WorldWideScience

Sample records for biodiesel electronic resource

  1. Chrysomya megacephala (Fabricius) larvae: A new biodiesel resource

    International Nuclear Information System (INIS)

    Li, Zhuoxue; Yang, Depo; Huang, Miaoling; Hu, Xinjun; Shen, Jiangang; Zhao, Zhimin; Chen, Jianping

    2012-01-01

    Highlights: ►Chrysomya megacephala larvae oil as a new resource transforming to biodiesel. ► Larvae were grown up on restaurant garbage for five days then oil was extracted. ► Oil content in larvae was 24.40 wt% to 26.29 wt% comparing to soybean of 20 wt%. ► Utilization of garbage reduces pollution and makes economic recycle possible. ► The properties of ultimately FAME reach the ASTM D6751 and EN 14124 standards. -- Abstract: The current energy crisis greatly affects worldwide economic development. Therefore, identifying for new energy resources is critically important. In this study, we introduce a potential biodiesel source: Chrysomya megacephala (Fabricius) larvae (CML), which are proliferative and can be fed with a variety of low cost materials, such as manure, wheat bran, rotted meat and decayed vegetation. The potential of C. megacephala (Fabricius) larvae oil (CMLO) for biodiesel applications was explored. Oil was extracted from the CML raised by feeding on restaurant garbage for five days. The oil content obtained from the dehydrated CML ranged from 24.40% to 26.29% since restaurant garbage varies in composition day to day. The acid value of the CMLO was tested to be 1.10 mg KOH/g. Four factors were subsequently considered to optimize the transesterification of CMLO to biodiesel. The optimized conditions included a 6:1 methanol to oil molar ratio, 1.6% KOH catalyst, a reaction temperature of 55 °C and a reaction time of 30 min. Under these conditions, the maximum yield of fatty acid methyl esters (FAME) from CMLO was 87.71%. Finally, properties of the FAME were within the specifications of ASTM D6751 and EN 14214 biodiesel standards. Therefore, we concluded that C. megacephala (Fabricius) larvae represent a potential alternative feedstock for biodiesel production.

  2. Biodiesel

    Science.gov (United States)

    Biodiesel is a renewable alternative to petrodiesel that is prepared from plant oils or animal fats. Biodiesel is prepared via transesterification and the resulting fuel properties must be compliant with international fuel standards such as ASTM D6751 and EN 14214. Numerous catalysts, methods, and l...

  3. Nano-Immobilized Biocatalysts for Biodiesel Production from Renewable and Sustainable Resources

    Directory of Open Access Journals (Sweden)

    Keon Hee Kim

    2018-02-01

    Full Text Available The cost of biodiesel production relies on feedstock cost. Edible oil is unfavorable as a biodiesel feedstock because of its expensive price. Thus, non-edible crop oil, waste oil, and microalgae oil have been considered as alternative resources. Non-edible crop oil and waste cooking oil are more suitable for enzymatic transesterification because they include a large amount of free fatty acids. Recently, enzymes have been integrated with nanomaterials as immobilization carriers. Nanomaterials can increase biocatalytic efficiency. The development of a nano-immobilized enzyme is one of the key factors for cost-effective biodiesel production. This paper presents the technology development of nanomaterials, including nanoparticles (magnetic and non-magnetic, carbon nanotubes, and nanofibers, and their application to the nano-immobilization of biocatalysts. The current status of biodiesel production using a variety of nano-immobilized lipase is also discussed.

  4. Electronic Resource Management Systems

    Directory of Open Access Journals (Sweden)

    Mark Ellingsen

    2004-10-01

    Full Text Available Computer applications which deal with electronic resource management (ERM are quite a recent development. They have grown out of the need to manage the burgeoning number of electronic resources particularly electronic journals. Typically, in the early years of e-journal acquisition, library staff provided an easy means of accessing these journals by providing an alphabetical list on a web page. Some went as far as categorising the e-journals by subject and then grouping the journals either on a single web page or by using multiple pages. It didn't take long before it was recognised that it would be more efficient to dynamically generate the pages from a database rather than to continually edit the pages manually. Of course, once the descriptive metadata for an electronic journal was held within a database the next logical step was to provide administrative forms whereby that metadata could be manipulated. This in turn led to demands for incorporating more information and more functionality into the developing application.

  5. Electronic Resource Management and Design

    Science.gov (United States)

    Abrams, Kimberly R.

    2015-01-01

    We have now reached a tipping point at which electronic resources comprise more than half of academic library budgets. Because of the increasing work associated with the ever-increasing number of e-resources, there is a trend to distribute work throughout the library even in the presence of an electronic resources department. In 2013, the author…

  6. Alternative Fuels Data Center: Biodiesel

    Science.gov (United States)

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center : Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Biodiesel on

  7. Biodiesel Basics

    Energy Technology Data Exchange (ETDEWEB)

    Putzig, Mollie [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-04

    This fact sheet (updated for 2017) provides a brief introduction to biodiesel, including a discussion of biodiesel blends, which blends are best for which vehicles, where to buy biodiesel, how biodiesel compares to diesel fuel in terms of performance, the difference between biodiesel and renewable diesel, how biodiesel performs in cold weather, whether biodiesel use will plug vehicle filters, how long-term biodiesel use may affect engines, biodiesel fuel standards, and whether biodiesel burns cleaner than diesel fuel. The fact sheet also dismisses the use of vegetable oil as a motor fuel.

  8. Biodiesel Basics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    This fact sheet (updated for 2017) provides a brief introduction to biodiesel, including a discussion of biodiesel blends, which blends are best for which vehicles, where to buy biodiesel, how biodiesel compares to diesel fuel in terms of performance, the difference between biodiesel and renewable diesel, how biodiesel performs in cold weather, whether biodiesel use will plug vehicle filters, how long-term biodiesel use may affect engines, biodiesel fuel standards, and whether biodiesel burns cleaner than diesel fuel. The fact sheet also dismisses the use of vegetable oil as a motor fuel.

  9. Managing electronic resources a LITA guide

    CERN Document Server

    Weir, Ryan O

    2012-01-01

    Informative, useful, current, Managing Electronic Resources: A LITA Guide shows how to successfully manage time, resources, and relationships with vendors and staff to ensure personal, professional, and institutional success.

  10. Biodiesel Basics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-07-01

    This fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends and specifications. It also covers how biodiesel compares to diesel fuel in terms of performance (including in cold weather) and whether there are adverse effects on engines or other systems. Finally, it discusses biodiesel fuel quality and standards, and compares biodiesel emissions to those of diesel fuel.

  11. Electronic Resources Management Project Presentation 2012

    KAUST Repository

    Ramli, Rindra M.

    2012-11-05

    This presentation describes the electronic resources management project undertaken by the KAUST library. The objectives of this project is to migrate information from MS Sharepoint to Millennium ERM module. One of the advantages of this migration is to consolidate all electronic resources into a single and centralized location. This would allow for better information sharing among library staff.

  12. Implementing CORAL: An Electronic Resource Management System

    Science.gov (United States)

    Whitfield, Sharon

    2011-01-01

    A 2010 electronic resource management survey conducted by Maria Collins of North Carolina State University and Jill E. Grogg of University of Alabama Libraries found that the top six electronic resources management priorities included workflow management, communications management, license management, statistics management, administrative…

  13. Electronic Resources Management System: Recommendation Report 2017

    KAUST Repository

    Ramli, Rindra M.

    2017-01-01

    This recommendation report provides an overview of the selection process for the new Electronic Resources Management System. The library has decided to move away from Innovative Interfaces Millennium ERM module. The library reviewed 3 system

  14. Electronic Resources Management Project Presentation 2012

    KAUST Repository

    Ramli, Rindra M.

    2012-01-01

    This presentation describes the electronic resources management project undertaken by the KAUST library. The objectives of this project is to migrate information from MS Sharepoint to Millennium ERM module. One of the advantages of this migration

  15. PRINCIPLES OF CONTENT FORMATION EDUCATIONAL ELECTRONIC RESOURCE

    Directory of Open Access Journals (Sweden)

    О Ю Заславская

    2017-12-01

    Full Text Available The article considers modern possibilities of information and communication technologies for the design of electronic educational resources. The conceptual basis of the open educational multimedia system is based on the modular architecture of the electronic educational resource. The content of the electronic training module can be implemented in several versions of the modules: obtaining information, practical exercises, control. The regularities in the teaching process in modern pedagogical theory are considered: general and specific, and the principles for the formation of the content of instruction at different levels are defined, based on the formulated regularities. On the basis of the analysis, the principles of the formation of the electronic educational resource are determined, taking into account the general and didactic patterns of teaching.As principles of the formation of educational material for obtaining information for the electronic educational resource, the article considers: the principle of methodological orientation, the principle of general scientific orientation, the principle of systemic nature, the principle of fundamentalization, the principle of accounting intersubject communications, the principle of minimization. The principles of the formation of the electronic training module of practical studies in the article include: the principle of systematic and dose based consistency, the principle of rational use of study time, the principle of accessibility. The principles of the formation of the module for monitoring the electronic educational resource can be: the principle of the operationalization of goals, the principle of unified identification diagnosis.

  16. Electronic Resources Management System: Recommendation Report 2017

    KAUST Repository

    Ramli, Rindra M.

    2017-05-01

    This recommendation report provides an overview of the selection process for the new Electronic Resources Management System. The library has decided to move away from Innovative Interfaces Millennium ERM module. The library reviewed 3 system as potential replacements namely: Proquest 360 Resource Manager, Ex Libris Alma and Open Source CORAL ERMS. After comparing and trialling the systems, it was decided to go for Proquest 360 Resource Manager.

  17. CHALLENGES OF ELECTRONIC INFORMATION RESOURCES IN ...

    African Journals Online (AJOL)

    This paper discusses the role of policy for proper and efficient library services in the electronic era. It points out some of the possible dangers of embarking in electronic resources without a proper focus at hand. Thus, it calls for today's librarians and policy makers to brainstorm and come up with working policies suitable to ...

  18. Library training to promote electronic resource usage

    DEFF Research Database (Denmark)

    Frandsen, Tove Faber; Tibyampansha, Dativa; Ibrahim, Glory

    2017-01-01

    Purpose: Increasing the usage of electronic resources is an issue of concern for many libraries all over the world. Several studies stress the importance of information literacy and instruction in order to increase the usage. Design/methodology/approach: The present article presents the results...

  19. Importance of biodiesel as transportation fuel

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2007-01-01

    The scarcity of known petroleum reserves will make renewable energy resources more attractive. The most feasible way to meet this growing demand is by utilizing alternative fuels. Biodiesel is defined as the monoalkyl esters of vegetable oils or animal fats. Biodiesel is the best candidate for diesel fuels in diesel engines. The biggest advantage that biodiesel has over gasoline and petroleum diesel is its environmental friendliness. Biodiesel burns similar to petroleum diesel as it concerns regulated pollutants. On the other hand, biodiesel probably has better efficiency than gasoline. One such fuel for compression-ignition engines that exhibit great potential is biodiesel. Diesel fuel can also be replaced by biodiesel made from vegetable oils. Biodiesel is now mainly being produced from soybean, rapeseed and palm oils. The higher heating values (HHVs) of biodiesels are relatively high. The HHVs of biodiesels (39-41 MJ/kg) are slightly lower than that of gasoline (46 MJ/kg), petrodiesel (43 MJ/kg) or petroleum (42 MJ/kg), but higher than coal (32-37 MJ/kg). Biodiesel has over double the price of petrodiesel. The major economic factor to consider for input costs of biodiesel production is the feedstock, which is about 80% of the total operating cost. The high price of biodiesel is in large part due to the high price of the feedstock. Economic benefits of a biodiesel industry would include value added to the feedstock, an increased number of rural manufacturing jobs, an increased income taxes and investments in plant and equipment. The production and utilization of biodiesel is facilitated firstly through the agricultural policy of subsidizing the cultivation of non-food crops. Secondly, biodiesel is exempt from the oil tax. The European Union accounted for nearly 89% of all biodiesel production worldwide in 2005. By 2010, the United States is expected to become the world's largest single biodiesel market, accounting for roughly 18% of world biodiesel consumption

  20. Performance and combustion analysis of Mahua biodiesel on a single cylinder compression ignition engine using electronic fuel injection system

    Directory of Open Access Journals (Sweden)

    Gunasekaran Anandkumar

    2016-01-01

    Full Text Available In this investigation, experiment is carried out on a 1500 rpm constant speed single cylinder Diesel engine. The test is carried out with Neat diesel, neat biodiesel, and blend B20. The engine considered was run with electronic fuel injection system supported by common rail direct injection to obtain high atomization and effective air utilization inside the combustion chamber. The performance of the engine in terms of break thermal efficiency and brake specific energy consumption was found and compared. The B20 blend shows 1.11% decrease in break thermal efficiency and 3.35% increase in brake specific energy consumption than diesel. The combustion characteristics found are in-cylinder pressure, rate of pressure rise, and heat release rate and compared for peak pressure load to understand the nature of combustion process. For each fuel test run, the maximum peak pressure is observed at part load condition. The rate of change of pressure and heat release rate of diesel is high compared to pure biodiesel and B20 blend. The diffusion combustion is observed to be predominant in case of B100 than B20 and Neat diesel.

  1. Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel

    Science.gov (United States)

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center : Diesel Vehicles Using Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel

  2. Fumaric acid production using renewable resources from biodiesel and cane sugar production processes.

    Science.gov (United States)

    Papadaki, Aikaterini; Papapostolou, Harris; Alexandri, Maria; Kopsahelis, Nikolaos; Papanikolaou, Seraphim; de Castro, Aline Machado; Freire, Denise M G; Koutinas, Apostolis A

    2018-04-13

    The microbial production of fumaric acid by Rhizopus arrhizus NRRL 2582 has been evaluated using soybean cake from biodiesel production processes and very high polarity (VHP) sugar from sugarcane mills. Soybean cake was converted into a nutrient-rich hydrolysate via a two-stage bioprocess involving crude enzyme production via solid state fermentations (SSF) of either Aspergillus oryzae or R. arrhizus cultivated on soybean cake followed by enzymatic hydrolysis of soybean cake. The soybean cake hydrolysate produced using crude enzymes derived via SSF of R. arrhizus was supplemented with VHP sugar and evaluated using different initial free amino nitrogen (FAN) concentrations (100, 200, and 400 mg/L) in fed-batch cultures for fumaric acid production. The highest fumaric acid concentration (27.3 g/L) and yield (0.7 g/g of total consumed sugars) were achieved when the initial FAN concentration was 200 mg/L. The combination of VHP sugar with soybean cake hydrolysate derived from crude enzymes produced by SSF of A. oryzae at 200 mg/L initial FAN concentration led to the production of 40 g/L fumaric acid with a yield of 0.86 g/g of total consumed sugars. The utilization of sugarcane molasses led to low fumaric acid production by R. arrhizus, probably due to the presence of various minerals and phenolic compounds. The promising results achieved through the valorization of VHP sugar and soybean cake suggest that a focused study on molasses pretreatment could lead to enhanced fumaric acid production.

  3. Electronic resource management systems a workflow approach

    CERN Document Server

    Anderson, Elsa K

    2014-01-01

    To get to the bottom of a successful approach to Electronic Resource Management (ERM), Anderson interviewed staff at 11 institutions about their ERM implementations. Among her conclusions, presented in this issue of Library Technology Reports, is that grasping the intricacies of your workflow-analyzing each step to reveal the gaps and problems-at the beginning is crucial to selecting and implementing an ERM. Whether the system will be used to fill a gap, aggregate critical data, or replace a tedious manual process, the best solution for your library depends on factors such as your current soft

  4. use of electronic resources by graduate students of the department

    African Journals Online (AJOL)

    respondent's access electronic resources from the internet via Cybercafé .There is a high ... KEY WORDS: Use, Electronic Resources, Graduate Students, Cybercafé. INTRODUCTION ... Faculty of Education, University of Uyo, Uyo. Olu Olat ...

  5. Why Teach about Biodiesel?

    Science.gov (United States)

    Lawrence, Richard

    2002-01-01

    Proposes that study of biodiesel as a healthier alternative to petroleum diesel be included in the curriculum. Suggests that teachers will play a critical role during the transition away from fossil fuel technologies. Provides background information and web-based resources. (DLH)

  6. Biodiesel production technologies: review

    Directory of Open Access Journals (Sweden)

    Shemelis Nigatu Gebremariam

    2017-05-01

    Full Text Available Biodiesel is a fuel with various benefits over the conventional diesel fuel. It is derived from renewable resources, it has less emission to environment, it is biodegradable so has very limited toxicity and above all its production can be decentralized so that it could have a potential in helping rural economies. However, there are also some worth mentioning challenges associated with production of biodiesel. Among them repeatedly mentioned are the cost of feedstock and the choice of convenient technology for efficient production of the fuel from diverse feedstock types. There are four main routes by which raw vegetable oil and/or animal fat can be made suitable for use as substituent fuel in diesel engines without modification. These are direct use or blending of oils, micro-emulsion, thermal cracking or pyrolysis and transesterification reaction. Due to the quality of the fuel produced, the transesterification method is the most preferred way to produce biodiesel from diverse feedstock types. Through this method, oils and fats (triglycerides are converted to their alkyl esters with reduced viscosity to near diesel fuel levels. There are different techniques to carry out transesterification reaction for biodiesel production. Each technique has its own advantages and disadvantages as well as its own specifically convenient feedstock character. There are also some very important reaction conditions to be given due attention in each of this techniques for efficient production of biodiesel, such as molar ratio of alcohol to oil, type and amount of catalyst, reaction temperature, reaction time, reaction medium, type and relative amount of solvents, among others. This review is meant to investigate the main transesterification techniques for biodiesel production in terms of their choice of feedstock character as well as their determinately required reaction conditions for efficient biodiesel production, so that to give an overview on their advantages

  7. Opportunities and challenges for biodiesel fuel

    International Nuclear Information System (INIS)

    Lin, Lin; Cunshan, Zhou; Vittayapadung, Saritporn; Xiangqian, Shen; Mingdong, Dong

    2011-01-01

    Fossil fuel resources are decreasing daily. As a renewable energy, biodiesel has been receiving increasing attention because of the relevance it gains from the rising petroleum price and its environmental advantages. This review highlights some of the perspectives for the biodiesel industry to thrive as an alternative fuel, while discussing opportunities and challenges of biodiesel. This review is divided in three parts. First overview is given on developments of biodiesel in past and present, especially for the different feedstocks and the conversion technologies of biodiesel industry. More specifically, an overview is given on possible environmental and social impacts associated with biodiesel production, such as food security, land change and water source. Further emphasis is given on the need for government's incentives and public awareness for the use and benefits of biodiesel, while promoting policies that will not only endorse the industry, but also promote effective land management. (author)

  8. Use of Electronic Resources in a Private University in Nigeria ...

    African Journals Online (AJOL)

    The study examined awareness and constraints in the use of electronic resources by lecturers and students of Ajayi Crowther University, Oyo, Nigeria. It aimed at justifying the resources expended in the provision of electronic resources in terms of awareness, patronage and factors that may be affecting awareness and use ...

  9. Gender Analysis Of Electronic Information Resource Use: The Case ...

    African Journals Online (AJOL)

    Based on the findings the study concluded that access and use of electronic information resources creates a “social digital divide” along gender lines. The study ... Finally, the library needs to change its marketing strategies on the availability of electronic information resources to increase awareness of these resources.

  10. Electronic Resource Management System. Vernetzung von Lizenzinformationen

    Directory of Open Access Journals (Sweden)

    Michaela Selbach

    2014-12-01

    Full Text Available In den letzten zehn Jahren spielen elektronische Ressourcen im Bereich der Erwerbung eine zunehmend wichtige Rolle: Eindeutig lässt sich hier ein Wandel in den Bibliotheken (fort vom reinen Printbestand zu immer größeren E-Only-Beständen feststellen. Die stetig wachsende Menge an E-Ressourcen und deren Heterogenität stellt Bibliotheken vor die Herausforderung, die E-Ressourcen effizient zu verwalten. Nicht nur Bibliotheken, sondern auch verhandlungsführende Institutionen von Konsortial- und Allianzlizenzen benötigen ein geeignetes Instrument zur Verwaltung von Lizenzinformationen, welches den komplexen Anforderungen moderner E-Ressourcen gerecht wird. Die Deutsche Forschungsgemeinschaft (DFG unterstützt ein Projekt des Hochschulbibliothekszentrums des Landes Nordrhein-Westfalen (hbz, der Universitätsbibliothek Freiburg, der Verbundzentrale des Gemeinsamen Bibliotheksverbundes (GBV und der Universitätsbibliothek Frankfurt, in dem ein bundesweit verfügbares Electronic Ressource Managementsystem (ERMS aufgebaut werden soll. Ein solches ERMS soll auf Basis einer zentralen Knowledge Base eine einheitliche Nutzung von Daten zur Lizenzverwaltung elektronischer Ressourcen auf lokaler, regionaler und nationaler Ebene ermöglichen. Statistische Auswertungen, Rechteverwaltung für alle angeschlossenen Bibliotheken, kooperative Datenpflege sowie ein über standardisierte Schnittstellen geführter Datenaustausch stehen bei der Erarbeitung der Anforderungen ebenso im Fokus wie die Entwicklung eines Daten- und Funktionsmodells. In the last few years the importance of electronic resources in library acquisitions has increased significantly. There has been a shift from mere print holdings to both e- and print combinations and even e-only subscriptions. This shift poses a double challenge for libraries: On the one hand they have to provide their e-resource collections to library users in an appealing way, on the other hand they have to manage these

  11. Electronic human resource management: Enhancing or entrancing?

    Directory of Open Access Journals (Sweden)

    Paul Poisat

    2017-07-01

    Full Text Available Orientation: This article provides an investigation into the current level of development of the body of knowledge related to electronic human resource management (e-HRM by means of a qualitative content analysis. Several aspects of e-HRM, namely definitions of e-HRM, the theoretical perspectives around e-HRM, the role of e-HRM, the various types of e-HRM and the requirements for successful e-HRM, are examined. Research purpose: The purpose of the article was to determine the status of e-HRM and examine the studies that report on the link between e-HRM and organisational productivity. Motivation for the study: e-HRM has the capacity to improve organisational efficiency and leverage the role of human resources (HR as a strategic business partner. Main findings: The notion that the implementation of e-HRM will lead to improved organisational productivity is commonly assumed; however, empirical evidence in this regard was found to be limited. Practical/managerial implications: From the results of this investigation it is evident that more research is required to gain a greater understanding of the influence of e-HRM on organisational productivity, as well as to develop measures for assessing this influence. Contribution: This article proposes additional areas to research and measure when investigating the effectiveness of e-HRM. It provides a different lens from which to view e-HRM assessment whilst keeping it within recognised HR measurement parameters (the HR value chain. In addition, it not only provides areas for measuring e-HRM’s influence but also provides important clues as to how the measurements may be approached.

  12. Utilization of electronic information resources by academic staff at ...

    African Journals Online (AJOL)

    The study investigated the utilization of Electronic Information resources by the academic staff of Makerere University in Uganda. It examined the academic staff awareness of the resources available, the types of resources provided by the Makerere University Library, the factors affecting resource utilization. The study was ...

  13. Biodiesel update

    International Nuclear Information System (INIS)

    Bee, K.

    1998-01-01

    Compared to gasoline driven spark ignition engines, diesel engines are more efficient and emit less CO 2 and CO. The use of mono-alkyl esters of long chain fatty acids derived from renewable lipid feed stocks such as vegetable oils or animal fats for use in compression ignition (diesel) engines was described. Production of this biodiesel product was illustrated. The raw materials for biodiesel include vegetable oil or animal fat, alcohol (methanol or ethanol), and a catalyst such as sodium hydroxide or potassium hydroxide. As far as uses are concerned, biodiesels can be used as a pure fuel, as a blending stock with petrodiesel, or in low levels with petrodiesel, indeed, anywhere where no. 1 or no. 2 petrodiesel is used. Details of the technical attributes of biodiesel were provided. The superior ability of biodiesel over petrodiesel to reduce particulates, carbon monoxide and unburned hydrocarbons was documented. A case study of using biodiesel fuel in an underground mine was part of the demonstration. 20 refs., 6 tabs

  14. Users satisfaction with electronic information resources and services ...

    African Journals Online (AJOL)

    This study investigated users satisfaction on the use of electronic information resources and services in MTN Net libraries in ABU & UNIBEN. Two objectives and one null hypotheses were formulated and tested with respect to the users' satisfaction on electronic information resources and services in MTN Net libraries in ...

  15. The Role of the Acquisitions Librarian in Electronic Resources Management

    Science.gov (United States)

    Pomerantz, Sarah B.

    2010-01-01

    With the ongoing shift to electronic formats for library resources, acquisitions librarians, like the rest of the profession, must adapt to the rapidly changing landscape of electronic resources by keeping up with trends and mastering new skills related to digital publishing, technology, and licensing. The author sought to know what roles…

  16. Optimizing biodiesel production in India

    International Nuclear Information System (INIS)

    Leduc, Sylvain; Natarajan, Karthikeyan; McCallum, Ian; Obersteiner, Michael; Dotzauer, Erik

    2009-01-01

    India is expected to at least double its fuel consumption in the transportation sector by 2030. To contribute to the fuel supply, renewable energies such as jatropha appear to be an attractive resource for biodiesel production in India as it can be grown on waste land and does not need intensive water supply. In order to produce biodiesel at a competitive cost, the biodiesel supply chain - from biomass harvesting to biodiesel delivery to the consumers - is analyzed. A mixed integer linear programming model is used in order to determine the optimal number and geographic locations of biodiesel plants. The optimization is based on minimization of the costs of the supply chain with respect to the biomass, production and transportation costs. Three biodiesel blends are considered, B2, B5 and B10. For each blend, 13 scenarios are considered where yield, biomass cost, cake price, glycerol price, transport cost and investment costs are studied. A sensitivity analysis is carried out on both those parameters and the resulting locations of the plants. The emissions of the supply chain are also considered. The results state that the biomass cost has most influence on the biodiesel cost (an increase of feedstock cost increases the biodiesel cost by about 40%) and to a lower effect, the investment cost and the glycerol price. Moreover, choosing the right set of production plant locations highly depends on the scenarios that have the highest probability to occur, for which the production plant locations still produce a competitive biodiesel cost and emissions from the transportation are minimum. In this study, one set of plant locations happened to meet these two requirements. (author)

  17. Selection and Evaluation of Electronic Resources

    Directory of Open Access Journals (Sweden)

    Doğan Atılgan

    2013-11-01

    Full Text Available Publication boom and issues related to controlling and accession of printed sources have created some problems after World War II. Consequently, publishing industry has encountered the problem of finding possible solution for emerged situation. Industry of electronic publishing has started to improve with the rapid increase of the price of printed sources as well as the problem of publication boom. The first effects of electronic publishing were appeared on the academic and scholarly publications then electronic publishing became a crucial part of all types of publications. As a result of these developments, collection developments and service policies of information centers were also significantly changed. In this article, after a general introduction about selection and evaluation processes of electronic publications, the subscribed databases by a state and a privately owned university in Turkey and their usage were examined.

  18. Biodiesel Mass Transit Demonstration

    Science.gov (United States)

    2010-04-01

    The Biodiesel Mass Transit Demonstration report is intended for mass transit decision makers and fleet managers considering biodiesel use. This is the final report for the demonstration project implemented by the National Biodiesel Board under a gran...

  19. Biodiesel Emissions Analysis Program

    Science.gov (United States)

    Using existing data, the EPA's biodiesel emissions analysis program sought to quantify the air pollution emission effects of biodiesel for diesel engines that have not been specifically modified to operate on biodiesel.

  20. Biodiesel fuels

    Science.gov (United States)

    The mono-alkyl esters, most commonly the methyl esters, of vegetable oils, animal fats or other materials consisting mainly of triacylglycerols, often referred to as biodiesel, are an alternative to conventional petrodiesel for use in compression-ignition engines. The fatty acid esters that thus com...

  1. Improving Electronic Resources through Holistic Budgeting

    Science.gov (United States)

    Kusik, James P.; Vargas, Mark A.

    2009-01-01

    To establish a more direct link between its collections and the educational goals of Saint Xavier University, the Byrne Memorial Library has adopted a "holistic" approach to collection development. This article examines how traditional budget practices influenced the library's selection of resources and describes how holistic collection…

  2. The biodiesel handbook

    National Research Council Canada - National Science Library

    Knothe, Gerhard; Krahl, Jurgen; Van Gerpen, Jon Harlan

    2010-01-01

    .... The Biodiesel Handbook delivers solutions to issues associated with biodiesel feedstocks, production issues, quality control, viscosity, stability, applications, emissions, and other environmental...

  3. Page 170 Use of Electronic Resources by Undergraduates in Two ...

    African Journals Online (AJOL)

    undergraduate students use electronic resources such as NUC virtual library, HINARI, ... web pages articles from magazines, encyclopedias, pamphlets and other .... of Nigerian university libraries have Internet connectivity, some of the system.

  4. Utilisation of Electronic Information Resources By Lecturers in ...

    African Journals Online (AJOL)

    This study assesses the use of information resources, specifically, electronic databases by lecturers/teachers in Universities and Colleges of Education in South Western Nigeria. Information resources are central to teachers' education. It provides lecturers/teachers access to information that enhances research and ...

  5. Preservation and conservation of electronic information resources of ...

    African Journals Online (AJOL)

    The major holdings of the broadcast libraries of the Nigerian Television Authority (NTA) are electronic information resources; therefore, providing safe places for general management of these resources have aroused interest in the industry in Nigeria for sometimes. The need to study the preservation and conservation of ...

  6. Using XML Technologies to Organize Electronic Reference Resources

    OpenAIRE

    Huser, Vojtech; Del Fiol, Guilherme; Rocha, Roberto A.

    2005-01-01

    Provision of access to reference electronic resources to clinicians is becoming increasingly important. We have created a framework for librarians to manage access to these resources at an enterprise level, rather than at the individual hospital libraries. We describe initial project requirements, implementation details, and some preliminary results.

  7. Euler European Libraries and Electronic Resources in Mathematical Sciences

    CERN Document Server

    The Euler Project. Karlsruhe

    The European Libraries and Electronic Resources (EULER) Project in Mathematical Sciences provides the EulerService site for searching out "mathematical resources such as books, pre-prints, web-pages, abstracts, proceedings, serials, technical reports preprints) and NetLab (for Internet resources), this outstanding engine is capable of simple, full, and refined searches. It also offers a browse option, which responds to entries in the author, keyword, and title fields. Further information about the Project is provided at the EULER homepage.

  8. Building an electronic resource collection a practical guide

    CERN Document Server

    Lee, Stuart D

    2004-01-01

    This practical book guides information professionals step-by-step through building and managing an electronic resource collection. It outlines the range of electronic products currently available in abstracting and indexing, bibliographic, and other services and then describes how to effectively select, evaluate and purchase them.

  9. Production of Biodiesel from Jatropha Curcas using Nano Materials

    Science.gov (United States)

    Khan, M. Bilal; Bahadar, Ali; Anjum, Waqas

    2009-09-01

    Biodiesel is proving to be a viable clean energy resource for conventional fuel as well as more exotic, value added jet fuel applications. Various non edible agriculture based sources are exploited to produce biodiesel with varying degrees of conversion and properties. Systematic studies carried out to date reveal that the oil extracted from Jatropha Curcas gives best results on yield basis (2800 kg oil/Hectare max). However the research is marred by the production of often undesirable and cumbersome byproducts, which needs multifarious purification steps with associated cost. Sponification step is a main hurdle in the old technology. We have made a paradigm shift by introducing nanomaterials which not only eliminate the cited side reactions/byproducts, but also yield higher conversion and lower costs. Typically we have reduced the reaction time from 90 min at 70° C to a gainful 5 min at ambient temperatures. The nanomaterial has been characterized by SEM and EDS (Electron Dispersion Scanning Analysis) which clearly shows bimodal distribution of the nonmaterial employed. Further characterization study was carried out by FTIR and the results are compared with petrodiesel and standard biodiesel in the important region of 2000-4000 cm-1. Perfect matching/finger printing was achieved. In this work we also report detailed comparative elemental and flash point analysis of the Biodiesel produced via various established roots.

  10. Organizational matters of competition in electronic educational resources

    Directory of Open Access Journals (Sweden)

    Ирина Карловна Войтович

    2015-12-01

    Full Text Available The article examines the experience of the Udmurt State University in conducting competitions of educational publications and electronic resources. The purpose of such competitions is to provide methodological support to educational process. The main focus is on competition of electronic educational resources. The technology of such contests is discussed through detailed analysis of the main stages of the contest. It is noted that the main task of the preparatory stage of the competition is related to the development of regulations on competition and the definition of criteria for selection of the submitted works. The paper also proposes a system of evaluation criteria of electronic educational resources developed by members of the contest organizing committee and jury members. The article emphasizes the importance of not only the preparatory stages of the competition, but also measures for its completion, aimed at training teachers create quality e-learning resources.

  11. Studies Highlight Biodiesel's Benefits

    Science.gov (United States)

    , Colo., July 6, 1998 — Two new studies highlight the benefits of biodiesel in reducing overall air Energy's National Renewable Energy Laboratory (NREL) conducted both studies: An Overview of Biodiesel and Petroleum Diesel Life Cycles and Biodiesel Research Progress, 1992-1997. Biodiesel is a renewable diesel

  12. Biodiesel via hydrotreating of fat

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Ahmed, El Hadi; Christensen, Claus Hviid

    Biodiesel production via transesterification to fatty acid alkyl esters is rising rapidly worldwide due to the limited availability of fossil resources and the problems of global warming. Often, however, the use of 2nd-generation feedstock like animal waste fat and trap greases etc. is made...

  13. Why and How to Measure the Use of Electronic Resources

    Directory of Open Access Journals (Sweden)

    Jean Bernon

    2008-11-01

    Full Text Available A complete overview of library activity implies a complete and reliable measurement of the use of both electronic resources and printed materials. This measurement is based on three sets of definitions: document types, use types and user types. There is a common model of definitions for printed materials, but a lot of questions and technical issues remain for electronic resources. In 2006 a French national working group studied these questions. It relied on the COUNTER standard, but found it insufficient and pointed out the need for local tools such as web markers and deep analysis of proxy logs. Within the French national consortium COUPERIN, a new working group is testing ERMS, SUSHI standards, Shibboleth authentication, along with COUNTER standards, to improve the counting of the electronic resources use. At this stage this counting is insufficient and its improvement will be a European challenge for the future.

  14. Access to electronic resources by visually impaired people

    Directory of Open Access Journals (Sweden)

    Jenny Craven

    2003-01-01

    Full Text Available Research into access to electronic resources by visually impaired people undertaken by the Centre for Research in Library and Information Management has not only explored the accessibility of websites and levels of awareness in providing websites that adhere to design for all principles, but has sought to enhance understanding of information seeking behaviour of blind and visually impaired people when using digital resources.

  15. Practical guide to electronic resources in the humanities

    CERN Document Server

    Dubnjakovic, Ana

    2010-01-01

    From full-text article databases to digitized collections of primary source materials, newly emerging electronic resources have radically impacted how research in the humanities is conducted and discovered. This book, covering high-quality, up-to-date electronic resources for the humanities, is an easy-to-use annotated guide for the librarian, student, and scholar alike. It covers online databases, indexes, archives, and many other critical tools in key humanities disciplines including philosophy, religion, languages and literature, and performing and visual arts. Succinct overviews of key eme

  16. Discipline, availability of electronic resources and the use of Finnish National Electronic Library - FinELib

    Directory of Open Access Journals (Sweden)

    Sanna Torma

    2004-01-01

    Full Text Available This study elaborated relations between digital library use by university faculty, users' discipline and the availability of key resources in the Finnish National Electronic Library (FinELib, Finnish national digital library, by using nationwide representative survey data. The results show that the perceived availability of key electronic resources by researchers in FinELib was a stronger predictor of the frequency and purpose of use of its services than users' discipline. Regardless of discipline a good perceived provision of central resources led to a more frequent use of FinELib. The satisfaction with the services did not vary with the discipline, but with the perceived availability of resources.

  17. Access to electronic information resources by students of federal ...

    African Journals Online (AJOL)

    The paper discusses access to electronic information resources by students of Federal Colleges of Education in Eha-Amufu and Umunze. Descriptive survey design was used to investigate sample of 526 students. Sampling technique used was a Multi sampling technique. Data for the study were generated using ...

  18. Electronic Commerce Resource Centers. An Industry--University Partnership.

    Science.gov (United States)

    Gulledge, Thomas R.; Sommer, Rainer; Tarimcilar, M. Murat

    1999-01-01

    Electronic Commerce Resource Centers focus on transferring emerging technologies to small businesses through university/industry partnerships. Successful implementation hinges on a strategic operating plan, creation of measurable value for customers, investment in customer-targeted training, and measurement of performance outputs. (SK)

  19. ANALYTICAL REVIEW OF ELECTRONIC RESOURCES FOR THE STUDY OF LATIN

    Directory of Open Access Journals (Sweden)

    Olena Yu. Balalaieva

    2014-04-01

    Full Text Available The article investigates the current state of development of e-learning content in the Latin language. It is noted that the introduction of ICT in the educational space has expanded the possibility of studying Latin, opened access to digital libraries resources, made it possible to use scientific and educational potential and teaching Latin best practices of world's leading universities. A review of foreign and Ukrainian information resources and electronic editions for the study of Latin is given. Much attention was paid to the didactic potential of local and online multimedia courses of Latin, electronic textbooks, workbooks of interactive tests and exercises, various dictionaries and software translators, databases and digital libraries. Based on analysis of the world market of educational services and products the main trends in the development of information resources and electronic books are examined. It was found that multimedia courses with interactive exercises or workbooks with interactive tests, online dictionaries and translators are the most widely represented and demanded. The noticeable lagging of Ukrainian education and computer linguistics in quantitative and qualitative measures in this industry is established. The obvious drawback of existing Ukrainian resources and electronic editions for the study of Latin is their noninteractive nature. The prospects of e-learning content in Latin in Ukraine are outlined.

  20. Adoption and use of electronic information resources by medical ...

    African Journals Online (AJOL)

    This study investigated the adoption and use of electronic information resources by medical science students of the University of Benin. The descriptive survey research design was adopted for the study and 390 students provided the data. Data collected were analysed with descriptive Statistics(Simple percentage and ...

  1. Modern ICT Tools: Online Electronic Resources Sharing Using Web ...

    African Journals Online (AJOL)

    Modern ICT Tools: Online Electronic Resources Sharing Using Web 2.0 and Its Implications For Library And Information Practice In Nigeria. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more ...

  2. Technical Communicator: A New Model for the Electronic Resources Librarian?

    Science.gov (United States)

    Hulseberg, Anna

    2016-01-01

    This article explores whether technical communicator is a useful model for electronic resources (ER) librarians. The fields of ER librarianship and technical communication (TC) originated and continue to develop in relation to evolving technologies. A review of the literature reveals four common themes for ER librarianship and TC. While the…

  3. Properties of various plants and animals feedstocks for biodiesel production.

    Science.gov (United States)

    Karmakar, Aninidita; Karmakar, Subrata; Mukherjee, Souti

    2010-10-01

    As an alternative fuel biodiesel is becoming increasingly important due to diminishing petroleum reserves and adverse environmental consequences of exhaust gases from petroleum-fuelled engines. Biodiesel, the non-toxic fuel, is mono alkyl esters of long chain fatty acids derived from renewable feedstock like vegetable oils, animal fats and residual oils. Choice of feedstocks depends on process chemistry, physical and chemical characteristics of virgin or used oils and economy of the process. Extensive research information is available on transesterification, the production technology and process optimization for various biomaterials. Consistent supply of feedstocks is being faced as a major challenge by the biodiesel production industry. This paper reviews physico-chemical properties of the plant and animal resources that are being used as feedstocks for biodiesel production. Efforts have also been made to review the potential resources that can be transformed into biodiesel successfully for meeting the ever increasing demand of biodiesel production. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Progress and recent trends in biodiesel fuels

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2009-01-01

    Fossil fuel resources are decreasing daily. Biodiesel fuels are attracting increasing attention worldwide as blending components or direct replacements for diesel fuel in vehicle engines. Biodiesel fuel typically comprises lower alkyl fatty acid (chain length C 14 -C 22 ), esters of short-chain alcohols, primarily, methanol or ethanol. Various methods have been reported for the production of biodiesel from vegetable oil, such as direct use and blending, microemulsification, pyrolysis, and transesterification. Among these, transesterification is an attractive and widely accepted technique. The purpose of the transesterification process is to lower the viscosity of the oil. The most important variables affecting methyl ester yield during the transesterification reaction are the molar ratio of alcohol to vegetable oil and the reaction temperature. Methanol is the commonly used alcohol in this process, due in part to its low cost. Methyl esters of vegetable oils have several outstanding advantages over other new-renewable and clean engine fuel alternatives. Biodiesel fuel is a renewable substitute fuel for petroleum diesel or petrodiesel fuel made from vegetable or animal fats; it can be used in any mixture with petrodiesel fuel, as it has very similar characteristics, but it has lower exhaust emissions. Biodiesel fuel has better properties than petrodiesel fuel; it is renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. Biodiesel seems to be a realistic fuel for future; it has become more attractive recently because of its environmental benefits. Biodiesel is an environmentally friendly fuel that can be used in any diesel engine without modification

  5. MODEL OF AN ELECTRONIC EDUCATIONAL RESOURCE OF NEW GENERATION

    Directory of Open Access Journals (Sweden)

    Anatoliy V. Loban

    2016-01-01

    Full Text Available The mathematical structure of the modular architecture of an electronic educational resource (EER of new generation, which allows to decompose the process of studying the subjects of the course at a hierarchically ordered set of data (knowledge and procedures for manipulating them, to determine the roles of participants of process of training of and technology the development and use of EOR in the study procrate.

  6. Study of oxidation stability of Jatropha curcas biodiesel/ diesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Siddharth; Sharma, M.P. [Biofuel Research Laboratory, Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Uttarakhand- 247667 (India)

    2011-07-01

    Biodiesel production is undergoing rapid technological reforms in industries and academia. This has become more obvious and relevant since the recent increase in the petroleum prices and the growing awareness relating to the environmental consequences of the fuel overdependency. However, the possibilities of production of biodiesel from edible oil resources in India is almost impossible, as primary need is to first meet the demand of edible oil that is already imported therefore it is essential to explore non-edible seed oils, like Jatropha curcas and Pongamia as biodiesel raw materials. The oxidation stability of biodiesel from Jatropha curcas oil is very poor. Therefore the aim of the present paper is to study the oxidation stability of Jatropha curcas biodiesel/ diesel blend. Also the effectiveness of various antioxidants is checked with respect to various blends of biodiesel with diesel.

  7. Degradation of nitrile rubber fuel hose by biodiesel use

    International Nuclear Information System (INIS)

    Coronado, Marcos; Montero, Gisela; Valdez, Benjamín; Stoytcheva, Margarita; Eliezer, Amir; García, Conrado; Campbell, Héctor; Pérez, Armando

    2014-01-01

    Nowadays biodiesel is becoming an increasingly important and popular fuel, obtained from renewable sources, and contributes to pollutant emissions reduction and decreasing fossil fuels dependence. However, its easier oxidation and faster degradation in comparison to diesel led to compatibility problems between biodiesel and various metallic and polymeric materials contacted. Therefore, the objective of this work is to investigate the effect of different mixtures diesel–biodiesel (fuel type B5, B10, B20) used in Baja California, Mexico on the resistance of nitrile rubber fuel hoses at temperatures of 25 °C and 70 °C applying gravimetric tests, tensile strength measurements and scanning electron microscopy analysis. The factors affecting the material mass change were identified using an experimental design analysis. It was found that the fuel temperature did not conduct to significant mass loss of nitrile rubber fuel hose, while biodiesel concentration affected the properties of the elastomer, causing the phenomenon of swelling. The exposure of hoses to fuel with increasing concentrations of biodiesel led to tensile strength decrease. - Highlights: • The biodiesel oxidation led to problems with polymeric materials. • The degradation of a nitrile rubber fuel hose in biodiesel blends was assessed. • The nitrile rubber showed greater affinity for biodiesel than diesel. • The elastomer swelled, cracked and lost its mechanical properties by biodiesel. • SEM analysis confirmed surface morphology changes in higher biodiesel blends

  8. The Current Status of Biodiesel Production Technology: A Review

    Directory of Open Access Journals (Sweden)

    Rizal Alamsyah

    2007-12-01

    Full Text Available Biodiesel is addressed to the name of fuel which consist of mono-alkyl ester that made from renewable and biodegradable resources, such as oils from plants (vegetable oils, waste or used cooking oil, and animal fats. Such oils or fats are chemically reacted with alcohols or methanol In producing chernical compounds called fatty acid methyl ester (FAME and these reactions are called transesterification and esterification. Glycerol, used in the pharmaceutical and cosmetics industry is produced from biodiesel production as a by-product. Researches on biodiesel as an alternative petroleum diesel have been done for more than 20 years. Transesterification reaction can be acid-catalyzed, alkali-catatyzed, or enzyme-catalyzed. Commercially biodiesel is processed by transesterification with alkali catalyst. This process, however, requires refining of products and recovery of catalysts, Such biodiesel production accelerates researches on biodiesel to obtain simpler methods, better quality. and minimum production cost. Besides the catalytic production for biodiesel, there is a method for biodiesel production namely non-catalytic production. Non-catalytic transesterification method was developed since catalytic tranestertfification still has two main problems assoclated With long reaction time and complicated purification. The first problem occurres because of the two phase nature of vegetable oil/methanol mixture, and the last problem is due to purification of catalyst and glycerol. The application of catalytic tranestertfication method leads to condition of high biodiesel production cost and high energy consumption. This paper provides information of biodiesel production progress namely catalytic tranestertfification (acid, alkali, and enzymatic tranesterfification, and non-catalytic tranesterification (at sub-critical­-supercritical temperature under pressurized conditions. It was found that every method of biodiesel production still has advantages and

  9. Water Consumption Estimates of the Biodiesel Process in the US

    Science.gov (United States)

    As a renewable alternative to petroleum diesel, biodiesel has been widely used in the US and around the world. Along with the rapid development of the biodiesel industry, its potential impact on water resources should also be evaluated. This study investigates water consumption f...

  10. Lipids from yeasts and fungi: Tomorrow's source of Biodiesel?

    NARCIS (Netherlands)

    Meeuwse, P.; Sanders, J.P.M.; Tramper, J.; Rinzema, A.

    2013-01-01

    In the search for new transport fuels from renewable resources, biodiesel from microbial lipids comes into view. We have evaluated the lipid yield and energy use of a process for production of biodiesel from agricultural waste using lipid-accumulating yeast and fungi. We included different

  11. Alternative Fuels Data Center: Federal Laws and Incentives for Biodiesel

    Science.gov (United States)

    SmartWay Transport Partnership is a market-based public-private collaboration between the U.S operate vehicle fleets, the public, and other interested entities about the benefits of biodiesel use Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center

  12. End-of-life resource recovery from emerging electronic products

    DEFF Research Database (Denmark)

    Parajuly, Keshav; Habib, Komal; Cimpan, Ciprian

    2016-01-01

    Integrating product design with appropriate end-of-life (EoL) processing is widely recognized to have huge potentials in improving resource recovery from electronic products. In this study, we investigate both the product characteristics and EoL processing of robotic vacuum cleaner (RVC), as a case...... of emerging electronic product, in order to understand the recovery fate of different materials and its linkage to product design. Ten different brands of RVC were dismantled and their material composition and design profiles were studied. Another 125 RVCs (349 kg) were used for an experimental trial...... at a conventional ‘shred-and-separate’ type preprocessing plant in Denmark. A detailed material flow analysis was performed throughout the recycling chain. The results show a mismatch between product design and EoL processing, and the lack of practical implementation of ‘Design for EoL’ thinking. In the best...

  13. Analysis of Human Resources Management Strategy in China Electronic Commerce Enterprises

    Science.gov (United States)

    Shao, Fang

    The paper discussed electronic-commerce's influence on enterprise human resources management, proposed and proved the human resources management strategy which electronic commerce enterprise should adopt from recruitment strategy to training strategy, keeping talent strategy and other ways.

  14. Perspectives of microbial oils for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Li Qiang; Du Wei; Liu Dehua [Tsinghua Univ., Beijing (China). Dept. of Chemical Engineering

    2008-10-15

    Biodiesel has become more attractive recently because of its environmental benefits, and the fact that it is made from renewable resources. Generally speaking, biodiesel is prepared through transesterification of vegetable oils or animal fats with short chain alcohols. However, the lack of oil feedstocks limits the large-scale development of biodiesel to some extent. Recently, much attention has been paid to the development of microbial, oils and it has been found that many microorganisms, such as algae, yeast, bacteria, and fungi, have the ability to accumulate oils under some special cultivation conditions. Compared to other plant oils, microbial oils have many advantages, such as short life cycle, less labor required, less affection by venue, season and climate, and easier to scale up. With the rapid expansion of biodiesel, microbial oils might become one of potential oil feedstocks for biodiesel production in the future, though there are many works associated with microorganisms producing oils need to be carried out further. This review is covering the related research about different oleaginous microorganisms producing oils, and the prospects of such microbial oils used for biodiesel production are also discussed. (orig.)

  15. Calophyllum inophyllum L. as a future feedstock for bio-diesel production

    Energy Technology Data Exchange (ETDEWEB)

    Atabania, A.E. [Department of Mechanical Engineering, University of Khartoum (Sudan)], email: a_atabani2@msn.com, email: ardinsu@yahoo.co.id; Silitonga, A.S.; Mahlia, T.M.I.; Masjukia, H.H.; Badruddin, I.A. [University of Malaya (Malaysia)

    2011-07-01

    Due to the energy crisis and the concerns about climate change, the possibility of using biodiesel as an alternative energy resource has been examined. It has been found that biodiesel could be a solution for the future but the first generation of biodiesel, prepared from edible vegetable oils, has raised important concerns about food and environmental problems. The aim of this study is to assess if Calophyllum inophyllum, a non-edible oil, could be used for biodiesel production. Density, kinematic viscosity, cetane number, flashpoint and iodine value were determined on Calophyllum inophyllum trees from Cilacap, Indonesia and compared in light of ASTM D6751 biodiesel standards. It was found that Calophyllum inophyllum would be a satisfactory feedstock to produce biodiesel in the future. This study demonstrated that Calophyllum inophyllum has the potential to be a biodiesel feedstock and further research should be carried out on engine performance, combustion and emission performance of biodiesel produced from Calophyllum inophyllum.

  16. Biodiesel exhaust: the need for a systematic approach to health effects research.

    Science.gov (United States)

    Larcombe, Alexander N; Kicic, Anthony; Mullins, Benjamin J; Knothe, Gerhard

    2015-10-01

    Biodiesel is a generic term for fuel that can be made from virtually any plant or animal oil via transesterification of triglycerides with an alcohol (and usually a catalyst). Biodiesel has received considerable scientific attention in recent years, as it is a renewable resource that is directly able to replace mineral diesel in many engines. Additionally, some countries have mandated a minimum biodiesel content in all diesel fuel sold on environmental grounds. When combusted, biodiesel produces exhaust emissions containing particulate matter, adsorbed chemicals and a range of gases. In many cases, absolute amounts of these pollutants are lower in biodiesel exhaust compared with mineral diesel exhaust, leading to speculation that biodiesel exhaust may be less harmful to health. Additionally, engine performance studies show that the concentrations of these pollutants vary significantly depending on the renewable oil used to make the biodiesel and the ratio of biodiesel to mineral diesel in the fuel mix. Given the strategic and legislative push towards the use of biodiesel in many countries, a concerning possibility is that certain biodiesels may produce exhaust emissions that are more harmful to health than others. This variation suggests that a comprehensive, systematic and comparative approach to assessing the potential for a range of different biodiesel exhausts to affect health is urgently required. Such an assessment could inform biodiesel production priorities, drive research and development into new exhaust treatment technologies, and ultimately minimize the health impacts of biodiesel exhaust exposure. © 2015 Asian Pacific Society of Respirology.

  17. Effects of Electronic Information Resources Skills Training for Lecturers on Pedagogical Practices and Research Productivity

    Science.gov (United States)

    Bhukuvhani, Crispen; Chiparausha, Blessing; Zuvalinyenga, Dorcas

    2012-01-01

    Lecturers use various electronic resources at different frequencies. The university library's information literacy skills workshops and seminars are the main sources of knowledge of accessing electronic resources. The use of electronic resources can be said to have positively affected lecturers' pedagogical practices and their work in general. The…

  18. Electronic Resources and Mission Creep: Reorganizing the Library for the Twenty-First Century

    Science.gov (United States)

    Stachokas, George

    2009-01-01

    The position of electronic resources librarian was created to serve as a specialist in the negotiation of license agreements for electronic resources, but mission creep has added more functions to the routine work of electronic resources such as cataloging, gathering information for collection development, and technical support. As electronic…

  19. Corrosion mechanism of copper in palm biodiesel

    International Nuclear Information System (INIS)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H.

    2013-01-01

    Highlights: ► Corrosion of copper in biodiesel increases with the increase of immersion time. ► The corrosion patina is found to be composed of CuO, Cu 2 O, CuCO 3 and Cu(OH) 2 . ► Green CuCO 3 was found as the major corrosion product. ► The mechanisms governing corrosion of copper in palm biodiesel are discussed. - Abstract: Biodiesel is a promising alternative fuel. However, it causes enhanced corrosion of automotive materials, especially of copper based components. In the present study, corrosion mechanism of copper was investigated by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Compositional change of biodiesel due to the exposure of copper was also investigated. Corrosion patina on copper is found to be composed of Cu 2 O, CuO, Cu(OH) 2 and CuCO 3. Dissolved O 2 , H 2 O, CO 2 and RCOO − radical in biodiesel seem to be the leading factors in enhancing the corrosiveness of biodiesel.

  20. Biodiesel Test Plan

    Science.gov (United States)

    2014-07-01

    Biodiesel Test Plan Distribution Statement A: Approved for Public Release; distribution is unlimited. July 2014 Report No. CG-D-07-14...Appendix C) Biodiesel Test Plan ii UNCLAS//Public | CG-926 R&DC | G. W. Johnson, et al. Public | July 2014 N O T I C E This...Development Center 1 Chelsea Street New London, CT 06320 Biodiesel Test Plan iii UNCLAS//Public | CG-926 R&DC | G. W. Johnson, et al

  1. Biodiesel at TRANSPETRO; Biodiesel na TRANSPETRO

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Antonio Carlos C. da; Machado, Tupinamba da Conceicao S. [TRANSPETRO, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    TRANSPETRO took the challenge, in early 2007, to design and install in less than one year, the systems of injection of Biodiesel in its Distribution Bases with loading truck. The basics premises, adopted for the development of the project, were based on the criteria of safety, operational reliability and to complying with legal deadline. These points guided the actions of Coordinating with two goals: Ensure the injection of Biodiesel according to time by law and the future flexibility of the system. Two to three sets were installed in each Distribution Base, respecting the characteristics of the market and the distance from centers producers of Biodiesel. TRANSPETRO was one of the first companies in Brazil using cutting-edge technology in injection of this product through the use of digital valves in the control of flow of the product. Sum up the storage capacity of Biodiesel the first and second phase of the project, TRANSPETRO will provide 8 to 10 days' stock of Biodiesel to its customers based on the injection of 5% to Diesel Oil. The Project Biodiesel at TRANSPETRO was differentiated by working in teams, the strategy for deployment and the modular aspect with focus on future demand. (author)

  2. Electronic Document Management: A Human Resource Management Case Study

    Directory of Open Access Journals (Sweden)

    Thomas Groenewald

    2004-11-01

    Full Text Available This case study serve as exemplar regarding what can go wrong with the implementation of an electronic document management system. Knowledge agility and knowledge as capital, is outlined against the backdrop of the information society and knowledge economy. The importance of electronic document management and control is sketched thereafter. The literature review is concluded with the impact of human resource management on knowledge agility, which includes references to the learning organisation and complexity theory. The intervention methodology, comprising three phases, follows next. The results of the three phases are presented thereafter. Partial success has been achieved with improving the human efficacy of electronic document management, however the client opted to discontinue the system in use. Opsomming Die gevalle studie dien as voorbeeld van wat kan verkeerd loop met die implementering van ’n elektroniese dokumentbestuur sisteem. Teen die agtergrond van die inligtingsgemeenskap en kennishuishouding word kennissoepelheid en kennis as kapitaal bespreek. Die literatuurstudie word afgesluit met die inpak van menslikehulpbronbestuur op kennissoepelheid, wat ook die verwysings na die leerorganisasie en kompleksietydsteorie insluit. Die metodologie van die intervensie, wat uit drie fases bestaan, volg daarna. Die resultate van die drie fases word vervolgens aangebied. Slegs gedeelte welslae is behaal met die verbetering van die menslike doeltreffendheid ten opsigte van elektroniese dokumentbestuur. Die klient besluit egter om nie voort te gaan om die huidige sisteem te gebruik nie.

  3. Supercritical Synthesis of Biodiesel

    Directory of Open Access Journals (Sweden)

    Michel Vaultier

    2012-07-01

    Full Text Available The synthesis of biodiesel fuel from lipids (vegetable oils and animal fats has gained in importance as a possible source of renewable non-fossil energy in an attempt to reduce our dependence on petroleum-based fuels. The catalytic processes commonly used for the production of biodiesel fuel present a series of limitations and drawbacks, among them the high energy consumption required for complex purification operations and undesirable side reactions. Supercritical fluid (SCF technologies offer an interesting alternative to conventional processes for preparing biodiesel. This review highlights the advances, advantages, drawbacks and new tendencies involved in the use of supercritical fluids (SCFs for biodiesel synthesis.

  4. An in-silico investigation on the structure, function and homologous sequences of the enzymes and proteins involved in the production and accumulation of the lipids in biodiesel resources

    Directory of Open Access Journals (Sweden)

    Najmeh Farmanbar

    2017-06-01

    Discussion and conclusion: Overall, this survey provides a series of motifs and domains in biodiesel process, as well as introducing several organisms with potency in biodiesel production, which could be more examined in an experimental condition.

  5. Particulate emissions from biodiesel fuelled CI engines

    International Nuclear Information System (INIS)

    Agarwal, Avinash Kumar; Gupta, Tarun; Shukla, Pravesh C.; Dhar, Atul

    2015-01-01

    Highlights: • Physical and chemical characterization of biodiesel particulates. • Toxicity of biodiesel particulate due to EC/OC, PAHs and BTEX. • Trace metals and unregulated emissions from biodiesel fuelled diesel engines. • Influence of aftertreatment devices and injection strategy on biodiesel particulates. • Characterization of biodiesel particulate size-number distribution. - Abstract: Compression ignition (CI) engines are the most popular prime-movers for transportation sector as well as for stationary applications. Petroleum reserves are rapidly and continuously depleting at an alarming pace and there is an urgent need to find alternative energy resources to control both, the global warming and the air pollution, which is primarily attributed to combustion of fossil fuels. In last couple of decades, biodiesel has emerged as the most important alternative fuel candidate to mineral diesel. Numerous experimental investigations have confirmed that biodiesel results in improved engine performance, lower emissions, particularly lower particulate mass emissions vis-à-vis mineral diesel and is therefore relatively more environment friendly fuel, being renewable in nature. Environmental and health effects of particulates are not simply dependent on the particulate mass emissions but these change depending upon varying physical and chemical characteristics of particulates. Particulate characteristics are dependent on largely unpredictable interactions between engine technology, after-treatment technology, engine operating conditions as well as fuel and lubricating oil properties. This review paper presents an exhaustive summary of literature on the effect of biodiesel and its blends on exhaust particulate’s physical characteristics (such as particulate mass, particle number-size distribution, particle surface area-size distribution, surface morphology) and chemical characteristics (such as elemental and organic carbon content, speciation of polyaromatic

  6. Use of Reactive Distillation for Biodiesel Production: A Literature Survey

    Directory of Open Access Journals (Sweden)

    Muhammad Dani Supardan

    2006-06-01

    Full Text Available Biodiesel has been shown to be the best substitute for fossil-based fuels to its environmental advantages and renewable resource availability. There is a great demand for the commercialization of biodiesel production, which in turn calls for a technically and economically reactor technology. The production of biodiesel in existing batch and continuous-flow processes requires excess alcohol, typically 100%, over the stoichiometric molar requirement in order to drive the chemical reaction to completion. In this study, a novel reactor system using a reactive distillation (RD technique was discussed for biodiesel production. RD is a chemical unit operation in which chemical reactions and separations occur simultaneously in one unit. It is an effective alternative to the classical combination of reactor and separation units especially when involving reversible or consecutive chemical reactions such as transesterication process in biodiesel production.

  7. Determinants of stakeholders' attitudes towards biodiesel.

    Science.gov (United States)

    Amin, Latifah; Hashim, Hasrizul; Mahadi, Zurina; Ibrahim, Maznah; Ismail, Khaidzir

    2017-01-01

    Concern about the inevitable depletion of global energy resources is rising and many countries are shifting their focus to renewable energy. Biodiesel is one promising energy source that has garnered much public attention in recent years. Many believe that this alternative source of energy will be able to sustain the need for increased energy security while at the same time being friendly to the environment. Public opinion, as well as proactive measures by key players in industry, may play a decisive role in steering the direction of biodiesel development throughout the world. Past studies have suggested that public acceptance of biofuels could be shaped by critical consideration of the risk-benefit perceptions of the product, in addition to the impact on the economy and environment. The purpose of this study was to identify the relevant factors influencing stakeholders' attitudes towards biodiesel derived from crops such as palm oil for vehicle use, as well as to analyse the interrelationships of these factors in an attitude model. A survey of 509 respondents, consisting of various stakeholder groups in the Klang Valley region of Malaysia, was undertaken. The results of the study have substantiated the premise that the most important direct predictor of attitude to biodiesel is the perceived benefits ( β  = 0.80, p  < 0.001). Attitude towards biodiesel also involves the interplay between other factors, such as engagement to biotechnology, trust of key players, attitude to technology, and perceived risk. Although perceived benefit has emerged as the main predictor of public support of biodiesel, the existence of other significant interactions among variables leads to the conclusion that public attitude towards biodiesel should be seen as a multi-faceted process and should be strongly considered prior to its commercialisation.

  8. Heterogeneous catalysis afford biodiesel of babassu, castor oil and blends

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Lee M.G. de; Abreu, Wiury C. de; Silva, Maria das Gracas de O. e; Matos, Jose Milton E. de; Moura, Carla V.R. de; Moura, Edmilson M. de, E-mail: mmoura@ufpi.edu.br [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil). Departamento de Quimica; Lima, Jose Renato de O.; Oliveira, Jose Eduardo de [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP/IQ/CEMPEQC), Araraquara, SP (Brazil). Instituto de Quimica. Centro de Monitoramento e Pesquisa da Qualidade de Combustiveis, Biocombustiveis, Petroleo e Derivados

    2013-04-15

    This work describes the preparation of babassu, castor oil biodiesel and mixtures in various proportions of these oils, using alkaline compounds of strontium (SrCO{sub 3} + SrO + Sr (OH){sub 2}) as heterogeneous catalysts. The mixture of oils of these oleaginous sources was used in the production of biodiesel with quality parameters that meet current legislation. The catalyst was characterized by X-ray diffractometry (XDR), physisorption of gas (BET method), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR). The viscometric technique was used to monitor the optimization.The transesterification reactions performed using strontium compounds reached conversion rates of 97.2% babassu biodiesel (BB), 96.4% castor oil biodiesel (COB) and 95.3% Babassu/Castor Oil Biodiesel 4:1 (BBCO41). (author)

  9. Heterogeneous catalysis afford biodiesel of babassu, castor oil and blends

    International Nuclear Information System (INIS)

    Carvalho, Lee M.G. de; Abreu, Wiury C. de; Silva, Maria das Gracas de O. e; Matos, Jose Milton E. de; Moura, Carla V.R. de; Moura, Edmilson M. de; Lima, Jose Renato de O.; Oliveira, Jose Eduardo de

    2013-01-01

    This work describes the preparation of babassu, castor oil biodiesel and mixtures in various proportions of these oils, using alkaline compounds of strontium (SrCO 3 + SrO + Sr (OH) 2 ) as heterogeneous catalysts. The mixture of oils of these oleaginous sources was used in the production of biodiesel with quality parameters that meet current legislation. The catalyst was characterized by X-ray diffractometry (XDR), physisorption of gas (BET method), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR). The viscometric technique was used to monitor the optimization.The transesterification reactions performed using strontium compounds reached conversion rates of 97.2% babassu biodiesel (BB), 96.4% castor oil biodiesel (COB) and 95.3% Babassu/Castor Oil Biodiesel 4:1 (BBCO41). (author)

  10. Energy aspects of microalgal biodiesel production

    Directory of Open Access Journals (Sweden)

    Edith Martinez-Guerra

    2016-03-01

    Full Text Available Algal biodiesel production will play a significant role in sustaining future transportation fuel supplies. A large number of researchers around the world are investigating into making this process sustainable by increasing the energy gains and by optimizing resource-utilization efficiencies. Although, research is being pursued aggressively in all aspects of algal biodiesel production from microalgal cell cultivation, cell harvesting, and extraction and transesterification steps to the final product separation and purification, there is a large disparity in the data presented in recent reports making it difficult to assess the real potential of microalgae as a future energy source. This article discusses some of the key issues in energy consumption in the process of algal biodiesel production and identifies the areas for improvement to make this process energy-positive and sustainable.

  11. Compatibility of elastomers in palm biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Haseeb, A.S.M.A.; Masjuki, H.H.; Siang, C.T.; Fazal, M.A. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2010-10-15

    In recent time, environmental awareness and concern over the rapid exhaustion of fossil fuels have led to an increased popularity of biodiesel as an alternative fuel for automobiles. However, there are concerns over enhanced degradation of automotive materials in biodiesel. The present study aims to investigate the impact of palm biodiesel on the degradation behavior of elastomers such as nitrile rubber (NBR), polychloroprene, and fluoro-viton A. Static immersion tests in B0 (diesel), B10 (10% biodiesel in diesel), B100 (biodiesel) were carried out at room temperature (25 C) and at 50 C for 500 h. At the end of immersion test, degradation behavior was investigated by measuring mass, volume, hardness as well as tensile strength and elongation. The exposed elastomer surface was studied by scanning electron microscopy (SEM). Fourier Transform Infrared (FTIR) spectroscopy was carried out to identify the chemical and structural changes. Results showed that the extent of degradation was higher for both polychloroprene and NBR while fluoro-viton exhibited good resistance to degradation and was least attacked. (author)

  12. Electronic Safety Resource Tools -- Supporting Hydrogen and Fuel Cell Commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Barilo, Nick F.

    2014-09-29

    The Pacific Northwest National Laboratory (PNNL) Hydrogen Safety Program conducted a planning session in Los Angeles, CA on April 1, 2014 to consider what electronic safety tools would benefit the next phase of hydrogen and fuel cell commercialization. A diverse, 20-person team led by an experienced facilitator considered the question as it applied to the eight most relevant user groups. The results and subsequent evaluation activities revealed several possible resource tools that could greatly benefit users. The tool identified as having the greatest potential for impact is a hydrogen safety portal, which can be the central location for integrating and disseminating safety information (including most of the tools identified in this report). Such a tool can provide credible and reliable information from a trustworthy source. Other impactful tools identified include a codes and standards wizard to guide users through a series of questions relating to application and specific features of the requirements; a scenario-based virtual reality training for first responders; peer networking tools to bring users from focused groups together to discuss and collaborate on hydrogen safety issues; and a focused tool for training inspectors. Table ES.1 provides results of the planning session, including proposed new tools and changes to existing tools.

  13. Controlling user access to electronic resources without password

    Science.gov (United States)

    Smith, Fred Hewitt

    2015-06-16

    Described herein are devices and techniques for remotely controlling user access to a restricted computer resource. The process includes pre-determining an association of the restricted computer resource and computer-resource-proximal environmental information. Indicia of user-proximal environmental information are received from a user requesting access to the restricted computer resource. Received indicia of user-proximal environmental information are compared to associated computer-resource-proximal environmental information. User access to the restricted computer resource is selectively granted responsive to a favorable comparison in which the user-proximal environmental information is sufficiently similar to the computer-resource proximal environmental information. In at least some embodiments, the process further includes comparing user-supplied biometric measure and comparing it with a predetermined association of at least one biometric measure of an authorized user. Access to the restricted computer resource is granted in response to a favorable comparison.

  14. Sustainable Biocatalytic Biodiesel Production

    DEFF Research Database (Denmark)

    Güzel, Günduz

    As part of his PhD studies, Gündüz Güzel examined the thermodynamics of reactions involved in biocatalytic biodiesel production processes, with a specific focus on phase equilibria of reactive systems. He carried out the thermodynamic analyses of biocatalytic processes in terms of phase and chemi......As part of his PhD studies, Gündüz Güzel examined the thermodynamics of reactions involved in biocatalytic biodiesel production processes, with a specific focus on phase equilibria of reactive systems. He carried out the thermodynamic analyses of biocatalytic processes in terms of phase...... and chemical equilibria as part of his main sustainable biodiesel project. The transesterification reaction of vegetable oils or fats with an aliphatic alcohol – in most cases methanol or ethanol – yields biodiesel (long-chain fatty acid alkyl esters – FAAE) as the main product in the presence of alkaline...

  15. The Internet School of Medicine: use of electronic resources by medical trainees and the reliability of those resources.

    Science.gov (United States)

    Egle, Jonathan P; Smeenge, David M; Kassem, Kamal M; Mittal, Vijay K

    2015-01-01

    Electronic sources of medical information are plentiful, and numerous studies have demonstrated the use of the Internet by patients and the variable reliability of these sources. Studies have investigated neither the use of web-based resources by residents, nor the reliability of the information available on these websites. A web-based survey was distributed to surgical residents in Michigan and third- and fourth-year medical students at an American allopathic and osteopathic medical school and a Caribbean allopathic school regarding their preferred sources of medical information in various situations. A set of 254 queries simulating those faced by medical trainees on rounds, on a written examination, or during patient care was developed. The top 5 electronic resources cited by the trainees were evaluated for their ability to answer these questions accurately, using standard textbooks as the point of reference. The respondents reported a wide variety of overall preferred resources. Most of the 73 responding medical trainees favored textbooks or board review books for prolonged studying, but electronic resources are frequently used for quick studying, clinical decision-making questions, and medication queries. The most commonly used electronic resources were UpToDate, Google, Medscape, Wikipedia, and Epocrates. UpToDate and Epocrates had the highest percentage of correct answers (47%) and Wikipedia had the lowest (26%). Epocrates also had the highest percentage of wrong answers (30%), whereas Google had the lowest percentage (18%). All resources had a significant number of questions that they were unable to answer. Though hardcopy books have not been completely replaced by electronic resources, more than half of medical students and nearly half of residents prefer web-based sources of information. For quick questions and studying, both groups prefer Internet sources. However, the most commonly used electronic resources fail to answer clinical queries more than half

  16. Beschikbaarheid koolzaad voor biodiesel

    OpenAIRE

    Janssens, B.; Prins, H.; Smit, A.B.; Annevelink, E.; Meeusen-van Onna, M.J.G.

    2005-01-01

    This report provides an insight into the conditions under which the Dutch agricultural industry will cultivate oilseed rape for biodiesel. The Dutch agricultural entrepreneur occupies a central role in this. The possibilities relating to the cultivation of oilseed rape are assessed from the perspective of the Dutch farmer, within the framework of the EU directive regarding the substitution of 2% of transport fuels with bio transport fuels in the Netherlands. Along with bio-ethanol, biodiesel ...

  17. Biodiesel Fuel Quality and the ASTM Biodiesel Standard

    Science.gov (United States)

    Biodiesel is usually produced from vegetable oils, animal fats and used cooking oils with alternative feedstocks such as algae receiving increasing interest. The transesterification reaction which produces biodiesel also produces glycerol and proceeds stepwise via mono- and diacylglycerol intermedi...

  18. Developing Humanities Collections in the Digital Age: Exploring Humanities Faculty Engagement with Electronic and Print Resources

    Science.gov (United States)

    Kachaluba, Sarah Buck; Brady, Jessica Evans; Critten, Jessica

    2014-01-01

    This article is based on quantitative and qualitative research examining humanities scholars' understandings of the advantages and disadvantages of print versus electronic information resources. It explores how humanities' faculty members at Florida State University (FSU) use print and electronic resources, as well as how they perceive these…

  19. Electronic resource management practical perspectives in a new technical services model

    CERN Document Server

    Elguindi, Anne

    2012-01-01

    A significant shift is taking place in libraries, with the purchase of e-resources accounting for the bulk of materials spending. Electronic Resource Management makes the case that technical services workflows need to make a corresponding shift toward e-centric models and highlights the increasing variety of e-formats that are forcing new developments in the field.Six chapters cover key topics, including: technical services models, both past and emerging; staffing and workflow in electronic resource management; implementation and transformation of electronic resource management systems; the ro

  20. Electronic resources access and usage among the postgraduates of ...

    African Journals Online (AJOL)

    ... and usage among the postgraduates of a Nigerian University of Technology. ... faced by postgraduates in using e-resources include takes too much time to find, ... Resources, Access, Use, Postgraduat, Students, University, Technology, Nigeria ... By Country · List All Titles · Free To Read Titles This Journal is Open Access.

  1. Business management for biodiesel producers

    Energy Technology Data Exchange (ETDEWEB)

    Gerpen, Jon Van [Iowa State Univ., Ames, IA (United States)

    2004-07-01

    The material in this book is intended to provide the reader with information about the biodiesel and liquid fuels industry, biodiesel start-up issues, legal and regulatory issues, and operational concerns.

  2. Prospects of biodiesel production from microalgae in India

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Shakeel A.; Hussain, Mir Z.; Prasad, S. [Division of Environmental Sciences, Indian Agricultural Research Institute, New Delhi 110012 (India); Rashmi; Banerjee, U.C. [Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical and Education Research (NIPER), Sector 67, Phase X, S.A.S. Nagar, Mohali 160062, Punjab (India)

    2009-12-15

    Energy is essential and vital for development, and the global economy literally runs on energy. The use of fossil fuels as energy is now widely accepted as unsustainable due to depleting resources and also due to the accumulation of greenhouse gases in the environment. Renewable and carbon neutral biodiesel are necessary for environmental and economic sustainability. Biodiesel demand is constantly increasing as the reservoir of fossil fuel are depleting. Unfortunately biodiesel produced from oil crop, waste cooking oil and animal fats are not able to replace fossil fuel. The viability of the first generation biofuels production is however questionable because of the conflict with food supply. Production of biodiesel using microalgae biomass appears to be a viable alternative. The oil productivity of many microalgae exceeds the best producing oil crops. Microalgae are photosynthetic microorganisms which convert sunlight, water and CO{sub 2} to sugars, from which macromolecules, such as lipids and triacylglycerols (TAGs) can be obtained. These TAGs are the promising and sustainable feedstock for biodiesel production. Microalgal biorefinery approach can be used to reduce the cost of making microalgal biodiesel. Microalgal-based carbon sequestration technologies cover the cost of carbon capture and sequestration. The present paper is an attempt to review the potential of microalgal biodiesel in comparison to the agricultural crops and its prospects in India. (author)

  3. Strategic Planning for Electronic Resources Management: A Case Study at Gustavus Adolphus College

    Science.gov (United States)

    Hulseberg, Anna; Monson, Sarah

    2009-01-01

    Electronic resources, the tools we use to manage them, and the needs and expectations of our users are constantly evolving; at the same time, the roles, responsibilities, and workflow of the library staff who manage e-resources are also in flux. Recognizing a need to be more intentional and proactive about how we manage e-resources, the…

  4. Biodiesel/Cummins CRADA Report

    Science.gov (United States)

    2014-07-01

    dedicated totes). This change provided uncontaminated containers to transport the delivery of biodiesel to the ANT, and better control for dosing as...emissions calculations. Each approach makes assumptions for farming practices, the biodiesel production process, and transportation and distribution... Biodiesel /Cummins CRADA Report Distribution Statement A: Approved for Public Release; distribution is unlimited. July 2014 Report

  5. impact of the use of electronic resources on research output

    African Journals Online (AJOL)

    manda

    ... Julita Nawe. University of Dar Es Salaam Library, P.O. Box 35092, Dar Es Salaam, Tanzania .... significantly, while 28.3% observed that quality of service to the community had improved .... resources and evaluate them is an important area.

  6. Performance and emission study on waste cooking oil biodiesel and distillate blends for microturbine application

    Directory of Open Access Journals (Sweden)

    Ee Sann Tan

    2015-11-01

    Full Text Available Biodiesel is defined as domestic renewable energy resource, which can be derived from natural oils through the transesterification. The implementation of biodiesel is essential due to the energy depletion crisis and the impact on exacerbating environment caused by rapid consumption of conventional diesel. Waste cooking oil (WCO was used as the raw material to produce biodiesel in order to reduce wastes polluting the environment. This paper studies the technical potential of WCO biodiesel to be used as an alternative fuel for microturbine. The ASTM D6751 and ASTM D2881 standards were selected as references to evaluate the compatibility with distillate to be used as a microturbine fuel. The performance and emission tests were conducted employing a 30 kW microturbine, without any modification, using biodiesel and distillate blends up to maximum of 20% biodiesel mixing ratio. It was found that the thermal efficiency peaked at 20% biodiesel blend with distillate, despite the fact that biodiesel had a lower calorific value and a higher fuel consumption. The emission test results showed reduction of CO emission by increasing the WCO biodiesel mixing ratio, while NOx emission was dependent on the exhaust gas temperature. In conclusion, biodiesel derived from WCO has the potential to substitute distillate in the microturbine application.

  7. Preservation of and Permanent Access to Electronic Information Resources

    National Research Council Canada - National Science Library

    Hodge, Gail

    2004-01-01

    The rapid growth in the creation and dissemination of electronic information has emphasized the digital environment's speed and ease of dissemination with little regard for its long-term preservation and access...

  8. Electronic conferencing for continuing medical education: a resource survey.

    Science.gov (United States)

    Sternberg, R J

    1986-10-01

    The use of electronic technologies to link participants for education conferences is an option for providers of Continuing Medical Education. In order to profile the kinds of electronic networks currently offering audio- or videoteleconferences for physician audiences, a survey was done during late 1985. The information collected included range of services, fees, and geographic areas served. The results show a broad diversity of providers providing both interactive and didactic programming to both physicians and other health care professionals.

  9. Biodiesel as an alternative motor fuel: Production and policies in the European Union

    International Nuclear Information System (INIS)

    Bozbas, Kahraman

    2008-01-01

    The purpose of this work is to investigate fuel characteristics of biodiesel and its production in European Union. Biodiesel fuel can be made from new or used vegetable oils and animal fats, which are non-toxic, biodegradable, renewable resources. The vegetable oil fuels were not acceptable because they were more expensive than petroleum fuels. Biodiesel has become more attractive recently because of its environmental benefits. With recent increases in petroleum prices and uncertainties concerning petroleum availability, there is renewed interest in vegetable oil fuels for diesel engines. In Europe the most important biofuel is biodiesel. In the European Union biodiesel is the by far biggest biofuel and represents 82% of the biofuel production. Biodiesel production for 2003 in EU-25 was 1,504,000 tons. (author)

  10. Controlling user access to electronic resources without password

    Science.gov (United States)

    Smith, Fred Hewitt

    2017-08-22

    Described herein are devices and techniques for remotely controlling user access to a restricted computer resource. The process includes obtaining an image from a communication device of a user. An individual and a landmark are identified within the image. Determinations are made that the individual is the user and that the landmark is a predetermined landmark. Access to a restricted computing resource is granted based on the determining that the individual is the user and that the landmark is the predetermined landmark. Other embodiments are disclosed.

  11. Determinants of stakeholders? attitudes towards biodiesel

    OpenAIRE

    Amin, Latifah; Hashim, Hasrizul; Mahadi, Zurina; Ibrahim, Maznah; Ismail, Khaidzir

    2017-01-01

    Background Concern about the inevitable depletion of global energy resources is rising and many countries are shifting their focus to renewable energy. Biodiesel is one promising energy source that has garnered much public attention in recent years. Many believe that this alternative source of energy will be able to sustain the need for increased energy security while at the same time being friendly to the environment. Public opinion, as well as proactive measures by key players in industry, ...

  12. Global sale of green air travel supported using biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Wardle, D.A. [Auckland (New Zealand)

    2003-02-01

    The technical feasibility of operating commercial aircraft on low concentration biodiesel in kerosene blends is reviewed. Although the analysis is preliminary, it seems plausible that a biodiesel component could be introduced without significant modification to aircraft, airport infrastructure, and flight operations. The use of a biodiesel component, even for only a subset of flight operations, would open the possibility of giving all passengers, the world over, regardless of route, the option to pay a premium to make their journey on 'green' fuel (actually biodiesel). In this way, the airline industry could recover the additional cost of biodiesel in comparison to kerosene. The costs associated with such a scheme are estimated, as is consumer demand. Although the analysis is preliminary, the scheme appears commercially viable. From a humanitarian and/or environmental perspective, marketing flight on biodiesel as 'green air travel' is problematic. On the one hand, the use of biodiesel in aviation would reduce addition of carbon dioxide to the atmosphere and foster development of sustainable technology. On the other hand, it would require that agricultural resources be dedicated to air travel, nominally a luxury, in a world where agricultural resources appear destined to come under increasing strain merely to satisfy humanity's basic food and energy needs. A preliminary discussion of these issues is presented. It is hoped that this can serve as the starting point for further discussion, at an international level, to reach consensus on whether marketing of flight on biodiesel as 'green air travel' should be allowed to proceed, or whether it should be declared unethical. (author)

  13. Biodiesel Handling and Use Guide (Fifth Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Alleman, T.L.; McCormick, R.L.; Christensen, E.D.; Fioroni, G.; Moriarty. K.; Yanowitz, J.

    2016-11-08

    This document is a guide for those who blend, distribute, and use biodiesel and biodiesel blends. It provides basic information on the proper and safe use of biodiesel and biodiesel blends in engines and boilers, and is intended to help fleets, individual users, blenders, distributors, and those involved in related activities understand procedures for handling and using biodiesel fuels.

  14. Biodiesel production by microalgal biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Huang, GuanHua [School of Chemical Engineering and Technology, China University of Mining and Technology (China); Chen, Feng [School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong (China); College of Light Industry and Food Sciences, South China University of Technology, Guangzhou (China); Wei, Dong; Zhang, XueWu; Chen, Gu [College of Light Industry and Food Sciences, South China University of Technology, Guangzhou (China)

    2010-01-15

    Biodiesel has received much attention in recent years. Although numerous reports are available on the production of biodiesel from vegetable oils of terraneous oil-plants, such as soybean, sunflower and palm oils, the production of biodiesel from microalgae is a newly emerging field. Microalgal biotechnology appears to possess high potential for biodiesel production because a significant increase in lipid content of microalgae is now possible through heterotrophic cultivation and genetic engineering approaches. This paper provides an overview of the technologies in the production of biodiesel from microalgae, including the various modes of cultivation for the production of oil-rich microalgal biomass, as well as the subsequent downstream processing for biodiesel production. The advances and prospects of using microalgal biotechnology for biodiesel production are discussed. (author)

  15. Electron beam pasteurised oil palm waste: a potential feed resource

    International Nuclear Information System (INIS)

    Mat Rasol Awang; Hassan Hamdani Mutaat; Tamikazu Kume; Tachibana, H.

    2002-01-01

    Pasteurization of oil palm empty fruit bunch (EFB) was performed using electron beam single sided irradiation. The dose profiles of oil palm EFB samples for different thickness in both directions X and Y were established. The results showed the usual characteristics dose uniformity as sample thickness decreased. The mean average absorbed dose on both sides at the surface and bottom of the samples for different thickness samples lead to establishing depth dose curve. Based on depth dose curve and operation conditions of electron beam machine, the process throughput for pasteurized oil palm EFB were estimated. (Author)

  16. Corrosion of magnesium and aluminum in palm biodiesel: A comparative evaluation

    International Nuclear Information System (INIS)

    Chew, K.V.; Haseeb, A.S.M.A.; Masjuki, H.H.; Fazal, M.A.; Gupta, M.

    2013-01-01

    The present study aims to investigate the comparative corrosion of light-weight metals such as aluminum and magnesium in palm biodiesel. Immersion test at room temperature was carried out for each metal for 1440 h. Sample characterization techniques employed include weight loss measurement, SEM (scanning electron microscope), XRD (X-ray diffraction), TAN (total acid number) and FTIR (Fourier transform infrared spectroscopy). Results showed that the corrosion rate of magnesium was much higher compared to that of aluminum. The surface morphology revealed a significant difference between the biodiesel exposed aluminum and magnesium specimens. Upon exposure to biodiesel, the magnesium surface was found to be fully covered by gel-like sticky mass while the aluminum surface remained clean. - Highlights: • Biodiesel is highly corrosive for magnesium. • Biodiesel exposed magnesium surface showed yellowish gel-like sticky mass. • Biodiesel undergoes significant degradation upon exposure to metals

  17. Synthesis of geopolymer from rice husk ash for biodiesel production of Calophyllum inophyllum seed oil

    Science.gov (United States)

    Saputra, E.; Nugraha, M. W.; Helwani, Z.; Olivia, M.; Wang, S.

    2018-04-01

    In this work, geopolymer was prepared from rice husk ash (RHA) made into sodium silicate then synthesized by reacting metakaolin, NaOH, and water. The catalyst was characterized using Scanning Electron Microscopy (SEM), Energy-dispersive X-Ray analysis (EDX), Brunaeur Emmet Teller (BET), and basic strength. Then, the catalyst used for transesterification of Calophyllum inophyllum seed oil in order to produce biodiesel. The variation of process variables conducted to assess the effect on the yield of biodiesel. The highest yield obtained 87.68% biodiesel with alkyl ester content 99.29%, density 866 kg/m3, viscosity 4.13 mm2/s, the acid number of 0.42 mg-KOH/g biodiesel and the flash point 140 °C. Generally, variations of %w/w catalyst provides a dominant influence on the yield response of biodiesel. The physicochemical properties of the produced biodiesel comply with ASTM standard specifications.

  18. Availability of Electronic Resources for Service Provision in ...

    African Journals Online (AJOL)

    The study also revealed that majority of the University libraries have adequate basic infrastructure for effective electronic information services. ... acquired by the library are put into maximal use by the library clientele, thereby ensuring the achievement of the library's objective which is satisfying the users, information needs.

  19. Utilization of bio-resources by low energy electron beam

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    2003-01-01

    Utilization of bio-resources by radiation has been investigated for recycling the natural resources and reducing the environmental pollution. Polysaccharides such as chitosan and sodium alginate were easily degraded by irradiation and induced various kinds of biological activities, i.g. anti-microbial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Radiation degraded chitosan was effective to enhance the growth of plants in tissue culture. It was demonstrated that the liquid sample irradiation system using low energy EB was effective for the preparation of degraded polysaccharides. Methylcellulose (MC) can be crosslinked under certain radiation condition as same as carboxymethylcellulose (CMC) and produced the biodegradable hydrogel for medical and agricultural use. Treatment of soybean seeds by low energy EB enhanced the growth and the number of rhizobia on the root. (author)

  20. Analysis of Pedagogic Potential of Electronic Educational Resources with Elements of Autodidactics

    Directory of Open Access Journals (Sweden)

    Igor A.

    2018-03-01

    Full Text Available Introduction: in recent years didactic properties of electronic educational resources undergo considerable changes, nevertheless, the question of studying of such complete phenomenon as “an electronic educational resource with autodidactics elements” remains open, despite sufficient scientific base of researches of the terms making this concept. Article purpose – determination of essence of electronic educational resources with autodidactics elements. Materials and Methods: the main method of research was the theoretical analysis of the pedagogical and psychological literature on the problem under study. We used the theoretical (analysis, synthesis, comparison and generalization methods, the method of interpretation, pedagogical modeling, and empirical methods (observation, testing, conversation, interview, analysis of students’ performance, pedagogical experiment, peer review. Results: we detected the advantages of electronic educational resources in comparison with traditional ones. The concept of autodidactics as applied to the subject of research is considered. Properties of electronic educational resources with a linear and nonlinear principle of construction are studied.The influence of the principle of construction on the development of the learners’ qualities is shown. We formulated an integral definition of electronic educational resources with elements of autodidactics, namely, the variability, adaptivity and cyclicity of training. A model of the teaching-learning process with electronic educational resources is developed. Discussion and Conclusions: further development of a problem will allow to define whether electronic educational resources with autodidactics elements pedagogical potential for realization of educational and self-educational activity of teachers have, to modify technological procedures taking into account age features of students, their specialties and features of the organization of process of training of

  1. A Study on Developing Evaluation Criteria for Electronic Resources in Evaluation Indicators of Libraries

    Science.gov (United States)

    Noh, Younghee

    2010-01-01

    This study aimed to improve the current state of electronic resource evaluation in libraries. While the use of Web DB, e-book, e-journal, and other e-resources such as CD-ROM, DVD, and micro materials is increasing in libraries, their use is not comprehensively factored into the general evaluation of libraries and may diminish the reliability of…

  2. Managing Selection for Electronic Resources: Kent State University Develops a New System to Automate Selection

    Science.gov (United States)

    Downey, Kay

    2012-01-01

    Kent State University has developed a centralized system that manages the communication and work related to the review and selection of commercially available electronic resources. It is an automated system that tracks the review process, provides selectors with price and trial information, and compiles reviewers' feedback about the resource. It…

  3. Analysis of biodiesel

    Science.gov (United States)

    Biodiesel is a biogenic alternative to diesel fuel derived from petroleum. It is produced by a transesterification reaction from materials consisting largely of triacylglycerols such as vegetable and other plant oils, animal fats, used cooking oils, and “alternative” feedstocks such as algal oils. T...

  4. Beschikbaarheid koolzaad voor biodiesel

    NARCIS (Netherlands)

    Janssens, B.; Prins, H.; Smit, A.B.; Annevelink, E.; Meeusen-van Onna, M.J.G.

    2005-01-01

    This report provides an insight into the conditions under which the Dutch agricultural industry will cultivate oilseed rape for biodiesel. The Dutch agricultural entrepreneur occupies a central role in this. The possibilities relating to the cultivation of oilseed rape are assessed from the

  5. Biodiesel scenario in India

    Energy Technology Data Exchange (ETDEWEB)

    Taj, S. [Bangalore Univ., Al-Ameen College, Bangalore (India). Dept. of Chemistry; Prasad, H. [Bangalore Univ., Central College, Bangalore (India). Dept. of Chemistry; Ramesh, N. [Reva College, Bangladore (India); Papavinasam, S. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Lab

    2009-08-15

    This article presented an overview of biodiesel production in India. Biodiesel has gained widespread acceptance in the United States and the European Union as a substitute for diesel. In early 2003, the Indian National Planning Commission launched a program to also foster development of vegetable oil based biofuels in order to address the energy challenges facing India. Approximately 57 per cent of rural Indian households are still not connected to the power grid, and India imports 75 per cent of its total petroleum. The National Planning Commission advocated widespread planting of an inedible, but high-yielding tree-born oilseed known as jatropha curcas that would serve as the primary feedstock for the production of vegetable oil based biofuels. Jatropha and pongamia are widely recognized as the most economically viable and environmentally neutral feedstock options. Both of these tree-borne oilseeds are adaptable to reasonably harsh climatic and growing conditions, enabling them to be cultivated on wastelands that are not currently used in agricultural production. The Commission recommended that 11.2 million hectares of jatropha be cultivated on marginal waste lands which would, over time, replace 20 per cent of total national diesel consumption with biodiesel. Both public and private sector players have begun to act on the Commission's plan. More than a hundred thousand hectares of jatropha have been planted and private firms have begun to build biodiesel processing plants. State-owned petroleum product marketing firms have committed to distributing biodiesel through some existing distribution channels. 8 refs., 6 tabs., 3 figs.

  6. Where Do Electronic Books Fit in the College Research Arsenal of Resources?

    Science.gov (United States)

    Barbier, Patricia

    2007-01-01

    Student use of electronic books has become an accepted supplement to traditional resources. Student use and satisfaction was monitored through an online course discussion board. Increased use of electronic books indicate this service is an accepted supplement to the print book collection.

  7. Biodiesel Fuel Technology for Military Application

    National Research Council Canada - National Science Library

    Frame, Edwin

    1997-01-01

    This program addressed the effects of biodiesel (methyl soyate) and blends of biodiesel with petrofuels on fuel system component and material compatibility, fuel storage stability, and fuel lubricity...

  8. Techno-economic analysis of biodiesel production from Jatropha curcas via a supercritical methanol process

    International Nuclear Information System (INIS)

    Yusuf, N.N.A.N.; Kamarudin, S.K.

    2013-01-01

    Highlights: • This paper presents the techno-economic of a production of biodiesel from JCO. • The results obtained 99.96% of biodiesel with 96.49% of pure glycerol. • This proved that biodiesel from JCO is the least expensive compare to other resources. - Abstract: This paper presents the conceptual design and economic evaluation of a production of methyl esters (biodiesel) from Jatropha curcas oil (JCO) via a supercritical methanol process with glycerol as a by-product. The process consists of four major units: transesterification (PFR), methanol recovery (FT) and (DC1), recovery of glycerol (DEC), and biodiesel purification (DC2). The material and heat balance are also presented here. A biodiesel production of 40,000 tonnes-yr −1 is taken as case study. Biodiesel obtained from supercritical transesterification with Jatropha curcas oil as feedstock resulting in high purity methyl esters (99.96%) with almost pure glycerol (96.49%) obtained as by-product. The biodiesel can be sold at USD 0.78 kg −1 , while the manufacturing and capital investment costs are in the range of USD 25.39 million-year −1 and USD 9.41 million year −1 , respectively. This study proved that biodiesel from JCO is the least expensive with purities comparable to those found in other studies

  9. Study on the Tribological Characteristics of Australian Native First Generation and Second Generation Biodiesel Fuel

    Directory of Open Access Journals (Sweden)

    Md Mofijur Rahman

    2017-01-01

    Full Text Available Biodiesels are a renewable energy source, and they have the potential to be used as alternatives to diesel fuel. The aim of this study is to investigate the wear and friction characteristics of Australian native first generation and second generation biodiesels using a four-ball tribo tester. The biodiesel was produced through a two-step transesterification process and characterized according to the American Society for Testing and Materials (ASTM standards. The tribological experiment was carried out at a constant 1800 rpm and different loads and temperatures. In addition, the surface morphology of the ball was tested by scanning electron microscope (SEM/energy dispersive X-ray spectroscopy (EDX analysis. The test results indicated that biodiesel fuels have a lower coefficient of frictions (COF and lower wear scar diameter (WSD up to 83.50% and 41.28%, respectively, compared to conventional diesel fuel. The worn surface area results showed that biodiesel fuel has a minimum percentage of C and O, except Fe, compared to diesel. In addition, the worn surface area for diesel was found (2.20%–27.92% to be higher than biodiesel. The findings of this study indicated that both first and second generation biodiesel fuels have better tribological performance than diesel fuel, and between the biodiesel fuels, macadamia biodiesel showed better lubrication performance.

  10. Proceedings of the 2008 marine biodiesel symposium

    International Nuclear Information System (INIS)

    2008-01-01

    In addition to producing lower hydrocarbon emissions, marine biodiesel is biodegradable and does not harm fish. This symposium was held to discuss current marine biodiesel applications and examine methods of increasing the use of biodiesel in marine environments in British Columbia (BC). Biofuel policies and mandates in the province were reviewed, and methods of expanding the biodiesel market were explored. Updates on the use of biodiesel in ferries, tugboats, and smaller marine diesel engine applications were provided. Biodiesel projects in the United States were discussed. The environmental impacts of marine biodiesel were evaluated, and federal policies and standards for biodiesel were also outlined. The symposium was divided into the following 5 main sessions: (1) policy, (2) overviews, (3) using biodiesel in marine engines, (4) biodiesel in larger marine vessels, and (5) biodiesel quality and environmental considerations. The conference featured 13 presentations, of which 4 have been catalogued separately for inclusion in this database. tabs., figs

  11. The National Site Licensing of Electronic Resources: An Institutional Perspective

    Directory of Open Access Journals (Sweden)

    Xiaohua Zhu

    2011-06-01

    Full Text Available While academic libraries in most countries are struggling to negotiate with publishers and vendors individually or collaboratively via consortia, a few countries have experimented with a different model, national site licensing (NSL. Because NSL often involves government and large-scale collaboration, it has the potential to solve many problems in the complex licensing world. However, not many nations have adopted it. This study uses historical research approach and the comparative case study research method to explore the seemingly low level of adoption. The cases include the Canadian National Site Licensing Project (CNSLP, the United Kingdom’s National Electronic Site Licensing Initiative (NESLI, and the United States, which has not adopted NSL. The theoretical framework guiding the research design and data collection is W. Richard Scott’s institutional theory, which utilizes three supporting pillars—regulative, normative, and cultural-cognitive—to analyze institutional processes. In this study, the regulative pillar and the normative pillar of NSL adoption— an institutional construction and change—are examined. Data were collected from monographs, research articles, government documents, and relevant websites. Based on the analysis of these cases, a preliminary model is proposed for the adoption of NSL. The factors that support a country’s adoption of NSL include the need for new institutions, a centralized educational policy-making system and funding system, supportive political trends, and the tradition of cooperation. The factors that may prevent a country from adopting NSL include decentralized educational policy and funding, diversity and the large number of institutions, the concern for the “Big Deal,” and the concern for monopoly.

  12. Solid Catalysts and theirs Application in Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Ramli Mat

    2012-12-01

    Full Text Available The reduction of oil resources and increasing petroleum price has led to the search for alternative fuel from renewable resources such as biodiesel. Currently biodiesel is produced from vegetable oil using liquid catalysts. Replacement of liquid catalysts with solid catalysts would greatly solve the problems associated with expensive separation methods and corrosion problems, yielding to a cleaner product and greatly decreasing the cost of biodiesel production. In this paper, the development of solid catalysts and its catalytic activity are reviewed. Solid catalysts are able to perform trans-esterification and esterification reactions simultaneously and able to convert low quality oils with high amount of Free Fatty Acids. The parameters that effect the production of biodiesel are discussed in this paper. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 6th April 2012, Revised: 24th October 2012, Accepted: 24th October 2012[How to Cite: R. Mat, R.A. Samsudin, M. Mohamed, A. Johari, (2012. Solid Catalysts and Their Application in Biodiesel Production. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 142-149. doi:10.9767/bcrec.7.2.3047.142-149] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3047.142-149 ] | View in 

  13. Effects of NOx-inhibitor agent on fuel properties of three-phase biodiesel emulsions

    International Nuclear Information System (INIS)

    Lin, Cherng-Yuan; Lin, Hsiu-An

    2008-01-01

    Biodiesel is one of the more promising alternative clean fuels to fossil fuel, which can reduce the emissions of fossil fuel burning, and possibly resolve the energy crisis caused by the exhaustion of petroleum resources in the near future. The burning of biodiesel emits much less gaseous emissions and particulate matter primarily because of its dominant combustion efficiency. However, the high oxygen content in biodiesel not only promotes the burning process but also enhances NO x formation when biodiesel is used as fuel. Biodiesel emulsion and the additive of NO x -inhibitor agent are considered to reduce levels of NO x emissions in this experimental study. The biodiesel was produced by transesterification reaction accompanied with peroxidation process. A three-phase biodiesel emulsion of oil-in water drops-in oil (O/W/O) and an O/W/O biodiesel emulsion containing aqueous ammonia were prepared afterwards. The effect of the existence of NO x -inhibitor agent on the fuel properties and the emulsion characteristics of the O/W/O biodiesel emulsions were investigated. The experimental results show that the burning of the O/W/O biodiesel emulsion and the O/W/O biodiesel emulsion containing aqueous ammonia had larger fraction of fuel burnt and thus larger heat release than the neat biodiesel if water content is not considered for the calculation of heating value. The addition of aqueous ammonia within the dispersed phase of the O/W/O biodiesel emulsion appeared to deteriorate the emulsification characteristics. A smaller quantity of emulsion and greater kinematic viscosity were formed while a larger carbon residue and actual reaction-heat release also appeared for this O/W/O biodiesel emulsion. Aqueous ammonia in the O/W/O biodiesel emulsion produces a higher pH value as well. In addition, the number as well as the volumetric fraction of the dispersed water droplets is reduced for the O/W/O biodiesel emulsion that contains aqueous ammonia. (author)

  14. Production of biodiesel from microalgae

    Directory of Open Access Journals (Sweden)

    Danilović Bojana R.

    2014-01-01

    Full Text Available In recent years, more attention has been paid to the use of third generation feedstocs for the production of biodiesel. One of the most promising sources of oil for biodiesel production are microalgae. They are unicellular or colonial photosynthetic organisms, with permanently increasing industrial application in the production of not only chemicals and nutritional supplements but also biodiesel. Biodiesel productivity per hectare of cultivation area can be up to 100 times higher for microalgae than for oil crops. Also, microalgae can grow in a variety of environments that are often unsuitable for agricultural purposes. Microalgae oil content varies in different species and can reach up to 77% of dry biomass, while the oil productivity by the phototrophic cultivation of microalgae is up to 122 mg/l/d. Variations of the growth conditions and the implementation of the genetic engineering can induce the changes in the composition and productivity of microalgal oil. Biodiesel from microalgae can be produced in two ways: by transesterification of oil extracted from biomass or by direct transesterification of algal biomass (so called in situ transesterification. This paper reviews the curent status of microalgae used for the production of biodiesel including their isolation, cultivation, harvesting and conversion to biodiesel. Because of high oil productivity, microalgae will play a significant role in future biodiesel production. The advantages of using microalgae as a source for biofuel production are increased efficiency and reduced cost of production. Also, microalgae do not require a lot of space for growing and do not have a negative impact on the global food and water supplies. Disadvantages of using microalgae are more difficult separation of biomass and the need for further research to develop standardized methods for microalgae cultivation and biodiesel production. Currently, microalgae are not yet sustainable option for the commercial

  15. Performance characteristics of mix oil biodiesel blends with smoke emissions

    Directory of Open Access Journals (Sweden)

    Sanjay Mohite

    2016-08-01

    Full Text Available Fossil fuel resources are being depleted day by day and its use affects the environment adversely. Renewable energy is one of the alternate for sustainable development and biodiesel is one of the suitable alternate which can replace the diesel. The major hurdles in the successful commercialization of biodiesel are high feedstock cost and conversion technology to reduce viscosity. The choice of raw material and biodiesel production method must depend upon techno-economical view. There are some specific regions for different types of oil availability. It is therefore required to produce biodiesel from the mixture of oils to fulfill the requirements of energy demand in a particular country according to its suitability and availability of feedstock. Karanja and Linseed crops  are abundantly available in India. Biodiesel was produced from a mixture of Karanja and Linseed oils by alkaline transesterification. In this experimental study, biodiesel blends of 10%, 20% and 30% were used with diesel in a diesel engine at a constant speed of 1500 rpm with varying brake powers (loads from 0.5 kW to 3.5kW to evaluate brake thermal efficiency, brake specific fuel consumption,  brake specific energy consumption, exhaust gas temperature, mechanical efficiency, volumetric efficiency, air fuel ratio and smoke opacity. They were compared with diesel and found satisfactory. BTE was found to be  28.76% for B10 at 3.5kW load.  Smoke opacity was also found to be reduced with all blends. Smoke opacity was found to be reduced up to 10.23% for B10 biodiesel blend as compared to that of diesel at 3.5kW. Experimental investigation  has revealed that  biodiesel produced from a mixture of Karanja and Linseed oils can be successfully used in diesel engines without any engine modification  and B10 was found to be an optimum biodiesel blend in terms of brake thermal efficiency. Article History: Received April 14th 2016; Received in revised form June 25th 2016; Accepted

  16. Alternative Fuels Data Center: Biodiesel Benefits

    Science.gov (United States)

    , and transport. Maps & Data U.S. Biodiesel Production, Exports, and Consumption U.S. Biodiesel Benefits to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Benefits on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Benefits on Twitter Bookmark Alternative Fuels Data

  17. Biodiesel production from Jatropha curcas oil

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Siddharth; Sharma, M.P. [Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 (India)

    2010-12-15

    In view of the fast depletion of fossil fuel, the search for alternative fuels has become inevitable, looking at huge demand of diesel for transportation sector, captive power generation and agricultural sector, the biodiesel is being viewed a substitute of diesel. The vegetable oils, fats, grease are the source of feedstocks for the production of biodiesel. Significant work has been reported on the kinetics of transesterification of edible vegetable oils but little work is reported on non-edible oils. Out of various non-edible oil resources, Jatropha curcas oil (JCO) is considered as future feedstocks for biodiesel production in India and limited work is reported on the kinetics of transesterification of high FFA containing oil. The present study reports a review of kinetics of biodiesel production. The paper also reveals the results of kinetics study of two-step acid-base catalyzed transesterification process carried out at pre-determined optimum temperature of 65 and 50 C for esterification and transesterification process, respectively, under the optimum condition of methanol to oil ratio of 3:7 (v/v), catalyst concentration 1% (w/w) for H{sub 2}SO{sub 4} and NaOH and 400 rpm of stirring. The yield of methyl ester (ME) has been used to study the effect of different parameters. The maximum yield of 21.2% of ME during esterification and 90.1% from transesterification of pretreated JCO has been obtained. This is the first study of its kind dealing with simplified kinetics of two-step acid-base catalyzed transesterification process carried at optimum temperature of both the steps which took about 6 h for complete conversion of TG to ME. (author)

  18. A survey of the use of electronic scientific information resources among medical and dental students

    Directory of Open Access Journals (Sweden)

    Aarnio Matti

    2006-05-01

    Full Text Available Abstract Background To evaluate medical and dental students' utilization of electronic information resources. Methods A web survey sent to 837 students (49.9% responded. Results Twenty-four per cent of medical students and ninteen per cent of dental students searched MEDLINE 2+ times/month for study purposes, and thiry-two per cent and twenty-four per cent respectively for research. Full-text articles were used 2+ times/month by thirty-three per cent of medical and ten per cent of dental students. Twelve per cent of respondents never utilized either MEDLINE or full-text articles. In multivariate models, the information-searching skills among students were significantly associated with use of MEDLINE and full-text articles. Conclusion Use of electronic resources differs among students. Forty percent were non-users of full-text articles. Information-searching skills are correlated with the use of electronic resources, but the level of basic PC skills plays not a major role in using these resources. The student data shows that adequate training in information-searching skills will increase the use of electronic information resources.

  19. The State High Biodiesel Project

    Science.gov (United States)

    Heasley, Paul L.; Van Der Sluys, William G.

    2009-01-01

    Through a collaborative project in Pennsylvania, high school students developed a method for converting batches of their cafeteria's waste fryer oil into biodiesel using a 190 L (50 gal) reactor. While the biodiesel is used to supplement the school district's heating and transportation energy needs, the byproduct--glycerol--is used to make hand…

  20. Feasibility study of utilizing jatropha curcas oil as bio-diesel in an oil firing burner system

    Science.gov (United States)

    Shaiful, A. I. M.; Jaafar, M. N. Mohd; Sahar, A. M.

    2017-09-01

    Jatropha oil derived from the Jatropha Curcas Linnaeus is one of the high potential plants to be use as bio-diesel. The purpose of this research is to carry out a feasibility study of using jatropha oil as bio-diesel on oil firing burner system. Like other bio-diesels, jatropha oil can also be used in any combustion engine and the performance and emissions such as NOx, SO2, CO and CO2 as well as unburned hydocarbon (UHC) from the engine will vary depending on the bio-diesel blends. The properties of Conventional Diesel Fuel (CDF) obtained will be used as baseline and the jatropha oil properties will be compared as well as other bio-diesels. From several researches, the properties of jatropha oil was found to be quite similar with other bio-diesel such as palm oil, neem, keranja and pongamia bio-diesel and complying with the ASTM standard for bio-diesel. Still, there are factors and issues concerning the use of jatropha oil such as technology, economy, legislation and resource. Plus, there several challenges to the growth of bio-diesel industry development since the world right now do not totally depend on the bio-diesel.

  1. Analytical Study of Usage of Electronic Information Resources at Pharmacopoeial Libraries in India

    Directory of Open Access Journals (Sweden)

    Sunil Tyagi

    2014-02-01

    Full Text Available The objective of this study is to know the rate and purpose of the use of e-resource by the scientists at pharmacopoeial libraries in India. Among other things, this study examined the preferences of the scientists toward printed books and journals, electronic information resources, and pattern of using e-resources. Non-probability sampling specially accidental and purposive technique was applied in the collection of primary data through administration of user questionnaire. The sample respondents chosen for the study consists of principle scientific officer, senior scientific officer, scientific officer, and scientific assistant of different division of the laboratories, namely, research and development, pharmaceutical chemistry, pharmacovigilance, pharmacology, pharmacogonosy, and microbiology. The findings of the study reveal the personal experiences and perceptions they have had on practice and research activity using e-resource. The major findings indicate that of the total anticipated participants, 78% indicated that they perceived the ability to use computer for electronic information resources. The data analysis shows that all the scientists belonging to the pharmacopoeial libraries used electronic information resources to address issues relating to drug indexes and compendia, monographs, drugs obtained through online databases, e-journals, and the Internet sources—especially polices by regulatory agencies, contacts, drug promotional literature, and standards.

  2. Biodiesel production from crude cottonseed oil: an optimization process using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xiaohu; Wang, Xi; Chen, Feng

    2011-07-01

    As the depletion of fossil resources continues, the demand for environmentally friendly sources of energy as biodiesel is increasing. Biodiesel is the resulting fatty acid methyl ester (FAME) from an esterification reaction. The use of cottonseed oil to produce biodiesel has been investigated in recent years, but it is difficult to find the optimal conditions of this process since multiple factors are involved. The aim of this study was to optimize the transesterification of cottonseed oil with methanol to produce biodiesel. A response surface methodology (RSM), an experimental method to seek optimal conditions for a multivariable system and reverse phase HPLC was used to analyze the conversion of triglyceride into biodiesel. RSM was successfully applied and the optimal condition was found with a 97% yield.

  3. Soybean Oil: Powering a High School Investigation of Biodiesel

    Science.gov (United States)

    De La Rosa, Paul; Azurin, Katherine A.; Page, Michael F. Z.

    2014-01-01

    This laboratory investigation challenges students to synthesize, analyze, and compare viable alternative fuels to Diesel No. 2 using a renewable resource, as well as readily available reagents and supplies. During the experiment, students synthesized biodiesel from soybean oil in an average percent yield of 83.8 ± 6.3%. They then prepared fuel…

  4. Prospects of biodiesel from Jatropha in India: A review

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Siddharth; Sharma, M.P. [Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand (India)

    2010-02-15

    The increasing industrialization and modernization of the world has to a steep rise for the demand of petroleum products. Economic development in developing countries has led to huge increase in the energy demand. In India, the energy demand is increasing at a rate of 6.5% per annum. The crude oil demand of the country is met by import of about 80%. Thus the energy security has become a key issue for the nation as a whole. Petroleum-based fuels are limited. The finite reserves are highly concentrated in certain regions of the world. Therefore, those countries not having these reserves are facing foreign exchange crises, mainly due to the import of crude oil. Hence it is necessary to look forward for alternative fuels, which can be produced from feedstocks available within the country. Biodiesel, an ecofriendly and renewable fuel substitute for diesel has been getting the attention of researchers/scientists of all over the world. The R and D has indicated that up to B20, there is no need of modification and little work is available related to suitability and sustainability of biodiesel production from Jatropha as non-edible oil sources. In addition, the use of vegetable oil as fuel is less polluting than petroleum fuels. The basic problem with biodiesel is that it is more prone to oxidation resulting in the increase in viscosity of biodiesel with respect to time which in turn leads to piston sticking, gum formation and fuel atomization problems. The report is an attempt to present the prevailing fossil fuel scenario with respect to petroleum diesel, fuel properties of biodiesel resources for biodiesel production, processes for its production, purification, etc. Lastly, an introduction of stability of biodiesel will also be presented. (author)

  5. Potential use of eucalyptus biodiesel in compressed ignition engine

    Directory of Open Access Journals (Sweden)

    Puneet Verma

    2016-03-01

    Full Text Available The increased population has resulted in extra use of conventional sources of fuels due to which there is risk of extinction of fossil fuels’ resources especially petroleum diesel. Biodiesel is emerging as an excellent alternative choice across the world as a direct replacement for diesel fuel in vehicle engines. Biodiesel offers a great choice. It is mainly derived from vegetable oils, animal fats and algae. Hence in this paper effort has been made to find out feasibility of biodiesel obtained from eucalyptus oil and its impact on diesel engine. Higher viscosity is a major issue while using vegetable oil directly in engine which can be removed by converting it into biodiesel by the process of transesterification. Various fuel properties like calorific value, flash point and cetane value of biodiesel and biodiesel–diesel blends of different proportions were evaluated and found to be comparable with petroleum diesel. The result of investigation shows that Brake Specific Fuel Consumption (BSFC for two different samples of B10 blend of eucalyptus biodiesel is 2.34% and 2.93% lower than that for diesel. Brake Thermal Efficiency (BTE for B10 blends was found to be 0.52% and 0.94% lower than that for diesel. Emission characteristics show that Smoke Opacity improves for both samples, smoke is found to be 64.5% and 62.5% cleaner than that of diesel. Out of all blends B10 was found to be a suitable alternative to conventional diesel fuel to control air pollution without much significant effect on engine performance. On comparing both samples, biodiesel prepared from sample A of eucalyptus oil was found to be superior in all aspects of performance and emission.

  6. Prospects of biodiesel from Jatropha in India: A review

    International Nuclear Information System (INIS)

    Jain, Siddharth; Sharma, M.P.

    2010-01-01

    The increasing industrialization and modernization of the world has to a steep rise for the demand of petroleum products. Economic development in developing countries has led to huge increase in the energy demand. In India, the energy demand is increasing at a rate of 6.5% per annum. The crude oil demand of the country is met by import of about 80%. Thus the energy security has become a key issue for the nation as a whole. Petroleum-based fuels are limited. The finite reserves are highly concentrated in certain regions of the world. Therefore, those countries not having these reserves are facing foreign exchange crises, mainly due to the import of crude oil. Hence it is necessary to look forward for alternative fuels, which can be produced from feedstocks available within the country. Biodiesel, an ecofriendly and renewable fuel substitute for diesel has been getting the attention of researchers/scientists of all over the world. The R and D has indicated that up to B20, there is no need of modification and little work is available related to suitability and sustainability of biodiesel production from Jatropha as non-edible oil sources. In addition, the use of vegetable oil as fuel is less polluting than petroleum fuels. The basic problem with biodiesel is that it is more prone to oxidation resulting in the increase in viscosity of biodiesel with respect to time which in turn leads to piston sticking, gum formation and fuel atomization problems. The report is an attempt to present the prevailing fossil fuel scenario with respect to petroleum diesel, fuel properties of biodiesel resources for biodiesel production, processes for its production, purification, etc. Lastly, an introduction of stability of biodiesel will also be presented. (author)

  7. A review on biodiesel production using catalyzed transesterification

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Dennis Y.C.; Wu, Xuan; Leung, M.K.H. [Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2010-04-15

    Biodiesel is a low-emissions diesel substitute fuel made from renewable resources and waste lipid. The most common way to produce biodiesel is through transesterification, especially alkali-catalyzed transesterification. When the raw materials (oils or fats) have a high percentage of free fatty acids or water, the alkali catalyst will react with the free fatty acids to form soaps. The water can hydrolyze the triglycerides into diglycerides and form more free fatty acids. Both of the above reactions are undesirable and reduce the yield of the biodiesel product. In this situation, the acidic materials should be pre-treated to inhibit the saponification reaction. This paper reviews the different approaches of reducing free fatty acids in the raw oil and refinement of crude biodiesel that are adopted in the industry. The main factors affecting the yield of biodiesel, i.e. alcohol quantity, reaction time, reaction temperature and catalyst concentration, are discussed. This paper also described other new processes of biodiesel production. For instance, the Biox co-solvent process converts triglycerides to esters through the selection of inert co-solvents that generates a one-phase oil-rich system. The non-catalytic supercritical methanol process is advantageous in terms of shorter reaction time and lesser purification steps but requires high temperature and pressure. For the in situ biodiesel process, the oilseeds are treated directly with methanol in which the catalyst has been preciously dissolved at ambient temperatures and pressure to perform the transesterification of oils in the oilseeds. This process, however, cannot handle waste cooking oils and animal fats. (author)

  8. Biodiesel from microalgae beats bioethanol.

    Science.gov (United States)

    Chisti, Yusuf

    2008-03-01

    Renewable biofuels are needed to displace petroleum-derived transport fuels, which contribute to global warming and are of limited availability. Biodiesel and bioethanol are the two potential renewable fuels that have attracted the most attention. As demonstrated here, biodiesel and bioethanol produced from agricultural crops using existing methods cannot sustainably replace fossil-based transport fuels, but there is an alternative. Biodiesel from microalgae seems to be the only renewable biofuel that has the potential to completely displace petroleum-derived transport fuels without adversely affecting supply of food and other crop products. Most productive oil crops, such as oil palm, do not come close to microalgae in being able to sustainably provide the necessary amounts of biodiesel. Similarly, bioethanol from sugarcane is no match for microalgal biodiesel.

  9. Considering Point-of-Care Electronic Medical Resources in Lieu of Traditional Textbooks for Medical Education.

    Science.gov (United States)

    Hale, LaDonna S; Wallace, Michelle M; Adams, Courtney R; Kaufman, Michelle L; Snyder, Courtney L

    2015-09-01

    Selecting resources to support didactic courses is a critical decision, and the advantages and disadvantages must be carefully considered. During clinical rotations, students not only need to possess strong background knowledge but also are expected to be proficient with the same evidence-based POC resources used by clinicians. Students place high value on “real world” learning and therefore may place more value on POC resources that they know practicing clinicians use as compared with medical textbooks. The condensed nature of PA education requires students to develop background knowledge and information literacy skills over a short period. One way to build that knowledge and those skills simultaneously is to use POC resources in lieu of traditional medical textbooks during didactic training. Electronic POC resources offer several advantages over traditional textbooks and should be considered as viable options in PA education.

  10. Elektronik Bilgi Kaynaklarının Seçimi / Selection of Electronic Information Resources

    Directory of Open Access Journals (Sweden)

    Pınar Al

    2003-04-01

    Full Text Available For many years, library users have used only from the printed media in order to get the information that they have needed. Today with the widespread use of the Web and the addition of electronic information resources to library collections, the use of information in the electronic environment as well as in printed media is started to be used. In time, such types of information resources as, electronic journals, electronic books, electronic encyclopedias, electronic dictionaries and electronic theses have been added to library collections. In this study, selection criteria that can be used for electronic information resources are discussed and suggestions are provided for libraries that try to select electronic information resources for their collections.

  11. Comparative analysis of emission characteristics and noise test of an I.C. engine using different biodiesel blends

    Science.gov (United States)

    Hossain, Md. Alamgir; Rahman, Fariha; Mamun, Maliha; Naznin, Sadia; Rashid, Adib Bin

    2017-12-01

    Biodiesel is a captivating renewable resource providing the potential to reduce particulate emissions in compressionignition engines. A comparative study is conducted to evaluate the effects of using biodiesel on exhaust emissions. Exhaust smokiness, noise and exhaust regulated gas emissions such as carbon di oxides, carbon monoxide and oxygen are measured. It is observed that methanol-biodiesel blends (mustard oil, palm oil) cause reduction of emissions remarkably. Most of the harmful pollutants in the exhaust are reduced significantly with the use of methanol blended fuels. Reduction in CO emission is more with mustard oil blend compared to palm oil blend. Comparatively clean smoke is observed with biodiesel than diesel. It is also observed that, there is a decrease of noise while performing with biodiesel blends which is around 78 dB whereas noise caused by diesel is 80 dB. Biodiesel, more importantly mustard oil is a clean burning fuel that does not contribute to the net increase of carbon dioxide.

  12. Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sheehan, J.; Camobreco, V.; Duffield, J.; Graboski, M.; Shapouri, H.

    1998-05-01

    This report presents the findings from a study of the life cycle inventories for petroleum diesel and biodiesel. It presents information on raw materials extracted from the environment, energy resources consumed, and air, water, and solid waste emissions generated. Biodiesel is a renewable diesel fuel substitute. It can be made from a variety of natural oils and fats. Biodiesel is made by chemically combining any natural oil or fat with an alcohol such as methanol or ethanol. Methanol has been the most commonly used alcohol in the commercial production of biodiesel. In Europe, biodiesel is widely available in both its neat form (100% biodiesel, also known as B1OO) and in blends with petroleum diesel. European biodiesel is made predominantly from rapeseed oil (a cousin of canola oil). In the United States, initial interest in producing and using biodiesel has focused on the use of soybean oil as the primary feedstock mainly because the United States is the largest producer of soybean oil in the world. 170 figs., 148 tabs.

  13. Novel 1H low field nuclear magnetic resonance applications for the field of biodiesel

    Science.gov (United States)

    2013-01-01

    Background Biodiesel production has increased dramatically over the last decade, raising the need for new rapid and non-destructive analytical tools and technologies. 1H Low Field Nuclear Magnetic Resonance (LF-NMR) applications, which offer great potential to the field of biodiesel, have been developed by the Phyto Lipid Biotechnology Lab research team in the last few years. Results Supervised and un-supervised chemometric tools are suggested for screening new alternative biodiesel feedstocks according to oil content and viscosity. The tools allowed assignment into viscosity groups of biodiesel-petrodiesel samples whose viscosity is unknown, and uncovered biodiesel samples that have residues of unreacted acylglycerol and/or methanol, and poorly separated and cleaned glycerol and water. In the case of composite materials, relaxation time distribution, and cross-correlation methods were successfully applied to differentiate components. Continuous distributed methods were also applied to calculate the yield of the transesterification reaction, and thus monitor the progress of the common and in-situ transesterification reactions, offering a tool for optimization of reaction parameters. Conclusions Comprehensive applied tools are detailed for the characterization of new alternative biodiesel resources in their whole conformation, monitoring of the biodiesel transesterification reaction, and quality evaluation of the final product, using a non-invasive and non-destructive technology that is new to the biodiesel research area. A new integrated computational-experimental approach for analysis of 1H LF-NMR relaxometry data is also presented, suggesting improved solution stability and peak resolution. PMID:23590829

  14. Research of Consumption of Biodiesel in Different Working Operations in the System of Precision Agriculture

    Directory of Open Access Journals (Sweden)

    Marek Angelovič

    2012-05-01

    Full Text Available The aim of study was to research the consumption of biodiesel in various working operations of the tractor John Deere 8230 with trailer and plow under field conditions. Biodiesel was made from agricultural crop of oilseed rape according to etherification. Experimental measurements were made on land of the Slovak University of Agriculture, in Kolíňany, Slovakia. The metering device was used EDMeco recorder and an electronic flow meter of the actual consumption of biodiesel. The measuring system was installed in the fuel system John Deere tractor, the 8230. On the base of the obtained results we can conclude that at the transportation of the tractor with trailer Mega 20 was the average hourly consumption of 15.43 liters of biodiesel. At the plowing with set of tractor and rotating 7-mouldboard plow Ostroj Opava, the average hourly consumption was of 33.93 liters of biodiesel.

  15. Business Model Canvas and Strategies to Develop Biodiesel Industry of PT. XYZ in Order to Implement CPO Supporting Fund Policy

    Directory of Open Access Journals (Sweden)

    Aman Mustika

    2017-09-01

    Full Text Available Biodiesel is considered as one of the alternative eco-friendly fuels. Besides, the government also issued policy related to biodiesel that is CPO Supporting Fund (CSF Policy. The aim of the research is to identify Business model canvas (BMC biodiesel industry in PT XYZ and to know the strategies to develop business from biodiesel industry in line with the CPO supporting fund policy. The analysis tool used in this research is BMC, SWOT and Quantitative Strategic Planning Matrix (QSPM. The research results in identifying BMC of PT XYZ is customer segment that the company serves in the form of domestic as well international customers. The value the company offers is biodiesel quality that is in accordance with SNI standard and the distribution is at the company’s cost; the relationship built with the customers is by communities and co-creation; the marketing network through stock exchanges and commodity exchanges; the revenue obtained from selling biodiesel and the price difference between biodiesel and solar from BPDPKS; the company’s resources are human resource, raw material resource, and financial resource; the main activities carried out by the company is CPO process to become biodiesel and sale; the company’s partners are GAPKI, BPDPKS and APROBI; the cost structure is operational cost, workers’ salary, and CPO levy fund. Furthermore, the strategy to develop biodiesel industry in line with the rapid increase of competitiveness is to increase the biodiesel production capacity and communication improvement and CRM to improve customers’ service.Keywords: biodiesel, CPO supporting fund (CSF, levy fund, vegetable oil (BBN, business model canvas (BMC

  16. Fuel for the Future: Biodiesel - A Case study

    Science.gov (United States)

    Lutterbach, Márcia T. S.; Galvão, Mariana M.

    High crude oil prices, concern over depletion of world reserves, and growing apprehension about the environment, encouraged the search for alternative energy sources that use renewable natural resources to reduce or replace traditional fossil fuels such as diesel and gasoline (Hill et al., 2006). Among renewable fuels, biodiesel has been attracting great interest, especially in Europe and the United States. Biodiesel is defined by the World Customs Organization (WCO) as 'a mixture of mono-alkyl esters of long-chain [C16-C18] fatty acids derived from vegetable oils or animal fats, which is a domestic renewable fuel for diesel engines and which meets the US specifications of ASTM D 6751'. Biodiesel is biodegradable and non toxic, produces 93% more energy than the fossil energy required for its production, reduces greenhouse gas emissions by 40% compared to fossil diesel (Peterson and Hustrulid, 1998; Hill et al., 2006) and stimulates agriculture.

  17. Brazilian Biodiesel Policy: Social and environmental considerations of sustainability

    International Nuclear Information System (INIS)

    Garcez, Catherine Aliana Gucciardi; Vianna, Joao Nildo de Souza

    2009-01-01

    The objective of this article is to analyze the Brazilian Biodiesel Policy (PNPB) and to identify the social and environmental aspects of sustainability that are present or absent within it. Biofuels, namely alcohol and biodiesel, have been increasing in popularity on a global scale due to their potential as alternative and renewable energy sources. Brazil, a vast country blessed with abundant natural resources and agricultural land, has emerged as a global leader in the production of biofuels. This article includes a brief analysis of the concept of sustainable development, which served as a basis to evaluate the Policy documents. Although PNPB's implementation, which began in 2004, is still within its initial stage, it was possible to identify and elaborate on the environmental and social aspects of the Policy, namely: the social inclusion of family farmers; regional development; food security; influencing the carbon and energy balance of biodiesel; promoting sustainable agricultural practices and a diversity of feedstock. (author)

  18. Use of electronic sales data to tailor nutrition education resources for an ethnically diverse population.

    Science.gov (United States)

    Eyles, H; Rodgers, A; Ni Mhurchu, C

    2010-02-01

    Nutrition education may be most effective when personally tailored. Individualised electronic supermarket sales data offer opportunities to tailor nutrition education using shopper's usual food purchases. The present study aimed to use individualised electronic supermarket sales data to tailor nutrition resources for an ethnically diverse population in a large supermarket intervention trial in New Zealand. Culturally appropriate nutrition education resources (i.e. messages and shopping lists) were developed with the target population (through two sets of focus groups) and ethnic researchers. A nutrient database of supermarket products was developed using retrospective sales data and linked to participant sales to allow tailoring by usual food purchases. Modified Heart Foundation Tick criteria were used to identify 'healthier' products in the database suitable for promotion in the resources. Rules were developed to create a monthly report listing the tailored and culturally targeted messages to be sent to each participant, and to produce automated, tailored shopping lists. Culturally targeted nutrition messages (n = 864) and shopping lists (n = 3 formats) were developed. The food and nutrient database (n = 3000 top-selling products) was created using 12 months of retrospective sales data, and comprised 60%'healthier' products. Three months of baseline sales data were used to determine usual food purchases. Tailored resources were successfully mailed to 123 Māori, 52 Pacific and 346 non-Māori non-Pacific participants over the 6-month trial intervention period. Electronic supermarket sales data can be used to tailor nutrition education resources for a large number of ethnically diverse supermarket shoppers.

  19. Variation of diesel soot characteristics by different types and blends of biodiesel in a laboratory combustion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Omidvarborna, Hamid; Kumar, Ashok [Department of Civil Engineering, The University of Toledo, Toledo, OH (United States); Kim, Dong-Shik, E-mail: dong.kim@utoledo.edu [Department of Chemical and Environmental Engineering, The University of Toledo, Toledo, OH (United States)

    2016-02-15

    Very little information is available on the physical and chemical properties of soot particles produced in the combustion of different types and blends of biodiesel fuels. A variety of feedstock can be used to produce biodiesel, and it is necessary to better understand the effects of feedstock-specific characteristics on soot particle emissions. Characteristics of soot particles, collected from a laboratory combustion chamber, are investigated from the blends of ultra-low sulfur diesel (ULSD) and biodiesel with various proportions. Biodiesel samples were derived from three different feedstocks, soybean methyl ester (SME), tallow oil (TO), and waste cooking oil (WCO). Experimental results showed a significant reduction in soot particle emissions when using biodiesel compared with ULSD. For the pure biodiesel, no soot particles were observed from the combustion regardless of their feedstock origins. The overall morphology of soot particles showed that the average diameter of ULSD soot particles is greater than the average soot particles from the biodiesel blends. Transmission electron microscopy (TEM) images of oxidized soot particles are presented to investigate how the addition of biodiesel fuels may affect structures of soot particles. In addition, inductively coupled plasma mass spectrometry (ICP-MS), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) were conducted for characterization of soot particles. Unsaturated methyl esters and high oxygen content of biodiesel are thought to be the major factors that help reduce the formation of soot particles in a laboratory combustion chamber. - Highlights: • The unsaturation of biodiesel fuel was correlated with soot characteristics. • Average diameters of biodiesel soot were smaller than that of ULSD. • Eight elements were detected as the marker metals in biodiesel soot particles. • As the degree of unsaturation increased, the oxygen content in FAMEs increased. • Biodiesel

  20. REVIEW OF MOODLE PLUGINS FOR DESIGNING MULTIMEDIA ELECTRONIC EDUCATIONAL RESOURCES FROM LANGUAGE DISCIPLINES

    Directory of Open Access Journals (Sweden)

    Anton M. Avramchuk

    2015-09-01

    Full Text Available Today the problem of designing multimedia electronic educational resources from language disciplines in Moodle is very important. This system has a lot of different, powerful resources, plugins to facilitate the learning of students with language disciplines. This article presents an overview and comparative analysis of the five Moodle plugins for designing multimedia electronic educational resources from language disciplines. There have been considered their key features and functionality in order to choose the best for studying language disciplines in the Moodle. Plugins are compared by a group of experts according to the criteria: efficiency, functionality and easy use. For a comparative analysis of the plugins it is used the analytic hierarchy process.

  1. Effects of the Use of Electronic Human Resource Management (EHRM Within Human Resource Management (HRM Functions at Universities

    Directory of Open Access Journals (Sweden)

    Chux Gervase Iwu

    2016-09-01

    Full Text Available This study set out to examine the effect of e-hrm systems in assisting human resource practitioners to execute their duties and responsibilities. In comparison to developed economies of the world, information technology adoption in sub-Saharan Africa has not been without certain glitches. Some of the factors that are responsible for these include poor need identification, sustainable funding, and insufficient skills. Besides these factors, there is also the issue of change management and users sticking to what they already know. Although, the above factors seem negative, there is strong evidence that information systems such as electronic human resource management present benefits to an organization. To achieve this, a dual research approach was utilized. Literature assisted immensely in both the development of the conceptual framework upon which the study hinged as well as in the development of the questionnaire items. The study also made use of an interview checklist to guide the participants. The findings reveal a mix of responses that indicate that while there are gains in adopting e-hrm systems, it is wiser to consider supporting resources as well as articulate the needs of the university better before any investment is made.

  2. The Electron Microscopy Outreach Program: A Web-based resource for research and education.

    Science.gov (United States)

    Sosinsky, G E; Baker, T S; Hand, G; Ellisman, M H

    1999-01-01

    We have developed a centralized World Wide Web (WWW)-based environment that serves as a resource of software tools and expertise for biological electron microscopy. A major focus is molecular electron microscopy, but the site also includes information and links on structural biology at all levels of resolution. This site serves to help integrate or link structural biology techniques in accordance with user needs. The WWW site, called the Electron Microscopy (EM) Outreach Program (URL: http://emoutreach.sdsc.edu), provides scientists with computational and educational tools for their research and edification. In particular, we have set up a centralized resource containing course notes, references, and links to image analysis and three-dimensional reconstruction software for investigators wanting to learn about EM techniques either within or outside of their fields of expertise. Copyright 1999 Academic Press.

  3. Er biodiesel en god ide?

    DEFF Research Database (Denmark)

    Schmidt, Jannick

    2007-01-01

    Biodiesel opfattes som en grøn miljøvenlig teknologi. Men har dette 'grønne' alternativ til konventionel diesel en skjult bagside af medaljen? Og kan det være, at man i stedet for at få et bedre miljø, medvirker til øgede miljøpåvirkninger i form af emissioner og naturødelæggelse, når man skifter...... til biodiesel? I artiklen belyses nogle af de mest sejlivede myter omkring biodiesel. Udgivelsesdato: Januar...

  4. Identifying and evaluating electronic learning resources for use in adult-gerontology nurse practitioner education.

    Science.gov (United States)

    Thompson, Hilaire J; Belza, Basia; Baker, Margaret; Christianson, Phyllis; Doorenbos, Ardith; Nguyen, Huong

    2014-01-01

    Enhancing existing curricula to meet newly published adult-gerontology advanced practice registered nurse (APRN) competencies in an efficient manner presents a challenge to nurse educators. Incorporating shared, published electronic learning resources (ELRs) in existing or new courses may be appropriate in order to assist students in achieving competencies. The purposes of this project were to (a) identify relevant available ELR for use in enhancing geriatric APRN education and (b) to evaluate the educational utility of identified ELRs based on established criteria. A multilevel search strategy was used. Two independent team members reviewed identified ELR against established criteria to ensure utility. Only resources meeting all criteria were retained. Resources were found for each of the competency areas and included formats such as podcasts, Web casts, case studies, and teaching videos. In many cases, resources were identified using supplemental strategies and not through traditional search or search of existing geriatric repositories. Resources identified have been useful to advanced practice educators in improving lecture and seminar content in a particular topic area and providing students and preceptors with additional self-learning resources. Addressing sustainability within geriatric APRN education is critical for sharing of best practices among educators and for sustainability of teaching and related resources. © 2014.

  5. Particulate filter behaviour of a Diesel engine fueled with biodiesel

    International Nuclear Information System (INIS)

    Buono, D.; Senatore, A.; Prati, M.V.

    2012-01-01

    Biodiesel is an alternative and renewable fuel made from plant and animal fat or cooked oil through a transesterification process to produce a short chain ester (generally methyl ester). Biodiesel fuels have been worldwide studied in Diesel engines and they were found to be compatible in blends with Diesel fuel to well operate in modern Common Rail engines. Also throughout the world the diffusion of biofuels is being promoted in order to reduce greenhouse gas emissions and the environmental impact of transport, and to increase security of supply. To meet the current exhaust emission regulations, after-treatment devices are necessary; in particular Diesel Particulate Filters (DPFs) are essential to reduce particulate emissions of Diesel engines. A critical requirement for the implementation of DPF on a modern Biodiesel powered engine is the determination of Break-even Temperature (BET) which is defined as the temperature at which particulate deposition on the filter is balanced by particulate oxidation on the filter. To fit within the exhaust temperature range of the exhaust line and to require a minimum of active regeneration during the engine running, the BET needs to occur at sufficiently low temperatures. In this paper, the results of an experimental campaign on a modern, electronic controlled fuel injection Diesel engine are shown. The engine was fuelled either with petroleum ultralow sulphur fuel or with Biodiesel: BET was evaluated for both fuels. Results show that on average, the BET is lower for biodiesel than for diesel fuel. The final goal was to characterize the regeneration process of the DPF device depending on the adopted fuel, taking into account the different combustion process and the different nature of the particulate matter. Overall the results suggest significant benefits for the use of biodiesel in engines equipped with DPFs. - Highlights: ► We compare Diesel Particulate Trap (DPF) performance with Biodiesel and Diesel fuel. ► The Break

  6. USE OF ELECTRONIC EDUCATIONAL RESOURCES WHEN TRAINING IN WORK WITH SPREADSHEETS

    Directory of Open Access Journals (Sweden)

    Х А Гербеков

    2017-12-01

    Full Text Available Today the tools for maintaining training courses based on opportunities of information and communication technologies are developed. Practically in all directions of preparation and on all subject matters electronic textbook and self-instruction manuals are created. Nevertheless the industry of computer educational and methodical materials actively develops and gets more and more areas of development and introduction. In this regard more and more urgent is a problem of development of the electronic educational resources adequate to modern educational requirements. Creation and the organization of training courses with use of electronic educational resources in particular on the basis of Internet technologies remains a difficult methodical task.In article the questions connected with development of electronic educational resources for use when studying the substantial line “Information technologies” of a school course of informatics in particular for studying of spreadsheets are considered. Also the analysis of maintenance of a school course and the unified state examination from the point of view of representation of task in him corresponding to the substantial line of studying “Information technologies” on mastering technology of information processing in spreadsheets and the methods of visualization given by means of charts and schedules is carried out.

  7. Obtention and characterization of biodiesel; Obtencao e caracterizacao do biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Leonidas B.O. dos; Caitano, Moises; Aranda, Donato A.G.; Mothe, Cheila G. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2004-07-01

    Biodiesel is an ester resulting from the transesterification reaction of an alcohol and an oil obtained from biomass. The products of the transesterification are an ester and the glycerol. The biodiesel and the petroleum commercial diesel have similar properties, and they can be mixed and used in diesel motors. The use of biodiesel will allow a better exploration of the energetic potential of our cultures. The biodiesel has some advantages compared to others combustibles, such as adaptability to usual diesel motors and non-generation of NO{sub x} and SO{sub x} compounds. Many experiments with biodiesel have been made in Brazil since the 70's. This work made samples of biodiesel by transesterification batch reactions to many blends of soybean oil and residual fry oil, at room temperature, using mechanical mixture or magnetic agitation by a magnetic stirrer, using as catalysts sodium methoxide and potassium hydroxide. For each obtained sample tests to determine the Acidity Index (ABNT-MB-74), Saponification Index (ABNT-MB-75), Iodine Wijz Index (ABNT-MB- 77), thermal analysis by DTA and TG (TA Instruments SDT 2960, 30 to 800 deg C, 10 deg C/min at nitrogen atmosphere) and rheological test (Haake RS 150 Rheo Stress rheometer) were done. (author)

  8. From Millennium ERM to Proquest 360 Resource Manager: Implementing a new Electronic Resources Management System ERMS in an International Graduate Research University in Saudi Arabia

    KAUST Repository

    Ramli, Rindra M.

    2017-01-01

    An overview of the Recommendation Study and the subsequent Implementation of a new Electronic Resources Management system ERMS in an international graduate research university in the Kingdom of Saudi Arabia. It covers the timeline, deliverables

  9. Toxicology of Biodiesel Combustion products

    Science.gov (United States)

    1. Introduction The toxicology of combusted biodiesel is an emerging field. Much of the current knowledge about biological responses and health effects stems from studies of exposures to other fuel sources (typically petroleum diesel, gasoline, and wood) incompletely combusted. ...

  10. Availability, Level of Use and Constraints to Use of Electronic Resources by Law Lecturers in Public Universities in Nigeria

    Science.gov (United States)

    Amusa, Oyintola Isiaka; Atinmo, Morayo

    2016-01-01

    (Purpose) This study surveyed the level of availability, use and constraints to use of electronic resources among law lecturers in Nigeria. (Methodology) Five hundred and fifty-two law lecturers were surveyed and four hundred and forty-two responded. (Results) Data analysis revealed that the level of availability of electronic resources for the…

  11. Western Kentucky University Research Foundation Biodiesel Project

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei-Ping [Principal Investigator; Cao, Yan [Co-Principal Investigator

    2013-03-15

    fermented to create ethanol. In the United States almost all starch ethanol is mainly manufactured from corn grains. The technology for manufacturing corn ethanol can be considered mature as of the late 1980s. In 2005, 14.3 % of the U.S. corn harvest was processed to produce 1.48 x10{sup 10} liters of ethanol, energetically equivalent to 1.72 % of U.S. gasoline usage. Soybean oil is extracted from 1.5 % of the U.S. soybean harvest to produce 2.56 x 10{sup 8} liters of bio-diesel, which was 0.09 % of U.S. diesel usage. However, reaching maximum rates of bio-fuel supply from corn and soybeans is unlikely because these crops are presently major contributors to human food supplies through livestock feed and direct consumption. Moreover, there currently arguments on that the conversion of many types of many natural landscapes to grow corn for feedstock is likely to create substantial carbon emissions that will exacerbate globe warming. On the other hand, there is a large underutilized resource of cellulose biomass from trees, grasses, and nonedible parts of crops that could serve as a feedstock. One of the potentially significant new bio-fuels is so called "cellulosic ethanol", which is dependent on break-down by microbes or enzymes. Because of technological limitations (the wider variety of molecular structures in cellulose and hemicellulose requires a wider variety of microorganisms to break them down) and other cost hurdles (such as lower kinetics), cellulosic ethanol can currently remain in lab scales. Considering farm yields, commodity and fuel prices, farm energy and agrichemical inputs, production plant efficiencies, byproduct production, greenhouse gas (GHG) emissions, and other environmental effects, a life-cycle evaluation of competitive indicated that corn ethanol yields 25 % more energy than the energy invested in its production, whereas soybean bio-diesel yields 93 % more. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12 % by the

  12. New technologies in biodiesel production

    International Nuclear Information System (INIS)

    Santacesaria, E.; Di Serio, M.; Tesser, R.

    2009-01-01

    The cost of biodiesel is nowadays affected by the cost of the raw materials, because the currently used method of preparation requires highly refined vegetable oils containing very low amounts of free fatty acids and moisture. Alternatively, less expensive technologies are possible using heterogeneous catalysts. In the present paper examples of these new technologies, based on the use of heterogeneous catalysts, in the production of biodiesel are described and discussed. [it

  13. Microwave irradiation biodiesel processing of waste cooking oil

    Science.gov (United States)

    Motasemi, Farough; Ani, Farid Nasir

    2012-06-01

    Major part of the world's total energy output is generated from fossil fuels, consequently its consumption has been continuously increased which accelerates the depletion of fossil fuel reserves and also increases the price of these valuable limited resources. Biodiesel is a renewable, non-toxic and biodegradable diesel fuel which it can be the best environmentally friendly and easily attainable alternative for fossil fuels. The costs of feedstock and production process are two important factors which are particularly against large-scale biodiesel production. This study is intended to optimize three critical reaction parameters including intensity of mixing, microwave exit power and reaction time from the transesterification of waste cooking oil by using microwave irradiation in an attempt to reduce the production cost of biodiesel. To arrest the reaction, similar quantities of methanol/oil molar ratio (6:1) and potassium hydroxide (2% wt) as the catalyst were used. The results showed that the best yield percentage (95%) was obtained using 300W microwave exit power, 300 rpm stirrer speed (intensity of mixing) and 78°C for 5 min. It was observed that increasing the intensity of mixing greatly ameliorates the yield percentage of biodiesel (up to 17%). Moreover, the results demonstrate that increasing the reaction time in the low microwave exit power (100W) improves the yield percentage of biodiesel, while it has a negative effect on the conversion yield in the higher microwave exit power (300W). From the obtained results it was clear that FAME was within the standards of biodiesel fuel.

  14. GUIDELINES FOR EVALUATION OF PSYCHOLOGICAL AND PEDAGOGICAL QUALITY CHARACTERISTICS OF ELECTRONIC EDUCATIONAL RESOURCES

    Directory of Open Access Journals (Sweden)

    Galina P. Lavrentieva

    2014-05-01

    Full Text Available The article highlights the causes of insufficient effective use of electronic learning resources and sets out the guidelines on ways to solve the aforementioned problems. The set of didactic, methodical, psychological, pedagogical, design and ergonomic quality requirements is considered for evaluation, selection and application of information and communication technologies in the educational process. The most appropriate mechanisms for the ICT introduction into the learning process are disclosed as it should meet the specific learning needs of the student and the objectives of the educational process. The guidance for psycho-educational assessment of quality of electronic educational resources is provided. It is argued that the effectiveness of the ICT use is to be improved by means of quality evaluation mechanisms involved into the educational process.

  15. Correlation for the estimation of the density of fatty acid esters fuels and its implications. A proposed Biodiesel Cetane Index.

    Science.gov (United States)

    Lapuerta, Magín; Rodríguez-Fernández, José; Armas, Octavio

    2010-09-01

    Biodiesel fuels (methyl or ethyl esters derived from vegetables oils and animal fats) are currently being used as a means to diminish the crude oil dependency and to limit the greenhouse gas emissions of the transportation sector. However, their physical properties are different from traditional fossil fuels, this making uncertain their effect on new, electronically controlled vehicles. Density is one of those properties, and its implications go even further. First, because governments are expected to boost the use of high-biodiesel content blends, but biodiesel fuels are denser than fossil ones. In consequence, their blending proportion is indirectly restricted in order not to exceed the maximum density limit established in fuel quality standards. Second, because an accurate knowledge of biodiesel density permits the estimation of other properties such as the Cetane Number, whose direct measurement is complex and presents low repeatability and low reproducibility. In this study we compile densities of methyl and ethyl esters published in literature, and proposed equations to convert them to 15 degrees C and to predict the biodiesel density based on its chain length and unsaturation degree. Both expressions were validated for a wide range of commercial biodiesel fuels. Using the latter, we define a term called Biodiesel Cetane Index, which predicts with high accuracy the Biodiesel Cetane Number. Finally, simple calculations prove that the introduction of high-biodiesel content blends in the fuel market would force the refineries to reduce the density of their fossil fuels. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Model of e-learning with electronic educational resources of new generation

    OpenAIRE

    A. V. Loban; D. A. Lovtsov

    2017-01-01

    Purpose of the article: improving of scientific and methodical base of the theory of the е-learning of variability. Methods used: conceptual and logical modeling of the е-learning of variability process with electronic educational resource of new generation and system analysis of the interconnection of the studied subject area, methods, didactics approaches and information and communication technologies means. Results: the formalization complex model of the е-learning of variability with elec...

  17. A systematic review of portable electronic technology for health education in resource-limited settings.

    Science.gov (United States)

    McHenry, Megan S; Fischer, Lydia J; Chun, Yeona; Vreeman, Rachel C

    2017-08-01

    The objective of this study is to conduct a systematic review of the literature of how portable electronic technologies with offline functionality are perceived and used to provide health education in resource-limited settings. Three reviewers evaluated articles and performed a bibliography search to identify studies describing health education delivered by portable electronic device with offline functionality in low- or middle-income countries. Data extracted included: study population; study design and type of analysis; type of technology used; method of use; setting of technology use; impact on caregivers, patients, or overall health outcomes; and reported limitations. Searches yielded 5514 unique titles. Out of 75 critically reviewed full-text articles, 10 met inclusion criteria. Study locations included Botswana, Peru, Kenya, Thailand, Nigeria, India, Ghana, and Tanzania. Topics addressed included: development of healthcare worker training modules, clinical decision support tools, patient education tools, perceptions and usability of portable electronic technology, and comparisons of technologies and/or mobile applications. Studies primarily looked at the assessment of developed educational modules on trainee health knowledge, perceptions and usability of technology, and comparisons of technologies. Overall, studies reported positive results for portable electronic device-based health education, frequently reporting increased provider/patient knowledge, improved patient outcomes in both quality of care and management, increased provider comfort level with technology, and an environment characterized by increased levels of technology-based, informal learning situations. Negative assessments included high investment costs, lack of technical support, and fear of device theft. While the research is limited, portable electronic educational resources present promising avenues to increase access to effective health education in resource-limited settings, contingent

  18. Transesterification of Nannochloropsis oculata microalga's oil to biodiesel using calcium methoxide catalyst

    International Nuclear Information System (INIS)

    Teo, Siow Hwa; Islam, Aminul; Yusaf, Talal; Taufiq-Yap, Yun Hin

    2014-01-01

    Biodiesel is an environmental friendly liquid fuel similar to conventional diesel in combustion properties. It has received international attention in recent times, as that biodiesel is renewable, non-toxic and safe to store. In this study, high grade biodiesel was produced from microalgae (Nannochloropsis oculata) derived lipids via transesterification reaction with methanol in the presence of heterogeneous Ca(OCH 3 ) 2 (calcium methoxide) catalyst. The biodiesel was produced with high yield; (92%) at 60 °C compared to the highest yield reported as 22% with the use of a Mg–Zr catalyst. The product exhibited excellent performances. The catalyst was characterized by TG/DTA (thermogravimetric-differential thermal analyses), XRD (X-ray diffraction), BET (Brunauer – Emmett – Teller), FTIR (Fourier transform infrared), SEM-EDX (scanning electron microscopy-energy dispersive spectrometer) and TEM (transmission electron microscopy) analysis. The effect of different reaction parameters including reaction time, methanol/oil molar ratio and catalyst dosage on the yield of FAME (fatty acid methyl ester) was studied. Interestingly, the catalyst can be reused five times successively without affecting the biodiesel yield. Biodiesel produced from microalgae oil consists of high levels of polyunsaturated fatty acids, making it highly suitable as winter grade biodiesel. - Highlights: • Biodiesel synthesis from microalgae derived oil by Ca(OCH 3 ) 2 solid catalyst. • Studied effects of methanol/oil ratio, catalyst concentration and reaction time. • Biodiesel yields >90% in 3 h using 12 wt.% catalyst, 30:1 methanol/oil at 60 °C. • Catalyst could be reused up to five times without significant lost of activity

  19. Alternative Fuels Data Center: Biodiesel Fueling Stations

    Science.gov (United States)

    Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Stations Photo of a location or along a route. Infrastructure Development Learn about biodiesel fueling infrastructure codes Case Studies California Ramps Up Biofuels Infrastructure Green Fueling Station Powers Fleets in Upstate

  20. Biodiesel Fuel Quality and the ASTM Standard

    Science.gov (United States)

    Biodiesel is usually produced from vegetable oils, animal fats and used cooking oils with alternative feedstocks such as algae receiving increasing interest. The transesterification reaction which produces biodiesel also produces glycerol and proceeds stepwise via mono- and diacylglycerol intermedia...

  1. Cetane Number of Biodiesel from Karaya Oil

    KAUST Repository

    Wasfi, Bayan

    2017-01-01

    Biodiesel is a renewable fuel alternative to petroleum Diesel, biodiesel has similar characteristic but with lesser exhaust emission. In this study, transesterification of Karaya oil is examined experimentally using a batch reactor at 100-140°C

  2. Performance and emissions of an engine fuelled with a biodiesel fuel produced from animal fats

    Directory of Open Access Journals (Sweden)

    Taymaz Imdat

    2013-01-01

    Full Text Available Oil reserves which are located around the world are declining day by day, so new alternative energy sources must be invented for engines of internal combustion and compression ignition, so biodiesel that is an alternative fuel source for diesel engines and it is a renewable energy resource. Biodiesel is a fuel made from vegetable oils, animals’ fats and waste oils. In this study, physical and chemical properties of biodiesel were analyzed and matched to the diesel fuel. In the experimental study, biodiesel was made from animal fats and compared to diesel fuel. Its effects on engine performance and emissions are studied. A single-cylinder, four-stroke, direct injected diesel engine with air cooling system are used as test equipment in different cycles. After the experimental study, it is concluded that the reduction of the emissions of CO and HC as biodiesel has the advantage of emission output. Environmentalist property of biodiesel is the most important characteristic of it. But the sight of engine performance diesel fuel has more advantage to biodiesel fuel.

  3. Quality assessment of biodiesels obtained from pure cooking oils of some feedstocks and their waste oils

    International Nuclear Information System (INIS)

    Khan, I.; Ansari, T.M.; Manzoor, S.

    2017-01-01

    Biodiesel being a renewable energy resource possesses compositional variability based on the type of feedstock. Biodiesel is considered a cleaner burning fuel and can be used as pure B100 or blended with petro-diesel. In this study, biodiesel was prepared from pure cooking oils (soybean oil, canola oil, sunflower oil, corn oil) and their waste frying oils by base-catalyzed transesterification with methanol in presence of sodium hydroxide. The optimized experimental parameters were applied to achieve the maximum yield of biodiesel. Various fuel properties like kinematic viscosity, flash point, pour point, cloud point, total acid number, specific gravity, water and sediments, conradson carbon residue, sulfur contents, phosphorous contents, sulphated ash, cetane and copper corrosion were determined and found comparable to ASTM standards. Pure cooking oils, their waste frying oils and prepared biodiesels were characterized by FT-IR. The study showed that the biodiesel derived from waste frying oils can be a promising alternative of the biodiesel from pure cooking oils. (author)

  4. Optical characterization of pure vegetable oils and their biodiesels using Raman spectroscopy

    Science.gov (United States)

    Firdous, S.; Anwar, S.; Waheed, A.; Maraj, M.

    2016-04-01

    Great concern regarding energy resources and environmental polution has increased interest in the study of alternative sources of energy. Biodiesels as an alternative fuel provide a suitable diesel oil substitute for internal combustion engines. The Raman spectra of pure biodiesels of soybean oil, olive oil, coconut oil, animal fats, and petroleum diesel are optically characterized for quality and biofuel as an alternative fuel. The most significant spectral differences are observed in the frequency range around 1457 cm-1 for pure petroleum diesel, 1427 for fats biodiesel, 1670 cm-1 for pure soybean oil, 1461 cm-1 for soybean oil based biodiesel, 1670 cm-1 for pure olive oil, 1666 cm-1 for olive oil based biodiesel, 1461 cm-1 for pure coconut oil, and 1460 cm-1 for coconut oil based biodiesel, which is used for the analysis of the phase composition of oils. A diode pump solid-state laser with a 532 nm wavelength is used as an illuminating light. It is demonstrated that the peak positions and relative intensities of the vibrations of the oils can be used to identify the biodiesel quality for being used as biofuel.

  5. Optical characterization of pure vegetable oils and their biodiesels using Raman spectroscopy

    International Nuclear Information System (INIS)

    Firdous, S; Anwar, S; Waheed, A; Maraj, M

    2016-01-01

    Great concern regarding energy resources and environmental polution has increased interest in the study of alternative sources of energy. Biodiesels as an alternative fuel provide a suitable diesel oil substitute for internal combustion engines. The Raman spectra of pure biodiesels of soybean oil, olive oil, coconut oil, animal fats, and petroleum diesel are optically characterized for quality and biofuel as an alternative fuel. The most significant spectral differences are observed in the frequency range around 1457 cm −1 for pure petroleum diesel, 1427 for fats biodiesel, 1670 cm −1 for pure soybean oil, 1461 cm −1 for soybean oil based biodiesel, 1670 cm −1 for pure olive oil, 1666 cm −1 for olive oil based biodiesel, 1461 cm −1 for pure coconut oil, and 1460 cm −1 for coconut oil based biodiesel, which is used for the analysis of the phase composition of oils. A diode pump solid-state laser with a 532 nm wavelength is used as an illuminating light. It is demonstrated that the peak positions and relative intensities of the vibrations of the oils can be used to identify the biodiesel quality for being used as biofuel. (paper)

  6. Experimental investigations on mixing of two biodiesels blended with diesel as alternative fuel for diesel engines

    Directory of Open Access Journals (Sweden)

    K. Srithar

    2017-01-01

    Full Text Available The world faces the crises of energy demand, rising petroleum prices and depletion of fossil fuel resources. Biodiesel has obtained from vegetable oils that have been considered as a promising alternate fuel. The researches regarding blend of diesel and single biodiesel have been done already. Very few works have been done with the combination of two different biodiesel blends with diesel and left a lot of scope in this area. The present study brings out an experiment of two biodiesels from pongamia pinnata oil and mustard oil and they are blended with diesel at various mixing ratios. The effects of dual biodiesel works in engine and exhaust emissions were examined in a single cylinder, direct injection, air cooled and high speed diesel engine at various engine loads with constant engine speed of 3000 rpm. The influences of blends on CO, CO2, HC, NOx and smoke opacity were investigated by emission tests. The brake thermal efficiency of blend A was found higher than diesel. The emissions of smoke, hydro carbon and nitrogen oxides of dual biodiesel blends were higher than that of diesel. But the exhaust gas temperature for dual biodiesel blends was lower than diesel.

  7. Biodiesel Production from Castor Oil by Using Calcium Oxide Derived from Mud Clam Shell

    OpenAIRE

    Ismail, S.; Ahmed, A. S.; Anr, Reddy; Hamdan, S.

    2016-01-01

    The catalytic potential of calcium oxide synthesized from mud clam shell as a heterogeneous catalyst for biodiesel production was studied. The mud clam shell calcium oxide was characterized using particle size analyzer, Fourier transform infrared spectroscopy, scanning electron microscopy, and BET gas sorption analyzer. The catalyst performance of mud clam shell calcium oxide was studied in the transesterification of castor oil as biodiesel. Catalyst characterization and transesterification s...

  8. Model of e-learning with electronic educational resources of new generation

    Directory of Open Access Journals (Sweden)

    A. V. Loban

    2017-01-01

    Full Text Available Purpose of the article: improving of scientific and methodical base of the theory of the е-learning of variability. Methods used: conceptual and logical modeling of the е-learning of variability process with electronic educational resource of new generation and system analysis of the interconnection of the studied subject area, methods, didactics approaches and information and communication technologies means. Results: the formalization complex model of the е-learning of variability with electronic educational resource of new generation is developed, conditionally decomposed into three basic components: the formalization model of the course in the form of the thesaurusclassifier (“Author of e-resource”, the model of learning as management (“Coordination. Consultation. Control”, the learning model with the thesaurus-classifier (“Student”. Model “Author of e-resource” allows the student to achieve completeness, high degree of didactic elaboration and structuring of the studied material in triples of variants: modules of education information, practical task and control tasks; the result of the student’s (author’s of e-resource activity is the thesaurus-classifier. Model of learning as management is based on the principle of personal orientation of learning in computer environment and determines the logic of interaction between the lecturer and the student when determining the triple of variants individually for each student; organization of a dialogue between the lecturer and the student for consulting purposes; personal control of the student’s success (report generation and iterative search for the concept of the class assignment in the thesaurus-classifier before acquiring the required level of training. Model “Student” makes it possible to concretize the learning tasks in relation to the personality of the student and to the training level achieved; the assumption of the lecturer about the level of training of a

  9. Particulate morphology of waste cooking oil biodiesel and diesel in a heavy duty diesel engine

    Science.gov (United States)

    Hwang, Joonsik; Jung, Yongjin; Bae, Choongsik

    2014-08-01

    The effect of biodiesel produced from waste cooking oil (WCO) on the particulate matters (PM) of a direct injection (DI) diesel engine was experimentally investigated and compared with commercial diesel fuel. Soot agglomerates were collected with a thermophoretic sampling device installed in the exhaust pipe of the engine. The morphology of soot particles was analyzed using high resolution transmission electron microscopy (TEM). The elemental and thermogravimetric analysis (TGA) were also conducted to study chemical composition of soot particles. Based on the TEM images, it was revealed that the soot derived from WCO biodiesel has a highly graphitic shell-core arrangement compared to diesel soot. The mean size was measured from averaging 400 primary particles for WCO biodiesel and diesel respectively. The values for WCO biodiesel indicated 19.9 nm which was smaller than diesel's 23.7 nm. From the TGA results, WCO biodiesel showed faster oxidation process. While the oxidation of soot particles from diesel continued until 660°C, WCO biodiesel soot oxidation terminated at 560°C. Elemental analysis results showed that the diesel soot was mainly composed of carbon and hydrogen. On the other hand, WCO biodiesel soot contained high amount of oxygen species.

  10. Alternative Fuels Data Center: Biodiesel Equipment Options

    Science.gov (United States)

    Equipment Options to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Equipment Options on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Equipment Options on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Equipment Options on Google Bookmark Alternative Fuels

  11. Biodiesel Analytical Methods: August 2002--January 2004

    Energy Technology Data Exchange (ETDEWEB)

    Van Gerpen, J.; Shanks, B.; Pruszko, R.; Clements, D.; Knothe, G.

    2004-07-01

    Biodiesel is an alternative fuel for diesel engines that is receiving great attention worldwide. The material contained in this book is intended to provide the reader with information about biodiesel engines and fuels, analytical methods used to measure fuel properties, and specifications for biodiesel quality control.

  12. Review of material recovery from used electric and electronic equipment-alternative options for resource conservation.

    Science.gov (United States)

    Friege, Henning

    2012-09-01

    For waste from electric and electronic equipment, the WEEE Directive stipulates the separate collection of electric and electronic waste. As to new electric and electronic devices, the Restriction of Hazardous Substances (RoHS) Directive bans the use of certain chemicals dangerous for man and environment. From the implementation of the WEEE directive, many unsolved problems have been documented: poor collection success, emission of dangerous substances during collection and recycling, irretrievable loss of valuable metals among others. As to RoHS, data from the literature show a satisfying success. The problems identified in the process can be reduced to some basic dilemmas at the borders between waste management, product policy and chemical safety. The objectives of the WEEE Directive and the specific targets for use and recycling of appliances are not consistent. There is no focus on scarce resources. Extended producer responsibility is not sufficient to guarantee sustainable waste management. Waste management reaches its limits due to problems of implementation but also due to physical laws. A holistic approach is necessary looking at all branch points and sinks in the stream of used products and waste from electric and electronic equipment. This may be done with respect to the general rules for sustainable management of material streams covering the three dimensions of sustainable policy. The relationships between the players in the field of electric and electronic devices have to be taken into account. Most of the problems identified in the implementation process will not be solved by the current amendment of the WEEE Directive.

  13. [Use of internet and electronic resources among Spanish intensivist physicians. First national survey].

    Science.gov (United States)

    Gómez-Tello, V; Latour-Pérez, J; Añón Elizalde, J M; Palencia-Herrejón, E; Díaz-Alersi, R; De Lucas-García, N

    2006-01-01

    Estimate knowledge and use habits of different electronic resources in a sample of Spanish intensivists: Internet, E-mail, distribution lists, and use of portable electronic devices. Self-applied questionnaire. A 50-question questionnaire was distributed among Spanish intensivists through the hospital marketing delegates of a pharmaceutical company and of electronic forums. A total of 682 questionnaires were analyzed (participation: 74%). Ninety six percent of those surveyed used Internet individually: 67% admitted training gap. Internet was the second source of clinical consultations most used (61%), slightly behind consultation to colleagues (65%). The pages consulted most were bibliographic databases (65%) and electronic professional journals (63%), with limited use of Evidence Based Medicine pages (19%). Ninety percent of those surveyed used e-mail regularly in the practice of their profession, although 25% admitted that were not aware of its possibilities. The use of E-mail decreased significantly with increase in age. A total of 62% of the intensivists used distribution lists. Of the rest, 42% were not aware of its existence and 32% admitted they had insufficient training to handle them. Twenty percent of those surveyed had portable electronic devices and 64% considered it useful, basically due to its rapid consultation at bedside. Female gender was a negative predictive factor of its use (OR 0.35; 95% CI 0.2-0.63; p=0.0002). A large majority of the Spanish intensivists use Internet and E-mail. E-mail lists and use of portable devices are still underused resources. There are important gaps in training and infrequent use of essential pages. There are specific groups that require directed educational policies.

  14. Low-cost feedstock conversion to biodiesel via ultrasound technology

    Energy Technology Data Exchange (ETDEWEB)

    Babajide, O.; Petrik, L.; Amigun, B.; Ameer, F. [Environmental and Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535 (South Africa); Amigun, B. [Sustainable Energy Futures, Council for Scientific and Industrial Research (CSIR), Stellenbosch (South Africa)

    2010-10-15

    Biodiesel has attracted increasing interest and has proved to be a good substitute for fossil-based fuels due to its environmental advantages and availability from renewable resources such as refined and waste vegetable oils. Several studies have shown that biodiesel is a better fuel than the fossil-derived diesel in terms of engine performance, emissions reduction, lubricity and environmental benefits. The increasing popularity of biodiesel has generated great demand for its commercial production methods, which in turn calls for the development of technically and economically sound process technologies. This paper explores the applicability of ultrasound in the optimization of low-cost feedstock - in this case waste cooking oil - in the transesterification conversion to biodiesel. It was found that the conversion efficiency of the waste oil using ultrasound was higher than with the mechanical stirring method. The optimized variables of 6:1 methanol/oil ratio at a reaction temperature of 30 {sup o}C, a reaction time of 30 min and 0.75% KOH (wt/wt) catalyst concentration were obtained for the transesterification of the waste oil via the use of ultrasound. (authors)

  15. Low-Cost Feedstock Conversion to Biodiesel via Ultrasound Technology

    Energy Technology Data Exchange (ETDEWEB)

    Babajide, Omotola [Environmental and Nano Science Research Group, Dept. of Chemistry, Univ. of the Western Cape, Bellville, Cape Town (South Africa); Petrik, Leslie [Environmental and Nano Science Research Group, Dept. of Chemistry, Univ. of the Western Cape, Bellville, Cape Town (South Africa); Amigun, Bamikole [Environmental and Nano Science Research Group, Dept. of Chemistry, Univ. of the Western Cape, Bellville, Cape Town (South Africa) and Sustainable Energy Futures, Council for Scientific and Industrial Research (CSIR), Stellenbosch (South Africa); Ameer, Faraouk [Environmental and Nano Science Research Group, Dept. of Chemistry, Univ. of the Western Cape, Bellville, Cape Town (South Africa)

    2010-09-15

    Biodiesel has attracted increasing interest and has proved to be a good substitute for fossil-based fuels due to its environmental advantages and availability from renewable resources such as refined and waste vegetable oils. Several studies have shown that biodiesel is a better fuel than the fossil-derived diesel in terms of engine performance, emissions reduction, lubricity and environmental benefits. The increasing popularity of biodiesel has generated great demand for its commercial production methods, which in turn calls for the development of technically and economically sound process technologies. This paper explores the applicability of ultrasound in the optimization of low-cost feedstock – in this case waste cooking oil – in the transesterification conversion to biodiesel. It was found that the conversion efficiency of the waste oil using ultrasound was higher than with the mechanical stirring method. The optimized variables of 6:1 methanol/oil ratio at a reaction temperature of 30 deg C and a reaction time of 30 min and 0.75% KOH (wt/wt) catalyst concentration was obtained for the transesterification of the waste oil via the use of ultrasound.

  16. Environmental impacts of Jatropha curcas biodiesel in India.

    Science.gov (United States)

    Gmünder, Simon; Singh, Reena; Pfister, Stephan; Adheloya, Alok; Zah, Rainer

    2012-01-01

    In the context of energy security, rural development and climate change, India actively promotes the cultivation of Jatropha curcas, a biodiesel feedstock which has been identified as suitable for achieving the Indian target of 20% biofuel blending by 2017. In this paper, we present results concerning the range of environmental impacts of different Jatropha curcas cultivation systems. Moreover, nine agronomic trials in Andhra Pradesh are analysed, in which the yield was measured as a function of different inputs such as water, fertilizer, pesticides, and arbuscular mycorrhizal fungi. Further, the environmental impact of the whole Jatropha curcas biodiesel value chain is benchmarked with fossil diesel, following the ISO 14040/44 life cycle assessment procedure. Overall, this study shows that the use of Jatropha curcas biodiesel generally reduces the global warming potential and the nonrenewable energy demand as compared to fossil diesel. On the other hand, the environmental impacts on acidification, ecotoxicity, eutrophication, and water depletion all showed increases. Key for reducing the environmental impact of Jatropha curcas biodiesel is the resource efficiency during crop cultivation (especially mineral fertilizer application) and the optimal site selection of the Jatropha curcas plantations.

  17. A Review of Microwave-Assisted Reactions for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Saifuddin Nomanbhay

    2017-06-01

    Full Text Available The conversion of biomass into chemicals and biofuels is an active research area as trends move to replace fossil fuels with renewable resources due to society’s increased concern towards sustainability. In this context, microwave processing has emerged as a tool in organic synthesis and plays an important role in developing a more sustainable world. Integration of processing methods with microwave irradiation has resulted in a great reduction in the time required for many processes, while the reaction efficiencies have been increased markedly. Microwave processing produces a higher yield with a cleaner profile in comparison to other methods. The microwave processing is reported to be a better heating method than the conventional methods due to its unique thermal and non-thermal effects. This paper provides an insight into the theoretical aspects of microwave irradiation practices and highlights the importance of microwave processing. The potential of the microwave technology to accomplish superior outcomes over the conventional methods in biodiesel production is presented. A green process for biodiesel production using a non-catalytic method is still new and very costly because of the supercritical condition requirement. Hence, non-catalytic biodiesel conversion under ambient pressure using microwave technology must be developed, as the energy utilization for microwave-based biodiesel synthesis is reported to be lower and cost-effective.

  18. Low-Cost Feedstock Conversion to Biodiesel via Ultrasound Technology

    Directory of Open Access Journals (Sweden)

    Farouk Ameer

    2010-10-01

    Full Text Available Biodiesel has attracted increasing interest and has proved to be a good substitute for fossil-based fuels due to its environmental advantages and availability from renewable resources such as refined and waste vegetable oils. Several studies have shown that biodiesel is a better fuel than the fossil-derived diesel in terms of engine performance, emissions reduction, lubricity and environmental benefits. The increasing popularity of biodiesel has generated great demand for its commercial production methods, which in turn calls for the development of technically and economically sound process technologies. This paper explores the applicability of ultrasound in the optimization of low-cost feedstock – in this case waste cooking oil – in the transesterification conversion to biodiesel. It was found that the conversion efficiency of the waste oil using ultrasound was higher than with the mechanical stirring method. The optimized variables of 6:1 methanol/oil ratio at a reaction temperature of 30 °C and a reaction time of 30 min and 0.75% KOH (wt/wt catalyst concentration was obtained for the transesterification of the waste oil via the use of ultrasound.

  19. Ecological Impact of Biodiesel Use

    International Nuclear Information System (INIS)

    Gulbis, V.; Shmigins, R.

    2005-01-01

    Full text: The paper presents a study of biodiesel application and its ecological impacts. Our study is based on the comparison of exhaust emission composition produced by the combustion of rapeseed oil methyl ester (RME) and conventional diesel fuel (DD) and its blends in a direct injection diesel engine XD2P (YTT). The engine was tested in biofuels laboratory of LUA Motor Vehicle Institute. Fuelling the engine with biodiesel and biodiesel/diesel blend reduced oxides of nitrogen by 17.5% (100RME) and by 5.6% (35RME) and carbon monoxide by 49.8% (100RME) and by 45.3% (35RME). Fuelling the engine with biodiesel and different biodiesel/diesel blends reduced the absorbtion coefficient by 33.9% (5RME), by 44.3% (20RME) and by 51.2% (100RME) on free acceleration regime. In these tests soot reduced by 28...76.7% at full opened throttle position with 100RME. (Authors)

  20. Synthesis of Biodiesel from the Oily Content of Marine Green Alga Ulva fasciata

    International Nuclear Information System (INIS)

    Khan, A. M.; Fatima, N.

    2015-01-01

    The present study is focused on the chemical transformation of oils derived from the marine green alga Ulva fasciata Delile to biodiesel. The transesterification of algal oil was performed with a variety of alcohols using Na metal and NaOH as catalysts. Transesterification of algal oil by mechanical stirring yielded significant biodiesel within an hour at 60 degree C with NaOH and at room temperature with Na metal. In addition, microwave irradiated transesterification produced significant amount of biodiesel with NaOH and Na metal within 1-5 minutes. However, reaction of sodium metal in microwave oven was highly exothermic and uncontrollable that could also damage the radiation source. The reactivity order of alcohols was found to be methanol > ethanol > benzyl alcohol > 1-propanol > 1-butanol > 1-pentanol > 1-hexanol > 2-propanol. Isopropyl alcohol was found to be least reactive due to steric hindrance. Benzyl alcohol was found to be more reactive than 1-propyl alcohol due to the electron withdrawing effect of benzene ring. The highest % conversion of FAME and FAEE were found to be 97% and 98% respectively using Na metal through mechanical stirring. Biodiesel production was confirmed by thin layer chromatography (TLC). Furthermore, the fuel properties including density, kinematics viscosity, high heating value, acid value, free fatty acid (%), cloud point and pour point of U. fasciata oil and all the esters were determined and compared with the standard limits of biodiesel. Fatty acid methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 1-pentyl and 1-hexyl esters showed the fuel properties within the biodiesel standard limits therefore all of them were considered as the substitute of biodiesel. On the other hand, the fuel properties of benzyl ester were found to be above the limits of biodiesel specifications and thus it could not be considered as biodiesel. This research article will be helpful to overcome the current challenges of energy crisis, global warming and

  1. Biodiesel Production from Spent Coffee Grounds

    Science.gov (United States)

    Blinová, Lenka; Bartošová, Alica; Sirotiak, Maroš

    2017-06-01

    The residue after brewing the spent coffee grounds is an oil-containing waste material having a potential of being used as biodiesel feedstock. Biodiesel production from the waste coffee grounds oil involves collection and transportation of coffee residue, drying, oil extraction, and finally production of biodiesel. Different methods of oil extraction with organic solvents under different conditions show significant differences in the extraction yields. In the manufacturing of biodiesel from coffee oil, the level of reaction completion strongly depends on the quality of the feedstock oil. This paper presents an overview of oil extraction and a method of biodiesel production from spent coffee grounds.

  2. The Synthesis of the Hierarchical Structure of Information Resources for Management of Electronic Commerce Entities

    Directory of Open Access Journals (Sweden)

    Krutova Anzhelika S.

    2017-06-01

    Full Text Available The aim of the article is to develop the theoretical bases for the classification and coding of economic information and the scientific justification of the content of information resources of an electronic commerce enterprise. The essence of information resources for management of electronic business entities is investigated. It is proved that the organization of accounting in e-commerce systems is advisable to be built on the basis of two circuits: accounting for financial flows and accounting associated with transformation of business factors in products and services as a result of production activities. There presented a sequence of accounting organization that allows to combine the both circuits in a single information system, which provides a possibility for the integrated replenishment and distributed simultaneous use of the e-commerce system by all groups of users. It is proved that the guarantee of efficient activity of the information management system of electronic commerce entities is a proper systematization of the aggregate of information resources on economic facts and operations of an enterprise in accordance with the management tasks by building the hierarchy of accounting nomenclatures. It is suggested to understand nomenclature as an objective, primary information aggregate concerning a certain fact of the economic activity of an enterprise, which is characterized by minimum requisites, is entered into the database of the information system and is to be reflected in the accounting system. It is proposed to build a database of e-commerce systems as a part of directories (constants, personnel, goods / products, suppliers, buyers and the hierarchy of accounting nomenclatures. The package of documents regulating the organization of accounting at an enterprise should include: the provision on the accounting services, the order on the accounting policy, the job descriptions, the schedules of information exchange, the report card and

  3. ELECTRONIC EDUCATIONAL RESOURCES FOR ONLINE SUPPORT OF MODERN CHEMISTRY CLASSES IN SPECIALIZED SCHOOL

    Directory of Open Access Journals (Sweden)

    Maria D. Tukalo

    2013-09-01

    Full Text Available This article contains material of some modern electronic educational resources that can be used via the Internet to support the modern chemistry classes in specialized school. It was drawn attention to the educational chemical experiments as means of knowledge; simulated key motivational characteristics to enhance students interest for learning subjects, their cognitive and practical activity in the formation of self-reliance and self-creative; commented forecasts for creating of conditions to enhance the creative potential of students in a modern learning environment.

  4. Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile

    International Nuclear Information System (INIS)

    Iriarte, Alfredo; Rieradevall, Joan; Gabarrell, Xavier

    2012-01-01

    Highlights: ► Rapeseed biodiesel accounts for a 40% GHG emissions savings compared to fossil diesel. ► Biodiesel has greater impacts than fossil diesel in 7 of the 13 indicators evaluated. ► Agricultural stage cause the greatest impacts in biodiesel pathway. ► A production strategy involving low-impact or renewable resources should be used. ► Use of livestock manure as organic fertilizer presents the best environmental profile. -- Abstract: This study uses a site-specific life cycle assessment (LCA) to evaluate the environmental profile and energy and water demand of potential production options for rapeseed biodiesel in Chile. The first step is the analysis of the biodiesel supply chain in a standard scenario, associated with the most likely production conditions. The second step is the evaluation of the following alternative scenarios related to a production strategy involving low-impact or renewable resources: (1) Addition of livestock manure as organic fertilizer, (2) Use of degraded grassland, (3) Biodiesel transport by rail, and (4) Use of forest residues for industrial steam. The results show that the biodiesel in the standard scenario has less environmental impacts than fossil diesel in 4 of the 13 indicators evaluated. The rapeseed production is the stage with the highest contribution to impacts. The scenario 1 presents the best environmental profile. The scenario 2 reduces the greenhouse gas emissions of biodiesel. The scenarios 3 and 4 moderately improve the profile of the biofuel. The four situations could be implemented in the short term, but should be backed up by economic and social studies.

  5. Marine biodiesel use in the Puget Sound

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, N. [Northwest Biofuels Association, Portland, OR (United States)

    2008-07-01

    This presentation explored the use of marine biodiesel in the Puget Sound region. Marine vessels are now adopting biodiesel fuels as a means of expressing corporate commitments to reducing greenhouse gas (GHG) emissions and the environmental impacts of hydrocarbons released into marine environments. Various biodiesel blends have been designed for use in small commercial, recreational, and research vessels. Biodiesel has also been adopted by charter and whale watching vessels in the Puget Sound. The Guemes Island Ferry has recently been re-configured to use biodiesel fuels, with 2 fuel tanks capable of receiving 2200 gallons at a time. The ferry adopted biodiesel after receiving soot complaints from marinas, and hopes to serve as a model for other vessels in the region. Four fueling docks supply the biodiesel blend to marine vessels. The sale of biodiesel has doubled in some marinas over the last 5 years. Deterrents to biodiesel use include parts incompatibilities and warranty problems. Some marinas have stopped selling biodiesel as a result of low sales and high prices. It was concluded that educational programs are needed to ensure the widespread adoption of biodiesel in the Puget Sound. refs., tabs., figs.

  6. Marine biodiesel use in the Puget Sound

    International Nuclear Information System (INIS)

    Davidson, N.

    2008-01-01

    This presentation explored the use of marine biodiesel in the Puget Sound region. Marine vessels are now adopting biodiesel fuels as a means of expressing corporate commitments to reducing greenhouse gas (GHG) emissions and the environmental impacts of hydrocarbons released into marine environments. Various biodiesel blends have been designed for use in small commercial, recreational, and research vessels. Biodiesel has also been adopted by charter and whale watching vessels in the Puget Sound. The Guemes Island Ferry has recently been re-configured to use biodiesel fuels, with 2 fuel tanks capable of receiving 2200 gallons at a time. The ferry adopted biodiesel after receiving soot complaints from marinas, and hopes to serve as a model for other vessels in the region. Four fueling docks supply the biodiesel blend to marine vessels. The sale of biodiesel has doubled in some marinas over the last 5 years. Deterrents to biodiesel use include parts incompatibilities and warranty problems. Some marinas have stopped selling biodiesel as a result of low sales and high prices. It was concluded that educational programs are needed to ensure the widespread adoption of biodiesel in the Puget Sound. refs., tabs., figs

  7. An Improvement in Biodiesel Production from Waste Cooking Oil by Applying Thought Multi-Response Surface Methodology Using Desirability Functions

    Directory of Open Access Journals (Sweden)

    Marina Corral Bobadilla

    2017-01-01

    Full Text Available The exhaustion of natural resources has increased petroleum prices and the environmental impact of oil has stimulated the search for an alternative source of energy such as biodiesel. Waste cooking oil is a potential replacement for vegetable oils in the production of biodiesel. Biodiesel is synthesized by direct transesterification of vegetable oils, which is controlled by several inputs or process variables, including the dosage of catalyst, process temperature, mixing speed, mixing time, humidity and impurities of waste cooking oil that was studied in this case. Yield, turbidity, density, viscosity and higher heating value are considered as outputs. This paper used multi-response surface methodology (MRS with desirability functions to find the best combination of input variables used in the transesterification reactions to improve the production of biodiesel. In this case, several biodiesel optimization scenarios have been proposed. They are based on a desire to improve the biodiesel yield and the higher heating value, while decreasing the viscosity, density and turbidity. The results demonstrated that, although waste cooking oil was collected from various sources, the dosage of catalyst is one of the most important variables in the yield of biodiesel production, whereas the viscosity obtained was similar in all samples of the biodiesel that was studied.

  8. A critical cost benefit analysis of oilseed biodiesel in Canada : a BIOCAP research integration program synthesis paper

    International Nuclear Information System (INIS)

    Reaney, M.J.T.; Hartley Furtan, W.; Loutas, P.

    2006-03-01

    This paper investigated resources in Canada with the potential for conversion to biodiesel and analyzed strategies for the development of a biodiesel economy in Saskatchewan. Costs and benefits of biodiesel production were investigated. Producer margins for growing biodiesel crops were examined. Grain transportation and storage methods for various feed materials were discussed, as well as oil extraction and refining strategies that influence non-oil co-products. Biodiesel production technologies were also evaluated, and various distribution methods were discussed. The study determined that the costs and benefits of a biodiesel economy would accrue to many different sectors and sub-sectors, including seed production; farming; agricultural chemicals; fertilizers; grain storage and transportation; biodiesel manufacture and distribution; and petroleum manufacture and distribution. Outlines of impacts on each sector were examined under various scenarios. Results of the study demonstrated that the quantity of low-priced canola that is available in a given year has a significant impact on the profitability of a biodiesel industry in Saskatchewan. 16 refs., 13 tabs., 2 figs

  9. Structure of biodiesel based bicontinuous microemulsions for environmentally compatible decontamination: A small angle neutron scattering and freeze fracture electron microscopy study.

    Science.gov (United States)

    Wellert, S; Karg, M; Imhof, H; Steppin, A; Altmann, H-J; Dolle, M; Richardt, A; Tiersch, B; Koetz, J; Lapp, A; Hellweg, T

    2008-09-01

    Most toxic industrial chemicals and chemical warfare agents are hydrophobic and can only be solubilized in organic solvents. However, most reagents employed for the degradation of these toxic compounds can only be dissolved in water. Hence, microemulsions are auspicious media for the decontamination of a variety of chemical warfare agents and pesticides. They allow for the solubilization of both the lipophilic toxics and the hydrophilic reagent. Alkyl oligoglucosides and plant derived solvents like rapeseed methyl ester enable the formulation of environmentally compatible bicontinuous microemulsions. In the present article the phase behavior of such a microemulsion is studied and the bicontinuous phase is identified. Small angle neutron scattering (SANS) and freeze fracture electron microscopy (FFEM) measurements are used to characterize the structure of the bicontinuous phase and allow for an estimation of the total internal interface. Moreover, also the influence of the co-surfactant (1-pentanol) on the structural parameters of the bicontinuous phase is studied with SANS.

  10. Montana BioDiesel Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Peyton, Brent [Montana State Univ., Bozeman, MT (United States)

    2017-01-29

    This initiative funding helped put Montana State University (MSU) in a position to help lead in the development of biodiesel production strategies. Recent shortages in electrical power and rising gasoline prices have focused much attention on the development of alternative energy sources that will end our dependence on fossil fuels. In addition, as the concern for environmental impact of utilizing fossil fuels increases, effective strategies must be implemented to reduce emissions or the increased regulations imposed on fossil fuel production will cause economic barriers for their use to continue to increase. Biodiesel has been repeatedly promoted as a more environmentally sound and renewable source of fuel and may prove to be a highly viable solution to provide, at the least, a proportion of our energy needs. Currently there are both practical and economic barriers to the implementation of alternative energy however the advent of these technologies is inevitable. Since many of the same strategies for the storage, transport, and utilization of biodiesel are common with that of fossil fuels, the practical barriers for biodiesel are comparatively minimal. Strategies were developed to harness the CO2 as feedstock to support the growth of biodiesel producing algae. The initiative funding led to the successful funding of highly rated projects in competitive national grant programs in the National Science Foundation and the Department of Energy. This funding put MSU in a key position to develop technologies to utilize the CO2 rich emissions produced in fossil fuel utilization and assembled world experts concerning the growth characteristics of photosynthetic microorganisms capable of producing biodiesel.

  11. THE MODEL OF LINGUISTIC TEACHERS’ COMPETENCY DEVELOPMENT ON DESIGNING MULTIMEDIA ELECTRONIC EDUCATIONAL RESOURCES IN THE MOODLE SYSTEM

    Directory of Open Access Journals (Sweden)

    Anton M. Avramchuk

    2017-10-01

    Full Text Available The article is devoted to the problem of developing the competency of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system. The concept of "the competence of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system" is justified and defined. Identified and characterized the components by which the levels of the competency development of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system should be assessed. Developed a model for the development of the competency of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system, which is based on the main scientific approaches, used in adult education, and consists of five blocks: target, informative, technological, diagnostic and effective.

  12. Biodiesel Production from Castor Oil by Using Calcium Oxide Derived from Mud Clam Shell

    Directory of Open Access Journals (Sweden)

    S. Ismail

    2016-01-01

    Full Text Available The catalytic potential of calcium oxide synthesized from mud clam shell as a heterogeneous catalyst for biodiesel production was studied. The mud clam shell calcium oxide was characterized using particle size analyzer, Fourier transform infrared spectroscopy, scanning electron microscopy, and BET gas sorption analyzer. The catalyst performance of mud clam shell calcium oxide was studied in the transesterification of castor oil as biodiesel. Catalyst characterization and transesterification study results of synthesized catalyst proved the efficiency of the natural derived catalyst for biodiesel production. A highest biodiesel yield of 96.7% was obtained at optimal parameters such as 1 : 14 oil-to-methanol molar ratio, 3% w/w catalyst concentration, 60°C reaction temperature, and 2-hour reaction time. Catalyst reusability test shows that the synthesized calcium oxide from mud clam shell is reusable up to 5 times.

  13. A preliminary categorization of end-of-life electrical and electronic equipment as secondary metal resources

    International Nuclear Information System (INIS)

    Oguchi, Masahiro; Murakami, Shinsuke; Sakanakura, Hirofumi; Kida, Akiko; Kameya, Takashi

    2011-01-01

    Highlights: → End-of-life electrical and electronic equipment (EEE) as secondary metal resources. → The content and the total amount of metals in specific equipment are both important. → We categorized 21 EEE types from contents and total amounts of various metals. → Important equipment types as secondary resources were listed for each metal kind. → Collectability and possible collection systems of various EEE types were discussed. - Abstract: End-of-life electrical and electronic equipment (EEE) has recently received attention as a secondary source of metals. This study examined characteristics of end-of-life EEE as secondary metal resources to consider efficient collection and metal recovery systems according to the specific metals and types of EEE. We constructed an analogy between natural resource development and metal recovery from end-of-life EEE and found that metal content and total annual amount of metal contained in each type of end-of-life EEE should be considered in secondary resource development, as well as the collectability of the end-of-life products. We then categorized 21 EEE types into five groups and discussed their potential as secondary metal resources. Refrigerators, washing machines, air conditioners, and CRT TVs were evaluated as the most important sources of common metals, and personal computers, mobile phones, and video games were evaluated as the most important sources of precious metals. Several types of small digital equipment were also identified as important sources of precious metals; however, mid-size information and communication technology (ICT) equipment (e.g., printers and fax machines) and audio/video equipment were shown to be more important as a source of a variety of less common metals. The physical collectability of each type of EEE was roughly characterized by unit size and number of end-of-life products generated annually. Current collection systems in Japan were examined and potentially appropriate collection

  14. Open-Source Electronic Health Record Systems for Low-Resource Settings: Systematic Review.

    Science.gov (United States)

    Syzdykova, Assel; Malta, André; Zolfo, Maria; Diro, Ermias; Oliveira, José Luis

    2017-11-13

    Despite the great impact of information and communication technologies on clinical practice and on the quality of health services, this trend has been almost exclusive to developed countries, whereas countries with poor resources suffer from many economic and social issues that have hindered the real benefits of electronic health (eHealth) tools. As a component of eHealth systems, electronic health records (EHRs) play a fundamental role in patient management and effective medical care services. Thus, the adoption of EHRs in regions with a lack of infrastructure, untrained staff, and ill-equipped health care providers is an important task. However, the main barrier to adopting EHR software in low- and middle-income countries is the cost of its purchase and maintenance, which highlights the open-source approach as a good solution for these underserved areas. The aim of this study was to conduct a systematic review of open-source EHR systems based on the requirements and limitations of low-resource settings. First, we reviewed existing literature on the comparison of available open-source solutions. In close collaboration with the University of Gondar Hospital, Ethiopia, we identified common limitations in poor resource environments and also the main requirements that EHRs should support. Then, we extensively evaluated the current open-source EHR solutions, discussing their strengths and weaknesses, and their appropriateness to fulfill a predefined set of features relevant for low-resource settings. The evaluation methodology allowed assessment of several key aspects of available solutions that are as follows: (1) integrated applications, (2) configurable reports, (3) custom reports, (4) custom forms, (5) interoperability, (6) coding systems, (7) authentication methods, (8) patient portal, (9) access control model, (10) cryptographic features, (11) flexible data model, (12) offline support, (13) native client, (14) Web client,(15) other clients, (16) code

  15. THE MODEL OF LINGUISTIC TEACHERS’ COMPETENCY DEVELOPMENT ON DESIGNING MULTIMEDIA ELECTRONIC EDUCATIONAL RESOURCES IN THE MOODLE SYSTEM

    OpenAIRE

    Anton M. Avramchuk

    2017-01-01

    The article is devoted to the problem of developing the competency of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system. The concept of "the competence of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system" is justified and defined. Identified and characterized the components by which the levels of the competency development of teachers of language disciplines on designing ...

  16. Determining the level of awareness of the physicians in using the variety of electronic information resources and the effecting factors.

    Science.gov (United States)

    Papi, Ahmad; Ghazavi, Roghayeh; Moradi, Salimeh

    2015-01-01

    Understanding of the medical society's from the types of information resources for quick and easy access to information is an imperative task in medical researches and management of the treatment. The present study was aimed to determine the level of awareness of the physicians in using various electronic information resources and the factors affecting it. This study was a descriptive survey. The data collection tool was a researcher-made questionnaire. The study population included all the physicians and specialty physicians of the teaching hospitals affiliated to Isfahan University of Medical Sciences and numbered 350. The sample size based on Morgan's formula was set at 180. The content validity of the tool was confirmed by the library and information professionals and the reliability was 95%. Descriptive statistics were used including the SPSS software version 19. On reviewing the need of the physicians to obtain the information on several occasions, the need for information in conducting the researches was reported by the maximum number of physicians (91.9%) and the usage of information resources, especially the electronic resources, formed 65.4% as the highest rate with regard to meeting the information needs of the physicians. Among the electronic information databases, the maximum awareness was related to Medline with 86.5%. Among the various electronic information resources, the highest awareness (43.3%) was related to the E-journals. The highest usage (36%) was also from the same source. The studied physicians considered the most effective deterrent in the use of electronic information resources as being too busy and lack of time. Despite the importance of electronic information resources for the physician's community, there was no comprehensive knowledge of these resources. This can lead to less usage of these resources. Therefore, careful planning is necessary in the hospital libraries in order to introduce the facilities and full capabilities of the

  17. Success criteria for electronic medical record implementations in low-resource settings: a systematic review.

    Science.gov (United States)

    Fritz, Fleur; Tilahun, Binyam; Dugas, Martin

    2015-03-01

    Electronic medical record (EMR) systems have the potential of supporting clinical work by providing the right information at the right time to the right people and thus make efficient use of resources. This is especially important in low-resource settings where reliable data are also needed to support public health and local supporting organizations. In this systematic literature review, our objectives are to identify and collect literature about success criteria of EMR implementations in low-resource settings and to summarize them into recommendations. Our search strategy relied on PubMed queries and manual bibliography reviews. Studies were included if EMR implementations in low-resource settings were described. The extracted success criteria and measurements were summarized into 7 categories: ethical, financial, functionality, organizational, political, technical, and training. We collected 381 success criteria with 229 measurements from 47 articles out of 223 articles. Most papers were evaluations or lessons learned from African countries, published from 1999 to 2013. Almost half of the EMR systems served a specific disease area like human immunodeficiency virus (HIV). The majority of criteria that were reported dealt with the functionality, followed by organizational issues, and technical infrastructures. Sufficient training and skilled personnel were mentioned in roughly 10%. Political, ethical, and financial considerations did not play a predominant role. More evaluations based on reliable frameworks are needed. Highly reliable data handling methods, human resources and effective project management, as well as technical architecture and infrastructure are all key factors for successful EMR implementation. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Investigating the compression ignition combustion of multiple biodiesel/ULSD (ultra-low sulfur diesel) blends via common-rail injection

    International Nuclear Information System (INIS)

    Mangus, Michael; Kiani, Farshid; Mattson, Jonathan; Tabakh, Daniel; Petka, James; Depcik, Christopher; Peltier, Edward; Stagg-Williams, Susan

    2015-01-01

    Researchers across the globe are searching for energy sources to replace the petroleum-based fuels used by the transportation sector. A fuel of particular interest is biodiesel, produced from a diverse variety of feedstock oils with differing fuel properties that alter the operation and emissions of the engines using them. As biodiesel may be mixed with petroleum-based diesel, the fuel being used by a diesel engine may vary by both biodiesel blend percentage and source. Therefore, the influence of biodiesel properties as a function of blend is important to understand. In this study, four biodiesels, produced from palm, jatropha, soybean, and beef tallow, are tested with blends of petroleum diesel at ratios of 5%, 10%, 20%, and 50% biodiesel content. The results are compared with tests of neat diesel and each biodiesel. Using electronic injection, timing is modulated to normalize combustion phasing for all fuels tested to directly investigate the effects of biodiesel on combustion. Results indicate that fuel viscosity, energy content, and molecular structure have distinct influences on combustion that must be considered for engine calibration. When adjusted for combustion timing, biodiesel blends also showed a general decrease in NO x emissions compared to ultra-low sulfur diesel. - Highlights: • Biodiesel injection timing is adjusted to remove cetane number effect on combustion. • When combustion is normalized, biodiesel NO x emissions are lower than those of ULSD. • Four distinct biodiesels used in blends from 0% to 100% biodiesel/ULSD fraction. • Correlating fuel properties to combustion/emissions is useful for engine calibration

  19. Biodiesel production with microalgae as feedstock: from strains to biodiesel.

    Science.gov (United States)

    Gong, Yangmin; Jiang, Mulan

    2011-07-01

    Due to negative environmental influence and limited availability, petroleum-derived fuels need to be replaced by renewable biofuels. Biodiesel has attracted intensive attention as an important biofuel. Microalgae have numerous advantages for biodiesel production over many terrestrial plants. There are a series of consecutive processes for biodiesel production with microalgae as feedstock, including selection of adequate microalgal strains, mass culture, cell harvesting, oil extraction and transesterification. To reduce the overall production cost, technology development and process optimization are necessary. Genetic engineering also plays an important role in manipulating lipid biosynthesis in microalgae. Many approaches, such as sequestering carbon dioxide from industrial plants for the carbon source, using wastewater for the nutrient supply, and maximizing the values of by-products, have shown a potential for cost reduction. This review provides a brief overview of the process of biodiesel production with microalgae as feedstock. The methods associated with this process (e.g. lipid determination, mass culture, oil extraction) are also compared and discussed.

  20. Impact of Knowledge Resources Linked to an Electronic Health Record on Frequency of Unnecessary Tests and Treatments

    Science.gov (United States)

    Goodman, Kenneth; Grad, Roland; Pluye, Pierre; Nowacki, Amy; Hickner, John

    2012-01-01

    Introduction: Electronic knowledge resources have the potential to rapidly provide answers to clinicians' questions. We sought to determine clinicians' reasons for searching these resources, the rate of finding relevant information, and the perceived clinical impact of the information they retrieved. Methods: We asked general internists, family…

  1. Resource conservation approached with an appropriate collection and upgrade-remanufacturing for used electronic products.

    Science.gov (United States)

    Zlamparet, Gabriel I; Tan, Quanyin; Stevels, A B; Li, Jinhui

    2018-03-01

    This comparative research represents an example for a better conservation of resources by reducing the amount of waste (kg) and providing it more value under the umbrella of remanufacturing. The three discussed cases will expose three issues already addressed separately in the literature. The generation of waste electrical and electronic equipment (WEEE) interacts with the environmental depletion. In this article, we gave the examples of addressed issues under the concept of remanufacturing. Online collection opportunity eliminating classical collection, a business to business (B2B) implementation for remanufactured servers and medical devices. The material reuse (recycling), component sustainability, reuse (part harvesting), product reuse (after repair/remanufacturing) indicates the recovery potential using remanufacturing tool for a better conservation of resources adding more value to the products. Our findings can provide an overview of new system organization for the general collection, market potential and the technological advantages using remanufacturing instead of recycling of WEEE or used electrical and electronic equipment. Copyright © 2017. Published by Elsevier Ltd.

  2. Brown Grease to Biodiesel Demonstration Project Report

    Energy Technology Data Exchange (ETDEWEB)

    San Francisco Public Utilities Commission; URS Corporation; Biofuels, Blackgold; Carollo Engineers

    2013-01-30

    Municipal wastewater treatment facilities have typically been limited to the role of accepting wastewater, treating it to required levels, and disposing of its treatment residuals. However, a new view is emerging which includes wastewater treatment facilities as regional resource recovery centers. This view is a direct result of increasingly stringent regulations, concerns over energy use, carbon footprint, and worldwide depletion of fossil fuel resources. Resources in wastewater include chemical and thermal energy, as well as nutrients, and water. A waste stream such as residual grease, which concentrates in the drainage from restaurants (referred to as Trap Waste), is a good example of a resource with an energy content that can be recovered for beneficial reuse. If left in wastewater, grease accumulates inside of the wastewater collection system and can lead to increased corrosion and pipe blockages that can cause wastewater overflows. Also, grease in wastewater that arrives at the treatment facility can impair the operation of preliminary treatment equipment and is only partly removed in the primary treatment process. In addition, residual grease increases the demand in treatment materials such as oxygen in the secondary treatment process. When disposed of in landfills, grease is likely to undergo anaerobic decay prior to landfill capping, resulting in the atmospheric release of methane, a greenhouse gas (GHG). This research project was therefore conceptualized and implemented by the San Francisco Public Utilities Commission (SFPUC) to test the feasibility of energy recovery from Trap Waste in the form of Biodiesel or Methane gas. The research goals are given below: To validate technology performance; To determine the costs and benefits [including economic, socioeconomic, and GHG emissions reduction] associated with co-locating this type of operation at a municipal wastewater treatment plant (WWTP); To develop a business case or model for replication of the

  3. Biodegradation of biodiesel fuels

    International Nuclear Information System (INIS)

    Zhang, X.; Haws, R.; Wright, B.; Reese, D.; Moeller, G.; Peterson, C.

    1995-01-01

    Biodiesel fuel test substances Rape Ethyl Ester (REE), Rape Methyl Ester (RME), Neat Rape Oil (NR), Say Methyl Ester (SME), Soy Ethyl Ester (SEE), Neat Soy Oil (NS), and proportionate combinations of RME/diesel and REE/diesel were studied to test the biodegradability of the test substances in an aerobic aquatic environment using the EPA 560/6-82-003 Shake Flask Test Method. A concurrent analysis of Phillips D-2 Reference Diesel was also performed for comparison with a conventional fuel. The highest rates of percent CO 2 evolution were seen in the esterified fuels, although no significant difference was noted between them. Ranges of percent CO 2 evolution for esterified fuels were from 77% to 91%. The neat rape and neat soy oils exhibited 70% to 78% CO 2 evolution. These rates were all significantly higher than those of the Phillips D-2 reference fuel which evolved from 7% to 26% of the organic carbon to CO 2 . The test substances were examined for BOD 5 and COD values as a relative measure of biodegradability. Water Accommodated Fraction (WAF) was experimentally derived and BOD 5 and COD analyses were carried out with a diluted concentration at or below the WAF. The results of analysis at WAF were then converted to pure substance values. The pure substance BOD 5 and COD values for test substances were then compared to a control substance, Phillips D-2 Reference fuel. No significant difference was noted for COD values between test substances and the control fuel. (p > 0.20). The D-2 control substance was significantly lower than all test substances for BCD, values at p 5 value

  4. Electronic theses and dissertations: a review of this valuable resource for nurse scholars worldwide.

    Science.gov (United States)

    Goodfellow, L M

    2009-06-01

    A worldwide repository of electronic theses and dissertations (ETDs) could provide worldwide access to the most up-to-date research generated by masters and doctoral students. Until that international repository is established, it is possible to access some of these valuable knowledge resources. ETDs provide a technologically advanced medium with endless multimedia capabilities that far exceed the print and bound copies of theses and dissertations housed traditionally in individual university libraries. CURRENT USE: A growing trend exists for universities worldwide to require graduate students to submit theses or dissertations as electronic documents. However, nurse scholars underutilize ETDs, as evidenced by perusing bibliographic citation lists in many of the research journals. ETDs can be searched for and retrieved through several digital resources such as the Networked Digital Library of Theses and Dissertations (http://www.ndltd.org), ProQuest Dissertations and Theses (http://www.umi.com), the Australasian Digital Theses Program (http://adt.caul.edu.au/) and through individual university web sites and online catalogues. An international repository of ETDs benefits the community of nurse scholars in many ways. The ability to access recent graduate students' research electronically from anywhere in the world is advantageous. For scholars residing in developing countries, access to these ETDs may prove to be even more valuable. In some cases, ETDs are not available for worldwide access and can only be accessed through the university library from which the student graduated. Public access to university library ETD collections is not always permitted. Nurse scholars from both developing and developed countries could benefit from ETDs.

  5. NREL's Earl Christensen Honored with Two Awards from National Biodiesel

    Science.gov (United States)

    Board | News | NREL NREL's Earl Christensen Honored with Two Awards from National Biodiesel Board NREL's Earl Christensen Honored with Two Awards from National Biodiesel Board February 16, 2018 Fuel stability research advances innovation and bolsters industry confidence in biodiesel. Scott

  6. Biodiesel separation and purification: A review

    International Nuclear Information System (INIS)

    Atadashi, I.M.; Aroua, M.K.; Aziz, A. Abdul

    2011-01-01

    Biodiesel as a biodegradable, sustainable and clean energy has worldwide attracted renewed and growing interest in topical years, chiefly due to development in biodiesel fuel and ecological pressures which include climatic changes. In the production of biodiesel from biomass, separation and purification of biodiesel is a critical technology. Conventional technologies used for biodiesel separation such as gravitational settling, decantation, filtration and biodiesel purification such as water washing, acid washing, and washing with ether and absorbents have proven to be inefficient, time and energy consumptive, and less cost effective. The involvement of membrane reactor and separative membrane shows great promise for the separation and purification of biodiesel. Membrane technology needs to be explored and exploited to overcome the difficulties usually encountered in the separation and purification of biodiesel. In this paper both conventional and most recent membrane technologies used in refining biodiesel have been critically reviewed. The effects of catalysts, free fatty acids, water content and oil to methanol ratios on the purity and quality of biodiesel are also examined. (author)

  7. Mississippi State Biodiesel Production Project

    Energy Technology Data Exchange (ETDEWEB)

    Rafael Hernandez; Todd French; Sandun Fernando; Tingyu Li; Dwane Braasch; Juan Silva; Brian Baldwin

    2008-03-20

    Biodiesel is a renewable fuel conventionally generated from vegetable oils and animal fats that conforms to ASTM D6751. Depending on the free fatty acid content of the feedstock, biodiesel is produced via transesterification, esterification, or a combination of these processes. Currently the cost of the feedstock accounts for more than 80% of biodiesel production cost. The main goal of this project was to evaluate and develop non-conventional feedstocks and novel processes for producing biodiesel. One of the most novel and promising feedstocks evaluated involves the use of readily available microorganisms as a lipid source. Municipal wastewater treatment facilities (MWWTF) in the USA produce (dry basis) of microbial sludge annually. This sludge is composed of a variety of organisms, which consume organic matter in wastewater. The content of phospholipids in these cells have been estimated at 24% to 25% of dry mass. Since phospholipids can be transesterified they could serve as a ready source of biodiesel. Examination of the various transesterification methods shows that in situ conversion of lipids to FAMEs provides the highest overall yield of biodiesel. If one assumes a 7.0% overall yield of FAMEs from dry sewage sludge on a weight basis, the cost per gallon of extracted lipid would be $3.11. Since the lipid is converted to FAMEs, also known as biodiesel, in the in Situ extraction process, the product can be used as is for renewable fuel. As transesterification efficiency increases the cost per gallon drops quickly, hitting $2.01 at 15.0% overall yield. An overall yield of 10.0% is required to obtain biodiesel at $2.50 per gallon, allowing it to compete with soybean oil in the marketplace. Twelve plant species with potential for oil production were tested at Mississippi State, MS. Of the species tested, canola, rapeseed and birdseed rape appear to have potential in Mississippi as winter annual crops because of yield. Two perennial crops were investigated, Chinese

  8. Accelerated oxidation processes is biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, M.; Monyem, A.; Van Gerpen, J.

    1999-12-01

    Biodiesel is an alternative fuel for diesel engines that can be produced from renewable feedstocks such as vegetable oil and animal fats. These feedstocks are reacted with an alcohol to produce alkyl monoesters that can be used in conventional diesel engines with little or no modification. Biodiesel, especially if produced from highly unsaturated oils, oxidizes more rapidly than diesel fuel. This article reports the results of experiments to track the chemical and physical changes that occur in biodiesel as it oxidizes. These results show the impact of time, oxygen flow rate, temperature, metals, and feedstock type on the rate of oxidation. Blending with diesel fuel and the addition of antioxidants are explored also. The data indicate that without antioxidants, biodiesel will oxidize very quickly at temperatures typical of diesel engines. This oxidation results in increases in peroxide value, acid value, and viscosity. While the peroxide value generally reaches a plateau of about 350 meq/kg ester, the acid value and viscosity increase monotonically as oxidation proceeds.

  9. From Millennium ERM to Proquest 360 Resource Manager: Implementing a new Electronic Resources Management System ERMS in an International Graduate Research University in Saudi Arabia

    KAUST Repository

    Ramli, Rindra M.

    2017-05-17

    An overview of the Recommendation Study and the subsequent Implementation of a new Electronic Resources Management system ERMS in an international graduate research university in the Kingdom of Saudi Arabia. It covers the timeline, deliverables and challenges as well as lessons learnt by the Project Team.

  10. Synthesis of biodiesel fuel from safflower oil using various reaction parameters.

    Science.gov (United States)

    Meka, Pavan Kumar; Tripathi, Vinay; Singh, R P

    2006-01-01

    Biodiesel fuel is gaining more and more importance because of the depletion and uncontrollable prices of fossil fuel resources. The use of vegetable oil and their derivatives as alternatives for diesel fuel is the best answer and as old as Diesel Engine. Chemically biodiesel fuel is the mono alkyl esters of fatty acids derived from renewable feed stocks like vegetable oils and animal fats. Safflower oil contains 75-80% of linoleic acid; the presence of this unsaturated fatty acid is useful in alleviating low temperature properties like pour point, cloud point and cold filter plugging point. In this paper we studied the effect of various parameters such as temperature, molar ratio (oil to alcohol), and concentration of catalyst on synthesis of biodiesel fuel from safflower oil. The better suitable conditions of 1:6 molar ratio (oil to alcohol), 60 degrees C temperature and catalyst concentration of 2% (by wt. of oil) were determined. The finally obtained biodiesel fuel was analyzed for fatty acid composition by GLC and some other properties such as flash point, specific gravity and acid value were also determined. From the results it was clear that the produced biodiesel fuel was with in the recommended standards of biodiesel fuel with 96.8% yield.

  11. Biodiesel production by lipase-catalyzed transesterification of Ocimum basilicum L. (sweet basil) seed oil

    International Nuclear Information System (INIS)

    Amini, Zeynab; Ong, Hwai Chyuan; Harrison, Mark D.; Kusumo, Fitranto; Mazaheri, Hoora; Ilham, Zul

    2017-01-01

    Highlights: • Need for alternative energy has led to explore new feedstock. • Ocimum basilicum seeds oil was used as biodiesel feedstock. • Biodiesel was produced via lipase-catalyzed transesterification by Novozym. • Artificial neural network with genetic algorithm modelling was employed. - Abstract: The increasing global demand for fuel, limited fossil fuel resources, and increasing concern about the upturn in gaseous CO_2 emissions are the key drivers of research and development into sources of renewable liquid transport fuels, such as biodiesel. In the present work, we demonstrate biodiesel production from Ocimum basilicum (sweet basil) seed oil by lipase-catalyzed transesterification. Sweet basil seeds contain 22% oil on a dry weight basis. Artificial neural network with genetic algorithm modelling was used to optimize reaction. Temperature, catalyst concentration, time, and methanol to oil molar ratio were the input factors in the optimization study, while fatty acid methyl ester (FAME) yield was the key model output. FAME composition was determined by gas chromatography mass spectrometry. The optimized transesterification process resulted in a 94.58% FAME yield after reaction at 47 °C for 68 h in the presence of 6% w/w catalyst and a methanol to oil ratio of 10:1. The viscosity, density, calorific value, pour point, and cloud point of the biodiesel derived from sweet basil seed oil conformed to the EN 14214 and ASTM D6751 standard specifications. The antioxidant stability of the biodiesel did not meet these specifications but could be improved via the addition of antioxidant.

  12. [Progress in microalgae culture system for biodiesel combined with reducing carbon dioxide emission].

    Science.gov (United States)

    Su, Hongyang; Zhou, Xuefei; Xia, Xuefen; Sun, Zhen; Zhang, Yalei

    2011-09-01

    Wastewater resources, CO2 emission reduction and microalgae biodiesel are considered as current frontier fields of energy and environmental researches. In this paper, we reviewed the progress in system of microalgae culture for biodiesel production by wastewater and stack gas. Multiple factors including microalgal species, nutrition, culture methods and photobioreactor, which were crucial to the cultivation of microalgae for biodiesel production, were discussed in detail. A valuable culture system of microalgae for biodiesel production or other high value products combined with the treatment of wastewater by microalgae was put forward through the optimizations of algal species and culture technology. The culture system coupled with the treatment of wastewater, the reduction of CO2 emission with the cultivation of microalgae for biodiesel production will reduce the production cost of microalgal biofuel production and the treatment cost of wastewater simultaneously. Therefore, it would be a promising technology with important environmental value, social value and economic value to combine the treatment of wastewater with the cultivation of microalgae for biodiesel production.

  13. Comparison of Algal Biodiesel Production Pathways Using Life Cycle Assessment Tool

    DEFF Research Database (Denmark)

    Singh, Anoop; Olsen, Stig Irving

    2013-01-01

    The consideration of algal biomass in biodiesel production increased very rapidly in the last decade. A life cycle assessment (LCA) study is presented to compare six different biodiesel production pathways (three different harvesting techniques, i.e., aluminum as flocculent, lime flocculent, and ......, ecosystem quality, and resources were higher than the conventional diesel. This study recommends more practical data at pilot-scale production plant with maximum utilization of by-products generated during the production to produce a sustainable algal biodiesel......., and centrifugation, and two different oil extraction methods, i.e., supercritical CO2 (sCO2) and press and co-solvent extraction). The cultivation of Nannochloropsis sp. considered in a flat-panel photobioreactor (FPPBR). These algal biodiesel production systems were compared with the conventional diesel in a EURO 5...... passenger car used for transport purpose (functional unit 1 person km (pkm). The algal biodiesel production systems provide lesser impact (22–105 %) in comparison with conventional diesel. Impacts of algal biodiesel on climate change were far better than conventional diesel, but impacts on human health...

  14. Study Of The Physicochemical Analysis Of Biodiesel Produced From Waste Vegetable Oil.

    Directory of Open Access Journals (Sweden)

    C. O. Okpanachi

    2017-07-01

    Full Text Available The study of the physicochemical analysis of biodiesel produced from waste vegetable oil in Sedi Minna Nigeria was carried out in order to ascertain the quality of the biodiesel produced as regards physical and chemical parameters which include visual appearance colour cloud point flash point and cetane index diesel index kinematic velocity calorific value. Biodiesel is a renewable resource that can replace petroleum diesel which comes from fossil fuels that are limited and will be exhausted in the near future. Biodiesel can be made from the transesterification of vegetable oils animal fat greases and oil crops such as soybean and it is biodegradable. The biodiesel produced was subjected to physicochemical analysis and results of cetane index was established to be 52 the flash point using pensky martens close cup was determine to be 1600C diesel index using IP21 0.3411 kinematic viscosity at 400C to be 4.12 and calorific value of 10867calg. The investigated physicochemical parameters show that the biodiesel produced is suitable for use in diesel engines without modifications and is cheaper to produce compared to petroleum diesel.

  15. Ethylic or methylic route to soybean biodiesel? Tracking environmental answers through life cycle assessment

    International Nuclear Information System (INIS)

    Alejos Altamirano, Carlos Alberto; Yokoyama, Lídia; Medeiros, José Luiz de; Queiroz Fernandes Araújo, Ofélia de

    2016-01-01

    Highlights: • Life cycle of biodiesel using alternative transesterification routes is analyzed. • Bioethanol can potentially decrease CO_2 emissions of methanol biodiesel. • Contrarily, equivalent CO_2 emissions are retained and renewability is reduced. • Water footprint increases from 37.12 (methanol) to 44.88 m"3/GJ biodiesel (ethanol). • Energy efficiency is reduced from 79.37% (methanol) to 75.19 (ethanol %). - Abstract: Biodiesel is a renewable fuel produced by transesterification of triacylglicerides (TAG) contained in vegetable oils and animal fats, to yield alkyl esters (biodiesel) and glycerin. Methanol is the main transesterification agent employed resulting in FAME (fatty acid methyl esters), which is primarily obtained from natural gas reforming (fossil source). Substitution of methanol by ethanol produces FAEE (fatty acid ethyl esters) and has the potential to render biodiesel a fully renewable fuel. Although renewability is a significant driving force for the proposed alcohol replacement, environmental performance of the alternative transesterification is questioned. The answer is herein sought through a comparative Life Cycle Assessment (LCA) of the two production chains. The study tracks CO_2 emissions, energy efficiency, water and resources consumption, and environmental impacts (Acidification Potential – AP, Global Warming Potential – GWP, Eutrophication Potential – EP, and Human Toxicity Potential – TP). The boundaries of the biodiesel production chains extend from the extraction of raw-materials to its final use as transportation fuel in buses, applied to the Brazilian scenario. Results show that substitution of the methylic route with the ethylic route does not attribute significant environmental benefits. Furthermore, the ethylic route presents competitive advantages only in the category of GWP, and exhibits inferior performance in the remaining evaluated impact categories. Finally, a greater consumption of water and energy

  16. Chemical alternative to the energetic use of biodiesel; Chemische Alternativen zur energetischen Nutzung von Biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Warwel, S; Ruesch genannt Klaas, M.; Harperscheid, M. [Bundesanstalt fuer Getreide-, Kartoffel- und Fettforschung, Muenster (Germany). Inst. fuer Biochemie und Technologie der Fette - H.P. Kaufmann-Inst.

    1996-12-31

    Biodiesel is environment-friendly, but much more costly to produce than `normal` diesel fuel. Higher economic efficiency can be achieved by using biodiesel as a chemical feedstock instead. Tenside and polymers offer a wide range of applications. (orig) [Deutsch] Biodiesel ist ein umweltfreundlicher Kraftstoff, jedoch in der Herstellung deutlich teurer als Mineraloel-Dieselkraftstoff. Eine signifikant hoehere Wertschoepfung koennte errreicht werden, wenn Biodiesel nicht im Kraftstoffsektor, sondern als chemischer Rohstoff verwendet wird. Tenside und Polymere sind hierbei grossvolumige Einsatzbereiche. (orig)

  17. Chemical alternative to the energetic use of biodiesel; Chemische Alternativen zur energetischen Nutzung von Biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Warwel, S; Ruesch genannt Klaas, M; Harperscheid, M [Bundesanstalt fuer Getreide-, Kartoffel- und Fettforschung, Muenster (Germany). Inst. fuer Biochemie und Technologie der Fette - H.P. Kaufmann-Inst.

    1997-12-31

    Biodiesel is environment-friendly, but much more costly to produce than `normal` diesel fuel. Higher economic efficiency can be achieved by using biodiesel as a chemical feedstock instead. Tenside and polymers offer a wide range of applications. (orig) [Deutsch] Biodiesel ist ein umweltfreundlicher Kraftstoff, jedoch in der Herstellung deutlich teurer als Mineraloel-Dieselkraftstoff. Eine signifikant hoehere Wertschoepfung koennte errreicht werden, wenn Biodiesel nicht im Kraftstoffsektor, sondern als chemischer Rohstoff verwendet wird. Tenside und Polymere sind hierbei grossvolumige Einsatzbereiche. (orig)

  18. New regulatory landmark for biodiesel use; Novo marco regulatorio para usos de biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Rosangela Moreira de [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The Brazilian Biodiesel Production and Use of Biodiesel - PNPB, made possible the insert of Biodiesel in the Brazilian energy matrix. The National Agency of the Petroleum, Natural Gas and Biofuels - ANP was responsible to create the outline regulatory that established the rules for entrance and commercialization of this new fuel in the country. This work seeks to present the effects of the implantation of the new relative rules to the biodiesel use. (author)

  19. Optimization of biodiesel production process using recycled vegetable oil

    Science.gov (United States)

    Lugo, Yarely

    Petro diesel toxic emissions and its limited resources have created an interest for the development of new energy resources, such as biodiesel. Biodiesel is traditionally produced by a transesterification reaction between vegetable oil and an alcohol in the presence of a catalyst. However, this process is slow and expensive due to the high cost of raw materials. Low costs feedstock oils such as recycled and animal fats are available but they cannot be transesterified with alkaline catalysts due to high content of free fatty acids, which can lead to undesirable reactions such as saponification. In this study, we reduce free fatty acids content by using an acid pre-treatment. We compare sulfuric acid, hydrochloric acid and ptoluenesulfonic acid (PTSA) to pre-treat recycled vegetable oil. PTSA removes water after 60 minutes of treatment at room temperature or within 15 minutes at 50°C. The pretreatment was followed by a transesterification reaction using alkaline catalyst. To minimize costs and accelerate reaction, the pretreatment and transesterification reaction of recycle vegetable oil was conducted at atmospheric pressure in a microwave oven. Biodiesel was characterized using a GC-MS method.

  20. Green Biodiesel Synthesis Using Waste Shells as Sustainable Catalysts with Camelina sativa Oil

    Directory of Open Access Journals (Sweden)

    Yelda Hangun-Balkir

    2016-01-01

    Full Text Available Waste utilization is an essential component of sustainable development and waste shells are rarely used to generate practical products and processes. Most waste shells are CaCO3 rich, which are converted to CaO once calcined and can be employed as inexpensive and green catalysts for the synthesis of biodiesel. Herein, we utilized lobster and eggshells as green catalysts for the transesterification of Camelina sativa oil as feedstock into biodiesel. Camelina sativa oil is an appealing crop option as feedstock for biodiesel production because it has high tolerance of cold weather, drought, and low-quality soils and contains approximately 40% oil content. The catalysts from waste shells were characterized by X-ray powder diffraction, Fourier Transform Infrared Spectroscopy, and Scanning Electron Microscope. The product, biodiesel, was studied by 1H NMR and FTIR spectroscopy. The effects of methanol to oil ratio, reaction time, reaction temperature, and catalyst concentration were investigated. Optimum biodiesel yields were attained at a 12 : 1 (alcohol : oil molar ratio with 1 wt.% heterogeneous catalysts in 3 hours at 65°C. The experimental results exhibited a first-order kinetics and rate constants and activation energy were calculated for the transesterification reaction at different temperatures. The fuel properties of the biodiesel produced from Camelina sativa oil and waste shells were compared with those of the petroleum-based diesel by using American Society for Testing and Materials (ASTM standards.

  1. Three years operational experience with biodiesel

    International Nuclear Information System (INIS)

    Murphy, J.

    2008-01-01

    TSI Terminal Systems Inc. is the largest container terminal operator in Canada, and has an annual payroll exceeding $150 million. The company started a biodiesel test program with the Canadian Bioenergy Corporation in order to assess the emission reduction impacts of using biodiesel. The pilot was tested with 6 different pieces of equipment used at the terminal over an initial period of 3 weeks. Emissions testing was then conducted for different biodiesel blend levels and compared with baseline data in relation to particulate matter, total hydrocarbons, carbon monoxide (CO), carbon dioxide (CO 2 ), and nitrous oxides (NO x ). Results of the tests confirmed that the biodiesel blends significantly reduced emissions at the terminal and confirmed the operability of biodiesel. Overall emissions were reduced by 30 per cent. The fuel is now being used in all the company's equipment. The use of the biodiesel has not resulted in any engine failures or power losses. tabs., figs

  2. Are subsidies for biodiesel economically efficient?

    International Nuclear Information System (INIS)

    Wassell, Charles S.; Dittmer, Timothy P.

    2006-01-01

    Biodiesel produces less pollution than petrodiesel; however, it is more expensive and will only be a viable alternative if market prices of the products are comparable. This paper examines whether the external benefits from biodiesel use justify subsidies required for adoption outside of niche alternative fuel markets. The authors establish a range of subsidies required to make biodiesel a viable substitute for petrodiesel. Published estimates of the emissions reductions from biodiesel and the dollar benefits of unit reductions in emissions are used to compute a per-gallon external benefit from use of biodiesel, versus petrodiesel. Under conservative estimates of the benefits from biodiesel use in non-road equipment, the external benefits outweigh the required subsidies.(JEL Q48, Q42, H2)

  3. Biodiesel research progress 1992-1997

    Energy Technology Data Exchange (ETDEWEB)

    Tyson, K.S. [ed.

    1998-04-01

    The US Department of Energy (DOE) Office of Fuels Development began evaluating the potential of various alternative fuels, including biodiesel, as replacement fuels for traditional transportation fuels. Biodiesel is derived from a variety of biological materials from waste vegetable grease to soybean oil. This alkyl ester could be used as a replacement, blend, or additive to diesel fuel. This document is a comprehensive summary of relevant biodiesel and biodiesel-related research, development demonstration, and commercialization projects completed and/or started in the US between 1992 and 1997. It was designed for use as a reference tool to the evaluating biodiesel`s potential as a clean-burning alternative motor fuel. It encompasses, federally, academically, and privately funded projects. Research projects are presented under the following topical sections: Production; Fuel characteristics; Engine data; Regulatory and legislative activities; Commercialization activities; Economics and environment; and Outreach and education.

  4. Genetic engineering of microorganisms for biodiesel production

    Science.gov (United States)

    Lin, Hui; Wang, Qun; Shen, Qi; Zhan, Jumei; Zhao, Yuhua

    2013-01-01

    Biodiesel, as one type of renewable energy, is an ideal substitute for petroleum-based diesel fuel and is usually made from triacylglycerides by transesterification with alcohols. Biodiesel production based on microbial fermentation aiming to establish more efficient, less-cost and sustainable biodiesel production strategies is under current investigation by various start-up biotechnology companies and research centers. Genetic engineering plays a key role in the transformation of microbes into the desired cell factories with high efficiency of biodiesel production. Here, we present an overview of principal microorganisms used in the microbial biodiesel production and recent advances in metabolic engineering for the modification required. Overexpression or deletion of the related enzymes for de novo synthesis of biodiesel is highlighted with relevant examples. PMID:23222170

  5. Electronic tracking of human resource skills and knowledge, just in time training, manageable due diligence

    Energy Technology Data Exchange (ETDEWEB)

    Kolodziej, M.A. [Quick Test International Inc., (Canada). Canadian Technology Human Resource Board; Baker, O. [KeySpan Energy Canada, Calgary, AB (Canada)

    2001-06-01

    KeySpan Energy Canada is in the process of obtaining recognition of various occupational profiles including pipeline operators, inspectors, and field and plant operators from various certifying organizations. The process of allowing individuals to obtain certification is recognized by Canadian Technology Human Resources Board as a step towards national standards for technologists and technicians. Proven competency is a must for workers in todays oil industry in response to increasingly stringent government safety regulations, environmental concerns and high public scrutiny. Quick Test international Inc. has developed a management tool in collaboration with end users at KeySpan Energy Canada. It is an electronic, Internet based competency tool for tracking personal competencies and maintaining continued competency. Response to the tool has been favourable. 2 refs., 4 figs.

  6. Comparison of energy production with diesel and biodiesel analyzing all costs involved; Comparacao da producao de energia com diesel e biodiesel analisando todos os custos envolvidos

    Energy Technology Data Exchange (ETDEWEB)

    Udaeta, Miguel Edgar Morales; Baitelo, Ricardo Lacerda; Burani, Geraldo Francisco; Grimoni, Jose Aquiles Baesso [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia de Energia e Automacao Eletricas. Grupo de Energia], e-mail: udaeta@pea.usp.br

    2004-07-01

    This paper presents the result of a study comparing two energy resources: diesel and bio-diesel. For the comparative analysis, the full cost accounting is used, a tool that encompasses all the factors involved in a specific project, including not only technical or economical aspects, but also environmental and social aspects. According to the results, it is pointed that both fuels are comparable, since both of them obtained similar scores. However, diesel fuel has more technical and economical advantages, whereas biodiesel proves to be superior in terms of social and environmental areas. (author)

  7. Costs of biodiesel supply chain in Latvia

    International Nuclear Information System (INIS)

    Birzietis, G.; Kunkule, D.

    2003-01-01

    Biodiesels has already become reality in Latvia, but still not are extensively used due to number of reasons. Cost reduction would be one of the most efficient tools that could encourage wider use of biodiesel. Identifying costs in biodiesel supply chain and evaluating their weight in total cost of final product is the first step to finding most costly elements and potential for cost reduction. General cost breakdown in final price is calculated and analysed in this study (authors)

  8. Availability, Use and Constraints to Use of Electronic Information Resources by Postgraduates Students at the University of Ibadan

    Directory of Open Access Journals (Sweden)

    Dare Samuel Adeleke

    2017-12-01

    Full Text Available Availability, awareness and use of electronic resources provide access to authoritative, reliable, accurate and timely access to information. The use of electronic information resources (EIRs can enable innovation in teaching and increase timeliness in research of postgraduate students which will eventual result into encouragement of the expected research-led enquiry in this digital age. The study adopted a descriptive survey design. Samples of 300 of postgraduate students within seven out 13 Faculties were randomly selected. Data were collected using questionnaire designed to elicit response from respondents and data were analyzed using descriptive statistics methods percentages, mean, and standard deviation. Results indicated that internet was ranked most available and used in the university. Low level of usage of electronic resources, in particular, full texts data bases is linked to a number of constraints: Interrupted power supply was ranked highest among other factors as speed and capacity of computers, retrieval of records with high recall and low precision, retrieving records relevant to information need, lack of knowledge of search techniques to retrieve information effectively, non possession of requisite IT skills and problems accessing the internet. The study recommended that usage of electronic resources be made compulsory, intensifying awareness campaigns concerning the availability, training on use of electronic resources and the problem of power outage be addressed.

  9. Using mobile electronic devices to deliver educational resources in developing countries.

    Science.gov (United States)

    Mazal, Jonathan Robert; Ludwig, Rebecca

    2015-01-01

    Developing countries have far fewer trained radiography professionals than developed countries, which exacerbates the limited access to imaging services. The lack of trained radiographers reflects, in part, limited availability of radiographer-specific educational resources. Historically, organizations that provided such resources in the developing world faced challenges related to the limited stock of current materials as well as expenses associated with shipping and delivery. Four mobile electronic devices (MEDs) were loaded with educational content (e-books, PDFs, and digital applications) spanning major radiography topics. The MEDs were distributed to 4 imaging departments in Ghana, India, Nepal, and Nigeria based on evidence of need for radiography-specific resources, as revealed by survey responses. A cost comparison of postal delivery vs digital delivery of educational content was performed. The effectiveness of delivering additional content via Wi-Fi transmission also was evaluated. Feedback was solicited on users' experience with the MEDs as a delivery tool for educational content. An initial average per e-book expense of $30.05, which included the cost of the device, was calculated for the MED delivery method compared with $15.56 for postal delivery of printed materials. The cost of the MED delivery method was reduced to an average of $10.05 for subsequent e-book deliveries. Additional content was successfully delivered via Wi-Fi transmission to all recipients during the 3-month follow-up period. Overall user feedback on the experience was positive, and ideas for enhancing the MED-based method were identified. Using MEDs to deliver radiography-specific educational content appears to be more cost effective than postal delivery of printed materials on a long-term basis. MEDs are more efficient for providing updates to educational materials. Customization of content to department needs, and using projector devices could enhance the usefulness of MEDs for

  10. Life cycle assessment of small-scale high-input Jatropha biodiesel production in India

    International Nuclear Information System (INIS)

    Pandey, Krishan K.; Pragya, Namita; Sahoo, P.K.

    2011-01-01

    Highlights: → NEB and NER of high input Jatropha biodiesel system was higher than those of low input. → These values further increase on including the energy content of the co-products, and in the further years. → Maximum energy use was during oil extraction, followed by oil processing and fertilizer use. → Allocation of resources at right time and with proper care increase the overall system productivity. -- Abstract: In the current scenario of depleting energy resources, increasing food insecurity and global warming, Jatropha has emerged as a promising energy crop for India. The aim of this study is to examine the life cycle energy balance for Jatropha biodiesel production and greenhouse gas emissions from post-energy use and end combustion of biodiesel, over a period of 5 years. It's a case specific study for a small scale, high input Jatropha biodiesel system. Most of the existing studies have considered low input Jatropha biodiesel system and have used NEB (Net energy balance i.e. difference of energy output and energy input) and NER (Net energy ratio i.e. ratio of energy output to energy input) as indicators for estimating the viability of the systems. Although, many of them have shown these indicators to be positive, yet the values are very less. The results of this study, when compared with two previous studies of Jatropha, show that the values for these indicators can be increased to a much greater extent, if we use a high input Jatropha biodiesel system. Further, when compared to a study done on palm oil and Coconut oil, it was found even if the NEB and NER of biodiesel from Jatropha were lesser in comparison to those of Palm oil and Coconut oil, yet, when energy content of the co-products were also considered, Jatropha had the highest value for both the indicators in comparison to the rest two.

  11. The electronic encapsulation of knowledge in hydraulics, hydrology and water resources

    Science.gov (United States)

    Abbott, Michael B.

    The rapidly developing practice of encapsulating knowledge in electronic media is shown to lead necessarily to the restructuring of the knowledge itself. The consequences of this for hydraulics, hydrology and more general water-resources management are investigated in particular relation to current process-simulation, real-time control and advice-serving systems. The generic properties of the electronic knowledge encapsulator are described, and attention is drawn to the manner in which knowledge 'goes into hiding' through encapsulation. This property is traced in the simple situations of pure mathesis and in the more complex situations of taxinomia using one example each from hydraulics and hydrology. The consequences for systems architectures are explained, pointing to the need for multi-agent architectures for ecological modelling and for more general hydroinformatics systems also. The relevance of these developments is indicated by reference to ongoing projects in which they are currently being realised. In conclusion, some more general epistemological aspects are considered within the same context. As this contribution is so much concerned with the processes of signification and communication, it has been partly shaped by the theory of semiotics, as popularised by Eco ( A Theory of Semiotics, Indiana University, Bloomington, 1977).

  12. Plastics disassembly versus bulk recycling: engineering design for end-of-life electronics resource recovery.

    Science.gov (United States)

    Rios, Pedro; Stuart, Julie Ann; Grant, Ed

    2003-12-01

    Annual plastic flows through the business and consumer electronics manufacturing supply chain include nearly 3 billion lb of high-value engineering plastics derived from petroleum. The recovery of resource value from this stream presents critical challenges in areas of materials identification and recycling process design that demand new green engineering technologies applied together with life cycle assessment and ecological supply chain analysis to create viable plastics-to-plastics supply cycles. The sustainable recovery of potentially high-value engineering plastics streams requires that recyclers either avoid mixing plastic parts or purify later by separating smaller plastic pieces created in volume reduction (shredding) steps. Identification and separation constitute significant barriers in the plastics-to-plastics recycling value proposition. In the present work, we develop a model that accepts randomly arriving electronic products to study scenarios by which a recycler might identify and separate high-value engineering plastics as well as metals. Using discrete eventsimulation,we compare current mixed plastics recovery with spectrochemical plastic resin identification and subsequent sorting. Our results show that limited disassembly with whole-part identification can produce substantial yields in separated streams of recovered engineering thermoplastics. We find that disassembly with identification does not constitute a bottleneck, but rather, with relatively few workers, can be configured to pull the process and thus decrease maximum staging space requirements.

  13. Model Biaya Produksi Biodiesel Berbasis Minyak Sawit

    OpenAIRE

    Meilita Tryana Sembiring; Sukardi Sukardi; Ani Suryani; Muhammad Romli

    2015-01-01

    Biodiesel is a renewable energy source in Indonesia of which the use is regulated by the government in the form of mandatory policy of biodiesel and diesel fuel blending. The production of biodiesel in Indonesia is not developed (the need is 3.4 million kiloliters but the total national production is only 1,703 kiloliters). It is because the selling price (referring to Mean of Platts Singapore) is always lower than the production cost. Biodiesel production is influenced by raw materials and p...

  14. Oxidation stability and risk evaluation of biodiesel

    Directory of Open Access Journals (Sweden)

    Hoshino Takashi

    2007-01-01

    Full Text Available This review describes oxidation and thermal stability and hazardous possibility of biodiesel by auto-oxidation. As it can be distributed using today’s infrastructure biodisel production has increased especially in the European Union. Biodiesel has many surpassing properties as an automotive fuel. Biodiesel is considered safer than diesel fuel because of the high flash point, but it has oxygen and double bond(s. Fatty acid methyl esters are more sensitive to oxidative degradation than fossil diesel fuel. The ability of producing peroxides is rather high, therefore we should care of handling of biodiesel.

  15. Purification of crude biodiesel using dry washing and membrane technologies

    Directory of Open Access Journals (Sweden)

    I.M. Atadashi

    2015-12-01

    Full Text Available Purification of crude biodiesel is mandatory for the fuel to meet the strict international standard specifications for biodiesel. Therefore, this paper carefully analyzed recently published literatures which deal with the purification of biodiesel. As such, dry washing technologies and the most recent membrane biodiesel purification process have been thoroughly examined. Although purification of biodiesel using dry washing process involving magnesol and ion exchange resins provides high-quality biodiesel fuel, considerable amount of spent absorbents is recorded, besides the skeletal knowledge on its operating process. Further, recent findings have shown that biodiesel purification using membrane technique could offer high-quality biodiesel fuel with less wastewater discharges. Thus, both researchers and industries are expected to benefit from the development of membrane technique in purifying crude biodiesel. As well biodiesel purification via membranes has been shown to be environmentally friendly. For these reasons, it is important to explore and exploit membrane technology to purify crude biodiesel.

  16. Production of biodiesel from vegetable oils

    Directory of Open Access Journals (Sweden)

    Luque, Susana

    2008-03-01

    Full Text Available Biodiesel is produced by transesterification of triglycerides present in animal fat or vegetable oils, by displacing glycerine with a low molar mass alcohol. This resulting ester mixture has physico-chemical properties similar to those of petroleum diesel. This paper reviews the synthetic paths that lead to biodiesel by means of the catalytic transesterification of vegetable oils. Although methyl esters are at present the only ones produced at industrial scale, the use of ethanol, which can also be obtained from renewable resources, has been considered, since it would generate a cleaner and more biocompatible fuel.El biodiésel se produce mediante la transesterificación de triglicéridos, presentes en grasas animales o aceites vegetales, en un proceso en el que un alcohol de bajo peso molecular desplaza a la glicerina. La mezcla de esteres así resultante posee unas propiedades físico-químicas similares a las del diésel procedente de petróleo. En este artículo se revisan las vías de síntesis de biodiésel mediante la transesterificación catalítica de aceites vegetales. Aunque actualmente a escala industrial solo se producen ésteres metílicos, también se ha considerado el uso de etanol, ya que éste se obtiene también de fuentes renovables, generando así un combustible más limpio y biocompatible.

  17. Impact of Biodiesel Blends and Di-Ethyl-Ether on the Cold Starting Performance of a Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    Adrian Clenci

    2016-04-01

    Full Text Available The use of biodiesel fuel in compression ignition engines has the potential to reduce CO2, which can lead to a reduction in global warming and environmental hazards. Biodiesel is an attractive fuel, as it is made from renewable resources. Many studies have been conducted to assess the impact of biodiesel use on engine performances. Most of them were carried out in positive temperature conditions. A major drawback associated with the use of biodiesel, however, is its poor cold flow properties, which have a direct influence on the cold starting performance of the engine. Since diesel engine behavior at negative temperatures is an important quality criterion of the engine’s operation, one goal of this paper is to assess the starting performance at −20 °C of a common automotive compression ignition engine, fueled with different blends of fossil diesel fuel and biodiesel. Results showed that increasing the biodiesel blend ratio generated a great deterioration in engine startability. Another goal of this study was to determine the biodiesel blend ratio limit at which the engine would not start at −20 °C and, subsequently, to investigate the impact of Di-Ethyl-Ether (DEE injection into the intake duct on the engine’s startability, which was found to be recovered.

  18. Development of a test method for distillation of diesel-biodiesel-alcohols mixtures at reduced pressure

    Science.gov (United States)

    Niculescu, R.; Iosub, I.; Clenci, A.; Zaharia, C.; Iorga-Simăn, V.

    2017-10-01

    Increased environmental awareness and depletion of fossil petroleum resources are driving the automotive industry to seek out and use alternative fuels. For instance, the biofuel is a major renewable energy source to supplement declining fossil fuel resources. The addition of alcohols like methanol and ethanol is practical in biodiesel blends due to its miscibility with the pure biodiesel. Alcohols also improve physico-chemical properties of biodiesel blends, which lead to improved combustion efficiency. Proper volatility of fuels is critical to the operation of internal combustion engines with respect to both performance and emissions. Volatility may be characterised by various measurements, the most common of which are vapour pressure, distillation and the vapour/liquid ratio. The presence of ethanol or other oxygenates may affect these properties and, as a result, performance and emissions, as well. However, in the case of diesel-biodiesel-alcohols mixtures, the variance of component volatility makes difficult the analysis of the overall volatility. Thus, the paper presents an experimental method of distilling diesel-biodiesel-alcohols mixtures by adjusting the boiler pressure of an i-Fischer Dist equipment.

  19. SAGES: a suite of freely-available software tools for electronic disease surveillance in resource-limited settings.

    Directory of Open Access Journals (Sweden)

    Sheri L Lewis

    Full Text Available Public health surveillance is undergoing a revolution driven by advances in the field of information technology. Many countries have experienced vast improvements in the collection, ingestion, analysis, visualization, and dissemination of public health data. Resource-limited countries have lagged behind due to challenges in information technology infrastructure, public health resources, and the costs of proprietary software. The Suite for Automated Global Electronic bioSurveillance (SAGES is a collection of modular, flexible, freely-available software tools for electronic disease surveillance in resource-limited settings. One or more SAGES tools may be used in concert with existing surveillance applications or the SAGES tools may be used en masse for an end-to-end biosurveillance capability. This flexibility allows for the development of an inexpensive, customized, and sustainable disease surveillance system. The ability to rapidly assess anomalous disease activity may lead to more efficient use of limited resources and better compliance with World Health Organization International Health Regulations.

  20. Crops for biodiesel to be grown on mine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Ulrichsen, H.

    2007-12-01

    Natural Resources Canada has launched a feasibility project along with several branches of the federal government, provincial government, Laurentian University and mining and forestry companies to determine if crops suitable for producing biodiesel fuel can be grown on mine tailings. The concept first came about when a biodiesel plant was proposed to be built in Sudbury. Although plans for the plant have been abandoned, the biodiesel crop project is still going ahead. Crops will be cultivated on 2 half-hectare plots on the CVRD Inco tailings in Sudbury, 1 half-hectare plot on the Xstrata Nickel tailings in Sudbury and 1 half-hectare plot on the Goldcorp tailings in Timmins. Paper sludge from St. Marys Paper Company in Sault Ste. Marie and Domtar in Espanola will be spread on the plots in January when the frozen ground is easier to work on with heavy equipment. In the spring, the plots will be seeded with corn, canola or soy, with the possibility of alder and willow in the future. Instruments to monitor groundwater on the sites will also be installed. Biodiesel produced with vegetable or meat oils has been touted as being an environmentally sound diesel fuel. Emissions from vehicles fueled by biodiesel are 40 to 100 per cent lower than those from conventional diesel engines. Proponents of the project emphasize the value of using marginal lands like mine tailings to grow crops for biodiesel fuel instead of prime agricultural land. There are 2,500 hectares of tailings in Sudbury that could be potentially used for this purpose, and about 2,000 hectares at one mine site in Timmins. A Sudbury-area farmer will provide advice about growing the crops and will also grow the same crops on a portion of his land for a comparative evaluation of crop yield. The paper sludge offers the benefit of allowing crops to be grown, but it also cuts off oxygen flow to the tailings underneath, thereby preventing sulphides in the tailings from rusting. The paper sludge may even help the

  1. Egg shell waste as heterogeneous nanocatalyst for biodiesel production: Optimized by response surface methodology.

    Science.gov (United States)

    Pandit, Priti R; Fulekar, M H

    2017-08-01

    Worldwide consumption of hen eggs results in availability of large amount of discarded egg waste particularly egg shells. In the present study, the waste shells were utilized for the synthesis of highly active heterogeneous calcium oxide (CaO) nanocatalyst to transesterify dry biomass into methyl esters (biodiesel). The CaO nanocatalyst was synthesied by calcination-hydration-dehydration technique and fully characterized by infrared spectroscopy, X-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), brunauer-emmett-teller (BET) elemental and thermogravimetric analysis. TEM image showed that the nano catalyst had spherical shape with average particle size of 75 nm. BET analysis indicated that the catalyst specific surface area was 16.4 m 2  g -1 with average pore diameter of 5.07 nm. The effect of nano CaO catalyst was investigated by direct transesterification of dry biomass into biodiesel along with other reaction parameters such as catalyst ratio, reaction time and stirring rate. The impact of the transesterification reaction parameters and microalgal biodiesel yield were analyzed by response surface methodology based on a full factorial, central composite design. The significance of the predicted mode was verified and 86.41% microalgal biodiesel yield was reported at optimal parameter conditions 1.7% (w/w), catalyst ratio, 3.6 h reaction time and stirring rate of 140.6 rpm. The biodiesel conversion was determined by 1 H nuclear magnetic resonance spectroscopy (NMR). The fuel properties of prepared biodiesel were found to be highly comply with the biodiesel standard ASTMD6751 and EN14214. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. WSF Biodiesel Demonstration Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington State University; University of Idaho; The Glosten Associates, Inc.; Imperium Renewables, Inc.

    2009-04-30

    In 2004, WSF canceled a biodiesel fuel test because of “product quality issues” that caused the fuel purifiers to clog. The cancelation of this test and the poor results negatively impacted the use of biodiesel in marine application in the Pacific Northwest. In 2006, The U.S. Department of Energy awarded the Puget Sound Clean Air Agency a grant to manage a scientific study investigating appropriate fuel specifications for biodiesel, fuel handling procedures and to conduct a fuel test using biodiesel fuels in WSF operations. The Agency put together a project team comprised of experts in fields of biodiesel research and analysis, biodiesel production, marine engineering and WSF personnel. The team reviewed biodiesel technical papers, reviewed the 2004 fuel test results, designed a fuel test plan and provided technical assistance during the test. The research reviewed the available information on the 2004 fuel test and conducted mock laboratory experiments, but was not able to determine why the fuel filters clogged. The team then conducted a literature review and designed a fuel test plan. The team implemented a controlled introduction of biodiesel fuels to the test vessels while monitoring the environmental conditions on the vessels and checking fuel quality throughout the fuel distribution system. The fuel test was conducted on the same three vessels that participated in the canceled 2004 test using the same ferry routes. Each vessel used biodiesel produced from a different feedstock (i.e. soy, canola and yellow grease). The vessels all ran on ultra low sulfur diesel blended with biodiesel. The percentage of biodiesel was incrementally raised form from 5 to 20 percent. Once the vessels reached the 20 percent level, they continued at this blend ratio for the remainder of the test. Fuel samples were taken from the fuel manufacturer, during fueling operations and at several points onboard each vessel. WSF Engineers monitored the performance of the fuel systems and

  3. Biodiesel in British Columbia : feasibility study report

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, M.; Murray-Hill, A.; Schaddelee, K. [Wise Energy Co-op, Victoria, BC (Canada)

    2004-05-05

    This report evaluates the potential for biodiesel as a viable fuel in British Columbia. Biodiesel is a non-toxic, biodegradable, renewable fuel produced from recycled bio-oils that can be used to replace conventional petroleum diesel. The report also examines potential feedstock characteristics, output volumes and environmental impacts. Production of biodiesel is increasing globally due to its economic, human and environmental health benefits. Canada's Climate Change Action Plan target of 500 million litres of biodiesel production per year by 2010 will also contribute to biodiesel growth. The use of pure biodiesel as an alternative fuel results in reduced emissions of carbon dioxide, sulphur dioxide, methane, unburned hydrocarbons, carbon monoxide, particulate matter and polycyclic aromatic hydrocarbons. British Columbia's biodiesel feedstock volumes yield a total theoretical capacity of 125 million litres per year of biodiesel, or 4.5 per cent of the province's total annual diesel consumption The feedstock is enough to fuel over 3,700 transit buses annually and significantly reduce greenhouse gas emissions. This report outlines the activities needed to establish commercial biodiesel companies in the province. It also examines standards and regulatory issues; technology availability; cost and processing analysis; potential markets and distribution channels; and environmental impact comparisons. The 4 critical factors that will determine the success or failure of a commercial biodiesel project include: the ability to balance feedstock supplies, processing technology, and market penetration in an integrated system that is reliable and efficient; the ability to form stable strategic alliances with feedstock suppliers, distributors and end users; the ability to deal effectively with competitive pressures; and, the ability to generate a business plan that will attract financing. It was concluded that community-based biodiesel production at a plant scale

  4. A review on production of biodiesel using catalyzed transesterification

    Science.gov (United States)

    Dash, Santosh Kumar; Lingfa, Pradip

    2017-07-01

    Biodiesel is arguably an important fuel for compression ignition engine as far as sustainability and environmental issues are concerned. It can be produced from both edible and non-edible vegetable oils and animal fats. Owing to higher viscosity, the utilization of crude vegetable oil is not advisable as it results engine failure. For reducing the viscosity and improving the other fuel characteristics comparable to that of diesel fuel, different approaches have been developed. However, transesterification process is very reliable, less costly and easy method compared to other methods. Due to more free fatty acids content in most of the non-edible vegetable oils, a pretreatment is employed to convert the acids to ester, then transesterified with suitable alcohol. Primarily yield of biodiesel depends upon the molar ratio of oil/alcohol, reaction temperature, reaction time, amount of catalyst, type of catalyst, stirring speed. Both homogeneous and heterogeneous catalysts are used for synthesis purposes. Heterogeneous catalysts are less costly, environmental benign and can be derived from natural resources. Enzymatic catalysts are more environmental benign than heterogeneous catalysts but are costly, which hinders its widespread research and utilization. This article reviews the results of prominent works and researches in the field of production of biodiesel via catalyzed transesterification process.

  5. The Synthesis of Biodiesel from Used Temple Oil

    Science.gov (United States)

    Saddu, Sharanabasappa; Kivade, S. B.; Ramana, P.

    2018-05-01

    Safe and sustainable resources of energy is required for the financial and industrial growth. A new approach in investigating, growth, production and the economy is necessary, for the future reorganization of a sustainable natural raw material. In India, because of many mythological and religious beliefs thousands of devotees pour oil in lamps in various temples and also over the idols in Hanuman and Shani temples. This poured oil cannot be utilized and was ultimately wasted. One of tender advertisements by department of Muzarai of Karnataka Government, the used oil potential at shree Renuka yallamma temple Soundatti, Belagavi district is 18,900 kg for the year 2016-2017. This is only one temple oil potential; the number of Hindu temples in India is a Puzzle. This used temple oil was used as alternative feedstock, to decrease the cost of bio fuel. Using ASTM standard methods, the properties of used temple oil biodiesel were analyzed. From the tests it is clear that the, properties of used temple oil biodiesel are similar to diesel fuel. The obtained yield of biodiesel was 94.51%. This study identified that the price of the feedstock was one of the most significant factors.

  6. Electronic Human Resources Management (e-HRM Adoption Studies: Past and Future Research

    Directory of Open Access Journals (Sweden)

    Winarto Winarto

    2018-05-01

    Full Text Available Electronic human resource management (e-HRM systems become more widely used by profit and non-profit organization. However, the field currently lacks sound theoretical frameworks that can be useful in addressing a key issue concerning the implementation of e-HRM systems, in particular to obtain a better understanding of the factors influencing the adoption of e-HRM systems. The objective of this paper is to provide a foundation towards the development of a theoretical framework for the implementation of e-HRM systems and develop a conceptual model that would reflect the nature of e-HRM systems’ adoption through systematic literature review. Adopting Crossan and Apaydin’s procedure of systematic review, this paper investigated 21 empirical papers of electronics human resources management, then categorized them into 4 characteristics which influence the adoption; System and technology characteristics; Organizational characteristics; User/individual characteristics, and Environmental and contextual characteristics. Finally, the e-HRM adoption research framework is drawn and based on the framework; avenues for future research are discussed.   Bahasa Indonesia Abstrak: Manajemen sumber daya manusia elektronik (selanjutnya disebut dengan e-HRM semakin banyak digunakan oleh organisasi profit dan nonprofit. Namun, bidang dan topik ini belum memiliki kerangka teori yang mapan, yang dapat digunakan untuk menganalisis isu-isu terkait penerapan e-HRM, terutama mengenai faktor-faktor yang mempengaruhi adopsi sistem e-HRM. Tujuan penelitian ini adalah untuk memberikan landasan bagi pengembangan kerangka teoritis untuk implementasi sistem e-HRM dan mengembangkan model konseptual yang akan menggambarkan adopsi sistem e-HRM melalui tinjauan literatur sistematis. Mengadopsi prosedur dan metode Crossan dan Apaydin untuk melakukan telaah literatur secara sistematis, paper ini menyelidiki 21 publikasi empiris manajemen sumber daya manusia elektronik dari 2

  7. Biodiesel production from microalgal isolates of southern Pakistan and quantification of FAMEs by GC-MS/MS analysis

    Directory of Open Access Journals (Sweden)

    Musharraf Syed

    2012-12-01

    Full Text Available Abstract Background Microalgae have attracted major interest as a sustainable source for biodiesel production on commercial scale. This paper describes the screening of six microalgal species, Scenedesmus quadricauda, Scenedesmus acuminatus, Nannochloropsis sp., Anabaena sp., Chlorella sp. and Oscillatoria sp., isolated from fresh and marine water resources of southern Pakistan for biodiesel production and the GC-MS/MS analysis of their fatty acid methyl esters (FAMEs. Results Growth rate, biomass productivity and oil content of each algal species have been investigated under autotrophic condition. Biodiesel was produced from algal oil by acid catalyzed transesterification reaction and resulting fatty acid methyl esters (FAMEs content was analyzed by GC/MS. Fatty acid profiling of the biodiesel, obtained from various microalgal oils showed high content of C-16:0, C-18:0, cis-Δ9C-18:1, cis-Δ11C-18:1 (except Scenedesmus quadricauda and 10-hydroxyoctadecanoic (except Scenedesmus acuminatus. Absolute amount of C-14:0, C-16:0 and C-18:0 by a validated GC-MS/MS method were found to be 1.5-1.7, 15.0-42.5 and 4.2-18.4 mg/g, respectively, in biodiesel obtained from various microalgal oils. Biodiesel was also characterized in terms of cetane number, kinematic viscosity, density and higher heating value and compared with the standard values. Conclusion Six microalgae of local origin were screened for biodiesel production. A method for absolute quantification of three important saturated fatty acid methyl esters (C-14, C-16 and C-18 by gas chromatography-tandem mass spectrometry (GC-MS/MS, using multiple reactions monitoring (MRM mode, was employed for the identification and quantification of biodiesels obtained from various microalgal oils. The results suggested that locally found microalgae can be sustainably harvested for the production of biodiesel. This offers the tremendous economic opportunity for an energy-deficient nation.

  8. Bio-diesel: A candidate for a Nigeria energy mix

    International Nuclear Information System (INIS)

    Eze, T.; Dim, L. A.; Funtua, I. I.; Oladipo, M. O. A.

    2011-01-01

    This paper presents a review of bio-diesel development and economic potentials. The basics of biodiesel and its production technology are described. Attention is given to development potential, challenges and prospests of bio-diesel in Nigeria with ground facts on bio-diesel production feasibility in Nigeria highlighted.

  9. Biodiesel generation from oleaginous yeast Rhodotorula glutinis ...

    African Journals Online (AJOL)

    Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity. ... Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity. C Dai, J Tao, F Xie, Y Dai, M Zhao. Abstract. This study explored a strategy to convert agricultural and forestry residues into ...

  10. Georges Chavanne and the first biodiesel

    Science.gov (United States)

    This article discusses the first production and use of a fuel around 1937 now called biodiesel, which is obtained from a vegetable or plant oil through a straightforward chemical reaction called transesterification. Biodiesel has become an alternative or supplement to conventional diesel fuel derive...

  11. The uses of biodiesel in buses

    International Nuclear Information System (INIS)

    Smigins, R.; Gulbis, V.

    2003-01-01

    In November 2001 in Naukseni, Valmiera district the biodiesel - methyl ester of rapeseed oil (RME) - plant first in Latvia and in all Baltic States began to work. The production capacity of the plant is 2500 t of biodiesel per year. In the summer and autumn period of the last year the first experiment using 100% RME on one city bus line was carried out. The bus Ikarus-280 in total turned 30700 km consuming 11 tons or 12600 litres of biodiesel. The fuel consumption with biodiesel was 0.9 kg/h (14.2%) or 3.01/100 km higher as with fossil diesel fuel. The engine power and the driving speed on the line were practically unchanged in spite that the heat capacity of biodiesel is lower than of ordinary diesel fuel (according 37.1 l and 42.1 MJ/kg). Using biodiesel the toxicity of the exhaust gases dropped down very essentially. It was controlled regularly by measuring the absorption coefficient and smokiness. At the end of second month of the experiment the absorption coefficient was 2.09 m -1 and 47.8%. This shows that by the influence of biodiesel the compression chambers of the engine clean from burnt parts and the combustion process most completely thanks to the oxygen content in the biodiesel (authors)

  12. Comparative toxicity and mutagenicity of biodiesel exhaust

    Science.gov (United States)

    Biodiesel (BD) is commercially made from the transesterification of plant and animal derived oils. The composition of biodiesel exhaust (BE) depends on the type of fuel, the blend ratio and the engine and operating conditions. While numerous studies have characterized the health ...

  13. Life Cycle Inventory of Biodiesel and Petroleum Diesel for Use in an Urban Bus

    Energy Technology Data Exchange (ETDEWEB)

    Sheehan, John [National Renewable Energy Lab. (NREL), Golden, CO (United States); Camobreco, Vince [National Renewable Energy Lab. (NREL), Golden, CO (United States); Duffield, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); Graboski, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Graboski, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Shapouri, Housein [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1998-05-01

    This report presents the findings from a study of the life cycle inventories (LCIs) for petroleum diesel and biodiesel. An LCI is a comprehensive quantification of all the energy and environmental flows associated with a product from “cradle to grave.” It provides information on raw materials extracted from the environment; energy resources consumed; air, water, and solid waste emissions generated.

  14. Impacts of biodiesel production on Croatian economy

    International Nuclear Information System (INIS)

    Kulisic, Biljana; Loizou, Efstratios; Rozakis, Stelios; Segon, Velimir

    2007-01-01

    The aim of this paper is to assess the direct and indirect impacts on a national economy from biodiesel (rapeseed methyl ester (RME)) production using input-output (I-O) analysis. Biodiesel development in Croatia is used as a case study. For Croatia, as for many other countries in Europe, biodiesel is a new activity not included in the existing I-O sectoral accounts. For this reason the I-O table has to be modified accordingly before being able to quantify the effect of an exogenous demand for biodiesel. Impacts in terms of output, income and employment lead to the conclusion that biodiesel production could have significant positive net impact on the Croatian economy despite the high level of subsidies for rapeseed growing

  15. Microbial recycling of glycerol to biodiesel.

    Science.gov (United States)

    Yang, Liu; Zhu, Zhi; Wang, Weihua; Lu, Xuefeng

    2013-12-01

    The sustainable supply of lipids is the bottleneck for current biodiesel production. Here microbial recycling of glycerol, byproduct of biodiesel production to biodiesel in engineered Escherichia coli strains was reported. The KC3 strain with capability of producing fatty acid ethyl esters (FAEEs) from glucose was used as a starting strain to optimize fermentation conditions when using glycerol as sole carbon source. The YL15 strain overexpressing double copies of atfA gene displayed 1.7-fold increase of FAEE productivity compared to the KC3 strain. The titer of FAEE in YL15 strain reached to 813 mg L(-1) in minimum medium using glycerol as sole carbon source under optimized fermentation conditions. The titer of glycerol-based FAEE production can be significantly increased by both genetic modifications and fermentation optimization. Microbial recycling of glycerol to biodiesel expands carbon sources for biodiesel production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Process development for scum to biodiesel conversion.

    Science.gov (United States)

    Bi, Chong-hao; Min, Min; Nie, Yong; Xie, Qing-long; Lu, Qian; Deng, Xiang-yuan; Anderson, Erik; Li, Dong; Chen, Paul; Ruan, Roger

    2015-06-01

    A novel process was developed for converting scum, a waste material from wastewater treatment facilities, to biodiesel. Scum is an oily waste that was skimmed from the surface of primary and secondary settling tanks in wastewater treatment plants. Currently scum is treated either by anaerobic digestion or landfilling which raised several environmental issues. The newly developed process used a six-step method to convert scum to biodiesel, a higher value product. A combination of acid washing and acid catalyzed esterification was developed to remove soap and impurities while converting free fatty acids to methyl esters. A glycerol washing was used to facilitate the separation of biodiesel and glycerin after base catalyzed transesterification. As a result, 70% of dried and filtered scum was converted to biodiesel which is equivalent to about 134,000 gallon biodiesel per year for the Saint Paul waste water treatment plant in Minnesota. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Spray Behavior and Atomization Characteristics of Biodiesel

    Science.gov (United States)

    Choi, Seung-Hun; Oh, Young-Taig

    Biodiesel has large amount of oxygen in itself, which make it very efficient in reducing exhaust emission by improving combustion inside an engine. But biodiesel has a low temperature flow problem because it has a high viscosity. In this study, the spray behavior and atomization characteristics were investigated to confirm of some effect for the combination of non-esterification biodiesel and fuel additive WDP and IPA. The process of spray was visualized through the visualization system composed of a halogen lamp and high speed camera, and atomization characteristics were investigated through LDPA. When blending WDP and IPA with biodiesel, atomization and spray characteristics were improved. Through this experimental result, SMD of blended fuel, WDP 25% and biodiesel 75%, was 33.9% reduced at distance 6cm from a nozzle tip under injection pressure 30MPa.

  18. Impact of Electronic Resources and Usage in Academic Libraries in Ghana: Evidence from Koforidua Polytechnic & All Nations University College, Ghana

    Science.gov (United States)

    Akussah, Maxwell; Asante, Edward; Adu-Sarkodee, Rosemary

    2015-01-01

    The study investigates the relationship between impact of electronic resources and its usage in academic libraries in Ghana: evidence from Koforidua Polytechnic & All Nations University College, Ghana. The study was a quantitative approach using questionnaire to gather data and information. A valid response rate of 58.5% was assumed. SPSS…

  19. Utilization of Electronic Information Resources by Undergraduate Students of University of Ibadan: A Case Study of Social Sciences and Education

    Science.gov (United States)

    Owolabi, Sola; Idowu, Oluwafemi A.; Okocha, Foluke; Ogundare, Atinuke Omotayo

    2016-01-01

    The study evaluated utilization of electronic information resources by undergraduates in the Faculties of Education and the Social Sciences in University of Ibadan. The study adopted a descriptive survey design with a study population of 1872 undergraduates in the Faculties of Education and the Social Sciences in University of Ibadan, from which a…

  20. Current biodiesel production technologies: A comparative review

    International Nuclear Information System (INIS)

    Abbaszaadeh, Ahmad; Ghobadian, Barat; Omidkhah, Mohammad Reza; Najafi, Gholamhassan

    2012-01-01

    Highlights: ► In this paper we review the technologies related to biodiesel production. ► 4 Primary approaches reviewed are direct use and blending of oils, micro-emulsions, pyrolysis and transesterification method. ► Both advantages and disadvantages of the different biodiesel production methods are also discussed. ► The most common technology of biodiesel production is transesterification of oils. ► Selection of a transesterification method depends on the amount of FFA and water content of the feedstock. - Abstract: Despite the high energy demand in the industrialized world and the pollution problems caused by widespread use of fossil fuels, the need for developing renewable energy sources with less environmental impacts are increasing. Biodiesel production is undergoing rapid and extensive technological reforms in industries and academia. The major obstacle in production and biodiesel commercialization path is production cost. Thus, in previous years numerous studies on the use of technologies and different methods to evaluate optimal conditions of biodiesel production technically and economically have been carried out. In this paper, a comparative review of the current technological methods so far used to produce biodiesel has been investigated. Four primary approaches to make biodiesel are direct use and blending of vegetable oils, micro-emulsions, thermal cracking (pyrolysis) and transesterification. Transesterification reaction, the most common method in the production of biodiesel, is emphasized in this review. The two types of transestrification process; catalytic and non-catalytic are discussed at length in the paper. Both advantages and disadvantages of the different biodiesel production methods are also discussed.

  1. Purification of crude biodiesel using dry washing and membrane technologies

    OpenAIRE

    Atadashi, I.M.

    2015-01-01

    Purification of crude biodiesel is mandatory for the fuel to meet the strict international standard specifications for biodiesel. Therefore, this paper carefully analyzed recently published literatures which deal with the purification of biodiesel. As such, dry washing technologies and the most recent membrane biodiesel purification process have been thoroughly examined. Although purification of biodiesel using dry washing process involving magnesol and ion exchange resins provides high-quali...

  2. Systematic review of electronic surveillance of infectious diseases with emphasis on antimicrobial resistance surveillance in resource-limited settings.

    Science.gov (United States)

    Rattanaumpawan, Pinyo; Boonyasiri, Adhiratha; Vong, Sirenda; Thamlikitkul, Visanu

    2018-02-01

    Electronic surveillance of infectious diseases involves rapidly collecting, collating, and analyzing vast amounts of data from interrelated multiple databases. Although many developed countries have invested in electronic surveillance for infectious diseases, the system still presents a challenge for resource-limited health care settings. We conducted a systematic review by performing a comprehensive literature search on MEDLINE (January 2000-December 2015) to identify studies relevant to electronic surveillance of infectious diseases. Study characteristics and results were extracted and systematically reviewed by 3 infectious disease physicians. A total of 110 studies were included. Most surveillance systems were developed and implemented in high-income countries; less than one-quarter were conducted in low-or middle-income countries. Information technologies can be used to facilitate the process of obtaining laboratory, clinical, and pharmacologic data for the surveillance of infectious diseases, including antimicrobial resistance (AMR) infections. These novel systems require greater resources; however, we found that using electronic surveillance systems could result in shorter times to detect targeted infectious diseases and improvement of data collection. This study highlights a lack of resources in areas where an effective, rapid surveillance system is most needed. The availability of information technology for the electronic surveillance of infectious diseases, including AMR infections, will facilitate the prevention and containment of such emerging infectious diseases. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  3. Biodiesel forming reactions using heterogeneous catalysis

    Science.gov (United States)

    Liu, Yijun

    Biodiesel synthesis from biomass provides a means for utilizing effectively renewable resources, a way to convert waste vegetable oils and animal fats to a useful product, a way to recycle carbon dioxide for a combustion fuel, and production of a fuel that is biodegradable, non-toxic, and has a lower emission profile than petroleum-diesel. Free fatty acid (FFA) esterification and triglyceride (TG) transesterification with low molecular weight alcohols constitute the synthetic routes to prepare biodiesel from lipid feedstocks. This project was aimed at developing a better understanding of important fundamental issues involved in heterogeneous catalyzed biodiesel forming reactions using mainly model compounds, representing part of on-going efforts to build up a rational base for assay, design, and performance optimization of solid acids/bases in biodiesel synthesis. As FFA esterification proceeds, water is continuously formed as a byproduct and affects reaction rates in a negative manner. Using sulfuric acid (as a catalyst) and acetic acid (as a model compound for FFA), the impact of increasing concentrations of water on acid catalysis was investigated. The order of the water effect on reaction rate was determined to be -0.83. Sulfuric acid lost up to 90% activity as the amount of water present increased. The nature of the negative effect of water on esterification was found to go beyond the scope of reverse hydrolysis and was associated with the diminished acid strength of sulfuric acid as a result of the preferential solvation by water molecules of its catalytic protons. The results indicate that as esterification progresses and byproduct water is produced, deactivation of a Bronsted acid catalyst like H2SO4 occurs. Using a solid composite acid (SAC-13) as an example of heterogeneous catalysts and sulfuric acid as a homogeneous reference, similar reaction inhibition by water was demonstrated for homogeneous and heterogeneous catalysis. This similarity together with

  4. Missouri Soybean Association Biodiesel Demonstration Project: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Dale [Missouri Soybean Association, Jefferson City, MO (United States); Hamilton, Jill [Sustainable Energy Strategies, Inc., Fairfax, VA (United States)

    2011-10-27

    The Missouri Soybean Association (MSA) and the National Biodiesel Board (NBB) partnered together to implement the MSA Biodiesel Demonstration project under a United States Department of Energy (DOE) grant. The goal of this project was to provide decision makers and fleet managers with information that could lead to the increased use of domestically produced renewable fuels and could reduce the harmful impacts of school bus diesel exhaust on children. This project was initiated in September 2004 and completed in April 2011. The project carried out a broad range of activities organized under four areas: 1. Petroleum and related industry education program for fuel suppliers; 2. Fleet evaluation program using B20 with a Missouri school district; 3. Outreach and awareness campaign for school district fleet managers; and 4. Support of ongoing B20 Fleet Evaluation Team (FET) data collection efforts with existing school districts. Technical support to the biodiesel industry was also provided through NBB’s Troubleshooting Hotline. The hotline program was established in 2008 to troubleshoot fuel quality issues and help facilitate smooth implementation of the RFS and is described in greater detail under Milestone A.1 - Promote Instruction and Guidance on Best Practices. As a result of this project’s efforts, MSA and NBB were able to successfully reach out to and support a broad spectrum of biodiesel users in Missouri and New England. The MSA Biodiesel Demonstration was funded through a FY2004 Renewable Energy Resources Congressional earmark. The initial focus of this project was to test and evaluate biodiesel blends coupled with diesel oxidation catalysts as an emissions reduction technology for school bus fleets in the United States. The project was designed to verify emissions reductions using Environmental Protection Agency (EPA) protocols, then document – with school bus fleet experience – the viability of utilizing B20 blends. The fleet experience was expected to

  5. Analysis of performance and emissions of diesel engine using sunflower biodiesel

    Science.gov (United States)

    Tutunea, Dragos; Dumitru, Ilie

    2017-10-01

    The world consumption of fossil fuels is increasing rapidly and it affects the environment by green house gases causing health hazards. Biodiesel is emerging as an important promising alternative energy resource which can be used to reduce or even replace the usage of petroleum. Since is mainly derived from vegetable oil or animal fats can be produce for large scale by local farmers offering a great choice. However the extensive utilization of the biofuels can lead to shortages in the food chain. This paper analyzed the sunflower methyl ester (SFME) and its blends as an alternate source of fuel for diesel engines. Biodiesel was prepared from sunflower oil in laboratory in a small biodiesel installation (30L) by base transesterification. A 4 cylinder Deutz F4L912 diesel engine was used to perform the tests on various blends of sunflower biodiesel. The emissions of CO, HC were lower than diesel fuel for all blends tested. The NOx emissions were higher due to the high volatility and high viscosity of biodiesel.

  6. Production, optimization and quality assessment of biodiesel from Ricinus communis L. oil

    Directory of Open Access Journals (Sweden)

    Maryam Ijaz

    2016-04-01

    Full Text Available At present, biodiesel is gaining tremendous attention due to its eco-friendly nature and is possible substitute for diesel fuel. Biodiesel as renewable energy source can be produced from edible and non-edible feedstock. Non-edible resources are preferred to circumvent for food competition. In the present study FAME was produced from Ricinus communis L. oil by transesterification with methanol and ethanol in the presence of potassium hydroxide. The practical optimal condition for the production of biodiesel from castor bean was found to be: methanol/oil molar ratio, 6:1; temperature, 60 °C; time, 45 min; catalyst concentration 0.32 g. Quality assessment of biodiesel showed comparable results with ASTM standards. The values of specific gravity (SG were 0.5, kinematic viscosity 2.45 cSt, acid values 0.13 mg KOH/g, carbon residue 0.03%, flash point 119 °C, fire point 125 °C, cloud point −10 °C and pour point −20 °C of Ricinus FAME, respectively. Based on our data, it is suggested that to overcome prevailing energy crisis this non-edible plant is useful for production of biodiesel, which is an alternate to fossil fuel and may be used alone or in blend with HSD in engine combustion.

  7. OPTIMASI VARIABEL YANG PALING BERPENGARUH PADA PEMBUATAN BIODIESEL DARI MINYAK BIJI RANDU DENGAN PROSES TRANSESTERIFIKASI

    Directory of Open Access Journals (Sweden)

    Mudzofar Sofyan

    2014-10-01

    Full Text Available [Title: Biodiesel Production from Kapok Seed Oil with KOH Catalyst Using Two Steps Transesterification Process] Biodiesel is one of diesel fuel alternative made from renewable resources such as vegetable oils and animal fats. One of the natural ingredients that can be used as a material in the production of biodiesel is kapok seed. The existence of relatively abundant raw materials is a great opportunity to be developed into alternative energy options which developed on a commercial scale. Biodiesel from kapok seed oil can be made through a two-stage transesterification reaction which helped by using a base catalyst. This research aims to characterize the kapok seed oil, determine the most influential variables between temperature, the ratio of methanol-oil, and time against yield by the factorial design method, optimization variables that most influence on yield, and characterize the biodiesel. Two-stage transesterification process using KOH as the catalyst with changing variables: temperature, methanol-oil ratio, and time. The result showed that kapok seed oil has FFA content: 17.97% and a saponification number: 172.55 mgKOH/g. Most influential variable is the variable of time. At the variable optimization of time, the result were optimally obtained at the 105th minutes with yield: 77.39%. The characterization results of biodiesel’s product show from seven parameters of testing, four parameters are required in accordance with SNI.

  8. Mapping Sustainable Structural Dimensions for Managing the Brazilian Biodiesel Supply Chain

    Directory of Open Access Journals (Sweden)

    Silvio Francisco dos Santos

    2014-04-01

    Full Text Available It has been widely discussed in Brazil that the production of biodiesel should look for ways for increasing competitiveness considering the balance among economic growth, environmental quality and social well-being through the rational use of resources. The main purpose of this paper is to identify structural dimensions influencing sustainability and competitiveness of the Brazilian biodiesel production chain and, thereby, contribute to the current debate as well as to the process of formulating policy and strategies regarding this important supply chain. As starting point, a number of publications were reviewed allowing the identification of main issues and its combination into relevant factors. Eventually, the factors were put together, resulting in a set of structural dimensions: biodiesel supply chain environment, institutional framework, market conditions, monitoring systems and technological innovation. Then, the structural dimensions were summarized in a conceptual model showing the relationship between them. The structural dimensions may be seen as critical points in which stakeholders would pay attention to ensure successful performance and sustainable competitiveness of the biodiesel production chain. The objective of the entire system is to deliver biodiesel as a clean energy with focus on social inclusion, mitigation of environmental impacts and viability.

  9. Cyanobacteria cultivation in industrial wastewaters and biodiesel production from their biomass: a review.

    Science.gov (United States)

    Balasubramanian, Lavanya; Subramanian, Geetha; Nazeer, Thayiba Thanveer; Simpson, Hannah Shalini; Rahuman, Shifina T; Raju, Preetha

    2011-01-01

    As an alternative fuel biodiesel has become increasingly important due to diminishing petroleum reserves and adverse environmental consequences of exhaust gases from petroleum-fueled engines. Recently, research interest has focused on the production of biofuel from microalgae. Cyanobacteria appeared to be suitable candidates for cultivation in wastes and wastewaters because they produce biomass in satisfactory quantity and can be harvested relatively easily due to their size and structure. In addition, their biomass composition can be manipulated by several environmental and operational factors to produce biomass with concrete characteristics. Herein, we review the culture of cyanobacteria in wastewaters and also the potential resources that can be transformed into biodiesel successfully for meeting the ever-increasing demand for biodiesel production. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  10. The Use of Electronic Resources by Academic Staff at the University of Ilorin, Nigeria

    Science.gov (United States)

    Tella, Adeyinka; Orim, Faith; Ibrahim, Dauda Morenikeji; Memudu, Suleiman Ajala

    2018-01-01

    The use of e-resources is now commonplace among academics in tertiary educational institutions the world over. Many academics including those in the universities are exploring the opportunities of e-resources to facilitate teaching and research. As the use of e-resources is increasing particularly among academics at the University of Ilorin,…

  11. Modeling antecedents of electronic medical record system implementation success in low-resource setting hospitals.

    Science.gov (United States)

    Tilahun, Binyam; Fritz, Fleur

    2015-08-01

    With the increasing implementation of Electronic Medical Record Systems (EMR) in developing countries, there is a growing need to identify antecedents of EMR success to measure and predict the level of adoption before costly implementation. However, less evidence is available about EMR success in the context of low-resource setting implementations. Therefore, this study aims to fill this gap by examining the constructs and relationships of the widely used DeLone and MacLean (D&M) information system success model to determine whether it can be applied to measure EMR success in those settings. A quantitative cross sectional study design using self-administered questionnaires was used to collect data from 384 health professionals working in five governmental hospitals in Ethiopia. The hospitals use a comprehensive EMR system since three years. Descriptive and structural equation modeling methods were applied to describe and validate the extent of relationship of constructs and mediating effects. The findings of the structural equation modeling shows that system quality has significant influence on EMR use (β = 0.32, P quality has significant influence on EMR use (β = 0.44, P service quality has strong significant influence on EMR use (β = 0.36, P effect of EMR use on user satisfaction was not significant. Both EMR use and user satisfaction have significant influence on perceived net-benefit (β = 0.31, P mediating factor in the relationship between service quality and EMR use (P effect on perceived net-benefit of health professionals. EMR implementers and managers in developing countries are in urgent need of implementation models to design proper implementation strategies. In this study, the constructs and relationships depicted in the updated D&M model were found to be applicable to assess the success of EMR in low resource settings. Additionally, computer literacy was found to be a mediating factor in EMR use and user satisfaction of

  12. Characterization of beef tallow biodiesel and their mixtures with soybean biodiesel and mineral diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Leonardo S.G. [Instituto de Quimica, Universidade Federal da Bahia, Campus Universitario de Ondina, 40.170-280, Salvador, Bahia (Brazil); INCT de Energia e Ambiente, Universidade Federal da Bahia, 40.170-280, Salvador, Bahia (Brazil); Couto, Marcelo B.; Filho, Miguel Andrade; Assis, Julio C.R.; Guimaraes, Paulo R.B.; Pontes, Luiz A.M.; Almeida, Selmo Q. [Departamento de Engenharia e Arquitetura, Universidade Salvador - UNIFACS, Av. Cardeal da Silva 132, 40.220-141, Salvador, Bahia (Brazil); Souza, Giancarlos S. [Instituto de Quimica, Universidade Federal da Bahia, Campus Universitario de Ondina, 40.170-280, Salvador, Bahia (Brazil); Teixeira, Josanaide S.R. [Instituto Federal de Educacao Ciencia e Tecnologica da Bahia - IFBAHIA, Rua Emidio de Morais S/N, 40.625-650, Salvador, Bahia (Brazil)

    2010-04-15

    Tallow is a raw material for biodiesel production that, due to their highly centralized generation in slaughter/processing facilities and historically low prices, may have energy, environmental, and economic advantages that could be exploited. However beef tallow biodiesel have unfavorable properties due the presence of high concentration of saturated fatty esters. One way to overcome these inconveniences is using blending procedures. In this way, blends of beef tallow biodiesel with soybean biodiesel and with conventional mineral diesel fuel were prepared and the quality of the mixtures was monitored with the purpose to study ideal proportions of the fuels. By measurement of the viscosity, density, cold filter plugging point, and flash point, it was demonstrated that tallow biodiesel can be blended with both mineral diesel and soybean biodiesel to improve the characteristics of the blend fuels, over that of the tallow. (author)

  13. Life cycle impact assessment of biodiesel using the ReCiPe method

    Directory of Open Access Journals (Sweden)

    Kiss Ferenc E.

    2013-01-01

    Full Text Available This paper presents the life cycle impact assessment (LCIA results of biodiesel produced from rapeseed oil. The functional unit (FU is defined as 3750 km of distance traveled by a truck fuelled with biodiesel. The reference flow is 1000 kg of biodiesel. The LCIA method used in the study is the ReCiPe method. At midpoint level the ReCiPe method addresses environmental issues within 18 impact categories. Most of these midpoint impact categories are further converted and aggregated into 3 endpoint categories (damage to human health, damage to ecosystem diversity, damage to mineral resource availability. The total impact of biodiesel’s life cycle was estimated at 540 Pt/FU. The damage to ecosystem diversity (1.48E-04 species•year/FU, the damage to human health (7.48E-03 DALY/FU and the damage to mineral resource availability (8.11E+03 US$/FU are responsible for 63%, 27% and 10% of the total negative impact in the life cycle of biodiesel, respectively. The results have revealed that only 4 impact categories are responsible for most of the impacts within the specific endpoint categories. These are impacts associated with global warming (3000 kg CO2 ekv./FU, particulate matter formation (12.4 kg PM ekv./FU, agricultural land occupation (6710 m2a./FU and fossil fuel depletion (21168 MJ/FU. Greenhouse gases emitted in the life cycle of biodiesel (mainly N2O, CO2 are responsibly for 56% of the damage caused to human health and for 16% of the damage caused to ecosystem diversity. Airborne emissions which contribute to particulate matter formation (NOx, NH3, PM, SO2 are responsible for 43% of the damage caused to human health. Agricultural land occupation is responsible for 82% of the damage caused to the ecosystem diversity. Damage to mineral resource availability is almost entirely related to the depletion of fossil energy sources. The production chain of biodiesel and the combustion of biodiesel are responsible for 69% and 31% of the total impact of

  14. Comparative corrosive characteristics of petroleum diesel and palm biodiesel for automotive materials

    Energy Technology Data Exchange (ETDEWEB)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2010-10-15

    Corrosive characteristics of biodiesel are important for long term durability of engine parts. The present study aims to compare the corrosion behavior of aluminum, copper and stainless steel in both petroleum diesel and palm biodiesel. Immersion tests in biodiesel (B100) and diesel (B0) were carried out at 80 C for 1200 h. At the end of the test, corrosion characteristic was investigated by weight loss measurements and changes on the exposed metal surface. Surface morphology was examined by optical microscope and scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDS). Fuels were analyzed by using TAN analyzer, FTIR, GCMS and ICP in order to investigate the acid concentration, oxidation level with water content, compositional characteristics and presence of metal species respectively. Results show that the extent of corrosion and change in fuel properties upon exposure to metals are more in biodiesel than that in diesel. Copper and aluminum were susceptible to attack by biodiesel whereas stainless steel was not. (author)

  15. Biodiesel production by transesterification using immobilized lipase.

    Science.gov (United States)

    Narwal, Sunil Kumar; Gupta, Reena

    2013-04-01

    Biodiesel can be produced by transesterification of vegetable or waste oil catalysed by lipases. Biodiesel is an alternative energy source to conventional fuel. It combines environmental friendliness with biodegradability, low toxicity and renewability. Biodiesel transesterification reactions can be broadly classified into two categories: chemical and enzymatic. The production of biodiesel using the enzymatic route eliminates the reactions catalysed under acid or alkali conditions by yielding product of very high purity. The modification of lipases can improve their stability, activity and tolerance to alcohol. The cost of lipases and the relatively slower reaction rate remain the major obstacles for enzymatic production of biodiesel. However, this problem can be solved by immobilizing the enzyme on a suitable matrix or support, which increases the chances of re-usability. The main factors affecting biodiesel production are composition of fatty acids, catalyst, solvents, molar ratio of alcohol and oil, temperature, water content, type of alcohol and reactor configuration. Optimization of these parameters is necessary to reduce the cost of biodiesel production.

  16. Biodiesel de mamona no diesel interior e metropolitano em trator agrícola Mamona biodiesel in interior and metropolitan diesel in agricultural tractor

    Directory of Open Access Journals (Sweden)

    Rubens A. Tabile

    2009-09-01

    Full Text Available A demanda de recursos energéticos pelos sistemas de produção, aliada à escassez dos combustíveis fósseis, tem motivado a produção do Biodiesel, que é um combustível obtido de fontes renováveis. O objetivo deste trabalho foi realizar dois ensaios: o primeiro dinâmico, para avaliar o desempenho operacional utilizando como parâmetro o consumo de combustível, e o segundo, estático, para mensurar a opacidade da fumaça (material particulado do motor de um trator agrícola, operando com diesel metropolitano e interior misturados ao Biodiesel de mamona, em sete proporções. O trabalho foi conduzido no Departamento de Engenharia Rural da UNESP/Jaboticabal - SP. Os resultados mostraram que o tipo de diesel influenciou no consumo de combustível e na opacidade da fumaça, sendo o diesel metropolitano de melhor qualidade; observou-se, também, que à medida que a proporção de Biodiesel aumentou, o mesmo ocorreu para o consumo de combustível; entretanto, a opacidade da fumaça reduziu com o acréscimo de Biodiesel até B75.The demand for energy resources by production systems allied to scarcity of fossil fuels has driven the production of Biodiesel, a fuel produced from renewable sources. The purpose of this study was realize two tests, the first dynamics to assess the operational performance as a parameter of consumption of fuel, the second static to measure the smoke opacity (particulate material from an engine of a farm tractor, operating with interior and metropolitan diesel mixed with castor beans Biodiesel in seven proportions. The tests were conducted in the Rural Engineering Department of UNESP/Jaboticabal - SP. The results showed that the kind of diesel influenced the consumption of fuel and smoke opacity, and the metropolitan diesel showed better quality, it was observed as well that as biodiesel proportion increased, consumption of fuel increased too, however, the opacity of smoke decreased with an increase of Biodiesel by B75.

  17. Use and Cost of Electronic Resources in Central Library of Ferdowsi University Based on E-metrics

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Davarpanah

    2012-07-01

    Full Text Available The purpose of this study was to investigate the usage of electronic journals in Ferdowsi University, Iran based on e-metrics. The paper also aimed to emphasize the analysis of cost-benefit and the correlation between the journal impact factors and the usage data. In this study experiences of Ferdowsi University library on licensing and usage of electronic resources was evaluated by providing a cost-benefit analysis based on the cost and usage statistics of electronic resources. Vendor-provided data were also compared with local usage data. The usage data were collected by tracking web-based access locally, and by collecting vender-provided usage data. The data sources were one-year of vendor-supplied e-resource usage data such as Ebsco, Elsevier, Proquest, Emerald, Oxford and Springer and local usage data collected from the Ferdowsi university web server. The study found that actual usage values differ for vendor-provided data and local usage data. Elsevier has got the highest usage degree in searches, sessions and downloads. Statistics also showed that a small number of journals satisfy significant amount of use while the majority of journals were used less frequent and some were never used at all. The users preferred the PDF rather than HTML format. The data in subject profile suggested that the provided e-resources were best suited to certain subjects. There was no correlation between IF and electronic journal use. Monitoring the usage of e-resources gained increasing importance for acquisition policy and budget decisions. The article provided information about local metrics for the six surveyed vendors/publishers, e.g. usage trends, requests per package, cost per use as related to the scientific specialty of the university.

  18. Environmental benefits of the integrated production of ethanol and biodiesel

    International Nuclear Information System (INIS)

    Souza, Simone Pereira; Seabra, Joaquim E.A.

    2013-01-01

    Highlights: ► Integrated bioenergy systems can favor the sustainability of biofuels. ► We analyzed the integrated production of ethanol and biodiesel in Brazil. ► GHG emissions and fossil energy use in the ethanol life cycle would be reduced. ► Socio-economic and other environmental aspects must be analyzed in future works. -- Abstract: The biorefinery of the future will be an integrated complex that makes a variety of products (e.g., biofuels, chemicals, power and protein) from a variety of feedstocks. The objective of this work was to evaluate the environmental benefits, compared to the traditional sugarcane ethanol system, of the integrated production of ethanol and biodiesel through a sugarcane–soybean biorefinery concept in Brazil. The environmental aspects considered here were the fossil energy use and the greenhouse gases (GHGs) emissions associated with ethanol production. In the Integrated System, soybean would be cultivated in part of the sugarcane reforming areas, which represents ∼17% of the total sugarcane area. Sugarcane and soybean oil would be processed in a combined ethanol–biodiesel plant, which would use only bagasse as fuel. All the demand for utilities of the biodiesel plant would be provided by the distillery. The output products of the combined plant would comprise sugarcane ethanol, soybean biodiesel (which would be used as diesel (B5) substitute in the sugarcane cultivation), bioelectricity and glycerin. The results indicate that the Integrated System can reduce the fossil energy consumption from 75 to 37 kJ/MJ of ethanol, when compared to the traditional system. For GHG emissions, the value would drop from 22.5 to 19.7 g CO 2 eq/MJ of ethanol. This analysis shows that the Integrated System is an important option to contribute to ethanol’s life cycle independence from fossil resources. This is an attractive environmental aspect, but socio-economic (as well as other environmental) aspects should also be analyzed in order to

  19. Optimization of performance, emission, friction and wear characteristics of palm and Calophyllum inophyllum biodiesel blends

    International Nuclear Information System (INIS)

    Mosarof, M.H.; Kalam, M.A.; Masjuki, H.H.; Alabdulkarem, Abdullah; Ashraful, A.M.; Arslan, A.; Rashedul, H.K.; Monirul, I.M.

    2016-01-01

    Highlights: • All of biodiesel blends were given higher BSFC than diesel fuel, except for CIB10. • Diesel produces higher BP and BTE as compared to PB and CIB blends. • CO and HC emissions of PB blends were reduced more than diesel and CIB blends. • PB blends contained lower metal compositions compared to diesel and CIB blends. • PB20 showed lower worn scar surfaces area compared to diesel and biodiesel blends. - Abstract: A running automobile engine produces more friction and wear between its sliding components than an idle one, and thus requires lubrication to reduce this frictional effect. Biodiesel is an alternative diesel fuel that is produced from renewable resources. Energy studies conducted over the last two decades focused on solutions to problems of rising fossil fuel price, increasing dependency on foreign energy sources, and worsening environmental concerns. Palm oil biodiesel is mostly used in Malaysia. This study conducted engine performance and emission tests with a single-cylinder diesel engine fueled with palm and Calophyllum inophyllum biodiesel blends (PB10, PB20, PB30, CIB10, CIB20, and CIB30) at a full-load engine speed range of 1000–2400 rpm, and then compared the results with those of diesel fuel. Friction and wear tests were conducted using the four-ball tester with different temperatures at 40 and 80 kg load conditions and a constant speed of 1800 rpm. The average brake specific fuel consumption increased from 7.96% to 10.15% while operating on 10%, 20%, and 30% blends of palm and C. inophyllum biodiesel. The respective average brake powers for PB20 and PB30 were 9.31% and 12.93% lower compared with that for diesel fuel. PB20 produced relatively lower CO and HC emissions than the diesel and biodiesel blends. Diesel produced low amounts of NO_X emission, and the CIB blend produced a lower frictional coefficient compared with the diesel and PB blends. PB30 showed high average FTP and low average WSD, both of which enhanced

  20. Prediction of cold flow properties of Biodiesel

    Directory of Open Access Journals (Sweden)

    Parag Saxena

    2016-08-01

    Full Text Available Biodiesel being environmentally friendly is fast gaining acceptance in the market as an alternate diesel fuel. But compared to petroleum diesel it has certain limitations and thus it requires further development on economic viability and improvement in its properties to use it as a commercial fuel. The cold flow properties play a major role in the usage of biodiesel commercially as it freezes at cold climatic conditions. In the present study, cold flow properties of various types of biodiesel were estimated by using correlations available in literature. The correlations were evaluated based on the deviation between the predicted value and experimental values of cold flow properties.

  1. Innovative Canadian Process Technology For Biodiesel Production

    Energy Technology Data Exchange (ETDEWEB)

    Johar, Sangat; Norton, Kevin

    2010-09-15

    The need for increasing renewable and alternative energy in the global energy mix has been well recognized by Governments and major scientific forums to reduce climate change impact for this living planet. Biodiesel has very high potential for GHG emission reduction. An innovative process developed in Canada provides solution to mitigate the feedstock, yield and quality issues impacting the industry. The Biox process uses a continuous process which reduces reaction times, provides > 99% yield of high quality biodiesel product. The process is feedstock flexible and can use cheaper higher FFA feedstock providing a sustainable approach for biodiesel production.

  2. Aqueous solubility, dispersibility and toxicity of biodiesels

    International Nuclear Information System (INIS)

    Hollebone, B.P.; Fieldhouse, B.; Lumley, T.C.; Landriault, M.; Doe, K.; Jackman, P.

    2007-01-01

    The renewed interest in the use of biological fuels can be attributed to that fact that feedstocks for fatty-acid ester biodiesels are renewable and can be reclaimed from waste. Although there are significant benefits to using biodiesels, their increased use leaves potential for accidental release to the environment. Therefore, their environmental behaviours and impacts must be evaluated along with the risk associated with their use. Biodiesel fuels may be made from soy oil, canola oil, reclaimed restaurant grease, fish oil and animal fat. The toxicological fate of biofuel depends on the variability of its chemical composition. This study provided an initial assessment of the aqueous fate and effects of biodiesel from a broad range of commonly available feedstocks and their blends with petroleum diesels. The study focused primarily on the fate and impact of these fuels in fresh-water. The use of chemical dispersion as a countermeasure for saltwater was also investigated. The exposure of aquatic ecosystems to biodiesels and petroleum diesel occurs via the transfer of material from the non-aqueous phase liquid (NAPL) into the aqueous phase, as both soluble and dispersed components. The aqueous solubilities of the fuels were determined from the equilibrium water-accommodated fraction concentrations. The acute toxicities of many biodiesels were reported for 3 test species used by Environment Canada for toxicological evaluation, namely rainbow trout, the water flea and a luminescent bacterium. This study also evaluated the natural potential for dispersion of the fuels in the water column in both low and high-energy wave conditions. Chemical dispersion as a potential countermeasure for biodiesel spills was also evaluated using solubility testing, acute toxicity testing, and dispersibility testing. It was shown that biodiesels have much different fates and impacts from petroleum diesels. The compounds partitioning into the water column are also very different for each

  3. Engine performance and emissions characteristics of a diesel engine fueled with diesel-biodiesel-bioethanol emulsions

    International Nuclear Information System (INIS)

    Tan, Yie Hua; Abdullah, Mohammad Omar; Nolasco-Hipolito, Cirilo; Zauzi, Nur Syuhada Ahmad; Abdullah, Georgie Wong

    2017-01-01

    Highlights: • Different composition of diesel fuel, biodiesel and bioethanol emulsions were examined. • The fuels were tested in a direct injection diesel engine and parameters were evaluated. • Engine power, torque, exhaust gas temperature & fuel consumptions were compared. • Emulsions fuels emitted lower CO and CO_2 than fossil diesel. • Lower NOx emission was observed at medium engine speeds and loads for emulsion fuels. - Abstract: In this research work, the experimental investigation of the effect of diesel-biodiesel-bioethanol emulsion fuels on combustion, performance and emission of a direct injection (DI) diesel engine are reported. Four kind of emulsion fuels were employed: B (diesel-80%, biodiesel-20% by volume), C (diesel-80%, biodiesel-15%, bioethanol-5%), D (diesel-80%, biodiesel-10%, bioethanol-10%) and E (diesel-80%, biodiesel-5%, bioethanol-15%) to compare its’ performance with the conventional diesel, A. These emulsion fuels were prepared by mechanical homogenizer machine with the help of Tween 80 (1% v/v) and Span 80 (0.5% v/v) as surfactants. The emulsion characteristics were determined by optical electron microscope, emulsification stability test, FTIR, and the physiochemical properties of the emulsion fuels which were all done by following ASTM test methods. The prepared emulsion fuels were then tested in diesel engine test bed to obtain engine performance and exhaust emissions. All the engine experiments were conducted with engine speeds varying from 1600 to 2400 rpm. The results showed the heating value and density of the emulsion fuels decrease as the bioethanol content in the blend increases. The total heating value of the diesel-biodiesel-bioethanol fuels were averagely 21% higher than the total heating value of the pure biodiesel and slightly lower (2%) than diesel fuel. The engine power, torque and exhaust gas temperature were reduced when using emulsion fuels. The brake specific fuel consumption (BSFC) for the emulsion fuels

  4. Use and User Perception of Electronic Information Resources: A Case Study of Siva Institute of Frontier Technology, India

    Directory of Open Access Journals (Sweden)

    Velmurugan Chandran

    2013-12-01

    Full Text Available The present study aims to explore the use and user perception of electronic resources in Siva Institute of Frontier Technology, India. A total number of 123 users were taken into account for the study through a questionnaire-based survey method. A well-structured questionnaire was designed and distributed to the selected 200 students and staff members. 123 copies of the questionnaires were returned dully filled in and the overall response rate was 61.50 percent. The questionnaire contained both open- and close-ended questions. The collected data were classified, analyzed, and tabulated by using simple statistical methods. This study covers the impact of electronic resources on students and faculty in their academic pursuit.

  5. Challenges in the implementation of an electronic surveillance system in a resource-limited setting: Alerta, in Peru

    Directory of Open Access Journals (Sweden)

    Soto Giselle

    2008-11-01

    Full Text Available Abstract Background Infectious disease surveillance is a primary public health function in resource-limited settings. In 2003, an electronic disease surveillance system (Alerta was established in the Peruvian Navy with support from the U.S. Naval Medical Research Center Detachment (NMRCD. Many challenges arose during the implementation process, and a variety of solutions were applied. The purpose of this paper is to identify and discuss these issues. Methods This is a retrospective description of the Alerta implementation. After a thoughtful evaluation according to the Centers for Disease Control and Prevention (CDC guidelines, the main challenges to implementation were identified and solutions were devised in the context of a resource-limited setting, Peru. Results After four years of operation, we have identified a number of challenges in implementing and operating this electronic disease surveillance system. These can be divided into the following categories: (1 issues with personnel and stakeholders; (2 issues with resources in a developing setting; (3 issues with processes involved in the collection of data and operation of the system; and (4 issues with organization at the central hub. Some of the challenges are unique to resource-limited settings, but many are applicable for any surveillance system. For each of these challenges, we developed feasible solutions that are discussed. Conclusion There are many challenges to overcome when implementing an electronic disease surveillance system, not only related to technology issues. A comprehensive approach is required for success, including: technical support, personnel management, effective training, and cultural sensitivity in order to assure the effective deployment of an electronic disease surveillance system.

  6. ANALYSIS OF COCONUT ETHYL ESTER (BIODIESEL) AND ...

    African Journals Online (AJOL)

    eobe

    Energy is an indispensable and significant issue of world concern. ... both metal parts of diesel engine whereas biodiesel from other ... study reported on the blend characterization and ... weighing balance was used to measure the weight of.

  7. Current status of biodiesel development in Brazil.

    Science.gov (United States)

    Ramos, Luiz Pereira; Wilhelm, Helena Maria

    2005-01-01

    In recent years, the concept of producing biodiesel from renewable lipid sources has regained international attention. In Brazil, a national program was launched in 2002 to evaluate the technical, economic, and environmental competitiveness of biodiesel in relation to the commercially available diesel oil. Several research projects were initiated nationwide to investigate and/or optimize biodiesel production from renewable lipid sources and ethanol derived from sugarcane (ethyl esters). Once implemented, this program will not only decrease our dependence on petroleum derivatives but also create new market opportunities for agribusiness, opening new jobs in the countryside, improving the sustainability of our energy matrix, and helping the Brazilian government to support important actions against poverty. This article discusses the efforts to develop the Brazilian biodiesel program in the context of technical specifications as well as potential oilseed sources.

  8. Biodiesel Production from Azolla filiculoides (Water Fern)

    African Journals Online (AJOL)

    1Department of Microbiology, Rasht Branch, Islamic Azad University, Rasht, Iran, 2Department of Biology, Faculty of ... Conclusion: The results indicate that biodiesel can be produced from ... Consequently, microalgae that can grow rapidly.

  9. Biodiesel production with immobilized lipase: A review.

    Science.gov (United States)

    Tan, Tianwei; Lu, Jike; Nie, Kaili; Deng, Li; Wang, Fang

    2010-01-01

    Fatty acid alkyl esters, also called biodiesel, are environmentally friendly and show great potential as an alternative liquid fuel. Biodiesel is produced by transesterification of oils or fats with chemical catalysts or lipase. Immobilized lipase as the biocatalyst draws high attention because that process is "greener". This article reviews the current status of biodiesel production with immobilized lipase, including various lipases, immobilization methods, various feedstocks, lipase inactivation caused by short chain alcohols and large scale industrialization. Adsorption is still the most widely employed method for lipase immobilization. There are two kinds of lipase used most frequently especially for large scale industrialization. One is Candida antartica lipase immobilized on acrylic resin, and the other is Candida sp. 99-125 lipase immobilized on inexpensive textile membranes. However, to further reduce the cost of biodiesel production, new immobilization techniques with higher activity and stability still need to be explored. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Sustainable Future for Biodiesel in Brazil

    DEFF Research Database (Denmark)

    Dias, Maria Amélia de Paula

    This thesis aims to study alternatives to biodiesel industry in Brazil, for 2030, taking in account the sustainability dimensions, namely economic, environmental, ecological, social, national and international politics, territorial, cultural, and technological, through the development of scenarios...... for agriculture and pasture. Thus, a simulation, using linear programming models, was made in order to verify the alternatives of feedstock to produce biodiesel. It was observed that it is possible to decentralize the market, reduce land use, and regionalize production, making better use of the availability...... to identify the driving forces to develop the scenario storylines. This proposition was tested in an in-depth interview with the biodiesel market stakeholders. Based on the findings of the two approaches, the simulations and the interviews, it was possible to obtain future alternatives, where the biodiesel...

  11. Enzymatic biodiesel production: Technical and economical considerations

    DEFF Research Database (Denmark)

    Munk Nielsen, Per; Brask, Jesper; Fjerbæk, Lene

    2008-01-01

    It is well documented in the literature that enzymatic processing of oils and fats for biodiesel is technically feasible. However, with very few exceptions, enzyme technology is not currently used in commercial-scale biodiesel production. This is mainly due to non-optimized process design...... and a lack of available costeffective enzymes. The technology to re-use enzymes has typically proven insufficient for the processes to be competitive. However, literature data documenting the productivity of enzymatic biodiesel together with the development of new immobilization technology indicates...... that enzyme catalysts can become cost effective compared to chemical processing. This work reviews the enzymatic processing of oils and fats into biodiesel with focus on process design and economy....

  12. Isothermal calorimetry on enzymatic biodiesel production

    DEFF Research Database (Denmark)

    Fjerbæk, Lene

    2008-01-01

    information about effects taking place when using lipases immobilized on an inert carrier for transesterification of a triglyceride and an alcohol as for biodiesel production. The biodiesel is produced by rapeseed oil and methanol as well as ethanol and a commercial biocatalyst Novozym 435 from Novozymes...... containing a Candida Antarctica B lipase immobilized on an acrylic resin. The reaction investigated is characterized by immiscible liquids (oil, methanol, glycerol and biodiesel) and enzymes imm. on an inert carrier during reaction, which allows several effects to take place that during normal reaction...... conditions can not be elucidated. These effects have been observed with isothermal calorimetry bringing forth new information about the reaction of enzymes catalyzing transesterification. Enzymatic biodiesel production has until now not been investigated with isothermal microcalorimetry, but the results...

  13. Operation and Control of Enzymatic Biodiesel Production

    DEFF Research Database (Denmark)

    Price, Jason Anthony; Huusom, Jakob Kjøbsted; Nordblad, Mathias

    This work explores the control of biodiesel production via an enzymatic catalyst. The process involves the transesterification of oils/fats with an alcohol (usually methanol or ethanol), using enzymatic catalysts to generate mono-alkyl esters (the basis of biodiesel) and glycerol as by......-product. Current literature indicates that enzymatic processing of oils and fats to produce biodiesel is technically feasible and developments in immobilization technology indicate that enzyme catalysts can become cost effective compared to chemical processing. However, with very few exceptions, enzyme technology...... is not currently used in commercial-scale biodiesel production. This is mainly due to non-optimized process designs, which do not use the full potential of the catalysts in a cost-efficient way. Furthermore is it unclear what process variables need to be monitored and controlled to ensure optimal economics...

  14. RESEARCH OF INFLUENCE OF QUALITY OF ELECTRONIC EDUCATIONAL RESOURCES ON QUALITY OF TRAINING WITH USE OF DISTANCE TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    H. M. Kravtsov

    2013-03-01

    Full Text Available Communication improving of educational processes requires today new approaches to the management arrangements and forming of educational policy in the field of distance learning, which is based on the use of modern information and communication technologies. An important step in this process is the continuous monitoring of the development and implementation of information technology and, in particular, the distance learning systems in higher educational establishments. The main objective of the monitoring is the impact assessment on the development of distance learning following the state educational standards, curricula, methodical and technical equipment and other factors; factors revelation that influence the implementation and outcomes of distance learning; results comparison of educational institution functioning and distance education systems in order to determine the most efficient ways of its development. The paper presents the analysis results of the dependence of the quality of educational services on the electronic educational resources. Trends in educational services development was studied by comparing the quality influence of electronic educational resources on the quality of educational services of higher pedagogical educational institutions of Ukraine as of 2009-2010 and 2012-2013. Generally, the analysis of the survey results allows evaluating quality of the modern education services as satisfactory and it can be said that almost 70% of the success of their future development depends on the quality of the used electronic educational resources and distance learning systems in particular.

  15. Tracking the Flow of Resources in Electronic Waste - The Case of End-of-Life Computer Hard Disk Drives.

    Science.gov (United States)

    Habib, Komal; Parajuly, Keshav; Wenzel, Henrik

    2015-10-20

    Recovery of resources, in particular, metals, from waste flows is widely seen as a prioritized option to reduce their potential supply constraints in the future. The current waste electrical and electronic equipment (WEEE) treatment system is more focused on bulk metals, where the recycling rate of specialty metals, such as rare earths, is negligible compared to their increasing use in modern products, such as electronics. This study investigates the challenges in recovering these resources in the existing WEEE treatment system. It is illustrated by following the material flows of resources in a conventional WEEE treatment plant in Denmark. Computer hard disk drives (HDDs) containing neodymium-iron-boron (NdFeB) magnets were selected as the case product for this experiment. The resulting output fractions were tracked until their final treatment in order to estimate the recovery potential of rare earth elements (REEs) and other resources contained in HDDs. The results further show that out of the 244 kg of HDDs treated, 212 kg comprising mainly of aluminum and steel can be finally recovered from the metallurgic process. The results further demonstrate the complete loss of REEs in the existing shredding-based WEEE treatment processes. Dismantling and separate processing of NdFeB magnets from their end-use products can be a more preferred option over shredding. However, it remains a technological and logistic challenge for the existing system.

  16. HELP (INFORMATION ELECTRONIC RESOURCE "CHRONICLE OF ONU: DATES, FACTS, EVENTS": HISTORY OF UNIVERSITY IN INFORMATION SPACE

    Directory of Open Access Journals (Sweden)

    А. М. Гавриленко

    2016-03-01

    Object of research is the help information resource "The chronicle of the Odessa national university of I. I. Mechnikov: dates, facts, events". The main objective of our article – to state the main methodological bases of creation of information resource. One of advantages of information resource is possibility of continuous updating and replenishment by new information. Main objective of creation of this information resource is systematization of material on stories of the Odessa national university of I. I. Mechnikov from the date of his basis to the present, ensuring interactive access to information on the main dates, the most significant events in life of university. The base of research are sources on the history of university, chronology of historical development, formation of infrastructure, cadres and scientific researches. In information resource the main stages of development, functioning and transformation of the Odessa University are analyzed, information on its divisions is collected. For creation of this information resource in Scientific library the method of work was developed, the main selection criteria of data are allocated. This information resource have practical value for all who is interested in history of university, historians, scientists-researchers of history of science and the city of Odessa.

  17. Sustainable Algae Biodiesel Production in Cold Climates

    OpenAIRE

    Baliga, Rudras; Powers, Susan E.

    2010-01-01

    This life cycle assessment aims to determine the most suitable operating conditions for algae biodiesel production in cold climates to minimize energy consumption and environmental impacts. Two hypothetical photobioreactor algae production and biodiesel plants located in Upstate New York (USA) are modeled. The photobioreactor is assumed to be housed within a greenhouse that is located adjacent to a fossil fuel or biomass power plant that can supply waste heat and flue gas containing CO2 as a ...

  18. Price Comovement Between Biodiesel and Natural Gas

    OpenAIRE

    Janda, Karel; Kourilek, Jakub

    2016-01-01

    We study relationship between biodiesel, as a most important biofuel in the EU, relevant feedstock commodities and fossil fuels. Our main interest is to capture relationship between biodiesel and natural gas. They are both used either directly as a fuel or indirectly in form of additives in transport. Therefore, our purpose is to �nd price linkage between biofuel and natural gas to support or reject the claim that they compete as alternative fuels and potential substitutes. The estimated p...

  19. The Costs of Producing Biodiesel from Microalgae in the Asia-Pacific Region

    Directory of Open Access Journals (Sweden)

    G.J. Griffin

    2013-10-01

    Full Text Available Capital and operating cost estimates for converting microalgae to oil or biodiesel are compared. These cost comparisons are based on Australian locations, which are expected to fall at the lower end of the cost spectrum in the Asia-Pacific Region and other parts of the world.  It is assumed that microalgae are grown in a concentrated saltwater medium in raceway ponds, then are harvested, dewatered and the oil is extracted and converted to biodiesel by transesterification. The size of the desired pond system affects the number of potential locations due to constraints in resource availability. Cost estimates vary significantly due to differences in the assumed oil productivity, the harvesting equipment and the method of converting residual biomass to electric power. A comparison is made with recent cost estimates from other parts of the world, in which the expected costs of microalgae oil production from a number of publicly available sources lay between 0.34–31.0 USD/L.  The resulting cost estimates of between 1.37—2.66 USD/L are at the lower end of this scale, thereby confirming that Australia has the potential to be a low-cost producer of algal oil and biodiesel in the Asia-Pacific Region.  It was significant that, despite similar assumptions for the microalgae-to-oil process, cost estimates for the final biodiesel or oil price differed by a factor of 2.  This highlights the high degree of uncertainty in such economic predictions. Keywords: Asia-Pacific region; biodiesel; economics; microalgaeThis article is cited as :Griffin, G., Batten, D., Beer, T., & Campbell, P. (2013. The Costs of Producing Biodiesel from Microalgae in the Asia-Pacific Region. International Journal Of Renewable Energy Development (IJRED, 2(3, 105-113. doi:10.14710/ijred.2.3.105-113Permalinkhttp://dx.doi.org/10.14710/ijred.2.3.105-113

  20. Biodiesel CO2 emissions: A comparison with the main fuels in the Brazilian market

    International Nuclear Information System (INIS)

    Coronado, Christian Rodriguez; de Carvalho, Joao Andrade Jr.; Silveira, Jose Luz

    2009-01-01

    The use of biodiesel is increasing as an attractive fuel due to the depleting fossil fuel resources and environmental degradation. This paper presents results of an investigation on the potentials of biodiesel as an alternative fuel and main substitute of diesel oil, comparing the CO 2 emissions of the main fuels in the Brazilian market with those of biodiesel, in pure form or blended in different proportions with diesel oil (2%, 5%, and 20%, called B2, B5, and B20, respectively). The results of the study are shown in ton CO 2 per m 3 and ton CO 2 per year of fuel. The fuels were analyzed considering their chemical composition, stoichiometric combustion parameters and mean consumption for a single vehicle. The fuels studied were: gasoline, diesel oil, anhydrous ethyl alcohol (anhydrous ethanol), and biodiesel from used frying oil and from soybean oil. For the case of biodiesel, its complete life cycle and the closed carbon cycle (photosynthesis) were considered. With data provided by the Brazilian Association of Automotive Vehicle Manufacturers (ANFAVEA) for the number of vehicles produced in Brazil, the emissions of CO 2 for the national fleet in 2007 were obtained per type of fuel. With data provided by the Brazilian Department of Transit (DENATRAN) concerning the number of diesel vehicles in the last five years in Brazil, the total CO 2 emissions and the percentage that they would decrease in the case of use of pure biodiesel, B100, or several mixtures, B2, B5 and B20, were calculated. Estimates of CO 2 emissions for a future scenario considering the mixtures B5 and B20 are also included in this article. (author)

  1. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies

    International Nuclear Information System (INIS)

    Li, Xue; Mupondwa, Edmund

    2014-01-01

    This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO 2 equivalent and 3.06 to 31.01 kg CO 2 /MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from − 0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive. - Highlights: • LCA of camelina-derived biodiesel and jet fuel was based on the Canadian Prairies. • Overall, camelina-derived biodiesel had lower GHG emissions than is biojet fuel. • Camelina jet fuel had lower non-renewable energy (NRE) use than its biodiesel. • Camelina biofuels reduced GHG emissions and NRE use

  2. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xue; Mupondwa, Edmund, E-mail: Edmund.Mupondwa@agr.gc.ca

    2014-05-01

    This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO{sub 2} equivalent and 3.06 to 31.01 kg CO{sub 2}/MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from − 0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive. - Highlights: • LCA of camelina-derived biodiesel and jet fuel was based on the Canadian Prairies. • Overall, camelina-derived biodiesel had lower GHG emissions than is biojet fuel. • Camelina jet fuel had lower non-renewable energy (NRE) use than its biodiesel. • Camelina biofuels reduced GHG emissions and NRE

  3. BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT

    International Nuclear Information System (INIS)

    KRISHNA, C.R.

    2001-01-01

    Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible

  4. Environmental sustainability of biodiesel in Brazil

    International Nuclear Information System (INIS)

    Geraldes Castanheira, Érica; Grisoli, Renata; Freire, Fausto; Pecora, Vanessa; Coelho, Suani Teixeira

    2014-01-01

    Biodiesel production in Brazil has grown from 736 m 3 in 2007 to 2.7 Mm 3 in 2012. It is an emergent bioenergy for which it is important to guarantee environmental sustainability. The objective of this article is to characterise the biodiesel production chain in Brazil, to identify potential environmental impacts and to analyse key drivers and barriers for biodiesel environmental sustainability. This article explores these aspects and focusses on the increasing demand for the main feedstocks for biodiesel production in Brazil: soybean oil and beef tallow. The impacts of land use and land-use change on greenhouse gas emissions, biodiversity and water, as well as the energy balance, were found to be critical for the environmental sustainability assessment and development of biodiesel chains. Increasing agriculture yields, diversifying feedstocks and adopting ethyl transesterification can contribute to minimise environmental impacts. It was also found that environmental impacts could be mitigated by appropriate policies aiming at an integrated optimisation of food and bioenergy production and through agro-economic–ecological zoning, allowing adequate use of land for each purpose. Despite the limitation and weakness of some sustainability tools and initiatives, certification and zoning can play an important role in the sustainability of the emerging biodiesel production in Brazil

  5. Degradation of automotive materials in palm biodiesel

    International Nuclear Information System (INIS)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H.

    2012-01-01

    As compared to petroleum diesel, biodiesel is more corrosive for automotive materials. Studies on the characterization of corrosion products of fuel exposed automotive materials are scarce. Automotive fuel system and engine components are made from different ferrous and non-ferrous materials. The present study aims to investigate the corrosion products of different types of automotive materials such as copper, brass, aluminum and cast iron upon exposure to diesel and palm biodiesel. Changes in fuel properties due to exposure of different materials were also examined. Degradation of metal surface was characterized by digital camera, SEM/EDS and X-ray diffraction (XRD). Fuel properties were examined by measuring TAN (total acid number), density and viscosity. Among the metal investigated, copper is found to be least resistant in biodiesel and formed comparatively more corrosion products than other metals. Upon exposure of metals in biodiesel, TAN number crosses the limit given by standard while density and viscosity remain within the acceptable range of limit. -- Highlights: ► Order of incompatible metals in palm biodiesel: copper > brass > aluminum > cast iron. ► The possible reactions for the degradation of copper and cast iron have been discussed. ► For metal exposed biodiesel, only TAN number crosses the limit while density and viscosity remain within the limit. ► Copper and copper based alloy (brass) increase TAN number comparatively more than other metals.

  6. Effect of mixture of alcohols on biodiesel properties which produced from waste cooking oils and compare combustion performance and emissions of biodiesels with petrodiesel

    OpenAIRE

    Mansourpoor Mojtaba; Shariati Ahmad

    2012-01-01

    Increasing the petroleum price and environmental problems have been driving forces to findalternative and renewable energy resources. Biodiesel has attracted the attention of many researchersdue to various advantages associated with its usages. Several aspects including the type of catalyst,molar ratio of alcohol to oil, temperature, purity of reactants and free fatty acid content have mainlyinfluence on transesterification. In this work, waste cooking oils and two types of alcohols with diff...

  7. Energy analysis and environmental impacts of microalgal biodiesel in China

    International Nuclear Information System (INIS)

    Liao Yanfen; Huang Zehao; Ma Xiaoqian

    2012-01-01

    The entire life cycle of biodiesel produced by microalgal biomasses was evaluated using the method of life cycle assessment (LCA) to identify and quantify the fossil energy requirements and environmental impact loading of the system. The life cycle considers microalgae cultivation, harvesting, drying, oil extraction, anaerobic digestion, oil transportation, esterification, biodiesel transportation and biodiesel combustion. The investigation results show that the fossil energy requirement for the biodiesel production is 0.74 MJ/MJ biodiesel, indicating that 1 MJ of biodiesel requires an input of 0.74 MJ of fossil energy. Accordingly, biodiesel production is feasible as an energy producing process. The environmental impact loading of microalgal biodiesel is 3.69 PET 2010 (Person Equivalents, Targeted, in 2010) and the GWP is 0.16 kg CO 2-eq /MJ biodiesel. The effects of photochemical ozone formation were greatest among all calculated categorization impacts. The fossil energy requirement and GWP in this operation were found to be particularly sensitive to oil content, drying rate and esterification rate. Overall, the results presented herein indicate that the cultivation of microalgae has the potential to produce an environmentally sustainable feedstock for the production of biodiesel. - Highlights: ► Do energy analysis and environmental impacts of algal biodiesel in China. ► GWP and energy consumption are sensitive to lipid content and drying rate. ► Fossil energy consumption for algal biodiesel is 0.74 MJ/MJ. ► Microalgae are an environmentally sustainable feedstock for biodiesel production.

  8. Feasibility study of microalgal and jatropha biodiesel production plants: Exergy analysis approach

    International Nuclear Information System (INIS)

    Ofori-Boateng, Cynthia; Keat, Teong Lee; JitKang, Lim

    2012-01-01

    The exergy analyses performed in this study are based on three thermodynamic performance parameters namely exergy destruction, exergy efficiency and thermodynamic improvement potentials. After mathematical analysis with Aspen Plus software, the results showed that 64% and 44% of the total exergy content of the input resources into microalgal methyl ester (MME) and jatropha methyl ester (JME) production plants were destroyed respectively for 1 ton of biodiesel produced. This implies that only 36% and 56% (for MME and JME production plants respectively) useful energy in the products is available to do work. The highest and lowest exergy destructions were recorded in the oil extraction units (38% and 39% of the total exergy destroyed for MME and JME plants respectively) and transesterification units (5% and 2% of total exergy destroyed for MME and JME plants respectively) respectively for 1 ton biodiesel produced. Since sustainable biodiesel production depends on cultivation of feedstock, oil extraction and transesterification processes, exergy analysis which is carried out on only the transesterification unit cannot justify the thermodynamic feasibility of the whole biodiesel production plant unless a complete thermodynamic assessment has been done for the whole plant. Thus, according to this study which considers all the biodiesel production processes, MME and JME production plants are not thermodynamically feasible. - Highlights: ► 64% of exergy content of input resources into MME production plant is destroyed. ► 44% of exergy content of input resources into JME production plant is destroyed. ► Exergetic efficiencies of MME and JME production plants are far less than 1. ► Thermodynamically, MME and JME production plants are unsustainable. ► Exergy loss can be reduced by using heat integrated reactive distillation process.

  9. Print and Electronic Resources: Usage Statistics at Guru Gobind Singh Indraprastha University Library

    Science.gov (United States)

    Kapoor, Kanta

    2010-01-01

    Purpose: The purpose of this paper is to quantify the use of electronic journals in comparison with the print collections in the Guru Gobind Singh Indraprastha University Library. Design/methodology/approach: A detailed analysis was made of the use of lending services, the Xerox facility and usage of electronic journals such as Science Direct,…

  10. Understanding intention to use electronic information resources: A theoretical extension of the technology acceptance model (TAM).

    Science.gov (United States)

    Tao, Donghua

    2008-11-06

    This study extended the Technology Acceptance Model (TAM) by examining the roles of two aspects of e-resource characteristics, namely, information quality and system quality, in predicting public health students' intention to use e-resources for completing research paper assignments. Both focus groups and a questionnaire were used to collect data. Descriptive analysis, data screening, and Structural Equation Modeling (SEM) techniques were used for data analysis. The study found that perceived usefulness played a major role in determining students' intention to use e-resources. Perceived usefulness and perceived ease of use fully mediated the impact that information quality and system quality had on behavior intention. The research model enriches the existing technology acceptance literature by extending TAM. Representing two aspects of e-resource characteristics provides greater explanatory information for diagnosing problems of system design, development, and implementation.

  11. Model Biaya Produksi Biodiesel Berbasis Minyak Sawit

    Directory of Open Access Journals (Sweden)

    Meilita Tryana Sembiring

    2015-06-01

    Full Text Available Biodiesel is a renewable energy source in Indonesia of which the use is regulated by the government in the form of mandatory policy of biodiesel and diesel fuel blending. The production of biodiesel in Indonesia is not developed (the need is 3.4 million kiloliters but the total national production is only 1,703 kiloliters. It is because the selling price (referring to Mean of Platts Singapore is always lower than the production cost. Biodiesel production is influenced by raw materials and process technology, so it needs to be conducted biodiesel production modeling as a basis in determining the supporting policies of biodiesel selling price. The purpose of this study is to identify the raw materials, process technology, and modeling the production cost structure of palm oil-based biodiesel. Identification of raw materials was conducted by literature study and field survey to biodiesel producers. Identification of process technology was conducted by field survey and mass balance calculation using Grand Inizio technology to get the number of yield of each raw material. Then, production cost study was based on the specifications of raw materials and process technology with heuristic approach. Types and specifications of palm oil widely used by Indonesian producers are Crude Palm Oil (CPO FFA<5%, Refined Palm Oil (RPO FFA<5%, Refined Oil FFA<1%, Palm Fatty Acid Distillated (PFAD FFA 90%. The technology process used was transesterification for FFA level <1% and esterification-transesterification for FFA level <5%. The resulting yield for 1000 kg of raw material is 1051.75 kg CPO, 975.94 kg RPO and PFAD, 973.81 kg Refined Oil with Grand Inizio technology approach. The production cost model represents the total production cost influenced by the costs of Inside Battery Limit, Outside Battery Limit, general cost and glycerol value-added.ABSTRAKBiodiesel adalah sumber energi terbarukan di Indonesia yang diatur penggunaannya oleh pemerintah dalam bentuk

  12. Algae biodiesel - a feasibility report

    Science.gov (United States)

    2012-01-01

    Background Algae biofuels have been studied numerous times including the Aquatic Species program in 1978 in the U.S., smaller laboratory research projects and private programs. Results Using Molina Grima 2003 and Department of Energy figures, captial costs and operating costs of the closed systems and open systems were estimated. Cost per gallon of conservative estimates yielded $1,292.05 and $114.94 for closed and open ponds respectively. Contingency scenarios were generated in which cost per gallon of closed system biofuels would reach $17.54 under the generous conditions of 60% yield, 50% reduction in the capital costs and 50% hexane recovery. Price per gallon of open system produced fuel could reach $1.94 under generous assumptions of 30% yield and $0.2/kg CO2. Conclusions Current subsidies could allow biodiesel to be produced economically under the generous conditions specified by the model. PMID:22540986

  13. Algae biodiesel - a feasibility report

    Directory of Open Access Journals (Sweden)

    Gao Yihe

    2012-04-01

    Full Text Available Abstract Background Algae biofuels have been studied numerous times including the Aquatic Species program in 1978 in the U.S., smaller laboratory research projects and private programs. Results Using Molina Grima 2003 and Department of Energy figures, captial costs and operating costs of the closed systems and open systems were estimated. Cost per gallon of conservative estimates yielded $1,292.05 and $114.94 for closed and open ponds respectively. Contingency scenarios were generated in which cost per gallon of closed system biofuels would reach $17.54 under the generous conditions of 60% yield, 50% reduction in the capital costs and 50% hexane recovery. Price per gallon of open system produced fuel could reach $1.94 under generous assumptions of 30% yield and $0.2/kg CO2. Conclusions Current subsidies could allow biodiesel to be produced economically under the generous conditions specified by the model.

  14. Performance and emission characteristics of double biodiesel blends with diesel

    Directory of Open Access Journals (Sweden)

    Kuthalingam Arun Balasubramanian

    2013-01-01

    Full Text Available Recent research on biodiesel focused on performance of single biodiesel and its blends with diesel. The present work aims to investigate the possibilities of the application of mixtures of two biodiesel and its blends with diesel as a fuel for diesel engines. The combinations of Pongamia pinnata biodiesel, Mustard oil biodiesel along with diesel (PMD and combinations of Cotton seed biodiesel, Pongamia pinnata biodiesel along with diesel (CPD are taken for the experimental analysis. Experiments are conducted using a single cylinder direct-injection diesel engine with different loads at rated 3000 rpm. The engine characteristics of the two sets of double biodiesel blends are compared. For the maximum load, the value of Specific Fuel consumption and thermal efficiency of CPD-1 blend (10:10:80 is close to the diesel values. CPD blends give better engine characteristics than PMD blends. The blends of CPD are suitable alternative fuel for diesel in stationary/agricultural diesel engines.

  15. Assessment of Physicochemical Properties of Biodiesel from African ...

    African Journals Online (AJOL)

    according to standard method for oil and fuel analysis to evaluate its suitability as oil crop for biodiesel production in Nigeria. ... Keywords: African Grape, Lannea microcarpa, Seeds, Oil, Biodiesel .... characterization (Dalai, 2004). The oil was.

  16. Business Management for Biodiesel Producers: August 2002--January 2004

    Energy Technology Data Exchange (ETDEWEB)

    Van Gerpen, J.

    2004-07-01

    The material in this book is intended to provide the reader with information about the biodiesel and liquid fuels industry, biodiesel start-up issues, legal and regulatory issues, and operational concerns.

  17. Low-Cost feedstock conversion to biodiesel via ultrasound technology

    CSIR Research Space (South Africa)

    Babajide, O

    2010-10-01

    Full Text Available shown that biodiesel is a better fuel than the fossil-derived diesel in terms of engine performance, emissions reduction, lubricity and environmental benefits. The increasing popularity of biodiesel has generated great demand for its commercial...

  18. Production of Biodiesel from Parinari polyandra B. Seed Oil using ...

    African Journals Online (AJOL)

    Akorede

    catalysts for the transesterification of Parinari polyandra seeds oil and the results .... reduction in free fatty acids. .... Development and Characterization of Biodiesel from Shea Nut ... comparative review of biodiesel production from Jatropha.

  19. Improved oxidative stability of biodiesel fuels : antioxidant research and development.

    Science.gov (United States)

    2011-01-01

    Biodiesel is a domestic, renewable fuel that is gaining wide acceptance, especially in Europe. : When blended with conventional petroleum diesel, biodiesel reduces hydrocarbon, particulate : and carbon monoxide emissions, while having minimal to no e...

  20. Factors of enzymatic biodiesel production from sludge palm oil (SPO ...

    African Journals Online (AJOL)

    ika

    2013-07-31

    Jul 31, 2013 ... Biodiesel is a non-toxic, renewable and environmental friendly fuel. This study ... of biodiesel from sludge palm oil (SPO), a low-cost waste oil via enzymatic catalysis. ... Increasing energy crisis and environmental concerns by.

  1. In situ Transesterification of Microalgal Oil to Produce Algal Biodiesel

    Science.gov (United States)

    2012-06-01

    This research was to process whole microalgae cells for biodiesel production without first extracting lipids. The ultimate : goal is develop a novel process for algal biodiesel production directly from microalgae cells in a single step, i.e., in situ...

  2. Study of the Effects of Ethanol As an Additive with a Blend of Poultry Litter Biodiesel and Alumina Nanoparticles on a Diesel Engine

    Directory of Open Access Journals (Sweden)

    Ramesha D. K.

    2017-12-01

    Full Text Available With the increasing population and rise in industrialization, the demand for petroleum reserves is increasing almost daily. This is causing depletion of the non-renewable energy resources. This work aims to find an alternative fuel for diesel engines. The use of poultry litter oil biodiesel obtained from poultry industry waste, which is a non-edible source for biodiesel, is very encouraging as an alternative fuel for diesel engines. The aim of this study is to observe and maximize the performance of poultry litter oil biodiesel by adding alumina nanoparticles and ethanol. The biodiesel is prepared with acid and the base catalysed transesterification of poultry litter oil with methanol using concentrated sulphuric acid and potassium hydroxide as catalysts. The experimentation is carried out on a CI engine with three different blends - B20 biodiesel blend, B20 biodiesel blend with 30 mg/L alumina nanoparticles, and B20 biodiesel blend with 30 mg/L alumina nanoparticles and 15 ml/L ethanol. The performance, combustion and emission characteristics of all three blends are compared with neat diesel. The results of the experiment show that ethanol as an additive improves the combustion and performance characteristics. It increases the brake thermal efficiency and peak cylinder pressure. It also reduces CO and UBHC emissions and there is a marginal increase in NOx emissions as compared to neat diesel.

  3. Building and Managing Electronic Resources in Digital Era in India with Special Reference to IUCAA and NIV, Pune: A Comparative Case Study

    Science.gov (United States)

    Sahu, H. K.; Singh, S. N.

    2015-04-01

    This paper discusses and presents a comparative case study of two libraries in Pune, India, Inter-University Centre for Astronomy and Astrophysics and Information Centre and Library of National Institute of Virology (Indian Council of Medical Research). It compares how both libraries have managed their e-resource collections, including acquisitions, subscriptions, and consortia arrangements, while also developing a collection of their own resources, including pre-prints and publications, video lectures, and other materials in an institutional repository. This study illustrates how difficult it is to manage electronic resources in a developing country like India, even though electronic resources are used more than print resources. Electronic resource management can be daunting, but with a systematic approach, various problems can be solved, and use of the materials will be enhanced.

  4. The level of the usage of the human resource information system and electronic recruitment in Croatian companies

    Directory of Open Access Journals (Sweden)

    Snježana Pivac

    2014-12-01

    Full Text Available Performing business according to contemporary requirements influences companies for continuous usage of modern managerial tools, such as a human resource information system (HRIS and electronic recruitment (ER. Human resources have been recognised as curtail resources and the main source of a competitive advantage in creation of successful business performance. In order to attract and select the top employees, companies use quality information software for attracting internal ones, and electronic recruitment for attracting the best possible external candidates. The main aim of this paper is to research the level of the usage of HRIS and ER within medium-size and large Croatian companies. Moreover, the additional aim of this paper is to evaluate the relationship among the usage of these modern managerial tools and the overall success of human resource management within these companies. For the purpose of this paper, primary and secondary research has been conducted in order to reveal the level of the usage of HRIS and ER as well as the overall success of human resource management in Croatian companies. The companies’ classification (HRIS and ER is done by using the non-hierarchical k-means cluster method as well as the nonparametric Kruskal Wallis test. Further, the companies are ranked by the multicriteria PROMETHEE method. Relevant nonparametric tests are used for testing the overall companies’ HRM. Finally, binary logistic regression is estimated, relating binary variable HRM and HRIS development. After detailed research, it can be concluded that large Croatian companies apply HRIS in majority (with a positive relation to HRM performance, but still require certain degrees of its development.

  5. Techno-economic study of different alternatives for biodiesel production

    International Nuclear Information System (INIS)

    Marchetti, J.M.; Miguel, V.U.; Errazu, A.F.

    2008-01-01

    Biodiesel has become an attractive diesel fuel substitute due to its environmental benefits since it can be made from renewable resource. However, the high costs surrounding biodiesel production remains the main problem in making it competitive in the fuel market either as a blend or as a neat fuel. More than 80% of the production cost is associated with the feedstock itself and consequently, efforts are focused on developing technologies capable of using lower-cost feedstocks, such as recycled cooking oils and wastes from animal or vegetable oil processing operations. The main issue with spent oils is the high level of free fatty acids found in the recycled materials. The conventional technology employs sodium methoxide as a homogeneous base catalyst for the transesterification reaction and illustrates the drawbacks in working with feedstocks that contain high levels of free fatty acids. On the other hand, homogeneous acidic catalysts are being used for exactly such feedstocks. Both acid and basic homogeneous catalyzed processes require downstream purification equipment to neutralize the catalyst and to purify the biodiesel as well as the glycerol. Recent studies have been conducted to employ heterogeneous catalysts, such acidic or basic solid resins, or immobilized lipases. These catalysts will allow the use of different feedstocks that will permit operation at lower investment costs and will require less downstream process equipment. A conceptual design of these alternative production plants has been done with a techno-economic analysis in order to compare these alternatives. A process simulator was employed to carry out the conceptual design and simulation of each technology. Using these models it was possible to analyze different scenarios and to evaluate productivity, raw material consumption, economic competitiveness, and environmental impacts of each process. (author)

  6. Predicting specific gravity and viscosity of biodiesel fuels

    OpenAIRE

    Tesfa, Belachew; Mishra, Rakesh; Gu, Fengshou; Ball, Andrew

    2009-01-01

    Biodiesel is a promising non-toxic and biodegradable alternative fuel in transport sector. Of all the biodiesel properties, specific gravity and viscosity are the most significant for the effects they have on the utilization of biodiesel fuels in unmodified engines. This paper presents models, which have been derived from experimental data, for predicting the specific gravity and dynamic viscosity of biodiesel at various temperatures and fractions. In addition a model has also been developed ...

  7. Market penetration of biodiesel and ethanol

    Science.gov (United States)

    Szulczyk, Kenneth Ray

    This dissertation examines the influence that economic and technological factors have on the penetration of biodiesel and ethanol into the transportation fuels market. This dissertation focuses on four aspects. The first involves the influence of fossil fuel prices, because biofuels are substitutes and have to compete in price. The second involves biofuel manufacturing technology, principally the feedstock-to-biofuel conversion rates, and the biofuel manufacturing costs. The third involves prices for greenhouse gas offsets. The fourth involves the agricultural commodity markets for feedstocks, and biofuel byproducts. This dissertation uses the Forest and Agricultural Sector Optimization Model-Greenhouse Gas (FASOM-GHG) to quantitatively examine these issues and calculates equilibrium prices and quantities, given market interactions, fossil fuel prices, carbon dioxide equivalent prices, government biofuel subsidies, technological improvement, and crop yield gains. The results indicate that for the ranges studied, gasoline prices have a major impact on aggregate ethanol production but only at low prices. At higher prices, one runs into a capacity constraint that limits expansion on the capacity of ethanol production. Aggregate biodiesel production is highly responsive to gasoline prices and increases over time. (Diesel fuel price is proportional to the gasoline price). Carbon dioxide equivalent prices expand the biodiesel industry, but have no impact on ethanol aggregate production when gasoline prices are high again because of refinery capacity expansion. Improvement of crop yields shows a similar pattern, expanding ethanol production when the gasoline price is low and expanding biodiesel. Technological improvement, where biorefinery production costs decrease over time, had minimal impact on aggregate ethanol and biodiesel production. Finally, U.S. government subsidies have a large expansionary impact on aggregate biodiesel production. Finally, U.S. government

  8. Base catalyzed transesterification of sunflower oil biodiesel | Ahmad ...

    African Journals Online (AJOL)

    In this study, sunflower oil was investigated for biodiesel production. Sunflower is one of the leading oil seed crop, cultivated for the production of oil in the world. It has also been considered as an important crop for biodiesel production. Seeds for biodiesel production were procured from local farmers of Attock and ...

  9. Alternative Fuels Data Center: Alabama City Leads With Biodiesel and

    Science.gov (United States)

    Ethanol Alabama City Leads With Biodiesel and Ethanol to someone by E-mail Share Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Facebook Tweet about Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Twitter Bookmark Alternative Fuels

  10. Economic feasibility of biodiesel production from Macauba in Brazil

    International Nuclear Information System (INIS)

    Lopes, Daniela de Carvalho; Steidle Neto, Antonio José; Mendes, Adriano Aguiar; Pereira, Débora Tamires Vítor

    2013-01-01

    In this work the economic feasibility of biodiesel production in Brazil by using the Macauba oil as raw matter is studied. The software SIMB-E, in which a cash flow model applied to biodiesel production is implemented, was used during simulations. Economic indexes related to biodiesel production features, as well as the competitiveness between selling prices of biodiesel and petrodiesel were considered. It was found that all of the 8 simulated scenarios were potentially profitable, but only 2 of them presented competitive biodiesel selling prices, being considered as worthwhile projects. These were seed-oil plants with alkaline transesterification. Results also indicated that the success of biodiesel production still requires additional revenues beyond that derived from biodiesel itself, including income from the feedstock coproducts and glycerol. Macauba showed to be a potential crop to be used in biodiesel production. However, the domestication and improvement on processing of this species are indispensable to ensure its availability of long-term use. - Highlights: • Competitiveness between selling prices of biodiesel and petrodiesel was the main evaluated criterion. • The main criterion to suggest worthwhile projects was the biodiesel selling price. • Biodiesel plants with integrated oil mill and alkaline transesterification were profitable. • Macauba showed to be a potential crop to be used in biodiesel production. • The domestication and improvement on processing of Macauba are indispensable

  11. Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel

    Science.gov (United States)

    Vehicles in Vermont Recycled Cooking Oil Powers Biodiesel Vehicles in Vermont to someone by E -mail Share Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel Vehicles in Vermont on Facebook Tweet about Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel Vehicles in

  12. Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel

    Science.gov (United States)

    Trucks Seattle Bakery Delivers With Biodiesel Trucks to someone by E-mail Share Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel Trucks on Facebook Tweet about Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel Trucks on Twitter Bookmark Alternative Fuels

  13. Systematic sustainable process design and analysis of biodiesel processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Ismail, Muhammad Imran; Babi, Deenesh Kavi

    2013-01-01

    Biodiesel is a promising fuel alternative compared to traditional diesel obtained from conventional sources such as fossil fuel. Many flowsheet alternatives exist for the production of biodiesel and therefore it is necessary to evaluate these alternatives using defined criteria and also from...... a biodiesel production case study....

  14. Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas

    Science.gov (United States)

    Tree Biodiesel Truck Transports Capitol Christmas Tree to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Twitter Bookmark Alternative

  15. MendelWeb: An Electronic Science/Math/History Resource for the WWW.

    Science.gov (United States)

    Blumberg, Roger B.

    This paper describes a hypermedia resource, called MendelWeb that integrates elementary biology, discrete mathematics, and the history of science. MendelWeb is constructed from Gregor Menders 1865 paper, "Experiments in Plant Hybridization". An English translation of Mendel's paper, which is considered to mark the birth of classical and…

  16. Helping Patrons Find Locally Held Electronic Resources: An Interlibrary Loan Perspective

    Science.gov (United States)

    Johnston, Pamela

    2016-01-01

    The University of North Texas Libraries provide extensive online access to academic journals through major vendor databases. As illustrated by interlibrary loan borrowing requests for items held in our databases, patrons often have difficulty navigating the available resources. In this study, the Interlibrary Loan staff used data gathered from the…

  17. QR Codes as Finding Aides: Linking Electronic and Print Library Resources

    Science.gov (United States)

    Kane, Danielle; Schneidewind, Jeff

    2011-01-01

    As part of a focused, methodical, and evaluative approach to emerging technologies, QR codes are one of many new technologies being used by the UC Irvine Libraries. QR codes provide simple connections between print and virtual resources. In summer 2010, a small task force began to investigate how QR codes could be used to provide information and…

  18. Biodiesel of distilled hydrogenated fat and biodiesel of distilled residual oil: fuel consumption in agricultural tractor

    Energy Technology Data Exchange (ETDEWEB)

    Camara, Felipe Thomaz da; Lopes, Afonso; Silva, Rouverson Pereira da; Oliveira, Melina Cais Jejcic; Furlani, Carlos Eduardo Angeli [Universidade Estadual Paulista (UNESP), Jaboticabal, SP (Brazil); Dabdoub, Miguel Joaquim [Universidade de Sao Paulo (USP), Ribeirao Preto (Brazil)

    2008-07-01

    Great part of the world-wide oil production is used in fry process; however, after using, such product becomes an undesirable residue, and the usual methods of discarding of these residues, generally contaminate the environment, mainly the rivers. In function of this, using oil and residual fat for manufacturing biodiesel, besides preventing ambient contamination, turning up an undesirable residue in to fuel. The present work had as objective to evaluate the fuel consumption of a Valtra BM100 4x2 TDA tractor functioning with methylic biodiesel from distilled hydrogenated fat and methylic biodiesel from distilled residual oil, in seven blends into diesel. The work was conducted at the Department of Agricultural Engineering, at UNESP - Jaboticabal, in an entirely randomized block statistical design, factorial array of 2 x 7, with three repetitions. The factors combinations were two types of methylic distilled biodiesel (residual oil and hydrogenated fat) and seven blends (B{sub 0}, B{sub 5}, B{sub 1}5, B{sub 2}5, B{sub 5}0, B{sub 7}5 and B{sub 1}00). The results had evidenced that additioning 15% of biodiesel into diesel, the specific consumption was similar, and biodiesel of residual oil provided less consumption than biodiesel from hydrogenated fat. (author)

  19. BiodieselFAO: An Integrated Decision Support System for Investment Analysis in the Biodiesel Production Chain

    Directory of Open Access Journals (Sweden)

    Aziz Galvão da Silva Júnior

    2015-06-01

    Full Text Available In the short and medium terms, biofuels are the most viable alternative to reduce the environmental impact of fossil fuels. The recent controversy over the competition between biofuels and food production increases the complexity of investment decisions in the biodiesel production chain. In this context, decision support tools are highly relevant. The purpose of this article is to describe the BiodieselFAO using the Unified Modeling Language (UML. An integrated analysis considering both agricultural and industrial sectors was identified as a key requirement to the system. Therefore, farmers and industry are the main actors in the use case diagram. As the raw material represents around 70% of the industrial cost of biodiesel production, the price negotiation of raw material (oilseeds is the central use case. Configuration, agriculture, industry, results and scenarios are the modules, which encompass the functionalities derived from the UML diagrams. The Food and Agriculture Organization of the United Nations (FAO has made the BiodieselFAO available, free of charge, to around 180 professionals from 17 Latin American countries. Additionally, the developing team has supported the usage of the BiodieselFAO in several biodiesel investment analyses throughout Latin America. The system was also useful in the design and analysis of policy related to biodiesel industry in Brazil.

  20. Methanolysis of Crude Jatropha Oil using Heterogeneous Catalyst from the Seashells and Eggshells as Green Biodiesel

    Directory of Open Access Journals (Sweden)

    A. N. R. REDDY

    2017-07-01

    Full Text Available In this work, heterogeneous calcium oxide catalysts gleaned from Polymedosa expansa and eggshell were investigated for the transesterification of crude jatropha oil with methanol, to access their prospective performance in biodiesel production as an alternative green energy resource. The best yield of biodiesel achieved was 96% in 1 h for Step 1 using 0.01:1 ratio of acid catalyst to oil and 0.6:1 ratio of alcohol to oil ratio, together with 2 h of Step 2 using 0.02:1 ratio with base catalyst CaO, derived from P. expansa, to oil ratio and 5:1 ratio of alcohol to oil.  The properties of jatropha biodiesel were analyzed and found to have calorific value of 35.43 MJ/kg, density value of 895 kg/m3 and flash point of 167. The biodiesel was blended with mineral diesel from B0 to B50 for a diesel engine performance test. B20 indicated comparable characteristics with pure mineral diesel, like lowest fuel consumption rate, specific fuel consumption rate, highest brake horsepower and mechanical efficiency.

  1. Characterization and transesterification of Iranian bitter almond oil for biodiesel production

    International Nuclear Information System (INIS)

    Atapour, Mehdi; Kariminia, Hamid-Reza

    2011-01-01

    In the present work the production of biodiesel using bitter almond oil (BAO) in a potassium hydroxide catalyzed transesterification reaction was investigated. The BAO was obtained from resources available in Iran and its physical and chemical properties including iodine value, acid value, density, kinematic viscosity, fatty acid composition and mean molecular weight were specified. The low acid value of BAO (0.24 mg KOH/g) indicated that the pretreatment of raw oil with acid was not required. The fatty acid content analysis confirmed that the contribution of unsaturated fatty acids in the BAO is high (84.7 wt.%). Effect of different parameters including methanol to oil molar ratio (3-11 mol/mol), potassium hydroxide concentration (0.1-1.7% w/w) and reaction temperature (30-70 o C) on the production of biodiesel were investigated. The results indicated that these parameters were important factors affecting the tranesterification reaction. The fuel properties of biodiesel including iodine value, acid value, density, kinematic viscosity, saponification value, cetane number, flash point, cloud point, pour point and distillation characteristics were measured. The properties were compared with those of petroleum diesel, EN 14214 and ASTM 6751 biodiesel standards and an acceptable agreement was observed.

  2. Toxicological evaluation of vegetable oils and biodiesel in soil during the biodegradation process

    Directory of Open Access Journals (Sweden)

    Ivo S. Tamada

    2012-12-01

    Full Text Available Vegetable oils and their derivatives, like biodiesel, are used extensively throughout the world, thus posing an environmental risk when disposed. Toxicity testing using test organisms shows how these residues affect ecosystems. Toxicity tests using earthworms (Eisenia foetida. are widespread because they are a practical resource for analyzing terrestrial organisms. For phytotoxicological analysis, we used seeds of arugula (Eruca sativa and lettuce (Lactuca sativa. to analyze the germination of seeds in contaminated soil samples. The toxicological experiment was conducted with four different periods of biodegradation in soil: zero days, 60 days, 120 days and 180 days. The studied contaminants were soybean oil (new and used and biodiesel (B100. An evaluation of the germination of both seeds showed an increased toxicity for all contaminants as the biodegradation occurred, biodiesel being the most toxic among the contaminants. On the other hand, for the tests using earthworms, the biodiesel was the only contaminant that proved to be toxic. Therefore, the higher toxicity of the sample containing these hydrocarbons over time can be attributed to the secondary compounds formed by microbial action. Thus, we conclude that the biodegradation in soil of the studied compounds requires longer periods for the sample toxicity to be decreased with the action of microorganisms.

  3. ECOTOXICOLOGICAL EFFECTS OF BIODIESEL IN THE SOIL

    Directory of Open Access Journals (Sweden)

    Małgorzata Hawrot-Paw

    2015-11-01

    Full Text Available The paper analysed the toxic effect of the presence of biodiesel in the soil. The study involved tests with microorganisms that evaluated changes in their number and activity, and phytotoxicity tests with garden cress (Lepidium sativum and spring barley (Hordeum vulgare. Biodiesel produced in laboratory conditions and biofuel purchased at a petrol station were introduced to the soil. Two levels of contamination were used – 1% and 5% (per dry mass of the soil. Based on the results, it was discovered that biofuels both stimulated and reduced the number and activity of microorganisms. The changes observed depended on the type of biofuel and, most often, on its dose. Laboratory biodiesel exhibited more toxic effects, especially for actinobacteria and fungi. The tested plants showed diverse sensitivity to the presence of biodiesel. Given the determined value of the germination index, laboratory biodiesel was more toxic to spring barley and commercial biofuel to garden cress. In both cases, toxicity increased with an increase in the amount of biofuel.

  4. Production of biodiesel from Coelastrella sp. microalgae

    Science.gov (United States)

    Mansur, Dieni; Fitriady, Muhammad Arifuddin; Susilaningsih, Dwi; Simanungkalit, Sabar Pangihutan

    2017-11-01

    Microalgae have a wide area of usage and one of them it can be used for biodiesel production. In biodiesel production, lipids containing triglyceride or free fatty acid are converted into methyl ester through trans/esterification reactions. Lipids from microalgae can be extracted by acetone and dimethyl carbonate using homogenizer. Esterification of the lipids was investigated using various catalysts and source of methyl group. Activity of homogeneous catalyst such as HCl and H2SO4 and heterogeneous catalysts such as montmorillonit K-10 and ledgestone was investigated. Moreover, methanol and dimethyl carbonate as source of methyl group were also studied. Among of catalysts with methanol as source of methyl group, it was found that yield of crude biodiesel derived from Choelestrella Sp. microalgae was high over H2SO4 catalyst. On the other hand, over H2SO4 catalyst using dimethyl carbonate as source of methyl group, yield of crude biodiesel significant increase. However, FAME composition of crude biodiesel was high over HCl catalyst.

  5. Sustainable Algae Biodiesel Production in Cold Climates

    Directory of Open Access Journals (Sweden)

    Rudras Baliga

    2010-01-01

    Full Text Available This life cycle assessment aims to determine the most suitable operating conditions for algae biodiesel production in cold climates to minimize energy consumption and environmental impacts. Two hypothetical photobioreactor algae production and biodiesel plants located in Upstate New York (USA are modeled. The photobioreactor is assumed to be housed within a greenhouse that is located adjacent to a fossil fuel or biomass power plant that can supply waste heat and flue gas containing CO2 as a primary source of carbon. Model results show that the biodiesel areal productivity is high (19 to 25 L of BD/m2/yr. The total life cycle energy consumption was between 15 and 23 MJ/L of algae BD and 20 MJ/L of soy BD. Energy consumption and air emissions for algae biodiesel are substantially lower than soy biodiesel when waste heat was utilized. Algae's most substantial contribution is a significant decrease in the petroleum consumed to make the fuel.

  6. Enzymatisk omestring til produktion af biodiesel

    DEFF Research Database (Denmark)

    Fjerbæk, Lene

    2007-01-01

      Biodiesel er i dag sammen med bioethanol et bud på, hvordan transportsektoren kan nedbringe sin netto CO2-emission til atmosfæren og lagrene af fossilt brændstof kan strækkes. På verdensplan forventes der en produktion af biodiesel på 7,9 mio. tons i 2007. Ved den industrielle fremstilling af...... biodiesel benyttes i dag kemiske katalysatorer såsom H2SO4, NaOH, MeONa eller KOH, der efterfølgende fjernes fra den producerede biodiesel med store mængder vand og derved produceres store mængder spildevand. Ved at benytte enzymer i processen kan man reducere mængden af spildevand, der skal renses. Enzymer...... benyttes ikke i de eksisterende processer, men det forventes, at udviklingen af processerne vil øge deres anvendelse i biodieselproduktion. I artiklen præsenteres fordele og ulemper ved anvendelse af enzymer til biodiesel produktion....

  7. Particulate Emissions and Biodiesel: A review

    Directory of Open Access Journals (Sweden)

    Michal Angelovič

    2013-05-01

    Full Text Available Abstract The current mode of transport using fuel it cannot be characterized as harmless to human health or as sustainable. The whole process of extracting, processing and using of petroleum products can be seen as the raw material cycle in nature. This cycle also cause serious damage to the environment and human health. Many studies on air pollutant emissions with biodiesel have been carried out worldwide. Studies have shown that diesel-powered vehicles are the major contributors of PM emissions. PM particulates are especially important in regard to adverse health outcomes, such as increased cardiovascular, respiratory morbidity and mortality rates, due to their larger active surface and the higher likelihood of deposition in the alveolar region of the lungs. Hence, it is overwhelming argument that the use of biodiesel instead of diesel causes reduce of PM emissions. Of course, this reduction will become smaller with the reduction of biodiesel proportion in the blended fuel. The trend with which PM emissions of biodiesel will be reduced, is due to lower aromatic and sulfur compounds and higher cetane number for biodiesel, but the more important factor is the higher oxygen content.

  8. Eavesdropping on Electronic Guidebooks: Observing Learning Resources in Shared Listening Environments.

    Science.gov (United States)

    Woodruff, Allison; Aoki, Paul M.; Grinter, Rebecca E.; Hurst, Amy; Szymanski, Margaret H.; Thornton, James D.

    This paper describes an electronic guidebook, "Sotto Voce," that enables visitors to share audio information by eavesdropping on each others guidebook activity. The first section discusses the design and implementation of the guidebook device, key aspects of its user interface, the design goals for the audio environment, the eavesdropping…

  9. Addressing Palm Biodiesel as Renewable Fuel for the Indonesian Power Generation Sector: Java-Madura-Bali System

    Directory of Open Access Journals (Sweden)

    Natarianto Indrawan

    2011-11-01

    Full Text Available Energy security defined as how to equitably provide available, affordable, reliable efficient, environmentally friendly, proactively governed and socially acceptable energy services to end user. It has in recent years taken attention of policymakers in different parts of the world. Formulating policy to improve energy security is mandatory, not only because of depleting fossil resource, but also implementing diversity of energy source since utilization abundant renewable energy resources can increase the security of energy supply. One of the abundant renewable energy resources in Indonesia is palm oil. This study analyses the utilization of palm biodiesel for Indonesian power generation sector in the Java-Madura-Bali (JAMALI system. Two scenarios were created by projecting the demand and environmental impact as well as GHG emissions reduction over the next 25 years. The first scenario subjects on current energy policy, while the second scenario is to substitute of fossil fuel which is still used in the JAMALI power generation system. Effect of palm biodiesel on emission of Carbon Dioxide, Carbon Monoxide, Sulfur Dioxide, Nitrogen Oxides, Particulate Matter, and Volatile Organic Compounds were estimated for each scenario. An externality analysis to complete the environmental analysis was conducted and resource analysis of palm oil plantation based biodiesel was also estimated. Finally, the economics feasibility of palm biodiesel in the power generation sector was analyzed.

  10. Biodiesel as a motor fuel price stabilization mechanism

    International Nuclear Information System (INIS)

    Serra, Teresa; Gil, José M.

    2012-01-01

    This article studies the capacity of biofuels to reduce motor fuel price fluctuations. For this purpose, we study dependence between crude oil and biodiesel blend prices in Spain. Copula models are used for this purpose. Results suggest that the practice of blending biodiesel with diesel can protect consumers against extreme crude oil price increases. - Highlights: ► We study the capacity of biofuels to reduce fuel price fluctuations. ► We focus on Spanish biodiesel market. ► Biodiesel and crude oil price dependence is studied using copula functions. ► Biodiesel can protect consumers against extreme crude oil price increases.

  11. Mixotrophic cultivation of microalgae for biodiesel production: status and prospects.

    Science.gov (United States)

    Wang, Jinghan; Yang, Haizhen; Wang, Feng

    2014-04-01

    Biodiesel from microalgae provides a promising alternative for biofuel production. Microalgae can be produced under three major cultivation modes, namely photoautotrophic cultivation, heterotrophic cultivation, and mixotrophic cultivation. Potentials and practices of biodiesel production from microalgae have been demonstrated mostly focusing on photoautotrophic cultivation; mixotrophic cultivation of microalgae for biodiesel production has rarely been reviewed. This paper summarizes the mechanisms and virtues of mixotrophic microalgae cultivation through comparison with other major cultivation modes. Influencing factors of microalgal biodiesel production under mixotrophic cultivation are presented, development of combining microalgal biodiesel production with wastewater treatment is especially reviewed, and bottlenecks and strategies for future commercial production are also identified.

  12. Emission comparison of urban bus engine fueled with diesel oil and 'biodiesel' blend

    International Nuclear Information System (INIS)

    Turrio-Baldassarri, Luigi; Battistelli, Chiara L.; Conti, Luigi; Crebelli, Riccardo; De Berardis, Barbara; Iamiceli, Anna Laura; Gambino, Michele; Iannaccone, Sabato

    2004-01-01

    The chemical and toxicological characteristics of emissions from an urban bus engine fueled with diesel and biodiesel blend were studied. Exhaust gases were produced by a turbocharged EURO 2 heavy-duty diesel engine, operating in steady-state conditions on the European test 13 mode cycle (ECE R49). Regulated and unregulated pollutants, such as carcinogenic polycyclic aromatic hydrocarbons (PAHs) and nitrated derivatives (nitro-PAHs), carbonyl compounds and light aromatic hydrocarbons were quantified. Mutagenicity of the emissions was evaluated by the Salmonella typhimurium/mammalian microsome assay. The effect of the fuels under study on the size distribution of particulate matter (PM) was also evaluated. The use of biodiesel blend seems to result in small reductions of emissions of most of the aromatic and polyaromatic compounds; these differences, however, have no statistical significance at 95% confidence level. Formaldehyde, on the other hand, has a statistically significant increase of 18% with biodiesel blend. In vitro toxicological assays show an overall similar mutagenic potency and genotoxic profile for diesel and biodiesel blend emissions. The electron microscopy analysis indicates that PM for both fuels has the same chemical composition, morphology, shape and granulometric spectrum, with most of the particles in the range 0.06-0.3 μm

  13. Biodiesel Basics (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    This Spanish-language fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends, which blends are best for which vehicles, where to buy biodiesel, how biodiesel compares to diesel fuel in terms of performance, how biodiesel performs in cold weather, whether biodiesel use will plug vehicle filters, how long-term biodiesel use may affect engines, biodiesel fuel standards, and whether biodiesel burns cleaner than diesel fuel. The fact sheet also dismisses the use of vegetable oil as a motor fuel.

  14. The economics of producing biodiesel from algae

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, Brian J. [Ecotonics Environmental Scientists, 1801 Century Park East, Suite 2400, Los Angeles, CA 90067 (United States)

    2011-01-15

    Biodiesel is an alternative fuel for conventional diesel that is made from natural plant oils, animal fats, and waste cooking oils. This paper discusses the economics of producing biodiesel fuel from algae grown in open ponds. There is potential for large-scale production of biodiesel from algal farms on non-arable land; however, previous studies have failed to demonstrate an economically viable process that could be scalable to a commercialized industry. The problems include inconsistent and insufficient algal productivities, uncertain capital and operating costs, volatile market prices and unknown levels of government support. Although intensive work is being done on many technological issues, the economic studies and data are incomplete and out of date. This paper presents an updated financial analysis of the production and economic conditions that could have a profound effect on the success of this important alternative fuel production process. (author)

  15. The economics of producing biodiesel from algae

    International Nuclear Information System (INIS)

    Gallagher, Brian J.

    2011-01-01

    Biodiesel is an alternative fuel for conventional diesel that is made from natural plant oils, animal fats, and waste cooking oils. This paper discusses the economics of producing biodiesel fuel from algae grown in open ponds. There is potential for large-scale production of biodiesel from algal farms on non-arable land; however, previous studies have failed to demonstrate an economically viable process that could be scalable to a commercialized industry. The problems include inconsistent and insufficient algal productivities, uncertain capital and operating costs, volatile market prices and unknown levels of government support. Although intensive work is being done on many technological issues, the economic studies and data are incomplete and out of date. This paper presents an updated financial analysis of the production and economic conditions that could have a profound effect on the success of this important alternative fuel production process. (author)

  16. Valorization of crude glycerol from biodiesel production

    Directory of Open Access Journals (Sweden)

    Konstantinović Sandra S.

    2016-01-01

    Full Text Available The increased production of biodiesel as an alternative fuel involves the simultaneous growth in production of crude glycerol as its main by-product. Therefore, the feasibility and sustainability of biodiesel production requires the effective utilization of crude glycerol. This review describes various uses of crude glycerol as a potential green solvent for chemical reactions, a starting raw material for chemical and biochemical conversions into value-added chemicals, a substrate or co-substrate in microbial fermentations for synthesis of valuable chemicals and production of biogas and biohydrogen as well as a feedstuff for animal feed. A special attention is paid to various uses of crude glycerol in biodiesel production. [Projekat Ministarstva nauke Republike Srbije, br. III 45001

  17. Development and evolution of The Knowledge Hub for Pathology and related electronic resources.

    Science.gov (United States)

    Hardwick, David F; Sinard, John; Silva, Fred

    2011-06-01

    The Knowledge Hub for Pathology was created to provide authenticated and validated knowledge for United States and Canadian Academy of Pathology members and pathologists worldwide with access to the Web. Using the material presented at the annual meeting of the United States and Canadian Academy of Pathology with existing selection and review procedures ensured that these criteria were met without added costly procedures. Further submissions for courses and research papers are provided in electronic format and funded by universities and hospitals for their creation; thus, the principal costs borne by the United States and Canadian Academy of Pathology are Web site-posting costs. Use has escalated rapidly from 2 million hits in 2002 to 51 million in 2009 with use by 35,000 pathologists from now a total of 180 countries. This true "freemium" model is a successful process as are more traditional continuing professional development course structures such as Anatomic Pathology Electronic Case Series, a "premium" model for learning electronically also sponsored by the United States and Canadian Academy of Pathology. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Emission characteristics of biodiesel obtained from jatropha seeds and fish wastes in a diesel engine

    OpenAIRE

    Bhaskar Kathirvelu; Sendilvelan Subramanian; Nagarajan Govindan; Sampath Santhanam

    2017-01-01

    The concept of waste recycling and energy recovery plays a vital role for the development of any economy. The reuse of fish waste and use of wasteland for cultivation of jatropha seeds have led to resource conservation and their use as blend with diesel as an alternative fuel to diesel engines has contributed to pollution reduction. In this work, the results of using blends of biodiesel obtained from jatropha seeds, fish wastes and diesel in constant speed diesel engines are presented. The ex...

  19. Pengembangan Produksi Biogas Dari Limbah Pembuatan Biodiesel Jarak Pagar (Jatropha Curcas Seed Cake)

    OpenAIRE

    Yufidani, Y; Jos, Bakti; Sumardiono, Siswo

    2013-01-01

    Biogas is a fermentation process using anaerobic bacteria to convert organic compounds into gas with high composition of methane. Use of jatropha curcas as a biodiesel's resources remains a problems, seed cake of jatropha curcas contains phorbol esters that is toxic. This research focused on getting an optimum yield of biogas production from jatropha curcas seed cake using additive material to reach optimum C/N ratio. Optimum C/N ratio on biogas production was range 20-30, but jatropha curcas...

  20. Improvement of biodiesel methanol blends

    Directory of Open Access Journals (Sweden)

    Y. Datta Bharadwaz

    2016-06-01

    Full Text Available The main objective of this work was to improve the performance of biodiesel–methanol blends in a VCR engine by using optimized engine parameters. For optimization of the engine, operational parameters such as compression ratio, fuel blend, and load are taken as factors, whereas performance parameters such as brake thermal efficiency (Bth and brake specific fuel consumption (Bsfc and emission parameters such as carbon monoxide (CO, unburnt hydrocarbons (HC, Nitric oxides (NOx and smoke are taken as responses. Experimentation is carried out as per the design of experiments of the response surface methodology. Optimization of engine operational parameters is carried out using Derringers Desirability approach. From the results obtained it is inferred that the VCR engine has maximum performance and minimum emissions at 18 compression ratio, 5% fuel blend and at 9.03 kg of load. At this optimized operating conditions of the engine the responses such as brake thermal efficiency, brake specific fuel consumption, carbon monoxide, unburnt hydrocarbons, nitric oxide, and smoke are found to be 31.95%, 0.37 kg/kW h, 0.036%, 5 ppm, 531.23 ppm and 15.35% respectively. It is finally observed from the mathematical models and experimental data that biodiesel methanol blends have maximum efficiency and minimum emissions at optimized engine parameters.

  1. Economic assessment of biodiesel production from wastewater sludge.

    Science.gov (United States)

    Chen, Jiaxin; Tyagi, Rajeshwar Dayal; Li, Ji; Zhang, Xiaolei; Drogui, Patrick; Sun, Feiyun

    2018-04-01

    Currently, there are mainly two pathways of the biodiesel production from wastewater sludge including 1) directly extracting the lipid in sludge and then converting the lipid to biodiesel through trans-esterification, and 2) employing sludge as medium to cultivate oleaginous microorganism to accumulate lipid and then transferring the lipid to biodiesel. So far, the study was still in research stage and its cost feasibility was not yet investigated. In this study, biodiesel production from wastewater sludge was designed and the cost was estimated with SuperPro Designer. With consideration of converting the lipid in raw sludge to biodiesel, the unit production cost was 0.67 US $/kg biodiesel (0.59 US $/L biodiesel). When the sludge was used as medium to grow oleaginous microorganism to accumulate lipid for producing biodiesel, the unit production cost was 1.08 US $/kg biodiesel (0.94 US $/L biodiesel). The study showed that sludge has great potential in biodiesel production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. An Exploratory study on the use of LibAnswers to Resolve, Track and Monitor Electronic Resources Issues: The KAUST Library experience

    KAUST Repository

    Ramli, Rindra M.

    2017-01-01

    An Exploratory study on KAUST library use of LibAnswers in resolving electronic resources questions received in LibAnswers. It describes the findings of the questions received in LibAnswers. The author made suggestions based on the findings to improve the reference services in responding to e-resources questions.

  3. An Exploratory study on the use of LibAnswers to Resolve, Track and Monitor Electronic Resources Issues: The KAUST Library experience

    KAUST Repository

    Ramli, Rindra M.

    2017-05-03

    An Exploratory study on KAUST library use of LibAnswers in resolving electronic resources questions received in LibAnswers. It describes the findings of the questions received in LibAnswers. The author made suggestions based on the findings to improve the reference services in responding to e-resources questions.

  4. Designing a model of electronic human resource management’s implementation at the Ministry of Communications and Information Technology

    Directory of Open Access Journals (Sweden)

    Mirali Seyednaghavi

    2017-06-01

    Full Text Available : In the first phase of this study a model for electronic human resource management in government agencies based on new public services was explored by using software MAXQDA, then in the second phase, relationship between the elements of the theory were tested using software Smart PLS2. So the aim of this study is to design a model of electronic human resource management’s implementation at the Ministry of Communications and Information Technology. In this regard, according to Strauss and Corbin’s structured plan, five hypotheses were tested. Quantitative data analysis indicates that the pressures of the policies and global perspectives cause to move toward e-HRM. Among the contextual conditions macro structural mechanisms, considerations of actors, governance considerations have a significant impact on the strategy of new public services and therefore lead to the consequences of its implementation in public organizations. The findings suggest that e-HRM does not have a positive and meaningful impact on new public services, and in our country, although the recent political developments have somehow removed the gap between public policy makers, administrators, and the public, but there is still a long way to go.

  5. Preference and Use of Electronic Information and Resources by Blind/Visually Impaired in NCR Libraries in India

    Directory of Open Access Journals (Sweden)

    Shailendra Kumar

    2013-06-01

    Full Text Available This paper aims to determine the preference and use of electronic information and resources by blind/visually impaired users in the leading National Capital Region (NCR libraries of India. Survey methodology has been used as the basic research tool for data collection with the help of questionnaires. The 125 in total users surveyed in all the five libraries were selected randomly on the basis of willingness of the users with experience of working in digital environments to participate in the survey. The survey results were tabulated and analyzed with descriptive statistics methods using Excel software and 'Stata version 11'. The findings reveal that ICT have a positive impact in the lives of people with disabilities as it helps them to work independently and increases the level of confidence among them. The Internet is the most preferred medium of access to information among the majority of blind/visually impaired users. The 'Complexity of content available on the net' is found as the major challenge faced during Internet use by blind users of NCR libraries. 'Audio books on CDs/DVDs and DAISY books' are the most preferred electronic resources among the majority of blind/visually impaired users. This study will help the library professionals and organizations/institutions serving people with disabilities to develop effective library services for blind/visually impaired users in the digital environment on the basis of findings on information usage behavior in the study.

  6. Algal biodiesel economy and competition among bio-fuels.

    Science.gov (United States)

    Lee, D H

    2011-01-01

    This investigation examines the possible results of policy support in developed and developing economies for developing algal biodiesel through to 2040. This investigation adopts the Taiwan General Equilibrium Model-Energy for Bio-fuels (TAIGEM-EB) to predict competition among the development of algal biodiesel, bioethanol and conventional crop-based biodiesel. Analytical results show that algal biodiesel will not be the major energy source in 2040 without strong support in developed economies. In contrast, bioethanol enjoys a development advantage relative to both forms of biodiesel. Finally, algal biodiesel will almost completely replace conventional biodiesel. CO(2) reduction benefits the development of the bio-fuels industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Microbial degradation of palm (Elaeis guineensis biodiesel

    Directory of Open Access Journals (Sweden)

    Giselle Lutz

    2006-03-01

    Full Text Available The kinetics of biodegradation of palm-derived fatty methyl and ethyl esters (Elaeis guineensis biodiesel by a wild-type aerobic bacterial population was measured at 20 °C, as the rate of oxygen uptake by a manometric technique. The methyl and ethyl biodiesels were obtained by potassium-hydroxide catalysed transesterification of palm oil, respectively. The bacterial flora included the genera Bacillus, Proteus, Pseudomonas, Citrobacter and Enterobacter. The rate of oxygen uptake for palm biodiesel is similar to the quantity observed in the biodegradation of 1.0 mM solutions of simple substrates such as carbohydrates or amino acids.Palm methyl or ethyl biodiesel is subjected to facile aerobic biodegradation by wild-type bacteria commonly present in natural open environments. This result should lessen any environmental concern for its use as alternative fuel, solvent or lubricant. Rev. Biol. Trop. 54(1: 59-63.Epub 2006 Mar 31.La cinética de la biodegradación de los ésteres metílicos y etílicos derivados de palma (biodiesel por una población silvestre de bacterias aeróbicas fue medida a 20 °C, como medición manométrica del consumo de oxígeno. Los ésteres metílicos y etílicos se obtuvieron por transesterificación del aceite de palma con metanol y etanol,respectivamente. La flora bacteriana incluyó a los géneros Bacillus, Proteus, Pseudomonas, Citrobacter y Enterobacter. Las velocidades de consumo de oxígeno para las muestras de biodiesel fueron similares a lo observado en la biodegradación de disoluciones 1.0 mM de sustratos sencillos solubles en agua, tales como carbohidratos, aminoácidos y albúmina de huevo.

  8. Corrosion behavior of stainless steel in bio diesel production; Comportamento quanto a corrosao de acos inoxidaveis na producao do biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, E.F. de [ArcelorMittal Sao Paulo Servicos, SP (Brazil); Moreira, M.C.; Lebrao, S.M.G. [Centro Universitario do Instituto Maua de Tecnologia, Sao Paulo, SP (Brazil)], e-mail: susana.lebrao@maua.br

    2010-07-01

    Biodiesel has become more attractive due to the benefits to the environment, mainly because it is a renewable resource. However, the main barrier to biodiesel is it cost. One factor which is charged to marketing is the use of stainless steel throughout the production line, the most used is AISI 304. To evaluate more economical stainless steels, weight loss and stress corrosion tests were performed on samples of AISI 304 and 439 in methanol PS X30% sodium methylate solution, crude soybean oil, glycerol and biodiesel for about two hundred and fifty days. The mass loss was negligible, and there was complete absence of pitting and stress corrosion cracking in all media studied, showing that both alloys are suitable for the manufacture of such equipment. (author)

  9. Internet and electronic resources for inflammatory bowel disease: a primer for providers and patients.

    Science.gov (United States)

    Fortinsky, Kyle J; Fournier, Marc R; Benchimol, Eric I

    2012-06-01

    Patients with inflammatory bowel disease (IBD) are increasingly turning to the Internet to research their condition and engage in discourse on their experiences. This has resulted in new dynamics in the relationship between providers and their patients, with misinformation and advertising potentially presenting barriers to the cooperative patient-provider partnership. This article addresses important issues of online IBD-related health information and social media activity, such as quality, reliability, objectivity, and privacy. We reviewed the medical literature on the quality of online information provided to IBD patients, and summarized the most commonly accessed Websites related to IBD. We also assessed the activity on popular social media sites (such as Facebook, Twitter, and YouTube), and evaluated currently available applications for use by IBD patients and providers on mobile phones and tablets. Through our review of the literature and currently available resources, we developed a list of recommended online resources to strengthen patient participation in their care by providing reliable, comprehensive educational material. Copyright © 2011 Crohn's & Colitis Foundation of America, Inc.

  10. Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor

    Science.gov (United States)

    Hagiwara, S.; Nabetani, H.; Nakajima, M.

    2015-04-01

    Biodiesel fuel is a replacement for diesel as a fuel produced from biomass resources. It is usually defined as a fatty acid methyl ester (FAME) derived from vegetable oil or animal fat. In European countries, such as Germany and France, biodiesel fuel is commercially produced mainly from rapeseed oil, whereas in the United States and Argentina, soybean oil is more frequently used. In many other countries such as Japan and countries in Southeast Asia, lipids that cannot be used as a food source could be more suitable materials for the production of biodiesel fuel because its production from edible oils could result in an increase in the price of edible oils, thereby increasing the cost of some foodstuffs. Therefore, used edible oil, lipids contained in waste effluent from the oil milling process, byproducts from oil refining process and crude oils from industrial crops such as jatropha could be more promising materials in these countries. The materials available in Japan and Southeast Asia for the production of biodiesel fuel have common characteristics; they contain considerable amount of impurities and are high in free fatty acids (FFA). Superheated methanol vapor (SMV) reactor might be a promising method for biodiesel fuel production utilizing oil feedstock containing FFA such as waste vegetable oil and crude vegetable oil. In the conventional method using alkaline catalyst, FFA contained in waste vegetable oil is known to react with alkaline catalyst such as NaOH and KOH generating saponification products and to inactivate it. Therefore, the FFA needs to be removed from the feedstock prior to the reaction. Removal of the alkaline catalyst after the reaction is also required. In the case of the SMV reactor, the processes for removing FFA prior to the reaction and catalyst after the reaction can be omitted because it requires no catalyst. Nevertheless, detailed study on the productivity of biodiesel fuel produced from waste vegetable oils and other non

  11. Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor

    International Nuclear Information System (INIS)

    Hagiwara, S; Nabetani, H; Nakajima, M

    2015-01-01

    Biodiesel fuel is a replacement for diesel as a fuel produced from biomass resources. It is usually defined as a fatty acid methyl ester (FAME) derived from vegetable oil or animal fat. In European countries, such as Germany and France, biodiesel fuel is commercially produced mainly from rapeseed oil, whereas in the United States and Argentina, soybean oil is more frequently used. In many other countries such as Japan and countries in Southeast Asia, lipids that cannot be used as a food source could be more suitable materials for the production of biodiesel fuel because its production from edible oils could result in an increase in the price of edible oils, thereby increasing the cost of some foodstuffs. Therefore, used edible oil, lipids contained in waste effluent from the oil milling process, byproducts from oil refining process and crude oils from industrial crops such as jatropha could be more promising materials in these countries. The materials available in Japan and Southeast Asia for the production of biodiesel fuel have common characteristics; they contain considerable amount of impurities and are high in free fatty acids (FFA). Superheated methanol vapor (SMV) reactor might be a promising method for biodiesel fuel production utilizing oil feedstock containing FFA such as waste vegetable oil and crude vegetable oil. In the conventional method using alkaline catalyst, FFA contained in waste vegetable oil is known to react with alkaline catalyst such as NaOH and KOH generating saponification products and to inactivate it. Therefore, the FFA needs to be removed from the feedstock prior to the reaction. Removal of the alkaline catalyst after the reaction is also required. In the case of the SMV reactor, the processes for removing FFA prior to the reaction and catalyst after the reaction can be omitted because it requires no catalyst. Nevertheless, detailed study on the productivity of biodiesel fuel produced from waste vegetable oils and other non

  12. History and policy of biodiesel in Brazil

    International Nuclear Information System (INIS)

    Pousa, Gabriella P.A.G.; Santos, Andre L.F.; Suarez, Paulo A.Z.

    2007-01-01

    Historically, during petroleum shortage, vegetable oils and their derivatives have been proposed as alternatives to petroleum diesel fuel. Since 1930, different approaches have been proposed by Brazilian's universities and research institutes, including the use of neat vegetable oils (pure or in blends) or their derivatives, such as hydrocarbons obtained by thermal-catalytic cracking and fatty acids' methyl or ethyl esters (nowadays known as 'biodiesel') produced by alcoholysis. Recently, the external dependence on imported diesel fuel and the present petroleum crisis have increased the discussion in Brazil in the sense of starting to use alternatives to diesel fuel, biodiesel being the main alternative for a large petroleum diesel substitution program

  13. Cetane Number of Biodiesel from Karaya Oil

    KAUST Repository

    Wasfi, Bayan

    2017-04-01

    Biodiesel is a renewable fuel alternative to petroleum Diesel, biodiesel has similar characteristic but with lesser exhaust emission. In this study, transesterification of Karaya oil is examined experimentally using a batch reactor at 100-140°C and 5 bar in subcritical methanol conditions, residence time from 10 to 20 minutes, using a mass ratio 6 methanol-to-vegetable oil. Methanol is used for alcoholysis and sodium hydroxide as a catalyst. Experiments varied the temperature and pressure, observing the effect on the yield and reaction time. In addition, biodiesel from corn oil was created and compared to biodiesel from karaya oil. Kinetic model proposed. The model estimates the concentration of triglycerides, diglycerides, monoglycerides and methyl esters during the reaction. The experiments are carried out at temperatures of 100°C and above. The conversion rate and composition of methyl esters produced from vegetable oils are determined by Gas Chromatography Analysis. It was found that the higher the temperature, the higher reaction rate. Highest yield is 97% at T=140°C achieved in 13 minutes, whereas at T=100°C yield is 68% in the same time interval. Ignition Quality Test (IQT) was utilized for determination of the ignition delay time (IDT) inside a combustion chamber. From the IDT cetane number CN inferred. In case of corn oil biodiesel, the IDT = 3.5 mS, leading to a CN = 58. Whereas karaya oil biodiesel showed IDT = 2.4 mS, leading to a CN = 97. The produced methyl esters were also characterized by measurements of viscosity (υ), density (ρ), flash point (FP) and heat of combustion (HC). The following properties observed: For corn biodiesel, υ = 8.8 mPa-s, ρ = 0.863 g/cm3, FP = 168.8 °C, and HC = 38 MJ/kg. For karaya biodiesel, υ = 10 mPa-s, ρ = 0.877 g/cm3, FP = 158.2 °C, and HC = 39 MJ/kg.

  14. Isothermal calorimetry of enzymatic biodiesel reaction

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene; Westh, Peter; Christensen, Knud Villy

    2010-01-01

      Isothermal calorimetry ITC has been used to investigate enzymatic biodiesel production. The transesterification of rapeseed oil with methanol and ethanol was catalyzed by the immobilized lipase Novozym 435 at 40°C. The ITC-experiments clearly demonstrate the possibilities of investigating complex...... and composition change in the system, the heat of reaction at 40°C for the two systems has been determined to -9.8 ± 0.9 kJ/mole biodiesel formed from rapeseed oil and methanol, and - 9.3 ± 0.7 kJ/mole when rapeseed oil and ethanol is used....

  15. Cottonseed oil for biodiesel production; Oleo de algodao para a producao de biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, Anna L.M.T.; Park, Kil J. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)], E-mail: annalets@feagri.unicamp.br; Ferrari, Roseli A; Miguel, Ana M.R.O. [Instituto de Tecnologia de Alimentos (ITAL), Campinas, SP (Brazil)], Emails: roseliferrari@ital.sp.gov.br, anarauen@ital.sp.gov.br, kil@feagri.unicamp.br

    2009-07-01

    Crude cottonseed oil is an alternative for biodiesel production, mostly in Mato Grosso State, where its production is the biggest of Brazil. Even being an acid oil, esterification reaction, followed by transesterification, could make possible the biodiesel production. In this study, crude cottonseed oil obtained from expelled process was reacted to evaluate molar ration and catalyst concentration effects in biodiesel yield. Molar ratio varied from 3 to 15 moles of ethanol to 1 mol of oil, and catalyst, from 1 to 5% by oil mass. Statistic analysis showed that none of studied variables was significant, for the values range. Biodiesel yield had a maximum of 88%, for molar ratio of 4.7 and 4.42% of catalyst concentration. A combination of oil with high free fatty acid content and ethanol as alcohol, affected the separation between esters and glycerol. (author)

  16. Effect of atmospheric aging on volatility and reactive oxygen species of biodiesel exhaust nano-particles

    Science.gov (United States)

    Pourkhesalian, A. M.; Stevanovic, S.; Rahman, M. M.; Faghihi, E. M.; Bottle, S. E.; Masri, A. R.; Brown, R. J.; Ristovski, Z. D.

    2015-08-01

    In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric aging processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.

  17. Effect of atmospheric ageing on volatility and ROS of biodiesel exhaust nano-particles

    Science.gov (United States)

    Pourkhesalian, A. M.; Stevanovic, S.; Rahman, M. M.; Faghihi, E. M.; Bottle, S. E.; Masri, A. R.; Brown, R. J.; Ristovski, Z. D.

    2015-03-01

    In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a~significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric ageing processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.

  18. Biodiesel production via non-catalytic SCF method and biodiesel fuel characteristics

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2006-01-01

    Vegetable oil (m)ethyl esters, commonly referred to as 'biodiesel,' are prominent candidates as alternative Diesel fuels. Biodiesel is technically competitive with or offers technical advantages compared to conventional petroleum Diesel fuel. The vegetable oils, as alternative engine fuels, are all extremely viscous with viscosities ranging from 10 to 20 times greater than that of petroleum Diesel fuel. The purpose of the transesterification process is to lower the viscosity of the oil. Transesterifications of vegetable oils in supercritical methanol are performed without using any catalyst. The most important variables affecting the methyl ester yield during the transesterification reaction are the molar ratio of alcohol to vegetable oil and the reaction temperature. Biodiesel has become more attractive recently because of its environmental benefits. The cost of biodiesel, however, is the main obstacle to commercialization of the product. With cooking oils used as raw material, the viability of a continuous transesterification process and recovery of high quality glycerol as a biodiesel by product are primary options to be considered to lower the cost of biodiesel. Supercritical methanol has a high potential for both transesterification of triglycerides and methyl esterification of free fatty acids to methyl esters for a Diesel fuel substitute. In the supercritical methanol transesterification method, the yield of conversion increases to 95% in 10 min. The viscosity values of vegetable oils are between 27.2 and 53.6 mm 2 /s, whereas those of vegetable oil methyl esters are between 3.59 and 4.63 mm 2 /s. The flash point values of vegetable oil methyl esters are much lower than those of vegetable oils. An increase in density from 860 to 885 kg/m 3 for vegetable oil methyl esters or biodiesels increases the viscosity from 3.59 to 4.63 mm 2 /s. Biodiesel is an environmentally friendly fuel that can be used in any Diesel engine without modification

  19. The carbon footprint and non-renewable energy demand of algae-derived biodiesel

    International Nuclear Information System (INIS)

    Azadi, Pooya; Brownbridge, George; Mosbach, Sebastian; Smallbone, Andrew; Bhave, Amit; Inderwildi, Oliver; Kraft, Markus

    2014-01-01

    Highlights: • Global sensitivity analysis is performed to determine the environmental impact of algal biodiesel. • GHG emission of algal biodiesel ranges from 40 to 125 g e-CO 2 /MJ. • Biodiesel from dried algae may prove sustainable if a low carbon solution e.g. solar drying is used. - Abstract: We determine the environmental impact of different biodiesel production strategies from algae feedstock in terms of greenhouse gas (GHG) emissions and non-renewable energy consumption, we then benchmark the results against those of conventional and synthetic diesel obtained from fossil resources. The algae cultivation in open pond raceways and the transesterification process for the conversion of algae oil into biodiesel constitute the common elements among all considered scenarios. Anaerobic digestion and hydrothermal gasification are considered for the conversion of the residues from the wet oil extraction route; while integrated gasification–heat and power generation and gasification–Fischer–Tropsch processes are considered for the conversion of the residues from the dry oil extraction route. The GHG emissions per unit energy of the biodiesel are calculated as follows: 41 g e-CO 2 /MJ b for hydrothermal gasification, 86 g e-CO 2 /MJ b for anaerobic digestion, 109 g e-CO 2 /MJ b for gasification–power generation, and 124 g e-CO 2 /MJ b for gasification–Fischer–Tropsch. As expected, non-renewable energy consumptions are closely correlated to the GHG values. Also, using the High Dimensional Model Representation (HDMR) method, a global sensitivity analysis over the entire space of input parameters is performed to rank them with respect to their influence on key sustainability metrics. Considering reasonable ranges over which each parameter can vary, the most influential input parameters for the wet extraction route include extractor energy demand and methane yield generated from anaerobic digestion or hydrothermal gasification of the oil extracted

  20. Calcium Oxide Derived from Waste Shells of Mussel, Cockle, and Scallop as the Heterogeneous Catalyst for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Achanai Buasri

    2013-01-01

    Full Text Available The waste shell was utilized as a bioresource of calcium oxide (CaO in catalyzing a transesterification to produce biodiesel (methyl ester. The economic and environmen-friendly catalysts were prepared by a calcination method at 700–1,000°C for 4 h. The heterogeneous catalysts were characterized by X-ray diffraction (XRD, X-ray fluorescence (XRF, scanning electron microscopy (SEM, and the Brunauer-Emmett-Teller (BET method. The effects of reaction variables such as reaction time, reaction temperature, methanol/oil molar ratio, and catalyst loading on the yield of biodiesel were investigated. Reusability of waste shell catalyst was also examined. The results indicated that the CaO catalysts derived from waste shell showed good reusability and had high potential to be used as biodiesel production catalysts in transesterification of palm oil with methanol.

  1. Thermodegradation of biodiesel: thermoanalytical and rheological characterization; Degradacao termica de biodiesel: caracterizacao termoanalitica e reologica

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Everson L.; Carvalho, Laura H.; Araujo, Gilmar T.; Gadelha, Tatiana S. [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2008-07-01

    Brazil is a country of extensive agricultural land and great oil consumption and these factors favor biodiesel production in this country. In order for diesel/biodiesel mixtures to be effectively employed in diesel engines, a rigid quality control of these mixtures is needed. Biodiesel and mixtures must have their quality monitored with respect to oxidative resistance, thermal stability, fluidity and volatility, properties which can be modified by the adverse transport and stock conditions prior to consumption. Oxidation is the main degradation mechanism of products under transport and stock conditions, which can lead to significant economical losses. In this work sought the thermal degradation of neat biodiesel, synthesized in our laboratories was monitored. Thermal aging was conducted at 210 deg C for up to 1000 h. Virgin and thermally degraded samples were characterized by rheological measurements (in different shear conditions); FTIR; density and by color changes. We concluded that the soy biodiesel was successfully synthesized and that thermal exposure caused thermal-oxidative degradation of the biodiesel sample, significantly changing its properties as a function of thermal exposure times. (author)

  2. Exhaust gas emissions and mutagenic effects of modern diesel fuels, GTL, biodiesel and biodiesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Munack, Axel; Ruschel, Yvonne; Schroeder, Olaf [Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig (Germany)], E-mail: axel.munack@vti.bund.de; Krahl, Juergen [Coburg Univ. of Applied Sciences (Germany); Buenger, Juergen [University of Bochum (Germany)

    2008-07-01

    Biodiesel can be used alone (B100) or blended with petroleum diesel in any proportion. The most popular biodiesel blend in the U.S.A. is B20 (20% biodiesel, 80% diesel fuel), which can be used for Energy Policy Act of 1992 (EPAct) compliance. In the European Union, the use of biofuel blends is recommended and was introduced by federal regulations in several countries. In Germany, biodiesel is currently blended as B5 (5% biodiesel) to common diesel fuel. In 2008, B7 plus three percent hydrotreated vegetable oil (HVO) as well is intended to become mandatory in Germany. To investigate the influence of blends on the emissions and possible health effects, we performed a series of studies with several engines (Euro 0, III and IV) measuring regulated and non-regulated exhaust compounds and determining their mutagenic effects. Emissions of blends showed an approximate linear dependence on the blend composition, in particular when regulated emissions are considered. However, a negative effect of blends was observed with respect to mutagenicity of the exhaust gas emissions. In detail, a maximum of the mutagenic potency was found in the range of B20. From this point of view, B20 must be considered as a critical blend, in case diesel fuel and biodiesel are used as binary mixtures. (author)

  3. Electronic medical records in diabetes consultations: participants' gaze as an interactional resource.

    Science.gov (United States)

    Rhodes, Penny; Small, Neil; Rowley, Emma; Langdon, Mark; Ariss, Steven; Wright, John

    2008-09-01

    Two routine consultations in primary care diabetes clinics are compared using extracts from video recordings of interactions between nurses and patients. The consultations were chosen to present different styles of interaction, in which the nurse's gaze was either primarily toward the computer screen or directed more toward the patient. Using conversation analysis, the ways in which nurses shift both gaze and body orientation between the computer screen and patient to influence the style, pace, content, and structure of the consultation were investigated. By examining the effects of different levels of engagement between the electronic medical record and the embodied patient in the consultation room, we argue for the need to consider the contingent nature of the interface of technology and the person in the consultation. Policy initiatives designed to deliver what is considered best-evidenced practice are modified in the micro context of the interactions of the consultation.

  4. Granulometric composition study of mineral resources using opto-electronic devices and Elsieve software system

    Directory of Open Access Journals (Sweden)

    Kaminski Stanislaw

    2016-01-01

    Full Text Available The use of mechanical sieves has a great impact on measurement results because occurrence of anisometric particles causes undercounting the average size. Such errors can be avoided by using opto-electronic measuring devices that enable measurement of particles from 10 μm up to a few dozen millimetres in size. The results of measurement of each particle size fraction are summed up proportionally to its weight with the use of Elsieve software system and for every type of material particle-size distribution can be obtained. The software allows further statistical interpretation of the results. Beam of infrared radiation identifies size of particles and counts them precisely. Every particle is represented by an electronic impulse proportional to its size. Measurement of particles in aqueous suspension that replaces the hydrometer method can be carried out by using the IPS L analyser (range from 0.2 to 600 μm. The IPS UA analyser (range from 0.5 to 2000 μm is designed for measurement in the air. An ultrasonic adapter enables performing measurements of moist and aggregated particles from 0.5 to 1000 μm. The construction and software system allow to determine second dimension of the particle, its shape coefficient and specific surface area. The AWK 3D analyser (range from 0.2 to 31.5 mm is devoted to measurement of various powdery materials with subsequent determination of particle shape. The AWK B analyser (range from 1 to 130 mm measures materials of thick granulation and shape of the grains. The presented method of measurement repeatedly accelerates and facilitates study of granulometric composition.

  5. KINETIKA TRANSESTERIFIKASI BIODIESEL JARAK PAGAR

    Directory of Open Access Journals (Sweden)

    Buchori Luqman

    2012-07-01

    Full Text Available Biodiesel were produced by trans-etherification of castor oil with alcohol in the presence of NaOH catalyst. Thereaction mechanism and model of castor oil trans-etherification isA + 3B C + 3 DA, B, C, and D were castor oil, alcohol, glycerol, and ester. The reaction rate equation was r=-dCA/dt =k1(CA(CB3–k2(CC(CD3. In this study was used two measurement method of free fat acid as the rest content ofcastor oil with SNI 01-3555-1998 and AOAC (Association of Analytical Chemist. It found that SNI 01-3555-1998 method was the easier and the acurate measurement. The classification of alcohol used was methanol andethanol to compare the action both of them. Methanol produces the higher conversion than ethanol. The reactionin a batch reactor with temperature 40, 50, and 60°C in atmospheric pressure as the operation condition tolooking for kinetics parameter of trans-etherification. Coefficient reaction rate and activation energy were lookinto kinetics study. Reaction rate was a mathematics model as a function of concentration and time which solvedby Runge-Kutta, multivariable optimization and SSE (some square error method using Matlab. The activationenergy (Ea and impact factor (A obtained by linier regression method. The result of study obtained the kineticsparameter of trans-etherification with methanol k1=1.9313x1031exp (-41.940/RT average error 0.0010 andk2=2.7678x1025exp(-37.362/ RT average error 0.0003. While kinetics parameter of trans-etherification withethanol obtained k1=1.168x1019exp(-24.588/ RT average error 0.0306 and k2=4.9966x106exp(-10.328/RTaverage error 0.1589. It means, more reactive alcohol then bigger the value of kinetics parameter.

  6. Biodiesel production from soybean oil deodorizer distillate usingcalcined duck eggshell as catalyst

    International Nuclear Information System (INIS)

    Yin, Xiulian; Duan, Xiuli; You, Qinghong; Dai, Chunhua; Tan, Zhongbiao; Zhu, Xiaoyan

    2016-01-01

    Highlights: • Calcined DES was used as catalyst for biodiesel production from SODD. • The obtained CaO was characterized by XRD, FT-IR, SEM and the optimal calcination temperature was 900 °C. • The biodiesel yield was 94.6% at the optimal transesterification conditions. • The biodiesel yield was above 80% after five times usage. - Abstract: Biodiesel production from soybean oil deodorizer distillate (SODD) using calcined duck eggshell (DES) as catalyst was studied. An inexpensive and environment-friendly catalyst was prepared from waste DES which is a source of calcium carbonate. The calcium carbonate could be changed to calcium oxide (CaO) under high temperatures. The obtained CaO was characterized by X-ray diffraction (XRD), Fourier Transmission Infrared Spectra (FT-IR), Scanning Electron Microscopy (SEM). XRF was used to determine the elemental composition of the catalyst. BET analysis was performed to determine specific surface area, pore volume and particle size of the catalysts. Results showed that at 800 °C and 900 °C the calcium carbonate in DES was changed to CaO. The pre-esterification of SODD was conducted under the following conditions: H_2SO_4 concentration (v/w, based on oil weight) 1.5%, methanol to oil molar ratio 12:1, reaction time 120 min and reaction temperature 60 °C. Thephytosterols were removed by cooling down step by stepand temperature steps were 15 °C, 5 °C, −5 °C. The process of biodiesel production from pre-esterified SODD using the obtained CaO as catalyst was studied and the optimal conditions were: calcination temperature of 900 °C, catalyst amount of 10 wt.%, methanol to oil ratio of 10:1, reaction temperature of 60 °C and reaction time of 80 min and the biodiesel yield was 94.6% at these conditions. The reusability of the DES-derived catalyst was tested and the results showed that the biodiesel yield was above 80% after five times usage and was lower than 60% after 8 times usage.

  7. Influence on the oxidative potential of a heavy-duty engine particle emission due to selective catalytic reduction system and biodiesel blend

    International Nuclear Information System (INIS)

    Godoi, Ricardo H.M.; Polezer, Gabriela; Borillo, Guilherme C.; Brown, Andrew; Valebona, Fabio B.; Silva, Thiago O.B.; Ingberman, Aline B.G.; Nalin, Marcelo; Yamamoto, Carlos I.; Potgieter-Vermaak, Sanja; Penteado Neto, Renato A.; Marchi, Mary Rosa R. de; Saldiva, Paulo H.N.; Pauliquevis, Theotonio; Godoi, Ana Flavia L.

    2016-01-01

    Although the particulate matter (PM) emissions from biodiesel fuelled engines are acknowledged to be lower than those of fossil diesel, there is a concern on the impact of PM produced by biodiesel to human health. As the oxidative potential of PM has been suggested as trigger for adverse health effects, it was measured using the Electron Spin Resonance (OP"E"S"R) technique. Additionally, Energy Dispersive X-ray Fluorescence Spectroscopy (EDXRF) was employed to determine elemental concentration, and Raman Spectroscopy was used to describe the amorphous carbon character of the soot collected on exhaust PM from biodiesel blends fuelled test-bed engine, with and without Selective Catalytic Reduction (SCR). OP"E"S"R results showed higher oxidative potential per kWh of PM produced from a blend of 20% soybean biodiesel and 80% ULSD (B20) engine compared with a blend of 5% soybean biodiesel and 95% ULSD (B5), whereas the SCR was able to reduce oxidative potential for each fuel. EDXRF data indicates a correlation of 0.99 between concentration of copper and oxidative potential. Raman Spectroscopy centered on the expected carbon peaks between 1100 cm"−"1 and 1600 cm"−"1 indicate lower molecular disorder for the B20 particulate matter, an indicative of a more graphitic carbon structure. The analytical techniques used in this study highlight the link between biodiesel engine exhaust and increased oxidative potential relative to biodiesel addition on fossil diesel combustion. The EDXRF analysis confirmed the prominent role of metals on free radical production. As a whole, these results suggest that 20% of biodiesel blends run without SCR may pose an increased health risk due to an increase in OH radical generation. - Highlights: • PM emission from biodiesel burning may be more harmful to human health than diesel. • Euro V (SCR) engine fuelled with B5 and B20 tested in a bench dynamometer • Electron Spin Resonance (ESR) to access the oxidative potential of PM emission

  8. Influence on the oxidative potential of a heavy-duty engine particle emission due to selective catalytic reduction system and biodiesel blend

    Energy Technology Data Exchange (ETDEWEB)

    Godoi, Ricardo H.M., E-mail: rhmgodoi@ufpr.br [Environmental Engineering Department, Federal University of Parana, Curitiba, PR (Brazil); Polezer, Gabriela; Borillo, Guilherme C. [Environmental Engineering Department, Federal University of Parana, Curitiba, PR (Brazil); Brown, Andrew [Division of Chemistry and Environmental Science, School of Science and the Environment, Manchester Metropolitan University, Manchester (United Kingdom); Valebona, Fabio B.; Silva, Thiago O.B.; Ingberman, Aline B.G. [Environmental Engineering Department, Federal University of Parana, Curitiba, PR (Brazil); Nalin, Marcelo [LAVIE - Institute of Chemistry, São Paulo State University - UNESP, Araraquara (Brazil); Yamamoto, Carlos I. [Chemical Engineering Department, Federal University of Parana, Curitiba, PR (Brazil); Potgieter-Vermaak, Sanja [Division of Chemistry and Environmental Science, School of Science and the Environment, Manchester Metropolitan University, Manchester (United Kingdom); Penteado Neto, Renato A. [Vehicle Emissions Laboratory, Institute of Technology for Development (LACTEC), Curitiba, PR (Brazil); Marchi, Mary Rosa R. de [Analytical Chemistry Department, Institute of Chemistry, São Paulo State University - UNESP, Araraquara (Brazil); Saldiva, Paulo H.N. [Laboratory of Experimental Air Pollution, Department of Pathology, School of Medicine, University of São Paulo, São Paulo (Brazil); Pauliquevis, Theotonio [Department of Natural and Earth Sciences, Federal University of São Paulo, Diadema (Brazil); Godoi, Ana Flavia L. [Environmental Engineering Department, Federal University of Parana, Curitiba, PR (Brazil)

    2016-08-01

    Although the particulate matter (PM) emissions from biodiesel fuelled engines are acknowledged to be lower than those of fossil diesel, there is a concern on the impact of PM produced by biodiesel to human health. As the oxidative potential of PM has been suggested as trigger for adverse health effects, it was measured using the Electron Spin Resonance (OP{sup ESR}) technique. Additionally, Energy Dispersive X-ray Fluorescence Spectroscopy (EDXRF) was employed to determine elemental concentration, and Raman Spectroscopy was used to describe the amorphous carbon character of the soot collected on exhaust PM from biodiesel blends fuelled test-bed engine, with and without Selective Catalytic Reduction (SCR). OP{sup ESR} results showed higher oxidative potential per kWh of PM produced from a blend of 20% soybean biodiesel and 80% ULSD (B20) engine compared with a blend of 5% soybean biodiesel and 95% ULSD (B5), whereas the SCR was able to reduce oxidative potential for each fuel. EDXRF data indicates a correlation of 0.99 between concentration of copper and oxidative potential. Raman Spectroscopy centered on the expected carbon peaks between 1100 cm{sup −1} and 1600 cm{sup −1} indicate lower molecular disorder for the B20 particulate matter, an indicative of a more graphitic carbon structure. The analytical techniques used in this study highlight the link between biodiesel engine exhaust and increased oxidative potential relative to biodiesel addition on fossil diesel combustion. The EDXRF analysis confirmed the prominent role of metals on free radical production. As a whole, these results suggest that 20% of biodiesel blends run without SCR may pose an increased health risk due to an increase in OH radical generation. - Highlights: • PM emission from biodiesel burning may be more harmful to human health than diesel. • Euro V (SCR) engine fuelled with B5 and B20 tested in a bench dynamometer • Electron Spin Resonance (ESR) to access the oxidative potential of

  9. Biodiesel waste products as soil amendments : evaluation of microbial, biological, and plant toxicity.

    Science.gov (United States)

    2011-10-22

    During biodiesel production, about 200 lbs of glycerol, commonly called glycerin, is produced for every 1 ton of biodiesel. As the : biodiesel industry grows, so does the need to dispose of this waste product. While potential uses for glycerin exist,...

  10. Mackerel biodiesel production from the wastewater containing fish oil

    International Nuclear Information System (INIS)

    Wu, Y.P.; Huang, H.M.; Lin, Y.F.; Huang, W.D.; Huang, Y.J.

    2014-01-01

    Marine fish such as mackerel are important for coastal fisheries in Taiwan. Nearly 60,000 tons of mackerel are produced in Suao, I-lan, Taiwan every year. In this study, oil from the discarded parts of mackerel fish contained in wastewater stream were used as the raw material to produce biodiesel through transesterification reaction. The major fuel properties of MB (mackerel biodiesel), including the iodine value, dynamic viscosity, flash point, and heat value, were determined and compared with sunflower seed oil methyl ester (SFM), JCB (Jatropha curcas biodiesel), and premium diesel (D). MB had a higher iodine value, dynamic viscosity, density, and flash point, but a lower heat value, than did D. MB was also used as fuel in a regular diesel engine to verify its emission characteristics. The MB fuel used for exhaust emission test included pure MB (MB100) and a 20% MB blend with premium diesel (MB20). The exhaust emission of MB was also compared with the exhaust emissions of D and JCB. The results showed that MB20 provided a significant reduction in NO, NO x , and SO 2 emissions under varied engine loads, and required no engine modification. - Highlights: • Biodiesel was produced from wastewater containing mackerel fish oil. • Mackerel biodiesel is compared with Jatropha biodiesel and sunflower seed biodiesel. • MBE (mackerel biodiesel) was found to contain higher amount of unsaturated fatty acids. • Mackerel biodiesel, diesel, and Jatropha biodiesel emissions are compared

  11. Blending Biodiesel in Fishing Boat Fuels for Improved Fuel Characteristics

    International Nuclear Information System (INIS)

    Lin, Cherng-Yuan

    2014-01-01

    Biodiesel is a renewable, clean, alternative energy source with advantages, such as excellent lubricity, superior biodegradability, and high combustion efficiency. Biodiesel is considered for mixing with fishing boat fuels to adjust their fuel characteristics so that toxic pollutants and greenhouse-effect gas emissions from such shipping might be reduced. The effects of blending fishing boat fuels A and B with various weight proportions of biodiesel are experimentally investigated in this study. The results show that biodiesel blending can significantly improve the inferior fuel properties of both fishing boat fuels and particularly fuel B. The flash points of both of these fuels increases significantly with the addition of biodiesel and thus enhances the safety of transporting and storing these blended fuels. The flash point of fishing boat fuel B even increases by 16% if 25 wt.% biodiesel is blended. The blending of biodiesel with no sulfur content is found to be one of the most effective ways to reduce the high sulfur content of fishing boat fuel, resulting in a reduction in the emission of sulfur oxides. The addition of only 25 wt.% biodiesel decreased the sulfur content of the fishing boat fuel by 37%. The high kinematic viscosity of fishing boat fuel B was also observed to be reduced by 63% with the blending of just 25 wt.% biodiesel. However, biodiesel blending caused a slight decrease in heating value around 1–4.5%.

  12. Blending Biodiesel in Fishing Boat Fuels for Improved Fuel Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Cherng-Yuan, E-mail: lin7108@ntou.edu.tw [Department of Marine Engineering, National Taiwan Ocean University, Keelung, Taiwan (China)

    2014-02-24

    Biodiesel is a renewable, clean, alternative energy source with advantages, such as excellent lubricity, superior biodegradability, and high combustion efficiency. Biodiesel is considered for mixing with fishing boat fuels to adjust their fuel characteristics so that toxic pollutants and greenhouse-effect gas emissions from such shipping might be reduced. The effects of blending fishing boat fuels A and B with various weight proportions of biodiesel are experimentally investigated in this study. The results show that biodiesel blending can significantly improve the inferior fuel properties of both fishing boat fuels and particularly fuel B. The flash points of both of these fuels increases significantly with the addition of biodiesel and thus enhances the safety of transporting and storing these blended fuels. The flash point of fishing boat fuel B even increases by 16% if 25 wt.% biodiesel is blended. The blending of biodiesel with no sulfur content is found to be one of the most effective ways to reduce the high sulfur content of fishing boat fuel, resulting in a reduction in the emission of sulfur oxides. The addition of only 25 wt.% biodiesel decreased the sulfur content of the fishing boat fuel by 37%. The high kinematic viscosity of fishing boat fuel B was also observed to be reduced by 63% with the blending of just 25 wt.% biodiesel. However, biodiesel blending caused a slight decrease in heating value around 1–4.5%.

  13. Critical review of jatropha biodiesel promotion policies in India

    International Nuclear Information System (INIS)

    Kumar, Sunil; Chaube, Alok; Jain, Shashi Kumar

    2012-01-01

    Jatropha, a non-edible oil seed yielding plant has been identified by the Government of India to produce biodiesel under National Biodiesel Mission. Failure of phase-I of National Biodiesel Mission and likely failure of phase-II requires critical analysis of policy frameworks related to its long term sustainability. Indian biofuel promotion policies like Biodiesel Purchase Policy and National Biofuel Policy have failed to yield any visible results. No tangible ground work is visible as of now to ensure success of various government plans and policies related to adoption of jatropha biodiesel. It is clearly evident that some serious bottlenecks are delaying the adoption of jatropha biodiesel. Present work identifies important policy bottlenecks like availability of land, non-remunerative pricing policy and state fear relating to loss of revenue in the case of zero duty regimes. This paper attempts to explore and critically analyze present policies and possible options taking into account the recent Indian experiences for successful adoption of jatropha biodiesel. - Highlights: ► Wrong waste land estimates for jatropha has failed Biodiesel Mission. ► No redressal of technological problems with biodiesel usage. ► Present estimated costing of jatropha biodiesel is Rs. 46.45 per liter. ► Promotion of any biofuel needs central government assistance to the states. ► Targets under National Biofuel Policy are also unlikely to be met.

  14. Biodiesel production over copper vanadium phosphate

    International Nuclear Information System (INIS)

    Chen, Lei; Yin, Ping; Liu, Xiguang; Yang, Lixia; Yu, Zhongxi; Guo, Xin; Xin, Xinquan

    2011-01-01

    In the present study, copper vanadium phosphate (CuVOP) with three-dimensional network structure was synthesized by hydrothermal method, and was characterized by Infrared spectrum (IR), elemental analysis (EA), EDXRF (energy dispersive X ray fluorescence) etc. Moreover, soybean oil was used as feedstock for producing biodiesel, and biodiesel was produced by CuVOP-catalyzed transesterification process. Response surface methodology was employed to statistically evaluate and optimize the conditions for the maximum conversion to biodiesel, and the effects of amount of catalyst, ratio of methanol to oil, reaction time and reaction temperature were investigated by the 2 4 full-factorial central composite design. The maximum conversion is obtained at amount of catalyst of 1.5%, methanol/oil molar ratio of 6.75, reaction temperature of 65 o C and reaction time of 5 h. Copper vanadium phosphate CuVOP resulted very active in the transesterification reaction for biodiesel production. -- Research highlights: → Copper vanadium phosphate CuVOP with three-dimensional network structure was prepared successfully. Moreover, for the transesterification reaction of soybean oil with methanol under atmospheric pressure, CuVOP had higher catalytic activity and the effects of production conditions such as amount of catalysts etc. were analyzed by response surface methodology.

  15. Evaluation of Physicochemical Properties of Biodiesel Produced ...

    African Journals Online (AJOL)

    The non-edible vegetable oils of Jatropha curcas, neem, castor, rubber and edible oils of soyabean and cotton were investigated for their use as biodiesel feedstock. The analysis of different oil properties, fuel properties of non-edible and edible vegetable oils were investigated in detail. A two-step and transesterification ...

  16. Biodiesel's Characteristics Preparation from Palm Oil

    Directory of Open Access Journals (Sweden)

    Tilani Hamid

    2010-10-01

    Full Text Available Using vegetable oils directly as an alternative diesel fuel has presented engine problems. The problems have been attributed to high viscosity of vegetable oil that causes the poor atomization of fuel in the injector system and pruduces uncomplete combustion. Therefore, it is necessary to convert the vegetable oil into ester (metil ester by tranesterification process to decrease its viscosity. In this research has made biodiesel by reaction of palm oil and methanol using lye (NaOH as catalyst with operation conditions: constant temperature at 60 oC in atmosferic pressure, palm oil : methanol volume ratio = 5 : 1, amount of NaOH used as catalyst = 3.5 gr, 4.5 gr, 5 gr and 5.5 gr and it takes about one hour time reaction. The ester (metil ester produced are separated from glycerin and washed until it takes normal pH (6-7 where more amount of catalyst used will decrease the ester (biodiesel produced. The results show that biodiesels' properties made by using 3.5 (M3.5 gr, 4.5 gr (M4.5 and 5 (M5.0 gr catalyst close to industrial diesel oil and the other (M5.5 closes to automotive diesel oil, while blending diesel oil with 20 % biodiesel (B20 is able to improve the diesel engine performances.

  17. Jatropha bio-diesel production and use

    Energy Technology Data Exchange (ETDEWEB)

    Achten, W.M.J.; Aerts, R.; Muys, B. [Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200 E Box 2411, BE-3001 Leuven (Belgium); Verchot, L. [World Agroforestry Centre (ICRAF) Head Quarters, United Nations Avenue, P.O. Box 30677, Nairobi (Kenya); Franken, Y.J. [FACT Foundation, Horsten 1, 5612 AX Eindhoven (Netherlands); Mathijs, E. [Katholieke Universiteit Leuven, Division Agricultural and Food Economics, Willem de Croylaan 42 Box 2424, BE-3001 Leuven (Belgium); Singh, V.P. [World Agroforestry Centre (ICRAF) Regional Office for South Asia, CG Block, 1st Floor, National Agricultural Science Centre, Dev Prakash Shastri Marg, Pusa, New Delhi 110 012 (India)

    2008-12-15

    The interest in using Jatropha curcas L. (JCL) as a feedstock for the production of bio-diesel is rapidly growing. The properties of the crop and its oil have persuaded investors, policy makers and clean development mechanism (CDM) project developers to consider JCL as a substitute for fossil fuels to reduce greenhouse gas emissions. However, JCL is still a wild plant of which basic agronomic properties are not thoroughly understood and the environmental effects have not been investigated yet. Gray literature reports are very optimistic on simultaneous wasteland reclamation capability and oil yields, further fueling the Jatropha bio-diesel hype. In this paper, we give an overview of the currently available information on the different process steps of the production process of bio-diesel from JCL, being cultivation and production of seeds, extraction of the oil, conversion to and the use of the bio-diesel and the by-products. Based on this collection of data and information the best available practice, the shortcomings and the potential environmental risks and benefits are discussed for each production step. The review concludes with a call for general precaution and for science to be applied. (author)

  18. Biodiesel intercity passenger rail revenue service test.

    Science.gov (United States)

    2013-10-01

    Amtrak, with the support of the Federal Railroad Administration, operated a P-32 passenger locomotive in revenue service for a : period of 12 months, on a blend of 20 percent pure biodiesel and 80 percent #2 ultra-low sulfur diesel (ULSD) fuel. The G...

  19. Jatropha bio-diesel production and use

    International Nuclear Information System (INIS)

    Achten, W.M.J.; Aerts, R.; Muys, B.; Verchot, L.; Franken, Y.J.; Mathijs, E.; Singh, V.P.

    2008-01-01

    The interest in using Jatropha curcas L. (JCL) as a feedstock for the production of bio-diesel is rapidly growing. The properties of the crop and its oil have persuaded investors, policy makers and clean development mechanism (CDM) project developers to consider JCL as a substitute for fossil fuels to reduce greenhouse gas emissions. However, JCL is still a wild plant of which basic agronomic properties are not thoroughly understood and the environmental effects have not been investigated yet. Gray literature reports are very optimistic on simultaneous wasteland reclamation capability and oil yields, further fueling the Jatropha bio-diesel hype. In this paper, we give an overview of the currently available information on the different process steps of the production process of bio-diesel from JCL, being cultivation and production of seeds, extraction of the oil, conversion to and the use of the bio-diesel and the by-products. Based on this collection of data and information the best available practice, the shortcomings and the potential environmental risks and benefits are discussed for each production step. The review concludes with a call for general precaution and for science to be applied. (author)

  20. Determination of optimum growth conditions and biodiesel ...

    African Journals Online (AJOL)

    Lotfy H.

    as one of the most promising sources for biodiesel production. In this study, a higher ... years, cultivation of microalgae has received renewed attention on account of ... fuel is highly bio-degradable, and algae consume carbon dioxide as they ...

  1. Biodiesel Production Technology: August 2002--January 2004

    Energy Technology Data Exchange (ETDEWEB)

    Van Gerpen, J.; Shanks,B.; Pruszko,R.; Clements, D.; Knothe, G.

    2004-07-01

    Biodiesel is an alternative fuel for diesel engines that is gaining attention in the United States after reaching a considerable level of success in Europe. The purpose of this book is to describe and explain the process and issues involved in producing this fuel.

  2. Determination of optimum growth conditions and biodiesel ...

    African Journals Online (AJOL)

    Lotfy H.

    Department of Chemistry and Biochemistry, Faculty of Science, University of Namibia, P. Bag 13301,. Windhoek ... global warming that is associated with burning fossil fuels ... quantities of lipids per dry weight biomass, algae biofuel contains no ... They can form dense .... Transesterification reaction to produce biodiesel.

  3. Biodiesel generation from oleaginous yeast Rhodotorula glutinis ...

    African Journals Online (AJOL)

    SERVER

    2007-09-19

    Sep 19, 2007 ... This study explored a strategy to convert agricultural and forestry residues into microbial lipid, which could be further transformed into biodiesel. Among the 250 yeast strains screened for xylose assimilating capacity, eight oleaginous yeasts were selected by Sudan Black B test. The lipid content of these 8 ...

  4. Characterization of residual oils for biodiesel production

    Directory of Open Access Journals (Sweden)

    Edmilson Antonio Canesin

    2014-01-01

    Conclusions: The obtained results suggesting that it is possible to take advantage of these residues for biodiesel production as the obtained products were approved according to the rules established by the National Association of Petroleum (ANP; the bovine samples were the exception regarding moisture and acidity.

  5. Sustainable biodiesel production by catalytic reactive distillation

    NARCIS (Netherlands)

    Kiss, A.A.; Rothenberg, G.

    2008-01-01

    This chapter outlines the properties of biodiesel as renewable fuel, as well as the problems associated with its conventional production processes. The synthesis via fatty acid esterification using solid acid catalysts is investigated. The major challenge is finding a suitable catalyst that is

  6. Uncertainties in the Bidirectional Biodiesel Supply Chain

    NARCIS (Netherlands)

    Bot, Pieter; van Donk, Dirk Pieter; Pennink, Bartjan; Simatupang, Togar M.

    2015-01-01

    For remote areas, small-scale local biodiesel production is particularly attractive if producers and consumers are the same. Such supply chains are labeled as bidirectional. However, little is known on how raw material supply, transportation, logistics, production and operations uncertainties impact

  7. Novel polymeric products derived from biodiesel

    Science.gov (United States)

    Biodiesel (produced by reacting a triglyceride with an alcohol) is increasingly being used as diesel fuel and heating oil, especially in Europe. Because of its availability and favorable environmental profile, it may be useful as a renewable feedstock for new polymers. In this work we introduced t...

  8. Room temperature synthesis of biodiesel using sulfonated ...

    Science.gov (United States)

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature. Prepared for submission to Royal Society of Chemistry (RSC) journal, Green Chemistry as a communication.

  9. THEORETICAL INVESTIGATION OF THE BIODIESEL ENGINE CYCLE

    Directory of Open Access Journals (Sweden)

    А. Lyevtyerov

    2016-06-01

    Full Text Available The results of studies of the influence of properties of biodiesel fuel compositions to change indicator parameters of diesel compared with those obtained when using oil fuel. The effect of these changes on the fuel efficiency and environmental performance of a diesel engine when switching on the power binary fuel.

  10. Hydrotreatment of Oils and Fats for Biodiesel

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Riisager, Anders; Fehrmann, Rasmus

    The use of renewable biofuels in the transport sector represents an important step towards a sustainable society. Biodiesel is currently produced by the transesterification of fats and oils with methanol, but another viable method could be reaction of the feedstock with H2 to produce long...

  11. Profitability and sustainability of small - medium scale palm biodiesel plant

    Science.gov (United States)

    Solikhah, Maharani Dewi; Kismanto, Agus; Raksodewanto, Agus; Peryoga, Yoga

    2017-06-01

    The mandatory of biodiesel application at 20% blending (B20) has been started since January 2016. It creates huge market for biodiesel industry. To build large-scale biodiesel plant (> 100,000 tons/year) is most favorable for biodiesel producers since it can give lower production cost. This cost becomes a challenge for small - medium scale biodiesel plants. However, current biodiesel plants in Indonesia are located mainly in Java and Sumatra, which then distribute biodiesel around Indonesia so that there is an additional cost for transportation from area to area. This factor becomes an opportunity for the small - medium scale biodiesel plants to compete with the large one. This paper discusses the profitability of small - medium scale biodiesel plants conducted on a capacity of 50 tons/day using CPO and its derivatives. The study was conducted by performing economic analysis between scenarios of biodiesel plant that using raw material of stearin, PFAD, and multi feedstock. Comparison on the feasibility of scenarios was also conducted on the effect of transportation cost and selling price. The economic assessment shows that profitability is highly affected by raw material price so that it is important to secure the source of raw materials and consider a multi-feedstock type for small - medium scale biodiesel plants to become a sustainable plant. It was concluded that the small - medium scale biodiesel plants will be profitable and sustainable if they are connected to palm oil mill, have a captive market, and are located minimally 200 km from other biodiesel plants. The use of multi feedstock could increase IRR from 18.68 % to 56.52 %.

  12. Production and application of biodiesel from waste cooking oil

    Science.gov (United States)

    Tuly, S. S.; Saha, M.; Mustafi, N. N.; Sarker, M. R. I.

    2017-06-01

    Biodiesel has been identified as an alternative and promising fuel source to reduce the dependency on conventional fossil fuel in particular diesel. In this work, waste cooking oil (WCO) of restaurants is considered to produce biodiesel. A well-established transesterification reaction by sodium hydroxide (NaOH) catalytic and supercritical methanol (CH3OH) methods are applied to obtain biodiesel. In the catalytic transesterification process, biodiesel and glycerine are simultaneously produced. The impact of temperature, methanol/WCO molar ratio and sodium hydroxide concentration on the biodiesel formation were analysed and presented. It was found that the optimum 95% of biodiesel was obtained when methanol/WCO molar ratio was 1:6 under 873 K temperature with the presence of 0.2% NaOH as a catalyst. The waste cooking oil blend proportions were 10%, 15%, 20% and 25% and named as bio-diesel blends B-10, B-15, B-20, and B-25, respectively. Quality of biodiesel was examined according to ASTM 6751: biodiesel standards and testing methods. Important fuel properties of biodiesel, such as heating value, cetane index, viscosity, and others were also investigated. A four-stroke single cylinder naturally aspirated DI diesel engine was operated using in both pure form and as a diesel blend to evaluate the combustion and emission characteristics of biodiesel. Engine performance is examined by measuring brake specific fuel consumption and fuel conversion efficiency. The emission of carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), and others were measured. It was measured that the amount of CO2 increases and CO decreases both for pure diesel and biodiesel blends with increasing engine load. However, for same load, a higher emission of CO2 from biodiesel blends was recorded than pure diesel.

  13. San Francisco Biofuel Program: Brown Grease to Biodiesel Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Jolis, Domènec [San Francisco Public Utilities Commission, San Francisco, CA (United States); Martis, Mary [San Francisco Public Utilities Commission, San Francisco, CA (United States); Jones, Bonnie [San Francisco Public Utilities Commission, San Francisco, CA (United States); Miot, Alex [San Francisco Public Utilities Commission, San Francisco, CA (United States); Ving, Karri [San Francisco Public Utilities Commission, San Francisco, CA (United States); Sierra, Natalie [San Francisco Public Utilities Commission, San Francisco, CA (United States); Niobi, Morayo [San Francisco Public Utilities Commission, San Francisco, CA (United States)

    2013-03-01

    Municipal wastewater treatment facilities have typically been limited to the role of accepting wastewater, treating it to required levels, and disposing of its treatment residuals. However, a new view is emerging which includes wastewater treatment facilities as regional resource recovery centers. This view is a direct result of increasingly stringent regulations, concerns over energy use, carbon footprint, and worldwide depletion of fossil fuel resources. Resources in wastewater include chemical and thermal energy, as well as nutrients, and water. A waste stream such as residual grease, which concentrates in the drainage from restaurants (referred to as Trap Waste), is a good example of a resource with an energy content that can be recovered for beneficial reuse. If left in wastewater, grease accumulates inside of the wastewater collection system and can lead to increased corrosion and pipe blockages that can cause wastewater overflows. Also, grease in wastewater that arrives at the treatment facility can impair the operation of preliminary treatment equipment and is only partly removed in the primary treatment process. In addition, residual grease increases the demand in treatment materials such as oxygen in the secondary treatment process. When disposed of in landfills, grease is likely to undergo anaerobic decay prior to landfill capping, resulting in the atmospheric release of methane, a greenhouse gas (GHG). This research project was therefore conceptualized and implemented by the San Francisco Public Utilities Commission (SFPUC) to test the feasibility of energy recovery from Trap Waste in the form of Biodiesel or Methane gas.

  14. Thermal stability of biodiesel in supercritical methanol

    Energy Technology Data Exchange (ETDEWEB)

    Hiroaki Imahara; Eiji Minami; Shusaku Hari; Shiro Saka [Kyoto University, Kyoto (Japan). Department of Socio-Environmental Energy Science

    2008-01-15

    Non-catalytic biodiesel production technologies from oils/fats in plants and animals have been developed in our laboratory employing supercritical methanol. Due to conditions in high temperature and high pressure of the supercritical fluid, thermal stability of fatty acid methyl esters and actual biodiesel prepared from various plant oils was studied in supercritical methanol over a range of its condition between 270{sup o}C/17 MPa and 380{sup o}C/56 MPa. In addition, the effect of thermal degradation on cold flow properties was studied. As a result, it was found that all fatty acid methyl esters including poly-unsaturated ones were stable at 270{sup o}C/17 MPa, but at 350{sup o}C/43 MPa, they were partly decomposed to reduce the yield with isomerization from cis-type to trans-type. These behaviors were also observed for actual biodiesel prepared from linseed oil, safflower oil, which are high in poly-unsaturated fatty acids. Cold flow properties of actual biodiesel, however, remained almost unchanged after supercritical methanol exposure at 270{sup o}C/17 MPa and 350{sup o}C/43 MPa. For the latter condition, however, poly-unsaturated fatty acids were sacrificed to be decomposed and reduced in yield. From these results, it was clarified that reaction temperature in supercritical methanol process should be lower than 300{sup o}C, preferably 270{sup o}C with a supercritical pressure higher than 8.09 MPa, in terms of thermal stabilization for high-quality biodiesel production. 9 refs., 3 figs., 4 tabs.

  15. BIODIESELS AS A FUNCTION OF ENVIRONMENTAL PROTECTION

    Directory of Open Access Journals (Sweden)

    Lovro Babić

    2013-04-01

    Full Text Available As of July 1st 2013. the Republic of Croatia will be a member of the European Union, which will primarily bring necessary harmonisation of ecological standards and requirements. Biodiesel, as a renewable source of energy, can be produced from algae, vegetable oil, and animal fats, and thus it is biodegradable. Biodiesel in Croatia is mainly produced from oilseed rape which, as an agricultural plant, has an increasing share in the past three years and records positive trends. This paper analyses the trend of production in the Republic of Croatia, and compares it with the production and consumption of fossil fuels. On the grounds of Croatia’s favourable agriculture-related climatic characteristics, in particular in the region of Slavonija and Baranja, more intense exploitation of farm land under the cultures intended for biodiesel production can be organised aiming at bumper yield and production. Croatia has already harmonised its standards of production of biodiesel, and by 2020 the consumption of biodiesel is bound to reach 20%. The data used in this paper are obtained from the sources available by Croatian Institute of Statistics, Market Information System in Agriculture, as well as Eurostat, and the rest used here are translated from the sources in the English language. The reviewed are the surfaces planted with oilseed rape in the period between 2007. and 2011., an average yield, and overall production. On the grounds of available information, the calculations of the quantity of bio fuel to be consumed in Croatia by 2020. and the percentage of the land surfaces planted with oilseed rape have been made.

  16. Influence of biodiesel blending on physicochemical properties and importance of mathematical model for predicting the properties of biodiesel blend

    International Nuclear Information System (INIS)

    Wakil, M.A.; Kalam, M.A.; Masjuki, H.H.; Atabani, A.E.; Rizwanul Fattah, I.M.

    2015-01-01

    Highlights: • Short identification of selected biodiesel feedstock. • Review of physicochemical properties for blended biodiesel. • Mathematical model for predicting properties of various biodiesel blends. - Abstract: The growing demand for green world serves as one of the most significant challenges of modernization. Requirements like largest usage of energy for modern society as well as demand for friendly milieu create a deep concern in field of research. Biofuels are placed at the peak of the research arena for their underlying benefits as mentioned by multiple researches. Out of a number of vegetable oils, only a few are used commercially for biodiesel production. Due to various limitations of edible oil, non-edible oils are becoming a profitable choice. Till today, very little percentage of biodiesel is used successfully in engine. The research is still continuing for improving the biodiesel usage level. Recently, it is found that the blended biodiesel from more than one feedstock provides better performance in engine. This paper reviews the physicochemical properties of different biodiesel blends obtained from various feedstocks with a view to properly understand the fuel quality. Moreover, a short description of each feedstock is given along with graphical presentation of important properties for various blend percentages from B0 to B100. Finally, mathematical model is formed for predicting various properties of biodiesel blend with the help of different research data by using polynomial curve fitting method. The results obtained from a number of literature based on this work shows that the heating value of biodiesel is about 11% lower than diesel except coconut (14.5% lower) whereas kinematic viscosity is in the range of 4–5.4 mm 2 /s. Flash point of all biodiesels are more than 150 °C, except neem and coconut. Cold flow properties of calophyllum, palm, jatropha, moringa are inferior to others. This would help to determine important properties of

  17. Fuel consumption and greenhouse gas calculator for diesel and biodiesel-powered vehicles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Factors that influence fuel consumption include environmental conditions, maintenance, poor driving techniques, and driving speed. Developed by Natural Resources Canada, the SmartDriver training programs were designed to help fleet managers, drivers, and instructors to learn methods of improving fuel economy. This fuel consumption and greenhouse gas (GHG) calculator for diesel and biodiesel-powered vehicles provides drivers with a method of calculating fuel consumption rates when driving. It includes a log-book in which to record odometer readings and a slide-rule in which to determine the litres of fuel used during a trip. The scale showed the number of kg of GHGs produced by burning a particular amount of fuel for both biodiesel and diesel fuels. 1 fig.

  18. Cultivation of algae consortium in a dairy farm wastewater for biodiesel production

    Directory of Open Access Journals (Sweden)

    S. Hena

    2015-06-01

    Full Text Available Dairy farm wastewaters are potential resources for production of microalgae biofuels. A study was conducted to evaluate the capability of production of biodiesel from consortium of native microalgae culture in dairy farm treated wastewater. Native algal strains were isolated from dairy farm wastewaters collection tank (untreated wastewater as well as from holding tank (treated wastewater. The consortium members were selected on the basis of fluorescence response after treating with Nile red reagent. Preliminary studies of two commercial and consortium of ten native strains of algae showed good growth in wastewaters. A consortium of native strains was found capable to remove more than 98% nutrients from treated wastewater. The biomass production and lipid content of consortium cultivated in treated wastewater were 153.54 t ha−1 year−1 and 16.89%, respectively. 72.70% of algal lipid obtained from consortium could be converted into biodiesel.

  19. Socio-Environmental Impact Assessment of Oleaginous Crops for Biodiesel Production in Brazil

    Directory of Open Access Journals (Sweden)

    Geraldo Stachetti Rodrigues

    2007-06-01

    Full Text Available Socio-environmental impact assessments were carried out on oleaginous crops for biodiesel production under the context of expanding demand in five regions of Brazil. The study brought together representatives of the main interest groups in Delphi-type workshops. Major impacts are related with increases in demand for inputs, resources, and energy, with potential risks on water quality and habitat conservation. In some instances, management practices may improve soil quality, favoring habitats recovery. Crop intensification is expected to bring important contributions for farmer capacitation, income generation and sources diversity, as well as improved management and administration. Institutional especially designed local productive arrangements offer the best options for fostering sustainable development and avoiding environmental degradation risks, under the scenario of expanding demand on oleaginous crops for biodiesel production.

  20. Green Supply Chain Collaboration for Fashionable Consumer Electronics Products under Third-Party Power Intervention—A Resource Dependence Perspective

    Directory of Open Access Journals (Sweden)

    Jiuh-Biing Sheu

    2014-05-01

    Full Text Available Under third-party power intervention (TPPI, which increases uncertainty in task environments, complex channel power interplays and restructuring are indispensable among green supply chain members as they move toward sustainable collaborative relationships for increased viability and competitive advantage. From the resource dependence perspective, this work presents a novel conceptual model to investigate the influence of political and social power on channel power restructuring and induced green supply chain collaboration in brander-retailer bidirectional green supply chains of fashionable consumer electronics products (FCEPs. An FCEP refers to the consumer electronics product (e.g., personal computers, mobile phones, computer notebooks, and game consoles with the features of a well-known brand associated, a short product lifecycle, timely and fashionable design fit for market trends, and quick responsiveness to the variations of market demands. The proposed model is tested empirically using questionnaire data obtained from retailers in the FCEP brander-retailer distribution channels. Analytical results reveal that as an extension of political and social power, TPPI positively affects the reciprocal interdependence of dyadic members and reduces power asymmetry, thereby enhancing the collaborative relationship of dyadic members and leading to improved green supply chain performance. Therein, reciprocal interdependence underlying collaborative relationship is the key to reducing the external environmental uncertainties in the TPPI context.

  1. Influence on the oxidative potential of a heavy-duty engine particle emission due to selective catalytic reduction system and biodiesel blend.

    Science.gov (United States)

    Godoi, Ricardo H M; Polezer, Gabriela; Borillo, Guilherme C; Brown, Andrew; Valebona, Fabio B; Silva, Thiago O B; Ingberman, Aline B G; Nalin, Marcelo; Yamamoto, Carlos I; Potgieter-Vermaak, Sanja; Penteado Neto, Renato A; de Marchi, Mary Rosa R; Saldiva, Paulo H N; Pauliquevis, Theotonio; Godoi, Ana Flavia L

    2016-08-01

    Although the particulate matter (PM) emissions from biodiesel fuelled engines are acknowledged to be lower than those of fossil diesel, there is a concern on the impact of PM produced by biodiesel to human health. As the oxidative potential of PM has been suggested as trigger for adverse health effects, it was measured using the Electron Spin Resonance (OP(ESR)) technique. Additionally, Energy Dispersive X-ray Fluorescence Spectroscopy (EDXRF) was employed to determine elemental concentration, and Raman Spectroscopy was used to describe the amorphous carbon character of the soot collected on exhaust PM from biodiesel blends fuelled test-bed engine, with and without Selective Catalytic Reduction (SCR). OP(ESR) results showed higher oxidative potential per kWh of PM produced from a blend of 20% soybean biodiesel and 80% ULSD (B20) engine compared with a blend of 5% soybean biodiesel and 95% ULSD (B5), whereas the SCR was able to reduce oxidative potential for each fuel. EDXRF data indicates a correlation of 0.99 between concentration of copper and oxidative potential. Raman Spectroscopy centered on the expected carbon peaks between 1100cm(-1) and 1600cm(-1) indicate lower molecular disorder for the B20 particulate matter, an indicative of a more graphitic carbon structure. The analytical techniques used in this study highlight the link between biodiesel engine exhaust and increased oxidative potential relative to biodiesel addition on fossil diesel combustion. The EDXRF analysis confirmed the prominent role of metals on free radical production. As a whole, these results suggest that 20% of biodiesel blends run without SCR may pose an increased health risk due to an increase in OH radical generation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Oxidation stability of biodiesel fuel as prepared by supercritical methanol

    Energy Technology Data Exchange (ETDEWEB)

    Jiayu Xin; Hiroaki Imahara; Shiro Saka [Kyoto University, Kyoto (Japan). Department of Socio-Environmental Energy Science, Graduate School of Energy Science

    2008-08-15

    A non-catalytic supercritical methanol method is an attractive process to convert various oils/fats efficiently into biodiesel. To evaluate oxidation stability of biodiesel, biodiesel produced by alkali-catalyzed method was exposed to supercritical methanol at several temperatures for 30 min. As a result, it was found that the tocopherol in biodiesel is not stable at a temperature higher than 300{sup o}C. After the supercritical methanol treatment, hydroperoxides were greatly reduced for biodiesel with initially high in peroxide value, while the tocopherol slightly decreased in its content. As a result, the biodiesel prepared by the supercritical methanol method was enhanced for oxidation stability when compared with that prepared by alkali-catalyzed method from waste oil. Therefore, supercritical methanol method is useful especially for oils/fats having higher peroxide values. 32 refs., 8 figs., 3 tabs.

  3. Environmental impacts the of production and use of biodiesel.

    Science.gov (United States)

    Živković, Snežana; Veljković, Milan

    2018-01-01

    Biodiesel as renewable, environmental friendly, less toxic, and biodegradable is an attractive alternative to fossil fuels and is produced mainly from vegetable oils and animal fats. It is expected, globally, that the use of renewable biofuels, in general, will increase rapidly in the near future. The growing biodiesel production and usage have encouraged assessment of its impact on the environment. The present paper reviews various aspects of biodiesel production using commercial processing technology and biodiesel use through evaluation and analysis of the studies concerning environmental impacts of biodiesel. As a general conclusion, it can be said that biodiesel has the potential to offer a series of perceived benefits such as political, economical, and agricultural, as well as environmental (due to its biodegradability, less toxicity, renewability) and health (greenhouse gas-saving, less harmful exhaust emissions).

  4. Biodiesel production with special emphasis on lipase-catalyzed transesterification.

    Science.gov (United States)

    Bisen, Prakash S; Sanodiya, Bhagwan S; Thakur, Gulab S; Baghel, Rakesh K; Prasad, G B K S

    2010-08-01

    The production of biodiesel by transesterification employing acid or base catalyst has been industrially accepted for its high conversion and reaction rates. Downstream processing costs and environmental problems associated with biodiesel production and byproducts recovery have led to the search for alternative production methods. Recently, enzymatic transesterification involving lipases has attracted attention for biodiesel production as it produces high purity product and enables easy separation from the byproduct, glycerol. The use of immobilized lipases and immobilized whole cells may lower the overall cost, while presenting less downstream processing problems, to biodiesel production. The present review gives an overview on biodiesel production technology and analyzes the factors/methods of enzymatic approach reported in the literature and also suggests suitable method on the basis of evidence for industrial production of biodiesel.

  5. The management of online resources and long-term saving of electronic documents by transfer into the digital space

    Directory of Open Access Journals (Sweden)

    Marius Daniel MAREŞ

    2011-12-01

    The electronic archive refers to the electronic storage system, along with the totality of electronic-type stored documents, while using as storage support any environment that can support storing and from which an electronic document can be presented.

  6. Process Parameters Optimization of Potential SO42-/ZnO Acid Catalyst for Heterogeneous Transesterification of Vegetable Oil to Biodiesel

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2012-12-01

    Full Text Available Among the possible renewable energy resources, diesel fuels derived from triglycerides of vegetable oils and animal fats have shown potential as substitutes for petroleum-based diesel fuels. The biodiesel could be produced from vegetable oils over homogeneous catalyst, heterogeneous catalyst, or enzymatic catalyst. In this study, the synthesized SO42-/ZnO catalyst was explored to be used in the heterogeneous biodiesel production by using the vegetable oils and methanol. The study began with the preparation of SO42-/ZnO catalyst followed by the transesterification reaction between vegetable oil with methanol. The independent variables (reaction time and the weight ratio of catalyst/oil were optimized to obtain the optimum biodiesel (fatty acid methyl ester yield. The results of this study showed that the acid catalyst SO42-/ZnO was potential to be used as catalyst for biodiesel production through heterogeneous transesterification of vegetable oils. Optimum operating condition for this catalytic reaction was the weight ratio of catalyst/oil of 8:1 and reaction time of 2.6 h with respect to 75.5% yield of methyl ester products. The biodiesel product was also characterized to identify the respected fatty acid methyl ester components. Copyright © 2012 by BCREC UNDIP. All rights reserved. (Selected Paper from International Conference on Chemical and Material Engineering (ICCME 2012Received: 23rd October 2012, Revised: 25th November 2012, Accepted: 25th November 2012[How to Cite: I. Istadi, Didi D. Anggoro, Luqman Buchori, Inshani Utami, Roikhatus Solikhah, (2012. Process Parameters Optimization of Potential SO42-/ZnO Acid Catalyst for Heterogeneous Transesterification of Vegetable Oil to Biodiesel. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 150-157. (doi:10.9767/bcrec.7.2.4064.150-157][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.4064.150-157 ] | View in 

  7. State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production

    International Nuclear Information System (INIS)

    Amini, Zeynab; Ilham, Zul; Ong, Hwai Chyuan; Mazaheri, Hoora; Chen, Wei-Hsin

    2017-01-01

    Highlights: • Enzymatic transesterification process is less energy intensive and robust. • Nano-materials are promising immobilization supports for lipase. • Packed-bed reactors are appropriate for scale-up use. • Potential recombinant, whole cell and recombinant whole cell lipases were enlisted. • Genetic engineering is a promising prospect in biodiesel area. - Abstract: The world demand for fuel as energy sources have arisen the need for generating alternatives such as biofuel. Biodiesel is a renewable fuel used particularly in diesel engines. Currently, biodiesel is mainly produced through transesterification reactions catalyzed by chemical catalysts, which produces higher fatty acid alkyl esters in shorter reaction time. Although extensive investigations on enzymatic transesterification by downstream processing were carried out, enzymatic transesterification has yet to be used in scale-up since commercial lipases are chiefly limited to the cost as well as long reaction time. While numerous lipases were studied and proven to have the high catalytic capacity, still enzymatic reaction requires more investigation. To fill this gap, finding optimal conditions for the reaction such as alcohol and oil choice, water content, reaction time and temperature through proper reaction modelling and simulations as well as the appropriate design and use of reactors for large scale production are crucial issues that need to be accurately addressed. Furthermore, lipase concentration, alternative lipase resources through whole cell technology and genetic engineering, recent immobilizing materials including nanoparticles, and the capacity of enzyme to be reused are important criteria to be neatly investigated. The present work reviews the current biodiesel feedstock, catalysis, general and novel immobilizing materials, bioreactors for enzymatic transesterification, potential lipase resources, intensification technics, and process modelling for enzymatic

  8. Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization

    International Nuclear Information System (INIS)

    Sinha, Shailendra; Agarwal, Avinash Kumar; Garg, Sanjeev

    2008-01-01

    Increased environmental awareness and depletion of resources are driving industry to develop viable alternative fuels from renewable resources that are environmentally more acceptable. Vegetable oil is a potential alternative fuel. The most detrimental properties of vegetable oils are its high viscosity and low volatility, and these cause several problems during their long duration usage in compression ignition (CI) engines. The most commonly used method to make vegetable oil suitable for use in CI engines is to convert it into biodiesel, i.e. vegetable oil esters using process of transesterification. Rice bran oil is an underutilized non-edible vegetable oil, which is available in large quantities in rice cultivating countries, and very little research has been done to utilize this oil as a replacement for mineral Diesel. In the present work, the transesterification process for production of rice bran oil methyl ester has been investigated. The various process variables like temperature, catalyst concentration, amount of methanol and reaction time were optimized with the objective of producing high quality rice bran oil biodiesel with maximum yield. The optimum conditions for transesterification of rice bran oil with methanol and NaOH as catalyst were found to be 55 deg. C reaction temperature, 1 h reaction time, 9:1 molar ratio of rice bran oil to methanol and 0.75% catalyst (w/w). Rice bran oil methyl ester thus produced was characterized to find its suitability to be used as a fuel in engines. Results showed that biodiesel obtained under the optimum conditions has comparable properties to substitute mineral Diesel, hence, rice bran oil methyl ester biodiesel could be recommended as a mineral Diesel fuel substitute for compression ignition (CI) engines in transportation as well as in the agriculture sector

  9. Messiah College Biodiesel Fuel Generation Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Zummo, Michael M; Munson, J; Derr, A; Zemple, T; Bray, S; Studer, B; Miller, J; Beckler, J; Hahn, A; Martinez, P; Herndon, B; Lee, T; Newswanger, T; Wassall, M

    2012-03-30

    Many obvious and significant concerns arise when considering the concept of small-scale biodiesel production. Does the fuel produced meet the stringent requirements set by the commercial biodiesel industry? Is the process safe? How are small-scale producers collecting and transporting waste vegetable oil? How is waste from the biodiesel production process handled by small-scale producers? These concerns and many others were the focus of the research preformed in the Messiah College Biodiesel Fuel Generation project over the last three years. This project was a unique research program in which undergraduate engineering students at Messiah College set out to research the feasibility of small-biodiesel production for application on a campus of approximately 3000 students. This Department of Energy (DOE) funded research program developed out of almost a decade of small-scale biodiesel research and development work performed by students at Messiah College. Over the course of the last three years the research team focused on four key areas related to small-scale biodiesel production: Quality Testing and Assurance, Process and Processor Research, Process and Processor Development, and Community Education. The objectives for the Messiah College Biodiesel Fuel Generation Project included the following: 1. Preparing a laboratory facility for the development and optimization of processors and processes, ASTM quality assurance, and performance testing of biodiesel fuels. 2. Developing scalable processor and process designs suitable for ASTM certifiable small-scale biodiesel production, with the goals of cost reduction and increased quality. 3. Conduct research into biodiesel process improvement and cost optimization using various biodiesel feedstocks and production ingredients.

  10. A First Law Thermodynamic Analysis of Biodiesel Production from Soybean

    Science.gov (United States)

    Patzek, Tad W.

    2009-01-01

    A proper First Law energy balance of the soybean biodiesel cycle shows that the overall efficiency of biodiesel production is 0.18, i.e., only 1 in 5 parts of the solar energy sequestered as soya beans, plus the fossil energy inputs, becomes biodiesel. Soybean meal is produced with an overall energetic efficiency of 0.38, but it is not a fossil…

  11. Optimization of emergy sustainability index for biodiesel supply network design

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Tan, Shiyu; Yang, Le

    2015-01-01

    sustainable design. In the proposed model, the emergy sustainability index of the whole biodiesel supply networks in a life cycle perspective is employed as the measure of the sustainability, and multiple feedstocks, multiple transport modes, multiple regions for biodiesel production and multiple distribution...... centers can be considered. After describing the process and mathematic framework of the model, an illustrative case was studied and demonstrated that the proposed methodology is feasible for finding the most sustainable design and planning of biodiesel supply chains....

  12. Impact of ternary blends of biodiesel on diesel engine performance

    Directory of Open Access Journals (Sweden)

    Prem Kumar

    2016-06-01

    Full Text Available The Pongamia and waste cooking oils are the main non edible oils for biodiesel production in India. The aim of the present work is to evaluate the fuel properties and investigate the impact on engine performance using Pongamia and waste cooking biodiesel and their ternary blend with diesel. The investigation of the fuel properties shows that Pongamia biodiesel and waste cooking biodiesel have poor cold flow property. This will lead to starting problem in the engine operation. To overcome this problem the ternary blends of diesel, waste cooking biodiesel and Pongamia biodiesel are prepared. The cloud and pour point for ternary blend, (WCB20:PB20:D60 were found to be 7 °C and 6.5 °C which are comparable to cloud and pour point of diesel 6 °C and 5 °C, respectively. The result of the test showed that brake specific fuel consumption for Pongamia biodiesel and waste cooking biodiesel is higher than ternary blend, (WCB20:PB20:D60 due to their lower energy content. The brake thermal efficiency of ternary blend and diesel is comparable while the Pongamia and waste cooking biodiesel have low efficiency. The result of investigation showed that ternary blend can be developed as alternate fuel.

  13. Biodiesel fuel costs and environmental issues when powering railway locomotives

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, Abdul; Ziemer, Norbert; Tatara, Robert; Moraga, Reinaldo; Mirman, Clifford; Vohra, Promod

    2010-09-15

    Issues for adopting biodiesel fuel, instead of petrodiesel, to power railroad locomotives are engine performance and emissions, fuel infrastructure, and fuel cost. These are evaluated for B2 through B100 blends. Biodiesel's solvent action on fuel systems is addressed. With biodiesel, hydrocarbon, carbon monoxide, and particulate emissions are unchanged or reduced. Nitrogen oxides are elevated but it is believed that engine alterations can minimize these emissions. A Transportation Model, using data from a major railway, has demonstrated that refueling depots can be fully supplied with biodiesel at a pricing premium of 1% to 26%, depending on blend and geographical location.

  14. Biodiesel production from waste frying oils and its quality control.

    Science.gov (United States)

    Sabudak, T; Yildiz, M

    2010-05-01

    The use of biodiesel as fuel from alternative sources has increased considerably over recent years, affording numerous environmental benefits. Biodiesel an alternative fuel for diesel engines is produced from renewable sources such as vegetable oils or animal fats. However, the high costs implicated in marketing biodiesel constitute a major obstacle. To this regard therefore, the use of waste frying oils (WFO) should produce a marked reduction in the cost of biodiesel due to the ready availability of WFO at a relatively low price. In the present study waste frying oils collected from several McDonald's restaurants in Istanbul, were used to produce biodiesel. Biodiesel from WFO was prepared by means of three different transesterification processes: a one-step base-catalyzed, a two-step base-catalyzed and a two-step acid-catalyzed transesterification followed by base transesterification. No detailed previous studies providing information for a two-step acid-catalyzed transesterification followed by a base (CH(3)ONa) transesterification are present in literature. Each reaction was allowed to take place with and without tetrahydrofuran added as a co-solvent. Following production, three different procedures; washing with distilled water, dry wash with magnesol and using ion-exchange resin were applied to purify biodiesel and the best outcome determined. The biodiesel obtained to verify compliance with the European Standard 14214 (EN 14214), which also corresponds to Turkish Biodiesel Standards. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  15. Investigation of friction and wear characteristics of palm biodiesel

    International Nuclear Information System (INIS)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H.

    2013-01-01

    Highlights: ► Both wear and friction decrease with the increase of biodiesel concentration. ► Wear and friction appear to decrease more at the range of 10–20% biodiesel in diesel blend. ► The wear of steel ball in biodiesel (B100) was 20% lower than that in diesel (B0). ► Lubricity in terms of wear and friction decreases with the increase of rotating speed. - Abstract: Use of biodiesel in automobile engine is creating tribology related new challenges. The present study aims to assess the friction and wear characteristics of palm biodiesel at different concentration level by using four-ball wear machine. The investigated fuels were biodiesel (B100), diesel (B0) and three different biodiesel blends such as B10 (10% biodiesel in diesel), B20, B50. Tests were conducted at 75 °C under a normal load of 40 kg for 1 h at four different speeds viz, 600, 900, 1200 and 1500 rpm. Worn surfaces of the balls were examined by SEM. Results showed that wear and friction decreased with the increase of biodiesel concentration. The wear of steel ball in B100 was appeared to be 20% lower than that in diesel (B0)

  16. Prospects of Tectona Grandis as a Feedstock for Biodiesel

    International Nuclear Information System (INIS)

    Sarin, Amit; Singh, Meetu; Sharma, Neerja; Singh, N. P.

    2017-01-01

    The limited availability of fossil fuels has encouraged the need of replacement fuels of renewable nature. Among the renewable fuels, biodiesel produced from oil seeds and food wastes has been favored by the majority of researchers. In this study, Tectona Grandis seed oil has been investigated as a non-edible feedstock for biodiesel. The oil content of seed is 43% which makes it suitable for commercial production of biodiesel. The synthesis of biodiesel from T. Grandis oil was done with transesterification reaction giving high percentage yield of biodiesel which reached to 89%. The T. Grandis biodiesel was subjected to determine various physicochemical parameters by standard testing methods and found in agreement with the ASTM D-6751 and EN-14214 standards. The fatty-acid methyl ester composition for the biodiesel is composed of 42.71% oleic acid, 13.1% palmitic acid, and 31.51% linoleic acid. The biodiesel showed low oxidation stability which is attributed to high percentage of unsaturation. To address this issue, synthetic antioxidants were added to increase its resistance towards oxidation. By considering all the parameters, the present study reveals that T. Grandis seed oil is reliable for the production of biodiesel with encouraging probability in future.

  17. Assessment of the biodiesel distribution infrastructure in Canada

    International Nuclear Information System (INIS)

    Lagace, C.

    2007-08-01

    Canada's biodiesel industry is in its infancy, and must work to achieve the demand needed to ensure its development. This assessment of Canada's biodiesel distribution infrastructure was conducted to recommend the most efficient infrastructure pathway for effective biodiesel distribution. The study focused on the establishment of a link between biodiesel supplies and end-users. The current Canadian biodiesel industry was discussed, and future market potentials were outlined. The Canadian distillate product distribution infrastructure was discussed. Technical considerations and compliance issues were reviewed. The following 2 scenarios were used to estimate adaptations and costs for the Canadian market: (1) the use of primary terminals to ensure quality control of biodiesel, and (2) storage in secondary terminals where biodiesel blends are prepared before being transported to retail outlets. The study showed that relevant laboratory training programs are needed as well as proficiency testing programs in order to ensure adequate quality control of biodiesel. Standards for biodiesel distribution are needed, as well as specifications for the heating oil market. It was concluded that this document may prove useful in developing government policy objectives and identifying further research needs. 21 refs., 12 tabs., 13 figs

  18. Environmental sustainability assessment of palm biodiesel production in Thailand

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.

    2012-01-01

    The study assesses the environmental sustainability of palm biodiesel production systems in Thailand by focusing on their energy efficiency and environmental impact potentials. The Net Energy Balance (NEB) and Renewability indicate energy gain for palm biodiesel and its co-products as compared to fossil energy inputs. In addition, life cycle assessment also reveals lower values of environmental impact potentials of biodiesel as compared to conventional diesel. For example, palm biodiesel can provide greenhouse gas (GHG) reduction of around 46–73% as compared to diesel. Nitrogen-fertilizer production and application in the plantation and the air emissions from the ponds treating palm oil mill effluent (POME) are found to be the major environmental aspects. However, the energy and environmental performances depend on various factors such as the management efficiency of empty fruit bunches (EFB) and POME and the possible land-use change in the future. Recommendations are made for improving environmental performance of palm biodiesel and for securing the long-term availability of crude palm oil supply with a view towards sustainable palm biodiesel production. -- Highlights: ► Environmental sustainability of palm biodiesel production in Thailand is assessed. ► Palm biodiesel can provide GHG reduction of around 46–73% as compared to diesel. ► Net energy ratio and renewability of palm biodiesel both range between 2 and 4. ► Efficient use of by-products in the value chain enhances environmental benefits.

  19. Biodiesel production from sediments of a eutrophic reservoir

    International Nuclear Information System (INIS)

    Kuchkina, A.Yu.; Gladyshev, M.I.; Sushchik, N.N.; Kravchuk, E.S.; Kalachova, G.S.

    2011-01-01

    Sediments from eutrophic reservoir Bugach (Siberia, Russia) were tested for possibility to produce biodiesel. We supposed that the sediments could be a promising biodiesel producer. The major reason of high price of biodiesel fuel is cost of a raw material. The use of dredging sediments for biodiesel production reduces production costs, because the dredging sediments are by-products which originated during lake restoration actions, and are free of cost raw materials. Lipid content in sediments was 0.24% of dry weight. To assess the potential of from sediments as a substitute of diesel fuel, the properties of the biodiesel such as cetane number, iodine number and heat of combustion were calculated. All of this parameters complied with limits established by EN 14214 and EN 14213 related to biodiesel quality. -- Highlights: → Dredging sediments were considered as a new feedstock for biodiesel production. → Lipid and fatty acid content in the sediments were determined. → Main properties of the biodiesel were calculated basing on fatty acid composition. → The properties well complied with limits established in biodiesel standards.

  20. Prospects of Tectona Grandis as a Feedstock for Biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Sarin, Amit, E-mail: amit.sarin@yahoo.com [Department of Physical Sciences, I.K. Gujral Punjab Technical University, Kapurthala (India); Singh, Meetu [Department of Applied Sciences, I.K. Gujral Punjab Technical University, Kapurthala (India); Sharma, Neerja [PG Department of Physics and Electronics, DAV College, Amritsar (India); Singh, N. P. [Department of Planning and External Development, I.K. Gujral Punjab Technical University, Kapurthala (India)

    2017-10-26

    The limited availability of fossil fuels has encouraged the need of replacement fuels of renewable nature. Among the renewable fuels, biodiesel produced from oil seeds and food wastes has been favored by the majority of researchers. In this study, Tectona Grandis seed oil has been investigated as a non-edible feedstock for biodiesel. The oil content of seed is 43% which makes it suitable for commercial production of biodiesel. The synthesis of biodiesel from T. Grandis oil was done with transesterification reaction giving high percentage yield of biodiesel which reached to 89%. The T. Grandis biodiesel was subjected to determine various physicochemical parameters by standard testing methods and found in agreement with the ASTM D-6751 and EN-14214 standards. The fatty-acid methyl ester composition for the biodiesel is composed of 42.71% oleic acid, 13.1% palmitic acid, and 31.51% linoleic acid. The biodiesel showed low oxidation stability which is attributed to high percentage of unsaturation. To address this issue, synthetic antioxidants were added to increase its resistance towards oxidation. By considering all the parameters, the present study reveals that T. Grandis seed oil is reliable for the production of biodiesel with encouraging probability in future.

  1. PRELIMINARY DESIGN OF OSCILLATORY FLOW BIODIESEL REACTOR FOR CONTINUOUS BIODIESEL PRODUCTION FROM JATROPHA TRIGLYCERIDES

    Directory of Open Access Journals (Sweden)

    AZHARI T. I. MOHD. GHAZI

    2008-08-01

    Full Text Available The concept of a continuous process in producing biodiesel from jatropha oil by using an Oscillatory Flow Biodiesel Reactor (OFBR is discussed in this paper. It has been recognized that the batch stirred reactor is a primary mode used in the synthesis of biodiesel. However, pulsatile flow has been extensively researcehed and the fundamental principles have been successfully developed upon which its hydrodynamics are based. Oscillatory flow biodiesel reactor offers precise control of mixing by means of the baffle geometry and pulsation which facilitates to continuous operation, giving plug flow residence time distribution with high turbulence and enhanced mass and heat transfer. In conjunction with the concept of reactor design, parameters such as reactor dimensions, the hydrodynamic studies and physical properties of reactants must be considered prior to the design work initiated recently. The OFBR reactor design involves the use of simulation software, ASPEN PLUS and the reactor design fundamentals. Following this, the design parameters shall be applied in fabricating the OFBR for laboratory scale biodiesel production.

  2. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Bambang Tri Nugroho

    2009-06-01

    Full Text Available Biodiesel production has received considerable attention in the recent past as a renewable fuel. The production of biodiesel by conventional transesterification process employs alkali or acid catalyst and has been industrially accepted for its high conversion and reaction rates. However for alkali catalyst, there may be risk of free acid or water contamination and soap formation is likely to take place which makes the separation process difficult. Although yield is high, the acids, being corrosive, may cause damage to the equipment and the reaction rate was also observed to be low. This research focuses on empirical modeling and optimization for the biodiesel production over plasma reactor. The plasma reactor technology is more promising than the conventional catalytic processes due to the reducing reaction time and easy in product separation. Copyright (c 2009 by BCREC. All Rights reserved.[Received: 10 August 2009, Revised: 5 September 2009, Accepted: 12 October 2009][How to Cite: I. Istadi, D.D. Anggoro, P. Marwoto, S. Suherman, B.T. Nugroho (2009. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 4(1: 23-31. doi:10.9767/bcrec.4.1.23.23-31][How to Link/ DOI: http://dx.doi.org/10.9767/bcrec.4.1.23.23-31

  3. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2009-06-01

    Full Text Available Biodiesel production has received considerable attention in the recent past as a renewable fuel. The production of biodiesel by conventional transesterification process employs alkali or acid catalyst and has been industrially accepted for its high conversion and reaction rates. However for alkali catalyst, there may be risk of free acid or water contamination and soap formation is likely to take place which makes the separation process difficult. Although yield is high, the acids, being corrosive, may cause damage to the equipment and the reaction rate was also observed to be low. This research focuses on empirical modeling and optimization for the biodiesel production over plasma reactor. The plasma reactor technology is more promising than the conventional catalytic processes due to the reducing reaction time and easy in product separation. Copyright (c 2009 by BCREC. All Rights reserved.[Received: 10 August 2009, Revised: 5 September 2009, Accepted: 12 October 2009][How to Cite: I. Istadi, D.D. Anggoro, P. Marwoto, S. Suherman, B.T. Nugroho (2009. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 4(1: 23-31.  doi:10.9767/bcrec.4.1.7115.23-31][How to Link/ DOI: http://dx.doi.org/10.9767/bcrec.4.1.7115.23-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/7115

  4. Study about the particularities of biodiesel in Brazil; Estudo sobre as particularidades do biodiesel no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Marcia Franca Ribeiro Fernandes dos [Instituto Brasileiro de Geografia e Estatistica (IBGE), Brasilia, DF (Brazil); Peixoto, Jose Antonio Assuncao; Souza, Cristina Gomes de [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET/RJ), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The environmental concern associated with the impending shortage of oil, which is pressing to raise the price of the barrel, has forced governments and society to seek alternatives that will replace the use of fossil fuels. The biodiesel, in particular, has been set up as an alternative energy by it of fuel come from renewable sources, and less polluting the environment. In this context, the objective of this article is to present some features of the production of biodiesel in Brazil, identifying the characteristics of the main oil used, as well as regional motivations for the use of biodiesel in Brazil. The methodology adopted in this study was exploratory in nature based on a literature search and documentary from a survey of information available in literature. The main results, the article points out that: unlike alcohol, which is in sugar cane their ideal raw material, biodiesel is still in a stage of intensive research and development in order to identify the most appropriate its oil production - with emphasis on soybean and castor bean, and the motivations for regional use of biodiesel are different for the Brazilian regions. The study aims to contribute to the discussion on the subject, emphasizing that technological research should be directed taking into consideration the conditions and needs of Brazil. (author)

  5. The U.S. biodiesel use mandate and biodiesel feedstock markets

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Wyatt; Meyer, Seth; Green, Travis [University of Missouri, 101 Park deVille Drive, Suite E; Columbia, MO 65203 (United States)

    2010-06-15

    Studies of individual biodiesel feedstocks or broad approaches that lump animal fats and vegetable oils into a single aggregate straddle the true case of imperfect but by no means inconsequential substitution among fats and oils by different users. United States biofuel policy includes a biodiesel use mandate that rises to almost 4 hm{sup 3} by 2012, calling for biomass feedstock analysis that recognizes the complex interdependence among potential feedstocks and competition for food and industrial uses. We model biodiesel input markets to investigate the implications of the mandate for quantities and prices with and without a provision disallowing biodiesel made from soybean oil. Findings suggest a hierarchy of price effects that tends to be largest for cheaper fats and oils typically used for industrial and feed purposes and smallest for fats and oils traditionally used exclusively for direct consumption, with the cross-commodity effects and other key economic parameters playing a critical part in determining the scale in each case. Although sensitive to the exact parameters used, our results argue against overly simplifying feedstock markets by holding prices constant when considering the economics of a particular feedstock or if estimating the broader impacts of rising biodiesel production on competing uses. (author)

  6. Biodiesel production from the lipid of wastewater sludge using an acidic heterogeneous catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Siddiquee, M.N.; Kazemian, H.; Rohani, S. [University of Western Ontario, Department of Chemical and Biochemical Engineering, London, ON (Canada)

    2011-12-15

    The production of biodiesel from the lipid of wastewater sludge was studied using SBA-15 impregnated with the heteropolyacid H{sub 3}PO{sub 4}.12WO{sub 3}.xH{sub 2}O (PW{sub 12}) as a mesoporous heterogeneous catalyst. X-ray diffraction, Brunauer-Emmett-Teller surface area, thermalgravimetric analysis, and scanning electron microscopy were applied to characterize the prepared catalysts. Catalytic performances were evaluated in a microreactor setup under different experimental conditions. The biodiesel yield for a sample impregnated with 15 % PW{sub 12} was 30.14 wt-% at a temperature of 135 C and a pressure of 135 psi for 3 h reaction time. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Development of an Electronic Medical Record Based Alert for Risk of HIV Treatment Failure in a Low-Resource Setting

    Science.gov (United States)

    Puttkammer, Nancy; Zeliadt, Steven; Balan, Jean Gabriel; Baseman, Janet; Destiné, Rodney; Domerçant, Jean Wysler; France, Garilus; Hyppolite, Nathaelf; Pelletier, Valérie; Raphael, Nernst Atwood; Sherr, Kenneth; Yuhas, Krista; Barnhart, Scott

    2014-01-01

    Background The adoption of electronic medical record systems in resource-limited settings can help clinicians monitor patients' adherence to HIV antiretroviral therapy (ART) and identify patients at risk of future ART failure, allowing resources to be targeted to those most at risk. Methods Among adult patients enrolled on ART from 2005–2013 at two large, public-sector hospitals in Haiti, ART failure was assessed after 6–12 months on treatment, based on the World Health Organization's immunologic and clinical criteria. We identified models for predicting ART failure based on ART adherence measures and other patient characteristics. We assessed performance of candidate models using area under the receiver operating curve, and validated results using a randomly-split data sample. The selected prediction model was used to generate a risk score, and its ability to differentiate ART failure risk over a 42-month follow-up period was tested using stratified Kaplan Meier survival curves. Results Among 923 patients with CD4 results available during the period 6–12 months after ART initiation, 196 (21.2%) met ART failure criteria. The pharmacy-based proportion of days covered (PDC) measure performed best among five possible ART adherence measures at predicting ART failure. Average PDC during the first 6 months on ART was 79.0% among cases of ART failure and 88.6% among cases of non-failure (pART initiation were added to PDC, the risk score differentiated between those who did and did not meet failure criteria over 42 months following ART initiation. Conclusions Pharmacy data are most useful for new ART adherence alerts within iSanté. Such alerts offer potential to help clinicians identify patients at high risk of ART failure so that they can be targeted with adherence support interventions, before ART failure occurs. PMID:25390044

  8. Development of an electronic medical record based alert for risk of HIV treatment failure in a low-resource setting.

    Directory of Open Access Journals (Sweden)

    Nancy Puttkammer

    Full Text Available The adoption of electronic medical record systems in resource-limited settings can help clinicians monitor patients' adherence to HIV antiretroviral therapy (ART and identify patients at risk of future ART failure, allowing resources to be targeted to those most at risk.Among adult patients enrolled on ART from 2005-2013 at two large, public-sector hospitals in Haiti, ART failure was assessed after 6-12 months on treatment, based on the World Health Organization's immunologic and clinical criteria. We identified models for predicting ART failure based on ART adherence measures and other patient characteristics. We assessed performance of candidate models using area under the receiver operating curve, and validated results using a randomly-split data sample. The selected prediction model was used to generate a risk score, and its ability to differentiate ART failure risk over a 42-month follow-up period was tested using stratified Kaplan Meier survival curves.Among 923 patients with CD4 results available during the period 6-12 months after ART initiation, 196 (21.2% met ART failure criteria. The pharmacy-based proportion of days covered (PDC measure performed best among five possible ART adherence measures at predicting ART failure. Average PDC during the first 6 months on ART was 79.0% among cases of ART failure and 88.6% among cases of non-failure (p<0.01. When additional information including sex, baseline CD4, and duration of enrollment in HIV care prior to ART initiation were added to PDC, the risk score differentiated between those who did and did not meet failure criteria over 42 months following ART initiation.Pharmacy data are most useful for new ART adherence alerts within iSanté. Such alerts offer potential to help clinicians identify patients at high risk of ART failure so that they can be targeted with adherence support interventions, before ART failure occurs.

  9. Innovative direct energy conversion systems using electronic adiabatic processes of electron fluid in solid conductors: new plants of electrical power and hydrogen gas resources without environmental pollutions

    International Nuclear Information System (INIS)

    Kondoh, Y.; Kondo, M.; Shimoda, K.; Takahashi, T.

    2001-07-01

    It is shown that using a novel recycling process of the environmental thermal energy, innovative permanent auto-working direct energy converter systems (PA-DEC systems) from the environmental thermal to electrical and/or chemical potential (TE/CP) energies, abbreviated as PA-TE/CP-DEC systems, can be used for new auto-working electrical power plants and the plants of the compressible and conveyable hydrogen gas resources at various regions in the whole world, with contributions to the world peace and the economical development in the south part of the world. It is shown that the same physical mechanism by free electrons and electrical potential determined by temperature in conductors, which include semiconductors, leads to the Peltier effect and the Seebeck one. It is experimentally clarified that the long distance separation between two π type elements of the heat absorption (HAS) and the production one (HPS) of the Peltier effect circuit system or between the higher temperature side (HTS) and the lower one (LTS) of the Seebeck effect circuit one does not change in the whole for the both effects. By using present systems, we do not need to use petrified fuels such as coals, oils, and natural gases in order to decrease the greenhouse effect by the CO 2 surrounding the earth. Furthermore, we do not need plats of nuclear fissions that left radiating wastes, i.e., with no environmental pollutions. The PA-TE/CP-DEC systems can be applicable for several km scale systems to the micro ones, such as the plants of the electrical power, the compact transportable hydrogen gas resources, a large heat energy container, which can be settled at far place from thermal energy absorbing area, the refrigerators, the air conditioners, home electrical apparatuses, and further the computer elements. It is shown that the simplest PA-TE/CP-DEC system can be established by using only the Seebeck effect components and the resolving water ones. It is clarified that the externally applied

  10. Biodiesel: uma energia alternativa e verde

    Directory of Open Access Journals (Sweden)

    Milena Carvalho Teixeira

    2010-12-01

    Full Text Available O presente texto busca expor a importância do uso de energias alternativas. O biodiesel é apontado como uma das soluções para o esgotamento do petróleo e seus derivados e para o problema do aquecimento global, e o Brasil, por apresentar biodiversidade e forte economia agrícola, permitiu que o Governo Federal criasse o Programa Nacional de Produção e Uso de Biodiesel (PNPB com chances de sucesso. O programa explora várias fontes energéticas, de culturas temporárias e perenes ao uso do óleo residual, além de trazer benefícios ao desenvolvimento do país, gerando emprego e renda, e, principalmente, redução nas emissões de gás carbônico.

  11. Optimization of biodiesel production from castor oil.

    Science.gov (United States)

    da Silva, Nivea de Lima; Maciel, Maria Regina Wolf; Batistella, César Benedito; Maciel Filho, Rubens

    2006-01-01

    The transesterification of castor oil with ethanol in the presence of sodium ethoxide as catalyst is an exceptional option for the Brazilian biodiesel production, because the castor nut is quite available in the country. Chemically, its oil contains about 90% of ricinoleic acid that gives to the oil some beneficial characteristics such as its alcohol solubility at 30 degrees C. The transesterification variables studied in this work were reaction temperature, catalyst concentration and alcohol oil molar ratio. Through a star configuration experimental design with central points, this study shows that it is possible to achieve the same conversion of esters carrying out the transesterification reaction with a smaller alcohol quantity, and a new methodology was developed to obtain high purity biodiesel.

  12. Evaluating the economics of biodiesel in Africa

    International Nuclear Information System (INIS)

    Mulugetta, Yacob

    2009-01-01

    Road transport in Sub-Saharan Africa is expected to rise in the coming years. Paradoxically, this expansion is occurring at a time when oil prices have reached new heights. Unstable oil prices do indeed increase the vulnerability of importers. However, it also presents them with a unique opportunity to explore promising technical options to help reduce their over-reliance on imported petroleum fuels. This paper takes a closer look at the potential for biodiesel, with an emphasis on fuels produced from oil palm, castor oil and jatropha in Ghana, Kenya and Tanzania, respectively. The paper provides an economic appraisal of biodiesels from these feedstocks, and sets the context for further discussions on biofuels in Africa. (author)

  13. Environmental Sustainability Analysis of Biodiesel Production

    DEFF Research Database (Denmark)

    Herrmann, Ivan Tengbjerg; Hauschild, Michael Michael Zwicky; Birkved, Morten

    Due to their generally positive carbon dioxide balance, biofuels are seen as one of the energy carriers in a more sustainable future transportation energy system, but how good is their environmental sustainability, and where lie the main potentials for improvement of their sustainability? Questions...... like these require a life cycle perspective on the biofuel - from the cradle (production of the agricultural feedstock) to the grave (use as fuel). An environmental life cycle assessment is performed on biodiesel to compare different production schemes including chemical and enzymatic esterification...... with the use of methanol or ethanol. The life cycle assessment includes all processes needed for the production, distribution and use of the biodiesel (the product system), and it includes all relevant environmental impacts from the product system, ranging from global impacts like climate change and loss...

  14. Biodiesel Reactor Design with Glycerol Separation to Increase Biodiesel Production Yield

    Directory of Open Access Journals (Sweden)

    Budy Rahmat

    2013-09-01

    Full Text Available The study consisted of reactor design used for transesterification process, effect of glycerol separation ontransesterification reaction, determination of biodiesel quality, and mass balance analysis. The reactor was designed byintegrating circulated pump/stirrer, static mixer, and sprayer that intensify the reaction in the outer tank reactor. The objective was to reduce the use of methanol in excess and to shorten the processing time. The results showed that thereactor that applied the glycerol separation was able to compensate for the decreased use of the reactant methanol from 6:1 to 5:1 molar ratio, and changed the mass balance in the product, including: (i the increase of biodiesel productionfrom 42.37% to 49.34%, and (ii the reduction of methanol in excess from 42.37% to 32.89%. The results suggested that the efficiency of biodiesel production could be increased with the glycerol separation engineering.

  15. Alcohol biodiesel from frying oil residues; Biodiesel etilico a partir de oleo de fritura residual

    Energy Technology Data Exchange (ETDEWEB)

    Festa, Brunna Simoes; Marques, Luiz Guilherme da Costa [Universidade Federal do Rio de Janeiro (IVIG/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Inst. Virtual Internacional de Mudancas Globais], E-mail: lguilherme@ivig.coppe.ufrj.br

    2010-07-01

    This paper describes the reaction optimization and production of biodiesel through the use of frying residual oil made available by the restaurant placed at the PETROBRAS Research Center (CENPES-RJ), using ethanol, so that to permit the production of sustainable bio diesel. The environmental gains obtained by the utilization of residual oil, avoiding that this oil be released in the nature, and the economic gains coming from the generation and utilization of ethanol allowing the production of biodiesel be an viable alternative. The obtained results during laboratory tests shown that biodiesel produced from the transesterification in alkaline medium, of the frying residual oil collected presented a reaction yield of approximately 80% considering in mass.

  16. Castor oil biodiesel: an economic evaluation; Biodiesel de mamona: uma avaliacao economica

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Monica de Moura; Alves, Jaenes Miranda; Almeida Neto, Jose Adolfo de; Almeida, Cezar Menezes; Sousa, Geovania Silva de; Cruz, Rosenira Serpa da; Monteiro, Renata; Lopes, Beatriz Sampaio; Robra, Sabine [Universidade Estadual de Santa Cruz, Ilheus, BA (Brazil). Grupo Bioenergia e Meio Ambiente]. E-mails: mpires@uesc.br; jaenes@uesc.br; jalmeida@uesc.br; roserpa@uesc.br

    2004-07-01

    The production cost of castor oil biodiesel by methyl way and its economic viability, using as reference the production cost data of castor oil and the implantation of the pilot plant at UESC - state university of Santa Cruz, Bahia State, Brazil was determined. From this information, it was seen that the estimated price of castor oil biodiesel is close to the diesel price in the Itabuna market, Bahia state, Brazil. The indicators show economic viability of the mini-power plant installation. Such information are preliminary estimative for the market and can be modified as function of changes in the main factors used to have the production costs, as well as the sectorial policies that drives the activity as much in levels of raw material production as in biodiesel.

  17. del biodiesel de aceite de palma

    Directory of Open Access Journals (Sweden)

    Pedro Nel Benjumea

    2007-01-01

    Full Text Available El deficiente desempeño del biodiesel de aceite de palma (BAP a bajas temperaturas constituye su mayor deficiencia de calidad y el limitante para propiciar el uso de este combustible alternativo para motores diesel puro o mezclado en altas proporciones con el combustible diesel convencional derivado del petróleo (ACPM. En este trabajo se evalúan varias alternativas para mejorar las propiedades de flujo a baja temperatura (PFBT del BAP. Mediante la producción del biodiesel utilizando alcoholes ramificados como el isopropanol, isobutanol, 2-butanol e isopentanol se obtienen alquilésteres del aceite de palma con puntos de nube y fl uidez más bajos que los correspondientes a los metilésteres. La sustitución del grupo metil por el isopentil permite obtener reducciones en los puntos de nube y fluidez de 8 y 21 ºC, respectivamente. Los isopropilésteres del aceite de palma poseen un punto de nube 10 ºC menor que el de los metilésteres. El punto de nube de las mezclas BAP-ACPM se incrementa en forma lineal con el contenido del biodiesel en la mezcla. Para las mezclas probadas (B5, B20 y B30 solo se presentan problemas de filtrabilidad del combustible a temperaturas por debajo de -4 ºC. En este trabajo se evaluó la efectividad de dos aditivos comerciales mejoradores de flujo para reducir el punto de obstrucción de filtros en frío (POFF del biodiesel puro y las mezclas probadas. Los resultados obtenidos mostraron que con dichos aditivos solamente es posible obtener reducciones en el POFF de la mezcla B5 cuando se usa la menor de las tres concentraciones de aditivo probadas.

  18. Fremtidens Biodiesel: Kom fedtaffald i tanken!

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Taarning, Esben; Christensen, Claus Hviid

    2009-01-01

    Mange tror måske, at det er svært for menigmand at lave biobrændstof. Det er faktisk forkert, fordi biodiesel nemt kan laves af kemikalier, der er ret almindelige i laboratorier og hos købmanden og materialisten. Det kræver blot en såkaldt om-estring af planteolie eller fedt med methanol, samt...

  19. Property modification of jatropha oil biodiesel by blending with other biodiesels or adding antioxidants

    International Nuclear Information System (INIS)

    Chen, Yi-Hung; Chen, Jhih-Hong; Luo, Yu-Min; Shang, Neng-Chou; Chang, Cheng-Hsin; Chang, Ching-Yuan; Chiang, Pen-Chi; Shie, Je-Lueng

    2011-01-01

    The feasibility of biodiesel production from jatropha (Jatropha curcas) oil was investigated with respect to the biodiesel blending properties and its oxidation stability with antioxidants. The JME (jatropha oil methyl esters) had the cetane number of 54, cold filter plugging point of -2 o C, density of 881 kg/m 3 at 15 o C, ester content of 99.4 wt.%, iodine value of 96.55 g I 2 /100 g, kinematic viscosity of 4.33 mm 2 /s at 40 o C, and oxidation stability of 3.86 h. Furthermore, the JME was blended with palm oil biodiesel and soybean oil biodiesel at various weight ratios and evaluated for fuel properties as compared to the relevant specifications. In addition, several antioxidants at concentrations between 100 and 1000 ppm were studied for their potential to improve the oxidation stability of the JME. The relationship between the IP (induction period) in the measurement of the oxidation stability associated with the antioxidant consumption in the JME was described by first-order reaction rate kinetics. Moreover, the ln IP (natural logarithm of the IP) at various concentrations of pyrogallol showed a linear relationship with the test temperature. The oxidation stability at ambient temperatures was predicted on the basis of an extrapolation of the temperature-dependent relationship. -- Highlights: → Jatropha oil methyl esters had satisfactory biodiesel properties except for the oxidation stability. → The oxidation stability and cold filter plugging point of the jatropha-based biodiesel blends cannot meet the EN 14214 requirements simultaneously. → The addition of pyrogallol was recommended for the stabilization of the jatropha oil methyl esters with a concentration of 100-250 ppm.

  20. Light vehicle regulated and unregulated emissions from different biodiesels

    International Nuclear Information System (INIS)

    Karavalakis, George; Stournas, Stamoulis; Bakeas, Evangelos

    2009-01-01

    In this study, the regulated and unregulated emissions profile and fuel consumption of an automotive diesel and biodiesel blends, prepared from two different biodiesels, were investigated. The biodiesels were a rapeseed methyl ester (RME) and a palm-based methyl ester (PME). The tests were performed on a chassis dynamometer with constant volume sampling (CVS) over the New European Driving Cycle (NEDC) and the non-legislated Athens Driving Cycle (ADC), using a Euro 2 compliant passenger vehicle. The objectives were to evaluate the impact of biodiesel chemical structure on the emissions, as well as the influence of the applied driving cycle on the formation of exhaust emissions and fuel consumption. The results showed that NOx emissions were influenced by certain biodiesel properties, such as those of cetane number and iodine number. NOx emissions followed a decreasing trend over both cycles, where the most beneficial reduction was obtained with the application of the more saturated biodiesel. PM emissions were decreased with the palm-based biodiesel blends over both cycles, with the exception of the 20% blend which was higher compared to diesel fuel. PME blends led to increases in PM emissions over the ADC. The majority of the biodiesel blends showed a tendency for lower CO and HC emissions. The differences in CO2 emissions were not statistically significant. Fuel consumption presented an increase with both biodiesels. Total PAH and nitro-PAH emission levels were decreased with the use of biodiesel independently of the source material. Lower molecular weight PAHs were predominant in both gaseous and particulate phases. Both biodiesels had a negative impact on certain carbonyl emissions. Formaldehyde and acetaldehyde were the dominant aldehydes emitted from both fuels.

  1. Production of biodiesel using the microwave technique

    Directory of Open Access Journals (Sweden)

    Shakinaz A. El Sherbiny

    2010-10-01

    Full Text Available Biodiesel production is worthy of continued study and optimization of production procedures because of its environmentally beneficial attributes and its renewable nature. Non-edible vegetable oils such as Jatropha oil, produced by seed-bearing shrubs, can provide an alternative and do not have competing food uses. However, these oils are characterized by their high free fatty acid contents. Using the conventional transesterification technique for the production of biodiesel is well established. In this study an alternative energy stimulant, “microwave irradiation”, was used for the production of the alternative energy source, biodiesel. The optimum parametric conditions obtained from the conventional technique were applied using microwave irradiation in order to compare the systems. The study showed that the application of radio frequency microwave energy offers a fast, easy route to this valuable biofuel with the advantages of enhancing the reaction rate (2 min instead of 150 min and of improving the separation process. The methodology allows for the use of high free fatty acid content feedstock, including Jatropha oil. However, this emerging technology needs to be further investigated for possible scale-up for industrial application.

  2. Use of waste materials for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Vitiello, R.; Tesser, R.; Di Serio, M.; Santacesaria, E. [Napoli Univ. (Italy). Dipt. di Scienze Chimiche; Buonerba, A.; Grassi, A. [Salerno Univ. (Italy). Dipt. di Chimica e Biologia

    2012-07-01

    Waste raw materials obtained by several sources of both food and agro industries could be considered for biofuel production. In the last years, this topic has growing in interest. At this purpose, our research, has been focused on the development of new technologies to obtain biodiesel from the mentioned wastes feedstock. In particular from oleins, that are mixtures of free fatty acids (FFAs) and triglycerides. Therefore, we are studying the way to produce biodiesel in two steps: an esterification reaction of FFAs with glycerol and a transesterification with methanol of the whole mixture. The esterification of FFAs with glycerol has the advantage of using a relatively high temperature favouring the stripping of water formed during the esterification. In this way esterification equilibrium is shifted to the right. Then, the mixture of mono-, di- and triglycerides, obtained by esterification with glycerol, can be submitted to transesterification with methanol, in the usual way, to produce biodiesel Catalysts promoting esterification, normally, are mineral acids or heterogeneous Bronsted acid catalysts. At this purpose, the classical sulphonated polystyrene acid resins cannot be used at temperature greater than 120 C. Therefore, a new class of sulfonated polymers, with enhanced temperature resistance, has been developed by selective and quantitative sulfonation of olefinic butadiene units in multiblock copolymers syndiotactic polystyrene-co-1,4-cis-polybutadiene. This catalytic system has been successfully tested in the above mentioned esterification reaction and compared to classic commercial strong acid catalysts like Amberlyst {sup registered}, Nafion {sup registered} and sulfuric acid. (orig.)

  3. Refining of biodiesel by ceramic membrane separation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yong; Ou, Shiyi; Tan, Yanlai; Tang, Shuze [Department of Food Science and Engineering, Jinan University, Guangzhou 510632 (China); Wang, Xingguo; Liu, Yuanfa [School of Food Science and Technology, Jiangnan University, Wuxi 214112 (China)

    2009-03-15

    A ceramic membrane separation process for biodiesel refining was developed to reduce the considerable usage of water needed in the conventional water washing process. Crude biodiesel produced by refined palm oil was micro-filtered by ceramic membranes of the pore size of 0.6, 0.2 and 0.1 {mu}m to remove the residual soap and free glycerol, at the transmembrane pressure of 0.15 MPa and temperature of 60 C. The flux through membrane maintained at 300 L m{sup -} {sup 2} h{sup -} {sup 1} when the volumetric concentrated ratio reached 4. The content of potassium, sodium, calcium and magnesium in the whole permeate was 1.40, 1.78, 0.81 and 0.20 mg/kg respectively, as determined by inductively coupled plasma-atomic emission spectroscopy. These values are lower than the EN 14538 specifications. The residual free glycerol in the permeate was estimated by water extraction, its value was 0.0108 wt.%. This ceramic membrane technology was a potential environmental process for the refining of biodiesel. (author)

  4. Technoeconomic study of supercritical biodiesel production plant

    International Nuclear Information System (INIS)

    Marchetti, J.M.; Errazu, A.F.

    2008-01-01

    Over the last years, biodiesel has gained more market due to its benefits and because it appears as the natural substitute for diesel. However, the highest cost of this process is associated with the raw material employed, making it a less competitive and more expensive fuel. Therefore, research is being done in order to use low price raw material, such as acid oils, frying oils or soapstocks. In this work, a biodiesel production plant was developed using supercritical methanol and acid oils as raw materials. This technology was compared with some other alternatives previously described with the aim of making a comparative study, not only on the technical aspects but also on the economic results. A process simulator was employed to produce the conceptual design and simulate each technology. Using these models, it was possible to analyze different scenarios and to evaluate productivity, raw material consumption, economic competitiveness and environmental impacts of each process. Although the supercritical alternative appears as a good technical possibility to produce biodiesel, today, it is not an economic alternative due to its high operating costs

  5. Consumer reports [electronic resource

    National Research Council Canada - National Science Library

    1942-01-01

    ... only. A limited number of selected reports, advice on product selection and safety alerts are freely available, as are a five year listing of product recalls, a listing of major consumer product...

  6. The electronic Rothamsted Archive (e-RA), an online resource for data from the Rothamsted long-term experiments.

    Science.gov (United States)

    Perryman, Sarah A M; Castells-Brooke, Nathalie I D; Glendining, Margaret J; Goulding, Keith W T; Hawkesford, Malcolm J; Macdonald, Andy J; Ostler, Richard J; Poulton, Paul R; Rawlings, Christopher J; Scott, Tony; Verrier, Paul J

    2018-05-15

    The electronic Rothamsted Archive, e-RA (www.era.rothamsted.ac.uk) provides a permanent managed database to both securely store and disseminate data from Rothamsted Research's long-term field experiments (since 1843) and meteorological stations (since 1853). Both historical and contemporary data are made available via this online database which provides the scientific community with access to a unique continuous record of agricultural experiments and weather measured since the mid-19 th century. Qualitative information, such as treatment and management practices, plans and soil information, accompanies the data and are made available on the e-RA website. e-RA was released externally to the wider scientific community in 2013 and this paper describes its development, content, curation and the access process for data users. Case studies illustrate the diverse applications of the data, including its original intended purposes and recent unforeseen applications. Usage monitoring demonstrates the data are of increasing interest. Future developments, including adopting FAIR data principles, are proposed as the resource is increasingly recognised as a unique archive of data relevant to sustainable agriculture, agroecology and the environment.

  7. Green engineering: Green composite material, biodiesel from waste coffee grounds, and polyurethane bio-foam

    Science.gov (United States)

    Cheng, Hsiang-Fu

    In this thesis we developed several ways of producing green materials and energy resources. First, we developed a method to fabricate natural fibers composites, with the purpose to develop green textile/woven composites that could potentially serve as an alternative to materials derived from non-renewable sources. Flax and hemp fabrics were chosen because of their lightweight and exceptional mechanical properties. To make these textile/woven composites withstand moist environments, a commercially available marine resin was utilized as a matrix. The tensile, three-point bending, and edgewise compression strengths of these green textile/woven composites were measured using ASTM protocols. Secondly, we developed a chemical procedure to obtain oil from waste coffee grounds; we did leaching and liquid extractions to get liquid oil from the solid coffee. This coffee oil was used to produce bio-diesel that could be used as a substitute for petroleum-based diesel. Finally, polyurethane Bio-foam formation utilized glycerol that is the by-product from the biodiesel synthesis. A chemical synthesis procedure from the literature was used as the reference system: a triol and isocynate are mixed to produce polyurethane foam. Moreover, we use a similar triol, a by-product from bio-diesel synthesis, to reproduce polyurethane foam.

  8. The Effects of Climate Change on the Development of Tree Plantations for Biodiesel Production in China

    Directory of Open Access Journals (Sweden)

    Guanghui Dai

    2017-06-01

    Full Text Available Biodiesel produced from woody oil plants is a promising form of renewable energy but a combination of tree plantations’ long cultivation time and rapid climate change may put large-scale production at risk. If plantations are located in future-unsuitable places, plantations may fail or yield may be poor, then significant financial, labor, and land resources invested in planting programs will be wasted. Incorporating climate change information into the planning and management of forest-based biodiesel production therefore can increase its chances of success. However, species distribution models, the main tool used to predict the influence of future climate–species distribution modeling, often contain considerable uncertainties. In this study we evaluated how these uncertainties could affect the assessment of climate suitability of the long-term development plans for forest-based biodiesel in China by using Sapindus mukorossi Gaertn as an example. The results showed that only between 59% and 75% of the planned growing areas were projected suitable habitats for the species, depending on the set-up of simulation. Our results showed the necessity for explicitly addressing the uncertainty of species distribution modeling when using it to inform forest-based bioenergy planning. We also recommend the growing area specified in China’s national development plan be modified to lower the risk associated with climate change.

  9. Microwave assisted esterification of free fatty acid over a heterogeneous catalyst for biodiesel production

    International Nuclear Information System (INIS)

    Liu, Wei; Yin, Ping; Liu, Xiguang; Chen, Wen; Chen, Hou; Liu, Chunping; Qu, Rongjun; Xu, Qiang

    2013-01-01

    Highlights: • Microwave assisted esterification of stearic acid with ethanol was catalyzed by D418. • D418 exhibited remarkable catalytic performance for ethyl stearate formation. • It proved possible to prepare biodiesel rapidly and with good conversions by microwave heating. • The relative catalytic kinetics study has been conducted and modeled. - Abstract: Biodiesel fuel is gaining significant attention in recent years because of its environmental benefits and the growing interest in finding new resources and alternatives for conventional fuels. Biodiesel production from waste cooking oil with high free fatty acids usually requires esterification step to produce fatty acid methyl/ethyl ester. In the present work, the heterogeneous catalyst aminophosphonic acid resin D418 has been successfully utilized in the energy-efficient microwave-assisted esterification reaction of fatty acid ethyl ester (FAEE) from free fatty acid (FFA) stearic acid with short-chain alcohol ethanol. Under the reaction conditions of 9 wt% D418 and 11: 1 M ratio of ethanol to stearic acid at 353 K and atmospheric pressure, more than 90% conversion of the esterification was achieved in 7 h by microwave heating, while it took about 12 h by conventional heating. Moreover, the kinetics of this esterification reaction has been studied, and the relevant values of activation energy and pre-exponential factor were obtained

  10. Biodiesel from lemon and lemon grass oil and its effect on engine performance and exhaust emission

    Science.gov (United States)

    Dhivagar, R.; Sundararaj, S.; Vignesh, V. R.

    2018-03-01

    In the present scenario many developing countries are depending on oil producing nations for their fuel resources. Due to demand and scarcity of the fuel, there has been a huge increase in fuel prices. The vehicular population is also continuously increasing and becoming a great menace to peoples. This paper aims to provide an alternate solution for petroleum based fuels. It suggests that biodiesel produced from lemon and lemon grass oil can be used as an alternative fuel. This work investigates the thermal performance of four stroke diesel engine using blends of biodiesel and diesel as a fuel. Performance parameters like brake thermal efficiency, mechanical efficiency and specific fuel consumption were measured at different loads for diesel and various combination of biofuel (L10, L20, and L30). The maximum brake thermal efficiency obtained is about 26.12%for L20 which is slightly higher than that of diesel (24.91%). Engine experimental results showed that exhaust emissions including CO2 and HC were reduced by 6% and 5% for L20 mixture of biodiesel whereas CO emission was as same as diesel. However, there was increase in NOxby 26% to the diesel fuel.

  11. Principles of formation of the content of an educational electronic resource on the basis of general and didactic patterns of learning

    Directory of Open Access Journals (Sweden)

    Ольга Юрьевна Заславская

    2018-12-01

    Full Text Available The article considers the influence of the development of technical means of teaching on the effectiveness of educational and methodical resources. Modern opportunities of information and communication technologies allow creating electronic educational resources that represent educational information that automates the learning process, provide information assistance, if necessary, collect and process statistical information on the degree of development of the content of the school material by schoolchildren, set an individual trajectory of learning, and so on. The main principle of data organization is the division of the training course into separate sections on the thematic elements and components of the learning process. General regularities include laws that encompass the entire didactic system, and in specific (particular cases, those whose actions extend to a separate component (aspect of the system. From the standpoint of the existence of three types of electronic training modules in the aggregate content of the electronic learning resource - information, control and module of practical classes - the principles of the formation of the electronic learning resource, in our opinion, should regulate all these components. Each of the certain principles is considered in the groups: scientific orientation, methodological orientation, systemic nature, accounting of interdisciplinary connections, fundamentalization, systematic and dosage sequence, rational use of study time, accessibility, minimization, operationalization of goals, unified identification diagnosis.

  12. The module of methodical support in system of electronic educational resources as the innovative element of the modern maintenance of formation

    Directory of Open Access Journals (Sweden)

    Ольга Николаевна Крылова

    2009-06-01

    Full Text Available The article introduces some results of research, which were devoted to evaluation of tearches' mobility to introduce innovations in the contents of education. The author considers innovative potential of modules of the methodical support for system of electronic educational resources.

  13. Charting a Course through CORAL: Texas A&M University Libraries' Experience Implementing an Open-Source Electronic Resources Management System

    Science.gov (United States)

    Hartnett, Eric; Beh, Eugenia; Resnick, Taryn; Ugaz, Ana; Tabacaru, Simona

    2013-01-01

    In 2010, after two previous unsuccessful attempts at electronic resources management system (ERMS) implementation, Texas A&M University (TAMU) Libraries set out once again to find an ERMS that would fit its needs. After surveying the field, TAMU Libraries selected the University of Notre Dame Hesburgh Libraries-developed, open-source ERMS,…

  14. Impact of biodiesel and renewable diesel on emissions of regulated pollutants and greenhouse gases on a 2000 heavy duty diesel truck

    Science.gov (United States)

    Na, Kwangsam; Biswas, Subhasis; Robertson, William; Sahay, Keshav; Okamoto, Robert; Mitchell, Alexander; Lemieux, Sharon

    2015-04-01

    As part of a broad evaluation of the environmental impacts of biodiesel and renewable diesel as alternative motor fuels and fuel blends in California, the California Air Resources Board's (CARB) Heavy-duty Diesel Emission Testing Laboratory conducted chassis dynamometer exhaust emission measurements on in-use heavy-heavy-duty diesel trucks (HHDDT). The results presented here detail the impact of biodiesel and renewable diesel fuels and fuel blends as compared to CARB ULSD on particulate matter (PM), regulated gases, and two greenhouse gases emissions from a HHDDT with a 2000 C15 Caterpillar engine with no exhaust after treatment devices. This vehicle was tested over the Urban Dynamometer Driving Schedule (UDDS) and the cruise portion of the California HHDDT driving schedule. Three neat blend stocks (soy-based and animal-based fatty acid methyl ester (FAME) biodiesels, and a renewable diesel) and CARB-certified ultra-low sulfur diesel (CARB ULSD) along with their 20% and 50% blends (blended with CARB ULSD) were tested. The effects of blend level on emission characteristics were discussed on g·km-1 basis. The results showed that PM, total hydrocarbon (THC), and carbon monoxide (CO) emissions were dependent on driving cycles, showing higher emissions for the UDDS cycles with medium load than the highway cruise cycle with high load on per km basis. When comparing CARB ULSD to biodiesels and renewable diesel blends, it was observed that the PM, THC, and CO emissions decreased with increasing blend levels regardless of the driving cycles. Note that biodiesel blends showed higher degree of emission reductions for PM, THC, and CO than renewable diesel blends. Both biodiesels and renewable diesel blends effectively reduced PM emissions, mainly due to reduction in elemental carbon emissions (EC), however no readily apparent reductions in organic carbon (OC) emissions were observed. When compared to CARB ULSD, soy- and animal-based biodiesel blends showed statistically

  15. Progress and Challenges in Microalgal Biodiesel Production

    Science.gov (United States)

    Mallick, Nirupama; Bagchi, Sourav K.; Koley, Shankha; Singh, Akhilesh K.

    2016-01-01

    The last decade has witnessed a tremendous impetus on biofuel research due to the irreversible diminution of fossil fuel reserves for enormous demands of transportation vis-a-vis escalating emissions of green house gasses (GHGs) into the atmosphere. With an imperative need of CO2 reduction and considering the declining status of crude oil, governments in various countries have not only diverted substantial funds for biofuel projects but also have introduced incentives to vendors that produce biofuels. Currently, biodiesel production from microalgal biomass has drawn an immense importance with the potential to exclude high-quality agricultural land use and food safe-keeping issues. Moreover, microalgae can grow in seawater or wastewater and microalgal oil can exceed 50–60% (dry cell weight) as compared with some best agricultural oil crops of only 5–10% oil content. Globally, microalgae are the highest biomass producers and neutral lipid accumulators contending any other terrestrial oil crops. However, there remain many hurdles in each and every step, starting from strain selection and lipid accumulation/yield, algae mass cultivation followed by the downstream processes such as harvesting, drying, oil extraction, and biodiesel conversion (transesterification), and overall, the cost of production. Isolation and screening of oleaginous microalgae is one pivotal important upstream factor which should be addressed according to the need of freshwater or marine algae with a consideration that wild-type indigenous isolate can be the best suited for the laboratory to large scale exploitation. Nowadays, a large number of literature on microalgal biodiesel production are available, but none of those illustrate a detailed step-wise description with the pros and cons of the upstream and downstream processes of biodiesel production from microalgae. Specifically, harvesting and drying constitute more than 50% of the total production costs; however, there are quite a less

  16. Quality Assessment of Biodiesels from Lophira Lanceolata and Zi

    African Journals Online (AJOL)

    M.KYARI

    The purpose of this study was to produce and characterize biodiesels obtained from seeds of ... of biodiesel is very low as compared to fossil ... Sangere town in Adamawa and Maiduguri ... round bottom flask and pre-heated at .... rapeseed and soybean oils, indicating the oils ... storage; high level of unsaturated fatty acid.

  17. Optimization of biodiesel production from rice bran oil via ...

    African Journals Online (AJOL)

    ... 9,12-octadecadienoic and 9-octadecadienoic acid. The fourier transform infrared spectrum of biodiesel also showed the characteristic bands of C=O, O-C-O, C=C and –(CH2)n-. Key words: Rice bran oil, biodiesel, response surface methodology, gas chromatography mass spectrometry, fourier transform infrared spectrum ...

  18. Plant latex lipase as biocatalysts for biodiesel production | Mazou ...

    African Journals Online (AJOL)

    Plant latex lipase as biocatalysts for biodiesel production. ... This paper provides an overview regarding the main aspects of latex, such as the reactions catalyzed, physiological functions, specificities, sources and their industrial applications. Keywords: Plant latex, lipase, Transesterification, purification, biodiesel ...

  19. Rapid biodiesel production using wet microalgae via microwave irradiation

    International Nuclear Information System (INIS)

    Wahidin, Suzana; Idris, Ani; Shaleh, Sitti Raehanah Muhamad

    2014-01-01

    Highlights: • Lipid was directly extracted from wet microalgae using microwave irradiation. • The microwave irradiation and water bath-assisted solvent extraction are applied. • Cell walls are significantly disrupted under microwave irradiation. • Highly disrupted cell walls led to higher biodiesel yield in microwave irradiation. • Microwave irradiation is a promising direct technique with high biodiesel yields. - Abstract: The major challenges for industrial commercialized biodiesel production from microalgae are the high cost of downstream processing such as dewatering and drying, utilization of large volumes of solvent and laborious extraction processes. In order to address these issues the microwave irradiation method was used to produce biodiesel directly from wet microalgae biomass. This alternative method of biodiesel production from wet microalgae biomass is compared with the conventional water bath-assisted solvent extraction. The microwave irradiation extracted more lipids and high biodiesel conversion was obtained compared to the water bath-assisted extraction method due to the high cell disruption achieved and rapid transesterification. The total content of lipid extracted from microwave irradiation and water bath-assisted extraction were 38.31% and 23.01% respectively. The biodiesel produced using microwave irradiation was higher (86.41%) compared to the conventional method. Thus microwave irradiation is an attractive and promising technology to be used in the extraction and transesterification process for efficient biodiesel production

  20. Thermal degradation of ethanolic biodiesel: Physicochemical and thermal properties evaluation

    International Nuclear Information System (INIS)

    Silva, Wellington Costa; Castro, Maria Priscila Pessanha; Perez, Victor Haber; Machado, Francisco A.; Mota, Leonardo; Sthel, Marcelo Silva

    2016-01-01

    The aim of this paper was to study the thermal degradation of soybean biodiesel attained by ethanolic route. The soybean biodiesel samples were subjected to heating treatment at 150 °C for 24 h in a closed oven under controlled atmosphere. During the experiments, samples were withdrawn at intervals of 3, 6, 9, 12, 15 and 24 h for physicochemical and thermophysical properties analysis. The biodiesel degradation was validated by Thermogravimetric analysis since their profiles for control and treated biodiesel were different. Also, "1H NMR confirmed this result due to a significant reduction at the signals related to the "1H located near to the double bonds in the unsaturated ethyl esters in agreement with an iodine index reduction and viscosity increase observed during degradation. Nevertheless, degraded biodiesel, under study conditions, preserved its thermophysical properties. These results may be relevant to qualify the produced biodiesel quality and collect physicochemical and thermophysical data important for applications in combustion studies including project of fuel injection systems. - Highlights: • Soybean biodiesel from ethanolic route was subjected to thermal degradation to verify its stability. • Thermal degradation of biodiesel was correlated with physicochemical properties. • Thermal effusivity, diffusivity and conductivity were estimate by photothermal techniques.