are transformed, requiring new ways of organizing production processes. Research has left the question largely unanswered of how agricultural biogas production and use are – and can best be – organized within rural society. Which kinds of social organization exist, how are these embedded in existing agricultural institutions and practices, and how do these systems function? Under which conditions may the different kinds of social organization of biogas production and use work sustainably? This introduction article to the Special Issue “The social organization of agricultural biogas production and use” presents a framework for analysing the different kinds of social organization of biogas production and use presented hereafter. Analysis parameters are the supply network, distribution network, distribution of benefits, social boundaries of the system (accessibility) and scale. Using these parameters, the Special Issue articles are outlined. - Highlights: • Through agricultural institutions and farmers′ practices, biogas is made available. • Scale, supply and delivery network distinguish biogas infrastructural systems. • Access and benefit distribution are key for a biogas system′s sustainability

  12. Influence of different practices on biogas sustainability

    International Nuclear Information System (INIS)

    Boulamanti, Aikaterini K.; Donida Maglio, Sara; Giuntoli, Jacopo; Agostini, Alessandro

    2013-01-01

    Biogas production and use are generally regarded as a sustainable practice that can guarantee high greenhouse gas (GHG) savings. However, the actual carbon footprint of biogas is strongly influenced by several factors. The aim of this study is to analyse the environmental performance of different biogas to electricity scenarios. Two criticalities are identified as important: the choice of feedstock and the operational practice concerning the digestate. Maize, manure and co-digestion of them are the different feedstocks chosen. Maize has higher yields, but its cultivation has to be accounted for, which consists of 28–42% of the GHG emissions of the whole process of producing electricity. Manure is considered a residue and as a result benefits from no production stage, but also from avoided emissions from the normal agricultural practice of storing it in the farm and spreading it as fertiliser, but has lower methane yields. Co-digestion combines the benefits and disadvantages of the two different feedstocks. Digestate storage in open or closed tanks and further use as fertiliser is analysed. The environmental impact analysis shows that a substantial reduction of GHG emissions can be achieved with closed digestate storage. The GHG emissions savings vary from about 3% in the maize pathways with open storage up to 330% in the manure pathway with closed storage. The biogas pathways, though, have worse environmental performances in all other environmental impacts considered but ozone depletion potential when compared to the European electricity average mix. -- Highlights: ► Biogas sustainability depends on the feedstock and the digestate management. ► Closed storage is strongly recommended. ► Taking into consideration credits is recommended. ► The biogas pathways GHG emissions can be lower than the ones of the reference system. ► Biogas pathways have higher impact in eutrophication, ecotoxicity and PM potentials

  13. Biogas/photovoltaic hybrid power system for decentralized energy supply of rural areas

    Energy Technology Data Exchange (ETDEWEB)

    Borges Neto, M.R. [Federal Institute of Education, Science and Technology of Sertao Pernambucano - IFSertao-PE, BR407, km 8, 56314-520 Petrolina, PE (Brazil); Federal University of Ceara, Department of Electrical Engineering, Caixa Postal 6001 - Campus do Pici, 60455-760 Fortaleza, CE (Brazil); Carvalho, P.C.M. [Federal University of Ceara, Department of Electrical Engineering, Caixa Postal 6001 - Campus do Pici, 60455-760 Fortaleza, CE (Brazil); Carioca, J.O.B. [Federal University of Ceara, Department of Food Engineering, Caixa Postal 6001 - Campus do Pici, 60455-760 Fortaleza, CE (Brazil); Canafistula, F.J.F. [Federal University of Ceara, Department of Agricultural Engineering, Caixa Postal 6001 - Campus do Pici, 60455-760 Fortaleza, CE (Brazil)

    2010-08-15

    Biomasses created from natural resources such as firewood, charcoal and forest crops are still the main source of energy in many communities in the developing countries of the world. The absence of modern techniques, in terms of energy conversion and the lack of resource planning, places a great burden on the environment, not only in terms of deforestation but the polluting residual emissions created by the burning of such fuels. Even in some developed countries, it is possible to find rural areas that have no access to the conventional national electrical grid. The lack of this facility is detrimental to the social and economic development of any country or community. Renewable energy systems have been used in many cases to mitigate these problems. The present paper introduces the concept of an alternative Hybrid Power System configuration that combines photovoltaic modules and digesters fuelled by goat manure as the basis for rural sustainable development. Attention is drawn to the Northeast Region of Brazil, one of the largest semi-arid regions in a single country. The regional conditions of Northeast of Brazil are not unique, suggesting that other countries of a similar nature would benefit from the same energy system. (author)

  14. Progress in biogas. Biogas production from agricultural biomass and organic residues. Pt. 1 and 2. Proceedings (oral presentations and poster presentations); Fortschritt beim Biogas. Biogas aus landwirtschaftlicher Biomasse and organischen Reststoffen. T. 1 und 2. Tagungsband. Vortraege and Poster

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Within the International Conference ''Progress in Biogas - Biogas production from agricultural biomass and organic residues'' at the University Hohenheim (Stuttgart, Federal Republic of Germany) from 18th to 21st September, 2007, the following lectures were held: (1) Global relevance and potential of bioenergy for regional development; (2) Biogas electricity for France feed-in tariff and some other things to know before entering French market; (3) Policy drivers and future prospects for on-farm anaerobic digestion in Northern Ireland; (4) Biogas in Belgium, a swot analysis; (5) Status and prospects of biogas energy use in Ukraine; (6) Recent developments in Chinese agricultural biogas production; (7) Opportunities for agricultural based biogas systems in the province of Ontario, Canada; (8) Pre-treatment and digestion of separated collected household waste in Sweden; (9) To the problem of monitoring measures and prophylaxis measures with the utilization of organic residual substances in biological gas facilities from hygienic view; (10) Fermenting residues from biological gas facilities - nutrients and pollutants, possibilities of application in the agriculture; (11) Treatment and utilization of fermentation residues; (12) Potential of residual gas of NaWaRo feeded biogas plants in Baden-Wuerttemberg; (13) Operating analytics of biogas plants to improve efficiency and to ensure process stability; (14) The potential of biogas and electric power production from subproducts in the sugar and alcohol industries by the application of anaerobic digestion; (15) Co-digestion plant in dairy cattle farm in Emilia Romagna region (Italy); (16) Facing operational problems in a biodigeser in Yuvientsa - Amazonian Region of Ecuador; (17) Biogas plant instead of milk cow - payment and occupation with the use of grassilage; (18) Biogas in ecologic agriculture - experiences from 3 years of fermentation of grass-clover ley; (19) Combined solar-biogas basis for the

  15. Biogas in Burkina Faso. Influential factors of biogas projects in rural areas of Burkina Faso

    Energy Technology Data Exchange (ETDEWEB)

    Aschaber, Andreas

    2010-07-01

    Full text: Burkina Faso is among the poorest countries in the world. The energy situation in Burkina Faso is among the most critical issues which need to be addressed in the country. The electrical power grid is insufficient and only available in urban centers. Consequently wood and charcoal is used in order to meet the basic needs for heating, cooking, and lightning by the majority of the population. The resulting overuse of natural energy resources in Burkina Faso has been causing massive deforestation and desertification on the one hand and on the other hand scarcity in fuel wood availability. According to a recent feasibility study of the GTZ, biogas is thought to be one of the most sustainable solutions for developing energy self sufficiency in rural areas of Burkina Faso. Biogas is not a new concept in Burkina Faso, as the first biogas plants were already installed in the 70's. Recently a national biogas program and the activity of various NGOs lead to a rejuvenation of attempts to establish biogas in Burkina Faso. Although biogas has a long history in Burkina Faso, no significant breakthrough of this technology has happened so far. None of the biogas plants built during the last 40 years have been operational for a long time. This contribution presents a study aimed to analyze the partial success and failures of the attempts to install biogas plants so far. The study was conducted in May 2009 as part of a project for a model application of the technology in the frame of University cooperation between Austria (University of Innsbruck) and Burkina Faso (Universite Polytechnique du Bobo Dioulasso). During the field study four sites of existing biogas plants were visited, five interviews with experts conducted and two focus groups with potential users in a rural setting were conducted. The systemic approach, including technical as well as socioeconomic aspects, yielded a wealth of factors which can potentially influence the success of biogas projects in

  16. Terpenes removal from biogas; Terpenenverwijdering uit biogas

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, P.; Holstein, J.; De Haan, HR.; Vlap, H. [DNV KEMA, Arnhem (Netherlands)

    2013-06-15

    Biogas may contain unwanted and harmful components, including aromatic hydrocarbons such as terpenes. These terpenes (organic oils) are mainly present in citrus peel and plant residues; that is why especially raw biogas from organic waste digestion plants contains high concentrations of terpenes. If terpenes end up in the gas grid (with the injected biomethane) there is a risk that plastics (PE pipes) lose their mechanical properties by absorbing liquids or extracting ethereal plasticizers. This can lead to embrittlement greatly lowering the reliability of the piping. In addition, soft components are als o affected (gaskets and rubber O-rings). Besides the impact on the integrity of the gas grid, terpenes also mask the odor of natural gas odorants such as THT. This impedes the detection of gas leaks which is a significant security risk. Furthermore, the presence of terpenes in biogas leads to fouling of equipment used for the drying of biomethane, as well as contamination of adsorption liquids and membranes used in the upgrading process. Currently, terpenes are removed by activated carbon filters. The tool life of such a filter can be relatively short if terpene concentrations are high in the biogas; this results in a significant increase of the operational costs, due to the replacement of the carbon. This study looked at alternative techniques for removing much of the terpenes from biogas in a simple, efficient and cheap way. In a workshop with stakeholders two techniques were chosen to be tested on laboratory scale in order to demonstrate the proof of principle. These techniques are photo-oxydation and a gas scrubbing. Of all investigated techniques for the removal of limonene the application of UV radiation seems to be the most promising option because of the simplicity of the process, the high efficiency (up to 94%), the comparable operational costs with activated carbon (6.7 to 9.5 euro/kg limonene removed, compared to 10 euro/kg limonene removed for activated

  17. Methodology for Analysing Energy Demand in Biogas Production Plants—A Comparative Study of Two Biogas Plants

    Directory of Open Access Journals (Sweden)

    Emma Lindkvist

    2017-11-01

    Full Text Available Biogas production through anaerobic digestion may play an important role in a circular economy because of the opportunity to produce a renewable fuel from organic waste. However, the production of biogas may require energy in the form of heat and electricity. Therefore, resource-effective biogas production must consider both biological and energy performance. For the individual biogas plant to improve its energy performance, a robust methodology to analyse and evaluate the energy demand on a detailed level is needed. Moreover, to compare the energy performance of different biogas plants, a methodology with a consistent terminology, system boundary and procedure is vital. The aim of this study was to develop a methodology for analysing the energy demand in biogas plants on a detailed level. In the methodology, the energy carriers are allocated to: (1 sub-processes (e.g., pretreatment, anaerobic digestion, gas cleaning, (2 unit processes (e.g., heating, mixing, pumping, lighting and (3 a combination of these. For a thorough energy analysis, a combination of allocations is recommended. The methodology was validated by applying it to two different biogas plants. The results show that the methodology is applicable to biogas plants with different configurations of their production system.

  18. Anaerobic digestion and gasification hybrid system for potential energy recovery from yard waste and woody biomass

    International Nuclear Information System (INIS)

    Yao, Zhiyi; Li, Wangliang; Kan, Xiang; Dai, Yanjun; Tong, Yen Wah; Wang, Chi-Hwa

    2017-01-01

    There is a rapid growing interest in using biomass as an alternative source for clean and sustainable energy production. In this work, a hybrid system was developed to combine anaerobic digestion (AD) and gasification for energy recovery from yard waste and woody biomass. The feasibility of the proposed hybrid system was validated experimentally and numerically and the energy efficiency was maximized by varying energy input in the drying process. The experiments were performed in two stages. At the first stage, AD of yard waste was conducted by mixing with anaerobic sludge. At the second stage, co-gasification was added as post-treatment for the AD residue for syngas production. The co-gasification experiments of AD residue and woody biomass were conducted at varying mixing ratios and varying moisture contents of AD residue. Optimal energy efficiency was found to be 70.8% at mixing ratio of 20 wt% AD residue with 30 wt% moisture content. Two kinetic models were then adapted for prediction of biogas produced in AD process and syngas produced in gasification process, respectively. Both experimental and numerical results showed that full utilization of biomass could be realized to produce energy through the combination of these two technologies. - Highlights: • The feasibility of the proposed two-stage hybrid system was validated experimentally and numerically. • The proposed hybrid system could effectively improve the quality of produced gas. • The operating parameters were optimized to improve the overall energy efficiency of the system. • Drying process was found to play an important role in determining overall energy efficiency. • Optimal moisture content of AD residue was investigated for maximizing energy efficiency.

  19. Monitoring and controlling the biogas process

    Energy Technology Data Exchange (ETDEWEB)

    Ahring, B.K.; Angelidaki, I. [The Technical Univ. of Denmark, Dept. of Environmental Science and Engineering, Lyngby (Denmark)

    1997-08-01

    Many modern large-scale biogas plants have been constructed recently, increasing the demand for proper monitoring and control of these large reactor systems. For monitoring the biogas process, an easy to measure and reliable indicator is required, which reflects the metabolic state and the activity of the bacterial populations in the reactor. In this paper, we discuss existing indicators as well as indicators under development which can potentially be used to monitor the state of the biogas process in a reactor. Furthermore, data are presented from two large scale thermophilic biogas plants, subjected to temperature changes and where the concentration of volatile fatty acids was monitored. The results clearly demonstrated that significant changes in the concentration of the individual VFA occurred although the biogas production was not significantly changed. Especially the concentrations of butyrate, isobutyrate and isovalerate showed significant changes. Future improvements of process control could therefore be based on monitoring of the concentration of specific VFA`s together with information about the bacterial populations in the reactor. The last information could be supplied by the use of modern molecular techniques. (au) 51 refs.

  20. Green Hydrogen Production from Raw Biogas: A Techno-Economic Investigation of Conventional Processes Using Pressure Swing Adsorption Unit

    Directory of Open Access Journals (Sweden)

    Gioele Di Marcoberardino

    2018-02-01

    Full Text Available This paper discusses the techno-economic assessment of hydrogen production from biogas with conventional systems. The work is part of the European project BIONICO, whose purpose is to develop and test a membrane reactor (MR for hydrogen production from biogas. Within the BIONICO project, steam reforming (SR and autothermal reforming (ATR, have been identified as well-known technologies for hydrogen production from biogas. Two biogases were examined: one produced by landfill and the other one by anaerobic digester. The purification unit required in the conventional plants has been studied and modeled in detail, using Aspen Adsorption. A pressure swing adsorption system (PSA with two and four beds and a vacuum PSA (VPSA made of four beds are compared. VPSA operates at sub-atmospheric pressure, thus increasing the recovery: results of the simulations show that the performances strongly depend on the design choices and on the gas feeding the purification unit. The best purity and recovery values were obtained with the VPSA system, which achieves a recovery between 50% and 60% at a vacuum pressure of 0.1 bar and a hydrogen purity of 99.999%. The SR and ATR plants were designed in Aspen Plus, integrating the studied VPSA model, and analyzing the behavior of the systems at the variation of the pressure and the type of input biogas. The SR system achieves a maximum efficiency, calculated on the LHV, of 52% at 12 bar, while the ATR of 28% at 18 bar. The economic analysis determined a hydrogen production cost of around 5 €/kg of hydrogen for the SR case.

  1. A pilot plant two-phase anaerobic digestion system for bioenergy recovery from swine wastes and garbage.

    Science.gov (United States)

    Feng, Chuanping; Shimada, Sadoru; Zhang, Zhenya; Maekawa, Takaaki

    2008-01-01

    A pilot plant bioenergy recovery system from swine waste and garbage was constructed. A series of experiments was performed using swine feces (SF); a mixture of swine feces and urine (MSFU); a mixture of swine feces, urine and garbage (MSFUG); garbage and a mixture of urine and garbage (AUG). The system performed well for treating the source materials at a high organic loading rate (OLR) and short hydraulic retention time (HRT). In particular, the biogas production for the MSFUG was the highest, accounting for approximately 865-930 L kg(-1)-VS added at the OLR of 5.0-5.3 kg-VS m(-3) day(-1) and the HRT of 9 days. The removal of VS was 67-75%, and that of COD was 73-74%. Therefore, co-digestion is a promising method for the recovery of bioenergy from swine waste and garbage. Furthermore, the results obtained from this study provide fundamental information for scaling up a high-performance anaerobic system in the future.

  2. Decision support systems for recovery of endangered species

    International Nuclear Information System (INIS)

    Armstrong, C.E.

    1995-01-01

    The listing of a species as endangered under the Endangered Species Act invokes a suite of responses to help improve conditions for the recovery of that species, to include identification of stressors contributing to population loss, decision analysis of the impacts of proposed recovery options, and implementation of optimal recovery measures. The ability of a decision support system to quantify inherent stressor uncertainties and to identify the key stressors that can be controlled or eliminated becomes key to ensuring the recovery of an endangered species. The listing of the Snake River sockeye, spring/summer chinook, and fall chinook salmon species in the Snake River as endangered provides a vivid example of the importance of sophisticated decision support systems. Operational and physical changes under consideration at eight of the hydroelectric dams along the Columbia and Lower Snake River pose significant financial impacts to a variety of stakeholders involved in the salmon population recovery process and carry significant uncertainties of outcome. A decision support system is presented to assist in the identification of optimal recovery actions for this example that includes the following: creation of datamarts of information on environmental, engineering, and ecological values that influence species survival; incorporation of decision analysis tools to determine optimal decision policies; and the use of geographic information systems (GIS) to provide a context for decision analysis and to communicate the impacts of decision policies

  3. Biogas technology in Pakistan

    International Nuclear Information System (INIS)

    Ahmed, M.

    1997-02-01

    Although biomethanation is a mature technology its implementation is paradoxically only partly a success in Pakistan. Biogas plants on family farms can be economical but seldom are so in Pakistan. Either the investment cost has been high or satisfactory performance of the process could not be maintained or in some case for a short period of time only. It is, however, concluded that biogas plants, if correctly operated and maintained, may prove to be appropriate to the technical abilities and economic capacity of Pakistani farmers. It can get a change to be disseminated in rural areas. Biogas technology is appropriate to the ecological and economic demands of the future. With the potential from existing cattle population only, 3 to 4 million family size biogas plants may be installed in Pakistan which can substitute of considerable part of rural fuel wood demand for their daily household energy requirements. A large amount of dung is burnt every year by households which if put in the biogas plant, may provide a considerable amount of energy along with organic fertilizer could be saved from being burned at the same time. On the basis of available data from the livestock excluding agriculture residue (50% collectivity-1991), in terms of fuel substitution, this would be equivalent to 1200 million litres of kerosene at worth economic value of 9021 million rupees saving in the form of gas and 821 million rupees as additional fertilizer value annually. (LN)

  4. Energy Efficiency of Biogas Produced from Different Biomass Sources

    International Nuclear Information System (INIS)

    Begum, Shahida; Nazri, A H

    2013-01-01

    Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.

  5. Increasing System Availability with Local Recovery based on Fault Localization

    NARCIS (Netherlands)

    Sözer, Hasan; Abreu, Rui; Aksit, Mehmet; van Gemund, Arjan J.C.

    Due to the fact that software systems cannot be tested exhaustively, software systems must cope with residual defects at run-time. Local recovery is an approach for recovering from errors, in which only the defective parts of the system are recovered while the other parts are kept operational. To be

  6. Enhancing biogas production from recalcitrant lignocellulosic residue

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis

    Lignocellulosic substrates are abundant in agricultural areas around the world and lately, are utilized for biogas production in full-scale anaerobic digesters. However, the anaerobic digestion (AD) of these substrates is associated with specific difficulties due to their recalcitrant nature which...... solution for augmented biomass solubilization without causing inhibition to the mandatory anaerobic methanogenic community. Based on the initial microbial analysis, the bioaugmentation with the typically abundant in AD systems C. thermocellum was examined in biogas reactors fed with wheat straw...... be periodically applied in biogas reactors in order to extract the residual methane from the amassing materials and avoid potential accumulation. Additionally, the facultative anaerobic Melioribacter roseus was inoculated in a replicate CSTR following different bioaugmentation strategies, either strictly...

  7. Challenges in biogas production

    DEFF Research Database (Denmark)

    Rennuit, Charlotte

    2017-01-01

    Anaerobic digestion (AnD) is a sustainable process combining waste treatment, nutrient recycling and energy production which can contribute to limit climate change and environmental problems. However, in order for this technique to be more widely used, production of biogas from available wastes...... from a mixture of pig manure and other waste materials by separating the solid fraction of digestate and recycling it back to the digester. It is shown that separation and recycling of the dry matter rich solid fraction could successfully increase biogas production and a preliminary economic evaluation...... showed a potential increase of 1.9 to 6.8€ per ton of biomass treated. In the second part of this study, a biological treatment to improve energy production from wastewater sludge was investigated. Wastewater sludge was subjected to thermophilic aerobic digestion (TAD) from 2h to 5d. Increase in biogas...

  8. Basic data biogas Germany. Solid fuels, biofuels, biogas; Basisdaten Bioenergie Deutschland. Festbrennstoffe - Biokraftstoffe - Biogas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    The brochure ''Basic data biogas Germany'' gives statistical information about (a) renewable energies: primary energy consumption, power generation, energy supply, avoidance of greenhouse gases; (b) Solid fuels: energetic utilization, wood pellets, energy consumption, comparison to heating oil; (c) Biofuels: consumption, bioethanol, biodiesel, vegetable oils; (d) Biogas: biogas power plants, energy content, production, legal aspects.

  9. Basic data biogas Germany. Solid fuels, biofuels, biogas; Basisdaten Bioenergie Deutschland. Festbrennstoffe, Biokraftstoffe, Biogas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-09-15

    The brochure ''Basic data biogas Germany'' gives statistical information about (a) renewable energies: primary energy consumption, power generation, energy supply, avoidance of greenhouse gases; (b) Solid fuels: energetic utilization, wood pellets, energy consumption, comparison to heating oil; (c) Biofuels: consumption, bioethanol, biodiesel, vegetable oils; (d) Biogas: biogas power plants, energy content, production, legal aspects.

  10. Sicilian potential biogas production

    Directory of Open Access Journals (Sweden)

    Antonio Comparetti

    2013-09-01

    Full Text Available This study is aimed at predicting the Sicilian potential biogas production, using the Organic Fraction of Municipal Solid Waste (OFMSW, animal manure and food industry by-products, in a region where only one biogas plant using MSW and one co-digestion plant are nowadays available. The statistical data about OFMSW, the number of animals bred in medium and large farms and the amounts of by-products of food processing industries were evaluated, in order to compute the Sicilian potential biogas and energy production. The OFMSW produced in Sicily, that is 0.8 million tons ca. per year (37% of MSW, could be used in a bio-reactor, together with other raw materials, for Anaerobic Digestion (AD process, producing biogas and “digestate”. Moreover, 3.03 million tons ca. of manure, collected in medium and large animal husbandry farms (where cows, pigs and poultry are bred, and 350 thousand tons ca. of by-products, collected in food processing industries (pomace from olive oil mills and grape marc from wineries, might be used for AD process. The Sicilian potential biogas production from the AD of the above raw materials is 170.2 millions of m3, that is equal to 1023.4 GWh of energy per year, of which 484 GWh from animal manure, 303 GWh from OFMSW and 236.4 GWh from food industry by-products. The highest biogas production is in the province of Palermo (35.6 millions of m3, Ragusa (30.8 millions of m3 and Catania (22.8 millions of m3, having a potential energy production of 213.8, 185 and 137 GWh, respectively.

  11. Possibilities of heat energy recovery from greywater systems

    Science.gov (United States)

    Niewitecka, Kaja

    2018-02-01

    Waste water contains a large amount of heat energy which is irretrievably lost, so it is worth thinking about the possibilities of its recovery. It is estimated that in a residential building with full sanitary fittings, about 70% of the total tap water supplied is discharged as greywater and could be reused. The subject of the work is the opportunity to reuse waste water as an alternative source of heat for buildings. For this purpose, the design of heat exchangers used in the process of greywater heat recovery in indoor sewage systems, public buildings as well as in industrial plants has been reviewed. The possibility of recovering heat from waste water transported in outdoor sewage systems was also taken into consideration. An exemplary waste water heat recovery system was proposed, and the amount of heat that could be obtained using a greywater heat recovery system in a residential building was presented. The work shows that greywater heat recovery systems allow for significant savings in preheating hot tap water, and the rate of cost reimbursement depends on the purpose of the building and the type of installation. At the same time, the work shows that one should adjust the construction solutions of heat exchangers and indoor installations in buildings to the quality of the medium flowing, which is greywater.

  12. Possibilities of heat energy recovery from greywater systems

    Directory of Open Access Journals (Sweden)

    Niewitecka Kaja

    2018-01-01

    Full Text Available Waste water contains a large amount of heat energy which is irretrievably lost, so it is worth thinking about the possibilities of its recovery. It is estimated that in a residential building with full sanitary fittings, about 70% of the total tap water supplied is discharged as greywater and could be reused. The subject of the work is the opportunity to reuse waste water as an alternative source of heat for buildings. For this purpose, the design of heat exchangers used in the process of greywater heat recovery in indoor sewage systems, public buildings as well as in industrial plants has been reviewed. The possibility of recovering heat from waste water transported in outdoor sewage systems was also taken into consideration. An exemplary waste water heat recovery system was proposed, and the amount of heat that could be obtained using a greywater heat recovery system in a residential building was presented. The work shows that greywater heat recovery systems allow for significant savings in preheating hot tap water, and the rate of cost reimbursement depends on the purpose of the building and the type of installation. At the same time, the work shows that one should adjust the construction solutions of heat exchangers and indoor installations in buildings to the quality of the medium flowing, which is greywater.

  13. State-of-the-art of large scale biogas plants

    International Nuclear Information System (INIS)

    Prisum, J.M.; Noergaard, P.

    1992-01-01

    A survey of the technological state of large scale biogas plants in Europe treating manure is given. 83 plants are in operation at present. Of these, 16 are centralised digestion plants. Transport costs at centralised digestion plants amounts to between 25 and 40 percent of the total operational costs. Various transport equipment is used. Most large scale digesters are CSTRs, but serial, contact, 2-step, and plug-flow digesters are also found. Construction materials are mostly steel and concrete. Mesophilic digestion is most common (56%), thermophilic digestion is used in 17% of the plants, combined mesophilic and thermophilic digestion is used in 28% of the centralised plants. Mixing of digester content is performed with gas injection, propellers, and gas-liquid displacement. Heating is carried out using external or internal heat exchangers. Heat recovery is only used in Denmark. Gas purification equipment is commonplace, but not often needed. Several plants use separation of the digested manure, often as part of a post-treatment/-purification process or for the production of 'compost'. Screens, sieve belt separaters, centrifuges and filter presses are employed. The use of biogas varies considerably. In some cases, combined heat and power stations are supplying the grid and district heating systems. Other plants use only either the electricity or heat. (au)

  14. The Determinants Factors of Biogas Technology Adoption in Cattle Farming: Evidences from Pati, Indonesia

    Directory of Open Access Journals (Sweden)

    Jatmiko Wahyudi

    2017-11-01

    Full Text Available Even though biogas technology has been introduced in Indonesia since 1990’s and having the potential, the rate of biogas adoption in Indonesia runs slowly. It is important to understand factors encouraging or discouraging potential adopters to build biogas plant. The development of livestock sector especially cattle farming in Indonesia can be seen as the opportunity to increase the rate of biogas adoption. This study investigated the factors affecting households of cattle farmer to adopt or not to adopt biogas technology. A cross-sectional research survey was carried out by using structured questionnaires as the primary tool to collect data from both biogas adopters and non biogas adopters in Pati regency, Indonesia. Socioeconomic characteristic of potential biogas adopters plays an important role to ensure the adoption of biogas technology sustainable. Socioeconomic characteristic regarding having high social status determines individual to adopt biogas relatively earlier than other members of a social system. Having high income and education enables traditional farmers to finance biogas plant by their own money or access aid from the government or other agencies. Among other attributes of innovation, relative advantage of installing biogas plant is the most determinant attribute to speed the rate of biogas adoption. Having biogas plant was perceived as better option and generated more benefits compared to previous technology or method. Article History: Received May 17th 2017; Received in revised form August 5th  2017; Accepted Sept 6th 2017; Available online How to Cite This Article: Wahyudi, J. (2017 The Determinant Factors of Biogas Technology Adoption in Cattle Farming: Evidences from Pati, Indonesia, 6(3, 235-240. https://doi.org/10.14710/ijred.6.3.235-240

  15. Life cycle analysis of biogas from residues; Livscykelanalys av biogas fraan restprodukter

    Energy Technology Data Exchange (ETDEWEB)

    Tufvesson, Linda; Lantz, Mikael [Dep. for Miljoe- och Energisystem, Lunds Tekniska Hoegskola, Lund (Sweden)

    2012-06-15

    The purpose of this study is to carry out life cycle assessments for different biogas systems where biogas is produced from different residues. The investigated residues are distiller's waste, rapeseed cake, whey permeate, concentrated whey permeate, fodder milk, fish residues, bakery residues and glycerol. The environmental impact categories included are climate change, eutrophication, acidification, photochemical ozone creation potential, particles and energy balance. The calculations include emissions from technical systems, especially the energy input in various operations and processes. A general conclusion is that all studied residues are very well suited for production of biogas if there is no demand for them as animal feed today. All biogas systems also reduce the emissions of greenhouse gases compared to petrol and diesel and meet the requirements presented in the EU renewable energy directive (RED). The results of the study also show that the investigated biogas systems are complex and many different parameters affect the result. These parameters are both integrated in the life cycle assessment method, but also in the inventory data used.

  16. Biogas from landfills: how to optimise its capture? To know in order to act - Guides and Technical Guidebooks

    International Nuclear Information System (INIS)

    Berger, Sylvaine; Bellenoue, Dominique; Budka, Arnaud; Bour, Olivier; Coste, Emmanuel; Chassagnac, Thierry; Dumas, Bruno; Ogor, Yoann; Le Fournis, Gwenael; Riquier, Laurent; Brunel, Nicolas; Gisbert, Thierry; Thiriez, Arnaud; Thomas, Stephane; Hebe, Isabelle; Heyberger, Agnes

    2007-01-01

    After having recalled problems faced by degassing systems, this guide aims at describing how to diagnose a site of biogas recovery from landfills, which improvements can be envisaged, how to choose among possible recovery and valorisation options, and how to integrate new regulations. Thus, it first gives an overview of stakes and challenges related to landfill gas management optimisation from different points of view (environment, safety, regulation, energy production), and then proposes a classification of storage installations depending on gas management modes (levelling down, destruction by combustion, energetic valorisation). It proposes an overview of technical means to be implemented either for all types of sites, or for different specific and typical cases

  17. Anaerobic Digestion and Biogas Production: Combine Effluent Treatment with Energy Generation in UASB Reactor as Biorefinery Annex

    Directory of Open Access Journals (Sweden)

    Mauro Berni

    2014-01-01

    Full Text Available The issue of residues and industrial effluents represents an unprecedented environmental challenge in terms of recovery, storage, and treatment. This work discusses the perspectives of treating effluents through anaerobic digestion as well as reporting the experience of using an upflow anaerobic sludge blanket (UASB reactor as biorefinery annex in a pulp and paper industrial plant to be burned in the boilers. The performance of the reactors has shown to be stable under considerable variations in load and showed a significant potential in terms of biogas production. The reactors UASB treated 3600.00 m3 of effluent daily from a production of 150.00 tons. The biogas generation was 234.000 kg/year/mill, equivalent in combustible oil. The results of methane gas generated by the anaerobic system UASB (8846.00 kcal/m3 dislocate the equivalent of 650.0 kg of combustible oil (10000.00 kcal/kg per day (or 234.000 kg/year. The production of 8846.00 Kcal/m3 of energy from biogas can make a run at industrial plant for 2 hours. This substitution can save US$ 128.700 annually (or US$ 550.0 of fuel oil/tons. The companies are invested in the use of the biogas in diesel stationary motors cycle that feed the boilers with water in case of storage electricity.

  18. Assessment of energy performance in the life-cycle of biogas production

    International Nuclear Information System (INIS)

    Berglund, Maria; Boerjesson, Pal

    2006-01-01

    Energy balances are analysed from a life-cycle perspective for biogas systems based on 8 different raw materials. The analysis is based on published data and relates to Swedish conditions. The results show that the energy input into biogas systems (i.e. large-scale biogas plants) overall corresponds to 20-40% (on average approximately 30%) of the energy content in the biogas produced. The net energy output turns negative when transport distances exceed approximately 200 km (manure), or up to 700 km (slaughterhouse waste). Large variations exist in energy efficiency among the biogas systems studied. These variations depend both on the properties of the raw materials studied and on the system design and allocation methods chosen. The net energy output from biogas systems based on raw materials that have high water content and low biogas yield (e.g. manure) is relatively low. When energy-demanding handling of the raw materials is required, the energy input increases significantly. For instance, in a ley crop-based biogas system, the ley cropping alone corresponds to approximately 40% of the energy input. Overall, operation of the biogas plant is the most energy-demanding process, corresponding to 40-80% of the energy input into the systems. Thus, the results are substantially affected by the assumptions made about the allocation of a plant's entire energy demand among raw materials, e.g. regarding biogas yield or need of additional water for dilution

  19. Assessment of energy performance in the life-cycle of biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Berglund, Maria; Boerjesson, Paal [Environmental and Energy Systems Studies LTH, Lund University, Gerdagatan 13, SE-223 62 Lund (Sweden)

    2006-03-15

    Energy balances are analysed from a life-cycle perspective for biogas systems based on 8 different raw materials. The analysis is based on published data and relates to Swedish conditions. The results show that the energy input into biogas systems (i.e. large-scale biogas plants) overall corresponds to 20-40% (on average approximately 30%) of the energy content in the biogas produced. The net energy output turns negative when transport distances exceed approximately 200km (manure), or up to 700km (slaughterhouse waste). Large variations exist in energy efficiency among the biogas systems studied. These variations depend both on the properties of the raw materials studied and on the system design and allocation methods chosen. The net energy output from biogas systems based on raw materials that have high water content and low biogas yield (e.g. manure) is relatively low. When energy-demanding handling of the raw materials is required, the energy input increases significantly. For instance, in a ley crop-based biogas system, the ley cropping alone corresponds to approximately 40% of the energy input. Overall, operation of the biogas plant is the most energy-demanding process, corresponding to 40-80% of the energy input into the systems. Thus, the results are substantially affected by the assumptions made about the allocation of a plant's entire energy demand among raw materials, e.g. regarding biogas yield or need of additional water for dilution. (author)

  20. Exploring the effects of ZVI addition on resource recovery in the anaerobic digestion process

    DEFF Research Database (Denmark)

    Puyol, D.; Flores-Alsina, Xavier; Segura, Y.

    2018-01-01

    not compensate the costs of ZVI purchase, and (b) ZVI dramatically decreases the P recovery potential in the digestate of the AD systems. This is the first study to experimentally and mathematically describe the effect of ZVI on biogas production/composition and on the fate of phosphorus compounds, and its......The influence of Zero Valent Iron (ZVI) addition on the potential resource recovery during the anaerobic digestion (AD) of domestic waste sludge is assessed. Potentially recoverable resources analyzed were nutrients such as struvite to recover P, and energy as biogas to recover C. Short term...... (biochemical methane potential tests, BMP) and long term (AD1, AD2) experiments are conducted using two types of set-up (batch, continuous). Process data (influent, effluent and biogas) is continuously collected and the dry digested sludge is analyzed by XPS. A mathematical model is developed based...

  1. Domestic biogas development in developing countries

    International Nuclear Information System (INIS)

    Rakotojaona, Loic

    2013-07-01

    Communities that rely mostly on agriculture and livestock farming in developing countries can face strong pressure related to: - Energy access: for instance, in Africa, it is estimated that 68% of the population live without clean cooking facilities [1]. Energy access plays a key role in poverty alleviation. - Resources depletion: if a household uses firewood for cooking purposes, forests depletion in some areas makes firewood collection tougher. - Climate change mitigation: agriculture (i.e. the production of crop and livestock products) accounts for 13.5%2 of the global GHG emissions, and extensive systems are sometimes blamed for being less efficient than intensive ones when it comes to climate change mitigation (given that the later involve lower direct emissions per kg of product). In this context, access to clean and sustainable energy through domestic biogas production can help rural communities alleviate current pressures on the environment. In an urban context, domestic biogas in developing countries is also considered as a means for improving hygiene conditions (especially when it comes to public washrooms issues). This report only focuses on domestic biogas development within the frame of small scale agriculture and livestock production (i.e. in rural areas). The main objective of this document is to provide domestic biogas project developers with relevant information on the key issues to have in mind regarding national integration of such projects. This document gives a general presentation of domestic biogas and its main environmental, social and economic benefits. It also browses the main aspects one should have in mind (checklist) in order to assess local risks and opportunities for domestic biogas development

  2. Helium-Hydrogen Recovery System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Immense quantities of expensive liquefied helium are required at Stennis and Kennedy Space Centers for pre-cooling rocket engine propellant systems prior to filling...

  3. Use of biogas in PEM fuel cells; Einsatz von Biogas in PEM-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Volkhard; Schmersahl, Ralf; Ellner, Janine (comps.)

    2009-06-15

    This research project was dedicated to two problems: 1. What demands must biogas meet in order to conform to the specifications of PEM fuel cell systems and permit safe operation? 2. How must a fuel cell system be designed and operated in order to be well-adapted to the special features of biogas as opposed to natural gas? For this purpose biogas samples were taken from laboratory-scale and commercial plants and analysed by gas chromatography using various substrates and methods. By combining this with the use of a mass spectroscopy detector (GC-MS system) it was possible to perform a qualitative and quantitative analysis of sulphurious trace gases in the biogas which might cause damage to the fuel cell system. Investigations were performed on an experimental reformer using either modelled or native biogas of different compositions, the intent being to obtain information for the design of the individual process stages. The two operating parameters steam-methane ratio (or S/C ratio) and reforming temperature were varied to optimise parameter settings in terms of energy efficiency. By linking the reformer to a 500 W fuel cell it was possible confirm the suitability of the reformed biogas for use in fuel cells. [German] In diesm Forschungsvorhaben werden zwei Fragestellungen bearbeitet: 1. Welche Anforderungen ergeben sich an das Biogas, um den Spezifikationen von PEM-Brennstoffzellensystemen zu genuegen und eine sicheren Betrieb zu ermoeglichen? 2. Wie muss das Brennstoffzellensystem ausgelegt und gefuehrt werden, um den Besonderheiten von Biogas im Vergleich zu Erdgas Rechnung zu tragen? Dazu wurden Biogasproben aus Labor- und Praxisanlagen unter Beruecksichtigung unterschiedlicher Substrate und Verfahren gaschromatisch analysiert. Die Kopplung mit einem massenspektroskopischen Detektor (GC-MS System) ermoeglicht dabei die Qualifizierung und Quantifizierung der vorhandenen schwefelhaltigen Spurengase, die eine Schaedigung von Brennstoffzellenanlagen verursachen. Die

  4. Bioconversion of poultry droppings for biogas and algal production

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevaswamy, M.; Venkataraman, L.V.

    1986-01-01

    An integrated system for the bioconversion of poultry droppings for biogas production and utilization of the effluent for the production of the blue-green alga Spirulina platensis was studied. Poultry droppings produced 0.54 cubic m of biogas per kilogran of Total Solids (TS). The 2% TS biogas plant effluent as sole nutrient medium for Spirulina yielded 7-8 g dry algae a day. The biomass was harvested by filtration. The sundried algal biomass has been used as a poultry feed component. In economic terms the system appears promising. 18 references.

  5. Biogas in the agriculture. State of the art. Proceedings; Biogas in der Landwirtschaft. Stand und Perspektiven. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Within the meeting of the Association for Technology and Structures in Agriculture (Darmstadt, Federal Republic of Germany) and the Agency for Renewable Resources (Guelzow, Federal Republic of Germany) between 15th and 16th September, 2009, in Weimar the following lectures were held: (1) Results of the actual biogas measurement II (Peter Weiland); (2) Agitators in biogas plants - Technology with central significance (Kay Rostalski); (3) How much energy is needed by a biogas fermenter? (Ludwig Heinloth); (4) The fermentation concept of Rueckert NatUrgas GmbH (Claus Rueckert, Dominique Pfeufer); (5) Experiences from the construction for the practice of the company MT-Energie GmbH (Bodo Drescher); (6) Fermenter/technology concept of Schmack Biogas AG (Thomas Moeeslinger); (7) Transport of biomass - How much does the logistics of Guelle and Co. cost? (Thore Toews); (8) Which factors determine the efficiency of biogas plants? (Gerd Reinhold); (9) Microbial diversity in biogas reactors in the fermentation of renewable raw materials (Michael Klocke et al.); (10) What do additives and ingredients contribute to the optimisation of the production of biogas? (Udo Hoelker); (11) Process optimisation - An interaction between technology and microbiology (Andreas Gronauer et al.); (12) Emissions at the production of biogas - an analysis if the environmental relevance (Joachim Clemens et al.); (13) Support systems for energy plants - Consequences to soil and environment (Matthias Willms et al.); (14) How ecological is biogas? (Sven Gaertner); (15) Biogas plant - Analysis of construction and operation from licensing view (Hans-Walter Schneichel); (16) Biogas plants - Analysis of construction and operation from contractual legal view (Florian Valentin); (17) Biogasplants - Analysis of construction and operation from remuneration legal view (Helmut Loibl); (18) Process and costs of treatment of residues of fermentation (Sebastian Wulf, Helmut Doehler); (19) How do residues of

  6. Biogas/biofertilizer business handbook (third edition)

    Energy Technology Data Exchange (ETDEWEB)

    Arnott, M.

    1985-07-01

    The handbook covers biogas systems, including raw material preparation, digesters, separate gas storage tanks, use of gas to run engines, and the use of sludge as fertilizer. Also covers secondary projects such as flat-plate solar collector water heaters, composting, and bio-insecticides.

  7. Analysis of biogas in sanitary landfill Caieiras

    Directory of Open Access Journals (Sweden)

    Giovano Candiani

    2011-06-01

    Full Text Available In this work, the biogas in the Sanitary Landfill Caieiras is qualitatively evaluated, emphasizing the influence of the geomembrana and cover system of vertical drains in the vicinity to capture the landfill. It was possible to detect an increase in the percentage of methane and oxygen reduction, aiming at the commercialization of carbon credits and electricity production.

  8. Process Control for Precipitation Prevention in Space Water Recovery Systems

    Science.gov (United States)

    Sargusingh, Miriam; Callahan, Michael R.; Muirhead, Dean

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, rotary distillation systems have been actively pursued by NASA as one of the technologies for water recovery from wastewater primarily comprised of human urine. A specific area of interest is the prevention of the formation of solids that could clog fluid lines and damage rotating equipment. To mitigate the formation of solids, operational constraints are in place that limits such that the concentration of key precipitating ions in the wastewater brine are below the theoretical threshold. This control in effected by limiting the amount of water recovered such that the risk of reaching the precipitation threshold is within acceptable limits. The water recovery limit is based on an empirically derived worst case wastewater composition. During the batch process, water recovery is estimated by monitoring the throughput of the system. NASA Johnson Space Center is working on means of enhancing the process controls to increase water recovery. Options include more precise prediction of the precipitation threshold. To this end, JSC is developing a means of more accurately measuring the constituent of the brine and/or wastewater. Another means would be to more accurately monitor the throughput of the system. In spring of 2015, testing will be performed to test strategies for optimizing water recovery without increasing the risk of solids formation in the brine.

  9. Disaster recovery plan for HANDI 2000 business management system

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.E.

    1998-09-29

    The BMS production implementation will be complete by October 1, 1998 and the server environment will be comprised of two types of platforms. The PassPort Supply and the PeopleSoft Financials will reside on LNIX servers and the PeopleSoft Human Resources and Payroll will reside on Microsoft NT servers. Because of the wide scope and the requirements of the COTS products to run in various environments backup and recovery responsibilities are divided between two groups in Technical Operations. The Central Computer Systems Management group provides support for the LTNIX/NT Backup Data Center, and the Network Infrastructure Systems group provides support for the NT Application Server Backup outside the Data Center. The disaster recovery process is dependent on a good backup and recovery process. Information and integrated system data for determining the disaster recovery process is identified from the Fluor Daniel Hanford (FDH) Risk Assessment Plan, Contingency Plan, and Backup and Recovery Plan, and Backup Form for HANDI 2000 BMS.

  10. Women’s perceptions on the integration of solar powered home systems and biogas and its potential to improve gender disparities in energy

    CSIR Research Space (South Africa)

    Murambadoro, M

    2012-10-01

    Full Text Available of integrating biogas in the rural energy mix to address their thermal needs in rural Limpopo. Women's health suffers from haulign heavy loads of wood for long distances and from coking over smoky fires. biogas has the potential to reduce women's workload which...

  11. The impact of biogas technology adoption for farm households – empirical evidence from mixed crop and livestock farming systems in Indonesia

    DEFF Research Database (Denmark)

    Putra, Ahmad Romadhoni Surya; Liu, Zhen; Lund, Mogens

    2017-01-01

    This paper aims to study the impact of biogas technology adoption as a livestock waste technology to support Mixed Crop and Livestock (MCL) farming among smallholder farmers in Indonesia. A cross sectional survey was conducted to collect data from 351 farm households (171 biogas adopters and 180...

  12. The contribution of Slovenian biogas plants to the reduction of agricultural sector green house emissions

    Directory of Open Access Journals (Sweden)

    Romana MARINŠEK LOGAR

    2015-12-01

    Full Text Available Agriculture is a source of emissions of the greenhouse gas methane into the environment. These emissions can be reduced by appropriate storage of animal slurry and manure, with proper fertilization and processing of organic agricultural waste into biogas, where methane is captured and used as an energy source. Biogas is a renewable source of energy that is produced by microbial anaerobic digestion in biogas plants. As a substrate in biogas plants using different types of organic biomass such as animal manure and slurry, crop residues, spoilt silage, waste from food processing industry and biodegradable industrial and municipal waste. Biogas can be used to produce heat and electricity or purified to biomethane as a fuel for vehicles. Digestate can be used as a high-quality fertilizer. Biogas as a renewable energy source represents a replacement for fossil fuels, thus reducing greenhouse gas emissions from fossil sources. The system of financial supports for electricity produced from biogas is applied in Slovenia. There were 24 operating biogas plants in Slovenia in year 2014. Slovenian biogas plants currently produce the majority of biogas from energy crops. As only the minority of biogas is produced from animal excrements we will primarily support the development of agricultural microbiogas plants that will use animal excrements and organic waste biomass from agri-food sector as substrates.

  13. Progress in biogas II - Biogas production from agricultural biomass and organic residues. Pt. 1. Proceedings; Progress in Biogas II - Biogasproduktion aus landwirtschaftlicher Biomasse und organischen Reststoffen. T. 1. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    Within the International Congress at the University of Hohenheim (Stuttgart, Federal Republic of Germany) from 29th March to 1st April, 2011, the following lectures were held: (1) Biogas in Europe (F. Scholwin); (2) Biogas development in China: International Cooperation to up-scale the technology (Z. Li); (3) The methane to markets initiative and opportunities for livestock manure digesters in the United states (C. Voell); (4) Biogas for sanitation in Africa - experiences from creating a sustainable market 2003 to 2010 (M. Lebofa); (5) Are biogas plants in Baden-Wuerttemberg efficient? (M. Stanull); (6) The Estonian theoretical and practical biogas production potential and economically feasible feed-in-tariff for renewable electricity for micro CHP using biogas (A. Oja); (7) Biomass potentials for biogas utilization and the effects on sustainability in Kalugo (P. Fiedler); (8) An Integrated Energy System applied to Milking Dairy Cows (I. Bywater); (9) WINUBIO-Alternative technology to improve Austria's biogas capacity (V. Steinmueller); (10) Interdisciplinary approaches to advances in sustainable biogas production in Europe (S. Kusch); (11) Problems encountered in disseminating biogas technology in Uganda (G. Mabudo); (12) reasons to the success to biogas program in Nepal (K. Dawadi); (13) Effects of increasing biomass production for energetic utilization on soil fertility in the German Federal State on Brandenburg (J. Zimmer); (14) Biogas plants as part of sustainable development within peasant family farms in Germany - Interim results of an empirical field study (A. Bischoff); (15) Life cycle assessment of heat and power generation in biogas fed combined heat and power plants under German conditions (J. Lansche); (16) Biogas from lignocellulosic biomass: interest of pretreatments (H. Carrere); (17) Effect of physical and thermal pre-treatments on biogas yield of some agricultural by-products (P. Balsari); (18) Extrusion pre-treatment of green waste for

  14. Material and energy recovery in integrated waste management systems: the potential for energy recovery.

    Science.gov (United States)

    Consonni, Stefano; Viganò, Federico

    2011-01-01

    This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on "Material and energy recovery in Integrated Waste Management Systems (IWMS)". An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental

  15. Experimental biogas research by anaerobic digestion of waste of ...

    African Journals Online (AJOL)

    Currently, one of the most efficient and prospective methods of biodegradable waste management is anaerobic digestion in a bio-reactor. The use of this method for managing biodegradable waste generating in agriculture and elsewhere would result in the recovery of biogas that could be used as an alternative to natural ...

  16. Sewage biogas conversion into electricity; Conversao do biogas de tratamento de esgoto em eletricidade

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Suani Teixeira; Velazquez, Silvia Maria Stortini Gonzalez; Martins, Osvaldo Stella; Abreu, Fernando Castro de [Universidade de Sao Paulo (CENBIO/IEE/USP), Sao Paulo, SP (Brazil). Inst. de Eletrotecnica e Energia. Centro Nacional de Referencia em Biomassa], e-mails: suani@iee.usp.br, sgvelaz@iee.usp.br, omartins@iee.usp.br, fcabreu@iee.usp.br

    2006-07-01

    This article intend to present some considerations directed to electricity generation with small systems (micro turbine and conventional engines ), using biogas generated by sewage treatment process in SABESP (Basic Sanitation Company of Sao Paulo State), located at Barueri, Brazil. This project, pioneer in Latin America, is being accomplished together with BUN - Biomass Users Network of Brazil (proponent), in association with CENBIO - Biomass Reference National Center (executer), with patronage of FINEP / CT-ENERG (financial backer), by means of Convention no: 23.01.0653.00, regarding to ENERG BIOG Project - 'Installation and Tests of an Electric Energy Generation Demonstration Unit from Biogas Sewage Treatment'. The study is being done at Barueri Sewage Treatment Plant. This plant operate with anaerobic digestion process, which has as mainly products biogas (composed mainly by methane) and sludge. Part of the methane produced at the anaerobic process is burnt in a boiler being used to increase digesters temperature. The rest of the methane is burnt in flare to reduce the impacts caused by gases emissions. This article presents some technical, financial and environmental project results, related to the exploitation of sewer biogas for power generation, as well as bigger details about generation systems (biogas micro turbine), used in the facility. (author)

  17. Proceedings of the 1. annual Canadian farm and food biogas conference and exhibition

    International Nuclear Information System (INIS)

    2009-01-01

    This conference provided a forum for researchers, farmers, and electric utility operators to discuss issues related to the growth of Canada's biogas industry. Many farmers are now exploring methods of producing biogas from agricultural wastes using anaerobic digestion technologies. However, regulatory problems continue to stall the growth of the fledgling biogas industry. In addition, many biogas plants face challenges related to ensuring reliable grid connections. European and American perspectives on biogas development were presented at the conference along with issues related to provincial and federal regulations and policies. Technologies and strategies for connecting biogas systems with other power systems were presented. The conference was divided into 11 sessions and 2 plenary sessions: (1) B1 grid connection solutions; (2) B2D energy crops and other plant-based co-substrates; (3) B2E Ontario biogas today; (4) B3D mixed materials; (5) B3E siting, odour and safety; (6) B4D economics and policy issues; (7) B4E genset performance and efficiency panel; (8) B5D case studies of food or farm biogas systems; (9) B5E case studies of farm-based systems; (10) B6D biogas next steps; and (11) B6E biogas in an urban setting. The conference featured 42 presentations, of which 5 have been catalogued separately for inclusion in this database. A set of 12 poster presentations were also presented, as well as several networking forums. tabs., figs

  18. Development of bioelectrochemical systems using various biogas fermenter effluents as inocula and municipal waste liquor as adapting substrate.

    Science.gov (United States)

    Bakonyi, Péter; Koók, László; Keller, Enikő; Bélafi-Bakó, Katalin; Rózsenberszki, Tamás; Saratale, Ganesh Dattatraya; Nguyen, Dinh Duc; Banu, J Rajesh; Nemestóthy, Nándor

    2018-07-01

    The purpose of this research was to improve microbial fuel cell (MFC) performance - treating landfill-derived waste liquor - by applying effluents of various biogas fermenters as inocula. It turned out that the differences of initial microbial community profiles notably influenced the efficiency of MFCs. In fact, the adaptation time (during 3 weeks of operation) has varied significantly, depending on the source of inoculum and accordingly, the obtainable cumulative energy yields were also greatly affected (65% enhancement in case of municipal wastewater sludge inoculum compared to sugar factory waste sludge inoculum). Hence, it could be concluded that the capacity of MFCs to utilize the complex feedstock was heavily dependent on biological factors such as the origin/history of inoculum, the microbial composition as well as proper acclimation period. Therefore, these parameters should be of primary concerns for adequate process design to efficiently generate electricity with microbial fuel cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Biogas in the natural gas distribution network; Biogas til nettet

    Energy Technology Data Exchange (ETDEWEB)

    Kvist Jensen, T.

    2009-05-15

    With the Danish 'Thorsoe Biogas Plant' as reference case, an assessment of the possibility of using the existing natural gas distribution network for distributing biogas was carried out. Technologies for and cost of upgrading biogas to natural gas quality are presented. Furthermore, a socio-economic analysis has been performed, including the Danish financial conditions, the market models, and the role of the natural gas distribution companies.

  20. Optimal Control of Diesel Engines with Waste Heat Recovery System

    NARCIS (Netherlands)

    Willems, F.P.T.; Donkers, M.C.F.; Kupper, F.

    2014-01-01

    This study presents an integrated energy and emission management strategy for a Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  1. Color Recovery Effect of Different Bleaching Systems on a ...

    African Journals Online (AJOL)

    Background and Purpose: Discoloration of resin‑based composites is a commonly encountered problem, and bleaching agents may be used for the therapy of the existing discoloration. The purpose of this study was to investigate in vitro color recovery effect of different bleaching systems on the heavily discolored composite ...

  2. Recent updates on biogas production - a review

    Directory of Open Access Journals (Sweden)

    Ilona Sárvári Horváth

    2016-06-01

    Full Text Available One of the greatest challenges facing the societies now and in the future is the reduction of green house gas emissions and thus preventing the climate change. It is therefore important to replace fossil fuels with renewable sources, such as biogas. Biogas can be produced from various organic waste streams or as a byproduct from industrial processes. Beside energy production, the degradation of organic waste through anaerobic digestion offers other advantages, such as the prevention of odor release and the decrease of pathogens. Moreover, the nutrient rich digested residues can be utilized as fertilizer for recycling the nutrients back to the fields. However, the amount of organic materials currently available for biogas production is limited and new substrates as well as new effective technologies are therefore needed to facilitate the growth of the biogas industry all over the world. Hence, major developments have been made during the last decades regarding the utilization of lignocellulosic biomass, the development of high rate systems, and the application of membrane technologies within the anaerobic digestion process in order to overcome the shortcomings encountered. The degradation of organic material requires a synchronized action of different groups of microorganisms with different metabolic capacities. Recent developments in molecular biology techniques have provided the research community with a valuable tool for improved understanding of this complex microbiological system, which in turn could help optimize and control the process in an effective way in the future.

  3. Optimization-based design of waste heat recovery systems

    DEFF Research Database (Denmark)

    Cignitti, Stefano

    of performance and sustainability. The fluid was novel and generated through the framework. In the second case study, waste heat recovery from a milk powder production spray dryer was addressed. A heat pump was designed with a mixed working fluid for the optimal heat recovery and transfer for the low-grade waste...... heat from effluent spray dryer air. 25% isobutene and 75% 1,3-difluoropropane and a process with a coefficient of performance of 3.22 was designed. The design provided new binary mixture and optimized cycle process that was an improvement compared to conventional systems. Furthermore, the fluids were...

  4. ISABEL Triggering Sustainable Biogas Energy Communities through Social Innovation

    Science.gov (United States)

    Baumgarten, Wibke; Piedra Garcia, Diego

    2017-04-01

    The Horizon 2020 funding project ISABEL (Triggering Sustainable Biogas Energy Communities through Social Innovation) is all about promoting, supporting and developing community biogas in Europe. The project is set on providing all the framework conditions for biogas communities to shape, develop and thrive. It works on all angles to pave the way for the transition from traditional supply chains to community ownership and take full advantage of the ample societal benefits of regional community-driven biogas systems, fuelled and inspired by Social Innovation principles. The biogas communities emerge in three targeted ISABEL regions, Baden-Württemberg in Germany, Central and Eastern Macedonia and Thrace in Greece and Yorkshire, Lincolnshire and the Humber in UK. To realize this vision ISABEL is employing its "5E strategy" with the following objectives: Educate: Re-position biogas energy by re-branding it as a "public good". Engage: Enable the development of regional Biogas Communities. Empower: Utilize the created momentum through Social Innovation and Public Participation Evaluate: Assess the local interventions and drafting lessons and guidelines Expand: Maximise impact through transfer and replication

  5. Biogas production from pineapple core - A preliminary study

    Science.gov (United States)

    Jehan, O. S.; Sanusi, S. N. A.; Sukor, M. Z.; Noraini, M.; Buddin, M. M. H. S.; Hamid, K. H. K.

    2017-09-01

    Anaerobic digestion of pineapple waste was investigated by using pineapple core as the sole substrate. Pineapple core was chosen due to its high total sugar content thus, indicating high amount of fermentable sugar. As digestion process requires the involvement of microorganisms, wastewater from the same industry was added in the current study at ratio of 1:1 by weight. Two different sources of wastewater (Point 1 and Point 2) were used in this study to distinguish the performance of microorganism consortia in both samples. The experiment was conducted by using a lab scale batch anaerobic digester made up from 5L container with separate gas collecting system. The biogas produced was collected by using water displacement method. The experiment was conducted for 30 days and the biogas produced was collected and its volume was recorded at 3 days interval. Based on the data available, wastewater from the first point recorded higher volume of biogas with the total accumulated biogas volume is 216.1 mL. Meanwhile, wastewater sample from Point 2 produced a total of 140.5 mL of biogas, by volume. The data shows that the origin and type of microorganism undeniably play significant role in biogas production. In fact, other factors; pH of wastewater and temperature were also known to affect biogas production. The anaerobic digestion is seen as the promising and sustainable alternatives to current disposal method.

  6. Hydrogen selective membrane for the natural gas system. Development of CO{sub 2}-selective biogas membrane. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vestboe, A.P.

    2012-02-15

    The project started as a literature study and technology development project for a hydrogen selective membrane for the natural gas system. The introduction of hydrogen (for example produced from wind turbines by surplus electricity) in the gas system makes it possible to store energy which can be selectively used with high energy conversion in fuel cells directly located at the end users. In order to make this possible, it is necessary to have a separating unit that can selectively remove hydrogen from the gas mixture and deliver it as fuel to the electrical generator (a fuel cell). In the project, several existing technologies were evaluated with regard to the application in view. It was concluded that while other technologies are ripe, they are costly in energy and unsuitable for the relatively low capacity application that are in question close to the end users. Membrane technology was evaluated to be the most suitable, although the technology is still under development in many cases. In the project it was found that metallic membranes in the form of palladium coated stainless discs would answer the needs for the high purity needed. Laboratory development yielded discs that could separate hydrogen from natural gas, however, the flux was low compared to the needs of the application. It was found that at least 2 bar pressure difference of hydrogen would be needed to get a high enough flux. The way to achieve this pressure would necessitate a compressor which would consume an energy amount high enough to invalidate the concept. When concluding on the results and the study it was found that the direction of the project could be changed towards developing CO{sub 2}-selective membranes with the goal of developing membrane technology that could upgrade biogas by removing CO{sub 2}. The laboratory equipment and setup that were developed in the first part of the project could be used directly in this second part of the project. In this second part of the project it was

  7. Hydrogen assisted biological biogas upgrading

    DEFF Research Database (Denmark)

    Bassani, Ilaria

    Wind and biomass are promoted worldwide as sustainable forms of energy. Anaerobic digestion of biomass produces biogas with ∼50−70% CH4 and 30−50% CO2. However, biogas with >90% CH4 content has higher heating value, can be injected into the natural gas grid or used as alternative to natural gas...... as vehicle fuel. Methods currently available for biogas upgrading mainly consists of physicochemical CO2 removal, requiring the use of chemical substances and energy input and, thus, increasing process costs. This PhD project proposes an alternative to existing biogas upgrading technologies, where H2......, produced by water electrolysis, using excess of electricity from wind mills, is coupled with the CO2 contained in the biogas to convert them to CH4. This process is defined as biological biogas upgrading and is carried out by hydrogenotrophic methanogenic archaea that couples CO2 with H2 to produce...

  8. The biogas sector. Looking for renewal

    International Nuclear Information System (INIS)

    Signoret, Stephane; Petitot, Pauline; Kim, Caroline; Marie, Olivier; Sredojevic, Alexandre

    2016-01-01

    As the political will to develop biogas production in France is confirmed by the ambitious objectives defined in the French Investment Multi-year Programming, a set of articles on the biogas sector proposes an overview of what is going on in this sector. After some brief presentations of recent installations of biogas purification and of methanation, a first article outlines the problems and uncertainties raised by the new support system in terms of delays and visibility. A second article presents a methanation unit shared by pork breeders in Brittany to process and valorise effluents which cannot be scattered in fields any longer. The third article comments the bio-methane sector which is now living, and for the couple of years to come, its industrialisation phase, each project having its peculiarities, with emerging business models. The next article presents Methavos I, a methanation unit which injects its bio-methane into the gas network on both sides of the frontier between France and Germany. The sixth article presents the activities of Arkolia Energies which is developing a breakthrough technology with a continuous and thick methanation with optimal energy efficiency within a reduced volume. The seventh article comments the challenges, issues and solutions for longer lasting lubricants used in biogas generation engines. The last article addresses the issue of insurance for methanation installations which, like any other installation, are facing some exploitation risks and hazards

  9. State Equation Determination of Cow Dung Biogas

    Science.gov (United States)

    Marzuki, A.; Wicaksono, L. B.

    2017-08-01

    A state function is a thermodynamic function which relates various macroscopically measurable properties of a system (state variable) describing the state of matter under a given set of physical conditions. A good understanding of a biogas state function plays a very important role in an effort to maximize biogas processes and to help predicting combation performance. This paper presents a step by step process of an experimental study aimed at determining the equation of state of cow dung biogas. The equation was derived from the data obtained from the experimental results of compressibility (κ) and expansivity (β) following the general form of gas state equation dV = βdT + κdP. In this equation, dV is gas volume variation, dT is temperature variation, and dP is pressure variation. From these results, we formulated a unique state equation from which the biogas critical temperature (Tc) and critical pressure were then determined (Tc = 266.7 K, Pc = 5096647.5 Pa).

  10. Profile and perceptions of biogas as automobile fuel : A study of Svensk Biogas

    OpenAIRE

    Larsson, Anneli

    2008-01-01

    From an environmental- and health perspective, biogas and other biomass-based fuels have several advantages; nevertheless the majority of motorists fill their cars with petroleum-based fuels. This thesis is designed to explore the profile of biogas in relation to its perceptions. It is a study concerning the communication between the biogas producing company Svensk Biogas and their biogas users and non biogas users. To obtain a thorough understanding of the profile and perceptions of biogas a...

  11. Thermal energy recovery of air conditioning system--heat recovery system calculation and phase change materials development

    Energy Technology Data Exchange (ETDEWEB)

    Gu Zhaolin; Liu Hongjuan; Li Yun

    2004-12-01

    Latent heat thermal energy storage systems can be used to recover the rejected heat from air conditioning systems, which can be used to generate low-temperature hot water. It decreases not only the consumption of primary energy for heating domestic hot water but also the calefaction to the surroundings due to the rejection of heat from air conditioning systems. A recovery system using phase change materials (PCMs) to store the rejected (sensible and condensation) heat from air conditioning system has been developed and studied, making up the shortage of other sensible heat storage system. Also, PCMs compliant for heat recovery of air conditioning system should be developed. Technical grade paraffin wax has been discussed in this paper in order to develop a paraffin wax based PCM for the recovery of rejected heat from air conditioning systems. The thermal properties of technical grade paraffin wax and the mixtures of paraffin wax with lauric acid and with liquid paraffin (paraffin oil) are investigated and discussed, including volume expansion during the phase change process, the freezing point and the heat of fusion.

  12. Thermal energy recovery of air conditioning system--heat recovery system calculation and phase change materials development

    International Nuclear Information System (INIS)

    Gu Zhaolin; Liu Hongjuan; Li Yun

    2004-01-01

    Latent heat thermal energy storage systems can be used to recover the rejected heat from air conditioning systems, which can be used to generate low-temperature hot water. It decreases not only the consumption of primary energy for heating domestic hot water but also the calefaction to the surroundings due to the rejection of heat from air conditioning systems. A recovery system using phase change materials (PCMs) to store the rejected (sensible and condensation) heat from air conditioning system has been developed and studied, making up the shortage of other sensible heat storage system. Also, PCMs compliant for heat recovery of air conditioning system should be developed. Technical grade paraffin wax has been discussed in this paper in order to develop a paraffin wax based PCM for the recovery of rejected heat from air conditioning systems. The thermal properties of technical grade paraffin wax and the mixtures of paraffin wax with lauric acid and with liquid paraffin (paraffin oil) are investigated and discussed, including volume expansion during the phase change process, the freezing point and the heat of fusion

  13. Climate gas balances of biogas and their significance; Klimagasbilanzen von Biogas und ihre Aussagekraft

    Energy Technology Data Exchange (ETDEWEB)

    Dressler, Daniela [HAWK Hildesheim Holzminden Goettingen, Goettingen (Germany). Fachgebiet Nachhaltige Energie- und Umwelttechnik NEUTec; Loewen, Achim; Nelles, Michael

    2012-07-01

    The greenhouse-gas balances of production and use of biogas strongly depend on specific parameters such as the input material, the system technology and/or the way the biogas is used. These parameters can vary from region to region and from plant to plant. Considering regional, local and plant-specific factors, in the district of Celle greenhouse-gas emissions are more than 3 times higher than in the district of Goettingen (0.2 resp. 0.06 kg CO{sub 2}-eqv./kWh{sub el}). Including further parameters such as indirect land use changes or an open storage of fermentation residues increases the differences of these specific results even more. Consequently a derivation of general values to calculate a climate protection potential for the production and use of biogas for all regions and/or countries is almost impossible. Climate protection potentials, created on the basis of general values, may therefore be considerably imprecise. (orig.)

  14. Bioelectrochemical removal of carbon dioxide (CO2): an innovative method for biogas upgrading.

    Science.gov (United States)

    Xu, Heng; Wang, Kaijun; Holmes, Dawn E

    2014-12-01

    Innovative methods for biogas upgrading based on biological/in-situ concepts have started to arouse considerable interest. Bioelectrochemical removal of CO2 for biogas upgrading was proposed here and demonstrated in both batch and continuous experiments. The in-situ biogas upgrading system seemed to perform better than the ex-situ one, but CO2 content was kept below 10% in both systems. The in-situ system's performance was further enhanced under continuous operation. Hydrogenotrophic methanogenesis and alkali production with CO2 absorption could be major contributors to biogas upgrading. Molecular studies showed that all the biocathodes associated with biogas upgrading were dominated by sequences most similar to the same hydrogenotrophic methanogen species, Methanobacterium petrolearium (97-99% sequence identity). Conclusively, bioelectrochemical removal of CO2 showed great potential for biogas upgrading. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Energy crops for biogas plants. Thuringia; Energiepflanzen fuer Biogasanlagen. Thueringen

    Energy Technology Data Exchange (ETDEWEB)

    Biertuempfel, A.; Bischof, R.; Conrad, M. (and others)

    2012-06-15

    In the brochure under consideration the Agency for Renewable Resources (Guelzow-Pruezen, Federal Republic of Germany) reports on the support of the implementation of different plant cultures in structure of plantations and crop rotation systems of companies under consideration of the Federal State Thuringia. The main chapters of this brochure are: Crops for the production of biogas; implementation in plantations; ensilage and biogas yields; economy of the cultivation of energy plants.

  16. Energy crops for biogas plants. Saxony; Energiepflanzen fuer Biogasanlagen. Sachsen

    Energy Technology Data Exchange (ETDEWEB)

    Biertuempfel, A.; Buttlar, C. von; Conrad, M. [and others

    2012-08-15

    In the brochure under consideration the Agency for Renewable Resources (Guelzow-Pruezen, Federal Republic of Germany) reports on the support of the implementation of different plant cultures in structure of plantations and crop rotation systems of companies under consideration of the Federal State Saxony. The main chapters of this brochure are: Crops for the production of biogas; implementation in plantations; ensilage and biogas yields; economy of the cultivation of energy plants.

  17. Comparison of Configurations for High-Recovery Inland Desalination Systems

    Directory of Open Access Journals (Sweden)

    Philip A. Davies

    2012-09-01

    Full Text Available Desalination of brackish groundwater (BW is an effective approach to augment water supply, especially for inland regions that are far from seawater resources. Brackish water reverse osmosis (BWRO desalination is still subject to intensive energy consumption compared to the theoretical minimum energy demand. Here, we review some of the BWRO plants with various system arrangements. We look at how to minimize energy demands, as these contribute considerably to the cost of desalinated water. Different configurations of BWRO system have been compared from the view point of normalized specific energy consumption (SEC. Analysis is made at theoretical limits. The SEC reduction of BWRO can be achieved by (i increasing number of stages, (ii using an energy recovery device (ERD, or (iii operating the BWRO in batch mode or closed circuit mode. Application of more stages not only reduces SEC but also improves water recovery. However, this improvement is less pronounced when the number of stages exceeds four. Alternatively and more favourably, the BWRO system can be operated in Closed Circuit Desalination (CCD mode and gives a comparative SEC to that of the 3-stage system with a recovery ratio of 80%. A further reduction of about 30% in SEC can be achieved through batch-RO operation. Moreover, the costly ERDs and booster pumps are avoided with both CCD and batch-RO, thus furthering the effectiveness of lowering the costs of these innovative approaches.

  18. AMMONOX-Ammonia for enhancing biogas yield & reducing NOx

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Kristensen, P.G.; Paamand, K.

    2013-01-01

    The continuously increasing demand for renewable energy sources renders anaerobic digestion to one of the most promising technologies for renewable energy production. Due to the animal production intensification, manure is being used as the primary feedstock for most of the biogas plants. However......, biogas plants digesting liquid manure alone are not economically viable due to the relatively low organic content of the manure, usually 3-5%.Thus, their economical profitable operation relies partly on increasing the methane yield from manure, and especially of its solid fraction, usually called...... of innovative ammonia recovery technology and c) the coupling of the excess ammonia obtained from manure with the catalytic elimination of NOx emissions when the biogas is used for subsequent electricity generation with gas engines....

  19. Biogas - the calculable energy

    Science.gov (United States)

    Kith, Károly; Nagy, Orsolya; Balla, Zoltán; Tamás, András

    2015-04-01

    EU actions against climate change are rising energy prices, both have emphasized the use of renewable energy,increase investments and energy efficiency. A number of objectives formulated in the EC decree no. 29/2009 by 2020. This document is based on the share of renewable energies in energy consumption should be increased to 20% (EC, 2009). The EU average is 20% but the share of renewables vary from one member state to another. In Hungary in 2020, 14.65% renewable energy share is planned to be achieved. According to the latest Eurostat data, the share of renewable energy in energy consumption of the EU average was 14.1%, while in Hungary, this share was 9.6% in 2012. (EUROSTAT, 2014). The use of renewable energy plant level is influenced by several factors. The most important of these is the cost savings and efficiency gains. Hungarian investments in renewable energy production usually have high associated costs and the payback period is substantially more than five years, depending on the support rate. For example, the payback period is also influenced by the green electricity generated feed prices, which is one of the lowest in Hungary compared the Member States of the European Union. Consequently, it is important to increase the production of green energy. Nowadays, predictable biogas energy is an outstanding type of decentralized energy production. It follows directly that agricultural by-products can be used to produce energy and they also create jobs by the construction of a biogas plant. It is important to dispose of and destroy hazardous and noxious substances in energy production. It follows from this that the construction of biogas plants have a positive impact, in addition to green energy which is prepared to reduce the load on the environment. The production of biogas and green electricity is one of the most environment friendly forms of energy production. Biogas production also has other important ecological effects, such as the substitution of

  20. Progressive retry for software error recovery in distributed systems

    Science.gov (United States)

    Wang, Yi-Min; Huang, Yennun; Fuchs, W. K.

    1993-01-01

    In this paper, we describe a method of execution retry for bypassing software errors based on checkpointing, rollback, message reordering and replaying. We demonstrate how rollback techniques, previously developed for transient hardware failure recovery, can also be used to recover from software faults by exploiting message reordering to bypass software errors. Our approach intentionally increases the degree of nondeterminism and the scope of rollback when a previous retry fails. Examples from our experience with telecommunications software systems illustrate the benefits of the scheme.

  1. A Novel Energy Recovery System for Parallel Hybrid Hydraulic Excavator

    OpenAIRE

    Li, Wei; Cao, Baoyu; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the pro...

  2. Energy recovery system using an organic rankine cycle

    Science.gov (United States)

    Ernst, Timothy C

    2013-10-01

    A thermodynamic system for waste heat recovery, using an organic rankine cycle is provided which employs a single organic heat transferring fluid to recover heat energy from two waste heat streams having differing waste heat temperatures. Separate high and low temperature boilers provide high and low pressure vapor streams that are routed into an integrated turbine assembly having dual turbines mounted on a common shaft. Each turbine is appropriately sized for the pressure ratio of each stream.

  3. Sustainable sunlight to biogas is via marginal organics.

    Science.gov (United States)

    Shilton, Andy; Guieysse, Benoit

    2010-06-01

    Although biogas production from algae offers higher sunlight to biomass energy conversion efficiencies its production costs simply cannot compete with terrestrial plants. Unfortunately terrestrial plant cropping for biogas production is, in its own right, neither particularly sustainable nor profitable and its ongoing application is only driven by energy security concerns resulting in taxpayer subsidies. By comparison, scavenging the organic energy residual/wastes from food production offers a far more profitable and sustainable proposition and has an energy potential that dwarfs anything biogas production from dedicated energy crops can realistically offer. Thus researchers wanting to assist the development of sustainable biogas systems with viable process economics should forget about terrestrial and algal energy cropping and focus on the realm of scavengers. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Cattle-Dealing Potential of Malatya and Biogas Production

    Directory of Open Access Journals (Sweden)

    Gizem Kurt

    2013-01-01

    Full Text Available The manufacture of biogas in the agriculture and animal husbandry industry has been practiced successfully in developed countries for years. In order to contribute to the popularization of this practice in our country, and especially in the Malatya city. Depending on the number animals of different amount of biogas that can achieved within the scope of this study are presented in tables. In addition, to benefit from biomass potential efficiently and broadly for Malatya city we have made suggestions.In this research, average dry biomass amount per year and thermal (calorific value of average dry biomass were calculated in Malatya city. The results shown that approximate 87.645 m3/day biogas will be produced by using biogas systems from manure of animals in Malatya.

  5. Isolation of lactic acid-forming bacteria from biogas plants.

    Science.gov (United States)

    Bohn, Jelena; Yüksel-Dadak, Aytül; Dröge, Stefan; König, Helmut

    2017-02-20

    Direct molecular approaches provide hints that lactic acid bacteria play an important role in the degradation process of organic material to methanogenetic substrates in biogas plants. However, their diversity in biogas fermenter samples has not been analyzed in detail yet. For that reason, five different biogas fermenters, which were fed mainly with maize silage and manure from cattle or pigs, were examined for the occurrence of lactic acid-forming bacteria. A total of 197 lactic acid-forming bacterial strains were isolated, which we assigned to 21 species, belonging to the genera Bacillus, Clostridium, Lactobacillus, Pediococcus, Streptococcus and Pseudoramibacter-related. A qualitative multiplex system and a real-time quantitative PCR could be developed for most isolates, realized by the selection of specific primers. Their role in biogas plants was discussed on the basis of the quantitative results and on physiological data of the isolates. Copyright © 2016. Published by Elsevier B.V.

  6. Processing biogas to obtain motor fuel - Operational experience

    International Nuclear Information System (INIS)

    Seifert, M.

    2008-01-01

    This article takes a look at how raw biogas can be processed in order to remove carbon dioxide and corrosive substances and thus bring it up to natural gas quality. The ecological advantages of using biogas as a fuel are discussed and the situation in Europe and Switzerland is examined. Also, feeding biogas into the normal natural gas mains is discussed and the technologies necessary for the cleaning and preparation of the biogas are described. These include absorption and adsorption processes as well as membrane systems that are used to remove excessive carbon dioxide. The costs involved are discussed on the basis of experience gained in Sweden and Switzerland. Finally, the environmental aspects of methane losses are discussed.

  7. The benefits of biogas as a livestock waste management technology

    DEFF Research Database (Denmark)

    Putra, Ahmad Romadhoni Surya; Liu, Zhen; Lund, Mogens

    2014-01-01

    The aim of this paper is to present some preliminary results from a study of biogas as a livestock waste technology in supporting mixed crop and livestock farming. Specific emphasizesis made on the effects of biogas technology adoption among smallholder farmers. The study used a cross sectional...... survey approach to collect data from farm households at Yogyakarta Province, Indonesia. We surveyed 312 farmers that consisted of 165 biogas adopters and 147 non-adopters in 2013. By using propensity score matching techniques, the research employed treatment effects analysis according to the nearest...... synergies between crop farming, livestock, and household in terms of mixed crop and livestock farming, as an Integrated Farming System (IFS) practice, at the farm household level. Although the biogas technology provided the alternative energy source for the household, the specific benefits as an energy...

  8. Advanced Supermarket Refrigeration/Heat Recovery Systems. Country Report, Denmark

    DEFF Research Database (Denmark)

    Knudsen, Hans-Jørgen Høgaard; Christensen, K. G.

    number of supermarkets that offer frozen and chilled food and further growth of this sector may be expected, the amount of energy used for refrigeration is enormous and will likely increase in the near future. Annex 26 analysed several advanced supermarket refrigeration systems and came to remarkable...... conclusions as far energy conservation and TEWI reduction is concerned. The conclusion justify that advanced supermarket systems with heat recovery should receive great attention and support. And there is still further research needed in several areas. The Annex also included a thorough system analyses...

  9. Maintenance and Recovery of Water System for Injection (WFI)

    International Nuclear Information System (INIS)

    Wan Anuar Wan Awang; Ahmad Firdaus Jalil; Wan Mohd Firdaus Wan Ishak

    2015-01-01

    Water system for injection (WFI) is one of the main component in manufacturing pharmaceutical materials and radiopharmaceuticals. This system accredited in 2005. Water quality produced analyzed and give the unsatisfied results. The operation of WFI was stopped temporarily due to technical problems. In 2013, recovery works were implemented with budget of RM 226,500.00. Comprehensive maintenance were implemented by Rykertech (Asia) Sdn. Bhd. With duration of 24 months (October 2014 until September 2016) with cost RM 473,550.00. Now, this system operated in good condition and produced water that meet with the specifications. (author)

  10. Technological assumptions for biogas purification.

    Science.gov (United States)

    Makareviciene, Violeta; Sendzikiene, Egle

    2015-01-01

    Biogas can be used in the engines of transport vehicles and blended into natural gas networks, but it also requires the removal of carbon dioxide, hydrogen sulphide, and moisture. Biogas purification process flow diagrams have been developed for a process enabling the use of a dolomite suspension, as well as for solutions obtained by the filtration of the suspension, to obtain biogas free of hydrogen sulphide and with a carbon dioxide content that does not exceed 2%. The cost of biogas purification was evaluated on the basis of data on biogas production capacity and biogas production cost obtained from local water treatment facilities. It has been found that, with the use of dolomite suspension, the cost of biogas purification is approximately six times lower than that in the case of using a chemical sorbent such as monoethanolamine. The results showed travelling costs using biogas purified by dolomite suspension are nearly 1.5 time lower than travelling costs using gasoline and slightly lower than travelling costs using mineral diesel fuel.

  11. Biogas: A renewable energy source

    International Nuclear Information System (INIS)

    Imiere, E.E.; Ojih, V.B.; Esiekpe, L.E.; Okafor, M.C.; Attoh, V. A.

    2011-01-01

    Biogas refers to a gas produced by the biological breakdown of organic matter in the absence of oxygen. Biogas can be used as a fuel in any country for any heating purpose such as cooking. By means of digesters, the energy in the gas can be converted to electricity and heat. Biogas like natural gas can also be used to power motor vehicle. Biogas is a renewable fuel which qualifies it for a renewable energy subsidy. It is non-toxic, environment-friendly and serve as a means of combating global warming. Biogas is presently being used in U.S.A, U.K, China, Sweden, Brazil, and India amongst others for domestic purposes, transportation and power generation. In this regard, this paper discusses biogas production. It also presents a model design of domestic biogas plant suitable for Nigerian households. The paper recommends that Nigerian Government should intensify efforts in educating the masses on this novel technology for a sustainable global development. A biogas plant designed for Nigerian household discussed in this paper is also recommended.

  12. Energy utilization from landfill biogas; Aproveitamento energetico do biogas de aterros sanitarios

    Energy Technology Data Exchange (ETDEWEB)

    Candiani, Giovano [Universidade Federal do ABC, Santo Andre, SP (Brazil). Programa de Pos-Graduacao em Energia; Hoffmann, Gustavo; Silva, Elissandro Rocha da; Moreira, Joao M.L.; Tomioka, Jorge

    2008-07-01

    Landfills for solid waste disposal are used in Brazil and in most of countries in the world. The organic part of the solid wastes produces gas out of the decomposition of its organic content. This gas, named biogas and mostly made of carbon dioxide and methane, may be collected and used as an energy source due the methane presence. In this work we analyze the possible energy utilization of landfill biogas in Brazil in which the organic content of the solid waste is about 60%. The use of biogas as energy source can reduce the greenhouse gas emissions and improve the sanitation conditions of landfills. Moreover, it allows financial gains through selling of energy and carbon credits. In order to make possible the biogas utilization it is necessary to recognize the differences among the many landfills which exist in the country. There are the large and small landfills. The large ones usually have good instrumentation and gas exhaustion systems while the small ones have passive exhaustion systems and very few field instrumentation. The small landfills need to improve their instrumentation system and to incorporate exhaustion systems. (author)

  13. Upgrading biogas by a low-temperature CO2 removal techni

    Directory of Open Access Journals (Sweden)

    Ahmed M.I. Yousef

    2016-06-01

    Full Text Available Biogas, a renewable energy source, is primarily composed of methane and carbon dioxide and other gaseous species. Biogas upgrading for removing CO2 from raw biogas is a necessary step before the biogas to be used as vehicle fuel or injected into the natural gas grid. Therefore, the present work aimed to propose a low-temperature CO2 removal process as an alternative to the conventional biogas upgrading technologies (water scrubbing, chemical and physical scrubbing, membranes and Pressure swing adsorption. A typical model biogas mixture of 60 mol.% CH4 and 40 mol.% CO2 is considered. The present process showed that a product purity of 94.5 mol.% CH4 is obtained from compressed biogas by combining distillation, flash separation, auxiliary refrigeration and internal heat recovery with a potential specific energy consumption of 0.26 kW h/Nm3 raw biogas. The process has been simulated in Aspen HYSYS with avoiding the occurrence of CO2 freeze-out. The process delivers the captured CO2 in liquid form with a purity of 99.7 mol.% as a by-product for transport at 110 bar. It is concluded that the proposed upgrading process can serve as a new environmentally friendly approach to CO2 removal with an interesting energy-efficient alternative to the conventional upgrading techniques.

  14. The potential of biogas energy

    International Nuclear Information System (INIS)

    Acaroglu, M.; Hepbasli, A.; Kocar, G.

    2005-01-01

    Biogas technology has been known about for a long time, but in recent years the interest in it has significantly increased, especially due to the higher costs and the rapid depletion of fossil fuels as well as their environmental considerations. The main objective of the present study is to investigate the potential of biogas energy in the 15 European Union (EU) countries and in Turkey, which is seeking admission to the EU and is trying to meet EU environmental standards. Biogas energy potential of the 15 EU countries is estimated to be about 800 PJ. Besides this, Turkey's annual animal waste potential is obtained to be about 11.81 million tons with a biogas energy equivalent of 53.6 PJ. It is expected that this study will be helpful in developing highly applicable and productive planning for energy policies towards the optimum utilization of biogas energy. (author)

  15. Current aspects and new options of biogas production and utilisation; Aktuelle Aspekte und neue Moeglichkeiten der Biogaserzeugung und -nutzung

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, P. [Bundesforschungsanstalt fuer Landwirtschaft (FAL), Inst. fuer Technologie und Biosystemtechnik - Abt. Technologie, Braunschweig (Germany)

    2003-07-01

    Biogas production has become increasingly important for renewable energy production and climate protection in Germany. Around 2000 biogas plants with a total electric capacity of 250 MW are in operation, but only 5% of the available substrate potential is used today. Nearly 95% of all plants are operated with co-fermentation using numerous energy rich organic wastes from food and agro-industry or special cultivated energy crops as co-substrates. Ensiled forage maize and grass silage are the most often preferred energy crops. For biogas production mainly wet-fermentation systems are used. In nearly all biogas plants the produced biogas is utilised in combined heat and power stations. (orig.)

  16. Guide biogas. From production to utilization. 5. compl. rev. ed.; Leitfaden Biogas. Von der Gewinnung zur Nutzung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The book under consideration is a guide for biogas and consists of the following contributions: (a) Targets of the guide (M. Kaltschmitt); (b) Fundamentals of anaerobic fermentation (J. Friehe); (c) Systems engineering for supplying biogas (J. Postel); (d) Description of selected substrates (J. Friehe); (e) Operation of biogas plants (J. Liebetrau); (f) Gas processing and possibilities of utilization (M. Wetthaeuser); (g) Legal and administrative framework conditions (H. von Bredow); (g) Economy (S. Hartmann); (h) Company organisation (G. Reinhold); (i) Quality and utilization of fermentation residues (H. Doehler); (j) Implementation of a project (E. Fischer); (k) Position and significance of biogas as a renewable energy resource in Germany (M. Kaltschmitt); (l) Project examples (J. Friehe).

  17. Performance of a cycle Otto engine using biogas; Desempenho de um motor ciclo Otto utilizando biogas como combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Juliano de [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil). Centro de Ciencias Exatas e Tecnologicas], e-mail: jsouza@unioeste.br; Souza, Samuel N. Melegari de [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil)], e-mail: ssouza@unioeste.br; Machado, Paulo Romeu M. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Engenharia Mecanica

    2004-07-01

    The rising of the oil prices is increasing the search for alternative fuels. Brazil has a great availability of biogas from anaerobic digestion in the rural area, urban waste in the landfills and treatment of the municipal sewer. In this work were evaluated in dynamometer a cycle Otto engine using biogas, and were obtained the characteristics curves of torque and power. First was done the evidence test with gasoline, biogas and natural gas, using commercial systems for this fuels, using as comparison for other tests. After has been done tests for some combinations of ignition point, mixer of gas and compression tax. By the analysis of the results has been concluded that the better results for power and torque using biogas as fuel were with a tax compression of 12,5:1, gas mixer long and ignition point advanced in 45 deg. (author)

  18. Prospects for expanded utilization of biogas in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Poeschl, Martina; Ward, Shane [Charles Parsons Energy Research Programme, Bioresources Research Centre, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4 (Ireland); Owende, Philip [Charles Parsons Energy Research Programme, Bioresources Research Centre, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4 (Ireland); School of Informatics and Engineering, Institute of Technology Blanchardstown, Blanchardstown Road North, Dublin 15 (Ireland)

    2010-09-15

    The prospects for expanded utilization of biogas systems in German was analysed, by identifying the operational and policy factors affecting the complete chain of processes from implementation process for biogas plants, through to biogas production and utilization. It was found that the Renewable Energies Act (EEG) and energy tax reliefs provide bases for the support of expanded utilization. Upgrading of biogas to natural gas quality for utilization in the transportation sector was arguably the most promising technology that could support rapid utilization expansion. Sustainable deployment of biogas systems in light of the unstable feedstock prices and availability, and the need for subsidy-free operation in the long term requires; enhancement of feedstock flexibility and quality characteristics to maximise gas yield, and optimisation of the anaerobic digestion process management. Assessment of energy balance and potential environmental impacts of the integrated process chain provides a holistic assessment of sustainability. The results also support the development and foster of policies and framework for development of biogas as environmentally friendly energy resource, among a mix of renewable energy sources, hence, compete favourably with fossil fuels to enhance the prospects for expanded utilization. (author)

  19. Prospects for expanded utilization of biogas in Germany

    International Nuclear Information System (INIS)

    Poeschl, Martina; Ward, Shane; Owende, Philip

    2010-01-01

    The prospects for expanded utilization of biogas systems in German was analysed, by identifying the operational and policy factors affecting the complete chain of processes from implementation process for biogas plants, through to biogas production and utilization. It was found that the Renewable Energies Act (EEG) and energy tax reliefs provide bases for the support of expanded utilization. Upgrading of biogas to natural gas quality for utilization in the transportation sector was arguably the most promising technology that could support rapid utilization expansion. Sustainable deployment of biogas systems in light of the unstable feedstock prices and availability, and the need for subsidy-free operation in the long term requires; enhancement of feedstock flexibility and quality characteristics to maximise gas yield, and optimisation of the anaerobic digestion process management. Assessment of energy balance and potential environmental impacts of the integrated process chain provides a holistic assessment of sustainability. The results also support the development and foster of policies and framework for development of biogas as environmentally friendly energy resource, among a mix of renewable energy sources, hence, compete favourably with fossil fuels to enhance the prospects for expanded utilization. (author)

  20. Small Scale Regenerative Desulfurization of Biogas

    NARCIS (Netherlands)

    Linders, M.J.G.; Stille, L.C.; Miedema, M.C.; Groenestijn, J.W. van; Goetheer, E.L.V.

    2016-01-01

    The application of small scale biogas digesters to supply biogas to households in developing countries is well established. The biogas is used for different applications, amongst other cooking. Generally, no further treatment of the biogas is applied. Hydrogen Sulfide (H2S) is present in varying

  1. Kinetic and Enhancement of Biogas Production For The Purpose of Rnewable Fuel Generation by Co-digestion of Cow Manure and Corn Straw in A Pilot Scale CSTR System

    Directory of Open Access Journals (Sweden)

    Jabraeil Taghinazhad

    2017-03-01

    Full Text Available Biogas production from anaerobic co-digestion of cow manure (CM and corn straw residue (CSR were experimentally investigated using a completely stirred tank reactor (CSTR under semi- continuously feeding circumstance at mesophilic (35°C±2 temperature. The pilot-scale digester with 180 L in volume was employed under experimental protocol to examine the effect of the change in organic loading rate on efficiency of biogas production and to report on its steady-state performance. An average organic loading rates of 2 and 3 kg VS. (m-3.d-1 and a hydraulic retention time (HRT of 25 days was examined with respect to two different CM to CSR mixing ratios of 100:0 , 75:25 and 50:50, respectively. The results showed both organic loading rates at co-digestion of CM+ CSR gave better methane yields than single digestion of cow manure. The biogas production efficiency was obtained 0.242, 0.204, 0.311 0.296, 259.5 and 235 m3.(kg VS input-1 for 2 and 3 kg VS.(m-3.d-1 at CM to CSR mixing ratios of100:0 , 75:25 and 50:50, respectively. The reactor showed stable performance with VS reduction between 55-74% during different runs. With increment of loading rate, the VS degradation and biogas yield decreased. Modified Gompertz and logistic plot equation was employed to model the methane production at different organic loading rates and substrate concentrations. The equations gave a good approximation of the maximum methane production (rm and the methane yield potential (P with correlation coefficient (R2 over 0.99. Keywords: Biogas; cow manure; corn straw; Kinetic; semi-continuously Article History: Received Oct 25th 2016; Received in revised form Dec 19th 2016; Accepted 2nd January 2017; Available online How to Cite This Article: Taghinazhad. J., Abdi, R. and Adl, M. (2017. Kinetic and Enhancement of Biogas Production for the purpose of renewable fuel generation by Co-digestion of Cow Manure and Corn Straw in a Pilot Scale CSTR System. Int Journal of Renewable

  2. Enterprise systems backup and recovery a corporate insurance policy

    CERN Document Server

    de Guise, Preston

    2008-01-01

    The success of information backup systems does not rest on IT administrators alone. Rather, a well-designed backup system comes about only when several key factors coalesce-business involvement, IT acceptance, best practice designs, enterprise software, and reliable hardware. Enterprise Systems Backup and Recovery: A Corporate Insurance Policy provides organizations with a comprehensive understanding of the principles and features involved in effective enterprise backups.Instead of focusing on any individual backup product, this book recommends corporate procedures and policies that need to be established for comprehensive data protection. It provides relevant information to any organization, regardless of which operating systems or applications are deployed, what backup system is in place, or what planning has been done for business continuity. It explains how backup must be included in every phase of system planning, development, operation, and maintenance. It also provides techniques for analyzing and impr...

  3. Optimization-based design of waste heat recovery systems

    DEFF Research Database (Denmark)

    Cignitti, Stefano

    than working fluids, the thesis presents other product types and applications of relevance, including solvent design. In this thesis, a holistic framework is presented for the design of novel chemical products as a means of process systems design. The framework ensures optimal design of the chemical...... product and process system in terms of efficiency and sustainability. Today, some of the most important chemical product design problems are solvents and working fluids. Solvents are a vital part in the recovery of valuable resources in separation processes or waste water treatment. Working fluids...

  4. Biogas from lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Berglund Odhner, Peter; Schabbauer, Anna [Grontmij AB, Stockholm (Sweden); Sarvari Horvath, Ilona; Mohseni Kabir, Maryam [Hoegskolan i Boraas, Boraas (Sweden)

    2012-01-15

    Grontmij AB has cooperated with the University of Boraas to evaluate the technological and economical possibilities for biogas production from substrates containing lignocellulose, such as forest residues, straw and paper. The state of knowledge regarding biogas production from cellulosic biomass has been summarized. The research in the field has been described, especially focusing on pretreatment methods and their results on increased gas yields. An investigation concerning commercially available pretreatment methods and the cost of these technologies has been performed. An economic evaluation of biogas production from lignocellulosic materials has provided answers to questions regarding the profitability of these processes. Pretreatment with steam explosion was economically evaluated for three feedstocks - wood, straw and paper - and a combination of steam explosion and addition of NaOH for paper. The presented costs pertain to costs for the pretreatment step as it, in this study, was assumed that the pretreatment would be added to an existing plant and the lignocellulosic substrates would be part of a co-digestion process. The results of the investigation indicate that it is difficult to provide a positive net result when comparing the cost of pretreatment versus the gas yield (value) for two of the feedstocks - forest residues and straw. This is mainly due to the high cost of the raw material. For forest residues the steam pretreatment cost exceeded the gas yield by over 50 %, mainly due to the high cost of the raw material. For straw, the production cost was similar to the value of the gas. Paper showed the best economic result. The gas yield (value) for paper exceeded the pretreatment cost by 15 %, which makes it interesting to study paper further.

  5. Special file: biogas

    International Nuclear Information System (INIS)

    Signoret, Stephane; Mary, Olivier; Zebboudj, Idir; Mounissamy, Alice; Sandrin-Deforge, Armelle; Petitot, Pauline; De Santis, Audrey

    2015-01-01

    With some graphs indicating the number and types of existing and projected biogas production units, a first article outlines that the development rate is presently too low to be able to reach objectives defined for 2020. A second article comments the results of a benchmark study performed by the ADEME on the biogas sector status in European countries (a map indicates the levels of production and electricity purchase tariffs, the evolution of development conditions, and the types of financial support). In an interview, a GrDF manager in charge of strategy discusses the GrDF strategy on biomethane, the future management of gas networks, the operation of existing biomethane injection sites, future projects, the management of consumption variations, and the issue of biomethane injection tariff. An article then presents an experiment made by farmers in western France who gathered about a methanization site with a unit of injection of biomethane into the natural gas network. The assessment of another experiment (a Methanea methanization unit operated by two farmers in the Ain district) is then presented. The next article gives an overview of the various possibilities proposed by the legal framework for the contract between input providers and the methanization unit operator. Different assessment tools are then presented: Flash BMP (a fast and affordable method of measurement of the biochemical methane potential or BMP to perform feasibility studies), and a software for the precise assessment of the profitability of a methanization unit. In an interview, a member of Weltec Biopower proposes a brief overview of services and products proposed by this company which installs biogas and bio-methanization every where in the world. A last article addresses the recent evolutions and progress of certification of French digestates

  6. Aquifer storage and recovery: recent hydrogeological advances and system performance.

    Science.gov (United States)

    Maliva, Robert G; Guo, Weixing; Missimer, Thomas M

    2006-12-01

    Aquifer storage and recovery (ASR) is part of the solution to the global problem of managing water resources to meet existing and future freshwater demands. However, the metaphoric "ASR bubble" has been burst with the realization that ASR systems are more physically and chemically complex than the general conceptualization. Aquifer heterogeneity and fluid-rock interactions can greatly affect ASR system performance. The results of modeling studies and field experiences indicate that more sophisticated data collection and solute-transport modeling are required to predict how stored water will migrate in heterogeneous aquifers and how fluid-rock interactions will affect the quality of stored water. It has been well-demonstrated, by historic experience, that ASR systems can provide very large volumes of storage at a lesser cost than other options. The challenges moving forward are to improve the success rate of ASR systems, optimize system performance, and set expectations appropriately.

  7. Water Recovery System Architecture and Operational Concepts to Accommodate Dormancy

    Science.gov (United States)

    Carter, Layne; Tabb, David; Anderson, Molly

    2017-01-01

    Future manned missions beyond low Earth orbit will include intermittent periods of extended dormancy. The mission requirement includes the capability for life support systems to support crew activity, followed by a dormant period of up to one year, and subsequently for the life support systems to come back online for additional crewed missions. NASA personnel are evaluating the architecture and operational concepts that will allow the Water Recovery System (WRS) to support such a mission. Dormancy could be a critical issue due to concerns with microbial growth or chemical degradation that might prevent water systems from operating properly when the crewed mission began. As such, it is critical that the water systems be designed to accommodate this dormant period. This paper identifies dormancy issues, concepts for updating the WRS architecture and operational concepts that will enable the WRS to support the dormancy requirement.

  8. Hybrid Fv - Biogas/Diesel System Measuring With Homer. Case of Application: Farm Pozo Verde, Jamundi Municipality, Cauca Valley, Colombia; Dimensionado de un Sistema Hibrido Fv - Biogas/Diesel mediante el Empleo de la Herramienta Homer. Caso de Aplicacion: Granja Pozo Verde, Municipio de Jamundi, Valle del Cauca, Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, J.; Manrique, P. A.; Pinedo, I.

    2009-11-25

    This report completes the previous one, by adding the characterization of renewable energy systems based on optimization and sizing tools. A case study has been carried out in the Valley of Cauca (Colombia) using HOMER, once the solar energy potential was defined. This work is about the production of electricity using hybrid power systems (HPS). The HPS chosen for this study is based on two of the most common energy resources in most of Colombian rural areas: solar energy and biomass waste. The biomass waste is obtained by animal manure from livestock farms, particularly from pigs, which is highly valued in terms of energy production. The breeding of pigs has a huge economic, environmental and social importance in this Colombian region. In this report, the HPS technology and the energy contribution of the biogas produced from animal manure are described. A technical and economic simulation of a HPS has been performed using the optimization tool HOMER. These reports are the result of a collaboration established between Universidad del Valle (Colombia) and CIEMAT (Spain), and have been done by the author while his staying at our center included on his PhD program. Keywords: renewable energies, hybrid systems, biogas, technology sizing, rural electrification, Latin America. (Author) 8 refs.

  9. International scientific conference biogas science 2009. Vol. 1. Lectures; Internationale Wissenschaftstagung Biogas Science 2009. Bd. 1. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-12-15

    Within the international conference of the Bavarian State Research Center for Agriculture (Munich, Federal Republic of Germany) at 2nd to 4th December, 2009, in Erding (Federal Republic of Germany), the following lectures were held: (1) Significance of the sector biogas within the scope of renewable energies (P. Schuesseler); (2) Anaerobic digestion, a superior renewable energy degradation method (G. Lettinga); (3) Trends of the biogas technology - Challenges for the practice (J. Pellmeyer); (4) Extensification of cultivation procedures for the production of biogas substrates (K. Deiglmayer et al.); (5) Approaches for the optimization of crop rotations for biogas plants at Bavarian conditions of cultivation (E. Sticksel et al.); (6) Development and comparison of site specific production systems for energy crops (Ch. Strauss et al.); (7) Which type of maize is useful for the production of biogas? (B. Eder et al.); (8) Fermentation of interim fruits, food stocks and residues of harvest: Review on the possibilities of power generation and avoidance of direct and indirect emissions of climatic gases (W. Stinner et al.); (9) Optimization of anaerobic fermentation by means of mineral additives (H. Heuwinkel et al.); (10) The accuracy of the measurement of gas yields of substrates using the batch method (H. Heuwinkel et al.); (11) Combined mechanical-enzymatic pre-treatment of an improved digestion of substrates during the fermentation of renewable raw materials (D. Schiedr et al.); (12) Anaerobic semi-continuous co-digestion of dairy cattle manure and agricultural residues: Effect of operational parameters (E. Alkaya et al.); (13) Do hydrolytic enzymes enhance methane formation of agricultural feedstock? (T. Suarez Quinones et al.); (14) DAUMEN-Energy ''Design fo Separation and Augmented Methanisation of Fibres Substrates - Contribution to sustainable biogas production'' (P. Stopp et al.); (15) Continuous two-phase solid-state anaerobic digestion

  10. Piloted Simulation of a Model-Predictive Automated Recovery System

    Science.gov (United States)

    Liu, James (Yuan); Litt, Jonathan; Sowers, T. Shane; Owens, A. Karl; Guo, Ten-Huei

    2014-01-01

    This presentation describes a model-predictive automatic recovery system for aircraft on the verge of a loss-of-control situation. The system determines when it must intervene to prevent an imminent accident, resulting from a poor approach. It estimates the altitude loss that would result from a go-around maneuver at the current flight condition. If the loss is projected to violate a minimum altitude threshold, the maneuver is automatically triggered. The system deactivates to allow landing once several criteria are met. Piloted flight simulator evaluation showed the system to provide effective envelope protection during extremely unsafe landing attempts. The results demonstrate how flight and propulsion control can be integrated to recover control of the vehicle automatically and prevent a potential catastrophe.

  11. Biogas from alcohol production residues

    Energy Technology Data Exchange (ETDEWEB)

    Skirstymonskii, A.I.; Koshel, M.I.; Demchinskaya, A.A.

    1982-01-01

    Biogas was produced by fermentation of the yeast-molasses mash (from alcohol production) which contained 6% dry matter. About 16 cu.m biogas was obtained from 1 cu.m mash. The biogas consisted of CH/sub 4/, 55-57, CO/sub 2/ 33-36, H/sub 2/ 1.1-1.5, N/sub 2/ 5.1-7.5, and O/sub 2/ 1.1-1.6% plus traces of H/sub 2/S. Optimum conditions and apparatus are given for CH/sub 4/ fermentation of the yeast-molasses mash.

  12. Brine and gas recovery from geopressured systems. I. Parametric calculations

    Energy Technology Data Exchange (ETDEWEB)

    Garg, S.K.; Riney, T.D.

    1984-02-01

    A series of parametric calculations was run with the S-CUBED geopressured-geothermal simulator MUSHRM to assess the effects of important formation, fluid and well parameters on brine and gas recovery from geopressured reservoir systems. The specific parameters considered are formation permeability, pore-fluid salinity, temperature and gas content, well radius and location with respect to reservoir boundaries, desired flow rate, and possible shale recharge. It was found that the total brine and gas recovered (as a fraction of the resource in situ) were most sensitive to formation permeability, pore-fluid gas content, and shale recharge.

  13. Biogas Production Based On Miscanthus × Giganteus (Miscanthus Sinensis Anderss. Within Dry Fermentation Process

    Directory of Open Access Journals (Sweden)

    Porvaz Pavol

    2015-11-01

    Full Text Available “Dry fermentation“ technology may be used for energy recovery of phytomass substrate which has dry matter content from 20 to 60%. In agriculture sector, while only rarely used, it is a very perspective technology at such types of biomass – phytomass which is not recommended to be processed within “wet fermentation” (process is energetically and operationally very costly. For detecting the suitability of Miscanthus × giganteus phytomass to biogas for production through dry fermentation process, as well as determining the biogas yield, at the Slovak university of Agriculture (SUA there has been developed an experimental device enabling the pilot plant trials, which is installed at the biogas station within the area of the VPP SPU Ltd. in Kolíňany. A pilot plant experiment of biogas production based on Miscanthus × giganteus (Miscanthus sinensis Anderss. phytomass within dry fermentation process was carried out at the period from 25 February to 25 March 2013. The monitored production of biogas was based on the substrate mixture of components formed as follows: the biomass from preceding cycle (farmyard manure and ensilage from Miscanthus phytomass. In these experiments the amount of produced biogas, analysis of biogas and the input substrate were materialized by standard methodology. On base of the obtained results, we can formulate the conclusion: the tested substrate mainly consists of Miscanthus phytomass and manure was suitable for biogas production technology and anaerobic dry fermentation process. The yield of Miscanthus substrate in our experiments was around 117 litres of biogas per 1 kg of dry matter silage. For assurance of the continuity and uniformity in the production of biogas by dry fermentation process, the multiple-fermentation chamber is needed, which must be saturated gradually with dosing interval. This dosing interval is caused by residence time and the number of chambers. For example, at the residence time of 28

  14. Shale-oil-recovery systems incorporating ore beneficiation. Final report.

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, M.A.; Klumpar, I.V.; Peterson, C.R.; Ring, T.A.

    1982-10-01

    This study analyzed the recovery of oil from oil shale by use of proposed systems which incorporate beneficiation of the shale ore (that is concentration of the kerogen before the oil-recovery step). The objective was to identify systems which could be more attractive than conventional surface retorting of ore. No experimental work was carried out. The systems analyzed consisted of beneficiation methods which could increase kerogen concentrations by at least four-fold. Potentially attractive low-enrichment methods such as density separation were not examined. The technical alternatives considered were bounded by the secondary crusher as input and raw shale oil as output. A sequence of ball milling, froth flotation, and retorting concentrate is not attractive for Western shales compared to conventional ore retorting; transporting the concentrate to another location for retorting reduces air emissions in the ore region but cost reduction is questionable. The high capital and energy cost s results largely from the ball milling step which is very inefficient. Major improvements in comminution seem achievable through research and such improvements, plus confirmation of other assumptions, could make high-enrichment beneficiation competitive with conventional processing. 27 figures, 23 tables.

  15. A fluid dynamic study on recovery system of methane hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Hamaguchi, Ryokichi; Nishimura, Yuki; Matsukuma, Yosuke; Minemoto, Masaki; Watabe, Masaharu; Okawa, Katsunori

    2005-07-01

    A development of Methane Hydrate (MH), which exist under the ocean floor, has been brought to public attention. But, the production technology has not been established yet. It is important to understand the decomposition phenomenon of MH for an investigation of the safety and the profitability of production systems. In this research, the decomposition rate of gas hydrate was measured by using HCFC141b hydrate for a substitute of MH. Also, the decomposition phenomenon was simulated by Lattice Gas Automaton method in order to establish the technique which analytically estimates decomposition rate. From the experimental results, the decomposition rate was expressed by the equation between Nusselt number and Reynolds number. Furthermore, the flow in the MH recovery pipe was simulated to investigate the economical efficiency of product system of MH. The flow calculation model was based on the one-dimensional unsteady compressible three fluid model and adopted CFD method. As a result, Methane gas generated from decomposition of MH affect the flow in the recovery pipe. And it is indicates that utilizing the methane gas generated from decomposition may reduce the power consumption of the product system of MH from the deep ocean floor. (Author)

  16. Life Cycle Assessment of Biogas Production in Small-scale Household Digesters in Vietnam

    Directory of Open Access Journals (Sweden)

    T. K. V. Vu

    2015-05-01

    Full Text Available Small-scale household digesters have been promoted across Asia as a sustainable way of handling manure. The major advantages are that they produce biogas and reduce odor. However their disadvantages include the low recycling of nutrients, because digestate is dilute and therefore difficult to transport, and the loss of biogas as a result of cracks and the intentional release of excess biogas. In this study, life cycle assessment (LCA methodology was used to assess the environmental impacts associated with biogas digesters in Vietnam. Handling 1,000 kg of liquid manure and 100 kg of solid manure in a system with a biogas digester reduced the impact potential from 4.4 kg carbon dioxide (CO2 equivalents to 3.2 kg CO2 equivalents compared with traditional manure management. However, this advantage could easily be compromised if digester construction is considered in the LCA or in situations where there is an excess of biogas which is intentionally released. A sensitivity analysis showed that biogas digesters could be a means of reducing global warming if methane emissions can be kept low. In terms of eutrophication, farms with biogas digesters had 3 to 4 times greater impacts. In order to make biogas digesters sustainable, methods for recycling digestates are urgently required.

  17. Biogas production and biogas as vehicle fuel - Swedish experiences

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, A.E. [VBB Viak AB, Stockholm (Sweden)

    1997-08-01

    In Sweden there are totally about 220 biogas plants in operation. The major part of these plants (134) are represented by sewage sludge treatment facilities at waste water treatment plants. At 60 sites the biogas is generated from landfills or cell digesters at landfills. In 1996, the amount produced had a total energy content of about 1,35 TWh (or 4 900 PJ). (EG)

  18. Space systems for disaster warning, response, and recovery

    CERN Document Server

    Madry, Scott

    2015-01-01

    This SpringerBrief provides a general overview of the role of satellite applications for disaster mitigation, warning, planning, recovery and response. It covers both the overall role and perspective of the emergency management community as well as the various space applications that support their work. Key insights are provided as to how satellite telecommunications, remote sensing, navigation systems, GIS, and the emerging domain of social media are utilized in the context of emergency management needs and requirements. These systems are now critical in addressing major man-made and natural disasters. International policy and treaties are covered along with various case studies from around the world. These case studies indicate vital lessons that have been learned about how to use space systems more effectively in addressing the so-called “Disaster Cycle.” This book is appropriate for practicing emergency managers, Emergency Management (EM) courses, as well as for those involved in various space applica...

  19. System Behaviour Charts Inform an Understanding of Biodiversity Recovery

    Directory of Open Access Journals (Sweden)

    Simon A. Black

    2015-01-01

    Full Text Available Practitioners working with species and ecosystem recovery typically deal with the complexity of, on one hand, lack of data or data uncertainties and, on the other hand, demand for critical decision-making and intervention. The control chart methods of commercial and industrial and environmental monitoring can complement an ecological understanding of wildlife systems including those situations which incorporate human activities and land use. Systems Behaviour Charts are based upon well-established control chart methods to provide conservation managers with an approach to using existing data and enable insight to aid timely planning of conservation interventions and also complement and stimulate research into wider scientific and ecological questions. When the approach is applied to existing data sets in well-known wildlife conservation cases, the subsequent Systems Behaviour Charts and associated analytical criteria demonstrate insights which would be helpful in averting problems associated with each case example.

  20. IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, VAN

    2003-05-19

    With increased concern about the impact of refrigerant leakage on global warming, a number of new supermarket refrigeration system configurations requiring significantly less refrigerant charge are being considered. In order to help promote the development of advanced systems and expand the knowledge base for energy-efficient supermarket technology, the International Energy Agency (IEA) established IEA Annex 26 (Advanced Supermarket Refrigeration/Heat Recovery Systems) under the ''IEA Implementing Agreement on Heat Pumping Technologies''. Annex 26 focuses on demonstrating and documenting the energy saving and environmental benefits of advanced systems design for food refrigeration and space heating and cooling for supermarkets. Advanced in this context means systems that use less energy, require less refrigerant and produce lower refrigerant emissions. Stated another way, the goal is to identify supermarket refrigeration and HVAC technology options that reduce the total equivalent warming impact (TEWI) of supermarkets by reducing both system energy use (increasing efficiency) and reducing total refrigerant charge. The Annex has five participating countries: Canada, Denmark, Sweden, the United Kingdom, and the United States. The working program of the Annex has involved analytical and experimental investigation of several candidate system design approaches to determine their potential to reduce refrigerant usage and energy consumption. Advanced refrigeration system types investigated include the following: distributed compressor systems--small parallel compressor racks are located in close proximity to the food display cases they serve thus significantly shortening the connecting refrigerant line lengths; secondary loop systems--one or more central chillers are used to refrigerate a secondary coolant (e.g. brine, ice slurry, or CO2) that is pumped to the food display cases on the sales floor; self-contained display cases--each food display case

  1. Flexible Biogas in Future Energy Systems—Sleeping Beauty for a Cheaper Power Generation

    Directory of Open Access Journals (Sweden)

    Markus Lauer

    2018-03-01

    Full Text Available The increasing proportion of intermittent renewable energies asks for further technologies for balancing demand and supply in the energy system. In contrast to other countries, Germany is characterized by a high installed capacity of dispatchable biogas plants. For this paper, we analyzed the total system costs varying biogas extension paths and modes of operation for the period of 2016–2035 by using a non-linear optimization model. We took variable costs of existing conventional power plants, as well as variable costs and capital investments in gas turbines, Li-ion batteries, and pumped-storage plants into account. Without the consideration of the costs for biogas plants, an increasing proportion of biogas plants, compared to their phase out, reduces the total system costs. Furthermore, their flexible power generation should be as flexible as possible. The lowest total system costs were calculated in an extension path with the highest rate of construction of new biogas plants. However, the highest marginal utility was assessed by a medium proportion of flexible biogas plants. In conclusion, biogas plants can be a cost-effective option to integrate intermittent renewable energies into the electricity system. The optimal extension path of biogas plants depends on the future installed capacities of conventional and renewable energies.

  2. Advanced Waste Heat Recovery Systems within Hybrid Powertrains

    Directory of Open Access Journals (Sweden)

    Albert Boretti

    2018-01-01

    Full Text Available A waste heat recovery system (WHRS is very well known to provide no advantage during the cold start driving cycles, such as the New European Driving Cycle (NEDC, which are used for certification of emissions and assessment of fuel economy. Here, we propose a novel integrated WHRS using the internal combustion engine (ICE coolant passages and an exchanger on the exhaust working as pre-heater / boiler / super-heater of a Rankine cycle. The expander is connected to an electric generator unit (GU, and the pump is connected to an electric motor unit (MU. The vehicle is also fitted with an electric, kinetic energy recovery system (KERS. The expander and condenser are bypassed during the first part of the NEDC when the vehicle covers the four ECE-15 (Economic Commission for Europe - 15 - UDC (Urban Drive Cycle segments where the engine warms-up.  Only after the engine is fully warmed up, during the last part of the NEDC, the extra urban driving cycle (EUDC segment, the expander and condenser are activated to recover part of the coolant and exhaust energy.

  3. Monitoring of biogas test plants

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo; Esbensen, Kim H.

    2011-01-01

    Most studies reported in the literature have investigated near infrared spectroscopy (NIR) in laboratory-scale or minor pilot biogas plants only; practically no other studies have examined the potential for meso-scale/full-scale on-line process monitoring. The focus of this study is on a meso......-scale biogas test plant implementation of process analytical technologies (PAT) to develop multivariate calibration/prediction models for anaerobic digestion (AD) processes. A 150 L bioreactor was fitted with a recurrent loop at which NIR spectroscopy and attendant reference sampling were carried out. In all...... realistic bioreactor scales, it is necessary to obtain a fairly constant level of volatile fatty acid (VFA) concentration, which furthers a stable biogas production. Uncontrolled VFA contents have a significant negative impact on biogas production; VFA concentrations should not exceed 5–6000 mg/L lest...

  4. BIOGAS PRODUCTION FROM CATCH CROPS

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Ahring, Birgitte Kiær

    2014-01-01

    Catch crop cultivation combined with its use for biogas production would increase renewable energy production in the form of methane, without interfering with the production of food and fodder crops. The low biomass yield of catch crops is the main limiting factor for using these crops as co......-substrate in manure-based biogas plants and the profit obtained from the sale of biogas barely compensates for the harvest costs. A new agricultural strategy to harvest catch crops together with the residual straw of the main crop was investigated to increase the biomass and thereby the methane yield per hectare...... biomass. Leaving the straw on the field until harvest of the catch crop in the autumn could benefit biogas production due to the organic matter degradation of the straw taking place on the field during the autumn months. This new agricultural strategy may be a good alternative to achieve economically...

  5. Nitrogen availability of biogas residues

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed Fouda, Sara

    2011-09-07

    The objectives of this study were to characterize biogas residues either unseparated or separated into a liquid and a solid phase from the fermentation of different substrates with respect to their N and C content. In addition, short and long term effects of the application of these biogas residues on the N availability and N utilization by ryegrass was investigated. It is concluded that unseparated or liquid separated biogas residues provide N at least corresponding to their ammonium content and that after the first fertilizer application the C{sub org}:N{sub org} ratio of the biogas residues was a crucial factor for the N availability. After long term application, the organic N accumulated in the soil leads to an increased release of N.

  6. Advanced Conversion of Organic Waste into Biogas

    Energy Technology Data Exchange (ETDEWEB)

    Offenbacher, Elmar [BDI-BioEnergy International AG, Grambach/Graz (Austria)

    2012-11-01

    Day by day, every human generates significant amounts of organic waste that most of the time ends on landfills. Disposing of organic residues is not just a waste of energy resources but also a burden to the environment as anthropogenic emissions of greenhouse gases are produced. In contrast to waste combustion that can't generate any energy out of organic waste but the contrary, anaerobic digestion is the most suitable technology for the sustainable and efficient conversion of all kind of organic waste into valuable biogas. Biogas generated from organic waste typically consists of 55-60% methane (CH{sub 4}) and provides an energy content of more than 20 MJ/Nm{sup 3}. The average biogas yield is around 150 Nm{sup 3} per ton of organic waste that can be converted into 350 kW of electricity plus the same amount of process heat. In other words a typical household could recover about one twentieth of its power consumption just out of the organic waste it is producing. Anaerobic digestion significantly reduces the amount of waste going to landfill as well as the uncontrolled emissions of methane. The BDI High Load Hybrid Reactor merges the core concepts of CSTR and UASB fermenters while providing a two phase anaerobic digestion system. The first process step accommodates hydrolysis and acidification to break down the complex organic molecules into simple sugars, amino acids, and fatty acids under acid conditions. In the second stage acetic acids are finally converted into methane (CH{sub 4}), carbon dioxide (CO{sub 2}) and water. This two-phase concept ensures maximum yield of biogas generated, paired with high loading rates and feedstock flexibility.

  7. Decentralized power generation from biogas

    International Nuclear Information System (INIS)

    2008-01-01

    Areva Bioenergies proposes ready-to-use biogas production and valorization units that use industrial effluents (liquid effluents, spent water, solid wastes). Biogas valorization is performed through cogeneration plants with an output power of 500 kW to 10 MW. This brochure presents Areva's global offer in methanation projects (support, engineering, optimization). Areva Bioenergies counts 20 dual-purpose power plants in operation or under construction in the world which represent an installed power of 220 MW

  8. Trenton Biogas LLC

    Energy Technology Data Exchange (ETDEWEB)

    Blair, William Brian [Trenton Biogas LLC, Trenton, NJ (United States)

    2017-06-13

    During the total period of funding, the project objectives changed. The initial objective of the project was to research the health and efficacy of two commercial derivative products of levulinic acid extracted from food waste and to optimize conversion methods for manufacturing. Unfortunately, and prior to any final conclusions, the scientist performing the studies passed away leaving much of the work incomplete. Analysis of the initial work product suggested that the process for commercializing levulinic acid from the food waste product was cost prohibitive mostly due to the market readiness for the levulinic acid product. The second phase of funding research period focused on utilizing the food waste (which had already been researched from phase 1) for other sources of energy. The focus and objectives of this phase were more focused on the technology transfer necessary to commercialize anaerobic digestion of food waste in a somewhat urban environment. During this transition, the project name changed from Trenton Fuel Works to Trenton Biogas.

  9. Collective biogas plants

    International Nuclear Information System (INIS)

    1992-01-01

    Papers contributed to the European seminar on collective biogas plants held at Herning, Denmark on October 22-23 under the auspices of the Commission of the European Communities, Directorate-General for Energy (DG XVII) are presented. Within the framework of the THERMIE programme, a network of OPETs (Organizations for the Promotion of Energy Technologies) was set up in order to disseminate information on new energy technologies throughout the European communities. The potential for further implementation of centralized capacity for the conversion of animal manures and other organic wastes to bio-fuels, not only in central and eastern Europe but also in the developing countries, is discussed in addition to the relevant technologies. Actual biomass conversion plants are described and details are given on operational experience and plant management. Agricultural, economic and policy aspects are also dealt with. (AB)

  10. Application of biogas for combined heat and power production in the rural region

    International Nuclear Information System (INIS)

    Kozak, T.; Majchrzycka, A.

    2009-01-01

    The paper discusses combined production of heat and power (CHP) from biogas in a small-scale power plant placed in the rural region. Based on power and heat demands of the rural region and biomass supply, the CHP system was selected. Keywords: biogas, cogeneration

  11. MATHEMATIC MODELING IN ANALYSIS OF BIO-GAS PURIFICATION FROM CARBON DIOXIDE

    Directory of Open Access Journals (Sweden)

    Y. A. Losiouk

    2009-01-01

    Full Text Available The paper considers a possibility to involve bio-gas generated at testing grounds of hard domestic garbage in power supply system in the Republic of Belarus. An example of optimization using mathematical modeling of plant operation which is used for bio-gas enrichment is given in the paper. 

  12. Integration of energy, GHG and economic accounting to optimize biogas production based on co-digestion

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Boldrin, Alessio; Baral, Khagendra Raj

    Several countries have set a number of targets to boost energy production from renewable sources. Biogas production is expected to increase significantly over the next few decades and to play an important role in future energy systems. To achieve these ambitious targets, the biogas production has...

  13. Use of the Sabatier Process for Dynamic Biogas Upgrading in Northern Germany

    DEFF Research Database (Denmark)

    Jurgensen, Lars; Ehimen, Ehiazesebhor Augustine; Born, Jens

    2014-01-01

    Approximately 8000 farm scale biogas plants are present in Germany which produce electricity (mainly using energy crops as substrates) . The potential role of biogas plants in energy systems penetrated by high amounts of fluctuating renewable energy production is discussed in this paper. Today th...

  14. Passive ventilation systems with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    2008-01-01

    of Denmark. Through building integration in high performance offices the system is optimized to incorporate multiple functions like heating, cooling and ventilation, thus saving the expenses of separate cooling and heating systems. The simulation results are derived using the state-of-the-art building......In building design the requirements for energy consumption for ventilation, heating and cooling and the requirements for increasingly better indoor climate are two opposing factors. This paper presents the schematic layout and simulation results of an innovative multifunc-tional ventilation concept...... with little energy consumption and with satisfying indoor climate. The concept is based on using passive measures like stack and wind driven ventilation, effective night cooling and low pressure loss heat recovery using two fluid coupled water-to-air heat exchangers developed at the Technical University...

  15. Phronesis, a diagnosis and recovery tool for system administrators

    International Nuclear Information System (INIS)

    Haen, C; Barra, V; Bonaccorsi, E; Neufeld, N

    2014-01-01

    The LHCb experiment relies on the Online system, which includes a very large and heterogeneous computing cluster. Ensuring the proper behavior of the different tasks running on the more than 2000 servers represents a huge workload for the small operator team and is a 24/7 task. At CHEP 2012, we presented a prototype of a framework that we designed in order to support the experts. The main objective is to provide them with steadily improving diagnosis and recovery solutions in case of misbehavior of a service, without having to modify the original applications. Our framework is based on adapted principles of the Autonomic Computing model, on Reinforcement Learning algorithms, as well as innovative concepts such as Shared Experience. While the submission at CHEP 2012 showed the validity of our prototype on simulations, we here present an implementation with improved algorithms and manipulation tools, and report on the experience gained with running it in the LHCb Online system.

  16. Combined utilization of biogas and natural gas

    International Nuclear Information System (INIS)

    Jensen, J.; Tafdrup, S.; Christensen, J.

    1997-01-01

    The Danish natural gas network has been established during the past 10 years. Running parallel with this a small but growing production of biogas from centralized biogas plants and landfills has been developed. The annual biogas production is expected to keep growing and increase tenfold in the next 25 year period with a reduction of green house gas emissions as one of the important incentives. The last years' development and expansion of the Danish biogas sector has shown a need for combined utilization of biogas and natural gas. If larger volumes of biogas are present, upgrading and distribution by the natural gas network may be an alternative to combined utilization. (au) 12 refs

  17. The commercialization of biogas production

    International Nuclear Information System (INIS)

    Christensen, J.

    1992-01-01

    Currently there are ten large collective biogas plants and ten smaller farm plants operating in Denmark. During the last five years, biogas technology has undergone extensive technological development. The developmental process is supported by a public R and D programme and a follow-up programme for full-scale demonstration plants. Most plants still need considerable income increases before a final conclusion can be reached as to whether it is possible to achieve a profit from a corporate economic viewpoint. All plants have received investment grants. Gas production is in most cases reliable, especially due to the admixture of easily convertible organic waste as a supplement to the slurry supplies. Profitable collective biogas plants are within reach, even without investment grants. The total intake of biomass must be supplemented by 10 to 25 per cent easily convertible organic waste so that the minimum gas production reaches 30 to 35 m 3 per m 3 of biomass. Plants based solely on animal manure are not profitable. Energy from the biogas has to be sold at prices corresponding to consumer prices, which include Danish energy taxes. Collective biogas plants in Denmark appear to be approaching a commercial breakthrough. The concept of a collective biogas plant has been developed to address the energy-related, environmentally-related and agricultural problems. (AB)

  18. Enhancement of Biogas Yield of Poplar Leaf by High-Solid Codigestion with Swine Manure.

    Science.gov (United States)

    Wangliang, Li; Zhikai, Zhang; Guangwen, Xu

    2016-05-01

    The aim of this work was to examine the improvement of anaerobic biodegradability of organic fractions of poplar leaf from codigestion with swine manure (SM), thus biogas yield and energy recovery. When poplar leaf was used as a sole substrate, the cumulative biogas yield was low, about 163 mL (g volatile solid (VS))(-1) after 45 days of digestion with a substrate/inoculum ratio of 2.5 and a total solid (TS) of 22 %. Under the same condition, the cumulative biogas yield of poplar leaf reached 321 mL (g VS)(-1) when SM/poplar leaf ratio was 2:5 (based on VS). The SM/poplar leaf ratio can determine C/N ratio of the cosubstrate and thus has significant influence on biogas yield. When the SM/poplar leaf ratio was 2:5, C/N ratio was calculated to be 27.02, and the biogas yield in 45 days of digestion was the highest. The semi-continuous digestion of poplar leaf was carried out with the organic loading rate of 1.25 and 1.88 g VS day(-1). The average daily biogas yield was 230.2 mL (g VS)(-1) and 208.4 mL (g VS)(-1). The composition analysis revealed that cellulose and hemicellulose contributed to the biogas production.

  19. Development of the Next Generation Type Water Recovery System

    Science.gov (United States)

    Oguchi, Mitsuo; Tachihara, Satoru; Maeda, Yoshiaki; Ueoka, Terumi; Soejima, Fujito; Teranishi, Hiromitsu

    According to NASA, an astronaut living on the International Space Station (ISS) requires approximately 7 kg of water per day. This includes 2 kg of drinking water as well as sanitary fresh water for hand washing, gargling, etc. This water is carried to the space station from the earth, so when more people are staying on the space station, or staying for a longer period of time, the cost of transporting water increases. Accordingly, water is a valuable commodity, and restrictions are applied to such activities as brushing teeth, washing hair, and washing clothes. The life of an astronaut in space is not necessarily a healthy one. JAXA has experience in the research of water recovery systems. Today, utilizing knowledge learned through experiences living on the space station and space shuttles, and taking advantage of the development of new materials for device construction, it is possible to construct a new water recovery system. Therefore, JAXA and New Medican Tech Corporation (NMT) have created a system for collaborative development. Based on the technologies of both companies, we are proceeding to develop the next generation of water recovery devices in order to contribute to safe, comfortable, and healthy daily life for astronauts in space. The goal of this development is to achieve a water purification system based on reverse osmosis (RO) membranes that can perform the following functions. • Preprocessing that removes ammonia and breaks down organic matter contained in urine. • Post-processing that adds minerals and sterilizes the water. • Online TOC measurement for monitoring water quality. • Functions for measuring harmful substances. The RO membrane is an ultra-low-pressure type membrane with a 0.0001 micron (0.1 nanometer) pore size and an operating pressure of 0.4 to 0.6 MPa. During processing with the RO membrane, nearly all of the minerals contained in the cleaned water are removed, resulting in water that is near the quality of deionized water

  20. Barriers to the development of the biogas industry

    International Nuclear Information System (INIS)

    Foss, N.

    2009-01-01

    Barriers to the development of Canada's biogas industry were explored with the aim of resolving conflicting regulatory issues related to biogas. Four biogas farm systems are currently operating in Ontario, and funding for a further 20 systems is available. However, most projects have been blocked before construction, and other projects continue to be delayed by grid connection and power purchase issues. Planning permission, zoning, environmental regulations, and property taxation issues are also currently challenging the development of the industry. The use of off-farm waste for the plants has also caused planning problems and delays. Land used to transform or manufacture electricity will soon be included in the industrial tax class. The installation of generation capacity may also alter property values. The use of fats, oils, and greases also requires complicated monitoring and processing procedures. Obtaining certificates for waste handling is difficult and time-consuming. Biogas plants also face significant transmission constraints. Prospective generators are required to determine if their local sub-stations have spare capacity. Generators are also required to pay for all the costs associated with their connection to the grid. Connection to Hydro One is more expensive than connections to other distribution companies in Canada, and there are no existing connection standards. Biogas system operators also face difficulties with rural connections. The cost of anti-islanding protection is high. It was concluded that grid access is the key to renewable energy development in Ontario. tabs., figs

  1. Microbial Electrolytic Capture, Separation and Regeneration of CO2 for Biogas Upgrading.

    Science.gov (United States)

    Jin, Xiangdan; Zhang, Yifeng; Li, Xiaohu; Zhao, Nannan; Angelidaki, Irini

    2017-08-15

    Biogas upgrading to natural gas quality is essential for the efficient use of biogas in various applications. Carbon dioxide (CO 2 ) which constitutes a major part of the biogas is generally removed by physicochemical methods. However, most of the methods are expensive and often present environmental challenges. In this study, an innovative microbial electrolytic system was developed to capture, separate and regenerate CO 2 for biogas upgrading without external supply of chemicals, and potentially to treat wastewater. The new system was operated at varied biogas flow rates and external applied voltages. CO 2 was effectively separated from the raw biogas and the CH 4 content in the outlet reached as high as 97.0 ± 0.2% at the external voltage of 1.2 V and gas flow rate of 19.6 mL/h. Regeneration of CO 2 was also achieved in the regeneration chamber with low pH (1.34 ± 0.04). The relatively low electric energy consumption (≤0.15 kWh/m 3 biogas) along with the H 2 production which can contribute to the energy input makes the overall energy need of the system low, and thereby makes the technology promising. This work provides the first attempt for development of a sustainable biogas upgrading technology and potentially expands the application of microbial electrochemical technologies.

  2. Development of a biogas purifier for rural areas in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Y.; Hinata, T. [Hokkaido Central Agricultural Experiment Station, Hokkaido (Japan); Yasui, S. [Zukosha Co. Ltd., Obihiro, Hokkaido (Japan); Noguchi, N. [Hokkaido Univ., Sapporo, Hokkaido (Japan); Tsukamoto, T. [IHI Shibaura. Co. Ltd., Obihiro, Hokkaido (Japan); Imai, T. [Green Plan Co. Ltd., Sapporo, Hokkaido (Japan); Kanai, M. [Air Water Co. Ltd, Sakai, Osaka (Japan); Matsuda, Z. [Hokuren Agricultural Research Center, Sapporo, Hokkaido (Japan)

    2010-07-01

    Although the biogas that is currently produced for dairy farms in Japan is a carbon-neutral energy, its use is restricted to farming areas only because there is no effective method of transporting unused biogas. There is a need for establishing practical methods for biogas removal from operating systems. In this study, a gas separation membrane was used in order to modify biogas to city gas 12A specifications, and to develop a biogas purifier equipped with a device to fill high pressure purified gas into cylinders to be taken outside the farming area. The objective was to expand the use of biogas produced from stand-alone gas plants. The amount of purified gas produced at a newly created refining-compression-filling (RCF) facility was approximately 97.0 Nm{sup 3}/day, for a raw material amount of about 216.0 Nm{sup 3}/day. The heat quantity of the purified gas was 38.9 MJ/Nm{sup 3}, which was within city gas 12A specifications. A total of 14.3 cylinders were filled each day with the manufactured purified gas. Test calculations along with a simulation exercise revealed that it would be possible to provide purified gas to approximately 6 per cent of common residences in a town in northern Japan. It was concluded that the newly created RCF facility allowed the modification of carbon-neutral biogas to conform to city gas 12A specifications, and allowed the transport of this gas out of the farming area.

  3. Short-term effect of acetate and ethanol on methane formation in biogas sludge.

    Science.gov (United States)

    Refai, Sarah; Wassmann, Kati; Deppenmeier, Uwe

    2014-08-01

    Biochemical processes in biogas plants are still not fully understood. Especially, the identification of possible bottlenecks in the complex fermentation processes during biogas production might provide potential to increase the performance of biogas plants. To shed light on the question which group of organism constitutes the limiting factor in the anaerobic breakdown of organic material, biogas sludge from different mesophilic biogas plants was examined under various conditions. Therefore, biogas sludge was incubated and analyzed in anaerobic serum flasks under an atmosphere of N2/CO2. The batch reactors mirrored the conditions and the performance of the full-scale biogas plants and were suitable test systems for a period of 24 h. Methane production rates were compared after supplementation with substrates for syntrophic bacteria, such as butyrate, propionate, or ethanol, as well as with acetate and H2+CO2 as substrates for methanogenic archaea. Methane formation rates increased significantly by 35 to 126 % when sludge from different biogas plants was supplemented with acetate or ethanol. The stability of important process parameters such as concentration of volatile fatty acids and pH indicate that ethanol and acetate increase biogas formation without affecting normally occurring fermentation processes. In contrast to ethanol or acetate, other fermentation products such as propionate, butyrate, or H2 did not result in increased methane formation rates. These results provide evidence that aceticlastic methanogenesis and ethanol-oxidizing syntrophic bacteria are not the limiting factor during biogas formation, respectively, and that biogas plant optimization is possible with special focus on methanogenesis from acetate.

  4. The future of biogas in Europe: visions and targets until 2020

    Energy Technology Data Exchange (ETDEWEB)

    Holm Nielsen, J.B. [Aalborg Univ., Esbjerg (Denmark). ACABS Research Group]|[Southern Denmark Univ., Esbjerg (Denmark). Bioenergy Dept.; Oleskowicz-Popiel, P. [Southern Denmark Univ., Esbjerg (Denmark). Bioenergy Dept.

    2007-07-01

    Biogas can be produced of nearly all kinds of organic materials. It is closely linked to agricultural activities and human consumption. Wherever there is a large population, and thereby a comprehensive quality food production of a broad mixture of vegetable and animal foods, the right conditions exist for biogas production. In the future the large volume of biogas will be integrated into the European farming systems. There are quite a few biogas process volumes at the current wastewater treatment plants, landfill gas installations, and industrial biowaste processing facilities. However, the largest volume of produced biogas will, by 2020, originate from farm biogas and from large co-digestion biogas plants, integrated into the farming- and food-processing structures. The EU policy concerning renewable energy (RES) has set forward a fixed goal of supplying 20% of the European energy demands from RES. It is without doubt, that a major part of the renewable energy will originate from European farming and forestry: as biomass conversion to gaseous, liquid and solid biofuels. The gaseous part - the biogas production - has its own, more and more consolidated platform. The forecasts look promising. At least 25% of all bioenergy in the future can originate from biogas, produces from wet organic materials, like animal manure, whole crop silages, wet organic food/feed wastes etc. The forecasts for a very flexible utilisation of biogas are prosperous, but it implicates that the biogas is to be cooled, dried, cleaned and upgraded to natural gas quality, in order for the application and utilisation routes to be plentiful. (orig.)

  5. Assessing nuclear power plant safety and recovery from earthquakes using a system-of-systems approach

    International Nuclear Information System (INIS)

    Ferrario, E.; Zio, E.

    2014-01-01

    We adopt a ‘system-of-systems’ framework of analysis, previously presented by the authors, to include the interdependent infrastructures which support a critical plant in the study of its safety with respect to the occurrence of an earthquake. We extend the framework to consider the recovery of the system of systems in which the plant is embedded. As a test system, we consider the impacts produced on a nuclear power plant (the critical plant) embedded in the connected power and water distribution, and transportation networks which support its operation. The Seismic Probabilistic Risk Assessment of such system of systems is carried out by Hierarchical modeling and Monte Carlo simulation. First, we perform a top-down analysis through a hierarchical model to identify the elements that at each level have most influence in restoring safety, adopting the criticality importance measure as a quantitative indicator. Then, we evaluate by Monte Carlo simulation the probability that the nuclear power plant enters in an unsafe state and the time needed to recover its safety. The results obtained allow the identification of those elements most critical for the safety and recovery of the nuclear power plant; this is relevant for determining improvements of their structural/functional responses and supporting the decision-making process on safety critical-issues. On the test system considered, under the given assumptions, the components of the external and internal water systems (i.e., pumps and pool) turn out to be the most critical for the safety and recovery of the plant. - Highlights: • We adopt a system-of-system framework to analyze the safety of a critical plant exposed to risk from external events, considering also the interdependent infrastructures that support the plant. • We develop a hierarchical modeling framework to represent the system of systems, accounting also for its recovery. • Monte Carlo simulation is used for the quantitative evaluation of the

  6. Upgrades to the International Space Station Water Recovery System

    Science.gov (United States)

    Kayatin, Matthew J.; Pruitt, Jennifer M.; Nur, Mononita; Takada, Kevin C.; Carter, Layne

    2017-01-01

    The International Space Station (ISS) Water Recovery System (WRS) includes the Water Processor Assembly (WPA) and the Urine Processor Assembly (UPA). The WRS produces potable water from a combination of crew urine (first processed through the UPA), crew latent, and Sabatier product water. Though the WRS has performed well since operations began in November 2008, several modifications have been identified to improve the overall system performance. These modifications aim to reduce resupply and improve overall system reliability, which is beneficial for the ongoing ISS mission as well as for future NASA manned missions. The following paper details efforts to improve the WPA through the use of reverse osmosis membrane technology to reduce the resupply mass of the WPA Multi-filtration Bed and improved catalyst for the WPA Catalytic Reactor to reduce the operational temperature and pressure. For the UPA, this paper discusses progress on various concepts for improving the reliability of the system, including the implementation of a more reliable drive belt, improved methods for managing condensate in the stationary bowl of the Distillation Assembly, and evaluating upgrades to the UPA vacuum pump.

  7. Process options and projected mass flows for the HTGR refabrication scrap recovery system

    International Nuclear Information System (INIS)

    Tiegs, S.M.

    1979-03-01

    The two major uranium recovery processing options reviewed are (1) internal recovery of the scrap by the refabrication system and (2) transfer to and external recovery of the scrap by the head end of the reprocessing system. Each option was reviewed with respect to equipment requirements, preparatory processing, and material accountability. Because there may be a high cost factor on transfer of scrap fuel material to the reprocessing system for recovery, all of the scrap streams will be recycled internally within the refabrication system, with the exception of reject fuel elements, which will be transferred to the head end of the reprocessing system for uranium recovery. The refabrication facility will be fully remote; thus, simple recovery techniques were selected as the reference processes for scrap recovery. Crushing, burning, and leaching methods will be used to recover uranium from the HTGR refabrication scrap fuel forms, which include particles without silicon carbide coatings, particles with silicon carbide coatings, uncarbonized fuel rods, carbon furnace parts, perchloroethylene distillation bottoms, and analytical sample remnants. Mass flows through the reference scrap recovery system were calculated for the HTGR reference recycle facility operating with the highly enriched uranium fuel cycle. Output per day from the refabrication scrap recovery system is estimated to be 4.02 kg of 2355 U and 10.85 kg of 233 U. Maximum equipment capacities were determined, and future work will be directed toward the development and costing of the scrap recovery system chosen as reference

  8. Towards a sustainable capacity expansion of the Danish biogas sector

    DEFF Research Database (Denmark)

    Bojesen, Mikkel; Boerboom, Luc; Skov-Petersen, Hans

    2015-01-01

    Promotion of bioenergy production is an important contemporary topic around the world. Vast amounts of research are allocated towards analysing and understanding bioenergy systems, which are by nature multi-faceted. Despite a focus on the deployment of multi-criteria decision-making (MCDM) methods...... for planning of bioenergy systems, only little research has addressed the location component of bioenergy facility planning. In this paper the authors develop a model for sustainable capacity expansion of the Danish biogas sector allowing for an identification and prioritization of suitable locations...... that 4–6% of the municipal area is suitable for biogas facility location and among the best performing sustainable locations the potential of reducing overall production costs is 3% as compared with current biogas plants. The results of this paper can provide support to central governmental decision...

  9. Biogas: A renewable source of energy

    Directory of Open Access Journals (Sweden)

    Houdkova Lucie

    2008-01-01

    Full Text Available First part of the paper deals with biogas produced in the process of anaerobic digestion. Possibilities of biogas utilization are commented briefly. Laboratory fermentation unit that was built at the Institute of Process and Environmental Engineering is described further on. The laboratory fermentation unit is used for digestion of new types of substrate and for process optimization. Finally, the biogas plant built in Sweden is described. Biogas produced there is treated and used as a fuel for public transport vehicles.

  10. Biogas production from steer manures in Vietnam

    DEFF Research Database (Denmark)

    Pham, Cuong H.; Saggar, Surinder; Vu, Cuong C.

    2017-01-01

    In developing countries, the simple biogas digesters installed underground without heating or stirring are seen as a 'green' technology to convert animal waste into biogas, a source of bio-energy. However, quantitative estimates of biogas production of manures from steers fed local feed diets...

  11. Panorama 2018 - Biogas in Europe: future prospects?

    International Nuclear Information System (INIS)

    Maisonnier, Guy; Grandjean, Julien; Bouter, Anne; Collet, Pierre; Gauthier, Thierry

    2018-01-01

    Biogas, produced from all kinds of organic matter, is used to produce electricity and heat. Biomethane, which is biogas stripped of its CO 2 component, can be injected into the natural gas network or upgraded to biofuel for use in the transport sector. In Europe, biogas represented 8% of renewable fuel production in 2015, equivalent to 4% of European natural gas consumption. (authors)

  12. Prospect of bio-gas as one of the sources of energy in Nepal

    Energy Technology Data Exchange (ETDEWEB)

    Karki, A.B.; Coburn, B.A.

    1977-01-01

    Nepal is a small Himalayan country plagued by a severe indigenous energy shortage, with wood for cooking constituting the vast bulk of the domestic energy consumption. Forest cutting for fuelwood exceeds growth by a factor of seven to one. Petrofuels and hydro-electricity, currently limited to small areas, will require importation or expensive foreign technology if they are to be developed on a large scale. The recovery of methane gas (CH/sub 4/) and an enriched fertilizer by-product from animal and human wastes is a technology which has proven itself in India (over 35,000 operating plants) and has been successful for the more than 250 plants now operating in Nepal. These bio-gas digestor plants are largely adaptable from local materials, and the socio-economic barriers to their development are minor. Over 10,000 homesteads have sites where a bio-gas digestor system would yield a benefit-to-cost ratio of greater than 2:1. To reach the poorer farmer who cannot afford or who does not have the organic matter necessary to operate a 'gobar (dung) gas' plant, current research has shown that large-scale community gas-cum-fertilizer digestor plants can operate effectively. A single-unit community latrine gas plant in the Kathmandu Valley, which digests and stores the sewage from 800 to 1000 persons daily, is producing gas for cooking, valuable fertilizer and is the city's only successful sanitation scheme. The technologies of cost reduction and temperature control, heretofore limiting factors in bio-gas application, are being continually improved.

  13. A concise biogas plant construction suitable for Ghana and other tropical countries

    Energy Technology Data Exchange (ETDEWEB)

    Gbagbo, J.K.N.

    1997-04-01

    This report is intended to be used by people in the field of biogas for workshops, technicians, teachers to educate as well as to carry out hands on constructions in Ghana and other tropical countries. Chapter 1, discusses the biogas technology, what a biogas plant is, and how it functions. Chapter 2, describes the entire process. Chapter 3, discusses the necessary conditions for fermentation. Chapter 4, the measuring parameters for monitoring the system. Chapter 5, describes the various types of biogas plants suitable for tropical countries. Chapter 6, describes a planning guide for Ghana and other tropical countries. Chapter 7, discusses digester sizing and finally, Chapter 8, describes a concise biogas plant construction suitable for the rural areas of Ghana and other tropical countries. (au)

  14. Dynamic Biogas Upgrading for Integration of Renewable Energy from Wind, Biomass and Solar

    DEFF Research Database (Denmark)

    Jurgensen, Lars

    ) combined heat and power production from biogas during periods of electricity demand, bioenergy utilization becomes a dynamic process. In such a process scheme, biomass, wind, and solar could be integrated in a local context. This thesis aims to demonstrate the feasibility of the dynamic biogas upgrading...... properties and the degree of efficiency of the system. Lab-scale and bench-scale experiments where further applied to demonstrate the utilization of industrial waste water for biogas production and the general applicability of biogas in the Sabatier process.......The Sabatier process is investigated as a storage scheme for renewable energy. Hydrogen derived from fluctuating renewable energy sources like wind and solar is converted to methane by the hydrogenation/methanation of carbon oxides. Biogas from anaerobic digestion is considered in this study...

  15. Recovery vehicle and recovery system for heavy loads such as an aeroplane

    NARCIS (Netherlands)

    Lodewijks, G.; Van Deursen, M.; Van Deursen, J.

    2004-01-01

    The invention relates to a recovery vehicle suitable for heavy loads such as an aircraft, comprising a mobile chassis upon which a lifting element is provided and the lifting element comprises an air cushion. The lifting element comprises an adjustable lifting platform and the air cushion is

  16. Relative Recovery of Thermal Energy and Fresh Water in Aquifer Storage and Recovery Systems.

    Science.gov (United States)

    Miotliński, K; Dillon, P J

    2015-01-01

    This paper explores the relationship between thermal energy and fresh water recoveries from an aquifer storage recovery (ASR) well in a brackish confined aquifer. It reveals the spatial and temporal distributions of temperature and conservative solutes between injected and recovered water. The evaluation is based on a review of processes affecting heat and solute transport in a homogeneous aquifer. In this simplified analysis, it is assumed that the aquifer is sufficiently anisotropic to inhibit density-affected flow, flow is axisymmetric, and the analysis is limited to a single ASR cycle. Results show that the radial extent of fresh water at the end of injection is greater than that of the temperature change due to the heating or cooling of the geological matrix as well as the interstitial water. While solutes progress only marginally into low permeability aquitards by diffusion, conduction of heat into aquitards above and below is more substantial. Consequently, the heat recovery is less than the solute recovery when the volume of the recovered water is lower than the injection volume. When the full volume of injected water is recovered the temperature mixing ratio divided by the solute mixing ratio for recovered water ranges from 0.95 to 0.6 for ratios of maximum plume radius to aquifer thickness of 0.6 to 4.6. This work is intended to assist conceptual design for dual use of ASR for conjunctive storage of water and thermal energy to maximize the potential benefits. © 2014, National Ground Water Association.

  17. High temperature heat recovery systems; Les recuperateurs de chaleur a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Martin, L.

    2003-07-15

    A state-of-the-art of high temperature heat recovery systems has been made to highlight the advantages of recovery in different energy cycles, and to compare the different geometries, materials and fabrication processes used by the different manufacturers. This leads to define the criteria that a heat recovery system must satisfy in gas turbine cogeneration applications. The pre-dimensioning of a recovery system has been performed in order to compare different geometries and to evaluate them with respect to the criteria defined in the bibliographic study. Finally, the new configuration of the 'Claire' loop has permitted to experimentally characterize a recovery system with an innovative technology based on an helical geometry. These tests have permitted to obtain the global data of the recovery system (efficiency, pressure drop, global exchange coefficient, friction coefficient, velocity and temperature profiles) and to position it with respect to the criteria defined in the bibliographic study. (J.S.)

  18. Systems analysis for the development of small resource recovery systems: system performance data. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crnkovich, P G; Helmstetter, A J

    1980-10-01

    The technologies that should be developed to make small-scale solid waste processing facilities attractive and viable for small municipalities with solid waste between 50 and 250 tons per day are identified. The resource recovery systems investigated were divided into three categories: thermal processng, mechanical separation, and biological processing. Thermal processing systems investigated are: excess-air incineration; starved-air incineration/gasification; and pyrolysis (indirect heating). Mechanical processing systems investigated are: coarse refuse derived fuel; materials separation; dust refuse derived fuel; densified refuse derived fuel; and fine refuse derived fuel. Mechanical processing components investigated include: receiving module; primary size reduction module; combustible separation module; refuse derived fuel preparation module; fuel densification; fuel storage module; ferrous separation; and building and facilities. Pretreatment processes and principle methods of bioconversion of MSW dealing with biological processing are investigated. (MCW)

  19. Economic and ecological evaluation of biogas plant configurations for a demand oriented biogas supply for flexible power generation

    International Nuclear Information System (INIS)

    Hahn, Henning

    2015-01-01

    The transformation of the power supply towards renewable energy (RE) sources will depend on a large scale of fluctuating RE sources, primarily of wind energy and photovoltaics. However, the variable power generation of these renewable sources will lead to an increased need of flexible power producers in order to balance differences between energy generation and consumption. Among the different types of RE sources, biogas plants have the advantage that their input biomass and the produced biogas can be stored and electricity can consequently be generated on demand. Since electricity from biogas has not been used to balance fluctuations of intermittent RE in the past, new concepts are required. These concepts should be able to meet the requirements of highly renewable electricity systems and to supply biogas according to the varying demand for long-and short-term balance power generation. In this regard, this thesis focused on the identification of biogas plant concepts for flexible power generation, as well as on ranking them regarding their economic and life cycle performance.

  20. Polymer filtration systems for dilute metal ion recovery

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.F.; Robison, T.W.; Jarvinen, G.D.

    1998-12-01

    Scientists at Los Alamos National Laboratory have developed a metal recovery system that meets the global treatment demands for all kinds of industrial and metal-processing streams. The Polymer Filtration (PF) System--a process that is easily operated and robust--offers metal-finishing businesses a convenient and inexpensive way to recover and recycle metal ions in-house, thus reducing materials costs, waste removal costs, and industrial liability. As a valuable economic and environmental asset, the PF System has been named a winner of a 1995 R and D 100 Award. These awards are presented annually by R and D Magazine to the one hundred most significant technical innovations of the year. The PF System is based on the use of water-soluble metal-binding polymers and on advanced ultrafiltration membranes. Customers for this technology will receive new soluble polymers, especially formulated for their waste stream, and the complete PF processing unit: a reaction reservoir, pumps, plumbing, controls, and the advanced ultrafiltration membranes, all in a skid mounted frame. Metal-bearing waste water is treated in the reaction reservoir, where the polymer binds with the metal ions under balanced acid/base conditions. The reservoir fluid is then pumped through the ultrafiltration system--a cartridge packed with ultrafiltration membranes shaped in hollow fibers. As the fluid travels inside the fiber, water and other small molecules--simple salts such as calcium and sodium, for example--pass through the porous membrane walls of the fibers and are discharged through the outlet as permeate. The polymer-bound metal, which is too large to pass through the pores, is both purified and concentrated inside the hollow fibers and is returned to the fluid reservoir for further waste water treatment.

  1. The Finnish biogas register no 16. Information compiled from 2012; Suomen biokaasulaitosrekisteri n:o 16. Tiedot vuodelta 2012

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, M.; Kuittinen, V.

    2013-11-01

    In Finland altogether 16 biogas reactor plants have been in operation at different municipal wastewater treatment plants by the end of 2012. Industrial wastewaters were treated anaerobically at three different plants. Farm-scale biogas plants were operating at 10 places. Municipal solid wastes were treated at 10 biogas plants. In 2012, the amount of biogas produced by the reactor installations was 55.9 million m{sup 3} and the combustion of surplus biogas 6.1 million m{sup 3}. Production of thermal, electrical and mechanical energy was 256.2 GWh. As compared to the previous year, there was a notable increase in the total amount of the produced biogas and the energy. There were altogether 40 landfill gas recovery plants operating at the end of 2012. The amount of the recovered biogas was 94.5 million m{sup 3}. The amount of recovered biogas used for the production of electrical and thermal energy was 74.8 million m{sup 3}, producing 312.2 GWh. (orig.)

  2. Memory management and compiler support for rapid recovery from failures in computer systems

    Science.gov (United States)

    Fuchs, W. K.

    1991-01-01

    This paper describes recent developments in the use of memory management and compiler technology to support rapid recovery from failures in computer systems. The techniques described include cache coherence protocols for user transparent checkpointing in multiprocessor systems, compiler-based checkpoint placement, compiler-based code modification for multiple instruction retry, and forward recovery in distributed systems utilizing optimistic execution.

  3. LED-Absorption-QEPAS Sensor for Biogas Plants

    Directory of Open Access Journals (Sweden)

    Michael Köhring

    2015-05-01

    Full Text Available A new sensor for methane and carbon dioxide concentration measurements in biogas plants is presented. LEDs in the mid infrared spectral region are implemented as low cost light source. The combination of quartz-enhanced photoacoustic spectroscopy with an absorption path leads to a sensor setup suitable for the harsh application environment. The sensor system contains an electronics unit and the two gas sensors; it was designed to work as standalone device and was tested in a biogas plant for several weeks. Gas concentration dependent measurements show a precision better than 1% in a range between 40% and 60% target gas concentration for both sensors. Concentration dependent measurements with different background gases show a considerable decrease in cross sensitivity against the major components of biogas in direct comparison to common absorption based sensors.

  4. LHCb: Phronesis, a diagnosis and recovery tool for system administrators

    CERN Multimedia

    Haen, C; Bonaccorsi, E; Neufeld, N

    2013-01-01

    The backbone of the LHCb experiment is the Online system, which is a very large and heterogeneous computing center. Making sure of the proper behavior of the many different tasks running on the more than 2000 servers represents a huge workload for the small expert-operator team and is a 24/7 task. At the occasion of CHEP 2012, we presented a prototype of a framework that we designed in order to support the experts. The main objective is to provide them with always improving diagnosis and recovery solutions in case of misbehavior of a service, without having to modify the original applications. Our framework is based on adapted principles of the Autonomic Computing model, on reinforcement learning algorithms, as well as innovative concepts such as Shared Experience. While the presentation made at CHEP 2012 showed the validity of our prototype on simulations, we here present a version with improved algorithms, manipulation tools, and report on experience with running it in the LHCb Online system.

  5. HIV Immune Recovery Inflammatory Syndrome and Central Nervous System Paracoccidioidomycosis.

    Science.gov (United States)

    de Almeida, Sérgio Monteiro; Roza, Thiago Henrique

    2017-04-01

    The immune reconstitution inflammatory syndrome (IRIS) is a deregulated inflammatory response to invading microorganisms. It is manifested when there is an abrupt change in host immunity from an anti-inflammatory and immunosuppressive state to a pro-inflammatory state as a result of rapid depletion or removal of factors that promote immune suppression or inhibition of inflammation. The aim of this paper is to discuss and re-interpret the possibility of association of paracoccidioidomycosis (PCM) with IRIS in the central nervous system (CNS) in a case from Brazil published by Silva-Vergara ML. et al. (Mycopathologia 177:137-141, 6). An AIDS patient who was not receiving medical care developed pulmonary PCM successfully treated with itraconazole. The patient developed central nervous system PCM (NPCM) after starting the ARV therapy with recovery of immunity and control of HIV viral load, although it was not interpreted as IRIS by the authors, it fulfills the criteria for CNS IRIS. This could be the first case of NPCM associated with IRIS described. Although not frequent, IRIS must be considered in PCM patients and HIV, from endemic areas or patients that traveled to endemic areas, receiving ARV treatment and with worsening symptoms.

  6. Hybrid heat recovery - flat plate Stirling engine system

    International Nuclear Information System (INIS)

    Bogdanizh, A.M.; Budin, R.; Sutlovizh, I.

    2000-01-01

    In this paper, the possibility of process condensate heat recovery for boiler water preheating as well as for combined heat and power production for chosen process in textile industry has been investigated. The garment industry requires low pressure process steam or hot water for which production expensive fossil fuel should be used. Fuel usage can be reduced by various energy conservation methods. During the process a great quantity of hot condensate or waste hot water is rejected in the sewage system. To reduce heat wastes and improve technological process this condensate could be returned to the boiler for feed water preheating. When 60% condensate is returned to the steam generator about 8 % natural gas is saved. The rest of the condensate should be used for driving low temperature flat plate Stirling motor the advantage of the flat plate Stirling engine is ability to work at low temperatures. This engine produces electrical energy which can put in motion an electrogenerator in the same plant. While Stirling engine can be used electrical power and economical effect could be much greater using such a hybrid system the process waste heat is not only converted into useful work but at the same time thermal pollution is greatly diminished. (Author)

  7. Biogas production from catch crops

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Ahring, Birgitte Kiær

    2013-01-01

    Manure-based biogas plants in Denmark are dependent on high yielding biomass feedstock in order to secure economically feasible operation. The aim of this study was to investigate the potential of ten different catch crop species or mixtures as feedstock for biogas production in co......, being in the ranges of 1.4–3.0 t ha−1 and 0.3–1.7 t ha−1 for Holstebro and Aabenraa, respectively. Specific methane yields were in the range of 229–450 m3 t−1 of VS. Methane yields per hectare of up to 800 m3 ha−1 were obtained, making catch crops a promising source of feedstock for manure-based biogas...

  8. Methanogenesis in Thermophilic Biogas Reactors

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    1995-01-01

    Methanogenesis in thermophilic biogas reactors fed with different wastes is examined. The specific methanogenic activity with acetate or hydrogen as substrate reflected the organic loading of the specific reactor examined. Increasing the loading of thermophilic reactors stabilized the process...... as indicated by a lower concentration of volatile fatty acids in the effluent from the reactors. The specific methanogenic activity in a thermophilic pilot-plant biogas reactor fed with a mixture of cow and pig manure reflected the stability of the reactor. The numbers of methanogens counted by the most...... against Methanothrix soehngenii or Methanothrix CALS-I in any of the thermophilic biogas reactors examined. Studies using 2-14C-labeled acetate showed that at high concentrations (more than approx. 1 mM) acetate was metabolized via the aceticlastic pathway, transforming the methyl-group of acetate...

  9. SOFC Operation with Real Biogas

    DEFF Research Database (Denmark)

    Hagen, Anke; Winiwarter, Anna; Langnickel, Hendrik

    2017-01-01

    , state‐of‐the‐art SOFCs were studied regarding performance and durability in relation to biogas as fuel and considering important contaminants, specifically sulfur. First, the catalytic behavior in relevant synthetic biogas mixtures was studied and the potential of dry reforming was demonstrated....... Successful long term operation of an SOFC under both, conditions of steam and dry reforming, i.e., addition of steam or CO2 to avoid carbon formation was shown. For the steam reforming case a remarkable period of 3,500 h, hereof 3,000 h in the presence of H2S was achieved. Finally, a real biogas from...... a landfill gas unit was used as fuel. The concept of dry reforming was realized. The SOFC was successfully operated with and in one case even without a specific gas cleaning unit....

  10. WASTE HEAT RECOVERY IN HEAT PUMP SYSTEMS: SOLUTION TO REDUCE GLOBAL WARMING

    Directory of Open Access Journals (Sweden)

    Y. Baradey

    2015-11-01

    Full Text Available Energy conversion technologies, where waste heat recovery systems are included, have received significant attention in recent years due to reasons that include depletion of fossil fuel, increasing oil prices, changes in climatic conditions, and global warming. For low temperature applications, there are many sources of thermal waste heat, and several recovery systems and potential useful applications have been proposed by researchers [1-4]. In addition, many types of equipment are used to recover waste thermal energy from different systems at low, medium, and high temperature applications, such as heat exchangers, waste heat recovery boiler, thermo-electric generators, and recuperators. In this paper, the focus is on waste heat recovery from air conditioners, and an efficient application of these energy resources. Integration of solar energy with heat pump technologies and major factors that affect the feasibility of heat recovery systems have been studied and reviewed as well. KEYWORDS: waste heat recovery; heat pump.

  11. Theoretical analysis of biogas potential prediction from agricultural waste

    Directory of Open Access Journals (Sweden)

    Spyridon Achinas

    2016-09-01

    Full Text Available A simplistic theoretical study of anaerobic digestion in order to predict the biogas amount of agricultural waste is proposed. A wide variety of models exist, but most of them rely on algebraic equations instead of biochemical equations and require many input parameters as well as computation time. This work provides a simplified model that predicts the biogas amount produced and could be applied for agricultural energy feasibility studies for instance dimensioning bioreactors digesting animal waste slurries. The method can be used for other feedstock materials and repeated for other similar applications, in an effort to expand anaerobic digestion systems as a clean energy source.

  12. Perancangan dan Implementasi Sistem Monitoring Produksi Biogas pada Biodigester

    Directory of Open Access Journals (Sweden)

    Rocky Alfanz

    2016-03-01

    Full Text Available Biogas is one of the flammable natural gas. The most observed content of biogas in this study is methane (CH4, hydrogen (H2 and carbon dioxide (CO2. Therefore, biogas can be developed and used as an alternative energy. Nowadays, the used of plant biodigester, as the biogas producer, is still in very simple design. So, the system design should be developed to assist the monitoring process of biogas production. In this study, a system is design which can do the data acquisition using MQ4 sensor of methane, MQ8 sensor of hydrogen and MG811 sensor of carbon dioxide also the parameter which influencing to the process of biogas production such as temperature, humidity and pressure. Based on the measurement of methane, it is spotted that the highest point of methane production occured at 10:00 a.m. The details were the temperature 34 °C, humidity 67% RH, and pressure 100,6 kPa which can produce 95.672 ppm of methane. In the measurement of hydrogen, it is figured out that the highet point of hydrogen production occured at 02:00 p.m. The details were the temperature 34 °C, humidity 74% RH, and a pressure of 100,4 kPa to produce 4,738 ppm of hydrogen. Then, the highest point of the measurement of carbon dioxide production occurred at 11:00 a.m. The details were temperature 33 °C, humidity 68% RH, and a pressure of 100,5 kPa to 16,89 ppm of carbon dioxide.

  13. Anaerobic co-digestion of sewage sludge and primary clarifier skimmings for increased biogas production.

    Science.gov (United States)

    Alanya, S; Yilmazel, Y D; Park, C; Willis, J L; Keaney, J; Kohl, P M; Hunt, J A; Duran, M

    2013-01-01

    The objective of the study was to identify the impact of co-digesting clarifier skimmings on the overall methane generation from the treatment plant and additional energy value of the increased methane production. Biogas production from co-digesting clarifier skimmings and sewage sludge in pilot-scale fed-batch mesophilic anaerobic digesters has been evaluated. The digester was fed with increasing quantities of clarifier skimmings loads: 1.5, 2.6, 3.5 and 7.0 g COD equivalent/(L·d) (COD: chemical oxygen demand). Average volatile solids reduction of 65% was achieved in the scum-fed digester, compared with 51% in the control digester. Average 69% COD removal was achieved at highest scum loading (7 g COD eq/(L·d)) with approximate methane yield of 250 L CH(4)/kg COD fed (4 ft(3)/lb COD fed). The results show that scum as co-substrate in anaerobic digestion systems improves biogas yields while a 29% increase in specific CH(4) yield could be achieved when scum load is 7 g COD eq/(L·d). Based on the pilot-scale study results and full-scale data from South East Water Pollution Control Plant and Northeast Water Pollution Control Plant the expected annual energy recovery would be approximately 1.7 billion BTUs or nearly 0.5 million kWh.

  14. Biogas plants: Design, construction and operation

    International Nuclear Information System (INIS)

    2001-01-01

    At the big readiness of waste coming from the agricultural activities are looked for the production of Energy and Payments, the biogas like product of the organic decomposition under anaerobic conditions, their composition and characteristic. The elements that conform the design as the digester, the storage, the load tanks and it discharges and the conduction is described and analyzed. They are given a series of elements to obtain the characteristics of the system possible to place as: planning, calculations, evaluation, execution and operation. Lastly the steps are indicated that should be continued in the construction of the plant including planning for the work

  15. A Review of Biogas Applications across Continents

    DEFF Research Database (Denmark)

    Lybæk, Rikke; kofi Ackom, Emmanuel; Cudjoe Bensah, Edem

    This paper analyses the biogas development within Ghana, Thailand and Denmark to shed light on the different development patterns and future trends that is seen within the biogas sector. Literature review in the form of journal articles and reports is assessed, interviews with agricultural...... and biogas experts - as well as policy makers within the field of renewable energy - is being conducted. The biogas technology was analysed according to ‘historical development’, ‘feedstock utilization’ and ‘future development’. As far as the future prospects for the biogas technology the paper concludes...... are required to move forward. Thailand and Denmark has set up support programs and emphasized on using industrial organic feedstock for biogas production, and Denmark has formulated political targets for utilizing organic household waste as biogas feedstock. For all three countries apply, despite...

  16. Improvement of Biogas Production by Bioaugmentation

    Science.gov (United States)

    Kovács, K. L.; Ács, N.; Kovács, E.; Wirth, R.; Rákhely, G.; Strang, Orsolya; Herbel, Zsófia; Bagi, Z.

    2013-01-01

    Biogas production technologies commonly involve the use of natural anaerobic consortia of microbes. The objective of this study was to elucidate the importance of hydrogen in this complex microbial food chain. Novel laboratory biogas reactor prototypes were designed and constructed. The fates of pure hydrogen-producing cultures of Caldicellulosiruptor saccharolyticus and Enterobacter cloacae were followed in time in thermophilic and mesophilic natural biogas-producing communities, respectively. Molecular biological techniques were applied to study the altered ecosystems. A systematic study in 5-litre CSTR digesters revealed that a key fermentation parameter in the maintenance of an altered population balance is the loading rate of total organic solids. Intensification of the biogas production was observed and the results corroborate that the enhanced biogas productivity is associated with the increased abundance of the hydrogen producers. Fermentation parameters did not indicate signs of failure in the biogas production process. Rational construction of more efficient and sustainable biogas-producing microbial consortia is proposed. PMID:23484123

  17. Evaluation of the energetic equivalence of goat manure biogas; Avaliacao da equivalencia energetica do biogas de esterco de caprinos

    Energy Technology Data Exchange (ETDEWEB)

    Canafistula, Francisco Jose Firmino; Carvalho, Paulo Cesar Marques de [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia Eletrica], e-mails: firmino@ufc.br, carvalho@dee.ufc.br

    2008-07-01

    The present paper shows the results of a research about a new production system model based on goats; part of the animals manure is used for biogas production. The biogas is used as fuel for water pumping for the irrigation of the animals pasture. For the viability of the project, a photovoltaic powered electrified fence was used. Additional to the positive results of sustainability, innovative solutions were developed for sizing, optimization and costs reduction by the use of digesters in small rural communities of the semi-arid of the Brazilian Northeast Region. (author)

  18. Phronesis, a diagnosis and recovery tool for system administrators

    CERN Document Server

    Haen, Christophe; Neufeld, Niko

    The administration of a large computer infrastructure is a great challenge in many aspects and requires experts in various domains to be successful. One criterion to which the users of a data center are directly exposed is the availability of the infrastructure. A high availability comes at the cost of constant and performant monitoring solutions as well as experts ready to diagnose and solve the problems. It is unfortunately not always possible to have an expert team constantly on site. This work presents a tool which is meant to support system administrators in their tasks by diagnosing problems, offering recovery solutions, and acting as a history and knowledge database. We will first detail what large data centers are composed of and what are the various competences that are required in order to successfully administrate them. This will lead us to consider the problems that are traditionally encountered by the administrators. Those problems are at the source of this project, and we will define our goals f...

  19. Advanced Exploration Systems Atmosphere Resource Recovery and Environmental Monitoring

    Science.gov (United States)

    Perry, J.; Abney, M.; Conrad, R.; Garber, A.; Howard, D.; Kayatin, M.; Knox, J.; Newton, R.; Parrish, K.; Roman, M.; hide

    2016-01-01

    In September 2011, the Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project was commissioned by NASA's Advanced Exploration Systems program to advance Atmosphere Revitalization Subsystem (ARS) and Environmental Monitoring Subsystem (EMS) technologies for enabling future crewed space exploration missions beyond low Earth orbit. The ARREM project's period of performance covered U.S. Government fiscal years 2012-2014. The ARREM project critically assessed the International Space Station (ISS) ARS and EMS architectures and process technologies as the foundation for an architecture suitable for deep space exploration vehicles. The project's technical content included technical tasks focused on improving the reliability and life cycle cost of ARS and EMS technologies as well as reducing future flight project developmental risk and design, development, test, and evaluation costs. Targeted technology development and maturation tasks, including key technical trade assessments, were accomplished and integrated ARS architectures were demonstrated. The ARREM project developed, demonstrated, and tested leading process technology candidates and subsystem architectures that met or exceeded key figures of merit, addressed capability gaps, and significantly improved the efficiency, safety, and reliability over the state-of-the-art ISS figures of merit. Promising EMS instruments were developed and functionally demonstrated in a simulated cabin environment. The project's technical approach and results are described and recommendations for continued development are provided.

  20. Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process.

    Science.gov (United States)

    Bacenetti, Jacopo; Negri, Marco; Fiala, Marco; González-García, Sara

    2013-10-01

    The possibility of limiting the global warming is strictly linked to the reduction of GHG emissions. Renewable energy both allows reducing emissions and permits to delay fossil fuel depletion. The anaerobic digestion of animal manure and energy crops is a promising way of reducing GHG emissions. In Italy agricultural biogas production was considerably increased; nowadays there are about 520 agricultural biogas plants. The increasing number of biogas plants, especially of those larger than 500 kW(e) (electrical power), involves a high consumption of energy crops, large transport distances of biomass and digestate and difficulties on thermal energy valorization. In this study the energetic (CED) and environmental (GHG emissions) profiles associated with the production of electricity derived from biogas have been identified. Three biogas plants located in Northern Italy have been analyzed. The study has been carried out considering a cradle-to-grave perspective and thus, special attention has been paid on the feedstock production and biogas production process. The influences on the results taking into account different plant sizes and feeding rate has been assessed in detail. Energy analysis was performed using the Cumulative Energy Demand method (CED). The climate change was calculated for a 100-year time frame based on GHG emissions indicated as CO2 equivalents (eq) and defined by the IPCC (2006). In comparison to the fossil reference system, the electricity production using biogas saves GHG emissions from 0.188 to 1.193 kg CO2eq per kWh(e). Electricity supply from biogas can also contribute to a considerable reduction of the use of fossil energy carriers (from -3.97 to 10.08 MJ(fossil) per kWh(e)). The electricity production from biogas has a big potential for energy savings and reduction of GHG emissions. Efficient utilization of the cogenerated heat can substantially improve the GHG balance of electricity production from biogas. Copyright © 2013 Elsevier B

  1. Highly Efficient Electrochemical Cryogenic Purge Gas Recovery System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — As the price of helium has increased substantially in recent years, the interest in finding an efficient and economical method of helium recovery has never been more...

  2. Monitoring of biogas plants - experiences in laboratory and full scale

    Directory of Open Access Journals (Sweden)

    B. Habermann

    2015-04-01

    Full Text Available To control and regulate the biogas process there are online process parameters and offline process parameters, which basically don’t differ between pilot biogas plants and industrial biogas plants. Generally, temperature, pH-value, volume flow rate and sometimes redox potential are measured online. An online-measurement of the dissolved volatile fatty acids and an online-detection of dissolved hydrogen both directly in the liquid phase as well as near-infrared spectroscopy are under development. FOS/TAC-analysis is the most common offline-analysis of the biogas process and normally it is carried out by the plant operator directly at the biogas plant. For example dry matter, organic dry matter, nitrogen and fatty acids are other analyses, which are carried out but by a laboratory. Microbiological analyses of biogas plants are very expensive and time-consuming and are therefore in Germany very rare. Microbiological analyses are mainly for research purposes. For example the Fluorescence in situ Hybridiation (FISH is used for characterization of the populations. Electric-optical measurement should be established as a new method to investigate the vitality of the methane producing microorganisms. In a cooperation project, which is promoted by the German ministry for technology, between IASP and Chair of Bioprocess Engineering at TU Berlin, this method is proper investigated using a device from the firm EloSystems. The microorganisms are brought in an electrical field of different frequencies. In this field the microorganisms direct themselves differently according to their physiological state. At the end of this project an early detection of process disturbance will be possible with the help of this method. In this presentation the result of the first tests are presented.

  3. Implementing forward recovery using checkpointing in distributed systems

    Science.gov (United States)

    Long, Junsheng; Fuchs, W. K.; Abraham, Jacob A.

    1991-01-01

    The paper describes the implementation of a forward recovery scheme using checkpoints and replicated tasks. The implementation is based on the concept of lookahead execution and rollback validation. In the experiment, two tasks are selected for the normal execution and one for rollback validation. It is shown that the recovery strategy has nearly error-free execution time and an average redundancy lower than TMR.

  4. Model predictive control of a waste heat recovery system for automotive diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.; De Jager, B.; Steinbuch, M.

    2014-01-01

    In this paper, a switching Model Predictive Control strategy is designed for an automotive Waste Heat Recovery system with two parallel evaporators. The objective is to maximize Waste Heat Recovery system output power, while satisfying safe operation under highly dynamic disturbances from the

  5. 78 FR 54267 - 30-Day Notice of Proposed Information Collection: Disaster Recovery Grant Reporting System

    Science.gov (United States)

    2013-09-03

    ... Reporting System. OMB Approval Number: 2506-0165. Type of Request: Revision of a currently approved... information and proposed use: The Disaster Recovery Grant Reporting (DRGR) System is a grants management... URBAN DEVELOPMENT 30-Day Notice of Proposed Information Collection: Disaster Recovery Grant Reporting...

  6. In-situ biogas upgrading process: modeling and simulations aspects

    DEFF Research Database (Denmark)

    Lovato, Giovanna; Alvarado-Morales, Merlin; Kovalovszki, Adam

    2017-01-01

    Biogas upgrading processes by in-situ hydrogen (H2) injection are still challenging and could benefit from a mathematical model to predict system performance. Therefore, a previous model on anaerobic digestion was updated and expanded to include the effect of H2 injection into the liquid phase of...

  7. An evaluation of biogas production from anaerobic digester of a ...

    African Journals Online (AJOL)

    Domestic wastewater treatment using constructed wetlands have been found to be very efficient and cost effective. Primary treatment facilities such as anaerobic digesters have been reported to reduce the organic load of wastewater before entering the constructed wetland systems. It has also been established that biogas ...

  8. Estimation of biogas produced by the landfill of Palermo, applying a Gaussian model.

    Science.gov (United States)

    Aronica, S; Bonanno, A; Piazza, V; Pignato, L; Trapani, S

    2009-01-01

    In this work, a procedure is suggested to assess the rate of biogas emitted by the Bellolampo landfill (Palermo, Italy), starting from the data acquired by two of the stations for monitoring meteorological parameters and polluting gases. The data used refer to the period November 2005-July 2006. The methane concentration, measured in the CEP suburb of Palermo, has been analysed together with the meteorological data collected by the station situated inside the landfill area. In the present study, the methane has been chosen as a tracer of the atmospheric pollutants produced by the dump. The data used for assessing the biogas emission refer to night time periods characterized by weak wind blowing from the hill toward the city. The methane rate emitted by the Bellolampo dump has been evaluated using a Gaussian model and considering the landfill both as a single point source and as a multiple point one. The comparison of the results shows that for a first approximation it is sufficient to consider the landfill of Palermo as a single point source. Starting from the monthly percentage composition of the biogas, estimated for the study period, the rate of biogas produced by the dump was evaluated. The total biogas produced by the landfill, obtained as the sum of the emitted component and the recovered one, ranged from 7519.97 to 10,153.7m3/h. For the study period the average monthly estimations of biogas emissions into the atmosphere amount to about 60% of the total biogas produced by the landfill, a little higher than the one estimated by the company responsible for the biogas recovery plant at the landfill.

  9. Performance analysis of a biogas-fueled micro gas turbine using a validated thermodynamic model

    International Nuclear Information System (INIS)

    Nikpey Somehsaraei, Homam; Mansouri Majoumerd, Mohammad; Breuhaus, Peter; Assadi, Mohsen

    2014-01-01

    This study focuses on an investigation of the fuel flexibility and performance analysis of micro gas turbines (MGTs) in biogas application. For this purpose, a steady state thermodynamic model of an MGT was developed and validated by experimental data obtained from a 100 kW MGT test rig. Quite good agreement was obtained between the measurements and the simulation results. A wide range of biogas compositions with varying methane content was simulated for this study. Necessary minor modifications to fuel valves and compressor were assumed to allow engine operation with the simulated biogas composition. The effects of biogas on the engine performance were fully analyzed at various operational conditions by changing the power demand and also the ambient temperature. Compared to the natural gas fueled case, the mass flow and pressure ratio in the MGT decreased, which resulted in a slight reduction of the surge margin. This effect became more severe, however, at low power loads and/or low ambient temperatures. For all operational conditions, the electrical efficiency decreased with decreasing methane content of the biogas. The results also indicated the negative effect of the biogas on the heat recovery in the recuperator, which lowered as the methane content of the fuel decreased. - Highlights: •The MGT performance and fuel flexibility were investigated in biogas application. •A thermodynamic model of the MGT was developed and validated with experimental data. •Changes in performance and operating conditions of components were studied. •The results showed the viability of the MGT for use in biogas application

  10. Removal of H2S from Biogas by Iron (Fe3+ Doped MgO on Ceramic Honeycomb Catalyst using Double Packed Columns System

    Directory of Open Access Journals (Sweden)

    Juntima Chungsiriporn

    2010-03-01

    Full Text Available Hydrogen sulfide is a toxic and corrosive in nature, gas should be safely removed from the biogas streams before subjecting into the fuel cell. Fe3+ doped magnesium oxide was synthesized using sol-gel technique and dip coating process of Fe3+ doped MgO on foam ceramic honeycomb. XRD and SEM indicate that Fe3+ in Fe3+ doped MgO on foam ceramic honeycomb catalyst is finely dispersed in the MgO support. Performance of the synthesized Fe3+ doped magnesium oxide on the honeycomb catalyst was examined for hydrogen sulfide (H2S oxidation by double packed column scrubbers. The absorption column was used for H2S scrubbing from biogas by deionized water absorption and catalytic column was used as catalyst bed for degradation of absorbed H2S in scrubbing water. In the catalytic column, counter current flow of the scrubbing water and air through the catalyst pack was performed for H2S oxidation accompany with catalyst regeneration. System capacity for H2S removal from gas stream showed 98% constant along 3 hr testing time at room temperature.

  11. Energy production from biogas in the Italian countryside: Modernization vs. repeasantization

    International Nuclear Information System (INIS)

    Carrosio, Giovanni

    2014-01-01

    Italy is experiencing a proliferation of biogas energy plants. In only a few years, the number of plants has grown from ten to nearly five hundred. Public policies have played an important role in stimulating and shaping the spread of biogas plants. Following the European Renewable Energy Directive (2009/28/EC) Italian public policy began to support the spread of biogas with a system of obligations and incentives. This system, combined with a rigid institutional framework, has shaped the organizational models adopted by farms for biogas technology implementation. From the point of view of sociological investigation, the article investigates the two main agricultural biogas organizational models: modernization and repeasantization. We present the two models through the study of two empirical cases, which highlight how different ways to introduce new technologies on farms can lead to different outcomes in ecological terms. - Highlights: • Energy production from biogas is a recent phenomenon in the Italian countryside. • The production of biogas requires an organizational change of the farms. • The most important organizational models are modernization and repeasantization. • Uses of land change depending on the organizational models with which the energy production fits in farm

  12. Performance and emission characteristics of biogas used in diesel engine operation

    International Nuclear Information System (INIS)

    Makareviciene, Violeta; Sendzikiene, Egle; Pukalskas, Saugirdas; Rimkus, Alfredas; Vegneris, Ricardas

    2013-01-01

    Highlights: • Biogas is an environmentally friendly biofuel for diesel engines. • Results of diesel engine tests when fuelling with biogas are presented. • Engine and environmental characteristics depends on carbon dioxide content in biogas. • Using biogas in a diesel engine requires certain operational modifications. - Abstract: The objective of this study it to evaluate the impact of the carbon dioxide concentration in biogas on the operating characteristics and exhaust gas emissions of a diesel engine running on a mixture of biogas and mineral diesel fuel. The tests were carried out in two stages. In the first stage, the impact of different biogas compositions and the exhaust gas recirculation system (EGR) on the engine parameters was determined. Lower pollutant levels were measured in the studies without the EGR system, except for the nitrogen oxides NO x levels. The NO x concentration decrease was directly proportional to the concentration of methane in the common fuel mixture. In the second stage, the gas with the highest methane content was used to determine the impact of the start of injection timing on the engine operating parameters. As the methane content in the common fuel mixture increased, the start of injection timing had to be progressively advanced to increase the thermal efficiency and to lower the fuel consumption, the CO and HC concentrations and the smokiness of the exhaust; however, advancing the start of injection timing increased NO x pollution

  13. Tratamento térmico de lodo anaeróbio com utilização do biogás gerado em reatores UASB: avaliação da autossustentabilidade do sistema e do efeito sobre a higienização e a desidratação do lodo Thermal treatment of anaerobic sludge utilizing biogas produced in UASB reactors: evaluation of system self-sustainability and the effect on sludge hygienization and dehydration

    Directory of Open Access Journals (Sweden)

    Eduardo Sales Machado Borges

    2009-09-01

    Full Text Available O presente trabalho objetiva avaliar a eficiência do biogás gerado em reatores UASB como fonte de energia para higienização térmica do lodo excedente, atentando-se ainda para a autossustentabilidade do sistema e para a avaliação do desaguamento do lodo tratado termicamente. Foi desenvolvido em um aparato experimental em escala de demonstração constituído de reator UASB, reservatório de biogás, reator térmico e leitos de secagem. A autossustentabilidade foi verificada por meio de balanço térmico teórico e de testes experimentais de higienização térmica. Estes testes indicaram que o aproveitamento da energia térmica do biogás foi suficiente para aquecer o lodo em temperaturas de 55 a 65ºC, durante três a cinco horas, possibilitando a completa eliminação de ovos viáveis de helmintos. No entanto, o processo de desidratação se mostrou muito mais difícil para o lodo tratado termicamente.The objective of this research was to determine how effectively biogas produced in UASB reactors could be used as a source of heat for the thermal hygienization of excess anaerobic sludge, whether the system can operate on a self-sustained basis and how the dehydration of the thermally treated sludge behave. The experiments were conducted in a demonstration-scale setup comprising UASB reactor, biogas holder, thermal reactor and sludge drying beds. The self-sustainability of the system was evaluated by the systemâ€TMs theoretical thermal balance and by experimental hygienization tests. These tests indicated that the recovery of thermal energy from the biogas was sufficient to heat the sludge at temperatures in the range of 55 to 65ºC, for three to five hours, allowing the complete elimination of viable helminth eggs. However, the dehydration process showed to be much more difficult for the thermally treated sludge.

  14. Experimental determination of a critical temperature for maximum anaerobic digester biogas production

    CSIR Research Space (South Africa)

    Sichilalu, S

    2017-08-01

    Full Text Available This paper presents an experiment anaerobic digester system. The objective was to evaluate the optimal temperature for maximization of the biogas production through optimal constraining of the mesophilic temperature between log phase for the best...

  15. CO2 balance in production of energy based on biogas

    DEFF Research Database (Denmark)

    Nielsen, Per Sieverts; Holm-Nielsen, J.B.

    1997-01-01

    Biogas is an essential biomass source for achieving a reduction of CO2 emission by 50% in year 2030 in Denmark. The physical potential for biogas production in Denmark is more than 10 times the present biogas production in Denmark. In Denmark the largest part of the biogas production is produced...... at 19 decentralised joint biogas plants involving a varying number of farms (5-100). All of these plants use to some extent co-fermentation with industrial organic waste to increase biogas yield.A fuel chain approach for utilisation of biogas for energy purposes is carried out for determining the role...... of increased transportation distances at large biogas plants on the total CO2 balance of the biogas plant. The advantage of constructing large biogas plants is the cost-effective possibility of using industrial organic waste to increase biogas production. In some cases co-fermentation increases biogas...

  16. The biogas potential from municipal waste and agricultural residues in Hazaribagh, Dhaka city, Bangladesh : - a possible strategy to improve the energy system

    OpenAIRE

    Hasan, A S M Monjurul

    2016-01-01

    Energy is considered as the foremost significant factor towards socio-economic growth. Due to the rapid growth of industrialization in Bangladesh, the need of energy is increasing day by day. Considering the environmental issues, sustainable solutions are needed to address the energy crisis. Energy generation from waste through biogas can be a good solution that can address both the energy demand as well as the waste management issue.    The overall aim of this master thesis is to analyze Haz...

  17. Carbon footprint of urban source separation for nutrient recovery.

    Science.gov (United States)

    Kjerstadius, H; Bernstad Saraiva, A; Spångberg, J; Davidsson, Å

    2017-07-15

    Source separation systems for the management of domestic wastewater and food waste has been suggested as more sustainable sanitation systems for urban areas. The present study used an attributional life cycle assessment to investigate the carbon footprint and potential for nutrient recovery of two sanitation systems for a hypothetical urban area in Southern Sweden. The systems represented a typical Swedish conventional system and a possible source separation system with increased nutrient recovery. The assessment included the management chain from household collection, transport, treatment and final return of nutrients to agriculture or disposal of the residuals. The results for carbon footprint and nutrient recovery (phosphorus and nitrogen) concluded that the source separation system could increase nutrient recovery (0.30-0.38 kg P capita -1 year -1 and 3.10-3.28 kg N capita -1 year -1 ), while decreasing the carbon footprint (-24 to -58 kg CO 2 -eq. capita -1 year -1 ), compared to the conventional system. The nutrient recovery was increased by the use of struvite precipitation and ammonium stripping at the wastewater treatment plant. The carbon footprint decreased, mainly due to the increased biogas production, increased replacement of mineral fertilizer in agriculture and less emissions of nitrous oxide from wastewater treatment. In conclusion, the study showed that source separation systems could potentially be used to increase nutrient recovery from urban areas, while decreasing the climate impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Sustainable operation of submerged Anammox membrane bioreactor with recycling biogas sparging for alleviating membrane fouling.

    Science.gov (United States)

    Li, Ziyin; Xu, Xindi; Xu, Xiaochen; Yang, FengLin; Zhang, ShuShen

    2015-12-01

    A submerged anaerobic ammonium oxidizing (Anammox) membrane bioreactor with recycling biogas sparging for alleviating membrane fouling has been successfully operated for 100d. Based on the batch tests, a recycling biogas sparging rate at 0.2m(3)h(-1) was fixed as an ultimate value for the sustainable operation. The mixed liquor volatile suspended solid (VSS) of the inoculum for the long operation was around 3000mgL(-1). With recycling biogas sparging rate increasing stepwise from 0 to 0.2m(3)h(-1), the reactor reached an influent total nitrogen (TN) up to 1.7gL(-1), a stable TN removal efficiency of 83% and a maximum specific Anammox activity (SAA) of 0.56kg TNkg(-1) VSSd(-1). With recycling biogas sparging rate at 0.2 m(3) h(-1) (corresponding to an aeration intensity of 118m(3)m(-2)h(-1)), the membrane operation circle could prolong by around 20 times compared to that without gas sparging. Furthermore, mechanism of membrane fouling was proposed. And with recycling biogas sparging, the VSS and EPS content increasing rate in cake layer were far less than the ones without biogas sparging. The TN removal performance and sustainable membrane operation of this system showed the appealing potential of the submerged Anammox MBR with recycling biogas sparging in treating high-strength nitrogen-containing wastewaters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The effect of short recovery period investment on least-cost generation system expansion

    International Nuclear Information System (INIS)

    Yiqun He; David, A.K.; Fernando, P.N.

    1995-01-01

    The effect of the short recovery period of private investment on least-cost generation system expansion is analysed, and a trade-off method for generation system expansion, which gives consideration to both the least-cost strategy and the short recovery period of private investment, is presented. First, the optimal mix of generation units under a standard recovery period for all units is established, and then the surcharge, due to the difference between the short recovery period and the standard recovery period, is calculated and shared between all units. The former is an optimization to make best use of natural resources, and the latter is a trade-off method to spread the surcharge throughout the system. (Author)

  20. Biogas container - mobile plant concept for the decentralized power generation; Biogascontainer. Mobiles Anlagenkonzept zur dezentralen Energiegewinnung

    Energy Technology Data Exchange (ETDEWEB)

    Warncke, Jessica; Orth, Maik [Innovations- und Bildungszentrum Hohen Luckow e.V., Hohen Luckow (Germany); Schlegel, Mathias [Rostock Univ. (Germany); Steinhagen, Katrin [ROSOMA GmbH, Rostock-Marienehe (Germany)

    2011-07-01

    In the framework of a cooperation project of the Federal Ministry of Economics and Technology was developed a small biogas system, that is concepted in the order of a 40-foot standard container, that is modular structured, works energy-independent and optional can be used mobile. First rank the system was designed for biogas production in developing and emerging countries. Now there are inter alia also concrete inquiries of german partners. (orig.)

  1. Development of portable measuring system for testing of electrical vehicle's heat energy recovery system

    Science.gov (United States)

    Sarvajcz, K.; Váradiné Szarka, A.

    2016-11-01

    Nowadays the consumer society applies a huge amount of energy in many fields including transportation sector. Internal combustion vehicles contribute substantially to the air pollution. An alternative solution for reducing energy consumption is replacing the internal combustion vehicles by electrical or hybrid vehicles. Today one of the biggest disadvantages of the electrical vehicles is the finite capacity of batteries. The research topic presented in this paper is the „Energy Harvesting”, and development of energy recovery system for electrical vehicles which largely contributes in increasing the driving range. At the current phase of the research efficiency analysis of the heat energy recovery devices are investigated in real driving circumstances. Computer based mobile and wireless measurement system for the analysis was developed, tested and installed in a real vehicle. Driving tests were performed and analysed in different circumstances.

  2. [Progress on biogas technology and engineering].

    Science.gov (United States)

    Liu, Xiaofeng; Yuan, Yuexiang; Yan, Zhiying

    2010-07-01

    Dwindling supplies of conventional energy sources and the demand to increase the share of renewable energy for sustainability have increased the significance of biogas, the product of synergistic fermentation of biodegrable organic wastes from municipal, agricultural and industrial activities by microbial populations under anaerobic conditions. With extensive research and engineering practice, many technologies and modes have been developed for biogas production and application. Currently, the most widely used mode is the complete-mixing mesophilic fermentation. Europe, especially Germany, is leading the world in the combined heat and power production (CHP) from biogas. In this paper, updated progress in biogas technologies is reviewed, with focuses on anaerobic microorganisms, bioreactor configurations and process development, biogas production and applications, in which perspectives of biogas as a clean and renewable energy are projected.

  3. Planning for Biogas Plant in Denmark

    DEFF Research Database (Denmark)

    Landt, Cristina C.; Gaarsmand, Regin; Palsberg, Aske

    2016-01-01

    This article is about establishing biogas in Denmark in the region of Zealand, the challenges that are related to this establishment and how to overcome this challenges. The article highlights three reasons for these challenges: 1) Regulation, 2) The municipal planning and 3) Involved various...... stakeholders. It investigates how these challenges affected the process and were overcome in the establishment of Solrod Biogas. In terms of ownership and biomass input, this biogas plant is unique compared to other Danish biogas plants. The biogas plant is based on organic by-products from local industries...... and seaweed. The plant solves an essential environmental issue for the municipality and citizens who were affected by the smell of rotten seaweed washed up in Koge Bay. The seaweed is used as input; this solves several problems at the same time. The method used to establish Solrod Biogas was an integrated...

  4. The economics of biogas in Denmark

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.; Laugesen, Frederik Møller; Dubgaard, Alex

    2013-01-01

    Denmark has been one of the leading European Countries in using Biogas for Combined Heat and Power (CHP), since the 1980’ties. However, in the last two decades, the increase has been limited. A new energy policy aimed at increasing the profitability of Biogas was introduced in the spring of 2012....... The analysis here shows that the new agreement will improve the profitability of biogas plants and increase the biogas production although the political ambition of an increase from 4 PJ to 14 PJ by 2020 seems unlikely. The analysis shows that biogas plants can be profitable even if the input is a mix....... Even without an investment subsidy of 30%, the case 2012, is profitable. Financing the biogas plants is a challenge. The interest used of 4.25% requires bank guaranties which in practice can be hard to get. Using a more likely interest of 7-8% reduces the yearly profit to 400.000 €. The socioeconomic...

  5. Biogas in Alsace: potential, economic study

    International Nuclear Information System (INIS)

    Maurer, Michel

    2004-01-01

    The purpose of this work is to determine the potential of biogas production in Alsace. Every fields that could provide organic matter for anaerobic fermentation are first identified, and the energy corresponding to the theoretical production of biogas is then quantified. By knowing these rates, the effective development of biogas production is then discussed and oriented to the agricultural field. The technical and economical aspects of the production of biogas in a farm are then described. The biogas issue, approached thanks to some visits of existing sites and the creation of a simulation software, leads to a specific analysis among the whole Alsatian estates. The study presents finally the real opportunities of development for two pilot projects in Alsace, knowing the specific context for farm biogas production in France. (author) [fr

  6. Research progress of siloxane removal from biogas

    Directory of Open Access Journals (Sweden)

    Gao Ruiling

    2017-01-01

    Full Text Available Siloxanes in biogas are detrimental to engine, turbine, fuel cell, etc., thus it is necessary to remove siloxanes from biogas before biogas high-value utilization. At present, there are few domestic researches and related reports in view of siloxanes removal from biogas. This paper introduces the property of siloxanes as well as sampling and analysis method, and then presents the research progress of siloxanes removal from biogas. Three commercial technologies overseas are adsorption, absorption and cryogenic condensation. Among them, adsorption on activated carbon is the most widely used method. Other technologies, such as biological removal, catalytic processes, membranes, source controlling, etc. are under exploration and development. At last, this paper summarizes the advantages and disadvantages of siloxanes removal technologies as well as the applicability and analyzes the future research trend and emphasis. This paper could provide a reference in the field of biogas high-value utilization.

  7. CONVERSION OF ORGANIC MANURE INTO BIOGAS

    Directory of Open Access Journals (Sweden)

    Dario Brdarić

    2009-12-01

    Full Text Available Production of biogas with anaerobic degradation from organic waste is one of the pledge alternative energetic solutions, especially from organic manure made from animal farming and other residuals of agricultural production. According to 2005 livestock manufacture data daily quantity of animal excrements in Croatia, based on LSU number, is 784 015.26 m3. The aim of this paper is to determine the possibility of production of biogas from the most common types of domestic animals in Croatia. Anaerobic fermentation period of 40 days in mesophilic conditions produced from 1 kg of beef, 31 litres of biogas slurry and from pig slurry 14.83 litres of biogas. From our study it follows that the Republic of Croatia (based on the number of UG could produce 426,995,250.00 Nm3 biogas annually. Exploitation of biogas can decrease import of the referred energents, especially electric energy.

  8. Biogas from farms will be tomorrow's fuel

    International Nuclear Information System (INIS)

    Bruecker, U.; Limacher, L.; Krummenacher, S.; Schmid, J.

    2003-01-01

    This final report for the Swiss Federal Office of Energy presents the results of a preliminary study on the technical, logistical and economic possibilities of agricultural biogas production for use as motor fuel. The study was made for a geographically limited region in the Swiss Canton of Lucerne. The reason for the choice of this area - which exhibits a high density of cattle and fowl - and its high potential for the production of biogas from animal excrements are discussed. The economic viability of three possible variants of biogas usage are discussed - its use as a fuel for electricity generation, the processing of the biogas and its injection into the natural gas mains and storage of the biogas in compressed-gas cylinders. Also, the relevance of biogas production in terms of environmental protection is emphasised - ammonia emissions from liquid manure poses a serious problem for the region. Further, political and market development aspects are discussed

  9. Biogas movements in sanitary landdfills; Movimiento de biogas en rellenos sanitarios

    Energy Technology Data Exchange (ETDEWEB)

    Vidales A, Humberto

    1988-12-31

    This paper shows a model to study the physical and kinetic equations that determine the movement and diffusion of the biogas in sanitary landfills. This model for biogas flow was made in function of pressure, temperature, waste porosity and permeability, due to a diffusion coefficient of biogas determination 6 refs., 4 figs.

  10. Biogas infrastructures from farm to regional scale, prospects of biogas transport grids

    NARCIS (Netherlands)

    prof. dr. Wim van Gemert; A.A. Broekhuis; Drs. E.J. Hengeveld; Ir. J. Bekkering

    2016-01-01

    The volume of biogas produced in agricultural areas is expected to increase in coming years. An increasing number of local and regional initiatives show a growing interest in decentralized energy production, wherein biogas can play a role. Biogas transport from production sites to user, i.e. a

  11. Quantification of the potential for biogas and biogas manure from the ...

    African Journals Online (AJOL)

    In this paper, the overall potential of biogas and biogas manure from the selected fruit wastes in the city of Addis Ababa was estimated (quantified). The prediction is based on the characterization and biogas yield results in a related study, using structured questionnaire and checklists during field survey. This study has ...

  12. Biogas infrastructures from farm to regional scale, prospects of biogas transport grids

    NARCIS (Netherlands)

    Hengeveld, E. J.; Bekkering, J.; van Gemert, W. J. T.; Broekhuis, A. A.

    The volume of biogas produced in agricultural areas is expected to increase in coming years. An increasing number of local and regional initiatives show a growing interest in decentralized energy production, wherein biogas can play a role. Biogas transport from production sites to user, i.e. a CHP,

  13. DEVELOPMENT OF BIOSURFACTANT-MEDIATED OIL RECOVERY IN MODEL POROUS SYSTEMS AND COMPUTER SIMULATIONS OF BIOSURFACTANT-MEDIATED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; S.K. Maudgalya; R. Knapp; M. Folmsbee

    2004-05-31

    Current technology recovers only one-third to one-half of the oil that is originally present in an oil reservoir. Entrapment of petroleum hydrocarbons by capillary forces is a major factor that limits oil recovery (1, 3, 4). Hydrocarbon displacement can occur if interfacial tension (IFT) between the hydrocarbon and aqueous phases is reduced by several orders of magnitude. Microbially-produced biosurfactants may be an economical method to recover residual hydrocarbons since they are effective at low concentrations. Previously, we showed that substantial mobilization of residual hydrocarbon from a model porous system occurs at biosurfactant concentrations made naturally by B. mojavensis strain JF-1 if a polymer and 2,3-butanediol were present (2). In this report, we include data on oil recovery from Berea sandstone experiments along with our previous data from sand pack columns in order to relate biosurfactant concentration to the fraction of oil recovered. We also investigate the effect that the JF-2 biosurfactant has on interfacial tension (IFT). The presence of a co-surfactant, 2,3-butanediol, was shown to improve oil recoveries possibly by changing the optimal salinity concentration of the formulation. The JF-2 biosurfactant lowered IFT by nearly 2 orders of magnitude compared to typical values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. Tertiary oil recovery experiments showed that biosurfactant solutions with concentrations ranging from 10 to 60 mg/l in the presence of 0.1 mM 2,3-butanediol and 1 g/l of partially hydrolyzed polyacrylamide (PHPA) recovered 10-40% of the residual oil present in Berea sandstone cores. When PHPA was used alone, about 10% of the residual oil was recovered. Thus, about 10% of the residual oil recovered in these experiments was due to the increase in viscosity of the displacing fluid. Little or no oil was recovered at

  14. ORGANIC WASTE USED IN AGRICULTURAL BIOGAS PLANTS

    Directory of Open Access Journals (Sweden)

    Joanna Kazimierowicz

    2014-04-01

    Full Text Available Treatment of organic waste is an ecological and economical problem. Searching method for disposal of these wastes, interest is methane fermentation. The use of this process in agricultural biogas plants allows disposal of hazardous waste, obtaining valuable fertilizer, while the production of ecologically clean fuel – biogas. The article presents the characteristics of organic waste from various industries, which make them suitable for use as substrates in agricultural biogas plants.

  15. Household Biogas Digesters—A Review

    OpenAIRE

    Karthik Rajendran; Solmaz Aslanzadeh; Mohammad J. Taherzadeh

    2012-01-01

    This review is a summary of different aspects of the design and operation of small-scale, household, biogas digesters. It covers different digester designs and materials used for construction, important operating parameters such as pH, temperature, substrate, and loading rate, applications of the biogas, the government policies concerning the use of household digesters, and the social and environmental effects of the digesters. Biogas is a value-added product of anaerobic digestion of organic...

  16. Sri Lanka's post-tsunami health system recovery: a qualitative analysis of physician perspectives.

    Science.gov (United States)

    Schenk, William Collin; Bui, Thuy

    2018-01-01

    The 2004 Indian Ocean tsunami caused significant damage to the health system in Sri Lanka. Rebuilding infrastructure and improving the mental health system were targets of recovery policies. Retrospective analyses of the post-tsunami health system recovery in Sri Lanka lack the perspectives of local stakeholders, including health care providers. In 2014 we interviewed 23 Sri Lankan physicians from the Eastern and Southern regions. Participants were recruited with snowball sampling. We used a content analysis approach in analysing the transcriptions. Sri Lankan physicians critiqued governance, sustainability and equity in the health system recovery. They held leadership roles as facilitators and sustainers of specific projects but were rarely formally consulted in recovery strategic planning. They identified instances of poor coordination among partners, corruption trends, local resource mismatches, regional resource disparities and the influence of the Sri Lankan civil war. Post-tsunami health system recovery planning and implementation in Sri Lanka did not involve local physician stakeholders in ways that have been prioritized more recently in other recovery frameworks. Despite limited formal inclusion, local physicians developed significant leadership roles that have informed their critical perspectives on the health system recovery. © The Author(s) 2018. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Energetic, exergetic, thermoeconomic and environmental analysis of various systems for the cogeneration of biogas produced by an urban wastewater treatment plant UWTP

    Energy Technology Data Exchange (ETDEWEB)

    Coble, J.J. [Nebrija Univ., Madrid (Spain). Industrial Engineering Dept.; Contreras, A. [Industrial Engineering College, Madrid (Spain). Chemistry Dept.

    2010-07-01

    General awareness that the world's energy resources are limited has meant that it is increasingly important to examine energy-saving devices and fuels more closely, in order to use our limited available resources in a more sustainable manner. With this in mind, we studied biogas from a UWTP, because it is a renewable fuel with a neutral contribution to CO2 emissions. We compared two technologies for using biogas as an energy source: cogeneration using either motor-generators or phosphoric acid fuel cells. The comparison was made from the energetic, exergetic, thermo-economic and environmental points of view, internalizing all the costs involved in each case. We used data supplied by the UWTP at the City of Madrid Plant Nursery, which uses motor-generators, and the UWTPs in Portland, Oregon, and in Red Hook, New York, which use a phosphoric acid fuel cell. The joint work carried out has been divided into three parts for publication purposes, and we present here the first of these, which refers to the energy analysis. (orig.)

  18. Quality Assessment of solid waste used for obtaining biogas

    International Nuclear Information System (INIS)

    Tamayo Cuellar, Ernesto Antonio; Menendez Perez, Manuel German

    2011-01-01

    The solid residuals are in our days an important factor in the processes of recycling of materials, composting and obtaining of biogas, however, sometimes doesn't keep in mind the quality of these for their productive acting. Therefore the present work has as objective, in the peculiar case of the biogas production, to propose a method to evaluate the quality of the solid residuals used in the biogas process starting from the biodegradable organic fraction contained in these. For the investigative development of the work theoretical methods were used as the hypothetical-deductive method, the systemic one, the structural-functional one and empiric methods as the scientific observation and the mensuration. The results of their application, although discreet still, have been evidenced in the evaluation of the quality of the solid residuals in the plant of recycling -composting of the City of Holguin in the compost production. The main conclusion to which you can arrive with the carried out investigation is that the evaluation of the quality of the solid residuals is important to make studies of feasibility in the design and implementation of new projects of recycling units, composting and biogas. (author)

  19. Comparison and analysis of organic components of biogas slurry from eichhornia crassipes solms and corn straw biogas slurry

    Science.gov (United States)

    Li, Q.; Li, Y. B.; Liu, Z. H.; Min, J.; Cui, Y.; Gao, X. H.

    2017-11-01

    Biogas slurry is one of anaerobic fermentations, and biomass fermentation biogas slurries with different compositions are different. This paper mainly presents through the anaerobic fermentation of Eichhornia crassipes solms biogas slurry and biogas slurry of corn straw, the organic components of two kinds of biogas slurry after extraction were compared by TLC, HPLC and spectrophotometric determination of nucleic acid and protein of two kinds of biogas slurry organic components, and analyzes the result of comparison.

  20. Counteracting ammonia inhibition during anaerobic digestion by recovery using submersible microbial desalination cell

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    Ammonia inhibition is one of the most frequent and serious problems in biogas plants. In this study, a novel hybrid system consisting of a submersible microbial desalination cell (SMDC) and a continuous stirred tank reactor (CSTR) was developed for counteracting ammonia inhibition during anaerobic...... digestion (AD) with simultaneous in situ ammonia recovery and electricity production. The SMDC was powered by acetate in a buffer solution, while synthetic ammonia-rich wastewater was used as the feeding of the CSTR. Under continuous operation, ammonia recovery rate of 86 g-N/m2 /day and current density...

  1. Biogas production from anaerobic digestion of food waste and relevant air quality implications.

    Science.gov (United States)

    Kuo, Jeff; Dow, Jason

    2017-09-01

    Biopower can diversify energy supply and improve energy resiliency. Increases in biopower production from sustainable biomass can provide many economic and environmental benefits. For example, increasing biogas production through anaerobic digestion of food waste would increase the use of renewable fuels throughout California and add to its renewables portfolio. Although a biopower project will produce renewable energy, the process of producing bioenergy should harmonize with the goal of protecting public health. Meeting air emission requirements is paramount to the successful implementation of any biopower project. A case study was conducted by collecting field data from a wastewater treatment plant that employs anaerobic codigestion of fats, oils, and grease (FOG), food waste, and wastewater sludge, and also uses an internal combustion (IC) engine to generate biopower using the biogas. This research project generated scientific information on (a) quality and quantity of biogas from anaerobic codigestion of food waste and municipal wastewater sludge, (b) levels of contaminants in raw biogas that may affect beneficial uses of the biogas, (c) removal of the contaminants by the biogas conditioning systems, (d) emissions of NO x , SO 2 , CO, CO 2 , and methane, and (e) types and levels of air toxics present in the exhausts of the IC engine fueled by the biogas. The information is valuable to those who consider similar operations (i.e., co-digestion of food waste with municipal wastewater sludge and power generation using the produced biogas) and to support rulemaking decisions with regards to air quality issues for such applications. Full-scale operation of anaerobic codigestion of food waste with municipal sludge is viable, but it is still new. There is a lack of readily available scientific information on the quality of raw biogas, as well as on potential emissions from power generation using this biogas. This research developed scientific information with regard to

  2. Distributed power generation using biogas fuelled microturbines

    International Nuclear Information System (INIS)

    Pointon, K.; Langan, M.

    2002-01-01

    This research sought to analyse the market for small scale biogas fuelled distributed power generation, to demonstrate the concept of a biogas fuelled microturbine using the Capstone microturbine in conjunction with an anaerobic digester, and undertake a technico-economic evaluation of the biogas fuelled microturbine concept. Details are given of the experimental trials using continuous and batch digesters, and feedstocks ranging from cow and pig slurries to vegetable wastes and municipal solid waste. The yields of methane are discussed along with the successful operation of the microturbine with biogas fuels, and anaerobic digestion projects

  3. Promotion and marketing of the biogas way

    International Nuclear Information System (INIS)

    Mistry, P.B.; Lindboe, H.H.

    1992-01-01

    The biological process of anaerobic digestion is used primarily as a tool for waste treatment. It also produces energy in the form of biogas - a feature by which it is often called the biogas technology. This paper outlines special features of this process, together with other advantages and disadvantages of applying the AD or the biogas technology, to satisfy ever increasing regulatory requirements and public concerns over pollution at both global and local levels. The paper then gives suggestions which could be implemented at the Commission, national and regional levels to propagate the implementation of the biogas technology. (au)

  4. Distributed power generation using biogas fuelled microturbines

    Energy Technology Data Exchange (ETDEWEB)

    Pointon, K.; Langan, M.

    2002-07-01

    This research sought to analyse the market for small scale biogas fuelled distributed power generation, to demonstrate the concept of a biogas fuelled microturbine using the Capstone microturbine in conjunction with an anaerobic digester, and undertake a technico-economic evaluation of the biogas fuelled microturbine concept. Details are given of the experimental trials using continuous and batch digesters, and feedstocks ranging from cow and pig slurries to vegetable wastes and municipal solid waste. The yields of methane are discussed along with the successful operation of the microturbine with biogas fuels, and anaerobic digestion projects.

  5. Performance analysis of a single stage four bed metal hydride cooling system, part A: Influence of mass recovery

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Kevin; Prakash Maiya, M.; Srinivasa Murthy, S. [Refrigeration and Air-conditioning Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, 600036, Chennai (India)

    2003-01-01

    The concept of mass recovery in metal hydride systems is studied with a single stage multi-bed cooling system as example. Mass recovery results in variation of bed temperatures due to removal or addition of heat of desorption or absorption respectively. Coefficient of performance and cold output increase while required heat input decreases for the mass recovery cycle. Thus mass recovery between hydride reactors is found to improve system performance compared to that of a basic system. (authors)

  6. Effects of 1980 technology on weight of a recovery system for a one million pound booster

    Science.gov (United States)

    Eckstrom, C. V.

    1975-01-01

    The effects were evaluated of 1980 technology on the weight of recovery systems capable of decelerating a one-million-pound booster to vertical velocities of 60 or 30 ft/sec at sea level impact. A nominal set of booster staging conditions were assumed and there were no constraints on parachute size, number or type. The effects of new materials that would be available by 1980, the effects of booster attitude during entry, various parachute staging methods, parachute reefing schemes, parachute-retro rocket hybrid systems, and the effects of dividing the booster into separate pieces for recovery were evaluated. It was determined that for the systems considered, a hybrid parachute-retro-rocket recovery system would have the minimum weight. New materials now becoming available for parachute fabrication should result in a 37-percent reduction in hybrid recovery system weight for an impact velocity of 30 fps.

  7. Production of bio-gas from maize cobs

    Energy Technology Data Exchange (ETDEWEB)

    Leke, Luter [College of Physical Sciences, University of Aberdeen, AB24 3UE, Aberdeen (United Kingdom); Department of Chemistry, Benue State University, P M B 102119, Makurdi (Nigeria); Ogbanje, Anne Ada [Department of Chemistry, Benue State University, P M B 102119, Makurdi (Nigeria); Department of Renewable Energy, Energy Commission of Nigeria, Garki-Abuja (Nigeria); Terfa, Dekaa Henry [Department of Chemistry, Benue State University, P M B 102119, Makurdi (Nigeria); Ikyaagba, Tyoalumun [College of Physical Sciences, University of Aberdeen, AB24 3UE, Aberdeen (United Kingdom)

    2013-07-01

    Anaerobic digestion of energy crop residues and wastes is of increasing interest in order to reduce greenhouse gas emissions and to facilitate a sustainable development of energy supply. Production of biogas provides a versatile carrier of renewable energy, as methane can be used for replacement of fossil fuels in both heat and power generation as vehicle fuel. Biogas fuel production from blends of biological wastes such as Cow rumen liquor (CL), Poultry droppings (PD), and Goat Faeces (GF) with Maize cobs (M) were studied. 20 g of each inoculum was mixed with 100g of degraded maize cobs in the first three digesters while the fourth contained CL 10g, PD 10 g, and M 100 g. 100 g of M alone in the fifth digester served as the control. The blends were subjected to anaerobic digestion for 10 days on the prevailing atmospheric ambient temperature and pressure conditions. Physiochemical properties of the blends such as moisture content, crude protein, ash, fat, crude fibre, carbohydrate content, C/N ratio, and pH were also determined. Results of the daily performances of each system showed that maize cobs (M) alone had cumulative biogas yield of 1.50 cm3 while those of the blends (MCL, MPD, MGF and MCLPD) were 6.11 cm3, 3.05 cm3, 2.50 cm3, and 63.00 cm3 respectively, pH and C/N ratio affected the biogas yield of the systems significantly. These results indicate that the low biogas production from maize cobs can be enhanced significantly by blending with cow rumen liquor and poultry droppings.

  8. Technical and economic assessment of trash recovery in the sugarcane bioenergy production system

    Directory of Open Access Journals (Sweden)

    Terezinha de Fátima Cardoso

    2013-10-01

    Full Text Available Mechanized sugarcane (Saccharum spp. harvest without burning has been increasingly adopted in Brazil, increasing trash availability on the field. This study aims at showing the importance of using an integrated framework tool to assess technical and economic impacts of integral harvesting and baling trash recovery strategies and different recovery rates as well as its implications in the sugarcane production, transport and processing stages. Trash recovery using baling system presents higher costs per unit of mass of recovered trash in comparison to system in which trash is harvested and transported with sugarcane stalks (integral harvesting system. However, the integrated agricultural and industrial assessment showed that recovering trash using baling system presents better economic results (higher internal rate of return and lower ethanol production cost than the integral harvesting system for trash recovery rates higher than 30 %. Varying trash recovery fraction, stalks productivity and mean transport distance for both integral harvesting and baling systems, sensitivity analyses showed that higher trash recovery fractions associated with higher stalks yields and long transport distances favors baling system, mainly due to the reduction of bulk load density for integral harvesting system under those conditions.

  9. Strategic preparedness for recovery from catastrophic risks to communities and infrastructure systems of systems.

    Science.gov (United States)

    Haimes, Yacov Y

    2012-11-01

    Natural and human-induced disasters affect organizations in myriad ways because of the inherent interconnectedness and interdependencies among human, cyber, and physical infrastructures, but more importantly, because organizations depend on the effectiveness of people and on the leadership they provide to the organizations they serve and represent. These human-organizational-cyber-physical infrastructure entities are termed systems of systems. Given the multiple perspectives that characterize them, they cannot be modeled effectively with a single model. The focus of this article is: (i) the centrality of the states of a system in modeling; (ii) the efficacious role of shared states in modeling systems of systems, in identification, and in the meta-modeling of systems of systems; and (iii) the contributions of the above to strategic preparedness, response to, and recovery from catastrophic risk to such systems. Strategic preparedness connotes a decision-making process and its associated actions. These must be: implemented in advance of a natural or human-induced disaster, aimed at reducing consequences (e.g., recovery time, community suffering, and cost), and/or controlling their likelihood to a level considered acceptable (through the decisionmakers' implicit and explicit acceptance of various risks and tradeoffs). The inoperability input-output model (IIM), which is grounded on Leontief's input/output model, has enabled the modeling of interdependent subsystems. Two separate modeling structures are introduced. These are: phantom system models (PSM), where shared states constitute the essence of modeling coupled systems; and the IIM, where interdependencies among sectors of the economy are manifested by the Leontief matrix of technological coefficients. This article demonstrates the potential contributions of these two models to each other, and thus to more informative modeling of systems of systems schema. The contributions of shared states to this modeling and to

  10. Fault recovery for real-time, multi-tasking computer system

    Science.gov (United States)

    Hess, Richard (Inventor); Kelly, Gerald B. (Inventor); Rogers, Randy (Inventor); Stange, Kent A. (Inventor)

    2011-01-01

    System and methods for providing a recoverable real time multi-tasking computer system are disclosed. In one embodiment, a system comprises a real time computing environment, wherein the real time computing environment is adapted to execute one or more applications and wherein each application is time and space partitioned. The system further comprises a fault detection system adapted to detect one or more faults affecting the real time computing environment and a fault recovery system, wherein upon the detection of a fault the fault recovery system is adapted to restore a backup set of state variables.

  11. Increase of anaerobic degradation of particulate organic matter in full-scale biogas plants by mechanical maceration

    DEFF Research Database (Denmark)

    Hartmann, Hinrich; Angelidaki, Irini; Ahring, Birgitte Kiær

    2000-01-01

    Different concepts of implementation of mechanical pretreatment for enhancing the biogas potential from fibers in manure feedstock were evaluated by sampling before and after macerators at different biogas plants and from a fiber separation unit. An increase of the biogas potential of up to 25......% by pretreatment of the whole feed in the macerator before the reactor was observed. implementation concepts with a treatment of the fibers alone after separation from the manure showed to be not efficient due to a low recovery of organic matter in the fibers by the separation unit. The low operational costs...... of a macerator make it attractive to use this pretreatment method for a more complete degradation of particulate organic matter. investigation of the size distribution of the fibers showed that a change in biogas potential was not correlated to a smaller size of the fibers. Results from the macerators indicate...

  12. Biogas Production: Microbiology and Technology.

    Science.gov (United States)

    Schnürer, Anna

    Biogas, containing energy-rich methane, is produced by microbial decomposition of organic material under anaerobic conditions. Under controlled conditions, this process can be used for the production of energy and a nutrient-rich residue suitable for use as a fertilising agent. The biogas can be used for production of heat, electricity or vehicle fuel. Different substrates can be used in the process and, depending on substrate character, various reactor technologies are available. The microbiological process leading to methane production is complex and involves many different types of microorganisms, often operating in close relationships because of the limited amount of energy available for growth. The microbial community structure is shaped by the incoming material, but also by operating parameters such as process temperature. Factors leading to an imbalance in the microbial community can result in process instability or even complete process failure. To ensure stable operation, different key parameters, such as levels of degradation intermediates and gas quality, are often monitored. Despite the fact that the anaerobic digestion process has long been used for industrial production of biogas, many questions need still to be resolved to achieve optimal management and gas yields and to exploit the great energy and nutrient potential available in waste material. This chapter discusses the different aspects that need to be taken into consideration to achieve optimal degradation and gas production, with particular focus on operation management and microbiology.

  13. Calculation of critical fault recovery time for nonlinear systems based on region of attraction analysis

    DEFF Research Database (Denmark)

    Tabatabaeipour, Mojtaba; Blanke, Mogens

    2014-01-01

    In safety critical systems, the control system is composed of a core control system with a fault detection and isolation scheme together with a repair or a recovery strategy. The time that it takes to detect, isolate, and recover from the fault (fault recovery time) is a critical factor in safety...... of a system. It must be guaranteed that the trajectory of a system subject to fault remains in the region of attraction (ROA) of the post-fault system during this time. This paper proposes a new algorithm to compute the critical fault recovery time for nonlinear systems with polynomial vector elds using sum...... of squares programming. The proposed algorithm is based on computation of ROA of the recovered system and nite-time stability of the faulty system....

  14. Small-scale upgrading and refinement of biogas; Smaaskalig uppgradering och foeraedling av biogas

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Helena; Mccann, Michael; Westman, Johan (Poeyry SwedPower AB, Stockholm (Sweden))

    2012-02-15

    Small-scale upgrading and refinement of biogas is a report which aims to compile the state of knowledge in small-scale biogas upgrading. The project have been a collaboration with Agrovaest and Energy Farm and was funded by the Foundation for Agricultural Research, Western Goetaland and the Agriculture Department. The technology available for small scale upgrade has been examined from the technical and economic standpoint. An economic comparison has been made and the production of upgraded biogas has been estimated for different raw gas flows. The work also contains information related to biogas production, upgrading and a comparison of liquid biogas, DME and Ecopar-diesel

  15. Biogas upgrading - Review of commercial technologies; Biogasuppgradering - Granskning av kommersiella tekniker

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Fredric; Hulteberg, Christian; Persson, Tobias; Tamm, Daniel

    2013-04-01

    Biogas production is growing and there is an increasing demand for upgraded biogas, to be used as vehicle fuel or injected to the natural gas grid. To enable the efficient use of biogas in these applications the gas must be upgraded, i.e. the carbon dioxide, which constitutes a large part of the raw biogas from the digester, must be separated from the methane. This report aims to evaluate the biogas upgrading technologies that are commercially available and in operation today: amine scrubbers, water scrubbers, PSA units, organic scrubbers and membrane units. The technologies are described in detail by presenting the theory behind the separation mechanism, the upgrading process as a complete system, operational issues and how these are solved, and finally the most important financial data. Furthermore, the best developed cryogenic technologies, which today are being used to purify landfill gas and biogas from some specific components and to liquefy biogas, are presented. Cryogenic upgrading is an interesting possibility, but as this report shows, the technology still has some important operational issues to resolve. Technologies which are especially focused on small-scale applications are finally presented, however not in as much detail as the other, more common technologies. The report shows that for mid-scale applications, the most common options are all viable. The scrubbing technologies all perform well and have similar costs of investment and operation. The simplicity and reliability of the water scrubber has made this the preferred choice in many applications, but the high purity and very low methane slip from amine scrubbers are important characteristics. Regarding PSA and membrane units, the investment cost for these are about the same as for scrubbers. Furthermore, recent developments of the membrane units have also made it possible to reach low methane slips with this technology. Biogas production is increasing, in Sweden and globally, and the interest for

  16. Effects of Co and Ni nanoparticles on biogas and methane production from anaerobic digestion of slurry

    International Nuclear Information System (INIS)

    Abdelsalam, E.; Samer, M.; Attia, Y.A.; Abdel-Hadi, M.A.; Hassan, H.E.; Badr, Y.

    2017-01-01

    Highlights: • The addition of trace metals in form of nanoparticles reduced the lag phase. • Nanoparticles reduced time to achieve the highest biogas and methane production. • Biogas and methane production were proportional to nanoparticles concentration. • Nanoparticles biostimulate the methanogenic bacteria and increase their activity. - Abstract: Nanoparticles (NPs) were hypothesized to enhance the anaerobic process and to accelerate the slurry digestion, which increases the biogas and methane production. The effects of NPs on biogas and methane production were investigated using a specially designed batch anaerobic system. For this purpose, a series of 2 L biodigesters were manufactured and implemented to study the effects of Cobalt (Co) and Nickel (Ni) nanoparticles with different concentrations on biogas and methane production. The best results of NPs additives were determined based on the statistical analysis (Least Significant Difference using M-Stat) of biogas and methane production, which were 1 mg/L Co NPs and 2 mg/L Ni NPs (p < 0.05). These NPs additives delivered the highest biogas and methane yields in comparison with their other concentrations (0.5, 1, and 2 mg/L), their salts (CoCl 2 , and NiCl 2 ) and the control. Furthermore, the addition of 1 mg/L Co NPs and 2 mg/L Ni NPs significantly increased the biogas volume (p < 0.05) by 1.64 and 1.74 times the biogas volume produced by the control, respectively. Moreover, the aforementioned additives significantly increased the methane volume (p < 0.05) by 1.86 and 2.01 times the methane volume produced by the control, respectively. The highest specific biogas and methane production were attained with 2 mg/L Ni NPs (p < 0.05), and were 614.5 ml Biogas g −1 VS and 361.6 ml CH 4 g −1 VS, respectively compared with the control which yielded only 352.6 ml Biogas g −1 VS and 179.6 ml CH 4 g −1 VS.

  17. Laboratory evaluation of the ESwab transport system for the recovery of carbapenem-resistant Acinetobacter baumannii.

    Science.gov (United States)

    Moran-Gilad, J; Schwartz, D; Navon-Venezia, S; Carmeli, Y

    2012-07-01

    Microbiological surveillance for detection of carbapenem-resistant A. baumannii is important, but recovery of A. baumannii is inadequate. We studied A. baumannii recovery by a particular transport system that is possibly superior over standard swabs, using reference and clinical strains. First, the recovery rates relating to the various swabs were compared with regard to various combinations of transport times (0 h, 1 h, 24 h, 48 h), storage times (0 weeks, 1 week, 2 weeks, 4 weeks) and storage temperatures (4°c,-80°c) using live counts. Second, the recovery of different inocula of strains mixed with fecal microbiota was evaluated by plating on selective medium. The new transport system exhibited a decline of system performed well, even after prolonged transport or with a low inoculum, and its processing could be delayed by up to 2 weeks, especially if refrigerated. The new transport system may thus enhance A. baumannii surveillance.

  18. Estimation of free-hydrocarbon recovery from dual-pump systems

    International Nuclear Information System (INIS)

    Charbeneau, R.J.

    1995-01-01

    Free-product hydrocarbon which floats on the water table may be recovered using single-pump and dual-pump systems. The factors that affect the long-term free-product recovery using dual-pump systems include the free-product thickness as measured in monitoring wells, the ground-water pumping rate, hydrocarbon density and viscosity, and the soil permeability. This paper presents a simple model for prediction of free-product recovery using dual-pump systems. The model predicts the long-term rather than short-term recovery rates, and lends itself to spreadsheet calculations on microcomputers. A particularly simple form arises for cases where the drawdown is small. An application for estimating recovery from a dual-pump system is presented, and limitations of the model are summarized

  19. Use of common time base for checkpointing and rollback recovery in a distributed system

    Science.gov (United States)

    Ramanathan, Parameswaran; Shin, Kang G.

    1993-01-01

    An approach to checkpointing and rollback recovery in a distributed computing system using a common time base is proposed. A common time base is established in the system using a hardware clock synchronization algorithm. This common time base is coupled with the idea of pseudo-recovery points to develop a checkpointing algorithm that has the following advantages: reduced wait for commitment for establishing recovery lines, fewer messages to be exchanged, and less memory requirement. These advantages are assessed quantitatively by developing a probabilistic model.

  20. Energy crops for biogas plants. Lower Saxony; Energiepflanzen fuer Biogasanlagen. Niedersachsen

    Energy Technology Data Exchange (ETDEWEB)

    Aurbacher, J.; Benke, M.; Formowitz, B. (and others)

    2012-06-15

    In the brochure under consideration the Agency for Renewable Resources (Guelzow-Pruezen, Federal Republic of Germany) reports on the support of the implementation of different plant cultures in structure of plantations and crop rotation systems of companies under consideration of the Federal State Lower Saxony. The main chapters of this brochure are: Crops for the production of biogas; implementation in plantations; ensilage and biogas yields; economy of the cultivation of energy plants.

  1. Theoretical and experimental investigations of thermal conditions of household biogas plant

    Science.gov (United States)

    Zhelykh, Vasil; Furdas, Yura; Dzeryn, Oleksandra

    2016-06-01

    The construction of domestic continuous bioreactor is proposed. The modeling of thermal modes of household biogas plant using graph theory was done. The correction factor taking into account with the influence of variables on its value was determined. The system of balance equations for the desired thermal conditions in the bioreactor was presented. The graphical and analytical capabilities were represented that can be applied in the design of domestic biogas plants of organic waste recycling.

  2. Factors influencing the degradation of garbage in methanogenic bioreactors and impacts on biogas formation.

    Science.gov (United States)

    Morita, Masahiko; Sasaki, Kengo

    2012-05-01

    Anaerobic digestion of garbage is attracting much attention because of its application in waste volume reduction and the recovery of biogas for use as an energy source. In this review, various factors influencing the degradation of garbage and the production of biogas are discussed. The surface hydrophobicity and porosity of supporting materials are important factors in retaining microorganisms such as aceticlastic methanogens and in attaining a higher degradation of garbage and a higher production of biogas. Ammonia concentration, changes in environmental parameters such as temperature and pH, and adaptation of microbial community to ammonia have been related to ammonia inhibition. The effects of drawing electrons from the methanogenic community and donating electrons into the methanogenic community on methane production have been shown in microbial fuel cells and bioelectrochemical reactors. The influences of trace elements, phase separation, and co-digestion are also summarized in this review.

  3. More flexible and demand-oriented schedule operation. For market-driven power generation in biogas existing installation; Flexibilisierung und bedarfsorientierter Fahrplanbetrieb. Zur marktgerechten Stromerzeugung in Biogas-Bestandsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Welteke-Fabricius, Uwe [CUBE Engineering GmbH, Kassel (Germany)

    2016-08-01

    This lecture investigates the effects of the societal framework on operators of biogas plants in the further development of biogas and its contribution to the German Energiewende. Influences are not only from politics and economy but stakeholders also shape the development to come. A visible part of the existing plants have quickly to be transformed to a demand driven supply. If not, it is most likely that biogas will disappear from the stage within some 15 years - except for waste treatment. In a future of growing wind and solar energy supply we will experience a.. of shortage and surplus within a day, and through the.seasons. Prices will fluctuate increasingly. Controllable energy generators will run for a decreasing number of hours daily. Biogas should contribute to one or two high-price periods a day, when it is dark, low wind, or high demand, but at a higher capacity than today. This pattern, in combination with a valuable use of its thermal energy production, can furthermore offer an economic feasible prospect for biogas plants after their period of subsidized EEG feed-in tariff By now, only few biogas plants are designed accordingly. Most of them produce their power continuously. Only if biogas plants will change towards peak load operation, its unique combination of renewable and controllable energy supply will be recognized, and biogas can contribute a valuable share to a sustainable energy system. Stakeholders can and should support this change.

  4. Waste heat recovery system for recapturing energy after engine aftertreatment systems

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-06-17

    The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.

  5. Recovery Migration After Hurricanes Katrina and Rita: Spatial Concentration and Intensification in the Migration System.

    Science.gov (United States)

    Curtis, Katherine J; Fussell, Elizabeth; DeWaard, Jack

    2015-08-01

    Changes in the human migration systems of the Gulf of Mexico coastline counties affected by Hurricanes Katrina and Rita provide an example of how climate change may affect coastal populations. Crude climate change models predict a mass migration of "climate refugees," but an emerging literature on environmental migration suggests that most migration will be short-distance and short-duration within existing migration systems, with implications for the population recovery of disaster-stricken places. In this research, we derive a series of hypotheses on recovery migration predicting how the migration system of hurricane-affected coastline counties in the Gulf of Mexico was likely to have changed between the pre-disaster and the recovery periods. We test these hypotheses using data from the Internal Revenue Service on annual county-level migration flows, comparing the recovery period migration system (2007-2009) with the pre-disaster period (1999-2004). By observing county-to-county ties and flows, we find that recovery migration was strong: the migration system of the disaster-affected coastline counties became more spatially concentrated, while flows within it intensified and became more urbanized. Our analysis demonstrates how migration systems are likely to be affected by the more intense and frequent storms anticipated by climate change scenarios, with implications for the population recovery of disaster-affected places.

  6. Recovery Migration after Hurricanes Katrina and Rita: Spatial Concentration and Intensification in the Migration System

    Science.gov (United States)

    Fussell, Elizabeth; DeWaard, Jack

    2015-01-01

    Changes in the human migration systems of Hurricane Katrina- and Rita-affected Gulf of Mexico coastline counties provide an example of how climate change may affect coastal populations. Crude climate change models predict a mass migration of “climate refugees,” but an emerging literature on environmental migration suggests most migration will be short-distance and short-duration within existing migration systems, with implications for the population recovery of disaster-struck places. In this research, we derive a series of hypotheses on recovery migration predicting how the migration system of hurricane-affected coastline counties in the Gulf of Mexico was likely to have changed between the pre-disaster and the recovery periods. We test these hypotheses using data from the Internal Revenue Service on annual county-level migration flows, comparing the recovery period migration system (2007–2009) to the pre-disaster period (1999–2004). By observing county-to-county ties and flows we find that recovery migration was strong, as the migration system of the disaster-affected coastline counties became more spatially concentrated while flows within it intensified and became more urbanized. Our analysis demonstrates how migration systems are likely to be affected by the more intense and frequent storms anticipated by climate change scenarios with implications for the population recovery of disaster-affected places. PMID:26084982

  7. Effect of Water Volume and Biogas Volumetric Flowrate in Biogas Purification Through Water Scrubbing Method

    Directory of Open Access Journals (Sweden)

    Hendry Sakke Tira

    2016-05-01

    Full Text Available Energy supply is a crucial issue in the world in the last few years. The increase in energy demand caused by population growth and resource depletion of world oil reserves provides determination to produce and to use renewable energies. One of the them is biogas. However, until now the use of biogas has not yet been maximized because of its poor purity. According to the above problem, the research has been carried out using the method of water absorption. Under this method it is expected that the rural community is able to apply it. Therefore, their economy and productivity can be increased. This study includes variations of absorbing water volume (V and input biogas volume flow rate (Q. Raw biogas which is flowed into the absorbent will be analyzed according to the determined absorbing water volume and input biogas volume rate. Improvement on biogas composition through the biogas purification method was obtained. The level of CO2 and H2S was reduced significantly specifically in the early minutes of purification process. On the other hand, the level of CH4 was increased improving the quality of raw biogas. However, by the time of biogas purification the composition of purified biogas was nearly similar to the raw biogas. The main reason for this result was an increasing in pH of absorbent. It was shown that higher water volume and slower biogas volume rate obtained better results in reducing the CO2 and H2S and increasing CH4 compared to those of lower water volume and higher biogas volume rate respectively. The purification method has a good promising in improving the quality of raw biogas and has advantages as it is cheap and easy to be operated.

  8. Domestic biogas diffusion in Rwanda - Key learning for scale up

    International Nuclear Information System (INIS)

    2016-03-01

    The NGO Veterinaires Sans Frontieres Belgium (VSF-B) supports local populations to improve livestock keeping and other related aspects such as natural resources management and micro-loans. In 2013, ENEA conducted a study to assess the opportunity for VSF-B to include domestic biogas energy within its scope of activities in Rwanda. In 2014, VSF-B launched the EVE project to install 100 bio-digesters and provide capacity building to smallholder farmers in Southern Rwanda within 3 years. The project is strongly integrated to the local context, partnering with a local federation of farmers, IMBARAGA, to implement the project, and leveraging the Rwandan National Domestic Biogas Program (NDBP). In mid-2015, ENEA conducted a new study to provide VSF-B with an intermediate evaluation of the project, a preliminary assessment of its impacts as well as recommendations to scale-up. VSF-B / IMBARAGA's activity on biogas within the EVE project is successful thanks to an efficient approach combining sensitisation and financial and technical support. By September 2015, half of the target of the pilot phase had been reached - 50 biogas systems were installed or under construction - and the remaining half was likely to be reached by the end of the project. This is the result of an efficient approach for domestic biogas distribution set up by VSF-B / IMBARAGA. Intensive work of sensitisation of farmers combined with an adapted financial support scheme (additional subsidies and guarantee funds for credit) and with technical support and monitoring of farmers are the three pillars on which VSF-B / IMBARAGA's success is based. End-users are highly satisfied of biogas systems and use, thanks to the robustness of the technology and the various outcomes delivered. Although the initial levers for biogas adoption by farmers were fuel savings and convenience to cook, other outcomes appears to be as meaningful to them once they start using the system: increased convenience to boil

  9. Biogas Production from Rice Husk Waste by using Solid State Anaerobic Digestion (SSAD) Method

    Science.gov (United States)

    Matin, Hashfi Hawali Abdul; Hadiyanto

    2018-02-01

    An effort to obtain alternative energy is still interesting subject to be studied, especially production of biogas from agriculture waste. This paper was an overview of the latest development of biogas researches from rice husk waste by Solid State Anaerobic Digestion (SSAD). The main obstacle of biogas production from rice husk waste was the lignin content which is very difficult degraded by microbes. Various pretreatments have been conducted, either physically, chemically as well as biologically. The SSAD method was an attractive option because of the low water content of rice husk waste. The biogas yield by SSAD method gave more attractive result compared to Liquid Anaerobic Digestion (LAD) method. Various studies were still conducted in batch mode laboratory scale and also has not found optimum operating conditions. Research on a larger scale such as bench and pilot scale with continuous systems will be an increase trend in the future research.

  10. Biogas Production from Rice Husk Waste by using Solid State Anaerobic Digestion (SSAD Method

    Directory of Open Access Journals (Sweden)

    Hawali Abdul Matin Hashfi

    2018-01-01

    Full Text Available An effort to obtain alternative energy is still interesting subject to be studied, especially production of biogas from agriculture waste. This paper was an overview of the latest development of biogas researches from rice husk waste by Solid State Anaerobic Digestion (SSAD. The main obstacle of biogas production from rice husk waste was the lignin content which is very difficult degraded by microbes. Various pretreatments have been conducted, either physically, chemically as well as biologically. The SSAD method was an attractive option because of the low water content of rice husk waste. The biogas yield by SSAD method gave more attractive result compared to Liquid Anaerobic Digestion (LAD method. Various studies were still conducted in batch mode laboratory scale and also has not found optimum operating conditions. Research on a larger scale such as bench and pilot scale with continuous systems will be an increase trend in the future research.

  11. Actual developments and latest trends in the field of biogas technology

    International Nuclear Information System (INIS)

    Kavoliuniene, D.; Krieg, A.; Mitterleitner, H.; Schulz, H.

    1994-01-01

    At present the agricultural biogas technology is experiencing an enormous upswing. The reasons for this are above all the new law about the electric current supply from regenerative sources and its reimbursement, the progress in the construction and system technology, economic and ecological aspects and the fermentation of recyclings at the food processing industry. In this paper the actually interesting technical and constructional solutions as well as the new developments for biogas plants are discussed. The most important results of the measurements and practical tests were explained. Furthermore the appropriate possibilities of the gas utilisation and the economic aspects are discussed. Finally a forecasting is given for future tasks and developments, for the biogas generation from grass and other plants, the utilisation of organic waste and for foil biogas plants. (orig.) [de

  12. More flexible and demand-oriented schedule operation. For market-driven power generation in biogas existing installation

    International Nuclear Information System (INIS)

    Welteke-Fabricius, Uwe

    2016-01-01

    This lecture investigates the effects of the societal framework on operators of biogas plants in the further development of biogas and its contribution to the German Energiewende. Influences are not only from politics and economy but stakeholders also shape the development to come. A visible part of the existing plants have quickly to be transformed to a demand driven supply. If not, it is most likely that biogas will disappear from the stage within some 15 years - except for waste treatment. In a future of growing wind and solar energy supply we will experience a.. of shortage and surplus within a day, and through the.seasons. Prices will fluctuate increasingly. Controllable energy generators will run for a decreasing number of hours daily. Biogas should contribute to one or two high-price periods a day, when it is dark, low wind, or high demand, but at a higher capacity than today. This pattern, in combination with a valuable use of its thermal energy production, can furthermore offer an economic feasible prospect for biogas plants after their period of subsidized EEG feed-in tariff By now, only few biogas plants are designed accordingly. Most of them produce their power continuously. Only if biogas plants will change towards peak load operation, its unique combination of renewable and controllable energy supply will be recognized, and biogas can contribute a valuable share to a sustainable energy system. Stakeholders can and should support this change.

  13. Biogas production and distribution. Operators' health and safety. Extended abstract

    International Nuclear Information System (INIS)

    Gardeur-Algros, E.; Chesnot, T.; Charissou, A.M.; Paris, T.; Bronner, C.

    2013-06-01

    Production and recovery of biogas from different substrates of agricultural, urban and industrial issues are at the heart of sustainable development for the production of renewable energy, reducing greenhouse gases and waste treatment. In 2011, in France, about 200 biogas plants were operational. Moreover, about 300 ISDND (nonhazardous waste storage or landfill sites) also produce biogas, about 90 that of them valorize it. Because of regulatory contexts and favorable measures to bolster the economy, the number of sites is growing and anaerobic pathways are diversifying in terms of substrate / treated waste, anaerobic digestion processes and ways of valorization. So it seems appropriate to focus on the health and safety of workers potentially exposed to various hazards during operations of monitoring, maintenance or malfunction of facilities. First, through a literature search and a query of experts, data such as substrate, digestate and biogas composition, information feedback on reported incidents / accidents or accidents at work and illnesses of operators have been sought. Then, critical points concerning the health and safety of operators in these sectors were identified by implementing some steps of HACCP (Hazard Analysis - Critical Control Points). Five sectors (agricultural methanization in farms and in centralized plants - methanization of urban sewage sludge - methanization of household garbage - industrial methanization in sectors like food industry, stationery and chemistry - biogas production from landfill sites) have been studied and led to dedicated syntheses. They summarize the collected information and present an operating diagram indicating the different stages of biogas production and recovery. On this diagram, critical points are identified, assessed according to their importance and are associated with phases of maintenance operation, or malfunction. The results are intended to educate the actors to potential risks and attention they need to

  14. Microaeration reduces hydrogen sulfide in biogas

    Science.gov (United States)

    Although there are a variety of biological and chemical treatments for removal of hydrogen sulfide (H2S) from biogas, all require some level of chemical or water inputs and maintenance. In practice, managing biogas H2S remains a significant challenge for agricultural digesters where labor and opera...

  15. Biogas i økologisk jordbrug

    DEFF Research Database (Denmark)

    Østergård, Hanne

    2011-01-01

    Klumme: Hvilke faktorer har størst betydning for udbredelse af biogas-teknologien? Offentlige tilskud er svaret fra en rundspørge.......Klumme: Hvilke faktorer har størst betydning for udbredelse af biogas-teknologien? Offentlige tilskud er svaret fra en rundspørge....

  16. Forecasting the potential of Danish biogas production

    DEFF Research Database (Denmark)

    Bojesen, Mikkel; Skov-Petersen, Hans; Gylling, Morten

    , except for those farms which are in the largest state class. Regional differences in development trends were documented. The strategic objective of the model is to provide data for the spatial assessment of the potential of biogas production which can form the basis for a location analysis for future...... biogas plants....

  17. Cavitation for improved sludge conversion into biogas

    NARCIS (Netherlands)

    Stoop, A.H.; Bakker, T.W.; Kramer, H.J.M.

    2015-01-01

    In several studies the beneficial influence of pre-treatment of waste activated sludge with cavitation on the biogas production was demonstrated. It is however, still not fully certain whether this effect should be mainly contributed to an increase in conversion rate of organics into biogas by

  18. Online monitoring and control of the biogas process

    Energy Technology Data Exchange (ETDEWEB)

    Boe, K.

    2006-07-01

    The demand for online monitoring and control of biogas process is increasing, since better monitoring and control system can improve process stability and enhance process performance for better economy of the biogas plants. A number of parameters in both the liquid and the gas phase have been suggested as process indicators. These include gas production, pH, alkalinity, volatile fatty acids (VFA) and hydrogen. Of these, VFA is the most widely recognised as a direct, relevant measure of stability. The individual, rather than collective VFA concentrations are recognised as providing significantly more information for diagnosis. However, classic on-line measurement is based on filtration, which suffers from fouling, especially in particulate or slurry wastes. In this project, a new online VFA monitoring system has been developed using gas-phase VFA extraction to avoid sample filtration. The liquid sample is pumped into a sampling chamber, acidified, added with salt and heated to extract VFA into the gas phase before analysis by GC-FID. This allows easy application to manure. Sample and analysis time of the system varies from 25-40 min. depending on the washing duration. The sampling frequency is fast enough for the dynamic of a manure digester, which is in the range of several hours. This system has been validated over more than 6 months and had shown good agreement with offline VFA measurement. Response from this sensor was compared with other process parameters such as biogas production, pH and dissolved hydrogen during overload situations in a laboratory-scale digester, to investigate the suitability of each measure as a process indicator. VFA was most reliable for indicating process imbalance, and propionate was most persistent. However, when coupling the online VFA monitoring with a simple control for automatic controlling propionate level in a digester, it was found that propionate decreased so slow that the biogas production fluctuated. Therefore, it is more

  19. Extended exergy-based sustainability accounting of a household biogas project in rural China

    International Nuclear Information System (INIS)

    Yang, J.; Chen, B.

    2014-01-01

    Biogas has been earmarked as one of the leading renewable energy sources capable of mitigating environmental emissions in rural areas. Thus, developing an accounting technique is of particular importance in coping with increasing problems related to renewable agriculture and rural energy supply. In this study, extended exergy was generalised for the sustainability evaluation of biogas projects. Furthermore, a series of extended exergy-based indicators was presented as benchmarking from the perspectives of resources, economics and greenhouse gas (GHG) emissions. The sustainability of a “Three-in-One” biogas production system in southern China was thereby evaluated based on the proposed framework. The results show that economic costs concentrate in the construction phase. GHG emissions are mainly derived from bricks and cement, with proportions of 36.23% and 34.91%, respectively. The largest resource depletion occurs during the consumption of feedstock (87.06%) in the operation phase. Compared with other renewable energy conversion systems, the biogas project has a higher renewability (0.925) and economic return on investment ratio (6.82) and a lower GHG emission intensity (0.012). With the merit of bridging thermodynamics and externality, the extended exergy-based approach presented in this study may effectively appraise the energy and environmental performance of biogas projects. - Highlights: • Extended exergy is used to describe the sustainability level of biogas projects. • A set of extended exergy based sustainability indicator is established. • Biogas project has high renewability and greenhouse gas emission abatement potential. • Multiple utilization of biogas digestate is a promising way to improve sustainability

  20. Biogas and Methane Yield from Rye Grass

    Directory of Open Access Journals (Sweden)

    Tomáš Vítěz

    2015-01-01

    Full Text Available Biogas production in the Czech Republic has expanded substantially, including marginal regions for maize cultivation. Therefore, there are increasingly sought materials that could partially replace maize silage, as a basic feedstock, while secure both biogas production and its quality.Two samples of rye grass (Lolium multiflorum var. westerwoldicum silage with different solids content 21% and 15% were measured for biogas and methane yield. Rye grass silage with solid content of 15% reached an average specific biogas yield 0.431 m3·kg−1 of organic dry matter and an average specific methane yield 0.249 m3·kg−1 of organic dry matter. Rye grass silage with solid content 21% reached an average specific biogas yield 0.654 m3·kg−1 of organic dry matter and an average specific methane yield 0.399 m3·kg−1 of organic dry matter.

  1. Diffusion of the technology of the biogas in Colombia: Documentation of the Project. Cali (CO)

    International Nuclear Information System (INIS)

    1998-01-01

    The manual shows the general limits and considerations that should be kept in mind to implement the systems of biogas production in the Colombian rural zones. In this project they participated the Regional Autonomous Corporation of the Cauca C.V.C., the German Society of Technical Cooperation GTZ and the consultant German signature Dekotup; society for Adapted Technologies in Areas in Development Ltda. The importance of the biogas systems like technology adapted by the advantages is shown: they Reduce the danger and the contamination of the residuals payees of germs pathogens, they eliminate the unpleasant scent of the waste, they don't produce imbalance in the ecosystem and eat non by-product an effluent it is obtained with high properties bio fertilizing. Initially it is described the phases of the process of fermentation: hydrolysis, acidification and methanization, the types of biogas plants are described used floating bell, fixed dome and the ball plant; the methods for the planning and the design of the plants as well as the dimensions. It is presented a classic example of the design and construction of a plant. It is included the composition of the biogas and their use forms. The different biogas plants are shown that were built and those that were in project; the use of effluents of gas like bio-fertilizer, the form of determining the activities for the popularization of the biogas technology

  2. Numerical investigation of biogas flameless combustion

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Bagheri, Ghobad; Wahid, Mazlan Abdul

    2014-01-01

    Highlights: • Fuel consumption decreases from 3.24 g/s in biogas conventional combustion to 1.07 g/s in flameless mode. • The differences between reactants and products temperature intensifies irreversibility in traditional combustion. • The temperature inside the chamber is uniform in biogas flameless mode and exergy loss decreases in this technique. • Low O 2 concentration in the flameless mode confirms a complete and quick combustion process in flameless regime. - Abstract: The purpose of this investigation is to analyze combustion characteristics of biogas flameless mode based on clean technology development strategies. A three dimensional (3D) computational fluid dynamic (CFD) study has been performed to illustrate various priorities of biogas flameless combustion compared to the conventional mode. The effects of preheated temperature and wall temperature, reaction zone and pollutant formation are observed and the impacts of combustion and turbulence models on numerical results are discussed. Although preheated conventional combustion could be effective in terms of fuel consumption reduction, NO x formation increases. It has been found that biogas is not eligible to be applied in furnace heat up due to its low calorific value (LCV) and it is necessary to utilize a high calorific value fuel to preheat the furnace. The required enthalpy for biogas auto-ignition temperature is supplied by enthalpy of preheated oxidizer. In biogas flameless combustion, the mean temperature of the furnace is lower than traditional combustion throughout the chamber. Compared to the biogas flameless combustion with uniform temperature, very high and fluctuated temperatures are recorded in conventional combustion. Since high entropy generation intensifies irreversibility, exergy loss is higher in biogas conventional combustion compared to the biogas flameless regime. Entropy generation minimization in flameless mode is attributed to the uniform temperature inside the chamber

  3. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Rascanu, G.; Feru, E.

    2015-01-01

    Rankine-cycleWasteHeatRecovery (WHR)systems are promising solutions to reduce fuel consumption for trucks. Due to coupling between engine andWHR system, control of these complex systems is challenging. This study presents an integrated energy and emission management strategy for an Euro-VI Diesel

  4. Micro-aeration for hydrogen sulfide removal from biogas

    Science.gov (United States)

    Duangmanee, Thanapong

    The presence of sulfur compounds (e.g. protein, sulfate, thiosulfate, sulfite, etc.) in the feed stream generates highly corrosive and odorous hydrogen sulfide during anaerobic digestion. The high sulfide level in the biogas stream is not only poisonous to many novel metal catalysts employed in thermo-catalytic processes but also reduces the quality of methane to produce renewable energy. This study used an innovative, low-maintenance, low-cost biological sulfide removal technology to remove sulfides simultaneously from both gas and liquid phase. ORP (Oxidation-Reduction-Potential) was used as the controlling parameter to precisely regulate air injection to the sulfide oxidizing unit (SOU). The microaeration technique provided just enough oxygen to partially oxidize sulfides to elemental sulfur without inhibiting methanogenesis. The SOU was equipped with a diffuser at the bottom for the dispersion of sulfide-laden biogas and injected air throughout the column. The SOU can be operated as a standalone unit or coupled with an anaerobic digester to simultaneously remove sulfide from the biogas and effluent. The integrated system was capable of reducing hydrogen sulfide in biogas from 2,450 to less than 2 ppmV with minimal sulfate production at the highest available sulfide loading rate of 0.24 kg/m3-day. More than 98% of sulfide removed was recovered as elemental sulfur. However, the standalone SOU was able to operate at high hydrogen sulfide loading of 1.46 kg/m 3-day at inlet sulfide concentration of 3000 ppmV and reduce the off-gas hydrogen sulfide concentrations to less than 10 ppmV. The experiment also revealed that the ORP controlled aeration was sensitive enough to prevent oxygen overdosing (dampening effect) during unexpected surges of aeration. Using generalized linear regression, a model predicting output H2S concentration based on input H2S concentrations, SOU medium heights, and biogas flow rates, was derived. With 95% confidence, output H2S concentration

  5. The real-time roll-back and recovery of transactions in database systems

    OpenAIRE

    Quantock, David E.

    1989-01-01

    Approved for public release; distribution is unlimited. A modern database transaction may involve a long series of updates, deletions, and insertions of data and a complex mix of these primary database operations. Due to its length and complexity, the transaction requires back-up and recovery procedures. The back-up procedure allows the user to either commit or abort a lengthy and complex transaction without comprising the integrity of the data. The recovery procedure allows the system to ...

  6. Towards a sustainable capacity expansion of the Danish biogas sector

    DEFF Research Database (Denmark)

    Bojesen, Mikkel; Boerboom, Luc; Skov-Petersen, Hans

    that a sustainable facility location has the potential of reducing overall production costs by 3% as compared with current biogas plants. The results of this paper can provide support to central governmental decision makers, regarding regional allocation of subsidies in the country. Likewise local decision makers......Promotion of bioenergy production is an important contemporary topic around the world. Vast amounts of research are allocated towards analysing and understanding bioenergy systems, which are by nature multi-faceted. Despite a focus on the deployment of multi-criteria decision-making (MCDM) methods...... for planning of bioenergy systems, only little research has addressed the location component of bioenergy facility planning. In this paper the authors develop a model for sustainable capacity expansion of the Danish biogas sector allowing for an identification and prioritization of suitable locations...

  7. Microbial Consortium with High Cellulolytic Activity (MCHCA for enhanced biogas production.

    Directory of Open Access Journals (Sweden)

    Krzysztof ePoszytek

    2016-03-01

    Full Text Available The use of lignocellulosic biomass as a substrate in agricultural biogas plants is very popular and yields good results. However, the efficiency of anaerobic digestion, and thus biogas production, is not always satisfactory due to the slow or incomplete degradation (hydrolysis of plant matter. To enhance the solubilization of the lignocellulosic biomass various physical, chemical and biological pretreatment methods are used.The aim of this study was to select and characterize cellulose-degrading bacteria, and to construct a microbial consortium, dedicated for degradation of maize silage and enhancing biogas production from this substrate.Over one hundred strains of cellulose-degrading bacteria were isolated from: sewage sludge, hydrolyzer from an agricultural biogas plant, cattle slurry and manure. After physiological characterization of the isolates, sixteen strains (representatives of Bacillus, Providencia and Ochrobactrum genera were chosen for the construction of a Microbial Consortium with High Cellulolytic Activity, called MCHCA. The selected strains had a high endoglucanase activity (exceeding 0.21 IU/mL CMCase activity and a wide range of tolerance to various physical and chemical conditions. Lab-scale simulation of biogas production using the selected strains for degradation of maize silage was carried out in a two-bioreactor system, similar to those used in agricultural biogas plants.The obtained results showed that the constructed MCHCA consortium is capable of efficient hydrolysis of maize silage, and increases biogas production by even 38%, depending on the inoculum used for methane fermentation. The results in this work indicate that the mesophilic Microbial Consortium with High Cellulolytic Activity has a great potential for application on industrial scale in agricultural biogas plants.

  8. BIOGAS PRODUCTION FROM ANIMAL MANURE

    OpenAIRE

    Z. RECEBLI; S. SELIMLI; M. OZKAYMAK; O. GONC

    2015-01-01

    An experimental study worked on a model biogas production unit which has 0.5 m3 fermentation tank capacities of a breeding farm in the Urla district of Izmir/Turkey. The farm animal quantity is 70 cattle and 1400 chicken. Animal wastes (poultry manure and bovine animals manure) were anaerobically fermented in the tank. It is known in literature, the optimum fermentation occurs at 298-313 K temperatures. In this respect, experimentation was performed at summer season and average regional tempe...

  9. CO2 recovery system using solar energy; Taiyo energy wo riyoshita CO2 bunri kaishu system

    Energy Technology Data Exchange (ETDEWEB)

    Hosho, F.; Naito, H.; Yugami, H.; Arashi, H. [Tohoku University, Sendai (Japan)

    1997-11-25

    As a part of studies on chemical absorption process with MEA (monoethanolamine) for CO2 recovery from boiler waste gas in thermal power plants, use of solar heat as MEA regenerating energy was studied. An integrated stationary evacuated concentrator (ISEC) effective as collector in a medium temperature range was used to realize a regenerating temperature range of 100-120degC. ISEC is featured by vacuum insulation, use of selective absorbing membranes for an absorber, a CPC (compound parabolic concentrator)-shaped reflection mirror, and high-efficiency. An MEA regenerator is composed of an ISEC and PG(propylene glycol)-MEA heat exchanger, and circulates PG as heat medium. Heat collection experiment was also made using water instead of MEA. Both batch and continuous systems could supply a heat quantity necessary for MEA regeneration. CO2 concentration in the top of the regenerator rapidly decreased with PG circulation regenerating MEA. As mol ratios of CO2/MEA were compared between before and after regeneration, a recovery rate was estimated to be 59.4% for the batch system. 8 figs., 4 tabs.

  10. The Development of Biogas Technology in Denmark: Achievements & Obstacles

    OpenAIRE

    Sannaa, Mohamed Najib

    2004-01-01

    Denmark is one of the most advanced countries in biogas technology. This country added several improvements to the biogas process in order to increase the biogas yield and thereby improve the economical profitability. Consequently, this project studied the developments of biogas technology in Denmark. The study includes a historical progress of biogas plants since 1970s; the different problems interrupted the expansion of this technology and the actions taken to overcome these obstacles. This...

  11. Increasing Percentage of Methane (Ch4) From Biogas with Purification

    OpenAIRE

    Saleh, Abdullah

    2014-01-01

    Biogas is the one of renewable energies that is the result of fermentation of methanogenic bacteria of biomass or organic substance . The low methane content in biogas is affected by the amount of impurities in the biogas. A membrane that produced from activated zeolite as an adsorbent is used to absorb or reduce the content of impuritiesin the biogas in order to increase methane in the biogas . Variate of research comprise variety the composition ratio of zeolite and clay as materials for ze...

  12. Use of bio-enzymatic preparations for enhancement biogas production

    OpenAIRE

    Tomáš Vítěz; M. Haitl; Z. Karafiát; P. Mach; J. Fryč; T. Lošák; M. Szostková

    2011-01-01

    Biogas is a renewable energy resource with high increasing developed in last few decades. It’s big opportunity for stabilization rural areas, concretely agriculture sector. This technology can decentralize supply of energy. The number of operated biogas plants is rapidly increasing. Biogas plants require a high level of intensity and stableness of the process of anaerobic fermentation with biogas production for efficiency treatment, also for good quality of development biogas and fertilizatio...

  13. Microalgae community shifts during the biogas upgrading in an alkaline open photobioreactor.

    Science.gov (United States)

    Granada-Moreno, C I; Aburto-Medina, A; de Los Cobos Vasconcelos, D; González-Sánchez, A

    2017-10-01

    To achieve the functional specialization of a microalgae community through operational tuning of an open photobioreactor used for biogas upgrading under alkaline conditions. An open photobioreactor was inoculated with an indigenous microalgae sample from the Texcoco Soda Lake. A microalgae community was adapted to fix CO 2 from synthetic biogas through different culture conditions reaching a maximum of 220 mg CO 2  l -1 per day. Picochlorum sp. and Scenedesmus sp. were identified as the prominent microalgae genera by molecular fingerprinting (partial sequencing of 16S rRNA and 18S rRNA genes) but only the first was detected by microscopy screening. Changes in the microalgae community profile were monitored by a range-weighted richness index, reaching the lowest value when biogas was upgraded. A robust microalgae community in the open photobioreactor was obtained after different culture conditions. The specialization of microalgae community for CO 2 fixation under H 2 S presence was driven by biogas upgrading conditions. The alkaline conditions enhance the CO 2 absorption from biogas and could optimize specialized microalgae communities in the open photobioreactor. Denaturing gradient gel electrophoresis fingerprinting and richness index comparison are useful methods for the evaluation of microalgae community shifts and photosynthetic activity performance, particularly in systems intended for CO 2 removal from biogas where the CO 2 assimilation potential can be related to the microbial richness. © 2017 The Society for Applied Microbiology.

  14. Pengaruh Pengadukan Dan Variasi Feeding Terhadap Pembentukan Biogas Dari Sampah Dapur Rumah Makan Pada Reaktor Batch Dengan Aktivator Feses Sapi (Bos Taurus)

    OpenAIRE

    Tri Utomo, Doron; Hadiwidodo, Mochtar; Sudarno, Sudarno

    2014-01-01

    Food waste is organic waste that is quite lot and have not good treatment now. Food waste in anaerobic treatment have potential to produce biogas with addition cow feces as an activator. Stirring is one effort to increase the production of biogas. Research has been conducted in a batch system but the results have not been produced an optimal biogas. This research use two big reactors (19 liter) and 16 small reactors (600 ml dan 500 ml). There are four parameters that were observed the biogas...

  15. Biogas entrepreneur's operational environment in Finland; Biokaasuyrittaejaen toimintaympaeristoe Suomessa. Kokemuksia MMM:n investointiavustusjaerjestelmaestae 2008-2010

    Energy Technology Data Exchange (ETDEWEB)

    Marttinen, S.; Lehtonen, H.; Luostarinen, S.; Rasi, S.

    2013-09-01

    The Finnish Ministry of Agriculture and Forestry offered investment grants for agricultural biogas plants during 2008-2010. Twenty three (23) proposals for biogas plants received grants. Eight (8) plants were under construction or already built using this grant at the time this survey (spring 2013), one (1) plant used other financial support and fourteen (14) projects fell through. The reasons for building a biogas plant were diverse. Most often farmers or entrepreneurs integrated the biogas plant as a part of their other actions. The aim was usually to produce energy for the farm or enterprise located on the same site. Improving manure nutrient value and recycling nutrients were also important factors. To be able to procure a biogas plant, one has to acquire information on various things from several sources and carefully compare the pieces of information. The better the entrepreneur was familiarized with the issue, the more reliable were the profitability calculations and the estimation of the investment costs. Administrative obstacles addressed by the biogas entrepreneurs interviewed included the current tax system concerning electricity produced in an agricultural biogas plant and used at the farm as well as different classification of manure and manure based digestate in the Finnish agri-environmental support system. Important issues in the biogas plant projects were, for example, achieving sufficient profitability and balance sheet from operation, sufficiently high investment grant, the entrepreneur's own know-how, good collaboration with authorities, and positive attitudes of stakeholders. The reason for projects to fall through was most often lack of profitability. For example, the investment grant obtained was too low in relation to what was applied for, the incomes were too low or the investment costs increased significantly during the planning phase. To be able to achieve profitability, biogas plants utilizing mainly agricultural substrates must

  16. ThermoEnergy Ammonia Recovery Process for Municipal and Agricultural Wastes

    Directory of Open Access Journals (Sweden)

    Alex G. Fassbender

    2001-01-01

    Full Text Available The Ammonia Recovery Process (ARP is an award-winning, low-cost, environmentally responsible method of recovering nitrogen, in the form of ammonia, from various dilute waste streams and converting it into concentrated ammonium sulfate. The ThermoEnergy Biogas System utilizes the new chemisorption-based ARP to recover ammonia from anaerobically digested wastes. The process provides for optimal biogas production and significantly reduced nitrogen levels in the treated water discharge. Process flows for the ammonia recovery and ThermoEnergy biogas processes are presented and discussed. A comparison with other techniques such as biological nitrogen removal is made. The ARP technology uses reversible chemisorption and double salt crystal precipitation to recover and concentrate the ammonia. The ARP technology was successfully proven in a recent large-scale field demonstration at New York City’s Oakwood Beach Wastewater Treatment Plant, located on Staten Island. This project was a joint effort with Foster Wheeler Environmental Corporation, the Civil Engineering Research Foundation, and New York City Department of Environmental Protection. Independent validated plant data show that ARP consistently recovers up to 99.9% of the ammonia from the city’s centrate waste stream (derived from dewatering of sewage sludge, as ammonium sulfate. ARP technology can reduce the nitrogen (ammonia discharged daily into local bodies of water by municipalities, concentrated animal farming operations, and industry. Recent advances to ARP enhance its performance and economic competitiveness in comparison to stripping or ammonia destruction technologies.

  17. Comparative life cycle assessment of biogas plant configurations for a demand oriented biogas supply for flexible power generation.

    Science.gov (United States)

    Hahn, Henning; Hartmann, Kilian; Bühle, Lutz; Wachendorf, Michael

    2015-03-01

    The environmental performance of biogas plant configurations for a demand - oriented biogas supply for flexible power generation is comparatively assessed in this study. Those configurations indicate an increased energy demand to operate the operational enhancements compared to conventional biogas plants supplying biogas for baseload power generation. However, findings show that in contrast to an alternative supply of power generators with natural gas, biogas supplied on demand by adapted biogas plant configurations saves greenhouse gas emissions by 54-65 g CO(2-eq) MJ(-1) and primary energy by about 1.17 MJ MJ(-1). In this regard, configurations with flexible biogas production profit from reduced biogas storage requirements and achieve higher savings compared to configurations with continuous biogas production. Using thicker biogas storage sheeting material reduces the methane permeability of up to 6m(3) d(-1) which equals a reduction of 8% of the configuration's total methane emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Thermo economic life cycle energy recovery system optimization for central air-conditioning system using evolutionary technique

    International Nuclear Information System (INIS)

    Khan, L.A.; Khalil, M.S.; Mahfouz, F.

    2012-01-01

    Energy efficient systems are the most desirable systems. Due to huge rise in energy prices and lack of availability of energy, the effective use of energy has become the need of time. Energy recovery both in heating systems as well as in air-conditioning systems saves a lot of energy. In this paper energy recovery system has been designed and optimized for central air-conditioning systems for various ranges. Cost function includes capital cost along with pumping and exergy destruction cost. This shows that installation of energy recovery system with a central air-conditioning has a significant amount of saved energy and payback period is within a year. PFHE (Plate Fin Heat Exchanger) is designed and optimized using evolutionary optimization. In order to verify the capabilities of the proposed method, a case study is also presented showing that significant amount of energy is recovered at a reasonable payback period. Sensitivity analysis is also done with the energy prices. (author)

  19. Draft report: application of organic Rankine cycle heat recovery systems to diesel powered marine vessels

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-15

    The analysis and results of an investigation of the application of organic Rankine cycle heat recovery systems to diesel-powered marine vessels are described. The program under which this study was conducted was sponsored jointly by the US Energy Research and Development Administration, the US Navy, and the US Maritime Administration. The overall objective of this study was to investigate diesel bottoming energy recovery systems, currently under development by three US concerns, to determine the potential for application to marine diesel propulsion and auxiliary systems. The study primarily focused on identifying the most promising vessel applications (considering vessel type, size, population density, operational duty cycle, etc.) so the relative economic and fuel conservation merits of energy recovery systems could be determined and assessed. Vessels in the current fleet and the projected 1985 fleet rated at 1000 BHP class and above were investigated.

  20. The economics of biogas in Denmark

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.; Laugesen, Frederik Møller; Dubgaard, Alex

    2014-01-01

    Denmark has been one of the leading European Countries in using Biogas for Combined Heat and Power (CHP), since the 1980s. However, in the last two decades, the increase has been limited. A new energy policy aimed at increasing the profitability of biogas was introduced in the spring of 2012....... The analysis here shows that the new agreement will improve the profitability of biogas plants and increase the biogas production although the political ambition of an increase from 4 PJ to 17 PJ by 2020 seems unlikely. The analysis shows that biogas plants can be profitable even if the input is a mix....... The analysis shows that the profit from upgrading biogas is only to be preferred if the sales price of heat or the amount sold are relatively low. The socioeconomic analyses show that the costs of biogas as a measure to reduce CO2 emissions are around €151 per tonne CO2 (€85‐266 per ton) and that using maize...