WorldWideScience

Sample records for biofuels feedstock development

  1. Biofuels feedstock development program

    International Nuclear Information System (INIS)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Martin, S.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1993-11-01

    The Department of Energy's (DOE's) Biofuels Feedstock Development Program (BFDP) leads the nation in the research, development, and demonstration of environmentally acceptable and commercially viable dedicated feedstock supply systems (DFSS). The purpose of this report is to highlight the status and accomplishments of the research that is currently being funded by the BFDP. Highlights summarized here and additional accomplishments are described in more detail in the sections associated with each major program task. A few key accomplishments include (1) development of a methodology for doing a cost-supply analysis for energy crops and the application of that methodology to looking at possible land use changes around a specific energy facility in East Tennessee; (2) preliminary documentation of the relationship between woody crop plantation locations and bird diversity at sites in the Midwest, Canada, and the pacific Northwest supplied indications that woody crop plantations could be beneficial to biodiversity; (3) the initiation of integrated switchgrass variety trials, breeding research, and biotechnology research for the south/southeast region; (4) development of a data base management system for documenting the results of herbaceous energy crop field trials; (5) publication of three issues of Energy Crops Forum and development of a readership of over 2,300 individuals or organizations as determined by positive responses on questionnaires

  2. Biofuels Feedstock Development Program annual progress report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1992-12-01

    This report provides an overview of the ongoing research funded in 1991 by the Department of Energy`s Biofuels Feedstock Development Program (BFDP). The BFDP is managed by the Environmental Sciences Division of the Oak Ridge National Laboratory and encompasses the work formerly funded by the Short Rotation Woody Crops Program and the Herbaceous Energy Crops Program. The combined program includes crop development research on both woody and herbaceous energy crop species, cross-cutting energy and environmental analysis and integration, and information management activities. Brief summaries of 26 different program activities are included in the report.

  3. Biofuels Feedstock Development Program annual progress report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1992-12-01

    This report provides an overview of the ongoing research funded in 1991 by the Department of Energy's Biofuels Feedstock Development Program (BFDP). The BFDP is managed by the Environmental Sciences Division of the Oak Ridge National Laboratory and encompasses the work formerly funded by the Short Rotation Woody Crops Program and the Herbaceous Energy Crops Program. The combined program includes crop development research on both woody and herbaceous energy crop species, cross-cutting energy and environmental analysis and integration, and information management activities. Brief summaries of 26 different program activities are included in the report.

  4. Innovative technological paradigm-based approach towards biofuel feedstock

    International Nuclear Information System (INIS)

    Xu, Jiuping; Li, Meihui

    2017-01-01

    Highlights: • DAS was developed through an innovative approach towards literature mining and technological paradigm theory. • A novel concept of biofuel feedstock development paradigm (BFDP) is proposed. • The biofuel production diffusion velocity model gives predictions for the future. • Soft path appears to be the driving force for the new paradigm shift. • An integrated biofuel production feedstock system is expected to play a significant role in a low-carbon sustainable future. - Abstract: Biofuels produced from renewable energy biomass are playing a more significant role because of the environmental problems resulting from the use of fossil fuels. However, a major problem with biofuel production is that despite the range of feedstock that can be used, raw material availability varies considerably. By combining a series of theories and methods, the research objective of this study is to determine the current developments and the future trends in biofuel feedstock. By combining technological paradigm theory with literature mining, it was found that biofuel feedstock production development followed a three-stage trajectory, which was in accordance with the traditional technological paradigm – the S-curve. This new curve can be divided into BFDP (biofuel feedstock development paradigm) competition, BFDP diffusion, and BFDP shift. The biofuel production diffusion velocity model showed that there has been constant growth from 2000, with the growth rate reaching a peak in 2008, after which time it began to drop. Biofuel production worldwide is expected to remain unchanged until 2030 when a paradigm shift is expected. This study also illustrates the results of our innovative procedure – a combination of the data analysis system and the technological paradigm theory – for the present biofuel feedstock soft path that will lead to this paradigm shift, with integrated biofuel production feedstock systems expected to be a significant new trend.

  5. Protecting innovation: genomics-based intellectual property for the development of feedstock for second-generation biofuels.

    Science.gov (United States)

    Harfouche, Antoine; Grant, Kannan; Selig, Marcus; Tsai, Daniel; Meilan, Richard

    2010-06-01

    One of the many controversies surrounding large-scale biofuel production is the diversion of land and other resources that might otherwise be used for food crops. Recent innovations will lead to a second generation of biofuel crops that can co-exist with food crops with little or no competition. Feedstocks from these bio-energy crops will be used to produce liquid fuel from cellulose, the most abundant polymer on the planet. Cell walls of higher plants are mainly composed of cellulose, hemicellulose, and lignin polymers. Cellulose and hemicellulose are polysaccharides with obvious value for biofuel production. However, lignin, while vital for plant growth and development, is widely known to negatively impact conversion efficiencies. Biomass pre-treatment, which is aimed at lignin removal, is not straightforward, and presents one of the major scientific and technical challenges and expenses associated with secondgeneration biofuel production. Scientific breakthroughs associated with altering the expression of key genes in the lignin biosynthetic pathway of biomass crops is a promising path toward solving this problem, and will likely impact the feedstock patent landscape in the near future. This review summarizes some of the recent and most important issued patents and patent applications associated with lignin-modification genes and methods of developing transgenic plants with altered lignin content and composition.

  6. Strategies for 2nd generation biofuels in EU - Co-firing to stimulate feedstock supply development and process integration to improve energy efficiency and economic competitiveness

    International Nuclear Information System (INIS)

    Berndes, Goeran; Hansson, Julia; Egeskog, Andrea; Johnsson, Filip

    2010-01-01

    The present biofuel policies in the European Union primarily stimulate 1st generation biofuels that are produced based on conventional food crops. They may be a distraction from lignocellulose based 2nd generation biofuels - and also from biomass use for heat and electricity - by keeping farmers' attention and significant investments focusing on first generation biofuels and the cultivation of conventional food crops as feedstocks. This article presents two strategies that can contribute to the development of 2nd generation biofuels based on lignocellulosic feedstocks. The integration of gasification-based biofuel plants in district heating systems is one option for increasing the energy efficiency and improving the economic competitiveness of such biofuels. Another option, biomass co-firing with coal, generates high-efficiency biomass electricity and reduces CO 2 emissions by replacing coal. It also offers a near-term market for lignocellulosic biomass, which can stimulate development of supply systems for biomass also suitable as feedstock for 2nd generation biofuels. Regardless of the long-term priorities of biomass use for energy, the stimulation of lignocellulosic biomass production by development of near term and cost-effective markets is judged to be a no-regrets strategy for Europe. Strategies that induce a relevant development and exploit existing energy infrastructures in order to reduce risk and reach lower costs, are proposed an attractive complement the present and prospective biofuel policies. (author)

  7. Increasing Feedstock Production for Biofuels: Economic Drivers, Environmental Implications, and the Role of Research

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    The Biomass Research and Development Board (Board) commissioned an economic analysis of feedstocks to produce biofuels. The Board seeks to inform investments in research and development needed to expand biofuel production. This analysis focuses on feedstocks; other interagency teams have projects underway for other parts of the biofuel sector (e.g., logistics). The analysis encompasses feedstocks for both conventional and advanced biofuels from agriculture and forestry sources.

  8. Biofuel Feedstock Assessment for Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64

  9. Biofuel technologies. Recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vijai Kumar [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry; MITS Univ., Rajasthan (India). Dept. of Science; Tuohy, Maria G. (eds.) [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry

    2013-02-01

    Written by experts. Richly illustrated. Of interest to both experienced researchers and beginners in the field. Biofuels are considered to be the main potential replacement for fossil fuels in the near future. In this book international experts present recent advances in biofuel research and related technologies. Topics include biomethane and biobutanol production, microbial fuel cells, feedstock production, biomass pre-treatment, enzyme hydrolysis, genetic manipulation of microbial cells and their application in the biofuels industry, bioreactor systems, and economical processing technologies for biofuel residues. The chapters provide concise information to help understand the technology-related implications of biofuels development. Moreover, recent updates on biofuel feedstocks, biofuel types, associated co- and byproducts and their applications are highlighted. The book addresses the needs of postgraduate researchers and scientists across diverse disciplines and industrial sectors in which biofuel technologies and related research and experimentation are pursued.

  10. Evaluation of carbon fluxes and trends (2000-2008) in the Greater Platte River Basin: a sustainability study on the potential biofuel feedstock development

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.; Zhang, Li; Gilmanov, Tagir G.

    2012-01-01

    This study evaluates the carbon fluxes and trends and examines the environmental sustainability (e.g., carbon budget, source or sink) of the potential biofuel feedstock sites identified in the Greater Platte River Basin (GPRB). A 9-year (2000–2008) time series of net ecosystem production (NEP), a measure of net carbon absorption or emission by ecosystems, was used to assess the historical trends and budgets of carbon flux for grasslands in the GPRB. The spatially averaged annual NEP (ANEP) for grassland areas that are possibly suitable for biofuel expansion (productive grasslands) was 71–169 g C m−2 year−1 during 2000–2008, indicating a carbon sink (more carbon is absorbed than released) in these areas. The spatially averaged ANEP for areas not suitable for biofuel feedstock development (less productive or degraded grasslands) was −47 to 69 g C m−2 year−1 during 2000–2008, showing a weak carbon source or a weak carbon sink (carbon emitted is nearly equal to carbon absorbed). The 9-year pre-harvest cumulative ANEP was 1166 g C m−2 for the suitable areas (a strong carbon sink) and 200 g C m−2 for the non-suitable areas (a weak carbon sink). Results demonstrate and confirm that our method of dynamic modeling of ecosystem performance can successfully identify areas desirable and sustainable for future biofuel feedstock development. This study provides useful information for land managers and decision makers to make optimal land use decisions regarding biofuel feedstock development and sustainability.

  11. Biofuel Feedstock Assessment For Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply

  12. Land-based Investments for Rural Development? A Grounded Analysis of the Local Impacts of Biofuel Feedstock Plantations in Ghana

    Directory of Open Access Journals (Sweden)

    George C. Schoneveld

    2011-12-01

    Full Text Available The rapidly growing biofuel sector in Africa has, in recent years, been received with divided interest. As part of a contemporary wave of agricultural modernization efforts, it could make invaluable contributions to rural poverty. Conversely, it could also engender socioeconomically and environmentally detrimental land use changes as valuable land resources are converted to plantation agriculture. This research analyzes the impacts and impact pathways of biofuel feedstock development in Ghana. It finds that companies are accessing large contiguous areas of customary land through opaque negotiations with traditional authorities, often outside the purview of government and customary land users. Despite lack of participation, most customary land users were highly supportive of plantation development, with high expectations of 'development' and 'modernization.' With little opposition and resistance, large areas of agricultural and forested land are at threat of being converted to plantation monoculture. A case study analysis shows that this can significantly exacerbate rural poverty as communities lose access to vital livelihood resources. Vulnerable groups, such as women and migrants, are found to be most profoundly affected because of their relative inability in recovering lost livelihood resources. Findings suggest that greater circumspection by government is warranted on these types of large-scale land deals.

  13. Biorefinery developments for advanced biofuels from a widening array of biomass feedstocks

    Science.gov (United States)

    When the United States passed the Renewable Fuel Standards (RFS) of 2007 into law it mandated that, by the year 2022, 36 billion gallons of biofuels be produced annually in the U.S. to displace petroleum. This targeted quota, which required that at least half of domestic transportation fuel be “adva...

  14. Washington biofuel feedstock crop supply under output price and quantity uncertainty

    International Nuclear Information System (INIS)

    Zheng Qiujie; Shumway, C. Richard

    2012-01-01

    Subsidized development of an in-state biofuels industry has received some political support in the state of Washington, USA. Utilizing in-state feedstock supplies could be an efficient way to stimulate biofuel industries and the local economy. In this paper we estimate supply under output price and quantity uncertainty for major biofuel feedstock crops in Washington. Farmers are expected to be risk averse and maximize the utility of profit and uncertainty. We estimate very large Washington price elasticities for corn and sugar beets but a small price elasticity for a third potential feedstock, canola. Even with the large price elasticities for two potential feedstocks, their current and historical production levels in the state are so low that unrealistically large incentives would likely be needed to obtain sufficient feedstock supply for a Washington biofuel industry. Based on our examination of state and regional data, we find low likelihood that a Washington biofuels industry will develop in the near future primarily using within-state biofuel feedstock crops. - Highlights: ► Within-state feedstock crop supplies insufficient for Washington biofuel industry. ► Potential Washington corn and sugar beet supplies very responsive to price changes. ► Feedstock supplies more responsive to higher expected profit than lower risk. ► R and D for conversion of waste cellulosic feedstocks is potentially important policy.

  15. Transgenic perennial biofuel feedstocks and strategies for bioconfinement

    Science.gov (United States)

    The use of transgenic tools for the improvement of plant feedstocks will be required to realize the full economic and environmental benefits of cellulosic and other biofuels, particularly from perennial plants. Traits that are targets for improvement of biofuels crops include he...

  16. Estimating Biofuel Feedstock Water Footprints Using System Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Inman, Daniel; Warner, Ethan; Stright, Dana; Macknick, Jordan; Peck, Corey

    2016-07-01

    Increased biofuel production has prompted concerns about the environmental tradeoffs of biofuels compared to petroleum-based fuels. Biofuel production in general, and feedstock production in particular, is under increased scrutiny. Water footprinting (measuring direct and indirect water use) has been proposed as one measure to evaluate water use in the context of concerns about depleting rural water supplies through activities such as irrigation for large-scale agriculture. Water footprinting literature has often been limited in one or more key aspects: complete assessment across multiple water stocks (e.g., vadose zone, surface, and ground water stocks), geographical resolution of data, consistent representation of many feedstocks, and flexibility to perform scenario analysis. We developed a model called BioSpatial H2O using a system dynamics modeling and database framework. BioSpatial H2O could be used to consistently evaluate the complete water footprints of multiple biomass feedstocks at high geospatial resolutions. BioSpatial H2O has the flexibility to perform simultaneous scenario analysis of current and potential future crops under alternative yield and climate conditions. In this proof-of-concept paper, we modeled corn grain (Zea mays L.) and soybeans (Glycine max) under current conditions as illustrative results. BioSpatial H2O links to a unique database that houses annual spatially explicit climate, soil, and plant physiological data. Parameters from the database are used as inputs to our system dynamics model for estimating annual crop water requirements using daily time steps. Based on our review of the literature, estimated green water footprints are comparable to other modeled results, suggesting that BioSpatial H2O is computationally sound for future scenario analysis. Our modeling framework builds on previous water use analyses to provide a platform for scenario-based assessment. BioSpatial H2O's system dynamics is a flexible and user

  17. Tools and methodologies to support more sustainable biofuel feedstock production.

    Science.gov (United States)

    Dragisic, Christine; Ashkenazi, Erica; Bede, Lucio; Honzák, Miroslav; Killeen, Tim; Paglia, Adriano; Semroc, Bambi; Savy, Conrad

    2011-02-01

    Increasingly, government regulations, voluntary standards, and company guidelines require that biofuel production complies with sustainability criteria. For some stakeholders, however, compliance with these criteria may seem complex, costly, or unfeasible. What existing tools, then, might facilitate compliance with a variety of biofuel-related sustainability criteria? This paper presents four existing tools and methodologies that can help stakeholders assess (and mitigate) potential risks associated with feedstock production, and can thus facilitate compliance with requirements under different requirement systems. These include the Integrated Biodiversity Assessment Tool (IBAT), the ARtificial Intelligence for Ecosystem Services (ARIES) tool, the Responsible Cultivation Areas (RCA) methodology, and the related Biofuels + Forest Carbon (Biofuel + FC) methodology.

  18. DLA Energy Biofuel Feedstock Metrics Study

    Science.gov (United States)

    2012-12-11

    moderately/highly in- vasive  Metric 2: Genetically modified organism ( GMO ) hazard, Yes/No and Hazard Category  Metric 3: Species hybridization...4– biofuel distribution Stage # 5– biofuel use Metric 1: State inva- siveness ranking Yes Minimal Minimal No No Metric 2: GMO hazard Yes...may utilize GMO microbial or microalgae species across the applicable biofuel life cycles (stages 1–3). The following consequence Metrics 4–6 then

  19. Biobutanol as a Potential Sustainable Biofuel - Assessment of Lignocellulosic and Waste-based Feedstocks

    Directory of Open Access Journals (Sweden)

    Johanna Niemisto

    2013-06-01

    Full Text Available This paper introduces the production process of an alternative transportation biofuel, biobutanol. European legislation concerning biofuels and their sustainability criteria are also briefly described. The need to develop methods to ensure more sustainable and efficient biofuel production processes is recommended. In addition, the assessment method to evaluate the sustainability of biofuels is considered and sustainability assessment of selected feedstocks for biobutanol production is performed. The benefits and potential of using lignocellulosic and waste materials as feedstocks in the biobutanol production process are also discussed. Sustainability assessment in this paper includes cultivation, harvest/collection and upstream processing (pretreatment of feedstocks, comparing four main biomass sources: food crops, non-food crops, food industry by-product and wood-based biomass. It can be concluded that the highest sustainable potential in Finland is when biobutanol production is integrated into pulp & paper mills.

  20. Upgrading of solid biofuels and feedstock quality

    Energy Technology Data Exchange (ETDEWEB)

    Burvall, Jan [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept. of Agricultural Research for Northern Sweden

    1998-06-01

    This paper treats upgrading of biomass to pellets, briquettes and powder and the quality needed of the initial feedstock. The main raw materials are wood and reed canary grass (Phalaris arundinacea L.) 5 refs, 6 figs, 2 tabs

  1. Development of synthetic chromosomes and improved microbial strains to utilize cellulosic feedstocks and express valuable coproducts for sustainable production of biofuels from corn

    Science.gov (United States)

    A sustainable biorefinery must convert a broad range of renewable feedstocks into a variety of product streams, including fuels, power, and value-added bioproducts. To accomplish this, microbial-based technologies that enable new commercially viable coproducts from corn-to-ethanol biofuel fermentati...

  2. Lignin-containing Feedstock Hydrogenolysis for Biofuel Component Production

    Directory of Open Access Journals (Sweden)

    Elena Shimanskaya

    2018-01-01

    How to Cite: Shimanskaya, E.I., Stepacheva, A.A., Sulman, E.M., Rebrov, E.V., Matveeva, V.G. (2018. Lignin-containing Feedstock Hydrogenolysis for Biofuel Component Production. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 74-81 (doi:10.9767/bcrec.13.1.969.74-81

  3. Agave: a biofuel feedstock for arid and semi-arid environments

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Stephen; Martin, Jeffrey; Simpson, June; Wang, Zhong; Visel, Axel

    2011-05-31

    Efficient production of plant-based, lignocellulosic biofuels relies upon continued improvement of existing biofuel feedstock species, as well as the introduction of newfeedstocks capable of growing on marginal lands to avoid conflicts with existing food production and minimize use of water and nitrogen resources. To this end, specieswithin the plant genus Agave have recently been proposed as new biofuel feedstocks. Many Agave species are adapted to hot and arid environments generally unsuitable forfood production, yet have biomass productivity rates comparable to other second-generation biofuel feedstocks such as switchgrass and Miscanthus. Agavesachieve remarkable heat tolerance and water use efficiency in part through a Crassulacean Acid Metabolism (CAM) mode of photosynthesis, but the genes andregulatory pathways enabling CAM and thermotolerance in agaves remain poorly understood. We seek to accelerate the development of agave as a new biofuelfeedstock through genomic approaches using massively-parallel sequencing technologies. First, we plan to sequence the transcriptome of A. tequilana to provide adatabase of protein-coding genes to the agave research community. Second, we will compare transcriptome-wide gene expression of agaves under different environmentalconditions in order to understand genetic pathways controlling CAM, water use efficiency, and thermotolerance. Finally, we aim to compare the transcriptome of A.tequilana with that of other Agave species to gain further insight into molecular mechanisms underlying traits desirable for biofuel feedstocks. These genomicapproaches will provide sequence and gene expression information critical to the breeding and domestication of Agave species suitable for biofuel production.

  4. Renewable Enhanced Feedstocks for Advanced Biofuels and Bioproducts (REFABB)

    Energy Technology Data Exchange (ETDEWEB)

    Peoples, Oliver [Metabolix Inc., Cambridge, MA (United States); Snell, Kristi [Metabolix Inc., Cambridge, MA (United States)

    2016-06-09

    The basic concept of the REFABB project was that by genetically engineering the biomass crop switchgrass to produce a natural polymer PHB, which is readily broken down by heating (thermolysis) into the chemical building block crotonic acid, sufficient additional economic value would be added for the grower and processor to make it an attractive business at small scale. Processes for using thermolysis to upgrade biomass to densified pellets (char) or bio-oil are well known and require low capital investment similar to a corn ethanol facility. Several smaller thermolysis plants would then supply the densified biomass, which is easier to handle and transport to a centralized biorefinery where it would be used as the feedstock. Crotonic acid is not by itself a large volume commodity chemical, however, the project demonstrated that it can be used as a feedstock to produce a number of large volume chemicals including butanol which itself is a biofuel target. In effect the project would try to address three key technology barriers, feedstock logistics, feedstock supply and cost effective biomass conversion. This project adds to our understanding of the potential for future biomass biorefineries in two main areas. The first addressed in Task A was the importance and potential of developing an advanced value added biomass feedstock crop. In this Task several novel genetic engineering technologies were demonstrated for the first time. One important outcome was the identification of three novel genes which when re-introduced into the switchgrass plants had a remarkable impact on increasing the biomass yield based on dramatically increasing photosynthesis. These genes also turned out to be critical to increasing the levels of PHB in switchgrass by enabling the plants to fix carbon fast enough to support both plant growth and higher levels of the polymer. Challenges in the critical objective of Task B, demonstrating conversion of the PHB in biomass to crotonic acid at over 90

  5. Generating a geospatial database of U.S. regional feedstock production for use in evaluating the environmental footprint of biofuels.

    Science.gov (United States)

    Holder, Christopher T; Cleland, Joshua C; LeDuc, Stephen D; Andereck, Zac; Hogan, Chris; Martin, Kristen M

    2016-04-01

    The potential environmental effects of increased U.S. biofuel production often vary depending upon the location and type of land used to produce biofuel feedstocks. However, complete, annual data are generally lacking regarding feedstock production by specific location. Corn is the dominant biofuel feedstock in the U.S., so here we present methods for estimating where bioethanol corn feedstock is grown annually and how much is used by U.S. ethanol biorefineries. We use geospatial software and publicly available data to map locations of biorefineries, estimate their corn feedstock requirements, and estimate the feedstock production locations and quantities. We combined these data and estimates into a Bioethanol Feedstock Geospatial Database (BFGD) for years 2005-2010. We evaluated the performance of the methods by assessing how well the feedstock geospatial model matched our estimates of locally-sourced feedstock demand. On average, the model met approximately 89 percent of the total estimated local feedstock demand across the studied years-within approximately 25-to-40 kilometers of the biorefinery in the majority of cases. We anticipate that these methods could be used for other years and feedstocks, and can be subsequently applied to estimate the environmental footprint of feedstock production. Methods used to develop the Bioethanol Feedstock Geospatial Database (BFGD) provide a means of estimating the amount and location of U.S. corn harvested for use as U.S. bioethanol feedstock. Such estimates of geospatial feedstock production may be used to evaluate environmental impacts of bioethanol production and to identify conservation priorities. The BFGD is available for 2005-2010, and the methods may be applied to additional years, locations, and potentially other biofuels and feedstocks.

  6. Geoffroea decorticans for Biofuels: A Promising Feedstock

    Directory of Open Access Journals (Sweden)

    Claudia Santibáñez

    2017-01-01

    Full Text Available In this work, chañar (Geoffroea decorticans fruit is evaluated as a potential feedstock for biodiesel and biomass pellets production with reference to some relevant properties. The fatty acid profile of this oil (83% unsaturated acids is found to be comparable to similar seed oils which have been attempted for biodiesel production. As a result, the methyl esters (biodiesel obtained from this oil exhibits high quality properties. Chañar biodiesel quality meets all other biodiesel international standards (ASTM D6751 and EN 14214. Moreover, the husk that surrounds the kernel showed a high potential for usage as densified solid fuels. The results demonstrate that chañar husks pellets have a higher calorific value when compared with other biomass pellets, typically, approximately 21 MJ kg−1 with 1.8% of ashes (which is equivalent to that obtained from the combustion of pellets produced from forest wastes. This study indicates that chañar can be used as a multipurpose energy crop in semiarid regions for biodiesel and densified solid fuels (pellets production.

  7. biofuel development in California

    Directory of Open Access Journals (Sweden)

    Varaprasad Bandaru

    2015-07-01

    Full Text Available Biofuels are expected to play a major role in meeting California's long-term energy needs, but many factors influence the commercial viability of the various feedstock and production technology options. We developed a spatially explicit analytic framework that integrates models of plant growth, crop adoption, feedstock location, transportation logistics, economic impact, biorefinery costs and biorefinery energy use and emissions. We used this framework to assess the economic potential of hybrid poplar as a feedstock for jet fuel production in Northern California. Results suggest that the region has sufficient suitable croplands (2.3 million acres and nonarable lands (1.5 million acres for poplar cultivation to produce as much as 2.26 billion gallons of jet fuel annually. However, there are major obstacles to such large-scale production, including, on nonarable lands, low poplar yields and broad spatial distribution and, on croplands, competition with existing crops. We estimated the production cost of jet fuel to be $4.40 to $5.40 per gallon for poplar biomass grown on nonarable lands and $3.60 to $4.50 per gallon for biomass grown on irrigated cropland; the current market price is $2.12 per gallon. Improved poplar yields, use of supplementary feedstocks at the biorefinery and economic supports such as carbon credits could help to overcome these barriers.

  8. The National Biofuels Strategy - Importance of sustainable feedstock production systems in regional-based supply chains

    Science.gov (United States)

    Region-based production systems are needed to produce the feedstocks that will be turned into the biofuels required to meet Federal mandated targets. Executive and Legislative actions have put into motion significant government responses designed to advance the development and production of domestic...

  9. Impact of Technology and Feedstock Choice on the Environmental Footprint of Biofuels

    Science.gov (United States)

    Schultz, P. B.; Dodder, R. S.

    2012-12-01

    The implementation of the U.S. Renewable Fuel Standard program (RFS2) has led to a dramatic shift in the use of biofuel in the U.S. transportation system over the last decade. To satisfy this demand, the production of U.S. corn-based ethanol has grown rapidly, with an average increase of over 25% annually from 2002 to 2010. RFS2 requires a similarly steep increase in the production of advanced biofuels, such as cellulosic ethanol. Unlike corn-based ethanol, which is derived from the biochemical fermentation of sugars in wet and dry mills, it is likely that a more diverse suite of technologies will need to be developed to be able to meet the advanced biofuel RFS2 targets, including biochemical as well as thermochemical (e.g., gasification and pyrolysis) approaches. Rather than relying on energy crops, a potential advantage of thermochemical approaches is the ability to use a wider variety of feedstocks, including municipal solid waste and wood waste. In this work, we conduct a system-level analysis to understand how technology and feedstock choice can impact the environmental footprint of biofuels in the U.S. We use a least-cost optimization model of the U.S. energy system to account for interactions between various components of the energy system: industrial, transportation, electric, and residential/commercial sectors. The model was used to understand the scale of feedstock demand required from dedicated energy crops, as well as other biomass feedstocks, in order to meet the RFS2 mandate. On a regional basis, we compare the overall water-consumption and land requirements for biofuels production given a suite of liquid-fuel production technologies. By considering a range of scenarios, we examine how the use of various feedstocks (e.g., agricultural residues, wood wastes, mill residues and municipal wastes) can be used to off-set environmental impacts as compared to relying solely on energy crops.

  10. Optimal production scheduling for energy efficiency improvement in biofuel feedstock preprocessing considering work-in-process particle separation

    International Nuclear Information System (INIS)

    Li, Lin; Sun, Zeyi; Yao, Xufeng; Wang, Donghai

    2016-01-01

    Biofuel is considered a promising alternative to traditional liquid transportation fuels. The large-scale substitution of biofuel can greatly enhance global energy security and mitigate greenhouse gas emissions. One major concern of the broad adoption of biofuel is the intensive energy consumption in biofuel manufacturing. This paper focuses on the energy efficiency improvement of biofuel feedstock preprocessing, a major process of cellulosic biofuel manufacturing. An improved scheme of the feedstock preprocessing considering work-in-process particle separation is introduced to reduce energy waste and improve energy efficiency. A scheduling model based on the improved scheme is also developed to identify an optimal production schedule that can minimize the energy consumption of the feedstock preprocessing under production target constraint. A numerical case study is used to illustrate the effectiveness of the proposed method. The research outcome is expected to improve the energy efficiency and enhance the environmental sustainability of biomass feedstock preprocessing. - Highlights: • A novel method to schedule production in biofuel feedstock preprocessing process. • Systems modeling approach is used. • Capable of optimize preprocessing to reduce energy waste and improve energy efficiency. • A numerical case is used to illustrate the effectiveness of the method. • Energy consumption per unit production can be significantly reduced.

  11. Genetic and Genomic Analysis of the Tree Legume Pongamia pinnata as a Feedstock for Biofuels

    Directory of Open Access Journals (Sweden)

    Bandana Biswas

    2013-11-01

    Full Text Available The tree legume Pongamia { (L. Pierre [syn. (L. Panigrahi]} is emerging as an important biofuels feedstock. It produces about 30 kg per tree per year of seeds, containing up to 55% oil (w/v, of which approximately 50% is oleic acid (C. The capacity for biological N fixation places Pongamia in a more sustainable position than current nonlegume biofuel feedstocks. Also due to its drought and salinity tolerance, Pongamia can grow on marginal land not destined for production of food. As part of the effort to domesticate Pongamia our research group at The University of Queensland has started to develop specific genetic and genomic tools. Much of the preliminary work to date has focused on characterizing the genetic diversity of wild populations. This diversity is reflective of the outcrossing reproductive biology of Pongamia and necessitates the requirement to develop clonal propagation protocols. Both the chloroplast and mitochondrial genomes of Pongamia have been sequenced and annotated (152,968 and 425,718 bp, respectively, with similarities to previously characterized legume organelle genomes. Many nuclear genes associated with oil biosynthesis and nodulation in Pongamia have been characterized. The continued application of genetic and genomic tools will support the deployment of Pongamia as a sustainable biofuel feedstock.

  12. Evaluation of attached periphytical algal communities for biofuel feedstock generation

    Energy Technology Data Exchange (ETDEWEB)

    Sandefur, H.N.; Matlock, M.D.; Costello, T.A. [Arkansas Univ., Division of Agriculture, Fayetteville, AR (United States). Dept. of Biological and Agricultural Engineering, Center for Agricultural and Rural Sustainability

    2010-07-01

    This paper reported on a study that investigated the feasibility of using algal biomass as a feedstock for biofuel production. Algae has a high lipid content, and with its high rate of production, it can produce more oil on less land than traditional bioenergy crops. In addition, algal communities can remove nutrients from wastewater. Enclosed photobioreactors and open pond systems are among the many different algal growth systems that can be highly productive. However, they can also be difficult to maintain. The objective of this study was to demonstrate the ability of a pilot scale algal turf scrubber (ATS) to facilitate the growth of attached periphytic algal communities for the production of biomass feedstock and the removal of nutrients from a local stream in Springdale, Arizona. The ATS operated for a 9 month sampling period, during which time the system productivity averaged 26 g per m{sup 2} per day. The removal of total phosphorus and total nitrogen averaged 48 and 13 per cent, respectively.

  13. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks.

    Science.gov (United States)

    Trumbo, Jennifer Lynn; Zhang, Baohong; Stewart, Charles Neal

    2015-04-01

    Petroleum-based fuels are nonrenewable and unsustainable. Renewable sources of energy, such as lignocellulosic biofuels and plant metabolite-based drop-in fuels, can offset fossil fuel use and reverse environmental degradation through carbon sequestration. Despite these benefits, the lignocellulosic biofuels industry still faces many challenges, including the availability of economically viable crop plants. Cell wall recalcitrance is a major economic barrier for lignocellulosic biofuels production from biomass crops. Sustainability and biomass yield are two additional, yet interrelated, foci for biomass crop improvement. Many scientists are searching for solutions to these problems within biomass crop genomes. MicroRNAs (miRNAs) are involved in almost all biological and metabolic process in plants including plant development, cell wall biosynthesis and plant stress responses. Because of the broad functions of their targets (e.g. auxin response factors), the alteration of plant miRNA expression often results in pleiotropic effects. A specific miRNA usually regulates a biologically relevant bioenergy trait. For example, relatively low miR156 overexpression leads to a transgenic feedstock with enhanced biomass and decreased recalcitrance. miRNAs have been overexpressed in dedicated bioenergy feedstocks such as poplar and switchgrass yielding promising results for lignin reduction, increased plant biomass, the timing of flowering and response to harsh environments. In this review, we present the status of miRNA-related research in several major biofuel crops and relevant model plants. We critically assess published research and suggest next steps for miRNA manipulation in feedstocks for increased biomass and sustainability for biofuels and bioproducts. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Aquatic plant Azolla as the universal feedstock for biofuel production.

    Science.gov (United States)

    Miranda, Ana F; Biswas, Bijoy; Ramkumar, Narasimhan; Singh, Rawel; Kumar, Jitendra; James, Anton; Roddick, Felicity; Lal, Banwari; Subudhi, Sanjukta; Bhaskar, Thallada; Mouradov, Aidyn

    2016-01-01

    The quest for sustainable production of renewable and cheap biofuels has triggered an intensive search for domestication of the next generation of bioenergy crops. Aquatic plants which can rapidly colonize wetlands are attracting attention because of their ability to grow in wastewaters and produce large amounts of biomass. Representatives of Azolla species are some of the fastest growing plants, producing substantial biomass when growing in contaminated water and natural ecosystems. Together with their evolutional symbiont, the cyanobacterium Anabaena azollae, Azolla biomass has a unique chemical composition accumulating in each leaf including three major types of bioenergy molecules: cellulose/hemicellulose, starch and lipids, resembling combinations of terrestrial bioenergy crops and microalgae. The growth of Azolla filiculoides in synthetic wastewater led up to 25, 69, 24 and 40 % reduction of NH 4 -N, NO 3 -N, PO 4 -P and selenium, respectively, after 5 days of treatment. This led to a 2.6-fold reduction in toxicity of the treated wastewater to shrimps, common inhabitants of wetlands. Two Azolla species, Azolla filiculoides and Azolla pinnata, were used as feedstock for the production of a range of functional hydrocarbons through hydrothermal liquefaction, bio-hydrogen and bio-ethanol. Given the high annual productivity of Azolla, hydrothermal liquefaction can lead to the theoretical production of 20.2 t/ha-year of bio-oil and 48 t/ha-year of bio-char. The ethanol production from Azolla filiculoides, 11.7 × 10 3  L/ha-year, is close to that from corn stover (13.3 × 10 3  L/ha-year), but higher than from miscanthus (2.3 × 10 3  L/ha-year) and woody plants, such as willow (0.3 × 10 3  L/ha-year) and poplar (1.3 × 10 3  L/ha-year). With a high C/N ratio, fermentation of Azolla biomass generates 2.2 mol/mol glucose/xylose of hydrogen, making this species a competitive feedstock for hydrogen production compared with other bioenergy crops

  15. Microalgae as sustainable renewable energy feedstock for biofuel production.

    Science.gov (United States)

    Medipally, Srikanth Reddy; Yusoff, Fatimah Md; Banerjee, Sanjoy; Shariff, M

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  16. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    Directory of Open Access Journals (Sweden)

    Srikanth Reddy Medipally

    2015-01-01

    Full Text Available The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  17. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    Science.gov (United States)

    Yusoff, Fatimah Md.; Shariff, M.

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties. PMID:25874216

  18. Sustainable Biofuels Development Center

    Energy Technology Data Exchange (ETDEWEB)

    Reardon, Kenneth F. [Colorado State Univ., Fort Collins, CO (United States)

    2015-03-01

    The mission of the Sustainable Bioenergy Development Center (SBDC) is to enhance the capability of America’s bioenergy industry to produce transportation fuels and chemical feedstocks on a large scale, with significant energy yields, at competitive cost, through sustainable production techniques. Research within the SBDC is organized in five areas: (1) Development of Sustainable Crops and Agricultural Strategies, (2) Improvement of Biomass Processing Technologies, (3) Biofuel Characterization and Engine Adaptation, (4) Production of Byproducts for Sustainable Biorefining, and (5) Sustainability Assessment, including evaluation of the ecosystem/climate change implication of center research and evaluation of the policy implications of widespread production and utilization of bioenergy. The overall goal of this project is to develop new sustainable bioenergy-related technologies. To achieve that goal, three specific activities were supported with DOE funds: bioenergy-related research initiation projects, bioenergy research and education via support of undergraduate and graduate students, and Research Support Activities (equipment purchases, travel to attend bioenergy conferences, and seminars). Numerous research findings in diverse fields related to bioenergy were produced from these activities and are summarized in this report.

  19. The Social and Environmental Impacts of Biofuel Feedstock Cultivation: Evidence from Multi-Site Research in the Forest Frontier

    Directory of Open Access Journals (Sweden)

    Laura German

    2011-09-01

    Full Text Available Preoccupation with global energy supplies and climate change in the global North, and a desire to improve the balance of trade and capture value in the emerging carbon market by developing countries, together place biofuels firmly on the map of global land use change. Much of this recent land use change is occurring in developing countries where large agro-ecologically suitable tracts of land may be accessed at lower economic and opportunity cost. This is leading to the gradual penetration of commercial crops that provide suitable biofuel feedstocks (e.g., sugarcane, soybean, oil palm, jatropha into rural communities and forested landscapes throughout many areas of the global South. Expansion of biofuel feedstock cultivation in developing countries is widely embraced by producer country governments as a means to achieve energy security and stimulate rural economic development through employment and smallholder market integration. It is also expected that foreign and domestic investments in biofuel feedstock cultivation will lead to positive economic spillovers from knowledge transfer and investor contributions to social and physical infrastructure. While biofuel feedstocks are expanding through large industrial-scale plantations and smallholder production alike, the expansion of industrial-scale production systems has been countered by a critical response by civil society actors concerned about the implications for rural livelihoods, customary land rights, and the environmental effects of biofuel feedstock cultivation. To date, however, limited data exist to demonstrate the conditions under which widely anticipated economic and climate change mitigation benefits accrue in practice, and the implications of these developments for forests, local livelihoods, and the climate change mitigation potential of biofuels. In such a situation, debates are easily polarized into those for and against biofuels. This special issue seeks to nuance this debate by

  20. dEMBF: A Comprehensive Database of Enzymes of Microalgal Biofuel Feedstock.

    Science.gov (United States)

    Misra, Namrata; Panda, Prasanna Kumar; Parida, Bikram Kumar; Mishra, Barada Kanta

    2016-01-01

    Microalgae have attracted wide attention as one of the most versatile renewable feedstocks for production of biofuel. To develop genetically engineered high lipid yielding algal strains, a thorough understanding of the lipid biosynthetic pathway and the underpinning enzymes is essential. In this work, we have systematically mined the genomes of fifteen diverse algal species belonging to Chlorophyta, Heterokontophyta, Rhodophyta, and Haptophyta, to identify and annotate the putative enzymes of lipid metabolic pathway. Consequently, we have also developed a database, dEMBF (Database of Enzymes of Microalgal Biofuel Feedstock), which catalogues the complete list of identified enzymes along with their computed annotation details including length, hydrophobicity, amino acid composition, subcellular location, gene ontology, KEGG pathway, orthologous group, Pfam domain, intron-exon organization, transmembrane topology, and secondary/tertiary structural data. Furthermore, to facilitate functional and evolutionary study of these enzymes, a collection of built-in applications for BLAST search, motif identification, sequence and phylogenetic analysis have been seamlessly integrated into the database. dEMBF is the first database that brings together all enzymes responsible for lipid synthesis from available algal genomes, and provides an integrative platform for enzyme inquiry and analysis. This database will be extremely useful for algal biofuel research. It can be accessed at http://bbprof.immt.res.in/embf.

  1. Genetic and Genomic Analysis of the Tree Legume Pongamia pinnata as a Feedstock for Biofuels

    OpenAIRE

    Bandana Biswas; Stephen H. Kazakoff; Qunyi Jiang; Sharon Samuel; Peter M. Gresshoff; Paul T. Scott

    2013-01-01

    The tree legume Pongamia { (L.) Pierre [syn. (L.) Panigrahi]} is emerging as an important biofuels feedstock. It produces about 30 kg per tree per year of seeds, containing up to 55% oil (w/v), of which approximately 50% is oleic acid (C). The capacity for biological N fixation places Pongamia in a more sustainable position than current nonlegume biofuel feedstocks. Also due to its drought and salinity tolerance, Pongamia can grow on marginal land not destined for production of food. As part...

  2. Bioenergy Feedstock Development Program Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.

    2001-02-09

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

  3. An assessment of Thailand's biofuel development

    DEFF Research Database (Denmark)

    Kumar, S.; Salam, P. Abdul; Shrestha, Pujan

    2013-01-01

    The paper provides an assessment of first generation biofuel (ethanol and biodiesel) development in Thailand in terms of feedstock used, production trends, planned targets and policies and discusses the biofuel sustainability issues-environmental, socio-economic and food security aspects. The pol......The paper provides an assessment of first generation biofuel (ethanol and biodiesel) development in Thailand in terms of feedstock used, production trends, planned targets and policies and discusses the biofuel sustainability issues-environmental, socio-economic and food security aspects...... to land and water use and food security are important considerations to be addressed for its large scale application. Second generation biofuels derived from agricultural residues perform favorably on environmental and social sustainability issues in comparison to first generation biofuel sources...... as transportation fuel. Alternatively, the same amount of residue could provide 0.8-2.1 billion liters per year of diesel (biomass to Fischer-Tropsch diesel) to potentially offset 6%-15% of national diesel consumption in the transportation sector....

  4. De novo assembly, functional annotation, and analysis of the giant reed (Arundo donax L.) leaf transcriptome provide tools for the development of a biofuel feedstock

    NARCIS (Netherlands)

    Evangelistella, Chiara; Valentini, Alessio; Ludovisi, Riccardo; Firrincieli, Andrea; Fabbrini, Francesco; Scalabrin, Simone; Cattonaro, Federica; Morgante, Michele; Mugnozza, Giuseppe Scarascia; Keurentjes, Joost J.B.; Harfouche, Antoine

    2017-01-01

    Background: Arundo donax has attracted renewed interest as a potential candidate energy crop for use in biomass-to-liquid fuel conversion processes and biorefineries. This is due to its high productivity, adaptability to marginal land conditions, and suitability for biofuel and biomaterial

  5. Algae as a Feedstock for Transportation Fuels. The Future of Biofuels?

    Energy Technology Data Exchange (ETDEWEB)

    McGill, Ralph [Sentech, Inc., Fuels, Engines, and Emissions Consulting, Knoxville, TN (United States)

    2008-05-15

    Events in world energy markets over the past several years have prompted many new technical developments as well as political support for alternative transportation fuels, especially those that are renewable. We have seen dramatic rises in the demand for and production of fuel ethanol from sugar cane and corn and biodiesel from vegetable oils. The quantities of these fuels being used continue to rise dramatically, and their use is helping to create a political climate for doing even more. But, the quantities are still far too small to stem the tide of rising crude prices worldwide. In fact, the use of some traditional crops (corn, sugar, soy, etc.) in making fuels instead of food is apparently beginning to impact the cost of food worldwide. Thus, there is considerable interest in developing alternative biofuel feedstocks for use in making fuels -- feedstocks that are not used in the food industries. Of course, we know that there is a lot of work in developing cellulosic-based ethanol that would be made from woody biomass. Process development is the critical path for this option, and the breakthrough in reducing the cost of the process has been elusive thus far. Making biodiesel from vegetable oils is a well-developed and inexpensive process, but to date there have been few reasonable alternatives for making biodiesel, although advanced processes such as gasification of biomass remain an option.

  6. Interactions of woody biofuel feedstock production systems with water resources: considerations for sustainability

    Science.gov (United States)

    Carl C. Trettin; Devendra Amatya; Mark Coleman

    2008-01-01

    Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and...

  7. Evolution and Development of Effective Feedstock Specifications

    Energy Technology Data Exchange (ETDEWEB)

    Garold Gresham; Rachel Emerson; Amber Hoover; Amber Miller; William Bauer; Kevin Kenney

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blend stocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. The 2012 feedstock logistics milestone demonstrated that for high-yield areas that minimize the transportation distances of a low-density, unstable biomass, we could achieve a delivered cost of $35/ton. Based on current conventional equipment and processes, the 2012 logistics design is able to deliver the volume of biomass needed to fulfill the 2012 Renewable Fuel Standard’s targets for ethanol. However, the Renewable Fuel Standard’s volume targets are continuing to increase and are expected to peak in 2022 at 36 billion gallons. Meeting these volume targets and achieving a national-scale biofuels industry will require expansion of production capacity beyond the 2012 Conventional Feedstock Supply Design Case to access diverse available feedstocks, regardless of their inherent ability to meet preliminary biorefinery quality feedstock specifications. Implementation of quality specifications (specs), as outlined in the 2017 Design Case – “Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels” (in progress), requires insertion of deliberate, active quality controls into the feedstock supply chain, whereas the 2012 Conventional Design only utilizes passive quality controls.

  8. Socio-economic impact of biofuel feedstock production on local ...

    African Journals Online (AJOL)

    is followed by a discussion on the state of biofuel investments in Ghana. ... which a person or household commands and can use towards a livelihood (Chambers and ... Nyari (2008) reports that agriculture accounts for more than 90% of .... Bakari Nyari, Vice Chairman of Regional Advisory and Information Network Systems.

  9. Modeling state-level soil carbon emission factors under various scenarios for direct land use change associated with United States biofuel feedstock production

    International Nuclear Information System (INIS)

    Kwon, Ho-Young; Mueller, Steffen; Dunn, Jennifer B.; Wander, Michelle M.

    2013-01-01

    Current estimates of life cycle greenhouse gas emissions of biofuels produced in the US can be improved by refining soil C emission factors (EF; C emissions per land area per year) for direct land use change associated with different biofuel feedstock scenarios. We developed a modeling framework to estimate these EFs at the state-level by utilizing remote sensing data, national statistics databases, and a surrogate model for CENTURY's soil organic C dynamics submodel (SCSOC). We estimated the forward change in soil C concentration within the 0–30 cm depth and computed the associated EFs for the 2011 to 2040 period for croplands, grasslands or pasture/hay, croplands/conservation reserve, and forests that were suited to produce any of four possible biofuel feedstock systems [corn (Zea Mays L)-corn, corn–corn with stover harvest, switchgrass (Panicum virgatum L), and miscanthus (Miscanthus × giganteus Greef et Deuter)]. Our results predict smaller losses or even modest gains in sequestration for corn based systems, particularly on existing croplands, than previous efforts and support assertions that production of perennial grasses will lead to negative emissions in most situations and that conversion of forest or established grasslands to biofuel production would likely produce net emissions. The proposed framework and use of the SCSOC provide transparency and relative simplicity that permit users to easily modify model inputs to inform biofuel feedstock production targets set forth by policy. -- Highlights: ► We model regionalized feedstock-specific United States soil C emission factors. ► We simulate soil C changes from direct land use change associated with biofuel feedstock production. ► Corn, corn-stover, and perennial grass biofuel feedstocks grown in croplands maintain soil C levels. ► Converting grasslands to bioenergy crops risks soil C loss. ► This modeling framework yields more refined soil C emissions than national-level emissions

  10. Land use and second-generation biofuel feedstocks: The unconsidered impacts of Jatropha biodiesel in Rajasthan, India

    International Nuclear Information System (INIS)

    Findlater, K.M.; Kandlikar, M.

    2011-01-01

    Governments around the world see biofuels as a common solution to the multiple policy challenges posed by energy insecurity, climate change and falling farmer incomes. The Indian government has enthusiastically adopted a second-generation feedstock - the oilseed-bearing shrub, Jatropha curcas - for an ambitious national biodiesel program. Studies estimating the production capacity and potential land use implications of this program have typically assumed that the 'waste land' slated for Jatropha production has no economic value and that no activities of note will be displaced by plantation development. Here we examine the specific local impacts of rapid Jatropha plantation development on rural livelihoods and land use in Rajasthan, India. We find that in Jhadol Tehsil, Jatropha is planted on both government and private land, and has typically displaced grazing and forage collection. For those at the socioeconomic margins, these unconsidered impacts counteract the very benefits that the biofuel programs aim to create. The Rajasthan case demonstrates that local land-use impacts need to be integrated into decision-making for national targets and global biofuel promotion efforts. - Highlights: → Hardy biofuel crops like Jatropha replace edible feedstocks that use arable land. → In Rajasthan, Jatropha displaces grazing and forage on both public and private land. → As Jatropha plantations mature, the loss of grass becomes more pronounced. → Unconsidered impacts negate the benefits that the biodiesel program aims to create. → Local land-use impacts need to be integrated into decision-making.

  11. Land use and second-generation biofuel feedstocks: The unconsidered impacts of Jatropha biodiesel in Rajasthan, India

    Energy Technology Data Exchange (ETDEWEB)

    Findlater, K.M. [Institute for Resources Environment and Sustainability, University of British Columbia, 429-2202 Main Mall, Vancouver, BC, V6T1Z4 (Canada); Kandlikar, M., E-mail: milind.k@ubc.ca [Liu Institute for Global Studies, University of British Columbia, 6476 NW Marine Drive, Vancouver, BC, V6T1Z2 (Canada)

    2011-06-15

    Governments around the world see biofuels as a common solution to the multiple policy challenges posed by energy insecurity, climate change and falling farmer incomes. The Indian government has enthusiastically adopted a second-generation feedstock - the oilseed-bearing shrub, Jatropha curcas - for an ambitious national biodiesel program. Studies estimating the production capacity and potential land use implications of this program have typically assumed that the 'waste land' slated for Jatropha production has no economic value and that no activities of note will be displaced by plantation development. Here we examine the specific local impacts of rapid Jatropha plantation development on rural livelihoods and land use in Rajasthan, India. We find that in Jhadol Tehsil, Jatropha is planted on both government and private land, and has typically displaced grazing and forage collection. For those at the socioeconomic margins, these unconsidered impacts counteract the very benefits that the biofuel programs aim to create. The Rajasthan case demonstrates that local land-use impacts need to be integrated into decision-making for national targets and global biofuel promotion efforts. - Highlights: > Hardy biofuel crops like Jatropha replace edible feedstocks that use arable land. > In Rajasthan, Jatropha displaces grazing and forage on both public and private land. > As Jatropha plantations mature, the loss of grass becomes more pronounced. > Unconsidered impacts negate the benefits that the biodiesel program aims to create. > Local land-use impacts need to be integrated into decision-making.

  12. The Effects of Biofuel Feedstock Production on Farmers’ Livelihoods in Ghana: The Case of Jatropha curcas

    Directory of Open Access Journals (Sweden)

    Emmanuel Acheampong

    2014-07-01

    Full Text Available The widespread acquisition of land for large-scale/commercial production of biofuel crops in Ghana has raised concerns from civil society organizations, local communities and other parties, regarding the impact of these investments on local livelihoods. This paper assessed the effect of large-scale acquisition of land for production of Jatropha curcas on farmers’ livelihoods in Ghana. The study was conducted in 11 communities spanning the major agro-ecological zones and political divisions across Ghana. Methods of data collection included questionnaire survey, interviews and focus group discussions. Results show that several households have lost their land to Jatropha plantations leading, in some cases, to violent conflicts between biofuel investors, traditional authorities and the local communities. Most people reported that, contrary to the belief that Jatropha does well on marginal lands, the lands acquired by the Jatropha Companies were productive lands. Loss of rights over land has affected households’ food production and security, as many households have resorted to reducing the area they have under cultivation, leading to shortening fallow periods and declining crop yields. In addition, although the cultivation of Jatropha led to the creation of jobs in the communities where they were started, such jobs were merely transient. The paper contends that, even though the impact of Jatropha feedstock production on local livelihoods in Ghana is largely negative, the burgeoning industry could be developed in ways that could support local livelihoods.

  13. Algae as a Feedstock for Biofuels: An Assessment of the State of Technology and Opportunities. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, K.; McGill, R. [Sentech, Inc. (United States); Van Walwijk, M. [Independent Consultant (France)

    2011-05-15

    The pursuit of a stable, economically-sound, and environmentally-friendly source of transportation fuel has led to extensive research and development (R&D) efforts focused on the conversion of various feedstocks into biofuels. Some feedstocks, such as sugar cane, corn and woody biomass, are targeted because their structures can be broken down into sugars and fermented into alcohols. Other feedstocks, such as vegetable oils, are appealing because they contain considerable amounts of lipids, which can be extracted and converted into biodiesel or other fuels. While significant R&D and commercial strides have been made with each of these feedstocks, technical and market barriers (e.g., cost, scalability, infrastructure requirements, and 'food vs. fuel' debates) currently limit the penetration of the resultant biofuels into the mainstream. Because of algae's ability to potentially address several of these barriers, its use as a feedstock for biofuels has led to much excitement and initiative within the energy industry. Algae are highly diverse, singleor multi-cellular organisms comprised of mostly lipids, protein, and carbohydrates, which may be used to produce a wide variety of biofuels. Algae offer many competitive advantages over other feedstocks, including: 1) Higher potential lipid content than terrestrial plants, sometimes exceeding 50% of the cell's dry biomass (U.S. DOE, May '10; Tornabene et al., 1983) 2) Rapid growth rates that are 20-30 times higher than terrestrial crops (McDill, 2009) and, in some cases, capable of doubling in size with 10 hours 3) Diverse number of species that can collectively thrive in a wide range of environments throughout the world, presenting an overall high overall tolerance for climate, sunlight, nutrient levels, etc. 4) Daily harvesting potential instead of seasonal harvest periods associated with terrestrial crops 5) Potential to redirect CO2 from industry operations to algal cultivation facilities to be

  14. Algae as a Feedstock for Biofuels: An Assessment of the State of Technology and Opportunities. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, K; McGill, R [Sentech, Inc. (United States); Van Walwijk, M [Independent Consultant (France)

    2011-05-15

    The pursuit of a stable, economically-sound, and environmentally-friendly source of transportation fuel has led to extensive research and development (R&D) efforts focused on the conversion of various feedstocks into biofuels. Some feedstocks, such as sugar cane, corn and woody biomass, are targeted because their structures can be broken down into sugars and fermented into alcohols. Other feedstocks, such as vegetable oils, are appealing because they contain considerable amounts of lipids, which can be extracted and converted into biodiesel or other fuels. While significant R&D and commercial strides have been made with each of these feedstocks, technical and market barriers (e.g., cost, scalability, infrastructure requirements, and 'food vs. fuel' debates) currently limit the penetration of the resultant biofuels into the mainstream. Because of algae's ability to potentially address several of these barriers, its use as a feedstock for biofuels has led to much excitement and initiative within the energy industry. Algae are highly diverse, singleor multi-cellular organisms comprised of mostly lipids, protein, and carbohydrates, which may be used to produce a wide variety of biofuels. Algae offer many competitive advantages over other feedstocks, including: 1) Higher potential lipid content than terrestrial plants, sometimes exceeding 50% of the cell's dry biomass (U.S. DOE, May '10; Tornabene et al., 1983) 2) Rapid growth rates that are 20-30 times higher than terrestrial crops (McDill, 2009) and, in some cases, capable of doubling in size with 10 hours 3) Diverse number of species that can collectively thrive in a wide range of environments throughout the world, presenting an overall high overall tolerance for climate, sunlight, nutrient levels, etc. 4) Daily harvesting potential instead of seasonal harvest periods associated with terrestrial crops 5) Potential to redirect CO2 from industry operations to algal cultivation facilities to be used in an algal biofuel

  15. The impact of extreme drought on the biofuel feedstock production

    Science.gov (United States)

    hussain, M.; Zeri, M.; Bernacchi, C.

    2013-12-01

    Miscanthus (Miscanthus x giganteus) and Switchgrass (Panicum virgatum) have been identified as the primary targets for second-generation cellulosic biofuel crops. Prairie managed for biomass is also considered as one of the alternative to conventional biofuel and promised to provide ecosystem services, including carbon sequestration. These perennial grasses possess a number of traits that make them desirable biofuel crops and can be cultivated on marginal lands or interspersed with maize and soybean in the Corn Belt region. The U.S. Corn Belt region is the world's most productive and expansive maize-growing region, approximately 20% of the world's harvested corn hectares are found in 12 Corn Belt states. The introduction of a second generation cellulosic biofuels for biomass production in a landscape dominated by a grain crop (maize) has potential implications on the carbon and water cycles of the region. This issue is further intensified by the uncertainty in the response of the vegetation to the climate change induced drought periods, as was seen during the extreme droughts of 2011 and 2012 in the Midwest. The 2011 and 2012 growing seasons were considered driest since the 1932 dust bowl period; temperatures exceeded 3.0 °C above the 50- year mean and precipitation deficit reached 50 %. The major objective of this study was to evaluate the drought responses (2011 and 2012) of corn and perennial species at large scale, and to determine the seasonability of carbon and water fluxes in the response of controlling factors. We measured net CO2 ecosystem exchange (NEE) and water fluxes of maize-maize-soybean, and perennial species such as miscanthus, switchgrass and mixture of prairie grasses, using eddy covariance in the University of Illinois energy farm at Urbana, IL. The data presented here were for 5 years (2008- 2012). In the first two years, higher NEE in maize led to large CO2 sequestration. NEE however, decreased in dry years, particularly in 2012. On the other

  16. Use of tamarisk as a potential feedstock for biofuel production.

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Amy Cha-Tien; Norman, Kirsten

    2011-01-01

    This study assesses the energy and water use of saltcedar (or tamarisk) as biomass for biofuel production in a hypothetical sub-region in New Mexico. The baseline scenario consists of a rural stretch of the Middle Rio Grande River with 25% coverage of mature saltcedar that is removed and converted to biofuels. A manufacturing system life cycle consisting of harvesting, transportation, pyrolysis, and purification is constructed for calculating energy and water balances. On a dry short ton woody biomass basis, the total energy input is approximately 8.21 mmBTU/st. There is potential for 18.82 mmBTU/st of energy output from the baseline system. Of the extractable energy, approximately 61.1% consists of bio-oil, 20.3% bio-char, and 18.6% biogas. Water consumptive use by removal of tamarisk will not impact the existing rate of evapotranspiration. However, approximately 195 gal of water is needed per short ton of woody biomass for the conversion of biomass to biocrude, three-quarters of which is cooling water that can be recovered and recycled. The impact of salt presence is briefly assessed. Not accounted for in the baseline are high concentrations of Calcium, Sodium, and Sulfur ions in saltcedar woody biomass that can potentially shift the relative quantities of bio-char and bio-oil. This can be alleviated by a pre-wash step prior to the conversion step. More study is needed to account for the impact of salt presence on the overall energy and water balance.

  17. Biofuel potential production from the Orbetello lagoon macroalgae: A comparison with sunflower feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Bastianoni, Simone; Coppola, Fazio; Tiezzi, Enzo [Department of Chemical and Biosystems Sciences, Siena University, via della Diana, 2A, 53100 Siena (Italy); Colacevich, Andrea; Borghini, Francesca; Focardi, Silvano [Department of Environmental Sciences, Siena University, via Mattioli 4, 53100 Siena (Italy)

    2008-07-15

    The diversification of different types and sources of biofuels has become an important energy issue in recent times. The aim of this work is to evaluate the use of two kinds of renewable feedstocks in order to produce biodiesel. We have analyzed the potential production of oil from two species of macroalgae considered as waste coming out from a lagoon system involved in eutrophication and from sunflower seeds. We have tested oil extraction yields of both feedstock. Furthermore, a comparison has been carried out based on the emergy approach, in order to evaluate the sustainability and environmental performance of both processes. The results show that, under present conditions, considering oil extraction yields, the production of oil from sunflower seeds is feasible, because of the lower value of transformity of the final product with respect to macroalgae. On the other hand, the results demonstrate that with improvements of oil extraction methodology, macroalgae could be considered a good residual biomass usable for biofuel production. (author)

  18. Rice straw as a feedstock for biofuels: Availability, recalcitrance, and chemical properties: Rice straw as a feedstock for biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Satlewal, Alok [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Joint Inst. for Biological Sciences, Biosciences Division; Indian Oil Corporation Ltd, Faridabad (India), Dept. of Bioenergy, DBT-IOC Centre for Advanced Bioenergy Research, Research and Development Centre; Agrawal, Ruchi [Indian Oil Corporation Ltd, Faridabad (India), Dept. of Bioenergy, DBT-IOC Centre for Advanced Bioenergy Research, Research and Development Centre; Bhagia, Samarthya [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering; Das, Parthapratim [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering; Ragauskas, Arthur J. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering

    2017-10-17

    The surplus availability of rice straw, its limited usage and environment pollution caused by inefficient burning has fostered research for its valorization to biofuels. This review elucidates the current status of rice straw potential around the globe along with recent advances in revealing the critical factors responsible for its recalcitrance and chemical properties. The role and accumulation of high silica content in rice straw has been elucidated with its impact on enzymatic hydrolysis in a biorefinery environment. The correlation of different pretreatment approaches in modifying the physiochemical properties of rice straw and improving the enzymatic accessibility has also been discussed. This study highlights new challenges, resolutions and opportunities for rice straw based biorefineries.

  19. Screening microalgae isolated from urban storm- and wastewater systems as feedstock for biofuel.

    Science.gov (United States)

    Massimi, Rebecca; Kirkwood, Andrea E

    2016-01-01

    Exploiting microalgae as feedstock for biofuel production is a growing field of research and application, but there remain challenges related to industrial viability and economic sustainability. A solution to the water requirements of industrial-scale production is the use of wastewater as a growth medium. Considering the variable quality and contaminant loads of wastewater, algal feedstock would need to have broad tolerance and resilience to fluctuating wastewater conditions during growth. As a first step in targeting strains for growth in wastewater, our study isolated microalgae from wastewater habitats, including urban stormwater-ponds and a municipal wastewater-treatment system, to assess growth, fatty acids and metal tolerance under standardized conditions. Stormwater ponds in particular have widely fluctuating conditions and metal loads, so microalgae from this type of environment may have desirable traits for growth in wastewater. Forty-three algal strains were isolated in total, including several strains from natural habitats. All strains, with the exception of one cyanobacterial strain, are members of the Chlorophyta, including several taxa commonly targeted for biofuel production. Isolates were identified using taxonomic and 18S rRNA sequence methods, and the fastest growing strains with ideal fatty acid profiles for biodiesel production included Scenedesmus and Desmodesmus species (Growth rate (d(-1)) > 1). All isolates in a small, but diverse taxonomic group of test-strains were tolerant of copper at wastewater-relevant concentrations. Overall, more than half of the isolated strains, particularly those from stormwater ponds, show promise as candidates for biofuel feedstock.

  20. Screening microalgae isolated from urban storm- and wastewater systems as feedstock for biofuel

    Directory of Open Access Journals (Sweden)

    Rebecca Massimi

    2016-09-01

    Full Text Available Exploiting microalgae as feedstock for biofuel production is a growing field of research and application, but there remain challenges related to industrial viability and economic sustainability. A solution to the water requirements of industrial-scale production is the use of wastewater as a growth medium. Considering the variable quality and contaminant loads of wastewater, algal feedstock would need to have broad tolerance and resilience to fluctuating wastewater conditions during growth. As a first step in targeting strains for growth in wastewater, our study isolated microalgae from wastewater habitats, including urban stormwater-ponds and a municipal wastewater-treatment system, to assess growth, fatty acids and metal tolerance under standardized conditions. Stormwater ponds in particular have widely fluctuating conditions and metal loads, so microalgae from this type of environment may have desirable traits for growth in wastewater. Forty-three algal strains were isolated in total, including several strains from natural habitats. All strains, with the exception of one cyanobacterial strain, are members of the Chlorophyta, including several taxa commonly targeted for biofuel production. Isolates were identified using taxonomic and 18S rRNA sequence methods, and the fastest growing strains with ideal fatty acid profiles for biodiesel production included Scenedesmus and Desmodesmus species (Growth rate (d−1 > 1. All isolates in a small, but diverse taxonomic group of test-strains were tolerant of copper at wastewater-relevant concentrations. Overall, more than half of the isolated strains, particularly those from stormwater ponds, show promise as candidates for biofuel feedstock.

  1. Evaluation of filamentous green algae as feedstocks for biofuel production.

    Science.gov (United States)

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Global Warming Potential and Eutrophication Potential of Biofuel Feedstock Crops Produced in Florida, Measured Under Different Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Izursa, Jose-Luis; Hanlon, Edward; Amponsah, Nana; Capece, John

    2013-02-15

    The agriculture sector is in a growing need to develop greenhouse gas (GHG) mitigation techniques to reduce the enhanced greenhouse effect. The challenge to the sector is not only to reduce net emissions but also increase production to meet growing demands for food, fiber, and biofuel. This study focuses on the changes in the GHG balance of three biofuel feedstock (biofuel sugarcane, energy-cane and sweet sorghum) considering changes caused by the adoption of conservationist practices such as reduced tillage, use of controlled-release fertilizers or when cultivation areas are converted from burned harvest to green harvest. Based on the Intergovernmental Panel on Climate Change (IPCC) (2006) balance and the Tools for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) characterization factors published by the EPA, the annual emission balance includes use energy (diesel and electricity), equipment, and ancillary materials, according to the mean annual consumption of supplies per hectare. The total amounts of GWP were 2740, 1791, and 1910 kg CO2e ha-1 y-1 for biofuel sugarcane, energy-cane and sweet sorghum, respectively, when produced with conventional tillage and sugarcane was burned prior to harvesting. Applying reduced tillage practices, the GHG emissions reduced to 13% for biofuel sugarcane, 23% for energy-cane and 8% for sweet sorghum. A similar decrease occurs when a controlled-release fertilizer practice is adopted, which helps reduce the total emission balance in 5%, 12% and 19% for biofuel sugarcane, energy-cane and sweet sorghum, respectively and a 31% average reduction in eutrophication potential. Moreover, the GHG emissions for biofuel sugarcane, with the adoption of green harvest, would result in a smaller GHG balance of 1924 kg CO2e ha-1 y-1, providing an effect strategy for GHG mitigation while still providing a profitable yield in Florida.

  3. Watermelon juice: a promising feedstock supplement, diluent, and nitrogen supplement for ethanol biofuel production

    Directory of Open Access Journals (Sweden)

    Bruton Benny D

    2009-08-01

    Full Text Available Abstract Background Two economic factors make watermelon worthy of consideration as a feedstock for ethanol biofuel production. First, about 20% of each annual watermelon crop is left in the field because of surface blemishes or because they are misshapen; currently these are lost to growers as a source of revenue. Second, the neutraceutical value of lycopene and L-citrulline obtained from watermelon is at a threshold whereby watermelon could serve as starting material to extract and manufacture these products. Processing of watermelons to produce lycopene and L-citrulline, yields a waste stream of watermelon juice at the rate of over 500 L/t of watermelons. Since watermelon juice contains 7 to 10% (w/v directly fermentable sugars and 15 to 35 μmol/ml of free amino acids, its potential as feedstock, diluent, and nitrogen supplement was investigated in fermentations to produce bioethanol. Results Complete watermelon juice and that which did not contain the chromoplasts (lycopene, but did contain free amino acids, were readily fermentable as the sole feedstock or as diluent, feedstock supplement, and nitrogen supplement to granulated sugar or molasses. A minimum level of ~400 mg N/L (~15 μmol/ml amino nitrogen in watermelon juice was required to achieve maximal fermentation rates when it was employed as the sole nitrogen source for the fermentation. Fermentation at pH 5 produced the highest rate of fermentation for the yeast system that was employed. Utilizing watermelon juice as diluent, supplemental feedstock, and nitrogen source for fermentation of processed sugar or molasses allowed complete fermentation of up to 25% (w/v sugar concentration at pH 3 (0.41 to 0.46 g ethanol per g sugar or up to 35% (w/v sugar concentration at pH 5 with a conversion to 0.36 to 0.41 g ethanol per g sugar. Conclusion Although watermelon juice would have to be concentrated 2.5- to 3-fold to serve as the sole feedstock for ethanol biofuel production, the results

  4. Photosynthesis-fermentation hybrid system to produce lipid feedstock for algal biofuel.

    Science.gov (United States)

    Lu, Yue; Dai, Junbiao; Wu, Qingyu

    2013-01-01

    To avoid bacterial contamination due to medium replacement in the expanded application of a photosynthesis-fermentation model, an integrated photosynthesis-fermentation hybrid system was set up and evaluated for algal lipid production using Chlorella protothecoides. In this system, the CO2-rich off-gas from the fermentation process was recycled to agitate medium in thephotobioreactor, which could provide initial cells for the heterotrophic fermentation. The cell concentration reached 1.03 +/- 0.07 g/L during photoautotrophic growth and then the concentrated green cells were switched to heterotrophic fermentation after removing over 99.5% ofnitrogen in the medium by a nitrogen removal device. At the end offermentation in the system, the cell concentration could reach as high as 100.51 +/- 2.03 g/L, and 60.05 +/- 1.38% lipid content was achieved simultaneously. The lipid yield (60.36 +/- 2.63 g/L) in the hybrid system was over 700 times higher than that in a photobioreactor and exceeded that by fermentation alone (47.56 +/- 7.31 g/L). The developed photosynthesis-fermentation hybrid system in this study was not only a feasible option to enhance microalgal lipid production, but also an environment-friendly approach to produce biofuel feedstock through concurrent utilization of ammonia nitrogen, CO2, and organic carbons.

  5. Sustainability development: Biofuels in agriculture

    OpenAIRE

    Cheteni, Priviledge

    2017-01-01

    Biofuels are socially and politically accepted as a form of sustainable energy in numerous countries. However, cases of environmental degradation and land grabs have highlighted the negative effects to their adoption. Smallholder farmers are vital in the development of a biofuel industry. The study sort to assess the implications in the adoption of biofuel crops by smallholder farmers. A semi-structured questionnaire was administered to 129 smallholder farmers who were sampled from the Easter...

  6. Processing of Brassica seeds for feedstock in biofuels production

    Science.gov (United States)

    Several Brassica species are currently being evaluated to develop regionalized production systems based on their suitability to the environment and with the prevailing practices of growing commodity food crops like wheat, corn, and soybeans. This integrated approach to farming will provide high qual...

  7. Evaluation of Diverse Microalgal Species as Potential Biofuel Feedstocks Grown Using Municipal Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Hiibel, Sage R. [Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, NV (United States); Department of Civil and Environmental Engineering, University of Nevada Reno, Reno, NV (United States); Lemos, Mark S.; Kelly, Brian P.; Cushman, John C., E-mail: jcushman@unr.edu [Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, NV (United States)

    2015-05-11

    Microalgae offer great potential as a third-generation biofuel feedstock, especially when grown on wastewater, as they have the dual application for wastewater treatment and as a biomass feedstock for biofuel production. The potential for growth on wastewater centrate was evaluated for forty microalgae strains from fresh (11), brackish (11), or saltwater (18) genera. Generally, freshwater strains were able to grow at high concentrations of centrate, with two strains, Neochloris pseudostigmata and Neochloris conjuncta, demonstrating growth at up to 40% v/v centrate. Fourteen of 18 salt water Dunaliella strains also demonstrated growth in centrate concentrations at or above 40% v/v. Lipid profiles of freshwater strains with high-centrate tolerance were determined using gas chromatography–mass spectrometry and compared against those obtained on cells grown on defined maintenance media. The major lipid compounds were found to be palmitic (16:0), oleic (18:1), and linoleic (18:2) acids for all freshwater strains grown on either centrate or their respective maintenance medium. These results demonstrate the highly concentrated wastewater can be used to grow microalgae, which limits the need to dilute wastewater prior to algal production. In addition, the algae produced generate lipids suitable for biodiesel or green diesel production.

  8. Evaluation of diverse microalgal species as potential biofuel feedstocks grown using municipal wastewater

    Directory of Open Access Journals (Sweden)

    Sage R Hiibel

    2015-05-01

    Full Text Available Microalgae offer great potential as a third-generation biofuel feedstock, especially when grown on wastewater, as they have the dual application for wastewater treatment and as a biomass feedstock for biofuel production. The potential for growth on wastewater centrate was evaluated for forty microalgae strains from fresh (11, brackish (11, or saltwater (18 genera. Generally, freshwater strains were able to grow at high concentrations of centrate, with two strains, Neochloris pseudostigmata and N. conjuncta, demonstrating growth at up to 40% v/v centrate. Fourteen of eighteen salt water Dunaliella strains also demonstrated growth in centrate concentrations at or above 40% v/v. Lipid profiles of freshwater strains with high-centrate tolerance were determined using gas chromatography-mass spectrometry (GC-MS and compared against those obtained on cells grown on defined maintenance media. The major lipid compounds were found to be palmitic (16:0, oleic (18:1, and linoleic (18:2 acids for all freshwater strains grown on either centrate or their respective maintenance medium. These results demonstrate the highly concentrated wastewater can be used to grow microalgae, which limits the need to dilute wastewater prior to algal production. In addition, the algae produced generate lipids suitable for biodiesel or green diesel production.

  9. Interactive association between biopolymers and biofunctions in carinata seeds as energy feedstock and their coproducts (carinata meal) from biofuel and bio-oil processing before and after biodegradation: current advanced molecular spectroscopic investigations.

    Science.gov (United States)

    Yu, Peiqiang; Xin, Hangshu; Ban, Yajing; Zhang, Xuewei

    2014-05-07

    Recent advances in biofuel and bio-oil processing technology require huge supplies of energy feedstocks for processing. Very recently, new carinata seeds have been developed as energy feedstocks for biofuel and bio-oil production. The processing results in a large amount of coproducts, which are carinata meal. To date, there is no systematic study on interactive association between biopolymers and biofunctions in carinata seed as energy feedstocks for biofuel and bioethanol processing and their processing coproducts (carinata meal). Molecular spectroscopy with synchrotron and globar sources is a rapid and noninvasive analytical technique and is able to investigate molecular structure conformation in relation to biopolymer functions and bioavailability. However, to date, these techniques are seldom used in biofuel and bioethanol processing in other research laboratories. This paper aims to provide research progress and updates with molecular spectroscopy on the energy feedstock (carinata seed) and coproducts (carinata meal) from biofuel and bioethanol processing and show how to use these molecular techniques to study the interactive association between biopolymers and biofunctions in the energy feedstocks and their coproducts (carinata meal) from biofuel and bio-oil processing before and after biodegradation.

  10. Current and potential sustainable corn stover feedstock for biofuel production in the United States

    Science.gov (United States)

    Tan, Zhengxi; Liu, Shu-Guang; Tieszen, Larry L.; Bliss, Norman

    2012-01-01

    Increased demand for corn (Zea mays L.) stover as a feedstock for cellulosic ethanol raises concerns about agricultural sustainability. Excessive corn stover harvesting could have long-term impacts on soil quality. We estimated current and future stover production and evaluated the potential harvestable stover amount (HSA) that could be used for biofuel feedstock in the United States by defining the minimum stover requirement (MSR) associated with the current soil organic carbon (SOC) content, tillage practices, and crop rotation systems. Here we show that the magnitude of the current HSA is limited (31 Tg y−1, dry matter) due to the high MSR for maintaining the current SOC content levels of soils that have a high carbon content. An alternative definition of MSR for soils with a moderate level of SOC content could significantly elevate the annual HSA to 68.7 Tg, or even to 132.2 Tg if the amount of currently applied manure is counted to partially offset the MSR. In the future, a greater potential for stover feedstock could come from an increase in stover yield, areal harvest index, and/or the total planted area. These results suggest that further field experiments on MSR should be designed to identify differences in MSR magnitude between maintaining SOC content and preventing soil erosion, and to understand the role of current SOC content level in determining MSR from soils with a wide range of carbon contents and climatic conditions.

  11. New feedstocks for biofuels. Alternative 1st generation of energy crops; Nieuwe Grondstoffen voor Biobrandstoffen. Alternatieve 1e Generatie Energiegewassen

    Energy Technology Data Exchange (ETDEWEB)

    Elbersen, W. [Agrotechnology and Food Sciences Group, WUR-AFSG, Wageningen (Netherlands); Oyen, L. [Plant Resources of Tropical Africa, WUR-PROTA, Wageningen (Netherlands)

    2009-08-15

    A brief overview is provided of a number of alternative crops that can supply feedstocks for 1st generation biofuels and a brief analysis is conducted of the option for renewable biofuel production. [Dutch] Er wordt een kort overzicht gegeven van een aantal alternatieve gewassen die grondstoffen voor 1e generatie biobrandstoffen kunnen leveren en wordt er een korte analyse gegeven van de mogelijkheid voor duurzame biobrandstofproductie.

  12. Triacylglycerol profiling of microalgae strains for biofuel feedstock by liquid chromatography-high-resolution mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    MacDougall, Karen M.; McNichol, Jesse; McGinn, Patrick J.; O' Leary, Stephen J.B.; Melanson, Jeremy E. [Institute for Marine Biosciences, National Research Council of Canada, Halifax, NS (Canada)

    2011-11-15

    Biofuels from photosynthetic microalgae are quickly gaining interest as a viable carbon-neutral energy source. Typically, characterization of algal feedstock involves breaking down triacylglycerols (TAG) and other intact lipids, followed by derivatization of the fatty acids to fatty acid methyl esters prior to analysis by gas chromatography (GC). However, knowledge of the intact lipid profile could offer significant advantages for discovery stage biofuel research such as the selection of an algal strain or the optimization of growth and extraction conditions. Herein, lipid extracts from microalgae were directly analyzed by ultra-high pressure liquid chromatography-mass spectrometry (UHPLC-MS) using a benchtop Orbitrap mass spectrometer. Phospholipids, glycolipids, and TAGs were analyzed in the same chromatographic run, using a combination of accurate mass and diagnostic fragment ions for identification. Using this approach, greater than 100 unique TAGs were identified over the six algal strains studied and TAG profiles were obtained to assess their potential for biofuel applications. Under the growth conditions employed, Botryococcus braunii and Scenedesmus obliquus yielded the most comprehensive TAG profile with a high abundance of TAGs containing oleic acid. (orig.)

  13. Screening and optimization of pretreatments for Parthenium hysterophorus as feedstock for alcoholic biofuels

    International Nuclear Information System (INIS)

    Singh, Shuchi; Khanna, Swati; Moholkar, Vijayanand S.; Goyal, Arun

    2014-01-01

    Highlights: • Optimization of pretreatment methods for Parthenium hysterophorus for bioalcohol production. • Physical, chemical and physicochemical pretreatments methods employed. • Most efficient treatment: autoclaving 121 °C, 15 psi for 30 min in 1% H 2 SO 4 solution. • TFS (total fermentable sugar) yield after pretreatment and enzymatic hydrolysis = 397.7 mg/g raw biomass. • Parthenium hysterophorus is at par with agro- and forest residues as biofuels feedstock. - Abstract: Parthenium hysterophorus world’s seven most devastating and hazardous weeds, and is abundantly available in several parts of the world. This study treats the subject of effective utilization of this waste biomass (which has cellulose content of 45.2 ± 1.81% w/w) for biofuels production. We have presented a comprehensive and comparative assessment of numerous pretreatment strategies for P. hysterophorus, comprising of all major physical, chemical and physicochemical methods. The yardstick of assessment has been amount of fermentable sugars released during the pretreatment and the post-treatment enzymatic hydrolysis of pretreated biomass. Carboxymethylcellulase (1.0 U/mg, 1.7 mg/mL) produced by an isolate Bacillus amyloliquefaciens SS35 and β-glucosidase (Novozyme 188), have been used for enzymatic hydrolysis of pretreated biomass. Among the different methods employed for pretreatment, the most efficient treatment has been revealed to be autoclaving of biomass at 121 °C and 15 psi pressure for 30 min in acidic (1% v/v, H 2 SO 4 ) environment. Total reducing sugar (TRS) yield during this pretreatment, mainly due to hydrolysis of hemicellulosic fraction of biomass, has been 285.3 mg/g of raw biomass. Further enzymatic hydrolysis resulted in reducing sugar yield of 187.4 mg/g of pretreated biomass (9.37 g/L). The total fermentable sugar (TFS) yield from the optimized pretreatment was 397.7 mg/g raw biomass (39.77 g/100 g raw biomass). The effects of different pretreatment methods

  14. Characterization and Screening of Native Scenedesmus sp. Isolates Suitable for Biofuel Feedstock.

    Directory of Open Access Journals (Sweden)

    Rakesh Singh Gour

    Full Text Available In current study isolates of two native microalgae species were screened on the basis of growth kinetics and lipid accumulation potential. On the basis of data obtained on growth parameters and lipid accumulation, it is concluded that Scenedesmus dimorphus has better potential as biofuel feedstock. Two of the isolates of Scenedesmus dimorphus performed better than other isolates with respect to important growth parameters with lipid content of ~30% of dry biomass. Scenedesmus dimorphus was found to be more suitable as biodiesel feedstock candidate on the basis of cumulative occurrence of five important biodiesel fatty acids, relative occurrence of SFA (53.04%, MUFA (23.81% and PUFA (19.69%, and more importantly that of oleic acid in its total lipids. The morphological observations using light and Scanning Electron Microscope and molecular characterization using amplified 18S rRNA gene sequences of microalgae species under study were also performed. Amplified 18S rRNA gene fragments of the microalgae species were sequenced, annotated at the NCBI website and phylogenetic analysis was done. We have published eight 18S rRNA gene sequences of microalgae species in NCBI GenBank.

  15. Characterization and Screening of Native Scenedesmus sp. Isolates Suitable for Biofuel Feedstock.

    Science.gov (United States)

    Gour, Rakesh Singh; Chawla, Aseem; Singh, Harvinder; Chauhan, Rajinder Singh; Kant, Anil

    2016-01-01

    In current study isolates of two native microalgae species were screened on the basis of growth kinetics and lipid accumulation potential. On the basis of data obtained on growth parameters and lipid accumulation, it is concluded that Scenedesmus dimorphus has better potential as biofuel feedstock. Two of the isolates of Scenedesmus dimorphus performed better than other isolates with respect to important growth parameters with lipid content of ~30% of dry biomass. Scenedesmus dimorphus was found to be more suitable as biodiesel feedstock candidate on the basis of cumulative occurrence of five important biodiesel fatty acids, relative occurrence of SFA (53.04%), MUFA (23.81%) and PUFA (19.69%), and more importantly that of oleic acid in its total lipids. The morphological observations using light and Scanning Electron Microscope and molecular characterization using amplified 18S rRNA gene sequences of microalgae species under study were also performed. Amplified 18S rRNA gene fragments of the microalgae species were sequenced, annotated at the NCBI website and phylogenetic analysis was done. We have published eight 18S rRNA gene sequences of microalgae species in NCBI GenBank.

  16. Evaluation of Physicochemical Properties of South African Cashew Apple Juice as a Biofuel Feedstock

    Directory of Open Access Journals (Sweden)

    Evanie Devi Deenanath

    2015-01-01

    Full Text Available Cashew apple juice (CAJ is one of the feedstocks used for biofuel production and ethanol yield depends on the physical and chemical properties of the extracted juice. As far as can be ascertained, information on physical and chemical properties of South African cashew apple juice is limited in open literature. Therefore, this study provides information on the physical and chemical properties of the South African cashew apple juice. Physicochemical characteristics of the juice, such as specific gravity, pH, sugars, condensed tannins, Vitamin C, minerals, and total protein, were measured from a mixed variety of cashew apples. Analytical results showed the CAJ possesses specific gravity and pH of 1.050 and 4.52, respectively. The highest sugars were glucose (40.56 gL−1 and fructose (57.06 gL−1. Other chemical compositions of the juice were condensed tannin (55.34 mgL−1, Vitamin C (112 mg/100 mL, and total protein (1.78 gL−1. The minerals content was as follows: zinc (1.39 ppm, copper (2.18 ppm, magnesium (4.32 ppm, iron (1.32 ppm, sodium (5.44 ppm, and manganese (1.24 ppm. With these findings, South African CAJ is a suitable biomass feedstock for ethanol production.

  17. An Assessment of Thailand’s Biofuel Development

    Directory of Open Access Journals (Sweden)

    Pujan Shrestha

    2013-04-01

    Full Text Available The paper provides an assessment of first generation biofuel (ethanol and biodiesel development in Thailand in terms of feedstock used, production trends, planned targets and policies and discusses the biofuel sustainability issues—environmental, socio-economic and food security aspects. The policies, measures and incentives for the development of biofuel include targets, blending mandates and favorable tax schemes to encourage production and consumption of biofuels. Biofuel development improves energy security, rural income and reduces greenhouse gas (GHG emissions, but issues related to land and water use and food security are important considerations to be addressed for its large scale application. Second generation biofuels derived from agricultural residues perform favorably on environmental and social sustainability issues in comparison to first generation biofuel sources. The authors estimate that sustainably-derived agricultural crop residues alone could amount to 10.4 × 106 bone dry tonnes per year. This has the technical potential of producing 1.14–3.12 billion liters per year of ethanol to possibly displace between 25%–69% of Thailand’s 2011 gasoline consumption as transportation fuel. Alternatively, the same amount of residue could provide 0.8–2.1 billion liters per year of diesel (biomass to Fischer-Tropsch diesel to potentially offset 6%–15% of national diesel consumption in the transportation sector.

  18. Biofuels: What potential for development?

    International Nuclear Information System (INIS)

    Alazard-Toux, Nathalie

    2010-01-01

    The current production chain of the first generation of biofuels has quite real limits. To overcome them, efforts are being made to develop processes for converting vegetable resources of little worth into fuel. This research focuses both on these resources and on the technology and processes for turning them into fuel

  19. Pilot cultivation of the chlorophyte microalga Scenedesmus obliquus as a promising feedstock for biofuel

    International Nuclear Information System (INIS)

    Abomohra, Abd El-Fatah; El-Sheekh, Mostafa; Hanelt, Dieter

    2014-01-01

    Scenedesmus obliquus was discussed by phycologists as a promising microalga for biofuel production based on its biomass and fatty acid productivity. In the present study, S. obliquus was pilot cultivated for large scale production in a semicontinuous culture for 3 months using polyethylene transparent bags. Cultivation of S. obliquus resulted in a maximum biomass productivity of 0.14 g L −1  d −1 and maximum esterified fatty acid productivity of 17.37 mg L −1  d −1 at light intensity of 130 μmol m −2  s −1 . Using of different flocculants for biomass harvest showed maximum flocculation efficiency of 82% using 250 mg L −1 of NaOH for 2 h. Drying of the harvested biomass showed significant increase of esterified fatty acid content by 5 and 7% with respect to control at 75 and 100 °C, respectively. In addition, fatty acid profile and iodine number of S. obliquus oil meet biodiesel standard specifications which make the fatty acid of S. obliquus eligible for further research to be used as a feedstock for biofuel production. Furthermore, the present investigation showed that after oil extraction, the residual algal biomass increased survival and fresh weight of Artemia (brine shrimp) which confirms that the residual algal biomass can be significantly used as food additives for animal feeding. - Highlights: • Scenedesmus obliquus was cultivated in plastic bags in a semicontinuous culture for high biomass production. • Different flocculants were used for harvesting of S. obliquus and the oil was chemically extracted. • The residual algal biomass was used for feeding of Artemia. • The annual productivity of EFA from S. obliquus would be nearly 5 times higher than Jatropha. • The residual algal biomass increased survival and fresh weight of Artemia

  20. Enhancement of Chlorella vulgaris Biomass Cultivated in POME Medium as Biofuel Feedstock under Mixotrophic Conditions

    Directory of Open Access Journals (Sweden)

    M.M. Azimatun Nur

    2015-10-01

    Full Text Available Microalgae cultivated in mixotrophic conditions have received significant attention as a suitable source of biofuel feedstock, based on their high biomass and lipid productivity. POME is one of the wastewaters generated from palm oil mills, containing important nutrients that could be suitable for mixotrophic microalgae growth. The aim of this research was to identify the growth of Chlorella vulgaris cultured in POME medium under mixotrophic conditions in relation to a variety of organic carbon sources added to the POME mixture. The research was conducted with 3 different carbon sources (D-glucose, crude glycerol and NaHCO3 in 40% POME, monitored over 6 days, under an illumination of 3000 lux, and with pH = 7. The biomass was harvested using an autoflocculation method and dry biomass was extracted using an ultrasound method in order to obtain the lipid content. The results show that C. vulgaris using D-glucose as carbon source gained a lipid productivity of 195 mg/l/d.

  1. Feedstock to Tailpipe Initiative: Kansas Biofuels Production, Testing and Certification Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stagg-Williams, Susan M. [Univ. of Kansas, Lawrence, KS (United States). Dept. of Chemical and Petroleum Engineering; Depcik, Chris [Univ. of Kansas, Lawrence, KS (United States). Dept. of Chemical and Petroleum Engineering; Sturm, Belinda [Univ. of Kansas, Lawrence, KS (United States). Dept. of Chemical and Petroleum Engineering

    2013-12-31

    The primary task of this grant was to establish an ASTM testing facility for biodiesel and ethanol and to use this facility to develop methods to predict fuel characteristics based on feedstock composition and feedstock cultivation. In addition to characterizing fuel properties, this grant allowed for the purchase and installation of a Fourier Transform Infrared Spectroscopy (FTIR) emissions analyzer that will provide an analysis of the emissions leaving the engine in order to meet EPA regulations. This FTIR system is combined with an Alternating Current (AC) dynamometer that allows the engine to follow Environmental Protection Agency (EPA) Federal Test Procedure (FTP) cycles. A secondary task was to investigate cultivating algae utilizing wastewater and top-down ecological control and subsequent harvesting using coagulation and dissolved air flotation. Lipid extraction utilizing environmentally-friendly and cost-effective solvents, with and without cell-disruption pretreatment was also explored. Significant work on the hydrothermal liquefaction of wastewater cultivated algae was conducted.

  2. National Geo-Database for Biofuel Simulations and Regional Analysis of Biorefinery Siting Based on Cellulosic Feedstock Grown on Marginal Lands

    Energy Technology Data Exchange (ETDEWEB)

    Izaurralde, Roberto C.; Zhang, Xuesong; Sahajpal, Ritvik; Manowitz, David H.

    2012-04-01

    The goal of this project undertaken by GLBRC (Great Lakes Bioenergy Research Center) Area 4 (Sustainability) modelers is to develop a national capability to model feedstock supply, ethanol production, and biogeochemical impacts of cellulosic biofuels. The results of this project contribute to sustainability goals of the GLBRC; i.e. to contribute to developing a sustainable bioenergy economy: one that is profitable to farmers and refiners, acceptable to society, and environmentally sound. A sustainable bioenergy economy will also contribute, in a fundamental way, to meeting national objectives on energy security and climate mitigation. The specific objectives of this study are to: (1) develop a spatially explicit national geodatabase for conducting biofuel simulation studies and (4) locate possible sites for the establishment of cellulosic ethanol biorefineries. To address the first objective, we developed SENGBEM (Spatially Explicit National Geodatabase for Biofuel and Environmental Modeling), a 60-m resolution geodatabase of the conterminous USA containing data on: (1) climate, (2) soils, (3) topography, (4) hydrography, (5) land cover/ land use (LCLU), and (6) ancillary data (e.g., road networks, federal and state lands, national and state parks, etc.). A unique feature of SENGBEM is its 2008-2010 crop rotation data, a crucially important component for simulating productivity and biogeochemical cycles as well as land-use changes associated with biofuel cropping. ARRA support for this project and to the PNNL Joint Global Change Research Institute enabled us to create an advanced computing infrastructure to execute millions of simulations, conduct post-processing calculations, store input and output data, and visualize results. These computing resources included two components installed at the Research Data Center of the University of Maryland. The first resource was 'deltac': an 8-core Linux server, dedicated to county-level and state-level simulations

  3. Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants

    DEFF Research Database (Denmark)

    Petersen, Pia; Lau, Jane; Ebert, Berit

    2012-01-01

    Background: Cost-efficient generation of second-generation biofuels requires plant biomass that can easily be degraded into sugars and further fermented into fuels. However, lignocellulosic biomass is inherently recalcitrant toward deconstruction technologies due to the abundant lignin and cross......-linked hemicelluloses. Furthermore, lignocellulosic biomass has a high content of pentoses, which are more difficult to ferment into fuels than hexoses. Engineered plants with decreased amounts of xylan in their secondary walls have the potential to render plant biomass a more desirable feedstock for biofuel production...... in the xylem vessels is sufficient to complement the irx phenotype of xylan deficient mutants, while maintaining low overall amounts of xylan and lignin in the cell wall. This engineering approach has the potential to yield bioenergy crop plants that are more easily deconstructed and fermented into biofuels....

  4. Simulating and evaluating best management practices for integrated landscape management scenarios in biofuel feedstock production: Evaluating Best Management Practices for Biofuel Feedstock Production

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Miae [Argonne National Laboratory, Lemont IL 60439 USA; Wu, May [Argonne National Laboratory, Lemont IL 60439 USA

    2015-09-08

    Sound crop and land management strategies can maintain land productivity and improve the environmental sustainability of agricultural crop and feedstock production. This study evaluates the improvement of water sustainability through an integrated landscaping management strategy, where landscaping design, land management operations, crop systems, and agricultural best management practices (BMPs) play equal roles. The strategy was applied to the watershed of the South Fork Iowa River in Iowa, with a focus on implementing riparian buffers and converting low productivity land to provide cellulosic biomass while benefiting soil and water quality. The Soil and Water Assessment Tool (SWAT) was employed to simulate the impact of integrated landscape design on nutrients, suspended sediments, and flow on the watershed and subbasin scales. First, the study evaluated the representation of buffer strip as a vegetative barrier and as a riparian buffer using trapping efficiency and area ratio methods in SWAT. For the riparian buffer, the area ratio method tends to be more conservative, especially in nitrate loadings, while the trapping efficiency method generates more optimistic results. The differences between the two methods increase with buffer width. The two methods may not be comparable for the field-scale vegetative barrier simulation because of limitations in model spatial resolution. Landscape scenarios were developed to quantify water quality under (1) current land use, (2) partial land conversion to switchgrass, and (3) riparian buffer implementation. Results show that when low productivity land (15.2% of total watershed land area) is converted to grow switchgrass, suspended sediment, total nitrogen, total phosphorus, and nitrate loadings are reduced by 69.3%, 55.5%, 46.1%, and 13.4%, respectively, in the watershed surface streams. The reduction was less extensive when riparian buffer strips (30 m or 50 m) were applied to the stream network at 1.4% of total land area

  5. The Use of Biofuel for Sustainable Growth in Developing Countries

    Science.gov (United States)

    Tsang, J.

    2014-12-01

    The biofuel industry is divided into four categories comprising of feedstocks used in 1st and 2nd generation bioethanol and biodiesel. In order to identify and quantify each biofuel feedstock's potential for sustainable growth, each were evaluated according to self-developed social, financial, and environmental criteria. From the investigation and analysis carried out, 1st generation biodiesel and bioethanol were determined to be feedstocks not capable of facilitating sustainable growth. Results showed low earnings before interest, taxes, depreciation and amortization (EBITDA) of -0.5 to 1 USD per gallon for biodiesel and 0.25 to 0.5 USD per gallon for bioethanol. Results also showed a poor return on asset (ROA). The energy required to produce one MJ of 1st generation biofuel fuel was at least 0.4 MJ, showing poor energy balance. Furthermore, high land, water, pesticide, and fertilizer requirements strained surrounding ecosystems by affecting the food web, thus reducing biodiversity. Over 55% of land used by the biodiesel industry in Indonesia and Malaysia involved the deforestation of local rainforests. This not only displaced indigenous organisms from their habitat and decreased their scope of nutrition, but also contributed to soil erosion and increased the probability of flooding. If left unregulated, imbalances in the ecosystem due to unsustainable growth will result in a permanent reshaping of tropical rainforest ecosystems in Southeast Asia. Algae, an example of 2nd generation biodiesel feedstock, was concluded to be the biofuel feedstock most capable of supporting sustainable growth. This is due to its low production costs of $1-1.5/gal, high biological productivity of 5000 gallons of biodiesel per acre per year, and high ROA of 25-35%. Additionally, algae's adaptability to varying environmental conditions also makes it an appealing candidate for businesses in developing countries, where access to resource supplies is unstable. Additionally, its reduced net

  6. Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants

    Directory of Open Access Journals (Sweden)

    Petersen Pia Damm

    2012-11-01

    Full Text Available Abstract Background Cost-efficient generation of second-generation biofuels requires plant biomass that can easily be degraded into sugars and further fermented into fuels. However, lignocellulosic biomass is inherently recalcitrant toward deconstruction technologies due to the abundant lignin and cross-linked hemicelluloses. Furthermore, lignocellulosic biomass has a high content of pentoses, which are more difficult to ferment into fuels than hexoses. Engineered plants with decreased amounts of xylan in their secondary walls have the potential to render plant biomass a more desirable feedstock for biofuel production. Results Xylan is the major non-cellulosic polysaccharide in secondary cell walls, and the xylan deficient irregular xylem (irx mutants irx7, irx8 and irx9 exhibit severe dwarf growth phenotypes. The main reason for the growth phenotype appears to be xylem vessel collapse and the resulting impaired transport of water and nutrients. We developed a xylan-engineering approach to reintroduce xylan biosynthesis specifically into the xylem vessels in the Arabidopsis irx7, irx8 and irx9 mutant backgrounds by driving the expression of the respective glycosyltransferases with the vessel-specific promoters of the VND6 and VND7 transcription factor genes. The growth phenotype, stem breaking strength, and irx morphology was recovered to varying degrees. Some of the plants even exhibited increased stem strength compared to the wild type. We obtained Arabidopsis plants with up to 23% reduction in xylose levels and 18% reduction in lignin content compared to wild-type plants, while exhibiting wild-type growth patterns and morphology, as well as normal xylem vessels. These plants showed a 42% increase in saccharification yield after hot water pretreatment. The VND7 promoter yielded a more complete complementation of the irx phenotype than the VND6 promoter. Conclusions Spatial and temporal deposition of xylan in the secondary cell wall of

  7. Washington State Biofuels Industry Development

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Richard [Univ. of Washington, Seattle, WA (United States)

    2017-04-09

    The funding from this research grant enabled us to design, renovate, and equip laboratories to support University of Washington biofuels research program. The research that is being done with the equipment from this grant will facilitate the establishment of a biofuels industry in the Pacific Northwest and enable the University of Washington to launch a substantial biofuels and bio-based product research program.

  8. The Biofuels Revolution: Understanding the Social, Cultural and Economic Impacts of Biofuels Development on Rural Communities

    Energy Technology Data Exchange (ETDEWEB)

    Selfa, Theresa L; Goe, Richard; Kulcsar, Laszlo; Middendorf, Gerad; Bain, Carmen

    2013-02-11

    The aim of this research was an in-depth analysis of the impacts of biofuels industry and ethanol plants on six rural communities in the Midwestern states of Kansas and Iowa. The goal was to provide a better understanding of the social, cultural, and economic implications of biofuels development, and to contribute to more informed policy development regarding bioenergy.Specific project objectives were: 1. To understand how the growth of biofuel production has affected and will affect Midwestern farmers and rural communities in terms of economic, demographic, and socio-cultural impacts; 2. To determine how state agencies, groundwater management districts, local governments and policy makers evaluate or manage bioenergy development in relation to competing demands for economic growth, diminishing water resources, and social considerations; 3. To determine the factors that influence the water management practices of agricultural producers in Kansas and Iowa (e.g. geographic setting, water management institutions, competing water-use demands as well as producers attitudes, beliefs, and values) and how these influences relate to bioenergy feedstock production and biofuel processing; 4. To determine the relative importance of social-cultural, environmental and/or economic factors in the promotion of biofuels development and expansion in rural communities; The research objectives were met through the completion of six detailed case studies of rural communities that are current or planned locations for ethanol biorefineries. Of the six case studies, two will be conducted on rural communities in Iowa and four will be conducted on rural communities in Kansas. A multi-method or mixed method research methodology was employed for each case study.

  9. Promoting biofuels: Implications for developing countries

    International Nuclear Information System (INIS)

    Peters, Joerg; Thielmann, Sascha

    2008-01-01

    Interest in biofuels is growing worldwide as concerns about the security of energy supply and climate change are moving into the focus of policy makers. With the exception of bioethanol from Brazil, however, production costs of biofuels are typically much higher than those of fossil fuels. As a result, promotion measures such as tax exemptions or blending quotas are indispensable for ascertaining substantial biofuel demand. With particular focus on developing countries, this paper discusses the economic justification of biofuel promotion instruments and investigates their implications. Based on data from India and Tanzania, we find that substantial biofuel usage induces significant financial costs. Furthermore, acreage availability is a binding natural limitation that could also lead to conflicts with food production. Yet, if carefully implemented under the appropriate conditions, biofuel programs might present opportunities for certain developing countries

  10. The Next Generation Feedstock of Biofuel: Jatropha or Chlorella as Assessed by Their Life-Cycle Inventories

    Directory of Open Access Journals (Sweden)

    Pu Peng

    2014-07-01

    Full Text Available Promising energy crops such as Jatropha curcas Linnaeus (JCL, which are planted on marginal lands, or microalgae such as Chlorella, which are cultivated in ponds located on mudflats or deserts, have been regarded with high hopes to solve the shortage of food crops and increase the amount of biodiesel (Fatty Acid Methyl Ester, FAME production. However, the annual yields of biomass and transport fuels (t/ha of both are still unclear and often exaggerated in the literature. Large portions of JCL biomass, including tree trunks and leaves, can also be used to generate electricity along with FAME, which is produced from seed lipids. Meanwhile, lipid extracted algae (LEA are composed of proteins, polysaccharides, and lipids other than glycerides which are unable to be esterified to form FAME and much more abundant in the microalgae than oil cake in the oil crops. Therefore, it has been strongly suggested that not only transesterification or esterification but also Fischer-Tropsch (FT process and bio-electricity generation should be considered as routes to produce biofuels. Otherwise, the yield of biofuel would be extremely low using either JCL or Chlorella as feedstock. The Life-Cycle Inventories (LCI of the biofuel processes with whole biomass of JCL and Chlorella were compared based on their net energy ratio (NER and CO2 emission saving (CES. It was shown that the technological improvement of irrigation, cultivation, and processing for either economic-crops or microalgae were all necessary to meet the requirements of commercial biofuel production.

  11. Is Miscanthus a High Risk Biofuel Feedstock Prospect for the Upper Midwest US?

    Science.gov (United States)

    Kucharik, C. J.; VanLoocke, A. D.

    2011-12-01

    Miscanthus is a highly productive C4 perennial rhizomatous grass that is native to Southeast Asia, but its potential as a feedstock for cellulosic biofuel in the Midwest US is intriguing given extremely high productivity for low amounts of agrochemical inputs. However, Miscanthus x giganteus, a key variety currently studied is not planted from seed, but rather from rhizomes planted at a soil depth of 5 to 10 cm. Therefore, it is costly to establish on the basis of both time and money, making it a potentially risky investment in geographic regions that experience cold wintertime temperatures that can effectively kill the crop. The 50% kill threshold for M. giganteus rhizomes occurs when soil temperatures fall below -3.5C, which may contribute to a high risk of improper establishment during the first few seasons. Our first objective here was to study a historical, simulated reconstruction of daily wintertime soil temperatures at high spatial resolution (5 min) across the Midwest US from 1948-2007, and use this information to quantify the frequency that lethal soil temperature thresholds for Miscanthus were reached. A second objective was to investigate how the use of crop residues could impact wintertime soil temperatures. In this study, a dynamic agroecosystem model (Agro-IBIS) that has been modified to simulate Miscanthus growth and phenology was used in conjunction with high-resolution datasets of soil texture and daily gridded weather data. Model simulations suggest that across the states of North and South Dakota, Nebraska, Minnesota, Wisconsin, Michigan, and the northern half of Iowa, the kill threshold of -3.5C at a 10cm soil depth was reached in 70-95% of the simulation years. A boundary representing a 50% likelihood of reaching -3.5C at 10cm depth in any given year runs approximately from east central Colorado, thought northern Kansas and Missouri, through central Illinois, central Indiana, and central Ohio. An analysis of monthly mean 10cm soil temperatures

  12. Biofuels in Italy: obstacles and development opportunities

    International Nuclear Information System (INIS)

    Pignatelli, Vito; Clementi, Chiara

    2006-01-01

    Today biofuels are the sole realistically practical way to reduce CO 2 emissions in the transportation sector. In many countries, including Italy, biofuel production and use are already a reality corresponding to a large agro-industrial production system that uses essentially mature technologies. To significantly lower production costs and optimise land use, Italy needs to develop new, second-generation biofuel production operations that can offer significant opportunities to the nation's agro-industrial sector [it

  13. Fostering sustainable feedstock production for advanced biofuels on underutilised land in Europe

    Science.gov (United States)

    Mergner, Rita; Janssen, Rainer; Rutz, Dominik; Knoche, Dirk; Köhler, Raul; Colangeli, Marco; Gyuris, Peter

    2017-04-01

    Background In context of growing competition between land uses, bioenergy development is often seen as one of possible contributors to such competition. However, the potential of underutilized land (contaminated, abandoned, marginal, fallow land etc.) which is not used or cannot be used for productive activities is not exhausted and offers an attractive alternative for sustainable production of different biomass feedstocks in Europe. Depending on biomass feedstocks, different remediation activities can be carried out in addition. Bioenergy crops have the potential to be grown profitably on underutilized land and can therefore offer an attractive source of income on the local level contributing to achieving the targets of the Renewable Energy Directive (EC/2009). The FORBIO project The FORBIO project demonstrates the viability of using underutilised land in EU Member States for sustainable bioenergy feedstock production that does not affect the supply of food, feed and land currently used for recreational or conservation purposes. Project activities will serve to build up and strengthen local bioenergy value chains that are competitive and that meet the highest sustainability standards, thus contributing to the market uptake of sustainable bioenergy in the EU. Presented results The FORBIO project will develop a methodology to assess the sustainable bioenergy production potential on available underutilized lands in Europe at local, site-specific level. Based on this methodology, the project will produce multiple feasibility studies in three selected case study locations: Germany (lignite mining and sewage irrigation fields in the metropolis region of Berlin and Brandenburg), Italy (contaminated land from industrial activities in Sulcis, Portoscuso) and Ukraine (underutilised marginal agricultural land in the North of Kiev). The focus of the presentation will be on the agronomic and techno-economic feasibility studies in Germany, Italy and Ukraine. Agronomic

  14. Nitrous oxide emission and soil carbon sequestration from herbaceous perennial biofuel feedstocks

    Science.gov (United States)

    Greenhouse gas (GHG) mitigation and renewable, domestic fuels are needed in the United States. Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential bioenergy feedstocks that may meet this need. However, managing perennial grasses for feedstock requires nitro...

  15. Impacts of second-generation biofuel feedstock production in the central U.S. on the hydrologic cycle and global warming mitigation potential

    Science.gov (United States)

    Harding, K. J.; Twine, T. E.; VanLoocke, A.; Bagley, J. E.; Hill, J.

    2016-10-01

    Biofuel feedstocks provide a renewable energy source that can reduce fossil fuel emissions; however, if produced on a large scale they can also impact local to regional water and carbon budgets. Simulation results for 2005-2014 from a regional weather model adapted to simulate the growth of two perennial grass biofuel feedstocks suggest that replacing at least half the current annual cropland with these grasses would increase water use efficiency and drive greater rainfall downwind of perturbed grid cells, but increased evapotranspiration (ET) might switch the Mississippi River basin from having a net warm-season surplus of water (precipitation minus ET) to a net deficit. While this scenario reduces land required for biofuel feedstock production relative to current use for maize grain ethanol production, it only offsets approximately one decade of projected anthropogenic warming and increased water vapor results in greater atmospheric heat content.

  16. Systems Level Engineering of Plant Cell Wall Biosynthesis to Improve Biofuel Feedstock Quality

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Samuel

    2013-09-27

    Our new regulatory model of cell wall biosynthesis proposes original network architecture with several newly incorporated components. The mapped set of protein-DNA interactions will serve as a foundation for 1) understanding the regulation of a complex and integral plant component and 2) the manipulation of crop species for biofuel and biotechnology purposes. This study revealed interesting and novel aspects of grass growth and development and further enforce the importance of a grass model system. By functionally characterizing a suite of genes, we have begun to improve the sparse model for transcription regulation of biomass accumulation in grasses. In the process, we have advanced methodology and brachy molecular genetic tools that will serve as valuable community resource.

  17. Development of a biorefinery optimized biofuel supply curve for the western United States

    Science.gov (United States)

    Nathan Parker; Peter Tittmann; Quinn Hart; Richard Nelson; Ken Skog; Anneliese Schmidt; Edward Gray; Bryan Jenkins

    2010-01-01

    A resource assessment and biorefinery siting optimization model was developed and implemented to assess potential biofuel supply across the Western United States from agricultural, forest, urban, and energy crop biomass. Spatial information including feedstock resources, existing and potential refinery locations and a transportation network model is provided to a mixed...

  18. Biofuels in China.

    Science.gov (United States)

    Tan, Tianwei; Yu, Jianliang; Lu, Jike; Zhang, Tao

    2010-01-01

    The Chinese government is stimulating the biofuels development to replace partially fossil fuels in the transport sector, which can enhance energy security, reduce greenhouse gas emissions, and stimulate rural development. Bioethanol, biodiesel, biobutanol, biogas, and biohydrogen are the main biofuels developed in China. In this chapter, we mainly present the current status of biofuel development in China, and illustrate the issues of feedstocks, food security and conversion processes.

  19. Biofuels development and the policy regime.

    Science.gov (United States)

    Philp, Jim C; Guy, Ken; Ritchie, Rachael J

    2013-01-01

    Any major change to the energy order is certain to provoke both positive and negative societal responses. The current wave of biofuels development ignited controversies that have re-shaped the thinking about their future development. Mistakes were made in the early support for road transport biofuels in Organisation for Economic Co-operation and Development (OECD) countries. This article examines some of the policies that shaped the early development of biofuels and looks to the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Fatty acid from the renewable sources: a promising feedstock for the production of biofuels and biobased chemicals.

    Science.gov (United States)

    Liu, Hui; Cheng, Tao; Xian, Mo; Cao, Yujin; Fang, Fang; Zou, Huibin

    2014-01-01

    With the depletion of the nonrenewable petrochemical resources and the increasing concerns of environmental pollution globally, biofuels and biobased chemicals produced from the renewable resources appear to be of great strategic significance. The present review described the progress in the biosynthesis of fatty acid and its derivatives from renewable biomass and emphasized the importance of fatty acid serving as the platform chemical and feedstock for a variety of chemicals. Due to the low efficient conversions of lignocellulosic biomass or carbon dioxide to fatty acid, we also put forward that rational strategies for the production of fatty acid and its derivatives should further derive from the consideration of whole bioprocess (pretreatment, saccharification, fermentation, separation), multiscale analysis and interdisciplinary combinations (omics, kinetics, metabolic engineering, synthetic biology, fermentation and so on). Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production

    Directory of Open Access Journals (Sweden)

    Mendu Venugopal

    2011-10-01

    Full Text Available Abstract Background Lignin is a highly abundant biopolymer synthesized by plants as a complex component of plant secondary cell walls. Efforts to utilize lignin-based bioproducts are needed. Results Herein we identify and characterize the composition and pyrolytic deconstruction characteristics of high-lignin feedstocks. Feedstocks displaying the highest levels of lignin were identified as drupe endocarp biomass arising as agricultural waste from horticultural crops. By performing pyrolysis coupled to gas chromatography-mass spectrometry, we characterized lignin-derived deconstruction products from endocarp biomass and compared these with switchgrass. By comparing individual pyrolytic products, we document higher amounts of acetic acid, 1-hydroxy-2-propanone, acetone and furfural in switchgrass compared to endocarp tissue, which is consistent with high holocellulose relative to lignin. By contrast, greater yields of lignin-based pyrolytic products such as phenol, 2-methoxyphenol, 2-methylphenol, 2-methoxy-4-methylphenol and 4-ethyl-2-methoxyphenol arising from drupe endocarp tissue are documented. Conclusions Differences in product yield, thermal decomposition rates and molecular species distribution among the feedstocks illustrate the potential of high-lignin endocarp feedstocks to generate valuable chemicals by thermochemical deconstruction.

  2. From biofuel to bioproduct: is bioethanol a suitable fermentation feedstock for synthesis of bulk chemicals?

    NARCIS (Netherlands)

    Weusthuis, R.A.; Aarts, J.M.M.J.G.; Sanders, J.P.M.

    2011-01-01

    The first pilot-scale factories for the production of bioethanol from lignocellulose have been installed, indicating that we are on the brink of overcoming most hurdles for an economically feasible process. When bioethanol is competitive as biofuel with fuels originating from petrochemical

  3. Biogeochemical research priorities for sustainable biofuel and bioenergy feedstock production in the Americas

    Science.gov (United States)

    Hero T. Gollany; Brian D. Titus; D. Andrew Scott; Heidi Asbjornsen; Sigrid C. Resh; Rodney A. Chimner; Donald J. Kaczmarek; Luiz F.C. Leite; Ana C.C. Ferreira; Kenton A. Rod; Jorge Hilbert; Marcelo V. Galdos; Michelle E. Cisz

    2015-01-01

    Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demand on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustainability related to biomass production. Biomass production systems...

  4. Employment effects of biofuels development

    International Nuclear Information System (INIS)

    Danielsson, B.O.; Hektor, B.

    1992-01-01

    Effects on employment - national and regional - from an expanding market for biofuels in Sweden are estimated in this article. The fuels considered are: Peat, straw, energy crops, silviculture, forestry waste, wood waste, by-products from paper/wood industry and processed fuels from these sources. (22 refs., tabs.)

  5. Biofuels versus food production: Does biofuels production increase food prices?

    International Nuclear Information System (INIS)

    Ajanovic, Amela

    2011-01-01

    Rapidly growing fossil energy consumption in the transport sector in the last two centuries caused problems such as increasing greenhouse gas emissions, growing energy dependency and supply insecurity. One approach to solve these problems could be to increase the use of biofuels. Preferred feedstocks for current 1st generation biofuels production are corn, wheat, sugarcane, soybean, rapeseed and sunflowers. The major problem is that these feedstocks are also used for food and feed production. The core objective of this paper is to investigate whether the recent increase of biofuels production had a significant impact on the development of agricultural commodity (feedstock) prices. The most important impact factors like biofuels production, land use, yields, feedstock and crude oil prices are analysed. The major conclusions of this analysis are: In recent years the share of bioenergy-based fuels has increased moderately, but continuously, and so did feedstock production, as well as yields. So far, no significant impact of biofuels production on feedstock prices can be observed. Hence, a co-existence of biofuel and food production seems possible especially for 2nd generation biofuels. However, sustainability criteria should be seriously considered. But even if all crops, forests and grasslands currently not used were used for biofuels production it would be impossible to substitute all fossil fuels used today in transport.

  6. A multi-factor evaluation of Jatropha as a feedstock for biofuels: the case of sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Raphael M. Jingura

    2015-09-01

    Full Text Available Sub-Saharan Africa (SSA is a geographical region consisting of 49 countries, out of which, 39 countries have experiences with the cultivation of Jatropha curcas L. Since the year 2000 Jatropha production escalated in the region and peaked in around 2007/2008. The major drivers of this trend were claims made about Jatropha including include its ability to grow on marginal lands, high seed and oil yields, and drought tolerant, amongst other attributes. However, the reality has shown that these attributes have not been realised.  The objective of the present paper is to analyse the performance of Jatropha as a biofuel feedstock in SSA based on agronomic, economic, social and environmental factors involved in its production. Evidences in SSA show that the major challenge with Jatropha cultivation has been low seed yields, ranging between 0.1 and 2 t/ha. This in turn has led to oil yields which are not sufficiently viable for use in production of biofuels such as biodiesel. There have also been reported challenges with production on wastelands, low use of inputs, unimproved planting materials and vulnerability to pests and diseases. These have negatively affected the performance of Jatropha causing the original claims made about this energy crop not materialised in the SSA.

  7. Unconventional biomasses as feedstocks for production of biofuels and succinic acid in a biorefinery concept

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi

    composition of the specific biomass feedstock, as well as which pretreatment, saccharification, fermentation and extraction techniques are used. Furthermore, integrating biological processes into the biorefinery that effectively consume CO2 will become increasingly important. Such process integration could...... significantly improve the sustainability indicators of the overall biorefinery process. In this study, unconventional lignocellulosic- and aquatic biomasses were investigated as biorefinery feedstocks. The studied biomasses were Jerusalem artichoke, industrial hemp and macroalgae species Laminaria digitata....... The chemical composition of biomasses was determined in order to demonstrate their biorefinery potential. Bioethanol and biogas along with succinic acid production were the explored bioconversion routes, while potential production of other compounds was also investigated. Differences and changes in biomass...

  8. Recent developments of biofuels/bioenergy sustainability certification: A global overview

    International Nuclear Information System (INIS)

    Scarlat, Nicolae; Dallemand, Jean-Francois

    2011-01-01

    The objective of this paper is to provide a review on the latest developments on the main initiatives and approaches for the sustainability certification for biofuels and/or bioenergy. A large number of national and international initiatives lately experienced rapid development in the view of the biofuels and bioenergy targets announced in the European Union, United States and other countries worldwide. The main certification initiatives are analysed in detail, including certification schemes for crops used as feedstock for biofuels, the various initiatives in the European Union, United States and globally, to cover biofuels and/or biofuels production and use. Finally, the possible way forward for biofuel certification is discussed. Certification has the potential to influence positively direct environmental and social impact of bioenergy production. Key recommendations to ensure sustainability of biofuels/bioenergy through certification include the need of an international approach and further harmonisation, combined with additional measures for global monitoring and control. The effects of biofuels/bioenergy production on indirect land use change (ILUC) is still very uncertain; addressing the unwanted ILUC requires sustainable land use planning and adequate monitoring tools such as remote sensing, regardless of the end-use of the product. - Research highlights: → There is little harmonisation between certification initiatives. → Certification alone is probably not able to avoid certain indirect effects. → Sustainability standards should be applied globally to all agricultural commodities. → A critical issue to certification is implementation and verification. → Monitoring and control of land use changes through remote sensing are needed.

  9. The potential of freshwater macroalgae as a biofuels feedstock and the influence of nutrient availability on freshwater macroalgal biomass production

    Science.gov (United States)

    Yun, Jin-Ho

    Extensive efforts have been made to evaluate the potential of microalgae as a biofuel feedstock during the past 4-5 decades. However, filamentous freshwater macroalgae have numerous characteristics that favor their potential use as an alternative algal feedstock for biofuels production. Freshwater macroalgae exhibit high rates of areal productivity, and their tendency to form dense floating mats on the water surface imply significant reductions in harvesting and dewater costs compared to microalgae. In Chapter 1, I reviewed the published literature on the elemental composition and energy content of five genera of freshwater macroalgae. This review suggested that freshwater macroalgae compare favorably with traditional bio-based energy sources, including terrestrial residues, wood, and coal. In addition, I performed a semi-continuous culture experiment using the common Chlorophyte genus Oedogonium to investigate whether nutrient availability can influence its higher heating value (HHV), productivity, and proximate analysis. The experimental study suggested that the most nutrient-limited growth conditions resulted in a significant increase in the HHV of the Oedogonium biomass (14.4 MJ/kg to 16.1 MJ/kg). Although there was no significant difference in productivity between the treatments, the average dry weight productivity of Oedogonium (3.37 g/m2/day) was found to be much higher than is achievable with common terrestrial plant crops. Although filamentous freshwater macroalgae, therefore, have significant potential as a renewable source of bioenergy, the ultimate success of freshwater macroalgae as a biofuel feedstock will depend upon the ability to produce biomass at the commercial-scale in a cost-effective and sustainable manner. Aquatic ecology can play an important role to achieve the scale-up of algal crop production by informing the supply rates of nutrients to the cultivation systems, and by helping to create adaptive production systems that are resilient to

  10. Developing County-level Water Footprints of Biofuel Produced from Switchgrass and Miscanthus x Giganteus in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Wu, May M. [Argonne National Lab. (ANL), Argonne, IL (United States); Chiu, Yi-Wen [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-09-30

    Perennial grass has been proposed as a potential candidate for producing cellulosic biofuel because of its promising productivity and benefits to water quality, and because it is a non-food feedstock. While extensive research focuses on selecting and developing species and conversion technologies, the impact of grass-based biofuel production on water resources remains less clear. As feedstock growth requires water and the type of water consumed may vary considerably from region to region, water use must be characterized with spatial resolution and on a fuel production basis. This report summarizes a study that assesses the impact of biofuel production on water resource use and water quality at county, state, and regional scales by developing a water footprint of biofuel produced from switchgrass and Miscanthus × giganteus via biochemical conversion.

  11. Strategic niche management for biofuels : analysing past experiments for developing new biofuels policy

    NARCIS (Netherlands)

    Laak, W.W.M.; Raven, R.P.J.M.; Verbong, G.P.J.

    2007-01-01

    Biofuels have gained a lot of attention since the implementation of the 2003 European Directive on biofuels. In the Netherlands the contribution of biofuels is still very limited despite several experiments in the past. This article aims to contribute to the development of successful policies for

  12. Global Biofuels at the Crossroads: An Overview of Technical, Policy, and Investment Complexities in the Sustainability of Biofuel Development

    Directory of Open Access Journals (Sweden)

    Kathleen Araújo

    2017-03-01

    Full Text Available Biofuels have the potential to alter the transport and agricultural sectors of decarbonizing societies. Yet, the sustainability of these fuels has been questioned in recent years in connection with food versus fuel trade-offs, carbon accounting, and land use. Recognizing the complicated playing field for current decision-makers, we examine the technical attributes, policy, and global investment activity for biofuels (primarily liquids. Differences in feedstock and fuel types are considered, in addition to policy approaches of major producer countries. Issues with recent, policy-driven trade developments are highlighted to emphasize how systemic complexities associated with sustainability must also be managed. We conclude with near-term areas to watch.

  13. Strategic niche management for biofuels: Analysing past experiments for developing new biofuel policies

    International Nuclear Information System (INIS)

    Laak, W.W.M. van der; Raven, R.P.J.M.; Verbong, G.P.J.

    2007-01-01

    Biofuels have gained a lot of attention since the implementation of the 2003 European Directive on biofuels. In the Netherlands the contribution of biofuels is still very limited despite several experiments in the past. This article aims to contribute to the development of successful policies for stimulating biofuels by analysing three experiments in depth. The approach of strategic niche management (SNM) is used to explain success and failure of these projects. Based on the analysis as well as recent innovation literature we develop a list of guidelines that is important to consider when developing biofuel policies

  14. Price projections of feedstocks for biofuels and biopower in the U.S

    International Nuclear Information System (INIS)

    Langholtz, Matthew; Graham, Robin; Eaton, Laurence; Perlack, Robert; Hellwinkel, Chad; De La Torre Ugarte, Daniel G.

    2012-01-01

    The economic availability of biomass resources is a critical component in evaluating the commercial viability of biofuels. To evaluate projected farmgate prices and grower payments needed to procure 295 million dry Mg (325 million dry tons) of biomass in the U.S. by 2022, this research employs POLYSYS, an economic model of the U.S. agriculture sector. A price-run simulation suggests that a farmgate price of $58.42 Mg −1 ($53.00 dry ton −1 ) is needed to procure this supply, while a demand-run simulation suggests that prices of $34.56 and $71.61 Mg −1 ($30.00 and $62.00 dry ton −1 ) in are needed in 2012 and 2022, respectively, to procure the same supply, under baseline yield assumptions. Grower payments are reported as farmgate price minus resource-specific harvest costs. - Highlights: ► We model biomass prices needed to meet projected demand for biofuels and biopower. ► Combined projected demand is 295 million dry Mg of biomass by 2022. ► A farmgate price of $58.42 Mg −1 in 2022 meets demand under a price-run scenario. ► A farmgate price of $71.61 Mg −1 in 2022 meets demand under a demand-run scenario. ► Higher farmgate prices incentivize adoption of dedicated crops.

  15. Development of High Yield Feedstocks and Biomass Conversion Technology for Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Andrew G. [Univ. of Hawaii, Honolulu, HI (United States); Crow, Susan [Univ. of Hawaii, Honolulu, HI (United States); DeBeryshe, Barbara [Univ. of Hawaii, Honolulu, HI (United States); Ha, Richard [Hamakua Springs County Farms, Hilo, HI (United States); Jakeway, Lee [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Khanal, Samir [Univ. of Hawaii, Honolulu, HI (United States); Nakahata, Mae [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Ogoshi, Richard [Univ. of Hawaii, Honolulu, HI (United States); Shimizu, Erik [Univ. of Hawaii, Honolulu, HI (United States); Stern, Ivette [Univ. of Hawaii, Honolulu, HI (United States); Turano, Brian [Univ. of Hawaii, Honolulu, HI (United States); Turn, Scott [Univ. of Hawaii, Honolulu, HI (United States); Yanagida, John [Univ. of Hawaii, Honolulu, HI (United States)

    2015-04-09

    This project had two main goals. The first goal was to evaluate several high yielding tropical perennial grasses as feedstock for biofuel production, and to characterize the feedstock for compatible biofuel production systems. The second goal was to assess the integration of renewable energy systems for Hawaii. The project focused on high-yield grasses (napiergrass, energycane, sweet sorghum, and sugarcane). Field plots were established to evaluate the effects of elevation (30, 300 and 900 meters above sea level) and irrigation (50%, 75% and 100% of sugarcane plantation practice) on energy crop yields and input. The test plots were extensive monitored including: hydrologic studies to measure crop water use and losses through seepage and evapotranspiration; changes in soil carbon stock; greenhouse gas flux (CO2, CH4, and N2O) from the soil surface; and root morphology, biomass, and turnover. Results showed significant effects of environment on crop yields. In general, crop yields decrease as the elevation increased, being more pronounced for sweet sorghum and energycane than napiergrass. Also energy crop yields were higher with increased irrigation levels, being most pronounced with energycane and less so with sweet sorghum. Daylight length greatly affected sweet sorghum growth and yields. One of the energy crops (napiergrass) was harvested at different ages (2, 4, 6, and 8 months) to assess the changes in feedstock characteristics with age and potential to generate co-products. Although there was greater potential for co-products from younger feedstock, the increased production was not sufficient to offset the additional cost of harvesting multiple times per year. The feedstocks were also characterized to assess their compatibility with biochemical and thermochemical conversion processes. The project objectives are being continued through additional support from the Office of Naval Research, and the Biomass Research and Development

  16. Application of Buckmaster Electrolyte Ion Leakage Test to Woody Biofuel Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Thomas F [Forest Concepts, LLC; Dooley, James H [Forest Concepts, LLC

    2014-08-28

    In an earlier ASABE paper, Buckmaster reported that ion conductivity of biomass leachate in aqueous solution was directly correlated with activity access to plant nutrients within the biomass materials for subsequent biological or chemical processing. The Buckmaster test involves placing a sample of the particles in a beaker of constant-temperature deionized water and monitoring the change in electrical conductivity over time. We adapted the Buckmaster method to a range of woody biomass and other cellulosic bioenergy feedstocks. Our experimental results suggest differences of electrolyte leakage between differently processed woody biomass particles may be an indicator of their utility for conversion in bioenergy processes. This simple assay appears to be particularly useful to compare different biomass comminution techniques and particle sizes for biochemical preprocessing.

  17. The Genetics of Biofuel Traits in Panicum Grasses: Developing a Model System with Diploid Panicum Hallii

    Energy Technology Data Exchange (ETDEWEB)

    Juenger, Thomas [Univ. of Texas, Austin, TX (United States). Dept. of Integrative Biology; Wolfrum, Ed [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-07-31

    Our DOE funded project focused on characterizing natural variation in C4 perennial grasses including switchgrass (Panicum virgatum) and Hall’s panicgrass (Panicum hallii). The main theme of our project was to better understand traits linked with plant performance and that impact the utility of plant biomass as a biofuel feedstock. In addition, our project developed tools and resources for studying genetic variation in Panicum hallii. Our project successfully screened both Panicum virgatum and Panicum hallii diverse natural collections for a host of phenotypes, developed genetic mapping populations for both species, completed genetic mapping for biofuel related traits, and helped in the development of genomic resources of Panicum hallii. Together, these studies have improved our understanding of the role of genetic and environmental factors in impacting plant performance. This information, along with new tools, will help foster the improvement of perennial grasses for feedstock applications.

  18. Long-term developments in the transport sector -- comparing biofuel and hydrogen roadmaps

    Energy Technology Data Exchange (ETDEWEB)

    Uyterlinde, M.A.; Londo, M.; Godfroij, P.; Jeeninga, H.

    2007-07-01

    In view of climate change and declining oil reserves, alternative fuels for transport receive increasing attention. Two promising options are biofuels, of which the market penetration has already started, and hydrogen, which, when used in fuel cell cars, could lead to zero-emission vehicles. This paper draws on the results of two ongoing EU projects in which roadmaps are being developed for respectively biofuels and hydrogen . The most important potential conflict lies in competition for biomass as a feedstock. In this context, the hydrogen-fuel cell route has the advantage of a higher efficiency (in terms of km driven per ha or tonne biomass) than biofuels. Furthermore, hydrogen is more flexible in feedstock, since it can also be produced in a climate-friendly way from fossil resources such as coal. Synergy between biofuels and hydrogen is in gasification technology. This technology is required both for biomass-to-liquids, one of the more promising biofuels, and for hydrogen production from biomass and/or coal. Our analysis indicates that the transportation sector will need both options in the long term: while hydrogen may become dominant for passenger cars, greening of long-distance heavy duty transport will become dependent on a bio-based diesel substitute. (auth)

  19. AN OVERVIEW OF BIOFUELS PROCESS DEVELOPMENT IN SOUTH CAROLINA

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, S.; French, T.

    2010-02-03

    The South Carolina Bio-Energy Research Collaborative is working together on the development and demonstration of technology options for the production of bio-fuels using renewable non-food crops and biomass resources that are available or could be made available in abundance in the southeastern United States. This collaboration consists of Arborgen LLC, Clemson University, Savannah River National Laboratory, and South Carolina State University, with support from Dyadic, Fagen Engineering, Renewed World Energies, and Spinx. Thus far, most work has centered on development of a fermentation-based process to convert switchgrass into ethanol, with the concomitant generation of a purified lignin stream. The process is not feed-specific, and the work scope has recently expanded to include sweet sorghum and wood. In parallel, the Collaborative is also working on developing an economical path to produce oils and fuels from algae. The Collaborative envisions an integrated bio-fuels process that can accept multiple feedstocks, shares common equipment, and that produces multiple product streams. The Collaborative is not the only group working on bio-energy in South Carolina, and other companies are involved in producing biomass derived energy products at an industrial scale.

  20. Biogeochemical Research Priorities for Sustainable Biofuel and Bioenergy Feedstock Production in the Americas.

    Science.gov (United States)

    Gollany, Hero T; Titus, Brian D; Scott, D Andrew; Asbjornsen, Heidi; Resh, Sigrid C; Chimner, Rodney A; Kaczmarek, Donald J; Leite, Luiz F C; Ferreira, Ana C C; Rod, Kenton A; Hilbert, Jorge; Galdos, Marcelo V; Cisz, Michelle E

    2015-12-01

    Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demand on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustainability related to biomass production. Biomass production systems incrementally remove greater quantities of organic matter, which in turn affects soil organic matter and associated carbon and nutrient storage (and hence long-term soil productivity) and off-site impacts. While these consequences have been extensively studied for some crops and sites, the ongoing and impending impacts of biomass removal require management strategies for ensuring that soil properties and functions are sustained for all combinations of crops, soils, sites, climates, and management systems, and that impacts of biomass management (including off-site impacts) are environmentally acceptable. In a changing global environment, knowledge of cumulative impacts will also become increasingly important. Long-term experiments are essential for key crops, soils, and management systems because short-term results do not necessarily reflect long-term impacts, although improved modeling capability may help to predict these impacts. Identification and validation of soil sustainability indicators for both site prescriptions and spatial applications would better inform commercial and policy decisions. In an increasingly inter-related but constrained global context, researchers should engage across inter-disciplinary, inter-agency, and international lines to better ensure the long-term soil productivity across a range of scales, from site to landscape.

  1. Sustainable Production of Second-Generation Biofuels. Potential and perspectives in major economies and developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Eisentraut, A

    2010-02-15

    The paper focuses on opportunities and risks presented by second-generation biofuels technologies in eight case study countries: Brazil, Cameroon, China, India, Mexico, South Africa, Tanzania and Thailand. The report begins by exploring the state of the art of second-generation technologies and their production, followed by projections of future demand and a discussion of drivers of that demand. The report then delves into various feedstock options and the global potential for bioenergy production. The final chapter offers a look at the potential for sustainable second-generation biofuel production in developing countries including considerations of economic, social and environmental impacts. Key findings of the report include that: second-generation biofuels produced from agricultural and forestry residues can play a crucial role in the transport sector without competing with food production; the potential for second-generation biofuels should be mobilized in emerging and developing countries where a large share of global residues is produced; less-developed countries will first need to invest in agricultural production and infrastructure in order to improve the framework conditions for the production of second-generation biofuels; financial barriers to production exist in many developing countries; and the suitability of second-generation biofuels against individual developing countries' needs should be evaluated.

  2. Sustainable Production of Second-Generation Biofuels. Potential and perspectives in major economies and developing countries

    International Nuclear Information System (INIS)

    Eisentraut, A.

    2010-02-01

    The paper focuses on opportunities and risks presented by second-generation biofuels technologies in eight case study countries: Brazil, Cameroon, China, India, Mexico, South Africa, Tanzania and Thailand. The report begins by exploring the state of the art of second-generation technologies and their production, followed by projections of future demand and a discussion of drivers of that demand. The report then delves into various feedstock options and the global potential for bioenergy production. The final chapter offers a look at the potential for sustainable second-generation biofuel production in developing countries including considerations of economic, social and environmental impacts. Key findings of the report include that: second-generation biofuels produced from agricultural and forestry residues can play a crucial role in the transport sector without competing with food production; the potential for second-generation biofuels should be mobilized in emerging and developing countries where a large share of global residues is produced; less-developed countries will first need to invest in agricultural production and infrastructure in order to improve the framework conditions for the production of second-generation biofuels; financial barriers to production exist in many developing countries; and the suitability of second-generation biofuels against individual developing countries' needs should be evaluated.

  3. Sustainable Production of Second-Generation Biofuels. Potential and perspectives in major economies and developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Eisentraut, A.

    2010-02-15

    The paper focuses on opportunities and risks presented by second-generation biofuels technologies in eight case study countries: Brazil, Cameroon, China, India, Mexico, South Africa, Tanzania and Thailand. The report begins by exploring the state of the art of second-generation technologies and their production, followed by projections of future demand and a discussion of drivers of that demand. The report then delves into various feedstock options and the global potential for bioenergy production. The final chapter offers a look at the potential for sustainable second-generation biofuel production in developing countries including considerations of economic, social and environmental impacts. Key findings of the report include that: second-generation biofuels produced from agricultural and forestry residues can play a crucial role in the transport sector without competing with food production; the potential for second-generation biofuels should be mobilized in emerging and developing countries where a large share of global residues is produced; less-developed countries will first need to invest in agricultural production and infrastructure in order to improve the framework conditions for the production of second-generation biofuels; financial barriers to production exist in many developing countries; and the suitability of second-generation biofuels against individual developing countries' needs should be evaluated.

  4. Development of a biorefinery optimized biofuel supply curve for the Western United States

    International Nuclear Information System (INIS)

    Parker, Nathan; Tittmann, Peter; Hart, Quinn; Nelson, Richard; Skog, Ken; Schmidt, Anneliese; Gray, Edward; Jenkins, Bryan

    2010-01-01

    A resource assessment and biorefinery siting optimization model was developed and implemented to assess potential biofuel supply across the Western United States from agricultural, forest, urban, and energy crop biomass. Spatial information including feedstock resources, existing and potential refinery locations and a transportation network model is provided to a mixed integer-linear optimization model that determines the optimal locations, technology types and sizes of biorefineries to satisfy a maximum profit objective function applied across the biofuel supply and demand chain from site of feedstock production to the product fuel terminal. The resource basis includes preliminary considerations of crop and residue sustainability. Sensitivity analyses explore possible effects of policy and technology changes. At a target market price of 19.6 $ GJ -1 , the model predicts a feasible production level of 610-1098 PJ, enough to supply up to 15% of current regional liquid transportation fuel demand. (author)

  5. Socio-economic aspects of different biofuel development pathways

    International Nuclear Information System (INIS)

    Duer, Henrik; Christensen, Pernille Ovre

    2010-01-01

    There are several policy drivers for biofuels on a larger scale in the EU transport sector, including increased security of energy supply, reduced emission of greenhouse gases (GHG), and new markets for the agricultural sector. The purpose of this socio-economic cost analysis is to provide an overview of the costs of meeting EU biofuels targets, taking into account several external costs and benefits. Biofuels are generally more expensive than traditional fossil fuels, but the expected increasing value of GHG emission reductions will over time reduce the cost gap. High crude oil prices significantly improve the economic benefit of biofuels, but increased demand for biomass for energy purposes is likely to increase the price of biofuels feedstock and biofuels costs. The key question is to what extent increasing oil prices will be passed on to biofuels costs. Socio-economic least costs for biofuels production require a market with a clear pricing of GHG emissions to ensure that this factor is included in the decision-making of actors in all links of the fuel chain.

  6. Policies for the Sustainable Development of Biofuels in the Pan American Region: A Review and Synthesis of Five Countries.

    Science.gov (United States)

    Solomon, Barry D; Banerjee, Aparajita; Acevedo, Alberto; Halvorsen, Kathleen E; Eastmond, Amarella

    2015-12-01

    Rapid growth of biofuel production in the United States and Brazil over the past decade has increased interest in replicating this success in other nations of the Pan American region. However, the continued use of food-based feedstock such as maize is widely seen as unsustainable and is in some cases linked to deforestation and increased greenhouse gas emissions, raising further doubts about long-term sustainability. As a result, many nations are exploring the production and use of cellulosic feedstock, though progress has been extremely slow. In this paper, we will review the North-South axis of biofuel production in the Pan American region and its linkage with the agricultural sectors in five countries. Focus will be given to biofuel policy goals, their results to date, and consideration of sustainability criteria and certification of producers. Policy goals, results, and sustainability will be highlighted for the main biofuel policies that have been enacted at the national level. Geographic focus will be given to the two largest producers-the United States and Brazil; two smaller emerging producers-Argentina and Canada; and one stalled program-Mexico. However, several additional countries in the region are either producing or planning to produce biofuels. We will also review alternative international governance schemes for biofuel sustainability that have been recently developed, and whether the biofuel programs are being managed to achieve improved environmental quality and sustainable development.

  7. Biofuels

    International Nuclear Information System (INIS)

    Poitrat, E.

    2009-01-01

    Biofuels are fuels made from non-fossil vegetal or animal materials (biomass). They belong to the renewable energy sources as they do not contribute to worsen some global environmental impacts, like the greenhouse effect, providing that their production is performed in efficient energy conditions with low fossil fuel consumption. This article presents: 1 - the usable raw materials: biomass-derived resources, qualitative and quantitative aspects, biomass uses; 2 - biofuels production from biomass: alcohols and ethers, vegetable oils and their esters, synthetic liquid or gaseous biofuels, biogas; 3 - characteristics of liquid biofuels and comparison with gasoline and diesel fuel; 4 - biofuel uses: alcohols and their esters, biofuels with oxygenated compounds; vegetable oils and their derivatives in diesel engines, biogas, example of global environmental impact: the greenhouse effect. (J.S.)

  8. Developing symbiotic consortia for lignocellulosic biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Zuroff, Trevor R.; Curtis, Wayne R. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Chemical Engineering

    2012-02-15

    The search for petroleum alternatives has motivated intense research into biological breakdown of lignocellulose to produce liquid fuels such as ethanol. Degradation of lignocellulose for biofuel production is a difficult process which is limited by, among other factors, the recalcitrance of lignocellulose and biological toxicity of the products. Consolidated bioprocessing has been suggested as an efficient and economical method of producing low value products from lignocellulose; however, it is not clear whether this would be accomplished more efficiently with a single organism or community of organisms. This review highlights examples of mixtures of microbes in the context of conceptual models for developing symbiotic consortia for biofuel production from lignocellulose. Engineering a symbiosis within consortia is a putative means of improving both process efficiency and stability relative to monoculture. Because microbes often interact and exist attached to surfaces, quorum sensing and biofilm formation are also discussed in terms of consortia development and stability. An engineered, symbiotic culture of multiple organisms may be a means of assembling a novel combination of metabolic capabilities that can efficiently produce biofuel from lignocellulose. (orig.)

  9. Privileged Biofuels, Marginalized Indigenous Peoples: The Coevolution of Biofuels Development in the Tropics

    Science.gov (United States)

    Montefrio, Marvin Joseph F.

    2012-01-01

    Biofuels development has assumed an important role in integrating Indigenous peoples and other marginalized populations in the production of biofuels for global consumption. By combining the theories of commoditization and the environmental sociology of networks and flows, the author analyzed emerging trends and possible changes in institutions…

  10. Protein engineering for biofuel production: Recent development

    Directory of Open Access Journals (Sweden)

    Nisha Singh

    2016-09-01

    Full Text Available The unstable and unsure handiness of crude oil sources moreover the rising price of fuels have shifted international efforts to utilize renewable resources for the assembly of greener energy and a replacement which might additionally meet the high energy demand of the globe. Biofuels represent a sustainable, renewable, and also the solely predictable energy supply to fossil fuels. During the green production of Biofuels, several in vivo processes place confidence in the conversion of biomass to sugars by engineered enzymes, and the subsequent conversion of sugars to chemicals via designed proteins in microbial production hosts. Enzymes are indispensable within the effort to provide fuels in an ecologically friendly manner. They have the potential to catalyze reactions with high specificity and potency while not using dangerous chemicals. Nature provides an in depth assortment of enzymes, however usually these should be altered to perform desired functions in needed conditions. Presently available enzymes like cellulose are subject to tight induction and regulation systems and additionally suffer inhibition from numerous end products. Therefore, more impregnable and economical catalyst preparations ought to be developed for the enzymatic method to be more economical. Approaches like protein engineering, reconstitution of protein mixtures and bio prospecting for superior enzymes are gaining importance. Advances in enzyme engineering allow the planning and/or directed evolution of enzymes specifically tailored for such industrial applications. Recent years have seen the production of improved enzymes to help with the conversion of biomass into fuels. The assembly of the many of those fuels is feasible due to advances in protein engineering. This review discusses the distinctive challenges that protein engineering faces in the method of changing lignocellulose to biofuels and the way they're addressed by recent advances in this field.

  11. Best practices guidelines for managing water in bioenergy feedstock production

    Science.gov (United States)

    Daniel G. Neary

    2015-01-01

    In the quest to develop renewable energy sources, woody and agricultural crops are being viewed as an important source of low environmental impact feedstocks for electrical generation and biofuels production (Hall and Scrase 1998, Eriksson et al. 2002, Somerville et al. 2010, Berndes and Smith 2013). In countries like the USA, the bioenergy feedstock potential is...

  12. Controversies, development and trends of biofuel industry in the world

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2012-09-01

    Full Text Available Controversies, development and trends of biofuel industry in the world were discussed in present article. First-generation biofuels, i.e., grain and land based biofuels, occupied large areas of arable lands and severely constrained food supplies, are widely disputed. They have been replaced by second-generation biofuels. The raw materials of the second-generation biofuels include plants, straw, grass and other crops and forest residues. However, the cost for production of the second-generation biofuels is higher. Therefore the development of the third-generation biofuels is undergoing. The third-generation technologies use, mainly algae, as raw material to produce bioethanol, biobutanol, biodiesel and hydrogen, and use discarded fruits to produce dimethylfuran, etc. Different countries and regions are experiencing different stages of biofuel industry. In the future the raw materials for biofuel production will be focused on various by-products, wastes, and organisms that have not direct economic benefit for human. Production technologies should be improved or invented to reduce carbon emission and environmental pollution during biofuel production and to reduce production cost.

  13. Recommendations for a sustainable development of biofuels in France

    International Nuclear Information System (INIS)

    Douaud, A.; Gruson, J.F.

    2006-01-01

    The biofuels are presented as a solution to the greenhouse gases and the petroleum consumption decrease. The development of the biofuels needs an active research of the production, transformation and use costs improvement. It will be necessary to prepare the market of the biofuels to the globalization. Some recommendations are also provided in the domains of the vegetal oil ester, the ethanol for the diesel and for the development of simulation tools to evaluate the costs. (A.L.B.)

  14. The development of the biofuels in the french farms

    International Nuclear Information System (INIS)

    Treguer, D.; Sourie, J.C.

    2005-03-01

    At first, developed to compensate the farmers incomes after 1993, the biofuels are going today on a second development phase, in the framework of the Kyoto protocol. The aim of this paper is to define the particularities of the biofuels production agricultural phase. The most important aspects of the common agricultural policy (PAC) for the biofuels are underlined. The costs of the raw material and the tool developed by the INRA to estimate the biofuels costs are also presented. In conclusion the authors propose some reference results. (A.L.B.)

  15. Development in feedstock preparation and quality - country report from Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Ravn Schmidt, E [Elsamprojekt A/S, Fredericia (Denmark)

    1998-06-01

    A comprehensive R and D programme was launched shortly after the Danish political requirement to burn large amounts of biofuel was made known. This work has now been going on for more than 5 years and a variety of projects related to the conversion of biofuels has been completed. Within the ELSAM area two plants have been commissioned during the last two years for combustion of straw and wood chips; a separate bioboiler as addition to a coal-fired plant and a plant for straw and coal cofiring. Separate bioboilers have turned out to constitute a very versatile technology for implementation of biofuel in a fossil fuel-dominated utility structure, although there are pros and cons. Based on its first year of operation it is concluded that cofiring is sustainable for at least 10% straw share on energy basis, and it has been decided to continue the programme with the long-term 20% straw tests. As is well-known there is one major obstacle to utilising straw: the increased corrosion rate. To overcome this problems two concepts are being investigated: pyrolysis/coke washing and processing corrosion-free based fuels. Straw pyrolysis at power plant scale is still at the infant stage and will require considerable efforts before being mature; another possibility could be to wash the straw prior to firing. The first phase of the latter is concluded, and the second phase is at the planning stage, the aim is among others to set up a demo-plant. With a view to resources there is many advantages in being able to predict the size of area to harvest and bale. A straw prognosis method has been developed capable of producing reliable results. Other points for consideration are handling and storage. Four favourable strategies have been set up taking economic and technical aspects into consideration. Another source of biofuel is sewage sludge and it has been found that it is possible to utilize it for energy production. Further research is ongoing

  16. Development of the University of Washington Biofuels and Biobased Chemicals Process Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Richard [University of Washington

    2014-02-04

    The funding from this research grant enabled us to design and build a bioconversion steam explosion reactor and ancillary equipment such as a high pressure boiler and a fermenter to support the bioconversion process research. This equipment has been in constant use since its installation in 2012. Following are research projects that it has supported: • Investigation of novel chip production method in biofuels production • Investigation of biomass refining following steam explosion • Several studies on use of different biomass feedstocks • Investigation of biomass moisture content on pretreatment efficacy. • Development of novel instruments for biorefinery process control Having this equipment was also instrumental in the University of Washington receiving a $40 million grant from the US Department of Agriculture for biofuels development as well as several other smaller grants. The research that is being done with the equipment from this grant will facilitate the establishment of a biofuels industry in the Pacific Northwest and enable the University of Washington to launch a substantial biofuels and bio-based product research program.

  17. A strategic assessment of biofuels development in the Western States

    Science.gov (United States)

    Kenneth E. Skog; Robert Rummer; Bryan Jenkins; Nathan Parker; Peter Tittman; Quinn Hart; Richard Nelson; Ed Gray; Anneliese Schmidt; Marcia Patton-Mallory; Gordon Gayle

    2009-01-01

    The Western Governors' Association assessment of biofuels potential in western states estimated the location and capacity of biofuels plants that could potentially be built for selected gasoline prices in 2015 using a mixed integer programming model. The model included information on forest biomass supply curves by county (developed using Forest Service FIA data...

  18. Will biofuel projects in Southeast Asia become white elephants?

    International Nuclear Information System (INIS)

    Goh, Chun Sheng; Lee, Keat Teong

    2010-01-01

    Southeast Asia's attempt to join the global biofuel development has not been very successful, despite the large amount of subsidies and incentives allotted for biofuel projects. The outcome of these projects has failed to meet expectation due to overrated assumptions and shortsighted policies. Utilization of edible feedstock such as palm oil and sugar cane for biofuel has disrupted the fragile industry due to the fluctuations of feedstock prices. The appropriate research on jatropha to prove its economic and environmental feasibility as energy crop has not been performed. Biofuel development in Southeast Asia remains at an early stage of development and requires highly intensive monitoring and strict legal enforcement to ensure future success.

  19. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Soloiu, Valentin A. [Georgia Southern Univ., Statesboro, GA (United States)

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  20. ASSERT FY16 Analysis of Feedstock Companion Markets

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hansen, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Jacob J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nguyen, Thuy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nair, Shyam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, Erin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hess, J. Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Meeting Co-Optima biofuel production targets will require large quantities of mobilized biomass feedstock. Mobilization is of key importance as there is an abundance of biomass resources, yet little is available for purchase, let alone at desired quantity and quality levels needed for a continuous operation, e.g., a biorefinery. Therefore Co-Optima research includes outlining a path towards feedstock production at scale by understanding routes to mobilizing large quantities of biomass feedstock. Continuing along the vertically-integrated path that pioneer cellulosic biorefineries have taken will constrain the bioenergy industry to high biomass yield areas, limiting its ability to reach biofuel production at scale. To advance the cellulosic biofuels industry, a separation between feedstock supply and conversion is necessary. Thus, in contrast to the vertically integrated supply chain, two industries are required: a feedstock industry and a conversion industry. The split is beneficial for growers and feedstock processers as they are able to sell into multiple markets. That is, depots that produce value-add feedstock intermediates that are fully fungible in both the biofuels refining and other, so-called companion markets. As the biofuel industry is currently too small to leverage significant investment in up-stream infrastructure build-up, it requires an established (companion) market to secure demand, which de-risks potential investments and makes a build-up of processing and other logistics infrastructure more likely. A common concern to this theory however is that more demand by other markets could present a disadvantage for biofuels production as resource competition may increase prices leading to reduced availability of low-cost feedstock for biorefineries. To analyze the dynamics across multiple markets vying for the same resources, particularly the potential effects on resource price and distribution, the Companion Market Model (CMM) has been developed in this

  1. ASSERT FY16 Analysis of Feedstock Companion Markets

    International Nuclear Information System (INIS)

    Lamers, Patrick; Hansen, Jason; Jacobson, Jacob J.; Nguyen, Thuy; Nair, Shyam; Searcy, Erin; Hess, J. Richard

    2016-01-01

    Meeting Co-Optima biofuel production targets will require large quantities of mobilized biomass feedstock. Mobilization is of key importance as there is an abundance of biomass resources, yet little is available for purchase, let alone at desired quantity and quality levels needed for a continuous operation, e.g., a biorefinery. Therefore Co-Optima research includes outlining a path towards feedstock production at scale by understanding routes to mobilizing large quantities of biomass feedstock. Continuing along the vertically-integrated path that pioneer cellulosic biorefineries have taken will constrain the bioenergy industry to high biomass yield areas, limiting its ability to reach biofuel production at scale. To advance the cellulosic biofuels industry, a separation between feedstock supply and conversion is necessary. Thus, in contrast to the vertically integrated supply chain, two industries are required: a feedstock industry and a conversion industry. The split is beneficial for growers and feedstock processers as they are able to sell into multiple markets. That is, depots that produce value-add feedstock intermediates that are fully fungible in both the biofuels refining and other, so-called companion markets. As the biofuel industry is currently too small to leverage significant investment in up-stream infrastructure build-up, it requires an established (companion) market to secure demand, which de-risks potential investments and makes a build-up of processing and other logistics infrastructure more likely. A common concern to this theory however is that more demand by other markets could present a disadvantage for biofuels production as resource competition may increase prices leading to reduced availability of low-cost feedstock for biorefineries. To analyze the dynamics across multiple markets vying for the same resources, particularly the potential effects on resource price and distribution, the Companion Market Model (CMM) has been developed in this

  2. 3 CFR - Biofuels and Rural Economic Development

    Science.gov (United States)

    2010-01-01

    ... biofuels promise to play a key role by providing the Nation with homegrown sustainable energy options and... publish this memorandum in the Federal Register.BARACK OBAMATHE WHITE HOUSE, Washington, May 5, 2009. ...

  3. Development of a system for characterizing biomass quality of lignocellulosic feedstocks for biochemical conversion

    Science.gov (United States)

    Murphy, Patrick Thomas

    The purpose of this research was twofold: (i) to develop a system for screening lignocellulosic biomass feedstocks for biochemical conversion to biofuels and (ii) to evaluate brown midrib corn stover as feedstock for ethanol production. In the first study (Chapter 2), we investigated the potential of corn stover from bm1-4 hybrids for increased ethanol production and reduced pretreatment intensity compared to corn stover from the isogenic normal hybrid. Corn stover from hybrid W64A X A619 and respective isogenic bm hybrids was pretreated by aqueous ammonia steeping using ammonium hydroxide concentrations from 0 to 30%, by weight, and the resulting residues underwent simultaneous saccharification and cofermentation (SSCF) to ethanol. Dry matter (DM) digested by SSCF increased with increasing ammonium hydroxide concentration across all genotypes (P>0.0001) from 277 g kg-1 DM in the control to 439 g kg-1 DM in the 30% ammonium hydroxide pretreatment. The bm corn stover materials averaged 373 g kg-1 DM of DM digested by SSCF compared with 335 g kg-1 DM for the normal corn stover (Pdetergent fiber (NDF) as a cell-wall isolation procedure, and (iii) elimination of the fermentation organism in the SSCF procedures used to determine biochemically available carbohydrates. The original and the HTP assay methods were compared using corn cobs, hybrid poplar, kenaf, and switchgrass. Biochemically available carbohydrates increased with the HTP methods in the corn cobs, hybrid poplar, and switchgrass, but remained the same in the kenaf. Total available carbohydrates increased and unavailable carbohydrates decreased with the HTP methods in the corn cobs and switchgrass and remained the same in the hybrid poplar and kenaf. There were no differences in total carbohydrates (CT) between the two methods. The final study evaluated the variability of biomass quality parameters in a set of corn stover samples, and developed calibration equations for determining parameter values using near

  4. Potential of genetically modified oilseed rape for biofuels in Austria: Land use patterns and coexistence constraints could decrease domestic feedstock production

    Science.gov (United States)

    Moser, Dietmar; Eckerstorfer, Michael; Pascher, Kathrin; Essl, Franz; Zulka, Klaus Peter

    2013-01-01

    Like other EU Member States, Austria will meet the substitution target of the EU European Renewable Energy Directive for transportation almost exclusively by first generation biofuels, primarily biodiesel from oilseed rape (OSR). Genetically modified (GM) plants have been promoted as a new option for biofuel production as they promise higher yield or higher quality feedstock. We tested implications of GM OSR application for biodiesel production in Austria by means of high resolution spatially explicit simulation of 140 different coexistence scenarios within six main OSR cropping regions in Austria (2400 km2). We identified structural land use characteristics such as field size, land use diversity, land holding patterns and the proportion of the target crop as the predominant factors which influence overall production of OSR in a coexistence scenario. Assuming isolation distances of 800 m and non-GM-OSR proportions of at least 10% resulted in a loss of area for cultivation of OSR in all study areas ranging from −4.5% to more than −25%, depending on the percentage of GM farmers and on the region. We could show that particularly the current primary OSR cropping regions are largely unsuitable for coexistence and would suffer from a net loss of OSR area even at isolation distances of 400 or 800 m. Coexistence constraints associated with application of GM OSR are likely to offset possible GM gains by substantially reducing farmland for OSR cultivation, thus contradicting the political aim to increase domestic OSR area to meet the combined demands of food, feed and biofuel production. PMID:26109750

  5. Torrefaction reduction of coke formation on catalysts used in esterification and cracking of biofuels from pyrolysed lignocellulosic feedstocks

    Science.gov (United States)

    Kastner, James R; Mani, Sudhagar; Hilten, Roger; Das, Keshav C

    2015-11-04

    A bio-oil production process involving torrefaction pretreatment, catalytic esterification, pyrolysis, and secondary catalytic processing significantly reduces yields of reactor char, catalyst coke, and catalyst tar relative to the best-case conditions using non-torrefied feedstock. The reduction in coke as a result of torrefaction was 28.5% relative to the respective control for slow pyrolysis bio-oil upgrading. In fast pyrolysis bio-oil processing, the greatest reduction in coke was 34.9%. Torrefaction at 275.degree. C. reduced levels of acid products including acetic acid and formic acid in the bio-oil, which reduced catalyst coking and increased catalyst effectiveness and aromatic hydrocarbon yields in the upgraded oils. The process of bio-oil generation further comprises a catalytic esterification of acids and aldehydes to generate such as ethyl levulinate from lignified biomass feedstock.

  6. Biofuels and Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, Jonathan R [ORNL

    2009-01-01

    The world obtains 86% of its energy from fossil fuels, 40% from petroleum, a majority of which goes to the transportation sector (www.IEA.gov). Well-recognized alternatives are fuels derived from renewable sources known as biofuels. There are a number of biofuels useful for transportation fuels, which include ethanol, biobutanol, mixed alcohols, biodiesel, and hydrogen. These biofuels are produced from biologically derived feedstock, almost exclusively being plant materials, either food or feed sources or inedible plant material called biomass. This chapter will discuss technologies for production of liquid transportation biofuels from renewable feedstocks, but hydrogen will not be included, as the production technology and infrastructure are not near term. In addition, a specific emphasis will be placed upon the research opportunities and potential for application of system biology tools to dissect and understand the biological processes central to production of these biofuels from biomass and biological materials. There are a number of technologies for production of each of these biofuels that range from fully mature processes such as grain-derived ethanol, emerging technology of ethanol form cellulose derived ethanol and immature processes such thermochemical conversion technologies and production of hydrogen all produced from renewable biological feedstocks. Conversion of biomass by various thermochemical and combustion technologies to produce thermochemical biodiesel or steam and electricity provide growing sources of bioenergy. However, these technologies are outside of the scope of this chapter, as is the use of biological processing for upgrading and conversion of fossil fuels. Therefore, this chapter will focus on the current status of production of biofuels produced from biological-derived feedstocks using biological processes. Regardless of the status of development of the biological process for production of the biofuels, each process can benefit from

  7. Biofuel impacts on water.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

    2011-01-01

    Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

  8. Capturing the Biofuel Wellhead and Powerhouse: The Chloroplast and Mitochondrial Genomes of the Leguminous Feedstock Tree Pongamia pinnata

    OpenAIRE

    Kazakoff, Stephen H.; Imelfort, Michael; Edwards, David; Koehorst, Jasper; Biswas, Bandana; Batley, Jacqueline; Scott, Paul T.; Gresshoff, Peter M.

    2012-01-01

    Pongamia pinnata (syn. Millettia pinnata) is a novel, fast-growing arboreal legume that bears prolific quantities of oil-rich seeds suitable for the production of biodiesel and aviation biofuel. Here, we have used Illumina® 'Second Generation DNA Sequencing (2GS)' and a new short-read de novo assembler, SaSSY, to assemble and annotate the Pongamia chloroplast (152,968 bp; cpDNA) and mitochondrial (425,718 bp; mtDNA) genomes. We also show that SaSSY can be used to accurately assemble 2GS data,...

  9. Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels

    Science.gov (United States)

    Gopal, Anand Raja

    Lifecycle Assessment (LCA) is undergoing a period of rapid change as it strives to become more policy-relevant. Attributional LCA, the traditional LCA category, is beginning to be seen as particularly ill-equipped to assess the consequences of a policy. This has given birth to a new category of LCA known as Consequential LCA that is designed for use in LCA-based policies but is still largely unknown, even to LCA experts, and suffers from a lack of well developed methods. As a result, many LCA-based policies, like the California Low Carbon Fuel Standard (LCFS), use poor LCA methods that are both scientifically suspect and unable to model many biofuels, especially ones manufactured from byproduct feedstocks. Biofuels made from byproduct feedstocks, primarily molasses ethanol from Asia and the Caribbean, can contribute significantly to LCFS' carbon intensity targets in the near-term at low costs, a desperate need for the policy ever since US corn ethanol was rated as having a worse global warming impact than gasoline. In this dissertation, I develop the first fully consequential lifecycle assessment of a byproduct-based biofuel using a partial equilibrium foundation. I find that the lifecycle carbon content of Indian molasses ethanol is just 5 gCO2/MJ using this method, making it one of the cleanest first generation biofuels in the LCFS. I also show that Indian molasses ethanol remains one of the cleanest first-generation biofuels even when using the flawed methodology ratified for the LCFS, with a lifecycle carbon content of 24 gCO2/MJ. My fully consequential LCA model also shows that India's Ethanol Blending program, which currently subsidizes blending of molasses ethanol and gasoline for domestic consumption, can meet its objective of supporting domestic agriculture more cost-effectively by helping producers export their molasses ethanol to fuel markets that value carbon. However, this objective will be achieved at a significant cost to the poor who will face a 39

  10. The California Biomass Crop Adoption Model estimates biofuel feedstock crop production across diverse agro-ecological zones within the state, under different future climates

    Science.gov (United States)

    Kaffka, S.; Jenner, M.; Bucaram, S.; George, N.

    2012-12-01

    Both regulators and businesses need realistic estimates for the potential production of biomass feedstocks for biofuels and bioproducts. This includes the need to understand how climate change will affect mid-tem and longer-term crop performance and relative advantage. The California Biomass Crop Adoption Model is a partial mathematical programming optimization model that estimates the profit level needed for new crop adoption, and the crop(s) displaced when a biomass feedstock crop is added to the state's diverse set of cropping systems, in diverse regions of the state. Both yield and crop price, as elements of profit, can be varied. Crop adoption is tested against current farmer preferences derived from analysis of 10 years crop production data for all crops produced in California, collected by the California Department of Pesticide Regulation. Analysis of this extensive data set resulted in 45 distinctive, representative farming systems distributed across the state's diverse agro-ecological regions. Estimated yields and water use are derived from field trials combined with crop simulation, reported elsewhere. Crop simulation is carried out under different weather and climate assumptions. Besides crop adoption and displacement, crop resource use is also accounted, derived from partial budgets used for each crop's cost of production. Systematically increasing biofuel crop price identified areas of the state where different types of crops were most likely to be adopted. Oilseed crops like canola that can be used for biodiesel production had the greatest potential to be grown in the Sacramento Valley and other northern regions, while sugar beets (for ethanol) had the greatest potential in the northern San Joaquin Valley region, and sweet sorghum in the southern San Joaquin Valley. Up to approximately 10% of existing annual cropland in California was available for new crop adoption. New crops are adopted if the entire cropping system becomes more profitable. In

  11. Biofuels development in China: Technology options and policies needed to meet the 2020 target

    International Nuclear Information System (INIS)

    Chang, Shiyan; Zhao, Lili; Timilsina, Govinda R.; Zhang, Xiliang

    2012-01-01

    China promulgated the Medium and Long-Term Development Plan for Renewable Energy in 2007, which included sub-targets of 2010 and 2020 for various renewable energy technologies. Almost all the 2010 sub-targets have been met and even surpassed except non-grain fuel ethanol. There is debate surrounding the questions of whether and how the country will be able to meet the 2020 biofuels target. This paper provides the assessment of potential technology pathways to achieve the 2020 target regarding their respective resource potential and supply cost. Barriers and policy options are identified based on broad literatures review. And an overview of biofuels projections is presented to provide insight into the comparison of various policy scenarios. The study shows that China can potentially satisfy non-grain fuel ethanol target by 2020 from technology perspective. But she will probably fall far short of this target if current situations continue. Additional policy efforts are needed. Meanwhile, the target of biodiesel production has high probability to be achieved. However, if given support policies, it will develop better. - Highlights: ► I. Non-grain feedstocks such as cassava, sweet sorghum and sweet potato grown in low productive arable lands or unutilized lands have enough potential to meet ethanol targets in 2020. ► II. If current situations continue, China will fall far short of the 2020 target. ► III. The target of biodiesel production has high probability to be achieved, while, if given support policies, it will develop better. ► IV. Supply cost is one of the major barriers faced by all biofuels pathways. ► V. Various policy measures would be necessary to overcome the costs barriers to biofuels in China.

  12. An overview of biofuels

    International Nuclear Information System (INIS)

    Qureshi, I.H.; Ahmad, S.

    2007-01-01

    Biofuels for transport have received considerable attention due to rising oil prices and growing concern about greenhouse gas emissions. Biofuels namely ethanol and esters of fatty acids have the potential to displace a substantial amount of petroleum fuel in the next few decades which will help to conserve fossil fuel resources. Life cycle analyses show that biofuels release lesser amount of greenhouse gases and other air pollutants. Thus biofuels are seen as a pragmatic step towards reducing carbon dioxide emission from transport sector. Biofuels are compatible with petroleum and combustion engines can easily operate with 10% ethanol and 20% biodiesel blended fuel with no modification. However higher concentrations require 'flex-fuel' engines which automatically adjust fuel injection depending upon fuel mix. Biofuels are derived from renewable biomass and can be produced from a variety of feedstocks. The only limiting factors are the availability of cropland, growth of plants and the climate. Countries with warmer climate can get about five times more biofuel crops from each acre of land than cold climate countries. Genetically modified crops and fast growing trees are being developed increase the production of energy crops. (author)

  13. Biofuels and sustainability.

    Science.gov (United States)

    Solomon, Barry D

    2010-01-01

    Interest in liquid biofuels production and use has increased worldwide as part of government policies to address the growing scarcity and riskiness of petroleum use, and, at least in theory, to help mitigate adverse global climate change. The existing biofuels markets are dominated by U.S. ethanol production based on cornstarch, Brazilian ethanol production based on sugarcane, and European biodiesel production based on rapeseed oil. Other promising efforts have included programs to shift toward the production and use of biofuels based on residues and waste materials from the agricultural and forestry sectors, and perennial grasses, such as switchgrass and miscanthus--so-called cellulosic ethanol. This article reviews these efforts and the recent literature in the context of ecological economics and sustainability science. Several common dimensions for sustainable biofuels are discussed: scale (resource assessment, land availability, and land use practices); efficiency (economic and energy); equity (geographic distribution of resources and the "food versus fuel" debate); socio-economic issues; and environmental effects and emissions. Recent proposals have been made for the development of sustainable biofuels criteria, culminating in standards released in Sweden in 2008 and a draft report from the international Roundtable on Sustainable Biofuels. These criteria hold promise for accelerating a shift away from unsustainable biofuels based on grain, such as corn, and toward possible sustainable feedstock and production practices that may be able to meet a variety of social, economic, and environmental sustainability criteria.

  14. Life Cycle Energy and CO2 Emission Optimization for Biofuel Supply Chain Planning under Uncertainties

    DEFF Research Database (Denmark)

    Ren, Jingzheng; An, Da; Liang, Hanwei

    2016-01-01

    The purpose of this paper is to develop a model for the decision-makers/stakeholders to design biofuel supply chain under uncertainties. Life cycle energy and CO2 emission of biofuel supply chain are employed as the objective functions, multiple feedstocks, multiple transportation modes, multiple...... sites for building biofuel plants, multiple technologies for biofuel production, and multiple markets for biofuel distribution are considered, and the amount of feedstocks in agricultural system, transportation capacities, yields of crops, and market demands are considered as uncertainty variables...... in this study. A bi-objective interval mix integer programming model has been developed for biofuel supply chain design under uncertainties, and the bio-objective interval programming method has been developed to solve this model. An illustrative case of a multiple-feedstock-bioethanol system has been studied...

  15. Ensuring sustainability in developing world biofuel productoin

    CSIR Research Space (South Africa)

    Von Maltitz, Graham P

    2009-06-01

    Full Text Available el N at io n al an d in te rn at io n al liq u id fu el s bl en ds Type 1 projects E.g. Mali Folkecentre Ghana Dumpong Biofuels See text box A and B Type 4 projects E.g. Large scale commercial plantations... approach Mali farmer growing jatropha as a fuel source to fuel 3 X 100 KW generators that will provide power to his village Brazilian ethanol production from large scale mechanised sugar cane fields Is certification and setting...

  16. Developing a sustainable bioprocessing strategy based on a generic feedstock.

    Science.gov (United States)

    Webb, C; Koutinas, Wang R; Wang, R

    2004-01-01

    Based on current average yields of wheat per hectare and the saccharide content of wheat grain, it is feasible to produce wheat-based alternatives to many petrochemicals. However, the requirements in terms of wheat utilization would be equivalent to 82% of current production if intermediates and primary building blocks such as ethylene, propylene, and butadiene were to be produced in addition to conventional bioproducts. If only intermediates and bioproducts were produced this requirement would fall to just 11%, while bioproducts alone would require only 7%. These requirements would be easily met if the global wheat yield per hectare of cultivated land was increased from the current average of 2.7 to 5.5 tonnes ha(-1) (well below the current maximum). Preliminary economic evaluation taking into account only raw material costs demonstrated that the use of wheat as a generic feedstock could be advantageous in the case of bioproducts and specific intermediate petrochemicals. Gluten plays a significant role considering the revenue occurring when it is sold as a by-product. A process leading to the production of a generic fermentation feedstock from wheat has been devised and evaluated in terms of efficiency and economics. This feedstock aims at providing a replacement for conventional fermentation media and petrochemical feedstocks. The process can be divided into four major stages--wheat milling; fermentation of whole wheat flour by A. awamori leading to the production of enzymes and fungal cells; glucose enhancement via enzymatic hydrolysis of flour suspensions; and nitrogen/micronutrient enhancement via fungal cell autolysis. Preliminary costings show that the operating cost of the process depends on plant capacity, cereal market price, presence and market value of added-value by-products, labour costs, and mode of processing (batch or continuous).

  17. Development of optimal enzymatic and microbial conversion systems for biofuel production

    Science.gov (United States)

    Aramrueang, Natthiporn

    The increase in demand for fuels, along with the concerns over the depletion of fossil fuels and the environmental problems associated with the use of the petroleum-based fuels, has driven the exploitation of clean and renewable energy. Through a collaboration project with Mendota Bioenergy LLC to produce advanced biofuel from sugar beet and other locally grown crops in the Central Valley of California through demonstration and commercial-scale biorefineries, the present study focused on the investigation of selected potential biomass as biofuel feedstock and development of bioconversion systems for sustainable biofuel production. For an efficient biomass-to-biofuel conversion process, three important steps, which are central to this research, must be considered: feedstock characterization, enzymatic hydrolysis of the feedstock, and the bioconversion process. The first part of the research focused on the characterization of various lignocellulosic biomass as feedstocks and investigated their potential ethanol yields. Physical characteristics and chemical composition were analyzed for four sugar beet varieties, three melon varieties, tomato, Jose tall wheatgrass, wheat hay, and wheat straw. Melons and tomato are those products discarded by the growers or processors due to poor quality. The mass-based ethanol potential of each feedstock was determined based on the composition. The high sugar-containing feedstocks are sugar beet roots, melons, and tomato, containing 72%, 63%, and 42% average soluble sugars on a dry basis, respectively. Thus, for these crops, the soluble sugars are the main substrate for ethanol production. The potential ethanol yields, on average, for sugar beet roots, melons, and tomato are 591, 526, and 448 L ethanol/metric ton dry basis (d.b.), respectively. Lignocellulosic biomass, including Jose Tall wheatgrass and wheat straw, are composed primarily of cellulose (27-39% d.b.) and hemicellulose (26-30% d.b.). The ethanol yields from these

  18. Alternative Crops and Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Kenkel, Philip [Oklahoma State Univ., Stillwater, OK (United States); Holcomb, Rodney B. [Oklahoma State Univ., Stillwater, OK (United States)

    2013-03-01

    In order for the biofuel industry to meet the RFS benchmarks for biofuels, new feedstock sources and production systems will have to be identified and evaluated. The Southern Plains has the potential to produce over a billion gallons of biofuels from regionally produced alternative crops, agricultural residues, and animal fats. While information on biofuel conversion processes is available, it is difficult for entrepreneurs, community planners and other interested individuals to determine the feasibility of biofuel processes or to match production alternatives with feed stock availability and community infrastructure. This project facilitates the development of biofuel production from these regionally available feed stocks. Project activities are concentrated in five major areas. The first component focused on demonstrating the supply of biofuel feedstocks. This involves modeling the yield and cost of production of dedicated energy crops at the county level. In 1991 the DOE selected switchgrass as a renewable source to produce transportation fuel after extensive evaluations of many plant species in multiple location (Caddel et al,. 2010). However, data on the yield and cost of production of switchgrass are limited. This deficiency in demonstrating the supply of biofuel feedstocks was addressed by modeling the potential supply and geographic variability of switchgrass yields based on relationship of available switchgrass yields to the yields of other forage crops. This model made it possible to create a database of projected switchgrass yields for five different soil types at the county level. A major advantage of this methodology is that the supply projections can be easily updated as improved varieties of switchgrass are developed and additional yield data becomes available. The modeling techniques are illustrated using the geographic area of Oklahoma. A summary of the regional supply is then provided.

  19. Water and Biofuels in 2030. Water impacts of French biofuel development at the 2030 time horizon

    International Nuclear Information System (INIS)

    Lorne, D.; Bonnet, J.F.

    2009-09-01

    In 2006, French biofuel production occupied nearly 800,000 hectares, amounting to around 2.8% of agricultural land and supplying 1.8% of the country's total fuel supply. By 2020, each Member State of the European Union is required to source at least 10% of its national fuel consumption from renewable sources. One of the main goals of this requirement is to contribute to greenhouse gas reductions in the transport sector, all while conserving natural resources. Against this backdrop, diverse environmental issues are involved in the planning and development of these industries. Protecting water resources is a main concern for the French, especially when it comes to formulating agricultural strategy for any given territory. The goal of the present study is thus to propose a prospective assessment of the potential water impacts of different biofuel production scenarios in France through the year 2030. These scenarios, with their contrasting situations regarding agriculture, technology, and environmental priority, put forth a vision of possible futures in biofuel development. Their evaluation at the level of the Adour-Garonne and Seine-Normandy Basins has made it possible to produce comparative results, based on indicators quantified at this scale. (authors)

  20. Development of biological platform for the autotrophic production of biofuels

    Science.gov (United States)

    Khan, Nymul

    The research described herein is aimed at developing an advanced biofuel platform that has the potential to surpass the natural rate of solar energy capture and CO2 fixation. The underlying concept is to use the electricity from a renewable source, such as wind or solar, to capture CO 2 via a biological agent, such as a microbe, into liquid fuels that can be used for the transportation sector. In addition to being renewable, the higher rate of energy capture by photovoltaic cells than natural photosynthesis is expected to facilitate higher rate of liquid fuel production than traditional biofuel processes. The envisioned platform is part of ARPA-E's (Advanced Research Projects Agency - Energy) Electrofuels initiative which aims at supplementing the country's petroleum based fuel production with renewable liquid fuels that can integrate easily with the existing refining and distribution infrastructure (http://arpae. energy.gov/ProgramsProjects/Electrofuels.aspx). The Electrofuels initiative aimed to develop liquid biofuels that avoid the issues encountered in the current generation of biofuels: (1) the reliance of biomass-derived technologies on the inefficient process of photosynthesis, (2) the relatively energy- and resource-intensive nature of agronomic processes, and (3) the occupation of large areas of arable land for feedstock production. The process proceeds by the capture of solar energy into electrical energy via photovoltaic cells, using the generated electricity to split water into molecular hydrogen (H2) and oxygen (O2), and feeding these gases, along with carbon dioxide (CO2) emitted from point sources such as a biomass or coal-fired power plant, to a microbial bioprocessing platform. The proposed microbial bioprocessing platform leverages a chemolithoautotrophic microorganism (Rhodobacter capsulatus or Ralstonia eutropha) naturally able to utilize these gases as growth substrates, and genetically modified to produce a triterpene hydrocarbon fuel

  1. Conventional and advanced liquid biofuels

    Directory of Open Access Journals (Sweden)

    Đurišić-Mladenović Nataša L.

    2016-01-01

    Full Text Available Energy security and independence, increase and fluctuation of the oil price, fossil fuel resources depletion and global climate change are some of the greatest challanges facing societies today and in incoming decades. Sustainable economic and industrial growth of every country and the world in general requires safe and renewable resources of energy. It has been expected that re-arrangement of economies towards biofuels would mitigate at least partially problems arised from fossil fuel consumption and create more sustainable development. Of the renewable energy sources, bioenergy draws major and particular development endeavors, primarily due to the extensive availability of biomass, already-existence of biomass production technologies and infrastructure, and biomass being the sole feedstock for liquid fuels. The evolution of biofuels is classified into four generations (from 1st to 4th in accordance to the feedstock origin; if the technologies of feedstock processing are taken into account, than there are two classes of biofuels - conventional and advanced. The conventional biofuels, also known as the 1st generation biofuels, are those produced currently in large quantities using well known, commercially-practiced technologies. The major feedstocks for these biofuels are cereals or oleaginous plants, used also in the food or feed production. Thus, viability of the 1st generation biofuels is questionable due to the conflict with food supply and high feedstocks’ cost. This limitation favoured the search for non-edible biomass for the production of the advanced biofuels. In a general and comparative way, this paper discusses about various definitions of biomass, classification of biofuels, and brief overview of the biomass conversion routes to liquid biofuels depending on the main constituents of the biomass. Liquid biofuels covered by this paper are those compatible with existing infrastructure for gasoline and diesel and ready to be used in

  2. Stabilizing the agricultural frontier: Leveraging REDD with biofuels for sustainable development

    International Nuclear Information System (INIS)

    Killeen, Timothy J.; Schroth, Goetz; Turner, Will; Harvey, Celia A.; Steininger, Marc K.; Dragisic, Christine; Mittermeier, Russell A.

    2011-01-01

    We evaluate the potential of a proposed policy model that would explicitly link the cultivation of biofuels with forest conservation (Biofuel + FC) as part of the United Nations Framework Convention on Climate Change. The model postulates that a ratio of 4:1 forest conservation to biofuel cultivation be linked to proposals for reducing emissions from deforestation and forest degradation (REDD + Biofuel), while a ratio of 9:1 biofuel cultivation to reforestation on degraded landscape (RDL + Biofuel) be linked to the afforestation/reforestation component of the Clean Development Mechanism. Both biofuel production options would be limited to the cultivation of woody perennial biofuel species on low biomass landscapes in order to maximize the carbon benefits of the proposed policy model. The potential to conserve forest, avoid GHG emissions, improve carbon sequestration, and produce renewable energy are evaluated by an illustrative model for five case studies (Pará – Brazil, East Kalimantan – Indonesia, Madagascar, Colombia and Liberia). The Biofuel + FC policy model is then compared with three counterfactual scenarios: REDD Alone with no biofuel cultivation; Biofuel Alone with expanded biofuel cultivation in the absence of REDD and a Most Likely scenario where REDD and biofuel cultivation are implemented without explicit regulatory linkages. The proposed policy model would leverage forest carbon with biofuel markets, which would reduce greenhouse gas emissions and conserve biodiversity, as well as improve human welfare in developing countries, a win–win–win strategy for sustainable development. -- Highlights: ► We propose to link biofuel cultivation with forest conservation (REDD + Biofuels). ► A similar proposal to support reforestation on degraded landscapes (RDL + Biofuels). ► Woody perennial biofuel species on low biomass landscapes maximize carbon benefits. ► REDD+ revenues can subsidize and foster sustainable biofuels. ► Production of

  3. Capturing the biofuel wellhead and powerhouse: the chloroplast and mitochondrial genomes of the leguminous feedstock tree Pongamia pinnata.

    Science.gov (United States)

    Kazakoff, Stephen H; Imelfort, Michael; Edwards, David; Koehorst, Jasper; Biswas, Bandana; Batley, Jacqueline; Scott, Paul T; Gresshoff, Peter M

    2012-01-01

    Pongamia pinnata (syn. Millettia pinnata) is a novel, fast-growing arboreal legume that bears prolific quantities of oil-rich seeds suitable for the production of biodiesel and aviation biofuel. Here, we have used Illumina® 'Second Generation DNA Sequencing (2GS)' and a new short-read de novo assembler, SaSSY, to assemble and annotate the Pongamia chloroplast (152,968 bp; cpDNA) and mitochondrial (425,718 bp; mtDNA) genomes. We also show that SaSSY can be used to accurately assemble 2GS data, by re-assembling the Lotus japonicus cpDNA and in the process assemble its mtDNA (380,861 bp). The Pongamia cpDNA contains 77 unique protein-coding genes and is almost 60% gene-dense. It contains a 50 kb inversion common to other legumes, as well as a novel 6.5 kb inversion that is responsible for the non-disruptive, re-orientation of five protein-coding genes. Additionally, two copies of an inverted repeat firmly place the species outside the subclade of the Fabaceae lacking the inverted repeat. The Pongamia and L. japonicus mtDNA contain just 33 and 31 unique protein-coding genes, respectively, and like other angiosperm mtDNA, have expanded intergenic and multiple repeat regions. Through comparative analysis with Vigna radiata we measured the average synonymous and non-synonymous divergence of all three legume mitochondrial (1.59% and 2.40%, respectively) and chloroplast (8.37% and 8.99%, respectively) protein-coding genes. Finally, we explored the relatedness of Pongamia within the Fabaceae and showed the utility of the organellar genome sequences by mapping transcriptomic data to identify up- and down-regulated stress-responsive gene candidates and confirm in silico predicted RNA editing sites.

  4. Capturing the biofuel wellhead and powerhouse: the chloroplast and mitochondrial genomes of the leguminous feedstock tree Pongamia pinnata.

    Directory of Open Access Journals (Sweden)

    Stephen H Kazakoff

    Full Text Available Pongamia pinnata (syn. Millettia pinnata is a novel, fast-growing arboreal legume that bears prolific quantities of oil-rich seeds suitable for the production of biodiesel and aviation biofuel. Here, we have used Illumina® 'Second Generation DNA Sequencing (2GS' and a new short-read de novo assembler, SaSSY, to assemble and annotate the Pongamia chloroplast (152,968 bp; cpDNA and mitochondrial (425,718 bp; mtDNA genomes. We also show that SaSSY can be used to accurately assemble 2GS data, by re-assembling the Lotus japonicus cpDNA and in the process assemble its mtDNA (380,861 bp. The Pongamia cpDNA contains 77 unique protein-coding genes and is almost 60% gene-dense. It contains a 50 kb inversion common to other legumes, as well as a novel 6.5 kb inversion that is responsible for the non-disruptive, re-orientation of five protein-coding genes. Additionally, two copies of an inverted repeat firmly place the species outside the subclade of the Fabaceae lacking the inverted repeat. The Pongamia and L. japonicus mtDNA contain just 33 and 31 unique protein-coding genes, respectively, and like other angiosperm mtDNA, have expanded intergenic and multiple repeat regions. Through comparative analysis with Vigna radiata we measured the average synonymous and non-synonymous divergence of all three legume mitochondrial (1.59% and 2.40%, respectively and chloroplast (8.37% and 8.99%, respectively protein-coding genes. Finally, we explored the relatedness of Pongamia within the Fabaceae and showed the utility of the organellar genome sequences by mapping transcriptomic data to identify up- and down-regulated stress-responsive gene candidates and confirm in silico predicted RNA editing sites.

  5. Current and future economic performance of first and second generation biofuels in developing countries

    NARCIS (Netherlands)

    van Eijck, Janske|info:eu-repo/dai/nl/297954296; Batidzirai, Batidzirai|info:eu-repo/dai/nl/341355909; Faaij, Andre

    2014-01-01

    Net Present Value (NPV) and total production cost calculations aremade for first and second generation biofuels in 74 settings, covering 5 fuel output types, 8 feedstock types, 12 countries and 8 combinations of agricultural management systems between 2010 and 2030. Yields are assumed to increase

  6. Nest survival modelling using a multi-species approach in forests managed for timber and biofuel feedstock

    Science.gov (United States)

    Loman, Zachary G.; Monroe, Adrian; Riffell, Samuel K.; Miller, Darren A.; Vilella, Francisco; Wheat, Bradley R.; Rush, Scott A.; Martin, James A.

    2018-01-01

    Switchgrass (Panicum virgatum) intercropping is a novel forest management practice for biomass production intended to generate cellulosic feedstocks within intensively managed loblolly pine‐dominated landscapes. These pine plantations are important for early‐successional bird species, as short rotation times continually maintain early‐successional habitat. We tested the efficacy of using community models compared to individual surrogate species models in understanding influences on nest survival. We analysed nest data to test for differences in habitat use for 14 bird species in plots managed for switchgrass intercropping and controls within loblolly pine (Pinus taeda) plantations in Mississippi, USA.We adapted hierarchical models using hyper‐parameters to incorporate information from both common and rare species to understand community‐level nest survival. This approach incorporates rare species that are often discarded due to low sample sizes, but can inform community‐level demographic parameter estimates. We illustrate use of this approach in generating both species‐level and community‐wide estimates of daily survival rates for songbird nests. We were able to include rare species with low sample size (minimum n = 5) to inform a hyper‐prior, allowing us to estimate effects of covariates on daily survival at the community level, then compare this with a single‐species approach using surrogate species. Using single‐species models, we were unable to generate estimates below a sample size of 21 nests per species.Community model species‐level survival and parameter estimates were similar to those generated by five single‐species models, with improved precision in community model parameters.Covariates of nest placement indicated that switchgrass at the nest site (<4 m) reduced daily nest survival, although intercropping at the forest stand level increased daily nest survival.Synthesis and applications. Community models represent a viable

  7. Development of a membraneless ethanol/oxygen biofuel cell

    International Nuclear Information System (INIS)

    Topcagic, Sabina; Minteer, Shelley D.

    2006-01-01

    Biofuel cells are similar to traditional fuel cells, except the metallic electrocatalyst is replaced with a biological electrocatalyst. This paper details the development of an enzymatic biofuel cell, which employs alcohol dehydrogenase to oxidize ethanol at the anode and bilirubin oxidase to reduce oxygen at the cathode. This ethanol/oxygen biofuel cell has an active lifetime of about 30 days and shows power densities of up to 0.46 mW/cm 2 . The biocathode described in this paper is unique in that bilirubin oxidase is immobilized within a modified Nafion polymer that acts both to entrap and stabilize the enzyme, while also containing the redox mediator in concentrations large enough for self-exchange based conduction of electrons between the enzyme and the electrode. This biocathode is fuel tolerant, which leads to a unique fuel cell that employs both renewable catalysts and fuel, but does not require a separator membrane to separate anolyte from catholyte

  8. Water quality under increased biofuel production and future climate change and uncertainty

    Science.gov (United States)

    Demissie, Y. K.; Yan, E.

    2015-12-01

    Over the past decade, biofuel has emerged as an important renewable energy source to supplement gasoline and reduce the associated greenhouse gas emission. Many countries, for instant, have adopted biofuel production goals to blend 10% or more of gasoline with biofuels within 10 to 20 years. However, meeting these goals requires sustainable production of biofuel feedstock which can be challenging under future change in climate and extreme weather conditions, as well as the likely impacts of biofuel feedstock production on water quality and availability. To understand this interrelationship and the combined effects of increased biofuel production and climate change on regional and local water resources, we have performed watershed hydrology and water quality analyses for the Ohio River Basin. The basin is one of the major biofuel feedstock producing region in the United States, which also currently contributes about half of the flow and one third of phosphorus and nitrogen loadings to the Mississippi River that eventually flows to the Gulf of Mexico. The analyses integrate future scenarios and climate change and biofuel development through various mixes of landuse and agricultural management changes and examine their potential impacts on regional and local hydrology, water quality, soil erosion, and agriculture productivity. The results of the study are expected to provide much needed insight about the sustainability of large-scale biofuel feedstock production under the future climate change and uncertainty, and helps to further optimize the feedstock production taking into consideration the water-use efficiency.

  9. Biofuels from algae for sustainable development

    International Nuclear Information System (INIS)

    Demirbas, M. Fatih

    2011-01-01

    Microalgae are photosynthetic microorganisms that can produce lipids, proteins and carbohydrates in large amounts over short periods of time. These products can be processed into both biofuels and useful chemicals. Two algae samples (Cladophora fracta and Chlorella protothecoid) were studied for biofuel production. Microalgae appear to be the only source of renewable biodiesel that is capable of meeting the global demand for transport fuels. Microalgae can be converted to biodiesel, bioethanol, bio-oil, biohydrogen and biomethane via thermochemical and biochemical methods. Industrial reactors for algal culture are open ponds, photobioreactors and closed systems. Algae can be grown almost anywhere, even on sewage or salt water, and does not require fertile land or food crops, and processing requires less energy than the algae provides. Microalgae have much faster growth-rates than terrestrial crops. the per unit area yield of oil from algae is estimated to be from 20,000 to 80,000 liters per acre, per year; this is 7-31 times greater than the next best crop, palm oil. Algal oil can be used to make biodiesel for cars, trucks, and airplanes. The lipid and fatty acid contents of microalgae vary in accordance with culture conditions. The effect of temperature on the yield of hydrogen from two algae (C. fracta and C. protothecoid) by pyrolysis and steam gasification were investigated in this study. In each run, the main components of the gas phase were CO 2 , CO, H 2 , and CH 4 .The yields of hydrogen by pyrolysis and steam gasification processes of the samples increased with temperature. The yields of gaseous products from the samples of C. fracta and C. protothecoides increased from 8.2% to 39.2% and 9.5% to 40.6% by volume, respectively, while the final pyrolysis temperature was increased from 575 to 925 K. The percent of hydrogen in gaseous products from the samples of C. fracta and C. protothecoides increased from 25.8% to 44.4% and 27.6% to 48.7% by volume

  10. Socio-economic impacts of biofuels in developing countries

    NARCIS (Netherlands)

    van Eijck, J.A.J.

    2014-01-01

    The production and use of biofuels in developing countries, can have positive effects such as increased and diversified agricultural income, employment in rural areas, a general improvement in the standard of living of the local population and improved access to energy. However, it can also lead to

  11. Optimization of Protein Extraction from Spirulina platensis to Generate a Potential Co-Product and a Biofuel Feedstock with Reduced Nitrogen Content

    Energy Technology Data Exchange (ETDEWEB)

    Parimi, Naga Sirisha; Singh, Manjinder; Kastner, James R.; Das, Keshav C., E-mail: kdas@engr.uga.edu [College of Engineering, The University of Georgia, Athens, GA (United States); Forsberg, Lennart S.; Azadi, Parastoo [Complex Carbohydrate Research Center, The University of Georgia, Athens, GA (United States)

    2015-06-23

    The current work reports protein extraction from Spirulina platensis cyanobacterial biomass in order to simultaneously generate a potential co-product and a biofuel feedstock with reduced nitrogen content. S. platensis cells were subjected to cell disruption by high-pressure homogenization and subsequent protein isolation by solubilization at alkaline pH followed by precipitation at acidic pH. Response surface methodology was used to optimize the process parameters – pH, extraction (solubilization/precipitation) time and biomass concentration for obtaining maximum protein yield. The optimized process conditions were found to be pH 11.38, solubilization time of 35 min and biomass concentration of 3.6% (w/w) solids for the solubilization step, and pH 4.01 and precipitation time of 60 min for the precipitation step. At the optimized conditions, a high protein yield of 60.7% (w/w) was obtained. The protein isolate (co-product) had a higher protein content [80.6% (w/w)], lower ash [1.9% (w/w)] and mineral content and was enriched in essential amino acids, the nutritious γ-linolenic acid and other high-value unsaturated fatty acids compared to the original biomass. The residual biomass obtained after protein extraction had lower nitrogen content and higher total non-protein content than the original biomass. The loss of about 50% of the total lipids from this fraction did not impact its composition significantly owing to the low lipid content of S. platensis (8.03%).

  12. Optimization of Protein Extraction from Spirulina platensis to Generate a Potential Co-Product and a Biofuel Feedstock with Reduced Nitrogen Content

    International Nuclear Information System (INIS)

    Parimi, Naga Sirisha; Singh, Manjinder; Kastner, James R.; Das, Keshav C.; Forsberg, Lennart S.; Azadi, Parastoo

    2015-01-01

    The current work reports protein extraction from Spirulina platensis cyanobacterial biomass in order to simultaneously generate a potential co-product and a biofuel feedstock with reduced nitrogen content. S. platensis cells were subjected to cell disruption by high-pressure homogenization and subsequent protein isolation by solubilization at alkaline pH followed by precipitation at acidic pH. Response surface methodology was used to optimize the process parameters – pH, extraction (solubilization/precipitation) time and biomass concentration for obtaining maximum protein yield. The optimized process conditions were found to be pH 11.38, solubilization time of 35 min and biomass concentration of 3.6% (w/w) solids for the solubilization step, and pH 4.01 and precipitation time of 60 min for the precipitation step. At the optimized conditions, a high protein yield of 60.7% (w/w) was obtained. The protein isolate (co-product) had a higher protein content [80.6% (w/w)], lower ash [1.9% (w/w)] and mineral content and was enriched in essential amino acids, the nutritious γ-linolenic acid and other high-value unsaturated fatty acids compared to the original biomass. The residual biomass obtained after protein extraction had lower nitrogen content and higher total non-protein content than the original biomass. The loss of about 50% of the total lipids from this fraction did not impact its composition significantly owing to the low lipid content of S. platensis (8.03%).

  13. Stagnating liquid biofuel developments in Russia: Present status andfuture perspectives

    International Nuclear Information System (INIS)

    Pristupa, Alexey O.; Mol, Arthur P.J.; Oosterveer, Peter

    2010-01-01

    It is widely acknowledged that Russia possesses enormous biomass resources (). Its vast areas devoted to agricultural production and plentiful timber resources suggest good prospects for the development of liquid biofuel production. However, no significant advances in this direction have been reported till now. None of the numerous investment projects announced at the heydays of biofuel excitement in Russia (2006-2008) are at the moment commercially operating. There are no specialised plants for the production of bioethanol and biodiesel in Russia. Little is known of the reasons for this discrepancy between biofuel potential and actual development. In investigating this discrepancy, this article analyses national developments and investigates local dynamics through a case-study in the Omsk region. It is found that the reasons for this discrepancy are not related to technological incapabilities, but are to be found in the low policy and institutional priority given to non-fossil fuel exploitation and lack of market opportunities. Sprouts of second generation liquid biofuel technologies can be identified within the state system, but it remains to be seen how strong and how long these will be supported by the Russian state.

  14. Third Generation Biofuels via Direct Cellulose Fermentation

    Directory of Open Access Journals (Sweden)

    David B. Levin

    2008-07-01

    Full Text Available Consolidated bioprocessing (CBP is a system in which cellulase production, substrate hydrolysis, and fermentation are accomplished in a single process step by cellulolytic microorganisms. CBP offers the potential for lower biofuel production costs due to simpler feedstock processing, lower energy inputs, and higher conversion efficiencies than separate hydrolysis and fermentation processes, and is an economically attractive near-term goal for “third generation” biofuel production. In this review article, production of third generation biofuels from cellulosic feedstocks will be addressed in respect to the metabolism of cellulolytic bacteria and the development of strategies to increase biofuel yields through metabolic engineering.

  15. Biofuels and biodiversity in South Africa

    Directory of Open Access Journals (Sweden)

    Patrick J. O’Farrell

    2011-05-01

    Full Text Available The South African government, as part of its efforts to mitigate the effects of the ongoing energy crisis, has proposed that biofuels should form an important part of the country’s energy supply. The contribution of liquid biofuels to the national fuel supply is expected to be at least 2% by 2013. The Biofuels Industrial Strategy of the Republic of South Africa of 2007 outlines key incentives for reaching this target and promoting the development of a sustainable biofuels industry. This paper discusses issues relating to this strategy as well as key drivers in biofuel processing with reference to potential impacts on South Africa’s rich biological heritage.

    Our understanding of many of the broader aspects of biofuels needs to be enhanced. We identify key areas where challenges exist, such as the link between technology, conversion processes and feedstock selection. The available and proposed processing technologies have important implications for land use and the use of different non-native plant species as desired feedstocks. South Africa has a long history of planting non-native plant species for commercial purposes, notably for commercial forestry. Valuable lessons can be drawn from this experience on mitigation against potential impacts by considering plausible scenarios and the appropriate management framework and policies. We conceptualise key issues embodied in the biofuels strategy, adapting a framework developed for assessing and quantifying impacts of invasive alien species. In so doing, we provide guidelines for minimising the potential impacts of biofuel projects on biodiversity.

  16. Effect of Blended Feedstock on Pyrolysis Oil Composition

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kristin M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gaston, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    Current techno-economic analysis results indicate biomass feedstock cost represents 27% of the overall minimum fuel selling price for biofuels produced from fast pyrolysis followed by hydrotreating (hydro-deoxygenation, HDO). As a result, blended feedstocks have been proposed as a way to both reduce cost as well as tailor key chemistry for improved fuel quality. For this study, two feedstocks were provided by Idaho National Laboratory (INL). Both were pyrolyzed and collected under the same conditions in the National Renewable Energy Laboratory's (NREL) Thermochemical Process Development Unit (TCPDU). The resulting oil properties were then analyzed and characterized for statistical differences.

  17. World Biofuels Study

    Energy Technology Data Exchange (ETDEWEB)

    Alfstad,T.

    2008-10-01

    This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very

  18. International Perspectives and Implementation of Sustainability Criteria in the Development of Biofuels for Transport

    DEFF Research Database (Denmark)

    Meza, Maria Josefina Figueroa; Gudmundsson, Henrik

    Establishing sustainability criteria for the development of biofuels is an important step for the consolidation of an international market on biofuels for transport for several reasons: Biofuels are expected to play a significant role in a transition to low carbon future in transport in particular...

  19. Evaluation of apricot (Prunus armeniaca L.) seed kernel as a potential feedstock for the production of liquid bio-fuels and activated carbons

    International Nuclear Information System (INIS)

    Fadhil, Abdelrahman B.

    2017-01-01

    Highlights: • Apricot (Prunus armeniaca L.) is presented as a source for biodiesel, bio-oil and activated carbon. • Methylic and ethylic esters of apricot seed kernel oil conformed to ASTM (D6751) standards. • High yield (43.66% w/w) of bio-oil was produced by pyrolysis of de-oiled seed kernel. • High quality of activated carbon was obtained from the biochar. - Abstract: Production of liquid bio-fuels (biodiesel and bio-oil) as well as activated carbon from one non-edible feedstock, apricot (Prunus armeniaca L.) seed kernel was the main objective of the present research work. The oil was extracted from apricot seed kernel with a yield of 49.44% w/w of kernels. Potassium hydroxide-catalyzed transesterification of apricot (Prunus armeniaca L.) seed kernel oil with methanol and ethanol was then applied to produce methylic and ethylic, respectively. Properties of the obtained biodiesels were evaluated and found conformed to ASTM D 6751 limits. The apricot de-oiled seed kernel was pyrolyzed in a semi-batch reactor for bio-oil production. The effect of the pyrolysis temperatures (350, 400, 450, 500, 550 and 600 °C), pyrolysis time (30, 60, 90, 120 and 150 min) and feed particles size (0.25, 0.40, 0.59 and 0.84 mm) on the bio-oil yield was investigated. The maximum production of bio-oil (43.66% w/w) was achieved at a pyrolysis temperature of 450 °C, 60 min pyrolysis time and a feed particles size of 0.25 mm. The bio-oil obtained under the optimal conditions was characterized by the elemental analysis, FTIR spectroscopy and column chromatography. The FTIR analysis of the produced bio-fuel indicated that it composes mainly of alkanes, alkenes, ketones, carboxylic acids and amines. Properties of the resulting bio-oil were analyzed in terms of calorific value, density, flash point, pH, acid value, pour point and refractive index. The properties were close to those of petroleum fractions and comparable to those of other bio-oils published in literature. Referring to

  20. Sustainable Biofuel Contributions to Carbon Mitigation and Energy Independence

    Directory of Open Access Journals (Sweden)

    Phillip Steele

    2011-10-01

    Full Text Available The growing interest in US biofuels has been motivated by two primary national policy goals, (1 to reduce carbon emissions and (2 to achieve energy independence. However, the current low cost of fossil fuels is a key barrier to investments in woody biofuel production capacity. The effectiveness of wood derived biofuels must consider not only the feedstock competition with low cost fossil fuels but also the wide range of wood products uses that displace different fossil intensive products. Alternative uses of wood result in substantially different unit processes and carbon impacts over product life cycles. We developed life cycle data for new bioprocessing and feedstock collection models in order to make life cycle comparisons of effectiveness when biofuels displace gasoline and wood products displace fossil intensive building materials. Wood products and biofuels can be joint products from the same forestland. Substantial differences in effectiveness measures are revealed as well as difficulties in valuing tradeoffs between carbon mitigation and energy independence.

  1. Toward nitrogen neutral biofuel production.

    Science.gov (United States)

    Huo, Yi-Xin; Wernick, David G; Liao, James C

    2012-06-01

    Environmental concerns and an increasing global energy demand have spurred scientific research and political action to deliver large-scale production of liquid biofuels. Current biofuel processes and developing approaches have focused on closing the carbon cycle by biological fixation of atmospheric carbon dioxide and conversion of biomass to fuels. To date, these processes have relied on fertilizer produced by the energy-intensive Haber-Bosch process, and have not addressed the global nitrogen cycle and its environmental implications. Recent developments to convert protein to fuel and ammonia may begin to address these problems. In this scheme, recycling ammonia to either plant or algal feedstocks reduces the demand for synthetic fertilizer supplementation. Further development of this technology will realize its advantages of high carbon fixation rates, inexpensive and simple feedstock processing, in addition to reduced fertilizer requirements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Biofuel chain development in Germany: Organisation, opportunities, and challenges

    International Nuclear Information System (INIS)

    Dautzenberg, Kirsti; Hanf, Jon

    2008-01-01

    Increasing production activities have been observed in many EU member states since the EU Commission sent a clear signal establishing and supporting the bioenergy industry. This article discusses current sector developments and therewith evolving biofuel value chain activities and management requirements by means of two German biofuel processing firms. Usually, the processing company can be regarded as the initiator of the regional value chains. In order to safeguard the high initial investments and secure efficient supply, the processing company relies on contract farming or profit participation rights rather than spot market interactions. In addition to discussing that point, this paper also explores opportunities and threats for the suppliers of raw materials as well as for the processors. (author)

  3. Cyanobacterial Biofuels: Strategies and Developments on Network and Modeling.

    Science.gov (United States)

    Klanchui, Amornpan; Raethong, Nachon; Prommeenate, Peerada; Vongsangnak, Wanwipa; Meechai, Asawin

    Cyanobacteria, the phototrophic microorganisms, have attracted much attention recently as a promising source for environmentally sustainable biofuels production. However, barriers for commercial markets of cyanobacteria-based biofuels concern the economic feasibility. Miscellaneous strategies for improving the production performance of cyanobacteria have thus been developed. Among these, the simple ad hoc strategies resulting in failure to optimize fully cell growth coupled with desired product yield are explored. With the advancement of genomics and systems biology, a new paradigm toward systems metabolic engineering has been recognized. In particular, a genome-scale metabolic network reconstruction and modeling is a crucial systems-based tool for whole-cell-wide investigation and prediction. In this review, the cyanobacterial genome-scale metabolic models, which offer a system-level understanding of cyanobacterial metabolism, are described. The main process of metabolic network reconstruction and modeling of cyanobacteria are summarized. Strategies and developments on genome-scale network and modeling through the systems metabolic engineering approach are advanced and employed for efficient cyanobacterial-based biofuels production.

  4. The Third Pacific Basin Biofuels Workshop: Proceedings

    Science.gov (United States)

    Among the many compelling reasons for the development of biofuels on remote Pacific islands, several of the most important include: (1) a lack of indigenous fossil fuels necessitates their import at great economic loss to local island economics, (2) ideal conditions for plant growth exist on many Pacific islands to produce yields of biomass feedstocks, (3) gaseous and liquid fuels such as methane, methanol and ethanol manufactured locally from biomass feedstocks are the most viable alternatives to gasoline and diesel fuels for transportation, and (4) the combustion of biofuels is cleaner than burning petroleum products and contributes no net atmospheric CO2 to aggravate the greenhouse effect and the subsequent threat of sea level rise to low islands. Dr. Vic Phillips, HNEI Program Manager of the Hawaii Integrated Biofuels Research Program welcomed 60 participants to the Third Pacific Basin Biofuels Workshop at the Sheraton Makaha Hotel, Waianae, Oahu, on March 27 and 28, 1989. The objectives of the workshop were to update progress since the Second Pacific Basin Biofuels Workshop in April 1987 and to develop a plan for action for biofuels R and D, technology transfer, and commercialization now (immediate attention), in the near-term (less than two years), in the mid-term (three to five years), and in the long-term (more than six years). An emerging theme of the workshop was how the production, conversion, and utilization of biofuels can help increase environmental and economic security locally and globally. Individual papers are processed separately for the data base.

  5. Spatio-temporal availability of field crop residues for biofuel production in Northwest and Southwest China

    NARCIS (Netherlands)

    Han, L.; Wang, X.; Spiertz, J.H.J.; Yang, L.; Zhou, Y.; Liu, J.; Xie, G.

    2015-01-01

    Developing bioenergy from plant feedstocks is considered an opportunity to reduce greenhouse gas emissions and secure biofuel supply. This study is an assessment of the availability of field crop residues for bioenergy feedstocks in northwest China (NWC) and southwest China (SWC). The amount of

  6. Outlook for advanced biofuels

    International Nuclear Information System (INIS)

    Hamelinck, Carlo N; Faaij, Andre P.C.

    2006-01-01

    To assess which biofuels have the better potential for the short-term or the longer term (2030), and what developments are necessary to improve the performance of biofuels, the production of four promising biofuels-methanol, ethanol, hydrogen, and synthetic diesel-is systematically analysed. This present paper summarises, normalises and compares earlier reported work. First, the key technologies for the production of these fuels, such as gasification, gas processing, synthesis, hydrolysis, and fermentation, and their improvement options are studied and modelled. Then, the production facility's technological and economic performance is analysed, applying variations in technology and scale. Finally, likely biofuels chains (including distribution to cars, and end-use) are compared on an equal economic basis, such as costs per kilometre driven. Production costs of these fuels range 16-22 Euro /GJ HHV now, down to 9-13 Euro /GJ HHV in future (2030). This performance assumes both certain technological developments as well as the availability of biomass at 3 Euro /GJ HHV . The feedstock costs strongly influence the resulting biofuel costs by 2-3 Euro /GJ fuel for each Euro /GJ HHV feedstock difference. In biomass producing regions such as Latin America or the former USSR, the four fuels could be produced at 7-11 Euro /GJ HHV compared to diesel and gasoline costs of 7 and 8 Euro /GJ (excluding distribution, excise and VAT; at crude oil prices of ∼35 Euro /bbl or 5.7 Euro /GJ). The uncertainties in the biofuels production costs of the four selected biofuels are 15-30%. When applied in cars, biofuels have driving costs in ICEVs of about 0.18-0.24 Euro /km now (fuel excise duty and VAT excluded) and may be about 0.18 in future. The cars' contribution to these costs is much larger than the fuels' contribution. Large-scale gasification, thorough gas cleaning, and micro-biological processes for hydrolysis and fermentation are key major fields for RD and D efforts, next to

  7. Using "EC-Assess" to Assess a Small Biofuels Project in Honduras

    Science.gov (United States)

    Ngassa, Franklin Chamda

    2010-01-01

    Biofuels may contribute to both rural economic development and climate change mitigation and adaptation. The Gota Verde Project in Yoro, Honduras, attempts to demonstrate the technical and economic feasibility of small-scale biofuel production for local use by implementing a distinctive approach to feedstock production that encourages small farm…

  8. Meeting the Demand for Biofuels: Impact on Land Use and Carbon Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, Madhu; Jain, Atul; Onal, Hayri; Scheffran, Jurgen; Chen, Xiaoguang; Erickson, Matt; Huang, Haixiao; Kang, Seungmo.

    2011-08-14

    The purpose of this research was to develop an integrated, interdisciplinary framework to investigate the implications of large scale production of biofuels for land use, crop production, farm income and greenhouse gases. In particular, we examine the mix of feedstocks that would be viable for biofuel production and the spatial allocation of land required for producing these feedstocks at various gasoline and carbon emission prices as well as biofuel subsidy levels. The implication of interactions between energy policy that seeks energy independence from foreign oil and climate policy that seeks to mitigate greenhouse gas emissions for the optimal mix of biofuels and land use will also be investigated. This project contributes to the ELSI research goals of sustainable biofuel production while balancing competing demands for land and developing policy approaches needed to support biofuel production in a cost-effective and environmentally friendly manner.

  9. Development of an attached microalgal growth system for biofuel production.

    Science.gov (United States)

    Johnson, Michael B; Wen, Zhiyou

    2010-01-01

    Algal biofuel production has gained a renewed interest in recent years but is still not economically feasible due to several limitations related to algal culture. The objective of this study is to explore a novel attached culture system for growing the alga Chlorella sp. as biodiesel feedstock, with dairy manure wastewater being used as growth medium. Among supporting materials tested for algal attachment, polystyrene foam led to a firm attachment, high biomass yield (25.65 g/m(2), dry basis), and high fatty acid yield (2.31 g/m(2)). The biomass attached on the supporting material surface was harvested by scraping; the residual colonies left on the surface served as inoculum for regrowth. The algae regrowth on the colony-established surface resulted in a higher biomass yield than that from the initial growth on fresh surface due to the downtime saved for initial algal attachment. The 10-day regrowth culture resulted in a high biodiesel production potential with a fatty acid methyl esters yield of 2.59 g/m(2) and a productivity of 0.26 g/m(-2) day(-1). The attached algal culture also removed 61-79% total nitrogen and 62-93% total phosphorus from dairy manure wastewater, depending on different culture conditions. The biomass harvested from the attached growth system (through scraping) had a water content of 93.75%, similar to that harvested from suspended culture system (through centrifugation). Collectively, the attached algal culture system with polystyrene foam as a supporting material demonstrated a good performance in terms of biomass yield, biodiesel production potential, ease to harvest biomass, and physical robustness for reuse.

  10. Research for Developing Renewable Biofuels from Algae

    Energy Technology Data Exchange (ETDEWEB)

    Black, Paul N. [Univ. of Nebraska, Lincoln, NE (United States)

    2012-12-15

    Task A. Expansion of knowledge related to lipid production and secretion in algae A.1 Lipid biosynthesis in target algal species; Systems biology approaches are being used in combination with recent advances in Chlorella and Chlamydomonas genomics to address lipid accumulation in response to defined nutrient regimes. The UNL Algal Group continues screening additional species of Chlorella and other naturally occurring algae for those with optimal triglyceride production; Of the strains examined by the DOE's Aquatic Species Program, green algae, several species of Chlorella represent the largest group from which oleaginous candidates have been identified; A.1.1. Lipid profiling; Neutral lipid accumulation is routinely monitored by Nile red and BODIPY staining using high throughput strategies to screen for naturally occurring algae that accumulate triglyceride. These strategies complement those using spectrofluorometry to quantify lipid accumulation; Neutral lipid accumulation is routinely monitored by high performance thin-layer chromatography (HPTLC) and high performance liquid chromatography (HPLC) of lipid extracts in conjunction with; Carbon portioning experiments have been completed and the data currently are being analyzed and prepared for publication; Methods in the Black lab were developed to identify and quantify triacylglycerol (TAG), major membrane lipids [diacylglycerol trimethylhomoserine, phosphatidylethanolamine and chloroplast glycolipids], biosynthetic intermediates such as diacylglycerol, phosphatidic acid and lysophospholipids and different species of acyl-coenzyme A (acyl CoA).

  11. System visualization of integrated biofuels and high value chemicals developed within the MacroAlgaeBiorefinery (MAB3) project

    DEFF Research Database (Denmark)

    Seghetta, Michele; Hasler, Berit; Bastianoni, Simone

    MacroAlgaeBiorefinery (MAB3) may functions as production platform and raw material supplier for future sustainable production chains of biofuels and high value chemicals. Biofuels are interesting energy source but challenges in terms of the composition of the biomass and resulting energy...... efficiencies has to be compensated for to make the biofuel prices competitive in replacing fossil fuel. Since it is difficult to increase the yield of the single biorefinery, the overall system productivity can be improved integrating different sub-systems. In this study, macroalgae cultivation in Denmark...... is integrated with a biogas biorefinery, a bioethanol biorefinery and a fish feed industry. The modeled system is able to adapt itself to different amount and quality of feedstock and to maximize valuable outputs (e.g. bio-fuels and chemical). Macroalgae are harvested and utilized as feedstock in bioethanol...

  12. Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels.

    Science.gov (United States)

    de Jong, Bouke; Siewers, Verena; Nielsen, Jens

    2012-08-01

    Transportation fuels will gradually shift from oil based fuels towards alternative fuel resources like biofuels. Current bioethanol and biodiesel can, however, not cover the increasing demand for biofuels and there is therefore a need for advanced biofuels with superior fuel properties. Novel cell factories will provide a production platform for advanced biofuels. However, deep cellular understanding is required for improvement of current biofuel cell factories. Fast screening and analysis (-omics) methods and metabolome-wide mathematical models are promising techniques. An integrated systems approach of these techniques drives diversity and quantity of several new biofuel compounds. This review will cover the recent technological developments that support improvement of the advanced biofuels 1-butanol, biodiesels and jetfuels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Development and Characterization of a Metal Injection Molding Bio Sourced Inconel 718 Feedstock Based on Polyhydroxyalkanoates

    Directory of Open Access Journals (Sweden)

    Alexandre Royer

    2016-04-01

    Full Text Available The binder plays the most important role in the metal injection molding (MIM process. It provides fluidity of the feedstock mixture and adhesion of the powder to keep the molded shape during injection molding. The binder must provide strength and cohesion for the molded part and must be easy to remove from the molded part. Moreover, it must be recyclable, environmentally friendly and economical. Also, the miscibility between polymers affects the homogeneity of the injected parts. The goal of this study is to develop a feedstock of superalloy Inconel 718 that is environmentally friendly. For these different binders, formulations based on polyethylene glycol (PEG, because of his water solubility property, and bio sourced polymers were studied. Polyhydroxyalkanoates (PHA were investigated as a bio sourced polymer due to its miscibility with the PEG. The result is compared to a standard formulation using polypropylene (PP. The chemical and rheological behavior of the binder formulation during mixing, injection and debinding process were investigated. The feedstock was characterized in the same way as the binders and the interactions between the powder and the binders were also studied. The results show the well adapted formulation of polymer binder to produce a superalloy Inconel 718 feedstock.

  14. Development of a new genetic algorithm to solve the feedstock scheduling problem in an anaerobic digester

    Science.gov (United States)

    Cram, Ana Catalina

    As worldwide environmental awareness grow, alternative sources of energy have become important to mitigate climate change. Biogas in particular reduces greenhouse gas emissions that contribute to global warming and has the potential of providing 25% of the annual demand for natural gas in the U.S. In 2011, 55,000 metric tons of methane emissions were reduced and 301 metric tons of carbon dioxide emissions were avoided through the use of biogas alone. Biogas is produced by anaerobic digestion through the fermentation of organic material. It is mainly composed of methane with a rage of 50 to 80% in its concentration. Carbon dioxide covers 20 to 50% and small amounts of hydrogen, carbon monoxide and nitrogen. The biogas production systems are anaerobic digestion facilities and the optimal operation of an anaerobic digester requires the scheduling of all batches from multiple feedstocks during a specific time horizon. The availability times, biomass quantities, biogas production rates and storage decay rates must all be taken into account for maximal biogas production to be achieved during the planning horizon. Little work has been done to optimize the scheduling of different types of feedstock in anaerobic digestion facilities to maximize the total biogas produced by these systems. Therefore, in the present thesis, a new genetic algorithm is developed with the main objective of obtaining the optimal sequence in which different feedstocks will be processed and the optimal time to allocate to each feedstock in the digester with the main objective of maximizing the production of biogas considering different types of feedstocks, arrival times and decay rates. Moreover, all batches need to be processed in the digester in a specified time with the restriction that only one batch can be processed at a time. The developed algorithm is applied to 3 different examples and a comparison with results obtained in previous studies is presented.

  15. The bio-energies development: the role of biofuels and the CO2 price

    International Nuclear Information System (INIS)

    Jouvet, Pierre-Andre; Lantz, Frederic; Le Cadre, Elodie

    2012-01-01

    Reduction in energy dependency and emissions of CO 2 via renewable energies targeted in the European Union energy mix and taxation system, might trigger the production of bio-energy production and competition for biomass utilization. Torrefied biomass could be used to produce second generation biofuels to replace some of the fuels used in transportation and is also suitable as feedstock to produce electricity in large quantities. This paper examines how the CO 2 price affects demand of torrefied biomass in the power sector and its consequences on the profitability of second generation biofuel units (Biomass to Liquid units). Indeed, the profitability of the BtL units which are supplied only by torrefied biomass is related to the competitive demand of the power sector driven by the CO 2 price and feed-in tariffs. We propose a linear dynamic model of supply and demand. On the supply side, a profit-maximizing torrefied biomass sector is modelled. The model aims to represent the transformation of biomass into torrefied biomass which could be sold to the refinery sector and the power sector. A two-sided (demanders and supplier) bidding process led us to arrive at the equilibrium price for torrefied biomass. The French case is used as an example. Our results suggest that the higher the CO 2 price, the more stable and important the power sector demand. It also makes the torrefied biomass production less vulnerable to uncertainty on demand coming from the refining sector. The torrefied biomass co-firing with coal can offer a near-term market for the torrefied biomass for a CO 2 emission price lower than 20 euros/tCO 2 , which can stimulate development of biomass supply systems. Beyond 2020, the demand for torrefied biomass from the power sector could be substituted by the refining sector if the oil price goes up whatever the CO 2 price. (authors)

  16. The bio-energies development: the role of biofuels and the CO{sub 2} price

    Energy Technology Data Exchange (ETDEWEB)

    Jouvet, Pierre-Andre [Universite Paris Ouest Nanterre La Defense, Climate Economics Chair (France); Lantz, Frederic [IFP Energies nouvelles, 1-4, avenue de Bois-Preau, 92852 Rueil-Malmaison Cedex (France); Le Cadre, Elodie [IFPEN, INRA, Universite Paris Ouest Nanterre La Defense (France)

    2012-07-01

    Reduction in energy dependency and emissions of CO{sub 2} via renewable energies targeted in the European Union energy mix and taxation system, might trigger the production of bio-energy production and competition for biomass utilization. Torrefied biomass could be used to produce second generation biofuels to replace some of the fuels used in transportation and is also suitable as feedstock to produce electricity in large quantities. This paper examines how the CO{sub 2} price affects demand of torrefied biomass in the power sector and its consequences on the profitability of second generation biofuel units (Biomass to Liquid units). Indeed, the profitability of the BtL units which are supplied only by torrefied biomass is related to the competitive demand of the power sector driven by the CO{sub 2} price and feed-in tariffs. We propose a linear dynamic model of supply and demand. On the supply side, a profit-maximizing torrefied biomass sector is modelled. The model aims to represent the transformation of biomass into torrefied biomass which could be sold to the refinery sector and the power sector. A two-sided (demanders and supplier) bidding process led us to arrive at the equilibrium price for torrefied biomass. The French case is used as an example. Our results suggest that the higher the CO{sub 2} price, the more stable and important the power sector demand. It also makes the torrefied biomass production less vulnerable to uncertainty on demand coming from the refining sector. The torrefied biomass co-firing with coal can offer a near-term market for the torrefied biomass for a CO{sub 2} emission price lower than 20 euros/tCO{sub 2}, which can stimulate development of biomass supply systems. Beyond 2020, the demand for torrefied biomass from the power sector could be substituted by the refining sector if the oil price goes up whatever the CO{sub 2} price. (authors)

  17. Algal biofuels.

    Science.gov (United States)

    Razeghifard, Reza

    2013-11-01

    The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.

  18. International trade in biofuels: Good for development? And good for environment?

    OpenAIRE

    Dufey, A.

    2007-01-01

    Metadata only record The piece calls for international trade barriers, especially subsidies, to be relaxed to enable developing countries to reap the benefits of the biofuels trade, and for certification schemes to take account of the real environmental and social conditions in such countries. Biofuels have been promoted as a means of creating jobs and wealth in developing nations, while cutting greenhouse gas emissions in the industrialised world, where demand for biofuels is set to skyro...

  19. Recent Developments on Genetic Engineering of Microalgae for Biofuels and Bio-Based Chemicals.

    Science.gov (United States)

    Ng, I-Son; Tan, Shih-I; Kao, Pei-Hsun; Chang, Yu-Kaung; Chang, Jo-Shu

    2017-10-01

    Microalgae serve as a promising source for the production of biofuels and bio-based chemicals. They are superior to terrestrial plants as feedstock in many aspects and their biomass is naturally rich in lipids, carbohydrates, proteins, pigments, and other valuable compounds. Due to the relatively slow growth rate and high cultivation cost of microalgae, to screen efficient and robust microalgal strains as well as genetic modifications of the available strains for further improvement are of urgent demand in the development of microalgae-based biorefinery. In genetic engineering of microalgae, transformation and selection methods are the key steps to accomplish the target gene modification. However, determination of the preferable type and dosage of antibiotics used for transformant selection is usually time-consuming and microalgal-strain-dependent. Therefore, more powerful and efficient techniques should be developed to meet this need. In this review, the conventional and emerging genome-editing tools (e.g., CRISPR-Cas9, TALEN, and ZFN) used in editing the genomes of nuclear, mitochondria, and chloroplast of microalgae are thoroughly surveyed. Although all the techniques mentioned above demonstrate their abilities to perform gene editing and desired phenotype screening, there still need to overcome higher production cost and lower biomass productivity, to achieve efficient production of the desired products in microalgal biorefineries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Stagnating Jatropha Biofuel Development in Southwest China: An Institutional Approach

    Directory of Open Access Journals (Sweden)

    Jia Li

    2014-05-01

    Full Text Available Biodiesel from jatropha has been considered as a promising alternative to fossil fuels for some time. Consequently, China started promoting jatropha as one of the options to meet its ever-increasing energy consumption, and the Chinese biodiesel industry also gained interest. However, the excitement of the biofuel industry in jatropha faded after it did not bring about the expected results. This article investigates the stagnation in jatropha development and production for biodiesel in China, using two detailed case studies of jatropha biofuel production in southeast China. It is found that the underdeveloped biodiesel policy and regulation, such as a rather late formulation of standards for biodiesel (especially the B5 and the absence of mandatory targets, is an important reason for hampering jatropha development. Besides that, lack of financial support undermined sustained jatropha planting at the farm level and lack of sustained commitment from state-owned enterprises or private companies over a long time span further contributed to jatropha project’s failure. Better implementation of the rule of law, mandatory blending requirements, hazard insurance, as well as continuous financial support, might improve the continuation of jatropha plantation schemes.

  1. Biofuels development in Sub-Saharan Africa: Are the policies conducive?

    International Nuclear Information System (INIS)

    Jumbe, Charles B.L.; Msiska, Frederick B.M.; Madjera, Michael

    2009-01-01

    This paper analyses national, regional and international biofuels policies and strategies to assess whether these policies promote or undermine the development of biofuels sector in Africa. Despite having a huge comparative advantage in land, labour and good climatic conditions favourable for the growing of energy crops, few countries in Sub-Saharan Africa have included biofuels strategies in their energy or national development policies. Further results show that while developed countries commit huge financial resources for research, technology development and the provision of tax-incentives to both producers and consumers, there is little government support for promoting biofuels in Africa. Although the consequences of biofuels on food supply remain uncertain, the mandatory blending of biofuels with fossil fuels by industrialized countries will create demand for land in Africa for the growing of energy crops for biofuels. This paper urgently calls upon national governments in Sub-Saharan Africa to develop appropriate strategies and regulatory frameworks to harness the potential economic opportunities from biofuels sector development, while protecting the environment and rural communities from the adverse effects of land alienation from the mainstream agriculture towards the growing of energy crops for biofuels at the expense of traditional food crops.

  2. Biofuels development in Sub-Saharan Africa: Are the policies conducive?

    Energy Technology Data Exchange (ETDEWEB)

    Jumbe, Charles B.L., E-mail: charlesjumbe@bunda.unima.m [University of Malawi, Centre for Agricultural Research and Development, Bunda College, P.O. Box 219, Lilongwe (Malawi); Msiska, Frederick B.M., E-mail: frederickmsiska@yahoo.co [Ministry of Agriculture and Food Security, P.O. Box 30134, Lilongwe 3 (Malawi); Madjera, Michael, E-mail: michael.madjera@onlinehome.d [Evangelical Church in Middle Germany, P.O. Box 1424, 39004 Magdeburg (Germany)

    2009-11-15

    This paper analyses national, regional and international biofuels policies and strategies to assess whether these policies promote or undermine the development of biofuels sector in Africa. Despite having a huge comparative advantage in land, labour and good climatic conditions favourable for the growing of energy crops, few countries in Sub-Saharan Africa have included biofuels strategies in their energy or national development policies. Further results show that while developed countries commit huge financial resources for research, technology development and the provision of tax-incentives to both producers and consumers, there is little government support for promoting biofuels in Africa. Although the consequences of biofuels on food supply remain uncertain, the mandatory blending of biofuels with fossil fuels by industrialized countries will create demand for land in Africa for the growing of energy crops for biofuels. This paper urgently calls upon national governments in Sub-Saharan Africa to develop appropriate strategies and regulatory frameworks to harness the potential economic opportunities from biofuels sector development, while protecting the environment and rural communities from the adverse effects of land alienation from the mainstream agriculture towards the growing of energy crops for biofuels at the expense of traditional food crops.

  3. Biofuels development in Sub-Saharan Africa. Are the policies conducive?

    Energy Technology Data Exchange (ETDEWEB)

    Jumbe, Charles B.L. [University of Malawi, Centre for Agricultural Research and Development, Bunda College, P.O. Box 219, Lilongwe (Malawi); Msiska, Frederick B.M. [Ministry of Agriculture and Food Security, P.O. Box 30134, Lilongwe 3 (Malawi); Madjera, Michael [Evangelical Church in Middle Germany, P.O. Box 1424, 39004 Magdeburg (Germany)

    2009-11-15

    This paper analyses national, regional and international biofuels policies and strategies to assess whether these policies promote or undermine the development of biofuels sector in Africa. Despite having a huge comparative advantage in land, labour and good climatic conditions favourable for the growing of energy crops, few countries in Sub-Saharan Africa have included biofuels strategies in their energy or national development policies. Further results show that while developed countries commit huge financial resources for research, technology development and the provision of tax-incentives to both producers and consumers, there is little government support for promoting biofuels in Africa. Although the consequences of biofuels on food supply remain uncertain, the mandatory blending of biofuels with fossil fuels by industrialized countries will create demand for land in Africa for the growing of energy crops for biofuels. This paper urgently calls upon national governments in Sub-Saharan Africa to develop appropriate strategies and regulatory frameworks to harness the potential economic opportunities from biofuels sector development, while protecting the environment and rural communities from the adverse effects of land alienation from the mainstream agriculture towards the growing of energy crops for biofuels at the expense of traditional food crops. (author)

  4. Biofuels worldwide

    International Nuclear Information System (INIS)

    His, St.

    2004-01-01

    After over 20 years of industrial development, the outlook for biofuels now looks bright. Recent developments indicate that the use of biofuels, previously confined to a handful of countries including Brazil and the United States, is 'going global' and a world market may emerge. However, these prospects could eventually be limited by constraints relative to resources and costs. The future of biofuels probably depends on the development of new technologies to valorize lignocellulosic substances such as wood and straw. (author)

  5. Potential emissions reduction in road transport sector using biofuel in developing countries

    Science.gov (United States)

    Liaquat, A. M.; Kalam, M. A.; Masjuki, H. H.; Jayed, M. H.

    2010-10-01

    Use of biofuels as transport fuel has high prospect in developing countries as most of them are facing severe energy insecurity and have strong agricultural sector to support production of biofuels from energy crops. Rapid urbanization and economic growth of developing countries have spurred air pollution especially in road transport sector. The increasing demand of petroleum based fuels and their combustion in internal combustion (IC) engines have adverse effect on air quality, human health and global warming. Air pollution causes respiratory problems, adverse effects on pulmonary function, leading to increased sickness absenteeism and induces high health care service costs, premature birth and even mortality. Production of biofuels promises substantial improvement in air quality through reducing emission from biofuel operated automotives. Some of the developing countries have started biofuel production and utilization as transport fuel in local market. This paper critically reviews the facts and prospects of biofuel production and utilization in developing countries to reduce environmental pollution and petro dependency. Expansion of biofuel industries in developing countries can create more jobs and increase productivity by non-crop marginal lands and wastelands for energy crops plantation. Contribution of India and China in biofuel industry in production and utilization can dramatically change worldwide biofuel market and leap forward in carbon cut as their automotive market is rapidly increasing with a souring proportional rise of GHG emissions.

  6. Transitioning to sustainable use of biofuel in Australia★

    OpenAIRE

    Sasongko Nugroho Adi; Thorns Charlotte; Sankoff Irina; Chew Shu Teng; Bista Sangita

    2017-01-01

    Biofuel is identified as one of the key renewable energy sources for sustainable development, and can potentially replace fossil-based fuels. Anticipating the competition between food and energy security, the Australian Government is intensively exploring other biofuel resources. There have been numerous research projects in Australia using the second and third generation model based on different feedstocks including lignocellulosic and microalgae. Such projects have been successfully demonst...

  7. Initial development of a blurry injector for biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Claudia Goncalves de; Costa, Fernando de Souza [National Institute for Space Research (INPE) Cachoeira Paulista, SP (Brazil). Associated Lab. of Combustion and Propulsion], Emails: claudia@lcp.inpe.br, fernando@lcp.inpe.br; Couto, Heraldo da Silva [Vale Energy Solution, Sao Jose dos Campos, SP (Brazil)], E-mail: heraldo.couto@vsesa.com.br

    2010-07-01

    The increasing costs of fossil fuels, environmental concerns and stringent regulations on fuel emissions have caused a significant interest on biofuels, especially ethanol and biodiesel. The combustion of liquid fuels in diesel engines, turbines, rocket engines and industrial furnaces depends on the effective atomization to increase the surface area of the fuel and thus to achieve high rates of mixing and evaporation. In order to promote combustion with maximum efficiency and minimum emissions, an injector must create a fuel spray that evaporates and disperses quickly to produce a homogeneous mixture of vaporized fuel and air. Blurry injectors can produce a spray of small droplets of similar sizes, provide excellent vaporization and mixing of fuel with air, low emissions of NO{sub x} and CO, and high efficiency. This work describes the initial development of a blurry injector for biofuels. Theoretical droplet sizes are calculated in terms of feed pressures and mass flow rates of fuel and air. Droplet size distribution and average diameters are measured by a laser system using a diffraction technique. (author)

  8. Potential impacts of biofuel development on food security in Botswana: A contribution to energy policy

    International Nuclear Information System (INIS)

    Kgathi, Donald L.; Mfundisi, K.B.; Mmopelwa, G.; Mosepele, K.

    2012-01-01

    Biofuel development continues to be a critical development strategy in Africa because it promises to be an important part of the emerging bio-economy. However, there is a growing concern that the pattern of biofuel development is not always consistent with the principles of sustainable development. This paper assesses the potential of the impacts of biofuel development on food security in Botswana. Drawing on informal and semi-structured interviews, the paper concludes that there is potential for the development of biofuels in Botswana without adverse effects on food security due mainly to availability of idle land which accounted for 72% of agricultural land in the eastern part of the country in 2008. It is suggested that farmers could be incentivized to produce energy crops and more food from such land. Although it is hypothesized that the implementation of biofuel development programmes in other countries had an impact on local commodity prices during the period 2005–2008 in Botswana, it is argued that local biofuel production may not necessarily lead to a substantial increase in commodity food prices because land availability is not a major issue. The paper makes policy recommendations for sustainable biofuel development in Botswana. - Highlights: ► Biofuel development in Botswana can be pursued without harming food security. ► There is plenty idle land which could be used for biofuel and food production. ► Biofuel production will not lead to significant increases in food prices. ► There is need to define land for biofuels to avoid future scarcity of land for food production.

  9. Comparing Effects of Feedstock and Run Conditions on Pyrolysis Products Produced at Pilot-Scale

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, Timothy C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gaston, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wilcox, Esther [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-19

    Fast pyrolysis is a promising pathway for mass production of liquid transportable biofuels. The Thermochemical Process Development Unit (TCPDU) pilot plant at NREL is conducting research to support the Bioenergy Technologies Office's 2017 goal of a $3 per gallon biofuel. In preparation for down select of feedstock and run conditions, four different feedstocks were run at three different run conditions. The products produced were characterized extensively. Hot pyrolysis vapors and light gasses were analyzed on a slip stream, and oil and char samples were characterized post run.

  10. Biofuels Baseline 2008

    Energy Technology Data Exchange (ETDEWEB)

    Hamelinck, C.; Koper, M.; Berndes, G.; Englund, O.; Diaz-Chavez, R.; Kunen, E.; Walden, D.

    2011-10-15

    The European Union is promoting the use of biofuels and other renewable energy in transport. In April 2009, the Renewable Energy Directive (2009/28/EC) was adopted that set a 10% target for renewable energy in transport in 2020. The directive sets several requirements to the sustainability of biofuels marketed in the frame of the Directive. The Commission is required to report to the European Parliament on a regular basis on a range of sustainability impacts resulting from the use of biofuels in the EU. This report serves as a baseline of information for regular monitoring on the impacts of the Directive. Chapter 2 discusses the EU biofuels market, the production and consumption of biofuels and international trade. It is derived where the feedstock for EU consumed biofuels originally come from. Chapter 3 discusses the biofuel policy framework in the EU and major third countries of supply. It looks at various policy aspects that are relevant to comply with the EU sustainability requirements. Chapter 4 discusses the environmental and social sustainability aspects associated with EU biofuels and their feedstock. Chapter 5 discusses the macro-economic effects that indirectly result from increased EU biofuels consumption, on commodity prices and land use. Chapter 6 presents country factsheets for main third countries that supplied biofuels to the EU market in 2008.

  11. Conversion of grazed pastures to energy cane as a biofuel feedstock alters the emission of GHGs from soils in Southeastern United States

    Science.gov (United States)

    The cultivation of energy cane throughout the Southeastern United States may displace grazed pastures on organic soil (Histosols) to meet growing demands for biofuels. We combined results from a field experiment with a biogeochemical model to improve our understanding of how the conversion of pastur...

  12. Biofuels development and adoption in Nigeria: Synthesis of drivers, incentives and enablers

    International Nuclear Information System (INIS)

    Abila, Nelson

    2012-01-01

    Biofuels development and adoption in Nigeria has progressed significantly since the inception of the country's biofuel program in 2007. The rapid growth of the biofuels subsector in Nigeria inspired this review which aims at identifying the key drivers, agents, enablers, incentives and objectives driving the development. From the upstream to the downstream sub-sectors, there is an increasing entry of players and participants (private and public investors). This paper aims to explore the underlining drivers, enablers and incentives promoting the investments and participations in biofuels development, adoption and utilization in Nigeria. The research sourced data from basically secondary sources and undertook desk review of available information. The drivers identified are classified into the endogenous and exogenous categories. From the review, the paper presents a multi-components conceptual framework that captures key elements of the biofuel development in Nigeria. - Highlights: ► Delineate factors (drivers) promoting biofuels. ► Identify agents and their roles in incentivizing the biofuel development. ► Delineate incentives from enablers of biofuel development and adoption. ► Categorize objective motives of actors within the sustainability triangle. ► Propose a framework as a foundation for further research, policy analysis and intervention.

  13. Macroalgae as a Biomass Feedstock: A Preliminary Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roesijadi, Guritno; Jones, Susanne B.; Snowden-Swan, Lesley J.; Zhu, Yunhua

    2010-09-26

    A thorough of macroalgae analysis as a biofuels feedstock is warranted due to the size of this biomass resource and the need to consider all potential sources of feedstock to meet current biomass production goals. Understanding how to harness this untapped biomass resource will require additional research and development. A detailed assessment of environmental resources, cultivation and harvesting technology, conversion to fuels, connectivity with existing energy supply chains, and the associated economic and life cycle analyses will facilitate evaluation of this potentially important biomass resource.

  14. Algae as a Feedstock for Biofuels. An Assessment of the Current Status and Potential for Algal Biofuels Production. Joint Summary report of IEA-AMF Annex XXXIV-2 and IEA Bioenergy Task 39

    Energy Technology Data Exchange (ETDEWEB)

    O' Conner, D. [S and T2 Consultants, Inc. (Canada)

    2011-09-15

    In 2010, the IEA Advanced Motor Fuels Implementing Agreement and the IEA Bioenergy Task 39 both commissioned reports on the status and potential opportunities for Algal Biofuels. While there were substantial similarities in the findings of the two reports, each report provides unique perspectives on different aspects of the technology and the opportunities. This summary draws on both of those reports. The Task 39 report (Bioenergy Algal Biofuels.pdf) was authored by Al Darzins and Philip Pienkos (NREL, US) and Les Edye (BioIndustry Partners, Australia). The IEA AMF report was prepared by Karen Sikes and Ralph McGill (Sentech, Inc. US) and Martijn Van Walwijk (Independent Researcher).

  15. The Strategic Principles of Formation and Development of the Biofuel Industry in Ukraine

    Directory of Open Access Journals (Sweden)

    Klymchuk Oleksandr V.

    2017-04-01

    Full Text Available The article is aimed at highlighting the strategic principles of formation and development of the biofuel production in Ukraine at a competitive level. The carried out comprehensive analysis of scientific publications indicates the relevance of the pace of development in the biofuel industry as in the world, so in Ukraine. However, the low level of consumption and production of biofuels in our country requires further research of strategic nature. It has been found that formation of the competitive production of biofuels in Ukraine would ensure the positive developments in the economic, energy, agro-industrial, and environmental directions. On the basis of the carried out SWOT-analysis, the author has evaluated internal forces and the system of internal shortages, as well as the resource potential of the agro-industrial complex towards the implementation of existing external opportunities and confronting various threats, emerging in the market conditions during the process of development and rise of the biofuel industry.

  16. Biofuels and sustainability in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Amigun, Bamikole; Stafford, William [Sustainable Energy Futures, Natural Resources and the Environment, Council for Scientific and Industrial Research (CSIR), 7599 Stellenbosch (South Africa); Musango, Josephine Kaviti [Resource Based Sustainable Development, Natural Resources and the Environment, Council for Scientific and Industrial Research (CSIR), 7599 Stellenbosch (South Africa)

    2011-02-15

    The combined effects of climate change, the continued volatility of fuel prices, the recent food crisis and global economic turbulence have triggered a sense of urgency among policymakers, industries and development practitioners to find sustainable and viable solutions in the area of biofuels. This sense of urgency is reflected in the rapid expansion of global biofuels production and markets over the past few years. Biofuels development offers developing countries some prospect of self-reliant energy supplies at national and local levels, with potential economic, ecological, social, and security benefits. Forty-two African countries are net oil importers. This makes them particularly vulnerable to volatility in global fuel prices and dependent on foreign exchange to cover their domestic energy needs. The goal therefore is to reduce the high dependence on imported petroleum by developing domestic, renewable energy. But can this objective be achieved while leaving a minimal social and environmental footprint? A fundamental question is if biofuels can be produced with consideration of social, economic and environmental factors without setting unrealistic expectation for an evolving renewable energy industry that holds such great promise. The overall performance of different biofuels in reducing non-renewable energy use and greenhouse gas emissions varies when considering the entire lifecycle from production through to use. The net performance depends on the type of feedstock, the production process and the amount of non-renewable energy needed. This paper presents an overview of the development of biofuels in Africa, and highlights country-specific economic, environmental and social issues. It proposes a combination framework of policy incentives as a function of technology maturity, discusses practices, processes and technologies that can improve efficiency, lower energy and water demand, and further reduce the social and environmental footprint of biofuels

  17. Biofuels and sustainability in Africa

    International Nuclear Information System (INIS)

    Amigun, Bamikole; Stafford, William; Musango, Josephine Kaviti

    2011-01-01

    The combined effects of climate change, the continued volatility of fuel prices, the recent food crisis and global economic turbulence have triggered a sense of urgency among policymakers, industries and development practitioners to find sustainable and viable solutions in the area of biofuels. This sense of urgency is reflected in the rapid expansion of global biofuels production and markets over the past few years. Biofuels development offers developing countries some prospect of self-reliant energy supplies at national and local levels, with potential economic, ecological, social, and security benefits. Forty-two African countries are net oil importers. This makes them particularly vulnerable to volatility in global fuel prices and dependent on foreign exchange to cover their domestic energy needs. The goal therefore is to reduce the high dependence on imported petroleum by developing domestic, renewable energy. But can this objective be achieved while leaving a minimal social and environmental footprint? A fundamental question is if biofuels can be produced with consideration of social, economic and environmental factors without setting unrealistic expectation for an evolving renewable energy industry that holds such great promise. The overall performance of different biofuels in reducing non-renewable energy use and greenhouse gas emissions varies when considering the entire lifecycle from production through to use. The net performance depends on the type of feedstock, the production process and the amount of non-renewable energy needed. This paper presents an overview of the development of biofuels in Africa, and highlights country-specific economic, environmental and social issues. It proposes a combination framework of policy incentives as a function of technology maturity, discusses practices, processes and technologies that can improve efficiency, lower energy and water demand, and further reduce the social and environmental footprint of biofuels

  18. Recent Inventions and Trends in Algal Biofuels Research.

    Science.gov (United States)

    Karemore, Ankush; Nayak, Manoranjan; Sen, Ramkrishna

    2016-01-01

    In recent times, when energy crisis compounded by global warming and climate change is receiving worldwide attention, the emergence of algae, as a better feedstock for third-generation biofuels than energy crops or plants, holds great promise. As compared to conventional biofuels feedstocks, algae offer several advantages and can alone produce a significant amount of biofuels sustainably in a shorter period to fulfill the rising demand for energy. Towards commercialisation, there have been numerous efforts put for- ward for the development of algae-derived biofuel. This article reviews and summarizes the recent inventions and the current trends that are reported and captured in relevant patents pertaining to the novel methods of algae biomass cultivation and processing for biofuels and value-added products. In addition, the recent advancement in techniques and technologies for microalgal biofuel production has been highlighted. Various steps involved in the production of algal biofuels have been considered in this article. Moreover, the work that advances to improve the efficiency and cost-effectiveness of the processes for the manufacture of biofuels has been presented. Our survey was conducted in the patent databases: WIPO, Spacenet and USPTO. There are still some technological bottlenecks that could be overcome by designing advanced photobioreactor and raceway ponds, developing new and low cost technologies for biomass cultivation, harvesting, drying and extraction. Recent advancement in algae biofuels methods is directed toward developing efficient and integrated systems to produce biofuels by overcoming the current challenges. However, further research effort is required to scale-up and improve the efficiency of these methods in the upstream and downstream technologies to make the cost of biofuels competitive with petroleum fuels.

  19. Making biofuels sustainable

    International Nuclear Information System (INIS)

    Gallagher, Ed

    2008-01-01

    Full text: As the twentieth century drew to a close, there was considerable support for the use of biofuels as a source of renewable energy. To many people, they offered significant savings in greenhouse gas emissions compared to fossil fuels, an opportunity for reduced dependency on oil for transport, and potential as a counter weight to increasing oil prices. They also promised an opportunity for rural economies to benefit from a new market for their products and a chance of narrowing the gap between rich and poor nations. Biofuel development was encouraged by government subsidies, and rapid growth occurred in many parts of the world. Forty per cent of Brazilian sugar cane is used for biofuel production, for example, as is almost a quarter of maize grown in the United States. Although only around 1 per cent of arable land is cultivated to grow feedstock for biofuels, there has been increasing concern over the way a largely unchecked market has developed, and about its social and environmental consequences. Recent research has confirmed that food prices have been driven significantly higher by competition for prime agricultural land and that savings in greenhouse gas emissions are much smaller - and in some cases entirely eliminated - when environmentally important land, such as rainforest, is destroyed to grow biofuels. As a result, many now believe that the economic benefits of biofuels have been obtained at too high a social and environmental price, and they question whether they can be a truly sustainable source of energy. The United Kingdom has always had sustainability at the heart of its biofuel policies and set up the Renewable Fuels Agency to ensure that this goal was met. The direct effects of biofuel production are already being assessed through five measures of environmental performance and two measures of social performance, as well as measures of the energy efficiency of the production processes used and of the greenhouse gas savings achieved

  20. Multi-actor governance of sustainable biofuels in developing countries: The case of Mozambique

    International Nuclear Information System (INIS)

    Schut, Marc; Cunha Soares, Núria; Ven, Gerrie van de; Slingerland, Maja

    2014-01-01

    This paper describes and analyses the multi-actor governance process that made Mozambique the first African nation-state to develop a national policy framework for sustainable biofuels. The paper draws on findings from action research conducted in Mozambique between December 2008 and July 2012. We analyse interactions between the changing governance context, the course of the multi-actor governance process, and the choices in relation to governance framework characteristics and content for four successive stages of governance framework development. This provides the basis for reflection on the competences required for effective multi-actor sustainability governance, and a discussion about the role of the nation-state in sustainability governance of global economies such as biofuels. The governance framework for sustainable biofuels has contributed to a more transparent and secure investment climate for biofuels in Mozambique. Key factors for success were (1) the presence of different types of competences during the various stages of the governance framework development, (2) closing the gap between ‘licences to sell’ and ‘licences to produce’ across different governance levels, and (3) balancing between the short- and long-term objectives for biofuel production in Mozambique and requirements of global biofuel markets. Developing-country nation-states can provide an essential contribution to these success-factors for global governance of sustainable biofuels. - Highlights: • Mozambique is the first African country that developed a national governance framework for sustainable biofuels. • Independence, representation, expertise and operational capacity are essential competences in multi-actor sustainability governance. • Developing country's nation-states play an essential role in harmonizing short- and long-term objectives across different governance levels. • Synergies between licences to sell and licences to produce biofuels sustainably should

  1. The development of the biofuels in the german farms

    International Nuclear Information System (INIS)

    Palz, W.

    2005-03-01

    Germany is today at the first place of the world for the production and the utilization of vegetable oils and by products, the Diester. The main reasons of this enjoyment is the two european directives on biofuels and the tax exemption at 100% decided by the government in 2004. All the biofuels available in Germany, as the ethanol, the vegetable oils and the bio-alcohol, are presented in this paper. The research axis and the government policy in favor of the biofuels are also discussed. (A.L.B.)

  2. Recent developments on biofuels production from microalgae and macroalgae

    DEFF Research Database (Denmark)

    Kumar, Kanhaiya; Ghosh, Supratim; Angelidaki, Irini

    2016-01-01

    and infrastructure requirement. Hydrogen production by microalgae through biophotolysis seems interesting as it directly converts the solar energy into hydrogen. However, the process has not been scaled-up till today. Hydrothermal liquefaction (HTL) is more promising due to handling of wet biomass at moderate......Biofuels from algae are considered as promising alternatives of conventional fossil fuels, as they can eliminate most of the environmental problems. The present study focuses on all the possible avenues of biofuels production through biochemical and thermochemical conversion methods in one place......, bringing together both microalgae and macroalgae on the same platform. It provides a brief overview on the mechanism of different biofuel production from algae. Factors affecting the biofuel process and the associated challenges have been highlighted alongwith analysis of techno-economic study available...

  3. Biomass Feedstocks | Bioenergy | NREL

    Science.gov (United States)

    Feedstocks Biomass Feedstocks Our mission is to enable the coordinated development of biomass generic biomass thermochemical conversion process (over a screened-back map of the United States) showing U.S. Biomass Resources, represented by photos of timber, corn stover, switchgrass, and poplar. All

  4. A prospective analysis of Brazilian biofuel economy: Land use, infrastructure development and fuel pricing policies

    Science.gov (United States)

    Nunez Amortegui, Hector Mauricio

    Being the two largest ethanol producers in the world, transportation fuel policies in Brazil and the U.S. affect not only their domestic markets but also the global food and biofuel economy. Hence, the complex biofuel policy climate in these countries leaves the public with unclear conclusions about the prospects for supply and trade of agricultural commodities and biofuels. In this dissertation I develop a price endogenous mathematical programming model to simulate and analyze the impacts of biofuel policies in Brazil and the U.S. on land use in these countries, agricultural commodity and transportation fuel markets, trade, and global environment. The model maximizes the social surplus represented by the sum of producers' and consumers' surpluses, including selected agricultural commodity markets and fuel markets in the U.S., Brazil, Argentina, China, and the Rest-of-the-World (ROW), subject to resource limitations, material balances, technical constraints, and policy restrictions. Consumers' surplus is derived from consumption of agricultural commodities and transportation fuels by vehicles that generate vehicle-kilometers-traveled (VKT). While in the other regional components aggregate supply and demand functions are assumed for the commodities included in the analysis, the agricultural supply component is regionally disaggregated for Brazil and the U.S., and the transportation fuel sector is regionally disaggregated for Brazil. The U.S. agricultural supply component includes production of fourteen major food/feed crops, including soybeans, corn and wheat, and cellulosic biofuel feedstocks. The Brazil component includes eight major annual crops, including soybeans, corn, wheat, and rice, and sugarcane as the energy crop. A particular emphasis is given to the beef-cattle production in Brazil and the potential for livestock semi-intensification in Brazilian pasture grazing systems as a prospective pathway for releasing new croplands. In the fuel sector of both

  5. Putting a green toe on the biofuels foot : determining and reducing the ecological footprint anticipated from accelerated biofuel development in Canada

    International Nuclear Information System (INIS)

    McIntyre, T.

    2007-01-01

    Results from recent Environment Canada (EC) research on punctuated life cycle analysis of biofuels and completed ongoing global benchmarking were presented. The purpose of the presentation was to demonstrate how the research community was responding to and organizing themselves for the biofuels opportunity/challenge agenda. The presentation provided a list of some of the environmental benefits of biofuels claimed in the public domain and identified potential environmental impact areas of concern. The author indicated that environmental data was not very robust and that this complex issue lends itself to a weak understanding of theoretical versus likely/achievable benefits. Other topics that were presented included biomass conversion technologies; the petrochemical distribution infrastructure in Canada; the biofuels distribution infrastructure; biofuel spill fate and behaviour; and the focus of EC's BEST research and development program. 2 tabs., 1 fig

  6. Biofuels - Illusion or Reality? - The european experience

    International Nuclear Information System (INIS)

    Furfari, A.

    2008-01-01

    Environmental issues, rising prices and security of supply are putting energy at the centre of all attentions. Policy-makers pushed by various stakeholders are struggling to find more sustainable solutions to the world legitimate demand for energy. The transport sector is especially under pressure as it relies for 98% on oil. Despite vast research and development investments, no short-term solutions appeared to be reliable. Thanks to lawmakers support to biofuels, these substitutes for oil are now seen as the potential solution for a sustainable transport. This book analyses the real possibility of biofuels. Does Europe has enough land to produce the needed feedstock? What are the real gains in terms of greenhouse gases emissions and energy efficiency? Are biofuels really a sustainable solution? Will this policy succeed? Are the targets reachable? The reader will find some indications in this book to make up his mind on this complex, multifaceted and highly political subject. Contents: Summary. Introduction. Biofuels in the U.S.A. and Brazil. Do we have enough land in Europe? Biofuels life cycle analysis. Greenhouse gases reduction and efficiency. Case of the glycerin price. Variables affecting biofuels sustainability. Standard for Biofuels. Conclusion. General Bibliography. Annexes. References

  7. Panorama 2007: New Bio-fuel Technologies

    International Nuclear Information System (INIS)

    His, St.

    2007-01-01

    New pathways are emerging in the wake of the boom in the biofuels market. Their development is driven by the search for improved product quality and a broader range of natural plant feedstock. Interested in these new pathways, the oil companies are seeking to differentiate themselves on a market that promises to be very competitive in future. This is a turning point in a sector that has historically been dominated by agro-food companies. (author)

  8. Developing nanotechnology for biofuel and plant science applications

    Energy Technology Data Exchange (ETDEWEB)

    Valenstein, Justin [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    This dissertation presents the research on the development of mesoporous silica based nanotechnology for applications in biofuels and plant science. Mesoporous silica nanoparticles (MSNs) have been the subject of great interest in the last two decades due to their unique properties of high surface area, tunable pore size and particle morphology. The robust nature of the silica framework is easily functionalized to make the MSNs a promising option for selective separations. Also, the independent channels that form the pores of MSN have been exploited in the use of particles as platforms for molecular delivery. Pore size and organic functionality are varied to identify the ideal adsorbent material for free fatty acids (FFAs). The resulting material is able to sequester FFAs with a high degree of selectivity from a simulated solution and microalgal oil. The recyclability and industrial implications are also explored. A continuation of the previous material, further tuning of MSN pore size was investigated. Particles with a smaller diameter selectively sequester polyunsaturated free fatty acids (PUFAs) over monounsaturated FFAs and saturated FFAs. The experimental results were verified with molecular modeling. Mesoporous silica nanoparticle materials with a pore diameter of 10 nm (MSN-10) were decorated with small gold nanoparticles. The resulting materials were shown to deliver proteins and DNA into plant cells using the biolistic method.

  9. Recent developments and key barriers to advanced biofuels: A short review.

    Science.gov (United States)

    Oh, You-Kwan; Hwang, Kyung-Ran; Kim, Changman; Kim, Jung Rae; Lee, Jin-Suk

    2018-06-01

    Biofuels are regarded as one of the most viable options for reduction of CO 2 emissions in the transport sector. However, conventional plant-based biofuels (e.g., biodiesel, bioethanol)'s share of total transportation-fuel consumption in 2016 was very low, about 4%, due to several major limitations including shortage of raw materials, low CO 2 mitigation effect, blending wall, and poor cost competitiveness. Advanced biofuels such as drop-in, microalgal, and electro biofuels, especially from inedible biomass, are considered to be a promising solution to the problem of how to cope with the growing biofuel demand. In this paper, recent developments in oxy-free hydrocarbon conversion via catalytic deoxygenation reactions, the selection of and lipid-content enhancement of oleaginous microalgae, electrochemical biofuel conversion, and the diversification of valuable products from biomass and intermediates are reviewed. The challenges and prospects for future development of eco-friendly and economically advanced biofuel production processes also are outlined herein. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Key issues in estimating energy and greenhouse gas savings of biofuels: challenges and perspectives

    Directory of Open Access Journals (Sweden)

    Dheeraj Rathore

    2016-06-01

    Full Text Available The increasing demand for biofuels has encouraged the researchers and policy makers worldwide to find sustainable biofuel production systems in accordance with the regional conditions and needs. The sustainability of a biofuel production system includes energy and greenhouse gas (GHG saving along with environmental and social acceptability. Life cycle assessment (LCA is an internationally recognized tool for determining the sustainability of biofuels. LCA includes goal and scope, life cycle inventory, life cycle impact assessment, and interpretation as major steps. LCA results vary significantly, if there are any variations in performing these steps. For instance, biofuel producing feedstocks have different environmental values that lead to different GHG emission savings and energy balances. Similarly, land-use and land-use changes may overestimate biofuel sustainability. This study aims to examine various biofuel production systems for their GHG savings and energy balances, relative to conventional fossil fuels with an ambition to address the challenges and to offer future directions for LCA based biofuel studies. Environmental and social acceptability of biofuel production is the key factor in developing biofuel support policies. Higher GHG emission saving and energy balance of biofuel can be achieved, if biomass yield is high, and ecologically sustainable biomass or non-food biomass is converted into biofuel and used efficiently.

  11. International trade in biofuels: Good for development? And good for Environment?

    Energy Technology Data Exchange (ETDEWEB)

    Dufey, Annie

    2007-01-15

    Biofuels are heating up debates and energising activities on many policy fronts. On the surface, they offer significant opportunities to pursue environment and development goals both globally and domestically. There are both synergies and trade-offs between these goals and levels. Trade will drive biofuels growth, yet current trade regimes are not fit for maximising benefits nor minimising risks from the sector. The novelty of biofuels, the vast array of issues involved and the lack of knowledge to tackle many of them, together with diverging political and business interests, mean that consensus is elusive. It is therefore increasingly urgent to map a path for the global biofuels industry that supports sustainable development. Based on a new analysis of the sector, this briefing lays out some of the options for achieving this.

  12. Development of a lactic acid production process using lignocellulosic biomass as feedstock

    NARCIS (Netherlands)

    Pol, van der E.C.

    2016-01-01

    The availability of crude oil is finite. Therefore, an alternative feedstock has to be found for the production of fuels and plastics. Lignocellulose is such an alternative feedstock. It is present in large quantities in agricultural waste material such as sugarcane bagasse.

    In this PhD

  13. Global assessment of research and development for algae biofuel production and its potential role for sustainable development in developing countries

    International Nuclear Information System (INIS)

    Adenle, Ademola A.; Haslam, Gareth E.; Lee, Lisa

    2013-01-01

    The possibility of economically deriving fuel from cultivating algae biomass is an attractive addition to the range of measures to relieve the current reliance on fossil fuels. Algae biofuels avoid some of the previous drawbacks associated with crop-based biofuels as the algae do not compete with food crops. The favourable growing conditions found in many developing countries has led to a great deal of speculation about their potentials for reducing oil imports, stimulating rural economies, and even tackling hunger and poverty. By reviewing the status of this technology we suggest that the large uncertainties make it currently unsuitable as a priority for many developing countries. Using bibliometric and patent data analysis, we indicate that many developing countries lack the human capital to develop their own algae industry or adequately prepare policies to support imported technology. Also, we discuss the potential of modern biotechnology, especially genetic modification (GM) to produce new algal strains that are easier to harvest and yield more oil. Controversy surrounding the use of GM and weak biosafety regulatory system represents a significant challenge to adoption of GM technology in developing countries. A range of policy measures are also suggested to ensure that future progress in algae biofuels can contribute to sustainable development. - Highlights: • Algae biofuels can make positive contribution to sustainable development in developing countries. • Bibliometric and patent data indicate that many lack the human capital to develop their own algae industry. • Large uncertainties make algae biofuels currently unsuitable as a priority for many developing countries

  14. Sustainable Use of Biotechnology for Bioenergy Feedstocks

    Science.gov (United States)

    Moon, Hong S.; Abercrombie, Jason M.; Kausch, Albert P.; Stewart, C. Neal

    2010-10-01

    Done correctly, cellulosic bioenergy should be both environmentally and economically beneficial. Carbon sequestration and decreased fossil fuel use are both worthy goals in developing next-generation biofuels. We believe that biotechnology will be needed to significantly improve yield and digestibility of dedicated perennial herbaceous biomass feedstocks, such as switchgrass and Miscanthus, which are native to the US and China, respectively. This Forum discusses the sustainability of herbaceous feedstocks relative to the regulation of biotechnology with regards to likely genetically engineered traits. The Forum focuses on two prominent countries wishing to develop their bioeconomies: the US and China. These two countries also share a political desire and regulatory frameworks to enable the commercialization and wide release of transgenic feedstocks with appropriate and safe new genetics. In recent years, regulators in both countries perform regular inspections of transgenic field releases and seriously consider compliance issues, even though the US framework is considered to be more mature and stringent. Transgene flow continues to be a pertinent environmental and regulatory issue with regards to transgenic plants. This concern is largely driven by consumer issues and ecological uncertainties. Regulators are concerned about large-scale releases of transgenic crops that have sexually compatible crops or wild relatives that can stably harbor transgenes via hybridization and introgression. Therefore, prior to the commercialization or extensive field testing of transgenic bioenergy feedstocks, we recommend that mechanisms that ensure biocontainment of transgenes be instituted, especially for perennial grasses. A cautionary case study will be presented in which a plant’s biology and ecology conspired against regulatory constraints in a non-biomass crop perennial grass (creeping bentgrass, Agrostis stolonifera), in which biocontainment was not attained. Appropriate

  15. Policies for second generation biofuels: current status and future challenges

    Energy Technology Data Exchange (ETDEWEB)

    Egger, Haakan; Greaker, Mads; Potter, Emily

    2011-07-01

    Current state-of-the-art knowledge concludes that green house gas (GHG) emissions must be controlled and reduced within the next 30-40 years. The transport sector contributes almost a fifth of the current global emissions, and its share is likely to increase in the future. The US and a number of European countries have therefore introduced various support schemes for research and development (RandD) of low emission fuels that can potentially replace the current fossil fuels. One such alternative is biofuels. The advantage of biofuels are that it is easy to introduce into the transport sector. On the other hand, recent research papers question whether the supply of feedstock is sufficient, and to what extent biofuels lead to GHG emission reductions. This report reviews the current status of second generation biofuels. Second generation biofuels are made from cellulose, which according to our survey of the literature, is in more abundant supply than the first generation biofuels feedstocks. Furthermore, it seems to have the potential to reduce GHG emissions from the transport sector without leading to devastating land use changes, which recent critique has held against first generation biofuels. Given that governments have decided to support RandD of low emission fuels, we ask the following questions: Should second generation biofuels receive RandD support to the same extent as other low emission fuels like hydrogen? How should support schemes for second generation biofuels be designed? Second generation biofuels can be divided according to the production process into thermo-chemical and bio-chemical. With respect to the thermo-chemical process the potential for cost reductions seems to be low. On the other hand, ethanol made from cellulose using the biochemical conversion process is far from a ripe technology. Expert reports point to several potential technological breakthroughs which may reduce costs substantially. Hence, cellulosic ethanol, should receive direct

  16. Oil crops in biofuel applications: South Africa gearing up for a bio-based economy

    Directory of Open Access Journals (Sweden)

    BB Marvey

    2009-04-01

    Full Text Available Large fluctuations in crude oil prices and the diminishing oil supply have left economies vulnerable to energy shortages thus placing an enormous pressure on nations around the world to seriously consider alternative renewable resources as feedstock in biofuel applications. Apart from energy security reasons, biofuels offer other advantages over their petroleum counterparts in that they contribute to the reduction in green- house gas emissions and to sustainable development. Just a few decades after discontinuing its large scale production of bioethanol for use as en- gine fuel, South Africa (SA is again on its way to resuscitating its biofuel industry. Herein an overview is presented on South Africa’s oilseed and biofuel production, biofuels industrial strategy, industry readiness, chal- lenges in switching to biofuels and the strategies to overcome potential obstacles.

  17. Oil crops in biofuel applications: South Africa gearing up for a bio-based economy

    OpenAIRE

    Marvey, B B

    2009-01-01

    Large fluctuations in crude oil prices and the diminishing oil supply have left economies vulnerable to energy shortages thus placing an enormous pressure on nations around the world to seriously consider alternative renewable resources as feedstock in biofuel applications. Apart from energy security reasons, biofuels offer other advantages over their petroleum counterparts in that they contribute to the reduction in green- house gas emissions and to sustainable development. Just a few decade...

  18. Bioproducts and environmental quality: Biofuels, greenhouse gases, and water quality

    Science.gov (United States)

    Ren, Xiaolin

    Promoting bio-based products is one oft-proposed solution to reduce GHG emissions because the feedstocks capture carbon, offsetting at least partially the carbon discharges resulting from use of the products. However, several life cycle analyses point out that while biofuels may emit less life cycle net carbon emissions than fossil fuels, they may exacerbate other parts of biogeochemical cycles, notably nutrient loads in the aquatic environment. In three essays, this dissertation explores the tradeoff between GHG emissions and nitrogen leaching associated with biofuel production using general equilibrium models. The first essay develops a theoretical general equilibrium model to calculate the second-best GHG tax with the existence of a nitrogen leaching distortion. The results indicate that the second-best GHG tax could be higher or lower than the first-best tax rates depending largely on the elasticity of substitution between fossil fuel and biofuel. The second and third essays employ computable general equilibrium models to further explore the tradeoff between GHG emissions and nitrogen leaching. The computable general equilibrium models also incorporate multiple biofuel pathways, i.e., biofuels made from different feedstocks using different processes, to identify the cost-effective combinations of biofuel pathways under different policies, and the corresponding economic and environmental impacts.

  19. Impact of Pretreatment Technologies on Saccharification and Isopentenol Fermentation of Mixed Lignocellulosic Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jian; George, Kevin W.; Sun, Ning; He, Wei; Li, Chenlin; Stavila, Vitalie; Keasling, Jay D.; Simmons, Blake A.; Lee, Taek Soon; Singh, Seema

    2015-02-28

    In order to enable the large-scale production of biofuels or chemicals from lignocellulosic biomass, a consistent and affordable year-round supply of lignocellulosic feedstocks is essential. Feedstock blending and/or densification offers one promising solution to overcome current challenges on biomass supply, i.e., low energy and bulk densities and significant compositional variations. Therefore, it is imperative to develop conversion technologies that can process mixed pelleted biomass feedstocks with minimal negative impact in terms of overall performance of the relevant biorefinery unit operations: pretreatment, fermentable sugar production, and fuel titers. We processed the mixture of four feedstocks—corn stover, switchgrass, lodgepole pine, and eucalyptus (1:1:1:1 on dry weight basis)—in flour and pellet form using ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate, dilute sulfuric acid (DA), and soaking in aqueous ammonia (SAA) pretreatments. Commercial enzyme mixtures, including cellulases and hemicellulases, were then applied to these pretreated feedstocks at low to moderate enzyme loadings to determine hydrolysis efficiency. Results show significant variations on the chemical composition, crystallinity, and enzymatic digestibility of the pretreated feedstocks across the different pretreatment technologies studied. The advanced biofuel isopentenol was produced during simultaneous saccharification and fermentation (SSF) of pretreated feedstocks using an engineered Escherichia coli strain. Results show that IL pretreatment liberates the most sugar during enzymatic saccharification, and in turn led to the highest isopentenol titer as compared to DA and SAA pretreatments. This study provides insights on developing biorefinery technologies that produce advanced biofuels based on mixed feedstock streams.

  20. REFUEL. Potential and realizable cost reduction of 2nd generation biofuels

    International Nuclear Information System (INIS)

    Londo, H.M.; Deurwaarder, E.P.; Lensink, S.M.; Junginer, H.M.; De Wit, M.

    2007-05-01

    In the REFUEL project steering possibilities for and impacts of a greater market penetration of biofuels are assessed. Several benefits are attributed to second generation biofuels, fuels made from lignocellulosic feedstock, such as higher productivity, less impacts on land use and food markets and improved greenhouse gas emission reductions. The chances of second generation biofuels entering the market autonomously are assessed and several policy measures enhancing those changes are evaluated. It shows that most second generation biofuels might become competitive in the biofuel market, if the production of biodiesel from oil crops becomes limited by land availability. Setting high biofuel targets, setting greenhouse gas emissions caps on biofuel and setting subtargets for second generation biofuels, all have a similar impact of stimulating second generation's entrance into the biofuel market. Contrary, low biofuel targets and high imports can have a discouraging impact on second generation biofuel development, and thereby on overall greenhouse gas performance. Since this paper shows preliminary results from the REFUEL study, one is advised to contact the authors before quantitatively referring to this paper

  1. Laboratory scale conceptual process development for the isolation of renewable glycolaldehyde from pyrolysis oil to produce fermentation feedstock

    NARCIS (Netherlands)

    Vitasari, C.R.; Meindersma, G.W.; Haan, de A.B.

    2012-01-01

    A laboratory-based separation sequence has been developed to produce an aqueous glycolaldehyde solution as fermentation feedstock. It consists of water extraction of pyrolysis oil, acid removal, water removal, octanol extraction, phenolic removal, back-extraction, and washing. The octanol-free

  2. Tailoring the porosity and shrinkage of extruded MgO support tubes for oxygen separation membranes by thermoplastic feedstock development

    DEFF Research Database (Denmark)

    Kothanda Ramachandran, Dhavanesan; Kaiser, Andreas; Glasscock, Julie

    for co-extrusion and co-sintering of a porous Magnesium oxide (MgO) support with a thin film of cerium gadolinium oxide (Ce0.9Gd0.1O1.95-δ, CGO) as active oxygen transport membrane layer has been developed using a thermoplastic ceramic system and graphite as pore former. The feedstocks have been...

  3. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2008-01-01

    The term biofuel is referred to liquid, gas and solid fuels predominantly produced from biomass. Biofuels include energy security reasons, environmental concerns, foreign exchange savings, and socioeconomic issues related to the rural sector. Biofuels include bioethanol, biomethanol, vegetable oils, biodiesel, biogas, bio-synthetic gas (bio-syngas), bio-oil, bio-char, Fischer-Tropsch liquids, and biohydrogen. Most traditional biofuels, such as ethanol from corn, wheat, or sugar beets, and biodiesel from oil seeds, are produced from classic agricultural food crops that require high-quality agricultural land for growth. Bioethanol is a petrol additive/substitute. Biomethanol can be produced from biomass using bio-syngas obtained from steam reforming process of biomass. Biomethanol is considerably easier to recover than the bioethanol from biomass. Ethanol forms an azeotrope with water so it is expensive to purify the ethanol during recovery. Methanol recycles easier because it does not form an azeotrope. Biodiesel is an environmentally friendly alternative liquid fuel that can be used in any diesel engine without modification. There has been renewed interest in the use of vegetable oils for making biodiesel due to its less polluting and renewable nature as against the conventional petroleum diesel fuel. Due to its environmental merits, the share of biofuel in the automotive fuel market will grow fast in the next decade. There are several reasons for biofuels to be considered as relevant technologies by both developing and industrialized countries. Biofuels include energy security reasons, environmental concerns, foreign exchange savings, and socioeconomic issues related to the rural sector. The biofuel economy will grow rapidly during the 21st century. Its economy development is based on agricultural production and most people live in the rural areas. In the most biomass-intensive scenario, modernized biomass energy contributes by 2050 about one half of total energy

  4. Novel storage technologies for raw and clarified syrup biomass feedstocks from sweet sorghum (Sorghum bicolor L. Moench)

    Science.gov (United States)

    Attention is currently focused on developing sustainable supply chains of sugar feedstocks for new, flexible biorefineries. Fundamental processing needs identified by industry for the large-scale manufacture of biofuels and bioproducts from sweet sorghum (Sorghum bicolor L. Moench) include stabiliz...

  5. Forests, food, and fuel in the tropics: the uneven social and ecological consequences of the emerging political economy of biofuels.

    Science.gov (United States)

    Dauvergne, Peter; Neville, Kate J

    2010-01-01

    The global political economy of biofuels emerging since 2007 appears set to intensify inequalities among the countries and rural peoples of the global South. Looking through a global political economy lens, this paper analyses the consequences of proliferating biofuel alliances among multinational corporations, governments, and domestic producers. Since many major biofuel feedstocks - such as sugar, oil palm, and soy - are already entrenched in industrial agricultural and forestry production systems, the authors extrapolate from patterns of production for these crops to bolster their argument that state capacities, the timing of market entry, existing institutions, and historical state-society land tenure relations will particularly affect the potential consequences of further biofuel development. Although the impacts of biofuels vary by region and feedstock, and although some agrarian communities in some countries of the global South are poised to benefit, the analysis suggests that already-vulnerable people and communities will bear a disproportionate share of the costs of biofuel development, particularly for biofuels from crops already embedded in industrial production systems. A core reason, this paper argues, is that the emerging biofuel alliances are reinforcing processes and structures that increase pressures on the ecological integrity of tropical forests and further wrest control of resources from subsistence farmers, indigenous peoples, and people with insecure land rights. Even the development of so-called 'sustainable' biofuels looks set to displace livelihoods and reinforce and extend previous waves of hardship for such marginalised peoples.

  6. Integrated systems optimization model for biofuel development: The influence of environmental constraints

    Science.gov (United States)

    Housh, M.; Ng, T.; Cai, X.

    2012-12-01

    The environmental impact is one of the major concerns of biofuel development. While many other studies have examined the impact of biofuel expansion on stream flow and water quality, this study examines the problem from the other side - will and how a biofuel production target be affected by given environmental constraints. For this purpose, an integrated model comprises of different sub-systems of biofuel refineries, transportation, agriculture, water resources and crops/ethanol market has been developed. The sub-systems are integrated into one large-scale model to guide the optimal development plan considering the interdependency between the subsystems. The optimal development plan includes biofuel refineries location and capacity, refinery operation, land allocation between biofuel and food crops, and the corresponding stream flow and nitrate load in the watershed. The watershed is modeled as a network flow, in which the nodes represent sub-watersheds and the arcs are defined as the linkage between the sub-watersheds. The runoff contribution of each sub-watershed is determined based on the land cover and the water uses in that sub-watershed. Thus, decisions of other sub-systems such as the land allocation in the land use sub-system and the water use in the refinery sub-system define the sources and the sinks of the network. Environmental policies will be addressed in the integrated model by imposing stream flow and nitrate load constraints. These constraints can be specified by location and time in the watershed to reflect the spatial and temporal variation of the regulations. Preliminary results show that imposing monthly water flow constraints and yearly nitrate load constraints will change the biofuel development plan dramatically. Sensitivity analysis is performed to examine how the environmental constraints and their spatial and the temporal distribution influence the overall biofuel development plan and the performance of each of the sub

  7. Biofuel developments in Mozambique. Update and analysis of policy, potential and reality

    International Nuclear Information System (INIS)

    Schut, Marc; Slingerland, Maja; Locke, Anna

    2010-01-01

    Climate change, rising oil prices and concerns about future energy supplies have contributed to a growing interest in using biomass for energy purposes. Several studies have highlighted the biophysical potential of biofuel production on the African continent, and analysts see Mozambique as one of the most promising African countries. Favorable growing conditions and the availability of land, water and labor are mentioned as major drivers behind this potential. Moreover, the potential of biofuel production to generate socio-economic benefits is reflected in the government's policy objectives for the development of the sector, such as reducing fuel import dependency and creating rural employment. This article provides an overview of biofuel developments in Mozambique and explores to what extent reality matches the suggested potential in the country. We conclude that biofuel developments mainly take place in areas near good infrastructure, processing and storage facilities, where there is (skilled) labor available, and access to services and goods. Moreover, our analysis shows the need to timely harmonize current trends in biofuel developments with the government's policy objectives as the majority of existing and planned projects are not focusing on remote rural areas, and - in absence of domestic markets - principally target external markets.

  8. Biofuel Development Initiatives in Sub-Saharan Africa: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Patrick T. Sekoai

    2016-06-01

    Full Text Available In recent years, biofuels have emerged as a suitable alternative to hydrocarbon fuel due to their foreseen potential of being a future energy resource. Biofuel development initiatives have been successfully implemented in countries like Brazil, United States of America, European Union, Canada, Australia, and Japan. However, such programmes have been stagnant in Africa due to various constraints, such as financial barriers, technical expertise, land availability, and government policies. Nonetheless, some countries within the continent have realized the potential of biofuels and have started to introduce similar programmes and initiatives for their development. These include the bioethanol production initiatives and the plantation of jatropha oil seeds in most Sub-Saharan African countries for biodiesel production. Therefore, this paper examines the biofuel development initiatives that have been implemented in several countries across Sub-Saharan Africa over the past few years. It also discusses the opportunities and challenges of having biofuel industries in the continent. Finally, it proposes some recommendations that could be applied to accelerate their development in these Sub-Saharan African countries.

  9. Assessment of pelletized biofuels

    International Nuclear Information System (INIS)

    Samson, R.; Duxbury, P.; Drisdelle, M.; Lapointe, C.

    2000-04-01

    There has been an increased interest in the development of economical and convenient renewable energy fuels, resulting from concerns about climate change and rising oil prices. An opportunity to use agricultural land as a means of producing renewable fuels in large quantities, relying on wood and agricultural residues only has come up with recent advances in biomass feedstock development and conversion technologies. Increasing carbon storage in the landscape and displacing fossil fuels in combustion applications can be accomplished by using switchgrass and short rotation willow which abate greenhouse gas emissions. The potential of switchgrass and short rotation willow, as well as other biomass residues as new feedstocks for the pellet industry is studied in this document. Higher throughput rates are facilitated by using switchgrass, which shows potential as a pelleting feedstock. In addition, crop drying requires less energy than wood. By taking into consideration energy for switchgrass production, transportation to the conversion facility, preprocessing, pelleting, and marketing, the overall energy balance of switchgrass is 14.5:1. Research on alfalfa pelleting can be applied to switchgrass, as both exhibit a similar behaviour. The length of chop, the application of high temperature steam and the use of a die with a suitable length/diameter ratio are all factors that contribute to the successful pelleting of switchgrass. Switchgrass has a similar combustion efficiency (82 to 84 per cent) to wood (84 to 86 per cent), as determined by combustion trials conducted by the Canada Centre for Mineral and Energy Technology (CANMET) in the Dell-Point close coupled gasifier. The energy content is 96 per cent of the energy of wood pellets on a per tonne basis. Clinker formation was observed, which necessitated some adjustments of the cleaner grate settings. While stimulating rural development and export market opportunities, the high yielding closed loop biofuels show

  10. Recommendations for a sustainable development of biofuels in France; Recommandations pour un developpement durable des biocarburants en France

    Energy Technology Data Exchange (ETDEWEB)

    Douaud, A.; Gruson, J.F

    2006-01-15

    The biofuels are presented as a solution to the greenhouse gases and the petroleum consumption decrease. The development of the biofuels needs an active research of the production, transformation and use costs improvement. It will be necessary to prepare the market of the biofuels to the globalization. Some recommendations are also provided in the domains of the vegetal oil ester, the ethanol for the diesel and for the development of simulation tools to evaluate the costs. (A.L.B.)

  11. Miscanthus: practical aspects of biofuel development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Newman, R.

    2003-11-01

    This report summarises the results of a study examining the production and harvesting of the non-straw biofuel miscanthus in the light of the UK government's objective regarding the contribution of renewable energy sources to electricity production. Details are given of the modification to the Elean Power Station to allow use of baled miscanthus as fuel, the mechanical handling system, the capital costs, and the production, harvesting and combustion trials. Plant emission, availability and sustainability of combustion, and the financial implications of miscanthus use are discussed.

  12. Biofuels and resource use efficiency in developing Asia: Back to basics

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, S.V.R.K.; Elder, Mark [Institute for Global Environmental Strategies, 2108-11 Kamiyamaguchi, Hayama, Kanagawa (Japan)

    2009-11-15

    In Asia, as elsewhere in the world, countries rushed to promote biofuels during the dramatic oil price increases of 2007-2008 as way to enhance energy security, without waiting for the settlement of controversial debates about the environmental effects of biofuels, especially their effects on greenhouse gas emissions, deforestation, biodiversity, and whether biofuels cause a conflict between food and fuel. This paper does not settle this debate, but instead argues that there are straightforward, practical and feasible measures that can be implemented immediately in order to reduce the pressure of biofuels on the environment and food supply, and more generally increase food production. The key is to focus on increasing resource use efficiency in agriculture, especially different forms of energy use. Resource use efficiency in agriculture is low in many parts of Asia. Concrete measures that could be taken include reductions in market-distorting input subsidies and the introduction of resource-conserving technologies. These could be supplemented with greater use of non-fossil fuels in agricultural production, use of agricultural wastes in energy production, inclusion of input use levels in biofuel certification systems, and greater investment in agricultural research, extension systems, and infrastructure development. Biofuel fever has waned since the onset of the global financial crisis in late 2008, but it is likely to return when economic conditions eventually improve, and possible moves to strengthen the European Union biofuel blending requirements could further accelerate it. Much of the debate on biofuel-related impacts in the region has focused on deforestation, with little attention on agricultural input use, which could also have serious consequences for greenhouse gas (GHG) emissions. In sum, this paper argues that governments can still improve the environmental performance of biofuels while reducing potential conflicts with food security by implementing the

  13. Biofuels and resource use efficiency in developing Asia: Back to basics

    International Nuclear Information System (INIS)

    Prabhakar, S.V.R.K.; Elder, Mark

    2009-01-01

    In Asia, as elsewhere in the world, countries rushed to promote biofuels during the dramatic oil price increases of 2007-2008 as way to enhance energy security, without waiting for the settlement of controversial debates about the environmental effects of biofuels, especially their effects on greenhouse gas emissions, deforestation, biodiversity, and whether biofuels cause a conflict between food and fuel. This paper does not settle this debate, but instead argues that there are straightforward, practical and feasible measures that can be implemented immediately in order to reduce the pressure of biofuels on the environment and food supply, and more generally increase food production. The key is to focus on increasing resource use efficiency in agriculture, especially different forms of energy use. Resource use efficiency in agriculture is low in many parts of Asia. Concrete measures that could be taken include reductions in market-distorting input subsidies and the introduction of resource-conserving technologies. These could be supplemented with greater use of non-fossil fuels in agricultural production, use of agricultural wastes in energy production, inclusion of input use levels in biofuel certification systems, and greater investment in agricultural research, extension systems, and infrastructure development. Biofuel fever has waned since the onset of the global financial crisis in late 2008, but it is likely to return when economic conditions eventually improve, and possible moves to strengthen the European Union biofuel blending requirements could further accelerate it. Much of the debate on biofuel-related impacts in the region has focused on deforestation, with little attention on agricultural input use, which could also have serious consequences for greenhouse gas (GHG) emissions. In sum, this paper argues that governments can still improve the environmental performance of biofuels while reducing potential conflicts with food security by implementing the

  14. Security of feedstocks supply for future bio-ethanol production in Thailand

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.

    2010-01-01

    This study assesses the security of feedstock supply to satisfy the increased demand for bio-ethanol production based on the recent 15 years biofuels development plan and target (year 2008-2022) of the Thai government. Future bio-ethanol systems are modeled and the feedstock supply potentials analyzed based on three scenarios including low-, moderate- and high-yields improvement. The three scenarios are modeled and key dimensions including availability; diversity; and environmental acceptability of feedstocks supply in terms of GHG reduction are evaluated through indicators such as net feedstock balances, Shannon index and net life cycle GHG emissions. The results show that only the case of high yields improvement scenario can result in a reliable and sufficient supply of feedstocks to satisfy the long-term demands for bio-ethanol and other related industries. Cassava is identified as the critical feedstock and a reduction in cassava export is necessary. The study concludes that to enhance long-term security of feedstocks supply for sustainable bio-ethanol production in Thailand, increasing use of sugarcane juice as feedstock, improved yields of existing feedstocks and promoting production of bio-ethanol derived from agricultural residues are three key recommendations that need to be urgently implemented by the policy makers. - Research highlights: →Bioethanol in Thailand derived from molasses, cassava, sugarcane juice could yield reductions of 64%, 49% and 87% in GHGs when compared to conventional gasoline. →High yields improvement are required for a reliable and sufficient supply of molasses, cassava and sugarcane to satisfy the long-term demands for bio-ethanol and other related industries. →Other factors to enhance long-term security of feedstocks supply for sustainable bioethanol production in Thailand include increasing use of sugarcane juice as feedstock and promoting production of bioethanol derived from agricultural residues.

  15. On the future prospects and limits of biofuels in Brazil, the US and EU

    International Nuclear Information System (INIS)

    Ajanovic, Amela; Haas, Reinhard

    2014-01-01

    Highlights: • Market prospects of biofuels are investigated up to 2030 for Brazil, the US and EU. • 1st generation biofuels are cost-effective under current tax policies. • Their potentials are restricted especially due to limited crops areas. • R and D especially for second generation biofuels has to be intensified. - Abstract: In the early 2000s high expectations existed regarding the potential contribution of biofuels to the reduction of greenhouse gas emissions and substitution of fossil fuels in transport. In recent years sobering judgments prevailed. The major barriers for a further expansion of biofuels are their high costs (compared to fossil fuels), moderate ecological performances, limited feedstocks for biofuel production and their competition with food production. The objective of this paper is to investigate the market prospects of biofuels up to the year 2030. It focuses on the three currently most important regions for biofuels production and use: the US, EU and Brazil which in 2010 accounted together for almost three-quarters of global biofuel supply. Our method of approach is based on a dynamic economic framework considering the major cost components of biofuels and corresponding technological learning with respect to capital costs. Moreover, for the analysis of the competitiveness of biofuels with fossil fuels also taxes are considered. The most important result is that under existing tax policies biofuels are cost-effective today and also for the next decades in the regions investigated. However, their potentials are restricted especially due to limited crops areas, and their environmental performance is currently rather modest. The major final conclusions are: (i) To reveal the real future market value of biofuels, a CO 2 based tax system should be implemented for all types of fuels providing a neutral environmental incentive for competition between all types of fossil and renewable fuels; (ii) Moreover, the research and development for

  16. Perspectives for Sustainable Aviation Biofuels in Brazil

    Directory of Open Access Journals (Sweden)

    Luís A. B. Cortez

    2015-01-01

    Full Text Available The aviation industry has set ambitious goals to reduce carbon emissions in coming decades. The strategy involves the use of sustainable biofuels, aiming to achieve benefits from environmental, social, and economic perspectives. In this context, Brazilian conditions are favorable, with a mature agroindustry that regularly produces automotive biofuel largely adopted by Brazilian road vehicles, while air transportation has been growing at an accelerating pace and a modern aircraft industry is in place. This paper presents the main conclusions and recommendations from a broad assessment of the technological, economic, and sustainability challenges and opportunities associated with the development of drop-in aviation biofuels in Brazil. It was written by a research team that prepared the initial reports and conducted eight workshops with the active participation of more than 30 stakeholders encompassing the private sector, government institutions, NGOs, and academia. The main outcome was a set of guidelines for establishing a new biofuels industry, including recommendations for (a filling the identified research and development knowledge gaps in the production of sustainable feedstock; (b overcoming the barriers in conversion technology, including scaling-up issues; (c promoting greater involvement and interaction between private and government stakeholders; and (d creating a national strategy to promote the development of aviation biofuels.

  17. Estimation of un-used land potential for biofuels development in China

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Yishui [Chinese Academy of Agricultural Engineering, Beijing 100026 (China); Maelardalen University, Vaesteraas SE-721 23 (Sweden); Zhao, Lixin; Meng, Haibo; Sun, Liying [Chinese Academy of Agricultural Engineering, Beijing 100026 (China); Yan, Jinyue [Maelardalen University, Vaesteraas SE-721 23 (Sweden); Royal Institute of Technology, SE-100 44 Stockholm (Sweden)

    2009-11-15

    This paper presents the current status of biofuel development and estimates the potential of un-used land for biofuel development. The potential of crops including cassava, sweet potato, sweet sorghum, sugarcane, sugar beet and Jerusalem artichoke were assessed and discussed for different regions considering the geographical conditions and features of agricultural production. If reserved land resources are explored together with substitute planting implemented and unit area yield improved, potential production of ethanol fuel will be 22 million ton in 2020. The study also recommends the use of winter idle lands for rapeseed plantation for biofuel production. The potential for production of biodiesel by rapeseed and cottonseed can reach to 3.59 million ton. (author)

  18. An assessment of biofuel use and burning of agricultural waste in the developing world

    Science.gov (United States)

    Yevich, Rosemarie; Logan, Jennifer A.

    2003-12-01

    We present an assessment of biofuel use and agricultural field burning in the developing world. We used information from government statistics, energy assessments from the World Bank, and many technical reports, as well as from discussions with experts in agronomy, forestry, and agro-industries. We estimate that 2060 Tg biomass fuel was used in the developing world in 1985; of this, 66% was burned in Asia, and 21% and 13% in Africa and Latin America, respectively. Agricultural waste supplies about 33% of total biofuel use, providing 39%, 29%, and 13% of biofuel use in Asia, Latin America, and Africa, and 41% and 51% of the biofuel use in India and China. We find that 400 Tg of crop residues are burned in the fields, with the fraction of available residue burned in 1985 ranging from 1% in China, 16-30% in the Middle East and India, to about 70% in Indonesia; in Africa about 1% residue is burned in the fields of the northern drylands, but up to 50% in the humid tropics. We distributed this biomass burning on a spatial grid with resolution of 1° × 1°, and applied emission factors to the amount of dry matter burned to give maps of trace gas emissions in the developing world. The emissions of CO from biofuel use in the developing world, 156 Tg, are about 50% of the estimated global CO emissions from fossil fuel use and industry. The emission of 0.9 Pg C (as CO2) from burning of biofuels and field residues together is small, but nonnegligible when compared with the emissions of CO2 from fossil fuel use and industry, 5.3 Pg C. The biomass burning source of 10 Tg/yr for CH4 and 2.2 Tg N/yr of NOx are relatively small when compared with total CH4 and NOx sources; this source of NOx may be important on a regional basis.

  19. International bioenergy trade - a review of past developments in the liquid biofuels market

    NARCIS (Netherlands)

    Lamers, P.; Hamelinck, C.N.; Junginger, H.M.|info:eu-repo/dai/nl/202130703; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2011-01-01

    Policies aimed to promote biofuels locally had tremendous effects on global market developments across the past decade. This article develops insights into the interaction of these policies and market forces via a comprehensive collection and analysis of international production and trade data. It

  20. Miscanthus - Practical aspects of biofuel development: Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, A.; Newman, R.

    2002-07-01

    A 4-year project to plant, grow, harvest and deliver a crop of Miscanthus (a tall perennial grass) to a power station and thus evaluate its potential as a biofuel began in April 1999. Progress to March 2002 is summarised. Miscanthus is envisaged as a possible replacement for straw as a fuel, and the combustion studies are to be carried out at a straw-fired power station in Cambridgeshire England. Work carried out to March 2002 focused on: (1) modifications at the power station to accept the miscanthus as a fuel and (2) planting, growing and future harvesting of the crop. Details of the growth of the miscanthus on a two-hectare site close to the power station are given. It is intended to burn the miscanthus in March or April 2002. The study is being carried out by Energy Power Resources Ltd. on behalf of the Department of Trade and Industry.

  1. Panorama 2007: Biofuels Worldwide

    International Nuclear Information System (INIS)

    Prieur-Vernat, A.; His, St.

    2007-01-01

    The biofuels market is booming: after more than 20 years of industrial development, global bio-fuel production is growing fast. Willingness to reduce their oil dependence and necessity to promote low-carbon energies are the two main drivers for states to support biofuels development. (author)

  2. Supply Chain Sustainability Analysis of Three Biofuel Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Jacob J. Jacobson; Erin Searcy; Kara Cafferty; Jennifer B. Dunn; Michael Johnson; Zhichao Wang; Michael Wang; Mary Biddy; Abhijit Dutta; Daniel Inman; Eric Tan; Sue Jones; Lesley Snowden-Swan

    2013-11-01

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) collaborates with industrial, agricultural, and non-profit partners to develop and deploy biofuels and other biologically-derived products. As part of this effort, BETO and its national laboratory teams conduct in-depth techno-economic assessments (TEA) of technologies to produce biofuels as part state of technology (SOT) analyses. An SOT assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. Overall assessments of biofuel pathways begin with feedstock production and the logistics of transporting the feedstock from the farm or plantation to the conversion facility or biorefinery. The conversion process itself is modeled in detail as part of the SOT analysis. The teams then develop an estimate of the biofuel minimum selling price (MSP) and assess the cost competitiveness of the biofuel with conventional fuels such as gasoline.

  3. Transitioning to sustainable use of biofuel in Australia★

    Directory of Open Access Journals (Sweden)

    Sasongko Nugroho Adi

    2017-01-01

    Full Text Available Biofuel is identified as one of the key renewable energy sources for sustainable development, and can potentially replace fossil-based fuels. Anticipating the competition between food and energy security, the Australian Government is intensively exploring other biofuel resources. There have been numerous research projects in Australia using the second and third generation model based on different feedstocks including lignocellulosic and microalgae. Such projects have been successfully demonstrated but are yet to be commercially viable. Moreover, transition pathways to realize the potential benefits of these value chains are not well understood. This preliminary study tried to provide an alternative framework and proposes future long-term transport biofuel pathways in Australia which can be seen as a solution for a post-carbon society. The study is targeted to outline the milestone of the Australian biofuel industry and its roadmap into the future. An investigation has been carried out on biofuel status and barrier, technology development, market and the chronology of biofuel related policies in Australia to understand the current situation and possibilities to develop further strategies, while also providing an insight into the consequences of producing biofuel for transportation. Several methods have been proposed to introduce the transition into a post-carbon society. Seven scenarios were divided, covering the roadmap of first, second and third generation of biofuel, alternative transportation modes such as electric vehicles (EVs and fuel cell vehicles (FCVs and the elimination of the fossil fuel running vehicles within a time frame of 20 years. The utilization of biofuel can be seen as a short to medium mode for transition into a green transportation society. Our investigation also showed that microalgae gave a better ecological footprint which offers the strongest potential for future Australian biofuel industry and aviation. Meanwhile, EVs

  4. Figure 5, Biofuel refinery facility locations

    Data.gov (United States)

    U.S. Environmental Protection Agency — This workbook contains the locations and types of current and anticipated biofuel feedstock processing facilities assumed under the simulated scenarios. This dataset...

  5. Bio-fuel production potential in Romania

    International Nuclear Information System (INIS)

    Laurentiu, F.; Silvian, F.; Dumitru, F.

    2006-01-01

    The paper is based on the ESTO Study: Techno- Economic Feasibility of Large-Scale Production of Bio-Fuels in EU-Candidate Countries. Bio-fuel production has not been taken into account significantly until now in Romania, being limited to small- scale productions of ethanol, used mostly for various industrial purposes. However the climatic conditions and the quality of the soil are very suitable in the country for development of the main crops (wheat, sugar-beet, sunflower and rape-seed) used in bio-ethanol and bio-diesel production. The paper intended to consider a pertinent discussion of the present situation in Romania's agriculture stressing on the following essential items in the estimation of bio-fuels production potential: availability of feed-stock for bio-fuel production; actual productions of bio-fuels; fuel consumption; cost assessment; SWOT approach; expected trends. Our analysis was based on specific agricultural data for the period 1996-2000. An important ethanol potential (due to wheat, sugar-beet and maize cultures), as well as bio-diesel one (due to sun-flower and rape-seed) were predicted for the period 2005-2010 which could be exploited with the support of an important financial and technological effort, mainly from EU countries

  6. Land and water requirements of biofuel and implications for food supply and the environment in China

    International Nuclear Information System (INIS)

    Yang, Hong; Zhou, Yuan; Liu, Junguo

    2009-01-01

    The increasing thirst for energy to fuel its fast growing economy has made China keen to explore the potential of modern form of bioenergy, biofuel. This study investigates the land and water requirements of biofuel in China with reference to the government biofuel development plans for 2010 and 2020. The concept of land and water footprints of biofuel is applied for the investigation. The result shows that the current level of bioethanol production consumes 3.5-4% of total maize production of the country, reducing market availability of maize for other uses by about 6%. It is projected that depending on the types of feedstock, 5-10% of the total cultivated land in China would need to be devoted to meet the biofuel production target of 12 million metric tons for the year 2020. The associated water requirement would amount to 32-72 km 3 per year, approximately equivalent to the annual discharge of the Yellow River. The net contribution of biofuel to the national energy pool could be limited due to generally low net energy return of conventional feedstocks. The current biofuel development paths could pose significant impacts on China's food supply and trade, as well as the environment. (author)

  7. Regional Feedstock Partnership Summary Report: Enabling the Billion-Ton Vision

    Energy Technology Data Exchange (ETDEWEB)

    Owens, Vance N. [South Dakota State Univ., Brookings, SD (United States). North Central Sun Grant Center; Karlen, Douglas L. [Dept. of Agriculture Agricultural Research Service, Ames, IA (United States). National Lab. for Agriculture and the Environment; Lacey, Jeffrey A. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Process Science and Technology Division

    2016-07-12

    The U.S. Department of Energy (DOE) and the Sun Grant Initiative established the Regional Feedstock Partnership (referred to as the Partnership) to address information gaps associated with enabling the vision of a sustainable, reliable, billion-ton U.S. bioenergy industry by the year 2030 (i.e., the Billion-Ton Vision). Over the past 7 years (2008–2014), the Partnership has been successful at advancing the biomass feedstock production industry in the United States, with notable accomplishments. The Billion-Ton Study identifies the technical potential to expand domestic biomass production to offset up to 30% of U.S. petroleum consumption, while continuing to meet demands for food, feed, fiber, and export. This study verifies for the biofuels and chemical industries that a real and substantial resource base could justify the significant investment needed to develop robust conversion technologies and commercial-scale facilities. DOE and the Sun Grant Initiative established the Partnership to demonstrate and validate the underlying assumptions underpinning the Billion-Ton Vision to supply a sustainable and reliable source of lignocellulosic feedstock to a large-scale bioenergy industry. This report discusses the accomplishments of the Partnership, with references to accompanying scientific publications. These accomplishments include advances in sustainable feedstock production, feedstock yield, yield stability and stand persistence, energy crop commercialization readiness, information transfer, assessment of the economic impacts of achieving the Billion-Ton Vision, and the impact of feedstock species and environment conditions on feedstock quality characteristics.

  8. Thermochemical conversion of microalgal biomass into biofuels: a review.

    Science.gov (United States)

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Prospects for Jatropha biofuels in developing countries : an analysis for Tanzania with strategic niche management

    NARCIS (Netherlands)

    Eijck, van J.A.J.; Romijn, H.A.

    2006-01-01

    The paper reports on recent research in Tanzania about the scope for developing biofuels from an oil-seed bearing plant called Jatropha Curcas Linnaeus. The plant is widely seen to have potential to help combat the greenhouse effect, help to stop local soil erosion, create additional income for the

  10. Emergence of a biofuel economy in Tanzania : local developments and global connections from an institutional perspective

    NARCIS (Netherlands)

    Arora, S.; Caniëls, M.C.J.; Romijn, H.A.

    2010-01-01

    Jatropha is emerging as an important biofuel crop throughout developing countries in the tropics. Initially lauded as an environmentally-benign ‘wonder crop’ suitable for arid wasteland cultivation that would avoid competition with scarce livelihood resources, it has recently begun to attract

  11. Development of an Integrated Biofuel and Chemical Refinery

    Energy Technology Data Exchange (ETDEWEB)

    Trawick, John [Genomatica, San Diego, CA (United States); Burk, Mark [Genomatica, San Diego, CA (United States); Barton, Nelson [Genomatica, San Diego, CA (United States)

    2017-02-06

    This project has demonstrated the level of commercial readiness for production of the industrial chemical, 1,4-butanediol (BDO), from lignocellulosic biomass by engineered E. coli. Targets were BDO titer, rate, and yield (TRY) and growth in lignocellulosic hydrolysates (Hz). A range of Hzs were used to assess limitations for biomass-to-BDO. Via adaptive evolution methods, whole-genome sequencing, and introduction of identified target genes, strains co-utilizing C5/ C6 sugars were made. The composition of Hz versus TRY led to a modified Hz composition. This was used in partnership with the DOE to redirect the project to focus on 1) several biomass Hz from new suppliers, 2) Hz specification due to the characteristics of the Genomatica BDO process, 3) a gene cassette to engineer any BDO producing strain for biomass, and 4) modified BDO recovery to more economically recover BDO at industry specifications. BDO TRY and growth of the E. coli strains were predictable based on Hz composition from several suppliers. This defined metrics for biomass Hz composition to achieve BDO TRY along with internal TEA to evaluate the economic potential of each modification to strain, Hz feed, and process. An improved biomass-to-BDO production strain reached BDO T-R in a 30 L fermentation above original objectives. Yield approached the proposed Y and modifications to BDO recovery were demonstrated. Genomatica is now in the position of being able to incorporate biomass feedstocks into the commercial GENO BDO process.

  12. Air Quality and Health Impacts of an Aviation Biofuel Supply Chain Using Forest Residue in the Northwestern United States.

    Science.gov (United States)

    Ravi, Vikram; Gao, Allan H; Martinkus, Natalie B; Wolcott, Michael P; Lamb, Brian K

    2018-04-03

    Forest residue is a major potential feedstock for second-generation biofuel; however, little knowledge exists about the environmental impacts of the development and production of biofuel from such a feedstock. Using a high-resolution regional air quality model, we estimate the air quality impacts of a forest residue based aviation biofuel supply chain scenario in the Pacific Northwestern United States. Using two potential supply chain regions, we find that biomass and biofuel hauling activities will add simulation. Using BenMAP, a health impact assessment tool, we show that avoiding slash pile burning results in a decrease in premature mortality as well as several other nonfatal and minor health effects. In general, we show that most air quality and health benefits result primarily from avoided slash pile burning emissions.

  13. The changing dynamics between biofuels and commodity markets

    International Nuclear Information System (INIS)

    Bole, T.; Londo, H.M.

    2008-06-01

    The recent development of the biofuel industries coincides with significant increases in prices of basic commodities such as food and feed. Against popular perception, it appears that there is not a straightforward causal relationship between the two; there are a number of factors that determine the level and strength of the impact of the biofuels sector on other commodities. For the case of markets of agricultural raw material these factors include the amount of feedstock claimed by the biofuels industry, its relative purchasing power, the responsiveness of the agricultural sector to price incentives and availability of substitutes. For consumer food markets we must additionally consider the relative share of agricultural input costs in the retail food price and the demand elasticity. Based on the analysis of these factors and estimates of other studies that attempted to quantify the price impacts of biofuels on crop prices, we conclude that the impact of biofuels is relatively small, especially when compared with other causes that triggered the recent price increases. We end the paper with a recommendation for future efforts in curbing food price inflations while keeping ambitious biofuel targets and suggest a shift in focus of the debate around the social costs of biofuels

  14. Biofuels for transport

    International Nuclear Information System (INIS)

    2004-01-01

    In the absence of strong government policies, the IEA projects that the worldwide use of oil in transport will nearly double between 2000 and 2030, leading to a similar increase in greenhouse gas emissions. Biofuels, such as ethanol, bio-diesel, and other liquid and gaseous fuels, could offer an important alternative to petroleum over this time frame and help reduce atmospheric pollution. This book looks at recent trends in biofuel production and considers what the future might hold if such alternatives were to displace petroleum in transport. The report takes a global perspective on the nascent biofuels industry, assessing regional similarities and differences as well as the cost and benefits of the various initiatives being undertaken around the world. In the short term, conventional biofuel production processes in IEA countries could help reduce oil use and thence greenhouse gas emissions, although the costs may be high. In the longer term, possibly within the next decade, advances in biofuel production and the use of new feedstocks could lead to greater, more cost-effective reductions. Countries such as Brazil are already producing relatively low-cost biofuels with substantial reductions in fossil energy use and greenhouse gas emissions. This book explores the range of options on offer and asks whether a global trade in biofuels should be more rigorously pursued

  15. Analysis of the evolution of sustainable development in biofuels industry in Brazil

    Directory of Open Access Journals (Sweden)

    Carmen Rosa Loayza Rollano

    2015-06-01

    Full Text Available This paper presents an evaluation of sustainable development in the biofuel production sector. The Energy Indicators Tool for Sustainable Development (EISD and the Sustainability Indicators Tool Global Association for Bioenergy (GBEP were applied. Performing a comparison of indicators in each performance (economic, social and environmental, it was found that the production of biofuels in Brazil is positive in most of them. Biofuels showed a favorable trend in economic indicators, not only in terms of cost, but also through the use of energy available to the consumer market. Environmental indicators showed an improvement in the efficient use of land, water and energy resources, while pesticide applications are relatively low in relation to the limits. In addition, it appears that the biofuels industries have contributed positively to rural economies, since the social indicators showed a relatively significant and positive increase in labor supply and salary level of the labor market in this sector. Also appears that existing tools are complementary and the results provide a basis for future discussions and the development of sustainability assessments in systems and bioenergy-related projects.

  16. Development of a sustainability reporting scheme for biofuels: A UK case study

    International Nuclear Information System (INIS)

    Chalmers, Jessica; Archer, Greg

    2011-01-01

    In 2008, the UK launched the first regulatory sustainability reporting scheme for biofuels. The development of the scheme, managed by the Low Carbon Vehicle Partnership for the Department for Transport, involved extensive stakeholder engagement. The scheme has significantly increased understanding by policy-makers, the biofuels industry and its supply chains on how to monitor and manage the sustainability risks of biofuels and increase their greenhouse-gas benefits. It is providing a practical model for similar developments globally. To receive certificates in order to meet volume obligations under the Renewable Transport Fuel Obligation (RTFO), suppliers must provide a monthly carbon and sustainability report on individual batches of renewable fuels they supply into the UK. The Renewable Fuels Agency produces aggregate monthly reports of overall performance and quarterly updates of individual supplier performance. This scheme is an important first step to assist the biofuels industry to demonstrate its environmental credentials and justify the subsidies received. The paper provides a case study of the development of the scheme, its initial outcomes and outstanding challenges.

  17. Stakeholders' perceptions on challenges and opportunities for biodiesel and bioethanol policy development in Thailand

    International Nuclear Information System (INIS)

    Chanthawong, Anuman; Dhakal, Shobhakar

    2016-01-01

    Thailand is Southeast Asia's largest promoter of biofuels. Although, Thailand promotes the use of biofuels, it has yet to achieve its policy targets. This paper focuses on the first generation biofuel development in Thailand and examines the perceptions of seven stakeholder groups to guide further policy development. These stakeholders were feedstock producers, biofuel producers, government agencies, car manufacturers, oil companies, non-profit organizations and end users. It combines a Strengths, Weakness, Opportunities and Threats (SWOT) framework with an Analytical Hierarchy Process (AHP) framework and a TOWS Matrix for analysis of stakeholder's perceptions to propose priorities for policy development. Five policies were of high priority for development of biofuel. These are: (1) promoting biofuel production and use in long term through government policies, (2) revising government regulations to allow sale of biofuel products to other domestic industries while keeping retail prices of blended biofuels below those of regular ethanol and biodiesel, (3) improving farm management and promoting contract farming, (4) expanding cultivation area and yield without affecting food production and environmental sustainability, and (5) balancing biofuel feedstock use between the food and energy industries. - Highlights: •Integrated SWOT–AHP–TOWS analysis for first generation of biofuel. •Stakeholders' perceptions on biodiesel and bioethanol development in Thailand. •Biofuel promote energy security which reduce reliance on oil import. •Increasing yield and cultivation area are important for feedstock of biofuels.

  18. Second generation biofuels: Economics and policies

    International Nuclear Information System (INIS)

    Carriquiry, Miguel A.; Du Xiaodong; Timilsina, Govinda R.

    2011-01-01

    This study reviews economics of production of second generation biofuels from various feedstocks, including crop and wood/forestry residues, lignocellulosic energy crops, jatropha, and algae. The study indicates that while second generation biofuels could significantly contribute to the future energy supply mix, cost is a major barrier to its commercial production in the near to medium term. Depending upon type of biofuels, feedstock prices and conversion costs, the cost of cellulosic ethanol is found to be two to three times higher than the current price of gasoline on an energy equivalent basis. The median cost (across the studies reviewed) of biodiesel produced from microalgae, a prospective feedstock, is seven times higher than the current price of diesel, although much higher cost estimates have been reported. As compared with the case of first generation biofuels, in which feedstock can account for over two-thirds of the total costs, the share of feedstock in the total costs is relatively lower (30-50%) in the case of second generation biofuels. While significant cost reductions are needed for both types of second generation biofuels, the critical barriers are at different steps of the production process. For cellulosic ethanol, the biomass conversion costs needs to be reduced. On the other hand, feedstock cost is the main issue for biodiesel. At present, policy instruments, such as fiscal incentives and consumption mandates have in general not differentiated between the first and second generation biofuels except in the cases of the US and EU. The policy regime should be revised to account for the relative merits of different types of biofuels. - Highlights: → Second generation biofuels could significantly contribute to the future energy supply mix. → Cost is a major barrier to its the commercial production in the near to medium term. → The policy regime should be revised to account for the relative merits of different biofuels.

  19. Second generation biofuels: Economics and policies

    Energy Technology Data Exchange (ETDEWEB)

    Carriquiry, Miguel A., E-mail: miguelc@iastate.edu [Center for Agricultural and Rural Development, Iowa State University (United States); Du Xiaodong, E-mail: xdu23@wisc.edu [Department of Agricultural and Applied Economics, University of Wisconsin-Madison (United States); Timilsina, Govinda R., E-mail: gtimilsina@worldbank.org [Development Research Group, The World Bank (United States)

    2011-07-15

    This study reviews economics of production of second generation biofuels from various feedstocks, including crop and wood/forestry residues, lignocellulosic energy crops, jatropha, and algae. The study indicates that while second generation biofuels could significantly contribute to the future energy supply mix, cost is a major barrier to its commercial production in the near to medium term. Depending upon type of biofuels, feedstock prices and conversion costs, the cost of cellulosic ethanol is found to be two to three times higher than the current price of gasoline on an energy equivalent basis. The median cost (across the studies reviewed) of biodiesel produced from microalgae, a prospective feedstock, is seven times higher than the current price of diesel, although much higher cost estimates have been reported. As compared with the case of first generation biofuels, in which feedstock can account for over two-thirds of the total costs, the share of feedstock in the total costs is relatively lower (30-50%) in the case of second generation biofuels. While significant cost reductions are needed for both types of second generation biofuels, the critical barriers are at different steps of the production process. For cellulosic ethanol, the biomass conversion costs needs to be reduced. On the other hand, feedstock cost is the main issue for biodiesel. At present, policy instruments, such as fiscal incentives and consumption mandates have in general not differentiated between the first and second generation biofuels except in the cases of the US and EU. The policy regime should be revised to account for the relative merits of different types of biofuels. - Highlights: > Second generation biofuels could significantly contribute to the future energy supply mix. > Cost is a major barrier to its the commercial production in the near to medium term. > The policy regime should be revised to account for the relative merits of different biofuels.

  20. The role of controversy, regulation and engineering in UK biofuel development

    International Nuclear Information System (INIS)

    Boucher, Philip

    2012-01-01

    Biofuels have undergone a controversial resurgence in the UK since the turn of the century. The aim of this article is to consider this development in the context of ongoing interactions between the controversy and regulatory and engineering activities. It is found that the discursive space of the controversy has increasingly narrowed around environmental issues, particularly greenhouse gas emissions. The implications for biofuel development are considered in the context of changing regulatory and engineering visions in response to indirect land-use change. Opposition to the third generation biofuels may be softened, but it may be more difficult to justify the cost of holistic regulation of land-use change. - Highlights: ► The relationships between regulation, engineering and controversy are considered. ► The controversy has reduced, shifted focus and narrowed in scope. ► The narrowed scope may soften opposition to third generation biofuels. ► It may make it difficult to justify the cost of holistic regulation.

  1. Policy Challenges Related to Biofuel Development in Tanzania Politische Herausforderungen in Bezug auf Biokraftstoffe in Tansania

    Directory of Open Access Journals (Sweden)

    Hussein Sosovele

    2010-01-01

    Full Text Available Biofuels have recently emerged as a major issue in energy policy, agricultural development and natural resource management. The growing demand for biofuels is being driven by high oil prices, energy security concerns and global climate change. In Tanzania there is growing interest on the part of foreign private investors in establishing biofuel projects, although globally there are concerns related to biofuel investments. Tanzania has approved a number of such projects, but the biofuel subsector faces several policy challenges that could clearly hamper its development. These include the lack of a holistic and comprehensive energy policy that addresses the broad spectrum of energy options and issues, and weak or absent institutional and legal frameworks. This article highlights some key policy issues critical to the development of biofuels and argues that if these challenges are not addressed at the national policy level, biofuel development may not result in the expected benefits to Tanzania and the majority of its local communities. Biokraftstoffe sind in jüngster Zeit in den Bereichen Energiepolitik, Landwirtschaftsentwicklung und nationales Ressourcenmanagement zu einem wichtigen Thema geworden. Die wachsende Nachfrage nach Biokraftstoffen wird durch die hohen Ölpreise, Befürchtungen in Bezug auf Energiesicherheit und den globalen Klimawandel vorangetrieben. In Tansania ist wachsendes Interesse ausländischer Privatinvestoren an Biokraftstoffprojekten zu beobachten, obwohl es weltweit Bedenken gegenüber solchen Investitionen gibt. Die tansanische Regierung hat einer ganzen Reihe entsprechender Projekte zugestimmt, doch mit dem Biokraftstoffsektor sind politische Herausforderungen verbunden, die diese Entwicklung behindern könnten. Dazu gehören das Fehlen einer ganzheitlichen und umfassenden Energiepolitik, die das ganze Spektrum energiepolitischer Fragestellungen und Optionen einschließt, wie auch schwache oder fehlende institutionelle

  2. Interfacing feedstock logistics with bioenergy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Sokhansanj, S. [British Columbia Univ., Vancouver, BC (Canada). Oak Ridge National Lab

    2010-07-01

    The interface between biomass production and biomass conversion platforms was investigated. Functional relationships were assembled in a modeling platform to simulate the flow of biomass feedstock from farm and forest to a densification plant. The model considers key properties of biomass for downstream pre-processing and conversion. These properties include moisture content, cellulose, hemicelluloses, lignin, ash, particle size, specific density and bulk density. The model simulates logistical operations such as grinding to convert biomass to pellets that are supplied to a biorefinery for conversion to heat, power, or biofuels. Equations were developed to describe the physical aspects of each unit operation. The effect that each of the process variables has on the efficiency of the conversion processes was described.

  3. Biofuel initiatives in Japan: Strategies, policies, and future potential

    International Nuclear Information System (INIS)

    Matsumoto, Naoko; Sano, Daisuke; Elder, Mark

    2009-01-01

    Japan has developed a variety of national strategies and plans related to biofuels which address four main policy objectives, including reduction of greenhouse gas (GHG) emissions, energy security, rural development, and realisation of a recycle-based society. This paper reviews these national strategies and plans as well as associated implementing policies, and discusses the extent to which these objectives may be achieved. This paper found that the long-term potential of biofuels to contribute to GHG reduction goals will depend not only on the rates of technological development of the second generation biofuels but also on the development of other advanced vehicles. In the medium term, the potential contribution of biofuels to rural development and realising a recycle-based society could become significant depending on the progress of technology for both second generation biofuel production and the collection and transportation of their feedstocks. The potential contribution of biofuels to Japan's energy security is constrained by the availability of imports and the potential of domestic production. (author)

  4. Development of a decision support tool for the assessment of biofuels

    International Nuclear Information System (INIS)

    Perimenis, Anastasios; Walimwipi, Hartley; Zinoviev, Sergey; Mueller-Langer, Franziska; Miertus, Stanislav

    2011-01-01

    Alternative fuels for the transport sector are gaining growing attention as a means against fossil fuel dependence and towards greener forms of energy. At the same time, however, they are surrounded with doubts concerning sustainability of their production. This work presents the basic framework for a decision support tool to evaluate biofuel production pathways, with the purpose of providing the decision maker with a structured methodology that will lead him to the final decision. The tool integrates the most important aspects along the entire value chain (i.e. from biomass production to biofuel end-use), namely the technical, economic, environmental and social aspect. The tool consists of a computational part, which can be combined with the personal preferences of the user. The analysis provides a score for the respective pathway that can be used to rank different options and select among them the optimal solution. The functionality of the tool has been tested for the case of biodiesel from rapeseed in Germany. - Research highlights: → Structure and framework of a decision support tool for the assessment of biofuels. → Inclusion of economic, environmental and social aspects along the biofuel production chain. → Development of an internal database with relevant information along the chain. → Multi-criteria analysis for the consideration of all relevant criteria. → Incorporation of personal preferences and priorities in the final result.

  5. Production of biofuels via hydrothermal conversion

    DEFF Research Database (Denmark)

    Biller, Patrick; Ross, Andrew

    2016-01-01

    as the quality of targeted biofuel is a function of feedstock and operating conditions. The quality of hydrochar influences its uses as a solid fuel while biocrude quality affects its use as a liquid fuel and feedstock for upgrading to drop-in replacement fuels, while HTG produces a syngas rich in either H2...

  6. Assessing opportunities and constraints for biofuel development in sub-Saharan Africa

    CSIR Research Space (South Africa)

    Von Maltitz, Graham P

    2011-01-01

    Full Text Available , the development of sustainability principles, criteria and indicators for biofuel development, and constraints to imports in the EU, have been some key responses to reduce unsustainable practices (Harrison et al. 2010a, Vis et al. 2008). �ough the adoption... FSC Forest Stewardship Council GAIA Movement Trust Living Earth Green World Action GAP Good Agricultural Practices GHG Greenhouse gas GIZ Gesellscha� f?r Internationale Zusammenarbeit Ha Hectare HCV High Conservation Value HDI Human Development...

  7. ILUC mitigation case studies Tanzania. Applying the Low Indirect Impact Biofuel (LIIB) Methodology to Tanzanian projects

    Energy Technology Data Exchange (ETDEWEB)

    Van de Staaij, J.; Spoettle, M.; Weddige, U.; Toop, G. [Ecofys, Utrecht (Netherlands)

    2012-10-15

    NL Agency is supporting WWF and the Secretariat of the Roundtable on Sustainable Biofuels (RSB) with the development of a certification module for biofuels with a low risk of indirect land use change (ILUC), the Low Indirect Impact Biofuel (LIIB) methodology (www.LIIBmethodology.org). The LIIB methodology was developed to certify that biomass feedstock for biofuels has been produced with a low risk of indirect impacts. It is designed as an independent module that can be added to biofuel policies and existing certification systems for sustainable biofuel and/or feedstock production, such as the RSB Standard, RSPO or NTA8080. It presents detailed ILUC mitigation approaches for four different solution types field-tested and audited in international pilots. Within the Global Sustainable Biomass programme and the Sustainable Biomass Import programme, coordinated by NL Agency, three projects are working on sustainable jatropha in Tanzania. Ecofys has been commissioned by NL Agency to contribute to the further development of the LIIB methodology by applying it to these three jatropha projects in Tanzania. All three projects located in the North of Tanzania, address sustainability in one way or another, but focus on the direct effects of jatropha cultivation and use. Interestingly, they nevertheless seem to apply different methods that could also minimise negative indirect impacts, including ILUC. Bioenergy feedstock production can have unintended consequences well outside the boundary of production operations. These are indirect impacts, which cannot be directly attributed to a particular operation. The most cited indirect impacts are ILUC and food/feed commodity price increases (an indirect impact on food security). ILUC can occur when existing cropland is used to cover the feedstock demand of additional biofuel production. When this displaces the previous use of the land (e.g. food production) this can lead to expansion of land use to new areas (e.g. deforestation) when

  8. Next generation of liquid biofuel production

    NARCIS (Netherlands)

    Batidzirai, B.

    2012-01-01

    More than 99% of all currently produced biofuels are classified as “first generation” (i.e. fuels produced primarily from cereals, grains, sugar crops and oil seeds) (IEA, 2008b). “Second generation” or “next generation” biofuels, on the other hand, are produced from lignocellulosic feedstocks such

  9. Economy-wide impacts of biofuels in Argentina

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.; Chisari, Omar O.; Romero, Carlos A.

    2013-01-01

    Argentina is one of the world's largest biodiesel producers and the largest exporter, using soybeans as feedstock. Using a computable general equilibrium model that explicitly represents the biofuel industry, this study carries out several simulations on two sets of issues: (i) international markets for biofuel and feedstock, such as an increase in prices of soybean, soybean oil, and biodiesel, and (ii) domestic policies related to biofuels, such as an introduction of biofuel mandates. Both sets of issues can have important consequences to the Argentinean economy. The simulations indicate that increases in international prices of biofuels and feedstocks would increase Argentina's gross domestic product and social welfare. Increases in international prices of ethanol and corn also can benefit Argentina, but to a lesser extent. The domestic mandates for biofuels, however, would cause small losses in economic output and social welfare because they divert part of biodiesel and feedstock from exports to lower-return domestic consumption. An increase in the export tax on either feedstock or biodiesel also would lead to a reduction in gross domestic product and social welfare, although government revenue would rise. - Highlights: ► Argentina is one of the largest biodiesel producer and exporter using soybeans. ► Economy-wide impacts are assessed using a CGE model for Argentina. ► Policies simulated are feedstock and biodiesel price change, and domestic mandates. ► Increases in international prices of biofuels and feedstock benefit the country. ► Domestic mandates for biofuels cause small losses in economic output

  10. Development of a Low Input and sustainable Switchgrass Feedstock Production System Utilizing Beneficial Bacterial Endophytes

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Chuansheng [IALR; Nowak, Jerzy [VPISU; Seiler, John [VPISU

    2014-10-24

    Switchgrass represents a promising feedstock crop for US energy sustainability. However, its broad utilization for bioenergy requires improvements of biomass yields and stress tolerance. In this DOE funded project, we have been working on harnessing beneficial bacterial endophytes to enhance switchgrass performance and to develop a low input feedstock production system for marginal lands that do not compete with the production of food crops. We have demonstrated that one of most promising plant growth-promoting bacterial endophytes, Burkholderia phytofirmans strain PsJN, is able to colonize roots and significantly promote growth of switchgrass cv. Alamo under in vitro, growth chamber, greenhouse, as well as field conditions. Furthermore, PsJN bacterization improved growth and development of switchgrass seedlings, significantly stimulated plant root and shoot growth, and tiller number in the field, and enhanced biomass accumulation on both poor (p<0.001) and rich (p<0.05) soils, with more effective stimulation of plant growth in low fertility soil. Plant physiology measurements showed that PsJN inoculated Alamo had consistently lower transpiration, lower stomatal conductance, and higher water use efficiency in greenhouse conditions. These physiological changes may significantly contribute to the recorded growth enhancement. PsJN inoculation rapidly results in an increase in photosynthetic rates which contributes to the advanced growth and development. Some evidence suggests that this initial growth advantage decreases with time when resources are not limited such as in greenhouse studies. Additionally, better drought resistance and drought hardening were observed in PsJN inoculated switchgrass. Using the DOE-funded switchgrass EST microarray, in a collaboration with the Genomics Core Facility at the Noble Foundation, we have determined gene expression profile changes in both responsive switchgrass cv. Alamo and non-responsive cv. Cave-in-Rock (CR) following Ps

  11. The social and environmental impacts of biofuels in Asia: An overview

    International Nuclear Information System (INIS)

    Phalan, Ben

    2009-01-01

    The purpose of this paper is to provide a broad overview of the social and environmental costs and benefits of biofuels in Asia. The major factors that will determine the impacts of biofuels are: (1) their contribution to land-use change, (2) the feedstocks used, and (3) issues of technology and scale. Biofuels offer economic benefits, and in the right circumstances can reduce emissions and make a small contribution to energy security. Feedstocks that involve the conversion of agricultural land will affect food security and cause indirect land-use change, while those that replace forests, wetlands or natural grasslands will increase emissions and damage biodiversity. Biofuels from cellulose, algae or waste will avoid some of these problems, but come with their own set of uncertainties and risks. In order to ensure net societal benefits of biofuel production, governments, researchers, and companies will need to work together to carry out comprehensive assessments, map suitable and unsuitable areas, and define and apply standards relevant to the different circumstances of each country. The greatest benefits may come from feedstocks produced on a modest scale as co-products of smart technologies developed for phytoremediation, waste disposal and emissions reduction.

  12. The social and environmental impacts of biofuels in Asia: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Phalan, Ben [Conservation Science Group, University of Cambridge, Cambridge CB2 3EJ (United Kingdom)

    2009-11-15

    The purpose of this paper is to provide a broad overview of the social and environmental costs and benefits of biofuels in Asia. The major factors that will determine the impacts of biofuels are: (1) their contribution to land-use change, (2) the feedstocks used, and (3) issues of technology and scale. Biofuels offer economic benefits, and in the right circumstances can reduce emissions and make a small contribution to energy security. Feedstocks that involve the conversion of agricultural land will affect food security and cause indirect land-use change, while those that replace forests, wetlands or natural grasslands will increase emissions and damage biodiversity. Biofuels from cellulose, algae or waste will avoid some of these problems, but come with their own set of uncertainties and risks. In order to ensure net societal benefits of biofuel production, governments, researchers, and companies will need to work together to carry out comprehensive assessments, map suitable and unsuitable areas, and define and apply standards relevant to the different circumstances of each country. The greatest benefits may come from feedstocks produced on a modest scale as co-products of smart technologies developed for phytoremediation, waste disposal and emissions reduction. (author)

  13. Feedstock Supply and Logistics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Providing biomass for conversion into high-quality biofuels, biopower, and bioproducts represents an economic opportunity for communities across the nation. The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) and its partners are developing the technologies and systems needed to sustainably and economically deliver a diverse range of biomass in formats that enable efficient use in biorefineries.

  14. The greenhouse gas intensity and potential biofuel production capacity of maize stover harvest in the US Midwest

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Curtis D. [Department of Geographical Sciences, University of Maryland, College Park MD 20742 USA; Zhang, Xuesong [Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of Maryland, College Park MD 20740 USA; Reddy, Ashwan D. [Department of Geographical Sciences, University of Maryland, College Park MD 20742 USA; Robertson, G. Philip [Great Lakes Bioenergy Research Center, Michigan State University, East Lansing MI 48824 USA; W.K. Kellogg Biological Station, Michigan State University, Hickory Corners MI 49060 USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing MI 48824 USA; Izaurralde, Roberto César [Department of Geographical Sciences, University of Maryland, College Park MD 20742 USA; Texas A& M AgriLife Research & Extension Center, Temple TX 76502 USA

    2017-08-11

    Agricultural residues are important sources of feedstock for a cellulosic biofuels industry that is being developed to reduce greenhouse gas emissions and improve energy independence. While the US Midwest has been recognized as key to providing maize stover for meeting near-term cellulosic biofuel production goals, there is uncertainty that such feedstocks can produce biofuels that meet federal cellulosic standards. Here, we conducted extensive site-level calibration of the Environmental Policy Integrated Climate (EPIC) terrestrial ecosystems model and applied the model at high spatial resolution across the US Midwest to improve estimates of the maximum production potential and greenhouse gas emissions expected from continuous maize residue-derived biofuels. A comparison of methodologies for calculating the soil carbon impacts of residue harvesting demonstrates the large impact of study duration, depth of soil considered, and inclusion of litter carbon in soil carbon change calculations on the estimated greenhouse gas intensity of maize stover-derived biofuels. Using the most representative methodology for assessing long-term residue harvesting impacts, we estimate that only 5.3 billion liters per year (bly) of ethanol, or 8.7% of the near-term US cellulosic biofuel demand, could be met under common no-till farming practices. However, appreciably more feedstock becomes available at modestly higher emissions levels, with potential for 89.0 bly of ethanol production meeting US advanced biofuel standards. Adjustments to management practices, such as adding cover crops to no-till management, will be required to produce sufficient quantities of residue meeting the greenhouse gas emission reduction standard for cellulosic biofuels. Considering the rapid increase in residue availability with modest relaxations in GHG reduction level, it is expected that management practices with modest benefits to soil carbon would allow considerable expansion of potential cellulosic

  15. Development of steam generators for combustion of biofuels up to 10 t/h

    Energy Technology Data Exchange (ETDEWEB)

    Bentzin, H

    1985-01-01

    Combustion parameters are compared for raw brown coal, rice hulls and coconut shells as fuel in small steam generators. Combustion of native biofuel is seen as a power generation alternative in developing countries. Experiments were conducted on a 6.5 t/h moving grate steam generator with a firing grate surface of 7.2 m/sup 2/. Combustion results are shown in a table. Technological modifications carried out in adapting brown coal-fired steam generators to biofuels are also listed. A series of small steam generators for combustion of brown coal, biofuels including wood chips, as well as heating oil as back-up has been developed by the Karl-Marx-Stadt Dampfkesselbau Plant, GDR, with steam capacities ranging from 3.2 to 10 t/h. Technical specifications and diagrams of this series design (DGK-3, DGK-45, DWK 2S) are given. A larger steam generator with 20 t/h steam capacity for combustion of raw brown coal, bagasse, wood chips with heating oil and for rice hulls as support fuels is being developed by the Berlin Dampferzeugerbau Plant, GDR. 5 references.

  16. An Outlook on Microalgal Biofuels

    NARCIS (Netherlands)

    Wijffels, R.H.; Barbosa, M.J.

    2010-01-01

    Microalgae are considered one of the most promising feedstocks for biofuels. The productivity of these photosynthetic microorganisms in converting carbon dioxide into carbon-rich lipids, only a step or two away from biodiesel, greatly exceeds that of agricultural oleaginous crops, without competing

  17. A stochastic programming approach towards optimization of biofuel supply chain

    International Nuclear Information System (INIS)

    Azadeh, Ali; Vafa Arani, Hamed; Dashti, Hossein

    2014-01-01

    Bioenergy has been recognized as an important source of energy that will reduce dependency on petroleum. It would have a positive impact on the economy, environment, and society. Production of bioenergy is expected to increase. As a result, we foresee an increase in the number of biorefineries in the near future. This paper analyzes challenges with supplying biomass to a biorefinery and shipping biofuel to demand centers. A stochastic linear programming model is proposed within a multi-period planning framework to maximize the expected profit. The model deals with a time-staged, multi-commodity, production/distribution system, facility locations and capacities, technologies, and material flows. We illustrate the model outputs and discuss the results through numerical examples considering disruptions in biofuel supply chain. Finally, sensitivity analyses are performed to gain managerial insights on how profit changes due to existing uncertainties. - Highlights: • A robust model of biofuel SC is proposed and a sensitivity analysis implemented. • Demand of products is a function of price and GBM (Geometric Brownian Motion) is used for prices of biofuels. • Uncertainties in SC network are captured through defining probabilistic scenarios. • Both traditional feedstock and lignocellulosic biomass are considered for biofuel production. • Developed model is applicable to any related biofuel supply chain regardless of region

  18. Assessing Potential Air Pollutant Emissions from Agricultural Feedstock Production using MOVES

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, Annika [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Warner, Ethan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yi Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Inman, Daniel J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Carpenter Petri, Alberta C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Heath, Garvin A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hettinger, Dylan J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bhatt, Arpit H [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-29

    Biomass feedstock production is expected to grow as demand for biofuels and bioenergy increases. The change in air pollutant emissions that may result from large-scale biomass supply has implications for local air quality and human health. We developed spatially explicit emissions inventories for corn grain and six cellulosic feedstocks through the extension of the National Renewable Energy Laboratory's Feedstock Production Emissions to Air Model (FPEAM). These inventories include emissions of seven pollutants (nitrogen oxides, ammonia, volatile organic compounds, particulate matter, sulfur oxides, and carbon monoxide) generated from biomass establishment, maintenance, harvest, transportation, and biofuel preprocessing activities. By integrating the EPA's MOtor Vehicle Emissions Simulator (MOVES) into FPEAM, we created a scalable framework to execute county-level runs of the MOVES-Onroad model for representative counties (i.e., those counties with the largest amount of cellulosic feedstock production in each state) on a national scale. We used these results to estimate emissions from the on-road transportation of biomass and combined them with county-level runs of the MOVES-Nonroad model to estimate emissions from agricultural equipment. We also incorporated documented emission factors to estimate emissions from chemical application and the operation of drying equipment for feedstock processing, and used methods developed by the EPA and the California Air Resources Board to estimate fugitive dust emissions. The model developed here could be applied to custom equipment budgets and is extensible to accommodate additional feedstocks and pollutants. Future work will also extend this model to analyze spatial boundaries beyond the county-scale (e.g., regional or sub-county levels).

  19. Biofuels cost developments in the EU27+ until 2030. Full-chain cost assessment and implications of policy options. REFUEL WP4 final report

    International Nuclear Information System (INIS)

    Londo, H.M.; Lensink, S.M.; Deurwaarder, E.P.; Wakker, A.; De Wit, M.; Junginger, M.; Koenighofer, K; Jungmeier, G.

    2008-02-01

    With the rapid developments in the biofuels domain comes the need for biofuel policies that spur their introduction in a responsible way. The REFUEL project, supported by the EU Intelligent Energy Europe programme, develops a road map for biofuels in the EU27+ up to 2030. This WP4 report shows the results of a full-chain analysis of the costs of different biofuels. Effects of different levels of biofuel target setting were analysed, and also the impact of different additional policy measures, such as the introduction of a CO2 pricing mechanism and specific subsidies

  20. Biofuel technology handbook. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Rutz, Dominik; Janssen, Rainer

    2008-01-15

    This comprehensive handbook was created in order to promote the production and use of biofuels and to inform politicians, decision makers, biofuel traders and all other relevant stakeholders about the state-of-the-art of biofuels and relevant technologies. The large variety of feedstock types and different conversion technologies are described. Explanations about the most promising bio fuels provide a basis to discuss about the manifold issues of biofuels. The impartial information in this handbook further contributes to diminish existing barriers for the broad use of biofuels. Emphasis of this handbook is on first generation biofuels: bio ethanol, Biodiesel, pure plant oil, and bio methane. It also includes second generation biofuels such as BTL-fuels and bio ethanol from lingo-cellulose as well as bio hydrogen. The whole life cycle of bio fuels is assessed under technical, economical, ecological, and social aspect. Characteristics and applications of bio fuels for transport purposes are demonstrated and evaluated. This is completed by an assessment about the most recent studies on biofuel energy balances. This handbook describes the current discussion about green house gas (GHG) balances and sustainability aspects. GHG calculation methods are presented and potential impacts of biofuel production characterized: deforestation of rainforests and wetlands, loss of biodiversity, water pollution, human health, child labour, and labour conditions.

  1. Local Social and Environmental Impacts of Biofuels: Global Comparative Assessment and Implications for Governance

    Directory of Open Access Journals (Sweden)

    Laura German

    2011-12-01

    Full Text Available The 2000s witnessed the rapid expansion of biofuel plantations in the global South in the context of a growing trend of crop plantation expansion. This trend has been spurred by policies in the European Union, United States, Brazil, and other countries favoring the use of biofuels in the transport sector to enhance energy security and reduce carbon emissions, as well as by the desire of governments in developing countries to harness the stimulus that new commercial investments provide to the agricultural sector and to national economies. Despite these potential benefits, a number of concerns have been raised about the local social and environmental impacts of biofuel feedstock expansion. We shed light on this debate through a synthesis of findings from case studies in six biofuel producer countries of Asia, Africa, and Latin America, and a seventh paper exploring the implications of the land-use changes observed in these case studies for the climate mitigation potential of biofuels. We also explore the implications for governing the environmental impacts of biofuel feedstock production, protecting the rights of customary land users, and enabling smallholder-inclusive business models. Our analysis suggests that better governance of the sector's impacts is not the exclusive preserve of unitary sets of actors, but instead requires concerted and coordinated efforts by governments of producer and consumer countries, investors, civil society, and the financial sector to better capture the sector's potential while minimizing its social and environmental costs.

  2. NREL biofuels program overview

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, J.R. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-09-01

    The NREL Biofuels Program has been developing technology for conversion of biomass to transportation fuels with support from DOE Office of Transportation Technologies Biofuels System Program. This support has gone to both the National Renewable Energy Laboratory, and over 100 subcontractors in universities and industry. This overview will outline the value of the Biofuels development program to the Nation, the current status of the technology development, and what research areas still need further support and progress for the development of a biofuels industry in the US.

  3. Economic challenges for the future relevance of biofuels in transport in EU countries

    International Nuclear Information System (INIS)

    Ajanovic, A.; Haas, R.

    2010-01-01

    The discussion on the promotion of biofuels is ambiguous: on the one hand benefits like reduction of greenhouse gas emissions and increase of energy supply security are expected, on the other hand low effectiveness with respect to reducing greenhouse gas emissions and high costs are being criticized. The core objective of this paper is to investigate the market prospects of biofuels for transport in the EU in a dynamic framework till 2030. The major results of this analysis are: (i) Under current policy conditions - mainly exemption of excise taxes - the economic prospects of 1st generation biofuels in Europe are rather promising; the major problems of 1st generation biofuels are lack of available land for feedstocks and the modest ecological performance; (ii) Large expectations are currently put into advanced 2nd generation biofuels production from lignocellulosic materials. With respect to the future costs development of 2nd generation biofuels, currently it can only be stated that in a favourable case by 2030 they will be close to the costs of 1st generation biofuels. However, because of the increasing prices for fossil gasoline and diesel in all international scenarios - given remaining tax exemptions - biofuels will become competitive already in the next few years. (author)

  4. Biofuel production in Escherichia coli. The role of metabolic engineering and synthetic biology

    Energy Technology Data Exchange (ETDEWEB)

    Clomburg, James M. [Rice Univ., Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Gonzalez, Ramon [Rice Univ., Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Rice Univ., Houston, TX (United States). Dept. of Bioengineering

    2010-03-15

    The microbial production of biofuels is a promising avenue for the development of viable processes for the generation of fuels from sustainable resources. In order to become cost and energy effective, these processes must utilize organisms that can be optimized to efficiently produce candidate fuels from a variety of feedstocks. Escherichia coli has become a promising host organism for the microbial production of biofuels in part due to the ease at which this organism can be manipulated. Advancements in metabolic engineering and synthetic biology have led to the ability to efficiently engineer E. coli as a biocatalyst for the production of a wide variety of potential biofuels from several biomass constituents. This review focuses on recent efforts devoted to engineering E. coli for the production of biofuels, with emphasis on the key aspects of both the utilization of a variety of substrates as well as the synthesis of several promising biofuels. Strategies for the efficient utilization of carbohydrates, carbohydrate mixtures, and noncarbohydrate carbon sources will be discussed along with engineering efforts for the exploitation of both fermentative and nonfermentative pathways for the production of candidate biofuels such as alcohols and higher carbon biofuels derived from fatty acid and isoprenoid pathways. Continued advancements in metabolic engineering and synthetic biology will help improve not only the titers, yields, and productivities of biofuels discussed herein, but also increase the potential range of compounds that can be produced. (orig.)

  5. Limits to biofuels

    Directory of Open Access Journals (Sweden)

    Johansson S.

    2013-06-01

    Full Text Available Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, biofuel from agro-residues still depend upon the crop production system, and there are many parameters to deal with in order to investigate the sustainability of biofuel production. There is a theoretical limit to how much biofuel can be achieved globally from agro-residues and this amounts to approximately one third of todays’ use of fossil fuels in the transport sector. In reality this theoretical potential may be eliminated by the energy use in the biomass-conversion technologies and production systems, depending on what type of assessment method is used. By surveying existing studies on biofuel conversion the theoretical limit of biofuels from 2010 years’ agricultural production was found to be either non-existent due to energy consumption in the conversion process, or up to 2–6000TWh (biogas from residues and waste and ethanol from woody biomass in the more optimistic cases.

  6. Limits to biofuels

    Science.gov (United States)

    Johansson, S.

    2013-06-01

    Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, biofuel from agro-residues still depend upon the crop production system, and there are many parameters to deal with in order to investigate the sustainability of biofuel production. There is a theoretical limit to how much biofuel can be achieved globally from agro-residues and this amounts to approximately one third of todays' use of fossil fuels in the transport sector. In reality this theoretical potential may be eliminated by the energy use in the biomass-conversion technologies and production systems, depending on what type of assessment method is used. By surveying existing studies on biofuel conversion the theoretical limit of biofuels from 2010 years' agricultural production was found to be either non-existent due to energy consumption in the conversion process, or up to 2-6000TWh (biogas from residues and waste and ethanol from woody biomass) in the more optimistic cases.

  7. Biodiesel production with microalgae as feedstock: from strains to biodiesel.

    Science.gov (United States)

    Gong, Yangmin; Jiang, Mulan

    2011-07-01

    Due to negative environmental influence and limited availability, petroleum-derived fuels need to be replaced by renewable biofuels. Biodiesel has attracted intensive attention as an important biofuel. Microalgae have numerous advantages for biodiesel production over many terrestrial plants. There are a series of consecutive processes for biodiesel production with microalgae as feedstock, including selection of adequate microalgal strains, mass culture, cell harvesting, oil extraction and transesterification. To reduce the overall production cost, technology development and process optimization are necessary. Genetic engineering also plays an important role in manipulating lipid biosynthesis in microalgae. Many approaches, such as sequestering carbon dioxide from industrial plants for the carbon source, using wastewater for the nutrient supply, and maximizing the values of by-products, have shown a potential for cost reduction. This review provides a brief overview of the process of biodiesel production with microalgae as feedstock. The methods associated with this process (e.g. lipid determination, mass culture, oil extraction) are also compared and discussed.

  8. Proceedings. Feedstock preparation and quality 1997 workshop

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Jan Erik [ed.

    1998-06-01

    The IEA Bioenergy Feedstock Preparation and Quality 1997 Workshop dealt with fuel feedstock quality improvement and methods to determine feedstock properties. It was arranged by the Swedish Univ. of Agricultural Sciences on behalf of the IEA Bioenergy Task XII Activity 4.1 Feedstock Preparation and Quality. This Activity is a 3-year cooperation 1995-1997 between Denmark, Sweden and the USA, mainly based on information exchange. The workshop had two sections: presentations by invited experts, and country reports on recent development in feedstock preparation and quality in the three participating countries. Separate abstracts have been prepared for four of the six papers presented

  9. Reconciling biofuels, sustainability and commodities demand. Pitfalls and policy options

    International Nuclear Information System (INIS)

    Uslu, A.; Bole, T.; Londo, M.; Pelkmans, L.; Berndes, G.; Prieler, S.; Fischer, G.; Cueste Cabal, H.

    2010-06-01

    prices. Furthermore, land use change both through converting natural land to produce 1st generation biofuels, and by displacing existing agricultural activities to other areas, may drastically impact the greenhouse gas (GHG) emission reduction of biofuels production and use. However, there are ways to reduce negative impacts. Even though shifting to second generation (2nd generation) biofuels appears to be one of the best solutions in terms of decreasing the pressure on agricultural commodity markets and improving GHG performances of biofuels, a mix of 1st and 2nd generation biofuels will be the likely future. In this respect, strategies to increase agricultural productivity, especially in developing countries where yields presently are low, stands out as one of the most important requirements. Food security and agricultural productivity improvements have been addressed as part of the millennium development goals (MDG's). But policy-driven biofuel production that impacts global agricultural markets should also become part of the policy framework that supports agricultural productivity increase in the world regions that are likely to be impacted most with increased biofuel demand. 2nd generation biofuels can decrease some of the pressure on agriculture commodities if they are produced from residues and crops cultivated on marginal lands. They are in addition expected to provide a substantial contribution to reducing GHG emissions. However, those technologies are still at demonstration stage and bringing them to the market requires policy measures that take into account their risk profiles and create a favourable and stable investment climate. A set of policy options, for instance combinations of high investment subsidies with soft loans, tax exemptions, and favourable crediting in relation to biofuel targets, can help overcome the initial investment barriers and enable larger volumes of 2nd generation biofuel penetration into the market. Lignocellulosic feedstocks are

  10. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    Energy Technology Data Exchange (ETDEWEB)

    Sastri, B.; Lee, A.

    2008-09-15

    This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022

  11. Towards the development of a sustainable soya bean-based feedstock for aquaculture.

    Science.gov (United States)

    Park, Hyunwoo; Weier, Steven; Razvi, Fareha; Peña, Pamela A; Sims, Neil A; Lowell, Jennica; Hungate, Cory; Kissinger, Karma; Key, Gavin; Fraser, Paul; Napier, Johnathan A; Cahoon, Edgar B; Clemente, Tom E

    2017-02-01

    Soya bean (Glycine max (L.) Merr.) is sought after for both its oil and protein components. Genetic approaches to add value to either component are ongoing efforts in soya bean breeding and molecular biology programmes. The former is the primary vegetable oil consumed in the world. Hence, its primary usage is in direct human consumption. As a means to increase its utility in feed applications, thereby expanding the market of soya bean coproducts, we investigated the simultaneous displacement of marine ingredients in aquafeeds with soya bean-based protein and a high Omega-3 fatty acid soya bean oil, enriched with alpha-linolenic and stearidonic acids, in both steelhead trout (Oncorhynchus mykiss) and Kampachi (Seriola rivoliana). Communicated herein are aquafeed formulations with major reduction in marine ingredients that translates to more total Omega-3 fatty acids in harvested flesh. Building off of these findings, subsequent efforts were directed towards a genetic strategy that would translate to a prototype design of an optimal identity-preserved soya bean-based feedstock for aquaculture, whereby a multigene stack approach for the targeted synthesis of two value-added output traits, eicosapentaenoic acid and the ketocarotenoid, astaxanthin, were introduced into the crop. To this end, the systematic introduction of seven transgenic cassettes into soya bean, and the molecular and phenotypic evaluation of the derived novel events are described. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  12. FINAL TECHNICAL REPORT FOR FORESTRY BIOFUEL STATEWIDE COLLABORATION CENTER (MICHIGAN)

    Energy Technology Data Exchange (ETDEWEB)

    LaCourt, Donna M.; Miller, Raymond O.; Shonnard, David R.

    2012-04-24

    A team composed of scientists from Michigan State University (MSU) and Michigan Technological University (MTU) assembled to better understand, document, and improve systems for using forest-based biomass feedstocks in the production of energy products within Michigan. Work was funded by a grant (DE-EE-0000280) from the U.S. Department of Energy (DOE) and was administered by the Michigan Economic Development Corporation (MEDC). The goal of the project was to improve the forest feedstock supply infrastructure to sustainably provide woody biomass for biofuel production in Michigan over the long-term. Work was divided into four broad areas with associated objectives: • TASK A: Develop a Forest-Based Biomass Assessment for Michigan – Define forest-based feedstock inventory, availability, and the potential of forest-based feedstock to support state and federal renewable energy goals while maintaining current uses. • TASK B: Improve Harvesting, Processing and Transportation Systems – Identify and develop cost, energy, and carbon efficient harvesting, processing and transportation systems. • TASK C: Improve Forest Feedstock Productivity and Sustainability – Identify and develop sustainable feedstock production systems through the establishment and monitoring of a statewide network of field trials in forests and energy plantations. • TASK D: Engage Stakeholders – Increase understanding of forest biomass production systems for biofuels by a broad range of stakeholders. The goal and objectives of this research and development project were fulfilled with key model deliverables including: 1) The Forest Biomass Inventory System (Sub-task A1) of feedstock inventory and availability and, 2) The Supply Chain Model (Sub-task B2). Both models are vital to Michigan’s forest biomass industry and support forecasting delivered cost, as well as carbon and energy balance. All of these elements are important to facilitate investor, operational and policy decisions. All

  13. Conversion of Indigenous Agricultural Waste Feedstocks to Fuel Ethanol. Cooperative Research and Development Final Report, CRADA Number CRD-13-504

    Energy Technology Data Exchange (ETDEWEB)

    Elander, Richard [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-27

    This Cooperative Research and Development Agreement (CRADA) is between the National Renewable Energy Laboratory (NREL), a world leader in biomass conversion research and Ecopetrol American Inc., Ecopetrol S.A.'s U.S. subsidiary. The research and development efforts described in the Joint Work Statement (JWS) will take advantage of the strengths of both parties. NREL will use its Integrated Biorefinery Facility and vast experience in the conversion of lignocellulosic feedstocks to fuel ethanol to develop processes for the conversion of Ecopetrol's feedstocks. Ecopetrol will establish the infrastructure in Columbia to commercialize the conversion process.

  14. Panorama 2018 - 2017 biofuels scoreboard

    International Nuclear Information System (INIS)

    Boute, Anne; Lorne, Daphne

    2018-01-01

    This note presents some 2017 statistical data about biofuels: consumption, fuel substitution rate, world ethanol and bio-diesel markets, diesel substitutes, French market, R and D investments, political measures for biofuels development

  15. DEVELOPMENT OF MICROORGANISMS FOR CELLULOSE-BIOFUEL CONSOLIDATED BIOPROCESSINGS: METABOLIC ENGINEERS' TRICKS

    Directory of Open Access Journals (Sweden)

    Roberto Mazzoli

    2012-10-01

    By starting from the description of natural enzyme systems for plant biomass degradation and natural metabolic pathways for some of the most valuable product (i.e. butanol, ethanol, and hydrogen biosynthesis, this review describes state-of-the-art bottlenecks and solutions for the development of recombinant microbial strains for cellulosic biofuel CBP by metabolic engineering. Complexed cellulases (i.e. cellulosomes benefit from stronger proximity effects and show enhanced synergy on insoluble substrates (i.e. crystalline cellulose with respect to free enzymes. For this reason, special attention was held on strategies involving cellulosome/designer cellulosome-bearing recombinant microorganisms.

  16. Next-generation biofuels: a new challenge for yeast.

    Science.gov (United States)

    Petrovič, Uroš

    2015-09-01

    Economic growth depends strongly on the availability and price of fuels. There are various reasons in different parts of the world for efforts to decrease the consumption of fossil fuels, but biofuels are one of the main solutions considered towards achieving this aim globally. As the major bioethanol producer, the yeast Saccharomyces cerevisiae has a central position among biofuel-producing organisms. However, unprecedented challenges for yeast biotechnology lie ahead, as future biofuels will have to be produced on a large scale from sustainable feedstocks that do not interfere with food production, and which are generally not the traditional carbon source for S. cerevisiae. Additionally, the current trend in the development of biofuels is to synthesize molecules that can be used as drop-in fuels for existing engines. Their properties should therefore be more similar to those of oil-derived fuels than those of ethanol. Recent developments and challenges lying ahead for cost-effective production of such designed biofuels, using S. cerevisiae-based cell factories, are presented in this review. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Environmental protection and processing of feedstocks by adsorption on carbonaceous materials - developments at Bergbau- Forschung GmbH

    Energy Technology Data Exchange (ETDEWEB)

    Knoblauch, K; Richter, E

    1986-06-01

    Activated carbons, active cokes and carbon molecular sieves are used for regenerative processes for environmental protection and for processing of valuable feedstocks. Development of adsorption processes and their layout based on adsorption equilibria, adsorption kinetics, kinetics of desorption by heating, depressurization or purging not only as single steps but in the same combination as in the regenerative process. For example some adsorption processes are decsribed which are applied in pilot scale or industrially. These include: nitrogen production from air by pressure swing adsorption (PSA); hydrogen production from coke oven gas by PSA; upgrading of methane from biogas and from fire damp; removal of hydrogen sulfide from biogas; removal of sulfur dioxide and nitrogen oxides from flue gases and drinking water supply and waste water treatment. (71 refs.)

  18. The future of furanics : new generations of biofuel

    Energy Technology Data Exchange (ETDEWEB)

    Granson, E.

    2010-01-15

    This article discussed a new technology developed to bypass steps in the ethanol production process. The method does not require any enzymes and can be used to process biomass, agricultural biomass, and mixed sources biomass. A mechanical reduction process was used to reduce the feedstock into particles. The powdered feedstock was then fed into a 2-phase reactor. The first phase used aqueous hydrochloric acid to digest the feedstock into furanic products. The second phase of the reactor contained an organic solvent used to sequester the feedstock out of the acid phase in order to prevent it from decomposing. Raw biomass was converted into the chemical intermediate 5-(chloromethyl)furfural (CMF). The furanic process produced a higher yield of simple organic molecules from the biomass than other known methods. The CMF was then converted into a new generation biofuel using a conventional ethanol method. It was concluded that the technology can be used by smaller producers using local feedstock sources. Various furfural research projects were also discussed. 2 figs.

  19. Biofuel Database

    Science.gov (United States)

    Biofuel Database (Web, free access)   This database brings together structural, biological, and thermodynamic data for enzymes that are either in current use or are being considered for use in the production of biofuels.

  20. National Geo-Database for Biofuel Simulations and Regional Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Izaurralde, Roberto C.; Zhang, Xuesong; Sahajpal, Ritvik; Manowitz, David H.

    2012-04-01

    The goal of this project undertaken by GLBRC (Great Lakes Bioenergy Research Center) Area 4 (Sustainability) modelers is to develop a national capability to model feedstock supply, ethanol production, and biogeochemical impacts of cellulosic biofuels. The results of this project contribute to sustainability goals of the GLBRC; i.e. to contribute to developing a sustainable bioenergy economy: one that is profitable to farmers and refiners, acceptable to society, and environmentally sound. A sustainable bioenergy economy will also contribute, in a fundamental way, to meeting national objectives on energy security and climate mitigation. The specific objectives of this study are to: (1) develop a spatially explicit national geodatabase for conducting biofuel simulation studies; (2) model biomass productivity and associated environmental impacts of annual cellulosic feedstocks; (3) simulate production of perennial biomass feedstocks grown on marginal lands; and (4) locate possible sites for the establishment of cellulosic ethanol biorefineries. To address the first objective, we developed SENGBEM (Spatially Explicit National Geodatabase for Biofuel and Environmental Modeling), a 60-m resolution geodatabase of the conterminous USA containing data on: (1) climate, (2) soils, (3) topography, (4) hydrography, (5) land cover/ land use (LCLU), and (6) ancillary data (e.g., road networks, federal and state lands, national and state parks, etc.). A unique feature of SENGBEM is its 2008-2010 crop rotation data, a crucially important component for simulating productivity and biogeochemical cycles as well as land-use changes associated with biofuel cropping. We used the EPIC (Environmental Policy Integrated Climate) model to simulate biomass productivity and environmental impacts of annual and perennial cellulosic feedstocks across much of the USA on both croplands and marginal lands. We used data from LTER and eddy-covariance experiments within the study region to test the

  1. Opportunity for profitable investments in cellulosic biofuels

    International Nuclear Information System (INIS)

    Babcock, Bruce A.; Marette, Stephan; Treguer, David

    2011-01-01

    Research efforts to allow large-scale conversion of cellulose into biofuels are being undertaken in the US and EU. These efforts are designed to increase logistic and conversion efficiencies, enhancing the economic competitiveness of cellulosic biofuels. However, not enough attention has been paid to the future market conditions for cellulosic biofuels, which will determine whether the necessary private investment will be available to allow a cellulosic biofuels industry to emerge. We examine the future market for cellulosic biofuels, differentiating between cellulosic ethanol and 'drop-in' cellulosic biofuels that can be transported with petroleum fuels and have equivalent energy values. We show that emergence of a cellulosic ethanol industry is unlikely without costly government subsidies, in part because of strong competition from conventional ethanol and limits on ethanol blending. If production costs of drop-in cellulosic biofuels fall enough to become competitive, then their expansion will not necessarily cause feedstock prices to rise. As long as local supplies of feedstocks that have no or low-valued alternative uses exist, then expansion will not cause prices to rise significantly. If cellulosic feedstocks come from dedicated biomass crops, then the supply curves will have a steeper slope because of competition for land. (author)

  2. Energy demands in the 21st century: the role of biofuels in a developing country

    International Nuclear Information System (INIS)

    Quaye, E.C.

    1996-01-01

    In most developing countries more than 25% of total energy use comes from biofuels. In Ghana, the figure is between 70-80%. Bioenergy is mainly used for cooking and heating, and is also important in rural or cottage industries. As a developing country, Ghana's economic growth remains coupled to the availability and supply of energy. About 29% of this energy is obtained through hydropower and imported petroleum. The two hydropower installations generate about 1102 MW annually mainly for domestic and industrial uses. At the current 3.0% average annual population growth rate, a population of about 35 million is expected by 2025. Coupled with the country's efforts to promote industrialization, future energy demand is expected to increase several fold. This paper provides an overview of Ghana's current energy situation and discusses the role of bioenergy in the future energy demand of the country. The paper concludes with a recommendation for a major shift in energy policy to accommodate the conversion of biofuels into versatile energy carriers in a decentralised system to meet the energy requirements of the people and to provide a basis for rural development and employment. (Author)

  3. Competition between biofuels. Modeling technological learning and cost reductions over time

    International Nuclear Information System (INIS)

    De Wit, M.; Junginger, M.; Faaij, A.; Lensink, S.M.; Londo, H.M.

    2009-10-01

    A key aspect in modeling the (future) competition between biofuels is the way in which production cost developments are computed. The objective of this study was threefold: (1) to construct a (endogenous) relation between cost development and cumulative production (2) to implement technological learning based on both engineering study insights and an experience curve approach, and (3) to investigate the impact of different technological learning assumptions on the market diffusion patterns of different biofuels. The analysis was executed with the European biofuel model BioTrans, which computes the least cost biofuel route. The model meets an increasing demand, reaching a 25% share of biofuels of the overall European transport fuel demand by 2030. Results show that 1st generation biodiesel is the most cost competitive fuel, dominating the early market. With increasing demand, modestly productive oilseed crops become more expensive rapidly, providing opportunities for advanced biofuels to enter the market. While biodiesel supply typically remains steady until 2030, almost all additional yearly demands are delivered by advanced biofuels, supplying up to 60% of the market by 2030. Sensitivity analysis shows that (a) overall increasing investment costs favour biodiesel production, (b) separate gasoline and diesel subtargets may diversify feedstock production and technology implementation, thus limiting the risk of failure and preventing lock-in and (c) the moment of an advanced technology's commercial market introduction determines, to a large degree, its future chances for increasing market share.

  4. An Overview of Algae Biofuel Production and Potential Environmental Impact

    Science.gov (United States)

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...

  5. Corn stover for advanced biofuels perspectives of a soil “Lorax”

    Science.gov (United States)

    Crop residues like corn (Zea Mays L) stover are potential feedstock for production of advanced biofuels (e.g., cellulosic ethanol). Utilization of residue like stover for biofuel feedstock may provide economic and greenhouse gas mitigation benefits; however, harvesting these materials must be done i...

  6. Butanol biorefineries: simultaneous product removal & process integration for conversion of biomass & food waste to biofuel

    Science.gov (United States)

    Butanol, a superior biofuel, packs 30% more energy than ethanol on a per gallon basis. It can be produced from various carbohydrates and lignocellulosic (biomass) feedstocks. For cost effective production of this renewable and high energy biofuel, inexpensive feedstocks and economical process techno...

  7. Biofuels for sustainable transportation

    Energy Technology Data Exchange (ETDEWEB)

    Neufeld, S.

    2000-05-23

    Biomass is an attractive energy source, and transportation fuels made from biomass offer a number of benefits. Developing the technology to produce and use biofuels will create transportation fuel options that can positively impact the national energy security, the economy, and the environment. Biofuels include ethanol, methanol, biodiesel, biocrude, and methane.

  8. Microalgae: biofuel production

    Directory of Open Access Journals (Sweden)

    Babita Kumari

    2013-04-01

    Full Text Available In the present day, microalgae feedstocks are gaining interest in energy scenario due to their fast growth potential coupled with relatively high lipid, carbohydrate and nutrients contents. All of these properties render them an excellent source for biofuels such as biodiesel, bioethanol and biomethane; as well as a number of other valuable pharmaceutical and nutraceutical products. The present review is a critical appraisal of the commercialization potential of microalgae biofuels. The available literature on various aspects of microalgae for e.g. its cultivation, life cycle assessment, and conceptualization of an algal biorefinery, has been done. The evaluation of available information suggests the operational and maintenance cost along with maximization of oil-rich microalgae production is the key factor for successful commercialization of microalgae-based fuels.

  9. The development of the biofuel and the role of genetic modified organisms on the Agriculture Portuguese Competitiveness

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Maria de Fatima [Dep. Social and Human Sciences, CERNAS/Agrarian Scholl of Coimbra - Polytechnic Institute of Coimbra, Bencanta, 3040-316, Coimbra (Portugal); Avillez, Franscisco [Dep. Rural Sociology and Agrarian Economics, Agronomy Institute - Technical University of Lisbon, Tapada da Ajuda 1349-017 Lisboa (Portugal)

    2008-07-01

    The aim of this work is to know the main guidelines for biofuels in EU, the impact on the agricultural sector and to analyze the potential role GM can play in the development of the Portuguese biofuels chain. Both the EU and the Portuguese trend appears to be Biodiesel development. Nevertheless, studies have shown that Bioethanol is more adequate for the EU and for Portugal to achieve the target, due to the future production costs and land availability. Biofuels also offer economic benefits for EU agricultural markets and rural economy by providing new outlets and market opportunities. However, the balance between energy crops, food and the environment must be guaranteed. The current biofuel potential production is encouraging, but it is not enough to achieve the ambitious target for 2010/20. The crops needs and land commitments are not realistic. GM crops can help to achieve the EU goal and the Portuguese experience on GM at the moment seems to be positive. The development of the biofuel strategy depends on political decisions.

  10. Lignocellulosic feedstock resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rooney, T.

    1998-09-01

    This report provides overall state and national information on the quantity, availability, and costs of current and potential feedstocks for ethanol production in the United States. It characterizes end uses and physical characteristics of feedstocks, and presents relevant information that affects the economic and technical feasibility of ethanol production from these feedstocks. The data can help researchers focus ethanol conversion research efforts on feedstocks that are compatible with the resource base.

  11. Articulating feedstock delivery device

    Science.gov (United States)

    Jordan, Kevin

    2013-11-05

    A fully articulable feedstock delivery device that is designed to operate at pressure and temperature extremes. The device incorporates an articulating ball assembly which allows for more accurate delivery of the feedstock to a target location. The device is suitable for a variety of applications including, but not limited to, delivery of feedstock to a high-pressure reaction chamber or process zone.

  12. Second-generation pilot biofuel units worldwide - Panorama 2008

    International Nuclear Information System (INIS)

    2008-01-01

    The production of biofuels from agricultural raw material is attracting great interest for many reasons, among them global warming, oil price hikes, the depletion of oil reserves and the development of new agricultural markets. However, the technologies currently under development are hindered by the fact that available land is limited and by a risk of competition with food crops. In the last few years, research and development efforts have sought to alleviate these limitations by exploring new pathways to convert little-used plant feedstocks to biofuels with better efficiencies. Large-scale research programs concentrating on these new technologies are underway in the U.S. and Europe, with industrial development expected between 2012 and 2020

  13. Optimal localisation of next generation Biofuel production in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Wetterlund, Elisabeth [Linkoeping Univ., Linkoeping (Sweden); Pettersson, Karin [Chalmers Univ. of Technology, Goeteborg (Sweden); Mossberg, Johanna [SP Technical Research Inst. of Sweden, Boraas (Sweden)] [and others

    2013-09-01

    With a high availability of lignocellulosic biomass and various types of cellulosic by-products, as well as a large number of industries, Sweden is a country of great interest for future large scale production of sustainable, next generation biofuels. This is most likely also a necessity as Sweden has the ambition to be independent of fossil fuels in the transport sector by the year 2030 and completely fossil free by 2050. In order to reach competitive biofuel production costs, plants with large production capacities are likely to be required. Feedstock intake capacities in the range of about 1-2 million tonnes per year, corresponding to a biomass feed of 300-600 MW, can be expected, which may lead to major logistical challenges. To enable expansion of biofuel production in such large plants, as well as provide for associated distribution requirements, it is clear that substantial infrastructure planning will be needed. The geographical location of the production plant facilities is therefore of crucial importance and must be strategic to minimise the transports of raw material as well as of final product. Competition for the available feedstock, from for example forest industries and CHP plants (combined heat and power) further complicates the localisation problem. Since the potential for an increased biomass utilisation is limited, high overall resource efficiency is of great importance. Integration of biofuel production processes in existing industries or in district heating systems may be beneficial from several aspects, such as opportunities for efficient heat integration, feedstock and equipment integration, as well as access to existing experience and know-how. This report describes the development of Be Where Sweden, a geographically explicit optimisation model for localisation of next generation biofuel production plants in Sweden. The main objective of developing such a model is to be able to assess production plant locations that are robust to varying

  14. Cellulosic biofuels from crop residue and groundwater extraction in the US Plains: the case of Nebraska.

    Science.gov (United States)

    Sesmero, Juan P

    2014-11-01

    This study develops a model of crop residue (i.e. stover) supply and derived demand for irrigation water accounting for non-linear effects of soil organic matter on soil's water holding capacity. The model is calibrated for typical conditions in central Nebraska, United States, and identifies potential interactions between water and biofuel policies. The price offered for feedstock by a cost-minimizing plant facing that stover supply response is calculated. Results indicate that as biofuel production volumes increase, soil carbon depletion per unit of biofuel produced decreases. Consumption of groundwater per unit of biofuel produced first decreases and then increases (after a threshold of 363 dam(3) of biofuels per year) due to plants' increased reliance on the extensive margin for additional biomass. The analysis reveals a tension between biofuel and water policies. As biofuel production raises the economic benefits of relaxing water conservation policies (measured by the "shadow price" of water) increase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Assessing biofuels: Aiming for sustainable development or complying with the market?

    International Nuclear Information System (INIS)

    Diaz-Chavez, Rocio A.

    2011-01-01

    The growing interest in biofuels has led to increasing concern about their wider implications, particularly if grown for transport use in large scale. Such concerns include environmental, social and economic issues. To counterbalance the possible negative effects, a series of measures are being put in place to help their sustainability. Nevertheless, considering the different meanings of sustainability in different parts of the world and the need to expand productive rural activities, the differences between trying to assure a commodity and the benefits or impacts at local level raise the questions between the aims of sustainability and the need to comply with a market. The ideal situation would be to reconcile both aspects, which in practise represent a major challenge for governments and industry. This paper provides an overview on the sustainability assessment of biofuels to consider a possible way forward. - Highlights: → Multi-interactions in biomass production for bioenergy are a new paradigm to develop policies. → Certification and verification schemes are limited to assess broader sustainability issues. → Improved agricultural and forestry systems for biomass use will boost policies and investment.

  16. The Role of Small-Scale Biofuel Production in Brazil: Lessons for Developing Countries

    Directory of Open Access Journals (Sweden)

    Arielle Muniz Kubota

    2017-07-01

    Full Text Available Small-scale biofuel initiatives to produce sugarcane ethanol are claimed to be a sustainable opportunity for ethanol supply, particularly for regions with price-restricted or no access to modern biofuels, such as communities located far from the large ethanol production centers in Brazil and family-farm communities in Sub-Saharan Africa, respectively. However, smallholders often struggle to achieve economic sustainability with ethanol microdistilleries. The aim of this paper is to provide an assessment of the challenges faced by small-scale bioenergy initiatives and discuss the conditions that would potentially make these initiatives economically feasible. Ethanol microdistilleries were assessed through a critical discussion of existent models and through an economic analysis of different sugarcane ethanol production models. The technical-economic analysis showed that the lack of competitiveness against large-scale ethanol distillery, largely due to both low crop productivity and process efficiency, makes it unlikely that small-scale distilleries can compete in the national/international ethanol market without governmental policies and subsidies. Nevertheless, small-scale projects intended for local supply and integrated food–fuel systems seem to be an interesting alternative that can potentially make ethanol production in small farms viable as well as increase food security and project sustainability particularly for local communities in developing countries.

  17. Biofuels combustion.

    Science.gov (United States)

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  18. Biofuel Development and Large-Scale Land Deals in Sub-Saharan Africa

    OpenAIRE

    Giorgia Giovannetti; Elisa Ticci

    2013-01-01

    Africa's biofuel potential over the last ten years has increasingly attracted foreign investors’ attention. We estimate the determinants of foreign investors land demand for biofuel production in SSA, using Poisson specifications of the gravity model. Our estimates suggest that land availability, abundance of water resources and weak land governance are significant determinants of large-scale land acquisitions for biofuel production. This in turn suggests that this type of investment is mainl...

  19. Climate risk management for the U.S. cellulosic biofuels supply chain

    Directory of Open Access Journals (Sweden)

    Matthew Langholtz

    2014-01-01

    Full Text Available As U.S. energy policy turns to bioenergy, and second-generation biofuels in particular, to foster energy security and environmental benefits, consideration should be given to the implications of climate risk for the incipient bioenergy industry. As a case-in-point, we review evidence from the 2012 U.S. drought, underscoring the risk of extreme weather events to the agricultural sector in general, and the bioenergy supply chain in particular, including reductions in feedstock production and higher prices for agricultural commodities and biofuels. We also use a risk management framework developed by the Intergovernmental Panel on Climate Change to review current understanding regarding climate-related hazards, exposure, and vulnerability of the bioenergy supply chain with a particular emphasis on the growing importance of lignocellulosic feedstocks to future bioenergy development. A number of climate-related hazards are projected to become more severe in future decades, and future growth of bioenergy feedstocks is likely to occur disproportionately in regions preferentially exposed to such hazards. However, strategies and opportunities are available across the supply chain to enhance coping and adaptive capacity in response to this risk. In particular, the implications of climate change will be influenced by the expansion of cellulosic feedstocks, particularly perennial grasses and woody biomass. In addition, advancements in feedstock development, logistics, and extension provide opportunities to support the sustainable development of a robust U.S. bioenergy industry as part of a holistic energy and environmental policy. However, given the nascent state of the cellulosic biofuels industry, careful attention should be given to managing climate risk over both short- and long-time scales.

  20. Meeting the U.S. renewable fuel standard: a comparison of biofuel pathways

    Directory of Open Access Journals (Sweden)

    Marc Y. Menetrez

    2014-12-01

    Full Text Available The production of renewable energy is undergoing rapid development. Ethanol primarily derived from corn and biodiesel made from recycled cooking oil and agricultural grains are established sources of renewable transportation fuel. Cellulosic ethanol production is increasing substantially, but at a rate below expectations. If future renewable fuel projections are to be accomplished, additional sources will be needed. Ideally, these sources should be independent of competing feedstock use such as food grains, and require a minimal footprint. Although the uses of algae seem promising, a number of demonstrations have not been economically successful in today‟s market. This paper identifies efforts being conducted on ethanol and biodiesel production and how algae might contribute to the production of biofuel in the United States. Additionally, the feedstock and land requirements of existing biofuel pathways are compared and discussed.

  1. Extraction and characterization of triglycerides from coffeeweed and switchgrass seeds as potential feedstocks for biodiesel production.

    Science.gov (United States)

    Armah-Agyeman, Grace; Gyamerah, Michael; Biney, Paul O; Woldesenbet, Selamawit

    2016-10-01

    Although switchgrass has been developed as a biofuel feedstock and its potential for bioethanol and bio-oil from fast pyrolysis reported in the literature, the use of the seeds of switchgrass as a source of triglycerides for biodiesel production has not been reported. Similarly, the potential for extracting triglycerides from coffeeweed (an invasive plant of no current economic value) needs to be investigated to ascertain its potential economic use for biodiesel production. The results show that coffeeweed and switchgrass seeds contain known triglycerides which are 983 and 1000 g kg(-1) respectively of the fatty acids found in edible vegetable oils such as sunflower, corn and soybean oils. In addition, the triglyceride yields of 53-67 g kg(-1) of the seed samples are in the range of commercial oil-producing seeds such as corn (42 g kg(-1) ). The results also indicate that the two non-edible oils could be used as substitutes for edible oil for biodiesel production. In addition, the use of seeds of switchgrass for non-edible oil production (as a feedstock for the production of biodiesel) further increases the total biofuel yield when switchgrass is cultivated for use as energy feedstock for pyrolysis oil and biodiesel production. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. 'Supply Push’ or ‘Demand Pull?’: Strategic Recommendations for the Responsible Development of Biofuel in China

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Goodsite, Michael; Sovacool, Benjamin

    2015-01-01

    factors affecting the development of the biofuel industry in China. It then prioritizes their importance using the FAHP method. The study finds that high production costs, competition with other renewable energy resources, inconsistent policy and legislation support, and poor technical standards......This study investigates China's biofuel industry—the third largest in the world—by combining a strength, weakness, opportunity and threats (SWOT) analysis with a method known as fuzzy analytic hierarchy process (FAHP). More specifically, the study employs SWOT analysis to identify the influential...

  3. Multi-scale process and supply chain modelling: from lignocellulosic feedstock to process and products.

    Science.gov (United States)

    Hosseini, Seyed Ali; Shah, Nilay

    2011-04-06

    There is a large body of literature regarding the choice and optimization of different processes for converting feedstock to bioethanol and bio-commodities; moreover, there has been some reasonable technological development in bioconversion methods over the past decade. However, the eventual cost and other important metrics relating to sustainability of biofuel production will be determined not only by the performance of the conversion process, but also by the performance of the entire supply chain from feedstock production to consumption. Moreover, in order to ensure world-class biorefinery performance, both the network and the individual components must be designed appropriately, and allocation of resources over the resulting infrastructure must effectively be performed. The goal of this work is to describe the key challenges in bioenergy supply chain modelling and then to develop a framework and methodology to show how multi-scale modelling can pave the way to answer holistic supply chain questions, such as the prospects for second generation bioenergy crops.

  4. Developments in National Fuel Alcohol (biofuel) Programs: implications for world sugar trade. Rev. ed.

    International Nuclear Information System (INIS)

    1998-01-01

    This paper focuses on developments in the national fuel alcohol programmes of Brazil, the European Union and USA with the main emphasis on Brazil. A brief history of Brazil's alcohol production is given, and the deregulation of the alcohol sector in Brazil, the impacts of partial liberalisation of Brazil's alcohol sector, government delays in further liberalisation and attempts to manage supply, the PROALCOOL programme, the government's actions to boost ethanol demand, the slump in ethanol output in 1998/1999, and the increase in sugar output are examined. The long term goal of increasing reliance on biofuels in the European Union, the EU's alcohol industry, and ethanol production in France are considered. Market factors affecting ethanol production in the US, the US government's extension of its ethanol tax incentive, the US ethanol sector, and the future demand for ethanol in the US are discussed. The short and medium-term implications for sugar in Brazil, the EU and the US are assessed. (UK)

  5. The biofuels in France

    International Nuclear Information System (INIS)

    2006-04-01

    The biofuels are liquid renewable energies sources resulting from vegetal matters. Today are two channels of biofuels: the ethanol channel for gasoline and the vegetal oils channel for the diesel. In the first part, the document presents the different channels and the energy efficiency of the products. It shows in the second part the advantages for the environment (CO 2 accounting) and for the energy independence. It discusses then the future developments and the projects. The fourth part is devoted to the legislation, regulations, taxes and financial incentives. The last part presents the french petroleum industry actions and attitudes in the framework of the biofuels development. (A.L.B.)

  6. Biofuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Biofuels represent 2,6% of the energy content of all the fuels used in road transport in Europe today. Nearly half of the target of 5,75% for 2010 set by the directive on biofuels has thus been reached in four years time. To achieve 5,75%, the european union is going to have to increase its production and doubtless call even more on imports, at a moment when biofuels are found at the core of complex ecological and economic issues. This analysis provided data and reflexions on the biofuels situation in the european union: consumption, bio-diesel, bio-ethanol, producers, environmental problems, directives. (A.L.B.)

  7. The biofuels, situation, perspectives

    International Nuclear Information System (INIS)

    Acket, C.

    2007-03-01

    The climatic change with the fight against the greenhouse effect gases, sees the development of ''clean'' energy sources. Meanwhile the biofuels remain penalized by their high production cost, the interest is increasing. Facing their development ecologists highlight the environmental and social negative impacts of the development of the biofuels. The author aims to take stock on the techniques and the utilizations. (A.L.B.)

  8. Thermostable enzymes as biocatalysts in the biofuel industry.

    Science.gov (United States)

    Yeoman, Carl J; Han, Yejun; Dodd, Dylan; Schroeder, Charles M; Mackie, Roderick I; Cann, Isaac K O

    2010-01-01

    Lignocellulose is the most abundant carbohydrate source in nature and represents an ideal renewable energy source. Thermostable enzymes that hydrolyze lignocellulose to its component sugars have significant advantages for improving the conversion rate of biomass over their mesophilic counterparts. We review here the recent literature on the development and use of thermostable enzymes for the depolymerization of lignocellulosic feedstocks for biofuel production. Furthermore, we discuss the protein structure, mechanisms of thermostability, and specific strategies that can be used to improve the thermal stability of lignocellulosic biocatalysts. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Biofuels Program Plan, FY 1992--FY 1996. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This five-year program plan describes the goals and philosophy of the US Department of Energy`s (DOE) Biofuels Systems Division (BSD) program and the BSD`s major research and development (R&D) activities for fiscal years (FY) 1992 through 1996. The plan represents a consensus among government and university researchers, fuel and automotive manufacturers, and current and potential users of alternative fuels and fuel additives produced from biomass. It defines the activities that are necessary to produce versatile, domestic, economical, renewable liquid fuels from biomass feedstocks. The BSD program focuses on the production of alternative liquid fuels for transportation-fuels such as ethanol, methanol, biodiesel, and fuel additives for reformulated gasoline. These fuels can be produced from many plant materials and from a significant portion of the wastes generated by municipalities and industry. Together these raw materials and wastes, or feedstocks, are called biomass.

  10. Mapping grasslands suitable for cellulosic biofuels in the Greater Platte River Basin, United States

    Science.gov (United States)

    Wylie, Bruce K.; Gu, Yingxin

    2012-01-01

    Biofuels are an important component in the development of alternative energy supplies, which is needed to achieve national energy independence and security in the United States. The most common biofuel product today in the United States is corn-based ethanol; however, its development is limited because of concerns about global food shortages, livestock and food price increases, and water demand increases for irrigation and ethanol production. Corn-based ethanol also potentially contributes to soil erosion, and pesticides and fertilizers affect water quality. Studies indicate that future potential production of cellulosic ethanol is likely to be much greater than grain- or starch-based ethanol. As a result, economics and policy incentives could, in the near future, encourage expansion of cellulosic biofuels production from grasses, forest woody biomass, and agricultural and municipal wastes. If production expands, cultivation of cellulosic feedstock crops, such as switchgrass (Panicum virgatum L.) and miscanthus (Miscanthus species), is expected to increase dramatically. The main objective of this study is to identify grasslands in the Great Plains that are potentially suitable for cellulosic feedstock (such as switchgrass) production. Producing ethanol from noncropland holdings (such as grassland) will minimize the effects of biofuel developments on global food supplies. Our pilot study area is the Greater Platte River Basin, which includes a broad range of plant productivity from semiarid grasslands in the west to the fertile corn belt in the east. The Greater Platte River Basin was the subject of related U.S. Geological Survey (USGS) integrated research projects.

  11. Waste paper as a biomass feedstock

    International Nuclear Information System (INIS)

    1993-09-01

    A study was undertaken to evaluate the availability and suitability of waste paper for conversion to biofuel in Canada and to examine the environmental impacts of waste paper processing. The total quantity of waste paper available in 1991 for each province and territory was determined and broken down into seven paper types. The total quantity across Canada was estimated at between 5.7 million and 7.6 million tonnes, of which old corrugated containers made up 23-26%. The variation in prices by waste paper type was also examined on a regional basis and a detailed analysis was made of the recent history of prices for several paper types. Waste paper prices have generally decreased, but since mid-1992, prices for certain types such as writing paper, computer output paper, and newsprint have increased steadily, partly due to increasing demand for recycled content in new paper. Utilization and disposal practices by region for waste paper generated in 1991, including recycling, conversion, and landfilling, were studied. National quantities of waste paper recycled, landfilled, and unavailable for recycling are estimated. The feasibility of using each type of waste paper as feedstock for each of three conversion processes (pyrolysis, incineration, fermentation) was examined. Scenarios were then developed for evaluating environmental impacts of each conversion technology. The environmental impacts of recycling, conversion, and landfilling practices are discussed qualitatively. 92 refs., 16 figs., 53 tabs

  12. Development of a Catalytic Wet Air Oxidation Method to Produce Feedstock Gases from Waste Polymers

    Science.gov (United States)

    Kulis, Michael J.; Guerrero-Medina, Karen J.; Hepp, Aloysius F.

    2012-01-01

    Given the high cost of space launch, the repurposing of biological and plastic wastes to reduce the need for logistical support during long distance and long duration space missions has long been recognized as a high priority. Described in this paper are the preliminary efforts to develop a wet air oxidation system in order to produce fuels from waste polymers. Preliminary results of partial oxidation in near supercritical water conditions are presented. Inherent corrosion and salt precipitation are discussed as system design issues for a thorough assessment of a second generation wet air oxidation system. This work is currently being supported by the In-Situ Resource Utilization Project.

  13. Microwave-assisted pyrolysis of biomass for liquid biofuels production

    DEFF Research Database (Denmark)

    Yin, Chungen

    2012-01-01

    Production of 2nd-generation biofuels from biomass residues and waste feedstock is gaining great concerns worldwide. Pyrolysis, a thermochemical conversion process involving rapid heating of feedstock under oxygen-absent condition to moderate temperature and rapid quenching of intermediate products......, is an attractive way for bio-oil production. Various efforts have been made to improve pyrolysis process towards higher yield and quality of liquid biofuels and better energy efficiency. Microwave-assisted pyrolysis is one of the promising attempts, mainly due to efficient heating of feedstock by ‘‘microwave...

  14. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States

    International Nuclear Information System (INIS)

    McLaughlin, Samuel B.; Adams Kszos, Lynn

    2005-01-01

    A 10-year US Department of Energy-sponsored research program designed to evaluate and develop switchgrass (Panicum virgatum), a native perennial warm-season grass, as a dedicated energy crop is reviewed. The programmatic objectives were to identify the best varieties and management practices to optimize productivity, while developing an understanding of the basis for long-term improvement of switchgrass through breeding and sustainable production in conventional agroecosystems. This research has reduced the projected production cost of switchgrass by about 25% ($8-9 Mg -1 ) through yield increases of about 50% achieved through selection of the best regionally adapted varieties; through optimizing cutting frequency and timing; and by reducing the level (by about 40%) and timing of nitrogen fertilization. Breeding research has made further gains in productivity of switchgrass that exceed the historical rate of yield improvement of corn. Studies of soil carbon storage under switchgrass indicate significant carbon sequestration will occur in soils that will improve soil productivity and nutrient cycling and can substantially augment greenhouse gas reductions associated with substituting renewable energy for fossil energy. Collaborative research with industry has included fuel production and handling in power production, herbicide testing and licensing, release of new cultivars, and genetic modifications for chemical coproduct enhancement. Economically based life cycle analyses based on this research suggest that switchgrass produced for energy will compete favorably both as an agricultural crop and as fuel for industry

  15. Feedstock characterization and recommended procedures

    International Nuclear Information System (INIS)

    Chum, H.L.; Milne, T.A.; Johnson, D.K.; Agblevor, F.A.

    1993-01-01

    Using biomass for non-conventional applications such as feedstocks for fuels, chemicals, new materials, and electric power production requires knowledge of biomass characteristics important to these processes, and characterization techniques that are more appropriate than those employed today for conventional applications of food, feed, and fiber. This paper reviews feedstock characterization and standardization methodologies, and identifies research and development needs. It reviews the international cooperation involved in determining biomass characteristics and standards that has culminated in preparing four biomass samples currently available from the National Institute of Standards and Technology (NIST)

  16. Aquatic weeds as the next generation feedstock for sustainable bioenergy production.

    Science.gov (United States)

    Kaur, Manpreet; Kumar, Manoj; Sachdeva, Sarita; Puri, S K

    2018-03-01

    Increasing oil prices and depletion of existing fossil fuel reserves, combined with the continuous rise in greenhouse gas emissions, have fostered the need to explore and develop new renewable bioenergy feedstocks that do not require arable land and freshwater resources. In this regard, prolific biomass growth of invasive aquatic weeds in wastewater has gained much attention in recent years in utilizing them as a potential feedstock for bioenergy production. Aquatic weeds have an exceptionally higher reproduction rates and are rich in cellulose and hemicellulose with a very low lignin content that makes them an efficient next generation biofuel crop. Considering their potential as an effective phytoremediators, this review presents a model of integrated aquatic biomass production, phytoremediation and bioenergy generation to reduce the land, fresh water and fertilizer usage for sustainable and economical bioenergy. Copyright © 2017. Published by Elsevier Ltd.

  17. Development of Bio-Oil Commodity Fuel as a Refinery Feedstock from High Impact Algae Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kastner, James [Univ. of Georgia, Athens, GA (United States). Dept. of Biochemical Engineering; Mani, Sudhagar [Univ. of Georgia, Athens, GA (United States). Dept. of Biochemical Engineering; Das, K. C. [Univ. of Georgia, Athens, GA (United States). Dept. of Biochemical Engineering; Hilten, Roger [Univ. of Georgia, Athens, GA (United States). Dept. of Biochemical Engineering; Jena, Umakanta [Desert Research Inst. (DRI), Reno, NV (United States)

    2014-11-30

    A two-stage hydrothermal liquefaction (HTL) process was developed to 1) reduce nitrogen levels in algal oil, 2) generate a nitrogen rich stream with limited inhibitors for recycle and algae cultivation, and 3) improve downstream catalytic hydrodenitrogenation and hydrodeoxygenation of the algal oil to refinery intermediates. In the first stage, low temperature HTL was conducted at 125, 175, and 225°C at holding times ranging from 1 to 30 min (time at reaction temperature). A consortium of three algal strains, namely Chlorella sorokiniana, Chlorella minutissima, and Scenedesmus bijuga were used to grow and harvest biomass in a raceway system – this consortium is called the UGA Raceway strain throughout the report. Subsequent analysis of the final harvested product indicated that only two strains predominated in the final harvest - Chlorella sorokiniana and Scenedesmus bijuga. Two additional strains representing a high protein (Spirulina platensis) and high lipid algae (Nannochloropsis) strains were also used in this study. These strains were purchased from suppliers. S. platensis biomass was provided by Earthrise Nutritionals LLC (Calipatria, CA) in dry powder form with defined properties, and was stored in airtight packages at 4°C prior to use. A Nannochloropsis paste from Reed Mariculture was purchased and used in the two-stage HTL/HDO experiments. The solids and liquids from this low temperature HTL pretreatment step were separated and analyzed, leading to the following conclusions. Overall, these results indicate that low temperature HTL (200-250°C) at short residence times (5-15 min) can be used to lyse algae cells and remove/separate protein and nitrogen before subsequent higher temperature HTL (for lipid and other polymer hydrolysis) and HDO. The significant reduction in nitrogen when coupled with low protein/high lipid algae cultivation methods at scale could significantly improve downstream catalytic HDO results. However, significant barriers and

  18. Coupling of Algal Biofuel Production with Wastewater

    Directory of Open Access Journals (Sweden)

    Neha Chamoli Bhatt

    2014-01-01

    Full Text Available Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area.

  19. Biofuel production system with operation flexibility: Evaluation of economic and environmental performance under external disturbance

    Science.gov (United States)

    Kou, Nannan

    Biomass derived liquid hydrocarbon fuel (biofuel) has been accepted as an effective way to mitigate the reliance on petroleum and reduce the greenhouse gas emissions. An increasing demand for second generation biofuels, produced from ligno-cellulosic feedstock and compatible with current infrastructure and vehicle technologies, addresses two major challenges faced by the current US transportation sector: energy security and global warming. However, biofuel production is subject to internal disturbances (feedstock supply and commodity market) and external factors (energy market). The biofuel industry has also heavily relied on government subsidy during the early development stages. In this dissertation, I investigate how to improve the economic and environmental performance of biorefineries (and biofuel plant), as well as enhance its survivability under the external disturbances. Three types of disturbance are considered: (1) energy market fluctuation, (2) subsidy policy uncertainty, and (3) extreme weather conditions. All three factors are basically volatile, dynamic, and even unpredictable, which makes them difficult to model and have been largely ignored to date. Instead, biofuel industry and biofuel research are intensively focused on improving feedstock conversion efficiency and capital cost efficiency while assuming these advancements alone will successfully generate higher profit and thus foster the biofuel industry. The collapse of the largest corn ethanol biofuel company, Verasun Energy, in 2008 calls into question this efficiency-driven approach. A detailed analysis has revealed that although the corn ethanol plants operated by Verasun adopted the more efficient (i.e. higher ethanol yield per bushel of corn and lower capital cost) dry-mill technology, they could not maintain a fair profit margin under fluctuating market condition which made ethanol production unprofitable. This is because dry-mill plant converts a single type of biomass feedstock (corn

  20. A laboratory-scale pretreatment and hydrolysis assay for determination of reactivity in cellulosic biomass feedstocks.

    Science.gov (United States)

    Wolfrum, Edward J; Ness, Ryan M; Nagle, Nicholas J; Peterson, Darren J; Scarlata, Christopher J

    2013-11-14

    The rapid determination of the release of structural sugars from biomass feedstocks is an important enabling technology for the development of cellulosic biofuels. An assay that is used to determine sugar release for large numbers of samples must be robust, rapid, and easy to perform, and must use modest amounts of the samples to be tested.In this work we present a laboratory-scale combined pretreatment and saccharification assay that can be used as a biomass feedstock screening tool. The assay uses a commercially available automated solvent extraction system for pretreatment followed by a small-scale enzymatic hydrolysis step. The assay allows multiple samples to be screened simultaneously, and uses only ~3 g of biomass per sample. If the composition of the biomass sample is known, the results of the assay can be expressed as reactivity (fraction of structural carbohydrate present in the biomass sample released as monomeric sugars). We first present pretreatment and enzymatic hydrolysis experiments on a set of representative biomass feedstock samples (corn stover, poplar, sorghum, switchgrass) in order to put the assay in context, and then show the results of the assay applied to approximately 150 different feedstock samples covering 5 different materials. From the compositional analysis data we identify a positive correlation between lignin and structural carbohydrates, and from the reactivity data we identify a negative correlation between both carbohydrate and lignin content and total reactivity. The negative correlation between lignin content and total reactivity suggests that lignin may interfere with sugar release, or that more mature samples (with higher structural sugars) may have more recalcitrant lignin. The assay presented in this work provides a robust and straightforward method to measure the sugar release after pretreatment and saccharification that can be used as a biomass feedstock screening tool. We demonstrated the utility of the assay by

  1. A Techno-Economic Analysis of Emission Controls on Hydrocarbon Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Arpit; Zhang, Yimin; Davis, Ryan; Eberle, Annika; Heath, Garvin

    2016-06-23

    Biofuels have the potential to reduce our dependency on petroleum-derived transportation fuels and decrease greenhouse gas (GHG) emissions. Although the overall GHG emissions from biofuels are expected to be lower when compared to those of petroleum fuels, the process of converting biomass feedstocks into biofuels emits various air pollutants, which may be subject to federal air quality regulation or emission limits. While prior research has evaluated the technical and economic feasibility of biofuel technologies, gaps still exist in understanding the regulatory issues associated with the biorefineries and their economic implications on biofuel production costs (referred to as minimum fuel selling price (MFSP) in this study). The aim of our research is to evaluate the economic impact of implementing emission reduction technologies at biorefineries and estimate the cost effectiveness of two primary control technologies that may be required for air permitting purposes. We analyze a lignocellulosic sugars-to-hydrocarbon biofuel production pathway developed by the National Renewable Energy Laboratory (NREL) and implement air emission controls in Aspen Plus to evaluate how they affect the MFSP. Results from this analysis can help inform decisions about biorefinery siting and sizing, as well as mitigate the risks associated with air permitting.

  2. Biofuels from pyrolysis in perspective: trade-offs between energy yields and soil-carbon additions.

    Science.gov (United States)

    Woolf, Dominic; Lehmann, Johannes; Fisher, Elizabeth M; Angenent, Largus T

    2014-06-03

    Coproduction of biofuels with biochar (the carbon-rich solid formed during biomass pyrolysis) can provide carbon-negative bioenergy if the biochar is sequestered in soil, where it can improve fertility and thus simultaneously address issues of food security, soil degradation, energy production, and climate change. However, increasing biochar production entails a reduction in bioenergy obtainable per unit biomass feedstock. Quantification of this trade-off for specific biochar-biofuel pathways has been hampered by lack of an accurate-yet-simple model for predicting yields, product compositions, and energy balances from biomass slow pyrolysis. An empirical model of biomass slow pyrolysis was developed and applied to several pathways for biochar coproduction with gaseous and liquid biofuels. Here, we show that biochar production reduces liquid biofuel yield by at least 21 GJ Mg(-1) C (biofuel energy sacrificed per unit mass of biochar C), with methanol synthesis giving this lowest energy penalty. For gaseous-biofuel production, the minimum energy penalty for biochar production is 33 GJ Mg(-1) C. These substitution rates correspond to a wide range of Pareto-optimal system configurations, implying considerable latitude to choose pyrolysis conditions to optimize for desired biochar properties or to modulate energy versus biochar yields in response to fluctuating price differentials for the two commodities.

  3. Metabolic engineering of microalgal based biofuel production: prospects and challenges

    Directory of Open Access Journals (Sweden)

    Chiranjib eBanerjee

    2016-03-01

    Full Text Available The current scenario in renewable energy is focused on development of alternate and sustainable energy sources, amongst which microalgae stands as one of the promising feedstock for biofuel production. It is well known that microalgae generate much larger amounts of biofuels in a shorter time than other sources based on plant seeds. However, the greatest challenge in a transition to algae-based biofuel production is the various other complications involved in microalgal cultivation, its harvesting, concentration, drying and lipid extraction. Several green microalgae accumulate lipids, especially triacylglycerols (TAGs, which are main precursors in the production of lipid. The various aspects on metabolic pathway analysis of an oleaginous microalgae i.e. Chlamydomonas reinhardtii have elucidated some novel metabolically important genes and this enhances the lipid production in this microalgae. Adding to it, various other aspects in metabolic engineering using OptFlux and effectual bioprocess design also gives an interactive snapshot of enhancing lipid production which ultimately improvises the oil yield. This article reviews the current status of microalgal based technologies for biofuel production, bioreactor process design, flux analysis and it also provides various strategies to increase lipids accumulation via metabolic engineering.

  4. Biofuel implementation agendas. A review of Task 39 Member Countries

    International Nuclear Information System (INIS)

    Van Neeft, J.; Van Thuijl, E.; Wismeijer, R.; Mabee, W.

    2007-01-01

    Biofuels for use in the transportation sector have been produced on a significant scale since the 1970's, using a variety of technologies. The biofuels widely available today are predominantly sugar- and starch-based bioethanol, and oilseed- and waste oil-based biodiesel, although new technologies under development may allow the use of lignocellulosic feedstocks. Measures to promote the use of biofuels include renewable fuel mandates, tax incentives, and direct funding for capital projects or fleet upgrades. This paper provides a review of the policies behind the successful establishment of the biofuel industry in countries around the world. The impact of direct funding programs and excise tax exemptions are examined using the United States as a case study. It is found that the success of five major bioethanol producing states (Illinois, Iowa, Nebraska, South Dakota, and Minnesota) is closely related to the presence of funding designed to support the industry in its start-up phase. The study concludes that successful policy interventions can take many forms, but that success is equally dependent upon external factors which include biomass availability, an active industry, and competitive energy prices

  5. Induced market disturbances related to biofuels. Report D2.2 of ELOBIO subtask 2.3

    International Nuclear Information System (INIS)

    Pelkmans, L.; Kessels, K.; Bole, T.

    2009-07-01

    The current market introduction of biofuels coincides with significant price increases on other commodity markets. However it is not clear to what extend biofuels really cause an increased demand for raw materials and thus an important price impact for all alternative applications of these raw materials. While the introduction of biofuels will have a positive impact on some of the related markets and negative on others, the magnitude of this impact needs to be analysed in more detail. Although at this stage, the European biofuel industry does not seem to be a threat to global food production, real concerns exist to what might happen in the future if the current biofuels expansion rates persist. Future growth rates must take due account of the feedback loops that exist between the profitability of biofuel production and feedstock cost, as well as a number of uncertainty factors that will affect the availability and price of raw material for everyone. Such factors include physical aspects of production (land availability, yields, crushing capacities), market factors (e.g. concentration, price elasticity of demand, availability of substitutes), governmental interference (subsidy levels) and international trade agreements. It is important to avoid policy-induced market disturbances as these can become a major barrier for industry and public support for biofuels. The ELOBIO project aims at the development of low-disturbing policy options, enhancing biofuels while minimising the impacts on e.g. markets for food, feed, and biomass for power and heat. This report shows the result of task 2.3 of the ELOBIO project. In this task the status of knowledge of induced market disturbances towards feed, food and other markets will be described. Possible market interferences of various biofuels and feedstocks for biofuels will be described in general and some cases will be treated in more depth, documented with market figures. In a next stage of the ELOBIO project - that is outside

  6. Status of advanced biofuels demonstration facilities in 2012. A report to IEA Bioenergy task 39

    Energy Technology Data Exchange (ETDEWEB)

    Bacovsky, Dina; Ludwiczek, Nikolaus; Ognissanto, Monica; Woergetter, Manfred

    2013-03-18

    A number of companies around the world pursue projects to develop and deploy advanced technologies for the production of biofuels. Plenty of options are available, e.g. on which feedstock to use, how to pretreat it and how to convert it, up to which fuel to produce. This report monitors the multi-facetted development, adds transparency to the sector and thus supports the development and deployment of advanced biofuels production technologies. Main pathways under development can be classified into biochemical technologies, thermochemical technologies and chemical technologies. Biochemical technologies are usually based on lignocellulosic feedstock which is pretreated, hydrolysed into sugars and then fermented to ethanol. Alternative biochemical pathways process sugars or gaseous components into methanol, butanol, mixed alcohols, acetic acids, or other chemical building blocks. Most thermochemical technologies use gasification to convert lignocellulosic feedstock into synthesis gas, which can be converted into BtL-Diesel, SNG, DME or mixed alcohols. Alternative thermochemical pathways include pyrolysis of biomass and upgrading of the resulting pyrolysis oil. The most successful chemical pathway is the hydrotreatment of vegetable oil or fats to produce diesel-type hydrocarbons. Other pathways include catalytic decarboxylation, and methanol production from glycerin. This report is based on a database on advanced biofuels projects. The database feeds into an interactive map which is available at http://demoplants.bioenergy2020.eu, and it is updated continuously. The report includes general descriptions of the main advanced biofuels technologies under development, a list of 102 projects that are being pursued worldwide, and detailed descriptions of these projects. All data displayed has been made available by the companies that pursue these projects. For this reason, the list of projects may not be complete, as some companies may still be reluctant to share data. Since

  7. [Biofuels, food security and transgenic crops].

    Science.gov (United States)

    Acosta, Orlando; Chaparro-Giraldo, Alejandro

    2009-01-01

    Soaring global food prices are threatening to push more poor people back below the poverty line; this will probably become aggravated by the serious challenge that increasing population and climate changes are posing for food security. There is growing evidence that human activities involving fossil fuel consumption and land use are contributing to greenhouse gas emissions and consequently changing the climate worldwide. The finite nature of fossil fuel reserves is causing concern about energy security and there is a growing interest in the use of renewable energy sources such as biofuels. There is growing concern regarding the fact that biofuels are currently produced from food crops, thereby leading to an undesirable competition for their use as food and feed. Nevertheless, biofuels can be produced from other feedstocks such as lingo-cellulose from perennial grasses, forestry and vegetable waste. Biofuel energy content should not be exceeded by that of the fossil fuel invested in its production to ensure that it is energetically sustainable; however, biofuels must also be economically competitive and environmentally acceptable. Climate change and biofuels are challenging FAO efforts aimed at eradicating hunger worldwide by the next decade. Given that current crops used in biofuel production have not been domesticated for this purpose, transgenic technology can offer an enormous contribution towards improving biofuel crops' environmental and economic performance. The present paper critically presents some relevant relationships between biofuels, food security and transgenic plant technology.

  8. Efficient eucalypt cell wall deconstruction and conversion for sustainable lignocellulosic biofuels

    Directory of Open Access Journals (Sweden)

    Adam L. Healey

    2015-11-01

    Full Text Available In order to meet the world’s growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. First generation biofuels, derived from starches of edible feedstocks such as corn, creates competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose generated on marginal agricultural land, will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia and Angophora, are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lends itself towards natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall.

  9. Efficient Eucalypt Cell Wall Deconstruction and Conversion for Sustainable Lignocellulosic Biofuels.

    Science.gov (United States)

    Healey, Adam L; Lee, David J; Furtado, Agnelo; Simmons, Blake A; Henry, Robert J

    2015-01-01

    In order to meet the world's growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall.

  10. Fuelling biofuel

    International Nuclear Information System (INIS)

    Collison, M.

    2006-01-01

    The Canadian government has recently committed to legislation ensuring that all transportation fuels will be supplemented with biofuels by 2010. This article provided details of a position paper written by the Canadian Renewable Fuels Association in response to the legislation. Details of new research to optimize the future biodiesel industry were also presented. Guiding principles of the paper included the creation of open markets across provincial boundaries; the manipulation of tax structures to make products competitive in the United States; and establishing quality standards via the Canadian General Standards Board. It is expected that the principles will reassure petroleum producers and retailers, as ethanol behaves differently than gasoline in storage tanks. As ethanol is water-absorbing, retailers must flush and vacuum their tanks to remove water, then install 10 micron filters to protect fuel lines and dispenser filters from accumulated gasoline residue loosened by the ethanol. Refineries are concerned that the average content of ethanol remains consistent across the country, as refiners will be reluctant to make different blends for different provinces. Critics of biodiesel claim that it is not energy-intensive enough to meet demand, and biodiesel crops are not an efficient use of soils that could otherwise be used to grow food crops. However, researchers in Saskatchewan are committed to using a variety of methods such as reduced tillage systems to make biodiesel production more efficient. Laboratory research has resulted in improved refining processes and genetic manipulation of potential biodiesel crops. Membrane technology is now being used to select water from ethanol. A process developed by the Ottawa company Iogen Corporation uses enzymatic hydrolysis to break down the tough fibres found in corn stalks, leaves, wood and other biomass into sugars. Scientists are also continuing to improve oil content yields in canola and soybean crops. It was

  11. Design of a biomass-to-biorefinery logistics system through bio-inspired metaheuristic optimization considering multiple types of feedstocks

    Science.gov (United States)

    Trueba, Isidoro

    Bioenergy has become an important alternative source of energy to alleviate the reliance on petroleum energy. Bioenergy offers significant potential to mitigate climate change by reducing life-cycle greenhouse gas emissions relative to fossil fuels. The Energy Independence and Security Act mandate the use of 21 billion gallons of advanced biofuels including 16 billion gallons of cellulosic biofuels by the year 2022. It is clear that Biomass can make a substantial contribution to supplying future energy demand in a sustainable way. However, the supply of sustainable energy is one of the main challenges that mankind will face over the coming decades. For instance, many logistical challenges will be faced in order to provide an efficient and reliable supply of quality feedstock to biorefineries. 700 million tons of biomass will be required to be sustainably delivered to biorefineries annually to meet the projected use of biofuels by the year of 2022. This thesis is motivated by the urgent need of advancing knowledge and understanding of the highly complex biofuel supply chain. While corn ethanol production has increased fast enough to keep up with the energy mandates, production of biofuels from different types of feedstocks has also been incremented. A number of pilot and demonstration scale advanced biofuel facilities have been set up, but commercial scale facilities are yet to become operational. Scaling up this new biofuel sector poses significant economic and logistical challenges for regional planners and biofuel entrepreneurs in terms of feedstock supply assurance, supply chain development, biorefinery establishment, and setting up transport, storage and distribution infrastructure. The literature also shows that the larger cost in the production of biomass to ethanol originates from the logistics operation therefore it is essential that an optimal logistics system is designed in order to keep low the costs of producing ethanol and make possible the shift from

  12. Washington State University Algae Biofuels Research

    Energy Technology Data Exchange (ETDEWEB)

    chen, Shulin [Washington State Univ., Pullman, WA (United States). Dept. of Biological Systems Engineering; McCormick, Margaret [Targeted Growth, Inc., Seattle, WA (United States); Sutterlin, Rusty [Inventure Renewables, Inc., Gig Harbor, WA (United States)

    2012-12-29

    The goal of this project was to advance algal technologies for the production of biofuels and biochemicals by establishing the Washington State Algae Alliance, a collaboration partnership among two private companies (Targeted Growth, Inc. (TGI), Inventure Chemicals (Inventure) Inc (now Inventure Renewables Inc) and Washington State University (WSU). This project included three major components. The first one was strain development at TGI by genetically engineering cyanobacteria to yield high levels of lipid and other specialty chemicals. The second component was developing an algal culture system at WSU to produce algal biomass as biofuel feedstock year-round in the northern states of the United States. This system included two cultivation modes, the first one was a phototrophic process and the second a heterotrophic process. The phototrophic process would be used for algae production in open ponds during warm seasons; the heterotrophic process would be used in cold seasons so that year-round production of algal lipid would be possible. In warm seasons the heterotrophic process would also produce algal seeds to be used in the phototrophic culture process. Selected strains of green algae and cyanobacteria developed by TGI were tested in the system. The third component was downstream algal biomass processing by Inventure that included efficiently harvesting the usable fuel fractions from the algae mass and effectively isolating and separating the usable components into specific fractions, and converting isolated fractions into green chemicals.

  13. Final Technical Report - Use of Systems Biology Approaches to Develop Advanced Biofuel-Synthesizing Cyanobacterial Strains

    Energy Technology Data Exchange (ETDEWEB)

    Pakrasi, Himadri [Washington Univ., St. Louis, MO (United States)

    2016-09-01

    The overall objective of this project was to use a systems biology approach to evaluate the potentials of a number of cyanobacterial strains for photobiological production of advanced biofuels and/or their chemical precursors. Cyanobacteria are oxygen evolving photosynthetic prokaryotes. Among them, certain unicellular species such as Cyanothece can also fix N2, a process that is exquisitely sensitive to oxygen. To accommodate such incompatible processes in a single cell, Cyanothece produces oxygen during the day, and creates an O2-limited intracellular environment during the night to perform O2-sensitive processes such as N2-fixation. Thus, Cyanothece cells are natural bioreactors for the storage of captured solar energy with subsequent utilization at a different time during a diurnal cycle. Our studies include the identification of a novel, fast-growing, mixotrophic, transformable cyanobacterium. This strain has been sequenced and will be made available to the community. In addition, we have developed genome-scale models for a family of cyanobacteria to assess their metabolic repertoire. Furthermore, we developed a method for rapid construction of metabolic models using multiple annotation sources and a metabolic model of a related organism. This method will allow rapid annotation and screening of potential phenotypes based on the newly available genome sequences of many organisms.

  14. Development of microorganisms for cellulose-biofuel consolidated bioprocessings: metabolic engineers’ tricks

    Directory of Open Access Journals (Sweden)

    Roberto Mazzoli

    2012-10-01

    Full Text Available Cellulose waste biomass is the most abundant and attractive substrate for "biorefinery strategies" that are aimed to produce high-value products (e.g. solvents, fuels, building blocks by economically and environmentally sustainable fermentation processes. However, cellulose is highly recalcitrant to biodegradation and its conversion by biotechnological strategies currently requires economically inefficient multistep industrial processes. The need for dedicated cellulase production continues to be a major constraint to cost-effective processing of cellulosic biomass.Research efforts have been aimed at developing recombinant microorganisms with suitable characteristics for single step biomass fermentation (consolidated bioprocessing, CBP. Two paradigms have been applied for such, so far unsuccessful, attempts: a “native cellulolytic strategies”, aimed at conferring high-value product properties to natural cellulolytic microorganisms; b “recombinant cellulolytic strategies”, aimed to confer cellulolytic ability to microorganisms exhibiting high product yields and titers.By starting from the description of natural enzyme systems for plant biomass degradation and natural metabolic pathways for some of the most valuable product (i.e. butanol, ethanol, and hydrogen biosynthesis, this review describes state-of-the-art bottlenecks and solutions for the development of recombinant microbial strains for cellulosic biofuel CBP by metabolic engineering. Complexed cellulases (i.e. cellulosomes benefit from stronger proximity effects and show enhanced synergy on insoluble substrates (i.e. crystalline cellulose with respect to free enzymes. For this reason, special attention was held on strategies involving cellulosome/designer cellulosome-bearing recombinant microorganisms.

  15. Growth in Biofuels Markets: Long Term Environmental and Socioeconomic Impacts (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    Seth D. Meyer; Nicholas Kalaitzandonakes

    2010-12-02

    Over the last several years increasing energy and petroleum prices have propelled biofuels and the feedstocks used to produce them, to the forefront of alternative energy production. This growth has increased the linkages between energy and agricultural markets and these changes around the world are having a significant effect on agricultural markets as biofuels begin to play a more substantial role in meeting the world's energy needs. Biofuels are alternatively seen as a means to reduce carbon emissions, increase energy independence, support rural development and to raise farm income. However, concern has arisen that the new demand for traditional commodities or alternative commodities which compete for land can lead to higher food prices and the environmental effects from expanding crop acreage may result in uncertain changes in carbon emissions as land is converted both in the US and abroad. While a number of studies examine changes in land use and consumption from changes in biofuels policies many lack effective policy representation or complete coverage of land types which may be diverted in to energy feedstock production. Many of these biofuels and renewable energy induced land use changes are likely to occur in developing countries with at-risk consumers and on environmentally sensitive lands. Our research has improved the well known FAPRI-MU modeling system which represents US agricultural markets and policies in great detail and added a new model of land use and commodity markets for major commodity producers, consumers and trade dependent and food insecure countries as well as a rest of the world aggregate. The international modules include traditional annual crop lands and include perennial crop land, pasture land, forest land and other land uses from which land may be drawn in to biofuels or renewable energy feedstock production. Changes in calorie consumption in food insecure countries from changes in renewable energy policy can also be examined

  16. Process modeling and supply chain design for advanced biofuel production based on bio-oil gasification

    Science.gov (United States)

    Li, Qi

    As a potential substitute for petroleum-based fuel, second generation biofuels are playing an increasingly important role due to their economic, environmental, and social benefits. With the rapid development of biofuel industry, there has been an increasing literature on the techno-economic analysis and supply chain design for biofuel production based on a variety of production pathways. A recently proposed production pathway of advanced biofuel is to convert biomass to bio-oil at widely distributed small-scale fast pyrolysis plants, then gasify the bio-oil to syngas and upgrade the syngas to transportation fuels in centralized biorefinery. This thesis aims to investigate two types of assessments on this bio-oil gasification pathway: techno-economic analysis based on process modeling and literature data; supply chain design with a focus on optimal decisions for number of facilities to build, facility capacities and logistic decisions considering uncertainties. A detailed process modeling with corn stover as feedstock and liquid fuels as the final products is presented. Techno-economic analysis of the bio-oil gasification pathway is also discussed to assess the economic feasibility. Some preliminary results show a capital investment of 438 million dollar and minimum fuel selling price (MSP) of $5.6 per gallon of gasoline equivalent. The sensitivity analysis finds that MSP is most sensitive to internal rate of return (IRR), biomass feedstock cost, and fixed capital cost. A two-stage stochastic programming is formulated to solve the supply chain design problem considering uncertainties in biomass availability, technology advancement, and biofuel price. The first-stage makes the capital investment decisions including the locations and capacities of the decentralized fast pyrolysis plants and the centralized biorefinery while the second-stage determines the biomass and biofuel flows. The numerical results and case study illustrate that considering uncertainties can be

  17. European biofuel policies in retrospect

    International Nuclear Information System (INIS)

    Van Thuijl, E.; Deurwaarder, E.P.

    2006-05-01

    Despite the benefits of the production and use of biofuels in the fields of agriculture, security of energy supply and the environment, in India and surrounding countries, the barriers to the use of biofuels are still substantial. The project ProBios (Promotion of Biofuels for Sustainable Development in South and South East Asia) aims at promoting biofuels in the view of sustainable development in the Southern and South eastern Asian countries. The first stage of this project concerns a study, which will provide a thorough review of the complicated and sector-overarching issue of biofuels in India and surrounding countries. This report describes past experiences with the policy context for a selection of EU countries, with the purpose of identifying conclusions from the European experience that may be valuable for Indian and South East Asian policy makers and other biofuels stakeholders

  18. The Renewable Energy Directive: biofuels, biomass and sustainable development criteria. How to check in France the compliance of marketed biofuels with sustainability criteria defined by the Directive on renewable energies? (Phase 1: biofuels and bio-liquids)

    International Nuclear Information System (INIS)

    2009-06-01

    After having recalled and commented the main principles of the European directive which sets objectives in terms of renewable energy promotion and consumption, this report analyses the quantitative and qualitative sustainability criteria which must be applied particularly to biofuels and bio-liquids produced from agricultural activities, and their application perspectives. It gives recommendations to assess these criteria. It also comments the modalities used to control the compliance of biofuels with these criteria

  19. Biofuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    In 2010 bio-fuel continued to gnaw away at petrol and diesel consumption in the European Union (EU). However its pace backs the assertion that bio-fuel consumption growth in EU slackened off in 2010. In the transport sector, it increased by only 1.7 Mtoe compared to 2.7 Mtoe in 2009. The final total bio-fuel consumption figure for 2010 should hover at around 13.9 Mtoe that can be broken down into 10.7 Mtoe for bio-diesel, 2.9 Mtoe for bio-ethanol and 0.3 Mtoe for others. Germany leads the pack for the consumption of bio-fuels and for the production of bio-diesel followed by France and Spain

  20. Example of feedstock optimization

    International Nuclear Information System (INIS)

    Boustros, E.

    1991-01-01

    An example of feedstock optimization at an olefins plant which has the flexibility to process different kinds of raw materials while maintaining the same product slate, is presented. Product demand and prices, and the number of units in service as well as the required resources to operate these units are considered to be fixed. The plant profitability is a function of feedstock choice, plus constant costs which are the non-volume related costs. The objective is to find a set or combination of feedstocks that could match the client product demands and fall within the unit's design and capacity, while maximizing the financial operating results

  1. Biofuels – On the way to sustainability?: Opinion

    Directory of Open Access Journals (Sweden)

    Martin Kaltschmitt

    2016-12-01

    and income in rural areas as well as development of perspectives for farmers;Convenient inclusion into existing technology and market structures of transportation based on fossil fuels;Development and demonstration of technological processes with a high export potential and thus the option of creation of value.These arguments were always questioned critically by parts of the public and especially by environmental NGOs. Among others, the following arguments have been presented:The GHG savings are marginal because the production process for biofuels is quite energy consuming (i.e. no or only negligible net GHG savings;Due to direct and indirect land use change effects (LUC and iLUC possible GHG reductions are inverted  to  (significantly  higher  GHG  emissions compared to  fossil fuel  use  (i.e.  biofuels contribute to rain forest clearing;Biofuels contribute to food scarcity and hunger especially in less developed countries due to increasing food prices that are triggered by an increasing demand for land and agricultural products as well certain political instruments that distort the market (e.g. subsidies;Biofuels contribute to monoculture and industrial agriculture as well as to the reduction of biodiversity.Due to this ongoing social debate, significant efforts to minimize negative consequences and to increase acceptance have been made especially within the European Union (EU in recent years. For example, the following measures have been implemented by the European Commission (EC:Agricultural feedstocks used for biofuel production need to come from sustainable sources; this has to be certified by an independent body. In contrast, no legal sustainability requirements for agricultural feed and food products exist.The subsidies for biofuels are tied up with an assessment of the achieved GHG savings, which are calculated based on a pre-defined mandatory methodology [4]. By decision of the European Parliament, indirect land use change effects are not taken

  2. Biofuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    The European Union governments no longer view the rapid increase in biofuel consumption as a priority. Between 2010 and 2011 biofuel consumption increased by only 3%, which translates into 13.6 million tonnes of oil equivalent (toe) used in 2011 compared to 13.2 million toe in 2010. In 2011 6 European countries had a biofuel consumption in transport that went further 1 million toe: Germany (2,956,746 toe), France (2,050,873 toe), Spain (1,672,710 toe), Italy (1,432,455 toe), United Kingdom (1,056,105 toe) and Poland (1,017,793 toe). The breakdown of the biofuel consumption for transport in the European Union in 2011 into types of biofuels is: bio-diesel (78%), bio-ethanol (21%), biogas (0.5%) and vegetable oil (0.5%). In 2011, 4 bio-diesel producers had a production capacity in Europe that passed beyond 900,000 tonnes: Diester Industrie International (France) with 3,000,000 tonnes, Neste Oil (Finland) with 1,180,000 tonnes, ADM bio-diesel (Germany) with 975,000 tonnes, and Infinita (Spain) with 900,000 tonnes. It seems that the European Union's attention has shifted to setting up sustainability systems to verify that the biofuel used in the various countries complies with the Renewable Energy Directive's sustainability criteria

  3. Biofuels and the biorefinery concept

    International Nuclear Information System (INIS)

    Taylor, Gail

    2008-01-01

    Liquid fuels can be made by refining a range of biomass materials, including oil-rich and sugar-rich crops such as oil-seed rape and sugar beet, biomass that consists mainly of plant cell walls (second generation lignocellulosics), macro- and micro-alga, or material that would now be discarded as waste. This can include animal bi-products as well as waste wood and other resources. In the medium-term, plant cell (lignocellulosic) material is likely to be favoured as the feedstock for biorefineries because of its availability. The UK may make use of a number of these options because of its complex agricultural landscape. There are now a range of targets for biofuel use in the UK, although their environmental effects are disputed. The technology of refining these materials is well known. Possible outputs include biodiesel and bioethanol, both of which can be used as transport fuel. Other potential products include hydrogen, polymers and a wide range of value-added chemicals, making this technology important in a post-petrochemical world. Biorefineries could use cogeneration to produce electricity. The paper identifies a range of research and development priorities which must be met if this opportunity is to be exploited fully

  4. Development of Renewable Biofuels Technology by Transcriptomic Analysis and Metabolic Engineering of Diatoms

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrand, Mark [Univ. of California, San Diego, CA (United States)

    2013-11-18

    limitation, or to enable lipid accumulation along with high biomass accumulation.The significance of this project is that it will enable greater control over lipid production in diatoms by manipulable intracellular processes rather than from variable environmental conditions, and it will possibly enable lipid accumulation under normal growth conditions. Current economics dictate the use of open outdoor raceway pond systems for commercial-scale microalgal growth for biofuels production (although advanced design enclosed bioreactors are under consideration, they are currently not cost effective). Outdoor systems are subject to large variability in environmental conditions. In microalgae, lipid accumulation generally occurs under nutrient limiting conditions, which prevents high biomass accumulation. Potentially, one could carefully adjust the level of a particular nutrient so that it would become limiting after sufficient biomass accumulated; however, given the variability inherent in microalgal cellular metabolism under different light, temperature, and nutrient regimes, this will be a relatively uncontrolled and poorly reproducible approach. A better strategy would be to provide ample nutrients, but trigger lipid accumulation “artificially” by manipulating intracellular processes through metabolic engineering. In addition, identifying the key regulatory steps involved in controlling carbon partitioning in the cell coupled with metabolic engineering should enable greater partitioning of carbon into lipids during non-limiting nutrient growth conditions. The approaches outlined in this proposal are aimed at achieving these goals, and are expected to have a substantial impact on the development of renewable biofuels technology. Development of the approaches described in this proposal will provide a rich interdisciplinary educational experience for high school and undergraduate students to foster their development in a scientific career.

  5. Synthetic biology for microbial production of lipid-based biofuels.

    Science.gov (United States)

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing. Published by Elsevier Ltd.

  6. Synthetic biology for microbial production of lipid-based biofuels

    Energy Technology Data Exchange (ETDEWEB)

    d' Espaux, L; Mendez-Perez, D; Li, R; Keasling, JD

    2015-10-23

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here in this paper we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. Lastly, we further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing.

  7. Biomass Feedstock and Conversion Supply System Design and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Jacob J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Roni, Mohammad S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cafferty, Kara G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets

  8. Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production

    International Nuclear Information System (INIS)

    Chiaramonti, David; Prussi, Matteo; Buffi, Marco; Rizzo, Andrea Maria; Pari, Luigi

    2017-01-01

    Highlights: • A review of microalgae thermochemical conversion to bioliquids was carried out. • We focused on pyrolysis and hydrothermal liquefaction for biocrude/biofuels. • Original experimental research on microalgae pyrolysis was also carried out. • Starvation does not impact significant on the energy content of the biocrude. • This result is relevant for designing full scale microalgae production plants. - Abstract: Advanced Biofuels steadily developed during recent year, with several highly innovative processes and technologies explored at various scales: among these, lignocellulosic ethanol and CTO (Crude Tall Oil)-biofuel technologies already achieved early-commercial status, while hydrotreating of vegetable oils is today fully commercial, with almost 3.5 Mt/y installed capacity worldwide. In this context, microalgae grown in salt-water and arid areas represent a promising sustainable chain for advanced biofuel production but, at the same time, they also represent a considerable challenge. Processing microalgae in an economic way into a viable and sustainable liquid biofuel (a low-cost mass-product) is not trivial. So far, the most studied microalgae-based biofuel chain is composed by microorganism cultivation, lipid accumulation, oil extraction, co-product valorization, and algae oil conversion through conventional esterification into Fatty Acids Methyl Esters (FAME), i.e. Biodiesel, or Hydrotreated Esters and Fatty Acids (HEFA), the latter representing a very high quality drop-in biofuel (suitable either for road transport or for aviation). However, extracting the algae oil at low cost and industrial scale is not yet a mature process, and there is not yet industrial production of algae-biofuel from these two lipid-based chains. Another option can however be considered: processing the algae through dedicated thermochemical reactors into advanced biofuels, thus approaching the downstream processing of algae in a completely different way than

  9. The second generation biofuels from the biomass

    International Nuclear Information System (INIS)

    2007-01-01

    The author takes stock on the second generation biofuels in the world, the recent technologies, their advantages, the research programs and the economical and environmental impacts of the biofuels development. (A.L.B.)

  10. Toward the lowest energy consumption and emission in biofuel production: combination of ideal reactors and robust hosts.

    Science.gov (United States)

    Xu, Ke; Lv, Bo; Huo, Yi-Xin; Li, Chun

    2018-04-01

    Rising feedstock costs, low crude oil prices, and other macroeconomic factors have threatened biofuel fermentation industries. Energy-efficient reactors, which provide controllable and stable biological environment, are important for the large-scale production of renewable and sustainable biofuels, and their optimization focus on the reduction of energy consumption and waste gas emission. The bioreactors could either be aerobic or anaerobic, and photobioreactors were developed for the culture of algae or microalgae. Due to the cost of producing large-volume bioreactors, various modeling strategies were developed for bioreactor design. The achievement of ideal biofuel reactor relies on not only the breakthrough of reactor design, but also the creation of super microbial factories with highest productivity and metabolic pathway flux. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Developments in international solid biofuel trade - an analysis of volumes, policies and market factors

    NARCIS (Netherlands)

    Lamers, P.; Junginger, H.M.; Hamelinck, C.N.; Faaij, A.P.C.

    2012-01-01

    This paper presents and analyses international solid biofuel trade and concludes upon interactions with bioenergy policies and market factors. It shows that trade has grown from about 56 to 300 PJ between 2000 and 2010. Wood pellets grew strongest, i.e. from 8.5 to 120 PJ. Other relevant streams by

  12. Biofuel developments in Mozambique. Update and analysis of policy, potential and reality

    NARCIS (Netherlands)

    Schut, M.; Slingerland, M.A.; Locke, A.

    2010-01-01

    Climate change, rising oil prices and concerns about future energy supplies have contributed to a growing interest in using biomass for energy purposes. Several studies have highlighted the biophysical potential of biofuel production on the African continent, and analysts see Mozambique as one of

  13. Overview on Biofuels from a European Perspective

    Science.gov (United States)

    Ponti, Luigi; Gutierrez, Andrew Paul

    2009-01-01

    In light of the recently developed European Union (EU) Biofuels Strategy, the literature is reviewed to examine (a) the coherency of biofuel production with the EU nonindustrial vision of agriculture, and (b) given its insufficient land base, the implications of a proposed bioenergy pact to grow biofuel crops in the developing world to meet EU…

  14. Biofuels securing the planet's future energy needs

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2009-01-01

    The biofuels include bioethanol, biobutanol, biodiesel, vegetable oils, biomethanol, pyrolysis oils, biogas, and biohydrogen. There are two global biomass based liquid transportation fuels that might replace gasoline and diesel fuel. These are bioethanol and biodiesel. World production of biofuel was about 68 billion L in 2007. The primary feedstocks of bioethanol are sugarcane and corn. Bioethanol is a gasoline additive/substitute. Bioethanol is by far the most widely used biofuel for transportation worldwide. About 60% of global bioethanol production comes from sugarcane and 40% from other crops. Biodiesel refers to a diesel-equivalent mono alkyl ester based oxygenated fuel. Biodiesel production using inedible vegetable oil, waste oil and grease has become more attractive recently. The economic performance of a biodiesel plant can be determined once certain factors are identified, such as plant capacity, process technology, raw material cost and chemical costs. The central policy of biofuel concerns job creation, greater efficiency in the general business environment, and protection of the environment.

  15. Biofuels: 1995 project summaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    Domestic transportation fuels are derived primarily from petroleum and account for about two-thirds of the petroleum consumption in the United States. In 1994, more than 40% of our petroleum was imported. That percentage is likely to increase, as the Middle East has about 75% of the world`s oil reserves, but the United States has only about 5%. Because we rely so heavily on oil (and because we currently have no suitable substitutes for petroleum-based transportation fuels), we are strategically and economically vulnerable to disruptions in the fuel supply. Additionally, we must consider the effects of petroleum use on the environment. The Biofuels Systems Division (BSD) is part of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EE). The day-to-day research activities, which address these issues, are managed by the National Renewable Energy Laboratory in Golden, Colorado, and Oak Ridge National Laboratory in Oak Ridge, Tennessee. BSD focuses its research on biofuels-liquid and gaseous fuels made from renewable domestic crops-and aggressively pursues new methods for domestically producing, recovering, and converting the feedstocks to produce the fuels economically. The biomass resources include forage grasses, oil seeds, short-rotation woody crops, agricultural and forestry residues, algae, and certain industrial and municipal waste streams. The resulting fuels include ethanol, methanol, biodiesel, and ethers.

  16. Development of a new bioethanol feedstock - Anaerobically digested fiber from confined dairy operations using different digestion configurations

    International Nuclear Information System (INIS)

    Yue, Zhengbo; Teater, Charles; MacLellan, James; Liu, Yan; Liao, Wei

    2011-01-01

    Two types of digesters, continuous stirring-tank reactor (CSTR) and plug flow reactor (PFR), were integrated into a biorefining concept to generate a new cellulosic ethanol feedstock -anaerobically digested fiber (AD fiber) from dairy cow feces. Cellulose content in AD fibers was significantly increased during the anaerobic digestion. CSTR and PFR AD fibers had cellulose contents of 357 and 322 g kg -1 dried AD fiber. The AD fibers were enzymatically hydrolyzed after being pretreated by dilute sulfuric acid or dilute sodium hydroxide, and the hydrolysates were used to produce ethanol. Alkali pretreatment was concluded as a suitable pretreatment method for AD fibers. Under the optimal conditions the AD fibers processed by CSTR and PFR produced ethanol of 26 g kg -1 and 23 g kg -1 dry feces, respectively. Energy balance analysis further indicated that CSTR was a preferred digestion method to prepare AD fiber for ethanol production. -- Highlights: → Anaerobic digestion process has been discovered as a process that is not only a downstream process, but also a pretreatment method to prepare cellulosic feedstock for biorefining. → In this study the effects of two different AD reactor configurations (CSTR and PFR) on AD fiber quality and bioethanol conversion of the AD fiber have been explored. → Mass and energy balance analysis elucidated that compared to PFR, CSTR is better AD treatment to prepare AD fiber for bioethanol production.

  17. Development of an installation for the production of high-purity hydrogen using the pressure-swing-adsorption process with coke-oven gas as feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M; Sugishita, M

    1986-04-01

    This paper describes how Nippon Steel developed a process for producing high-purity hydrogen using the PSA method with coke-oven gas as a feedstock. The process comprises a gas-compression and gas-cooling stage, a pre-treatment stage, an adsorption stage, a de-oxygenation stage and various control and maintenance devices, etc. The triple-tower plant constructed is the equivalent of a four-tower conventional installation, with a maximum capacity of around 10,000 Nm/sup 3//h. 1 tab., 14 figs., 3 refs.

  18. The price for biofuels sustainability

    International Nuclear Information System (INIS)

    Pacini, Henrique; Assunção, Lucas; Dam, Jinke van; Toneto, Rudinei

    2013-01-01

    The production and usage of biofuels has increased worldwide, seeking goals of energy security, low-carbon energy and rural development. As biofuels trade increased, the European Union introduced sustainability regulations in an attempt to reduce the risks associated with biofuels. Producers were then confronted with costs of sustainability certification, in order to access the EU market. Hopes were that sustainably-produced biofuels would be rewarded with higher prices in the EU. Based on a review of recent literature, interviews with traders and price data from Platts, this paper explores whether sustainability premiums emerged and if so, did they represent an attracting feature in the market for sustainable biofuels. This article finds that premiums for ethanol and biodiesel evolved differently between 2011 and 2012, but have been in general very small or inexistent, with certified fuels becoming the new norm in the market. For different reasons, there has been an apparent convergence between biofuel policies in the EU and the US. As market operators perceive a long-term trend for full certification in the biofuels market, producers in developing countries are likely to face additional challenges in terms of finance and capacity to cope with the sustainability requirements. - Highlights: • EU biofuel sustainability rules were once thought to reward compliant producers with price-premiums. • Premiums for certified biofuels, however, have been small for biodiesel and almost non-existent for ethanol. • As sustainable biofuels became the new norm, premiums disappeared almost completely in 2012. • Early stages of supply chains concentrate the highest compliance costs, affecting specially developing country producers. • Producers are now in a market where sustainable biofuels have become the new norm

  19. Strategy for research and development connected to production o fliquid biofuels; Strategi for forskning og udvikling vedr. fremstilling af flydende biobraendstoffer

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-01

    In many large industrialised countries it is expected that engine fuels manufactured from biomass will play an increasing role, especially considering security of supply, reduction of CO{sub 2} emission and increasing rate of employment within farming. The price of biofuel will, however, even in the long term, depending on the biomass and the technology used for production, easily remain significantly higher than the price of the fossil fuel, which biofuel substitutes. The most relevant biofuels today are ethanol and RME (rape seed methyl ester - bio diesel). As regards new technology for ethanol production, a significant knowledge base has been built in Denmark in research collaboration between DTU-BioCentrum and Risoe National Laboratory. The Danish research efforts should primarily focus on development of technology and know-how that can be patented and commercialised internationally and furthermore can be used for establishing a biofuel production in Denmark. (BA)

  20. The biobased economy: biofuels, materials and chemicals in the post-oil era

    National Research Council Canada - National Science Library

    Langeveld, Hans; Meeusen, Marieke; Sanders, Johan

    2010-01-01

    .... Starting with a state-of-the-art overview of major biobased technologies, including biorefinery and technologies for the production of biofuels, biogas, biomass feedstocks for chemistry and bio...

  1. Is there a role for biofuels in promoting energy self sufficiency and security? A CGE analysis of biofuel policy in Thailand

    International Nuclear Information System (INIS)

    Wianwiwat, Suthin; Asafu-Adjaye, John

    2013-01-01

    Given the rising price of crude oil, some developing countries including Thailand are looking towards developing their domestic renewable energy resources, in particular biofuels. However, there are concerns about the possible adverse effects such a policy strategy would have on key variables such as sectoral output, land allocation and the effects of prices, particularly food prices. This study develops a computable general equilibrium (CGE) model of the Thailand economy that features enhancements of the energy sector and uses it to analyze the government’s recent renewable energy development plan. This plan aims to increase domestic energy use from renewable sources to replace fossil fuel imports. The study simulated specific policies contained in the plan. Among other things, we found that promoting biofuel use causes a rapid increase in the price of biofuel and biofuel feedstock in the short-run, whereas these prices only increase slightly in the long-run due to more elastic supplies. The prices of food and other products marginally increase, implying that food security is not undermined by the policy. On the basis of the findings, the study recommends a review of some of the targets because they were found to be rather high, and a phasing in of others. - Highlights: ► This study evaluates Thailand’s 10-year alternative energy development plan. ► Promoting biofuel use causes a rapid increase in the price of biofuel. ► Food prices marginally increase, implying that food security is not undermined. ► We recommend a review of some of the targets because they are too high

  2. Recent patents on genetic modification of plants and microbes for biomass conversion to biofuels.

    Science.gov (United States)

    Lubieniechi, Simona; Peranantham, Thinesh; Levin, David B

    2013-04-01

    Development of sustainable energy systems based on renewable biomass feedstocks is now a global effort. Lignocellulosic biomass contains polymers of cellulose, hemicellulose, and lignin, bound together in a complex structure. Liquid biofuels, such as ethanol, can be made from biomass via fermentation of sugars derived from the cellulose and hemicellulose within lignocellulosic materials, but pre-treatment of the biomass to release sugars for microbial conversion is a significant barrier to commercial success of lignocellulosic biofuel production. Strategies to reduce the energy and cost inputs required for biomass pre-treatment include genetic modification of plant materials to reduce lignin content. Significant efforts are also underway to create recombinant microorganisms capable of converting sugars derived from lignocellulosic biomass to a variety of biofuels. An alternative strategy to reduce the costs of cellulosic biofuel production is the use of cellulolytic microorganisms capable of direct microbial conversion of ligno-cellulosic biomass to fuels. This paper reviews recent patents on genetic modification of plants and microbes for biomass conversion to biofuels.

  3. Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach

    International Nuclear Information System (INIS)

    Subhadra, Bobban G.

    2010-01-01

    Algal biomass can provide viable third generation feedstock for liquid transportation fuel. However, for a mature commercial industry to develop, sustainability as well as technological and economic issues pertinent to algal biofuel sector must be addressed first. This viewpoint focuses on three integrated approaches laid out to meet these challenges. Firstly, an integrated algal biorefinery for sequential biomass processing for multiple high-value products is delineated to bring in the financial sustainability to the algal biofuel production units. Secondly, an integrated renewable energy park (IREP) approach is proposed for amalgamating various renewable energy industries established in different locations. This would aid in synergistic and efficient electricity and liquid biofuel production with zero net carbon emissions while obviating numerous sustainability issues such as productive usage of agricultural land, water, and fossil fuel usage. A 'renewable energy corridor' rich in multiple energy sources needed for algal biofuel production for deploying IREPs in the United States is also illustrated. Finally, the integration of various industries with algal biofuel sector can bring a multitude of sustainable deliverables to society, such as renewable supply of cheap protein supplements, health products and aquafeed ingredients. The benefits, challenges, and policy needs of the IREP approach are also discussed.

  4. Integrating social and value dimensions into sustainability assessment of lignocellulosic biofuels.

    Science.gov (United States)

    Raman, Sujatha; Mohr, Alison; Helliwell, Richard; Ribeiro, Barbara; Shortall, Orla; Smith, Robert; Millar, Kate

    2015-11-01

    The paper clarifies the social and value dimensions for integrated sustainability assessments of lignocellulosic biofuels. We develop a responsible innovation approach, looking at technology impacts and implementation challenges, assumptions and value conflicts influencing how impacts are identified and assessed, and different visions for future development. We identify three distinct value-based visions. From a techno-economic perspective, lignocellulosic biofuels can contribute to energy security with improved GHG implications and fewer sustainability problems than fossil fuels and first-generation biofuels, especially when biomass is domestically sourced. From socio-economic and cultural-economic perspectives, there are concerns about the capacity to support UK-sourced feedstocks in a global agri-economy, difficulties monitoring large-scale supply chains and their potential for distributing impacts unfairly, and tensions between domestic sourcing and established legacies of farming. To respond to these concerns, we identify the potential for moving away from a one-size-fits-all biofuel/biorefinery model to regionally-tailored bioenergy configurations that might lower large-scale uses of land for meat, reduce monocultures and fossil-energy needs of farming and diversify business models. These configurations could explore ways of reconciling some conflicts between food, fuel and feed (by mixing feed crops with lignocellulosic material for fuel, combining livestock grazing with energy crops, or using crops such as miscanthus to manage land that is no longer arable); different bioenergy applications (with on-farm use of feedstocks for heat and power and for commercial biofuel production); and climate change objectives and pressures on farming. Findings are based on stakeholder interviews, literature synthesis and discussions with an expert advisory group.

  5. The Local Social and Environmental Impacts of Smallholder-Based Biofuel Investments in Zambia

    Directory of Open Access Journals (Sweden)

    Laura German

    2011-12-01

    Full Text Available High oil prices, recent commitments by industrialized countries to enhance the use of renewable energy, and efforts by developing countries to stimulate foreign investment as a pathway to development have fueled high levels of interest in the biofuel sector throughout much of sub-Saharan Africa. Zambia is no exception. A large, land-locked country with high pump prices and vast tracts of land considered by many to be "degraded" or "underutilized," investor interest in the sector has remained high despite uncertainties associated with unproven feedstocks and market fluctuations. While investment in multiple feedstock and production models may be observed, one of the primary investments has been in jatropha outgrower schemes in which small-scale farmers grow feedstock on contract with domestic and foreign investors. We assess the history and evolution of the largest such scheme in Zambia, as well as the social and environmental impacts in two districts with large numbers of outgrowers. Findings suggest that, although such a production model may hold promise for enhancing rural livelihood benefits from the emerging biofuel sector, to date, small-scale farmers have borne the brunt of the risk and uncertainty that are the trademarks of this emerging industry. We conclude with a discussion of options to minimize forest conversion and protect farmers against high-risk investments, while harnessing the potential of this business model for enhancing rural livelihoods in Zambia and elsewhere.

  6. An Integrated Assessment of Location-Dependent Scaling for Microalgae Biofuel Production Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Andre M.; Abodeely, Jared; Skaggs, Richard; Moeglein, William AM; Newby, Deborah T.; Venteris, Erik R.; Wigmosta, Mark S.

    2014-06-19

    Successful development of a large-scale microalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain—from facility siting/design through processing/upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are addressed in part by applying the Integrated Assessment Framework (IAF)—an integrated multi-scale modeling, analysis, and data management suite—to address key issues in developing and operating an open-pond facility by analyzing how variability and uncertainty in space and time affect algal feedstock production rates, and determining the site-specific “optimum” facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. The IAF was applied to a set of sites previously identified as having the potential to cumulatively produce 5 billion-gallons/year in the southeastern U.S. and results indicate costs can be reduced by selecting the most effective processing technology pathway and scaling downstream processing capabilities to fit site-specific growing conditions, available resources, and algal strains.

  7. Design and development of polyamine polymer for harvesting microalgae for biofuels production

    International Nuclear Information System (INIS)

    Gupta, S.K.; Kumar, M.; Guldhe, A.; Ansari, F.A.; Rawat, I.; Kanney, K.; Bux, F.

    2014-01-01

    Highlights: • A low cost, high molecular weight cationic polymer was designed and developed for microalgal harvesting. • The polyamine polymer showed high flocculation efficiency for Scenedesmus sp. in comparison with chitosan and alum. • Such polymers could be preferred over other flocculants for microalgal harvesting for low value products such as biodiesel. • The polymer has not shown any deteriorating effect on lipid recovery and FAME profile of Scenedesmus sp. • Polyamine flocculant could be a cost effective option for harvesting of microalgal biomass for sustainable energy production. - Abstract: Research findings of the past few decades on the cultivation of microalgae for biodiesel production from laboratory to pilot scale microalgal cultivation have translated into empirical hope of developing an eco-friendly biofuel from algae. As far as economic sustainability is concerned, harvesting of microalgae is one of the most energy extensive processes and thus a major challenge, being faced by this industry. In our study, we designed and developed a quaternary ammonium salt based cationic polymer and evaluated its effectiveness for freshwater microalgae harvesting. An epichlorohydrin-n,n-diisopropylamine-dimethylamine polymer with high viscosity (1040 cps) was synthesized. The flocculation performance of this polyamine polymer was evaluated in terms of biomass recovery efficiency of microalgae (Scenedesmus sp.), its effect on lipid yield and composition. The results revealed that due to high molecular weight, the biomass recovery efficiency of the polymer was achieved >90% at a very small dose of 8 mg/L whereas similar biomass recovery efficiency of chitosan and alum were achieved at 80 and 250 mg/L respectively. The presence of functional quaternary amine and hydroxyl groups played an important role in electric charge neutralization of microalgal cells, hence the improved microalgal flocculation performance in comparison to the natural flocculants but

  8. Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products.

    Science.gov (United States)

    De Bhowmick, Goldy; Sarmah, Ajit K; Sen, Ramkrishna

    2018-01-01

    A constant shift of society's dependence from petroleum-based energy resources towards renewable biomass-based has been the key to tackle the greenhouse gas emissions. Effective use of biomass feedstock, particularly lignocellulosic, has gained worldwide attention lately. Lignocellulosic biomass as a potent bioresource, however, cannot be a sustainable alternative if the production cost is too high and/ or the availability is limited. Recycling the lignocellulosic biomass from various sources into value added products such as bio-oil, biochar or other biobased chemicals in a bio-refinery model is a sensible idea. Combination of integrated conversion techniques along with process integration is suggested as a sustainable approach. Introducing 'series concept' accompanying intermittent dark/photo fermentation with co-cultivation of microalgae is conceptualised. While the cost of downstream processing for a single type of feedstock would be high, combining different feedstocks and integrating them in a bio-refinery model would lessen the production cost and reduce CO 2 emission. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Integrated Model of Balanced Score Card and Technology Component Measurement: A Strategic Perspective in Indonesia Biofuel Engineering Development

    Directory of Open Access Journals (Sweden)

    Sukardi Sukardi

    2010-08-01

    Full Text Available The development of biofuel as an ecofriendly energy alternative has a value chain problem in alignment policies between related parties. Identifiying its alignment, we make a strategic mapping by building integrated base scorecard, so the strategic target in the subsequent perspective layer can be developed more realistically. Structural Equation Modeling (SEM modeling was used to examine horizontal connection validity to show strong relation between objectives strategy, and it will be measured of constructed component on the internal process by Technology Coefficient Contribution indexes.

  10. Assessing the environmental sustainability of biofuels.

    Science.gov (United States)

    Kazamia, Elena; Smith, Alison G

    2014-10-01

    Biofuels vary in their potential to reduce greenhouse gas emissions when displacing fossil fuels. Savings depend primarily on the crop used for biofuel production, and on the effect that expanding its cultivation has on land use. Evidence-based policies should be used to ensure that maximal sustainability benefits result from the development of biofuels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The impact of first-generation biofuels on the depletion of the global phosphorus reserve.

    Science.gov (United States)

    Hein, Lars; Leemans, Rik

    2012-06-01

    The large majority of biofuels to date is "first-generation" biofuel made from agricultural commodities. All first-generation biofuel production systems require phosphorus (P) fertilization. P is an essential plant nutrient, yet global reserves are finite. We argue that committing scarce P to biofuel production involves a trade-off between climate change mitigation and future food production. We examine biofuel production from seven types of feedstock, and find that biofuels at present consume around 2% of the global inorganic P fertilizer production. For all examined biofuels, with the possible exception of sugarcane, the contribution to P depletion exceeds the contribution to mitigating climate change. The relative benefits of biofuels can be increased through enhanced recycling of P, but high increases in P efficiency are required to balance climate change mitigation and P depletion impacts. We conclude that, with the current production systems, the production of first-generation biofuels compromises food production in the future.

  12. Bio-fuels

    International Nuclear Information System (INIS)

    2008-01-01

    This report presents an overview of the technologies which are currently used or presently developed for the production of bio-fuels in Europe and more particularly in France. After a brief history of this production since the beginning of the 20. century, the authors describe the support to agriculture and the influence of the Common Agricultural Policy, outline the influence of the present context of struggle against the greenhouse effect, and present the European legislative context. Data on the bio-fuels consumption in the European Union in 2006 are discussed. An overview of the evolution of the activity related to bio-fuels in France, indicating the locations of ethanol and bio-diesel production facilities, and the evolution of bio-fuel consumption, is given. The German situation is briefly presented. Production of ethanol by fermentation, the manufacturing of ETBE, the bio-diesel production from vegetable oils are discussed. Second generation bio-fuels are then presented (cellulose enzymatic processing), together with studies on thermochemical processes and available biomass resources

  13. Development of 12 genic microsatellite loci for a biofuel grass, Miscanthus sinensis (Poaceae).

    Science.gov (United States)

    Ho, Chuan-Wen; Wu, Tai-Han; Hsu, Tsai-Wen; Huang, Jao-Ching; Huang, Chi-Chun; Chiang, Tzen-Yuh

    2011-08-01

    Miscanthus, a nonfood plant with high potential as a biofuel, has been used in Europe and the United States. The selection of a cultivar with high biomass, photosynthetic efficiency, and stress resistance from wild populations has become an important issue. New genic microsatellite markers will aid the assessment of genetic diversity for different strains. Twelve polymorphic microsatellite markers derived from the transcriptome of Miscanthus sinensis fo. glaber were identified and screened on 80 individuals of M. sinensis. The number of alleles per locus ranged from 6 to 12, and the mean expected heterozygosity was 0.75. Cross-taxa transferability revealed that all loci can be applied to all varieties of M. sinensis, as well as the closely related species M. floridulus. These new genic microsatellite markers are useful for characterizing different traits in breeding programs or to select genes useful for biofuel.

  14. Crop diversification can contribute to disease risk control in sustainable biofuels production

    OpenAIRE

    Smith, VH; McBride, RC; Shurin, JB; Bever, JD; Crews, TE; Tilman, GD

    2015-01-01

    © The Ecological Society of America. Global demand for transportation fuels will increase rapidly during the upcoming decades, and concerns about fossil-fuel consumption have stimulated research on renewable biofuels that can be sustainably produced from biological feedstocks. However, if unchecked, pathogens and parasites are likely to infect these cultivated biofuel feedstocks, greatly reducing crop yields and potentially threatening the sustainability of renewable bioenergy production effo...

  15. The biofuels in debate

    International Nuclear Information System (INIS)

    Rigaud, Ch.

    2007-01-01

    As the development of the biofuels is increasing in the world, many voices are beginning to rise to denounce the environmental risks and the competition of the green fuels with the alimentary farming. The debate points out the problems to solve to develop a sustainable channel. (A.L.B.)

  16. Assessing the biofuel options for Southern Africa

    CSIR Research Space (South Africa)

    Von Malititz, GP

    2008-11-01

    Full Text Available with nested levels of resource use rights. Despite the fact that this land is under-producing from a commercial agricultural perspective, this does not automatically translate into this land being available for biofuels. Due to the complex nature... the Biofuel yield in l/ha used in table one, using sugar cane and Jatropha as feedstock. These values are therefore not linked to specific country level growth conditions and assume suitable land is available. 3 It is very difficult to estimate total job...

  17. Viability of biofuel use in CDM (Clean Development Mechanisms) projects; Viabilidade do uso do biodiesel para projetos de MDL (Mecanismo de Desenvolvimento Limpo)

    Energy Technology Data Exchange (ETDEWEB)

    Fortes, Julio; Lima, Luciana Santana de [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2008-07-01

    Biodiesel, renewable energy source, has been adopted by several countries as a possible substitute for fossil fuels. Brazil, by its own, included oil and fat derived biofuel in its energetic matrix through National Politics for Biofuel Use and Production (NPBUP), issue in Law n. 11.097 of 01/13/2005. Many studies demonstrate the contribution of biofuel for Greenhouse Gases reduction, what turns projects using it into possible candidates for Clean Development Mechanism (CDM), instrument described in Kyoto Protocol. With purpose of studying the Brazilian potentiality of the insertion of biofuel into CDM projects, this report approaches many aspects related to CDM, as well the terms for being accepted as so. Through bibliographic review were listed the possibilities and the restraints for including biofuel in carbon market resulted, principally, by the obligation of its use; what goes against the principle of voluntary, for seen in the Protocol. I concluded analyzing the advantages of biofuel comparatively to environmental issues, emphasizing the necessity of making viable its entrance into carbon credits market. (author)

  18. Large-scale production of diesel-like biofuels - process design as an inherent part of microorganism development.

    Science.gov (United States)

    Cuellar, Maria C; Heijnen, Joseph J; van der Wielen, Luuk A M

    2013-06-01

    Industrial biotechnology is playing an important role in the transition to a bio-based economy. Currently, however, industrial implementation is still modest, despite the advances made in microorganism development. Given that the fuels and commodity chemicals sectors are characterized by tight economic margins, we propose to address overall process design and efficiency at the start of bioprocess development. While current microorganism development is targeted at product formation and product yield, addressing process design at the start of bioprocess development means that microorganism selection can also be extended to other critical targets for process technology and process scale implementation, such as enhancing cell separation or increasing cell robustness at operating conditions that favor the overall process. In this paper we follow this approach for the microbial production of diesel-like biofuels. We review current microbial routes with both oleaginous and engineered microorganisms. For the routes leading to extracellular production, we identify the process conditions for large scale operation. The process conditions identified are finally translated to microorganism development targets. We show that microorganism development should be directed at anaerobic production, increasing robustness at extreme process conditions and tailoring cell surface properties. All the same time, novel process configurations integrating fermentation and product recovery, cell reuse and low-cost technologies for product separation are mandatory. This review provides a state-of-the-art summary of the latest challenges in large-scale production of diesel-like biofuels. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Rapid analysis of composition and reactivity in cellulosic biomass feedstocks with near-infrared spectroscopy.

    Science.gov (United States)

    Payne, Courtney E; Wolfrum, Edward J

    2015-01-01

    Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. Our objective was to use near-infrared (NIR) spectroscopy and partial least squares (PLS) multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. Major feedstocks included in the calibration models are corn stover, sorghum, switchgrass, perennial cool season grasses, rice straw, and miscanthus. We present individual model statistics to demonstrate model performance and validation samples to more accurately measure predictive quality of the models. The PLS-2 model for composition predicts glucan, xylan, lignin, and ash (wt%) with uncertainties similar to primary measurement methods. A PLS-2 model was developed to predict glucose and xylose release following pretreatment and enzymatic hydrolysis. An additional PLS-2 model was developed to predict glucan and xylan yield. PLS-1 models were developed to predict the sum of glucose/glucan and xylose/xylan for release and yield (grams per gram). The release and yield models have higher uncertainties than the primary methods used to develop the models. It is possible to build effective multispecies feedstock models for composition, as well as carbohydrate release and yield. The model for composition is useful for predicting glucan, xylan, lignin, and ash with good uncertainties. The release and yield models have higher uncertainties; however, these models are useful for rapidly screening sample populations to identify unusual samples.

  20. Biofuels: making tough choices

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, Sonja; Dufey, Annie; Vorley, Bill

    2008-02-15

    The jury is still out on biofuels. But one thing at least is certain: serious trade-offs are involved in the production and use of these biomass-derived alternatives to fossil fuels. This has not been lost on the European Union. The year kicked off with an announcement from the EU environment commissioner that it may be better for the EU to miss its target of reaching 10 per cent biofuel content in road fuels by 2020 than to compromise the environment and human wellbeing. The 'decision tree' outlined here can guide the interdependent processes of deliberation and analysis needed for making tough choices in national biofuels development.

  1. Microalgae biofuel potentials (review).

    Science.gov (United States)

    Ghasemi, Y; Rasoul-Amini, S; Naseri, A T; Montazeri-Najafabady, N; Mobasher, M A; Dabbagh, F

    2012-01-01

    With the decrease of fossil based fuels and the environmental impact of them over the planet, it seems necessary to seek the sustainable sources of clean energy. Biofuels, is becoming a worldwide leader in the development of renewable energy resources. It is worthwhile to say that algal biofuel production is thought to help stabilize the concentration of carbon dioxide in the atmosphere and decrease global warming impacts. Also, among algal fuels' attractive characteristics, algal biodiesel is non toxic, with no sulfur, highly biodegradable and relatively harmless to the environment if spilled. Algae are capable of producing in excess of 30 times more oil per acre than corn and soybean crops. Currently, algal biofuel production has not been commercialized due to high costs associated with production, harvesting and oil extraction but the technology is progressing. Extensive research was conducted to determine the utilization of microalgae as an energy source and make algae oil production commercially viable.

  2. Development of the compaction machine for the production of new shapes of pressed biofuels

    Science.gov (United States)

    Šooš, Ľubomír; Matúš, Miloš; Beniak, Juraj; Križan, Peter

    2018-01-01

    Briquettes and especially pellets became the fuel of the 21st century. These are pressed biofuels made from the biomass which have the required heat, shape, size, density and mechanical properties. Today, these pressed biofuels are made in the form of a block, cylinder, n-angle octagonal, either without or with the holes. Several analyses confirm that neither a block, nor the cylinder is the optimal shape for the production of pressed biofuels, both in terms of the production, storage, automated transport in the combustion process and the optimum combustion process. For this reason, we began to analyse different shape, size, density and mechanical properties of briquettes and pellets. In the first part of this article, the biofuel is described from these points of view. The result of this analysis is the new optimized spheroid shape of the pressed biofuels. The goal of the second part of the article is the construction design of a new compacting machine for manufacturing of the optimized shape of the compacted piece. The task is demanding due to the fact that in comparison to the production of cylindrical or square-shaped compacted pieces, the manufacturing of ‘quasi-spherical’ compacted pieces is discontinuous. Furthermore, unlike the standard types of compaction presses which compact the material between the two cylinders, it is necessary to hold the compacted piece for certain time under high pressure and at the high temperature. In this way, the lignin contained in compacted raw material becomes plastic and no further binding material needs to be added. The kinematics of a new compactor was therefore divided into two stages- ‘the stage of compacting’ and ‘the stage of load bearing capacity. This article describes an innovative and patent protected principle of compactor construction. The prototype of a designed machine has already been produced in our department. The first test results of this machine production as described in the conclusion of the

  3. Biofuels, poverty, and growth

    DEFF Research Database (Denmark)

    Arndt, Channing; Benfica, Rui; Tarp, Finn

    2010-01-01

    and accrual of land rents to smallholders, compared with the more capital-intensive plantation approach. Moreover, the benefits of outgrower schemes are enhanced if they result in technology spillovers to other crops. These results should not be taken as a green light for unrestrained biofuels development...... Mozambique's annual economic growth by 0.6 percentage points and reduces the incidence of poverty by about 6 percentage points over a 12-year phase-in period. Benefits depend on production technology. An outgrower approach to producing biofuels is more pro-poor, due to the greater use of unskilled labor...

  4. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    Energy Technology Data Exchange (ETDEWEB)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  5. Investigating biofuels through network analysis

    International Nuclear Information System (INIS)

    Curci, Ylenia; Mongeau Ospina, Christian A.

    2016-01-01

    Biofuel policies are motivated by a plethora of political concerns related to energy security, environmental damages, and support of the agricultural sector. In response to this, much scientific work has chiefly focussed on analysing the biofuel domain and on giving policy advice and recommendations. Although innovation has been acknowledged as one of the key factors in sustainable and cost-effective biofuel development, there is an urgent need to investigate technological trajectories in the biofuel sector by starting from consistent data and appropriate methodological tools. To do so, this work proposes a procedure to select patent data unequivocally related to the investigated sector, it uses co-occurrence of technological terms to compute patent similarity and highlights content and interdependencies of biofuels technological trajectories by revealing hidden topics from unstructured patent text fields. The analysis suggests that there is a breaking trend towards modern generation biofuels and that innovators seem to focus increasingly on the ability of alternative energy sources to adapt to the transport/industrial sector. - Highlights: • Innovative effort is devoted to biofuels additives and modern biofuels technologies. • A breaking trend can be observed from the second half of the last decade. • A patent network is identified via text mining techniques that extract latent topics.

  6. National Algal Biofuels Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Dept. of Energy (DOE), Washington DC (United States); Sarisky-Reed, Valerie [Dept. of Energy (DOE), Washington DC (United States)

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  7. Establishment of a Laboratory for Biofuels Research at the University of Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Mark [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Crofcheck, Czarena [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Andrews, Rodney [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2013-03-29

    This project was aimed at the development of the biofuels industry in Kentucky by establishing a laboratory to develop improved processes for biomass utilization. The facility is based at the University of Kentucky Center for Applied Energy Research and the Department of Biosystems and Agricultural Engineering, and constitutes an “open” laboratory, i.e., its equipment is available to other Kentucky researchers working in the area. The development of this biofuels facility represents a significant expansion of research infrastructure, and will provide a lasting resource for biobased research endeavors at the University of Kentucky. In order to enhance the laboratory's capabilities and contribute to on-going biofuels research at the University of Kentucky, initial research at the laboratory has focused on the following technical areas: (i) the identification of algae strains suitable for oil production, utilizing flue gas from coal-fired power plants as a source of CO2; (ii) the conversion of algae to biofuels; and (iii) the development of methods for the analysis of lignin and its deconstruction products. Highlights from these activities include the development of catalysts for the upgrading of lipids to hydrocarbons by means of decarboxylation/decarbonylation (deCOx), a study of bio-oil production from the fast pyrolysis of algae (Scenedesmus), and the application of pyrolytic gas chromatography coupled with mass spectrometry (Py-GC-MS) to the characterization of high lignin biomass feedstocks.

  8. Potential land competition between open-pond microalgae production and terrestrial dedicated feedstock supply systems in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Langholtz, Matthew H.; Coleman, Andre M.; Eaton, Laurence M.; Wigmosta, Mark S.; Hellwinckel, Chad M.; Brandt, Craig C.

    2016-08-01

    Biofuels produced from both terrestrial and algal biomass feedstocks can contribute to energy security while providing economic, environmental, and social benefits. To assess the potential for land competition between these two feedstock types in the United States, we evaluate a scenario in which 41.5 x 109 L yr-1 of second-generation biofuels are produced on pastureland, the most likely land base where both feedstock types may be deployed. This total includes 12.0 x 109 L yr-1 of biofuels from open-pond microalgae production and 29.5 x 109 L yr-1 of biofuels from terrestrial dedicated feedstock supply systems. Under these scenarios, open-pond microalgae production is projected to use 1.2 million ha of private pastureland, while terrestrial dedicated feedstock supply systems would use 14.0 million ha of private pastureland. A spatial meta-analysis indicates that potential competition for land under these scenarios would be concentrated in 110 counties, containing 1.0 and 1.7 million hectares of algal and terrestrial dedicated feedstock production, respectively. A land competition index applied to these 110 counties suggests that 38 to 59 counties could experience competition for upwards of 40% of a county’s pastureland. However, this combined 2.7 million ha represents only 2%-5% of total pastureland in the U.S., with the remaining 12.5 million ha of algal or terrestrial dedicated feedstock production on pastureland in non-competing areas.

  9. Genetic complexity of miscanthus cell wall composition and biomass quality for biofuels.

    Science.gov (United States)

    van der Weijde, Tim; Kamei, Claire L Alvim; Severing, Edouard I; Torres, Andres F; Gomez, Leonardo D; Dolstra, Oene; Maliepaard, Chris A; McQueen-Mason, Simon J; Visser, Richard G F; Trindade, Luisa M

    2017-05-25

    Miscanthus sinensis is a high yielding perennial grass species with great potential as a bioenergy feedstock. One of the challenges that currently impedes commercial cellulosic biofuel production is the technical difficulty to efficiently convert lignocellulosic biomass into biofuel. The development of feedstocks with better biomass quality will improve conversion efficiency and the sustainability of the value-chain. Progress in the genetic improvement of biomass quality may be substantially expedited by the development of genetic markers associated to quality traits, which can be used in a marker-assisted selection program. To this end, a mapping population was developed by crossing two parents of contrasting cell wall composition. The performance of 182 F1 offspring individuals along with the parents was evaluated in a field trial with a randomized block design with three replicates. Plants were phenotyped for cell wall composition and conversion efficiency characters in the second and third growth season after establishment. A new SNP-based genetic map for M. sinensis was built using a genotyping-by-sequencing (GBS) approach, which resulted in 464 short-sequence uniparental markers that formed 16 linkage groups in the male map and 17 linkage groups in the female map. A total of 86 QTLs for a variety of biomass quality characteristics were identified, 20 of which were detected in both growth seasons. Twenty QTLs were directly associated to different conversion efficiency characters. Marker sequences were aligned to the sorghum reference genome to facilitate cross-species comparisons. Analyses revealed that for some traits previously identified QTLs in sorghum occurred in homologous regions on the same chromosome. In this work we report for the first time the genetic mapping of cell wall composition and bioconversion traits in the bioenergy crop miscanthus. These results are a first step towards the development of marker-assisted selection programs in miscanthus

  10. Biomass Feedstock National User Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Bioenergy research at the Biomass Feedstock National User Facility (BFNUF) is focused on creating commodity-scale feed-stocks from native biomass that meet the needs...

  11. Butanol biorefineries: Use of novel technologies to produce biofuel butanol from sweet sorghum bagasse (SSB)

    Science.gov (United States)

    In order to produce butanol biofuel at a competitive price, agricultural residues such as SSB should be used. This feedstock was studied as a substitute to corn to lower feedstock costs and broaden beyond a food crop. In addition, cutting edge science & technology was applied. In these studies we us...

  12. The EU's Biofuel Strategy

    International Nuclear Information System (INIS)

    2006-01-01

    The EU is supporting biofuels, with the aim of reducing greenhouse-gas emission, encouraging the decarbonisation of fuels used in transportation, diversifying energy procurement, offering new earning opportunities in rural areas, and developing long-term replacements for oil. We publish lengthy excerpts from the recent Communication, COM(2006) 34def. which describes the strategy adopted by the Commission [it

  13. Trading greenhouse gas emission benefits from biofuel use in US transportation: Challenges and opportunities

    International Nuclear Information System (INIS)

    Kumarappan, Subbu; Joshi, Satish

    2011-01-01

    Replacing petroleum fuels with biofuels such as ethanol and biodiesel has been shown to reduce greenhouse gas (GHG) emissions. These GHG benefits can potentially be traded in the fledgling carbon markets, and methodologies for quantifying and trading are still being developed. We review the main challenges in developing such carbon trading frameworks and outline a proposed framework for the US, the main features of which include, lifecycle assessment of GHG benefits, a combination of project-specific and standard performance measures, and assigning GHG property rights to biofuel producers. At carbon prices of 10 $ t −1 , estimated monetary benefits from such trading can be 4.5 M$ hm −3 and 17 M$ hm −3 of corn ethanol and cellulosic ethanol respectively. -- Highlights: ▶ Develops a biofuel GHG trading protocol using life-cycle emissions. ▶ Discusses the differences in feedstock and impacts on GHG trading potential. ▶ Compares the developed protocol for biofuels with other existing protocols. ▶ Estimates the market potential, and challenges associated with trading GHG emissions.

  14. Spatial optimization of cropping pattern for sustainable food and biofuel production with minimal downstream pollution.

    Science.gov (United States)

    Femeena, P V; Sudheer, K P; Cibin, R; Chaubey, I

    2018-04-15

    Biofuel has emerged as a substantial source of energy in many countries. In order to avoid the 'food versus fuel competition', arising from grain-based ethanol production, the United States has passed regulations that require second generation or cellulosic biofeedstocks to be used for majority of the biofuel production by 2022. Agricultural residue, such as corn stover, is currently the largest source of cellulosic feedstock. However, increased harvesting of crops residue may lead to increased application of fertilizers in order to recover the soil nutrients lost from the residue removal. Alternatively, introduction of less-fertilizer intensive perennial grasses such as switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus x giganteus Greef et Deu.) can be a viable source for biofuel production. Even though these grasses are shown to reduce nutrient loads to a great extent, high production cost have constrained their wide adoptability to be used as a viable feedstock. Nonetheless, there is an opportunity to optimize feedstock production to meet bioenergy demand while improving water quality. This study presents a multi-objective simulation optimization framework using Soil and Water Assessment Tool (SWAT) and Multi Algorithm Genetically Adaptive Method (AMALGAM) to develop optimal cropping pattern with minimum nutrient delivery and minimum biomass production cost. Computational time required for optimization was significantly reduced by loose coupling SWAT with an external in-stream solute transport model. Optimization was constrained by food security and biofuel production targets that ensured not more than 10% reduction in grain yield and at least 100 million gallons of ethanol production. A case study was carried out in St. Joseph River Watershed that covers 280,000 ha area in the Midwest U.S. Results of the study indicated that introduction of corn stover removal and perennial grass production reduce nitrate and total phosphorus loads without

  15. Energy policy, social exclusion and sustainable development: The biofuels and oil and gas cases in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Jeremy; Matos, Stelvia; Silvestre, Bruno

    2010-09-15

    Recent Brazilian policies have encouraged impoverished communities to participate in the country's growing energy industry. This paper explores the country's attempts to encourage such participation within the oil and gas and biofuels sectors. Our research is based on interviews with industry executives, policymakers, non-governmental organizations and farmers conducted between 2005-2009 in Brazil, an emerging energy leader, yet a country grappling with social exclusion. We propose that some sectors have a propensity to be exclusive due to technological complexity, whereas other sectors, although less complex, tend to economize at the expense of social programs. We conclude with managerial and policy implications.

  16. Energy policy, social exclusion and sustainable development: The biofuels and oil and gas cases in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Jeremy; Matos, Stelvia; Silvestre, Bruno

    2010-09-15

    Recent Brazilian policies have encouraged impoverished communities to participate in the country's growing energy industry. This paper explores the country's attempts to encourage such participation within the oil and gas and biofuels sectors. Our research is based on interviews with industry executives, policymakers, non-governmental organizations and farmers conducted between 2005-2009 in Brazil, an emerging energy leader, yet a country grappling with social exclusion. We propose that some sectors have a propensity to be exclusive due to technological complexity, whereas other sectors, although less complex, tend to economize at the expense of social programs. We conclude with managerial and policy implications.

  17. Potential Impact on Freshwater Resources from Agrofuel Feedstock Cultivation in Thailand: Implications of the Alternative Energy Development Plan 2015

    Directory of Open Access Journals (Sweden)

    Pariyapat Nilsalab

    2017-11-01

    Full Text Available The impact of water use in areas with abundant freshwater resources should not be the same as areas with limited resources. This impact is quantified as water scarcity footprint. The monthly water stress index with reference to environmental water requirement is proposed as a characterization factor. The biofuel policies of Thailand—cassava and sugarcane for bioethanol, and oil palm for biodiesel—were selected for the assessment based on land expansion and displacement scenarios. Cultivation was found to be the most water intensive phase in producing both biodiesel and bioethanol. Thus, the proposed index was applied for assessing and selecting areas having low values of the water scarcity footprint. The results showed low values for expanding oil palm plantations on abandoned land and displacing plantation areas with low yields of maize and pineapple with sugarcane and cassava. Additionally, shifting the crop calendar could be considered to reduce the stress situation such as the central region can avoid the water scarcity footprint by 38% from shifting sugarcane cultivation. Consequently mitigating this potential impact and threats to the ecosystem based on specific circumstances and context would be achieved through applying the proposed index in water resource and land suitability planning.

  18. Estimates of US biofuels consumption, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs.

  19. Estimates of US biofuels consumption, 1990

    International Nuclear Information System (INIS)

    1991-10-01

    This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs

  20. Determination of the Economic Viability & Technical Feasibility of Commercial Jatropha Curcas Production for Generation of Jatropha oil as Bio-Fuel Feedstock from Wasteland: Final Technical Report on Life Cycle Impact Assessment of Jatropha Cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Arup [General Motors LLC, Detroit, MI (United States); Chikara, Jitendra [General Motors LLC, Detroit, MI (United States); Wheeler, Candace [General Motors LLC, Detroit, MI (United States)

    2012-12-01

    Ever since it was demonstrated that Jatropha seed oil could be converted into a world class biodiesel and could run in unmodified stationary and mobile diesel engines with simultaneous reduction in emissions, it caught the attention of the world. The capability to grow this crop on wastelands added to its attractiveness. However, the single biggest challenge came in the form of the availability of adequate feed stock in the form of the Jatropha fruit. Adequacy of feed stock can only be possible if large plantations are cultivated and produce enough fruit. The people, world over, jumped into Jatropha cultivation without heeding to the need to first ensure quality germplasm and understand the agronomic requirements of the plants. As a result many plantations failed to give the required yield. CSIR-CSMCRI had been researching Jatropha and had an end-to-end approach, i.e., it developed the best technology to prepare biodiesel and also worked towards the practical problems that it envisaged to be important for raising Jatropha productivity. It focused only on cultivation on wastelands as this was the only practical strategy, given the limited arable land India has and the risk of food security for the burgeoning population. While working in this direction, the Institute zeroed-in on a few germplasm, which gave consistently higher seed yield over several years. These germplasm were clonally propagated in large numbers to be raised in experimental plantations at different geographical locations in India. Many agronomic practices were developed as a part of these different projects. It was at this juncture that General Motors and the U.S. Department of Energy joined hands with CSIR-CSMCRI to further the work on Jatropha. A center of expertise for Jatropha was established and work was initiated to further refine the understanding regarding the best practices. Efforts were to be made to generate primary data, hitherto unavailable for wastelands, on which life cycle

  1. Annual Report FY2011: Establishment of a Laboratory for Biofuels Research at the University of Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Mark [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Crofcheck, Czarena [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Andrews, Rodney [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2011-12-21

    This project is aimed at the development of the biofuels industry in Kentucky by establishing a laboratory to develop improved processes for biomass utilization. The facility is based at the University of Kentucky Center for Applied Energy Research and the Department of Biosystems and Agricultural Engineering, and constitutes an open laboratory, i.e., its equipment is available to other Kentucky researchers working in the area. The development of this biofuels facility represents a significant expansion of research infrastructure, and will provide a lasting resource for biobased research endeavors at the University of Kentucky. In order to enhance the laboratory's capabilities and contribute to on-going biofuels research at the University of Kentucky, initial research at the laboratory has focused on the following technical areas: (i) the identification of algae strains suitable for oil production, utilizing flue gas from coal-fired power plants as a source of CO2; (ii) the conversion of algae to biofuels; and (iii) thermochemical methods for the deconstruction of lignin. Highlights from these activities include a detailed study of bio-oil production from the fast pyrolysis of microalgae (Scenedesmus sp.) and the application of pyrolytic gas chromatography coupled with mass spectrometry (Py-GC-MS) to the characterization of high lignin biomass feedstocks.

  2. An approach to the estimation of the value of agricultural residues used as biofuels

    International Nuclear Information System (INIS)

    Kumar, A.; Purohit, P.; Rana, S.; Kandpal, T.C.

    2002-01-01

    A simple demand side approach for estimating the monetary value of agricultural residues used as biofuels is proposed. Some of the important issues involved in the use of biomass feedstocks in coal-fired boilers are briefly discussed along with their implications for the maximum acceptable price estimates for the agricultural residues. Results of some typical calculations are analysed along with the estimates obtained on the basis of a supply side approach (based on production cost) developed earlier. The prevailing market prices of some agricultural residues used as feedstocks for briquetting are also indicated. The results obtained can be used as preliminary indicators for identifying niche areas for immediate/short-term utilization of agriculture residues in boilers for process heating and power generation. (author)

  3. Survey of Alternative Feedstocks for Commodity Chemical Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Robinson, Sharon M [ORNL

    2008-02-01

    The current high prices for petroleum and natural gas have spurred the chemical industry to examine alternative feedstocks for the production of commodity chemicals. High feedstock prices have driven methanol and ammonia production offshore. The U.S. Chemical Industry is the largest user of natural gas in the country. Over the last 30 years, alternatives to conventional petroleum and natural gas feedstocks have been developed, but have limited, if any, commercial implementation in the United States. Alternative feedstocks under consideration include coal from unconventional processing technologies, such as gasification and liquefaction, novel resources such as biomass, stranded natural gas from unconventional reserves, and heavy oil from tar sands or oil shale. These feedstock sources have been evaluated with respect to the feasibility and readiness for production of the highest volume commodity chemicals in the United States. Sources of organic compounds, such as ethanol from sugar fermentation and bitumen-derived heavy crude are now being primarily exploited for fuels, rather than for chemical feedstocks. Overall, government-sponsored research into the use of alternatives to petroleum feedstocks focuses on use for power and transportation fuels rather than for chemical feedstocks. Research is needed to reduce cost and technical risk. Use of alternative feedstocks is more common outside the United States R&D efforts are needed to make these processes more efficient and less risky before becoming more common domestically. The status of alternative feedstock technology is summarized.

  4. Biofuel Production Initiative at Claflin University Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Kamal

    2011-07-20

    For US transportation fuel independence or reduced dependence on foreign oil, the Federal Government has mandated that the country produce 36 billion gallons (bg) of renewable transportation fuel per year for its transportation fuel supply by 2022. This can be achieved only if development of efficient technology for second generation biofuel from ligno-cellulosic sources is feasible. To be successful in this area, development of a widely available, renewable, cost-effective ligno-cellulosic biomass feedstock that can be easily and efficiently converted biochemically by bacteria or other fast-growing organisms is required. Moreover, if the biofuel type is butanol, then the existing infrastructure to deliver fuel to the customer can be used without additional costs and retrofits. The Claflin Biofuel Initiative project is focused on helping the US meet the above-mentioned targets. With support from this grant, Claflin University (CU) scientists have created over 50 new strains of microorganisms that are producing butanol from complex carbohydrates and cellulosic compounds. Laboratory analysis shows that a number of these strains are producing higher percentages of butanol than other methods currently in use. All of these recombinant bacterial strains are producing relatively high concentrations of acetone and numerous other byproducts as well. Therefore, we are carrying out intense mutations in the selected strains to reduce undesirable byproducts and increase the desired butanol production to further maximize the yield of butanol. We are testing the proof of concept of producing pre-industrial large scale biobutanol production by utilizing modifications of currently commercially available fermentation technology and instrumentation. We have already developed an initial process flow diagram (PFD) and selected a site for a biobutanol pilot scale facility in Orangeburg, SC. With the recent success in engineering new strains of various biofuel producing bacteria at CU

  5. Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives – A mini review

    International Nuclear Information System (INIS)

    Maity, Jyoti Prakash; Bundschuh, Jochen; Chen, Chien-Yen; Bhattacharya, Prosun

    2014-01-01

    The extensive use of fossil fuels is increasingly recognized as unsustainable as a consequence of depletion of supplies and the contribution of these fuels to climate change by GHG (greenhouse gas) emissions into the atmosphere. Microalgae indicate alternative renewable sustainable energy sources as they have a high potential for producing large amounts of biomass which in turn can be used for production of different third-generation biofuels at large scale. Microalgae transform the solar energy into the carbon storage products, leads to lipid accumulation, including TAG (triacylglycerols), which then can be transformed into biodiesel, bioethanol and biomethanol. This paper reviews the selection, production and accumulation of target bioenergy carrier's strains and their advantages as well as the technological development for oil, biodiesel, ethanol, methanol, biogas production and GHG mitigation. The feedstock of promising algal strain exhibits the suitable biofuel production. The current progress of hybrid-technologies (biomass production, wastewater treatment, GHG mitigation) for production of prime-products as biofuels offer atmospheric pollution control such as the reduction of GHG (CO 2 fixation) coupling wastewater treatment with microalgae growth. The selection of efficient strain, microbial metabolism, cultivation systems, biomass production are key parameters of viable technology for microalgae-based biodiesel-production. - Highlights: • Microalgae are promising feedstock for biofuel production within lower farming area. • Production rate (L/ha) of oil from microalgae is much higher than other feedstock. • Lipid of Chlorella emersonii, Botryococcus braunii, Dunaliella tertiolecta, are high (>60% of dw biomass). • Remove pollutant from wastewater during feedstock production by selective strains. • Ecofriendly route to mitigate GHG (greenhouse gas) and water pollution during microalgae production

  6. Microbial engineering for the production of advanced biofuels.

    Science.gov (United States)

    Peralta-Yahya, Pamela P; Zhang, Fuzhong; del Cardayre, Stephen B; Keasling, Jay D

    2012-08-16

    Advanced biofuels produced by microorganisms have similar properties to petroleum-based fuels, and can 'drop in' to the existing transportation infrastructure. However, producing these biofuels in yields high enough to be useful requires the engineering of the microorganism's metabolism. Such engineering is not based on just one specific feedstock or host organism. Data-driven and synthetic-biology approaches can be used to optimize both the host and pathways to maximize fuel production. Despite some success, challenges still need to be met to move advanced biofuels towards commercialization, and to compete with more conventional fuels.

  7. Environmental protection and recovery of valuable feedstocks using carbon containing adsorbents. Developments and trends of Bergbau-Forschung GmbH

    Energy Technology Data Exchange (ETDEWEB)

    Knoblauch, K; Richter, E

    1986-06-01

    Activated carbons, active cokes and carbon molecular sieves are used for regenerative processes for environmental protection and for processing of valuable feedstocks. Development of adsorption processes and their lay-out base on adsorption equilibria, adsorption kinetics, kinetics of desorption by heating, depressurization or purging not only as single steps but in the same combination as in the regenerative process. For example, some adsorption processes are described which are applied in pilot scale or industrially: Nitrogen production from air by pressure swing adsorption (PSA); Hydrogen production from coke oven gas by PSA; Upgrading of methane from biogas and from fire damp; Removal of hydrogen sulfide from biogas; Removal of sulfur dioxide and nitrogen oxides from flue gases and drinking water supply and waste water treatment.

  8. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes.

    Science.gov (United States)

    Bhalla, Aditya; Bansal, Namita; Kumar, Sudhir; Bischoff, Kenneth M; Sani, Rajesh K

    2013-01-01

    Second-generation feedstock, especially nonfood lignocellulosic biomass is a potential source for biofuel production. Cost-intensive physical, chemical, biological pretreatment operations and slow enzymatic hydrolysis make the overall process of lignocellulosic conversion into biofuels less economical than available fossil fuels. Lignocellulose conversions carried out at ≤ 50 °C have several limitations. Therefore, this review focuses on the importance of thermophilic bacteria and thermostable enzymes to overcome the limitations of existing lignocellulosic biomass conversion processes. The influence of high temperatures on various existing lignocellulose conversion processes and those that are under development, including separate hydrolysis and fermentation, simultaneous saccharification and fermentation, and extremophilic consolidated bioprocess are also discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Sustainability aspects of biofuel production

    Science.gov (United States)

    Pawłowski, L.; Cel, W.; Wójcik Oliveira, K.

    2018-05-01

    Nowadays, world development depends on the energy supply. The use of fossil fuels leads to two threats: depletion of resources within a single century and climate changes caused by the emission of CO2 from fossil fuels combustion. Widespread application of renewable energy sources, in which biofuels play a major role, is proposed as a counter-measure. The paper made an attempt to evaluate to what extent biofuels meet the criteria of sustainable development. It was shown that excessive development of biofuels may threaten the sustainable development paradigms both in the aspect of: intergenerational equity, leading to an increase of food prices, as well as intergenerational equity, resulting in degradation of the environment. The paper presents the possibility of sustainable biofuels production increase.

  10. The Energy Challenge for Pacific Island Countries: Sustainable Development and Energy Security through Bio-fuel Substitution for Remote Populations

    Energy Technology Data Exchange (ETDEWEB)

    Mace, M.J.

    2006-10-15

    Pacific Island Countries (PICs) face a number of development challenges as a result of their small size and geographically-remote locations. One of the most prominent is access to affordable energy supplies. The high cost of petroleum products affects all sectors, impacting islanders' day to day life and undermining achievement of the Millennium Development Goals (MDGs). Measures are needed that can support energy security and fair pricing in PICs, through improved regulatory frameworks and the substitution of local energy resources for imported fuels wherever possible. At the macro level, regional bulk procurement contracts offer one option to address the challenge of expensive imported petroleum products. At the micro level, biofuel substitution may offer another opportunity. Coconut biodiesel, produced from locally-harvested coconuts, may enable these remote island populations to develop their own sustainable energy supplies, and provide sustainable livelihoods for their people.

  11. The next generation feedstock of biofuel: Jatropha or Chlorella as ...

    African Journals Online (AJOL)

    Otoigiakih

    Promising energy crops such as Jatropha curcas Linnaeus (JCL), which are planted on marginal lands, or microalgae such as .... been found in damp tropical regions such as North. Vietnam and ..... Based on the remote sensing data on land.

  12. Land availability for biofuel production.

    Science.gov (United States)

    Cai, Ximing; Zhang, Xiao; Wang, Dingbao

    2011-01-01

    Marginal agricultural land is estimated for biofuel production in Africa, China, Europe, India, South America, and the continental United States, which have major agricultural production capacities. These countries/regions can have 320-702 million hectares of land available if only abandoned and degraded cropland and mixed crop and vegetation land, which are usually of low quality, are accounted. If grassland, savanna, and shrubland with marginal productivity are considered for planting low-input high-diversity (LIHD) mixtures of native perennials as energy crops, the total land availability can increase from 1107-1411 million hectares, depending on if the pasture land is discounted. Planting the second generation of biofuel feedstocks on abandoned and degraded cropland and LIHD perennials on grassland with marginal productivity may fulfill 26-55% of the current world liquid fuel consumption, without affecting the use of land with regular productivity for conventional crops and without affecting the current pasture land. Under the various land use scenarios, Africa may have more than one-third, and Africa and Brazil, together, may have more than half of the total land available for biofuel production. These estimations are based on physical conditions such as soil productivity, land slope, and climate.

  13. Invasive plants as feedstock for biochar and bioenergy production.

    Science.gov (United States)

    Liao, Rui; Gao, Bin; Fang, June

    2013-07-01

    In this work, the potential of invasive plant species as feedstock for value-added products (biochar and bioenergy) through pyrolysis was investigated. The product yield rates of two major invasive species in the US, Brazilian Pepper (BP) and Air Potato (AP), were compared to that of two traditional feedstock materials, water oak and energy cane. Three pyrolysis temperatures (300, 450, and 600°C) and four feedstock masses (10, 15, 20, and 25 g) were tested for a total of 12 experimental conditions. AP had high biochar and low oil yields, while BP had a high oil yield. At lower temperatures, the minimum feedstock residence time for biochar and bioenergy production increased at a faster rate as feedstock weight increased than it did at higher temperatures. A simple mathematical model was successfully developed to describe the relationship between feedstock weight and the minimum residence time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Estimation of economic impacts of cellulosic biofuel production: a comparative analysis of three biofuel pathways: Economic impacts of biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yimin; Goldberg, Marshall; Tan, Eric; Meyer, Pimphan A.

    2016-03-07

    The development of a cellulosic biofuel industry utilizing domestic biomass resources is expected to create opportunities for economic growth resulting from the construction and operation of new biorefineries. We applied an economic input-output model to estimate potential economic impacts, particularly gross job growth, resulting from the construction and operation of biorefineries using three different technology pathways: 1) cellulosic ethanol via biochemical conversion in Iowa, 2) renewable diesel blendstock via biological conversion in Georgia, and 3) renewable diesel and gasoline blendstock via fast pyrolysis in Mississippi. Combining direct, indirect, and induced effects, capital investment associated with the construction of a biorefinery processing 2,000 dry metric tons of biomass per day (DMT/day) could yield between 5,960 and 8,470 full-time equivalent (FTE) jobs during the construction period. Fast pyrolysis biorefineries produce the most jobs on a project level thanks to the highest capital requirement among the three pathways. Normalized for one million dollars of capital investment, the fast pyrolysis biorefineries are estimated to yield slighter more jobs (12.1 jobs) than the renewable diesel (11.8 jobs) and the cellulosic ethanol (11.6 jobs) biorefineries. While operating biorefineries is not labor-intensive, the annual operation of a 2,000 DMT/day biorefinery could support between 720 and 970 jobs when the direct, indirect, and induced effects are considered. The major factor, which results in the variations among the three pathways, is the type of biomass feedstock used for biofuels. The agriculture/forest, services, and trade industries are the primary sectors that will benefit from the ongoing operation of biorefineries.

  15. Exploring a United States Maize Cellulose Biofuel Scenario Using an Integrated Energy and Agricultural Markets Solution Approach

    Science.gov (United States)

    Biofuel feedstock production in the United States (US) is an emergent environmental nutrient management issue, whose exploration can benefit from a multi-scale and multimedia systems modeling approach that explicitly addresses diverging stakeholder interests. In the present anal...

  16. Thermodynamic evaluation of biomass-to-biofuels production systems

    NARCIS (Netherlands)

    Piekarczyk, W.; Czarnowska, L.; Ptasinski, K.J.; Stanek, W.

    2013-01-01

    Biomass is a renewable feedstock for producing modern energy carriers. However, the usage of biomass is accompanied by possible drawbacks, mainly due to limitation of land and water, and competition with food production. In this paper, the analysis concerns so-called second generation biofuels, like

  17. Integrating sustainable biofuels and byproducts into forest industry supply chains

    Science.gov (United States)

    Reid Hensen; Maureen Essen; Nathaniel Anderson; Larry Peters; April Kimmerly

    2016-01-01

    Forest biomass is a promising feedstock for the production of bioenergy, biofuels, and bioproducts because it is renewable and widely available as a byproduct of forest management. Its harvest and use also has the potential to positively impact rural communities, especially those negatively impacted by upheaval in the forest sector.

  18. Thermodynamic efficiency of biomass gasification and biofuels conversion

    NARCIS (Netherlands)

    Ptasinski, K.J.

    2008-01-01

    Biomass has great potential as a clean renewable feedstock for producing biofuels such as Fischer-Tropsch biodiesel, methanol, and hydrogen. The use of biomass is accompanied by possible ecological drawbacks, however, such as limitation of land or water and competition with food production. For

  19. More valuable as petrochemical feedstock

    International Nuclear Information System (INIS)

    Ramachandran, R.

    2005-01-01

    The problems facing the North American petrochemical industry were discussed with particular reference to the fact that high North American prices present a challenge to competitiveness in a globally traded market. A background of Dow Canada was provided, including details of its upgrading of natural gas liquids that would otherwise be combusted for electrical power generation. The value of the petrochemical industry was outlined, with details of employment, manufacturing output and exports. Alberta's relationship to the natural gas industry was reviewed. The role of petrochemicals as a nexus for bridging the resource sector with manufacturing, retail and transportation was discussed. The historic correlation between world Gross Domestic Product (GDP) and ethylene demand was presented. It was noted that the petrochemical industry currently competes with power generators for smaller volumes of natural gas liquids. As a highly energy intensive industry, inequities in gas pipeline haul charges and even small increases in gas prices has compromised the success of the petrochemical industry. It was noted that while crude oil is a globally traded commodity, natural gas liquids are generally traded at a more localized level, and factors that helped build the petrochemical industry and are now inhibiting growth. Ethane is the primary feedstock in the petrochemical industry. High natural gas prices affected the industry on two levels: volatility in a weakening industry and higher prices on primary feedstocks. It was estimated that changes in current trends were likely to take place in 5 to 10 years, following Northern gas developments. It was estimated that more than 50 per cent of new capacity investment in ethylene plants would take place in the Middle East in the next 5 years. No new plants are planned in Canada. It was concluded that low-cost feedstock advantages, as well as alternative feedstocks and the sustainment of a healthy industry are necessary for the

  20. A review of social sustainability considerations among EU-approved voluntary schemes for biofuels, with implications for rural livelihoods

    International Nuclear Information System (INIS)

    German, Laura; Schoneveld, George

    2012-01-01

    The rapid expansion of biofuel production and consumption has raised concerns over the social and environmental sustainability of biofuel feedstock production, processing and trade. The European Union (EU) has thus balanced its commitment to biofuels as one option for meeting its renewable energy targets with sustainability criteria for economic operators supplying biofuels to member states. Seven voluntary “EU sustainability schemes” were approved in July, 2011 as a means to verify compliance. While mandated sustainability criteria have a strong environmental focus, a number of these voluntary schemes have social sustainability as a significant component of the requirements put forward for achieving certification. As several of these voluntary schemes are incipient, thereby limiting evidence on their effectiveness in practice, this analysis is based on a comparative analysis of the substantive content or ‘scope’ of these schemes and the likely procedural effectiveness of the same. Findings show that while some schemes have considerable coverage of social sustainability concerns, poor coverage of some critical issues, the presence of schemes lacking any social sustainability requirements, and gaps in procedural rules are likely to undermine the likelihood that social sustainability is achieved through these schemes or the EU sustainability policies lending credibility to them. - Highlights: ► Among 7 voluntary schemes approved by EC-RED for biofuel, social sustainability is sorely lacking. ► 2 Schemes lacking any social sustainability criteria collectively cover all feedstock/regions. ► The strong climate metric effectively sidelines development aspirations of southern producers. ► Only one of 7 standards will leverage the industry's potential as a stimulus to rural development. ► Policies in consumer markets are critical to give teeth to industry-led sustainability schemes.

  1. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the

  2. Development Of Nutrient And Water Recycling Capabilities In Algae Biofuels Production Systems. Final Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, Tryg [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States). Civil and Environmental Engineering Dept.; Spierling, Ruth [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Poole, Kyle [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Blackwell, Shelley [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Crowe, Braden [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Hutton, Matt [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Lehr, Corinne [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States). Dept. of Chemistry and Biochemistry

    2018-01-25

    The objective of this project was to develop and demonstrate methods of recycling of water and nutrients for algal biofuels production. Recycling was accomplished both internal to the system and, in a broader sense, through import and reuse of municipal wastewater. Such an integrated system with wastewater input had not been demonstrated previously, and the performance was unknown, particularly in terms of influence of recycling on algal productivity and the practical extent of nutrient recovery from biomass residuals. Through long-term laboratory and pilot research, the project resulted in the following: 1. Bench-scale pretreatment of algal biomass did not sufficiently increase methane yield of nutrient solubilization during anaerobic digestion to warrant incorporation of pre-treatment into the pilot plant. The trial pretreatments were high-pressure orifice homogenization, sonication, and two types of heat treatment. 2. Solubilization of biomass particulate nutrients by lab anaerobic digesters ranged from 20% to nearly 60% for N and 40-65% for P. Subsequent aerobic degradation of the anaerobically digested biomass simulated raceways receiving whole digestate and resulted in an additional 20-55% N solubilization and additional 20% P solubilization. 3. Comparisons of laboratory and pilot digesters showed that laboratory units were reasonable proxies for pilot-scale. 4. Pilot-scale anaerobic digesters were designed, installed, and operated to digest algal biomass. Nutrient re-solubilization by the digesters was monitored and whole digestate was successfully used as a fertilizer in pilot algae raceways. 5. Unheated, unmixed digesters achieved greater methane yield and nutrient solubilization than heated, mixed digesters, presumably due to longer the solids residence times in unmixed digesters. The unmixed, unheated pilot digesters yielded 0.16 LCH4/g volatile solids (VS) introduced with 0.15 g VS/L-d organic loading and 16oC average temperature. A

  3. Hydrothermal liquefaction of microalgae to produce biofuels: state of the art and future prospects

    Science.gov (United States)

    Vlaskin, M. S.; Chernova, N. I.; Kiseleva, S. V.; Popel', O. S.; Zhuk, A. Z.

    2017-09-01

    The article presents a review of the state of the art and lines of research on hydrothermal liquefaction (HTL) of microalgae (MA). The main advantages of this technology for production of biofuel are that it does not require predrying of the feedstock and ensures a relatively high product yield—the ratio of the end product weight to the feedstock weight—owing to the fact that all the microalgal components, viz., lipids, proteins, and carbohydrates, are converted into biofuel. MA hydrothermal liquefaction is considered to be a promising technology for conversion of biomass and is a subject of a series of research studies and, judging by the available publications, the scope of research in this field is expanding currently. However, many significant problems remain unsolved. In particular, an active searched is being conducted for suitable strains that will ensure not only a high lipid yield—necessary to convert microalgae into biodiesel—but also higher biomass productivity and a higher biofuel yield; the chemical reactions that occur during the hydrothermal treatment are being studied; and the effect of significant process variables, such as temperature, heating rate, holdup time at the maximum temperature, biomass concentration in the water suspension, biochemical and elemental compositions of the microalgae, use of catalysts, etc., on the liquefaction processes is being studied. One of the urgent tasks is also the reduction of the nitrogen content in the resulting biofuel. Studies aimed at the development of a continuous process and rational heat-processing plants for thermal microalgal conversion are being conducted to increase the energy efficiency of the HTL process, in particular, to provide the heat recovery and separation of the end product.

  4. Valorization of guayule as a feedstock for lignocellulosic biorefineries using ammonia fiber expansion (AFEX) pretreatment

    Science.gov (United States)

    Natural rubber latex extraction from guayule leaves behind greater than 80% (by weight) of agricultural residue as a feedstock suitable for conversion to biofuels via a thermochemical or biochemical route. Untreated guayule shrub and bagasse (after latex extraction) has shown to be very recalcitrant...

  5. Breeding Energy Cane Cultivars as a Biomass Feedstock for Coal Replacement

    Science.gov (United States)

    Research and advanced breeding have demonstrated that energy cane possesses all of the attributes desirable in a biofuel feedstock: extremely good biomass yield in a small farming footprint; negative/neutral carbon footprint; maximum outputs from minimum inputs; well-established growing model for fa...

  6. The market and environmental effects of alternative biofuel policies

    Science.gov (United States)

    Drabik, Dusan

    This dissertation analyzes market and environmental effects of alternative U.S. and Brazilian biofuel policies. Although we focus on corn- and sugarcane-ethanol, the advanced analytical framework can easily be extended to other biofuels and biofuel feedstocks, such as biodiesel and soybean. The dissertation consists of three chapters. The first chapter develops an analytical framework to assess the market effects of a set of biofuel policies (including subsidies to feedstocks). U.S. corn-ethanol policies are used as an example to study the effects of biofuel policies on corn prices. We determine the 'no policy' ethanol price, analyze the implications for the 'no policy' corn price and resulting 'water' in the ethanol price premium due to the policy, and generalize the surprising interaction effects between mandates and tax credits to include ethanol and corn production subsidies. The effect of an ethanol price premium depends on the value of the ethanol co-product, the value of production subsidies, and how the world ethanol price is determined. U.S. corn-ethanol policies are shown to be a major reason for recent rises in corn prices. The ethanol policy-induced increase in corn prices is estimated to be 33 -- 46.5 percent in the period 2008 -- 2011. The second chapter seeks to answer the question of what caused the significant increase in ethanol, sugar, and sugarcane prices in Brazil in the period 2010/11 to 2011/12. We develop a general economic model of the Brazilian fuel-ethanol-sugar complex. Unlike biofuel mandates and tax exemptions elsewhere, Brazil's fuel-ethanol-sugar markets and fuel policies are unique in that each policy, in this setting, theoretically has an ambiguous impact on the market price of ethanol and hence on sugarcane and sugar prices. Our empirical analysis shows that there are two policies that seemingly help the ethanol industry but do otherwise in reality: a low gasoline tax and a high anhydrous tax exemption result in lower ethanol

  7. Grain sorghum is a viable feedstock for ethanol production.

    Science.gov (United States)

    Wang, D; Bean, S; McLaren, J; Seib, P; Madl, R; Tuinstra, M; Shi, Y; Lenz, M; Wu, X; Zhao, R

    2008-05-01

    Sorghum is a major cereal crop in the USA. However, sorghum has been underutilized as a renewable feedstock for bioenergy. The goal of this research was to improve the bioconversion efficiency for biofuels and biobased products from processed sorghum. The main focus was to understand the relationship among "genetics-structure-function-conversion" and the key factors impacting ethanol production, as well as to develop an energy life cycle analysis model (ELCAM) to quantify and prioritize the saving potential from factors identified in this research. Genetic lines with extremely high and low ethanol fermentation efficiency and some specific attributes that may be manipulated to improve the bioconversion rate of sorghum were identified. In general, ethanol yield increased as starch content increased. However, no linear relationship between starch content and fermentation efficiency was found. Key factors affecting the ethanol fermentation efficiency of sorghum include protein digestibility, level of extractable proteins, protein and starch interaction, mash viscosity, amount of phenolic compounds, ratio of amylose to amylopectin, and formation of amylose-lipid complexes in the mash. A platform ELCAM with a base case showed a positive net energy value (NEV) = 25,500 Btu/gal EtOH. ELCAM cases were used to identify factors that most impact sorghum use. For example, a yield increase of 40 bu/ac resulted in NEV increasing from 7 million to 12 million Btu/ac. An 8% increase in starch provided an incremental 1.2 million Btu/ac.

  8. Sustainability of biofuels and renewable chemicals production from biomass.

    Science.gov (United States)

    Kircher, Manfred

    2015-12-01

    In the sectors of biofuel and renewable chemicals the big feedstock demand asks, first, to expand the spectrum of carbon sources beyond primary biomass, second, to establish circular processing chains and, third, to prioritize product sectors exclusively depending on carbon: chemicals and heavy-duty fuels. Large-volume production lines will reduce greenhouse gas (GHG) emission significantly but also low-volume chemicals are indispensable in building 'low-carbon' industries. The foreseeable feedstock change initiates innovation, securing societal wealth in the industrialized world and creating employment in regions producing biomass. When raising the investments in rerouting to sustainable biofuel and chemicals today competitiveness with fossil-based fuel and chemicals is a strong issue. Many countries adopted comprehensive bioeconomy strategies to tackle this challenge. These public actions are mostly biased to biofuel but should give well-balanced attention to renewable chemicals as well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Frames in the Ethiopian Debate on Biofuels

    Directory of Open Access Journals (Sweden)

    Brigitte Portner

    2013-01-01

    Full Text Available Biofuel production, while highly contested, is supported by a number of policies worldwide. Ethiopia was among the first sub-Saharan countries to devise a biofuel policy strategy to guide the associated demand toward sustainable development. In this paper, I discuss Ethiopia’s biofuel policy from an interpretative research position using a frames approach and argue that useful insights can be obtained by paying more attention to national contexts and values represented in the debates on whether biofuel production can or will contribute to sustainable development. To this end, I was able to distinguish three major frames used in the Ethiopian debate on biofuels: an environmental rehabilitation frame, a green revolution frame and a legitimacy frame. The article concludes that actors advocating for frames related to social and human issues have difficulties entering the debate and forming alliances, and that those voices need to be included in order for Ethiopia to develop a sustainable biofuel sector.

  10. Biofuels barometer: Crops pending

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    The actors and production capacities have changed only little in the biofuel sector from year to another. Nevertheless, it is interesting to take stock of the development of this sector at the end of 2002, so as to update the more complete barometer published in issue 144 of Systemes Solaires. Indeed, European ethanol production grew by 13% and that of bio-diesel by more than 20% in 2001. (authors)

  11. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells.

    Science.gov (United States)

    Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A

    2013-01-01

    A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Overview of feedstock research in the United States, Canada, and Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J. [Department of Energy, Washington, DC (United States); Tardif, M.L. [CANMET, Ottawa, Ontario (Canada); Couto, L. [Universidade Federal de Vicosa (Brazil); Garca, L.R. [Centro Nacional de Pesquisa de Florestas, Colombo (Brazil); Betters, D. [Colorado State Univ., Fort Collins, CO (United States); Ashworth, J. [Meridian Corp., Alexandria, VA (United States)

    1993-12-31

    This is an overview of the current biomass feedstock efforts in Brazil, Canada, and the United States. The report from Brazil provides an historical perspective of incentive programs, the charcoal and fuelwood energy programs, the alcohol program, and other biomass energy efforts. The efforts in Brazil, particularly with the sugar cane to ethanol and the charcoal and fuelwood programs, dwarfs other commercial biomass systems in the Americas. One of the bright spots in the future is the Biomass Integrated Gasification/Gas Turbine Electricity Project initially funded in 1992. The sugar cane-based ethanol industry continues to develop higher yielding cane varieties and more efficient microorganisms to convert the sugar cane carbohydrates into alcohol. In Canada a number of important institutions and enterprises taking part in the economical development of the country are involved in biomass research and development including various aspects of the biomass such as forestry, agricultural, industrial, urban, food processing, fisheries and peat bogs. Biomass feedstock research in the United States is evolving to reflect Department of Energy priorities. Greater emphasis is placed on leveraging research with the private sector contributing a greater share of funds, for both research and demonstration projects. The feedstock program, managed by ORNL, is focused on limited model species centered at a regional level using a multidisciplinary approach. Activities include a stronger emphasis on emerging environmental issues such as biodiversity, sustainability and habitat management. DOE also is a supporter of the National Biofuels Roundtable, which is developing principles for producing biomass energy in an economically viable and ecologically sound manner. Geographical Information Systems are also being developed as tools to quantify and characterize the potential supply of energy crops in various regions.

  13. Next Generation Protein Interactomes for Plant Systems Biology and Biomass Feedstock Research

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph Robert [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Trigg, Shelly [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Univ. of California, San Diego, CA (United States). Biological Sciences Dept.; Garza, Renee [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Song, Haili [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; MacWilliams, Andrew [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Nery, Joseph [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Reina, Joaquin [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Bartlett, Anna [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Castanon, Rosa [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Goubil, Adeline [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Feeney, Joseph [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; O' Malley, Ronan [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Huang, Shao-shan Carol [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Zhang, Zhuzhu [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.; Galli, Mary [The Salk Inst. for Biological Studies, La Jolla, CA (United States). Genome Analysis and Plant Biology Lab.

    2016-11-30

    Biofuel crop cultivation is a necessary step in heading towards a sustainable future, making their genomic studies a priority. While technology platforms that currently exist for studying non-model crop species, like switch-grass or sorghum, have yielded large quantities of genomic and expression data, still a large gap exists between molecular mechanism and phenotype. The aspect of molecular activity at the level of protein-protein interactions has recently begun to bridge this gap, providing a more global perspective. Interactome analysis has defined more specific functional roles of proteins based on their interaction partners, neighborhoods, and other network features, making it possible to distinguish unique modules of immune response to different plant pathogens(Jiang, Dong, and Zhang 2016). As we work towards cultivating heartier biofuel crops, interactome data will lead to uncovering crop-specific defense and development networks. However, the collection of protein interaction data has been limited to expensive, time-consuming, hard-to-scale assays that mostly require cloned ORF collections. For these reasons, we have successfully developed a highly scalable, economical, and sensitive yeast two-hybrid assay, ProCREate, that can be universally applied to generate proteome-wide primary interactome data. ProCREate enables en masse pooling and massively paralleled sequencing for the identification of interacting proteins by exploiting Cre-lox recombination. ProCREate can be used to screen ORF/cDNA libraries from feedstock plant tissues. The interactome data generated will yield deeper insight into many molecular processes and pathways that can be used to guide improvement of feedstock productivity and sustainability.

  14. Sustainability of biofuels in Latin America: Risks and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, Rainer, E-mail: rainer.janssen@wip-munich.de [WIP Renewable Energies, Sylvensteinstrasse 2, 81369 Munich (Germany); Rutz, Dominik Damian [WIP Renewable Energies, Sylvensteinstrasse 2, 81369 Munich (Germany)

    2011-10-15

    Several Latin American countries are setting up biofuel programmes to establish alternative markets for agricultural commodities. This is mainly triggered by the current success of Brazilian bioethanol production for the domestic market and for export. Furthermore, the global biofuel market is expected to increase due to ambitious biofuel programmes in the EU and in the USA. Colombia, Venezuela, Costa Rica and Guatemala are focusing on bioethanol production from sugarcane whereas biofuel production in Argentina is based on soy biodiesel. Recent developments of the biofuel sector take place extremely rapid especially in Argentina, which became one of the five largest biodiesel producers in the world in 2008. Till date no specific biofuel sustainability certification systems have been implemented in Latin American, as well as on global level. This fact and the predominant use of food crops for biofuel production raise concerns about the sustainability of biofuel production related to environmental and social aspects. This paper provides an overview of the hotspots of conflicts in biofuel production in Latin America. It investigates presently available sustainability tools and initiatives to ensure sustainable biofuel production in Latin America. Finally, it provides an outlook on how to integrate sustainability in the Latin American biofuel sector. - Research Highlights: > This study investigates risks and opportunities of biofuels in Latin America. > Latin American countries are setting up programmes to promote biofuel development. > Strong biofuel sectors provide opportunities for economic development. > Potential negative impact includes deforestation and effects on food security. > Sustainability initiatives exist to minimise negative impact.

  15. Sustainability of biofuels in Latin America: Risks and opportunities

    International Nuclear Information System (INIS)

    Janssen, Rainer; Rutz, Dominik Damian

    2011-01-01

    Several Latin American countries are setting up biofuel programmes to establish alternative markets for agricultural commodities. This is mainly triggered by the current success of Brazilian bioethanol production for the domestic market and for export. Furthermore, the global biofuel market is expected to increase due to ambitious biofuel programmes in the EU and in the USA. Colombia, Venezuela, Costa Rica and Guatemala are focusing on bioethanol production from sugarcane whereas biofuel production in Argentina is based on soy biodiesel. Recent developments of the biofuel sector take place extremely rapid especially in Argentina, which became one of the five largest biodiesel producers in the world in 2008. Till date no specific biofuel sustainability certification systems have been implemented in Latin American, as well as on global level. This fact and the predominant use of food crops for biofuel production raise concerns about the sustainability of biofuel production related to environmental and social aspects. This paper provides an overview of the hotspots of conflicts in biofuel production in Latin America. It investigates presently available sustainability tools and initiatives to ensure sustainable biofuel production in Latin America. Finally, it provides an outlook on how to integrate sustainability in the Latin American biofuel sector. - Research Highlights: → This study investigates risks and opportunities of biofuels in Latin America. → Latin American countries are setting up programmes to promote biofuel development. → Strong biofuel