WorldWideScience

Sample records for biogas production rate

  1. empirical model for predicting rate of biogas production

    African Journals Online (AJOL)

    users

    Rate of biogas production using cow manure as substrate was monitored in two laboratory scale ... Biogas is a Gas obtained by anaerobic ... A. A. Adamu, Petroleum and Natural Gas Processing Department, Petroleum Training Institute, P.M.B..

  2. Evaluation of biogas production rate and biochemical changes in ...

    African Journals Online (AJOL)

    The rate of biogas generation and biochemical changes in pig dung used in a simple mobile biogas digester designed and constructed at the Department of Environmental Technology, Federal University of Technology Owerri, Nigeria were evaluated. Measurable gas production started 4 days after feeding the digester with ...

  3. The effect of seeding with bacteria on biogas production rate

    Energy Technology Data Exchange (ETDEWEB)

    Dangoggo, S.M. [Usmanu Danfodiyo University, Sokoto (Nigeria). Dept. of Chemistry; Aliyu, M.; Atiku, A.T. [Usmanu Danfodiyo University, Sokoto (Nigeria). Energy Research Centre

    1996-09-01

    Biogas as a clean and cheap fuel is studied with the aim of determining the effect of seeding with bacteria on its production rate using four different substrates. The seeding with four different digesters was carried out with 5g of digested cowdung sludge obtained from a working digester. Results indicate that of all the substrates used for the studies, ipomea asarifobia produced the highest amount of biogas over a period of 40 days. (Author)

  4. Empirical Model for Predicting Rate of Biogas Production | Adamu ...

    African Journals Online (AJOL)

    Rate of biogas production using cow manure as substrate was monitored in two laboratory scale batch reactors (13 liter and 108 liter capacities). Two empirical models based on the Gompertz and the modified logistic equations were used to fit the experimental data based on non-linear regression analysis using Solver tool ...

  5. Increasing Biogas Production Rate from Cattle Manure Using Rumen Fluid as Inoculums

    Directory of Open Access Journals (Sweden)

    Budiyono Budiyono

    2013-10-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 In this study, rumen fluid of animal ruminant was used as inoculums to increase biogas production rate from cattle manure at mesophilic condition. A series of laboratory experiments using 400 ml biodigester were performed in batch operation mode. Given 100 grams of fresh cattle manure (M was fed to each biodigester and mixed with rumen fluid (R and tap water (W in several ratio resulting six different M:W:R ratio contents i.e. 1:1:0; 1:0.75:0.25; 1:0.5:0.5; 1:0.25:0.75; and 1:0:1 (correspond to 0; 12.5; 25, 37.5; 50, and 100 % rumen, respectively and six different total solid (TS contents i.e. 2.6, 4.6, 6.2, 7.4, 9.2, 12.3, and 18.4 %. The operating temperatures were at room temperature. The results showed that the rumen fluid inoculated to biodigester significantly effected the biogas production. Rumen fluid inoculums caused biogas production rate and efficiency increase more than two times in compare to manure substrate without rumen fluid inoculums. The best performance for biogas production was the digester with rumen fluid and TS content in the range of 25-50 % and 7.4 and 9.2 %, respectively. These results suggest that, based on TS content effects to biogas yield, rumen fluid inoculums exhibit the similar effect with other inoculums. Increasing rumen content will also increase biogas production. Due to the optimum total solid (TS content for biogas production between 7-9 % (or correspond to more and less manure and total liquid 1:1, the rumen fluid content of 50 % will give the best performance for biogas production. The future work will be carried out to study the dynamics of biogas production if both the rumen fluid inoculums and manure are fed in the continuous system Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Doi: 10.12777/ijse.6.1.31-38 [How to cite this article: Budiyono, Widiasa, I.N., Johari, S. and Sunarso. (2014. Increasing Biogas

  6. Impact of Optimized Flow Pattern on Pollutant Removal and Biogas Production Rate Using Wastewater Anaerobic Fermentation

    Directory of Open Access Journals (Sweden)

    Ruyi Huang

    2015-06-01

    Full Text Available This paper introduces a new-type of antigravity mixing method, which was applied in the biogas production process, using organic wastewater fermentation. It was found that the digesters with two designs, a high-position, centralized pressure outlet and a high-position, dispersed pressure outlets, both lead to an increase in biogas production rates by 89% and 125%, respectively. The biogas production peak appeared 1 day and 7 days earlier, and the COD removal rates were raised by 27% and 42%, respectively. The results indicated that the optimized flow field had a significant impact. This work also explains the mechanism of flow field optimization using computational fluid dynamics (CFD software for the simulation of the flow field form in the hydraulic mixing.

  7. Effects of organic loading rate on biogas production from macroalgae: Performance and microbial community structure.

    Science.gov (United States)

    Sun, Meng-Ting; Fan, Xiao-Lei; Zhao, Xiao-Xian; Fu, Shan-Fei; He, Shuai; Manasa, M R K; Guo, Rong-Bo

    2017-07-01

    Macroalgae biomass has been considered as a promising feedstock for biogas production. In order to improve the efficiency of anaerobic digestion (AD) of macroalgae, semi-continuous fermentation was conducted to examine the effects of organic loading rate (OLR) on biogas production from Macrocystis pyrifer. Results showed that, under OLRs of 1.37, 2.74, 4.12 and 6.85kgVS substrate /(m 3 ·d), the average unit biogas yields were 438.9, 477.3, 480.1 and 188.7mL/(gVS substrate d), respectively. It indicated that biogas production was promoted by the increased OLR in an appropriate range while inhibited by the OLR beyond the appropriate range. The investigation on physical-chemical parameters revealed that unfavorable VFAs concentration, pH and salinity might be the main causes for system failure due to the overrange OLR, while the total phenols failed to reach the inhibitory concentration. Microbial community analysis demonstrated that several bacterial and archaeal phyla altered with increase in OLR apparently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effect of mixing digested slurry on the rate of biogas production from dairy manure in batch fermenter

    Energy Technology Data Exchange (ETDEWEB)

    Kalia, A.K.; Singh, S.P.

    2001-09-01

    Forty kilograms of pure cattle dung and cattle dung mixed with 10% digested slurry obtained from a field biogas plant was batch fermented in horizontal biogas digesters for 15 weeks under field conditions with mean ambient temperature 20-23{sup o}C. Compared to 821 l of biogas from digester I, containing cattle dung alone, 1457 l of biogas was obtained from digester II, containing cattle dung mixed with 10% digested slurry. Mixing of slurry not only speeded up the gas production but also enhanced its rate from 108 l/kg dry matter to 158 l/kg dry matter. It also resulted in 36.1% distraction of total volatile solid in digester II, compared to 23.93% observed in digester I. Mixing digested slurry is recommended for raising biogas production from cattle dung in dry fermenters. (author)

  9. The Effect of Feed to Inoculums Ratio on Biogas Production Rate from Cattle Manure Using Rumen Fluid as Inoculums

    Directory of Open Access Journals (Sweden)

    S. Sunarso

    2010-12-01

    Full Text Available In this study, rumen fluid of animal ruminant was used as inoculums to increase biogas production rate from cattle manure at mesophilic condition. A series of laboratory experiments using 400 ml biodigester were performed in batch operation mode. Given 100 grams of fresh cattle manure was fed to each biodigester and mixed with rumen fluid and tap water resulting five different feed to inoculum (F/I ratios (i.e. 17.64, 23.51, 35.27, and 70.54. The operating temperatures were varied at room temperature. The results showed that the rumen fluid inoculated to biodigester significantly effected the biogas production. Rumen fluid inoculums caused biogas production rate and efficiency increase more than two times in compare to manure substrate without rumen fluid inoculums. At four F/Is tested, after 80 days digestion, the biogas yield were 191, 162, 144 and 112 mL/g VS, respectively. About 80% of the biogas production was obtained during the first 40 days of digestion. The best performance of biogas production will be obtained if F/I ratio is in the range of 17.64 to 35.27 (correspond to 25 – 50 % of rumen fluid. The future work will be carried out to study the dynamics of biogas production if both the rumen fluid inoculums and manure are fed in the continuous system

  10. Improvement of Biogas Production by Bioaugmentation

    Science.gov (United States)

    Kovács, K. L.; Ács, N.; Kovács, E.; Wirth, R.; Rákhely, G.; Strang, Orsolya; Herbel, Zsófia; Bagi, Z.

    2013-01-01

    Biogas production technologies commonly involve the use of natural anaerobic consortia of microbes. The objective of this study was to elucidate the importance of hydrogen in this complex microbial food chain. Novel laboratory biogas reactor prototypes were designed and constructed. The fates of pure hydrogen-producing cultures of Caldicellulosiruptor saccharolyticus and Enterobacter cloacae were followed in time in thermophilic and mesophilic natural biogas-producing communities, respectively. Molecular biological techniques were applied to study the altered ecosystems. A systematic study in 5-litre CSTR digesters revealed that a key fermentation parameter in the maintenance of an altered population balance is the loading rate of total organic solids. Intensification of the biogas production was observed and the results corroborate that the enhanced biogas productivity is associated with the increased abundance of the hydrogen producers. Fermentation parameters did not indicate signs of failure in the biogas production process. Rational construction of more efficient and sustainable biogas-producing microbial consortia is proposed. PMID:23484123

  11. Challenges in biogas production

    DEFF Research Database (Denmark)

    Rennuit, Charlotte

    2017-01-01

    Anaerobic digestion (AnD) is a sustainable process combining waste treatment, nutrient recycling and energy production which can contribute to limit climate change and environmental problems. However, in order for this technique to be more widely used, production of biogas from available wastes...... from a mixture of pig manure and other waste materials by separating the solid fraction of digestate and recycling it back to the digester. It is shown that separation and recycling of the dry matter rich solid fraction could successfully increase biogas production and a preliminary economic evaluation...... showed a potential increase of 1.9 to 6.8€ per ton of biomass treated. In the second part of this study, a biological treatment to improve energy production from wastewater sludge was investigated. Wastewater sludge was subjected to thermophilic aerobic digestion (TAD) from 2h to 5d. Increase in biogas...

  12. Sicilian potential biogas production

    Directory of Open Access Journals (Sweden)

    Antonio Comparetti

    2013-09-01

    Full Text Available This study is aimed at predicting the Sicilian potential biogas production, using the Organic Fraction of Municipal Solid Waste (OFMSW, animal manure and food industry by-products, in a region where only one biogas plant using MSW and one co-digestion plant are nowadays available. The statistical data about OFMSW, the number of animals bred in medium and large farms and the amounts of by-products of food processing industries were evaluated, in order to compute the Sicilian potential biogas and energy production. The OFMSW produced in Sicily, that is 0.8 million tons ca. per year (37% of MSW, could be used in a bio-reactor, together with other raw materials, for Anaerobic Digestion (AD process, producing biogas and “digestate”. Moreover, 3.03 million tons ca. of manure, collected in medium and large animal husbandry farms (where cows, pigs and poultry are bred, and 350 thousand tons ca. of by-products, collected in food processing industries (pomace from olive oil mills and grape marc from wineries, might be used for AD process. The Sicilian potential biogas production from the AD of the above raw materials is 170.2 millions of m3, that is equal to 1023.4 GWh of energy per year, of which 484 GWh from animal manure, 303 GWh from OFMSW and 236.4 GWh from food industry by-products. The highest biogas production is in the province of Palermo (35.6 millions of m3, Ragusa (30.8 millions of m3 and Catania (22.8 millions of m3, having a potential energy production of 213.8, 185 and 137 GWh, respectively.

  13. Different organic loading rates on the biogas production during the anaerobic digestion of rice straw: A pilot study.

    Science.gov (United States)

    Zhou, Jun; Yang, Jun; Yu, Qing; Yong, Xiaoyu; Xie, Xinxin; Zhang, Lijuan; Wei, Ping; Jia, Honghua

    2017-11-01

    The aim of this work was to investigate the mesophilic methane fermentation of rice straw at different organic loading rates (OLRs) in a 300m 3 bioreactor. It was found that biogas production increased when the OLR was below 2.00kg VS substrate /(m 3 ·d). The average volumetric biogas production reached 0.86m 3 /(m 3 ·d) at an OLR of 2.00kg VS substrate /(m 3 ·d). Biogas production rate was 323m 3 /t dry rice straw over the whole process. The pH, chemical oxygen demand, volatile fatty acid, and NH 4 + -N concentrations were all in optimal range at different OLRs. High-throughput sequencing analysis indicated that Firmicutes, Fibrobacteres, and Spirochaetes predominated in straw samples. Chloroflexi, Proteobacteria, and Planctomycetes were more abundant in the slurry. The hydrogenotrophic pathway was the main biochemical pathway of methanogenesis in the reactor. This study provides new information regarding the OLR and the differences in the spatial distribution of specific microbiota in a rice straw biogas plant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Biogas production from water hyacinth (eichhornia crassipes)

    International Nuclear Information System (INIS)

    Solly, R.K.; Goundar, D.; Singh, N.; Singh, M.K.

    1981-01-01

    The formation of biogas by anaerobic digestion of water hyacinth (Eichhornia crassipes) has been investigated in simple laboratory digesters. Seed material was obtained from the rumen contents of a goat. Under conditions where the mass of seed material exceeded the water hyacinth feed, the maximum rate of biogas production was obtained within one to two days of each addition of feed material. The maximum amount of biogas produced, 0.33 m 3 kg -1 dry matter was obtained at 40 deg. C with a slight decrease in total production at 35 deg. C. The total biogas produced at 45 deg. C (0.12 m 3 kg -1 dry matter) was less than that at 30 deg. C (0.16 m 3 kg -1 ). Regular additions of small amounts of feed material produced a more uniform rate of biogas production (author)

  15. The Kinetic of Biogas Production Rate from Cattle Manure in Batch Mode

    OpenAIRE

    Budiyono; I N. Widiasa; S. Johari; Sunarso

    2010-01-01

    In this study, the kinetic of biogas production was studied by performing a series laboratory experiment using rumen fluid of animal ruminant as inoculums. Cattle manure as substrate was inoculated by rumen fluid to the anaerobic biodigester. Laboratory experiments using 400 ml biodigester were performed in batch operation mode. Given 100 grams of fresh cattle manure was fed to each biodigester and mixed with rumen fluid by manure : rumen weight ratio of 1:1 (MR11). The operating temperatures...

  16. Improvement of Biogas Production by Bioaugmentation

    Directory of Open Access Journals (Sweden)

    K. L. Kovács

    2013-01-01

    Full Text Available Biogas production technologies commonly involve the use of natural anaerobic consortia of microbes. The objective of this study was to elucidate the importance of hydrogen in this complex microbial food chain. Novel laboratory biogas reactor prototypes were designed and constructed. The fates of pure hydrogen-producing cultures of Caldicellulosiruptor saccharolyticus and Enterobacter cloacae were followed in time in thermophilic and mesophilic natural biogas-producing communities, respectively. Molecular biological techniques were applied to study the altered ecosystems. A systematic study in 5-litre CSTR digesters revealed that a key fermentation parameter in the maintenance of an altered population balance is the loading rate of total organic solids. Intensification of the biogas production was observed and the results corroborate that the enhanced biogas productivity is associated with the increased abundance of the hydrogen producers. Fermentation parameters did not indicate signs of failure in the biogas production process. Rational construction of more efficient and sustainable biogas-producing microbial consortia is proposed.

  17. biogas

    DEFF Research Database (Denmark)

    2015-01-01

    Functions for working with biogas data. Both low- and high-level functions are included for carrying out common tasks for analysis of biogas and related data. Molar mass and calculated oxygen demand (COD') can be determined from a chemical formula. Measured gas volume can be corrected for water...... vapor and to (possibly user-defined) standard temperature and pressure. Gas composition, cumulative production, or other variables can be interpolated to a specified time. Cumulative biogas and methane production (and rates) can be calculated using volumetric, manometric, or gravimetric methods for any...... be summarized in several different ways (e.g., omitting normalization) using the same function. Lastly, biogas and methane production can be predicted from substrate composition and additional, optional data....

  18. Biogas Production from Chicken Manure

    Directory of Open Access Journals (Sweden)

    Kenan Dalkılıç

    2013-11-01

    Full Text Available Traditionally, animal manures are burned for heating in Turkey. It is also used as soil conditioner which has adverse environmental effects. Although, the use of renewable energy sources in Turkey is very limited, the application studies on biogas production from animal manure are increasing. 25-30% of total animal manures produced in Turkey are composed of chicken manure. The works on biogas production from chicken manure are very limited in Turkey. In this paper, biogas production studies from chicken manure in Turkey and in the World are reviewed.

  19. Biotechnological intensification of biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Bagi, Z.; Acs, N.; Balint, B.; Horvath, L.; Dobo, K.; Perei, K.R.; Rakhely, G.; Kovacs, K.L. [Szeged Univ. (Hungary). Dept. of Biotechnology; Hungarian Academy of Sciences, Szeged (Hungary). Inst. of Biophysics

    2007-08-15

    The importance of syntrophic relationships among microorganisms participating in biogas formation has been emphasized, and the regulatory role of in situ hydrogen production has been recognized. It was assumed that the availability of hydrogen may be a limiting factor for hydrogenotrophic methanogens. This hypothesis was tested under laboratory and field conditions by adding a mesophilic (Enterobacter cloacae) or thermophilic hydrogen-producing (Caldicellulosyruptor saccharolyticus) strain to natural biogas-producing consortia. The substrates were waste water sludge, dried plant biomass from Jerusalem artichoke, and pig manure. In all cases, a significant intensification of biogas production was observed. The composition of the generated biogas did not noticeably change. In addition to being a good hydrogen producer, C. saccharolyticus has cellulolytic activity; hence, it is particularly suitable when cellulose-containing biomass is fermented. The process was tested in a 5-m{sup 3} thermophilic biogas digester using pig manure slurry as a substrate. Biogas formation increased at least 160-170% upon addition of the hydrogen-producing bacteria as compared to the biogas production of the spontaneously formed microbial consortium. Using the hydrogenase-minus control strain provided evidence that the observed enhancement was due to interspecies hydrogen transfer. The on-going presence of C. saccharolyticus was demonstrated after several months of semicontinuous operation. (orig.)

  20. BIOGAS PRODUCTION FROM CATCH CROPS

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Ahring, Birgitte Kiær

    2014-01-01

    -substrate in manure-based biogas plants and the profit obtained from the sale of biogas barely compensates for the harvest costs. A new agricultural strategy to harvest catch crops together with the residual straw of the main crop was investigated to increase the biomass and thereby the methane yield per hectare......Catch crop cultivation combined with its use for biogas production would increase renewable energy production in the form of methane, without interfering with the production of food and fodder crops. The low biomass yield of catch crops is the main limiting factor for using these crops as co...... biomass. Leaving the straw on the field until harvest of the catch crop in the autumn could benefit biogas production due to the organic matter degradation of the straw taking place on the field during the autumn months. This new agricultural strategy may be a good alternative to achieve economically...

  1. Effect of high-voltage pulsed electric field (HPEF pretreatment on biogas production rates of hybrid Pennisetum by anaerobic fermentation

    Directory of Open Access Journals (Sweden)

    Baijuan Wang

    2018-02-01

    Full Text Available In this paper, the raw materials of hybrid Pennisetum were pretreated in different conditions of high voltage pulsed electric field (HPEF to improve its material utilization ratios and biogas production rates of anaerobic fermentation. Then, anaerobic digestion experiments were conducted within 32 days at moderate temperature (35 °C with TS mass fraction (6%, inoculation rate (20% and initial pH (7.0. It is indicated that compared with the control group, 9 groups of hybrid Pennisetum pretreated by HPEF are obviously superior in gas production efficiency of anaerobic fermentation, and higher in cumulative gas production, peak daily gas production and maximum methane concentration; that the most remarkable stimulation occurs in the HPEF condition of 15 kV/120 Hz/60 min, in that situation, the cumulative gas production in the fermentation period of 32 days is up to 9587 mL, 26.95% higher than that of the control group, the peak daily gas production increases and the range of peak period extends. It is demonstrated that the optimal HPEF pretreatment time is 60 min and three HPEF parameters have a better effect on gas production in the order of voltage > time > frequency; and that the effect degree of treatment parameters on peak daily gas production is voltage, frequency and time in turn. It is concluded that HPEF can improve material utilization ratio and gas production rate of hybrid Pennisetum by anaerobic fermentation and shorten the gas production cycle. By virtue of this physical pretreatment method, the resource of Pennisetum is utilized sufficiently and the classes of energy plants are enlarged effectively. Keywords: Hybrid Pennisetum, Anaerobic fermentation, High voltage pulsed electric field (HPEF, Biogas, Material utilization ratio, Gas generation rate, Model, Stimulation

  2. The commercialization of biogas production

    International Nuclear Information System (INIS)

    Christensen, J.

    1992-01-01

    Currently there are ten large collective biogas plants and ten smaller farm plants operating in Denmark. During the last five years, biogas technology has undergone extensive technological development. The developmental process is supported by a public R and D programme and a follow-up programme for full-scale demonstration plants. Most plants still need considerable income increases before a final conclusion can be reached as to whether it is possible to achieve a profit from a corporate economic viewpoint. All plants have received investment grants. Gas production is in most cases reliable, especially due to the admixture of easily convertible organic waste as a supplement to the slurry supplies. Profitable collective biogas plants are within reach, even without investment grants. The total intake of biomass must be supplemented by 10 to 25 per cent easily convertible organic waste so that the minimum gas production reaches 30 to 35 m 3 per m 3 of biomass. Plants based solely on animal manure are not profitable. Energy from the biogas has to be sold at prices corresponding to consumer prices, which include Danish energy taxes. Collective biogas plants in Denmark appear to be approaching a commercial breakthrough. The concept of a collective biogas plant has been developed to address the energy-related, environmentally-related and agricultural problems. (AB)

  3. Ultrasound assisted biogas production from landfill leachate

    International Nuclear Information System (INIS)

    Oz, Nilgün Ayman; Yarimtepe, Canan Can

    2014-01-01

    Highlights: • Effect of low frequency ultrasound pretreatment on leachate was investigated. • Three different ultrasound energy inputs (200, 400 and 600 W/l) was applied. • Low-frequency ultrasound treatment increased soluble COD in landfill leachate. • Application of ultrasound to leachate increased biogas production about 40%. • Application of ultrasound to leachate increased total methane production rate about 20%. - Abstract: The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency

  4. Ultrasound assisted biogas production from landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Oz, Nilgün Ayman, E-mail: nilgunayman@comu.edu.tr; Yarimtepe, Canan Can

    2014-07-15

    Highlights: • Effect of low frequency ultrasound pretreatment on leachate was investigated. • Three different ultrasound energy inputs (200, 400 and 600 W/l) was applied. • Low-frequency ultrasound treatment increased soluble COD in landfill leachate. • Application of ultrasound to leachate increased biogas production about 40%. • Application of ultrasound to leachate increased total methane production rate about 20%. - Abstract: The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency

  5. Production of biogas from plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Zuer, J.

    1980-12-01

    Different crop residues from agriculture and horticulture were investigated for feasibility of producing biogas. The anaerobic fermentation has been performed in batch system fermentation reactors (5 liters) at mesophilic conditions (35 degrees C). Content of volatile solids (VS/TS) in raw materials varied from 78.5 percent in silage from top of sugar beet to 97.3 percent in straw of rye. The highest content of lignin was found in stalks of Jerusalem artichoke (49.6 percent), stalks of horse bean (47.6 percent) and the lowest in leaves of cauliflower (9.5 percent), top of sugar beet and leaves of cabbage (11 percent) in both. Ratio of carbon to nitrogen was the highest in the straw of rye (60) and the lowest in silage from top of sugar beet (11) and in leaves of cauliflower (11). Rate of biogas production during the first 13 days of fermentation was about 27 liters per kg TS per day, achieved from top of sugar beet. Typical mean rate of biogas production, about 9 liters per kg TS per day, was performed during the first 40 days of retention time from straw of wheat and stalks of rape. Top of sugar beet and manure slurry have had the shortest effective retention time ca 20 days. Maximum total yield of biogas (427.0 liters per kg TS) was achieved from top of sugar beet. From manure slurry 257.5 liters biogas per kg TS was obtained. Methane content in biogas produced during the final 7 days of retention time was the highest from silage from top of artichoke (72.8 percent), stalks of horse bean (71.6 percent) and straw of wheat (71.0 percent). The lowest percentage of methane (59.0 percent) was found in biogas from top of sugar beet.

  6. Biogas production from catch crops

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Ahring, Birgitte Kiær

    2013-01-01

    , being in the ranges of 1.4–3.0 t ha−1 and 0.3–1.7 t ha−1 for Holstebro and Aabenraa, respectively. Specific methane yields were in the range of 229–450 m3 t−1 of VS. Methane yields per hectare of up to 800 m3 ha−1 were obtained, making catch crops a promising source of feedstock for manure-based biogas......Manure-based biogas plants in Denmark are dependent on high yielding biomass feedstock in order to secure economically feasible operation. The aim of this study was to investigate the potential of ten different catch crop species or mixtures as feedstock for biogas production in co...

  7. Effect of abdominal waste on biogas production from cow dung ...

    African Journals Online (AJOL)

    Studies have been carried out on the production of biogas from mixture of cow abdominal waste and its dung. The rate of biogas production and cumulative volume of the gas produced was compared with that of pure cow dung under the same experimental conditions. The result shows that the mixture of the cow abdominal ...

  8. Biogas Production: Microbiology and Technology.

    Science.gov (United States)

    Schnürer, Anna

    Biogas, containing energy-rich methane, is produced by microbial decomposition of organic material under anaerobic conditions. Under controlled conditions, this process can be used for the production of energy and a nutrient-rich residue suitable for use as a fertilising agent. The biogas can be used for production of heat, electricity or vehicle fuel. Different substrates can be used in the process and, depending on substrate character, various reactor technologies are available. The microbiological process leading to methane production is complex and involves many different types of microorganisms, often operating in close relationships because of the limited amount of energy available for growth. The microbial community structure is shaped by the incoming material, but also by operating parameters such as process temperature. Factors leading to an imbalance in the microbial community can result in process instability or even complete process failure. To ensure stable operation, different key parameters, such as levels of degradation intermediates and gas quality, are often monitored. Despite the fact that the anaerobic digestion process has long been used for industrial production of biogas, many questions need still to be resolved to achieve optimal management and gas yields and to exploit the great energy and nutrient potential available in waste material. This chapter discusses the different aspects that need to be taken into consideration to achieve optimal degradation and gas production, with particular focus on operation management and microbiology.

  9. An evaluation of biogas production from anaerobic digester of a ...

    African Journals Online (AJOL)

    Ezekiel Adeniran

    2015-09-15

    Sep 15, 2015 ... average rate of production of biogas was found to be 641.83±88.26 m3/day. ... Key words: Anaerobic digester, biogas, constructed wetland, domestic sewage, ... of diseases and odour, when discharged in water bodies.

  10. Recent updates on biogas production - a review

    Directory of Open Access Journals (Sweden)

    Ilona Sárvári Horváth

    2016-06-01

    Full Text Available One of the greatest challenges facing the societies now and in the future is the reduction of green house gas emissions and thus preventing the climate change. It is therefore important to replace fossil fuels with renewable sources, such as biogas. Biogas can be produced from various organic waste streams or as a byproduct from industrial processes. Beside energy production, the degradation of organic waste through anaerobic digestion offers other advantages, such as the prevention of odor release and the decrease of pathogens. Moreover, the nutrient rich digested residues can be utilized as fertilizer for recycling the nutrients back to the fields. However, the amount of organic materials currently available for biogas production is limited and new substrates as well as new effective technologies are therefore needed to facilitate the growth of the biogas industry all over the world. Hence, major developments have been made during the last decades regarding the utilization of lignocellulosic biomass, the development of high rate systems, and the application of membrane technologies within the anaerobic digestion process in order to overcome the shortcomings encountered. The degradation of organic material requires a synchronized action of different groups of microorganisms with different metabolic capacities. Recent developments in molecular biology techniques have provided the research community with a valuable tool for improved understanding of this complex microbiological system, which in turn could help optimize and control the process in an effective way in the future.

  11. THE ECONOMICS OF BIOGAS PRODUCTION

    Directory of Open Access Journals (Sweden)

    Kh. S. Karimov

    2013-11-01

    Full Text Available ABSTRACT: In this paper life-cycle cost analysis of three biogas digesters is presented. Results show that the cost of biogas depends on the construction of digesters, sizes of methane tank and possibility of heating of the slurry. Biogas and natural gas costs calaculated are observed and found to be comparable. It is recommended that the biogas digesters can be constructed and installed, in principle, for every family and there is no need to built long gas pipe lines. ABSTRAK: Kertaskerja ini membentangkan analisis kos kitar hayat tiga pencerna biogas. Keputusan menunjukkan kos biogas bergantung kepada pembinaan pencerna, saiz tangki metana dan kemungkinan pemanasan buburan. Pengiraan kos biogas dan gas asli diambil kira dan ianya didapati setanding. Adalah disarankan pencerna biogas boleh dibina dan dipasang secara teorinya, bagi setiap keluarga tanpa memerlukan pembinaan paip gas yang panjang.

  12. Influence of biogas flow rate on biomass composition during the optimization of biogas upgrading in microalgal-bacterial processes.

    Science.gov (United States)

    Serejo, Mayara L; Posadas, Esther; Boncz, Marc A; Blanco, Saúl; García-Encina, Pedro; Muñoz, Raúl

    2015-03-03

    The influence of biogas flow rate (0, 0.3, 0.6, and 1.2 m(3) m(-2) h(-1)) on the elemental and macromolecular composition of the algal-bacterial biomass produced from biogas upgrading in a 180 L photobioreactor interconnected to a 2.5 L external bubbled absorption column was investigated using diluted anaerobically digested vinasse as cultivation medium. The influence of the external liquid recirculation/biogas ratio (0.5 biogas, was also evaluated. A L/G ratio of 10 was considered optimum to support CO2 and H2S removals of 80% and 100%, respectively, at all biogas flow rates tested. Biomass productivity increased at increasing biogas flow rate, with a maximum of 12 ± 1 g m(-2) d(-1) at 1.2 m(3) m(-2) h(-1), while the C, N, and P biomass content remained constant at 49 ± 2%, 9 ± 0%, and 1 ± 0%, respectively, over the 175 days of experimentation. The high carbohydrate contents (60-76%), inversely correlated to biogas flow rates, would allow the production of ≈100 L of ethanol per 1000 m(3) of biogas upgraded under a biorefinery process approach.

  13. Performance optimization of the Växtkraft biogas production plant

    International Nuclear Information System (INIS)

    Thorin, Eva; Lindmark, Johan; Nordlander, Eva; Odlare, Monica; Dahlquist, Erik; Kastensson, Jan; Leksell, Niklas; Pettersson, Carl-Magnus

    2012-01-01

    Highlights: ► Pre-treatment of ley crop can increase the biogas plant performance. ► Membrane filtration can increase the capacity of the biogas plant. ► Mechanical pre-treatment of the ley crop shows the highest energy efficiency. ► Using a distributor to spread the residues as fertilizer show promising results. -- Abstract: All over the world there is a strong interest and also potential for biogas production from organic residues as well as from different crops. However, to be commercially competitive with other types of fuels, efficiency improvements of the biogas production process are needed. In this paper, results of improvements studies done on a full scale co-digestion plant are presented. In the plant organic wastes from households and restaurants are mixed and digested with crops from pasture land. The areas for improvement of the plant addressed in this paper are treatment of the feed material to enhance the digestion rate, limitation of the ballast of organics in the water stream recirculated in the process, and use of the biogas plant residues at farms. Results from previous studies on pre-treatment and membrane filtration of recirculated process water are combined for an estimation of the total improvement potential. Further, the possibility of using neural networks to predict biogas production using historical data from the full-scale biogas plant was investigated. Results from an investigation using the process residues as fertilizer are also presented. The results indicate a potential to increase the biogas yield from the process with up to over 30% with pre-treatment of the feed and including membrane filtration in the process. Neural networks have the potential to be used for prediction of biogas production. Further, it is shown that the residues from biogas production can be used as fertilizers but that the emission of N 2 O from the fertilized soil is dependent on the soil type and spreading technology.

  14. Method for anaerobic fermentation and biogas production

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a method for biomass processing, anaerobic fermentation of the processed biomass, and the production biogas. In particular, the invention relates to a system and method for generating biogas from anaerobic fermentation of processed organic material that comprises...

  15. Forecasting the potential of Danish biogas production

    DEFF Research Database (Denmark)

    Bojesen, Mikkel; Skov-Petersen, Hans; Gylling, Morten

    , except for those farms which are in the largest state class. Regional differences in development trends were documented. The strategic objective of the model is to provide data for the spatial assessment of the potential of biogas production which can form the basis for a location analysis for future...... biogas plants....

  16. A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater

    International Nuclear Information System (INIS)

    Turkdogan-Aydinol, F. Ilter; Yetilmezsoy, Kaan

    2010-01-01

    A MIMO (multiple inputs and multiple outputs) fuzzy-logic-based model was developed to predict biogas and methane production rates in a pilot-scale 90-L mesophilic up-flow anaerobic sludge blanket (UASB) reactor treating molasses wastewater. Five input variables such as volumetric organic loading rate (OLR), volumetric total chemical oxygen demand (TCOD) removal rate (R V ), influent alkalinity, influent pH and effluent pH were fuzzified by the use of an artificial intelligence-based approach. Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 134 rules in the IF-THEN format. The product (prod) and the centre of gravity (COG, centroid) methods were employed as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two exponential non-linear regression models derived in this study. The UASB reactor showed a remarkable performance on the treatment of molasses wastewater, with an average TCOD removal efficiency of 93 (±3)% and an average volumetric TCOD removal rate of 6.87 (±3.93) kg TCOD removed /m 3 -day, respectively. Findings of this study clearly indicated that, compared to non-linear regression models, the proposed MIMO fuzzy-logic-based model produced smaller deviations and exhibited a superior predictive performance on forecasting of both biogas and methane production rates with satisfactory determination coefficients over 0.98.

  17. High-temperature pretreatment of biogas substrate by using district heating to increase the biogas production; Hoegtemperaturfoerbehandling av biogassubstrat med fjaerrvaerme foer oekad biogasproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Del Pilar Castillo, Maria; Ascue, Johnny [JTI, Uppsala (Sweden); Olsson, Marcus; Henriksson, Gunilla; Nordman, Roger [SP, Boraas (Sweden)

    2011-12-15

    In this study, we have shown that pre-heating sludge from a waste water treatment plant can give a higher biogas production rate. However, pretreatment showed no effect on substrate from a biogas plant at the conditions tested in this study. The study has also shown that there is potential of using district heating in the biogas industry for thermal pretreatment of sludge.

  18. Optimization of biogas production from manure

    DEFF Research Database (Denmark)

    Kaparaju, Prasad Laxmi-Narasimha; Boe, Kanokwan; Buendia, Inmaculada M.

    -scale studies showed that serial digestion with 77/23% volume distribution produced 1.9-6.1% more biogas compared to that obtained during one-step CSTR operation. However, temperature was found to have a strong influence on the methane production and process performance of the second reactor of a serial CSTR......The main objective of the project was to improve biogas production from manures. This objective was addressed by investigating 1) the effect of different reactor configurations, 2) operational procedures, aiming to selectively retain/return degradable material in the reactor and 3) different...... process at 90/10, 80/20, 70/30, 50/50 or 30/70% volume distribution could produce 11-17.8% more biogas compared to single CSTR process under similar operating conditions. The increased biogas production was mainly from the second reactor of the serial process, which accounted for 16-18% of the total...

  19. CO2 balance in production of energy based on biogas

    DEFF Research Database (Denmark)

    Nielsen, Per Sieverts; Holm-Nielsen, J.B.

    1997-01-01

    Biogas is an essential biomass source for achieving a reduction of CO2 emission by 50% in year 2030 in Denmark. The physical potential for biogas production in Denmark is more than 10 times the present biogas production in Denmark. In Denmark the largest part of the biogas production is produced...... of increased transportation distances at large biogas plants on the total CO2 balance of the biogas plant. The advantage of constructing large biogas plants is the cost-effective possibility of using industrial organic waste to increase biogas production. In some cases co-fermentation increases biogas...... production up 100%. The present study evaluate optimal transportation strategies for biogas plants taking CO2 balances into account....

  20. Continuous dry fermentation of swine manure for biogas production.

    Science.gov (United States)

    Chen, Chuang; Zheng, Dan; Liu, Gang-Jin; Deng, Liang-Wei; Long, Yan; Fan, Zhan-Hui

    2015-04-01

    A down plug-flow anaerobic reactor (DPAR) was designed for the feasibility study on continuous dry fermentation of swine manure without any additional stirring. Using fresh swine manure as the feedstock with TS concentration (w/w) of 20%, 25%, 30%, and 35%, stable volumetric biogas production rates of 2.40, 1.92, 0.911, and 0.644L · (Ld)(-1) and biogas yields of 0.665, 0.532, 0.252, and 0.178 L g(-)(1)VS were obtained respectively, and the TS degradation rates were 46.5%, 45.4%, 53.2%, and 55.6%, respectively. With the increase of feedstock TS concentration, the concentration of ammonia nitrogen grew up to the maximum value of 3500 mg L(-1). Biogas production was obviously inhibited when the concentration of ammonia nitrogen was above 3000 mg L(-1). The maximal volumetric biogas production rate of 2.34 L ·(Ld)(-1) and biogas yield of 0.649 L g(-1)VS were obtained with TS concentration of 25% at 25°C without inhibition. Liquidity experiments showed that TS concentration of digestate could be less than 15.8%, and the flow rate of digestate more than 0.98 m s(-1) when the feedstock TS concentration was less than 35%, which indicated the digestate could be easily discharged from a DPAR. Therefore, it is feasible to conduct a continuous dry fermentation in a DPAR using fresh swine manure as the feedstock with TS concentration less than 35%, whereas the feedstock TS concentration should not exceed 30% to achieve the maximal biogas production rate and biogas yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Innovative pretreatment strategies for biogas production.

    Science.gov (United States)

    Patinvoh, Regina J; Osadolor, Osagie A; Chandolias, Konstantinos; Sárvári Horváth, Ilona; Taherzadeh, Mohammad J

    2017-01-01

    Biogas or biomethane is traditionally produced via anaerobic digestion, or recently by thermochemical or a combination of thermochemical and biological processes via syngas (CO and H 2 ) fermentation. However, many of the feedstocks have recalcitrant structure and are difficult to digest (e.g., lignocelluloses or keratins), or they have toxic compounds (such as fruit flavors or high ammonia content), or not digestible at all (e.g., plastics). To overcome these challenges, innovative strategies for enhanced and economically favorable biogas production were proposed in this review. The strategies considered are commonly known physical pretreatment, rapid decompression, autohydrolysis, acid- or alkali pretreatments, solvents (e.g. for lignin or cellulose) pretreatments or leaching, supercritical, oxidative or biological pretreatments, as well as combined gasification and fermentation, integrated biogas production and pretreatment, innovative biogas digester design, co-digestion, and bio-augmentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Turkdogan-Aydinol, F. Ilter, E-mail: aydin@yildiz.edu.tr [Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, 34220 Davutpasa, Esenler, Istanbul (Turkey); Yetilmezsoy, Kaan, E-mail: yetilmez@yildiz.edu.tr [Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, 34220 Davutpasa, Esenler, Istanbul (Turkey)

    2010-10-15

    A MIMO (multiple inputs and multiple outputs) fuzzy-logic-based model was developed to predict biogas and methane production rates in a pilot-scale 90-L mesophilic up-flow anaerobic sludge blanket (UASB) reactor treating molasses wastewater. Five input variables such as volumetric organic loading rate (OLR), volumetric total chemical oxygen demand (TCOD) removal rate (R{sub V}), influent alkalinity, influent pH and effluent pH were fuzzified by the use of an artificial intelligence-based approach. Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 134 rules in the IF-THEN format. The product (prod) and the centre of gravity (COG, centroid) methods were employed as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two exponential non-linear regression models derived in this study. The UASB reactor showed a remarkable performance on the treatment of molasses wastewater, with an average TCOD removal efficiency of 93 ({+-}3)% and an average volumetric TCOD removal rate of 6.87 ({+-}3.93) kg TCOD{sub removed}/m{sup 3}-day, respectively. Findings of this study clearly indicated that, compared to non-linear regression models, the proposed MIMO fuzzy-logic-based model produced smaller deviations and exhibited a superior predictive performance on forecasting of both biogas and methane production rates with satisfactory determination coefficients over 0.98.

  3. Continuous dry fermentation of swine manure for biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chuang; Zheng, Dan [Biogas Institute of Ministry of Agriculture, Chengdu 610041 (China); Liu, Gang–Jin [Biogas Institute of Ministry of Agriculture, Chengdu 610041 (China); Bioprocess Control AB, Scheelevägen 22, 223 63 Lund (Sweden); Deng, Liang–Wei, E-mail: dengliangwei@caas.cn [Biogas Institute of Ministry of Agriculture, Chengdu 610041 (China); Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Chengdu 610041 (China); Southwest Collaborative Innovation Center of Swine for Quality & Safety, Chengdu 611130 (China); Long, Yan; Fan, Zhan–Hui [Biogas Institute of Ministry of Agriculture, Chengdu 610041 (China)

    2015-04-15

    Highlights: • Continuous dry fermentation of swine manure for biogas production is feasible. • The feedstock TS concentration exerted a significant impact on biogas production. • Influences of ammonia and digestate liquidity were investigated in this study. • The results showed that the feedstock TS of swine manure should not exceed 30%. - Abstract: A down plug-flow anaerobic reactor (DPAR) was designed for the feasibility study on continuous dry fermentation of swine manure without any additional stirring. Using fresh swine manure as the feedstock with TS concentration (w/w) of 20%, 25%, 30%, and 35%, stable volumetric biogas production rates of 2.40, 1.92, 0.911, and 0.644 L·(L d){sup −1} and biogas yields of 0.665, 0.532, 0.252, and 0.178 L g{sup −1}VS were obtained respectively, and the TS degradation rates were 46.5%, 45.4%, 53.2%, and 55.6%, respectively. With the increase of feedstock TS concentration, the concentration of ammonia nitrogen grew up to the maximum value of 3500 mg L{sup −1}. Biogas production was obviously inhibited when the concentration of ammonia nitrogen was above 3000 mg L{sup −1}. The maximal volumetric biogas production rate of 2.34 L·(L d){sup −1} and biogas yield of 0.649 L g{sup −1}VS were obtained with TS concentration of 25% at 25 °C without inhibition. Liquidity experiments showed that TS concentration of digestate could be less than 15.8%, and the flow rate of digestate more than 0.98 m s{sup −1} when the feedstock TS concentration was less than 35%, which indicated the digestate could be easily discharged from a DPAR. Therefore, it is feasible to conduct a continuous dry fermentation in a DPAR using fresh swine manure as the feedstock with TS concentration less than 35%, whereas the feedstock TS concentration should not exceed 30% to achieve the maximal biogas production rate and biogas yield.

  4. Continuous dry fermentation of swine manure for biogas production

    International Nuclear Information System (INIS)

    Chen, Chuang; Zheng, Dan; Liu, Gang–Jin; Deng, Liang–Wei; Long, Yan; Fan, Zhan–Hui

    2015-01-01

    Highlights: • Continuous dry fermentation of swine manure for biogas production is feasible. • The feedstock TS concentration exerted a significant impact on biogas production. • Influences of ammonia and digestate liquidity were investigated in this study. • The results showed that the feedstock TS of swine manure should not exceed 30%. - Abstract: A down plug-flow anaerobic reactor (DPAR) was designed for the feasibility study on continuous dry fermentation of swine manure without any additional stirring. Using fresh swine manure as the feedstock with TS concentration (w/w) of 20%, 25%, 30%, and 35%, stable volumetric biogas production rates of 2.40, 1.92, 0.911, and 0.644 L·(L d) −1 and biogas yields of 0.665, 0.532, 0.252, and 0.178 L g −1 VS were obtained respectively, and the TS degradation rates were 46.5%, 45.4%, 53.2%, and 55.6%, respectively. With the increase of feedstock TS concentration, the concentration of ammonia nitrogen grew up to the maximum value of 3500 mg L −1 . Biogas production was obviously inhibited when the concentration of ammonia nitrogen was above 3000 mg L −1 . The maximal volumetric biogas production rate of 2.34 L·(L d) −1 and biogas yield of 0.649 L g −1 VS were obtained with TS concentration of 25% at 25 °C without inhibition. Liquidity experiments showed that TS concentration of digestate could be less than 15.8%, and the flow rate of digestate more than 0.98 m s −1 when the feedstock TS concentration was less than 35%, which indicated the digestate could be easily discharged from a DPAR. Therefore, it is feasible to conduct a continuous dry fermentation in a DPAR using fresh swine manure as the feedstock with TS concentration less than 35%, whereas the feedstock TS concentration should not exceed 30% to achieve the maximal biogas production rate and biogas yield

  5. Biogas production from solid pineapple waste

    Energy Technology Data Exchange (ETDEWEB)

    Tanticharoen, M.; Bhumiratana, S.; Tientanacom, S.; Pengsobha, L.

    1984-01-01

    Solid pineapple waste composed of shell and core was used as substrate in anaerobic fermentation producing CH4. The experiments were carried out using four 30-L vessels and no mixing, a 200-L plug-flow reactor, and a 5-cubic m stirred tank. Because of high acidity of the substrate, the loading rate is as low as 2.5 g dry solid added/L-day. The average gas yield is 0.3-0.5 L/g dry substrate. A pretreatment of wet solid with sludge effluent prior loading to the digester resulted in better stability of the biodigester than without pretreatment. These studies showed that loading rate can be much higher than those previously used. The 2-stage process was tested to determine a conversion efficiency of high loading and at much shorter reactor retention times. The results of the entire program indicated that biogas production from cannery pineapple waste is technically feasible.

  6. Sustainable Biomass Resources for Biogas Production

    DEFF Research Database (Denmark)

    Meyer, Ane Katharina Paarup

    The aim of this thesis was to identify and map sustainable biomass resources, which can be utilised for biogas production with minimal negative impacts on the environment, nature and climate. Furthermore, the aim of this thesis was to assess the resource potential and feasibility of utilising...... such biomasses in the biogas sector. Sustainability in the use of biomass feedstock for energy production is of key importance for a stable future food and energy supply, and for the functionality of the Earths ecosystems. A range of biomass resources were assessed in respect to sustainability, availability...... from 39.3-66.9 Mtoe, depending on the availability of the residues. Grass from roadside verges and meadow habitats in Denmark represent two currently unutilised sources. If utilised in the Danish biogas sector, the results showed that the resources represent a net energy potential of 60,000 -122,000 GJ...

  7. Biogas Production Resources in Lithuania and Prospects of their Utilisation

    International Nuclear Information System (INIS)

    Vrubliauskas, S.

    1995-01-01

    The biogas production resources in Lithuania and their structure have been ascertained. The total technical potential of biogas production has been calculated to make 639 million m 3 per year (4080 GWh). The biogas production feasibilities in the country have been estimated. (author). 3 refs., 3 tabs., 2 figs

  8. Study of Biogas Production from Cassava Industrial Waste by Anaerobic Process

    Directory of Open Access Journals (Sweden)

    Budiyono

    2018-01-01

    Full Text Available Biogas production processes from tapioca wastewater have several problems that cause the biogas production is not optimal, such as pH drop at beginning of the process because the rate of acid formation is too fast and the rate of starch wastewater degradation is too slow. Therefore, to obtain optimal biogas production it is required two-stage reactor. The purposes of this research were to (i study the influence of one stage fermentation and two stage fermentation on biogas production, (ii study the effect of buffer Na2CO3 on biogas production, and (iii study the effect of methanogenic bacteria concentration on biogas production from cassava starch effluent. The first method of our research was hydrolysis process by “Saccharomyces cereviceae” as substrate activator. The second is the arrangement of pH and the last is process of methane production. The results showed that the highest biogas production is achieved at concentration of methanogenic bacteria 20% (v/v that is equal to 2458 ml. At concentration of 8% (v/v and 15% (v/v, biogas production was 2105 ml and 2117 ml. The addition of Na2CO3 can extend to 16 days with accumulation of 372 ml. While without the addition of buffer, biogas production period was only 9 days with accumulation of 620 ml. In semi continuous process, the analysis carried out every 3 days. Highest biogas production achieved in the variable addition of yeast with the accumulation 9329 ml. Without yeast, accumulation of biogas was 6831 ml. Yeast is use as substrate activator so it can accelerate the hydrolysis process and increased biogas production. The addition of Na2CO3 is increase the alkalinity so the pH drop did not occur early in the process.

  9. Kinetics studies of fungal biogas production from certain agricultural ...

    African Journals Online (AJOL)

    Anaerobic degradation of sugar cane and rice husk by cellulolytic fungus was studied respectively at optimum operational condition of concentration, 1:5 w/v of the lignocelluloses: water and temperature of 33oC. The average rates of biogas production determined for sugar cane and rice husk were 57cm3per day and ...

  10. Macro algae as substrate for biogas production

    DEFF Research Database (Denmark)

    Møller, Henrik; Sarker, Shiplu; Gautam, Dhan Prasad

    Algae as a substrate for biogas is superior to other crops since it has a much higher yield of biomass per unit area and since algae grows in the seawater there will be no competition with food production on agricultural lands. So far, the progress in treating different groups of algae as a source...... of energy is promising. In this study 5 different algae types were tested for biogas potential and two algae were subsequent used for co-digestion with manure. Green seaweed, Ulva lactuca and brown seaweed Laminaria digitata was co-digested with cattle manure at mesophilic and thermophilic condition...

  11. The progress and prospects of rural biogas production in China

    International Nuclear Information System (INIS)

    Chen, Ling; Zhao, Lixin; Ren, Changshan; Wang, Fei

    2012-01-01

    Biogas production is an important aspect of China's energy strategy. After decades’ application and research, China biogas has achieved considerable accomplishments. This study presents the progress and prospect of biogas technologies and industry in China. Two biogas patterns exist in China, that is, household-scaled digester for scattered farmers and biogas plant for centralized biogas production. Household-scaled digester which is simple and practical has been widely used and fully developed. Biogas plants have being sprung up with different materials, process and biogas utilization technologies. By the end of 2010, 38.51 million household-scaled digesters, and 27,436 large- and medium-scaled biogas plants for agricultural wastes were built. The calculation result of biogas potential from agricultural wastes shows that those used raw materials account for only 1.90% of the total availability. Chinese government promulgated several laws and policies, and gave financial supports to promote the development of biogas. However, some problems such as inferior equipment technology, imperfect policy incentive hamper its wide application and promotion. With the rapid development of economy and the improvement of rural living condition, China biogas industry is expected to advance toward orientation of scalization, industrialization and commercialization. - Highlights: ► Developing progress of biogas production in China is evaluated comprehensively. ► Status of biogas industrialization is estimated. ► New problems which occurred during rural biogas construction were analyzed. ► Biogas production potentials from agricultural wastes in China were calculated. ► Prospect of China rural biogas is expected.

  12. Biogas production and biogas as vehicle fuel - Swedish experiences

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, A E [VBB Viak AB, Stockholm (Sweden)

    1997-08-01

    In Sweden there are totally about 220 biogas plants in operation. The major part of these plants (134) are represented by sewage sludge treatment facilities at waste water treatment plants. At 60 sites the biogas is generated from landfills or cell digesters at landfills. In 1996, the amount produced had a total energy content of about 1,35 TWh (or 4 900 PJ). (EG)

  13. Investigation of thermal integration between biogas production and upgrading

    International Nuclear Information System (INIS)

    Zhang, Xiaojing; Yan, Jinying; Li, Hailong; Chekani, Shabnam; Liu, Loncheng

    2015-01-01

    Highlights: • Identify thermal characteristics of amine-based biogas upgrading for waste heat recovery. • Identify thermal characteristics of AD biogas production as sink for heat recovery. • Evaluation of thermal integration between biogas production and upgrading to improve overall energy efficiency. • Cost analysis applied for the economic feasibility of the thermal integration. • Using the principles of target design and system integration for connected thermal processes. - Abstract: Thermal integration of anaerobic digestion (AD) biogas production with amine-based chemical absorption biogas upgrading has been studied to improve the overall efficiency of the intergraded system. The thermal characteristics have been investigated for industrial AD raw biogas production and amine-based chemical absorption biogas upgrading. The investigation provides a basic understanding for the possibilities of energy saving through thermal integration. The thermal integration is carried out through well-defined cases based on the thermal characteristics of the biogas production and the biogas upgrading. The following factors are taken into account in the case study: thermal conditions of sub-systems, material and energy balances, cost issues and main benefits. The potential of heat recovery has been evaluated to utilise the waste heat from amine-based upgrading process for the use in the AD biogas production. The results show that the thermal integration has positive effects on improving the overall energy efficiency of the integrated biogas plant. Cost analysis shows that the thermal integration is economically feasible

  14. Demand-driven biogas production in anaerobic filters

    International Nuclear Information System (INIS)

    Lemmer, Andreas; Krümpel, Johannes

    2017-01-01

    Highlights: • Feasibility of demand-driven biogas production in anaerobic filters demonstrated. • Predictable ramping up of gas production by 300–400% within one hour. • Degradation degree remained stable >92% for all substrates and operation modes. • Measure of responsiveness to sudden changes in organic loading rate introduced. • Carbon balance for demand-driven operation. - Abstract: The growth in electricity generated from renewable energy sources is posing challenges for grid stability and the need to counter balance the intermittent power supply by these sources. Biogas technology can offer such grid services by adapting biogas production to balance the demand and subsequent electricity production of the combined heat and power unit. Innovative plant designs, such as two-staged anaerobic digestion, could possibly adapt to imbalances in the electricity grid within shorter time frames than traditional continuously stirred tank reactors (CSTR). The scope of this research paper was to demonstrate the feasibility of operating an anaerobic filter for highly flexible gas production. The repeatability of this type of operation was examined to demonstrate its predictability. Based on gas production profiles, a measure of responsiveness was introduced to determine whether and how rapidly adaptations to the production process are possible. Furthermore, the influence of substrate composition was tested and finally a carbon balance was derived to evaluate operation performance. The results indicated that anaerobic filters are well suited for flexible gas production and the results were well reproduced under the conditions presented. Substrate composition was found to have no effect on increasing the rate of methane production. The pH value in the reactor did have an effect on the solubility of CO_2 and HCO_3"− and therefore marked an important parameter that determines biogas composition, especially under varying organic loading rates. The carbon balance had

  15. Biogas production potential of sericulture waste

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekaran, P

    1986-12-01

    A feasibility study was carried out in the laboratory to investigate the potentiality of silkworm larval litter alone or in combination with cattle manure as a feedstock material for biogas production. The maximum total gas output of 9556 ml over a six week batch digestion was observed in the silkworm larval litter alone treatment. However, maximum gas output of 2450 ml/g of total solids (TS) destroyed was obtained in the Cowdung biodigested along with silkworm larval litter. The percentage destruction (57.76 TS) and volatile solids (VS 79.5) were observed maximum in the silkworm larval litter alone treatment. The distribution of various physiological groups of organisms involved in this process were discussed. Experimental evidence suggests the possible utilization of silkworm larval litter for biogas production along with cattle manure. 16 references, 2 tables.

  16. Perspectives on Spatial Decision Support Concerning Location of Biogas Production

    DEFF Research Database (Denmark)

    Bojesen, Mikkel

    in biogas production. This ambition requires that more than 20 new large scale centralised biogas plants are built. The location of these plants is associated with a number of externalities and uncertainties and the existing biogas sector struggles to establish itself as a viable energy producing sector....... Meanwhile planners and decision makers struggle to find sustainable locations that comprehensively balance the multiple concerns the location of biogas facilities includes. This PhD project examines how spatial decision support models can be used to ensure sustainable locations of future biogas plants......, understand the industrial economic aspects of such a role. Through the use of spatial multi-criteria evaluation models stakeholder preferences to decision criteria are included in a sustainable biogas facility location analysis. By the use of these models it is demonstrated how overall biogas production...

  17. Closing CO2 Loop in Biogas Production: Recycling Ammonia As Fertilizer.

    Science.gov (United States)

    He, Qingyao; Yu, Ge; Tu, Te; Yan, Shuiping; Zhang, Yanlin; Zhao, Shuaifei

    2017-08-01

    We propose and demonstrate a novel system for simultaneous ammonia recovery, carbon capture, biogas upgrading, and fertilizer production in biogas production. Biogas slurry pretreatment (adjusting the solution pH, turbidity, and chemical oxygen demand) plays an important role in the system as it significantly affects the performance of ammonia recovery. Vacuum membrane distillation is used to recover ammonia from biogas slurry at various conditions. The ammonia removal efficiency in vacuum membrane distillation is around 75% regardless of the ammonia concentration of the biogas slurry. The recovered ammonia is used for CO 2 absorption to realize simultaneous biogas upgrading and fertilizer generation. CO 2 absorption performance of the recovered ammonia (absorption capacity and rate) is compared with a conventional model absorbent. Theoretical results on biogas upgrading are also provided. After ammonia recovery, the treated biogas slurry has significantly reduced phytotoxicity, improving the applicability for agricultural irrigation. The novel concept demonstrated in this study shows great potential in closing the CO 2 loop in biogas production by recycling ammonia as an absorbent for CO 2 absorption associated with producing fertilizers.

  18. A Technological Overview of Biogas Production from Biowaste

    Directory of Open Access Journals (Sweden)

    Spyridon Achinas

    2017-06-01

    Full Text Available The current irrational use of fossil fuels and the impact of greenhouse gases on the environment are driving research into renewable energy production from organic resources and waste. The global energy demand is high, and most of this energy is produced from fossil resources. Recent studies report that anaerobic digestion (AD is an efficient alternative technology that combines biofuel production with sustainable waste management, and various technological trends exist in the biogas industry that enhance the production and quality of biogas. Further investments in AD are expected to meet with increasing success due to the low cost of available feedstocks and the wide range of uses for biogas (i.e., for heating, electricity, and fuel. Biogas production is growing in the European energy market and offers an economical alternative for bioenergy production. The objective of this work is to provide an overview of biogas production from lignocellulosic waste, thus providing information toward crucial issues in the biogas economy.

  19. Sustainable dairy manure-based biogas? : A perspective from the combined biogas and agricultural production system

    NARCIS (Netherlands)

    Hoang, Dieu Linh; Davis, Christopher Bryan; Nonhebel, Sanderine

    2017-01-01

    Dairy manure-based biogas, an emerging source of renewable energy, is a result of a recycling process which often leads to the thought that manure production is the beginning of this biogas supply chain by energy producers. However, dairy manure is only a byproduct of an agricultural system whose

  20. Biogas generation in landfills. Equilibria, rates and yields

    Energy Technology Data Exchange (ETDEWEB)

    Aakesson, M

    1997-05-01

    Landfilling in `cells` has become more common in recent years. Different waste streams are guided to different cells, among which the biocell is a landfill designed for biogas production. In this thesis, the dependence of biogas generation on waste composition was investigated. Six 8,000 m{sup 3} test cells, with contents ranging from mainly commercial waste to pure domestic waste and equipped with gas extraction systems and bottom plastic liners, were monitored for seven years. Great emphasis was given to the characterization of conversion processes and governing mechanism in the topics of bio-energetics, kinetics and capacities. A thermodynamic model, in which the oxidations of volatile fatty acids (VFA) (2production rates and internal conditions observed during a two year period, demonstrated that high biogas rates corresponded with low VFA levels. To explain the discrepancies between theoretical methane potentials and quantified yields (in this study found to be 150-200 and 40-70 Nm{sup 3}/dry tonne, respectively), the possible nutritional limitation was investigated. Pools and emissions of chemical oxygen demand, N, P and K were quantified. Biomass pools were estimated from methane yields, growth yield coefficients, and bacterial mineral contents. However, results from commercial waste test cells showed that the assimilation of P exceeded the refuse content, which suggests the turnover of microbial biomass and questions the notion of nutritional limitation. In sum, the results showed that the advantages of a reduced content of readily biodegradable material, achieved by guidance or pretreatment, encompass several aspects of the performance. 84 refs, 6 figs, 1 tab

  1. Biogas Production Using Anaerobic Biodigester from Cassava Starch Effluent

    Directory of Open Access Journals (Sweden)

    S. Sunarso

    2010-12-01

    Full Text Available IKMs’ factory activity in Margoyoso produces liquid and solid wastes. The possible alternative was to use the liquid effluent as biogas raw material. This study focuses on the used of urea, ruminant, yeast, microalgae, the treatment of gelled and ungelled feed for biogas production, pH control during biogas production using buffer Na2CO3, and feeding management in the semi-continuous process of biogas production that perform at ambient temperature for 30 days. Ruminant bacteria, yeast, urea, and microalgae was added 10% (v/v, 0.08% (w/v, 0.04% (w/v, 50% (v/v of mixing solution volume, respectively. The pH of slurry was adjusted with range 6.8-7.2 and was measured daily and corrected when necessary with Na2CO3. The total biogas production was measured daily by the water displacement technique. Biogas production from the ungelling and gelling mixture of cassava starch effluent, yeast, ruminant bacteria, and urea were 726.43 ml/g total solid and 198 ml/g total solid. Biogas production from ungelling mixture without yeast was 58.6 ml/g total solid. Biogas production from ungelling mixture added by microalgae without yeast was 58.72 ml/g total solid and that with yeast was 189 ml/g total solid. Biogas production from ungelling mixture of cassava starch effluent, yeast, ruminant bacteria, and urea in semi-continuous process was 581.15 ml/g total solid. Adding of microalgae as nitrogen source did not give significant effect to biogas production. But adding of yeast as substrate activator was very helpful to accelerate biogas production. The biogas production increased after cassava starch effluent and yeast was added. Requirement of sodium carbonate (Na2CO3 to increase alkalinity or buffering capacity of fermenting solution depends on pH-value

  2. Progress in biogas II - Biogas production from agricultural biomass and organic residues. Pt. 1. Proceedings; Progress in Biogas II - Biogasproduktion aus landwirtschaftlicher Biomasse und organischen Reststoffen. T. 1. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    production - Methabe yield and energy balance (R. Bolduan); (19) Evaluation of a pre-treatment process for improved methane production from grass silage (A. Orozco); (20) Anaerobic fungi and biogas production (J. Prochazka); (21) Preservation of sugar beets for biogas production (A. Wagner); (22) Fibre, biogas and compost from banana agro-residues (leaves, pseudostem and rachis) by anaerobic digestion in plug flow type digester (H. Chanakya); (23) Extraction of biogas from waste products of he sugarcane industry (J. Rietzler); (24) Practical experiences with the digestion of straw in 2-stage AD plants - Extension of the value chain (W. Danner); (25) Improving biogas production on wastewater treatment plants by co-digestion of grass (D. Klein); (26) Generation of algal biomass for biogas production: energetic and environmental from a Life Cycle Assessment (LCA) perspective (F. Romagnoli); (27) Risk reduction in spreading plant pathogens by anaerobic digestion? First results from laboratory experiments (M. Heiermann); (28) Demand-oriented biogas production for the generation of peak load (R. Wallmann); (29) Investigation of mesophilic and thermophilic bioleaching method in a two-phase anaerobic digestion process (M. Schoenberg): (30) Efficient hydrogen fermentation for 2-stage anaerobic digestion processes: Conversion of sucrose containing substrates (S. Noebauer); (31) Process development of two-phase pressure formation - Influence of gas solubilities (A.-M. Wonneberger); (32) Benefits and limitations when treating liquid pig manure in an anaerobic membrane bioreactor (P. Messerl); (33) Experiences with continuous high-rate thermophilic dry anaerobic digestion of energy crops (L. De Baere); (34) The Sauter-biogas-system: spraying instead of stirring (S. Sauter); (35) Biogas production from raw palm oil mill effluent using a pilot-scale anaerobic hybrid reactor (C. Wangnai); (36) Eta max - the biogas power plant with high biological efficiency (M. Niederbacher); (37) Long time

  3. Progress in biogas II - Biogas production from agricultural biomass and organic residues. Pt. 1. Proceedings; Progress in Biogas II - Biogasproduktion aus landwirtschaftlicher Biomasse und organischen Reststoffen. T. 1. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    biogas production - Methabe yield and energy balance (R. Bolduan); (19) Evaluation of a pre-treatment process for improved methane production from grass silage (A. Orozco); (20) Anaerobic fungi and biogas production (J. Prochazka); (21) Preservation of sugar beets for biogas production (A. Wagner); (22) Fibre, biogas and compost from banana agro-residues (leaves, pseudostem and rachis) by anaerobic digestion in plug flow type digester (H. Chanakya); (23) Extraction of biogas from waste products of he sugarcane industry (J. Rietzler); (24) Practical experiences with the digestion of straw in 2-stage AD plants - Extension of the value chain (W. Danner); (25) Improving biogas production on wastewater treatment plants by co-digestion of grass (D. Klein); (26) Generation of algal biomass for biogas production: energetic and environmental from a Life Cycle Assessment (LCA) perspective (F. Romagnoli); (27) Risk reduction in spreading plant pathogens by anaerobic digestion? First results from laboratory experiments (M. Heiermann); (28) Demand-oriented biogas production for the generation of peak load (R. Wallmann); (29) Investigation of mesophilic and thermophilic bioleaching method in a two-phase anaerobic digestion process (M. Schoenberg): (30) Efficient hydrogen fermentation for 2-stage anaerobic digestion processes: Conversion of sucrose containing substrates (S. Noebauer); (31) Process development of two-phase pressure formation - Influence of gas solubilities (A.-M. Wonneberger); (32) Benefits and limitations when treating liquid pig manure in an anaerobic membrane bioreactor (P. Messerl); (33) Experiences with continuous high-rate thermophilic dry anaerobic digestion of energy crops (L. De Baere); (34) The Sauter-biogas-system: spraying instead of stirring (S. Sauter); (35) Biogas production from raw palm oil mill effluent using a pilot-scale anaerobic hybrid reactor (C. Wangnai); (36) Eta max - the biogas power plant with high biological efficiency (M. Niederbacher); (37

  4. A case study for biogas generation from covered anaerobic ponds treating abattoir wastewater: Investigation of pond performance and potential biogas production

    International Nuclear Information System (INIS)

    McCabe, Bernadette K.; Hamawand, Ihsan; Harris, Peter; Baillie, Craig; Yusaf, Talal

    2014-01-01

    Highlights: • We report on the performance of a novel covered anaerobic pond system. • Potential biogas production was estimated using BioWin modelling software. • Ponds maintained stable operation; however, accumulation of crust was an issue. • Modelling indicated that biogas yield can be influenced by decomposition efficiency. • Configuration and operation of ponds can also impact potential biogas production. - Abstract: Covered anaerobic ponds offer significant advantages to the red meat processing industry by capturing methane rich gas as a fuel source for bioenergy while reducing greenhouse gas emissions (GHG). This paper presents the results of a novel-designed anaerobic pond system at an Australian abattoir in relation to pond performance and potential biogas production. Key findings in assessing the effectiveness of the system revealed that the covered ponds are capable of efficient wastewater decomposition and biogas production. The primary issue with the covered ponds at the abattoir was the build-up of fat/crust that prevented the accurate measurement of biogas and effective use of the cover. In the absence of field biogas data the novel application of the computer modelling software BioWin® was carried out to simulate chemical oxygen demand (COD) removal rates and subsequent biogas yield. The unique parameter used to fit field data was the fraction of the inlet COD due to a superficial crust which did not follow anaerobic digestion. Field data effluent COD removal rates were matched to simulated rates predicted by BioWin when measured influent COD was reduced to 30%. Biogas modelling results suggest significant variation in the economic benefit of biogas energy, with the quantity of biogas potentially varying tenfold (from 328 m 3 /d to 3284 m 3 /d) depending on site factors such as pond efficiency, pond configuration and operational practices

  5. Enhancing biogas production from recalcitrant lignocellulosic residue

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis

    Lignocellulosic substrates are abundant in agricultural areas around the world and lately, are utilized for biogas production in full-scale anaerobic digesters. However, the anaerobic digestion (AD) of these substrates is associated with specific difficulties due to their recalcitrant nature which...... protects them from enzymatic attack. Hence, the main purpose of this work was to define diverse ways to improve the performance of AD systems using these unconventional biomasses. Thus, mechanical and thermal alkaline pretreatments, microaeration and bioaugmentation with hydrolytic microbes were examined...... conductivity, soluble chemical oxygen demand and enzymatic hydrolysis) as a rapid way to predict the methane production. However, the precision of methane yield prediction was not high (R2

  6. Biomass storage for further energy use through biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Atem, A.D. [Instituto CEDIAC, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Instituto de Medio Ambiente, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Instituto de Energia, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas - CONICET, Mendoza (Argentina); Indiveri, M.E. [Instituto de Medio Ambiente, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Instituto de Energia, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Llamas, S. [Instituto de Medio Ambiente, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina)

    2010-06-15

    The present work approaches the residual biomass conservation for later digestion in an anaerobic batch reactor. Twenty 4 L capacity PET reactors were used. A measuring device was constructed to quantify the biogas production. As substrate were used tomato wastes from local industry and rumen fluid as inoculum. Digestion start up was able to be controlled by varying the temperature, during a period of 118 days was not verified biogas production. After re-inoculated with rumen fluid stabilized for 34 days, biogas production was verified. They were obtained 0.10 m{sup 3} of biogas per kilogram of volatile solids, with 50% of methane content. (author)

  7. Production and use of biogas year 2009; Produktion och anvaendning av biogas aar 2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-11-15

    In the present study, a total of 230 biogas-producing sites were identified. These produced a total of 1363 GWh of energy. The 230 biogas-producing plants were distributed in 136 sewage treatment plants, 57 landfills, 21 co-digestion plants, four industries and 12 farm sites. The number of upgrading plants amounted to 38 and at seven locations injection of upgraded biogas into the natural gas network took place. 44% of the biogas generated in sewage treatment plants, 25% were produced in landfills, 22% of co-digestion plants, 8% in industrial plants and 1% on farm installations. The total biogas production in 2009 was slightely higher than last year, but the division between the different plant types has changed. Production increased for co-digestion plants and farm installations, while production was relatively unchanged for sewage treatment plants. Production in landfills and industrial sites decreased compared with 2008. A larger proportion of the biogas came to use in 2009 compared with previous years. 667 GWh (49%) was used for heating, which also includes heat loss, 488 GWh (36%) were upgraded, 64 GWh (5%) of electricity was generated and 135 GWh (10%) was torched. The main substrates for biogas production were different types of waste such as sewage sludge, source separated food waste and waste from food industry. In addition to biogas, co-digestion plants and the farm plants together produced 537 403 tonnes (wet weight) biofertilizer, and the waste water treatment plants 214 000 tonnes (dry weight) sludge. The provincial breakdown shows that biogas production was greatest in metropolitan areas

  8. Biogas production from Jatropha curcas press-cake.

    Science.gov (United States)

    Staubmann, R; Foidl, G; Foidl, N; Gübitz, G M; Lafferty, R M; Arbizu, V M; Steiner, W

    1997-01-01

    Seeds of the tropical plant Jatropha curcas (purge nut, physic nut) are used for the production of oil. Several methods for oil extraction have been developed. In all processes, about 50% of the weight of the seeds remain as a press cake containing mainly protein and carbohydrates. Investigations have shown that this residue contains toxic compounds and cannot be used as animal feed without further processing. Preliminary experiments have shown that the residue is a good substrate for biogas production. Biogas formation was studied using a semicontinous upflow anaerobic sludge blanket (UASB) reactor; a contact-process and an anaerobic filter each reactor having a total volume of 110 L. A maximum production rate of 3.5 m3 m"3 d"1 was obtained in the anaerobic filter with a loading rate of 13 kg COD m~3 d"1. However, the UASB reactor and the contact-process were not suitable for using this substrate. When using an anaerobic filter with Jatropha curcas seed cake as a substrate, 76% of the COD was degraded and 1 kg degraded COD yielded 355 L of biogas containing 70% methane.

  9. Biogas production from Jatropha curcas press-cake

    Energy Technology Data Exchange (ETDEWEB)

    Staubmann, R.; Guebitz, G.M.; Lafferty, R.M. [Graz Technical Univ. (Austria)] [and others

    1997-12-31

    Seeds of the tropical plant Jatropha curcas (purge nut, physic nut) are used for the production of oil. Several methods for oil extraction have been developed. In all processes, about 50% of the weight of the seeds remain as a press cake containing mainly protein and carbohydrates. Investigations have shown that this residue contains toxic compounds and cannot be used as animal feed without further processing. Preliminary experiments have shown that the residue is a good substrate for biogas production. Biogas formation was studied using a semicontinous upflow anaerobic sludge blanket (UASB) reactor; a contact-process and an anaerobic filter each reactor having a total volume of 110 L. A maximum production rate of 3.5 m{sup 3} m{sup -3} d{sup -1} was obtained in the anaerobic filter with a loading rate of 13 kg COD m{sup -3} d{sup -1}. However, the UAS reactor and the contact-process were not suitable for using this substrate. When using an anaerobic filter with Jatropha curcas seed cake as a substrate, 76% of the COD was degraded and 1 kg degraded COD yielded 355 L of biogas containing 70% methane. 28 refs., 3 figs., 4 tabs.

  10. Ultrasound pretreatment of filamentous algal biomass for enhanced biogas production.

    Science.gov (United States)

    Lee, Kwanyong; Chantrasakdakul, Phrompol; Kim, Daegi; Kong, Mingeun; Park, Ki Young

    2014-06-01

    The filamentous alga Hydrodictyon reticulatum harvested from a bench-scale wastewater treatment pond was used to evaluate biogas production after ultrasound pretreatment. The effects of ultrasound pretreatment at a range of 10-5000 J/mL were tested with harvested H. reticulatum. Cell disruption by ultrasound was successful and showed a higher degree of disintegration at a higher applied energy. The range of 10-5000 J/mL ultrasound was able to disintegrated H. reticulatum and the soluble COD was increased from 250 mg/L to 1000 mg/L at 2500 J/mL. The disintegrated algal biomass was digested for biogas production in batch experiments. Both cumulative gas generation and volatile solids reduction data were obtained during the digestion. Cell disintegration due to ultrasound pretreatment increased the specific biogas production and degradation rates. Using the ultrasound approach, the specific methane production at a dose of 40 J/mL increased up to 384 mL/g-VS fed that was 2.3 times higher than the untreated sample. For disintegrated samples, the volatile solids reduction was greater with increased energy input, and the degradation increased slightly to 67% at a dose of 50 J/mL. The results also indicate that disintegration of the algal cells is the essential step for efficient anaerobic digestion of algal biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. An Introduction to Biogas Production on the Farm.

    Science.gov (United States)

    National Center for Appropriate Technology, Butte, MT.

    This three-section report provides introductory information about biogas production and its application to farm environments. The first section discusses the various components of a biogas production system (a system that converts organic wastes into a usable form of energy), explains the system's benefits and liabilities, and provides a brief…

  12. Changed market conditions for biogas production; Foeraendrade marknadsvillkor foer biogasproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Colnerud Granstroem, Sigrid; Gaaverud, Henrik; Glimhall, Alexandra

    2010-10-15

    The Swedish gas market consists mainly of the natural gas network that extends through the southwestern Sweden, and the local biogas markets. Biogas share of the Swedish gas market is growing steadily. The fact that the Swedish gas net is limited and fragmented forms an obstacle for biogas use to expand. That the gas market as a whole, natural gas included, must develop and expand is therefore a prerequisite for the large potential for Swedish Biogas to be realized. This in contrast with the ultimate objective to completely replace natural gas in the Swedish gas market. When policy changes are made in order to support biogas it is crucial for long-term competitiveness of biogas that these changes should not impact the natural gas market and hinder its development. Such a scenario would ultimately mean that also biogas development opportunities deteriorate. Biogas operations encounter three main problems that prevent or impede its expansion in the gas market. First, the potential for profitability in biogas production must be enhanced. Second, natural gas and biogas markets should be more integrated with each other. Thirdly, the biogas must be distributed in a cost-effective manner. The present investigation aims to supplement the Natural Gas Act with special provisions which takes into account the input and transmission of biogas. In addition to the production of biogas, it is now the producer's responsibility to clean the gas from water vapor, hydrogen sulfide and carbon dioxide and to augment the calorific value of the gas to the standard of Danish natural gas quality by propane addition and to ensure that the physical connection to network is available. There are thus a number of options available for shifting demarcation between biogas production and network operations. Short-term competitiveness of biogas would be strengthened most if purification and spiking the gas with propane and the connection to the network was imposed on network owners. In the

  13. Investigation of factors influencing biogas production in a large-scale thermophilic municipal biogas plant

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Agnes; Jerome, Valerie; Freitag, Ruth [Bayreuth Univ. (Germany). Chair for Process Biotechnology; Burghardt, Diana; Likke, Likke; Peiffer, Stefan [Bayreuth Univ. (Germany). Dept. of Hydrology; Hofstetter, Eugen M. [RVT Process Equipment GmbH, Steinwiesen (Germany); Gabler, Ralf [BKW Biokraftwerke Fuerstenwalde GmbH, Fuerstenwalde (Germany)

    2009-10-15

    A continuously operated, thermophilic, municipal biogas plant was observed over 26 months (sampling twice per month) in regard to a number of physicochemical parameters and the biogas production. Biogas yields were put in correlation to parameters such as the volatile fatty acid concentration, the pH and the ammonium concentration. When the residing microbiota was classified via analysis of the 16S rRNA genes, most bacterial sequences matched with unidentified or uncultured bacteria from similar habitats. Of the archaeal sequences, 78.4% were identified as belonging to the genus Methanoculleus, which has not previously been reported for biogas plants, but is known to efficiently use H{sub 2} and CO{sub 2} produced by the degradation of fatty acids by syntrophic microorganisms. In order to further investigate the influence of varied amounts of ammonia (2-8 g/L) and volatile fatty acids on biogas production and composition (methane/CO{sub 2}), laboratory scale satellite experiments were performed in parallel to the technical plant. Finally, ammonia stripping of the process water of the technical plant was accomplished, a measure through which the ammonia entering the biogas reactor via the mash could be nearly halved, which increased the energy output of the biogas plant by almost 20%. (orig.)

  14. The social organization of agricultural biogas production and use

    International Nuclear Information System (INIS)

    Bluemling, Bettina; Mol, Arthur P.J.; Tu, Qin

    2013-01-01

    While for wind, solar energy or hydropower, energy supply happens directly from the source to the wind wheels, hydropower turbines or solar panels, in the case of biogas, energy production cannot directly take from the energy source, organic matter, but depends on the institutional structures and farmers′ practices involved for making energy available. With the production of bioenergy in rural areas, practices within agriculture are transformed, requiring new ways of organizing production processes. Research has left the question largely unanswered of how agricultural biogas production and use are – and can best be – organized within rural society. Which kinds of social organization exist, how are these embedded in existing agricultural institutions and practices, and how do these systems function? Under which conditions may the different kinds of social organization of biogas production and use work sustainably? This introduction article to the Special Issue “The social organization of agricultural biogas production and use” presents a framework for analysing the different kinds of social organization of biogas production and use presented hereafter. Analysis parameters are the supply network, distribution network, distribution of benefits, social boundaries of the system (accessibility) and scale. Using these parameters, the Special Issue articles are outlined. - Highlights: • Through agricultural institutions and farmers′ practices, biogas is made available. • Scale, supply and delivery network distinguish biogas infrastructural systems. • Access and benefit distribution are key for a biogas system′s sustainability

  15. Serial CSTR digester configuration for improving biogas production from manure

    DEFF Research Database (Denmark)

    Boe, Kanokwan; Angelidaki, Irini

    2009-01-01

    distribution ratio of 80/20 and 90/10, and total HRT of 15 days. The results showed that the serial CSTR could obtain 11% higher biogas yield compared to the single CSTR. The increased biogas yield in the serial CSTR was mainly from the second reactor, which accounted for 16% and 12% of total biogas yield......A new configuration of manure digesters for improving biogas production has been investigated in laboratory scale. A single thermophilic continuous-flow stirred tank reactor (CSTR) operated with a hydraulic retention time (HRT) of 15 days was compared to a serial CSTR configuration with volume...

  16. Minimization of diauxic growth lag-phase for high-efficiency biogas production.

    Science.gov (United States)

    Kim, Min Jee; Kim, Sang Hun

    2017-02-01

    The objective of this study was to develop a minimization method of a diauxic growth lag-phase for the biogas production from agricultural by-products (ABPs). Specifically, the effects of proximate composition on the biogas production and degradation rates of the ABPs were investigated, and a new method based on proximate composition combinations was developed to minimize the diauxic growth lag-phase. Experiments were performed using biogas potential tests at a substrate loading of 2.5 g VS/L and feed to microorganism ratio (F/M) of 0.5 under the mesophilic condition. The ABPs were classified based on proximate composition (carbohydrate, protein, and fat etc.). The biogas production patterns, lag phase, and times taken for 90% biogas production (T90) were used for the evaluation of the biogas production with biochemical methane potential (BMP) test. The high- or medium-carbohydrate and low-fat ABPs (cheese whey, cabbage, and skim milk) showed a single step digestion process and low-carbohydrate and high-fat ABPs (bean curd and perilla seed) showed a two-step digestion process. The mixture of high-fat ABPs and high-carbohydrate ABPs reduced the lag-phase and increased the biogas yield more than that from single ABP by 35-46%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Biogas and bioethanol production in organic farming

    Energy Technology Data Exchange (ETDEWEB)

    Oleskowicz-Popiel, P

    2010-08-15

    The consumer demand for environmentally friendly, chemical free and healthy products, as well as concern regarding industrial agriculture's effect on the environment has led to a significant growth of organic farming. On the other hand, organic farmers are becoming interested in direct on-farm energy production which would lead them to independency from fossil fuels and decrease the greenhouse gas emissions from the farm. In the presented work, the idea of biogas and bioenergy production at the organic farm is investigated. This thesis is devoted to evaluate such a possibility, starting from the characterization of raw materials, through optimizing new processes and solutions and finally evaluating the whole on-farm biorefinery concept with the help of a simulation software. (LN)

  18. Biogas and bioethanol production in organic farming

    Energy Technology Data Exchange (ETDEWEB)

    Oleskowicz-Popiel, P.

    2010-08-15

    The consumer demand for environmentally friendly, chemical free and healthy products, as well as concern regarding industrial agriculture's effect on the environment has led to a significant growth of organic farming. On the other hand, organic farmers are becoming interested in direct on-farm energy production which would lead them to independency from fossil fuels and decrease the greenhouse gas emissions from the farm. In the presented work, the idea of biogas and bioenergy production at the organic farm is investigated. This thesis is devoted to evaluate such a possibility, starting from the characterization of raw materials, through optimizing new processes and solutions and finally evaluating the whole on-farm biorefinery concept with the help of a simulation software. (LN)

  19. Comparison of kinetic model for biogas production from corn cob

    Science.gov (United States)

    Shitophyta, L. M.; Maryudi

    2018-04-01

    Energy demand increases every day, while the energy source especially fossil energy depletes increasingly. One of the solutions to overcome the energy depletion is to provide renewable energies such as biogas. Biogas can be generated by corn cob and food waste. In this study, biogas production was carried out by solid-state anaerobic digestion. The steps of biogas production were the preparation of feedstock, the solid-state anaerobic digestion, and the measurement of biogas volume. This study was conducted on TS content of 20%, 22%, and 24%. The aim of this research was to compare kinetic models of biogas production from corn cob and food waste as a co-digestion using the linear, exponential equation, and first-kinetic models. The result showed that the exponential equation had a better correlation than the linear equation on the ascending graph of biogas production. On the contrary, the linear equation had a better correlation than the exponential equation on the descending graph of biogas production. The correlation values on the first-kinetic model had the smallest value compared to the linear and exponential models.

  20. Biogas Production from Citrus Waste by Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Rachma Wikandari

    2014-08-01

    Full Text Available Rapid acidification and inhibition by d-limonene are major challenges of biogas production from citrus waste. As limonene is a hydrophobic chemical, this challenge was encountered using hydrophilic polyvinylidine difluoride (PVDF membranes in a biogas reactor. The more sensitive methane-producing archaea were encapsulated in the membranes, while freely suspended digesting bacteria were present in the culture as well. In this membrane bioreactor (MBR, the free digesting bacteria digested the citrus wastes and produced soluble compounds, which could pass through the membrane and converted to biogas by the encapsulated cell. As a control experiment, similar digestions were carried out in bioreactors containing the identical amount of just free cells. The experiments were carried out in thermophilic conditions at 55 °C, and hydraulic retention time of 30 days. The organic loading rate (OLR was started with 0.3 kg VS/m3/day and gradually increased to 3 kg VS/m3/day. The results show that at the highest OLR, MBR was successful to produce methane at 0.33 Nm3/kg VS, while the traditional free cell reactor reduced its methane production to 0.05 Nm3/kg VS. Approximately 73% of the theoretical methane yield was achieved using the membrane bioreactor.

  1. Biogas Production and Engine Conversion From Diesel Engine to Biogas Engine for Lighting in Rural Area

    OpenAIRE

    Tun, Seint Thandar

    2012-01-01

    The research of alternative fuels implemented in internal combustion engines are becoming the subjects of interest nowadays. This paper describes a production of biogas from cow dung, diesel engine conversion process with piston modification of ZH1115 diesel engine. To produce biogas, the usual practice is to mix water with some organic material, such as cow dung (a free source of the appropriate micro-organisms). The slurry is placed in a leak-proof container (called a digester) and leaves i...

  2. Biogas. Plants, raw materials, products. 7. rev. ed.; Biogas. Pflanzen, Rohstoffe, Produkte

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-15

    In order to save fossil fuels and to stopp the climate change, a gradual shift to renewable energies is necessary. The federal government has aimed to a modern, environmental friendly, sustainable and secure energy supply by means of the expansion of renewable energies. Bioenergy plays a central role in the future. Biogas for renewable energies will play a special role. Biogas can be used for simultaneous production of electricity and heat, as a fuel and as a substitute for natural gas.

  3. Potentials for commercial production of biogas from domestic food ...

    African Journals Online (AJOL)

    The work reported in this paper investigated the potentials of commercial biogas production from biodegradable waste in Benin metropolis. The study was carried out in two phases. The first phase involved characterization of solid waste generated and determination of the quantity of potential feed stock for biogas ...

  4. A tool for analyzing the sustainability of biogas production chains

    NARCIS (Netherlands)

    Pierie, Frank; Broekhuijsen, J.; van Gemert, Wim; Moll, Henri C.

    2014-01-01

    Abstract written for an poster presentation at the EBA conference in Alkmaar. The flexibility of biogas makes it a very capable load balancer within decentralized smart energy systems. However, within this context the sustainability of biogas production is not fully understood. What is needed is a

  5. Ultrasound pretreatment for enhanced biogas production from olive mill wastewater.

    Science.gov (United States)

    Oz, Nilgun Ayman; Uzun, Alev Cagla

    2015-01-01

    This study investigates applicability of low frequency ultrasound technology to olive mill wastewaters (OMWs) as a pretreatment step prior to anaerobic batch reactors to improve biogas production and methane yield. OMWs originating from three phase processes are characterized with high organic content and complex nature. The treatment of the wastewater is problematic and alternative treatment options should be investigated. In the first part of the study, OMW samples were subjected to ultrasound at a frequency of 20kHz with applied powers varying between 50 and 100W under temperature controlled conditions for different time periods in order to determine the most effective sonication conditions. The level of organic matter solubilization at ultrasound experiments was assessed by calculating the ratio of soluble chemical oxygen demand/total chemical oxygen demand (SCOD/TCOD). The results revealed that the optimum ultrasonic condition for diluted OMW is 20kHz, 0.4W/mL for 10min. The application of ultrasound to OMW increased SCOD/TCOD ratio from 0.59 to 0.79. Statistical analysis (Friedman's tests) show that ultrasound was significantly effective on diluted OMW (p0.05). For raw OMW, this increase has been found to be limited due to high concentration of suspended solids (SS). In the second part of the study, biogas and methane production rates of anaerobic batch reactor fed with the ultrasound pretreated OMW samples were compared with the results of control reactor fed with untreated OMW in order to determine the effect of sonication. A nonparametric statistical procedure, Mann-Whitney U test, was used to compare biogas and methane production from anaerobic batch reactors for control and ultrasound pretreated samples. Results showed that application of low frequency ultrasound to OMW significantly improved both biogas and methane production in anaerobic batch reactor fed with the wastewater (pbiogas and methane compared with the untreated one (control reactor). The

  6. Ultrasound-Enhanced Biogas Production from Different Substrates

    DEFF Research Database (Denmark)

    González-Fernández, Cristina; Timmers, Rudolphus Antonius; Ruiz, Begona

    2015-01-01

    Among the biofuel production processes using different substrates, the biogas generation process is one of the simplest. Compared with bioethanol or biodiesel production processes, anaerobic digestion is a process where all the organic matter (carbohydrates, lipids and proteins) can be biologically...... production. The present chapter is dedicated to providing a review of ultrasound pretreatment applied to different substrates (lignocelullosic materials, manures, sludge and microalgae). The advantages and constraints, that ultrasound pretreatment exhibit towards biogas production, are discussed and compared...

  7. Prospects in straw disintegration for biogas production.

    Science.gov (United States)

    Maroušek, Josef

    2013-10-01

    The pretreatment methods for enhancing biogas production from oat straw under study include hot maceration, steam explosion, and pressure shockwaves. The micropore area (9, 55, and 64 m(2) g(-1)) inhibitor formations (0, 15, and 0 mL L(-1)) as well as the overall methane yields (67, 179, and 255 CH4 VS t(-1)) were robustly analyzed. It was confirmed that the operating conditions of the steam explosion must be precisely tailored to the substrate. Furthermore, it was beneficial to prepend the hot maceration before the steam explosion and the pressure shockwaves. The second alternative may give increased methane yields (246 in comparison to 273 CH4 VS t(-1)); however, the application of pressure shockwaves still faces limitations for deployment on a commercial scale.

  8. Biogas Production From Cassava Starch Effluent Using Microalgae As Biostabilisator

    Directory of Open Access Journals (Sweden)

    B. Budiyono

    2011-07-01

    Full Text Available The rapid growing of Indonesian population is emerging several critical national issues i.e. energy, food, environmental, water, transportation, as well as law and human right. As an agricultural country, Indonesia has abundant of biomass wastes such as agricultural wastes include the cassava starch wastes. The problem is that the effluent from cassava starch factories is released directly into the river before properly treatment. It has been a great source of pollution and has caused environmental problems to the nearby rural population. The possible alternative to solve the problem is by converting waste to energy biogas in the biodigester. The main problem of the biogas production of cassava starch effluent is acid forming-bacteria quickly produced acid resulting significantly in declining pH below the neutral pH and diminishing growth of methane bacteria. Hence, the only one of the method to cover this problem is by adding microalgae as biostabilisator of pH. Microalgae can also be used as purifier agent to absorb CO2.The general objective of this research project was to develop an integrated process of biogas production and purification from cassava starch effluent by using biostabilisator agent microalgae. This study has been focused on the used of urea, ruminant, yeast, microalgae, the treatment of gelled and ungelled feed for biogas production, pH control during biogas production using buffer Na2CO3, and feeding management in the semi-continuous process of biogas production. The result can be concluded as follows: i The biogas production increased after cassava starch effluent and yeast was added, ii Biogas production with microalgae and cassava starch effluent, yeast, ruminant bacteria, and urea were 726.43 ml/g total solid, iii Biogas production without  microalgae was 189 ml/g total solid.

  9. An integrated metagenome and -proteome analysis of the microbial community residing in a biogas production plant.

    Science.gov (United States)

    Ortseifen, Vera; Stolze, Yvonne; Maus, Irena; Sczyrba, Alexander; Bremges, Andreas; Albaum, Stefan P; Jaenicke, Sebastian; Fracowiak, Jochen; Pühler, Alfred; Schlüter, Andreas

    2016-08-10

    To study the metaproteome of a biogas-producing microbial community, fermentation samples were taken from an agricultural biogas plant for microbial cell and protein extraction and corresponding metagenome analyses. Based on metagenome sequence data, taxonomic community profiling was performed to elucidate the composition of bacterial and archaeal sub-communities. The community's cytosolic metaproteome was represented in a 2D-PAGE approach. Metaproteome databases for protein identification were compiled based on the assembled metagenome sequence dataset for the biogas plant analyzed and non-corresponding biogas metagenomes. Protein identification results revealed that the corresponding biogas protein database facilitated the highest identification rate followed by other biogas-specific databases, whereas common public databases yielded insufficient identification rates. Proteins of the biogas microbiome identified as highly abundant were assigned to the pathways involved in methanogenesis, transport and carbon metabolism. Moreover, the integrated metagenome/-proteome approach enabled the examination of genetic-context information for genes encoding identified proteins by studying neighboring genes on the corresponding contig. Exemplarily, this approach led to the identification of a Methanoculleus sp. contig encoding 16 methanogenesis-related gene products, three of which were also detected as abundant proteins within the community's metaproteome. Thus, metagenome contigs provide additional information on the genetic environment of identified abundant proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Bioconversion of poultry droppings for biogas and algal production

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevaswamy, M.; Venkataraman, L.V.

    1986-01-01

    An integrated system for the bioconversion of poultry droppings for biogas production and utilization of the effluent for the production of the blue-green alga Spirulina platensis was studied. Poultry droppings produced 0.54 cubic m of biogas per kilogran of Total Solids (TS). The 2% TS biogas plant effluent as sole nutrient medium for Spirulina yielded 7-8 g dry algae a day. The biomass was harvested by filtration. The sundried algal biomass has been used as a poultry feed component. In economic terms the system appears promising. 18 references.

  11. Life cycle assessment of agricultural biogas production systems

    Energy Technology Data Exchange (ETDEWEB)

    Lansche, J.; Muller, J. [Hohenheim Univ., Stuttgart (Germany). Inst. of Agricultural Engineering, Tropical and Subtropical Group

    2010-07-01

    Agricultural activities are large contributors to anthropogenic greenhouse gas emissions. This paper discussed the effectiveness of reducing agricultural emissions by using liquid manure to produce biogas. When using this technique, greenhouse gas emissions from manure storage are avoided and renewable energy is generated as heat and electricity in combined heat and power plants. The purpose of this study was to evaluate the environmental impacts of biogas production systems based on the methods of life cycle assessment. The traditional use of agricultural manures was compared with conventional energy production. The Gabi 4.3 software was used to create a model to evaluate the biogas production systems according to their environmental impact. In addition to the global warming potential, other impact categories were also used to evaluate the effects of the systems in eutrophication and acidification. It was concluded that environmental benefits can be obtained in terms of greenhouse gas emissions compared to electricity production from biogas with the typical German marginal electricity mix.

  12. studies on biogas production from fruits and vegetable waste 115

    African Journals Online (AJOL)

    DR. AMINU

    results of the study on biogas production from fruits and vegetables waste materials and their effect on plants when used as fertilizer (Using digested and undigested sludge). It has been ... as fuel or fertilizer, offers several benefits such as, the.

  13. Microalgal cultivation with biogas slurry for biofuel production.

    Science.gov (United States)

    Zhu, Liandong; Yan, Cheng; Li, Zhaohua

    2016-11-01

    Microalgal growth requires a substantial amount of chemical fertilizers. An alternative to the utilization of fertilizer is to apply biogas slurry produced through anaerobic digestion to cultivate microalgae for the production of biofuels. Plenty of studies have suggested that anaerobic digestate containing high nutrient contents is a potentially feasible nutrient source to culture microalgae. However, current literature indicates a lack of review available regarding microalgal cultivation with biogas slurry for the production of biofuels. To help fill this gap, this review highlights the integration of digestate nutrient management with microalgal production. It first unveils the current status of microalgal production, providing basic background to the topic. Subsequently, microalgal cultivation technologies using biogas slurry are discussed in detail. A scale-up scheme for simultaneous biogas upgrade and digestate application through microalgal cultivation is then proposed. Afterwards, several uncertainties that might affect this practice are explored. Finally, concluding remarks are put forward. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Psychrophilic anaerobic co-digestion of highland barley straw with two animal manures at high altitude for enhancing biogas production

    International Nuclear Information System (INIS)

    Wei, Suzhen; Zhang, Hongfeng; Cai, Xiaobu; Xu, Jin; Fang, Jiangping; Liu, Heman

    2014-01-01

    Highlights: • High I/S ratio (>2/1) was favorable to both sole digestion and co-digestion. • Biogas production from BS was feasible at low temperature and low air pressure condition. • Long SRT (>80 days) is needed for biogas production at low temperature and low air pressure condition. • BS to manure ratio of 1/1 could increase biogas production. • IVS removal efficiency was correlated with biogas production. - Abstract: Biogas production from the co-digestion of highland barley straw (BS) with Tibet pig manure (TPM) and cow manure (CM) was investigated at Tibet plateau under low temperature (15 °C) condition. The effect of inoculum to substrate (I/S) ratio and BS to manure ratio on the biogas production was studied using a series of batch digesters performed at substrate concentration of 20%, based on total solid (TS). The results showed that biogas production from BS was feasible at low temperature and low air pressure condition. High I/S ratio (>2/1) and BS to manure ratio of 1/1 could increase the biogas production. Long solid retention time (SRT) (>80 days) was needed for biogas production at low temperature and low air pressure condition. The highest cumulative biogas production obtained from the co-digestion of BS with TPM and CM was 233.4 ml/gVS and 192.0 ml/gVS, respectively. Removal efficiencies of substrate showed that biogas production was correlated with the removal efficiency of water-insoluble volatile solids (IVS) but not with the change rate of soluble chemical oxygen demand (SCOD)

  15. Kinetic study on the effect of temperature on biogas production using a lab scale batch reactor.

    Science.gov (United States)

    Deepanraj, B; Sivasubramanian, V; Jayaraj, S

    2015-11-01

    In the present study, biogas production from food waste through anaerobic digestion was carried out in a 2l laboratory-scale batch reactor operating at different temperatures with a hydraulic retention time of 30 days. The reactors were operated with a solid concentration of 7.5% of total solids and pH 7. The food wastes used in this experiment were subjected to characterization studies before and after digestion. Modified Gompertz model and Logistic model were used for kinetic study of biogas production. The kinetic parameters, biogas yield potential of the substrate (B), the maximum biogas production rate (Rb) and the duration of lag phase (λ), coefficient of determination (R(2)) and root mean square error (RMSE) were estimated in each case. The effect of temperature on biogas production was evaluated experimentally and compared with the results of kinetic study. The results demonstrated that the reactor with operating temperature of 50°C achieved maximum cumulative biogas production of 7556ml with better biodegradation efficiency. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Biogas production from pineapple core - A preliminary study

    Science.gov (United States)

    Jehan, O. S.; Sanusi, S. N. A.; Sukor, M. Z.; Noraini, M.; Buddin, M. M. H. S.; Hamid, K. H. K.

    2017-09-01

    Anaerobic digestion of pineapple waste was investigated by using pineapple core as the sole substrate. Pineapple core was chosen due to its high total sugar content thus, indicating high amount of fermentable sugar. As digestion process requires the involvement of microorganisms, wastewater from the same industry was added in the current study at ratio of 1:1 by weight. Two different sources of wastewater (Point 1 and Point 2) were used in this study to distinguish the performance of microorganism consortia in both samples. The experiment was conducted by using a lab scale batch anaerobic digester made up from 5L container with separate gas collecting system. The biogas produced was collected by using water displacement method. The experiment was conducted for 30 days and the biogas produced was collected and its volume was recorded at 3 days interval. Based on the data available, wastewater from the first point recorded higher volume of biogas with the total accumulated biogas volume is 216.1 mL. Meanwhile, wastewater sample from Point 2 produced a total of 140.5 mL of biogas, by volume. The data shows that the origin and type of microorganism undeniably play significant role in biogas production. In fact, other factors; pH of wastewater and temperature were also known to affect biogas production. The anaerobic digestion is seen as the promising and sustainable alternatives to current disposal method.

  17. Biogas from poultry waste-production and energy potential.

    Science.gov (United States)

    Dornelas, Karoline Carvalho; Schneider, Roselene Maria; do Amaral, Adriana Garcia

    2017-08-01

    The objective of this study was to evaluate the effect of heat treatment on poultry litter with different levels of reutilisation for potential generation of biogas in experimental biodigesters. Chicken litter used was obtained from two small-scale poultry houses where 14 birds m -2 were housed for a period of 42 days per cycle. Litter from aviary 1 received no heat treatment while each batch of litter produced from aviary 2 underwent a fermentation process. For each batch taken, two biodigesters were set for each aviary, with hydraulic retention time of 35 days. The efficiency of the biodigestion process was evaluated by biogas production in relation to total solids (TS) added, as well as the potential for power generation. Quantified volumes ranged from 8.9 to 41.1 L of biogas for aviary 1, and 6.7 to 33.9 L of biogas for aviary 2, with the sixth bed reused from both aviaries registering the largest biogas potential. Average potential biogas in m 3  kg -1 of TS added were 0.022 to 0.034 for aviary 1 and 0.015 to 0.022 for aviary 2. Energy values ​​of biogas produced were calculated based on calorific value and ranged from 0.06 to 0.33 kWh for chicken litter without fermentation and from 0.05 to 0.27 kWh for chicken litter with fermentation. It was concluded that the re-use of poultry litter resulted in an increase in biogas production, and the use of fermentation in the microbiological treatment of poultry litter seems to have negatively influenced production of biogas.

  18. Production of biogas from Azolla pinnata R. Br. and Lemna minor L. : effect of heavy metal contamination

    Energy Technology Data Exchange (ETDEWEB)

    Jain, S K; Gujral, G S; Jha, N K; Vasudevan, P [Indian Inst. of Tech., New Delhi (India)

    1992-01-01

    The absorption of iron, copper, cadmium, nickel, lead, zinc, manganese and cobalt by Azolla pinnata R.Br and Lemna minor L., and subsequent utilization of this biomass for production of biogas (methane), have been investigated. Iron or manganese did not have any toxic effect on the anaerobic fermentation of Azolla and Lemna, while copper, cobalt, lead and zinc showed toxicity. At low concentrations cadmium and nickel showed a favourable effect on the rate of biogas production and its methane content, but with increase in concentrations,rate of biogas production and methane content decreased. However, although there was this decrease in biogas production and methane content, the methane content of biogas was still higher than that which was obtained from non-contaminated biomass. (author).

  19. Biogas production from UASB and polyurethane carrier reactors treating sisal processing wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rubindamayugi, M S.T.; Salakana, L K.P. [Univ. of Dar es Salaam, Faculty of Science, Applied Microbiology Unit (Tanzania, United Republic of)

    1998-12-31

    The fundamental benefits which makes anaerobic digestion technology (ADT) attractive to the poor developing include the low cost and energy production potential of the technology. In this study the potential of using UASB reactor and Polyurethane Carrier Reactor (PCR) as pollution control and energy recovery systems from sisal wastewater were investigated in lab-scale reactors. The PCR demonstrated the shortest startup period, whereas the UASB reactor showed the highest COD removal efficiency 79%, biogas production rate (4.5 l biogas/l/day) and process stability than the PCR under similar HRT of 15 hours and OLR of 8.2 g COD/l/day. Both reactor systems became overloaded at HRT of 6 hours and OLR of 15.7 g COD/l/day, biogas production ceased and reactors acidified to pH levels which are inhibiting to methanogenesis. Based on the combined results on reactor performances, the UASB reactor is recommended as the best reactor for high biogas production and treatment efficiency. It was estimated that a large-scale UASB reactor can be designed under the same loading conditions to produce 2.8 m{sup 3} biogas form 1 m{sup 3} of wastewater of 5.16 kg COD/m{sup 3}. Wastewater from one decortication shift can produce 9,446 m{sup 3} og biogas. The energy equivalent of such fuel energy is indicated. (au)

  20. Biogas production from UASB and polyurethane carrier reactors treating sisal processing wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rubindamayugi, M.S.T.; Salakana, L.K.P. [Univ. of Dar es Salaam, Faculty of Science, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    The fundamental benefits which makes anaerobic digestion technology (ADT) attractive to the poor developing include the low cost and energy production potential of the technology. In this study the potential of using UASB reactor and Polyurethane Carrier Reactor (PCR) as pollution control and energy recovery systems from sisal wastewater were investigated in lab-scale reactors. The PCR demonstrated the shortest startup period, whereas the UASB reactor showed the highest COD removal efficiency 79%, biogas production rate (4.5 l biogas/l/day) and process stability than the PCR under similar HRT of 15 hours and OLR of 8.2 g COD/l/day. Both reactor systems became overloaded at HRT of 6 hours and OLR of 15.7 g COD/l/day, biogas production ceased and reactors acidified to pH levels which are inhibiting to methanogenesis. Based on the combined results on reactor performances, the UASB reactor is recommended as the best reactor for high biogas production and treatment efficiency. It was estimated that a large-scale UASB reactor can be designed under the same loading conditions to produce 2.8 m{sup 3} biogas form 1 m{sup 3} of wastewater of 5.16 kg COD/m{sup 3}. Wastewater from one decortication shift can produce 9,446 m{sup 3} og biogas. The energy equivalent of such fuel energy is indicated. (au)

  1. Characteristics of on-demand biogas production by using sugar beet silage.

    Science.gov (United States)

    Ahmed, Sharif; Kazda, Marian

    2017-08-01

    On-demand electricity generation can be achieved by just-in-time biogas production instantly utilized in co-generation units. For this goal, easily degradable substrates like sugar beet silage have a high potential. Potential for on-demand biogas production from co-digestion of sugar beet silage (SS) with grass silage (GS) was evaluated in two experiments at organic loading rates (OLRs) of 1.5 kgVS m -3 day -1 and 2.5 kgVS m -3 day -1 , respectively. Each experiment was fed with intermittent feeding system at 8 hrs interval at the same feedstock ratios (volatile solids based) of GS:SS-1:0, 3:1 and 1:3, respectively. Modelling by Gaussian equation was performed in order to understand the effects of SS on biogas production. Addition of sugar beet silage led to maximum biogas production within a short time, but it differed significantly depending on feedstock ratios and OLRs, respectively. At OLR 1.5 kgVS m -3 day -1 , during mono fermentation of grass silage maximum biogas production rate of 0.27 l N hr -1 was reached at 2.74 hrs. Production rate did not change at feedstock ratio of GS:SS-3:1 but increased to 0.64 l N hr -1 at GS:SS-1:3 within a shorter time span (1.58 hrs). On the contrary, at OLR of 2.5 kgVS m -3 day -1 time span between feedstock input and maximum biogas production did not differ significantly (p > 0.05) among the reactors. Biogas production rates were 0.60 l N hr -1 within 2.27 hrs and 0.82 l N hr -1 within 2.30 hrs at GS:SS-3:1 and GS:SS-1:3, respectively. Surprisingly, there was no time lag between maximum biogas and methane production rates, irrespectively of OLR. This implies that once the whole microbial community is adapted to intermittent substrate input, the metabolic products are instantly utilized through the all steps of anaerobic substrate degradation. Applying this finding opens new perspectives for on-demand biogas energy production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Modelization of Biogas production in Sanitary landfills; Modelizacion de la produccion de Biogas en vertederos controlados

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Iglesias, J.; Castrillon, L.; Maranon, E.; Sastre, H. [Universidad de Oviedo (Spain)

    2000-07-01

    Amongst all the different alternatives for the eliminator or treatment of MSW (Municipal Solid Waste), sanitary landfills is probably the one that is most widely employed to date, due to its economic advantages. With the coming into effect of the Spanish Containers and Packaging Law, alongside that of the Council Directive 1999/31/CE, concerning waste disposal, this situation will be substantially modified. At the same time, the application of said Directive will influence the amount of biogas generated in landfills. The present research work a study of the influence that the aforementioned Directive will have on the production of biogas in a sanitary landfill which currently disposes of around 400.000 Tm/year of MSW, 52% of which is easily biodegradable organic matter. The model proposed by Marticorena was applied and the kinetic parameters, MPO and d, were experimentally obtained by means of a pilot-plant study of MSW anaerobic degradation, the values employed being 173 Nm3 of biogas/Tm of the organic fraction of MSW for MPO, and 3 years for d. The results obtained in the model are compared with those obtained experimentally at the COGERSA landfill, Asturias, Spain. Twenty wells were chosen to analyse the production of biogas, giving an overall average yield of 70%. In 1999, around 4,100 m''3/h of biogas were extracted at the COGERSA landfill. Application of the model gave an estimation for 1999 of an average production of 5,369 m''3/h giving a maximum yield in the extraction of biogas of around 75%. The difference between the two average yields obtained may be due to the fact that the model only takes into account the easily biodegradable organic fraction, whilst in the landfill, given that more time has passed, other substances with a longer period of degradation, such as paper and cardboard, may also be degraded. (Author) 10 refs.

  3. Potential for energy production and use from biogas in Brazil; Potencial de aproveitamento energetico do biogas no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Zanette, Andre Luiz

    2009-12-15

    Biogas, produced from anaerobic digestion of organic matter in domestic, industrial and rural wastewaters and residuals, represent an alternative and renewable source of energy, with growing use worldwide. In Brazil, high population and its spatial concentration and expressive agricultural and agricultural-industrial production indicate a substantial potential of biogas production. The results presented in this work show a potential of biogas production of almost 2 billion cubic feet a day of CH{sub 4}. Viability of biogas production and use depends substantially on project scale. Generally, biogas projects are viable from landfills and domestic wastewater treatment for populations higher than 50,000 inhabitants and swine and dairy farms with at least 5,000 and 1,000 animals, respectively. Biogas is also competitive when compared to fossil fuels used in industry and transport. Despite incentive mechanisms for biogas production and use, like Clean Development Mechanism and renewable and alternative sources of energy incentives in Brazil, several regulatory, institutional, economical and technological barriers difficult the effective employment of biogas in Brazil. Thus, this work indicates the need of better coordination among different governmental levels, private sector and research and development institutions and effective policy formulation to promote a better employment of biogas in Brazil. (author)

  4. Utilization of Biodiesel By-Products for Biogas Production

    Directory of Open Access Journals (Sweden)

    Nina Kolesárová

    2011-01-01

    Full Text Available This contribution reviews the possibility of using the by-products from biodiesel production as substrates for anaerobic digestion and production of biogas. The process of biodiesel production is predominantly carried out by catalyzed transesterification. Besides desired methylesters, this reaction provides also few other products, including crude glycerol, oil-pressed cakes, and washing water. Crude glycerol or g-phase is heavier separate liquid phase, composed mainly by glycerol. A couple of studies have demonstrated the possibility of biogas production, using g-phase as a single substrate, and it has also shown a great potential as a cosubstrate by anaerobic treatment of different types of organic waste or energy crops. Oil cakes or oil meals are solid residues obtained after oil extraction from the seeds. Another possible by-product is the washing water from raw biodiesel purification, which is an oily and soapy liquid. All of these materials have been suggested as feasible substrates for anaerobic degradation, although some issues and inhibitory factors have to be considered.

  5. Utilization of Biodiesel By-Products for Biogas Production

    Science.gov (United States)

    Kolesárová, Nina; Hutňan, Miroslav; Bodík, Igor; Špalková, Viera

    2011-01-01

    This contribution reviews the possibility of using the by-products from biodiesel production as substrates for anaerobic digestion and production of biogas. The process of biodiesel production is predominantly carried out by catalyzed transesterification. Besides desired methylesters, this reaction provides also few other products, including crude glycerol, oil-pressed cakes, and washing water. Crude glycerol or g-phase is heavier separate liquid phase, composed mainly by glycerol. A couple of studies have demonstrated the possibility of biogas production, using g-phase as a single substrate, and it has also shown a great potential as a cosubstrate by anaerobic treatment of different types of organic waste or energy crops. Oil cakes or oil meals are solid residues obtained after oil extraction from the seeds. Another possible by-product is the washing water from raw biodiesel purification, which is an oily and soapy liquid. All of these materials have been suggested as feasible substrates for anaerobic degradation, although some issues and inhibitory factors have to be considered. PMID:21403868

  6. Biogas in organic agriculture-effects on productivity, energy self-sufficiency and greenhouse gas emissions

    DEFF Research Database (Denmark)

    Pugesgaard, Siri; Olesen, Jørgen E; Jørgensen, Uffe

    2014-01-01

    was obtained for all biogas scenarios, showing that biomass production for biogas on 10% of the farm area results in an energy surplus, provided that the heat from the electricity production is utilized. The energy surplus implies a displacement of fossil fuels and thereby reduced CO2 emission from the farm...... of anaerobic digestion and biogas production were analyzed on a 1000 ha model farm with combined dairy and cash crop production, representing organic agriculture in Denmark. The effects on crop rotation, nitrogen flows and losses, yield, energy balance and greenhouse gas (GHG) emissions were evaluated for four...... scenarios of biogas production on the farm. Animal manure was digested for biogas production in all scenarios and was supplemented with: (1) 100 ha grass–clover for biogas, (2) 100 ha maize for biogas, (3) 200 ha grass–clover for biogas and reduced number of livestock, and (4) 200 ha grass–clover for biogas...

  7. Assessment of application of selected waste for production of biogas

    Science.gov (United States)

    Pawlita-Posmyk, Monika; Wzorek, Małgorzata

    2017-10-01

    Recently, the idea of biogas production has become a popular topic in Poland. Biogas is a valuable source of renewable energy with a potential application in electricity and heat production. Numerous types of technological solutions of biogas production are closely linked to the availability of substrates in the area, as well as their quantity and their properties. The paper presents the assessment of application in biogas production selected wastes such as communal and household sewage sludge and waste from a paper production in Opole region (Poland). The annual productions of methane, biogas and electricity were estimated. Chosen physico-chemical properties important in fermentation process were taken into consideration in the assessment. The highest value of potential energy was obtained using waste from the paper industry but the most appropriate parameters for this process has sewage sludge from the municipal sewage treatment plant. The use of sewage sludge from domestic and municipal sewage and waste from the paper industry creates the opportunity to reduce the amount of waste materials.

  8. Electricity production from biogas in Serbia: Assessment of emissions reduction

    Directory of Open Access Journals (Sweden)

    Cvetković Slobodan M.

    2016-01-01

    Full Text Available Biogas represents a promising source for the production of clean energy. The objective of this paper was to quantify the potential for the reduction of emissions to the environment during the production of electricity from biogas in comparison with environmental effects of the production of the same amount of electricity from fossil resources (coal from Kolubara basin and natural gas. Basis for comparison of environmental impacts in this work was the annual production of electricity in biogas plants of the total capacity of 80 MW. This study has shown that the annual production of electricity from biogas power plants of 80 MW results in: substitution of up to 840 kt of coal from Kolubara basin and 123.2 million m3 of natural gas; reduction in emissions of greenhouse gases in the range of 491.16 kt - 604.97 kt CO2-eq, depending on the energy efficiency of the process of electricity production from biogas; reduction in emissions of greenhouse gases up to 92.37 kt CO2-eq compared to the use of natural gas for electricity generation.

  9. Occurrence and abatement of volatile sulfur compounds during biogas production.

    Science.gov (United States)

    Andersson, Fräs Annika T; Karlsson, Anna; Svensson, Bo H; Ejlertsson, Jörgen

    2004-07-01

    Volatile sulfur compounds (VSCs) in biogas originating from a biogas production plant and from a municipal sewage water treatment plant were identified. Samples were taken at various stages of the biogas-producing process, including upgrading the gas to vehicle-fuel quality. Solid-phase microextraction was used for preconcentration of the VSCs, which were subsequently analyzed using gas chromatography in combination with mass spectrometry. Other volatile organic compounds present also were identified. The most commonly occurring VSCs in the biogas were hydrogen sulfide, carbonyl sulfide, methanethiol, dimethyl sulfide, and dimethyl disulfide, and hydrogen sulfide was not always the most abundant sulfur (S) compound. Besides VSCs, oxygenated organic compounds were commonly present (e.g., ketones, alcohols, and esters). The effect of adding iron chloride to the biogas reactor on the occurrence of VSCs also was investigated. It was found that additions of 500-g/m3 substrate gave an optimal removal of VSCs. Also, the use of a prefermentation step could reduce the amount of VSCs formed in the biogas process. Moreover, in the carbon dioxide scrubber used for upgrading the gas, VSCs were removed efficiently, leaving traces (ppbv levels). The scrubber also removed other organic compounds.

  10. Bioenergy and biofertilizer : improvement of biogas production from filter cake

    Energy Technology Data Exchange (ETDEWEB)

    Fonte, A.H. [Environmental Bioremediation Group, Research and Development Agency, GeoCuba, Camaguey (Cuba); Alvarez, R.C. [Provincial Direction of Soils, Camaguey (Cuba)

    2000-07-01

    The anaerobic digestion of sugar mill filter cake (SMFC) was studied using a natural zeolite to intensify the biogas production. The anaerobic digestion (AD) of agricultural waste mixtures in certain proportions is the underlying basis of biogas generation. Earlier studies have shown that certain inert materials can act as stimulators in biogas production when used in conjunction with AD. This study involved three experiments using filter cake from different sugar mills using three doses of zeolite to determine how they stimulate biogas production. Another objective of the study was to determine if the mud of the digester containing the added zeolite has an impact on plants and soil. The study was conducted under glass house conditions using a brown soil with carbonates with neutral pH and high contents of P{sub 2}O{sub 5}, K{sub 2}O and organic matter. It was concluded that it is possible to increase the biogas yield and to improve AD behaviour of the filter cake by using a zeolite adapted to unique operating conditions. The amount of yield depends on the origin of the filter cake, the stimulator dose and age. Results were in the order of 20-40 per cent biogas production. Fresh filter cake was found to produce more biogas. The mud of the anaerobic digestion of the filter cake containing zeolite positively impacted on the agronomic behaviour of the sorghum in relation to P{sub 2}O{sub 5}, K{sub 2}O and organic matter content. 19 refs., 4 tabs.

  11. Greenalgae as a substrate for biogas production - cultivation and biogas potentials

    OpenAIRE

    Liu, Yang

    2010-01-01

    Algae is regarded as a good potential substrate for biogas production, due to high cells productivity, low cellulose and zero lignin content. Two parts were included in this study: first, cultivations of micro-algae (Chlorella sorokiniana and Tetraselmis suecica) at two different nitrate concentrations, also the effect of addition of CO2 on algae grow was investigated in this first part. Second, batch fermentations of the cultivated micro-algae as well as a powder Chlorella (obtained from Raw...

  12. Energy Production from Biogas: Competitiveness and Support Instruments in Latvia

    Science.gov (United States)

    Klāvs, G.; Kundziņa, A.; Kudrenickis, I.

    2016-10-01

    Use of renewable energy sources (RES) might be one of the key factors for the triple win-win: improving energy supply security, promoting local economic development, and reducing greenhouse gas emissions. The authors ex-post evaluate the impact of two main support instruments applied in 2010-2014 - the investment support (IS) and the feed-in tariff (FIT) - on the economic viability of small scale (up to 2MWel) biogas unit. The results indicate that the electricity production cost in biogas utility roughly corresponds to the historical FIT regarding electricity production using RES. However, if in addition to the FIT the IS is provided, the analysis shows that the practice of combining both the above-mentioned instruments is not optimal because too high total support (overcompensation) is provided for a biogas utility developer. In a long-term perspective, the latter gives wrong signals for investments in new technologies and also creates unequal competition in the RES electricity market. To provide optimal biogas utilisation, it is necessary to consider several options. Both on-site production of electricity and upgrading to biomethane for use in a low pressure gas distribution network are simulated by the cost estimation model. The authors' estimates show that upgrading for use in a gas distribution network should be particularly considered taking into account the already existing infrastructure and technologies. This option requires lower support compared to support for electricity production in small-scale biogas utilities.

  13. Energy Production from Biogas: Competitiveness and Support Instruments in Latvia

    Directory of Open Access Journals (Sweden)

    Klāvs G.

    2016-10-01

    Full Text Available Use of renewable energy sources (RES might be one of the key factors for the triple win-win: improving energy supply security, promoting local economic development, and reducing greenhouse gas emissions. The authors ex-post evaluate the impact of two main support instruments applied in 2010-2014 – the investment support (IS and the feed-in tariff (FIT – on the economic viability of small scale (up to 2MWel biogas unit. The results indicate that the electricity production cost in biogas utility roughly corresponds to the historical FIT regarding electricity production using RES. However, if in addition to the FIT the IS is provided, the analysis shows that the practice of combining both the above-mentioned instruments is not optimal because too high total support (overcompensation is provided for a biogas utility developer. In a long-term perspective, the latter gives wrong signals for investments in new technologies and also creates unequal competition in the RES electricity market. To provide optimal biogas utilisation, it is necessary to consider several options. Both on-site production of electricity and upgrading to biomethane for use in a low pressure gas distribution network are simulated by the cost estimation model. The authors’ estimates show that upgrading for use in a gas distribution network should be particularly considered taking into account the already existing infrastructure and technologies. This option requires lower support compared to support for electricity production in small-scale biogas utilities.

  14. Biogas and methane production in an aerobic reactor; Produccion de biogas y metano en un reactor anaerobio UASB

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez Borges, E.; Mendez Novelo, R.; Magana Pietra, A.

    1998-06-01

    On the basis of the results obtained during the evaluation of an anaerobic digester in treating pig farm sewage, mathematical models were constructed predicting the system`s efficiency in producing biogas from such waste, and the methane content of this gas, as a function of the influent`s hydraulic retention time(HRT) and chemical oxygen demand (COD). The experimental device consisted of a UASB reactor at the bottom and a high-rate sedimentator at the top with a total operational volume of 534 litres. The results obtained to establish the critical operating parameters are reported. The production of biogas was 259 1/m``3 and methane 217 1/m``3 with an HRT of 1.3 days when a load of 3.1 kg-COD/m``3 day was applied. The mathematical models presented analyses biogas production as a variable response and the influents` HRT and COD as independent variables to assess the efficiency of the system. (Author) 13 refs.

  15. An integrated approach for a dynamic energy and environmental system analysis of biogas production pathways

    NARCIS (Netherlands)

    Pierie, Frank; Liu, Wen; Moll, Henri C.

    2014-01-01

    Abstract written to Biogas Science for oral presentation. Regarding a new methodology for determining the energy efficiency, carbon footprint and environmental impact of anaerobic biogas production pathways. Additionally, results are given regarding the impacts of energy crops and waste products

  16. Kinetic and economic considerations of biogas production systems

    Energy Technology Data Exchange (ETDEWEB)

    Bala, B K; Satter, M A [Bangladesh Agricultural Univ., Mymensingh (BD). Dept. of Farm Power and Machinery

    1990-01-01

    In this paper, the kinetics and economics of substrate degradation and biogas production are discussed. Mass balance on substrate, with either the Contois or Adams-Eckenfelder models, is used to design the mathematical models of volatile solids reduction and biogas fermentation. The predictions of both the models are found to be in close agreement with the observed values reported. A computer model based on a system dynamics approach is used to model the economics of biogas production by anaerobic digestion from cattle slurry available from typical rural families in Bangladesh. This model incorporates the Adams-Eckenfelder model to determine the amount of gas production and the technique described by Audsley and Wheeler to take into account the effects of price, interest, and inflation. The effects of changes of these parameters on the net profit or loss from the process are also considered. (author).

  17. Methodology for Analysing Energy Demand in Biogas Production Plants—A Comparative Study of Two Biogas Plants

    Directory of Open Access Journals (Sweden)

    Emma Lindkvist

    2017-11-01

    Full Text Available Biogas production through anaerobic digestion may play an important role in a circular economy because of the opportunity to produce a renewable fuel from organic waste. However, the production of biogas may require energy in the form of heat and electricity. Therefore, resource-effective biogas production must consider both biological and energy performance. For the individual biogas plant to improve its energy performance, a robust methodology to analyse and evaluate the energy demand on a detailed level is needed. Moreover, to compare the energy performance of different biogas plants, a methodology with a consistent terminology, system boundary and procedure is vital. The aim of this study was to develop a methodology for analysing the energy demand in biogas plants on a detailed level. In the methodology, the energy carriers are allocated to: (1 sub-processes (e.g., pretreatment, anaerobic digestion, gas cleaning, (2 unit processes (e.g., heating, mixing, pumping, lighting and (3 a combination of these. For a thorough energy analysis, a combination of allocations is recommended. The methodology was validated by applying it to two different biogas plants. The results show that the methodology is applicable to biogas plants with different configurations of their production system.

  18. Visible light photocatalytic disintegration of waste activated sludge for enhancing biogas production.

    Science.gov (United States)

    Anjum, Muzammil; Al-Talhi, Hasan A; Mohamed, Saleh A; Kumar, Rajeev; Barakat, M A

    2018-06-15

    Biogas production using waste activated sludge (WAS) is one of the most demanding technologies for sludge treatment and generating energy in sustainable manner. The present study deals with the photocatalytic pretreatment of WAS using ZnO-ZnS@polyaniline (ZnO-ZnS@PANI) nanocomposite as means for increasing its degradability for improved biogas production by anaerobic digestion (AD). Photocatalysis accelerated the hydrolysis of WAS and increased the sCOD by 6.7 folds after 6 h and transform tCOD into bioavailable sCOD. After the AD of WAS, a removal of organic matter (60.6%) and tCOD (69.3%) was achieved in photocatalytic pretreated sludge. The biogas production was 1.6 folds higher in photocatalytic sludge with accumulative biogas up to 1645.1 ml L -1 vs after 45 days compared with the raw sludge (1022.4 ml L -1 VS ). Moreover, the photocatalysis decrease the onset of methanogenesis from 25 to 12 days while achieve the maximum conversion rate of reducing sugars into organic acids at that time. These results suggested that photocatalysis is an efficient pretreatment method and ZnO-ZnS@PANI can degrade sludge efficiently for enhance biogas production in anaerobic digestion process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Utilization of agro-based industrial by-products for biogas production in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Ngoc, U.N.; Schnitzer, H. [Graz Univ. of Technology, (Austria). Inst. for Resource Efficient and Sustainable Systems; Berghold, H. [Joanneum Research Inst. for Sustainable Techniques and Systems (Austria)

    2007-07-01

    Due to the rapid rates of urbanization occurring in many countries in the world, the importance of an efficient and effective solid waste management system and the utilization/reuse of waste are more critical than ever before, especially for agricultural residues and agro-based industrial by-products. Over the past decade, the amount of solid waste generated in Vietnam has been increasing steadily. Numbers are predicted to continue to increase as well. There is significant potential to use the large amount of wastes for biogas conversion processes and for further production of commercial energy. This paper presented starts with estimation and analysis of the amounts of organic waste, agricultural residues, and agro-based industrial by-products generated from food industrial processes using general data sources for Vietnam. A laboratory study examined the use of agro-based industrial by-products and agricultural residues from cassava, sweet potato, pineapple residues, organic wastes, manures as input materials for biogas production in the anaerobic process. This paper provided an overview of Vietnam as a country, as well as a general overview of the amount of organic waste generated in the country. It also discussed the fermentation tests that were conducted to find out the potential of biogas production from some residues. It was concluded that a significant portion of waste could be reused as an environmentally sound source of energy. The utilization of agricultural residues and industrial byproducts as input materials for biogas production will not only reduce the quantity of organic waste thrown into landfills, but also reduce the negative impact on the environment. 10 refs., 7 tabs., 7 figs.

  20. Value Chain Optimisation of Biogas Production

    DEFF Research Database (Denmark)

    Jensen, Ida Græsted

    economically feasible. In this PhD thesis, the focus is to create models for investigating the profitability of biogas projects by: 1) including the whole value chain in a mathematical model and considering mass and energy changes on the upstream part of the chain; and 2) including profit allocation in a value......, the costs on the biogas plant has been included in the model using economy of scale. For the second point, a mathematical model considering profit allocation was developed applying three allocation mechanisms. This mathematical model can be applied as a second step after the value chain optimisation. After...... in the energy systems model to find the optimal end use of each type of gas and fuel. The main contributions of this thesis are the methods developed on plant level. Both the mathematical model for the value chain and the profit allocation model can be generalised and used in other industries where mass...

  1. Suitability of banana peels for biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Meseguer, C.M.; Silesky, F.; Chacon, G.

    1983-01-01

    Banana (Musa cavendishii) peel in the ripe state (yellow with sufficient spots) has the potential to produce by anaerobic fermentation 0.22 plus or minus 0.03 cubic m biogas/kg dry material. Inhibition of the process can be prevented if the peel is pretreated by oxidation or if the process is carried out at approximately 35 degrees. The inoculate used must be acclimated to the medium.

  2. Biogas plants in the Swiss agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Wellinger, A

    1985-01-01

    Description of the systems of Swiss biogas plants, gas production rates and the use of the gas for heating the biogas digesters and apartments, for agriculture, cheese factories, and for the production of electricity.

  3. The effects of the antibiotics ampicillin, florfenicol, sulfamethazine, and tylosin on biogas production and their degradation efficiency during anaerobic digestion.

    Science.gov (United States)

    Mitchell, Shannon M; Ullman, Jeffrey L; Teel, Amy L; Watts, Richard J; Frear, Craig

    2013-12-01

    The impacts of four common animal husbandry antibiotics (ampicillin, florfenicol, sulfamethazine, and tylosin) on anaerobic digestion (AD) treatment efficiency and the potential for antibiotic degradation during digestion were evaluated. Sulfamethazine and ampicillin exhibited no impact on total biogas production up to 280 and 350 mg/L, respectively, although ampicillin inhibited biogas production rates during early stages of AD. Tylosin reduced biogas production by 10-38% between 130 and 913 mg/L. Florfenicol reduced biogas by ≈ 5%, 40% and 75% at 6.4, 36 and 210 mg/L, respectively. These antibiotic concentrations are higher than commonly seen for mixed feedlot manure, so impacts on full scale AD should be minimal. Antibiotic degradation products were found, confirming AD effectively degraded ampicillin, florfenicol, and tylosin, although some products were persistent throughout the process. Contamination of AD solid and liquid effluents with sulfamethazine and antibiotic transformation products from florfenicol and tylosin could present an environmental concern. Published by Elsevier Ltd.

  4. Biogas

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, A [CSM Suiker BV, Amsterdam (Netherlands); Van Velsen, A F.M.

    1985-03-01

    Process and processing of anaerobic digestion are described. Methane bacteria are only the last link in a long step by step degradation of organic wastes by a large number of microorganisms. In this article the following processes get special attention: septic tank process, used for isolated residential buildings; manure digestion systems; anaerobic sludge processes. A Dutch development is the upflow anaerobic sludge blanket reactor (UASB). Newest process is the fluid bed process, which enables a very fast sedimentation and short residence time. The sensibility for toxic compounds in waste water remains a problem in all biogas processes. (A.V.)

  5. Biogas production from anaerobic codigestion of cowdung and elephant grass (Pennisetum Purpureum) using batch digester

    Science.gov (United States)

    Haryanto, Agus; Hasanudin, Udin; Afrian, Chandra; Zulkarnaen, Iskandar

    2018-03-01

    This study aimed at determining biogas production from codigestion of Elephant grass and cowdung using batch digester. Fresh grass was manually chopped with a maximum length of 3 cm. Chopped grass (25 kg) was perfectly mixed with fresh cowdung (25 kg). The mixture was introduced into a 220-liter batch drum digester. The substrate was diluted with water at different rates (P1 = 50 L, P2 = 75 L, and P3 = 100 L) and was stirred thoroughly. Six digesters were prepared as duplicate for each treatment. Two other digesters containing only 25 kg cowdung diluted with 25 L water were also provided as control treatment (P0). The digesters were air tightly sealed for 70 days. Observation was conducted on daily temperature, substrate pH (initial and final), TS and VS content, biogas yield and biogas composition. Results showed that final pH of grass containing substrate was in the acidic range, namely 4.50, 4.62, 6.82, whereas that of control (P0) was normal with pH of 7.30. Digester with substrate composition 25:25:100 (cowdung:grass:water) produced the highest biogas total (524.3 L). Biogas yield of codigestion, however, was much lower as compared to that of control, namely 7.35, 16.75, and 111.72 L/kg VS r respectively for treatment P1, P2, P3. with dilution rate of 50, 75, and 100 L. Biogas produced from control digester had methane content of 53.88%. In contrast, biogas resulted from all treatments contained low methane (the highest was 31.37%). Methane yield of 39.3 L/kg TS removal was achieved from digester with dilution 100 L (P3). Mechanical pretreatment is suggested to break Elephant grass down into smaller particles prior to introducing it into the digestion process.

  6. Energy Production from Biogas: Competitiveness and Support Instruments in Latvia

    OpenAIRE

    Klāvs G.; Kundziņa A.; Kudrenickis I.

    2016-01-01

    Use of renewable energy sources (RES) might be one of the key factors for the triple win-win: improving energy supply security, promoting local economic development, and reducing greenhouse gas emissions. The authors ex-post evaluate the impact of two main support instruments applied in 2010-2014 – the investment support (IS) and the feed-in tariff (FIT) – on the economic viability of small scale (up to 2MWel) biogas unit. The results indicate that the electricity production cost in biogas ut...

  7. IRREVERSIBILITY GENERATION IN SUGAR, ALCOHOL AND BIOGAS INTEGRATED PRODUCTIONS

    OpenAIRE

    Meilyn González Cortés; Yenisleidy Martínez Martínez; Yailet Albernas Carvajal; Raúl A. Pérez Bermúdez

    2017-01-01

    In this work, the stages of losses and lower exergetic efficiency are determined when the sugar production process is integrated with others for the production of products such as biogas, torula yeast and electricity. The study is carried out in three scenarios of integrated processes for obtaining the indicated products. A sugar factory in which sugar and electricity are produced is considered as the base scenario and from this; a second scenario is inferred in which alcohol is produced from...

  8. Biogas production from livestock waste anaerobic digesters: evaluation and optimization

    Science.gov (United States)

    Livestock wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. However, feedstocks from livestock re...

  9. Biogas production from poultry rendering plant anaerobic digesters: systems comparison

    Science.gov (United States)

    Animal wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. In this study, an evaluation of system p...

  10. The social organization of agricultural biogas production and use

    NARCIS (Netherlands)

    Bluemling, B.; Mol, A.P.J.; Tu, Q.

    2013-01-01

    While for wind, solar energy or hydropower, energy supply happens directly from the source to the wind wheels, hydropower turbines or solar panels, in the case of biogas, energy production cannot directly take from the energy source, organic matter, but depends on the institutional structures and

  11. IRREVERSIBILITY GENERATION IN SUGAR, ALCOHOL AND BIOGAS INTEGRATED PRODUCTIONS

    Directory of Open Access Journals (Sweden)

    Meilyn González Cortés

    2017-01-01

    Full Text Available In this work, the stages of losses and lower exergetic efficiency are determined when the sugar production process is integrated with others for the production of products such as biogas, torula yeast and electricity. The study is carried out in three scenarios of integrated processes for obtaining the indicated products. A sugar factory in which sugar and electricity are produced is considered as the base scenario and from this; a second scenario is inferred in which alcohol is produced from the molasses of the sugar process and biogas from the vinasse of the alcohol distillation process. Finally, a third scenario is exergetically evaluated in which sugar, electricity, biogas and alcohol are produced, but this last one from juices and molasses of the sugar process. For the exergetic analysis the integrated scheme was divided into 8 subsystems. From the analysis of results, the major subsystems that generate irreversibilities are: cogeneration (64.36-65.98%, juice extraction (8.85-9.85%, crystallization and cooking, (8.48 -9.02%, fermentation (4.12-4.94% and distillation (2.74-3.2%. Improvements are proposed to minimize irreversibilities, including the thermal integration of processes, technological modifications in the fermentation process and the introduction of more efficient equipment for the generation of electricity. The exergetic efficiency is between 78.95-81.10%, obtaining greater exergetic efficiency in the scheme of joint operation to produce sugar, alcohol and biogas.

  12. Algae from waste for combined biodiesel and biogas production - ALDIGA

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, M. [VTT Technical Research Centre of Finland, Espoo (Finland)], email: mona.arnold@vtt.fi

    2012-07-01

    The project's goal was to design and validate integrated concepts of utilising waste streams for algal biomass production. The developed sustainable processes should involve efficient utilisation of all side streams generated in addition to biodiesel and biogas. This included also material valorisation of residual algal biomass.

  13. Biogas production on dairy farms: A Croatia case study

    Directory of Open Access Journals (Sweden)

    Nikola Bilandžija

    2013-03-01

    Full Text Available In order to determine the differences in the production and composition of biogas as well as the quality of digested residue from anaerobic digestion of the raw materials generated by dairy farms in Croatia, investigations were undertaken in the biogas laboratory facility of the Faculty of Agriculture. The investigated raw materials were: dairy manure, corn silage, haylage and equal-measure mix (1/3 of all raw materials. For each substrate, three runs of experiments were performed with the same overall hydraulic retention time (40 days and temperature of digestion (35 °C in mesophilic conditions. The investigations found that the most efficient production of biogas was from corn silage. As for biogas composition, it was acceptable in all investigated samples both in energy and environmental terms. Digested residues, which are mildly alkaline, have low dry matter content. About 70 % of dry matter content is organic. On the basis of N:P:K analysis and the analysis of biogenic elements values and heavy metal values, it can be concluded that digested residues of all input raw materials can be used in agricultural production.

  14. Farm scale production of combined heat and power from biogas; Gaardsbaserad och gaardsnaera produktion av kraftvaerme fraan biogas

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, Mikael

    2010-08-15

    The Swedish agricultural sector accounts for a significant and unutilized part of the Swedish biogas potential. There is also considerable interest among Swedish farmers to increase the production and utilization of biogas. The purpose of this study is to analyze the prerequisites for the production of combined heat and power (CHP) from biogas based on manure in different scale and with different technologies. The purpose is also to present economic calculations and the conditions required to reach profitability. Based on current economic conditions and with the assumptions made in the assessment, it is difficult to achieve profitability with conventional production of biogas. Levels of investment and operating costs are greatly dependent of scale and a larger biogas plant is normally more profitable than a smaller. There are, however, only marginal differences between a large farm based biogas plant and a much larger plant treating manure from several farms. The reason is that the positive effects of scale regarding investments, comparing the two plants, are reduced by increased costs for transportation and sanitation. However, the sanitation unit adapted at the large plant enables the plant to receive different external substrates such as food industry waste etc. resulting in a much higher biogas production per amount of treated substrate. The following conclusions are drawn in this study: - to achieve profitability in the production of CHP from biogas based on manure it is required, in most cases, that some of the heat produced could be used externally and that the digestate is given an economic value; - there are clear positive effects of scale between the smaller and the larger farm based biogas plant. However, differences are marginal between a large farm based biogas plant and a larger plant treating manure from several farms; - thermophilic operation could improve the profitability if used to increase the amount of substrate treated and especially if it is

  15. Experimentation on the anaerobic filter reactor for biogas production using rural domestic wastewater

    Science.gov (United States)

    Leju Celestino Ladu, John; Lü, Xi-wu; Zhong, Zhaoping

    2017-08-01

    The biogas production from anaerobic filter (AF) reactor was experimented in Taihu Lake Environmental Engineering Research Center of Southeast University, Wuxi, China. Two rounds of experimental operations were conducted in a laboratory scale at different Hydraulic retention time (HRT) and wastewater temperature. The biogas production rate during the experimentation was in the range of 4.63 to 11.78 L/d. In the first experimentation, the average gas production rate was 10.08 L/d, and in the second experimentation, the average gas production rate was 4.97 L/d. The experimentation observed the favorable Hydraulic Retention Time and wastewater temperature in AF was three days and 30.95°C which produced the gas concentration of 11.78 L/d. The HRT and wastewater temperature affected the efficiency of the AF process on the organic matter removal and nutrients removal as well. It can be deduced from the obtained results that HRT and wastewater temperature directly affects the efficiency of the AF reactor in biogas production. In conclusion, anaerobic filter treatment of organic matter substrates from the rural domestic wastewater increases the efficiency of the AF reactor on biogas production and gives a number of benefits for the management of organic wastes as well as reduction in water pollution. Hence, the operation of the AF reactor in rural domestic wastewater treatment can play an important element for corporate economy of the biogas plant, socio-economic aspects and in the development of effective and feasible concepts for wastewater management, especially for people in rural low-income areas.

  16. Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Jingqing [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China); School of Environmental Sciences and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Li, Dong; Sun, Yongming [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China); Wang, Guohui [School of Environmental Sciences and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Yuan, Zhenhong, E-mail: yuanzh@ms.giec.ac.cn [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China); Zhen, Feng; Wang, Yao [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2013-12-15

    Highlights: • Biogas production was enhanced by co-digestion of rice straw with other materials. • The optimal ratio of kitchen waste, pig manure and rice straw is 0.4:1.6:1. • The maximum biogas yield of 674.4 L/kg VS was obtained. • VFA inhibition occurred when kitchen waste content was more than 26%. • The dominant VFA were propionate and acetate in successful reactors. - Abstract: In order to investigate the effect of feedstock ratios in biogas production, anaerobic co-digestions of rice straw with kitchen waste and pig manure were carried out. A series of single-stage batch mesophilic (37 ± 1 °C) anaerobic digestions were performed at a substrate concentration of 54 g/L based on volatile solids (VS). The results showed that the optimal ratio of kitchen waste, pig manure, and rice straw was 0.4:1.6:1, for which the C/N ratio was 21.7. The methane content was 45.9–70.0% and rate of VS reduction was 55.8%. The biogas yield of 674.4 L/kg VS was higher than that of the digestion of rice straw or pig manure alone by 71.67% and 10.41%, respectively. Inhibition of biogas production by volatile fatty acids (VFA) occurred when the addition of kitchen waste was greater than 26%. The VFA analysis showed that, in the reactors that successfully produced biogas, the dominant intermediate metabolites were propionate and acetate, while they were lactic acid, acetate, and propionate in the others.

  17. Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure

    International Nuclear Information System (INIS)

    Ye, Jingqing; Li, Dong; Sun, Yongming; Wang, Guohui; Yuan, Zhenhong; Zhen, Feng; Wang, Yao

    2013-01-01

    Highlights: • Biogas production was enhanced by co-digestion of rice straw with other materials. • The optimal ratio of kitchen waste, pig manure and rice straw is 0.4:1.6:1. • The maximum biogas yield of 674.4 L/kg VS was obtained. • VFA inhibition occurred when kitchen waste content was more than 26%. • The dominant VFA were propionate and acetate in successful reactors. - Abstract: In order to investigate the effect of feedstock ratios in biogas production, anaerobic co-digestions of rice straw with kitchen waste and pig manure were carried out. A series of single-stage batch mesophilic (37 ± 1 °C) anaerobic digestions were performed at a substrate concentration of 54 g/L based on volatile solids (VS). The results showed that the optimal ratio of kitchen waste, pig manure, and rice straw was 0.4:1.6:1, for which the C/N ratio was 21.7. The methane content was 45.9–70.0% and rate of VS reduction was 55.8%. The biogas yield of 674.4 L/kg VS was higher than that of the digestion of rice straw or pig manure alone by 71.67% and 10.41%, respectively. Inhibition of biogas production by volatile fatty acids (VFA) occurred when the addition of kitchen waste was greater than 26%. The VFA analysis showed that, in the reactors that successfully produced biogas, the dominant intermediate metabolites were propionate and acetate, while they were lactic acid, acetate, and propionate in the others

  18. Anaerobic co-digestion of agricultural by-products with manure, for enhanced biogas production

    DEFF Research Database (Denmark)

    Søndergaard, Marie M.; Fotidis, Ioannis; Kovalovszki, Adam

    2015-01-01

    Biogas is extensively promoted as a promising renewable energy. Therefore, the search of appropriate co-substrates has come into focus. In this study, we examined the potential of using agricultural byproducts as alternative co-substrates for increased biogas production. The biochemical methane p...

  19. Production of bio-gas from maize cobs

    Energy Technology Data Exchange (ETDEWEB)

    Leke, Luter [College of Physical Sciences, University of Aberdeen, AB24 3UE, Aberdeen (United Kingdom); Department of Chemistry, Benue State University, P M B 102119, Makurdi (Nigeria); Ogbanje, Anne Ada [Department of Chemistry, Benue State University, P M B 102119, Makurdi (Nigeria); Department of Renewable Energy, Energy Commission of Nigeria, Garki-Abuja (Nigeria); Terfa, Dekaa Henry [Department of Chemistry, Benue State University, P M B 102119, Makurdi (Nigeria); Ikyaagba, Tyoalumun [College of Physical Sciences, University of Aberdeen, AB24 3UE, Aberdeen (United Kingdom)

    2013-07-01

    Anaerobic digestion of energy crop residues and wastes is of increasing interest in order to reduce greenhouse gas emissions and to facilitate a sustainable development of energy supply. Production of biogas provides a versatile carrier of renewable energy, as methane can be used for replacement of fossil fuels in both heat and power generation as vehicle fuel. Biogas fuel production from blends of biological wastes such as Cow rumen liquor (CL), Poultry droppings (PD), and Goat Faeces (GF) with Maize cobs (M) were studied. 20 g of each inoculum was mixed with 100g of degraded maize cobs in the first three digesters while the fourth contained CL 10g, PD 10 g, and M 100 g. 100 g of M alone in the fifth digester served as the control. The blends were subjected to anaerobic digestion for 10 days on the prevailing atmospheric ambient temperature and pressure conditions. Physiochemical properties of the blends such as moisture content, crude protein, ash, fat, crude fibre, carbohydrate content, C/N ratio, and pH were also determined. Results of the daily performances of each system showed that maize cobs (M) alone had cumulative biogas yield of 1.50 cm3 while those of the blends (MCL, MPD, MGF and MCLPD) were 6.11 cm3, 3.05 cm3, 2.50 cm3, and 63.00 cm3 respectively, pH and C/N ratio affected the biogas yield of the systems significantly. These results indicate that the low biogas production from maize cobs can be enhanced significantly by blending with cow rumen liquor and poultry droppings.

  20. Biogas production on organic farms: Sustainable energy and better nutrient cycling

    OpenAIRE

    Grieb, Beatrice; Zerger, Uli

    2014-01-01

    Biogas production in organic farming is an approach to combine renewable energy and organic farming with numerous positive impacts on the farming system. In Germany biogas on organic farms has a long tradition, now the EU Project “SUSTAINGAS” aims at promotion of this issue on an EU-level. In this context a description of organic biogas was established.

  1. Effect of Temperature and PH on Biogas Production from Cow Dung ...

    African Journals Online (AJOL)

    The effect of feed, temperature and pH on biogas production was investigated using 500 ml small scale laboratory flasks. Feed containing cow dung and dog faeces produced the most biogas for small scale experiments. The combinations were scaled up to assess the feasibility of producing biogas from two 150 L ...

  2. Thermic model to predict biogas production in unheated fixed-dome digesters buried in the ground

    DEFF Research Database (Denmark)

    Terradas-Ill, Georgina; Cuong, Pham Hung; Triolo, Jin Mi

    2014-01-01

    buried in the soil to study heat transfer between biogas digester and its surroundings. The predicted temperatures in the dome, biogas and slurry inside the digester and the resulting biogas production are presented and validated. The model was well able to estimate digester temperature (linear slope...

  3. Progress in biogas. Biogas production from agricultural biomass and organic residues. Pt. 1 and 2. Proceedings (oral presentations and poster presentations); Fortschritt beim Biogas. Biogas aus landwirtschaftlicher Biomasse and organischen Reststoffen. T. 1 und 2. Tagungsband. Vortraege and Poster

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Within the International Conference ''Progress in Biogas - Biogas production from agricultural biomass and organic residues'' at the University Hohenheim (Stuttgart, Federal Republic of Germany) from 18th to 21st September, 2007, the following lectures were held: (1) Global relevance and potential of bioenergy for regional development; (2) Biogas electricity for France feed-in tariff and some other things to know before entering French market; (3) Policy drivers and future prospects for on-farm anaerobic digestion in Northern Ireland; (4) Biogas in Belgium, a swot analysis; (5) Status and prospects of biogas energy use in Ukraine; (6) Recent developments in Chinese agricultural biogas production; (7) Opportunities for agricultural based biogas systems in the province of Ontario, Canada; (8) Pre-treatment and digestion of separated collected household waste in Sweden; (9) To the problem of monitoring measures and prophylaxis measures with the utilization of organic residual substances in biological gas facilities from hygienic view; (10) Fermenting residues from biological gas facilities - nutrients and pollutants, possibilities of application in the agriculture; (11) Treatment and utilization of fermentation residues; (12) Potential of residual gas of NaWaRo feeded biogas plants in Baden-Wuerttemberg; (13) Operating analytics of biogas plants to improve efficiency and to ensure process stability; (14) The potential of biogas and electric power production from subproducts in the sugar and alcohol industries by the application of anaerobic digestion; (15) Co-digestion plant in dairy cattle farm in Emilia Romagna region (Italy); (16) Facing operational problems in a biodigeser in Yuvientsa - Amazonian Region of Ecuador; (17) Biogas plant instead of milk cow - payment and occupation with the use of grassilage; (18) Biogas in ecologic agriculture - experiences from 3 years of fermentation of grass-clover ley; (19) Combined solar-biogas basis for the

  4. Progress in biogas. Biogas production from agricultural biomass and organic residues. Pt. 1 and 2. Proceedings (oral presentations and poster presentations); Fortschritt beim Biogas. Biogas aus landwirtschaftlicher Biomasse and organischen Reststoffen. T. 1 und 2. Tagungsband. Vortraege and Poster

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Within the International Conference ''Progress in Biogas - Biogas production from agricultural biomass and organic residues'' at the University Hohenheim (Stuttgart, Federal Republic of Germany) from 18th to 21st September, 2007, the following lectures were held: (1) Global relevance and potential of bioenergy for regional development; (2) Biogas electricity for France feed-in tariff and some other things to know before entering French market; (3) Policy drivers and future prospects for on-farm anaerobic digestion in Northern Ireland; (4) Biogas in Belgium, a swot analysis; (5) Status and prospects of biogas energy use in Ukraine; (6) Recent developments in Chinese agricultural biogas production; (7) Opportunities for agricultural based biogas systems in the province of Ontario, Canada; (8) Pre-treatment and digestion of separated collected household waste in Sweden; (9) To the problem of monitoring measures and prophylaxis measures with the utilization of organic residual substances in biological gas facilities from hygienic view; (10) Fermenting residues from biological gas facilities - nutrients and pollutants, possibilities of application in the agriculture; (11) Treatment and utilization of fermentation residues; (12) Potential of residual gas of NaWaRo feeded biogas plants in Baden-Wuerttemberg; (13) Operating analytics of biogas plants to improve efficiency and to ensure process stability; (14) The potential of biogas and electric power production from subproducts in the sugar and alcohol industries by the application of anaerobic digestion; (15) Co-digestion plant in dairy cattle farm in Emilia Romagna region (Italy); (16) Facing operational problems in a biodigeser in Yuvientsa - Amazonian Region of Ecuador; (17) Biogas plant instead of milk cow - payment and occupation with the use of grassilage; (18) Biogas in ecologic agriculture - experiences from 3 years of fermentation of grass-clover ley; (19) Combined solar-biogas basis for the population social

  5. Laccase enzyme detoxifies hydrolysates and improves biogas production from hemp straw and miscanthus.

    Science.gov (United States)

    Schroyen, Michel; Van Hulle, Stijn W H; Holemans, Sander; Vervaeren, Han; Raes, Katleen

    2017-11-01

    The impact of various phenolic compounds, vanillic acid, ferulic acid, p-coumaric acid and 4-hydroxybenzoic acid on anaerobic digestion of lignocellulosic biomass (hemp straw and miscanthus) was studied. Such phenolic compounds have been known to inhibit biogas production during anaerobic digestion. The different phenolic compounds were added in various concentrations: 0, 100, 500, 1000 and 2000mg/L. A difference in inhibition of biomethane production between the phenolic compounds was noted. Hydrolysis rate, during anaerobic digestion of miscanthus was inhibited up to 50% by vanillic acid, while vanillic acid had no influence on the initial rate of biogas production during the anaerobic digestion of hemp straw. Miscanthus has a higher lignin concentration (12-30g/100gDM) making it less accessible for degradation, and in combination with phenolic compounds released after harsh pretreatments, it can cause severe inhibition levels during the anaerobic digestion, lowering biogas production. To counter the inhibition, lignin degrading enzymes can be used to remove or degrade the inhibitory phenolic compounds. The interaction of laccase and versatile peroxidase individually with the different phenolic compounds was studied to have insight in the polymerization of inhibitory compounds or breakdown of lignocellulose. Hemp straw and miscanthus were incubated with 0, 100 and 500mg/L of the different phenolic compounds for 0, 6 and 24h and pretreated with the lignin degrading enzymes. A laccase pretreatment successfully detoxified the substrate, while versatile peroxidase however was inhibited by 100mg/L of each of the individual phenolic compounds. Finally a combination of enzymatic detoxification and subsequent biogas production showed that a decrease in phenolic compounds by laccase treatment can considerably lower the inhibition levels of the biogas production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Biogas-pH automation control strategy for optimizing organic loading rate of anaerobic membrane bioreactor treating high COD wastewater.

    Science.gov (United States)

    Yu, Dawei; Liu, Jibao; Sui, Qianwen; Wei, Yuansong

    2016-03-01

    Control of organic loading rate (OLR) is essential for anaerobic digestion treating high COD wastewater, which would cause operation failure by overload or less efficiency by underload. A novel biogas-pH automation control strategy using the combined gas-liquor phase monitoring was developed for an anaerobic membrane bioreactor (AnMBR) treating high COD (27.53 g·L(-1)) starch wastewater. The biogas-pH strategy was proceeded with threshold between biogas production rate >98 Nml·h(-1) preventing overload and pH>7.4 preventing underload, which were determined by methane production kinetics and pH titration of methanogenesis slurry, respectively. The OLR and the effluent COD were doubled as 11.81 kgCOD·kgVSS(-1)·d(-1) and halved as 253.4 mg·L(-1), respectively, comparing with a constant OLR control strategy. Meanwhile COD removal rate, biogas yield and methane concentration were synchronously improved to 99.1%, 312 Nml·gCODin(-1) and 74%, respectively. Using the biogas-pH strategy, AnMBR formed a "pH self-regulation ternary buffer system" which seizes carbon dioxide and hence provides sufficient buffering capacity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Economic analysis of the generation of electric energy from biogas in pig production; Analise economica da geracao de energia eletrica a partir do biogas na suinocultura

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Franco M.; Oliveira, Paulo A.V. de [EMBRAPA Suinos e Aves, Concordia, SC (Brazil)], Emails: franco@cnpsa.embrapa.br, paolive@cnpsa.embrapa.br

    2011-06-15

    The demand for alternative sources of energy has grown in recent years in line with the variation of petroleum prices coupled with the recent energy crisis. Through anaerobic digestion swine manure can be converted into biogas. In the present study it was evaluated the economic viability of using biogas as an alternative source for the production of electricity, for different periods of generation. The method used for the economic evaluation was the net present value (NPV). The time of return on invested capital was also calculated taking into account the discount interest rate on cash flows. The study proved to be economically viable use of biogas from swine manure as a source for generating electricity. The increased demand for electricity in the property increases the net present value and decreases the time required for return of the investment. (author)

  8. Evaluation of biogas production potential of kitchen waste in the presence of spices.

    Science.gov (United States)

    Sahu, Nidhi; Sharma, Abhinav; Mishra, Priyanka; Chandrashekhar, B; Sharma, Ganesh; Kapley, Atya; Pandey, R A

    2017-12-01

    Anaerobic digestion (AD) of kitchen waste (KW) for biogas production is a major challenge to all over the world due to significant compositional variations in KW, such as different types and quantities of spices used for preparing food. Spices may affect the AD process owing to their antimicrobial activity. In this paper, the effect of spices (garlic, red chili, cinnamon, coriander, clove, turmeric, cardamom, black pepper) on AD of KW has been investigated. Batch experiments were carried out to determine the maximum biogas production potential, methane production rate and lag phase for biogas production. Analysis of the results revealed different magnitude of inhibition of the AD process of KW in the presence of different spices. Cinnamon, cardamom and clove resulted >85%, black pepper resulted 75%, while coriander, chili, turmeric and garlic resulted 55-70% reduction in cumulative biogas yield. Elemental analysis showed high concentration of heavy metals in the spices, which along with other bioactive components of the spices could be responsible for the inhibitory effect of the spices on biomethanation. Microbial examination of the digestate also showed a decrease in population of fermentative and methanogenic bacteria in the presence of spices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Biotechnological application of sustainable biogas production through dry anaerobic digestion of Napier grass.

    Science.gov (United States)

    Dussadee, Natthawud; Ramaraj, Rameshprabu; Cheunbarn, Tapana

    2017-05-01

    Napier grass (Pennisetum purpureum), represents an interesting substrate for biogas production. The research project evaluated biogas potential production from dry anaerobic digestion of Napier grass using batch experiment. To enhance the biogas production from ensiled Napier grass, thermal and alkaline pre-treatments were performed in batch mode. Alkali hydrolysis of Napier grass was performed prior to batch dry anaerobic digestion at three different mild concentrations of sodium hydroxide (NaOH). The study results confirmed that NaOH pretreated sample produced high yield of biogas than untreated (raw) and hot water pretreated samples. Napier grass was used as the mono-substrate. The biogas composition of carbon dioxide (30.10%), methane (63.50%) and 5 ppm of H 2 S was estimated from the biogas. Therefore, fast-growing, high-yielding and organic matter-enriched of Napier grass was promising energy crop for biogas production.

  10. Potential Biogas Production from Artichoke Byproducts in Sardinia, Italy

    Directory of Open Access Journals (Sweden)

    Fabio De Menna

    2016-02-01

    Full Text Available The paper aims at evaluating the potential biogas production, both in terms of CH4 and theoretical energy potential, from globe artichoke agricultural byproducts in Sardinia. Field data about the productivity of byproducts were collected on five artichoke varieties cultivated in Sardinia, to assess the biomethane production of their aboveground non-food parts (excluding the head. Moreover, secondary data from previous studies and surveys at regional scale were collected to evaluate the potential biogas production of the different districts. Fresh globe artichoke residues yielded, on average, 292.2 Nm3·tDOM−1, with dissimilarities among cultivars. Fresh samples were analyzed in two series: (a wet basis; and (b wet basis with catalytic enzymes application. Enzymes proved to have some beneficial effects in terms of anticipated biomethane availability. At the regional level, ab. 20 × 106 Nm3 CH4 could be produced, corresponding to the 60% of current installed capacity. However, districts potentials show some differences, depending on the specific biomass partitioning and on the productivity of cultivated varieties. Regional assessments should encompass the sensitiveness of results to agro-economic variables and the economic impacts of globe artichoke residue use in the current regional biogas sector.

  11. Key factors for achieving profitable biogas production from agricultural waste and sustainable biomass

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Biswas, Rajib

    2013-01-01

    Based on numerous investigations on increasing the biogas yield of manure, a new concept was developed to increase the economical operation of manure based biogas plants by combining up concentration of manure with a more specific treatment of the recalcitrant lignocellulosic fiber fraction...... by implementing the treatment on the digested solid fraction. Catch crops have been identified as a sustainable co-substrate for biogas production with a high biogas potential. For exploiting this biomass for profitable biogas production, the biomass yield per hectare, harvest costs, TS concentration and specific...

  12. A Study Of Biogas Production From Rice Straw In An Underground Digester

    International Nuclear Information System (INIS)

    Akpabio, O; Sambo, A.S; Fai, F

    2002-01-01

    The rising cost of petroleum products, the growing world population with diminishing resources and increasing wastes has brought about the need for sourcing alternative resources in order to bring about sustainable development. In this regard. this research was conceived to innovate design and construction of a biogas digester and to study the production of biogas from rice straw. An underground biogas digester was designed. Constructed and tested. The test digestion produced biogas yield of 0.020 M/KXg from green cow dung. In the study of biogas production from rice straw, four bench digesters of one d m3 (I litre) each were used. The bench digester produced biogas yields of 0.0149 m3/kg of rice straw, 0.0389 m3/kg of a mixture of rice straw and cow dung and 0.0792 m3/kg of cow dung. Scaled up digestion of rice straw in the underground digester gave biogas yield of 7.37 x 104 m3/kg. The biogas produced from rice straw was found to contain 38.52% of carbon dioxide and no hydrogen sulphide. It was concluded that the biogas generation from rice straw was encouraging, but scale up yields was low. The limiting factors on biogas production from rice straw with the effect of digester design or biogas production are presented and discussed

  13. Biogas and mineral fertiliser production from plant residues of phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Thi Thu Ha

    2011-07-01

    The former uranium mining site in Ronneburg, Thuringia, Germany was known as a big source of uranium with more than 113,000 tons of uranium mined from 1946 to 1990. This area has been remediated since the nineties of the last century. However, nowadays the site in Ronneburg is still specially considered because of the heterogeneous contamination by many heavy metals and the vegetation can be affected. Three plant species including Indian mustard - Brassica juncea L., triticale - x. Triticosecale Wittmaek and sunflower - Helianthus annuus L. were seeded as accumulators of heavy metals and radionuclides in the phytoremediation process in 2009 and 2010 in Ronneburg. The subsequent utilization of the plant residues after phytoremediation is of special consideration. Batch fermentation of harvested plant materials under the mesophilic condition showed that all of the investigated plant materials had much higher biogas production than liquid cow manure except triticale root, of which biogas yield per volatile solid was not significantly higher than the one of sludge. The highest biogas yields (311 L{sub N}/kg FM and 807 L{sub N}/kg VS) were achieved from the spica of triticale after 42 days of retention of anaerobic digestion. Triticale shoot residues generated higher biogas and methane yields than the previously reported triticale materials that were harvested from the uncontaminated soil Triticale was considered as the highest potential species in biogas production, beside the best growth ability on the acidic soil at the test field site with highest biomass production. Biogas yield of Indian mustard shoot was also high but dramatically varied from 2009 to 2010. Digestates after anaerobic digestion of plant residues contained various macronutrients such as nitrogen, potassium, phosphorus and sulphur, and various micronutrients such as iron, manganes, zinc, etc. The accumulation levels of heavy metals in the investigated plant materials were not the hindrance factors

  14. Application of ADM1 for modeling of biogas production from anaerobic digestion of Hydrilla verticillata.

    Science.gov (United States)

    Chen, Xiaojuan; Chen, Zhihua; Wang, Xun; Huo, Chan; Hu, Zhiquan; Xiao, Bo; Hu, Mian

    2016-07-01

    The present study focused on the application of anaerobic digestion model no. 1 (ADM1) to simulate biogas production from Hydrilla verticillata. Model simulation was carried out by implementing ADM1 in AQUASIM 2.0 software. Sensitivity analysis was used to select the most sensitive parameters for estimation using the absolute-relative sensitivity function. Among all the kinetic parameters, disintegration constant (kdis), hydrolysis constant of protein (khyd_pr), Monod maximum specific substrate uptake rate (km_aa, km_ac, km_h2) and half-saturation constants (Ks_aa, Ks_ac) affect biogas production significantly, which were optimized by fitting of the model equations to the data obtained from batch experiments. The ADM1 model after parameter estimation was able to well predict the experimental results of daily biogas production and biogas composition. The simulation results of evolution of organic acids, bacteria concentrations and inhibition effects also helped to get insight into the reaction mechanisms. Copyright © 2016. Published by Elsevier Ltd.

  15. Modeling of Biogas Production Process from Cow Manure with Completely Stirred Tank Reactor under Semi Continuously Feeding

    Directory of Open Access Journals (Sweden)

    J Taghinazhad

    2018-03-01

    Full Text Available Introduction Anaerobic digestion (AD is a process of breaking down organic matter, such as manure, in the absence of oxygen by concerted action of various groups of anaerobic bacteria. The AD process generates biogas, an important renewable energy source that is composed mostly of methane (CH4, and carbon dioxide (CO2 which can be used as an energy source. Biogas originates from biogenic material and is therefore a type of biofuel. Enhancement of biogas production from cattle dung or animal wastes by co-digesting with crop residues like sugarcane stalk, maize stalks, rice straw, cotton stalks, wheat straw, water hyacinth, onion waste and oil palm fronds as well as with liquid waste effluent such as palm oil mill effluent. Nevertheless, the search for cost effective and environmentally friendly methods of enhancing biogas generation (i.e. biogas yield still needs to be further investigated. Many workers have studied the reaction kinetics of biogas production and developed kinetic models for the anaerobic digestion process. Objective of this study is to investigate the effect of biological additive using of organic loading rate (OLR in biogas production from cow dung. In addition, cumulative biogas production was simulated using logistic growth model, and modified Gompertz models, respectively. Materials and Methods The study was performed in 2015-2016 at the agricultural research center of Ardabil Province, Moghan (39.39 °N, 48.88° E. Fresh cow manure used for this research was collected from the research farm of the Institute for Animal Breeding and Animal Husbandry, Moghan. It was kept in 30 l containers at ambient temperature until fed to the reactors. In this study, experiments were conducted to investigate the biogas production from anaerobic digestion of cow manure (CM with effect of organic loading rate (OLR at mesophilic temperature (35°C±2 in a long time experiment with completely stirred tank reactor (CSTR under semi continuously

  16. Ecophysiological characteristics and biogas production of cadmium-contaminated crops.

    Science.gov (United States)

    Zhang, Huayong; Tian, Yonglan; Wang, Lijun; Zhang, Luyi; Dai, Liming

    2013-10-01

    The present study proposes a novel strategy to get a rational production of biogas of the biomass residues from phytoremediation. This study investigates physiological responses, cadmium (Cd) accumulation and biogas production from canola, oat and wheat in pot and batch experiments. The results indicate that (1) aerial biomasses for canola, oat and wheat were enhanced by 5 mg Cd/kg soil by 19.41%, 8.78% and 3.38%, and the upper limit of Cd concentration that canola, oat and wheat can tolerate for aerial biomass production were 50, 10 and 10 mg Cd/kg soil; (2) canola accumulates more Cd than oat and wheat in its aerial parts; (3) cumulative biogas yields were 159.37%, 179.23% and 111.34% of the control when Cd in the shoot were 2.00±0.44, 39.80±1.25 and 6.37±0.15 mg Cd/kg biomass for canola, oat and wheat. Phytoremediation in cooperation with bioenergy production provide new insights for both soil remediation and energy research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Enhancement of Biogas Production from Bakery Waste by Pseudomonas aeruginosa

    OpenAIRE

    S. Potivichayanon; T. Sungmon; W. Chaikongmao; S. Kamvanin

    2011-01-01

    Production of biogas from bakery waste was enhanced by additional bacterial cell. This study was divided into 2 steps. First step, grease waste from bakery industry-s grease trap was initially degraded by Pseudomonas aeruginosa. The concentration of byproduct, especially glycerol, was determined and found that glycerol concentration increased from 12.83% to 48.10%. Secondary step, 3 biodigesters were set up in 3 different substrates: non-degraded waste as substrate in fir...

  18. GIANT MISCANTHUS AS A SUBSTRATE FOR BIOGAS PRODUCTION

    OpenAIRE

    Joanna Kazimierowicz; Lech Dzienis

    2015-01-01

    One unconventional source of energy, which may be applied in numerous production and municipal processes, is energy accumulated in plants. As a result of photosynthesis, solar energy is transformed into chemical energy accumulated in a form of carbohydrates in the plant biomass, which becomes the material that is more and more sought by power distribution companies and individual users. Currently, a lot of research on obtaining biogas from energy crops is conducted. Corn silage is used most o...

  19. Techniques of power production from biogas and syngas. Extended abstract

    International Nuclear Information System (INIS)

    Couturier, Ch.

    2009-01-01

    The aim of this study is to achieve a state of the art on the techniques of electricity production (mainly engines and turbines) from biomass gases (biogas and syngas). After a brief description of the various routes to produce gas from biomass, i.e. anaerobic digestion and gasification, the study shows the composition of these gases, their constituents, the factors characterizing combustion, to finish on air emissions. Then, there is a description of the general principles and parameters of operation and adjustment of the main electricity production techniques: and their various possible associations. This chapter is concluded by a comparative synthesis on the scopes and maturity of each technique. The second chapter is a review of different processes to remove contaminants of biogas and syngas. It gives operating principle, feedback, costs and development. The third chapter is an economical, energy and environmental analysis of the techniques of electricity production. The fourth chapter is a technical guide, with some practical details to operate a plant about treatment, functioning of machines. This is also a synthesis of difficulties. An economic and environmental analysis of biogas plants permits to compare different choices. This guide gives information to actors in this field to make decisions. The study is finished by a synthesis with key points and research fields, followed by a conclusion. The last chapter lists resource materials: bibliography and patents of the last 10 years. Provided in appendix, there is a directory about actors like equipment manufacturers or operating contractors. (author)

  20. The possibility of palm oil mill effluent for biogas production

    Directory of Open Access Journals (Sweden)

    EDWI MAHAJOENO

    2008-01-01

    Full Text Available The world currently obtains its energy from the fossil fuels such as oil, natural gas and coal. However, the international crisis in the Middle East, rapid depletion of fossil fuel reserves as well as climate change have driven the world towards renewable energy sources which are abundant, untapped and environmentally friendly. Indonesia has abundant biomass resources generated from the agricultural industry particularly the large commodity, palm oil (Elaeis guiinensis Jacq.. The aims of the research were to (i characterize palm oil mill effluent which will be used as source of biogas production, (ii know the biotic and abiotic factors which effect POME substrate for biogas production by anaerobic digestion in bulk system. The results show that POME sludge generated from PT Pinago Utama mill is viscous, brown or grey and has an average total solid (TS content of, 26.5-45.4, BOD is 23.5-29.3, COD is 49.0-63.6 and SS is 17.1-35.9 g/L, respectively. This substrate is a potential source of environmental pollutants. The biotic factors were kind and concentration of the inoculums, i.e. seed sludge of anaerobic lagoon II and 20% (w/v respectively. Both physical and chemical factors such as pre-treated POME pH, pH neutralizer matter Ca (OH2, temperature ≥40oC, agitation effect to increase biogas production, but in both coagulant concentration, FeCl2 were not.

  1. Biogas production from microalgae grown in wastewater: Effect of microwave pretreatment

    International Nuclear Information System (INIS)

    Passos, Fabiana; Solé, Maria; García, Joan; Ferrer, Ivet

    2013-01-01

    Highlights: ► Microwave irradiation enhanced the disintegration and digestibility of microalgae. ► Algal biomass solubilisation increased by 800% with microwave pretreatment. ► The main parameter influencing biomass solubilisation was the applied specific energy. ► Increased biogas production rate (27–75%) and yield (12–78%) with pretreated biomass. ► Linear correlation between microalgae solubilisation and biogas yield. - Abstract: The aim of this study was to evaluate the effect of microwave pretreatment on the solubilisation and anaerobic digestion of microalgae–bacterial biomass cultivated in high rate algal ponds for wastewater treatment. The microwave pretreatment comprised three specific energies (21,800, 43,600 and 65,400 kJ/kg TS), combining three output power values with different exposure times. Response surface analysis showed that the main parameter influencing biomass solubilisation was the applied specific energy. Indeed, a similar solubilisation increase was obtained for the same specific energy, regardless of the output power and exposure time (280–350% for 21,800 kJ/kg TS, 580–610% for 43,600 kJ/kg TS and 730–800% for 65,400 kJ/kg TS). In biochemical methane potential tests, the initial biogas production rate (27–75% increase) and final biogas yield (12–78% increase) were higher with pretreated biomass. A linear correlation was found between biomass solubilisation and biogas yield. It can be concluded that microwave irradiation enhanced the disintegration and digestibility of microalgae

  2. Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome, and metatranscriptome

    Science.gov (United States)

    Nolla-Ardèvol, Vímac; Strous, Marc; Tegetmeyer, Halina E.

    2015-01-01

    A haloalkaline anaerobic microbial community obtained from soda lake sediments was used to inoculate anaerobic reactors for the production of methane rich biogas. The microalga Spirulina was successfully digested by the haloalkaline microbial consortium at alkaline conditions (pH 10, 2.0 M Na+). Continuous biogas production was observed and the obtained biogas was rich in methane, up to 96%. Alkaline medium acted as a CO2 scrubber which resulted in low amounts of CO2 and no traces of H2S in the produced biogas. A hydraulic retention time (HRT) of 15 days and 0.25 g Spirulina L−1 day−1 organic loading rate (OLR) were identified as the optimal operational parameters. Metagenomic and metatranscriptomic analysis showed that the hydrolysis of the supplied substrate was mainly carried out by Bacteroidetes of the “ML635J-40 aquatic group” while the hydrogenotrophic pathway was the main producer of methane in a methanogenic community dominated by Methanocalculus. PMID:26157422

  3. The digester modification for biogas production from palm oil mill effluent by Fed-batch

    Science.gov (United States)

    Aznury, M.; Amin, J. M.; Hasan, A.; Harsyah, A.

    2018-03-01

    The purpose of this research is to biogas production in the digester modification equipment by Fed-batch of the palm oil mill effluent (POME) to determine the quality of POME after a treatment and the concentration of biogas that is formed every 24 hours within 10 days. The raw materials used are POME from PT Mitra Ogan, Tbk. In the initial stage is sedimentation process in the first digester tank at a flow rate 6 liters/minute and then observing the retention time of 24 hours. POME flowed into the second digester tank for fermentation process with the addition of active microbes seed every 24 hours to produce biogas. After the fermentation process is complete, POME flowed to third digester tank for water treatment stage before being released into the environment. COD content test values obtained after processing are 766, 362 and 350 mg/L, approximately. While the BOD value is 212.75; 125 and 110.9 mg/L, approximately. Biogas production for 10 days fermentation are 10.88% methane, 19.2% oxygen and 75.83% nitrogen, approximately.

  4. Influence of microwave heating on biogas production from Sida hermaphrodita silage.

    Science.gov (United States)

    Zieliński, Marcin; Dębowski, Marcin; Rusanowska, Paulina

    2017-12-01

    This study compared the effects on biogas production of suspended sludge versus a combination of suspended sludge and immobilized biomass, and microwave versus convection heating. Biogas production was the highest in the hybrid bioreactor heated by microwaves (385L/kg VS) and also the most stable, as shown by the FOS/TAC ratio and pH. Regardless of the type of heating, biogas production was 8% higher with immobilized biomass than without. Although the lag phase of biogas production was shorter with microwave heating than without, the log phase was longer, and biogas production in the microwave heated bioreactors took about twice as long (ca. 40days) to plateau as in the conventionally heated bioreactors. These differences in the profile of biogas production are likely due to the athermal effects of microwave irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Manure and energy crops for biogas production. Status and barriers

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, H.B.; Nielsen, A.M.; Murto, M.; Christensson, K.; Rintala, J.; Svensson, M.; Seppaelae, M.; Paavola, T.; Angelidaki, I.; Kaparaju, P.L.

    2008-07-01

    This study has evaluated the development of biogas technology in three Nordic countries and analysed the effects of using nine model energy crops as supplement to manure feedstocks in biogas plants. The study compares the global warming impacts and the energy balance for the nine crops used for heat and power production. The energy balances and impacts on greenhouse gases of the studied crops differ between the countries. In Sweden and Denmark, the same crops turned out to be the most promising in terms of energy yield and impact on greenhouse gases. In general, the same crops that score high in terms of energy yield also score high in reducing the amount of greenhouse gases. Based on the examined parameters, it can be concluded that the most promising crops are Jerusalem artichoke, beets, maize, and, in Finland, reed canary grass as well. (au)

  6. Intensification of biogas production using pretreatment based on hydrodynamic cavitation.

    Science.gov (United States)

    Patil, Pankaj N; Gogate, Parag R; Csoka, Levente; Dregelyi-Kiss, Agota; Horvath, Miklos

    2016-05-01

    The present work investigates the application of hydrodynamic cavitation (HC) for the pretreatment of wheat straw with an objective of enhancing the biogas production. The hydrodynamic cavitation reactor is based on a stator and rotor assembly. The effect of three different speeds of rotor (2300, 2500, 2700 rpm), wheat straw to water ratios (0.5%, 1% and 1.5% wt/wt) and also treatment times as 2, 4 and 6 min have been investigated in the work using the design of experiments (DOE) approach. It was observed that the methane yield of 31.8 ml was obtained with untreated wheat straw whereas 77.9 ml was obtained with HC pre-treated wheat straw confirming the favourable changes during the pre-treatment. The combined pre-treatment using KOH and HC gave maximum yield of biogas as 172.3 ml. Overall, it has been established that significant enhancement in the biogas production can be obtained due to the pretreatment using HC which can also be further intensified by combination with chemical treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The biogas

    International Nuclear Information System (INIS)

    Rigaud, Ch.; Laffargue, C.; Zebboud, I.

    2007-01-01

    Mixed of methane and carbon dioxide the biogas can be produced by many sources for the heat or the electricity production and the fuel production. This document aims to better understand the biogas, its characteristics, its valorization, the plants concerned, the installations and the regulation. It provides also an example of a biogas power plant and the biogas use in the farms. (A.L.B.)

  8. A review on optimization production and upgrading biogas through CO2 removal using various techniques.

    Science.gov (United States)

    Andriani, Dian; Wresta, Arini; Atmaja, Tinton Dwi; Saepudin, Aep

    2014-02-01

    Biogas from anaerobic digestion of organic materials is a renewable energy resource that consists mainly of CH4 and CO2. Trace components that are often present in biogas are water vapor, hydrogen sulfide, siloxanes, hydrocarbons, ammonia, oxygen, carbon monoxide, and nitrogen. Considering the biogas is a clean and renewable form of energy that could well substitute the conventional source of energy (fossil fuels), the optimization of this type of energy becomes substantial. Various optimization techniques in biogas production process had been developed, including pretreatment, biotechnological approaches, co-digestion as well as the use of serial digester. For some application, the certain purity degree of biogas is needed. The presence of CO2 and other trace components in biogas could affect engine performance adversely. Reducing CO2 content will significantly upgrade the quality of biogas and enhancing the calorific value. Upgrading is generally performed in order to meet the standards for use as vehicle fuel or for injection in the natural gas grid. Different methods for biogas upgrading are used. They differ in functioning, the necessary quality conditions of the incoming gas, and the efficiency. Biogas can be purified from CO2 using pressure swing adsorption, membrane separation, physical or chemical CO2 absorption. This paper reviews the various techniques, which could be used to optimize the biogas production as well as to upgrade the biogas quality.

  9. Effects of shearing on biogas production and microbial community structure during anaerobic digestion with recuperative thickening.

    Science.gov (United States)

    Yang, Shufan; Phan, Hop V; Bustamante, Heriberto; Guo, Wenshan; Ngo, Hao H; Nghiem, Long D

    2017-06-01

    Recuperative thickening can intensify anaerobic digestion to produce more biogas and potentially reduce biosolids odour. This study elucidates the effects of sludge shearing during the thickening process on the microbial community structure and its effect on biogas production. Medium shearing resulted in approximately 15% increase in biogas production. By contrast, excessive or high shearing led to a marked decrease in biogas production, possibly due to sludge disintegration and cell lysis. Microbial analysis using 16S rRNA gene amplicon sequencing showed that medium shearing increased the evenness and diversity of the microbial community in the anaerobic digester, which is consistent with the observed improved biogas production. By contrast, microbial diversity decreased under either excessive shearing or high shearing condition. In good agreement with the observed decrease in biogas production, the abundance of Bacteroidales and Syntrophobaterales (which are responsible for hydrolysis and acetogenesis) decreased due to high shearing during recuperative thickening. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  10. When does decentralized production of biogas and centralized upgrading and injection into the natural gas grid make sense?

    NARCIS (Netherlands)

    Hengeveld, Evert Jan; van Gemert, Wim; Bekkering, Jan; Broekhuis, A.A.

    The production of biogas through anaerobic digestion is one of the technological solutions to convert biomass into a readily usable fuel. Biogas can replace natural gas, if the biogas is upgraded to green gas. To contribute to the EU-target to reduce Green House Gases emissions, the installed biogas

  11. An integrated prediction and optimization model of biogas production system at a wastewater treatment facility.

    Science.gov (United States)

    Akbaş, Halil; Bilgen, Bilge; Turhan, Aykut Melih

    2015-11-01

    This study proposes an integrated prediction and optimization model by using multi-layer perceptron neural network and particle swarm optimization techniques. Three different objective functions are formulated. The first one is the maximization of methane percentage with single output. The second one is the maximization of biogas production with single output. The last one is the maximization of biogas quality and biogas production with two outputs. Methane percentage, carbon dioxide percentage, and other contents' percentage are used as the biogas quality criteria. Based on the formulated models and data from a wastewater treatment facility, optimal values of input variables and their corresponding maximum output values are found out for each model. It is expected that the application of the integrated prediction and optimization models increases the biogas production and biogas quality, and contributes to the quantity of electricity production at the wastewater treatment facility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Membrane bioreactors' potential for ethanol and biogas production: a review.

    Science.gov (United States)

    Ylitervo, Päivi; Akinbomia, Julius; Taherzadeha, Mohammad J

    2013-01-01

    Companies developing and producing membranes for different separation purposes, as well as the market for these, have markedly increased in numbers over the last decade. Membrane and separation technology might well contribute to making fuel ethanol and biogas production from lignocellulosic materials more economically viable and productive. Combining biological processes with membrane separation techniques in a membrane bioreactor (MBR) increases cell concentrations extensively in the bioreactor. Such a combination furthermore reduces product inhibition during the biological process, increases product concentration and productivity, and simplifies the separation of product and/or cells. Various MBRs have been studied over the years, where the membrane is either submerged inside the liquid to be filtered, or placed in an external loop outside the bioreactor. All configurations have advantages and drawbacks, as reviewed in this paper. The current review presents an account of the membrane separation technologies, and the research performed on MBRs, focusing on ethanol and biogas production. The advantages and potentials of the technology are elucidated.

  13. Dashboard: biogas for electricity production - Third quarter 2015

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2015-12-01

    This publication describes the situation of biogas-based electricity production in France and its evolution over the first quarters of 2015. A map indicates the level of connected power per district. Graphs illustrate the evolution of the number of new connections per quarter since 2009, the evolution of electricity quarterly production since 2011. Tables indicate the number of installations per power level (less than 0.5 MW, between 0.5 and 1.0 MW, more than 1 MW) and per installation type. Regional data are given in terms of number of installations, installed power in September 2015 and in December 2015, regional share and evolution

  14. Dashboard: biogas for electricity production - Forth quarter 2015

    International Nuclear Information System (INIS)

    Cavaud, Denis; Reynaud, Didier

    2016-02-01

    This publication describes the situation of biogas-based electricity production in France and its evolution over the first quarters of 2015. A map indicates the level of connected power per district. Graphs illustrate the evolution of the number of new connections per quarter since 2009, the evolution of electricity quarterly production since 2011. Tables indicate the number of installations per power level (less than 0.5 MW, between 0.5 and 1.0 MW, more than 1 MW) and per installation type. Regional data are given in terms of number of installations, installed power in December 2015, regional share and evolution

  15. Uncertainty propagation in modeling of plasma-assisted hydrogen production from biogas

    Science.gov (United States)

    Zaherisarabi, Shadi; Venkattraman, Ayyaswamy

    2016-10-01

    With the growing concern of global warming and the resulting emphasis on decreasing greenhouse gas emissions, there is an ever-increasing need to utilize energy-production strategies that can decrease the burning of fossil fuels. In this context, hydrogen remains an attractive clean-energy fuel that can be oxidized to produce water as a by-product. In spite of being an abundant species, hydrogen is seldom found in a form that is directly usable for energy-production. While steam reforming of methane is one popular technique for hydrogen production, plasma-assisted conversion of biogas (carbon dioxide + methane) to hydrogen is an attractive alternative. Apart from producing hydrogen, the other advantage of using biogas as raw material is the fact that two potent greenhouse gases are consumed. In this regard, modeling is an important tool to understand and optimize plasma-assisted conversion of biogas. The primary goal of this work is to perform a comprehensive statistical study that quantifies the influence of uncertain rate constants thereby determining the key reaction pathways. A 0-D chemical kinetics solver in the OpenFOAM suite is used to perform a series of simulations to propagate the uncertainty in rate constants and the resulting mean and standard deviation of outcomes.

  16. Effect of mixing on biogas production during mesophilic anaerobic digestion of screened dairy manure in a Pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Rico, Carlos; Tejero, Inaki [Department of Sciences and Techniques of Water and Environment, University of Cantabria, Santander (Spain); Rico, Jose Luis; Munoz, Noelia; Gomez, Beatriz [Department of Chemical Engineering and Inorganic Chemistry, University of Cantabria, Santander (Spain)

    2011-10-15

    The effect of mixing on biogas production of a 1.5-m{sup 3} pilot continuous stirred tank reactor (CSTR) processing screened dairy manure was evaluated. Mixing was carried out by recirculation of reactor content with a mono pump. The experiment was conducted at a controlled temperature of 37{+-}1 C and hydraulic retention times (HRTs) of 20 and 10 days. The effect of continuous and intermittent operation of the recirculation pump on biogas production was studied. At 10 days of HRT, the results showed a minimal influence of recirculation rate on biogas production and that continuous recirculation did not improve reactor performance. At 20 days of HRT, the recirculation rate did not affect reactor performance. Combination of low solid content in feed animal slurry and long HRTs results in minimal mixing requirements for anaerobic digestion. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Economies of scale in biogas production and the significance of flexible regulation

    DEFF Research Database (Denmark)

    Nielsen, Lise Skovsgaard; Klinge Jacobsen, Henrik

    2017-01-01

    Biogas production is characterised by economies of scale in capital and operational costs of the plant and diseconomies of scale from transport of input materials. We analyse biogas in a Danish setting where most biogas is based on manure, we use a case study with actual distances, and find...... that the benefits of scale in capital and operational costs dominate the diseconomies of increasing transport distances to collect manure. To boost the yield it is common to use co-substrates in the biogas production. We investigate how costs and income changes, when sugar beet is added in this case study......, and demonstrate that transport cost can be critical in relation to co-substrates. Further we compare the new Danish support for upgraded biogas with the traditional support for biogas being used in Combined Heat and Power production in relation to scale economies. We argue that economies of scale is facilitated...

  18. Biogas and Bioethanol Production in Organic Farming

    DEFF Research Database (Denmark)

    Oleskowicz-Popiel, Piotr

    The thesis consists of two parts. First one is an introduction providing background information on organic farming, ethanol and anaerobic digestion processes, and concept of on‐farm bioenergy production. Second part consists of 8 papers....

  19. Effects of steam pretreatment and co-production with ethanol on the energy efficiency and process economics of combined biogas, heat and electricity production from industrial hemp

    Science.gov (United States)

    2013-01-01

    Background The study presented here has used the commercial flow sheeting program Aspen Plus™ to evaluate techno-economic aspects of large-scale hemp-based processes for producing transportation fuels. The co-production of biogas, district heat and power from chopped and steam-pretreated hemp, and the co-production of ethanol, biogas, heat and power from steam-pretreated hemp were analysed. The analyses include assessments of heat demand, energy efficiency and process economics in terms of annual cash flows and minimum biogas and ethanol selling prices (MBSP and MESP). Results Producing biogas, heat and power from chopped hemp has the highest overall energy efficiency, 84% of the theoretical maximum (based on lower heating values), providing that the maximum capacity of district heat is delivered. The combined production of ethanol, biogas, heat and power has the highest energy efficiency (49%) if district heat is not produced. Neither the inclusion of steam pretreatment nor co-production with ethanol has a large impact on the MBSP. Ethanol is more expensive to produce than biogas is, but this is compensated for by its higher market price. None of the scenarios examined are economically viable, since the MBSP (EUR 103–128 per MWh) is higher than the market price of biogas (EUR 67 per MWh). The largest contribution to the cost is the cost of feedstock. Decreasing the retention time in the biogas process for low solids streams by partly replacing continuous stirred tank reactors by high-rate bioreactors decreases the MBSP. Also, recycling part of the liquid from the effluent from anaerobic digestion decreases the MBSP. The production and prices of methane and ethanol influence the process economics more than the production and prices of electricity and district heat. Conclusions To reduce the production cost of ethanol and biogas from biomass, the use of feedstocks that are cheaper than hemp, give higher output of ethanol and biogas, or combined production with

  20. Pretreatment of different waste streams for improvement in biogas production; Foerbehandlingsteknikers betydelse foer oekat biogasutbyte

    Energy Technology Data Exchange (ETDEWEB)

    Sarvari Horvath, Ilona (Hoegskolan i Boraas (Sweden)); del Pilar Castillo, Maria (JTI (Sweden)); Loren, Anders; Brive, Lena; Ekendahl, Susanne; Nordman, Roger (SP, Boraas (Sweden)); Kanerot, Mija (Boraas Energi och Miljoe AB (Sweden))

    2010-07-01

    plant was calculated. We have calculated the changes that occur if a pretreatment step was included in the process. For the calculations data obtained during anaerobic digestion of paper waste treated by steam explosion were used. The results showed that while the methane production is increasing by 7,5 % the energy need of the process is decreasing by 21% when a pretreatment step by steam explosion is used instead of a hygienisation step. Batch anaerobic digestion gives methane yields and breakdown rates on pretreated and untreated material, which then can be compared, while continuous anaerobic digestion experiments enable evaluation of the long-term effects of the pretreatment. During the continuous anaerobic digestion experiments untreated or pretreated paper waste was tested in a co-digestion process with an existing waste mixture from Sobacken's biogas plant. However, it was hard to discern the effects of the treatment because the composition and characteristics of the waste mixture had larger impact on the co-digestion process than the pretreatment of the paper fraction part by itself. Nevertheless, our results of the continuous digestion most interestingly showed that a change in substrate composition can stabilize the digestion process with the effect of a 30 % increase in methane production compared to that of the existing original waste mixture. This raises new specific questions on how the composition of mixed-flows influences the biogas production and on how the structural and chemical characteristics of substrate resources, pretreated or untreated, affect the anaerobic digestion. These questions can be central points in future strategic research within the biological waste management area

  1. Optimal operating conditions for maximum biogas production in anaerobic bioreactors

    International Nuclear Information System (INIS)

    Balmant, W.; Oliveira, B.H.; Mitchell, D.A.; Vargas, J.V.C.; Ordonez, J.C.

    2014-01-01

    The objective of this paper is to demonstrate the existence of optimal residence time and substrate inlet mass flow rate for maximum methane production through numerical simulations performed with a general transient mathematical model of an anaerobic biodigester introduced in this study. It is herein suggested a simplified model with only the most important reaction steps which are carried out by a single type of microorganisms following Monod kinetics. The mathematical model was developed for a well mixed reactor (CSTR – Continuous Stirred-Tank Reactor), considering three main reaction steps: acidogenesis, with a μ max of 8.64 day −1 and a K S of 250 mg/L, acetogenesis, with a μ max of 2.64 day −1 and a K S of 32 mg/L, and methanogenesis, with a μ max of 1.392 day −1 and a K S of 100 mg/L. The yield coefficients were 0.1-g-dry-cells/g-pollymeric compound for acidogenesis, 0.1-g-dry-cells/g-propionic acid and 0.1-g-dry-cells/g-butyric acid for acetogenesis and 0.1 g-dry-cells/g-acetic acid for methanogenesis. The model describes both the transient and the steady-state regime for several different biodigester design and operating conditions. After model experimental validation, a parametric analysis was performed. It was found that biogas production is strongly dependent on the input polymeric substrate and fermentable monomer concentrations, but fairly independent of the input propionic, acetic and butyric acid concentrations. An optimisation study was then conducted and optimal residence time and substrate inlet mass flow rate were found for maximum methane production. The optima found were very sharp, showing a sudden drop of methane mass flow rate variation from the observed maximum to zero, within a 20% range around the optimal operating parameters, which stresses the importance of their identification, no matter how complex the actual bioreactor design may be. The model is therefore expected to be a useful tool for simulation, design, control and

  2. Validation and Recommendation of Methods to Measure Biogas Production Potential of Animal Manure

    Directory of Open Access Journals (Sweden)

    C. H. Pham

    2013-06-01

    Full Text Available In developing countries, biogas energy production is seen as a technology that can provide clean energy in poor regions and reduce pollution caused by animal manure. Laboratories in these countries have little access to advanced gas measuring equipment, which may limit research aimed at improving local adapted biogas production. They may also be unable to produce valid estimates of an international standard that can be used for articles published in international peer-reviewed science journals. This study tested and validated methods for measuring total biogas and methane (CH4 production using batch fermentation and for characterizing the biomass. The biochemical methane potential (BMP (CH4 NL kg−1 VS of pig manure, cow manure and cellulose determined with the Moller and VDI methods was not significantly different in this test (p>0.05. The biodegradability using a ratio of BMP and theoretical BMP (TBMP was slightly higher using the Hansen method, but differences were not significant. Degradation rate assessed by methane formation rate showed wide variation within the batch method tested. The first-order kinetics constant k for the cumulative methane production curve was highest when two animal manures were fermented using the VDI 4630 method, indicating that this method was able to reach steady conditions in a shorter time, reducing fermentation duration. In precision tests, the repeatability of the relative standard deviation (RSDr for all batch methods was very low (4.8 to 8.1%, while the reproducibility of the relative standard deviation (RSDR varied widely, from 7.3 to 19.8%. In determination of biomethane concentration, the values obtained using the liquid replacement method (LRM were comparable to those obtained using gas chromatography (GC. This indicates that the LRM method could be used to determine biomethane concentration in biogas in laboratories with limited access to GC.

  3. The potential of residues of furfural and biogas as calcareous soil amendments for corn seed production.

    Science.gov (United States)

    Zhao, Yunchen; Yan, Zhibin; Qin, Jiahai; Ma, Zhijun; Zhang, Youfu; Zhang, Li

    2016-04-01

    Intensive corn seed production in Northwest of China produced large amounts of furfural residues, which represents higher treatment cost and environmental issue. The broad calcareous soils in the Northwest of China exhibit low organic matter content and high pH, which led to lower fertility and lower productivity. Recycling furfural residues as soil organic and nutrient amendment might be a promising agricultural practice to calcareous soils. A 3-year field study was conducted to evaluate the effects of furfural as a soil amendment on corn seed production on calcareous soil with compared to biogas residues. Soil physical-chemical properties, soil enzyme activities, and soil heavy metal concentrations were assessed in the last year after the last application. Corn yield was determined in each year. Furfural residue amendments significantly decreased soil pH and soil bulk density. Furfural residues combined with commercial fertilizers resulted in the greater cumulative on soil organic matter, total phosphorus, available phosphorus, available potassium, and cation exchange capacity than that of biogas residue. Simultaneously, urease, invertase, catalase, and alkaline phosphatase increased even at the higher furfural application rates. Maize seed yield increased even with lower furfural residue application rates. Furfural residues resulted in lower Zn concentration and higher Cd concentration than that of biogas residues. Amendment of furfural residues led to higher soil electrical conductivity (EC) than that of biogas residues. The addition of furfural residues to maize seed production may be considered to be a good strategy for recycling the waste, converting it into a potential resource as organic amendment in arid and semi-arid calcareous soils, and may help to reduce the use of mineral chemical fertilizers in these soils. However, the impact of its application on soil health needs to be established in long-term basis.

  4. Biogas production from potato-juice, a by-product from potato-starch processing, in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors

    DEFF Research Database (Denmark)

    Fang, Cheng; Boe, Kanokwan; Angelidaki, Irini

    2011-01-01

    In this study, the utilization of potato-juice, the organic by-product from potato-starch processing, for biogas production was investigated in batch assay and in high rate anaerobic reactors. The maximum methane potential of the potato-juice determined by batch assay was 470mL-CH4/gVS-added. Ana......In this study, the utilization of potato-juice, the organic by-product from potato-starch processing, for biogas production was investigated in batch assay and in high rate anaerobic reactors. The maximum methane potential of the potato-juice determined by batch assay was 470mL-CH4/g...

  5. Biological treatment of chicken feather waste for improved biogas production

    Institute of Scientific and Technical Information of China (English)

    Gergely Forgács; Saeid Alinezhad; Amir Mirabdollah; Elisabeth Feuk-Lagerstedt; Ilona Sárvári Horwáth

    2011-01-01

    A two-stage system was developed which combines the biological degradation of keratin-rich waste with the production of biogas.Chicken feather waste was treated biologically with a recombinant Bacillus megaterium strain showing keratinase activity prior to biogas production.Chopped,autoclaved chicken feathers (4%,W/V) were completely degraded,resulting in a yellowish fermentation broth with a level of 0.51 mg/mL soluble proteins after 8 days of cultivation of the recombinant strain.During the subsequent anaerobic batch digestion experiments,methane production of 0.35 Nm3/kg dry feathers (i.e.,0.4 Nm3/kg volatile solids of feathers),corresponding to 80% of the theoretical value on proteins,was achieved from the feather hydrolyzates,independently of the prehydrolysis time period of 1,2 or 8 days.Cultivation with a native keratinase producing strain,Bacillus licheniformis resulted in only 0.25 mg/mL soluble proteins in the feather hydrolyzate,which then was digested achieving a maximum accumulated methane production of 0.31 Nm3/kg dry feathers.Feather hydrolyzates treated with the wild type B.megaterium produced 0.21 Nm3 CH4/kg dry feathers as maximum yield.

  6. Biogas production from Eichhornia crassipes aquatic plant; Producao de biogas a partir da planta aquatica Eichhornia crassipes

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Roberto Guimaraes; Silva, Jose Goncalves da; Fernandes Filho, Jorge; Pereira, Maria Cristina Duarte Eiras [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica. Programa de Pos-Graduacao em Engenharia Mecanica]. E-mail: temrobe@vm.uff.br; Melo, Ricardo Bichara de [Light Servicos de Eletricidade S.A., Rio de Janeiro, RJ (Brazil)]. E-mail: rbmelo@light.com.br

    2004-07-01

    Virtually all plants and waste plants and animals may in some way be used as an energy source. The anaerobic digestion of these materials is an option, resulting in the biogas. Besides the gas obtained in the process, is produced, inside the biodigester, an excellent fertilizer. The aquatic plant Eichhornia crassipes is found in large quantities in various water bodies, such as reservoirs, lakes and ponds, becoming mostly often a big problem and it is necessary its systematic removal of water. The bench biodigester used in the experiment of biodigestion of aquatic plants is composed of a reactor containing the biomass, where the biogas is produced, and a reservoir to monitor the production of biogas. The reactor is located within a receptacle containing water that can be heated by an electrical resistance, with the purpose of maintaining the temperature inside the reactor around 35 deg C. The results of analysis of gas of the reactor made in a gas chromatograph to CG MASTER of double ionization detector with a flame and thermal conductivity, show a percentage of 50% of methane in the biogas. The process of biodigestion of aquatic plant Eichhornia crassipes shows potential to obtain biogas, with considerable levels of methane in order to make its exploitation. Also, were analyzed the biomass in the biodigester for determination of humid, total organic matter, mineral and organic carbon residue.

  7. Biodigestion of the aquatics plants mixtures and biogas production; Biodigestao de misturas de plantas aquaticas e producao de biogas

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Roberto Guimaraes; Abreu, Fernando Luiz Barbuda de; Fernandes Filho, Jorge; Pereira, Maria Cristina Duarte Eiras [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica. Programa de Pos-Graduacao em Engenharia Mecanica]. E-mail: temrobe@vm.uff.br; Melo, Ricardo Bichara de [Light Servicos de Eletricidade S.A., Rio de Janeiro, RJ (Brazil). Gerencia de Estudos e Gestao de Geracao]. E-mail: rbmelo@light.com.br

    2004-07-01

    Several systems of generating electricity using water storage reservoirs. One problem that occurs constantly in these reservoirs is the accumulation of aquatic plants, such as Eichhornia crassipes, Eichhornia azurea, Pistia stratiotes and Salvinia that may cause serious problems for the system. Periodically, the biomass must be removed and disposed of appropriate form, so that does not cause contamination of soil, groundwater or allowing the proliferation of vectors. One possible destination is the use of biomass in a process of biodigestion, resulting in biogas. The bench of biodigester used in the experiment of biodigestion of aquatic plants is composed of a reactor containing the biomass, where the biogas is produced and a reservoir for the monitoring the production of biogas. The reactor is located inside a container containing water that can be heated by an electrical resistance, with the aim of maintaining the temperature inside the reactor around 35 deg C. The results of analysis of gas of the reactor was obtained using a gas chromatograph to CG MASTER of double ionization detector with a flame and thermal conductivity. These results show a percentage of 50% of methane in the biogas. Also, were analyzed the biomass in the biodigester for determination of humidity, total organic matter, waste mineral and organic carbon. The process of biodigestion of the mixture of aquatic plants: Eichhornia crassipes, Eichhornia azurea and Pistia stratiotes and Salvinia shows potential for obtaining biogas, with considerable levels of methane, in order to facilitate its recovery.

  8. Assessing the Environmental Performance of Integrated Ethanol and Biogas Production

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Michael; Svensson, Niclas; Fonseca, Jorge (Linkoeping Univ., Environmental Technology and Management, Linkoeping (Sweden)), e-mail: michael.martin@liu.se

    2011-06-15

    As the production of biofuels continues to expand worldwide, criticism about, e.g. the energy output versus input and the competition with food has been questioned. However, biofuels may be optimized to increase the environmental performance through the concepts of industrial symbiosis. This paper offers a quantification of the environmental performance of industrial symbiosis in the biofuel industry through integration of biogas and ethanol processes using a life cycle approach. Results show that although increasing integration is assumed to produce environmental benefits in industrial symbiosis, not all impact categories have achieved this and the results depend upon the allocation methods chosen

  9. GIANT MISCANTHUS AS A SUBSTRATE FOR BIOGAS PRODUCTION

    Directory of Open Access Journals (Sweden)

    Joanna Kazimierowicz

    2015-09-01

    Full Text Available One unconventional source of energy, which may be applied in numerous production and municipal processes, is energy accumulated in plants. As a result of photosynthesis, solar energy is transformed into chemical energy accumulated in a form of carbohydrates in the plant biomass, which becomes the material that is more and more sought by power distribution companies and individual users. Currently, a lot of research on obtaining biogas from energy crops is conducted. Corn silage is used most often, however, there is a demand for alternative plants. The experiment described in this article was conducted with the use of giant Miscanthus (Miscanthus Giganteus.

  10. A combination anaerobic digestion scheme for biogas production from dairy effluent-CSTR and ABR, and biogas upgrading

    DEFF Research Database (Denmark)

    Jürgensen, Lars; Ehimen, Ehiaze Augustine; Born, Jens

    2018-01-01

    Anaerobic digestion of low-strength dairy waste water was used for the production of biogas which is aimed at serving as a concentrated carbon dioxide (CO2) source for further methanation. Using hydrogen (which can be produced via electrolysis using renewably sourced electricity), the CO2 fraction...... of the produced biogas can be used as a mechanism to store surplus electricity by the Sabatier process, which converts the CO2 fractions to methane (CH4), i. e. synthetic natural gas. This study investigates the use a combined reactor scheme for the anaerobic digestion of dairy waste water, and the further...

  11. Life cycle assessment of coupling household biogas production to agricultural industry: A case study of biogas-linked persimmon cultivation and processing system

    International Nuclear Information System (INIS)

    Chen, Bin; Chen, Shaoqing

    2013-01-01

    Biogas plant construction has been boosted in rural China not only due to the immediate merit from biogas production but also the succeeding benefit from by-product utilization in agro-industry, both of which are significant strategies to address energy shortage and global warming issues. However, little work has been done to evaluate the coupling of biogas projects to traditional agrosystems from a life-cycle perspective, which is most important in process and system optimization in different senses. By taking persimmon cultivation and processing with supports from a household biogas plant as a case study, this study conducts a life cycle assessment of coupling biogas production to agro-industry in terms of energy, environmental and economic performance. The results suggest that each production stage following the biogas/digestate utilization chain (biogas operation-persimmon cultivation-product processing) is beneficial across all three aspects. However, a tradeoff only exists in utilizing digestate as top-dressing and employing biogas utilization as engine fuel, while biogas application in fresh-keeping and digestate reuse as base fertilizer fails to increase either energy production or greenhouse gas mitigation. The coupled system can be hopefully optimized through increasing fermentation efficiency and joint operation of biogas digesters. -- Highlights: •Biogas/digestate utilization is overall beneficial in all production stages. •Each bioresource application may not be profitable in all respects. •Tradeoffs in using biogas and digestate vary among different utilization ways. •Multi-user operation and fermentation efficiency elevation optimize system

  12. Experimental determination of a critical temperature for maximum anaerobic digester biogas production

    CSIR Research Space (South Africa)

    Sichilalu, S

    2017-08-01

    Full Text Available fission of methanogenic bacteria. The temperature was varied over time over several days and the biogas production is recorded every after 24 hours(1 day) . Based on the experiment setup, the results show a higher biogas production proportional to the rise...

  13. Effect of Waste Paper on Biogas Production from Co-digestion of ...

    African Journals Online (AJOL)

    The effect of waste paper on biogas production from the co-digestion of fixed amount of cow dung and water hyacinth was studied at room temperature in five batch reactor for over 60 days. Waste paper addition was varied for a fixed amount of cow dung and water hyacinth until maximum biogas production was achieved.

  14. Biogas production from steer manures in Vietnam

    DEFF Research Database (Denmark)

    Pham, Cuong H.; Saggar, Surinder; Vu, Cuong C.

    2017-01-01

    manures collected from two different experiments of steers fed diets containing feed supplements. BMP was 110.1 (NLkg-1 VS) for manure from steers receiving a control diet, significantly lower 79.0 (NL kg-1 VS) for manure from steers fed a diet containing 0.3% tannin (%DM), but then showed an increasing...... trend to 90.9 and 91.2 (NL kg-1 VS) for manures from steers receiving 0.4 and 0.5% tannin (%DM) supplements, respectively. Similarly, the CH4 production (NL kg-1 VS) of manure from steers was 174 for control, 142 for control supplemented concentrate (C), 143 for control added rice straw treated...

  15. Environmental Sustainability and Economic Benefits of Dairy Farm Biogas Energy Production: A Case Study in Umbria

    Directory of Open Access Journals (Sweden)

    Biancamaria Torquati

    2014-09-01

    Full Text Available Accelerating demand to reduce the environmental impact of fossil fuels has been driving widespread attention to renewable fuels, such as biogas. In fact, in the last decade numerous policy guidelines and laws regarding energy, the environment and agriculture have been issued to encourage the use of animal sewage as a raw material for the production of biogas. The production of energy from biogas in a dairy farm can provide a good opportunity for sustainable rural development, augmenting the farm’s income from traditional sources and helping to reduce the overall environmental impact of the energy sector. This paper investigates the trade-off between the environmental and economic benefits of an agro-energy farm in the Umbria region of Italy that employs livestock sewage and manure, dedicated energy crops (corn and triticale silage and olive waste. The environmental analysis was performed using the LCA methodology, while the economic investigation was carried out by reconstructing the economic balance of the agro-energetic supply chain based on the budgets of each activity performed. The LCA results show, on the one hand, the predominant weight of producing dedicated crops compared to all other processes in the supply chain and, on the other hand, a significant reduction in environmental impact compared to that caused by energy production from fossil fuels. Economic analysis revealed that the results depend significantly on what rate per kWh the government incentives guarantee to agricultural producers of renewable energy.

  16. Effect of alkaline microwaving pretreatment on anaerobic digestion and biogas production of swine manure.

    Science.gov (United States)

    Yu, Tao; Deng, Yihuan; Liu, Hongyu; Yang, Chunping; Wu, Bingwen; Zeng, Guangming; Lu, Li; Nishimura, Fumitake

    2017-05-10

    Microwave assisted with alkaline (MW-A) condition was applied in the pretreatment of swine manure, and the effect of the pretreatment on anaerobic treatment and biogas production was evaluated in this study. The two main microwaving (MW) parameters, microwaving power and reaction time, were optimized for the pretreatment. Response surface methodology (RSM) was used to investigate the effect of alkaline microwaving process for manure pretreatment at various values of pH and energy input. Results showed that the manure disintegration degree was maximized of 63.91% at energy input of 54 J/g and pH of 12.0, and variance analysis indicated that pH value played a more important role in the pretreatment than in energy input. Anaerobic digestion results demonstrated that MW-A pretreatment not only significantly increased cumulative biogas production, but also shortened the duration for a stable biogas production rate. Therefore, the alkaline microwaving pretreatment could become an alternative process for effective treatment of swine manure.

  17. Biogas production from the mechanically pretreated, liquid fraction of sorted organic municipal solid wastes.

    Science.gov (United States)

    Alvarado-Lassman, A; Méndez-Contreras, J M; Martínez-Sibaja, A; Rosas-Mendoza, E S; Vallejo-Cantú, N A

    2017-06-01

    The high liquid content in fruit and vegetable wastes makes it convenient to mechanically separate these wastes into mostly liquid and solid fractions by means of pretreatment. Then, the liquid fraction can be treated using a high-rate anaerobic biofilm reactor to produce biogas, simultaneously reducing the amount of solids that must be landfilled. In this work, the specific composition of municipal solid waste (MSW) in a public market was determined; then, the sorted organic fraction of municipal solid waste was treated mechanically to separate and characterize the mostly liquid and solid fractions. Then, the mesophilic anaerobic digestion for biogas production of the first fraction was evaluated. The anaerobic digestion resulted in a reduced hydraulic retention time of two days with high removal of chemical oxygen demand, that is, 88% on average, with the additional benefit of reducing the mass of the solids that had to be landfilled by about 80%.

  18. Enhancement and Optimization Mechanisms of Biogas Production for Rural Household Energy in Developing Countries: A review

    Directory of Open Access Journals (Sweden)

    Yitayal Addis Alemayehu

    2015-10-01

    Full Text Available Anaerobic digestion is common but vital process used for biogas and fertilizer production as well as one method for waste treatment. The process is currently used in developing countries primarily for biogas production in the household level of rural people. The aim of this review is to indicate possible ways of including rural households who own less than four heads of cattle for the biogas programs in developing countries. The review provides different research out puts on using biogas substrates other than cow dung or its mix through different enhancement and optimization mechanisms. Many biodegradable materials have been studied for alternative methane production. Therefore, these substrates could be used for production by addressing the optimum conditions for each factor and each processes for enhanced and optimized biogas production.

  19. Biogas production from energy crops and agriculture residues

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.

    2010-12-15

    In this thesis, the feasibility of utilizing energy crops (willow and miscanthus) and agriculture residues (wheat straw and corn stalker) in an anaerobic digestion process for biogas production was evaluated. Potential energy crops and agriculture residues were screened according to their suitability for biogas production. Moreover, pretreatment of these biomasses by using wet explosion method was studied and the effect of the wet explosion process was evaluated based on the increase of (a) sugar release and (b) methane potential when comparing the pretreated biomass and raw biomass. Ensiling of perennial crops was tested as a storage method and pretreatment method for enhancement of the biodegradability of the crops. The efficiency of the silage process was evaluated based on (a) the amount of biomass loss during storage and (b) the effect of the silage on methane potential. Co-digestion of raw and wet explosion pretreated energy crops and agriculture residues with swine manure at various volatile solids (VS) ratio between crop and manure was carried out by batch tests and continuous experiments. The efficiency of the co-digestion experiment was evaluated based on (a) the methane potential in term of ml CH4 produced per g of VS-added and (b) the amount of methane produced per m3 of reactor volume. (Author)

  20. EU Agro Biogas Project

    NARCIS (Netherlands)

    Amon, T.; Mayr, H.; Eder, M.; Hobbs, P.; Rao Ravella, S.; Roth, U.; Niebaum, A.; Doehler, H.; Weiland, P.; Abdoun, E.; Moser, A.; Lyson, M.; Heiermann, M.; Plöchl, M.; Budde, J.; Schattauer, A.; Suarez, T.; Möller, H.; Ward, A.; Hillen, F.; Sulima, P.; Oniszk-Polplawska, A.; Krampe, P.; Pastorek, Z.; Kara, J.; Mazancova, J.; Dooren, van H.J.C.; Wim, C.; Gioelli, F.; Balsari, P.

    2009-01-01

    EU-AGRO-BIOGAS is a European Biogas initiative to improve the yield of agricultural biogas plants in Europe, to optimise biogas technology and processes and to improve the efficiency in all parts of the production chain from feedstock to biogas utilisation. Leading European research institutions and

  1. Production of biogas and biofertilizers from biodigester effluents

    International Nuclear Information System (INIS)

    Cepero, L.; Blanco, D.; Suárez, J.; Savran, Valentina; Piñón, M. R. Díaz; Palacios, A.

    2012-01-01

    One of the research and technological innovation processes which are developed within the project «Biomass as renewable energy source for rural areas» (BIOMAS-CUBA) is related to biogas and biofertilizer production from biodigester effluents, in agroenergy farms, where food and energy are produced, in an integrated way. The technologies selected for constructing anaerobic biodigesters have been: fixed dome (Chinese model), plastic tube or polyethylene with continuous flow (Taiwan type) and anaerobic lagoon covered with a high density polyethylene geomembrane. From these technologies 69 biodigesters were constructed or repaired to a lesser extent-, in farms from the provinces Matanzas, Sancti Spiritus and Las Tunas, at the Experimental Station "Indio Hatuey", in the mountain community Magueyal (Santiago de Cuba), in a pig production facility from Las Tunas and a livestock production farm belonging to the Ministry of Interior, in Jovellanos (Matanzas province). These 69 biodigesters comprised a total digestion capacity of 1 665 m³ and generated productions of 600 060 m³ of biogas, which were used for cooking food and feed stuffs, electricity generation and brick firing; as well as 2 601 t of biofertilizers, used for improving the fertility of 1 830 ha of soils; in addition, they allow eliminating the contamination produced by cattle and pig dung in the productive scenarios, which generates a positive environmental impact. The installation was carried out of 52 bioproduct production plants from biodigester effluents, enriched with native microorganisms, which are used in animal and plant health, crop nutrition, elimination of bad odors in livestock production facilities, bioremediation of lagoons contaminated with organic residues and in bioceramic filters. (author)

  2. Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes.

    Science.gov (United States)

    Yu, D; Kurola, J M; Lähde, K; Kymäläinen, M; Sinkkonen, A; Romantschuk, M

    2014-10-01

    Over 258 Mt of solid waste are generated annually in Europe, a large fraction of which is biowaste. Sewage sludge is another major waste fraction. In this study, biowaste and sewage sludge were co-digested in an anaerobic digestion reactor (30% and 70% of total wet weight, respectively). The purpose was to investigate the biogas production and methanogenic archaeal community composition in the anaerobic digestion reactor under meso- (35-37 °C) and thermophilic (55-57 °C) processes and an increasing organic loading rate (OLR, 1-10 kg VS m(-3) d(-1)), and also to find a feasible compromise between waste treatment capacity and biogas production without causing process instability. In summary, more biogas was produced with all OLRs by the thermophilic process. Both processes showed a limited diversity of the methanogenic archaeal community which was dominated by Methanobacteriales and Methanosarcinales (e.g. Methanosarcina) in both meso- and thermophilic processes. Methanothermobacter was detected as an additional dominant genus in the thermophilic process. In addition to operating temperatures, the OLRs, the acetate concentration, and the presence of key substrates like propionate also affected the methanogenic archaeal community composition. A bacterial cell count 6.25 times higher than archaeal cell count was observed throughout the thermophilic process, while the cell count ratio varied between 0.2 and 8.5 in the mesophilic process. This suggests that the thermophilic process is more stable, but also that the relative abundance between bacteria and archaea can vary without seriously affecting biogas production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Improved biogas production from whole stillage by co-digestion with cattle manure.

    Science.gov (United States)

    Westerholm, Maria; Hansson, Mikael; Schnürer, Anna

    2012-06-01

    Whole stillage, as sole substrate or co-digested with cattle manure, was evaluated as substrate for biogas production in five mesophilic laboratory-scale biogas reactors, operating semi-continuously for 640 days. The process performance was monitored by chemical parameters and by quantitative analysis of the methanogenic and acetogenic population. With whole stillage as sole substrate the process showed clear signs of instability after 120 days of operation. However, co-digestion with manure clearly improved biogas productivity and process stability and indicated increased methane yield compared with theoretical values. The methane yield at an organic loading rate (OLR) at 2.8 g VS/(L×day) and a hydraulic retention time (HRT) of 45 days with a substrate mixture 85% whole stillage and 15% manure (based on volatile solids [VS]) was 0.31 N L CH(4)/gVS. Surprisingly, the abundance of the methanogenic and acetogenic populations remained relatively stable throughout the whole operation and was not influenced by process performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Economies of scale in biogas production and the significance of flexible regulation

    International Nuclear Information System (INIS)

    Skovsgaard, Lise; Jacobsen, Henrik Klinge

    2017-01-01

    Biogas production is characterised by economies of scale in capital and operational costs of the plant and diseconomies of scale from transport of input materials. We analyse biogas in a Danish setting where most biogas is based on manure, we use a case study with actual distances, and find that the benefits of scale in capital and operational costs dominate the diseconomies of increasing transport distances to collect manure. To boost the yield it is common to use co-substrates in the biogas production. We investigate how costs and income changes, when sugar beet is added in this case study, and demonstrate that transport cost can be critical in relation to co-substrates. Further we compare the new Danish support for upgraded biogas with the traditional support for biogas being used in Combined Heat and Power production in relation to scale economies. We argue that economies of scale is facilitated by the new regulation providing similar support to upgraded biogas fed into the natural gas grid, however in order to keep transport costs low, we suggest that the biogas plants should be allowed to use and combine as many co-substrates as possible, respecting the sustainability criteria regarding energy crops in Danish legislation. - Highlights: • For Denmark we find economies of scale in biogas production based on pure manure. • Adding sugar beet outweigh economy of scale due to increased transport costs. • We investigate the main risks associated with input prices, yield and output prices. • Biogas fed into the gas grid should receive similar support as directly used in CHP. • Regulation should allow large biogas plants with few restrictions on co-substrates.

  5. Biogas energy production in Ghana: environmental pollution analysis

    International Nuclear Information System (INIS)

    Akpabli, C.K.; Gyasi, S.

    1997-01-01

    Analysis of biomass fuel conversion options for biogas production at Appolonia in Ghana has demonstrated that the technique is promising not only for solving some of the country's energy and agricultural problems, but as a very useful way of waste treatment which should help improve waste management. Some environmental analyses were made and some of the preliminary results obtained are presented and discussed. There has been considerable decrease in both biochemical oxygen demand and biological oxygen demand of the effluents compared with the corresponding values obtained for the influents of the three most readily available biomass sources used - human faeces, cow dung and pig dung. Apart from methane (about 54%) and carbon dioxide (about 40%) the biogas produced at Appolonia , according to investigations, using a gas filter analyser and gas chromatography, was found to contain from 1 to 2% hydrogen sulphide which is poisonous. Two other components were detected in the gas but not identified in this present work. (author). 2 figs., 5 tabs., 8 refs

  6. Biogas Production Potential from Economically Usable Green Waste

    Directory of Open Access Journals (Sweden)

    Sebastian Heintschel

    2012-04-01

    Full Text Available Biomass production for energy purposes on agricultural land competes with food production. This is a serious problem, considering the limited availability of farmland, rising demand for varied food products, demand for more organic crop production resulting in considerably reduced yields per area and the need for more environmentally sound agricultural practices meeting long-term sustainability criteria. Residual land currently not used for agricultural production has been considered a promising resource, but in terms of potentials, difficult to estimate for biomass for use in the energy sector. Biomass potentials associated with “green waste” from residual grasslands were assessed for Schwäbisch Hall County in the Federal State of Baden-Württemberg, Germany. Roadside edges, conservation grasslands subject to low intensity use (landscape maintenance sites, riparian stretches along ditches and streams, and municipal green spaces (public lawns, parks and sports fields were the area types considered. Data for biomass and biogas yields were either determined through a sampling program or obtained from the literature and through interviews with experts. In an iterative process and distinguishing between theoretical, technical and realized (economic potentials, unsuitable areas and fractions were subtracted from the theoretical potentials. Theoretical potentials for Schwäbisch Hall County were originally estimated at 21 million m3 of biogas. The results of the investigation suggest that a very high percentage of the theoretical residual biomass potential cannot be accessed due to various technical, legal, ecological or management (economic constraints. In fact, in the end, only municipal lawns and green spaces were found to provide suitable substrates. Current use of residual biomass in the model communities did not exceed 0.4% of the theoretical potentials. Provided all residual biomass available under current management practices

  7. Application of biogas for combined heat and power production in the rural region

    International Nuclear Information System (INIS)

    Kozak, T.; Majchrzycka, A.

    2009-01-01

    The paper discusses combined production of heat and power (CHP) from biogas in a small-scale power plant placed in the rural region. Based on power and heat demands of the rural region and biomass supply, the CHP system was selected. Keywords: biogas, cogeneration

  8. EU Agro Biogas Project

    OpenAIRE

    Amon, T.; Mayr, H.; Eder, M.; Hobbs, P.; Rao Ravella, S.; Roth, U.; Niebaum, A.; Doehler, H.; Weiland, P.; Abdoun, E.; Moser, A.; Lyson, M.; Heiermann, M.; Plöchl, M.; Budde, J.

    2009-01-01

    EU-AGRO-BIOGAS is a European Biogas initiative to improve the yield of agricultural biogas plants in Europe, to optimise biogas technology and processes and to improve the efficiency in all parts of the production chain from feedstock to biogas utilisation. Leading European research institutions and universities are cooperating with key industry partners in order to work towards sustainable biogas production in Europe. Fourteen partners from eight European countries are involved in the EU-AGR...

  9. The role of energy policy in agricultural biogas energy production in Visegrad countries

    Directory of Open Access Journals (Sweden)

    Chodkowska-Miszczuk Justyna

    2017-03-01

    Full Text Available Energy production by agricultural biogas plants has recently recorded considerable growth in Visegrad countries. The development was enhanced by European Union’s efforts to increase the proportion of energy produced from renewable sources. The paper aims to assess the role of energy policy in the development of agricultural biogas energy production in Visegrad region. Conducted studies have shown that among various forms of support for energy production from renewable energy sources, the price system prevails, including the support by feed in tariffs and bonuses. Feed in tariffs were adopted in Czech Republic, Hungary and Slovakia. Another kind of support system – a quota system – was adopted in Poland, what includes tendering and certificate systems. The results confirm the adoption of legal framework was necessary step to enable agricultural biogas energy production in Visegrad countries, but itself it was not enough to stimulate development of agricultural biogas energy production significantly. Rapid development in each country was recorded only after the certain financial support systems took effect, what made production of agricultural biogas energy economically efficient for investors. The production of energy from agricultural biogas grew the most in the Czech Republic and Slovakia, where the financial support was the highest. Nevertheless, the protracted process of changes in legal framework and transformation of energy policy, certain measures including state-controlled price-making systems, risk regarding with auction system might hamper agricultural biogas energy production further development.

  10. Improvement in methanol production by regulating the composition of synthetic gas mixture and raw biogas.

    Science.gov (United States)

    Patel, Sanjay K S; Mardina, Primata; Kim, Dongwook; Kim, Sang-Yong; Kalia, Vipin C; Kim, In-Won; Lee, Jung-Kul

    2016-10-01

    Raw biogas can be an alternative feedstock to pure methane (CH4) for methanol production. In this investigation, we evaluated the methanol production potential of Methylosinus sporium from raw biogas originated from an anaerobic digester. Furthermore, the roles of different gases in methanol production were investigated using synthetic gas mixtures of CH4, carbon dioxide (CO2), and hydrogen (H2). Maximum methanol production was 5.13, 4.35, 6.28, 7.16, 0.38, and 0.36mM from raw biogas, CH4:CO2, CH4:H2, CH4:CO2:H2, CO2, and CO2:H2, respectively. Supplementation of H2 into raw biogas increased methanol production up to 3.5-fold. Additionally, covalent immobilization of M. sporium on chitosan resulted in higher methanol production from raw biogas. This study provides a suitable approach to improve methanol production using low cost raw biogas as a feed containing high concentrations of H2S (0.13%). To our knowledge, this is the first report on methanol production from raw biogas, using immobilized cells of methanotrophs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Processing biogas planet digestates into value-added products -BIOVIRTA

    Energy Technology Data Exchange (ETDEWEB)

    Paavola, T.; Rintala, J. (MTT Agrifood Research Finland, Jokioinen (Finland)), Email: teija.paavola@mtt.fi; Sahltroem, L.; Maunuksela, L.; Torniainen, M. (Finnish Food Safety Authority, EVIRA, Helsinki (Finland)), Email: leena.sahlstrom@evira.fi; Kaparaju, P.; Rintala, J. (Univ. of Jyvaeskylae (Finland)), Email: jukka.rintala@jyu.fi; Vikman, M.; Kapanen, A. (VTT Technical Research Centre of Finland, Espoo (Finland)), Email: minna.vikman@vtt.fi

    2010-10-15

    The objective of BIOVIRTA project is to develop technologies and practices with which digestates, originating from anaerobic digestion of different organic wastes and by-products, can be refined to value-added and safe products for various end-uses. It is expected that the operational preconditions for biogas plants will be significantly enhanced when the end-products are proven safe and applicable. Selection of the raw materials for anaerobic codigestion is the main operational strategy that could influence the nutrient content in the digestate. This has been clearly established in the laboratory and full-scale studies with various digestates originating from different raw materials, e.g. rendering and slaughterhouse byproducts. The nutrient content in the digestate also affects the opportunities to produce refined digestate products. In this project, the possibilities for several processing technologies, e.g. mechanical separation and stripping, have been intensively evaluated for the production of different digestate products. Their mass balances have also been estimated. The feasibility for the use of the digestate products has been assessed based on their chemical and hygienic quality and for various end-uses, including as organic fertiliser and/or soil improver in crop production. The preliminary results of these field-experiments showed that the yield of barley fertilised with digestate products was comparable to inorganic fertilisers. (orig.)

  12. Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation

    International Nuclear Information System (INIS)

    Kafle, Gopi Krishna; Kim, Sang Hun

    2013-01-01

    Highlights: ► Apple waste (AW) was co-digested with swine manure (SM). ► Mixture of AW and SM produced a higher biogas yield than SM only. ► Mixture of AW and SM produced a higher biogas yield at 55 °C than at 36.5 °C. ► Modified Gompertz model best fitted to the substrates used. ► Positive synergetic effect up to 33% AW during continuous digestion. -- Abstract: This study evaluated the performance of anaerobic digesters using a mixture of apple waste (AW) and swine manure (SM). Tests were performed using both batch and continuous digesters. The batch test evaluated the gas potential, gas production rate of the AW and SM (Experiment I), and the effect of AW co-digestion with SM (33:67,% volatile solids (VSs) basis) (Experiment II) at mesophilic and thermophilic temperatures. The first-order kinetic model and modified Gompertz model were also evaluated for methane yield. The continuous test evaluated the performance of a single stage completely stirred tank reactor (CSTR) with different mixture ratios of AW and SM at mesophilic temperature. The ultimate biogas and methane productivity of AW in terms of total chemical oxygen demand (TCOD) was determined to be 510 and 252 mL/g TCOD added, respectively. The mixture of AW and SM improved the biogas yield by approximately 16% and 48% at mesophilic and thermophilic temperatures, respectively, compared to the use of SM only, but no significant difference was found in the methane yield. The difference between the predicted and measured methane yield was higher with a first order kinetic model (4.6–18.1%) than with a modified Gompertz model (1.2–3.4%). When testing continuous digestion, the methane yield increased from 146 to 190 mL/g TCOD added when the AW content in the feed was increased from 25% to 33% (VS basis) at a constant organic loading rate (OLR) of 1.6 g VS/L/d and a hydraulic retention time (HRT) of 30 days. However, the total volatile fatty acids (TVFA) accumulation increased rapidly and the p

  13. Biogas barometer

    International Nuclear Information System (INIS)

    2014-01-01

    The energy recovery of biogas has kept on increasing in the European Union in 2013: +10.2%. Almost 13.4 million tep (tonnes of oil equivalent) of biogas primary energy was produced but the growth of the biogas sector is decreasing (it was 16.9% between 2011 and 2012). The growth for the coming years is expected to fall further because of political decisions in some countries to limit the use of land for farming purposes and to manage the biogas sector more efficiently. Germany ranks first for the production of biogas primary energy with 6717 ktep followed by United Kingdom with 1824 ktep. 2 tables give the production of electricity and heat from biogas in the E.U. member states in 2012 and 2013. The total production of electricity and heat from biogas in the E.U. in 2013 reached 53327 GWh and 432 ktep respectively. A list reviews the most significant companies working in Europe in the sector of methanation, 10 companies are listed among which 2 are Italian: AB Energy (Gruppo AB), BTS Italia and 8 are German: MT Energie, Envitec Biogas AG, Biogas Weser-Ems, Planet Biogastechnik, Schmack Biogas GmbH, Weltec Biopower GmbH, UTS Biogastechnik (Anaergia Group), Bioconstruct and BTS Italia. (A.C.)

  14. Production of biogas at wastewater treatment plants and its further application

    Directory of Open Access Journals (Sweden)

    Makisha Nikolay

    2018-01-01

    Full Text Available This article covered a wide range of questions on the topic of production and use of biogas as alternative energy source. Biogas is produced by anaerobic digestion of biomass due to the breakdown of fats, proteins and carbohydrates, which constitute the bulk of organic matter. The article describes the most common methods of biogas production, their stages and characteristics. In addition, the article describes some of the possible areas of application of biogas on example of different countries. The article also provides information about key environmental and economic benefits in the case of use of biogas: prevention of methane emissions and lower emissions of carbon monoxide and nitrogen oxides into the atmosphere; the possibility of using secondary raw materials to generate electricity.

  15. Digestate influence after biogas production on soil parameters

    Energy Technology Data Exchange (ETDEWEB)

    Igaz, D.; Horak, J.; Kondrlova, E.; Cimo, J. [Department of Biomereorology and Hydrology, Slovak University of Agriculture in Nitra, Nirra (Slovakia)

    2011-07-01

    Energy demands of society pun pressure on the use of alternative ways of getting the energy. From this point of view, the controlled anaerobic fermentation seems to be the perspective biotechnology: The final product of this process is an energy valuable raw - biogas and bio sludge. There was experimentally tested an influence of bio sludge on hydrophysical characteristics at the field condition of site Barca (Slovak Republic) with clav-loam soil. Based on the obtained results from three-year field experiment can be concluded that the application of the bio sludge on the soil does not contribute to the deterioration of soil hydrophysical properties. There was observed a positive effect on these properties, with observed increase of average value of capillary suction capacity, field capacity, porosity, non-capillary porosity and hydraulic conductivity. There was also observed decrease of average values of ρ{sub s} and ρ{sub d}. (author)

  16. Biogas and BioFertilizer Production Using Green Technology

    International Nuclear Information System (INIS)

    Sirirote, Pramote

    2010-01-01

    Basically, it is technology which created and used in a way that conserves natural resources and the environment. This technology also can be environmental friendly because the use of this technology is supposed to reduce the amount of waste and pollution that is created during production and consumption. These food wastes will come from animal bone, crab skeleton, fish skeleton, rice, noodle, vegetable and others. We collect all of these wastes and then keep it in plants, and then we make sure that this waste will turn into biogas via anaerobic digestion. All of these involved hydrolysis, fermentation, aceto genesis and methano genesis process. Methane that produced will be used in biomass plant to generate electricity. Meanwhile bio fertilizer that produced will be applied on agriculture sectors as fertilizer for plants.

  17. EVALUATING HYDROGEN PRODUCTION IN BIOGAS REFORMING IN A MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    F. S. A. Silva

    2015-03-01

    Full Text Available Abstract Syngas and hydrogen production by methane reforming of a biogas (CH4/CO2 = 2.85 using carbon dioxide was evaluated in a fixed bed reactor with a Pd-Ag membrane in the presence of a nickel catalyst (Ni 3.31% weight/γ-Al2O3 at 773 K, 823 K, and 873 K and 1.01×105 Pa. Operation with hydrogen permeation at 873 K increased the methane conversion to approximately 83% and doubled the hydrogen yield relative to operation without hydrogen permeation. A mathematical model was formulated to predict the evolution of the effluent concentrations. Predictions based on the model showed similar evolutions for yields of hydrogen and carbon monoxide at temperatures below 823 K for operations with and without the hydrogen permeation. The hydrogen yield reached approximately 21% at 823 K and 47% at 873 K under hydrogen permeation conditions.

  18. Biogas Production from Energy Crops and Agriculture Residues

    DEFF Research Database (Denmark)

    Wang, Guangtao

    and wet explosion pretreated energy crops and agriculture residues with swine manure at various volatile solids (VS) ratio between crop and manure was carried out by batch tests and continuous experiments. The efficiency of the co-digestion experiment was evaluated based on (a) the methane potential......In this thesis, the feasibility of utilizing energy crops (willow and miscanthus) and agriculture residues (wheat straw and corn stalker) in an anaerobic digestion process for biogas production was evaluated. Potential energy crops and agriculture residues were screened according...... of perennial crops was tested as a storage method and pretreatment method for enhancement of the biodegradability of the crops. The efficiency of the silage process was evaluated based on (a) the amount of biomass loss during storage and (b) the effect of the silage on methane potential. Co-digestion of raw...

  19. Biogas production supported by excess heat – A systems analysis within the food industry

    International Nuclear Information System (INIS)

    Broberg Viklund, Sarah; Lindkvist, Emma

    2015-01-01

    Highlights: • A systems analysis when moving from external to internal production and use of biogas at an industry. • The aim is to study the impacts on greenhouse gas emissions and economics from this switch. • The study compares the choice of using biogas or industrial excess heat to heat the digester. • Internal biogas production supported by excess heat has environmental and economic benefits. - Abstract: The aim of this paper was to study the effects on greenhouse gases and economics when a change is made in the use of industrial organic waste from external production and use of biogas (A) to internal production and use (B). The two different system solutions are studied through a systems analysis based on an industrial case. The baseline system (A) and a modified system (B) were compared and analysed. Studies show that industrial processes considered as integrated systems, including the exchange of resources between industries, can result in competitive advantages. This study focuses on the integration of internally produced biogas from food industry waste produced by a food company and the use of excess heat. Two alternative scenarios were studied: (1) the use of available excess heat to heat the biogas digester and (2) the use of a part of the biogas produced to heat the biogas digester. This study showed that the system solution, whereby excess heat rather than biogas is used to heat the biogas digester, was both environmentally and economically advantageous. However, the valuation of biomass affects the magnitude of the emissions reduction. Implementing this synergistic concept will contribute to the reaching of European Union climate targets

  20. Potential bioetanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean

    DEFF Research Database (Denmark)

    Petersson, Anneli; Thomsen, Mette Hedegaard; Hauggaard-Nielsen, Henrik

    2007-01-01

    ) faba bean straw (Viciafaba L.). Their composition with regard to cellulose, hemicellulose, lignin, extractives and ash was evaluated, as well as their potential as raw materials for ethanol and biogas production. The materials were pretreated by wet oxidation using parameters previously found...... to be optimal for pretreatment of corn stover (195 degrees C, 15 min, 2 g l(-1) Na2CO3 and 12 bar oxygen). It was shown that pretreatment was necessary for ethanol production from all raw materials and gave increased biogas yield from winter rye straw. Neither biogas productivity nor yield from oilseed rape...

  1. An experimental evaluation of energy economics of biogas production at mesophilic and thermophilic temperatures

    International Nuclear Information System (INIS)

    Ezeonu, F. C.

    1997-01-01

    Process economy, with regard to and energy content predicts the potentialities of biogas production options. Experimental study reveal from the kinetic data of daily biogas production that biomethanation reaction is faster in thermophilic digestion, with a higher yield of gas per reactor volume per day. Energy calculations show that it will take 3.55*10 5 kWh to produce 1 m 3 of methane from our feedstock with biogas energy equivalent of 1.25 kWh. The cost implication of this is enormous amounting to US $2,641.95 for the production of 1 m 3 of methane using brewers spent grins

  2. A comparative and evaluative study of potential biogas production ...

    African Journals Online (AJOL)

    The research on suitable alternative clean energy carriers to substitute for the use of fossil fuels is rapidly attracting attention. Biogas is an energy carrier that is considered as a possible alternative in both the developed and the developing world. However, finding suitable energy crops to extract biogas without affecting food ...

  3. Eggshells – assisted hydrolysis of banana pulp for biogas production

    African Journals Online (AJOL)

    KARAKANA

    In this study, pretreatment of banana pulp using eggshells in both calcined and un-calcined forms to examine the ... Key words: Anaerobic digestion, banana pulp hydrolysis biogas, eggshells. .... obtain fine powder. ..... using pig waste and cassava peels. ... from bioethanol waste: the effect of pH and urea addition to biogas.

  4. Utilization of water hyacinth for production of biogas and incorporation into integrated farming schemes

    International Nuclear Information System (INIS)

    Solly, R.K.

    1981-01-01

    The rate of production of biogas from water hyacinth in the form of chopped whole plant, blended whole plant, blended stolon and leaf, blended roots, whole stolon and leaf and fermented blended whole plant has been determined in small laboratory digesters. These results have been compared with investigations carried out under the CSC/UNEP programme in India and with experiments reported from the United States. The second phase of the study has commenced m which the digestion of water hyacinth is being investigated m larger (10 m 3 ) field type digesters

  5. Study of C/N Ratio Effect on Biogas Production of Carica Solid Waste by SS-AD Method And LS-AD

    Directory of Open Access Journals (Sweden)

    Jos Bakti

    2018-01-01

    Full Text Available Biogas is a renewable energy which can be used as an alternative source to replace fossil fuels. Recently, the use of energy has become an important issue because the oil sources and natural gas are depleting. Utilization of carica waste to produce biogas can reduce the consumption of commercial energy sources such as kerosene as well as the use of firewood. Biogas is produced by the process of organic material digestion by certain anaerobic bacterial activity in anaerobic digester. In this study we studied the influence of LS-AD and SS-AD methods, the effect of C / N ratio on biogas yield obtained and kinetics of biogas production reaction. The study was conducted by making a total solid variation of 7%, 9%, 11%, 13%, 19%, 21%, 23% and C/N ratio 25 and 30. The study started with carica waste collection process and examination of the total composition of solids and water content. Thereafter, calculation and determination of variation of C / N ratio by mixing the substrate with inoculum and urea into the reactor. Observe the volume of biogas produced every two-day intervals. The highest biogas production rate of 1.7825 ml/g TS day was obtained from carica solid waste variable by liquid state anaerobic disgestion and C/N 25.

  6. Biogas Production from Brewer’s Yeast Using an Anaerobic Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    Gregor Drago Zupančič

    2017-01-01

    Full Text Available Renewable energy sources are becoming increasingly important in the beverage and food industries. In the brewing industry, a significant percentage of the used raw materials finishes the process as secondary resource or waste. The research on the anaerobic digestion of brewer’s yeast has been scarce until recent years. One of the reasons for this is its use as a secondary resource in the food industry and as cattle feed. Additionally, market value of brewer’s yeast is higher than its energy value. Due to the increase of energy prices, brewer’s yeast has become of interest as energy substrate despite its difficult degradability in anaerobic conditions. The anaerobic co-digestion of brewer’s yeast and anaerobically treated brewery wastewater was studied using a pilot-scale anaerobic sequencing batch reactor (ASBR seeded with granular biomass. The experiments showed very good and stable operation with an organic loading rate of up to 8.0 kg/(m3·day, and with a maximum achieved organic loading rate of 13.6 kg/(m3·day in a single cycle. A specific biogas productivity of over 0.430 m3/kg of the total chemical oxygen demand (COD inserted, and total COD removal efficiencies of over 90 % were achieved. This study suggests that the brewer’s yeast can be successfully digested in an ASBR without adverse effects on the biogas production from brewer’s yeast/wastewater mixtures of up to 8 % (by volume. By using the brewer’s yeast in the ASBR process, the biogas production from brewery wastewater could be increased by 50 %.

  7. Biogas barometer

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    Unlike the other renewable energy sectors, biogas production did not result from concerns over energy but rather from environmental preoccupations (elimination of pollution, treatment of waste, control of greenhouse gas emissions). Biogas produced in this manner constitutes a sizeable and renewable deposit, with European production (EU 15) in the region of 3219 ktoe in 2003. (author)

  8. Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: Biogas-cogeneration-microalgae-products

    Energy Technology Data Exchange (ETDEWEB)

    Douskova, Irena; Doucha, Jiri; Zachleder, Vilem [Laboratory of Cell Cycles of Algae, Department of Autotrophic Microorganisms, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Novohradska 237, 379 81 Trebon - Opatovicky mlyn (Czech Republic); Kastanek, Frantisek; Maleterova, Ywette [Institute of Chemical Process Fundamentals of the Academy of Sciences of the Czech Republic, Rozvojova 135, 16502 Prague 6 - Suchdol (Czech Republic); Kastanek, Petr [Biocen, Ltd., Ondrickova 1246/13, 13000 Praha - Zizkov (Czech Republic)

    2010-03-15

    The aim of the study was the experimental verification of a proposed novel technology of energy and materials production, consisting of the following process steps: production of biogas from agricultural waste (distillery stillage), presumed utilization of biogas for electricity and heat production (cogeneration) in association with its use as a source of carbon dioxide for microalgae cultivation. The microalgal biomass can be hereafter processed to valuable products such as food and feed supplements. A part of the process wastewater can be utilized as a nitrogen source (ammonium ions) for microalgae cultivation, so the whole process is technologically closed. The tests were performed in a pilot-scale device. Optimization of biogas production from distillery stillage is described. The growth kinetics of microalgae Chlorella sp. consuming biogas or mixture of air and carbon dioxide in the concentration range of 2-20% (v/v) (simulating a flue gas from biogas incineration) in laboratory-scale photo-bioreactors are presented. It was proven that the raw biogas (even without the removal of hydrogen sulphide) could be used as a source of carbon dioxide for growth of microalgae. The growth rate of microalgae consuming biogas was the same as the growth rate of the culture grown on a mixture of air and food-grade carbon dioxide. Using biogas as a source of carbon dioxide has two main advantages: the biomass production costs are reduced and the produced biomass does not contain harmful compounds, which can occur in flue gases. The microalgal growth in bubbled cylinders was typically linear with time. The growth rate dependence on the diameter of the photobioreactor can be correlated using an empirical formula M = 2.2 D{sup -0.8} (valid for the linear bubbling velocities in the range of w = 0.1-0.3 cm/s), where M is the growth rate in g/L/h, and D is the photobioreactor diameter in mm. Processing of the fermenter wastewater was also quantified. Particularly the removal of

  9. Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: Biogas-cogeneration-microalgae-products

    International Nuclear Information System (INIS)

    Douskova, Irena; Kastanek, Frantisek; Maleterova, Ywette; Kastanek, Petr; Doucha, Jiri; Zachleder, Vilem

    2010-01-01

    The aim of the study was the experimental verification of a proposed novel technology of energy and materials production, consisting of the following process steps: production of biogas from agricultural waste (distillery stillage), presumed utilization of biogas for electricity and heat production (cogeneration) in association with its use as a source of carbon dioxide for microalgae cultivation. The microalgal biomass can be hereafter processed to valuable products such as food and feed supplements. A part of the process wastewater can be utilized as a nitrogen source (ammonium ions) for microalgae cultivation, so the whole process is technologically closed. The tests were performed in a pilot-scale device. Optimization of biogas production from distillery stillage is described. The growth kinetics of microalgae Chlorella sp. consuming biogas or mixture of air and carbon dioxide in the concentration range of 2-20% (v/v) (simulating a flue gas from biogas incineration) in laboratory-scale photo-bioreactors are presented. It was proven that the raw biogas (even without the removal of hydrogen sulphide) could be used as a source of carbon dioxide for growth of microalgae. The growth rate of microalgae consuming biogas was the same as the growth rate of the culture grown on a mixture of air and food-grade carbon dioxide. Using biogas as a source of carbon dioxide has two main advantages: the biomass production costs are reduced and the produced biomass does not contain harmful compounds, which can occur in flue gases. The microalgal growth in bubbled cylinders was typically linear with time. The growth rate dependence on the diameter of the photobioreactor can be correlated using an empirical formula M = 2.2 D -0.8 (valid for the linear bubbling velocities in the range of w = 0.1-0.3 cm/s), where M is the growth rate in g/L/h, and D is the photobioreactor diameter in mm. Processing of the fermenter wastewater was also quantified. Particularly the removal of ammonia

  10. The anaerobic co-digestion of sheep bedding and ⩾ 50% cattle manure increases biogas production and improves biofertilizer quality.

    Science.gov (United States)

    Cestonaro, Taiana; Costa, Mônica Sarolli Silva de Mendonça; Costa, Luiz Antônio de Mendonça; Rozatti, Marcos Antonio Teofilo; Pereira, Dercio Ceri; Lorin, Higor Eisten Francisconi; Carneiro, Leocir José

    2015-12-01

    Sheep manure pellets are peculiarly shaped as small 'capsules' of limited permeability and thus are difficult to degrade. Fragmentation of manure pellets into a homogeneous mass is important for decomposition by microorganisms, and occurs naturally by physical shearing due to animal trampling, when sheep bedding is used. However, the high lignocellulose content of sheep bedding may limit decomposition of sheep manure. Here, we evaluated if co-digestion of sheep bedding with cattle manure would improve the yield and quality of the useful products of anaerobic digestion of sheep bedding--biogas and biofertilizer--by providing a source of nutrients and readily available carbon. Mixtures of sheep bedding and cattle manure in varying proportions (0%, 25%, 50%, 75%, or 100% cattle manure) were added to 6-L digesters, used in a batch system, and analyzed by uni and multivariate statistical tools. PC1, which explained 64.96% of data variability, can be referred to as 'organic fraction/productivity', because higher rates of organic fraction consumption (COD, cellulose and hemicellulose contents) led to higher digester productivity (biogas production, nutrient concentration, and sample stability changes). Therefore, productivity and organic fraction variables were most influenced by manure mixtures with higher (⩾ 50%) or lower (⩽ 25%) ratios of cattle manure, respectively. Increasing the amount of cattle manure up to 50% enhanced the biogas potential production from 142 L kg(-1)TS (0% of cattle manure) to 165, 171, 160 L biogas kg(-1)TS for the mixtures containing 100%, 75% and 50% of cattle manure, respectively. Our results show that the addition of ⩾ 50% cattle manure to the mixture increases biogas production and improves the quality of the final biofertilizer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics.

    Science.gov (United States)

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2016-04-01

    Methane production characteristics and chemical composition of 405 silages from 43 different crop species were examined using uniform laboratory methods, with the aim to characterise a wide range of crop feedstocks from energy crop rotations and to identify main parameters that influence biomass quality for biogas production. Methane formation was analysed from chopped and over 90 days ensiled crop biomass in batch anaerobic digestion tests without further pre-treatment. Lignin content of crop biomass was found to be the most significant explanatory variable for specific methane yields while the methane content and methane production rates were mainly affected by the content of nitrogen-free extracts and neutral detergent fibre, respectively. The accumulation of butyric acid and alcohols during the ensiling process had significant impact on specific methane yields and methane contents of crop silages. It is proposed that products of silage fermentation should be considered when evaluating crop silages for biogas production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Energy production from biogas in the Italian countryside: Modernization vs. repeasantization

    International Nuclear Information System (INIS)

    Carrosio, Giovanni

    2014-01-01

    Italy is experiencing a proliferation of biogas energy plants. In only a few years, the number of plants has grown from ten to nearly five hundred. Public policies have played an important role in stimulating and shaping the spread of biogas plants. Following the European Renewable Energy Directive (2009/28/EC) Italian public policy began to support the spread of biogas with a system of obligations and incentives. This system, combined with a rigid institutional framework, has shaped the organizational models adopted by farms for biogas technology implementation. From the point of view of sociological investigation, the article investigates the two main agricultural biogas organizational models: modernization and repeasantization. We present the two models through the study of two empirical cases, which highlight how different ways to introduce new technologies on farms can lead to different outcomes in ecological terms. - Highlights: • Energy production from biogas is a recent phenomenon in the Italian countryside. • The production of biogas requires an organizational change of the farms. • The most important organizational models are modernization and repeasantization. • Uses of land change depending on the organizational models with which the energy production fits in farm

  13. COMPARISON OF TWO CHEMICAL PRETREATMENTS OF RICE STRAW FOR BIOGAS PRODUCTION BY ANAEROBIC DIGESTION

    Directory of Open Access Journals (Sweden)

    Zilin Song,

    2012-06-01

    Full Text Available Lignocellulosic biomass is considered the most abundant renewable resource that has the potential to contribute remarkably in the supply of biofuel. Previous studies have shown that chemical pretreatment prior to anaerobic digestion (AD can increase the digestibility of lignocellulosic biomass and methane yield. In the present study, the effect of rice straw pretreatment using ammonium hydroxide (NH3•H2O and hydrogen peroxide (H2O2 on the biogasification performance through AD was investigated. A self-designed, laboratory-scale, and continuous anaerobic biogas digester was used for the evaluation. Results showed that the contents of the rice straw, i.e. the lignin, cellulose, and hemicellulose were degraded significantly after the NH3•H2O and H2O2 treatments, and that biogas production from all pretreated rice straw increased. In addition, the optimal treatments for biogas production were the 4% and 3% H2O2 treatments (w/w, which yielded 327.5 and 319.7 mL/gVS, biogas, respectively, higher than the untreated sample. Biogas production from H2O2 pretreated rice straw was more favorable than rice straw pretreated with same concentration of ammonia, ranking in the order of 4% ≈ 3% > 2% > 1%. The optimal amount of H2O2 treatment for rice straw biogas digestion is 3% when economics and biogas yields are considered.

  14. Optimization of biogas production using MEMS based near infrared inline-sensor

    Science.gov (United States)

    Saupe, Ray; Seider, Thomas; Stock, Volker; Kujawski, Olaf; Otto, Thomas; Gessner, Thomas

    2013-03-01

    Due to climate protection and increasing oil prices, renewable energy is becoming extremely important. Anaerobic digestion is a particular environmental and resource-saving way of heat and power production in biogas plants. These plants can be operated decentralized and independent of weather conditions and allow peak load operation. To maximize energy production, plants should be operated at a high efficiency. That means the entire installed power production capacity (e.g. CHP) and biogas production have to be used. However, current plant utilization in many areas is significantly lower, which is economically and environmentally inefficient, since the biochemical process responds to fluctuations in boundary conditions, e.g. mixing in the conditions and substrate composition. At present only a few easily accessible parameters such as fill level, flow rates and temperature are determined on-line. Monitoring of substrate composition occurs only sporadically with the help of laboratory methods. Direct acquisition of substrate composition combined with a smart control and regulation concept enables significant improvement in plant efficiency. This requires a compact, reliable and cost-efficient sensor. It is for this reason that a MEMS sensor system based on NIR spectroscopy has been developed. Requirements are high accuracy, which is the basic condition for exact chemometric evaluation of the sample as well as optimized MEMS design and packaging in order to work in poor environmental conditions. Another issue is sample presentation, which needs an exact adopted optical-mechanical system. In this paper, the development and application of a MEMS-based analyzer for biogas plants will be explained. The above mentioned problems and challenges will be discussed. Measurement results will be shown to demonstrate its performance.

  15. Effects of Co and Ni nanoparticles on biogas and methane production from anaerobic digestion of slurry

    International Nuclear Information System (INIS)

    Abdelsalam, E.; Samer, M.; Attia, Y.A.; Abdel-Hadi, M.A.; Hassan, H.E.; Badr, Y.

    2017-01-01

    Highlights: • The addition of trace metals in form of nanoparticles reduced the lag phase. • Nanoparticles reduced time to achieve the highest biogas and methane production. • Biogas and methane production were proportional to nanoparticles concentration. • Nanoparticles biostimulate the methanogenic bacteria and increase their activity. - Abstract: Nanoparticles (NPs) were hypothesized to enhance the anaerobic process and to accelerate the slurry digestion, which increases the biogas and methane production. The effects of NPs on biogas and methane production were investigated using a specially designed batch anaerobic system. For this purpose, a series of 2 L biodigesters were manufactured and implemented to study the effects of Cobalt (Co) and Nickel (Ni) nanoparticles with different concentrations on biogas and methane production. The best results of NPs additives were determined based on the statistical analysis (Least Significant Difference using M-Stat) of biogas and methane production, which were 1 mg/L Co NPs and 2 mg/L Ni NPs (p < 0.05). These NPs additives delivered the highest biogas and methane yields in comparison with their other concentrations (0.5, 1, and 2 mg/L), their salts (CoCl_2, and NiCl_2) and the control. Furthermore, the addition of 1 mg/L Co NPs and 2 mg/L Ni NPs significantly increased the biogas volume (p < 0.05) by 1.64 and 1.74 times the biogas volume produced by the control, respectively. Moreover, the aforementioned additives significantly increased the methane volume (p < 0.05) by 1.86 and 2.01 times the methane volume produced by the control, respectively. The highest specific biogas and methane production were attained with 2 mg/L Ni NPs (p < 0.05), and were 614.5 ml Biogas g"−"1 VS and 361.6 ml CH_4 g"−"1 VS, respectively compared with the control which yielded only 352.6 ml Biogas g"−"1 VS and 179.6 ml CH_4 g"−"1 VS.

  16. The energy balance of utilising meadow grass in Danish biogas production

    DEFF Research Database (Denmark)

    Meyer, Ane Katharina Paarup; Raju, Chitra Sangaraju; Kucheryavskiy, Sergey V.

    2015-01-01

    of meadow areas, different relevant geo-datasets, spatial analyses, and various statistical analyses. The results show that values for the energy return on energy invested (EROEI) ranging from 1.7 to 3.3 can be obtained when utilising meadow grasses in local biogas production. The total national net energy......This paper presents a study of the energy balance of utilising nature conservation biomass from meadow habitats in Danish biogas production. Utilisation of nature conservation grass in biogas production in Denmark represents an interesting perspective for enhancing nature conservation of the open...... grassland habitats, while introducing an alternative to the use of intensively cultivated energy crops as co-substrates in manure based biogas plants. The energy balance of utilising nature conservation grass was investigated by using: data collected from previous investigations on the productivity...

  17. Evaluation of energy efficiency of various biogas production and utilization pathways

    International Nuclear Information System (INIS)

    Poeschl, Martina; Ward, Shane; Owende, Philip

    2010-01-01

    of environmental compatibility of energy efficiency pathways in biogas production and utilization, including management of spent digestate.

  18. Programmed iron oxide nanoparticles disintegration in anaerobic digesters boosts biogas production.

    Science.gov (United States)

    Casals, Eudald; Barrena, Raquel; García, Ana; González, Edgar; Delgado, Lucía; Busquets-Fité, Martí; Font, Xavier; Arbiol, Jordi; Glatzel, Pieter; Kvashnina, Kristina; Sánchez, Antoni; Puntes, Víctor

    2014-07-23

    A novel concept of dosing iron ions using Fe3O4 engineered nanoparticles is used to improve biogas production in anaerobic digestion processes. Since small nanoparticles are unstable, they can be designed to provide ions in a controlled manner, and the highest ever reported improvement of biogas production is obtained. The nanoparticles evolution during operation is followed by an array of spectroscopic techniques. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Environmental perspectives on using cast seaweed for biogas production

    DEFF Research Database (Denmark)

    Fredenslund, Anders Michael; Møller, Henrik Bjarne; Christensen, Thomas Budde

    Solrød Municipality, Denmark is working towards building a biogas plant utilizing locally available organic wastes including cast seaweed, which is collected each year, since the local inhabitants see this material as a nuisance. A preliminary study suggested favorable conditions for contstructing...... a mixed substrate biogas plant. Continuously fed reactor experiments showed that the intended mix of substrate including cast seaweed could be used as raw material for a biogas plant in thermophilic operation. The environmental analysis suggests existence of several positive benefits of utilizing cast...

  20. Optimization of Concentration and EM4 Augmentation for Improving Bio-Gas Productivity from Jatropha curcas Linn Capsule Husk

    Directory of Open Access Journals (Sweden)

    Praptiningsih G.A

    2014-02-01

    Full Text Available Most literature suggests that two-phase digestion is more efficient than single-phase. The series of two-phase digestion studies have been conducted from 2011 to 2013 at the research farm of PT Bumimas Ekapersada, West Java, Indonesia. This paper reports on a research on optimation of concentration and augmentation of EM-4 (effective microorganism-4, a local commercial decomposer, as efforts to stabilize a biogas technology which made ​​from husk capsules of Jatropha curcas Linn (DH-JcL. The studies of increasing organic loading rate (OLR for the two-phase digestion was conducted to improve efficiency.  The concentration variable studied was 1: 8 (1 part DH-JCL and 8 parts water, compared to 1: 12 as a control. The augmentation treatment is the addition of EM-4 by 5% (v/v. It was also examined the augmentation of F2-EM4 (150 times duplication of EM-4 due to cost consideration. The studies were conducted in the laboratory which using a liter and two liters of glass digester and glass wool as immobilized growth. The results of this study support the previous studies: the optimum concentration was 1: 8, EM-4 was able to increase biogas production in two-phase digestion, yet biogas production decrease at single-phase. F2-EM4’s ability to support production of biogas were equivalent to that of EM-4.

  1. Biogas Production from Palm Oil Fruit Bunch in Anaerobic Biodigester through Liquid State (LS-AD and Solid State (SS-AD Method

    Directory of Open Access Journals (Sweden)

    Jos Bakti

    2018-01-01

    Full Text Available The crucial problem facing the world today is energy resources. Waste production of palm oil fruit bunch potentially produce as renewable energy resource. Palm oil fruit bunch contains 44% cellulose, 18% lignin and 34% hemicellulose. Organic carbon source is contained in biomass potentially produce biogas. Biogas is one of alternative energy, which is environmentally friendly and has been widely developed. This research is aimed to examine the effect of pretreatment in raw material of waste palm oil fruit bunch for the production of biogas, the effect of time, ratio C/N, and effect of microbial consortium. The variables are total solid (TS used 10% and 18% with a 40 mesh physical pretreatment, chemical pretreatment with NaOH 8% gr / gr TS, and biology 5% g/vol with microbial consortium. Biogas production process was conducted over 2 months in room temperature, the test response quantitative results in the form of biogas volume every 2 days and also flame test. The result of this research shows that the highest daily production rate of biogas obtained from this study was 5,73 ml/gr TS and the highest biogas production accumulation generated at 58,28 ml/gr TS produced through a 40 mesh sieve of waste oil palm empty fruit bunch, immersion in NaOH, through solid state fermentation and C/N 30. From this research, it can be concluded that the optimum production of biogas formation occurs with the value of C/N 30, physical and biological pretreatment, and solid state method.

  2. The design of a PC-based real-time system for monitoring Methane and Oxygen concentration in biogas production

    Science.gov (United States)

    Yantidewi, M.; Muntini, M. S.; Deta, U. A.; Lestari, N. A.

    2018-03-01

    Limited fossil fuels nowadays trigger the development of alternative energy, one of which is biogas. Biogas is one type of bioenergy in the form of fermented gases of organic materials such as animal waste. The components of gases present in biogas and affect the biogas production are various, such as methane and oxygen. The biogas utilization will be more optimal if both gases concentration (in this case is methane and oxygen concentration) can be monitored. Therefore, this research focused on designing the monitoring system of methane and oxygen concentration in biogas production in real-time. The results showed that the instrument system was capable of monitoring and recording the data of gases (methane and oxygen) concentration in biogas production in every second.

  3. Evaluation of anaerobic degradation, biogas and digestate production of cereal silages using nylon-bags.

    Science.gov (United States)

    Negri, Marco; Bacenetti, Jacopo; Fiala, Marco; Bocchi, Stefano

    2016-06-01

    In this study, the degradation efficiency and the biogas and digestate production during anaerobic digestion were evaluated for the cereal silages most used to feed biogas plants. To this purpose, silages of: maize from the whole plant, maize from the ear, triticale and wheat were digested, inside of nylon bags, in laboratory scale digesters, for 75days. Overall, the test involved 288 nylon bags. After 75days of digestion, the maize ear silage shows the highest degradation efficiency (about 98%) while wheat silage the lowest (about 83%). The biogas production ranges from 438 to 852Nm(3)/t of dry matter for wheat and ear maize silage, respectively. For all the cereal silages, the degradation as well as the biogas production are faster at the beginning of the digestion time. Digestate mass, expressed as percentage of the fresh matter, ranges from 38% to 84% for wheat and maize ear silage, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Biodigester economic viability for electrical power production using biogas from swine waste

    Energy Technology Data Exchange (ETDEWEB)

    Cervi, Ricardo Ghantous; Esperancini, Maura Seiko Tsutsui; Bueno, Osmar de Carvalho [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas], E-mail: ricardogc@fca.unesp.br; Souza, Samuel Nelson Melegari de [Universidade Estadual do Oeste do Parana (CCET/UNIOESTE), Cascavel, PR (Brazil). Centro de Ciencias Exatas e Tecnologicas

    2008-07-01

    The increase of energy use in agriculture and the raising prices of electricity demand studies on alternate sources of energy and improvement on biogas use efficiency so that agricultural activities become more competitive. Biogas production through anaerobic biodigestion represents an important breakthrough for the problem of swine waste and energy availability for rural areas. This work aimed to analyze the economy on biodigester investment for electrical power production using biogas from anaerobic biodigestion of swine waste. Two factors were used for this evaluation: the cost of electrical power production through biogas and time for equipment investment return. Results show that investment return time can be only 2.45 years for electrical power at peak time. (author)

  5. Preliminary design and economical study of a biogas production-plant using cow manure

    Directory of Open Access Journals (Sweden)

    Juan Miguel Mantilla González

    2007-09-01

    Full Text Available This article presents considerations and results from designing a large- scale biogas production-plant using cow manure. The so designed plant capacity allowed processing the dung from 1,300 cows, producing 500 kW of electrical energy from operating a generator which works on a mixture of diesel and biogas fuel. The design included sizing the cowsheds, the manure-collecting systems, transporting the dung, the digester, the effluent tank and the biogas treatment system. An economic study was also done, concluding that project was viable and the importance of the cost of diesel evolving for determining return on investment time.

  6. Production of both esters and biogas from Mexican poppy

    African Journals Online (AJOL)

    AJL

    scale industries and agricultural farms. Key words: Transestrification, energy conservation, anaerobic digestion, methane, biogas, methyl ester. INTRODUCTION. For advancement of civilization and socioeconomic developmental progress, the world is dependent on various energy resources like petrochemicals, coal,.

  7. Potentials for Commercial Production of Biogas from Domestic Food ...

    African Journals Online (AJOL)

    PROF HORSFALL

    Solid waste management, food waste, anaerobic digestion, biogas ... Ministry of Environment, 2005) have not been able to ... waste management system which ensures financial returns at ... that incorporates recycling, composting, incineration.

  8. Biogas in Alsace: potential, economic study

    International Nuclear Information System (INIS)

    Maurer, Michel

    2004-01-01

    The purpose of this work is to determine the potential of biogas production in Alsace. Every fields that could provide organic matter for anaerobic fermentation are first identified, and the energy corresponding to the theoretical production of biogas is then quantified. By knowing these rates, the effective development of biogas production is then discussed and oriented to the agricultural field. The technical and economical aspects of the production of biogas in a farm are then described. The biogas issue, approached thanks to some visits of existing sites and the creation of a simulation software, leads to a specific analysis among the whole Alsatian estates. The study presents finally the real opportunities of development for two pilot projects in Alsace, knowing the specific context for farm biogas production in France. (author) [fr

  9. Substrate Handbook for Biogas Production; Substrathandbok foer biogasproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, My; Uldal, Martina (AnoxKaldnes AB, Lund (Sweden))

    2009-02-15

    Today, co-digestion plants in Sweden treat a broad range of different substrates, of which some have not previously been used for anaerobic digestion. The major part of this organic waste derives from households, restaurants, food industries and farms. When evaluating a new substrate as feed for anaerobic digestion, several different aspects need to be taken into consideration, such as anaerobic degradability, TS/VS content, nutrient composition and risk for mechanical problems. Consequently, there is a need for practical guidelines on how to evaluate new substrates as raw materials for biogas production, including not only gas yield but also what practical and microbiological problems that may arise when the specific substrate is treated together with other substrates in the plant. The aim with this handbook is to provide a basis on how to evaluate new substrates as feed for anaerobic digestion. The intention is that this material will save time and effort for the personnel at the plant when they come in contact with new types of waste. Also, the aim is to facilitate the process of identifying new substrates within the ABP-regulation (1774/2002) and what requirements are then demanded on handling. The work with the handbook has been divided in three different parts; (1) an extensive literature study and a compilation of the achieved results, (2) interviews with personnel at most of the Swedish co-digestion plants to identify substrates and problems of interest, and (3) lab tests of selected substrates. The lab tests included Bio Methane Potential (BMP) tests as well as a simple characterization of each substrate based on fat/protein/carbohydrate content. All data origins from anaerobic digestion within the mesophilic temperature range, but the results and discussion are applicable also for thermophilic anaerobic digestion. The result of this work is a written report together with an Excel file which are to be directly used by the biogas plants as a basis in the

  10. Trend chart: biogas for electricity production. First quarter 2017

    International Nuclear Information System (INIS)

    2017-05-01

    This publication presents the situation of biogas-fueled power plants in continental France and overseas territories during the first quarter 2017: total connected load, new connected facilities, power range distribution of facilities, evolution of park facilities and projection, distribution by type of facilities, regional distribution of facilities, total connected load by region, overall national power generation from biogas, evolution of newly connected methanation facilities for power generation, power range distribution of methanation facilities, regional distribution of methanation facilities, methodology used

  11. Trend chart: biogas for electricity production. Fourth quarter 2017

    International Nuclear Information System (INIS)

    Moreau, Sylvain

    2018-02-01

    This publication presents the situation of biogas-fueled power plants in continental France and overseas territories during the fourth quarter 2017: total connected load, new connected facilities, power range distribution of facilities, evolution of park facilities and projection, distribution by type of facilities, regional distribution of facilities, total connected load by region, overall national power generation from biogas, evolution of newly connected methanation facilities for power generation, power range distribution of methanation facilities, regional distribution of methanation facilities

  12. Trend chart: biogas for electricity production. Third quarter 2017

    International Nuclear Information System (INIS)

    Moreau, Sylvain

    2017-11-01

    This publication presents the situation of biogas-fueled power plants in continental France and overseas territories during the third quarter 2017: total connected load, new connected facilities, power range distribution of facilities, evolution of park facilities and projection, distribution by type of facilities, regional distribution of facilities, total connected load by region, overall national power generation from biogas, evolution of newly connected methanation facilities for power generation, power range distribution of methanation facilities, regional distribution of methanation facilities

  13. Trend chart: biogas for electricity production. Second quarter 2017

    International Nuclear Information System (INIS)

    2017-08-01

    This publication presents the situation of biogas-fueled power plants in continental France and overseas territories during the second quarter 2017: total connected load, new connected facilities, power range distribution of facilities, evolution of park facilities and projection, distribution by type of facilities, regional distribution of facilities, total connected load by region, overall national power generation from biogas, evolution of newly connected methanation facilities for power generation, power range distribution of methanation facilities, regional distribution of methanation facilities

  14. Comparative enzyme inhibitive methanol production by Methylosinus sporium from simulated biogas.

    Science.gov (United States)

    Yoo, Yeon-Sun; Han, Ji-Sun; Ahn, Chang-Min; Kim, Chang-Gyun

    2015-01-01

    Methane in a simulated biogas converting to methanol under aerobic condition was comparatively assessed by inhibiting the activity of methanol dehydrogenase (MDH) of Methylosinus sporium using phosphate, NaCl, NH4Cl or EDTA in their varying concentrations. The highest amount of methane was indistinguishably diverted at the typical conditions regardless of the types of inhibitors: 35°C and pH 7 under a 0.4% (v/v) of biogas, specifically for methanol was obtained for the addition of 40 mM phosphate, 100 mM NaCl, 40 mM NH4Cl or 50 µM EDTA. In other words, 0.71, 0.60, 0.66 and 0.66 mmol methanol was correspondingly generated by the oxidation of 1.3, 0.67, 0.74 and 1.3 mmol methane. It gave a methanol conversion rate of 54.7%, 89.9%, 89.6% and 47.8%, respectively. Among them, the maximum rate of methanol production was observed at 6.25 µmol/mg h for 100 mM NaCl. Regardless of types or concentrations of inhibitors differently used, methanol production could be nonetheless identically maximized when the MDH activity was limitedly hampered by up to 35%.

  15. Anaerobic digestion of fruit and vegetable processing wastes for biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Viswanath, P.; Sumithra Devi, S.; Nand, K. (Central Food Technological Research Inst., Mysore (IN))

    1992-01-01

    The effect of feeding different fruit and vegetable wastes, mango, pineapple, tomato, jackfruit, banana and orange, was studied in a 60-litre digester by cycling each waste every fifth day in order to operate the digester as and when there was supply of feed. The characteristics of the anaerobically digested fluid and digester performance in terms of biogas production were determined at different loading rates (LR) and at different hydraulic retention times (HRT) and the maximum biogas yield of 0.6 m{sup 3}/kg VS added was achieved at a 20-day HRT and 40 kg TS m{sup -3}day{sup -1} loading rate. The hourly gas production was observed in the digesters operated at 16 and 24 days HRT. The major yield (74.5%) of gas was produced within 12h of feeding at a 16-day HRT whereas at a 24-day HRT only 59.03% of the total gas could be obtained at this time. (author).

  16. Utilization of Delignified Sawdust as Raw Material of Biogas Production

    Directory of Open Access Journals (Sweden)

    Zumalla Asfarina

    2018-01-01

    Full Text Available Biogas is one alternative to replace the irreplaceable energy source that has begun to diminish its existence. The raw materials for biogas manufacture are renewable biomass, usually using plantation waste, agriculture, and livestock. Using biogas can also reduce environmental pollution. One of the agricultural waste that has great potential to become the raw material of biogas is teak sawdust. Wood processing industry in Indonesia quite a lot, but wood has a high lignosesluosa content, so it needs the right method to process it. With the delignification of lignin levels on teak sawdust will decrease. Wood sawdust is soaked using NaOH for 1, 2, 3, and 4 days with 4% w / v concentration. The lowest lignin and hemicellulose content was 25.79% and 87.9% in pretreatment for 4 days, while the highest cellulose level was 57, 34%. The accumulated volume of biogas at 1 day pretreatment, ie 709 ml / g TS. Gcms shows the enlarged peak area of methanamine, N-methyl from before pretreatment. The fastest biogas formation (λ in 4 days pretreatment, 1.60403 days and the largest constant A and U variables at 1 day were 914.5903 ml / g TS and 34.59765 ml / g TS.

  17. Experimental Investigation of Biogas Production from Kitchen Waste Mixed with Chicken Manure

    Directory of Open Access Journals (Sweden)

    H. Mousa

    2016-12-01

    Full Text Available ogas produced from solid kitchen waste (KW mixed with chicken manure (M at different mass ratios was investigated. The effect of the ratio of the amount of water to the mixed solid waste on the amount of biogas produced was studied. The results showed that at a fixed ratio of water-to-solid waste, the amount of biogas increased as the amount of chicken M increased. At a fixed M-to-KW ratio, the amount of biogas produced increased as the solid content increased and then decreased, reaching its maximum value at a solid waste-to-water ratio of 1:1. The pH of the bioreactor containing the KW-M mixture dropped with time, resulting in a decrease in the amount of biogas produced. Controlling the pH value by titrating with NaOH solution improved the production of biogas. Investigating biogas produced from sludge showed that the pH of the reactor slightly decreased and then increased slightly. The results also showed that the amount of biogas produced from sludge containing 3% solid waste was larger than the amount produced from sludge containing 6% solid waste.

  18. High-calorific biogas production from anaerobic digestion of food waste using a two-phase pressurized biofilm (TPPB) system.

    Science.gov (United States)

    Li, Yeqing; Liu, Hong; Yan, Fang; Su, Dongfang; Wang, Yafei; Zhou, Hongjun

    2017-01-01

    To obtain high calorific biogas via anaerobic digestion without additional upgrading equipment, a two-phase pressurized biofilm system was built up, including a conventional continuously stirred tank reactor and a pressurized biofilm anaerobic reactor (PBAR). Four different pressure levels (0.3, 0.6, 1.0 and 1.7MPa) were applied to the PBAR in sequence, with the organic loading rate maintained at 3.1g-COD/L/d. Biogas production, gas composition, process stability parameters were measured. Results showed that with the pressure increasing from 0.3MPa to 1.7MPa, the pH value decreased from 7.22±0.19 to 6.98±0.05, the COD removal decreased from 93.0±0.9% to 79.7±1.2% and the methane content increased from 80.5±1.5% to 90.8±0.8%. Biogas with higher calorific value of 36.2MJ/m 3 was obtained at a pressure of 1.7MPa. Pressure showed a significant effect on biogas production and gas quality in methanogenesis reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Biogas Production from Rice Husk Waste by using Solid State Anaerobic Digestion (SSAD Method

    Directory of Open Access Journals (Sweden)

    Hawali Abdul Matin Hashfi

    2018-01-01

    Full Text Available An effort to obtain alternative energy is still interesting subject to be studied, especially production of biogas from agriculture waste. This paper was an overview of the latest development of biogas researches from rice husk waste by Solid State Anaerobic Digestion (SSAD. The main obstacle of biogas production from rice husk waste was the lignin content which is very difficult degraded by microbes. Various pretreatments have been conducted, either physically, chemically as well as biologically. The SSAD method was an attractive option because of the low water content of rice husk waste. The biogas yield by SSAD method gave more attractive result compared to Liquid Anaerobic Digestion (LAD method. Various studies were still conducted in batch mode laboratory scale and also has not found optimum operating conditions. Research on a larger scale such as bench and pilot scale with continuous systems will be an increase trend in the future research.

  20. Biogas Production from Rice Husk Waste by using Solid State Anaerobic Digestion (SSAD) Method

    Science.gov (United States)

    Matin, Hashfi Hawali Abdul; Hadiyanto

    2018-02-01

    An effort to obtain alternative energy is still interesting subject to be studied, especially production of biogas from agriculture waste. This paper was an overview of the latest development of biogas researches from rice husk waste by Solid State Anaerobic Digestion (SSAD). The main obstacle of biogas production from rice husk waste was the lignin content which is very difficult degraded by microbes. Various pretreatments have been conducted, either physically, chemically as well as biologically. The SSAD method was an attractive option because of the low water content of rice husk waste. The biogas yield by SSAD method gave more attractive result compared to Liquid Anaerobic Digestion (LAD) method. Various studies were still conducted in batch mode laboratory scale and also has not found optimum operating conditions. Research on a larger scale such as bench and pilot scale with continuous systems will be an increase trend in the future research.

  1. Life-cycle energy production and emissions mitigation by comprehensive biogas-digestate utilization.

    Science.gov (United States)

    Chen, Shaoqing; Chen, Bin; Song, Dan

    2012-06-01

    In the context of global energy shortages and climate change, developing biogas plants with links to agricultural system has become an important strategy for cleaner rural energy and renewable agriculture. In this study, a life-cycle energy and environmental assessment was performed for a biogas-digestate utilization system in China. The results suggest that biogas utilization (heating, illumination, and fuel) and comprehensive digestate reuse are of equal importance in the total energy production of the system, and they also play an important role in systemic greenhouse gas mitigation. Improvement can be achieved in both energy production and emissions mitigation when the ratio of the current three biogas utilization pathways is adjusted. Regarding digestate reuse, a tradeoff between energy and environmental performance can be obtained by focusing on the substitution for top-dressing, base fertilizers, and the application to seed soaking. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Stimulation of the hydrolytic stage for biogas production from cattle manure in an electrochemical bioreactor.

    Science.gov (United States)

    Samani, Saeed; Abdoli, Mohammad Ali; Karbassi, Abdolreza; Amin, Mohammad Mehdi

    Electrical current in the hydrolytic phase of the biogas process might affect biogas yield. In this study, four 1,150 mL single membrane-less chamber electrochemical bioreactors, containing two parallel titanium plates were connected to the electrical source with voltages of 0, -0.5, -1 and -1.5 V, respectively. Reactor 1 with 0 V was considered as a control reactor. The trend of biogas production was precisely checked against pH, oxidation reduction potential and electrical power at a temperature of 37 ± 0.5°C amid cattle manure as substrate for 120 days. Biogas production increased by voltage applied to Reactors 2 and 3 when compared with the control reactor. In addition, the electricity in Reactors 2 and 3 caused more biogas production than Reactor 4. Acetogenic phase occurred more quickly in Reactor 3 than in the other reactors. The obtained results from Reactor 4 were indicative of acidogenic domination and its continuous behavior under electrical stimulation. The results of the present investigation clearly revealed that phasic electrical current could enhance the efficiency of biogas production.

  3. Biogas production from anaerobic digestion of food waste and relevant air quality implications.

    Science.gov (United States)

    Kuo, Jeff; Dow, Jason

    2017-09-01

    Biopower can diversify energy supply and improve energy resiliency. Increases in biopower production from sustainable biomass can provide many economic and environmental benefits. For example, increasing biogas production through anaerobic digestion of food waste would increase the use of renewable fuels throughout California and add to its renewables portfolio. Although a biopower project will produce renewable energy, the process of producing bioenergy should harmonize with the goal of protecting public health. Meeting air emission requirements is paramount to the successful implementation of any biopower project. A case study was conducted by collecting field data from a wastewater treatment plant that employs anaerobic codigestion of fats, oils, and grease (FOG), food waste, and wastewater sludge, and also uses an internal combustion (IC) engine to generate biopower using the biogas. This research project generated scientific information on (a) quality and quantity of biogas from anaerobic codigestion of food waste and municipal wastewater sludge, (b) levels of contaminants in raw biogas that may affect beneficial uses of the biogas, (c) removal of the contaminants by the biogas conditioning systems, (d) emissions of NO x , SO 2 , CO, CO 2 , and methane, and (e) types and levels of air toxics present in the exhausts of the IC engine fueled by the biogas. The information is valuable to those who consider similar operations (i.e., co-digestion of food waste with municipal wastewater sludge and power generation using the produced biogas) and to support rulemaking decisions with regards to air quality issues for such applications. Full-scale operation of anaerobic codigestion of food waste with municipal sludge is viable, but it is still new. There is a lack of readily available scientific information on the quality of raw biogas, as well as on potential emissions from power generation using this biogas. This research developed scientific information with regard to

  4. Microbial Consortium with High Cellulolytic Activity (MCHCA for enhanced biogas production.

    Directory of Open Access Journals (Sweden)

    Krzysztof ePoszytek

    2016-03-01

    Full Text Available The use of lignocellulosic biomass as a substrate in agricultural biogas plants is very popular and yields good results. However, the efficiency of anaerobic digestion, and thus biogas production, is not always satisfactory due to the slow or incomplete degradation (hydrolysis of plant matter. To enhance the solubilization of the lignocellulosic biomass various physical, chemical and biological pretreatment methods are used.The aim of this study was to select and characterize cellulose-degrading bacteria, and to construct a microbial consortium, dedicated for degradation of maize silage and enhancing biogas production from this substrate.Over one hundred strains of cellulose-degrading bacteria were isolated from: sewage sludge, hydrolyzer from an agricultural biogas plant, cattle slurry and manure. After physiological characterization of the isolates, sixteen strains (representatives of Bacillus, Providencia and Ochrobactrum genera were chosen for the construction of a Microbial Consortium with High Cellulolytic Activity, called MCHCA. The selected strains had a high endoglucanase activity (exceeding 0.21 IU/mL CMCase activity and a wide range of tolerance to various physical and chemical conditions. Lab-scale simulation of biogas production using the selected strains for degradation of maize silage was carried out in a two-bioreactor system, similar to those used in agricultural biogas plants.The obtained results showed that the constructed MCHCA consortium is capable of efficient hydrolysis of maize silage, and increases biogas production by even 38%, depending on the inoculum used for methane fermentation. The results in this work indicate that the mesophilic Microbial Consortium with High Cellulolytic Activity has a great potential for application on industrial scale in agricultural biogas plants.

  5. Decentralized power generation from biogas; Production d'energie decentralisee a partir de biogaz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Areva Bioenergies proposes ready-to-use biogas production and valorization units that use industrial effluents (liquid effluents, spent water, solid wastes). Biogas valorization is performed through cogeneration plants with an output power of 500 kW to 10 MW. This brochure presents Areva's global offer in methanation projects (support, engineering, optimization). Areva Bioenergies counts 20 dual-purpose power plants in operation or under construction in the world which represent an installed power of 220 MW.

  6. The economics of sugar beets in biogas production; Vergaerung von Zuckerrueben in Biogasanlagen. Lohnt sich das?

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Stefan; Doehler, Helmut [Kuratorium fuer Technik und Bauwesen in der Landwirtschaft e.V. (KTBL), Darmstadt (Germany)

    2011-07-01

    The economics of employing sugar beets for biogas production were investigated using a calculation model based on the currently available data. Taken into account were all steps of the chain from cultivation, conditioning and conservation to the influences in the biogas plant. Only by calculating with very good assumptions for the fermentation of sugar beets, they can constitute an economical alternative to the use of silo maize as a fermentation substrate. (orig.)

  7. Finding disturbances in on-farm biogas production.

    Science.gov (United States)

    Antonio, Pereira-Querol Marco; Laura, Seppänen

    2012-01-01

    When implementing innovations, disturbances are very likely to take place. Disturbances are undesirable because they can lead to unwanted outcomes, such as economic losses and work overload to workers. However, they can be powerful opportunities for learning and re-designing innovations. Here, we will present activity theoretical tools for analyzing disturbances in a way that they could be used as learning opportunities. We illustrate the proposed tools by analyzing a disturbance that took place during the implementation of a project of biogas production. By interpreting the disturbance process with a network of activity systems, we found that on-farm disturbances were formed as ruptures, innovations and asynchronies originated in other activity systems. This finding suggests that disturbances are outcomes of the functioning of networks, rather than simple results of failure of individuals or technical devices. The proposed tools could be used in interventions to help practitioners and ergonomists to recognize the systemic and networked nature of problems, and therefore, realize that they may require the collaboration of actors from different activities. In this sense, disturbances may be turned into opportunities for learning and developing innovations. We conclude by discussing how the method could be used in ergonomic design and intervention.

  8. Compost, fertilizer, and biogas production from human and farm wastes in the People's Republic of China

    Energy Technology Data Exchange (ETDEWEB)

    McGarry, M G; Stainforth, J [eds.

    1978-01-01

    This translation is divided into six parts: (1) The Practices and Management of Excreta and Farm Waste Composting, (2) Treatment of Livestock Manure and Human Waste for Reuse, (3) The Two-Partition Three-Tank Hygienic Toilet, (4) Construction of the Fixed Top Fully Enclosed Biogas Plant, (5) Research Results on the Effectiveness of Excreta Treatment in Biogas Plants, and (6) Biogas Production and Reuse from Farm and Human Wastes. A detailed description of the design and construction of fixed top, enclosed, three-stage biogas plants as well as the preparation of the building materials and accessories such as safety valves and gauges, biogas stores and lamps is presented. Safety precautions, examination procedures for water and gas leaks, the procedure of filling the plant, and proper treatment of the sludge and sediment are discussed. The results obtained on the effectiveness of these plants in settling out parasite eggs, in destroying hookworms and ascarid eggs and in totally eliminating schistosome flukes from the fecal liquid are described. It was also determined that the environment in the biogas plant greatly reduced the E. coli index, totally eliminated the Shigella bacillus and spirochetes in 30 hours and the typhoid B bacillus in 44 days. The use of a three-stage septic tank, which includes a biogas plant, in connection with pigpens and toilets is discussed. Particular attention is given to the location, size, structure and construction of the biogas tank. Descriptions of a safety pressure gauge and earthen-ware stoves and lamps operating on biogas are given.

  9. Enhancement of Biogas Production from Rice Husk by NaOH and Enzyme Pretreatment

    Directory of Open Access Journals (Sweden)

    Syafrudin

    2018-01-01

    Full Text Available Biogas is a renewable energy source that can be used as an alternative fuel to replace fossil fuel such as oil and natural gas. This research aims to analyze the impact of NaOH (Sodium hydroxide and enzyme usage on the production of rice husk biogas using Solid State Anaerobic Digestion (SS-AD. Generally, SS-AD occurs at solid concentrations higher than 15%. The waste of rice husk are used as substrate with a C/N ratio of 25% and the total of solid that are used is 21%. Rice husk contains high lignin, therefore it is handled with chemical and biological treatment. The chemical preliminary treatment was using NaOH with various concentrations from 3%, 6% and 9% while the biological preliminary treatment was using enzyme with various concentration from 5%, 8%, and 11%. The biogas that is produced then measured every two days during 60 days of research with the biogas volume as a parameter observed. The result of the research shows that preliminary treatment with NaOH and enzyme can increase the production of biogas. The highest biogas production was obtained by the NaOH pretreatment using 6% NaOH which was 497 ml and by enzyme pretreatment using 11% enzyme which was 667,5 ml.

  10. Enhancement of Biogas Production from Rice Husk by NaOH and Enzyme Pretreatment

    Science.gov (United States)

    Syafrudin; Nugraha, Winardi Dwi; Agnesia, Shandy Sarima; Matin, Hashfi Hawali Abdul; Budiyono

    2018-02-01

    Biogas is a renewable energy source that can be used as an alternative fuel to replace fossil fuel such as oil and natural gas. This research aims to analyze the impact of NaOH (Sodium hydroxide) and enzyme usage on the production of rice husk biogas using Solid State Anaerobic Digestion (SS-AD). Generally, SS-AD occurs at solid concentrations higher than 15%. The waste of rice husk are used as substrate with a C/N ratio of 25% and the total of solid that are used is 21%. Rice husk contains high lignin, therefore it is handled with chemical and biological treatment. The chemical preliminary treatment was using NaOH with various concentrations from 3%, 6% and 9% while the biological preliminary treatment was using enzyme with various concentration from 5%, 8%, and 11%. The biogas that is produced then measured every two days during 60 days of research with the biogas volume as a parameter observed. The result of the research shows that preliminary treatment with NaOH and enzyme can increase the production of biogas. The highest biogas production was obtained by the NaOH pretreatment using 6% NaOH which was 497 ml and by enzyme pretreatment using 11% enzyme which was 667,5 ml.

  11. Biogas production from llama and cow manure at high altitude

    International Nuclear Information System (INIS)

    Alvarez, Rene; Villca, Saul; Liden, Gunnar

    2006-01-01

    Methane production from llama and cow manures from the Bolivian high plateau (The 'Altiplano') was studied using a parallel reactor set-up consisting of 10 lab-scale biogasifiers. The effects of pressure (495 and 760mmHg), temperature (11 and 35 deg. C), hydraulic retention time (20 and 50 days), and manure content in the slurry (10%, 20% and 50%) were evaluated with respect to productivity and methane yields based on two 2 4-1 fractional factorial designs with 8 treatments for each kind of manure. The reactors were operated semi-continuously with daily manure feeding for periods between 50 and 100 days. Temperature was the main factor effect found, and the hydraulic retention time and the manure content in feed were also found significant whereas the effect of pressure was not significant in the range studied. The methane yield obtained with cow manure at 11 - bar C was between 6.4 and 33.6lCH 4 kg -1 VS (volatile solids added) whereas at 35 deg. C the methane yield was between 49.6 and 131.3lCH 4 kg -1 VS. The methane yield from llama manure was somewhat lower than for cow manure (between 3.3 and 19.3lCH 4 kg -1 VS at 11 deg. C and between 35.6 and 84.1lCH 4 kg -1 VS at 35 deg. C, respectively). However, overall llama manure was found to be the best raw material of the two for biogas production, due to its high content of volatile solid-higher than has been previously reported for most manures-and also its high nitrogen and phosphorous content

  12. Multiscale hydrodynamic investigation to intensify the biogas production in upflow anaerobic reactors.

    Science.gov (United States)

    Jiang, Jiankai; Wu, Jing; Zhang, Jinbai; Poncin, Souhila; Li, Huai Z

    2014-03-01

    Hydrodynamics plays a main role for the performance of an anaerobic reactor involving three phases: wastewater, sludge granules and biogas bubbles. The present work was focused on an original approach to investigate the hydrodynamics at different scales and then to intensify the performance of such complex reactors. The experiments were carried out respectively in a 3D reactor at macroscale, a 2D reactor at mesoscale and a 1D anaerobic reactor at microscale. A Particle Image Velocimetry (PIV), a micro-PIV and a high-speed camera were employed to quantify the liquid flow fields and the relative motion between sludge granules and bubbles. Shear rates exerted on sludge granules were quantified from liquid flow fields. The optimal biogas production is obtained at mean shear rate varying from 28 to 48s(-1), which is controlled by two antagonistic mechanisms. The multiscale approach demonstrates pertinent mechanisms proper to each scale and allows a better understanding of such reactors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Biogas production from cattle manure by anaerobic digestion

    International Nuclear Information System (INIS)

    Chuen, S.C.; Tinia Idaty Mohd Ghazi; Rozita Omar; Azni Idris

    2009-01-01

    Full text: In order to deal with the energy shortage problem, we are searching for more alternative energy resources especially renewable or sustainable. Biogas is one of the solutions in dealing with the energy shortage problem. Biogas is a type of energy resources derives from organic matter during the process called anaerobic digestion. The biogas produced is mainly consisting of methane and carbon dioxide. In this research, diluted cattle manure (1:1 ration with water) was inoculated with palm oil mill (POME) activated sludge at the ratio of 1:5 and placed in a 10 liter bioreactor. The temperature and pH in the bioreactor was regulated at 6.95 and 53 degree Celsius, respectively to enhance the anaerobic digestion process. Parameters such as chemical oxygen demand, biochemical oxygen demand, total solid, volatile solid, ammonia nitrogen (NH 3 -N), methane (CH 4 ) and the volume of biogas generated was monitored for effectiveness of the treatment of cattle manure via anaerobic digestion. The total volume of biogas produced in this study is 80.25 liter in 29 days while being able to treat the COD content up to 52 %. (author)

  14. Optimization of the digestion process of Scenedesmus sp. and Opuntia maxima for biogas production

    International Nuclear Information System (INIS)

    Ramos-Suárez, Juan Luis; Martínez, Alejandro; Carreras, Nely

    2014-01-01

    Highlights: • Scenedesmus biomass showed low biodegradability and biogas production. • Methane yield and kinetics of the batch process were improved by co-digestion. • Scenedesmus and Opuntia maxima were successfully co-digested in CSTR. • High biogas yields were obtained and no inhibition by ammonia was observed. - Abstract: Scenedesmus biomass is not an adequate substrate for anaerobic digestion due to its low biodegradability and low biogas yield. This study aims to evaluate the anaerobic co-digestion of Scenedesmus microalgal biomass and Opuntia maxima cladodes, the latter added in order to improve the digestion process. Batch assays were conducted to evaluate possible synergistic effects in different mixtures of both substrates. Mixture with highest methane yield was digested in semi-continuous mode at different VS concentrations. Feedstock composed of 75% O.maxima and 25% Scenedesmus (VS basis) showed the highest methane yield increasing 66.4% and 63.9% that of Scenedesmus and O.maxima, respectively. In semi-continuous mode, ideal organic loading rate (OLR) with 6%VS feed concentration was 4 gVS L −1 d −1 , which yielded 292 ± 39 L CH4 kgVS −1 (15 days HRT). In the case of 8%VS feed concentration ideal OLR was 5.33 gVS L −1 d −1 , which yielded 308 ± 22 L CH4 kgVS −1 (15 days HRT). The co-digestion of O.maxima and Scenedesmus biomass enhanced the anaerobic digestion process and avoided inhibition caused by low C/N ratio of microalgae

  15. UTILIZATION OF POULTRY, COW AND KITCHEN WASTES FOR BIOGAS PRODUCTION: A COMPARATIVE ANALYSIS

    Directory of Open Access Journals (Sweden)

    K. Animasahun

    2007-09-01

    Full Text Available The amount of solid wastes generated in developing countries such as Nigeria has steadily increased over the last two decades as a result of population explosion and continuous growth of industries and agricultural practices. In agriculture, particularly cattle rearing, large quantities of cow wastes are generated, which could be used as biogas inputs to compliment the fuel usage alternative. In addition, a large number of families generate heavy wastes in the kitchen on a daily basis, which could be converted to economic benefits. In this work, a comparative study of biogas production from poultry droppings, cattle dung, and kitchen wastes was conducted under the same operating conditions. 3kg of each waste was mixed with 9L of water and loaded into the three waste reactors. Biogas production was measured for a period of 40 days and at an average temperature of 30.5oC. Biogas production started on the 7th day, and attained maximum value on the 14th days for reactor 1. Production reached its peak on the 14th day with 85´10-3dm3 of gas produced in reactor 2. For reactor 3, biogas production started on the 8th day and production reached a peak value on the 14th day. The average biogas production from poultry droppings, cow dung and kitchen waste was 0.0318dm3/day, 0.0230dm3/day and 0.0143dm3/day, respectively. It is concluded that the wastes can be managed through conversion into biogas, which is a source of income generation for the society.

  16. Anaerobic digestion of Chinese cabbage waste silage with swine manure for biogas production: batch and continuous study.

    Science.gov (United States)

    Kafle, Gopi Krishna; Bhattarai, Sujala; Kim, Sang Hun; Chen, Lide

    2014-01-01

    The aim of this study was to investigate the potential for anaerobic co-digestion of Chinese cabbage waste silage (CCWS) with swine manure (SM). Batch and continuous experiments were carried out under mesophilic anaerobic conditions (36-38°C). The batch test evaluated the effect of CCWS co-digestion with SM (SM: CCWS=100:0; 25:75; 33:67; 0:100, % volatile solids (VS) basis). The continuous test evaluated the performance of a single stage completely stirred tank reactor with SM alone and with a mixture of SM and CCWS. Batch test results showed no significant difference in biogas yield up to 25-33% of CCWS; however, biogas yield was significantly decreased when CCWS contents in feed increased to 67% and 100%. When testing continuous digestion, the biogas yield at organic loading rate (OLR) of 2.0 g VSL⁻¹ d⁻¹ increased by 17% with a mixture of SM and CCWS (SM:CCWS=75:25) (423 mL g⁻¹ VS) than with SM alone (361 mL g⁻¹ VS). The continuous anaerobic digestion process (biogas production, pH, total volatile fatty acids (TVFA) and TVFA/total alkalinity ratios) was stable when co-digesting SM and CCWS (75:25) at OLR of 2.0 g VSL⁻¹ d⁻¹ and hydraulic retention time of 20 days under mesophilic conditions.

  17. Biogas Production from Thin Stillage on an Industrial Scale—Experience and Optimisation

    Directory of Open Access Journals (Sweden)

    Anna Schnürer

    2013-10-01

    Full Text Available With the increasing demand for renewable energy and sustainable waste treatment, biogas production is expanding. Approximately four billion litres of bio-ethanol are produced annually for vehicle fuel in Europe, resulting in the production of large amounts of stillage residues. This stillage is energy-rich and can be used for biogas production, but is a challenging substrate due to its high levels of nitrogen and sulphate. At the full-scale biogas production plant in Norrköping, Sweden (Svensk Biogas i Linköping AB, thin grain stillage is used as a biogas substrate. This paper describes the plant operation and strategies that have been implemented to digest thin stillage successfully. High ammonia concentrations in the digester have resulted in syntrophic acetate oxidation (SAO becoming the major pathway for acetate degradation. Therefore, a long hydraulic retention time (HRT (40–60 days is used to allow the syntrophic acetate-oxidising bacteria time to grow. The high sulphate levels in thin stillage result in high levels of hydrogen sulphide following degradation of protein and the activity of sulphate-reducing bacteria (SRB, the presence of which has been confirmed by quantitative polymerase chain reaction (qPCR analysis. To optimise biogas production and maintain a stable process, the substrate is diluted with tap water and co-digested with grain residues and glycerine to keep the ammonium nitrogen (NH4-N concentration below 6 g L−1. Combined addition of iron, hydrochloric acid and cobalt successfully precipitates sulphides, reduces ammonia toxicity and supplies microorganisms with trace element. Mesophilic temperature (38 °C is employed to further avoid ammonia toxicity. Together, these measures and doubling the digester volume have made it possible to increase annual biogas production from 27.7 TJ to 69.1 TJ.

  18. Cost effective and economic method for cultivation of Chlorella pyrenoidosa for the simultaneous treatment of biogas digester wastewater and biogas production

    OpenAIRE

    Rohit Sharma; Avanish K Tiwari; G. Sanjay Kumar; Bhawna Y. Lamba

    2015-01-01

    Microalgae have recently received a lot of attention as a new biomass source for the production of bio fuels and for the treatment of waste water. In this work, Chlorella pyrenoidosa was cultivated in biogas digester wastewater. The growth kinetics of the algae as well as the bio-remediation effect on the waste water was studied. The Chlorella pyrenoidosa can utilize the nitrogen content present in biogas digester wastewater as a substrate for its growth. The growth of microalgae was found to...

  19. Process for increased biogas production and energy efficient hygienisation of sludge; Process foer oekad biogasproduktion och energieffektiv hygienisering av slam

    Energy Technology Data Exchange (ETDEWEB)

    Rogstrand, Gustav; Olsson, Henrik; Andersson Chan, Anneli; Johansson, Niklas; Edstroem, Mats

    2012-07-01

    In Sweden there is a need to increase biogas production to meet the rising demand for biomethane as vehicle fuel but the amount of domestically available biomass to digest is limited. One way to help meet current and future demand for methane is to enhance the digestion of the substrates that are currently utilized. Vaexjoe municipality in southern Sweden is in the process of upgrading their facilities for biogas production at the Sundet waste water treatment plant. Their aim is to produce more biogas in order to meet the demand from an increasing methane-based local transit fleet. This is the backdrop to a joint project between JTI and Vaexjoe municipality where JTI's mobile pilot plant was used to study the possibility of extracting more biogas from the existing sewage sludge. In the future, Vaexjoe municipality also plans to co-digest source separated municipal organics with the sewage sludge, which will likely result in stricter demands in terms of hygienization of all utilized substrates. The goal of the project at hand was to demonstrate the possibility to produce more than enough additional biogas from existing sewage sludge to yield a net energy profit even with the added energy demand of ensuring the hygienic quality of the digestate through conventional pasteurization. Although the project was focused on the conditions at Sundet waste water treatment plant, the issues dealt with are general and the results are relevant to many waste water treatment plants in Sweden. The research, conducted between June 2011 and January 2012 were divided into two trials. The two trials, described schematically in Figure 1, represented two possible process configurations designed to reach the goal stated above. The key component of both process configurations is the addition of a post-digestion step to the existing single-step digestion process. In trial 1 the additional feature of dewatering between the two digestion steps served to reduce energy demand for pasteurization

  20. Effects of sludge recirculation rate and mixing time on performance of a prototype single-stage anaerobic digester for conversion of food wastes to biogas and energy recovery.

    Science.gov (United States)

    Ratanatamskul, Chavalit; Saleart, Tawinan

    2016-04-01

    Food wastes have been recognized as the largest waste stream and accounts for 39.25 % of total municipal solid waste in Thailand. Chulalongkorn University has participated in the program of in situ energy recovery from food wastes under the Ministry of Energy (MOE), Thailand. This research aims to develop a prototype single-stage anaerobic digestion system for biogas production and energy recovery from food wastes inside Chulalongkorn University. Here, the effects of sludge recirculation rate and mixing time were investigated as the main key parameters for the system design and operation. From the results obtained in this study, it was found that the sludge recirculation rate of 100 % and the mixing time of 60 min per day were the most suitable design parameters to achieve high efficiencies in terms of chemical oxygen demand (COD), total solids (TS), and total volatile solid (TVS) removal and also biogas production by this prototype anaerobic digester. The obtained biogas production was found to be 0.71 m(3)/kg COD and the composition of methane was 61.6 %. Moreover, the efficiencies of COD removal were as high as 82.9 % and TVS removal could reach 83.9 % at the optimal condition. Therefore, the developed prototype single-stage anaerobic digester can be highly promising for university canteen application to recover energy from food wastes via biogas production.

  1. Impact of single versus multiple policy options on the economic feasibility of biogas energy production: Swine and dairy operations in Nova Scotia

    International Nuclear Information System (INIS)

    Brown, Bettina B.; Yiridoe, Emmanuel K.; Gordon, Robert

    2007-01-01

    The economic feasibility of on-farm biogas energy production was investigated for swine and dairy operations under Nova Scotia, Canada farming conditions, using net present value (NPV), internal rate of return (IRR), and payback period (PP) economic decision criteria. In addition, the effects of selected environmental and 'green' energy policy schemes on co-generation of on-farm biogas energy production and other co-benefits from anaerobic digestion of livestock manure were investigated. Cost-efficiencies arising from economies of scale for on-farm anaerobic biogas production were found for swine farms, and less so for dairy production systems. Without incentive schemes, on-farm biogas energy production was not economically feasible across the farm size ranges studied, except for 600- and 800-sow operations. Among single policy schemes investigated, green energy credit policy schemes generated the highest financial returns, compared to cost-share and low-interest loan schemes. Combinations of multiple policies that included cost-share and green energy credit incentive schemes generated the most improvement in financial feasibility of on-farm biogas energy production, for both swine and dairy operations

  2. Microbial pretreatment of corn stovers by solid-state cultivation of Phanerochaete chrysosporium for biogas production.

    Science.gov (United States)

    Liu, Shan; Wu, Shubiao; Pang, Changle; Li, Wei; Dong, Renjie

    2014-02-01

    The microbial pretreatment of corn stover and corn stover silage was achieved via the solid-state cultivation of Phanerochaete chrysosporium; pretreatment effects on the biodegradability and subsequent anaerobic production of biogas were investigated. The peak levels of daily biogas production and CH₄ yield from corn stover silage were approximately twice that of corn stover. Results suggested that ensiling was a potential pretreatment method to stimulate biogas production from corn stover. Surface morphology and Fourier-transform infrared spectroscopy analyses demonstrated that the microbial pretreatment of corn stover silage improved biogas production by 10.5 to 19.7% and CH4 yield by 11.7 to 21.2% because pretreatment could decrease dry mass loss (14.2%) and increase substrate biodegradability (19.9% cellulose, 32.4% hemicellulose, and 22.6% lignin). By contrast, the higher dry mass loss in corn stover (55.3%) after microbial pretreatment was accompanied by 54.7% cellulose, 64.0% hemicellulose, and 61.1% lignin degradation but did not significantly influence biogas production.

  3. Biogas Production from Sugarcane Waste: Assessment on Kinetic Challenges for Process Designing

    Science.gov (United States)

    Janke, Leandro; Leite, Athaydes; Nikolausz, Marcell; Schmidt, Thomas; Liebetrau, Jan; Nelles, Michael; Stinner, Walter

    2015-01-01

    Biogas production from sugarcane waste has large potential for energy generation, however, to enable the optimization of the anaerobic digestion (AD) process each substrate characteristic should be carefully evaluated. In this study, the kinetic challenges for biogas production from different types of sugarcane waste were assessed. Samples of vinasse, filter cake, bagasse, and straw were analyzed in terms of total and volatile solids, chemical oxygen demand, macronutrients, trace elements, and nutritional value. Biochemical methane potential assays were performed to evaluate the energy potential of the substrates according to different types of sugarcane plants. Methane yields varied considerably (5–181 Nm3·tonFM−1), mainly due to the different substrate characteristics and sugar and/or ethanol production processes. Therefore, for the optimization of AD on a large-scale, continuous stirred-tank reactor with long hydraulic retention times (>35 days) should be used for biogas production from bagasse and straw, coupled with pre-treatment process to enhance the degradation of the fibrous carbohydrates. Biomass immobilization systems are recommended in case vinasse is used as substrate, due to its low solid content, while filter cake could complement the biogas production from vinasse during the sugarcane offseason, providing a higher utilization of the biogas system during the entire year. PMID:26404248

  4. Nonmarket cobenefits and economic feasibility of on-farm biogas energy production

    International Nuclear Information System (INIS)

    Yiridoe, Emmanuel K.; Gordon, Robert; Brown, Bettina B.

    2009-01-01

    Standard analysis of the economic feasibility of on-farm biogas energy production tend to emphasize primarily on direct financial benefits to farmers, and abstracts from the nonmarket cobenefits associated with anaerobic digestion of livestock manure and other biomass feedstock. This shortcoming of the standard feasibility analysis raises a fundamental question: How is the economic feasibility of on-farm anaerobic biogas energy production affected by the associated nonpecuniary cobenefits? Incorporating key nonmarket cobenefits from biogas energy production extends the standard economic feasibility analysis, and provides important insights. When nonmarket cobenefits were excluded, on-farm biogas energy production was generally not financially feasible for the dairy and swine farm size ranges studied (except for 600- and 800-sow farms). Overall, results of the financial feasibility analysis did not change compared to a base scenario (without nonmarket cobenefits) when an estimated annual total nonmarket cobenefits of CND$5000 was incorporated into the analysis, for both dairy and swine farms. Biogas energy production was generally financially viable for small-size dairy (i.e., 50-cow) and swine (i.e., 200-sow) farms when the nonmarket cobenefits were valued at CND$15,000 (or higher). Improvements in financial feasibility were more dramatic for dairy than for swine farms

  5. The Effect of Biogas Production on Farmland Rental Prices: Empirical Evidences from Northern Italy

    Directory of Open Access Journals (Sweden)

    Eugenio Demartini

    2016-11-01

    Full Text Available In the last decade, increased environmental awareness has prompted the adoption of incentives for exploiting renewable energy sources. Among these, biogas production has received a certain attention in developed countries. Nonetheless, the subsidies provided have posed the problem of an activity (the production of bioenergy that engages in direct competition with food and feed production for limited resources, like agricultural land. Even if this competition may be softened by allocating marginal land and/or using dedicated non-agricultural crops, empirical evidence shows that biogas plants have been developed in highly-productive agricultural areas, using increasing amounts of maize silage as feedstock. Thus, studies aimed at measuring the effect of biogas production on agricultural activities are needed in order to avoid this socially undesirable outcome. The paper presents an econometric estimation of the impact of biogas plants on farmland rental values of a Northern Italian rural area. Results show that biogas has a non-linear effect on rental prices, suggesting that incentive schemes specifically accounting for plants’ dimensions and technologies would improve the social sustainability of the bioenergy sector and its coexistence with agricultural activity.

  6. Nitrogen and phosphorus removal coupled with carbohydrate production by five microalgae cultures cultivated in biogas slurry.

    Science.gov (United States)

    Tan, Fen; Wang, Zhi; Zhouyang, Siyu; Li, Heng; Xie, Youping; Wang, Yuanpeng; Zheng, Yanmei; Li, Qingbiao

    2016-12-01

    In this study, five microalgae strains were cultured for their ability to survive in biogas slurry, remove nitrogen resources and accumulate carbohydrates. It was proved that five microalgae strains adapted in biogas slurry well without ammonia inhibition. Among them, Chlorella vulgaris ESP-6 showed the best performance on carbohydrate accumulation, giving the highest carbohydrate content of 61.5% in biogas slurry and the highest ammonia removal efficiency and rate of 96.3% and 91.7mg/L/d respectively in biogas slurry with phosphorus and magnesium added. Additionally, the absence of phosphorus and magnesium that can be adverse for biomass accumulation resulted in earlier timing of carbohydrate accumulation and magnesium was firstly recognized and proved as the influence factor for carbohydrate accumulation. Microalgae that cultured in biogas slurry accumulated more carbohydrate in cell, making biogas slurry more suitable medium for the improvement of carbohydrate content, thus can be regarded as a new strategy to accumulate carbohydrate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Biogas Production Potential of Calatropis Procera (Sodom Apple ...

    African Journals Online (AJOL)

    The leaves and stems of Calatropis procera was digested under anaerobic condition to generate biogas. Cow dung was used as reference sample. Three digesters Calatropis procera leaves (CPL), Calatropis procera stem (CPS) and Cow Dung (CWD) respectively were used. Each contained 40g sample and 800 ml of ...

  8. Biogas energy production from tropical biomass wastes by anaerobic digestion

    Science.gov (United States)

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass, and food w...

  9. Production of both esters and biogas from Mexican poppy | Singh ...

    African Journals Online (AJOL)

    This paper details a dynamic evaluation of a procedure for extracting both, ester and biogas from seeds and waste of Mexican poppy (Argemone mexicana) using simple and inexpensive technique. Results showed that A. mexicana seed contains 30% oil. Through the process of transestrification, oil extracted from seed, ...

  10. Quantifying landfill biogas production potential in the U.S.

    Science.gov (United States)

    This study presents an overview of the biogas (biomethane) availability in U.S. landfills, calculated from EPA estimates of landfill capacities. This survey concludes that the volume of landfill-derived methane in the U.S. is 466 billion cubic feet per year, of which 66 percent is collected and onl...

  11. Biogas production as affected by heavy metals in the anaerobic digestion of sludge

    Directory of Open Access Journals (Sweden)

    Hussein I. Abdel-Shafy

    2014-12-01

    The sewage sludge samples were separated from the sewage water of the pilot plant at the National Research Centre, TDC site. The effect of heavy metals on the biogas production of the anaerobic digester was studied. The inhibitory effect on the biogas production and toxic level of metals was determined in this study. The general ranking of heavy metal toxicity appears to be Hg > Cd > Cr (III. The present investigation reveals that heavy metals in addition to the anaerobic digester decreased the biogas production as an indication of efficiency of the process. A significant decrease in gas production and volatile organic matter removal was obtained. It was also noted that an accumulation of organic acid intermediates was obtained as a result of methanogenic bacterial inhibition. This accumulation was limited during the pulse feed of metals. This is due to the rapid poisoning of the active bacterial forms in the digester.

  12. Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria.

    Science.gov (United States)

    Čater, Maša; Fanedl, Lijana; Malovrh, Špela; Marinšek Logar, Romana

    2015-06-01

    Lignocellulosic substrates are widely available but not easily applied in biogas production due to their poor anaerobic degradation. The effect of bioaugmentation by anaerobic hydrolytic bacteria on biogas production was determined by the biochemical methane potential assay. Microbial biomass from full scale upflow anaerobic sludge blanket reactor treating brewery wastewater was a source of active microorganisms and brewery spent grain a model lignocellulosic substrate. Ruminococcus flavefaciens 007C, Pseudobutyrivibrio xylanivorans Mz5(T), Fibrobacter succinogenes S85 and Clostridium cellulovorans as pure and mixed cultures were used to enhance the lignocellulose degradation and elevate the biogas production. P. xylanivorans Mz5(T) was the most successful in elevating methane production (+17.8%), followed by the coculture of P. xylanivorans Mz5(T) and F. succinogenes S85 (+6.9%) and the coculture of C. cellulovorans and F. succinogenes S85 (+4.9%). Changes in microbial community structure were detected by fingerprinting techniques. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Effect of Water Volume and Biogas Volumetric Flowrate in Biogas Purification Through Water Scrubbing Method

    Directory of Open Access Journals (Sweden)

    Hendry Sakke Tira

    2016-05-01

    Full Text Available Energy supply is a crucial issue in the world in the last few years. The increase in energy demand caused by population growth and resource depletion of world oil reserves provides determination to produce and to use renewable energies. One of the them is biogas. However, until now the use of biogas has not yet been maximized because of its poor purity. According to the above problem, the research has been carried out using the method of water absorption. Under this method it is expected that the rural community is able to apply it. Therefore, their economy and productivity can be increased. This study includes variations of absorbing water volume (V and input biogas volume flow rate (Q. Raw biogas which is flowed into the absorbent will be analyzed according to the determined absorbing water volume and input biogas volume rate. Improvement on biogas composition through the biogas purification method was obtained. The level of CO2 and H2S was reduced significantly specifically in the early minutes of purification process. On the other hand, the level of CH4 was increased improving the quality of raw biogas. However, by the time of biogas purification the composition of purified biogas was nearly similar to the raw biogas. The main reason for this result was an increasing in pH of absorbent. It was shown that higher water volume and slower biogas volume rate obtained better results in reducing the CO2 and H2S and increasing CH4 compared to those of lower water volume and higher biogas volume rate respectively. The purification method has a good promising in improving the quality of raw biogas and has advantages as it is cheap and easy to be operated.

  14. Effect of Water Volume and Biogas Volumetric Flowrate in Biogas Purification Through Water Scrubbing Method

    Directory of Open Access Journals (Sweden)

    Hendry Sakke Tira

    2014-10-01

    Full Text Available Energy supply is a crucial issue in the world in the last few years. The increase in energy demand caused by population growth and resource depletion of world oil reserves provides determination to produce and to use renewable energies. One of the them is biogas. However, until now the use of biogas has not yet been maximized because of its poor purity. According to the above problem, the research has been carried out using the method of water absorption. Under this method it is expected that the rural community is able to apply it. Therefore, their economy and productivity can be increased. This study includes variations of absorbing water volume (V and input biogas volume flow rate (Q. Raw biogas which is flowed into the absorbent will be analyzed according to the determined absorbing water volume and input biogas volume rate. Improvement on biogas composition through the biogas purification method was obtained. The level of CO2 and H2S was reduced significantly specifically in the early minutes of purification process. On the other hand, the level of CH4 was increased improving the quality of raw biogas. However, by the time of biogas purification the composition of purified biogas was nearly similar to the raw biogas. The main reason for this result was an increasing in pH of absorbent. It was shown that higher water volume and slower biogas volume rate obtained better results in reducing the CO2 and H2S and increasing CH4 compared to those of lower water volume and higher biogas volume rate respectively. The purification method has a good promising in improving the quality of raw biogas and has advantages as it is cheap and easy to be operated.

  15. Economics of production of biogas from specifically-grown plant material. [New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, D. J.

    1977-10-15

    The production of biogas from plant materials is technologically very simple, and is the only process currently available (other than direct burning) for conversion of cellulose materials into energy or fuels that is feasible at a farm-scale, or even a home-scale, as well as a large industrial plant scale. For this reason the economics of biogas production can be considered at the farm-scale as well as the industrial scale. An accurate assessment of the economics at the farm-scale is possible, because commercially produced units are now available in New Zealand and in operation. However, although large-scale plants have been proposed and costed in the USA for the conversion of the cellulose component of garbage into biogas, operational data are not yet available, and the costing has not been applied to the use of specifically-grown plant material. Nevertheless, the large-scale plants envisaged use a large number of digesters each of 100,000 gallons capacity and can thus be regarded as a combination of farm-size units, although with some economics in digester size, number of pumps required, etc. For these reasons, this review of the economics of biogas production is based on the operation of commercial 20,000 gallon digesters available in NZ for farm-scale use. Factors governing the economics of farm-scale and industrial-scale production of biogas will be discussed in section 6.

  16. Determinants of the distribution and concentration of biogas production in Germany. A spatial econometric analysis

    International Nuclear Information System (INIS)

    Scholz, Lukas

    2015-01-01

    The biogas production in Germany is characterized by a heterogeneous distribution and the formation of regional centers. In the present study the determinants of the spatial distribution and concentration are analyzed with methods of spatial statistics and spatial econometrics. In addition to the consideration of ''classic'' site factors of agricultural production, the analysis here focuses on the possible relevance of agglomeration effects. The results of the work contribute to a better understanding of the regional distribution and concentration of the biogas production in Germany. [de

  17. Effects of inoculum to substrate ratio and co-digestion with bagasse on biogas production of fish waste.

    Science.gov (United States)

    Xu, Jie; Mustafa, Ahmed M; Sheng, Kuichuan

    2017-10-01

    To overcome the biogas inhibition in anaerobic digestion of fish waste (FW), effects of inoculum to substrate ratio (I/S, based on VS) and co-digestion with bagasse on biogas production of FW were studied in batch reactors. I/S value was from 0.95 to 2.55, bagasse content in co-digestion (based on VS) was 25%, 50% and 75%. The highest biogas yield (433.4 mL/gVS) with 73.34% methane content was obtained at an I/S value of 2.19 in mono-digestion of FW; the biogas production was inhibited and the methane content was below 70% when I/S was below 1.5. Co-digestion of FW and bagasse could improve the stability and biogas potential, also reducing the time required to obtain 70% of the total biogas production, although the total biogas yield and methane content decreased with the increase in bagasse content in co-digestion. Biogas yield of 409.5 mL/gVS was obtained in co-digestion of 75% FW and 25% bagasse; simultaneously 78.46% of the total biogas production was achieved after 10 days of digestion.

  18. Extraction solvent’s effect on biogas production from mixtures of date seed and wastewater sludge

    Directory of Open Access Journals (Sweden)

    Radeef Wameed

    2017-01-01

    Full Text Available The objective of this study was to evaluate the impact of extraction solvent on biogas production from mixtures of date (Phoenix dactylifera seed and wastewater treatment sludge. Date palm seed is a locally produced waste which is used in different useful purposes. Date seed is rich in proteins, carbohydrates and lipids and have the potential for biogas enhancement. In this study, three extraction solvents, hexane, ethyl acetate and Ethanol:water (1:1, were used on two types of date seeds (locally known as Khalas and Khudari. Date seed powder of size 0.425 – 0.6 mm after extraction was mixed with wastewater treatment sludge at dry date seed/dry sludge solids ratios of 0%, 10%, 20%, 40%, 60%, and 80%. The study showed a direct relationship between biogas production and ratio of date seeds/wastewater sludge in the mixture. Furthermore, the results confirmed that the quantity of biogas produced from samples containing raw date seed was almost same as the quantity produced from samples containing date seed after extraction. The results revealed that the used extraction solvents had no effect on biogas production

  19. Potential of biogas production with young bulls manure on batch biodigesters

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Monica Sarolli S. de M.; Costa, Luiz A. de Mendonca [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil)], E-mail: monicas@unioeste.br; Lucas Junior, Jorge de [Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, SP (Brazil). Faculdade de Ciencias Agrarias e Veterinarias

    2008-07-01

    The feedlot system concerning the young bull model allows that animals gain weight in a shorter time since there is higher daily intake of protein when compared to fiber. This change on animals' diet alters particularly manure characteristics and thus interferes on performance of biological systems of treatment. This study aimed at evaluating the potential of biogas production using manure of young bulls that received two different diets on batch biodigesters under three temperatures, with and without inoculum use. The results showed that manure from animals that received more protein on diet (80% concentrate + 20% roughage) had greater reductions on volatile solids when submitted to anaerobic biodigestion. Although the speed of biogas production was superior on treatments with inoculum, it was observed negative effect on inoculum use. There was no effect on temperature during biogas production. Regarding diet effect, manure of animals fed on diet with more protein produced larger amounts of biogas per kg of total added solids (0.2543) when compared to those who received less protein on diet (65% concentrate + 35% roughage), which meant 0.1001 m{sup 3} biogas/kg/total solids. (author)

  20. How can we improve biomethane production per unit of feedstock in biogas plants?

    International Nuclear Information System (INIS)

    Asam, Zaki-ul-Zaman; Poulsen, Tjalfe Gorm; Nizami, Abdul-Sattar; Rafique, Rashad; Kiely, Ger; Murphy, Jerry D.

    2011-01-01

    Biogas production is one of the number of tools that may be used to alleviate the problems of global warming, energy security and waste management. Biogas plants can be difficult to sustain from a financial perspective. The facilities must be financially optimized through use of substrates with high biogas potential, low water content and low retention requirement. This research carried out in laboratory scale batch digesters assessed the biogas potential of energy crops (maize and grass silage) and solid manure fractions from manure separation units. The ultimate methane productivity in terms of volatile solids (VS) was determined as 330, 161, 230, 236, 361 L/kg VS from raw pig slurry, filter pressed manure fiber (FPMF), chemically precipitated manure fiber (CPMF), maize silage and grass silage respectively. Methane productivity based on mass (L/kg substrate) was significantly higher in FPMF (55 L/kg substrate), maize silage (68 L/kg substrate) and grass silage (45-124 L/kg substrate (depending on dry solids of feedstock)) as in comparison to raw pig slurry (10 L/kg substrate). The use of these materials as co-substrates with raw pig slurry will increase significantly the biomethane yield per unit feedstock in the biogas plant.

  1. Nitrous oxide production from soils amended with biogas residues and cattle slurry.

    Science.gov (United States)

    Abubaker, J; Odlare, M; Pell, M

    2013-07-01

    The amount of residues generated from biogas production has increased dramatically due to the worldwide interest in renewable energy. A common way to handle the residues is to use them as fertilizers in crop production. Application of biogas residues to agricultural soils may be accompanied with environmental risks, such as increased NO emission. In 24-d laboratory experiments, NO dynamics and total production were studied in arable soils (sandy, clay, and organic) amended with one of two types of anaerobically digested biogas residues (BR-A and BR-B) generated from urban and agricultural waste and nondigested cattle slurry (CS) applied at rates corresponding to 70 kg NH-N ha. Total NO-N losses from the sandy soil were higher after amendment with BR-B (0.32 g NO-N m) than BR-A or CS (0.02 and 0.18 g NO-N m, respectively). In the clay soil, NO-N losses were very low for CS (0.02 g NO-N m) but higher for BR-A and BR-B (0.25 and 0.15 g NO-N m, respectively). In the organic soil, CS gave higher total NO-N losses (0.31 g NO-N m) than BR-A or BR-B (0.09 and 0.08 g NO-N m, respectively). Emission peaks differed considerably between soils, occurring on Day 1 in the organic soil and on Days 11 to 15 in the sand, whereas in the clay the peak varied markedly (Days 1, 6, and 13) depending on residue type. In all treatments, NH concentration decreased with time, and NO concentration increased. Potential ammonium oxidation and potential denitrification activity increased significantly in the amended sandy soil but not in the organic soil and only in the clay amended with CS. The results showed that fertilization with BR can increase NO emissions and that the size is dependent on the total N and organic C content of the slurry and on soil type. In conclusion, the two types of BR and the CS are not interchangeable regarding their effects on NO production in different soils, and, hence, matching fertilizer type to soil type could reduce NO emissions. For instance, it could be

  2. Plant cultivation aspects of biogas production in organic farming; Pflanzenbauliche Aspekte der Biogasproduktion im oekologischen Landbau

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Bernhard [Amt fuer Ernaehrung Landwirtschaft und Forsten, Bamberg (Germany); Miller, Hubert [Biolandhof Miller (Germany)

    2012-11-01

    The authors of the contribution under consideration report on plant cultivation aspects of biogas production in organic farming. The power generation, the economic aspects of this operating sector, the potential impact on the performance of crop production as well as soil fertility are considered.

  3. Integration of energy, GHG and economic accounting to optimize biogas production based on co-digestion

    DEFF Research Database (Denmark)

    Fitamo, Temesgen; Boldrin, Alessio; Baral, Khagendra Raj

    2015-01-01

    of increased energy production. However, the profitability of biogas production is negatively affected when utilising SB, because of the increased costs involved in feedstock supply. The scale of the processing plant is neutral in terms of profitability when SB is added. The results indicate that medium...

  4. Modelling biogas production of solid waste: application of the BGP model to a synthetic landfill

    Science.gov (United States)

    Rodrigo-Ilarri, Javier; Segura-Sobrino, Francisco

    2013-04-01

    Production of biogas as a result of the decomposition of organic matter included on solid waste landfills is still an issue to be understood. Reports on this matter are rarely included on the engineering construction projects of solid waste landfills despite it can be an issue of critical importance while operating the landfill and after its closure. This paper presents an application of BGP (Bio-Gas-Production) model to a synthetic landfill. The evolution in time of the concentrations of the different chemical compounds of biogas is studied. Results obtained show the impact on the air quality of different management alternatives which are usually performed in real landfills.

  5. Pig slurry characteristics, nutrient balance and biogas production as affected by separation and acidification

    DEFF Research Database (Denmark)

    Sommer, S G; Hjorth, Maibritt; Leahy, J J

    2015-01-01

    and separation fraction applied to fields and crop need. Total biogas production was not affected by separation, whereas acidification reduced biogas production because the process was inhibited by a low pH and a high sulphur concentration. The amount of copper applied per hectare in the liquid manure...... to the wheat field was lower than the amount taken up and more zink and copper was applied in the solid fraction to maize field than taken up. The transportation and field application of solids and liquids did not increase management costs when compared to the transportation of slurry alone, but the investment...

  6. The application of biotechnology on the enhancing of biogas production from lignocellulosic waste.

    Science.gov (United States)

    Wei, Suzhen

    2016-12-01

    Anaerobic digestion of lignocellulosic waste is considered to be an efficient way to answer present-day energy crisis and environmental challenges. However, the recalcitrance of lignocellulosic material forms a major obstacle for obtaining maximum biogas production. The use of biological pretreatment and bioaugmentation for enhancing the performance of anaerobic digestion is quite recent and still needs to be investigated. This paper reviews the status and perspectives of recent studies on biotechnology concept and investigates its possible use for enhancing biogas production from lignocellulosic waste with main emphases on biological pretreatment and bioaugmentation techniques.

  7. Two-phase anaerobic digestion for biogas production from dairy effluent—CSTR and ABR in series

    DEFF Research Database (Denmark)

    Jürgensen, L.; Ehimen, E. A.; Born, J.

    2016-01-01

    Anaerobic digestion of low-strength dairy waste water has been used for the production of biogas. A two-phase pilot scale process had been established within 90 d using a 1 m3continuous stirred tank reactor (CSTR) and a 200 l anaerobic baffled reactor (ABR) in series. The system was fed at constant...... retention time of 1.6 d and with changing feed strengths resulting in various organic loading rates between 1.25-4.50 g/(l d). The average COD removal was 82% with a biogas yield of 0.26 l/gCOD. The combination of CSTR and ABR overcame the disadvantages of both reactor types. By further optimization...

  8. A highly concentrated diet increases biogas production and the agronomic value of young bull's manure.

    Science.gov (United States)

    Mendonça Costa, Mônica Sarolli Silva de; Lucas, Jorge de; Mendonça Costa, Luiz Antonio de; Orrico, Ana Carolina Amorim

    2016-02-01

    The increasing demand for animal protein has driven significant changes in cattle breeding systems, mainly in feedlots, with the use of young bulls fed on diets richer in concentrate (C) than in forage (F). These changes are likely to affect animal manure, demanding re-evaluation of the biogas production per kg of TS and VS added, as well as of its agronomic value as a biofertilizer, after anaerobic digestion. Here, we determined the biogas production and agronomic value (i.e., the macronutrient concentration in the final biofertilizer) of the manure of young bulls fed on diets with more (80% C+20% F; 'HighC' diet) or less (65% C+35% F; 'LowC' diet) concentrate, evaluating the effects of temperature (25, 35, and 40°C) and the use of an inoculum, during anaerobic digestion. A total of 24 benchtop reactors were used, operating in a semi-continuous system, with a 40-day hydraulic retention time (HRT). The manure from animals given the HighC diet had the greatest potential for biogas production, when digested with the use of an inoculum and at 35 or 40°C (0.6326 and 0.6207m(3)biogas/kg volatile solids, or VS, respectively). We observed the highest levels of the macronutrients N, P, and K in the biofertilizer from the manure of animals given HighC. Our results show that the manure of young bulls achieves its highest potential for biogas production and agronomic value when animals are fed diets richer in concentrate, and that biogas production increases if digestion is performed at higher temperatures, and with the use of an inoculum. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production.

    Science.gov (United States)

    Nges, Ivo Achu; Escobar, Federico; Fu, Xinmei; Björnsson, Lovisa

    2012-01-01

    Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Energy production from biogas in the Italian countryside: Policies and organizational models

    International Nuclear Information System (INIS)

    Carrosio, Giovanni

    2013-01-01

    In recent years, Italy has witnessed a proliferation of agricultural biogas plants. This article argues that institutional factors have played an important role in their diffusion. It describes the state and evolution of agricultural biogas in Italy, and then investigates the extent to which institutional pressures have been influential in shaping organizational models of biogas production. It finds that the dominance of one particular organizational model is the result of an isomorphic process in which a monopolistic market, legal structures, and subsidies play a role. The prevalence of this organizational model, however, does not lead to the effective use of biogas production, and furthermore it results in low environmental efficiency. For a more sustainable development of bioenergy, Italian policy-makers should reform the existing institutional framework by reorganizing subsidies, liberalizing the management of gas grids, and involving farmers in local projects. - Highlights: • Institutional factors played an important role for the diffusion of biogas plants in Italy. • The dominance of one organizational model is the result of an isomorphic process. • The prevalence of one organizational model results in low environmental efficiency. • Italian policy makers should reform the existing institutional framework

  11. Cavitation for improved sludge conversion into biogas

    NARCIS (Netherlands)

    Stoop, A.H.; Bakker, T.W.; Kramer, H.J.M.

    2015-01-01

    In several studies the beneficial influence of pre-treatment of waste activated sludge with cavitation on the biogas production was demonstrated. It is however, still not fully certain whether this effect should be mainly contributed to an increase in conversion rate of organics into biogas by

  12. The potential of animal manure, straw and grass for European biogas production in 2030

    DEFF Research Database (Denmark)

    Meyer, A. K.P.; Ehimen, E. A.; Holm-Nielsen, J. B.

    2016-01-01

    Biogas is a diverse energy source, suitable as a flexible and storable energy form. In the European Union (EU), biogas is expected to play an important role in reaching the energy policy targets. The sustainability of substrates used for biogas production has however been under a critical...... discussion. The aim of this study was to project and map the potentials of sustainable biomasses in 2030 in the EU. The investigated types of residual biomass were animal manure, straw from cereal production, and excess grass from both rotational and permanent grasslands and meadows. In total the energy...... potential from the investigated resources was projected to range from 39.3-66.9 Mtoe, depending on the availability of the residues. In the perspectives of the energy political targets, the projected energy potential could cover 2.3-3.9% of the total EU energy consumption in 2030 or 8.4-14.3% of the total...

  13. Assessment of biogas production in Argentina from co-digestion of sludge and municipal solid waste.

    Science.gov (United States)

    Morero, Betzabet; Vicentin, Rocio; Campanella, Enrique A

    2017-03-01

    In Argentina, there is an important potential to utilize organic waste to generate bioenergy. This work analyzes the environmental impacts and the energetic and economic requirements of the biogas produced by digesting the sewage sludge (SS) produced in a wastewater treatment plant in a medium city in Argentina. The SS is co-digested with the organic fraction of municipal solid waste (OFMSW), and the basis of this study is the life cycle assessment (LCA). The LCA is performed according to ISO 14040-44 using the SimaPro simulator. First, the transport of the raw materials to the biogas plant was defined. Then, the co-digestion and the biogas treatment for final use were evaluated. The co-digestion was improved with glycerol, and the generation of biogas was estimated using the GPS-X software. Two alternatives for the end use of biogas were considered: combined heat and power (CHP) and biomethane generation. For the first, H 2 S and water vapor were removed from the raw biogas stream, and for the second, also CO 2 was removed. The H 2 S removal process was simulated in the SuperPro software by anaerobic biofiltration. The same software was used to simulate the removal of CO 2 absorption-desorption with water as solvent. Finally, the environmental impacts related to the end use of biogas (CHP and biomethane) were evaluated. The environmental, energetic and economic analyses showed that the co-digestion of SS and OFMSW has great potential for reducing the environmental impacts and increasing the economic and energetic value of the substances via the production of biomethane, electricity and, potentially, fertilizer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Evaluation of biogas of waste from poultry

    International Nuclear Information System (INIS)

    Lobo Paes, Juliana; Ferreira Matos, Camila; Souza Pereira, Diego José de; Bruggianesi, Giancarlo; Silva Misquita, Ícaro da

    2015-01-01

    Most of the farms, the waste of agricultural production do not receive adequate treatment for the stabilization of organic matter and reduce its pollution potential. The anaerobic digestion is an alternative for the treatment of waste, as well as allowing the reduction of pollution potential and the health risks of waste to a minimum, promotes the generation of biogas used as a heat source for various uses on the farm. Thus, the aim of this work was to evaluate the biogas production efficiency from the chicken waste. For the supply of biodigesters, adopted the total solids content of 8% and discontinuous supply system. The biogas potential was determined on the basis of their daily production and explosive rate. It was observed that the biogas production started 24 hours after the start of supplying the digesters. The maximum biogas production was approximately 0.87 L after the ninth and the 54th day starting the digestion process. The average daily production of biogas generated from bird manure was 0.022 L, while the cumulative 0.91 L after 72 days of digestion. The explosive rate of biogas generated by poultry origin residues peaked at 51% after 32 days of the start of the digestion process. In this analysis, we found the presence of methane in the biogas produced in all substrates tested after 24 h of digestion, because it’s burning in the presence of an ignition source (Fire). (full text)

  15. Improving biogas production from continuous co-digestion of oily wastewater and waste-activated sludge by hydrodynamic cavitation pre-treatment.

    Science.gov (United States)

    Habashi, Nima; Alighardashi, Abolghasem; Mennerich, Artur; Mehrdadi, Nasser; Torabian, Ali

    2018-04-01

    Hydrodynamic cavitation (HC) was evaluated as a pretreatment for synthetic oily wastewater (OWW) to be co-digested with waste-activated sludge (WAS). The main objective of the present research was the enhancement of biogas production by the application of HC pretreatment. HC was applied to the OWW, and the OWW and WAS were added to a 50 L continuous digestion reactor. As a control system, an identical digestion reactor was set up for co-digestion of the WAS and the OWW without pretreatment. The reactors were initially filled with inoculum and the hydraulic retention time (HRT) was set to 22 d. The HRT was gradually reduced to 19, 16, and finally 13 d, but the substrate quality was kept constant. The loading rate, accordingly, increased from 0.86 to 1.46 g TVS/(L d). The biogas volume was recorded online and its quality was analyzed regularly. The HC improved biogas production up to 43% at 22 d of HRT. Reducing the HRT decreased biogas production from the main reactor while that of the control reactor was more or less constant. HC also increased the biogas methane content; the methane concentration of the main reactor was about 3% higher than the methane concentration of the control reactor. The main reactor experienced no clogging or accumulation of fatty materials.

  16. Biogas production and distribution. Operators' health and safety. Extended abstract

    International Nuclear Information System (INIS)

    Gardeur-Algros, E.; Chesnot, T.; Charissou, A.M.; Paris, T.; Bronner, C.

    2013-06-01

    Production and recovery of biogas from different substrates of agricultural, urban and industrial issues are at the heart of sustainable development for the production of renewable energy, reducing greenhouse gases and waste treatment. In 2011, in France, about 200 biogas plants were operational. Moreover, about 300 ISDND (nonhazardous waste storage or landfill sites) also produce biogas, about 90 that of them valorize it. Because of regulatory contexts and favorable measures to bolster the economy, the number of sites is growing and anaerobic pathways are diversifying in terms of substrate / treated waste, anaerobic digestion processes and ways of valorization. So it seems appropriate to focus on the health and safety of workers potentially exposed to various hazards during operations of monitoring, maintenance or malfunction of facilities. First, through a literature search and a query of experts, data such as substrate, digestate and biogas composition, information feedback on reported incidents / accidents or accidents at work and illnesses of operators have been sought. Then, critical points concerning the health and safety of operators in these sectors were identified by implementing some steps of HACCP (Hazard Analysis - Critical Control Points). Five sectors (agricultural methanization in farms and in centralized plants - methanization of urban sewage sludge - methanization of household garbage - industrial methanization in sectors like food industry, stationery and chemistry - biogas production from landfill sites) have been studied and led to dedicated syntheses. They summarize the collected information and present an operating diagram indicating the different stages of biogas production and recovery. On this diagram, critical points are identified, assessed according to their importance and are associated with phases of maintenance operation, or malfunction. The results are intended to educate the actors to potential risks and attention they need to

  17. Chlorella vulgaris vs cyanobacterial biomasses: Comparison in terms of biomass productivity and biogas yield

    International Nuclear Information System (INIS)

    Mendez, Lara; Mahdy, Ahmed; Ballesteros, Mercedes; González-Fernández, Cristina

    2015-01-01

    Highlights: • Cyanobacteria and C. vulgaris were compared in terms of growth and methane production. • Biomasses were subjected to anaerobic digestion without applying any disruption method. • Cyanobacteria showed an increased methane yield in comparison with C. vulgaris. - Abstract: The aim of the present study was to compare cyanobacteria strains (Aphanizomenon ovalisporum, Anabaena planctonica, Borzia trilocularis and Synechocystis sp.) and microalgae (Chlorella vulgaris) in terms of growth rate, biochemical profile and methane production. Cyanobacteria growth rate ranged 0.5–0.6 day −1 for A. planctonica, A. ovalisporum and Synecochystis sp. and 0.4 day −1 for B. tricularis. Opposite, C. vulgaris maximum growth rate was double (1.2 day −1 ) than that of cyanobacteria. Regarding the methane yield, microalgae C. vulgaris averaged 120 mL CH 4 g COD in −1 due to the presence of a strong cell wall. On the other hand, anaerobic digestion of cyanobacteria supported higher methane yields. B. trilocularis and A. planctonica presented 1.42-fold higher methane yield than microalgae while this value was raised to approximately 1.85-fold for A. ovalisporum and Synechochystis sp. In the biogas production context, this study showed that the low growth rates of cyanobacteria can be overcome by their increased anaerobic digestibility when compared to their microalgae counterpartners, such is the case of C. vulgaris

  18. Biogas production of Chicken Manure by Two-stage fermentation process

    Science.gov (United States)

    Liu, Xin Yuan; Wang, Jing Jing; Nie, Jia Min; Wu, Nan; Yang, Fang; Yang, Ren Jie

    2018-06-01

    This paper performs a batch experiment for pre-acidification treatment and methane production from chicken manure by the two-stage anaerobic fermentation process. Results shows that the acetate was the main component in volatile fatty acids produced at the end of pre-acidification stage, accounting for 68% of the total amount. The daily biogas production experienced three peak period in methane production stage, and the methane content reached 60% in the second period and then slowly reduced to 44.5% in the third period. The cumulative methane production was fitted by modified Gompertz equation, and the kinetic parameters of the methane production potential, the maximum methane production rate and lag phase time were 345.2 ml, 0.948 ml/h and 343.5 h, respectively. The methane yield of 183 ml-CH4/g-VSremoved during the methane production stage and VS removal efficiency of 52.7% for the whole fermentation process were achieved.

  19. Pilot-scale anaerobic co-digestion of sewage sludge with agro-industrial by-products for increased biogas production of existing digesters at wastewater treatment plants.

    Science.gov (United States)

    Maragkaki, A E; Fountoulakis, M; Gypakis, A; Kyriakou, A; Lasaridi, K; Manios, T

    2017-01-01

    Due to low degradability of dry solids, most of the digesters at wastewater treatment plants (WWTP) operate at low loading rates resulting in poor biogas yields. In this study, co-digestion of sewage sludge (SS) with olive mill wastewater (OMW), cheese whey (CW) and crude glycerol (CG) was studied in an attempt to improve biogas production of existing digesters at WWTPs. The effect of agro-industrial by-products in biogas production was investigated using a 220L pilot-scale (180L working volume) digester under mesophilic conditions (35°C) with a total feeding volume of 7.5L daily and a 24-day hydraulic retention time. The initial feed was sewage sludge and the bioreactor was operated using this feed for 40days. Each agro-industrial by-product was then added to the feed so that the reactor was fed continuously with 95% sewage sludge and 5% (v/v) of each examined agro-industrial by-product. The experiments showed that a 5% (v/v) addition of OMW, CG or CW to sewage sludge significantly increased biogas production by nearly 220%, 350% and 86% as values of 34.8±3.2L/d, 185.7±15.3L/d and 45.9±3.6L/d respectively, compared to that with sewage sludge alone (375ml daily, 5% v/v in the feed). The average removal of dissolved chemical oxygen demand (d-COD) ranged between 72 and 99% for organic loading rates between 0.9 and 1.5kgVSm -3 d -1 . Reduction in the volatile solids ranged between 25 and 40%. This work suggests that methane can be produced very efficiently by adding a small concentration (5%) of agro-industrial by-products and especially CG in the inlet of digesters treating sewage sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Utilization possibilites of waste products from fishing and hunting to biogas and bio-oil production in Uummannaq County

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur; Jørgensen, Marianne Willemoes

    2008-01-01

    In spring 2007 a project was carried out at the Arctic Technology Centre in which research of various possibilities of utilizing waste products from fishing and hunting generated in Uummannaq County was performed. Numerous alternatives were identified in the project, which were weighed against...... the specific conditions that apply in Uummannaq County. The best alternatives were evaluated to be biogas production and utilization of fat from the fish waste to produce bio-oil. The results showed that with the price of energy in Greenland in 2009 of 3,71 DKR per kWh, the waste in Uummannaq County would...... amount to approximately 6 million DKR when using biogas production and 5,7 million DKR when using bio-oil. Compared with the energy used in Uummannaq County today, the biogas production would be able to supply 17 percent of the energy and bio-oil production would cover approximately 16 percent....

  1. Pre-treatment of substrates for biogas production - A systems analysis; Foerbehandling av biogassubstrat i systemanalys

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, My; Holmstroem, David; Lagerkvist, Anders; Bisaillon, Mattias

    2013-09-01

    The present expansion of biogas capacity responds to a growing demand for renewable vehicle fuels. Biodegradable wastes are attractive substrates and are also prioritized in national policy. The full potential of the substrates can rarely be used however. This is partly due to impurities, or the availability or degradation speed may be limiting the biogas yield. In both cases there is a need of pre-treatments. This work deals with the system impacts of pre-treatment aiming to remove impurities in food waste and pre-treatments aiming to improve the biogas yield of horse manure and ley. In the latter case steam explosion and extrusion were the treatments studied. Gas yields and the plant and system impacts on energy, climate and economic were studied. The system includes the biogas plant as well as the impact in supplementary systems for heat and power production. The three named substrates were identified to be highly prioritised due to their total potential and the improvements possible in its realisation. Existing information from literature and contacts has form the data basis, with the addition of a few supplementary analyses of substrates. The project has been operated by the authors with participation of a group of facility operators and external reviewers. Four plants have been visited during the study. Operators of digestion plants and all interested in developing the efficiency of biogas plants are the main target group for the study. The rate that the potential yield of food waste can be utilised depends largely on how efficiently contaminants can be separated without loss of substrate. In this case the separation degree has the main impact on the economy, but not a pronounced climate effect. For all types of pre-treatments the water content of substrates is important, a higher water content is detrimental to economy, energy demand and climate impact. For both the energy balance and the climate impact the generation of vehicle fuel has a large impact. An

  2. Improving the mixing performances of rice straw anaerobic digestion for higher biogas production by computational fluid dynamics (CFD) simulation.

    Science.gov (United States)

    Shen, Fei; Tian, Libin; Yuan, Hairong; Pang, Yunzhi; Chen, Shulin; Zou, Dexun; Zhu, Baoning; Liu, Yanping; Li, Xiujin

    2013-10-01

    As a lignocellulose-based substrate for anaerobic digestion, rice straw is characterized by low density, high water absorbability, and poor fluidity. Its mixing performances in digestion are completely different from traditional substrates such as animal manures. Computational fluid dynamics (CFD) simulation was employed to investigate mixing performances and determine suitable stirring parameters for efficient biogas production from rice straw. The results from CFD simulation were applied in the anaerobic digestion tests to further investigate their reliability. The results indicated that the mixing performances could be improved by triple impellers with pitched blade, and complete mixing was easily achieved at the stirring rate of 80 rpm, as compared to 20-60 rpm. However, mixing could not be significantly improved when the stirring rate was further increased from 80 to 160 rpm. The simulation results agreed well with the experimental results. The determined mixing parameters could achieve the highest biogas yield of 370 mL (g TS)(-1) (729 mL (g TS(digested))(-1)) and 431 mL (g TS)(-1) (632 mL (g TS(digested))(-1)) with the shortest technical digestion time (T 80) of 46 days. The results obtained in this work could provide useful guides for the design and operation of biogas plants using rice straw as substrates.

  3. Comparison of operating strategies for increased biogas production from thin stillage.

    Science.gov (United States)

    Moestedt, Jan; Nordell, Erik; Schnürer, Anna

    2014-04-10

    The effect of increasing organic loading rate (OLR) and simultaneously decreasing hydraulic retention time (HRT) during anaerobic digestion of sulphur- and nitrogen-rich thin stillage was investigated during operation of continuously stirred tank laboratory reactors at two different temperatures. The operating strategies and substrate were set in order to mimic an existing full-scale commercial biogas plant in Sweden. The reactors were operated for 554-570 days with a substrate mixture of thin stillage and milled grain, resulting in high ammonium concentrations (>4.5gL(-1)). Initially, one reactor was operated at 38°C, as in the full-scale plant, while in the experimental reactor the temperature was raised to 44°C. Both reactors were then subjected to increasing OLR (from 3.2 to 6.0gVSL(-1)d(-1)) and simultaneously decreasing HRT (from 45 to 24 days) to evaluate the effects of these operational strategies on process stability, hydrogen sulphide levels and microbial composition. The results showed that operation at 44°C was the most successful strategy, resulting in up to 22% higher methane yield compared with the mesophilic reactor, despite higher free ammonia concentration. Furthermore, kinetic studies revealed higher biogas production rate at 44°C compared with 38°C, while the level of hydrogen sulphide was not affected. Quantitative PCR analysis of the microbiological population showed that methanogenic archaea and syntrophic acetate-oxidising bacteria had responded to the new process temperature while sulphate-reducing bacteria were only marginally affected by the temperature-change. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Production and characterization of Lemna minor bio-char and its catalytic application for biogas reforming

    International Nuclear Information System (INIS)

    Muradov, Nazim; Fidalgo, Beatriz; Gujar, Amit C.; Garceau, Nathaniel; T-Raissi, Ali

    2012-01-01

    Pyrolysis of fast-growing aquatic biomass - Lemna minor (commonly known as duckweed) with the emphasis on production, characterization and catalytic application of bio-char is reported in this paper. The yield of bio-char was determined as a function of L. minor pyrolysis temperature and sweep gas flow rate. It was found that the pore development during L. minor pyrolysis was not significant and the changes in the reaction conditions (temperature and sweep gas flow rate) did not alter markedly the textural characteristics and BET surface area of the bio-char produced. Thermogravimetric/differential thermogravimetric (TG/DTG) analyses of L. minor and different bio-char samples in inert (helium) and oxidative (air) media showed substantial differences in their TG/DTG patterns. A comparison of scanning electron micrographs (SEM) of L. minor, bio-char and ash indicated that the basic structural features of L. minor remained intact and were not affected by thermolysis. The inorganic ash content of L. minor derived bio-char is significantly higher than that of typical terrestrial (plant) biomass. The energy dispersive spectroscopic (EDS) analysis of L. minor ash showed that it mostly consisted of silica, and small quantities of Na, K and Ca compounds. The treatment of bio-char with CO 2 at 800 °C increased its BET surface area. It was found that CO 2 -treated bio-char exhibited appreciable initial catalytic activity in biogas reforming. -- Highlights: ► New data on characterization of bio-chars derived from Lemna minor are presented. ► Effect of pyrolysis operational parameters on bio-char properties is determined. ► Basic skeletal structure of Lemna minor leaflets does not change during pyrolysis. ► Bio-chars show an appreciable initial catalytic activity for biogas reforming.

  5. Improvement of Biogas Production from Orange Peel Waste by Leaching of Limonene

    Directory of Open Access Journals (Sweden)

    Rachma Wikandari

    2015-01-01

    Full Text Available Limonene is present in orange peel wastes and is known as an antimicrobial agent, which impedes biogas production when digesting the peels. In this work, pretreatment of the peels to remove limonene under mild condition was proposed by leaching of limonene using hexane as solvent. The pretreatments were carried out with homogenized or chopped orange peel at 20–40°C with orange peel waste and hexane ratio (w/v ranging from 1 : 2 to 1 : 12 for 10 to 300 min. The pretreated peels were then digested in batch reactors for 33 days. The highest biogas production was achieved by treating chopped orange peel waste and hexane ratio of 12 : 1 at 20°C for 10 min corresponding to more than threefold increase of biogas production from 0.061 to 0.217 m3 methane/kg VS. The solvent recovery was 90% using vacuum filtration and needs further separation using evaporation. The hexane residue in the peel had a negative impact on biogas production as shown by 28.6% reduction of methane and lower methane production of pretreated orange peel waste in semicontinuous digestion system compared to that of untreated peel.

  6. Improvement of biogas production from orange peel waste by leaching of limonene.

    Science.gov (United States)

    Wikandari, Rachma; Nguyen, Huong; Millati, Ria; Niklasson, Claes; Taherzadeh, Mohammad J

    2015-01-01

    Limonene is present in orange peel wastes and is known as an antimicrobial agent, which impedes biogas production when digesting the peels. In this work, pretreatment of the peels to remove limonene under mild condition was proposed by leaching of limonene using hexane as solvent. The pretreatments were carried out with homogenized or chopped orange peel at 20-40°C with orange peel waste and hexane ratio (w/v) ranging from 1 : 2 to 1 : 12 for 10 to 300 min. The pretreated peels were then digested in batch reactors for 33 days. The highest biogas production was achieved by treating chopped orange peel waste and hexane ratio of 12 : 1 at 20°C for 10 min corresponding to more than threefold increase of biogas production from 0.061 to 0.217 m(3) methane/kg VS. The solvent recovery was 90% using vacuum filtration and needs further separation using evaporation. The hexane residue in the peel had a negative impact on biogas production as shown by 28.6% reduction of methane and lower methane production of pretreated orange peel waste in semicontinuous digestion system compared to that of untreated peel.

  7. Improvement of Biogas Production from Orange Peel Waste by Leaching of Limonene

    Science.gov (United States)

    Wikandari, Rachma; Nguyen, Huong; Millati, Ria; Niklasson, Claes; Taherzadeh, Mohammad J.

    2015-01-01

    Limonene is present in orange peel wastes and is known as an antimicrobial agent, which impedes biogas production when digesting the peels. In this work, pretreatment of the peels to remove limonene under mild condition was proposed by leaching of limonene using hexane as solvent. The pretreatments were carried out with homogenized or chopped orange peel at 20–40°C with orange peel waste and hexane ratio (w/v) ranging from 1 : 2 to 1 : 12 for 10 to 300 min. The pretreated peels were then digested in batch reactors for 33 days. The highest biogas production was achieved by treating chopped orange peel waste and hexane ratio of 12 : 1 at 20°C for 10 min corresponding to more than threefold increase of biogas production from 0.061 to 0.217 m3 methane/kg VS. The solvent recovery was 90% using vacuum filtration and needs further separation using evaporation. The hexane residue in the peel had a negative impact on biogas production as shown by 28.6% reduction of methane and lower methane production of pretreated orange peel waste in semicontinuous digestion system compared to that of untreated peel. PMID:25866787

  8. Anaerobic digestion technology in livestock manure treatment for biogas production: a review

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, Ismail M. [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Selangor (Malaysia); Mohd Ghazi, Tinia I.; Omar, Rozita

    2012-06-15

    This article reviews the potential of anaerobic digestion (AD) for biogas production from livestock manure wastes and compares the operating and performance data for various anaerobic process configurations. It examines different kinds of manure waste treatment techniques and the influence of several parameters on biogas and methane yield. The comparison indicates that a variety of different operational conditions, various reactor configurations such as batch reactors, continuously stirred tank reactor (CSTR), plug flow reactor (PFR), up-flow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), temperature phased anaerobic digestion (TPAD), and continuous one- and two-stage systems, present a suitable technology for the AD of livestock manure waste. Main performance indicators are biogas and methane yield, degradation of volatile solids (VS), higher loading, and process stability with a short retention time. (copyright 2012 WILEY-VCH Verlag GmbH 8 Co. KGaA, Weinheim)

  9. Seaweed as source of energy. I: effect of a specific bacterial strain on biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Rao, P.S.; Tarwade, S.J.; Sarma, K.S.R.

    1980-01-01

    Biogas was produced from seaweed by making use of alginate-digesting marine bacteria that were isolated from decomposing seaweed and can digest seaweed carbohydrates (agar and alginic acid). Laboratory digesters containing 100 g seaweed were inoculated with 50 mL broth cultures of different seaweed-derived bacterial strains, and the maximum amount of degradation obtained was 28% (compared with 13% for a bacteria-free digestion). Cow dung was added as a source of methanogenic bacteria, and the amount of biogas produced was more than double the amount obtained when seaweed and cow dung were digested in the absence of the seaweed-derived bacteria. Adding a small amount of Ulva to the seaweed digester increased the production of biogas.

  10. The development, validation and initial results of an integrated model for determining the environmental sustainability of biogas production pathways

    NARCIS (Netherlands)

    Pierie, Frank; van Someren, Christian; Benders, René M.J.; Bekkering, Jan; van Gemert, Wim; Moll, Henri C.

    2016-01-01

    Biogas produced through Anaerobic Digestion can be seen as a flexible and storable energy carrier. However, the environmental sustainability and efficiency of biogas production is not fully understood. Within this article the use, operation, structure, validation, and results of a model for the

  11. Optimised biogas production from the co-digestion of sugar beet with pig slurry: Integrating energy, GHG and economic accounting

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Baral, Khagendra Raj; Fitamo, Temesgen Mathewos

    2016-01-01

    , utilising SB negatively affects the profitability of biogas production, because of the increased costs involved in feedstock supply. The scale of the processing plant is neutral in terms of profitability when SB is added. The results indicate that medium-to large-sized biogas plants, using low shares of SB...

  12. Changing Feeding Regimes To Demonstrate Flexible Biogas Production: Effects on Process Performance, Microbial Community Structure, and Methanogenesis Pathways

    Science.gov (United States)

    Mulat, Daniel Girma; Jacobi, H. Fabian; Feilberg, Anders; Adamsen, Anders Peter S.; Richnow, Hans-Hermann

    2015-01-01

    Flexible biogas production that adapts biogas output to energy demand can be regulated by changing feeding regimes. In this study, the effect of changes in feeding intervals on process performance, microbial community structure, and the methanogenesis pathway was investigated. Three different feeding regimes (once daily, every second day, and every 2 h) at the same organic loading rate were studied in continuously stirred tank reactors treating distiller's dried grains with solubles. A larger amount of biogas was produced after feeding in the reactors fed less frequently (once per day and every second day), whereas the amount remained constant in the reactor fed more frequently (every 2 h), indicating the suitability of the former for the flexible production of biogas. Compared to the conventional more frequent feeding regimes, a methane yield that was up to 14% higher and an improved stability of the process against organic overloading were achieved by employing less frequent feeding regimes. The community structures of bacteria and methanogenic archaea were monitored by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA and mcrA genes, respectively. The results showed that the composition of the bacterial community varied under the different feeding regimes, and the observed T-RFLP patterns were best explained by the differences in the total ammonia nitrogen concentrations, H2 levels, and pH values. However, the methanogenic community remained stable under all feeding regimes, with the dominance of the Methanosarcina genus followed by that of the Methanobacterium genus. Stable isotope analysis showed that the average amount of methane produced during each feeding event by acetoclastic and hydrogenotrophic methanogenesis was not influenced by the three different feeding regimes. PMID:26497462

  13. Changing Feeding Regimes To Demonstrate Flexible Biogas Production: Effects on Process Performance, Microbial Community Structure, and Methanogenesis Pathways.

    Science.gov (United States)

    Mulat, Daniel Girma; Jacobi, H Fabian; Feilberg, Anders; Adamsen, Anders Peter S; Richnow, Hans-Hermann; Nikolausz, Marcell

    2016-01-15

    Flexible biogas production that adapts biogas output to energy demand can be regulated by changing feeding regimes. In this study, the effect of changes in feeding intervals on process performance, microbial community structure, and the methanogenesis pathway was investigated. Three different feeding regimes (once daily, every second day, and every 2 h) at the same organic loading rate were studied in continuously stirred tank reactors treating distiller's dried grains with solubles. A larger amount of biogas was produced after feeding in the reactors fed less frequently (once per day and every second day), whereas the amount remained constant in the reactor fed more frequently (every 2 h), indicating the suitability of the former for the flexible production of biogas. Compared to the conventional more frequent feeding regimes, a methane yield that was up to 14% higher and an improved stability of the process against organic overloading were achieved by employing less frequent feeding regimes. The community structures of bacteria and methanogenic archaea were monitored by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA and mcrA genes, respectively. The results showed that the composition of the bacterial community varied under the different feeding regimes, and the observed T-RFLP patterns were best explained by the differences in the total ammonia nitrogen concentrations, H2 levels, and pH values. However, the methanogenic community remained stable under all feeding regimes, with the dominance of the Methanosarcina genus followed by that of the Methanobacterium genus. Stable isotope analysis showed that the average amount of methane produced during each feeding event by acetoclastic and hydrogenotrophic methanogenesis was not influenced by the three different feeding regimes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Production of liquid biogas at the biowaste treatment plant Amtzell; Gewinnung von fluessigem Biogas an der Bioabfallbehandlungsanlage Amtzell

    Energy Technology Data Exchange (ETDEWEB)

    Bojahr, Armin [Gesellschaft fuer Umwelttechnik Bojahr mbH und Co. KG, Berg (Germany)

    2013-10-01

    The fermentation plant in Amtzell will be extended to increase the throughput of bio waste. In this context an extension of the gas utilization plant is also required. The produced biogas will be partly transferred to the existing combined heat and power plant. The remaining part of biogas will be used in an proposed GPP-Plus {sup registered} --plant to produce liquid bio methane (LBG). In the LBG gaining process the raw biogas will have to be dried in several steps, de-sulphured, compressed and cooled. Following this process and due to different physical characteristics of the ingredients, the contaminants will be removed from the biogas and the main ingredients, carbon dioxide and methane, separated from each other. Carbon dioxide as well as the methane are then available in liquid form and can be put onto the market. This method of using biogas can utilize almost 100% of its energy potential. (orig.)

  15. Integration of Cleaner Production and Waste Water Treatment on Tofu Small Industry for Biogas Production using AnSBR Reactor

    Science.gov (United States)

    Rahayu, Suparni Setyowati; Budiyono; Purwanto

    2018-02-01

    A research on developing a system that integrates clean production and waste water treatment for biogas production in tofu small industry has been conducted. In this research, tofu waste water was turned into biogas using an AnSBR reactor. Mud from the sewage system serves as the inoculums. This research involved: (1) workshop; (2) supervising; (3) technical meeting; (4) network meeting, and (5) technical application. Implementation of clean production integrated with waste water treatment reduced the amount of waste water to be treated in a treatment plant. This means less cost for construction and operation of waste water treatment plants, as inherent limitations associated with such plants like lack of fund, limited area, and technological issues are inevitable. Implementation of clean production prior to waste water treatment reduces pollution figures down to certain levels that limitations in waste water treatment plants can be covered. Results show that biogas in 16 days HRT in an AnSBR reactor contains CH4(78.26 %) and CO2 (20.16 %). Meanwhile, treatments using a conventional bio-digester result in biogas with 72.16 % CH4 and 18.12 % CO2. Hence, biogas efficiency for the AnSBR system is 2.14 times greater than that of a conventional bio-digester.

  16. Nickel as an accelerator of biogas production in water hyacinth (Eichornia crassipes Solms. )

    Energy Technology Data Exchange (ETDEWEB)

    Geeta, G.S.; Jagadeesh, K.S.; Reddy, T.K.R. (University of Agricultural Sciences, Bangalore (India). Dept. of Agricultural Microbiology)

    1990-01-01

    The effect of nickel ions on biogas production has been investigated in 3-litre fermenters. It was observed that nickel is stimulatory up to 5 ppm, with an optimum at 2.5 ppm, in a water hyacinth-bovine excreta substrate. A similar effect with nickel was also observed at 5 ppm in bovine excreta. (author).

  17. Evaluation of biochemical factors from mixed animal wastes feedstock in biogas production

    Science.gov (United States)

    Animal wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. In this study, an evaluation of methane ...

  18. The effect of electron acceptors on biogas production from tannery sludge of a Mexican wastewater plant

    Science.gov (United States)

    Effluents from the leather processing plants generally are discharged into rivers or are used to irrigate farmland. The biogas production from the digestion of sludge produced could be used as alternative sources for energy and power generation. A study was carried out to examine the effects of vari...

  19. Learning as the Construction and Re-Mediation of Activity Systems: Environmental Management in Biogas Production

    Science.gov (United States)

    Pereira Querol, Marco A.; Suutari, Timo; Seppanen, Laura

    2010-01-01

    The purpose of this paper is to present theoretical tools for understanding the dynamics of change and learning during the emergence and development of environmental management activities. The methodology consists of a historical analysis of a case of biogas production that took place in the Southwest region of Finland. The theoretical tools used…

  20. Enzymatic pre-treatment of high content cellulosic feedstock improves biogas production

    Science.gov (United States)

    Animal wastes with high lignin and cellulosic contents can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. However, these high lignin and cellulosic feedstocks are quite recalcitrant to be readily utilized by methanogens to produce ben...

  1. Effect of biochemical factors from mixed animal wastes feedstock in biogas production

    Science.gov (United States)

    Animal wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. In this study, an evaluation of methane...

  2. Evaluation of biogas production by dry anaerobic digestion of switchgrass-animal manure mixtures

    Science.gov (United States)

    Anaerobic digestion is a biological method used to convert organic wastes into a stable product for land application without adverse environmental effects. The biogas produced can be used as an alternative renewable energy source. Dry anaerobic digestion (> 15% TS; total solid) has an advantage ov...

  3. The effect of system parameters on the biogas production from anaerobic digestion of livestock wastes

    Science.gov (United States)

    Animal wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. In this study, an evaluation of system p...

  4. Fungal pretreatment of albizia chips for enhanced biogas production by solid-state anaerobic digestion

    Science.gov (United States)

    Albizia biomass is a forestry waste, and holds a great potential in biogas production by solid-state anaerobic digestion (SS-AD). However, low methane yields from albizia chips were observed due to their recalcitrant structure. In this study, albizia chips were pretreated by Ceriporiopsis subvermisp...

  5. BIOLEACH: Coupled modeling of leachate and biogas production on solid waste landfills

    Science.gov (United States)

    Rodrigo-Clavero, Maria-Elena; Rodrigo-Ilarri, Javier

    2015-04-01

    One of the most important factors to address when performing the environmental impact assessment of urban solid waste landfills is to evaluate the leachate production. Leachate management (collection and treatment) is also one of the most relevant economical aspects to take into account during the landfill life. Leachate is formed as a solution of biological and chemical components during operational and post-operational phases on urban solid waste landfills as a combination of different processes that involve water gains and looses inside the solid waste mass. Infiltration of external water coming from precipitation is the most important component on this water balance. However, anaerobic waste decomposition and biogas formation processes play also a role on the balance as water-consuming processes. The production of leachate one biogas is therefore a coupled process. Biogas production models usually consider optimal conditions of water content on the solid waste mass. However, real conditions during the operational phase of the landfill may greatly differ from these optimal conditions. In this work, the first results obtained to predict both the leachate and the biogas production as a single coupled phenomenon on real solid waste landfills are shown. The model is applied on a synthetic case considering typical climatological conditions of Mediterranean catchments.

  6. Biogas Production from Water Hyacinth (Eichhornia Crassipes): The Effect of F/M Ratio

    Science.gov (United States)

    Nugraha, W. D.; Syafrudin; Pradita, L. L.; Matin, H. H. A.; Budiyono

    2018-05-01

    Distribution of water hyacinth (Eichhornia crassipes), generally considered as a water weed, that has been a problem which can harm the environment, irrigation system, and agriculture. However water hyacinth can be used in biogas production because it has large enough amount of hemicellulose contents. The purpose of this study was to know the effect of F/M ratio to biogas production from water hyacinth waste with Liquid Anaerobic Digestion (LAD) method. A series of laboratory experiments using biodigester were performed in batch anaerobic operation at room temperature. F/M ratio that used in each reactor was 39.76, 20.03, 13.32, and 10.01. Degradation process was done in 60 days. The result showed that F/M ratio effects to the biogas production. The best performance of biogas production from this research will be obtained if F/M ratio is in the range of 10.01-20.03 (correspond to 25%-50% of rumen fluid) with water hyacinth as the main substrate.

  7. Biogas production from co-digestion of orange peel waste and ...

    African Journals Online (AJOL)

    Anaerobic co-digestion of jatropha deoiled cake and orange peel waste for biogas production was carried out in the batch scale (500 ml serum bottle) under anaerobic condition at ambient temperature (at various mixing ratios of two substrate). The experimental data showed a maximum gas output of 1140 ml of gas ...

  8. Life cycle costs for the optimized production of hydrogen and biogas from microalgae

    International Nuclear Information System (INIS)

    Meyer, Markus A.; Weiss, Annika

    2014-01-01

    Despite the known advantages of microalgae compared with other biomass providers or fossil fuels, microalgae are predominately produced for high-value products. Economic constraints might limit the commercial energetic use of microalgae. Therefore, we identify the LCCs (life cycle costs) and economic hot spots for photoautotrophic hydrogen generation from photoautotrophically grown Chlamydomonas reinhardtii in a novel staggered PBR (photobioreactor) and the anaerobic digestion of the residual biomass to obtain biogas. The novel PBR aims at minimizing energy consumption for mixing and aeration and at optimizing the light conditions for algal growth. The LCCs per MJ amounted to 12.17 Euro for hydrogen and 0.99 Euro for biogas in 2011 for Germany. Market prices per MJ of 0.02 Euro for biogas and 0.04 Euro for hydrogen are considerably exceeded. Major contributors to operating costs, about 70% of total LCCs, are personnel and overhead costs. The investment costs consist to about 92% of those for the PBR with a share of 61% membrane costs. The choice of Madrid as another production location with higher incident solar irradiation and lower personnel costs reduces LCCs by about 40%. Projecting LCCs to 2030 with experience curves, the LCCs still exceed future market prices. - Highlights: • Life cycle cost assessment of hydrogen and biogas from microalgae in a novel photobioreactor. • Current and future (2030) economically viable production unlikely in Germany. • Personnel and photobioreactor costs are major cost drivers. • Changing the production location may significantly reduce the life cycle costs

  9. Enhancement of biogas production in anaerobic co-digestion by ultrasonic pretreatment

    International Nuclear Information System (INIS)

    Zou, Shuzhen; Wang, Xiaojiao; Chen, Yuanlin; Wan, Haiwen; Feng, Yongzhong

    2016-01-01

    Highlights: • Ultrasonic pretreatment changed physical structure of samples. • Ultrasonic pretreatment improved biogas production via changing environment before and during anaerobic digestion process. • The main factors affecting biogas production differ in different pretreated samples. - Abstract: This paper optimized the anaerobic digestion (AD) pretreatment process and identified the influence of pretreatment on the co-digestion of maize straw (MS) and dairy manure (DM). In the study, ultrasonic was used to pretreat MS and DM prior to digestion, with power intensities of 0, 189.39, 284.09, and 378.79 kJ at 0, 20, 30, and 40 min, respectively. Changes in the surface structures of MS and DM were observed by scanning electron microscopy (SEM), and factor analysis was used to analyze the main factors affecting biogas production in the AD process. The result showed that the structure of DM was distributed and that the structure of MS became more roughness following the ultrasonic pretreatment (UP). The highest total biogas production of co-digestion (240.32 mL/g VS_f_e_d) was obtained when MS was pretreated for 30 min without DM pretreatment (MS_3_0DM_0). This was significantly higher than that of the untreated sample (CK) (141.65 mL/g VS_f_e_d). The cellulose activity (CA), reducing sugar (RS) content, volatile fatty acid (VFA) content and pH in the digester feed, and their maximum and minimum values in the AD process was affected by UP. Factor 1 of MS_3_0DM_0 was determined by RS content, pH and VFA content that they had the most influence on biogas production on days 6, 18, 24 and 30. Factor 2 of it was determined by CA, and it had most influence on days 0, 12, 36 and 42 in the AD process, The result of the factor analysis indicated that the main factors affecting biogas production were affected by UP and they differ according to the different digestion stages. This research concluded that UP improved total biogas production via changing the initial

  10. Effect of biological pretreatment of Agropyron elongatum 'BAMAR' on biogas production by anaerobic digestion.

    Science.gov (United States)

    Lalak, Justyna; Kasprzycka, Agnieszka; Martyniak, Danuta; Tys, Jerzy

    2016-01-01

    The aim of this work was to analyze the impact of three different moisture contents (MC), at 45% MC, 65% MC, 75% MC, on the degradation of cellulose, hemicellulose, and lignin during fungi treatment by Flammulina velutipes of Agropyron elongatum 'BAMAR' and on biogas production. The analysis of chemical composition shown that F. velutipes had greater selectivity for lignin biodegradation with the highest hemicellulose and lignin removal at 29.1% and 35.4%, respectively, and lowest cellulose removal (20.48%) at 65% MC. F. velutipes cultivated at 65% MC increased biogas production of 398.07Ndm(3)kg(-1)VS(-1), which was 120% higher than the untreated sample. These treatment conditions resulted in 134% more methane yield compared with untreated sample. The results of this study suggested that A. elongatum is a potential biomass for biogas production in agriculture biogas plant and white-rot fungus F. velutipes provides an effective methods for improve biodegradation of A. elongatum. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Chemical and ecotoxicological evaluation of biochar produced from residues of biogas production.

    Science.gov (United States)

    Stefaniuk, Magdalena; Oleszczuk, Patryk; Bartmiński, Piotr

    2016-11-15

    Analyses were carried out for biochars produced at three temperatures of pyrolysis (400, 600 and 800°C) from solid residue from biogas production (RBP). Separated and non-separated RBP from biogas plants employing different biogas production conditions were pyrolyzed. The contents of heavy metals and polycyclic aromatic hydrocarbons (PAHs) (16 PAH US EPA) were analyzed in biochars. The analyses showed that with an increased pyrolysis temperature, there was an increase in the contents of PAHs and of certain heavy metals (Cr, Cu, Cd, Pb and Mn). In the ecotoxicological tests, it was noted that the effect depended on the temperature of pyrolysis and on the feedstock from which the biochar was produced. The least harmful effect on the test organisms was from biochar produced by separated RBP in a biogas plant operating in mesophilic conditions. The most negative effect on the test organisms was characteristic of biochar produced from non-separated mesophilic RBP. This study shows that the main factors determining the level of toxicity of biochars produced from RBP towards various living organisms are both the method of feedstock production and the temperature at which the process of pyrolysis is conducted. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Comparison of biogas production from rapeseed and wheat residues in compound with cattle manure

    Directory of Open Access Journals (Sweden)

    M Safari

    2016-09-01

    process pH was observed in the first few days of the digestion and this is due to high volatile fatty acid (VFA formation. These results were compatible with sanaee moghadam et al. (2013. The results obtained showed that, the highest rate of VS reduction belonged to rapeseed residues at 52.22%.The lowest rate of VS reduction attributed to wheat residues at 36.79%. The rapeseed residues with 311.45 Lit.kg-1 VS had the highest accumulated methane followed by wheat straw with 167.69.28 L.Kg-1 VS in probability level of 5%. The average percentages of methane production for rapeseed straw and wheat straw during the 140 days experiment under mesophilic condition were 66% and 55%, respectively. Production of methane had delay and started after 46th day. Much reason may be possible. Inoculums used in this study were only fresh cattle dung. The mixture of fresh cattle dung and effluent of anaerobic digester or fresh rumen fluid may be decrease retention time and increase biogas production. According results of Budiyono the rumen fluid inoculated to biodigester significantly affected the biogas production. Rumen fluid inoculums caused biogas production rate and efficiency increase more than two times in compare to manure substrate without rumen fluid inoculums (Budyono et al., 2010. The other reason was pretreatment. This study applied just mechanical pretreatment. According to Cecilia studies, different pretreatment combined with mechanical pretreatment decrease retention time and increase biogas production efficiency (Cecilia et al, 2013. However, Zhang et al. claimed that it is hard to say which method is the best because each has its own strong point and weak point. Yet, until now, none of the pretreatment technologies has found a real breakthrough. Conclusions According to this study, rapeseed residues had the highest level of methane production in comparison with wheat residues. The rapeseed residues combine with cattle dung had suitable potential to methane production. The

  13. Study of Biogas for Power Generation at Pesantren Saung Balong Al-Barokah, Majalengka, West Java

    OpenAIRE

    Arifin, Maulana; Saepudin, Aep; Santoso, Arifin

    2011-01-01

    Utilization of biogas from cow manure as a fuel alternative for power plants is done through an anaerobic process. A pilot plant with biogas production of 7 m3/day has been installed at Pesantren Saung Balong. Biogas is used for everyday purposes such as cooking and lighting, and used as pure biogas with 2.500 Watt scale generator. Biogas produced with the rate of 0.080 m3/hr. Biogas produced during the measurement (450 minutes) is 0.604 m3. With these data it is predicted that within a day (...

  14. Understanding the motivational perspectives of sustainability: A case of biogas production

    Directory of Open Access Journals (Sweden)

    Marco Pereira Querol

    2015-06-01

    Full Text Available Despite the importance of the expectations and visions of the actors involved in sustainable innovations, only the societal, motivational perspective is usually considered. The fact that local actors may have different multi-motivations is typically overlooked. The aim of this study is to examine and understand the multi-motivational perspectives in a sustainable production project. First, we introduce the concept of the object and analyze the case of a biogas production project as a mediating activity for making swine production more sustainable. We argue that the object of the activity, as manifested in motivational perspectives, shapes the way in which biogas production (BP systems are implemented. The article concludes by discussing how the concept of object can be used to explore the actual and future possibilities of using artifacts for increasing the sustainability of production.

  15. Effect of Different Sugar Beet Pulp Pretreatments on Biogas Production Efficiency.

    Science.gov (United States)

    Ziemiński, Krzysztof; Kowalska-Wentel, Monika

    2017-03-01

    The objective of this study was to determine the effect of different sugar beet pulp (SBP) pretreatments on biogas yield from anaerobic digestion. SBP was subjected to grinding, thermal-pressure processing, enzymatic hydrolysis, or combination of these pretreatments. It was observed that grinding of SBP to 2.5-mm particles resulted in the cumulative biogas productivity of 617.2 mL/g volatile solids (VS), which was 20.2 % higher compared to the biogas yield from the not pretreated SBP, and comparable to that from not ground, enzymatically hydrolyzed SBP. The highest cumulative biogas productivity, 898.7 mL/g VS, was obtained from the ground, thermal-pressure pretreated and enzymatically hydrolyzed SBP. The latter pretreatment variant enabled to achieve the highest glucose concentration (24.765 mg/mL) in the enzymatic hydrolysates. The analysis of energy balance showed that the increase in the number of SBP pretreatment operations significantly reduced the gain of electric energy.

  16. Biogas handbook (pilot edition)

    Energy Technology Data Exchange (ETDEWEB)

    Mazumdar, A [comp.

    1982-01-01

    The theory of biogas production; factors affecting digester design; details of several biogas plants of India and China including their construction, operation, and maintenance; designs of biogas utilization devices; and the use of digested sludge as fertilizer or animal feed are discussed. Included is a section listing the causes and known solutions of technical problems associated with the construction and operation of biogas plants and appliances. (CK)

  17. Techno-economic and environmental assessment of biogas production from banana peel (Musa paradisiaca) in a biorefinery concept.

    Science.gov (United States)

    Martínez-Ruano, Jimmy Anderson; Caballero-Galván, Ashley Sthefanía; Restrepo-Serna, Daissy Lorena; Cardona, Carlos Ariel

    2018-04-07

    Two scenarios for the biogas production using Banana Peel as raw material were evaluated. The first scenario involves the stand-alone production of biogas and the second scenario includes the biogas production together with other products under biorefinery concept. In both scenarios, the influence of the production scale on the process economy was assessed and feasibility limits were defined. For this purpose, the mass and energy balances were established using the software Aspen Plus along with kinetic models reported in the literature. The economic and environmental analysis of the process was performed considering Colombian economic conditions. As a result, it was found that different process scales showed great potential for biogas production. Thus, plants with greater capacity have a greater economic benefit than those with lower capacity. However, this benefit leads to high-energy consumption and greater environmental impact.

  18. Estimating biogas production of biologically treated municipal solid waste.

    Science.gov (United States)

    Scaglia, Barbara; Confalonieri, Roberto; D'Imporzano, Giuliana; Adani, Fabrizio

    2010-02-01

    In this work, a respirometric approach, i.e., Dynamic Respiration Index (DRI), was used to predict the anaerobic biogas potential (ABP), studying 46 waste samples coming directly from MBT full-scale plants. A significant linear regression model was obtained by a jackknife approach: ABP=(34.4+/-2.5)+(0.109+/-0.003).DRI. The comparison of the model of this work with those of the previous works using a different respirometric approach (Sapromat-AT(4)), allowed obtaining similar results and carrying out direct comparison of different limits to accept treated waste in landfill, proposed in the literature. The results indicated that on an average, MBT treatment allowed 56% of ABP reduction after 4weeks of treatment, and 79% reduction after 12weeks of treatment. The obtainment of another regression model allowed transforming Sapromat-AT(4) limit in DRI units, and achieving a description of the kinetics of DRI and the corresponding ABP reductions vs. MBT treatment-time.

  19. Investigation of technologies for producing organic-mineral fertilizers and biogas from waste products

    Directory of Open Access Journals (Sweden)

    Anna V. Ivanchenko

    2015-12-01

    Full Text Available Modern agriculture requires special attention to a preservation of soil fertility; development of cultures fertilization; producing of new forms of organic-mineral fertilizers which nutrient absorption coefficient would be maximum. Application of artificial fertilizers has negative influence on soils. Aim: The aim of the study is to identify the scientific regularities of organic-mineral fertilizers and biogas technologies from waste products and cattle manure with the addition of fermentation additive. Materials and Methods: The affordable organic raw material for production of organic-mineral fertilizers is the cattle manure. Environmental technology of the decontamination and utilization of manure is its anaerobic bioconversion to fermented fertilizer and biogas. The waste decontamination and the degradation of complex polymers into simple renewable and plant-available compounds takes place during the conversion of manner to biogas. Experimental research carried out for the three types of loads to the model reactor of anaerobic fermentation with 1 dm3 volume for dry matter. The mesophilic fermentation mode used in the experiments (at 33 °C. Results: It has been shown that the addition of whey to the input raw materials in a ratio of 1:30 accelerates the process of anaerobic digestion and biogas generation in 1,3...2,1 times. An analysis of organic-mineral fertilizers from cattle manure were conducted. Technological schemes of organic-mineral fertilizers and biogas technologies from waste products were developed. Conclusions: Implementation of research results to farms and urban waste treatment facilities lead to increased energy potential of our country and expansion of high-quality organic-mineral fertilizers variety, which are well absorbed by plants.

  20. Biogas production from animal manure and agri-organic by-products. An analysis of the environment

    International Nuclear Information System (INIS)

    De Boo, W.

    1997-12-01

    Growing interest in sustainable energy has been directed to the production of biogas from organic matter in animal manure and agri-organic by-products. The technology of biogas production by anaerobic digestion of organic materials is used in several parts of the world. Based on this experience and on positive results in a Novem study for the Netherlands situation in 1995, an actor survey has been carried out. The introduction of combined digestion of animal manure and agri-organic by-products has been discussed with companies, business associations and governmental organisations in the energy, agricultural and waste sectors. The survey has revealed that commercial exploitation of biogas plants with a capacity of 100 kton per year is possible under the following conditions: (1) costs of investment should not be higher than 100 Dutch Guilders (45 ECU) per ton processing capacity; (2) yield demands on investment capital, both equity and debt, should not be higher than 8%; (3) selling price for biogas should be around 0,30 Dutch Guilders (0,135 ECU) per m o 3 natural gas equivalents; (4) supply for processing of agri-organic by-products with a received minimum fee of 35 Dutch Guilders (15,7 ECU) per ton should be guaranteed; (5) dairy, pig and arable farmers involved in the biogas plant should have both financial and quality incentives to participation; (6) environmental legislation on the level of heavy metals in animal manure mixed with agri-organic byproducts should not be different from the accepted levels in 'normal' animal manure; and finally (7) the site of the biogas plant accepted by local authorities should be suitable by logistic standards for the transports of animal manure, agri-organic by-products, the digested mixture and biogas. It has been concluded that these conditions are not unrealistic, although there is no absolute certainty that they will be fulfilled. However, circumstances for the implementation of biogas plants have improved in recent years

  1. Guide biogas. From production to utilization. 5. compl. rev. ed.; Leitfaden Biogas. Von der Gewinnung zur Nutzung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The book under consideration is a guide for biogas and consists of the following contributions: (a) Targets of the guide (M. Kaltschmitt); (b) Fundamentals of anaerobic fermentation (J. Friehe); (c) Systems engineering for supplying biogas (J. Postel); (d) Description of selected substrates (J. Friehe); (e) Operation of biogas plants (J. Liebetrau); (f) Gas processing and possibilities of utilization (M. Wetthaeuser); (g) Legal and administrative framework conditions (H. von Bredow); (g) Economy (S. Hartmann); (h) Company organisation (G. Reinhold); (i) Quality and utilization of fermentation residues (H. Doehler); (j) Implementation of a project (E. Fischer); (k) Position and significance of biogas as a renewable energy resource in Germany (M. Kaltschmitt); (l) Project examples (J. Friehe).

  2. Estimation of potential biomass resource and biogas production from aquatic plants in Argentina

    Science.gov (United States)

    Fitzsimons, R. E.; Laurino, C. N.; Vallejos, R. H.

    1982-08-01

    The use of aquatic plants in artificial lakes as a biomass source for biogas and fertilizer production through anaerobic fermentation is evaluated, and the magnitude of this resource and the potential production of biogas and fertilizer are estimated. The specific case considered is the artificial lake that will be created by the construction of Parana Medio Hydroelectric Project on the middle Parana River in Argentina. The growth of the main aquatic plant, water hyacinth, on the middle Parana River has been measured, and its conversion to methane by anaerobic fermentation is determined. It is estimated that gross methane production may be between 1.0-4.1 x 10 to the 9th cu cm/year. The fermentation residue can be used as a soil conditioner, and it is estimated production of the residue may represent between 54,900-221,400 tons of nitrogen/year, a value which is 2-8 times the present nitrogen fertilizer demand in Argentina.

  3. Biogas production from organic wastes in suspended cell cultures and in biofilms

    International Nuclear Information System (INIS)

    Simenonov, I.; Chorukova, E.; Mamatarkova, V.; Nikolov, L.

    2010-01-01

    The results of a comparative study of two biogas production bioprocess systems are presented. The systems submitted to comparison are based on the suspended cells cultures and the biofilm formed on solid inert support. A comprehensive research concept is formulated and discussed. It includes the main considerations regarding the choice of substrate, bioagent as mixed microbial society, type of bioreactors, regimes of functioning, analytical determinations and method of comparison. The main requirements for efficient experimental activity in comparative investigations are formulated. Their satisfaction can grant correctness of the experimental design and data acquisition. On this basis the key parameter of comparison of the two systems is defined as the specific productivity of the bioprocess systems. Under these conditions series of preliminary experiments are carried out for testing the readiness of experimental set ups for long time stable functioning and monitoring devices capabilities to maintain the bioprocess parameters at the determined intervals. These tests grant continuous incessant experimentation with the investigated bioprocess systems. The results obtained show that biofilm bioprocess systems possess up to two and half time higher specific productivity in comparison with the bioprocess systems with the suspended cells. Some visions about the future developments of comparative research on the influence of additional parameters like the mixer rotation steed, organic loads, and higher values of dilution rates are outlined.

  4. Green energy from marine algae: biogas production and composition from the anaerobic digestion of Irish seaweed species.

    Science.gov (United States)

    Vanegas, C H; Bartlett, J

    2013-01-01

    Marine algae have emerged as an alternative feedstock for the production of a number of renewable fuels, including biogas. In addition to energy potential, other characteristics make them attractive as an energy source, including their ability to absorb carbon dioxide (CO2), higher productivity rates than land-based crops and the lack of water use or land competition. For Ireland, biofuels from marine algae can play an important role by reducing imports of fossil fuels as well as providing the necessary energy in rural communities. In this study, five potential seaweed species common in Irish waters, Saccorhiza polyschides, Ulva sp., Laminaria digitata, Fucus serratus and Saccharina latissima, were co-digested individually with bovine slurry. Batch reactors of 120ml and 1000ml were set up and incubated at 35 degrees C to investigate their suitability for production of biogas. Digesters fed with S. latissima produced the maximum methane yield (335 ml g volatile solids(-1) (g(VS)(-1) followed by S. polyschides with 255 ml g(VS)(-1). L. digitata produced 246ml g(VS)(-1) and the lowest yields were from the green seaweed Ulva sp. 191ml g(VS)(-1). The methane and CO2 percentages ranged between 50-72% and 10-45%, respectively. The results demonstrated that the seaweed species investigated are good feedstocks candidates for the production of biogas and methane as a source of energy. Their use on a large-scale process will require further investigation to increase yields and reduce production costs.

  5. Production of Biogas from wastes Blended with CowDung for Electricity generation-A Case study

    Science.gov (United States)

    Muthu, D.; Venkatasubramanian, C.; Ramakrishnan, K.; Sasidhar, Jaladanki

    2017-07-01

    The country’s production of solid waste generation is piling up year after year and the generation of Bio-Gas finds a fruitful solution to overcome this problem. This technology can contribute to energy conservation if the economic viability and social acceptance of this technology are favorable. Our campus has a number of hostel buildings which generates large quantum of kitchen waste and sewage per day. This research will have process ofcarrying out survey, characterization of kitchen waste from several kitchens & Canteens and knowing the potential for biogas production. The waste generated from kitchen and sewage from the hostels is given as feedstock to produce 600 m3 of biogas per day with cow dung as byproduct. The methane gas generated from Biogas is purified and this is used for power generation. Two biogas engine generators of 30 kVA and 50 kVA were installed. This power is used for backup power for girl’s hostel lighting load. From this study it is concluded that the generation of Biogas production and its usage for power production is the best option to handle these large quantum of sewage, kitchen waste generated from various buildings and also treated effluent from biogas plant and the biomass generated is a wealth for doing agriculture for any community ultimately it protects the environment.

  6. Potential of biogas and methane production from anaerobic digestion of poultry slaughterhouse effluent

    Directory of Open Access Journals (Sweden)

    Natália da Silva Sunada

    2012-11-01

    Full Text Available The objective of this study was to evaluate the efficiency of anaerobic digestion on the treatment of effluent from poultry slaughterhouse. The experiment was conducted at the Laboratory of Waste Recycling from Animal Production/FCA/UFGD. During four weeks, eight experimental digesters, semi-continuous models, were loaded and set according to the hydraulic retention time (HRT of 7, 14, 21 and 28 days, and according to the solid fraction treatment, separated with 1 mm sieve or without separation. The average weekly production of biogas and methane as well as the methane concentrations, the potential production per amount of chemical oxygen demand (COD added and reduced, the concentrations of N, P and K at the beginning and end of process, and the most likely numbers of total and thermotolerant coliforms were evaluated. For data analysis, a completely randomized design was performed in a 4 × 2 factorial arrangement (4 HRT: 7, 14, 21 and 28 days and separation with 1 mm sieve or without separation, with repetition over time. The highest production of biogas and methane was statistically significant for the HRT of 7 and 14 days (5.29 and 2.38 L of biogas and 4.28 and 1.73 L of methane, respectively. There was an interaction between HRT and the separation of the solid with sieve and the highest production was obtained in the treatment without separation. Similar behavior was observed for the potential production with a maximum of 0.41 m³ methane.kg-1 COD added with an HRT of 7 days without separation of the solid fraction. The separation of the solid fraction is not recommended in the pretreatment of liquid effluent from poultry slaughterhouse, once the potential for production and production of methane and biogas were reduced with this treatment.

  7. Solar energy project and biogas for animal feed production and jelly; Projeto de energia solar e biogas para producao de racao animal e geleia

    Energy Technology Data Exchange (ETDEWEB)

    Moura, J.P. de; Selvam, P V.P.; Silva, R.T. da , [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia Quimica

    2006-07-01

    This paper presents a study for utilization of surplus of horticulture industry for the production of jam and sweet from the fruit pulp and the manufacture of animal feed, organic fertilizer and biogas from the waste of this production. It also presents the equipment development of low-cost construction and operation that enables high energy efficiency (without heat loss) and can then be traded with greater advantage over other products on the market.

  8. Process for increased biogas production and energy efficient hygienisation of sludge; Process foer oekad biogasproduktion och energieffektiv hygienisering av slam

    Energy Technology Data Exchange (ETDEWEB)

    Rogstrand, Gustav; Olsson, Henrik; Andersson Chan, Anneli; Johansson, Niklas; Edstroem, Mats

    2012-07-01

    In Sweden there is a need to increase biogas production to meet the rising demand for biomethane as vehicle fuel but the amount of domestically available biomass to digest is limited. One way to help meet current and future demand for methane is to enhance the digestion of the substrates that are currently utilized. Vaexjoe municipality in southern Sweden is in the process of upgrading their facilities for biogas production at the Sundet waste water treatment plant. Their aim is to produce more biogas in order to meet the demand from an increasing methane-based local transit fleet. This is the backdrop to a joint project between JTI and Vaexjoe municipality where JTI's mobile pilot plant was used to study the possibility of extracting more biogas from the existing sewage sludge. In the future, Vaexjoe municipality also plans to co-digest source separated municipal organics with the sewage sludge, which will likely result in stricter demands in terms of hygienization of all utilized substrates. The goal of the project at hand was to demonstrate the possibility to produce more than enough additional biogas from existing sewage sludge to yield a net energy profit even with the added energy demand of ensuring the hygienic quality of the digestate through conventional pasteurization. Although the project was focused on the conditions at Sundet waste water treatment plant, the issues dealt with are general and the results are relevant to many waste water treatment plants in Sweden. The research, conducted between June 2011 and January 2012 were divided into two trials. The two trials, described schematically in Figure 1, represented two possible process configurations designed to reach the goal stated above. The key component of both process configurations is the addition of a post-digestion step to the existing single-step digestion process. In trial 1 the additional feature of dewatering between the two digestion steps served to reduce energy demand for

  9. Enhancing biogas production from vinasse in sugarcane biorefineries: Effects of urea and trace elements supplementation on process performance and stability.

    Science.gov (United States)

    Janke, Leandro; Leite, Athaydes F; Batista, Karla; Silva, Witan; Nikolausz, Marcell; Nelles, Michael; Stinner, Walter

    2016-10-01

    In this study, the effects of nitrogen, phosphate and trace elements supplementation were investigated in a semi-continuously operated upflow anaerobic sludge blanket system to enhance process stability and biogas production from sugarcane vinasse. Phosphate in form of KH2PO4 induced volatile fatty acids accumulation possibly due to potassium inhibition of the methanogenesis. Although nitrogen in form of urea increased the reactor's alkalinity, the process was overloaded with an organic loading rate of 6.1gCODL(-1)d(-1) and a hydraulic retention time of 3.6days. However, by supplementing urea and trace elements a stable operation even at an organic loading rate of 9.6gCODL(-1)d(-1) and a hydraulic retention time of 2.5days was possible, resulting in 79% higher methane production rate with a stable specific methane production of 239mLgCOD(-1). Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The costs of agricultural biogas production - a summary from the economic and technical viewpoint

    International Nuclear Information System (INIS)

    Weber, W.; Hutter, J.

    1993-01-01

    If biogas plants are to become economically efficient, capital investment must be drastically lowered and gas production per unit of substrate distinctly increased. Usually it is not possible to lower capital investment. A greater gas yield can be achieved by means of cofermentation, i.e., admixture of readily degradable organic substances, for instance, from the food industry. This permits improving economic efficiency also by raising fees for disposal. It must be taken into account, however, that scientific research into this field is still in its infancy and that problems might arise from pollutants contained in additives. It is true that biogas plants improve the fertiliser value and abate the smell of manure. In no case, however, do these advantages balance the costs of a plant and, what is more, they can be achieved by other, less expensive, means. A business that rashly invests capital into the construction of a biogas plant can seriously endanger its stability and liquidity and cripple its development potential for a long time. On the other hand, a frequent consequence of lower capital investment are higher expenses for maintenance and repair and a greater work load. The most important prerequisites for the construction and successful operation of a biogas plant are comprehensive and thorough planning and precise calculations. (orig./EF) [de

  11. Generation of biogas using crude glycerin from biodiesel production as a supplement to cattle slurry

    Energy Technology Data Exchange (ETDEWEB)

    Robra, S.; Neto, J. A. Almeida [Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Rod. Ilheus/Itabuna km 16 s/n, CEP 45662-000 Ilheus, Bahia (Brazil); Serpa da Cruz, R.; de Oliveira, A.M.; Santos, J.V. [Departamento de Ciencias Exatas e Tecnologicas, Universidade Estadual de Santa Cruz, Rod. Ilheus/Itabuna km 16 s/n, CEP 45662-000 Ilheus, Bahia (Brazil)

    2010-09-15

    The influence of crude glycerin on biogas production and methane content of the produced biogas was studied, when added to cattle slurry. The experimental design consisted of 5% wt (Gli 5), 10% wt (Gli 10), and 15% wt (Gli 15) of crude glycerin added to cattle slurry, and one control digester without addition of crude glycerin. Anaerobic digestion was carried out in 4 laboratory size CSTR-type biogas digesters with a working volume of 3 L, in semi-continuous regime at mesophilic conditions, over a period of 10 weeks. The highest biogas yields (825.3 mL g{sup -1} and 825.7 mL g{sup -1}, respectively) relative to mass of volatile compounds added, were produced by the treatments Gli 5 and Gli 10. The control treatment produced 268.6 mL g{sup -1}, whereas the treatment Gli 15 produced 387.9 mL g{sup -1}. This low value was due to the breakdown of the process. Compared to the control, methane contents was increased by 9.5%, 14.3%, and 14.6%, respectively, for the treatments Gli 5, Gli 10, and Gli 15. (author)

  12. Biogas production from oil palm empty fruit bunches of post mushroom cultivation media

    Science.gov (United States)

    Purnomo, Agus; Suprihatin; Romli, M.; Hasanudin, Udin

    2018-03-01

    The Empty fruit bunches are one of the palm oil industry wastes, which can be used for mushroom cultivation. Post-cultivation of mushroom from former EFB-mushroom media (EFBMM) has the potential to be processed into biogas. The purpose of this research was to examine optimum co-digestion conditions for biogas production of EFBMM.The research was carried out in an anaerobic digester with three different conditions - dry fermentation (Water content (WC)/Total Solid (TS) ratio 1.5 - 3.5), semi-wet fermentation (WC/TS ratio = 4.0 - 5.7) and wet fermentation (WC/TS ratio> 9.0) conditions. Digester of capacity 50L was used. Fermentation was done using 20% cow feces as inoculum which then added with circulation system for 70 days. The results showed that optimum biogas production were produced in semi-wet fermentation conditions (WC/TS ratio = 4). It was produced 37.462 liters (2.420 liters CH4/Kg Volatile Solid (VS)) of biogas with methane contain about 26.231%. Total volume of inoculum during process was 19.6 liters (1: 4 w/v) with absorbed TS inoculum ratio, TS/I = 0.4 (1:2.5 w/v). The result of research also showed that biogas which was produced from control about 2.865 liters (0.041 liters CH4/KgVS), with TS absorbed inoculum ratio, TS/I = 0.5 (1: 5w/v).

  13. A novel one-stage cultivation/fermentation strategy for improved biogas production with microalgal biomass.

    Science.gov (United States)

    Klassen, Viktor; Blifernez-Klassen, Olga; Hoekzema, Yoep; Mussgnug, Jan H; Kruse, Olaf

    2015-12-10

    The use of alga biomass for biogas generation has been studied for over fifty years but until today, several distinct features, like inefficient degradation and low C/N ratios, limit the applicability of algal biomass for biogas production in larger scale. In this work we investigated a novel, one-stage combined cultivation/fermentation strategy including inherently progressing nitrogen starvation conditions to generate improved microalgal biomass substrates. For this strategy, comparable low amounts of nitrogen fertilizers were applied during cultivation and no additional enzymatic, chemical or physical pretreatments had to be performed. The results of this study demonstrate that progressing nitrogen limitation leads to continuously increasing C/N ratios of the biomass up to levels of 24-26 for all three tested alga strains (Chlamydomonas reinhardtii, Parachlorella kessleri and Scenedesmus obliquus). Importantly, the degradation efficiency of the algal cells increased with progressing starvation, leading to strain-specific cell disintegration efficiencies of 35%-100% during the fermentation process. Nitrogen limitation treatment resulted in a 65% increase of biogas yields for C. reinhardtii biomass (max. 698±23mL biogas g(-1) VS) when compared to replete conditions. For P. kessleri and S. obliquus, yields increased by 94% and 106% (max. 706±39mL and 586±36mL biogas g(-1) VS, respectively). From these results we conclude that this novel one-stage cultivation strategy with inherent nitrogen limitation can be used as a pretreatment for microalgal biomass generation, in order to produce accessible substrates with optimized C/N ratios for the subsequent anaerobic fermentation process, thus increasing methane production and avoiding the risk of ammonia inhibition effects within the fermenter. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The Production of Sewage Biogas and its Use for Energy Generation

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Suani Teixeira; Velazquez, Silvia Maria Stortini Gonzalez; Silva, Orlando Cristiano; Pecora, Vanessa; Abreu, Fernando Castro [Univ. de Sao Paulo (Brazil). IEE/CENBIO - Brazilian National Biomass Reference Center

    2006-07-15

    The project proposal of sewage use to produce biogas as fuel to generate electric energy is a commitment of CENBIO (Brazilian National Biomass Reference Center). It is one between others projects developed by Sao Paulo University Program named PUREFA (Program of Rational Energy Use and Alternative Sources), which aims to increase the renewable energy participation in University's energetic matrix, as well as it allows new perspectives to renewable energy employment in Brazil. In this context, this abstract presents a pilot project for biogas conversion in Brazil. The project aims to increase the biogas conversion efficiency, by using it as fuel to produce electricity. The biogas is generated in the University campus, in a Up-flow Anaerobic Sludge Blanket biodigestor, fed in this project, with liquid effluents provided by residential buildings, located in the University, presenting a mass flow rate equivalent to 3 m{sup 3}/h.This project is under development and the results will provide information about biodigestor's operational conditions, defining appropriate areas where it could be applicable. The most important environmental contribution associated to this project is the mitigation of greenhouse gases emissions, especially verified trough methane conversion in carbon dioxide, which presents a dangerous level around twenty times lower than methane.

  15. Start-up of a multi-stage system for biogas production and solid waste treatment in low-tech countries.

    Science.gov (United States)

    Biey, E M; Musibono, E D; Verstraete, W

    2003-01-01

    Vegetable fruit garden wastes were treated anaerobically using a multistage Dranco system. The digesters were composed of three 50 L vessels kept in mesophilic conditions. They were operating at 14.5-17% TS. By controlling the pH in the system, the start-up for biogas production was shortened to 60 days. The pH correction was a buffering which enhanced methanogenic activity in the digesters. With a loading rate of 4.1 kg VS/m3 reactor/day, the production of biogas was 5 m3/m3 reactor/ day, and 60-70% methane content. This allowed making a multisystem by starting every 3 weeks with new vessels in order to maintain biogas production, to be used in industries or in local communities in low-tech countries. The designed model was started in Kinshasa (Congo) where a project is expected to treat one ton of solid waste on a daily basis, for a production of 100 m3 biogas. This cost effectiveness of the system is demonstrated and presents the opportunity for biowaste treatment coupled with environmental protection and substantial energy recovery.

  16. Choosing co-substrates to supplement biogas production from animal slurry - A life cycle assessment of the environmental consequences

    DEFF Research Database (Denmark)

    Croxatto Vega, Giovanna Catalina; Ten Hoeve, Marieke; Birkved, Morten

    2014-01-01

    Biogas production from animal slurry can provide substantial contributions to reach renewable energy targets, yet due to the low methane potential of slurry, biogas plants depend on the addition of co-substrates to make operations profitable. The environmental performance of three underexploited co......-substrates, straw, organic household waste and the solid fraction of separated slurry, were assessed against slurry management without biogas production, using LCA methodology. The analysis showed straw, which would have been left on arable fields, to be an environmentally superior co-substrate. Due to its low...

  17. Comparative study of the optimal ratio of biogas production from various organic wastes and weeds for digester/restarted digester

    Directory of Open Access Journals (Sweden)

    Ugochukwu C. Okonkwo

    2018-04-01

    Full Text Available This study carried out a comparative analysis of the rates of production of biogas from various organic wastes and weeds which enabled the determination of optimal ratio of poultry droppings to domestic wastes. Digester was prepared for the anaerobic fermentation of the domestic wastes and weeds. The gas production did not begin until the 7th day and increased steadily at first, and then increased sharply until it reached its peak on the 18th day before declining. The total gas produced within the 22 days of experimentation was 1771 cm3. The maximum volume of gas amounting to 809 cm3 was produced by the sample containing 50% poultry dropping and 50% weeds. This indicates that this sample possesses the best C/N ratio of all the samples prepared. For restarted digester, gas production began on the 2nd day as against the 7th day with no restarted digester and the gas production peaked earlier. Keywords: Digester, Optimal ratio, Biogas production, Organic wastes, C/N ratio

  18. Design and simulation of rate-based CO2 capture processes using carbonic anhydrase (CA) applied to biogas

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gaspar, Jozsef; Jacobsen, Bjartur

    2017-01-01

    Today the mix of the energy sector is changing from reduction of CO2 emission from fossil fueled power industry into a general focus on renewable industry which is emitting less greenhouse gases. Renewable fuels like biomass for electricity production or biogas for bio-methane production have a p...

  19. Effects of enzymatic hydrolysis and ultrasounds pretreatments on corn cob and vine trimming shoots for biogas production.

    Science.gov (United States)

    Pérez-Rodríguez, N; García-Bernet, D; Domínguez, J M

    2016-12-01

    Due to their lignocellulosic nature, corn cob and vine trimming shoots (VTS) could be valorized by anaerobic digestion for biogas production. To enhance the digestibility of substrates, pretreatments of lignocellulosic materials are recommended. The effect of enzymatic hydrolysis, ultrasounds pretreatments (US) and the combination of both was assayed in lignocellulosic composition, methane, and biogas yields. The pretreatments leaded to a reduction in lignin and an increase in neutral detergent soluble compounds making corn cob and VTS more amendable for biogas conversion. The US were negative for biogas production from both substrates and in particular strongly detrimental for VTS. On the opposite side, the enzymatic hydrolysis was certainly beneficial increasing 59.8% and 14.6% the methane production from VTS and corn cob, respectively. The prior application of US did not potentiate (or not sufficiently) the improvement in the methane production reflected by the enzymatic hydrolysis pretreatment of VTS and corn cob. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effects of Mesophilic and Thermophilic Temperature Condition to Biogas Production (Methane from Palm Oil Mill Effluent (POME with Cow Manures

    Directory of Open Access Journals (Sweden)

    Muhammad Fajar Fajar

    2018-01-01

    Full Text Available Biogas is an environmentally friendly renewable energy source. Biogas can be used using Palm Oil Mill Effluents (POME. However, the % yield of biogas productivity is still not optimum due to the low conversion. The biogas productivity can be optimized by adding methanogen bacteria which increase the methane production through the anaerobic fermentation process. This study aims to utilize cow manures as the source of methanogen bacteria in methane production from POME. Furthermore, this study specifically aims to obtain the optimum productivity condition of biogas production by the composition ratio of POME and cow manures to the amount of fermentation time at 35oC and 50oC for mesophilic and thermophilic bacteria, respectively. The ratio of POME and cow mature were A1 (100:0, A2 (80:20, A3 (70:30, A4 (60:40, and A5 (0:100. The highest yield of biogas production was A2 ratio using the thermophilic condition which showed 51.33% mol with the total solid decline of 73.43%, COD removal of 77.01%, and BOD removal of 70.02%.

  1. Investment in biogas for energy purposes to promote cleaner production

    International Nuclear Information System (INIS)

    Bericiarto Pérez, Frank Abel; Poma García, Yaily; Guzmán Chinea, Jesús; García Lorenzo, Dunia; Mata Varela, Milagros de la Caridad

    2015-01-01

    In Cuba, by the characteristics of a developing country characteristics, formulation and evaluation of projects is a critical task, since the decision to invest means sacrificing the opportunity to meet current needs for different and long-term alternatives. The assessment prior to the execution of a project is proposed as the aim of the present study, as a crucial task that contributes to amendments or self-definition. The results should be directed to the analysis of development trends in the energy environment which indicates the increase of the contribution of renewable energy sources as a viable to meet global demand for energy efficient and sustainable way. For that reason, it has encouraged the use of biogas as the most important fuel of the future, since the materials required for processing and construction of the necessary facilities are within reach of many first-world economies as countries developmental. History: Specific methods of pollution trends in the province; Description: Evaluation of investment within the life cycle of the investment project. Techniques and instruments: Direct observation; Structured surveys and use of specialized software: Excel, QSB, Statgraphics. The research is justified and concludes that the project Swine Genetics UEB Cienfuegos achieved energy independence, as well as sales to 13.7 MW annual energy electro National System (SEN). (full text)

  2. Biogas from sanitary landfills for electricity production; Biogas de rellenos sanitarios para produccion de electricidad

    Energy Technology Data Exchange (ETDEWEB)

    Arvizu F, Jose L; Huacuz V, Jorge M. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    There are many ways to eliminate the municipal solid wastes, but only a few help to treat them and to dispose of them suitably. Some of the forms to avoid the problems that the trash originate are: not to produce it, recycling it in a 100% or creating a fictitious market where its value is equal to or greater than the product that gave origin to it; in any case, these alternatives are not absolutely practical. The trash can be incinerated, be segregated, be recycled partially or also be arranged in sanitary landfills. Anyway, the trash has always existed and it will continue existing for sure. [Spanish] Existen muchas maneras de eliminar los residuos solidos municipales, pero solo unas pocas ayudan a tratarlos y disponerlos adecuadamente. Algunas de las formas para evitar los problemas que ocasiona la basura son: no produciendola, reciclandola en un 100% o creando un mercado ficticio donde su valor sea igual o mayor al del producto que le dio origen; en cualquier caso, estas alternativas no son del todo practicas. La basura tambien se puede incinerar, segregar, reciclar parcialmente o disponer en rellenos sanitarios. De cualquier manera, la basura siempre ha existido y seguramente seguira existiendo.

  3. Impacts of Biogas Production on the Production Factors Land and Labour – Current Effects, Possible Consequences and Further Research Needs

    Directory of Open Access Journals (Sweden)

    Carsten H. Emmann

    2013-03-01

    Full Text Available Among the members of the European Union (EU, Germany has the largest biogas produc-tion from agricultural sources. However, many other EU member states are creating the necessary conditions for rapid growth in this area. The German Renewable Energy Sources Act (EEG, which sets payments over a long time period for electricity supplied from renewa-ble sources, often serves as a benchmark. However, the continuing biogas boom has also led to criticism of the EEG in Germany. Opponents of biogas production point to the rising cost of leasing land, changes in the agricultural structure due to maize monoculture, increased competition with other agricultural branches (e.g., livestock husbandry and the crowding out of classical food production. This paper examines the validity of these points of criticism. To this end, a written survey (n = 246 of farmers in six selected rural districts in the German state of Lower Saxony was carried out in 2010 and 2011. OLS regressions conducted on the data from these farmers showed that biogas production has led to a substantial increase in land lease prices for cropland. Furthermore, approximately 20% of the respondents report complete crowding out of established agricultural production forms, resulting in a decrease in the resource basis for downstream animal and plant processing industries. The results also indicate that, in extreme cases, such crowding out might even reduce the availability of em-ployment in rural areas. In closing, the paper highlights further research needs in order to provide comprehensive information (for every German state, the entire country of Germany and other EU member states regarding the effects of biogas production on net employment, infrastructure and added value.

  4. New findings on the biogas production from sugar beets; Neue Erkenntnisse zur Biogasproduktion aus Zuckerrueben

    Energy Technology Data Exchange (ETDEWEB)

    Bormann, Hinnerk; Schlaefer, Ottmar; Sievers, Michael [CUTEC-Institut GmbH, Clausthal-Zellerfeld (Germany); Trommler, Marcus; Postel, Jan [Deutsches Biomasseforschungszentrum (DBFZ) gemeinnuetzige GmbH, Leipzig (Germany); Felde, Andreas von; Harling, Hinrich; Rother, Beate [KWS Saat AG, Einbeck (Germany); Franke, Henning; Tkocz, Lisa [INPUT Ingenieure GmbH, Sehnde (Germany)

    2013-10-01

    Main purpose of the project is the process improvement to acquire the full potential of sugar beet based biomethane production. This covers the optimization of breeding and cultivation, as well as improvements of the overall logistic and production process. The project results show that breeding of regional adapted sugar beets can lead to higher yields in cultivation as well as technical enhancements within the biogas production chain can lower the production costs. Both approaches are part of an overall optimization of sugar beets for biomethane production. Project findings indicate a competitive position in comparison to biomethane based on different agricultural feedstock. (orig.)

  5. PRODUCTION, ECONOMIC AND ENVIRONMENTAL EFFECTS OF AGRICULTURAL BIOGAS PLANT IN KOSTKOWICE

    Directory of Open Access Journals (Sweden)

    Karol Węglarzy

    2017-06-01

    Full Text Available This paper presents the economic and ecological effect of Kostkowice Agricultural biogas plant based on a four year study carried out on the prototype installation. Agricultural biogas plant is part of the nature of the research conducted for twenty years at the National Research Institute of Animal PIB Experimental Station. Prof. Mieczyslaw Czaja relates to various aspects of environmental protection. It describes the economic justification for the production of energy from waste biomass (manure, slurry, wastes from feeding table, by the characteristics of substrates and products. It was found that agricultural biogas plant in rural areas are an important link in energy security, mainly due to the very high availability. Ecological effect is presented as effect of the installation solutions for the reduction of pollution of water, soil and air. Reducing greenhouse gas emissions through the recycling of environmentally harmful by-products of animal production of electricity and thermal energy, which is a substitute for environmentally harmful fossil fuels. The advantage of substances digestate is odorless, which is important both in an effort to improve the work culture in agriculture and improving living conditions in rural communities and it is an indisputable argument for the use of biomass for energy purposes.

  6. Enhancing biogas production of corn stover by fast pyrolysis pretreatment.

    Science.gov (United States)

    Wang, Fang; Zhang, Deli; Wu, Houkai; Yi, Weiming; Fu, Peng; Li, Yongjun; Li, Zhihe

    2016-10-01

    A new thermo-chemical pretreatment by a lower temperature fast pyrolysis (LTFP) was applied to promote anaerobic digestion (AD) efficiency of corn stover (CS). The pretreatment experiment was performed by a fluidized bed pyrolysis reactor at 180, 200 and 220°C with a carrier gas flow rate of 4 and 3m(3)/h. The components characteristics, Scanning Electron Microscope (SEM) images and Crystal Intensity (CrI) of the pretreated CS were tested to explore effectiveness of the pretreatment. The results showed that the cumulative methane production at 180°C for 4 and 3m(3)/h were 199.8 and 200.3mL/g TS, respectively. As compared to the untreated CS, the LTFP pretreatment significantly (a<0.05) increased the methane production by 18.07% and 18.33%, respectively. Methane production was well fitted by the Gompertz models, and the maximum methane potential and AD efficiency was obtained at 180°C for 3m(3)/h. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Biodegradation of lignocellulosics residues generated in banana cultivation and its valorization for the production of biogas; Biodegradacao de residuos lignocelulosicos gerados na bananicultura e sua valorizacao para a producao de biogas

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Ozair; Coelho, Bruna; Wagner, Theodoro M. [Universidade da Regiao de Joinville (DEQ/UNIVILLE), Joinville, SC (Brazil). Dept. de Engenharia Quimica], emails: osouza@univille.br, bruna.coelho@ibest.com.br, theowag@terra.com.br; Federizzi, Mauri; Wisbeck, Elisabeth [Universidade da Regiao de Joinville (DEQ/UNIVILLE), Joinville, SC (Brazil)], emails: mauriengambi@hotmail.com, ewisbeck@univille.br

    2010-07-01

    This study aimed to evaluate the capability of using lignocellulosics residues from banana cultivation as a fermentation substrate of the methanization process. The following Musa cavendischii residues were evaluated: bananas peels, stalk, leaves and the pseudo stem. The fermentation studies were developed at 30 deg C and ph 7.2 with different working volumes in Erlenmeyers flasks, plastic bottles and bioreactor bench. The ideal composition of the methanization substrate was set containing: 50% (w/w) of peels, 25% of leaves and 25% of pseudo stem. The stalk, presenting a lower rate of biodegradation in comparison to other biomass, was not recommended for the methanization together with such residues. The acid hydrolysis advance of the substrate was detrimental to the production of biogas. In addition to making possible the production of H{sub 2}S in biogas generated, it inhibited the formation of CH{sub 4}. The maximum yield of biogas, obtained in biodigestor bench of employing substrate in nature, was 244 L{sub CNTP} kg{sup -1}ST with 66.8% v{sup -1}v of CH{sub 4}. (author)

  8. In-situ biogas upgrading in thermophilic granular UASB reactor: key factors affecting the hydrogen mass transfer rate.

    Science.gov (United States)

    Bassani, Ilaria; Kougias, Panagiotis G; Angelidaki, Irini

    2016-12-01

    Biological biogas upgrading coupling CO 2 with external H 2 to form biomethane opens new avenues for sustainable biofuel production. For developing this technology, efficient H 2 to liquid transfer is fundamental. This study proposes an innovative setup for in-situ biogas upgrading converting the CO 2 in the biogas into CH 4 , via hydrogenotrophic methanogenesis. The setup consisted of a granular reactor connected to a separate chamber, where H 2 was injected. Different packing materials (rashig rings and alumina ceramic sponge) were tested to increase gas-liquid mass transfer. This aspect was optimized by liquid and gas recirculation and chamber configuration. It was shown that by distributing H 2 through a metallic diffuser followed by ceramic sponge in a separate chamber, having a volume of 25% of the reactor, and by applying a mild gas recirculation, CO 2 content in the biogas dropped from 42 to 10% and the final biogas was upgraded from 58 to 82% CH 4 content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Prospective of biogas production in the Mexican agroindustry : the traditional tortilla manufacturing sector

    OpenAIRE

    Soria Baledón, Mónica

    2011-01-01

    This thesis presents an assessment of the availability and quality of biomass from the wastewaters in a traditional corn mill in Mexico City for biogas production. To date, these wastewaters (called nejayote) are discharged untreated to the sewer with a chemical composition that surpasses the maximum permissible levels of pollutants established in the Official Mexican Standards (NOMs). From the study case four scenarios were proposed to tackle this problem: 1) separate the suspended solids (S...

  10. Effect of alkaline microwaving pretreatment on anaerobic digestion and biogas production of swine manure

    OpenAIRE

    Tao Yu; Yihuan Deng; Hongyu Liu; Chunping Yang; Bingwen Wu; Guangming Zeng; Li Lu; Fumitake Nishimura

    2017-01-01

    Microwave assisted with alkaline (MW-A) condition was applied in the pretreatment of swine manure, and the effect of the pretreatment on anaerobic treatment and biogas production was evaluated in this study. The two main microwaving (MW) parameters, microwaving power and reaction time, were optimized for the pretreatment. Response surface methodology (RSM) was used to investigate the effect of alkaline microwaving process for manure pretreatment at various values of pH and energy input. Resul...

  11. Influence of the seasonal variation of environmental conditions on biogas upgrading in an outdoors pilot scale high rate algal pond.

    Science.gov (United States)

    Marín, David; Posadas, Esther; Cano, Patricia; Pérez, Víctor; Lebrero, Raquel; Muñoz, Raúl

    2018-05-01

    The influence of the daily and seasonal variations of environmental conditions on the quality of the upgraded biogas was evaluated in an outdoors pilot scale high rate algal pond (HRAP) interconnected to an external absorption column (AC) via a conical settler. The high alkalinity in the cultivation broth resulted in a constant biomethane composition during the day regardless of the monitored month, while the high algal-bacterial activity during spring and summer boosted a superior biomethane quality. CO 2 concentrations in the upgraded biogas ranged from 0.1% in May to 11.6% in December, while a complete H 2 S removal was always achieved regardless of the month. A limited N 2 and O 2 stripping from the scrubbing cultivation broth was recorded in the upgraded biogas at a recycling liquid/biogas ratio in the AC of 1. Finally, CH 4 concentration in the upgraded biogas ranged from 85.6% in December to 99.6% in August. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Maximizing the Production of Biogas in an Instructional Manipulative Designed to Teach Energy Concepts to High School Students

    Science.gov (United States)

    McCall, Shakira Renee

    In an effort to stress the benefits of the application of renewable energy to the next generation of science, technology, engineering, arts, and mathematics (STEAM) professionals, instructional modules on energy and biogas were integrated into a summer camp curriculum that challenged students to apply STEAM concepts in the design and development of chain reaction machines. Each module comprised an interactive presentations and a hands-on component where students operated a manipulative relevant to the content. During summer 2013, this camp was implemented at two high schools in Arizona and one in Trinidad and Tobago. Assessments showed that the overall modules were effective in helping students learn and retain the information presented on energy and biogas production. To improve future implementations of these modules, specifically the module on biogas production, the anaerobic digester was redesigned. In addition, a designed experiment was conducted to determine how to optimize the influent and operational environment that is available in an average high school classroom to generate maximum biogas yield. Eight plug-flow anaerobic digesters made of PVC piping and fixtures were used in a 2x3 factorial design assessing: co-digestion (20mL or 50mL) used cooking oil, temperature (25°C or 40°C), and addition of inoculum (0mL or 200mL). Biogas production was captured at two intervals over a 30-day period, and the experiments were replicated three times. Results showed that temperature at 40°C significantly increased biogas production and should be used over 25°C when using anaerobic digesters. Other factors that may potentially increase biogas production are combination of temperature at 40°C and 50mL of used cooking oil. In the future, the improvements made in the design of the anaerobic digester, and the applications of the finding from the experimental design, are expected to lead to an improved manipulative for teaching students about biogas production.

  13. The impact of German biogas production on European and global agricultural markets, land use and the environment

    International Nuclear Information System (INIS)

    Britz, Wolfgang; Delzeit, Ruth

    2013-01-01

    As part of its climate policy, Germany promotes the production of biogas via its so-called Renewable-Energy-Act (EEG). The resulting boost in biogas output went along with a significant increase in production of green maize, the dominant feedstock. Existing studies of the EEG have analysed its impacts on German agriculture without considering market feedback. We thus expand existing quantitative analysis by also considering impacts on European and global agricultural markets, land use and the environment by combining a detailed location model for biogas plants, the Regionalised Location Information System-Maize (ReSi-M2012), with a global Partial Equilibrium model for agriculture, the Common Agricultural Policy Regional Impact (CAPRI) model. Our results indicate that the German biogas production is large enough to have sizeable impacts on global agricultural markets in prices and quantities, causing significant land use change outside of Germany. While profits in the agricultural sector increase, food consumer face higher prices, and subsidies for biogas production are passed on to electricity consumers. The German biogas program, as long as it is almost entirely based on non-waste feedstocks, is probably not a promising avenue towards a GHG-saving renewable energy production, but a rather expensive one. - Highlights: • Recent changes to that program decrease green maize use but increase land demands. • The program could raise EU prices for cereals by 3%. • Agricultural land use expansion outside of the EU estimated at 1 Mio ha

  14. Biogas Production from Batch Anaerobic Co-Digestion of Night Soil with Food Waste

    Directory of Open Access Journals (Sweden)

    Assadawut Khanto

    2016-01-01

    Full Text Available The objective of this study is to investigate the biogas production from Anaerobic Co-Digestion of Night Soil (NS with Food Waste (FW. The batch experiment was conducted through the NS and FW with a ratio of 70:30 by weight. The experiment is mainly evaluated by the characteristic of Co-Digestion and Biogas Production. In addition of food waste was inflating the COD loading from 17,863 to 42,063 mg/L which is 135 % increased. As the result, it shows that pH has dropped off in the beginning of 7-day during digestion and it was slightly increased into the range of optimum anaerobic condition. After digestion of the biogas production was 2,184 l and 56.5 % of methane fraction has obtained within 31 days of experimentation. The investigation of Biochemical Methane Potential (BMP and Specific Methanogenic Activities (SMA were highly observed. And the results were obtained by 34.55 mL CH4/gCODremoval and 0.38 g CH4-COD/gVSS-d. While the average COD removal from the 4 outlets got 92%, 94%, 94 % and 92 % respectively. However, the effluent in COD concentration was still high and it needs further treatment before discharge.

  15. Production of biogas from organic waste in microreactors operated at two temperatures

    International Nuclear Information System (INIS)

    Murillo Roos, Mariana

    2014-01-01

    The process and the product of anaerobic digestion are evaluated for different proportions of organic substrates, in microreactors operated at thermophilic and mesophilic temperatures with interest to find alternatives that will generate energy from biomass. Small-scale tests are conducted to ensure the proper functioning of biodigesters and optimize operating conditions. The anaerobic digestion process is characterized in three manure mixing ratios: mix of leftovers (100:0,90:10 and 80:20) and two temperatures of work (35 degrees Celsius and 50 degrees Celsius), using a factorial arrangement with 2 replicates per treatment. The mixture is composed of manure, cow dung and scraps of fresh food (fruits and vegetables) and prepared food. The proportions were diluted to 5% total solids. Bottles are the experimental unit used consisting culture medium bottles of 1 liter with 500 mL of mixture. The test has run for 5 hydraulic retention times (HRT) of twenty days each. At this time the pH was evaluated, the daily production of biogas, biogas composition, total solids, volatile and fixed and the content of volatile fatty acids. The values obtained biogas productivity and CH 4 content have been similar to those reported in the literature and indicate that the systems have been successful [es

  16. The production of anaerobic bacteria and biogas from dairy cattle waste in various growth mediums

    Science.gov (United States)

    Hidayati, Y. A.; Kurnani, T. B. A.; Marlina, E. T.; Rahmah, K. N.; Harlia, E.; Joni, I. M.

    2018-02-01

    The growth of anaerobic bacteria except the ruminal fluid quailty is strongly influenced by the media formulations. Previous researchers have set a standard media formulation for anaerobic bacteria from rumen, however the use of standard media formulations require chemicals with high cost. Moreover, other constraint of using standard media formulations is requires large quantities of media for anaerobic bacteria to grow. Therefore, it is necessary to find media with a new culture media formulation. Media used in this research were minimalist media consist of Nutrient Agar (NA), Lactose broth and rumen fluid; enriched media Rumen Fluid-Glucose-Agar (RGCA); and enriched media 98-5. The dairy cattle waste is utilized as source of anaerobic bacteria. The obtained data was analyzed by descriptive approach. The results showed that minimalist media produced anaerobic bacteria 2148 × 104 cfu/ml and biogas production: 1.06% CH4, 9.893% CO2; enriched media Rumen Fluid-Glucose-Agar (RGCA) produced anaerobic bacteria 1848 × 104 cfu/ml and biogas production 4.644% CH4, 9.5356% CO2; enriched media 98-5 produced anaerobic bacteria growth 15400 × 104 cfu/ml and biogas production 0.83% of CH4, 42.2% of CO2. It is conclude that the minimalist media was showed the best performance for the dairy cattle waste as source of anaerobic bacteria.

  17. The influence of different pretreatment methods on biogas production from Jatropha curcas oil cake.

    Science.gov (United States)

    Jabłoński, Sławomir Jan; Kułażyński, Marek; Sikora, Ilona; Łukaszewicz, Marcin

    2017-12-01

    Drought and pest resistance, together with high oil content in its seeds, make Jatropha curcas a good oil source for biodiesel. Oil cake from J. curcas is not suitable for animal feeding and thus may be profitably used for additional energy production by conversion into biogas; however, the anaerobic digestion process must be optimized to obtain good efficiency. We subjected oil cake to thermal and acidic pretreatment to deactivate protease inhibitors and partially hydrolyze phytate. We then digested the samples in batch conditions to determine the effects of pretreatment on biogas production. Thermal pretreatment changed the kinetics of anaerobic digestion and reduced protease inhibitor activity and the concentration of phytate; however, biogas production efficiency was not affected (0.281 m 3  kg -1 ). To evaluate the possibility of recirculating water for SSF hydrolysis, ammonium nitrogen recovery from effluent was evaluated by its precipitation in the form of struvite (magnesium ammonium phosphate).Concentration of ammonium ions was reduced by 53% (to 980 mg L -1 ). We propose a water-saving concept based on percolation of J. curcas cake using anaerobic digestion effluent and feeding that percolate into a methanogenic bioreactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept

    DEFF Research Database (Denmark)

    Kaparaju, Prasad Laxmi-Narasimha; Serrano, Maria; Thomsen, Anne Belinda

    2009-01-01

    fermentation of cellulose yielded 0.41 g-ethanol/g-glucose, while dark fermentation of hydrolysate produced 178.0 ml-H-2/g-sugars. The effluents from both bioethanol and biohydrogen processes were further used to produce methane with the yields of 0.324 and 0.381 m(3)/kg volatile solids (VS)added, respectively....... Additionally, evaluation of six different wheat straw-to-biofuel production scenaria showed that either use of wheat straw for biogas production or multi-fuel production were the energetically most efficient processes compared to production of mono-fuel such as bioethanol when fermenting C6 sugars alone. Thus...

  19. Demonstration of Software Application Biogas Optimizer at the Haendeloe Biogas Site

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Kristofer (Bioprocess Control Sweden AB, Lund (SE))

    2008-04-15

    There is a growing interest in the utilisation of process optimisation technologies within the biogas industry. This trend is being driven by new and growing market opportunities as well as an interest to improve the overall profitability of commercial biogas processes. Biogas Optimizer, developed by Bioprocess Control Sweden AB based in Lund, Sweden, represents one such process optimisation technology, utilising a supervisory and control approach to improve both biogas production efficiency and process stability. A demonstration project was conducted over a nine month period during 2007 at the Haendeloe biogas plant in Norrkoeping, Sweden, owned and operated by Svensk Biogas AB, to provide an indication of the potential of Biogas Optimizer to improve the competitiveness of biogas producers. The demonstration project attempted to satisfy 3 goals, namely; 1) to obtain baseline production information regarding the average Organic Loading Rate (OLR) and average Biogas Production Rate (BPR), 2) to demonstrate that the technology behind Biogas Optimizer works under full-scale production conditions, and 3) to verify that significant/notable production efficiency improvements can be achieved utilising Biogas Optimizer when compared to baseline production information, and that biogas production can be optimised for maximising the utilisation of reactor capacity while still leaving a comfortable safety margin so as to avoid reactor overloading. The collection of baseline production information during three months resulted in an average OLR of 4.0 Kg VS/m3/day and average BPR of 2.6 Nm3/m3/day being selected as baseline data from which to compare the performance of Biogas Optimizer. The full-scale demonstration of Biogas Optimizer was conducted over a 40 day period. During these 40 days, OLR recommendations from Biogas Optimizer, and the resulting manual adjustment of the OLR by the plant operator, resulted in an increase in the average OLR from 4.0 to 4.7 Kg/m3/day and

  20. Enhancing wastewater degradation and biogas production by intermittent operation of UASB reactors

    International Nuclear Information System (INIS)

    Nadais, Helena; Barbosa, Marta; Capela, Isabel; Arroja, Luis; Ramos, Christian G.; Grilo, Andre; Sousa, Silvia A.; Leitao, Jorge H.

    2011-01-01

    The present work establishes intermittent operation of UASB reactors as a novel form of enhancing the anaerobic degradation of complex wastewaters and its conversion to usable biogas. Results show that the average methane production rate is 25% higher with the intermittent operation than with the continuous mode, meaning that it could produce 25% more electricity or heat. The methanization efficiency obtained in intermittent UASB reactors is around 20% higher than in the continuous systems, confirming a higher biological degradation of the substrates. It has been suggested that intermittent operation causes a forced adaptation of the biomass towards the degradation of complex substrates and results from morphological analyses of the biomass developed in intermittent and continuous UASB reactors showed marked differences between them. In order to gain a deeper knowledge on how microbial populations are affected by these operational parameters, a strategy involving the amplification, cloning, and analysis of the nucleotide sequences of genes encoding the 16S ribosomal RNA was undertaken and is described in this work. This strategy allowed the identification of a total of 49 different sequences. Results from the molecular characterization of the microbial populations are consistent with the higher methanization efficiency of the intermittent mode of operation.

  1. Microbial community dynamics and biogas production from manure fractions in sludge bed anaerobic digestion.

    Science.gov (United States)

    Nordgård, A S R; Bergland, W H; Bakke, R; Vadstein, O; Østgaard, K; Bakke, I

    2015-12-01

    To elucidate how granular sludge inoculum and particle-rich organic loading affect the structure of the microbial communities and process performance in upflow anaerobic sludge bed (UASB) reactors. We investigated four reactors run on dairy manure filtrate and four on pig manure supernatant for three months achieving similar methane yields. The reactors fed with less particle rich pig manure stabilized faster and had highest capacity. Microbial community dynamics analysed by a PCR/denaturing gradient gel electrophoresis approach showed that influent was a major determinant for the composition of the reactor communities. Comparisons of pre- and non-adapted inoculum in the reactors run on pig manure supernatant showed that the community structure of the nonadapted inoculum adapted in approximately two months. Microbiota variance partitioning analysis revealed that running time, organic loading rate and inoculum together explained 26 and 31% of the variance in bacterial and archaeal communities respectively. The microbial communities of UASBs adapted to the reactor conditions in treatment of particle rich manure fractions, obtaining high capacity, especially on pig manure supernatant. These findings provide relevant insight into the microbial community dynamics in startup and operation of sludge bed reactors for methane production from slurry fractions, a major potential source of biogas. © 2015 The Society for Applied Microbiology.

  2. Cost-effective production of biogas from manure – retrogas project

    DEFF Research Database (Denmark)

    Jurado, Esperanza; Gavala, Hariklia N.; Rohold, Lars

    2010-01-01

    , this is the main reason for the poor economic performance of biogas plants in Denmark. The idea of increasing the methane productivity of the manure has triggered the development of new separation technologies for being applied before the anaerobic digestion of the swine manure. Thus, the solid and liquid...... at the development of new separation and liquefaction technology in order to make the anaerobic digestion of swine manure cost efficient and viable.......Transport of large quantities of low concentrated swine manure (total solids around 5-7%) to biogas plants represents a significant proportion of the operating costs for co-digestion plants. Together with the increment of the prices of the industrial effluents that are used for codigestion...

  3. Design of laboratory cyclone separator for biogas purification

    Directory of Open Access Journals (Sweden)

    Marián Fodora

    2013-01-01

    Full Text Available This article deals with calculation of a cyclone separator for biogas purification using physical and chemical methods. There is presented a methodology for determination of operating dimensions of the cyclone separator and description of principal features of the cyclone separator model. Calculations have been performed for the diameter of the cylindrical part of cyclone separator 175 mm and for the biogas volume flow rate 6.9∙10−5 m3∙s−1. The calculations can be used in practice for the design of cyclone separator depending on the flow rate of biogas, size of the biogas plants respectively. The developed cyclone separator has been used for the cleaning of biogas in operating conditions at the biogas plant in Kolinany (Slovakia. The presented method of biogas purification has been used for the removing of hydrogen sulphide, particulate matter and carbon dioxide from the raw biogas at the biogas plant. Removal of these undesirable impurities from the biogas is an important step in the production of a fully valued fuel, biomethane.

  4. The effects of microorganism on coffee pulp pretreatment as a source of biogas production

    Directory of Open Access Journals (Sweden)

    Juliastuti Sri Rachmania

    2018-01-01

    Full Text Available Coffee pulp waste composition consist of cellulose, hemicellulose, lignin, pectin and caffeine, tannin, and polyphenol as inhibitor substance. The high cellulose compound in coffee pulp can be used for alternative raw materials in the manufacture of biogas. This study aims to define the composition of the mixture of microorganisms of Pseudomonas putida, Trichoderma harzianum, and Aspergillus niger that are best to use in coffee pulp pretreatment to degrade inhibitor substance. The best result of pretreatment will be applied to biogas production. The first step is to do a pretreatment of the coffee pulp with variable Pseudomonas putida : Trichoderma harzianum : Aspergillus niger with a ratio of 1:1:1, 1:2:1, 1:1:2, 1:2:2, 2:1:1, 2:1:2, 2:1:1 (v:v:v, then variables that are most excellent in degrading inhibitor substance are selected. The second step, is doing anaerobic fermentation for 20 days at mesophilic temperature (30-40°C on a reactor working volume of 4.5 L. In the making of biogas, a varied starter as much as 10% of the total are put into the reactor in the form of a mixture of cow dung : rumen fluid with a ratio of 1:0, 0:1, 1:1, 1:2, 2:1 (w/v. The parameters measured include the decreasing of the inhibitor substance, Chemical Oxygen Demand (COD, biogas (CH4 and CO2 and calorific value of combustion (Heating value. This study results a composition of ingredients within the pretreatment process which includes a mixture of microorganisms with a ratio of Pseudomonas putida : Trichoderma harzianum : Aspergillus niger is 1:2:1 (v:v:v. For biogas, a mixture of cow dung and rumen fluid can produce higher methane gas is the ratio of cow dung : rumen fluid is 1:2 (w/v with the concentration of methane (CH4 formed at 1.825%. At the concentration of methane is 1.825%, the heating value obtained is 76.032 kcal/kg with volume biogas 0.0032 m3/ kg converted of COD.

  5. High-Calorific Biogas Production by Selective CO2 Retention at Autogenerated Biogas Pressures up to 20 Bar

    NARCIS (Netherlands)

    Lindeboom, R.E.F.; Weijma, J.; Lier, van J.B.

    2012-01-01

    Autogenerative high pressure digestion (AHED) is a novel configuration of anaerobic digestion, in which micro-organisms produce autogenerated biogas pressures up to 90 bar with >90% CH4-content in a single step reactor. The less than 10% CO2-content was postulated to be resulting from

  6. Modeling the performance of the anaerobic phased solids digester system for biogas energy production

    International Nuclear Information System (INIS)

    Rapport, Joshua L.; Zhang, Ruihong; Jenkins, Bryan M.; Hartsough, Bruce R.; Tomich, Thomas P.

    2011-01-01

    A process model was developed to predict the mass and energy balance for a full-scale (115 t d -1 ) high-solids anaerobic digester using research data from lab and pilot scale (1-3000 kg d -1 wet waste) systems. Costs and revenues were estimated in consultation with industry partners and the 20-year project cash flow, net present worth (NPW), simple payback, internal rate of return, and revenue requirements were calculated. The NPW was used to compare scenarios in order to determine the financial viability of using a generator for heat and electricity or a pressure swing adsorption unit for converting biogas to compressed natural gas (CNG). The full-scale digester consisted of five 786 m 3 reactors (one biogasification reactor and four hydrolysis reactors) treating a 50:50 mix (volatile solids basis) of food and green waste, of which 17% became biogas, 32% residual solids, and 51% wastewater. The NPW of the projects were similar whether producing electricity or CNG, as long as the parasitic energy demand was satisfied with the biogas produced. When producing electricity only, the power output was 1.2 MW, 7% of which was consumed parasitically. When producing CNG, the system produced 2 hm 3 y -1 natural gas after converting 22% of the biogas to heat and electricity which supplied the parasitic energy demand. The digester system was financially viable whether producing electricity or CNG for discount rates of up to 13% y -1 without considering debt (all capital was considered equity), heat sales, feed-in tariffs or tax credits.

  7. Drinking water treatment sludge as an effective additive for biogas production from food waste; kinetic evaluation and biomethane potential test.

    Science.gov (United States)

    Ebrahimi-Nik, Mohammadali; Heidari, Ava; Ramezani Azghandi, Shamim; Asadi Mohammadi, Fatemeh; Younesi, Habibollah

    2018-07-01

    The effect of drinking water treatment sludge (DWTS) as a mixture additive, on biogas and methane production from food waste was studied. Mesophilic anaerobic digestion of food waste with 5 concentrations of DWTS (0, 2, 6, 12, and 18 ppm) was carried out. It was found that DWTS can significantly enhance biogas and methane yield. The highest biogas (671 Nml/g VS) as well as methane yield (522 Nml/g VS) was observed when 6 mg/kg DWTS was added. This is equal to 65 and 58 percent increase in comparison with the control digester. The calculated lag time for methane was found to be in between 3.3 and 4.7 days. The DWTS also reduced the lag phase and retention time. The biogas experimental data was fitted with the modified Gompertz and the first-order kinetic models with R 2 higher than 0.994 and 0.949, respectively. The ratio of the experimental biogas production to the theoretical biogas production (ɛ) for control sample was 0.53 while for other samples containing additive were higher than 0.78. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility

    International Nuclear Information System (INIS)

    Harun, Razif; Davidson, Michael; Doyle, Mark; Gopiraj, Rajprathab; Danquah, Michael; Forde, Gareth

    2011-01-01

    As fossil fuel prices increase and environmental concerns gain prominence, the development of alternative fuels from biomass has become more important. Biodiesel produced from microalgae is becoming an attractive alternative to share the role of petroleum. Currently it appears that the production of microalgal biodiesel is not economically viable in current environment because it costs more than conventional fuels. Therefore, a new concept is introduced in this article as an option to reduce the total production cost of microalgal biodiesel. The integration of biodiesel production system with methane production via anaerobic digestion is proved in improving the economics and sustainability of overall biodiesel stages. Anaerobic digestion of microalgae produces methane and further be converted to generate electricity. The generated electricity can surrogate the consumption of energy that require in microalgal cultivation, dewatering, extraction and transesterification process. From theoretical calculations, the electricity generated from methane is able to power all of the biodiesel production stages and will substantially reduce the cost of biodiesel production (33% reduction). The carbon emissions of biodiesel production systems are also reduced by approximately 75% when utilizing biogas electricity compared to when the electricity is otherwise purchased from the Victorian grid. The overall findings from this study indicate that the approach of digesting microalgal waste to produce biogas will make the production of biodiesel from algae more viable by reducing the overall cost of production per unit of biodiesel and hence enable biodiesel to be more competitive with existing fuels. (author)

  9. Future European biogas

    DEFF Research Database (Denmark)

    Meyer, A. K.P.; Ehimen, E. A.; Holm-Nielsen, J. B.

    2018-01-01

    Biogas is expected to play an important role in reaching the future energy policy targets of the European Union (EU). The sustainability of biogas substrates has however been recently critically discussed due to the increasing shares of agricultural land used for energy crop production.The aim...... of this study was to project and map the biomass and biogas energy potential from a selection of potentially sustainable agricultural residues, which have been documented to improve in biogas yields when co-digested in biogas production, for the EU28 in year 2030. The investigated types of residual biomasses...... were animal manure, straw by-products from cereal production, and excess grass from rotational and permanent grasslands and meadows. The biogas energy potential from the investigated biomass was projected to range from 1.2·103 to 2.3·103 PJ y-1 in year 2030 in the EU28, depending on the biomass...

  10. Techno-economical study of biogas production improved by steam explosion pretreatment.

    Science.gov (United States)

    Shafiei, Marzieh; Kabir, Maryam M; Zilouei, Hamid; Sárvári Horváth, Ilona; Karimi, Keikhosro

    2013-11-01

    Economic feasibility of steam explosion pretreatment for improvement of biogas production from wheat straw and paper tube residuals was investigated. The process was simulated by Aspen plus ®, and the economical feasibility of five different plant capacities was studied by Aspen Process Economic Analyzer. Total project investment of a plant using paper tube residuals or wheat straw was 63.9 or 61.8 million Euros, respectively. The manufacturing cost of raw biogas for these two feedstocks was calculated to 0.36 or 0.48 €/m(3) of methane, respectively. Applying steam explosion pretreatment resulted in 13% higher total capital investment while significantly improved the economy of the biogas plant and decreased the manufacturing cost of methane by 36%. The sensitivity analysis showed that 5% improvement in the methane yield and 20% decrease in the raw material price resulted in 5.5% and 8% decrease in the manufacturing cost of methane, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review

    Directory of Open Access Journals (Sweden)

    Keikhosro Karimi

    2008-09-01

    Full Text Available Lignocelluloses are often a major or sometimes the sole components of different waste streams from various industries, forestry, agriculture and municipalities. Hydrolysis of these materials is the first step for either digestion to biogas (methane or fermentation to ethanol. However, enzymatic hydrolysis of lignocelluloses with no pretreatment is usually not so effective because of high stability of the materials to enzymatic or bacterial attacks. The present work is dedicated to reviewing the methods that have been studied for pretreatment of lignocellulosic wastes for conversion to ethanol or biogas. Effective parameters in pretreatment of lignocelluloses, such as crystallinity, accessible surface area, and protection by lignin and hemicellulose are described first. Then, several pretreatment methods are discussed and their effects on improvement in ethanol and/or biogas production are described. They include milling, irradiation, microwave, steam explosion, ammonia fiber explosion (AFEX, supercritical CO2 and its explosion, alkaline hydrolysis, liquid hot-water pretreatment, organosolv processes, wet oxidation, ozonolysis, dilute- and concentrated-acid hydrolyses, and biological pretreatments.

  12. Biogas Production by Co-Digestion of Goat Manure with Three Crop Residues

    Science.gov (United States)

    Zhang, Tong; Liu, Linlin; Song, Zilin; Ren, Guangxin; Feng, Yongzhong; Han, Xinhui; Yang, Gaihe

    2013-01-01

    Goat manure (GM) is an excellent raw material for anaerobic digestion because of its high total nitrogen content and fermentation stability. Several comparative assays were conducted on the anaerobic co-digestion of GM with three crop residues (CRs), namely, wheat straw (WS), corn stalks (CS) and rice straw (RS), under different mixing ratios. All digesters were implemented simultaneously under mesophilic temperature at 35±1 °C with a total solid concentration of 8%. Result showed that the combination of GM with CS or RS significantly improved biogas production at all carbon-to-nitrogen (C/N) ratios. GM/CS (30:70), GM/CS (70:30), GM/RS (30:70) and GM/RS (50:50) produced the highest biogas yields from different co-substrates (14840, 16023, 15608 and 15698 mL, respectively) after 55 d of fermentation. Biogas yields of GM/WS 30:70 (C/N 35.61), GM/CS 70:30 (C/N 21.19) and GM/RS 50:50 (C/N 26.23) were 1.62, 2.11 and 1.83 times higher than that of CRs, respectively. These values were determined to be the optimal C/N ratios for co-digestion. However, compared with treatments of GM/CS and GM/RS treatments, biogas generated from GM/WS was only slightly higher than the single digestion of GM or WS. This result was caused by the high total carbon content (35.83%) and lignin content (24.34%) in WS, which inhibited biodegradation. PMID:23825574

  13. Experimental Study on Productivity Performance of Household Combined Thermal Power and Biogas System in Northwest China

    Directory of Open Access Journals (Sweden)

    Jian Kang

    2018-01-01

    Full Text Available Ample quantities of solar and local biomass energy are available in the rural regions of northwest China to satisfy the energy needs of farmers. In this work, low-temperature solar thermal collectors, photovoltaic solar power generators, and solar-powered thermostatic biogas digesters were combined to create a heat, electricity, and biogas cogeneration system and were experimentally studied through two buildings in a farming village in northwestern China. The results indicated that the floor heater had the best heating effect. And the fraction of the energy produced by the solar elements of the system was 60.3%. The photovoltaic power-generation system achieved photovoltaic (PV conversion efficiencies of 8.3% and 8.1% during the first and second season, respectively. The intrinsic power consumption of the system was 143.4 kW·h, and 115.7 kW·h of electrical power was generated by the system in each season. The average volume of biogas produced daily was approximately 1.0 m3. Even though the ambient temperature reached −25°C, the temperature of the biogas digester was maintained at 27°C ± 2 for thermostatic fermentation. After optimization, the energy-saving rate improved from 66.2% to 85.5%. The installation reduced CO2 emissions by approximately 27.03 t, and the static payback period was 3.1 yr. Therefore, the system is highly economical, energy efficient, and beneficial for the environment.

  14. Experimental Study on Productivity Performance of Household Combined Thermal Power and Biogas System in Northwest China

    Science.gov (United States)

    Zhen, Xiaofei; Osman, Yassir Idris Abdalla; Feng, Rong; Si, Zetian

    2018-01-01

    Ample quantities of solar and local biomass energy are available in the rural regions of northwest China to satisfy the energy needs of farmers. In this work, low-temperature solar thermal collectors, photovoltaic solar power generators, and solar-powered thermostatic biogas digesters were combined to create a heat, electricity, and biogas cogeneration system and were experimentally studied through two buildings in a farming village in northwestern China. The results indicated that the floor heater had the best heating effect. And the fraction of the energy produced by the solar elements of the system was 60.3%. The photovoltaic power-generation system achieved photovoltaic (PV) conversion efficiencies of 8.3% and 8.1% during the first and second season, respectively. The intrinsic power consumption of the system was 143.4 kW·h, and 115.7 kW·h of electrical power was generated by the system in each season. The average volume of biogas produced daily was approximately 1.0 m3. Even though the ambient temperature reached −25°C, the temperature of the biogas digester was maintained at 27°C ± 2 for thermostatic fermentation. After optimization, the energy-saving rate improved from 66.2% to 85.5%. The installation reduced CO2 emissions by approximately 27.03 t, and the static payback period was 3.1 yr. Therefore, the system is highly economical, energy efficient, and beneficial for the environment. PMID:29862289

  15. Production costs and operative margins in electric energy generation from biogas. Full-scale case studies in Italy.

    Science.gov (United States)

    Riva, C; Schievano, A; D'Imporzano, G; Adani, F

    2014-08-01

    The purpose of this study was to observe the economic sustainability of three different biogas full scale plants, fed with different organic matrices: energy crops (EC), manure, agro-industrial (Plants B and C) and organic fraction of municipal solid waste (OFMSW) (Plant A). The plants were observed for one year and total annual biomass feeding, biomass composition and biomass cost (€ Mg(-1)), initial investment cost and plant electric power production were registered. The unit costs of biogas and electric energy (€ Sm(-3)biogas, € kWh(-1)EE) were differently distributed, depending on the type of feed and plant. Plant A showed high management/maintenance cost for OFMSW treatment (0.155 € Sm(-3)biogas, 45% of total cost), Plant B suffered high cost for EC supply (0.130 € Sm(-3)biogas, 49% of total cost) and Plant C showed higher impact on the total costs because of the depreciation charge (0.146 € Sm(-3)biogas, 41% of total costs). The breakeven point for the tariff of electric energy, calculated for the different cases, resulted in the range 120-170 € MWh(-1)EE, depending on fed materials and plant scale. EC had great impact on biomass supply costs and should be reduced, in favor of organic waste and residues; plant scale still heavily influences the production costs. The EU States should drive incentives in dependence of these factors, to further develop this still promising sector. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Hazardous organic compounds in biogas plant end products-Soil burden and risk to food safety

    International Nuclear Information System (INIS)

    Suominen, K.; Verta, M.; Marttinen, S.

    2014-01-01

    The end products (digestate, solid fraction of the digestate, liquid fraction of the digestate) of ten biogas production lines in Finland were analyzed for ten hazardous organic compounds or compound groups: polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), polychlorinated biphenyls (PCB(7)), polyaromatic hydrocarbons (PAH(16)), bis-(2-ethylhexyl) phthalate (DEHP), perfluorinated alkyl compounds (PFCs), linear alkylbenzene sulfonates (LASs), nonylphenols and nonylphenol ethoxylates (NP + NPEOs), polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA). Biogas plant feedstocks were divided into six groups: municipal sewage sludge, municipal biowaste, fat, food industry by-products, animal manure and others (consisting of milling by-products (husk) and raw former foodstuffs of animal origin from the retail trade). There was no clear connection between the origin of the feedstocks of a plant and the concentrations of hazardous organic compounds in the digestate. For PCDD/Fs and for DEHP, the median soil burden of the compound after a single addition of digestate was similar to the annual atmospheric deposition of the compound or compound group in Finland or other Nordic countries. For PFCs, the median soil burden was somewhat lower than the atmospheric deposition in Finland or Sweden. For NP + NPEOs, the soil burden was somewhat higher than the atmospheric deposition in Denmark. The median soil burden of PBDEs was 400 to 1000 times higher than the PBDE air deposition in Finland or in Sweden. With PBDEs, PFCs and HBCD, the impact of the use of end products should be a focus of further research. Highly persistent compounds, such as PBDE- and PFC-compounds may accumulate in agricultural soil after repeated use of organic fertilizers containing these compounds. For other compounds included in this study, agricultural use of biogas plant end products is unlikely to cause risk to food safety in Finland. - Highlights:

  17. Hazardous organic compounds in biogas plant end products-Soil burden and risk to food safety

    Energy Technology Data Exchange (ETDEWEB)

    Suominen, K., E-mail: kimmo.suominen@evira.fi [Finnish Food Safety Authority Evira, Risk Assessment Research Unit, Mustialankatu 3, 00790 Helsinki (Finland); Verta, M. [Finnish Environmental Institute (SYKE), Mechelininkatu 34a, P.O. Box 140, 00251 Helsinki (Finland); Marttinen, S. [MTT Agrifood Research Finland, 31600 Jokioinen (Finland)

    2014-09-01

    The end products (digestate, solid fraction of the digestate, liquid fraction of the digestate) of ten biogas production lines in Finland were analyzed for ten hazardous organic compounds or compound groups: polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), polychlorinated biphenyls (PCB(7)), polyaromatic hydrocarbons (PAH(16)), bis-(2-ethylhexyl) phthalate (DEHP), perfluorinated alkyl compounds (PFCs), linear alkylbenzene sulfonates (LASs), nonylphenols and nonylphenol ethoxylates (NP + NPEOs), polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA). Biogas plant feedstocks were divided into six groups: municipal sewage sludge, municipal biowaste, fat, food industry by-products, animal manure and others (consisting of milling by-products (husk) and raw former foodstuffs of animal origin from the retail trade). There was no clear connection between the origin of the feedstocks of a plant and the concentrations of hazardous organic compounds in the digestate. For PCDD/Fs and for DEHP, the median soil burden of the compound after a single addition of digestate was similar to the annual atmospheric deposition of the compound or compound group in Finland or other Nordic countries. For PFCs, the median soil burden was somewhat lower than the atmospheric deposition in Finland or Sweden. For NP + NPEOs, the soil burden was somewhat higher than the atmospheric deposition in Denmark. The median soil burden of PBDEs was 400 to 1000 times higher than the PBDE air deposition in Finland or in Sweden. With PBDEs, PFCs and HBCD, the impact of the use of end products should be a focus of further research. Highly persistent compounds, such as PBDE- and PFC-compounds may accumulate in agricultural soil after repeated use of organic fertilizers containing these compounds. For other compounds included in this study, agricultural use of biogas plant end products is unlikely to cause risk to food safety in Finland. - Highlights:

  18. Potential biogas production from agricultural by-products in Sicily. A case study of citrus pulp and olive pomace

    Directory of Open Access Journals (Sweden)

    Francesca Valenti

    2017-07-01

    Full Text Available Renewable energy sources represent a suitable alternative to conventional fossil fuels, due to the possible advantages in terms of environmental impact reduction. Anaerobic digestion of biomasses could be considered an environmental friendly way to treat and revalorise large amounts of by-products from farming industries because it ensures both pollution control and energy recovery. Therefore, the objective of this study was to define a methodology for evaluating the potential biogas production available from citrus pulp and olive pomace, which are suitable agricultural by-products for biogas production. In the first phase of the study, the spatial distribution of both olive and citrus-producing areas was analysed in Sicily, a geographical area of the Mediterranean basin highly representative of these types of cultivation. Then, a GIS-based model, which had been previously defined and utilised to evaluate the amount of citrus pulp and olive pomace production, was applied to this case study. Based on the results obtained for the different provinces of Sicily, the province of Catania was chosen as the study area of this work since it showed the highest production of both citrus pulp and olive pomace. Therefore, a further analysis regarded the quantification of olive pomace and citrus pulp at municipal level. The results of this analysis showed that the total amount of available citrus pulp and olive pomace corresponded theoretically to about 11,102,469 Nm3/year biogas. Finally, the methodology adopted in this study made it possible to identify suitable areas for the development of new biogas plants by considering both the spatial distribution of the olive and citrus growing areas and the locations of the existing processing industries.

  19. Study of biogas production parameters in the sanitary landfill; Estudio de los parametros que afectan la produccion de biogas en un vertedero controlado

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Domenech, G.; Gordillo Bolasell, M. A.; Sanchez Ferrer, A.

    2001-07-01

    The following article contents a study about some of the parameters affecting the evolution of the gas production in a sanitary landfill placed in the province of Barcelona. The work is focused on the quality of biogas produced, measured as the percentage of methane and thus its energy profitability. The parameters included in this paper are: -Situation of the gas extraction station -Age of the wastes. -Reinfiltration of concentrated liquid leachate in the considered cell. Among the previous factors, the situation of the gas station and the age of wastes showed a critical influence on the methane content, whereas the use of leachate reinfiltration did not produce significant differences in the quality of biogas in the short-term applications. (Author) 5 refs.

  20. Influence of solid-liquid separation strategy on biogas yield from a stratified swine production system.

    Science.gov (United States)

    Cestonaro do Amaral, André; Kunz, Airton; Radis Steinmetz, Ricardo Luis; Scussiato, Lucas Antunes; Tápparo, Deisi Cristina; Gaspareto, Taís Carla

    2016-03-01

    As the fourth largest swine producer and exporter, Brazil has increased its participation in the global swine production market. Generally, these units concentrate a large number of animals and generate effluents that must be correctly managed to prevent environmental impacts, being anaerobic digestion is an interesting alternative for treating these effluents. The low-volatile solid concentration in the manure suggests the need for solid-liquid separation as a tool to improve the biogas generation capacity. This study aimed to determine the influence of simplified and inexpensive solid-liquid separation strategies (screening and settling) and the different manures produced during each swine production phase (gestating and farrowing sow houses, nursery houses and finishing houses) on biogas and methane yield. We collected samples in two gestating sow houses (GSH-a and GSH-b), two farrowing sow houses (FSH-a and FSH-b), a nursery house (NH) and a finishing house (FH). Biochemical methane potential (BMP) tests were performed according to international standard procedures. The settled sludge fraction comprised 20-30% of the raw manure volume, which comprises 40-60% of the total methane yield. The methane potential of the settled sludge fraction was approximately two times higher than the methane potential of the supernatant fraction. The biogas yield differed among the raw manures from different swine production phases (GSH-a 326.4 and GSH-b 577.1; FSH-a 860.1 and FSH-b 479.2; NH -970.2; FH 474.5 NmLbiogas.gVS(-1)). The differences were relative to the production phase (feed type and feeding techniques) and the management of the effluent inside the facilities (water management). Brazilian swine production has increased his participation in the global market, been the fourth producer and the fourth exporter. The segregation of swine production in multiple sites has increased its importance, due to the possibilities to have more specialized units. Generally, these units

  1. Isolations of biogas products and effective utilization of biomass in a tropical environment

    International Nuclear Information System (INIS)

    Dioha, I.J.; Nwagbo, E.E.; Gulma, M.A.

    1990-12-01

    This paper has compared two types (Indian and Chinese) of biogas producing facilities designed and built in Birnin-Kebbi, Nigeria. Available local input for the plants are identified and the isolations of the resultant output (products) and their economic viabilities are emphasized. The importance and the uses of the secondary products are highlighted. Ways of maintaining the PH in the digester for optimum gas yield are reported. The difficulties encountered in on the site operation of the two models are stated. On the whole the Chinese model is considered most responsive to the environmental conditions of the study location. (author). 11 refs, 2 figs

  2. Assessment of biogas production from MBT waste under different operating conditions

    DEFF Research Database (Denmark)

    Pantini, Sara; Verginelli, Jason; Lombardi, Francesco

    2015-01-01

    In this work, the influence of different operating conditions on the biogas production from mechanically-. biologically treated (MBT) wastes is investigated. Specifically, different lab-scale anaerobic tests varying the water content (26-43% w/w up to 75% w/w), the temperature (from 20 to 25......, the obtained results highlighted that the operative conditions can drastically affect the gas production from MET wastes. This suggests that particular caution should be paid when using the results of lab-scale tests for the evaluation of long-term behaviour expected in the field where the boundary conditions...

  3. Simultaneous biogas upgrading and biochemicals production using anaerobic bacterial mixed cultures

    DEFF Research Database (Denmark)

    Omar, Basma; Abou-Shanab, Reda; El-Gammal, Maie

    2018-01-01

    , the biogas was upgraded to biomethane (CH4 >95%), which can be used as a vehicle fuel or injected into the natural gas grid. To establish an efficient fermentative microbial platform, a thermal (at two different temperatures of 70 °C and 90 °C) and a chemical pretreatment method using 2-bromoethanesulfonate...... treatment methods and gas ratios has also been unravelled using 16S rRNA analysis. The chemical treatment of the inoculum had successfully blocked the activity of methanogens and enhanced the VFAs production, especially acetate. The chemical treatment led to a significantly better acetate production (291 mg...

  4. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    International Nuclear Information System (INIS)

    Nges, Ivo Achu; Escobar, Federico; Fu Xinmei; Björnsson, Lovisa

    2012-01-01

    Highlights: ► This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. ► Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. ► Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. ► Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. ► It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable

  5. Co-digestion of cattle manure with food waste and sludge to increase biogas production

    International Nuclear Information System (INIS)

    Marañón, E.; Castrillón, L.; Quiroga, G.; Fernández-Nava, Y.; Gómez, L.; García, M.M.

    2012-01-01

    Highlights: ► Small increase in methane production was observed applying sonication pretreatment. ► Biogas productions between 720 and 1100 mL/Lreactor day were achieved. ► Volatile solids removal efficiencies ranged between 53% and 60%. ► Lower methane yields were obtained when operating under thermophilic conditions. ► Optimum OLR in lab-scale CSTR was 1.2–1.3 g VS/L day (HRT: 20 days). - Abstract: Anaerobic co-digestion strategies are needed to enhance biogas production, especially when treating certain residues such as cattle/pig manure. This paper presents a study of co-digestion of cattle manure with food waste and sewage sludge. With the aim of maximising biogas yields, a series of experiments were carried out under mesophilic and thermophilic conditions using continuously stirred-tank reactors, operating at different hydraulic residence times. Pretreatment with ultrasound was also applied to compare the results with those obtained with non-pretreated waste. Specific methane production decreases when increasing the OLR and decreasing HRT. The maximum value obtained was 603 LCH 4 /kg VS feed for the co-digestion of a mixture of 70% manure, 20% food waste and 10% sewage sludge (total solid concentration around 4%) at 36 °C, for an OLR of 1.2 g VS/L day. Increasing the OLR to 1.5 g VS/L day led to a decrease of around 20–28% in SMP. Lower methane yields were obtained when operating at 55 °C. The increase in methane production when applying ultrasound to the feed mixtures does not compensate for the energy spent in this pretreatment.

  6. Co-digestion of cattle manure with food waste and sludge to increase biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Maranon, E., E-mail: emara@uniovi.es [Department of Chemical Engineering and Environmental Technology, University Institute of Technology of Asturias, Campus of Gijon, University of Oviedo, 33203 Gijon (Spain); Castrillon, L.; Quiroga, G.; Fernandez-Nava, Y. [Department of Chemical Engineering and Environmental Technology, University Institute of Technology of Asturias, Campus of Gijon, University of Oviedo, 33203 Gijon (Spain); Gomez, L.; Garcia, M.M. [Zero Emissions Technology, 41018 Seville (Spain)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Small increase in methane production was observed applying sonication pretreatment. Black-Right-Pointing-Pointer Biogas productions between 720 and 1100 mL/Lreactor day were achieved. Black-Right-Pointing-Pointer Volatile solids removal efficiencies ranged between 53% and 60%. Black-Right-Pointing-Pointer Lower methane yields were obtained when operating under thermophilic conditions. Black-Right-Pointing-Pointer Optimum OLR in lab-scale CSTR was 1.2-1.3 g VS/L day (HRT: 20 days). - Abstract: Anaerobic co-digestion strategies are needed to enhance biogas production, especially when treating certain residues such as cattle/pig manure. This paper presents a study of co-digestion of cattle manure with food waste and sewage sludge. With the aim of maximising biogas yields, a series of experiments were carried out under mesophilic and thermophilic conditions using continuously stirred-tank reactors, operating at different hydraulic residence times. Pretreatment with ultrasound was also applied to compare the results with those obtained with non-pretreated waste. Specific methane production decreases when increasing the OLR and decreasing HRT. The maximum value obtained was 603 LCH{sub 4}/kg VS{sub feed} for the co-digestion of a mixture of 70% manure, 20% food waste and 10% sewage sludge (total solid concentration around 4%) at 36 Degree-Sign C, for an OLR of 1.2 g VS/L day. Increasing the OLR to 1.5 g VS/L day led to a decrease of around 20-28% in SMP. Lower methane yields were obtained when operating at 55 Degree-Sign C. The increase in methane production when applying ultrasound to the feed mixtures does not compensate for the energy spent in this pretreatment.

  7. Analyzing key constraints to biogas production from crop residues and manure in the EU—A spatially explicit model

    Science.gov (United States)

    Persson, U. Martin

    2017-01-01

    This paper presents a spatially explicit method for making regional estimates of the potential for biogas production from crop residues and manure, accounting for key technical, biochemical, environmental and economic constraints. Methods for making such estimates are important as biofuels from agricultural residues are receiving increasing policy support from the EU and major biogas producers, such as Germany and Italy, in response to concerns over unintended negative environmental and social impacts of conventional biofuels. This analysis comprises a spatially explicit estimate of crop residue and manure production for the EU at 250 m resolution, and a biogas production model accounting for local constraints such as the sustainable removal of residues, transportation of substrates, and the substrates’ biochemical suitability for anaerobic digestion. In our base scenario, the EU biogas production potential from crop residues and manure is about 0.7 EJ/year, nearly double the current EU production of biogas from agricultural substrates, most of which does not come from residues or manure. An extensive sensitivity analysis of the model shows that the potential could easily be 50% higher or lower, depending on the stringency of economic, technical and biochemical constraints. We find that the potential is particularly sensitive to constraints on the substrate mixtures’ carbon-to-nitrogen ratio and dry matter concentration. Hence, the potential to produce biogas from crop residues and manure in the EU depends to large extent on the possibility to overcome the challenges associated with these substrates, either by complementing them with suitable co-substrates (e.g. household waste and energy crops), or through further development of biogas technology (e.g. pretreatment of substrates and recirculation of effluent). PMID:28141827

  8. Analyzing key constraints to biogas production from crop residues and manure in the EU-A spatially explicit model.

    Science.gov (United States)

    Einarsson, Rasmus; Persson, U Martin

    2017-01-01

    This paper presents a spatially explicit method for making regional estimates of the potential for biogas production from crop residues and manure, accounting for key technical, biochemical, environmental and economic constraints. Methods for making such estimates are important as biofuels from agricultural residues are receiving increasing policy support from the EU and major biogas producers, such as Germany and Italy, in response to concerns over unintended negative environmental and social impacts of conventional biofuels. This analysis comprises a spatially explicit estimate of crop residue and manure production for the EU at 250 m resolution, and a biogas production model accounting for local constraints such as the sustainable removal of residues, transportation of substrates, and the substrates' biochemical suitability for anaerobic digestion. In our base scenario, the EU biogas production potential from crop residues and manure is about 0.7 EJ/year, nearly double the current EU production of biogas from agricultural substrates, most of which does not come from residues or manure. An extensive sensitivity analysis of the model shows that the potential could easily be 50% higher or lower, depending on the stringency of economic, technical and biochemical constraints. We find that the potential is particularly sensitive to constraints on the substrate mixtures' carbon-to-nitrogen ratio and dry matter concentration. Hence, the potential to produce biogas from crop residues and manure in the EU depends to large extent on the possibility to overcome the challenges associated with these substrates, either by complementing them with suitable co-substrates (e.g. household waste and energy crops), or through further development of biogas technology (e.g. pretreatment of substrates and recirculation of effluent).

  9. Analyzing key constraints to biogas production from crop residues and manure in the EU-A spatially explicit model.

    Directory of Open Access Journals (Sweden)

    Rasmus Einarsson

    Full Text Available This paper presents a spatially explicit method for making regional estimates of the potential for biogas production from crop residues and manure, accounting for key technical, biochemical, environmental and economic constraints. Methods for making such estimates are important as biofuels from agricultural residues are receiving increasing policy support from the EU and major biogas producers, such as Germany and Italy, in response to concerns over unintended negative environmental and social impacts of conventional biofuels. This analysis comprises a spatially explicit estimate of crop residue and manure production for the EU at 250 m resolution, and a biogas production model accounting for local constraints such as the sustainable removal of residues, transportation of substrates, and the substrates' biochemical suitability for anaerobic digestion. In our base scenario, the EU biogas production potential from crop residues and manure is about 0.7 EJ/year, nearly double the current EU production of biogas from agricultural substrates, most of which does not come from residues or manure. An extensive sensitivity analysis of the model shows that the potential could easily be 50% higher or lower, depending on the stringency of economic, technical and biochemical constraints. We find that the potential is particularly sensitive to constraints on the substrate mixtures' carbon-to-nitrogen ratio and dry matter concentration. Hence, the potential to produce biogas from crop residues and manure in the EU depends to large extent on the possibility to overcome the challenges associated with these substrates, either by complementing them with suitable co-substrates (e.g. household waste and energy crops, or through further development of biogas technology (e.g. pretreatment of substrates and recirculation of effluent.

  10. Method for ph-controlled fermentation and biogas production

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention is in the field of biomass processing and bioenergy production and facilitates efficient biomass processing and an increased production of renewable energy from processing and anaerobic fermentation of a wide variety of organic materials. In order to control the pH value...

  11. Biogas production: litter from broilers receiving direct-fed microbials and an enzyme blend

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Ferreira Menegucci Praes

    Full Text Available ABSTRACT The effect of additives used in the feed of broilers on anaerobic bio-digestion of poultry litter was evaluated. Four diets were used: NC: negative control; DFM: NC + 500 ppm direct-fed microbials (DFM containing Bacillus subtilis and Bacillus licheniformis; ENZ: diet formulated with an enzyme blend (20 ppm phytase, 200 ppm protease and 200 ppm xylanase; DFM+E: ENZ + DFM. Substrates for the anaerobic bio-digestion were prepared with litter from each treatment, containing 4 % total solids (TS. These were used in 16 continuous bio-digesters with a 2 kg d−1 load, to determine the production and potential biogas production and composition during an 85-day period. Influent and effluent samples were collected for the amounts of TS and volatile solids (VS, fiber fraction (neutral detergent fiber [NDF], acid detergent fiber [ADF] and lignin, nutrients (N, P and K, and total and thermotolerant coliforms to be determined. For all treatments a reduction in the following effluents was observed as follows: TS (49, 48, 48 and 50 % VS (70, 54, 55 and 62 % NDF (91, 90, 95 and 96 % ADF (89, 88, 93 and 94 % and lignin (80, 76, 89 and 88 %. The efficiency of the treatment for coliforms in bio-digesters was higher than 90 % in the 85-day period in all treatment groups. There was a reduction in biogas and methane production when DFM (5500 and 4000 mL and DFM + E (5800 and 4100 mL were used, compared to treatments NC (6300 mL and 4400 and ENZ (6400 and 4500 mL. The potential production of reduced TS and VS was higher in ENZ (1:00 and 1.74 106 mL kg−1 when compared to NC (0.88 and 1:02 106 mL kg−1, DFM (0.80 and 1:40 106 mL kg−1 and DFM + E (0.88 1:25 and 106 mL kg−1. The additives did not affect the percentage of methane production, and all treatments showed values higher than 70 %. Adding enzymes to the diet of broilers influences the litter characteristics and, as a consequence, increases biogas production. The addition of DFM and DFM + E to

  12. Enhancement of biogas production from olive mill effluent (OME) by co-digestion

    Energy Technology Data Exchange (ETDEWEB)

    Azbar, Nuri; Keskin, Tugba; Yuruyen, Aysegul [Bioengineering Department, Faculty of Engineering, Ege University, 35100 Bornova, Izmir (Turkey)

    2008-12-15

    The olive oil has a healthy image during its consumption due to its oleic acid content, which may prevent some human diseases. Ironically, by-products of olive mill production such as olive mill effluent (OME) and olive cake pose a serious environmental risk where it is produced. In this study, feasibility of using some agro-industrial residue streams such as cheese whey (CW) and laying hen litter (LHL) in order to enhance the methane production of OME was investigated. For this purpose, biochemical methane potential (BMP) assay was carried out for both raw OME alone and OME mixed with varying amount of other substrates such as LHL and CW in the serum bottles, respectively. Corresponding methane production values for various mixtures of the organic residue streams used in this study were determined. It was demonstrated that co-digestion of OME with LHL significantly enhanced the biodegradability of OME which was too low if it was digested alone. Over 90% increase in biogas production was obtained when digesting OME with LHL. The biogas production increased only 22%, when CW was used for the same purpose. It was demonstrated that the biodegradability of OME could be significantly enhanced by co-digestion and thereby integrated management of OME using anaerobic degradation could be proposed as an economically viable and ecologically acceptable solution for the safe disposal of OME. (author)

  13. Simulation of biogas production by adding biochar; Steigerung des Biogasertrages durch die Zugabe von Pflanzenkohle

    Energy Technology Data Exchange (ETDEWEB)

    Roedger, Jan-Markus; Ganagin, Waldemar; Krieg, Andreas; Roth, Christian; Loewen, Achim [HAWK Hildesheim/Holzminden/Goettingen, Goettingen (Germany). Fachgebiet Nachhaltige Energie- und Umwelttechnik (NEUTec)

    2013-09-15

    One instrument to withdraw carbon dioxide from the atmosphere is the so called Biochar. Through photosynthesis and a thermochemical biomass treatment (pyrolysis) the bound carbon will be stabilized and thereby stored permanently. The product (biochar) is intended to be mainly used as soil enhancer on arable land. Early analyses indicate no economic feasibility yet. Therefore new ways of utilization need to be identified along the agricultural value chain to generate additional earnings. One option is the application of biochar as an additive within the biogas process. Different international research institutes were able to measure an increase in biogas production due to the biochar addition. One reason might be accumulation of methanogenic bacteria as well as the increase of the surface area to improve the microbial functionality which leads to additional gas production. The study presented here investigated the optimal process stage within the fermentation process (main digester or secondary fermenter) to add the biochar and thereby improve the gas production. By adding biochar to the main digester an increase in gas production of approximately 9 % over a time span of 91 days was measured. To analyse the effect within the secondary fermenter two different approaches were tested. The effect of the surface area was assessed by comparing the influence of original biochar and large char particles. The original Biochar led to an increase of more than 13 % and the large particles even enhanced methane production by 24 % over 91 days. (orig.)

  14. Investigation of Biogas Production Process by the Mixture of Landfill Leachate and Animal Waste

    Directory of Open Access Journals (Sweden)

    hossein alidadi

    2017-09-01

    Full Text Available Introduction and purpose: Energy consumption is on a rapidly growing trend in the world. Accordingly, the non-renewable energy sources are expected to be run out in the future. This issue has resulted in the establishment of efforts targeted toward the development of new energy-generating methods around the world. Biogas energy is one of the new and clean energies that is produced from the anaerobic digestion of biomass wastes. Anaerobic digestion is a cost-effective and environment-friendly method, which facilitates fertilizer and biogas production as well as landfill leachate treatment. Given the high environmental hazards of leachate and its mixture with animal wastes, the present study aimed to estimate the possibility of producing biogas in various mixture ratios. Methods: In this pilot-scale experimental study, the landfill leachate of Mashhad, Iran, were mixed with caw fresh dung in different ratios, but same conditions, under anaerobic digestion. This was conducted to consider the ability to produce methane gas in different proportions and landfill leachate. At the beginning and end of the project, the parameters of EC, pH, VS, TS, COD, TOC, P, K, N, and Na were measured. Additionally, the composition of the gases produced under different operating conditions was analyzed using gas chromatography mass spectrometry. Results: Gas production began three weeks after uploading and continued for five weeks. The analysis of gas production in three ratios was indicative of the CH4 production in all three proportions. In this regard, 1/1 ratio produced the highest percentage of CH4. No gas production was observed in the two months of study. Other physical and chemical parameters, such as COD, TS, TKN, and TOC were reduced in the given mixtures during the biogas production procedure. For instance, the case with 1/1 ratio, which showed the best results, had almost 80% decrease in the given parameters. However, no gas

  15. Evaluation of the biological methane potential of various feedstock for the production of biogas to supply agricultural tractors

    International Nuclear Information System (INIS)

    Matuszewska, Anna; Owczuk, Marlena; Zamojska-Jaroszewicz, Anna; Jakubiak-Lasocka, Joanna; Lasocki, Jakub; Orliński, Piotr

    2016-01-01

    Highlights: • Biochemical methane potential for mixtures of whey, manures and silages was tested. • High impact of feedstock type on composition and yield of biogas was observed. • Simple mathematical model of methanogenic fermentation was proposed. • Exhaust emissions from dual fuel (biogas and diesel oil) engine were investigated. • Using biogas in engine reduces particulate matter and nitrogen oxides emissions. - Abstract: This work is divided into three parts. The first one presents results of biological methane potential of agriculture raw materials available in Poland. In the second part the simple mathematical model of methanogenic fermentation is proposed. The data for this model were obtained from experimental digestion process of chosen mixtures. Last part includes the results of research of exhaust emissions generated by dual dual-fuel engine of agricultural tractor powered by mixture of model biogas (60% and 70% of methane) and diesel oil. The obtained results revealed that there was a significant difference in chemical composition and yield of biogas between considered feedstock types. The highest biogas and methane production was obtained for mixtures in ratio of 6:4 for swine manure/maize silage and whey/grass silage. Due to agriculture conditions in Poland and obtain results, the maize silage and swine manure were chosen to development of mathematical model of fermentation process. It showed a satisfactory match to the experimental results. Results of emission tests on dual-fuel tractor engine supplied with biogas and diesel oil showed the higher concentrations of hydrocarbons and carbon oxide and lower concentrations of particulate matter in exhaust gases. Level of emission of particular components depends on the biogas composition.

  16. Economics of biogas digesters in Bangladesh

    International Nuclear Information System (INIS)

    Bala, B.K.; Hossain, M.M.

    1992-01-01

    We present the economics of biogas digesters in Bangladesh in terms of fuel wood and fertilizer values. The incremental net present benefit was computed from the digester cost, kinetics of biogas production and nutrient contents in the treated slurry. The model was analysed to test the sensitivity to changes in retention time, annual operation period, subsidy, price of fuel wood, construction cost, interest, and inflation rate. (Author)

  17. Biotechnological Screening of Microalgal and Cyanobacterial Strains for Biogas Production and Antibacterial and Antifungal Effects

    Directory of Open Access Journals (Sweden)

    Opayi Mudimu

    2014-05-01

    Full Text Available Microalgae and cyanobacteria represent a valuable natural resource for the generation of a large variety of chemical substances that are of interest for medical research, can be used as additives in cosmetics and food production, or as an energy source in biogas plants. The variety of potential agents and the use of microalgae and cyanobacteria biomass for the production of these substances are little investigated and not exploited for the market. Due to the enormous biodiversity of microalgae and cyanobacteria, they hold great promise for novel products. In this study, we investigated a large number of microalgal and cyanobacterial strains from the Culture Collection of Algae at Göttingen University (SAG with regard to their biomass and biogas production, as well antibacterial and antifungal effects. Our results demonstrated that microalgae and cyanobacteria are able to generate a large number of economically-interesting substances in different quantities dependent on strain type. The distribution and quantity of some of these components were found to reflect phylogenetic relationships at the level of classes. In addition, between closely related species and even among multiple isolates of the same species, the productivity may be rather variable.

  18. An overview of physico-chemical mechanisms of biogas production by microbial communities: a step towards sustainable waste management.

    Science.gov (United States)

    Goswami, Ramansu; Chattopadhyay, Pritam; Shome, Arunima; Banerjee, Sambhu Nath; Chakraborty, Amit Kumar; Mathew, Anil K; Chaudhury, Shibani

    2016-06-01

    Biogas is a combination of methane, CO 2 , nitrogen, H 2 S and traces of few other gases. Almost any organic waste can be biologically transformed into biogas and other energy-rich organic compounds through the process of anaerobic digestion (AD) and thus helping in sustainable waste management. Although microbes are involved in each step of AD, knowledge about those microbial consortia is limited due to the lack of phylogenetic and metabolic data of predominantly unculturable microorganisms. However, culture-independent methods like PCR-based ribotyping has been successfully employed to get information about the microbial consortia involved in AD. Microbes identified have been found to belong mainly to the bacterial phyla of Proteobacteria, Chloroflexi, Firmicutes and Bacteroidetes. Among the archaeal population, the majority have been found to be methanogens (mainly unculturable), the remaining being thermophilic microbes. Thus, the AD process as a whole could be controlled by regulating the microbial consortia involved in it. Optimization in the feedstock, pH, temperature and other physical parameters would be beneficial for the microbial growth and viability and thus helpful for biogas production in AD. Besides, the biogas production is also dependent upon the activity of several key genes, ion-specific transporters and enzymes, like genes coding for methyl-CoM reductase, formylmethanofuran transferase, formate dehydrogenase present in the microbes. Fishing for these high-efficiency genes will ultimately increase the biogas production and sustain the production plant.

  19. Anaerobic co-digestion of Tunisian green macroalgae Ulva rigida with sugar industry wastewater for biogas and methane production enhancement.

    Science.gov (United States)

    Karray, Raida; Karray, Fatma; Loukil, Slim; Mhiri, Najla; Sayadi, Sami

    2017-03-01

    Ulva rigida is a green macroalgae, abundantly available in the Mediterranean which offers a promising source for the production of valuable biomaterials, including methane. In this study, anaerobic digestion assays in a batch mode was performed to investigate the effects of various inocula as a mixture of fresh algae, bacteria, fungi and sediment collected from the coast of Sfax, on biogas production from Ulva rigida. The results revealed that the best inoculum to produce biogas and feed an anaerobic reactor is obtained through mixing decomposed macroalgae with anaerobic sludge and water, yielding into 408mL of biogas. The process was then investigated in a sequencing batch reactor (SBR) which led to an overall biogas production of 375mL with 40% of methane. Further co-digestion studies were performed in an anaerobic up-flow bioreactor using sugar wastewater as a co-substrate. A high biogas production yield of 114mL g -1 VS added was obtained with 75% of methane. The co-digestion proposed in this work allowed the recovery of natural methane, providing a promising alternative to conventional anaerobic microbial fermentation using Tunisian green macroalgae. Finally, in order to identify the microbial diversity present in the reactor during anaerobic digestion of Ulva rigida, the prokaryotic diversity was investigated in this bioreactor by the denaturing gradient gel electrophoresis (DGGE) method targeting the 16S rRNA gene. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Biogas production and digestate utilisation from agricultural residues

    NARCIS (Netherlands)

    Corre, W.J.; Conijn, J.G.

    2016-01-01

    The HYSOL project aims at hybridisation of concentrated solar power with a gas turbine in order to guarantee a stable and reliable electricity supply, based on renewable energy. The production of fully renewable electricity in a Hybrid Concentrated Solar Power (HCSP) plant includes the use of

  1. Antioxidant Extraction and Biogas Production from Pomegranate Marc

    Science.gov (United States)

    The pomegranate marc (PM), by-product from pomegranate juice processing, has not been effectively utilized. The objectives of this study were to (1) determine the yields and properties of antioxidants (total phenolics) extracted from peels and seeds of pomegranate marc in wet and dry forms, and (2)...

  2. Effect of Retention Time on Biogas Production from Poultry ...

    African Journals Online (AJOL)

    JPC

    Daily gas production fell slightly from 130 to 32 litres as retention time was ... The continuing energy crisis has reawakened interest in the anaerobic ... and hydrogen sulfide (H2S2): 0.3 vol.%. ..... Nigerian Journal of Solar Energy 15: 80 – 85.

  3. A technological overview of biogas production from biowaste

    NARCIS (Netherlands)

    Achinas, Spyridon; Achinas, Vasileios; Euverink, Gerrit Jan Willem

    The current irrational use of fossil fuels and the impact of greenhouse gases on the environment are driving research into renewable energy production from organic resources and waste. The global energy demand is high, and most of this energy is produced from fossil resources. Recent studies report

  4. Effect of Retention Time on Biogas Production from Poultry ...

    African Journals Online (AJOL)

    A study was carried out on different retention times in the anaerobic fermentation of slurry from poultry droppings and cassava peels. The system adopted in this work was batch-type. Daily gas production fell slightly from 130 to 32 litres as retention time was increased from 10 to 40 days for poultry droppings. For cassava ...

  5. Wheat straw, household waste and hay as a source of lignocellulosic biomass for bioethanol and biogas production

    DEFF Research Database (Denmark)

    Tomczak, Anna; Bruch, Magdalena; Holm-Nielsen, Jens Bo

    2010-01-01

    To meet the increasing need for bioenergy three lignocellulosic materials: raw hay, pretreated wheat straw and pretreated household waste were considered for the production of bioethanol and biogas. Several mixtures of household waste supplemented with different fractions of wheat straw and hay...... in fermentation process with Saccharomyces cerevisiae were investigated. Wheat straw and household wastes were pretreated using IBUS technology, patented by Dong Energy, which includes milling, stem explosion treatment and enzymatic hydrolysis. Methane production was investigated using stillages, the effluents...... from bioethanol fermentation experiment. Previous trial of biogas production from above mentioned household wastes was enclosed....

  6. Biogas production from low temperature lagoon digesters treating livestock manure

    Energy Technology Data Exchange (ETDEWEB)

    Safley, L.M. Jr.; Westerman, P.W. [North Carolina State Univ., Raleigh, NC (United States)

    1993-12-31

    Laboratory anaerobic digesters were fed dairy and swine manure at the rates of 0.1 and 0.2 kg volatile solids (VS)/m{sup 3}-day over the temperature range of 10--23{degrees}C. The digesters were operated successfully with little indication of instability.

  7. Demand-driven biogas production from sugar beet silage in a novel fixed bed disc reactor under mesophilic and thermophilic conditions.

    Science.gov (United States)

    Terboven, Christiane; Ramm, Patrice; Herrmann, Christiane

    2017-10-01

    A newly developed fixed bed disc reactor (FBDR) which combines biofilm formation on biofilm carriers and reactor agitation in one single system was assessed for its applicability to demand-driven biogas production by variable feeding of sugar beet silage. Five different feeding patterns were studied at an organic loading of 4g VS L -1 d -1 under mesophilic and thermophilic conditions. High methane yields of 449-462L N kg VS were reached. Feeding variable punctual loadings caused immediate response with 1.2- to 3.5-fold increase in biogas production rates within 15min. Although variable feeding did not induce process instability, a temporary decrease in pH-value and methane concentration below 40% occurred. Thermophilic temperature was advantageous as it resulted in a more rapid, higher methane production and less pronounced decrease in methane content after feeding. The FBDR was demonstrated to be well-suited for flexible biogas production, but further research and comparison with traditional reactor systems are required. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Biogas production enhancement by soya sludge amendment in cattle dung digesters

    Energy Technology Data Exchange (ETDEWEB)

    Satyanarayan, Shanta; Ramakant; Shivayogi [WWT Division, NEERI, Nagpur 400 020 (India)

    2010-09-15

    Biogas energy production from cattle dung is an economically feasible and eco-friendly in nature. But dependence only on cattle dung is a limiting factor. Rich nitrogen containing substrate addition to extra carbohydrate digester like cattle dung could improve the biogas production. Detailed performance of the digesters at different ratios of cattle dung and soya sludge has been discussed in this paper considering the cold countries climate. Soya sludge substrate not only has high nitrogen content of 4.0-4.8% but it also has high percentage of volatile solids content in the range of 97.8-98.8%. Soya sludge addition also improved the manurial value of the digested slurry and also improved the dewater-ability of the sludge. Results indicated an increment of 27.0% gas production at 25.0% amendment of soya sludge in non-homogenized cattle dung (NCD) digester. The amount of gas production increased to 46.4% in case of homogenized cattle dung (HCD) with respect to NCD feed at the same amendment. (author)

  9. Life Cycle Assessment of Biogas Production from Marine Macroalgae: a Latvian Scenario

    Science.gov (United States)

    Pilicka, Iluta; Blumberga, Dagnija; Romagnoli, Francesco

    2011-01-01

    There is potential environmental benefit to be gained from the use of algae because of their ability to fix CO2, no need for direct land use and utilization of bio-waste (rich in potassium, phosphate and nitrogen based compounds) as a nutrients. The aim of the research is to assess the impact of biogas production and the final use in a cogeneration unit system from a Life Cycle Assessment (LCA) in comparison with a similar reference system using a non-renewable source (e.g. natural gas). The paper is intended to be a preliminary study for understanding the implementation of this novel technology in a Latvian context.

  10. A Simulation Model of Combined Biogas, Bioethanol and Protein Fodder Co-Production in Organic Farming

    DEFF Research Database (Denmark)

    Oleskowicz-Popiel, Piotr; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2009-01-01

    In order to evaluate new strategies for the production of renewable energy within sustainable organic agriculture, a process-simulation model for a 100 ha organic farm was developed. Data used for the model was obtained from laboratory trials, literature data, consultancy with experts, and results...... ha organic farm with ethanol or biogas, respectively. This calculation was based on the assumption that the electrical efficiency of CHP (combined heat and power) unit was 38%. A variety of different scenarios can be simulated to mirror the farmer's needs....

  11. Seaweed as source of energy. 1: effect of a specific bacterial strain on biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivasa R.P.; Tarwade, S.J.; Sarma, K.S.R.

    1980-09-01

    Only certain marine bacteria capable of digesting the special type of polysaccharide - agar and alginic acid can bring about the biodegradation of these substances and utilise them as carbon source to produce the organics which will be utilised by the methane bacteria to produce methane. When bacterial strain was used in conjunction with cowdung as a source of methane bacteria in seaweed digester, production of biogas from seaweed was accelerated. Adding of small amount of Ulva to seaweed digester increased the output of gas. (Refs. 4).

  12. Usage of Farm Animal Waste for Biogas Production

    Science.gov (United States)

    Sankina, O. V.; Chernysh, A. P.; Sankin, A. S.

    2017-05-01

    The article considers problems connecting with the development of cattle breeding in Russia, especially the utilization of animals and poultry waste products. Basing on the foreign scientists’ experience, it has been proposed different solutions to this problem in terms of the Russian Federation, conducted the study, and presented the results of the undertaken experiments. Recommendations on the use of substances, that speed up fermentation processes at certain temperatures, has been developed.

  13. Model of the daily production of biogas from a Indian type digester using techniques of identification systems; Modelo da producao diaria de biogas de um biodigestor tipo indiano utilizando tecnicas de identificacao de sistemas

    Energy Technology Data Exchange (ETDEWEB)

    Borges Neto, Manuel Rangel [Centro Federal de Educacao Tecnologica de Petrolina (CEFET-PET), PE (Brazil)], e-mail: rangel@cefetpet.br; Carvalho, Paulo Cesar Marques de; Almeida, Otacilio da Mota [Universidade Federal do Ceara (PPGEE/UFC), Fortaleza, CE (Brazil). Programa de Pos Graduacao em Engenharia Eletrica

    2008-07-01

    This paper brings a study about utilization of curve adjustments and prediction models of biogas production from a biodigestor fed by sheep manure, to help in the development of a optimal controller to production and use of biogas generated by Indian type biodigestors applied to semiarid. From experimental data were applied simultaneously the Least Mean Squares and Recursive Least Squares methods algorithms and after proper analysis, to validation, a new experimental data set was used to the chosen model. (author)

  14. Comparative Advantage of Maize- and Grass-Silage Based Feedstock for Biogas Production with Respect to Greenhouse Gas Mitigation

    Directory of Open Access Journals (Sweden)

    Andreas Meyer-Aurich

    2016-06-01

    Full Text Available This paper analyses the comparative advantage of using silage maize or grass as feedstock for anaerobic digestion to biogas from a greenhouse gas (GHG mitigation point of view, taking into account site-specific yield potentials, management options, and land-use change effects. GHG emissions due to the production of biogas were calculated using a life-cycle assessment approach for three different site conditions with specific yield potentials and adjusted management options. While for the use of silage maize, GHG emissions per energy unit were the same for different yield potentials, and the emissions varied substantially for different grassland systems. Without land-use change effects, silage maize-based biogas had lower GHG emissions per energy unit compared to grass-based biogas. Taking land-use change into account, results in a comparative advantage of biogas production from grass-based feedstock produced on arable land compared to silage maize-based feedstock. However, under current frame conditions, it is quite unrealistic that grass production systems would be established on arable land at larger scale.

  15. Effect of ferrous chloride on biogas production and enzymatic activities during anaerobic fermentation of cow dung and Phragmites straw.

    Science.gov (United States)

    Zhang, Huayong; Tian, Yonglan; Wang, Lijun; Mi, Xueyue; Chai, Yang

    2016-06-01

    The effect of ferrous (added as FeCl2) on the anaerobic co-digestion of Phragmites straw and cow dung was studied by investigating the biogas properties, pH values, organic matter degradation (COD) and enzyme activities (cellulase, protease and dehydrogenase) at different stages of mesophilic fermentation. The results showed that Fe(2+) addition increased the cumulative biogas yields by 18.1 % by extending the peak period with high daily biogas yields. Meanwhile, the methane (CH4) contents in the Fe(2+) added groups were generally higher than the control group before the 15th day. The pH values were not significantly impacted by Fe(2+) concentrations during the fermentation process. The COD concentrations, cellulase, protease and dehydrogenase activities varied with the added Fe(2+) concentrations and the stages of the fermentation process. At the beginning stage of fermentation (4th day), Fe(2+) addition increased the biogas production by improving the cellulase and dehydrogenase activities which caused a decline in COD. At the peak stage of fermentation (8th day), Fe(2+) addition enhanced the cellulase and protease activities, and resulted in lower COD contents than the control group. When the biogas yields decreased again (13th day), the COD contents varied similar with the protease and dehydrogenase activities, whilst cellulase activities were not sensitive to Fe(2+) concentrations. At the end of fermentation (26th day), Fe(2+) addition decreased the cellulase activities, led to lower COD contents and finally resulted the lower biogas yields than the control group. Taking the whole fermentation process into account, the promoting effect of Fe(2+) addition on biogas yields was mainly attributed to the extension of the gas production peak stage and the improvement of cellulase activities.

  16. Biogas - the calculable energy

    Science.gov (United States)

    Kith, Károly; Nagy, Orsolya; Balla, Zoltán; Tamás, András

    2015-04-01

    EU actions against climate change are rising energy prices, both have emphasized the use of renewable energy,increase investments and energy efficiency. A number of objectives formulated in the EC decree no. 29/2009 by 2020. This document is based on the share of renewable energies in energy consumption should be increased to 20% (EC, 2009). The EU average is 20% but the share of renewables vary from one member state to another. In Hungary in 2020, 14.65% renewable energy share is planned to be achieved. According to the latest Eurostat data, the share of renewable energy in energy consumption of the EU average was 14.1%, while in Hungary, this share was 9.6% in 2012. (EUROSTAT, 2014). The use of renewable energy plant level is influenced by several factors. The most important of these is the cost savings and efficiency gains. Hungarian investments in renewable energy production usually have high associated costs and the payback period is substantially more than five years, depending on the support rate. For example, the payback period is also influenced by the green electricity generated feed prices, which is one of the lowest in Hungary compared the Member States of the European Union. Consequently, it is important to increase the production of green energy. Nowadays, predictable biogas energy is an outstanding type of decentralized energy production. It follows directly that agricultural by-products can be used to produce energy and they also create jobs by the construction of a biogas plant. It is important to dispose of and destroy hazardous and noxious substances in energy production. It follows from this that the construction of biogas plants have a positive impact, in addition to green energy which is prepared to reduce the load on the environment. The production of biogas and green electricity is one of the most environment friendly forms of energy production. Biogas production also has other important ecological effects, such as the substitution of

  17. Combined Biogas and Bioethanol Production: Opportunities and Challenges for Industrial Application

    Directory of Open Access Journals (Sweden)

    Alessandra Cesaro

    2015-08-01

    Full Text Available In the last decades the increasing energy requirements along with the need to face the consequences of climate change have driven the search for renewable energy sources, in order to replace as much as possible the use of fossil fuels. In this context biomass has generated great interest as it can be converted into energy via several routes, including fermentation and anaerobic digestion. The former is the most common option to produce ethanol, which has been recognized as one of the leading candidates to substitute a large fraction of the liquid fuels produced from oil. As the economic competitiveness of bioethanol fermentation processes has to be enhanced in order to promote its wider implementation, the most recent trends are directed towards the use of fermentation by-products within anaerobic digestion. The integration of both fermentation and anaerobic digestion, in a biorefinery concept, would allow the production of ethanol along with that of biogas, which can be used to produce heat and electricity, thus improving the overall energy balance. This work aims at reviewing the main studies on the combination of both bioethanol and biogas production processes, in order to highlight the strength and weakness of the integrated treatment for industrial application.

  18. Rumen bacteria at work: bioaugmentation strategies to enhance biogas production from cow manure.

    Science.gov (United States)

    Ozbayram, E G; Akyol, Ç; Ince, B; Karakoç, C; Ince, O

    2018-02-01

    To investigate the effects of different bioaugmentation strategies for enhancing the biogas production from cow manure and evaluate microbial community patterns. Co-inoculation with cow rumen fluid and cow rumen-derived enriched microbial consortia was evaluated in anaerobic batch tests at 36°C and 41°C. Singular addition of both rumen fluid and enriched bioaugmentation culture had a promising enhancement on methane yields; however, the highest methane yield (311 ml CH 4 per gram VS at 41°C) was achieved when the anaerobic seed sludge was co-inoculated together with rumen fluid and enriched bioaugmentation culture. Bacterial community profiles were investigated by Ion PGM Platform, and specific lignocellulolytic bacteria dynamics in batch tests were assessed by qPCR. The temperature had minor effects on the abundance of bacterial community; in which Bacteroidetes and Firmicutes were the most abundant phyla in all digesters. Furthermore, Rikenellaceae, Clostridiaceae, Porphyromonadaceae, Bacteroidaceae and Ruminococcaceae played a crucial role during the anaerobic degradation of cow manure. There was an important impact of Firmicutes flavefaciens and Ruminococcus albus at 41°C, which in turn positively affected the methane production. The degree of enhancement in biogas production can be upgraded by the co-inoculation of rumen-derived bioaugmentation culture with anaerobic seed sludge with high methanogenic activity. A close look at the biotic interactions and their associations with abiotic factors might be valuable for evaluating rumen-related bioaugmentation applications. © 2017 The Society for Applied Microbiology.

  19. The influence on biogas production of three slurry-handling systems in dairy farms

    Directory of Open Access Journals (Sweden)

    Damiano Coppolecchia

    2015-04-01

    Full Text Available Handling systems can influence the production of biogas and methane from dairy farm manures. A comparative work performed in three different Italian dairy farms showed how the most common techniques (scraper, slatted floor, flushing can change the characteristics of collected manure. Scraper appears to be the most neutral choice, as it does not significantly affect the original characteristics of manure. Slatted floor produces a manure that has a lower methane potential in comparison with scraper, due to: a lower content of volatile solids caused by the biodegradation occurring in the deep pit, and a lower specific biogas production caused by the change in the characteristics of organic matter. Flushing can produce three different fluxes: diluted flushed manure, solid separated manure and liquid separated manure. The diluted fraction appears to be unsuitable for conventional anaerobic digestion in completely stirred reactors (CSTR, since its content of organic matter is too low to be worthwhile. The liquid separated fraction could represent an interesting material, as it appears to accumulate the most biodegradable organic fraction, but not as primary substrate in CSTR as the organic matter concentration is too low. Finally, the solid-liquid separation process tends to accumulate inert matter in the solid separated fraction and, therefore, its specific methane production is low.

  20. Point of view. Maize for biogas production in Thuringia; Standpunkt. Maisanbau fuer die Biogaserzeugung in Thueringen

    Energy Technology Data Exchange (ETDEWEB)

    Reinhold, Gerd; Peyker, Walter; Zorn, Wilfried; Strauss, Christoph; Struempfel, Juergen; Vetter, Armin; Degner, Joachim

    2011-04-15

    In Thuringia the maize represents with a current size of the cultivation of less than 10% and a cultivation concentration of less than 20% in every county an enrichment of crop rotation. The recycling of the digestate in the farm results due to higher C-reduction stability of the fermentation products to any deterioration of the C balance and soil fertility. Especially in Thuringia farming regions with very low livestock the introduction of biogas plants introduces to a higher diversity of agricultural production and dispersal of crop rotation. Practiced by the combination of locally adapted biogas plants with animal husbandry (milk production = use manure, pig = heat utilization) positive economic and environmental effects can be achieved for the Thuringian farmers. [German] In Thueringen stellt der Mais bei einem gegenwaertigen Anbauumfang von unter 10 % und einer Anbaukonzentration von unter 20 % in jedem Landkreis eine Bereicherung der Fruchtfolge dar. Die Verwertung der Gaerreste im Betrieb fuehrt infolge hoeherer C-Abbaustabilitaet der Gaerprodukte zu keiner Verschlechterung der C-Bilanz und der Bodenfruchtbarkeit. Besonders in Thueringer Ackerbauregionen mit sehr geringem Tierbesatz traegt die Einfuehrung von Biogasanlagen zu einer hoeheren Vielfalt der landwirtschaftlichen Produktion und Auflockerung der Fruchtfolgen bei. Durch die praktizierte Kombination von standortangepassten Biogasanlagen mit der Tierhaltung (Milcherzeugung = Guellenutzung, Schweinehaltung = Waermenutzung) werden fuer die Thueringer Landwirte positive oekonomische und oekologische Effekte erzielt.

  1. Biogas production from high-yielding energy crops in boreal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seppala, M.

    2013-11-01

    In this thesis, the methane production potential of traditional and novel energy crops was evaluated in boreal conditions. The highest methane yield per hectare was achieved with maize (4 000-9 200 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}) and the second highest with brown knapweed (2 700-6 100 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}). Recently, the most feasible energy crop, grass, produced 1 200-3 600 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}. The specific methane yields of traditional and novel energy crops varied from 170-500 l kg{sup -1} volatile solid (VS). The highest specific methane yields were obtained with maize, while the novel energy crops were at a lower range. The specific methane yields decreased in the later harvest time with maize and brown knapweed, and the specific methane yield of the grasses decreased from the 1st to 2nd harvests. Maize and brown knapweed produced the highest total solid (TS) yields per hectare 13-23 tTS ha{sup -1}, which were high when compared with the TS yields of grasses (6-13 tTS ha{sup -1}). The feasibility of maize and brown knapweed in co-digestion with liquid cow manure, in continuously stirred tank reactors (CSTR), was evaluated. According to the CSTR runs, maize and brown knapweed are suitable feeds and have stable processes, producing the highest methane yields (organic loading rate 2 kgVS m{sup -3}d{sup -1}), with maize at 259 l kgVS{sup -1} and brown knapweed at 254 l kgVS{sup -1}. The energy balance (input/output) of the cultivation of the grasses, maize and brown knapweed was calculated in boreal conditions, and it was better when the digestate was used as a fertilizer (1.8-4.8 %) than using chemical fertilizers (3.7-16.2 %), whose production is the most energy demanding process in cultivation. In conclusion, the methane production of maize, grasses and novel energy crops can produce high methane yields and are suitable feeds for anaerobic digestion. The cultivation managements of maize and novel energy crops for

  2. Biogas production from energy crops and crop residues

    Energy Technology Data Exchange (ETDEWEB)

    Lehtomaeki, A.

    2006-07-01

    The feasibility of utilising energy crops and crop residues in methane production through anaerobic digestion in boreal conditions was evaluated in this thesis. Potential boreal energy crops and crop residues were screened for their suitability for methane production, and the effects of harvest time and storage on the methane potential of crops was evaluated. Codigestion of energy crops and crop residues with cow manure, as well as digestion of energy crops alone in batch leach bed reactors with and without a second stage upflow anaerobic sludge blanket reactor (UASB) or methanogenic filter (MF) were evaluated. The methane potentials of crops, as determined in laboratory methane potential assays, varied from 0.17 to 0.49 m3 CH{sub 4} kg-1 VS{sub added} (volatile solids added) and from 25 to 260 m3 CH4 t-1 ww (tons of wet weight). Jerusalem artichoke, timothy-clover and reed canary grass gave the highest methane potentials of 2 900-5 400 m3 CH{sub 4} ha-1, corresponding to a gross energy potential of 28-53 MWh ha-1 and 40 000-60 000 km ha-1 in passenger car transport. The methane potentials per ww increased with most crops as the crops matured. Ensiling without additives resulted in minor losses (0-13%) in the methane potential of sugar beet tops but more substantial losses (17-39%) in the methane potential of grass, while ensiling with additives was shown to have potential in improving the methane potentials of these substrates by up to 19-22%. In semi-continuously fed laboratory continuously stirred tank reactors (CSTRs) co-digestion of manure and crops was shown feasible with feedstock VS containing up to 40% of crops. The highest specific methane yields of 0.268, 0.229 and 0.213 m3 CH{sub 4} kg-1 VS{sub added} in co-digestion of cow manure with grass, sugar beet tops and straw, respectively, were obtained with 30% of crop in the feedstock, corresponding to 85-105% of the methane potential in the substrates as determined by batch assays. Including 30% of crop in

  3. Reviewing the anaerobic digestion and co-digestion process of food waste from the perspectives on biogas production performance and environmental impacts.

    Science.gov (United States)

    Chiu, Sam L H; Lo, Irene M C

    2016-12-01

    In this paper, factors that affect biogas production in the anaerobic digestion (AD) and anaerobic co-digestion (coAD) processes of food waste are reviewed with the aim to improve biogas production performance. These factors include the composition of substrates in food waste coAD as well as pre-treatment methods and anaerobic reactor system designs in both food waste AD and coAD. Due to the characteristics of the substrates used, the biogas production performance varies as different effects are exhibited on nutrient balance, inhibitory substance dilution, and trace metal element supplement. Various types of pre-treatment methods such as mechanical, chemical, thermal, and biological methods are discussed to improve the rate-limiting hydrolytic step in the digestion processes. The operation parameters of a reactor system are also reviewed with consideration of the characteristics of the substrates. Since the environmental awareness and concerns for waste management systems have been increasing, this paper also addresses possible environmental impacts of AD and coAD in food waste treatment and recommends feasible methods to reduce the impacts. In addition, uncertainties in the life cycle assessment (LCA) studies are also discussed.

  4. Environmental Performance of Miscanthus, Switchgrass and Maize: Can C4 Perennials Increase the Sustainability of Biogas Production?

    Directory of Open Access Journals (Sweden)

    Andreas Kiesel

    2016-12-01

    Full Text Available Biogas is considered a promising option for complementing the fluctuating energy supply from other renewable sources. Maize is currently the dominant biogas crop, but its environmental performance is questionable. Through its replacement with high-yielding and nutrient-efficient perennial C4 grasses, the environmental impact of biogas could be considerably improved. The objective of this paper is to assess and compare the environmental performance of the biogas production and utilization of perennial miscanthus and switchgrass and annual maize. An LCA was performed using data from field trials, assessing the impact in the five categories: climate change (CC, fossil fuel depletion (FFD, terrestrial acidification (TA, freshwater eutrophication (FE and marine eutrophication (ME. A system expansion approach was adopted to include a fossil reference. All three crops showed significantly lower CC and FFD potentials than the fossil reference, but higher TA and FE potentials, with nitrogen fertilizer production and fertilizer-induced emissions identified as hot spots. Miscanthus performed best and changing the input substrate from maize to miscanthus led to average reductions of −66% CC; −74% FFD; −63% FE; −60% ME and −21% TA. These results show that perennial C4 grasses and miscanthus in particular have the potential to improve the sustainability of the biogas sector.

  5. Basic Data on Biogas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Renewable gases such as biogas and biomethane are considered as key energy carrier when the society is replacing fossil fuels with renewable alternatives. In Sweden, almost 80 % of the fossil fuels are used in the transport sector. Therefore, the focus in Sweden has been to use the produced biogas in this sector as vehicle gas. Basic Data on Biogas contains an overview of production, utilisation, climate effects etc. of biogas from a Swedish perspective. The purpose is to give an easy overview of the current situation in Sweden for politicians, decision makers and interested public. 1.4 TWh of biogas is produced annually in Sweden at approximately 230 facilities. The 135 wastewater treatment plants that produce biogas contribute with around half of the production. In order to reduce the sludge volume, biogas has been produced at wastewater treatment plants for decades. New biogas plants are mainly co-digestion plants and farm plants. The land filling of organic waste has been banned since 2005, thus the biogas produced in landfills is decreasing.

  6. Utilization of CO2 fixating bacterium Actinobacillus succinogenes 130Z for simultaneous biogas upgrading and bio-succinic acid production

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Alvarado-Morales, Merlin; Angelidaki, Irini

    2014-01-01

    Biogas is an attractive renewable energy carrier. However, it contains CO2 which limits certain applications of biogas. Here we report a novel approach for removing CO2 from biogas and capturing it as a biochemical through a biological process. This approach entails converting CO2 into bio...... and titre, CO2 consumption rate and CH4 purity. When using biogas as the only CO2 source at 140 kPa, the CO2 consumption rate corresponded to 2.59 L CO2 L-1 d-1 with a final succinic acid titre of 14.4 g L-1. Under this pressure condition the highest succinic acid yield and biogas quality reached......-succinic acid using the bacterial strain Actinobacillus succinogenes 130Z, and simultaneously producing high purity CH4 (>95%). Results showed that when pressure during fermentation was increased from 101.325 to 140 kPa, higher CO2 solubility was achieved, thereby positively affecting final succinic acid yield...

  7. Assessment of biogas production from MBT waste under different operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pantini, Sara, E-mail: pantini@ing.uniroma2.it [Department of Civil Engineering and Computer Science Engineering, University of Rome “Tor Vergata”, Via del Politecnico, 1, 00133 Rome (Italy); Verginelli, Iason; Lombardi, Francesco [Department of Civil Engineering and Computer Science Engineering, University of Rome “Tor Vergata”, Via del Politecnico, 1, 00133 Rome (Italy); Scheutz, Charlotte; Kjeldsen, Peter [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kgs. Lyngby (Denmark)

    2015-09-15

    Highlights: • BMP test displayed high gas potential generation capacity of MBT waste. • Strong inhibition effects were observed due to ammonia and VFA accumulation. • Waste water content was found as the key parameter limiting gas generation. • First order k-values were determined for different operating conditions. - Abstract: In this work, the influence of different operating conditions on the biogas production from mechanically–biologically treated (MBT) wastes is investigated. Specifically, different lab-scale anaerobic tests varying the water content (26–43% w/w up to 75% w/w), the temperature (from 20 to 25 °C up to 55 °C) and the amount of inoculum have been performed on waste samples collected from a full-scale Italian MBT plant. For each test, the gas generation yield and, where applicable, the first-order gas generation rates were determined. Nearly all tests were characterised by a quite long lag-phase. This result was mainly ascribed to the inhibition effects resulting from the high concentrations of volatile fatty acids (VFAs) and ammonia detected in the different stages of the experiments. Furthermore, water content was found as one of the key factor limiting the anaerobic biological process. Indeed, the experimental results showed that when the moisture was lower than 32% w/w, the methanogenic microbial activity was completely inhibited. For the higher water content tested (75% w/w), high values of accumulated gas volume (up to 150 Nl/kgTS) and a relatively short time period to deplete the MBT waste gas generation capacity were observed. At these test conditions, the effect of temperature became evident, leading to gas generation rates of 0.007 d{sup −1} at room temperature that increased to 0.03–0.05 d{sup −1} at 37 °C and to 0.04–0.11 d{sup −1} at 55 °C. Overall, the obtained results highlighted that the operative conditions can drastically affect the gas production from MBT wastes. This suggests that particular caution

  8. Evaluation of methane production features and kinetics of ...

    African Journals Online (AJOL)

    zino

    2015-06-03

    Jun 3, 2015 ... as agricultural fertilizer. In recent years, the conversion of ... few studies investigated the biogas production rate. In the ... evaluate biogas production rate using obtained .... The parameters obtained in the optimization process.

  9. Farm Biogas Handbook; Gaardsbiogashandbok

    Energy Technology Data Exchange (ETDEWEB)

    Christensson, Kjell; Bjoernsson, Lovisa; Dahlgren, Stefan; Eriksson, Peter; Lantz, Mikael; Lindstroem, Johanna; Mickelaaker, Maria

    2009-04-15

    A very large share of the total raw material potential for biogas production will be found within the agriculture. The raw material potential of manure in Sweden amounts to 4 - 6 TWh. Within the agriculture there is moreover a big potential in the form of residues from plant cultivation and non-food crops (approximately 7 TWh) that can to be used for biogas production. The potential for biogas production from only residues and manure is around 8-10 TWh. An increased biogas production within the agriculture would give significant environmental effects. Among other things manure, that today is leaking methane gas to the atmosphere, can be fermented, and trough this process the methane losses will be reduced. When the produced biogas replaces fossil fuel, an overall environmental effect will be reached, that is highly significant. This manual deals with biogas plants for agriculture and such plants that do not have extensive transports of different raw materials, as manure, wastes etc. One of the starting points for this manual's set-up is a course plan that Biogas Syd made for the courses they give to farmers, advisors and others. The manual illustrates important aspects in planning and construction of biogas plants, from raw material and technology to dimensioning of plant, use of biogas and planning of local gas grids. We also think it is important to illustrate the legislation that encompasses construction work and operation of a biogas plant. Investment costs are also illustrated, but the book does not give any extensive economic calculations, since we believe that such calculations need their own manual in the form of calculation examples, based on various conditions. The final section is called 'Biogas on farm - from idea to reality' where the entire process from analysis and pre-planning to monitoring and control of plant during operation is briefly described

  10. Greenhouse gas emission of biogas production out of silage maize and sugar beet – An assessment along the entire production chain

    International Nuclear Information System (INIS)

    Jacobs, Anna; Auburger, Sebastian; Bahrs, Enno; Brauer-Siebrecht, Wiebke; Christen, Olaf; Götze, Philipp; Koch, Heinz-Josef; Rücknagel, Jan; Märländer, Bernward

    2017-01-01

    Highlights: • GHG-emission, bioenergy yield, GHG-saving potential based on field trial data. • Results complement the absence of default values, especially for sugar beet. • Results represent Central European conditions of crop and biogas production. - Abstract: The study delivers values on greenhouse gas (GHG)-emission via cultivation of silage maize and sugar beet and of GHG-saving potential of electricity produced from biogas out of both biomass crops. Data are based on three rainfed crop rotation field trials in Germany (2011–2014) representative for Central Europe and can serve as default values. It was found that GHG-emission via crop cultivation was driven mainly by nitrous oxide emission from soil and mineral N-fertilizer use and was 2575–3390 kg carbon dioxide equivalents (CO_2eq) per hectare for silage maize and 2551–2852 kg CO_2eq ha"−"1 for sugar beet (without biogas digestate application). Integrating a GHG-credit for surplus N in the biogas digestate reduced total GHG-emission via crop cultivation to 65–69% for silage maize but only to 84–97% for sugar beet. The GHG-saving potential of electricity production from biogas was calculated for three biogas plants differing in technical characteristics. The GHG-saving potentials were generally >70% (silage maize: 78–80%, sugar beet: 72–76%) and the authors concluded that the technical setting of the biogas plant had a slight impact only. Overall, the authors assumed that the major potential for GHG-emission's reduction along the bioenergy production chain were N-management during crop cultivation and methane losses at the biogas plant. Finally, sugar beet, if cultivated in crop rotation, was shown to be an efficient alternative to silage maize as a biomass crop in order to achieve a higher diversity in biomass crop cultivation.

  11. Biogas plant control system

    International Nuclear Information System (INIS)

    Balasevicius, L.; Dervinis, G.; Macerauskas, V.

    2002-01-01

    This paper presents intelligent control system for the pig farm biogas production process. The system uses a fuzzy logic models based on knowledge of experts and operators. Four fuzzy models are introduced. The adequacy of fuzzy models is verified using real data and MATLAB simulation. Proposed expert system is implemented into traditional SCADA system for biogas process prediction and failure analyzing. (authors)

  12. The effect of pretreatment using sodium hydroxide and acetic acid to biogas production from rice straw waste

    Directory of Open Access Journals (Sweden)

    Budiyono

    2017-01-01

    Full Text Available Rice straw is agricultural waste containing high potency to be treated to biogas. However, the usage of rice straw is still limited due to high lignin content that will cause low biodegradability. The aim of this research was to study the effect of pretreatment using NaOH and acetic acid to biogas production from rice straw. NaOH was varied from 2%w, 4%w, and 6%w; and acetic acid was varied from 0,075 M, 0,15 M dan 0,75 M. The rice straw was cut into 1 cm size and submerged for 30 minutes in NaOH and acetic acid solution. The rice straw then filtered and neutralized before sending to anaerobic digestion process using rumen fluid bacteria. Biogas produced was measured using water displacement method. The result showed that the optimum concentration of NaOH solution was 4%w that resulted in biogas volume of 21,1 ml/gTS. Meanwhile, the optimum concentration of acetic acid pretreatment was 0,075 M that produced biogas volume of 14,5 ml/gTS. These results suggest that pretreatment using NaOH solution is more effective for decreasing the lignin content from rice straw.

  13. Cavitation for improved sludge conversion into biogas

    Science.gov (United States)

    Stoop, A. H.; Bakker, T. W.; Kramer, H. J. M.

    2015-12-01

    In several studies the beneficial influence of pre-treatment of waste activated sludge with cavitation on the biogas production was demonstrated. It is however, still not fully certain whether this effect should be mainly contributed to an increase in conversion rate of organics into biogas by anaerobic bacteria, and how much cavitation increases the total biogas yield. An increase in yield is only the case if cavitation can further disrupt otherwise inaccessible cell membrane structures and long chain organic molecules. In this study the influence of hydrodynamic cavitation on sludge that was already digested for 30 days was investigated. The total biogas yield could indeed be increased. The effect of the backpressure behind the venturi tube on the yield could not yet be established.

  14. Basic data biogas Germany. Solid fuels, biofuels, biogas; Basisdaten Bioenergie Deutschland. Festbrennstoffe, Biokraftstoffe, Biogas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-09-15

    The brochure ''Basic data biogas Germany'' gives statistical information about (a) renewable energies: primary energy consumption, power generation, energy supply, avoidance of greenhouse gases; (b) Solid fuels: energetic utilization, wood pellets, energy consumption, comparison to heating oil; (c) Biofuels: consumption, bioethanol, biodiesel, vegetable oils; (d) Biogas: biogas power plants, energy content, production, legal aspects.

  15. Basic data biogas Germany. Solid fuels, biofuels, biogas; Basisdaten Bioenergie Deutschland. Festbrennstoffe - Biokraftstoffe - Biogas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    The brochure ''Basic data biogas Germany'' gives statistical information about (a) renewable energies: primary energy consumption, power generation, energy supply, avoidance of greenhouse gases; (b) Solid fuels: energetic utilization, wood pellets, energy consumption, comparison to heating oil; (c) Biofuels: consumption, bioethanol, biodiesel, vegetable oils; (d) Biogas: biogas power plants, energy content, production, legal aspects.

  16. Investigation of mircroorganisms colonising activated zeolites during anaerobic biogas production from grass silage.

    Science.gov (United States)

    Weiss, S; Zankel, A; Lebuhn, M; Petrak, S; Somitsch, W; Guebitz, G M

    2011-03-01

    The colonisation of activated zeolites (i.e. clinoptilolites) as carriers for microorganisms involved in the biogas process was investigated. Zeolite particle sizes of 1.0-2.5mm were introduced to anaerobic laboratory batch-cultures and to continuously operated bioreactors during biogas production from grass silage. Incubation over 5-84 days led to the colonisation of zeolite surfaces in small batch-cultures (500 ml) and even in larger scaled and flow-through disturbed bioreactors (28 l). Morphological insights were obtained by using scanning electron microscopy (SEM). Single strand conformation polymorphism (SSCP) analysis based on amplification of bacterial and archaeal 16S rRNA fragments demonstrated structurally distinct populations preferring zeolite as operational environment. via sequence analysis conspicuous bands from SSCP patterns were identified. Populations immobilised on zeolite (e.g. Ruminofilibacter xylanolyticum) showed pronounced hydrolytic enzyme activity (xylanase) shortly after re-incubation in sterilised sludge on model substrate. In addition, the presence of methanogenic archaea on zeolite particles was demonstrated. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Efficiency of RNA extraction from selected bacteria in the context of biogas production and metatranscriptomics.

    Science.gov (United States)

    Stark, Lucy; Giersch, Tina; Wünschiers, Röbbe

    2014-10-01

    Understanding the microbial population in anaerobic digestion is an essential task to increase efficient substrate use and process stability. The metabolic state, represented e.g. by the transcriptome, of a fermenting system can help to find markers for monitoring industrial biogas production to prevent failures or to model the whole process. Advances in next-generation sequencing make transcriptomes accessible for large-scale analyses. In order to analyze the metatranscriptome of a mixed-species sample, isolation of high-quality RNA is the first step. However, different extraction methods may yield different efficiencies in different species. Especially in mixed-species environmental samples, unbiased isolation of transcripts is important for meaningful conclusions. We applied five different RNA-extraction protocols to nine taxonomic diverse bacterial species. Chosen methods are based on various lysis and extraction principles. We found that the extraction efficiency of different methods depends strongly on the target organism. RNA isolation of gram-positive bacteria was characterized by low yield whilst from gram-negative species higher concentrations can be obtained. Transferring our results to mixed-species investigations, such as metatranscriptomics with biofilms or biogas plants, leads to the conclusion that particular microorganisms might be over- or underrepresented depending on the method applied. Special care must be taken when using such metatranscriptomics data for, e.g. process modeling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Syringe test screening of microbial gas production activity: Cases denitrification and biogas formation.

    Science.gov (United States)

    Østgaard, Kjetill; Kowarz, Viktoria; Shuai, Wang; Henry, Ingrid A; Sposob, Michal; Haugen, Hildegunn Hegna; Bakke, Rune

    2017-01-01

    Mass produced plastic syringes may be applied as vessels for cheap, simple and large scale batch culture testing. As illustrated for the cases of denitrification and of biogas formation, metabolic activity was monitored by direct reading of the piston movement due to the gas volume formed. Pressure buildup due to friction was shown to be moderate. A piston pull and slide back routine can be applied before recording gas volume to minimize experimental errors due to friction. Inoculum handling and activity may be conveniently standardized as illustrated by applying biofilm carriers. A robust set of positive as well as negative controls ("blanks") should be included to ensure quality of the actual testing. The denitrification test showed saturation response at increasing amounts of inoculum in the form of adapted moving bed biofilm reactor (MBBR) carriers, with well correlated nitrate consumption vs. gas volume formed. As shown, the denitrification test efficiently screened different inocula at standardized substrates. Also, different substrates were successfully screened and compared at standardized inocula. The biogas potential test showed efficient screening of different substrates with effects of relative amounts of carbohydrate, protein, fat. A second case with CO 2 capture reclaimer waste as substrate demonstrated successful use of co-feeding to support waste treatment and how temperature effects on kinetics and stoichiometry can be observed. In total, syringe test screening of microbial gas production seems highly efficient at a low cost when properly applied. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Modification and tuning of diesel bus engine for biogas electricity production

    Directory of Open Access Journals (Sweden)

    Sittiboon Siripornakarachai

    2007-11-01

    Full Text Available This study is to convert and tune a bus diesel engine for electricity production in a farm using biogas as fuel. The engine under study is a Hino K-13CTI 13,000 cc 24 valve turbocharged engine coupled to a 3 phase 4 pole induction motor to produce electricity at 50 Hz. Modifications include an addition of biogas carburetor for air-fuel mixing, replacing the fuel injection system with spark ignition system, reduction of compression ratio from the original 16:1 to 8:1 using a cylinder head spacer, and modification of the turbocharger waste gate so the boost pressure can be adjusted. When the induction motor is synchronized to the power grid, the running speed of the engine is 1,500 rpm. Optimal engine efficiency was achieved at 28.6% by setting the lambda factor at 1.097, ignition timing at 54o before top dead center, and the turbocharger boost at 56 kPa. With this setting, the generator power output is 134.20 kilowatt with emission of CO and NOX being 1,154 and 896 ppm respectively.

  20. Assessment of energy performance in the life-cycle of biogas production

    International Nuclear Information System (INIS)

    Berglund, Maria; Boerjesson, Pal

    2006-01-01

    Energy balances are analysed from a life-cycle perspective for biogas systems based on 8 different raw materials. The analysis is based on published data and relates to Swedish conditions. The results show that the energy input into biogas systems (i.e. large-scale biogas plants) overall corresponds to 20-40% (on average approximately 30%) of the energy content in the biogas produced. The net energy output turns negative when transport distances exceed approximately 200 km (manure), or up to 700 km (slaughterhouse waste). Large variations exist in energy efficiency among the biogas systems studied. These variations depend both on the properties of the raw materials studied and on the system design and allocation methods chosen. The net energy output from biogas systems based on raw materials that have high water content and low biogas yield (e.g. manure) is relatively low. When energy-demanding handling of the raw materials is required, the energy input increases significantly. For instance, in a ley crop-based biogas system, the ley cropping alone corresponds to approximately 40% of the energy input. Overall, operation of the biogas plant is the most energy-demanding process, corresponding to 40-80% of the energy input into the systems. Thus, the results are substantially affected by the assumptions made about the allocation of a plant's entire energy demand among raw materials, e.g. regarding biogas yield or need of additional water for dilution

  1. Environmental benefits and value chain economics at biogas production, phase II. Food waste and manure; Miljoenytte og verdikjedeoekonomi ved biogassproduksjon, fase II. Matavfall og husdyrgjoedsel

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Hanne; Arnoey, Silje; Modahl, Ingunn Saur; Morken, John; Briseid, Tormod; Hanssen, Ole Joergen; Soerby, Ivar

    2012-07-01

    The main objective has been to develop an environmental model and an economic model for the entire value chain for the production of biogas and digestate processing. The results will contribute to better decision making in the planning of new biogas plants in Norway. Shortened version.(eb)

  2. Municipal Solid Waste Management in a Low Income Economy Through Biogas and Bioethanol Production

    DEFF Research Database (Denmark)

    Miezah, Kodwo; Obiri-Danso, Kwasi; Kádár, Zsófia

    2017-01-01

    The biodegradable fraction of municipal solid wastes generated from households in Ghana has favourable characteristics worth considering for bioenergy production. The suitability of this biodegradable portion for biogas and bioethanol production was assessed in this study. The assessment...... was performed on both untreated and hydrothermally treated unsorted and sorted fractions of the waste using standard methods for biomass conversion to bioenergy. Compositional analysis of the waste indicated that unsorted biodegradable municipal solid wastes (BMSW) consisted of 38.7 % dry matter (DM) glucan, 8.......3 % DM hemicellulose, 10.1 % DM lignin and 7.6 % DM ash. The sorted fractions with the highest glucan but least lignin and hemicellulose were the pool of cassava, yam and plantain peeling wastes (CYPPW) with 84 % DM glucan much of which was starch, 5.6 % DM lignin and 0.5 % DM hemicellulose. The highest...

  3. Use of basic and specific pre-treatments for the biogas production. Revision and analysis

    International Nuclear Information System (INIS)

    Martínez Hernández, Carlos M.; García López, Yaser

    2016-01-01

    Keeping in mind the importance that has today the use of national and international biogas plants, which use as raw material animal manure; as well as agricultural and agroindustrial residuals for the energy production and biofertilizers, minimizing the aspects of environmental contamination. This work is presented in three parts, in those which: firstly the technologies and the methods are described to apply the basic and special pre-treatments to the different biomass in order to obtain their maximum potential of methane. A second part where it is approached the particularities to do that. Finally, a third part where their possible use is analyzed in the Cuban case. As a result of the same one, the state of the art is shown in the use of basic and special pre-treatments, with the objective of to potentialize the increase of the methane production in agricultural or animal biomasses. (author)

  4. Consequences of flexible electricity production from biogas on the conventional power plant fleet and the CO2 emission

    International Nuclear Information System (INIS)

    Holzhammer, Uwe

    2013-01-01

    Electricity production using biogas is rather homogeneous throughout the year due to the compensational regulations. As a consequence of the fluctuating energy production from renewable energy sources a more flexible electricity production is needed. The contribution deals with the regulations and measures of the new renewable energy law 2012 and their impact on the conventional power plant fleet and the carbon dioxide emissions and their impact on an improvement of demand-oriented electricity production.

  5. Construction of Biodigesters to Optimize the Production of Biogas from Anaerobic Co-Digestion of Food Waste and Sewage

    Directory of Open Access Journals (Sweden)

    Claudinei de Souza Guimarães

    2018-04-01

    Full Text Available The objective of this study was to build and develop anaerobic biodigesters for optimization of biogas production using food waste (FW and sewage (S co-digestion from a wastewater treatment plant (WWTP. The biodigesters operated with different mixtures and in mesophilic phase (37 °C. During the 60 days of experiments, all control and monitoring parameters of the biodigesters necessary for biogas production were tested and evaluated. The biodigester containing FW, S and anaerobic sludge presented the biggest reduction of organic matter, expressed with removal of 88.3% TVS (total volatile solid and 84.7% COD (chemical oxygen demand the biggest biogas production (63 L and the highest methane percentage (95%. Specific methane production was 0.299 LCH4/gVS and removed. The use of biodigesters to produce biogas through anaerobic digestion may play an important role in local economies due to the opportunity to produce a renewable fuel from organic waste and also as an alternative to waste treatment. Finally, the embedded control and automation system was simple, effective, and robust, and the supervisory software was efficient in all aspects defined at its conception.

  6. Biogas production in Denmark - Assessments of the operational and societal economy; Biogasproduktion i Danmark - Vurderinger af drifts- og samfundsoekonomi

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Brian H.; Laugesen, F.M.; Dubgaard, A.; Bojesen, M.

    2013-06-15

    In the mid 1990's, the increase in the biogas production came from 20 centralised biogas plants. Since then the increase in biogas production has come mainly from farm biogas plants and it is estimated that around 8% of all slurry today is used to produce biogas. With the energy agreement from 2012 and a new political ambition of using up to 50% of all slurry and manure in the production of biogas, new targets, as well as a new framework have been set up for the future biogas production in Denmark. The aim of this report is to assess the business and socio-economics of biogas in Denmark under the new conditions given by the 2012 energy agreement. It is the aim to highlight many of the different parameters which, in effect, decides the economic outcome. Furthermore, it is the aim to look at the socio-economic gains and costs related to biogas production, including the positive side effects which come from biogas. The analysis of farm biogas indicates that the business profit is positive of around 0.4 million DKK per year, while the result for the organic plant is a deficit of around 4 million DKK per year despite the assumption that the farms are located relatively near the biogas plant. In the socio-economic analysis, the value of replaced natural gas is included as well as the value of increased fertiliser value and reduced nitrogen leaching. In the calculations, a net tax factor of 35% has been used to change the factor prices to consumer prices. A tax distortion factor (dead weight loss factor) of 20% has been used to account for the subsidies given and the change in taxation required. This is done even though the Danish PSO levy ensures that the subsidies given do actually affect the price of the energy bought by the consumer. The interest is set at 4.25% following the recommendation by the Ministry of Finance and The Environment Agency. The analyses show that the direct socio-economic costs are 39.5 million DKK and that the tax distortion effect costs 5

  7. Potential biodiesel and biogas production from corncob by anaerobic fermentation and black soldier fly.

    Science.gov (United States)

    Li, Wu; Li, Qing; Zheng, Longyu; Wang, Yuanyuan; Zhang, Jibin; Yu, Ziniu; Zhang, Yanlin

    2015-10-01

    Bioenergy has become attractive as alternatives of gradually exhausted fossil fuel. Obtaining high grade bioenergy from lignocellulose is attractive that can gradually meet the demand. This study reported biogas and biodiesel were produced from corncob by a two-step bioprocess, biogas was produced from corncob by anaerobic fermentation, then biogas residue was converted by black soldier fly larvae, and then biodiesel was produced from larvae grease. 86.70 L biogas was obtained from 400 g corncob with the accumulation of biogas yield of 220.71 mL/g VS(added) by anaerobic digestion. Besides, 3.17 g of biodiesel was produced from grease after inoculating black soldier fly larvae into 400 g biogas residue. Meanwhile, the results showed that the addition of black soldier fly larvae could be effective for the degradation of lignocellulose and the accumulation of grease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. A regional model for sustainable biogas production. Case study: North Savo, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Huopana, T.; Niska, H.; Jaeskelaeinen, A.; Loonik, J.; Den Boer, E.; Song, H.; Thorin, E.

    2012-11-15

    sustainable waste-to-energy production, using the region of North Savo, Finland as a pilot region. The aim has been to produce region-specific information on environmental and economic performance of waste-to-energy production that support regional planners, authorities and industry to perform local and regional waste-to-energy related planning and strategic decision making in the target regions. Originally it was planned to include both biogas and recovered fuel (REF) in the regional modelling activities, but due to the current status of the partner regions, the activities were decided to concentrate on the modelling of biogas production. In addition, it turned out that extensive life cycle analysis based information about waste incineration are available, that itself already support on-going waste incineration plant projects in the regions. In this report, the main results of the regional modelling are presented and assessed in respect to the selected regional biogas CHP and vehicle fuel scenarios. Recommendations are given to solve the bottle necks and missing links in regional vehicle fuel and biogas CHP production utilization. In addition, recommendations on regional policies and strategies as well as conclusions for other Baltic Sea region countries are included.

  9. Electricity from biogas

    International Nuclear Information System (INIS)

    Augenstein, D.; Benemann, J.; Hughes, E.

    1994-01-01

    Biogas is a medium-Btu methane and carbon dioxide mix produced by bacterial decomposition of organic matter. Its sources include landfills, waste water sludges, and animal wastes. It can fuel energy applications, of which electricity generation is a frequently-preferred option. The greatest current U.S. biogas recovery and energy use is at landfills, where biogas at about 80 landfill sites fuels a total of approximately 300 MWe. Wastewater treatment plants and confined animal waste management systems support additional electric power production. Generation of electricity from biogas can present difficulties due to the generally small scale of the generating facility, variable energy content of the gas, fluctuating availability, contaminant problems, and often-demanding control needs. However, such difficulties are being successfully addressed and economics for electricity generation are often favorable as biogas can be essentially open-quotes freeclose quotes fuel. Biogas recovery and use has the additional advantage of mitigating a potent greenhouse gas. Biogas from U.S. landfills alone could fuel about 1% of U.S. electrical generation while giving climate change benefit equivalent to reducing CO 2 emissions in the electricity sector by more than 10%. Growth in landfill gas use will be facilitated by recent regulations, advances in equipment, and improved management techniques such as open-quotes controlled landfillingclose quotes. The potential for biogas recovery and electricity production from sewage sludges, animal wastes and other organic resources such as agricultural residues is uncertain but probably exceeds the estimate for landfills

  10. Biogas plants with 300 GWh yearly production - system, technology and economy; Biogasanlaeggningar med 300 GWh aarsproduktion - system, teknik och ekonomi

    Energy Technology Data Exchange (ETDEWEB)

    Benjaminsson, Johan; Linne, Marita [BioMil AB, Lund (Sweden)

    2007-09-15

    Systems, techniques and economy have been analysed for biogas plants with more than 300 GWh annual energy productions. There is so far no such concept in Sweden but in Germany, a so called biogas park with 450 GWh annual biogas production will be set in operation by autumn 2007. Substratum for 300 GWh gas production are crops which corresponds to a acreage need of 6,000-11,000 hectares for silage crops such as maize or grass. If the gas production is based on corn, the acreage need is about 14 000 hectares. That means that biogas production from silage gives a higher energy outcome per hectare in comparison to grain. According to calculations, grain affects the gas price more than silage. However, grain is easy available at the world market which can be related to digestion of silage that means long term contracts with farmers nearby the biogas plant in addition to a complex logistic system for supply. The grain price by end of 2006 affects the gas price with about 0,38 kr/kWh. Large scale harvesting and transportation of silage in addition to a system for different crops to be harvested and transported directly to the digestion chamber admit reduced handling cost. Silage is expected to affect the gas price with about 0,28 kr/kWh. The price development of grain and silage can be expected to follow each other. The grain prices for 2008 seems to be higher than the notations for 2006/2007. Developed technique for digestion of grain admits 6 kg DMo/m{sup 3} chamber volume, 24 hours. That means reduced size of the digestion chamber in comparison to conventional digestion technique. In Germany where silage is the main substratum, two stage digestion with a first laying chamber admits 4 kg DMo/m{sup 3} chamber volume, 24 hours and DM-content of 12 %. The specific digestion cost for crops is about 0,13 kr/kWh. Huge amounts of digestion residue have to be handled. Dewatering makes sense since the digestion process needs additional water. The phosphorous solid fraction can

  11. Production and utilization of biogas in rural areas of industrialized and developing countries. Rev. Ed

    Energy Technology Data Exchange (ETDEWEB)

    Eggeling, G; Mackensen, G; Sasse, L [comps.

    1986-01-01

    This handbook describes and compares the various phases of biogas technology and its parallel development in industrialized countries and developing nations for the given agricultural situation in each. Special emphasis is placed on the microbiological fundamentals of anaerobic fermentation, their technical application, examples of biogas systems in industrialized and emerging nations, cost efficiency and implementation. In their treatment of various common characteristics, parallels and differences, the authors have attempted to build a bridge between biogas practice in industrialized countries and biogas practice in developing countries.

  12. Life Cycle Assessment of Biogas Production in Small-scale Household Digesters in Vietnam

    Directory of Open Access Journals (Sweden)

    T. K. V. Vu

    2015-05-01

    Full Text Available Small-scale household digesters have been promoted across Asia as a sustainable way of handling manure. The major advantages are that they produce biogas and reduce odor. However their disadvantages include the low recycling of nutrients, because digestate is dilute and therefore difficult to transport, and the loss of biogas as a result of cracks and the intentional release of excess biogas. In this study, life cycle assessment (LCA methodology was used to assess the environmental impacts associated with biogas