WorldWideScience

Sample records for biodegradation environmental

  1. Fabrication of Environmentally Biodegradable Lignin Nanoparticles

    NARCIS (Netherlands)

    Frangville, C.; Rutkevicius, M.; Richter, A.P.; Velev, O.D.; Stoyanov, S.D.; Paunov, V.N.

    2012-01-01

    We developed a method for the fabrication of novel biodegradable nanoparticles (NPs) from lignin which are apparently non-toxic for microalgae and yeast. We compare two alternative methods for the synthesis of lignin NPs which result in particles of very different stability upon change of pH. The fi

  2. Review on Chlorobenzoic Acids Biodegradation and Their Environmental Impacts

    Institute of Scientific and Technical Information of China (English)

    LuWenming; QiYun; ZhaoLin; TanXin

    2005-01-01

    Chlorobenzoic Acids are toxic organic compounds largely distributed in soils and sediments. They can be degraded to various products by microorgans. This paper is a review of the literature on biodegradability of the chlorobenzoic acids. The degradation pathways, degradation genes, role of transposable elements, and construction of strains are discussed. A brief introduction is given on the environmental impacts and the pollution control.

  3. Polyester-Based (Bio)degradable Polymers as Environmentally Friendly Materials for Sustainable Development

    OpenAIRE

    Joanna Rydz; Wanda Sikorska; Mariya Kyulavska; Darinka Christova

    2014-01-01

    This review focuses on the polyesters such as polylactide and polyhydroxyalkonoates, as well as polyamides produced from renewable resources, which are currently among the most promising (bio)degradable polymers. Synthetic pathways, favourable properties and utilisation (most important applications) of these attractive polymer families are outlined. Environmental impact and in particular (bio)degradation of aliphatic polyesters, polyamides and related copolymer structures are described in vie...

  4. Polyester-Based (Biodegradable Polymers as Environmentally Friendly Materials for Sustainable Development

    Directory of Open Access Journals (Sweden)

    Joanna Rydz

    2014-12-01

    Full Text Available This review focuses on the polyesters such as polylactide and polyhydroxyalkonoates, as well as polyamides produced from renewable resources, which are currently among the most promising (biodegradable polymers. Synthetic pathways, favourable properties and utilisation (most important applications of these attractive polymer families are outlined. Environmental impact and in particular (biodegradation of aliphatic polyesters, polyamides and related copolymer structures are described in view of the potential applications in various fields.

  5. Performance and environmental impact of biodegradable polymers as agricultural mulching films

    OpenAIRE

    Touchaleaume, François; Martin-Closas, Lluís; Angellier-Coussy, Hélène; Chevillard, Anne; Cesar, Guy; Gontard, Nathalie; Gastaldi, Emmanuelle

    2016-01-01

    In the aim of resolving environmental key issues such as irreversible soil pollution by non-biodegradable and non-recoverable polyethylene (PE) fragments, a full-scale field experiment was set up to evaluate the suitability of four biodegradable materials based on poly(butylene adipate-co-terephtalate) (PBAT) to be used as sustainable alternatives to PE for mulching application in vineyard. Initial ultimate tensile properties, functional properties during field ageing (water vapour permeabili...

  6. Biodegradation of organic chemicals at environmentally relevant concentrations

    International Nuclear Information System (INIS)

    In the estuary of the river Elbe as well as in the North and Baltic Sea, the mineralization of some chemicals in low concentrations by natural microbial communities in water and sediment samples was studied. The following substances were examined: 4-nitrophenol, 2-nitrophenol, phenol, diethylene glycole (DEG), ethylendiamine-tetraacetate (EDTA), thiourea (THIO), 4-chloraniline, 4-naphthalene-1,5-disulfonic acid (NDSS), 2,4,6-trichlorphenol (TCP) and tetrapropylenebenzenesulfonic acid (TPBS). The three first phenolic substances can be biodegraded relatively easy in eutrophicated or already chemically polluted aquatic habitats. In marine habitats there was either no degradation of these substances of it was slow, incomplete or an acclimation period was observed. DEG, THIO and chloraniline often showed longer turnover times at different stations than the phenols. The biodegradability of these substances differed strongly between habitats. EDTA was not mineralized for more than 20%. NDSS, TCP and TPBS were not degraded by natural microbial communities. (orig.). 86 refs., 14 tabs., 38 figs

  7. BIODEGRADATION OF ENVIRONMENTAL POLLUTANTS BY THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOPORIUM: INVOLVEMENT OF THE LIGNIN DEGRADING SYSTEM

    Science.gov (United States)

    The white-rot fungus Phanrochaete chrysosporium has the ability to degrade a wide variety of structurally diverse organic compounds, including a number of environmentally persistent organopollutants. The unique biodegradative abilities of this fungus appears to be depend...

  8. Performance and environmental impact of biodegradable polymers as agricultural mulching films.

    Science.gov (United States)

    Touchaleaume, François; Martin-Closas, Lluís; Angellier-Coussy, Hélène; Chevillard, Anne; Cesar, Guy; Gontard, Nathalie; Gastaldi, Emmanuelle

    2016-02-01

    In the aim of resolving environmental key issues such as irreversible soil pollution by non-biodegradable and non-recoverable polyethylene (PE) fragments, a full-scale field experiment was set up to evaluate the suitability of four biodegradable materials based on poly(butylene adipate-co-terephtalate) (PBAT) to be used as sustainable alternatives to PE for mulching application in vineyard. Initial ultimate tensile properties, functional properties during field ageing (water vapour permeability and radiometric properties), biodegradability and agronomical performance of the mulched vines (wood production and fruiting yield) were studied. In spite of their early loss of physical integrity that occurred only five months after vine planting, the four materials satisfied all the requested functional properties and led to agronomic performance as high as polyethylene. In the light of the obtained results, the mulching material lifespan was questioned in the case of long-term perennial crop such as grapevine. Taking into account their mulching efficiency and biodegradability, the four PBAT-based studied materials are proven to constitute suitable alternatives to the excessively resistant PE material. PMID:26386433

  9. Environmental biodegradation of haloarchaea-produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in activated sludge.

    Science.gov (United States)

    Liu, Xiao-Bin; Wu, Lin-Ping; Hou, Jing; Chen, Jun-Yu; Han, Jing; Xiang, Hua

    2016-08-01

    Novel poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) copolymers produced by haloarchaea are excellent candidate biomaterials. However, there is no report hitherto focusing on the biodegradation of PHBHV synthesized by haloarchaea. In this study, an environmental biodegradation of haloarchaea-produced PHBHV films, with 10~60 mol% 3-hydroxyvalerate (3HV) composition and different microchemical structures, was studied in nutrition-depleted activated sludge. The changes in mass, molar mass, chemical composition, thermal properties, and surface morphology were monitored. The mass and molar mass of each film decreased significantly, while the PHA monomer composition remained unchanged with time. Interestingly, the sample of random copolymer PHBHV-2 (R-PHBHV-2) (3HV, 30 mol%) had the lowest crystallinity and was degraded faster than R-PHBHV-3 containing the highest 3HV content or the higher-order copolymer PHBHV-1 (O-PHBHV-1) possessing the highest surface roughness. The order of biodegradation rate was in the opposite trend to the degree of crystallizability of the films. Meanwhile, thermal degradation temperature of most films decreased after biodegradation. Additionally, the surface erosion of films was confirmed by scanning electron microscopy. The dominant bacteria probably responsible for the degradation process were identified in the activated sludge. It was inferred that the degradation rate of haloarchaea-produced PHBHV films mainly depended on sample crystallinity, which was determined by monomer composition and microchemical structure and in turn strongly influenced surface morphology. PMID:27098259

  10. Application of environmental isotopes in studies of biodegradation of organic contaminants in groundwater

    International Nuclear Information System (INIS)

    -DCE ) and 1,2-dichloroethane (1,2-DCA). In contrast small carbon isotope fractionation occurred during biodegradation of BTEX. Recent studies have shown deuterium can be more sensitive than carbon-13 for BTEX biodegradation studies. An example of microcosm studies is illustrated on Figure 1 that shows concentration and isotope pattern for biodegradation of cis-dichloroethene (cis-DCE) to vinyl chloride (VC) and final product, ethene. As the cis-DCE is transformed to VC, an enrichment trend is observed in the remaining cis-DCE. The formed VC is isotopically lighter than the primary product, but as the VC is transformed, the remaining VC becomes enriched in 13C. The ethene is lighter than the VC and its isotope composition tend to the isotope composition of the primary substrate, cis-DCE, at the end of the experiment. The laboratory results have been confirmed at field sites. This paper will present a state of the art review on the application of environmental isotopes in biodegradation studies of organic contaminants in groundwater. Laboratories and field studies, and potential new applications of environmental isotopes in contaminant hydrogeology will be discussed during this presentation

  11. Organic halogens in the environment: studies of environmental biodegradability and human exposure.

    OpenAIRE

    Salkinoja-Salonen, M.; Uotila, J; Jokela, J.; Laine, M.; Saski, E

    1995-01-01

    Organic halogens from chlorobleaching of kraft pulp were not as biorecalcitrant as has been assumed. Fifty percent were removed during biotreatment of wastewater, and 50% of the remaining organohalogens faded in fresh water ecosystems in 200 to 400 days. Molecular size seemed not to hinder biodegradation up to sizes of approximately 2000 daltons. Anoxic biodegradation was of prime importance for halomineralization of pulp bleaching organohalogens but could also lead to toxic metabolites such ...

  12. Measuring biodegradation of oil products by means of environmental forensic methods

    Energy Technology Data Exchange (ETDEWEB)

    Gallego, J. R.; Garcia-Mtnez, M. J.; Ortiz, J. E.; Ortega, M.; Torres, T. de; Llamas, J. F.

    2009-07-01

    Bioremediation technologies are focused to the biodegradation of organic pollutants. This approach is particularly helpful when soils and/or groundwater are affected by oil products spills, given the satisfactory biodegradability of most hydrocarbons. However, during a bio-treatment the decreasing in pollutants concentration may be due to both biotic and biotic processes, whose distinction is very important, albeit difficult, in order to evaluate if bioremediation is being properly applied. (Author)

  13. Measuring biodegradation of oil products by means of environmental forensic methods

    International Nuclear Information System (INIS)

    Bioremediation technologies are focused to the biodegradation of organic pollutants. This approach is particularly helpful when soils and/or groundwater are affected by oil products spills, given the satisfactory biodegradability of most hydrocarbons. However, during a bio-treatment the decreasing in pollutants concentration may be due to both biotic and biotic processes, whose distinction is very important, albeit difficult, in order to evaluate if bioremediation is being properly applied. (Author)

  14. Re-Designing of Existing Pharmaceuticals for Environmental Biodegradability: A Tiered Approach with β-Blocker Propranolol as an Example.

    Science.gov (United States)

    Rastogi, Tushar; Leder, Christoph; Kümmerer, Klaus

    2015-10-01

    Worldwide, contamination of aquatic systems with micropollutants, including pharmaceuticals, is one of the challenges for sustainable management of water resources. Although micropollutants are present at low concentrations, many of them raise considerable toxicological concerns, particularly when present as components of complex mixtures. Recent research has shown that this problem cannot be sustainably solved with advanced effluent treatment. Therefore, an alternative that might overcome these environmental problems is the design of new pharmaceutical molecules or the redesign of existing pharmaceutical molecules that present the functionality needed for their application and have improved environmental biodegradability. Such redesigning can be performed by small molecular changes in the drug molecule with intact drug moiety which could incorporate the additional attribute such as biodegradability while retaining its pharmacological potency. This proof of concept study provides an approach for the rational redesign of a given pharmaceutical (Propranolol as an example). New derivatives with small molecular changes as compared to propranolol molecule were generated by a nontargeted photolysis process. Generated derivatives with intact drug moieties (an aromatic ring and a β-ethanolamine moiety) were further screened for aerobic biodegradability and pharmacological potency. The feasibility of the approach of redesigning an existing pharmaceutical through nontargeted generation of new derivatives with intact drug moiety and through subsequent screening was demonstrated in this study. Application of such approaches in turn might contribute to the protection of water resources in a truly sustainable manner. PMID:26291878

  15. Remediation of environmental pollution by substituting poly(vinyl alcohol) with biodegradable warp size from wheat gluten.

    Science.gov (United States)

    Chen, Lihong; Reddy, Narendra; Yang, Yiqi

    2013-05-01

    We report the development of wheat gluten as an environmentally friendly sizing agent that can replace poly(vinyl alcohol) (PVA) and make the textile industry more environmentally friendly. Wheat gluten applied onto polyester/cotton (P/C) and polyester as warp sizing agent provided sizing performance and biodegradability in activated sludge necessary to substitute poly(vinyl alcohol) (PVA). PVA is one of the most widely used sizing agents and provides excellent sizing performance to synthetic fibers and their blends but is expensive and difficult to degrade in textile wastewater treatment plants. Although considerable efforts have been made to replace PVA, it has not been possible to develop a warp sizing chemical that can match the sizing performance of PVA and at the same time be cost-effective and biodegrade in effluent treatment plants. At similar % add-on, wheat gluten provided similar cohesion to P/C but much higher abrasion resistance to polyester fabrics compared to PVA. With a biochemical oxygen demand (BOD) to chemical oxygen demand (COD) ratio of 0.7 compared to 0.01 for PVA, wheat gluten was readily degradable in activated sludge. Wheat gluten has the ability to replace PVA for textile warp sizing applications. PMID:23551198

  16. Biodegradation of crude petroleum oil and environmental pollutants by Candida tropicalis strain

    Energy Technology Data Exchange (ETDEWEB)

    Farag, Soha [Mubarak City for Scientific Research and Technology Applications, Alexandria (Egypt). Genetic Engineering Biotechnology Research Institute. Environmental Biotechnology Dept.; Soliman, Nadia A. [Mubarak City for Scientific Research and Technology Applications, Alexandria (Egypt). Genetic Engineering Biotechnology Research Institute. Bioprocess Development Dept.

    2011-07-15

    A local yeast isolate named A was isolated from polluted area of Abou-Qir gulf (Alexandria, Egypt), identified according to a partial sequence of 18sRNA as Candida tropicalis. The isolate showed a high potency in petroleum oil biodegradation as well some hydrocarbons. Morphological changes in cell diameter of this yeast were recognized upon growing the target cell in sea water medium supplemented with petroleum oil as sole carbon source in comparison to the growth in enriched medium. Statistically-based experimental design was applied to evaluate the significance of factors on petroleum oil biodegradation by this yeast isolate. Eleven culture conditions were examined by implementing Plackett-Burman factorial design where aeration, NH{sub 4}Cl and K{sub 2}HPO{sub 4} had the most positive significance on oil degradation. (author)

  17. Development of environmentally friendly antifouling paints using biodegradable polymer and lower toxic substances

    OpenAIRE

    Carteau, David; Vallee-rehel, Karine; Linossier, Isabelle; Quiniou, Francoise; Davy, Romain; Compere, Chantal; Delbury, Maxime; Fay, Fabienne

    2014-01-01

    The development of new antifouling coatings with respect to the marine environment is actually crucial. The aim of the present work is to concept an erodible paint formulated with biodegradable polyester as binders and which combines two modes of prevention: chemical and physical repelling of biofouling. This system is principally dedicated to disturb durable settlement of microfouling. Each component was chosen according to its specific properties: chlorhexidine is a bisdiguanide antiseptic ...

  18. 氯苯甲酸生物降解及环境影响研究进展%Review on Chlorobenzoic Acids Biodegradation and Their Environmental Impacts

    Institute of Scientific and Technical Information of China (English)

    吕文明

    2005-01-01

    Chlorobenzoic Acids are toxic organic compounds largely distributed in soils and sediments. They can be degraded to various products by microorgans. This paper is a review of the literature on biodegradability of the chlorobenzoic acids. The degradation pathways, degradation genes, role of transposable elements, and construction of strains are discussed. A brief introduction is given on the environmental impacts and the pollution control.

  19. Characterization of biodegradation processes in a karst aquifer using environmental isotope data

    International Nuclear Information System (INIS)

    proportion of pre-event water which was stored in the soil zone and the epikarst before the event extends from about 16 % to 44 % in the three catchments. Combined hydraulic, isotope- and tracer-based approaches in one of the catchments characterize the flow paths and mean transit times of water indicating that low sulfate and nitrate concentrations can probably explained by biodegaradation processes in the saturated zone and soil zone. A multi-tracer experiment using artificial tracers with different pore diffusion coefficients was performed in the karst aquifer. The results of the field experiment, environmental 3H output concentrations, mathematical modelling and hydrograph separation demonstrate possible existence of diffusion processes between mobile fracture water and immobile matrix water. δ34S and δ18O-SO42- values reflect the existence of biodegradation as the key attenuation process of aquatic sulfate in the porous matrix and dead end pores of the saturated bedrock. A comparison of δ34S and δ18O-SO42- values from deep wells with the calculated isotope composition of the residual sulphate from the observed karst aquifer probably documents the involvement of sulphite during the biologically mediated reaction supported by enzymatic activities. Because δ18O-SO42- values of the residual sulphate approaches a constant value and the pertinent δ34S values increase it was assumed that the δ18O-SO42- of the residual sulphate was controlled by isotope exchange with water. Results of hydrograph separation can demonstrate that pre-event water showing a contribution of 16 % was stored in the soil zone of the karst aquifer. Increasing δ15N and δ18O values of nitrate reflecting changing in nitrate concentration by denitrification processes. The isotope values of nitrate collected during storm runoff and baseflow conditions are in areas where different sources of NO3- typically plot. The source of nitrate contamination in the karst could be determined and originates

  20. Combination of biodegradable organic matter quantification and XAD-fractionation as effective working parameter for the study of biodegradability in environmental and anthropic samples.

    Science.gov (United States)

    Labanowski, Jerome; Feuillade, Geneviève

    2009-01-01

    The present work proposes to couple quantification of biodegradable organic matter (BOM) with XAD-fractionation. Biodegradable dissolved organic carbon (BDOC) and assimilable organic carbon (AOC) analysis were applied to fractions extracted by XAD resin. An examination of mechanisms during consumption of BOM has been carried out, using comparison of biodegradability between the bulk BOM of samples (landfill leachate and surface water) and the sum of BOM contents obtained for the extracted fractions. Results point out that a cometabolism mechanism seems to be involved during the degradation of the surface water fractions. On the other hand, fractions extracted from the leachate seem to be degraded as primary substratum. The more reactive fractions of the leachate (HPO*) and the water (HPI) have been identified as well the less reactive (HPI* and HPO, respectively). The BDOC contents determined for the bulk leachate and surface water are 10+/-2% and 28+/-2%, respectively. The values of AOC are 107+/-18 microg C acetate L(-1) and 163+/-21 microg C acetate L(-1), respectively. PMID:18996558

  1. Environmental biodegradability of diesel oil: composition and performances of degradative micro-floras; Biodegradabilite du gazole dans l'environnement: composition et performances des microflores degradatrices

    Energy Technology Data Exchange (ETDEWEB)

    Penet, S.

    2004-09-01

    The large use of petroleum products makes them a significant source of pollutants in ground water and soils. Biodegradation studies are therefore relevant either to evaluate possibilities of natural attenuation or define bio-remediation strategies. In this study, the possible relationship between the environmental microflora structures and their capabilities for diesel oil biodegradation was investigated. The degradation capacities, i.e. kinetics and extent of biodegradation, were evaluated in closed batch systems by hydrocarbon consumption and CO{sub 2} production, both determined by gas chromatography. The intrinsic biodegradability of different types of diesel oils and the degradation capacities of microflora from ten polluted and ten unpolluted soils samples were determined. The data showed that: i) diesel oil was biodegradable, ii) n-alkanes were totally degraded by each microflora, the final amount of residual hydrocarbons being variable, iii) polluted-soil samples exhibited a slightly higher degradation rate (80%) that polluted-soil samples (67%) or activated sludge (64%). In order to define the contribution of various bacterial groups to diesel oil degradation, enrichment cultures were performed on hydrocarbons representative from the structural classes of diesel oil: hexadecane for n-alkanes, pristane for iso-alkanes, decalin for cyclo-alkanes, phenanthrene for aromatics. By using a 16S rDNA-sequencing method, the bacterial structures of the adapted microflora were determined and compared to that of the native microflora. A marked effect of the selection pressure was observed on the diversity of the microflora, each microflora harboring a major and specific bacterial group. The degradation capacities of the adapted microflora and the occurrence of genes coding for initial hydrocarbon oxidation (alkB, nahAc, cypP450) were also studied. No clear relationship between microflora genes and degradation performances was noted. This seemed to indicate that

  2. Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities

    DEFF Research Database (Denmark)

    Aylward, Frank O.; McDonald, Bradon R.; Adams, Sandra M.;

    2013-01-01

    Sphingomonads comprise a physiologically versatile group within the Alphaproteobacteria that includes strains of interest for biotechnology, human health, and environmental nutrient cycling. In this study, we compared 26 sphingomonad genome sequences to gain insight into their ecology, metabolic ...

  3. Biodegradable Polymers

    OpenAIRE

    Isabelle Vroman; Lan Tighzert

    2013-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  4. BIODEGRADATION OF ENVIRONMENTAL POLLUTANTS BY THE WHITE ROT FUNGUS PHANEROCHATETE CHRYSOSPORIUM: INVOLVEMENT OF THE LIGNIN DEGRADING SYSTEM

    Science.gov (United States)

    The white-rot fungus Phanerochaete chrysosporium has the ability to degrade's wide variety of structurally diverse organic compounds, including a number of environmentall3 persistent organopollutants. he unique biodegradative abilities of this fungus appears to be dependent upon ...

  5. Metabolic engineering of bacteria for environmental applications: construction of Pseudomonas strains for biodegradation of 2-chlorotoluene.

    Science.gov (United States)

    Haro, M A; de Lorenzo, V

    2001-02-13

    In this article, we illustrate the challenges and bottlenecks in the metabolic engineering of bacteria destined for environmental bioremediation, by reporting current efforts to construct Pseudomonas strains genetically designed for degradation of the recalcitrant compound 2-chlorotoluene. The assembled pathway includes one catabolic segment encoding the toluene dioxygenase of the TOD system of Pseudomonas putida F1 (todC1C2BA), which affords the bioconversion of 2-chlorotoluene into 2-chlorobenzaldehyde by virtue of its residual methyl-monooxygenase activity on o-substituted substrates. A second catabolic segment encoded the entire upper TOL pathway from pWW0 plasmid of P. putida mt-2. The enzymes, benzyl alcohol dehydrogenase (encoded by xylB) and benzaldehyde dehydrogenase (xylC) of this segment accept o-chloro-substituted substrates all the way down to 2-chlorobenzoate. These TOL and TOD segments were assembled in separate mini-Tn5 transposon vectors, such that expression of the encoded genes was dependent on the toluene-responsive Pu promoter of the TOL plasmid and the cognate XylR regulator. Such gene cassettes (mini-Tn5 [UPP2] and mini-Tn5 [TOD2]) were inserted in the chromosome of the 2-chlorobenzoate degraders Pseudomonas aeruginosa PA142 and P. aeruginosa JB2. GC-MS analysis of the metabolic intermediates present in the culture media of the resulting strains verified that these possessed, not only the genetic information, but also the functional ability to mineralise 2-chlorotoluene. However, although these strains did convert the substrate into 2-chlorobenzoate, they failed to grow on 2-chlorotoluene as the only carbon source. These results pinpoint the rate of the metabolic fluxes, the non-productive spill of side-metabolites and the physiological control of degradative pathways as the real bottlenecks for degradation of certain pollutants, rather than the theoretical enzymatic and genetic fitness of the recombinant bacteria to the process. Choices to

  6. Biodegradable congress 2012; Bioschmierstoff-Kongress 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Within the Guelzower expert discussions at 5th and 6th June, 2012 in Oberhausen (Federal Republic of Germany) the following lectures were held: (1) Promotion of biodegradable lubricants by means of research and development as well as public relations (Steffen Daebeler); (2) Biodegradable lubricants - An overview of the advantages and disadvantages of the engaged product groups (Hubertus Murrenhoff); (3) Standardization of biodegradable lubricants - CEN/DIN standard committees - state of the art (Rolf Luther); (4) Market research for the utilization of biodegradable lubricants and means of proof of sustainability (Norbert Schmitz); (5) Fields of application for high performance lubricants and requirements upon the products (Gunther Kraft); (6) Investigations of biodegradable lubricants in rolling bearings and gears (Christoph Hentschke); (7) Biodegradable lubricants in central lubrication systems Development of gears and bearings of offshore wind power installations (Reiner Wagner); (8) Investigations towards environmental compatibility of biodegradable lubricants used in offshore wind power installations (Tolf Schneider); (9) Development of glycerine based lubricants for the industrial metalworking (Harald Draeger); (10) Investigations and utilization of biodegradable oils as electroinsulation oils in transformers (Stefan Tenbohlen); (11) Operational behaviour of lubricant oils in vegetable oil operation and Biodiesel operation (Horst Hamdorf); (12) Lubrication effect of lubricating oil of the third generation (Stefan Heitzig); (13) Actual market development from the view of a producer of biodegradable lubricants (Frank Lewen); (14) Utilization of biodegradable lubricants in forestry harvesters (Guenther Weise); (15) New biodegradable lubricants based on high oleic sunflower oil (Otto Botz); (16) Integrated fluid concept - optimized technology and service package for users of biodegradable lubricants (Juergen Baer); (17) Utilization of a bio oil sensor to control

  7. Removal and biodegradation of naphthenic acids by biochar and attached environmental biofilms in the presence of co-contaminating metals.

    Science.gov (United States)

    Frankel, Mathew L; Bhuiyan, Tazul I; Veksha, Andrei; Demeter, Marc A; Layzell, David B; Helleur, Robert J; Hill, Josephine M; Turner, Raymond J

    2016-09-01

    This study evaluated the efficacy of using a combined biofilm-biochar approach to remove organic (naphthenic acids (NAs)) and inorganic (metals) contaminants from process water (OSPW) generated by Canada's oil sands mining operations. A microbial community sourced from an OSPW sample was cultured as biofilms on several carbonaceous materials. Two biochar samples, from softwood bark (SB) and Aspen wood (N3), facilitated the most microbial growth (measured by protein assays) and were used for NA removal studies performed with and without biofilms, and in the presence and absence of contaminating metals. Similar NA removal was seen in 6-day sterile N3 and SB assays (>30%), while biodegradation by SB-associated biofilms increased NA removal to 87% in the presence of metals. Metal sorption was also observed, with up to four times more immobilization of Fe, Al, and As on biofilm-associated biochar. These results suggest this combined approach may be a promising treatment for OSPW. PMID:27259191

  8. Biodegradable Pectin/clay Aerogels

    Science.gov (United States)

    Biodegradable, foamlike materials based on renewable pectin and sodium montmorillonite clay were fabricated through a simple, environmentally friendly freeze-drying process. Addition of multivalent cations (Ca2+ and Al3+) resulted in apparent crosslinking of the polymer, and enhancement of aerogel p...

  9. Biodegradable lubricants - ''the solution for future?''

    International Nuclear Information System (INIS)

    The environmental impact of lubricants use concern the direct effects from spills but also the indirect effects such as their lifetime and the emissions from thermal engines. The biodegradable performances and the toxicity are the environmental criteria that must be taken into account in the development and application of lubricants together with their technical performances. This paper recalls first the definition of biodegradable properties of hydrocarbons and the standardized tests, in particular the CEC and AFNOR tests. Then, the biodegradable performances of basic oils (mineral, vegetal, synthetic esters, synthetic hydrocarbons etc..), finite lubricants (hydraulic fluids..) and engine oils is analyzed according to these tests. Finally, the definition of future standards would take into account all the environmental characteristics of the lubricant: biodegradable performances, energy balance (CO2, NOx and Hx emissions and fuel savings), eco-toxicity and technical performances (wearing and cleanliness). (J.S.)

  10. Proceedings of biodegradation

    International Nuclear Information System (INIS)

    This book contains the proceedings of Biodegradation. Topics include:biodegradation using the tools of biotechnology, basic science aspects of biodegradation, the physiological characteristics of microorganisms, the use of selective techniques that enhance the process of microbial evolution of biodegradative genes in nature, the genetic characteristics of microorganisms allowing them to biodegrade both natural and synthetic toxic chemicals, the molecular techniques that allow selective assembly of genetic segments form a variety of bacterial strains to a single strain, and methods needed to advance biodegradation research as well as the high-priority chemical problems important to the Department of Defense or to the chemical industry

  11. Biodegradation of acetanilide herbicides acetochlor and butachlor in soil.

    Science.gov (United States)

    Ye, Chang-ming; Wang, Xing-jun; Zheng, He-hui

    2002-10-01

    The biodegradation of two acetanilide herbicides, acetochlor and butachlor in soil after other environmental organic matter addition were measured during 35 days laboratory incubations. The herbicides were applied to soil alone, soil-SDBS (sodium dodecylbenzene sulfonate) mixtures and soil-HA (humic acid) mixtures. Herbicide biodegradation kinetics were compared in the different treatment. Biodegradation products of herbicides in soil alone samples were identified by GC/MS at the end of incubation. Addition of SDBS and HA to soil decreased acetochlor biodegradation, but increased butachlor biodegradation. The biodegradation half-life of acetochlor and butachlor in soil alone, soil-SDBS mixtures and soil-HA mixtures were 4.6 d, 6.1 d and 5.4 d and 5.3 d, 4.9 d and 5.3 d respectively. The biodegradation products were hydroxyacetochlor and 2-methyl-6-ethylaniline for acetochlor, and hydroxybutachlor and 2,6-diethylaniline for butachlor. PMID:12491727

  12. Biodegradation of Polycyclic Aromatic Hydrocarbons

    OpenAIRE

    DEMİR, İsmail; DEMİRBAĞ, Zihni

    1999-01-01

    Polycylic aromatic hydrocarbons (PAHs), such as petroleum and petroleum derivatives, are widespread organic pollutants entering the environment, chiefly, through oil spills and incomplete combustion of fossil fuels. Since most PAHs are persist in the environment for a long period of time and bioaccumulate, they cause environmental pollution and effect biological equilibrium dramatically. Biodegradation of some PAHs by microorganisms has been biochemically and genetically investigated. Ge...

  13. Degradation of Oxo-Biodegradable Plastic by Pleurotus ostreatus

    OpenAIRE

    José Maria Rodrigues da Luz; Sirlaine Albino Paes; Mateus Dias Nunes; Marliane de Cássia Soares da Silva; Maria Catarina Megumi Kasuya

    2013-01-01

    Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ul...

  14. Biodegradability of Plastics

    Directory of Open Access Journals (Sweden)

    Yutaka Tokiwa

    2009-08-01

    Full Text Available Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.. In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  15. Biodegradable multifunctional oil production chemicals: Thermal polyaspartates

    International Nuclear Information System (INIS)

    The paper deals with biodegradable oil production chemicals. Control of both mineral scale and corrosion with a single, environmentally acceptable material is an ambitious goal. Polyaspartate polymers represent a significant milestone in the attainment of this goal. Thermal polyaspartates (TPA) are polycarboxylate polymers derived via thermal condensation of the naturally occurring amino acid aspartic acid. These protein-like polymers are highly biodegradable and non-toxic, and are produced by an environmentally benign manufacturing process. TPAs exhibit excellent mineral scale inhibition activity and CO2 corrosion control. Laboratory data on scale inhibition and corrosion control in the North Sea oil field production applications is presented. 8 refs., 2 figs., 6 tabs

  16. Biodegradable lubricants for road vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, J. [Denmark Technical Univ., Lyngby (Denmark). Dept. of Mechanical Engineering

    2004-07-01

    This presentation outlined the characteristics of biolubricants and their use in vehicles. Experiments with compression ignition (CI) and spark ignition (SI) engines were also presented. Biolubes can be used in 4-stroke and 2-stroke engines, bearing compressors and hydraulic equipment. Studies have shown that biolubes do not cause unusual engine wear. They are produced from biomass, with the base material being vegetable oils and synthetic esters. Conventional lubricants are produced from fossil fuels, with the base material being mineral oils, polyglycol or synthetic ester. This presentation rated the characteristics of various lubricants in terms of viscosity temperature behaviour, low temperature behaviour, liquid range, oxidation stability, thermal stability, volatility, fire resistance, hydrolytic stability, corrosion protection, seal material compatibility, paints compatibility, miscibility with mineral oil, solubility of additives, lubricating properties, toxicity, and biodegradability. The environmental impacts of biolubes regarding emissions of carbon dioxide, nitrous oxide and particulate matter were discussed along with the impact of combining biolubes with alternative fuels. The future beneficial applications include outboard engines, off road vehicle engines and road vehicle engines. Currently, vegetable oil based biolubricants are 2 to 3 times more expensive than mineral based oils, and synthetic lubricants are even more expensive. It was suggested that future studies should examine the biodegradability of used lubricants, the performance of biodegradable lubricants, alternative fuels and fuel economy. tabs., figs.

  17. Radiation effects on biodegradable polyesters

    International Nuclear Information System (INIS)

    Poly(3-hydroxybutyrate) [P(3HB)] and its copolymer poly(3-hydroxybutyrate-co-3hydroxyvalerate) [P(3HB-co-3HV)] are microbial biodegradable polyesters produced by many types of bacteria. Poly(butylene succinate) (PBS) and poly(E-caprolactone) (PCL) are also biodegradable synthetic polyesters which have been commercialized. These thermoplastics are expected for wide usage in environmental protection and blocompatible applications. Radiation grafting of hydrophilic monomers onto many polymers, e.g., polyethylene and polypropylene has been studied mainly for biomedical applications. In the present study, radiation-induced graft polymerization of vinyl monomers onto PHB and P(3HB-co-3HV) was carried out and improvement of their properties was studied. Changes in the properties and biodegradability were compared with the degree of grafting. Radiation-induced crosslinking of PBS and PCL which relatively show thermal and irradiation stability was also carried out to improve their thermal stability or processability. Irradiation to PBS and PCL mainly resulted in crosslinking and characterization of these crosslinked polyesters was investigated

  18. Toxicity and biodegradation test on tensioactives to evaluate the environmental impact of chromium salts. Ensayos de toxicidad de biodegradacion de tensioactivos para la evaluacion del impacto medio ambiental de sales de cromo

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.T.; Ribosa, I.; Perez, L.; Gonzalez, J.; Sanchez Leal, J.

    1993-08-01

    A comparative study of the potential toxicity and environmental impact of chromium III (CrCl3.6H2O) and chromium VI (K2Cr2O7) salts was carried out. This evaluation was made versus three biological substrates: a minicrustaceo (Daphnia Magna), a luminiscent marine bacterium (Photobacterium Phosphoreum) and a mixed bacterial population responsible of aerobic biodegradation processes. In the two first bioassays, direct toxic effects were measured while in the third one, potential toxicity of chromium salts was determined through their inhibition effect on the biodegradation processes of an anionic surfactant, the sodium dodecyl sulphate. From the results obtained, it can be shown that the toxicity degree depends on the biological substrate used to test chromium salts. Usually, it is through that chromium III salts have lower toxicity than chromium VI salts, however, this study has shown that, versus bacterial populations, the toxicity of chromium III salts is bigger than the toxicity of chromium VI salt. Therefore is important take into account toxic effects due to pH changes-induced by chromium III in aqueous solutions. (Author) 5 refs.

  19. Grey water biodegradability.

    Science.gov (United States)

    Ghunmi, Lina Abu; Zeeman, Grietje; Fayyad, Manar; van Lier, Jules B

    2011-02-01

    Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different conditions in the biodegradation test. The maximum aerobic and anaerobic biodegradability and conversion rate for the different COD fractions is determined. The results show that, on average, dormitory grey water COD fractions are 28% suspended, 32% colloidal and 40% dissolved. The studied factors incubation time, inoculum addition and temperature are influencing the determined biodegradability. The maximum biodegradability and biodegradation rate differ between different COD fractions, viz. COD(ss), COD(col) and COD(diss). The dissolved COD fraction is characterised by the lowest degradation rate, both for anaerobic and aerobic conditions. The maximum biodegradability for aerobic and anaerobic conditions is 86 and 70% respectively, whereas the first order conversion rate constant, k₂₀, is 0.119 and 0.005 day⁻¹, respectively. The anaerobic and aerobic conversion rates in relation to temperature can be described by the Arrhenius relation, with temperature coefficients of 1.069 and 1.099, respectively. PMID:20658309

  20. Isomer-Specific Biodegradation and Chemical Oxidation of Nonylphenol

    OpenAIRE

    Lu, Zhijiang

    2014-01-01

    Nonylphenol (NP), a well-known environmental estrogen with numerous isomers, is commonly treated as a single compound in the evaluation of its environmental occurrence, fate and transport, treatment removal and toxicity. Recent studies showed that NP isomers exhibited different estrogenicity and biodegradability. However, at present little systematic information is available on its isomer-specific biodegradation and chemical oxidation under natural and engineered conditions.We comprehensively...

  1. Biodegradation of Para Amino Acetanilide by Halomonas sp. TBZ3

    OpenAIRE

    Hajizadeh, Nader; Sefidi Heris, Youssof; Zununi Vahed, Sepideh; Vallipour, Javad; Hejazi, Mohammad Amin; Golabi, Sayyed Mahdi; Asadpour-Zeynali, Karim; Hejazi, Mohammad Saeid

    2015-01-01

    Background: Aromatic compounds are known as a group of highly persistent environmental pollutants. Halomonas sp. TBZ3 was isolated from the highly salty Urmia Lake of Iran. In this study, characterization of a new Halomonas isolate called Halomonas sp. TBZ3 and its employment for biodegradation of para-amino acetanilide (PAA), as an aromatic environmental pollutant, is described. Objectives: This study aimed to characterize the TBZ3 isolate and to elucidate its ability as a biodegradative age...

  2. Biodegradable containers from green waste materials

    Science.gov (United States)

    Sartore, Luciana; Schettini, Evelia; Pandini, Stefano; Bignotti, Fabio; Vox, Giuliano; D'Amore, Alberto

    2016-05-01

    Novel biodegradable polymeric materials based on protein hydrolysate (PH), derived from waste products of the leather industry, and poly(ethylene glycol) diglycidyl ether (PEG) or epoxidized soybean oil (ESO) were obtained and their physico-chemical properties and mechanical behaviour were evaluated. Different processing conditions and the introduction of fillers of natural origin, as saw dust and wood flour, were used to tailor the mechanical properties and the environmental durability of the product. The biodegradable products, which are almost completely manufactured from renewable-based raw materials, look promising for several applications, particularly in agriculture for the additional fertilizing action of PH or in packaging.

  3. Biodegradable modified Phba systems

    International Nuclear Information System (INIS)

    Compositions as well as production technology of ecologically sound biodegradable multicomponent polymer systems were developed. Our objective was to design some bio plastic based composites with required mechanical properties and biodegradability intended for use as biodegradable packaging. Significant characteristics required for food packaging such as barrier properties (water and oxygen permeability) and influence of γ-radiation on the structure and changes of main characteristics of some modified PHB matrices was evaluated. It was found that barrier properties were plasticizers chemical nature and sterilization with γ-radiation dependent and were comparable with corresponding values of typical polymeric packaging films. Low γ-radiation levels (25 kGy) can be recommended as an effective sterilization method of PHB based packaging materials. Purposely designed bio plastic packaging may provide an alternative to traditional synthetic packaging materials without reducing the comfort of the end-user due to specific qualities of PHB - biodegradability, Biocompatibility and hydrophobic nature

  4. Green and biodegradable electronics

    OpenAIRE

    Mihai Irimia-Vladu; Eric. D. Głowacki; Gundula Voss; Siegfried Bauer; Niyazi Serdar Sariciftci

    2012-01-01

    We live in a world where the lifetime of electronics is becoming shorter, now approaching an average of several months. This poses a growing ecological problem. This brief review will present some of the initial steps taken to address the issue of electronic waste with biodegradable organic electronic materials. Many organic materials have been shown to be biodegradable, safe, and nontoxic, including compounds of natural origin. Additionally, the unique features of such organic materials sugg...

  5. Bio-Degradable Plastics Impact On Environment

    Directory of Open Access Journals (Sweden)

    T.SUBRAMANI

    2014-06-01

    Full Text Available The potential of biodegradable polymers and more particularly that of polymers obtained from renewable resources such as the polysaccharides (e.g., starch have long been recognized. However, these biodegradable polymers have been largely used in some applications (e.g., food industry and have not found extensive applications in the packaging industries to replace conventional plastic materials, although they could be an interesting way to overcome the limitation of the petrochemical resources in the future. The fossil fuel and gas could be partially replaced by greener agricultural sources, which should participate in the reduction of CO2 emissions. Bio-based and biodegradable plastics can form the basis for environmentally preferable, sustainable alternative to current materials based exclusively on petroleum feed stocks. These bio-based materials offer value in the sustainability/life-cycle equation by being a part of the biological carbon cycle, especially as it relates to carbon-based polymeric materials such as plastics, water soluble polymers and other carbon based products like lubricants, biodiesel, and detergents. Identification and quantification of bio based content uses radioactive C-14 signature. Biopolymers are generally capable of being utilized by living matter (biodegraded, and so can be disposed in safe and ecologically sound ways through disposal processes (waste management like composting, soil application, and biological wastewater treatment. Single use, short-life, disposable products can be engineered to be bio-based and biodegradable.

  6. Evaluation of Artificial Intelligence Based Models for Chemical Biodegradability Prediction

    Directory of Open Access Journals (Sweden)

    Aleksandar Sabljic

    2004-12-01

    Full Text Available This study presents a review of biodegradability modeling efforts including a detailed assessment of two models developed using an artificial intelligence based methodology. Validation results for these models using an independent, quality reviewed database, demonstrate that the models perform well when compared to another commonly used biodegradability model, against the same data. The ability of models induced by an artificial intelligence methodology to accommodate complex interactions in detailed systems, and the demonstrated reliability of the approach evaluated by this study, indicate that the methodology may have application in broadening the scope of biodegradability models. Given adequate data for biodegradability of chemicals under environmental conditions, this may allow for the development of future models that include such things as surface interface impacts on biodegradability for example.

  7. Biodegradation of clofibric acid and identification of its metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, R. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); ESTS-IPS, Escola Superior de Tecnologia de Setubal do Instituto Politecnico de Setubal, Rua Vale de Chaves, Campus do IPS, Estefanilha, 2910-761 Setubal (Portugal); Oehmen, A. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Carvalho, G. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Instituto de Biologia Experimental e Tecnologica (IBET), Av. da Republica (EAN), 2784-505 Oeiras (Portugal); Noronha, J.P. [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Reis, M.A.M., E-mail: amr@fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2012-11-30

    Graphical abstract: Metabolites produced during clofibric acid biodegradation. Highlights: Black-Right-Pointing-Pointer Clofibric acid is biodegradable. Black-Right-Pointing-Pointer Mainly heterotrophic bacteria degraded the clofibric acid. Black-Right-Pointing-Pointer Metabolites of clofibric acid biodegradation were identified. Black-Right-Pointing-Pointer The metabolic pathway of clofibric acid biodegradation is proposed. - Abstract: Clofibric acid (CLF) is the pharmaceutically active metabolite of lipid regulators clofibrate, etofibrate and etofyllinclofibrate, and it is considered both environmentally persistent and refractory. This work studied the biotransformation of CLF in aerobic sequencing batch reactors (SBRs) with mixed microbial cultures, monitoring the efficiency of biotransformation of CLF and the production of metabolites. The maximum removal achieved was 51% biodegradation (initial CLF concentration = 2 mg L{sup -1}), where adsorption and abiotic removal mechanisms were shown to be negligible, showing that CLF is indeed biodegradable. Tests showed that the observed CLF biodegradation was mainly carried out by heterotrophic bacteria. Three main metabolites were identified, including {alpha}-hydroxyisobutyric acid, lactic acid and 4-chlorophenol. The latter is known to exhibit higher toxicity than the parent compound, but it did not accumulate in the SBRs. {alpha}-Hydroxyisobutyric acid and lactic acid accumulated for a period, where nitrite accumulation may have been responsible for inhibiting their degradation. A metabolic pathway for the biodegradation of CLF is proposed in this study.

  8. The use of biodegradable mulch films in muskmelon crop production

    Directory of Open Access Journals (Sweden)

    Artur Saraiva

    2012-10-01

    Full Text Available Due to the large amount of mulch films used in agricultural crops and to all the environmental problems related with their disposal, the biodegradable mulch films seems to be the best solution for replacing the conventional polyethylene mulches. The main goal of this work was to evaluate and compare the performance of biodegradable mulch films with the conventional polyethylene ones in muskmelon culture during two years. Beyond fruit productivity and quality, the impact of each plastic in the soil moisture and temperature were also assessed. Taking into account that there are no reported biodegradation studies realized in Portugal, it was also important to verify the biodegradability of this new mulch films under the Portuguese soil conditions. The biodegradable mulch films did not show significant differences in fruit productivity and quality. The biodegradation rate of the mulches tested was not as high as would be expected. From the overall results obtained, biodegradable mulch films appear to be a good solution for the replacement of the conventional polyethylene mulches, however the Research and Development should continue to be done ton improve their biodegradation rate.

  9. Biodegradation of natural oils in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Al-Darbi, M.M.; Saeed, N.O.; Islam, M.R. [Dalhousie University, Halifax, NS (Canada). Faculty of Engineering; Lee, K. [Bedford Institute of Oceanography, Dartmouth, NS (Canada)

    2005-01-15

    Spills of non-petroleum hydrocarbons including oils and fish oils are of environmental concern because of their potential to cause serious effects on marine life and coastal environments. Biodegradation by indigenous microorganisms is an important and potentially ubiquitous process affecting both the chemical composition and physical properties of contaminant oils. Data on the environmental persistence of non-petroleum oils is now required for risk assessments and decision making by spill responders. This article investigates the biodegradability of various vegetable and fish oils under the influence of natural bacteria in seawater. The influence of nutrients and microbial environment on changes in bacterial numbers and the extent and rate of degradation for various test oils (olive, mustard, canola and cod liver oils) were studied over time. Time-series visual and microscopic observations were made to characterize physical changes in the residual oils, formation of floating and precipitate particles, oil droplets and dispersion. The biodegradation process was significantly influenced by environmental conditions, with a higher rate and extent of biodegradation observed in seawater amended with nutrients and wastewater that contained elevated numbers of bacteria and nutrients. It was observed that different oils respond in different rates and extents to biodegradation depending on their stability, viscosity and compositions. All results clearly revealed a significant response of the oil-contaminated samples to both the seawater and wastewater environments. Observations on changes in the physical properties of the residual oil may be important in the context of oil spill response strategies. For example, simple physical recovery methods may be used to recover polymeric lumps at the sea surface. (author)

  10. Green and biodegradable electronics

    Directory of Open Access Journals (Sweden)

    Mihai Irimia-Vladu

    2012-07-01

    Full Text Available We live in a world where the lifetime of electronics is becoming shorter, now approaching an average of several months. This poses a growing ecological problem. This brief review will present some of the initial steps taken to address the issue of electronic waste with biodegradable organic electronic materials. Many organic materials have been shown to be biodegradable, safe, and nontoxic, including compounds of natural origin. Additionally, the unique features of such organic materials suggest they will be useful in biofunctional electronics; demonstrating functions that would be inaccessible for traditional inorganic compounds. Such materials may lead to fully biodegradable and even biocompatible/biometabolizable electronics for many low-cost applications. This review highlights recent progress in these classes of material, covering substrates and insulators, semiconductors, and finally conductors.

  11. Editorial: Biodegradable Materials

    Directory of Open Access Journals (Sweden)

    Carl Schaschke

    2014-11-01

    Full Text Available This Special Issue “Biodegradable Materials” features research and review papers concerning recent advances on the development, synthesis, testing and characterisation of biomaterials. These biomaterials, derived from natural and renewable sources, offer a potential alternative to existing non-biodegradable materials with application to the food and biomedical industries amongst many others. In this Special Issue, the work is expanded to include the combined use of fillers that can enhance the properties of biomaterials prepared as films. The future application of these biomaterials could have an impact not only at the economic level, but also for the improvement of the environment.

  12. Comparative study on the biodegradability of morpholinium herbicidal ionic liquids

    OpenAIRE

    Ławniczak, Łukasz; Materna, Katarzyna; Framski, Grzegorz; Szulc, Alicja; Syguda, Anna

    2015-01-01

    This study focused on evaluating the toxicity as well as primary and ultimate biodegradability of morpholinium herbicidal ionic liquids (HILs), which incorporated MCPA, MCPP, 2,4-D or Dicamba anions. The studied HILs were also subjected to determination of surface active properties in order to assess their influence on toxicity and biodegradability. The study was carried out with microbiota isolated from different environmental niches: sediments from river channel, garden soil, drainage trenc...

  13. Assessment of the biodegradability of xanthan in offshore injection water

    OpenAIRE

    Hovland, Beate

    2015-01-01

    The application of biopolymers in EOR operations is considered environmental friendly compared to synthetic polymers. However, microbial degradation of the biopolymers may lead to a deterioration of effect in EOR applications. This thesis is part of an industrial project conducted by UNI Research CIPR for Statoil ASA, were the aim is to assess biodegradation of xanthan at specific oil field conditions. Investigation of the biodegradation of xanthan was perform...

  14. Starch-based completely biodegradable polymer materials

    Directory of Open Access Journals (Sweden)

    2009-06-01

    Full Text Available Starch is a natural polymer which possesses many unique properties and some shortcoming simultaneously. Some synthetic polymers are biodegradable and can be tailor-made easily. Therefore, by combining the individual advantages of starch and synthetic polymers, starch-based completely biodegradable polymers (SCBP are potential for applications in biomedical and environmental fields. Therefore it received great attention and was extensively investigated. In this paper, the structure and characteristics of starch and some synthetic degradable polymers are briefly introduced. Then, the recent progress about the preparation of SCBP via physical blending and chemical modification is reviewed and discussed. At last, some examples have been presented to elucidate that SCBP are promising materials for various applications and their development is a good solution for reducing the consumption of petroleum resources and environmental problem.

  15. New perspectives in plastic biodegradation.

    Science.gov (United States)

    Sivan, Alex

    2011-06-01

    During the past 50 years new plastic materials, in various applications, have gradually replaced the traditional metal, wood, leather materials. Ironically, the most preferred property of plastics--durability--exerts also the major environmental threat. Recycling has practically failed to provide a safe solution for disposal of plastic waste (only 5% out of 1 trillion plastic bags, annually produced in the US alone, are being recycled). Since the most utilized plastic is polyethylene (PE; ca. 140 million tons/year), any reduction in the accumulation of PE waste alone would have a major impact on the overall reduction of the plastic waste in the environment. Since PE is considered to be practically inert, efforts were made to isolate unique microorganisms capable of utilizing synthetic polymers. Recent data showed that biodegradation of plastic waste with selected microbial strains became a viable solution. PMID:21356588

  16. Engineered biosynthesis of biodegradable polymers.

    Science.gov (United States)

    Jambunathan, Pooja; Zhang, Kechun

    2016-08-01

    Advances in science and technology have resulted in the rapid development of biobased plastics and the major drivers for this expansion are rising environmental concerns of plastic pollution and the depletion of fossil-fuels. This paper presents a broad view on the recent developments of three promising biobased plastics, polylactic acid (PLA), polyhydroxyalkanoate (PHA) and polybutylene succinate (PBS), well known for their biodegradability. The article discusses the natural and recombinant host organisms used for fermentative production of monomers, alternative carbon feedstocks that have been used to lower production cost, different metabolic engineering strategies used to improve product titers, various fermentation technologies employed to increase productivities and finally, the different downstream processes used for recovery and purification of the monomers and polymers. PMID:27260524

  17. Biodegradation of halogenated organic compounds.

    Science.gov (United States)

    Chaudhry, G R; Chapalamadugu, S

    1991-03-01

    In this review we discuss the degradation of chlorinated hydrocarbons by microorganisms, emphasizing the physiological, biochemical, and genetic basis of the biodegradation of aliphatic, aromatic, and polycyclic compounds. Many environmentally important xenobiotics are halogenated, especially chlorinated. These compounds are manufactured and used as pesticides, plasticizers, paint and printing-ink components, adhesives, flame retardants, hydraulic and heat transfer fluids, refrigerants, solvents, additives for cutting oils, and textile auxiliaries. The hazardous chemicals enter the environment through production, commercial application, and waste. As a result of bioaccumulation in the food chain and groundwater contamination, they pose public health problems because many of them are toxic, mutagenic, or carcinogenic. Although synthetic chemicals are usually recalcitrant to biodegradation, microorganisms have evolved an extensive range of enzymes, pathways, and control mechanisms that are responsible for catabolism of a wide variety of such compounds. Thus, such biological degradation can be exploited to alleviate environmental pollution problems. The pathways by which a given compound is degraded are determined by the physical, chemical, and microbiological aspects of a particular environment. By understanding the genetic basis of catabolism of xenobiotics, it is possible to improve the efficacy of naturally occurring microorganisms or construct new microorganisms capable of degrading pollutants in soil and aquatic environments more efficiently. Recently a number of genes whose enzyme products have a broader substrate specificity for the degradation of aromatic compounds have been cloned and attempts have been made to construct gene cassettes or synthetic operons comprising these degradative genes. Such gene cassettes or operons can be transferred into suitable microbial hosts for extending and custom designing the pathways for rapid degradation of recalcitrant

  18. Degradation of oxo-biodegradable plastic by Pleurotus ostreatus.

    Directory of Open Access Journals (Sweden)

    José Maria Rodrigues da Luz

    Full Text Available Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ultraviolet light (UV or heat can lead to breakage of the polymer chains in the plastic, and the resulting compounds are easily degraded by microorganisms. However, few studies have characterized the microbial degradation of oxo-biodegradable plastics. In this study, we tested the capability of Pleurotus ostreatus to degrade oxo-biodegradable (D2W plastic without prior physical treatment, such as exposure to UV or thermal heating. After 45 d of incubation in substrate-containing plastic bags, the oxo-biodegradable plastic, which is commonly used in supermarkets, developed cracks and small holes in the plastic surface as a result of the formation of hydroxyl groups and carbon-oxygen bonds. These alterations may be due to laccase activity. Furthermore, we observed the degradation of the dye found in these bags as well as mushroom formation. Thus, P. ostreatus degrades oxo-biodegradable plastics and produces mushrooms using this plastic as substrate.

  19. Degradation of oxo-biodegradable plastic by Pleurotus ostreatus.

    Science.gov (United States)

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Nunes, Mateus Dias; da Silva, Marliane de Cássia Soares; Kasuya, Maria Catarina Megumi

    2013-01-01

    Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ultraviolet light (UV) or heat can lead to breakage of the polymer chains in the plastic, and the resulting compounds are easily degraded by microorganisms. However, few studies have characterized the microbial degradation of oxo-biodegradable plastics. In this study, we tested the capability of Pleurotus ostreatus to degrade oxo-biodegradable (D2W) plastic without prior physical treatment, such as exposure to UV or thermal heating. After 45 d of incubation in substrate-containing plastic bags, the oxo-biodegradable plastic, which is commonly used in supermarkets, developed cracks and small holes in the plastic surface as a result of the formation of hydroxyl groups and carbon-oxygen bonds. These alterations may be due to laccase activity. Furthermore, we observed the degradation of the dye found in these bags as well as mushroom formation. Thus, P. ostreatus degrades oxo-biodegradable plastics and produces mushrooms using this plastic as substrate. PMID:23967057

  20. State-of-the-art of biodegradable composite materials

    International Nuclear Information System (INIS)

    Nowadays, the market demand for environment friendly materials is in strong growth. The biodegradable composites (biodegradable fibres and polymers) mainly extracted from renewable resources will be a major contributor to the production of new industrial high performance products partially solving the problem of waste management. At the end of the lifetime, a structural bio-composite could be be crushed and recycled through a controlled industrial composting process. This the state-of-the-art report focuses on the biopolymers the vegetable fibres properties, the mechanisms of biodegradation and the examples of biodegradable composites. Eco-design of new products requires these new materials for which a life cycle analysis is nevertheless necessary to validate their environmental benefits. (authors)

  1. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  2. Assessing the environmental burdens of anaerobic digestion in comparison to alternative options for managing the biodegradable fraction of municipal solid wastes.

    Science.gov (United States)

    Haight, M

    2005-01-01

    Biological treatment processes including anaerobic digestion (biogasification) and composting are increasingly being considered by waste management officials and planners as alternatives for managing the mainly organic residues of municipal solid wastes (MSW). The integrated waste management model which is based upon the application of life-cycle analysis was employed to compare the environmental burdens of landfilling, composting and anaerobic digestion of MSW at a mid-sized Canadian community. Energy consumption (or recovery), residue recoveries and emissions to air and water were quantified. Scenario comparisons were analyzed to demonstrate that the environmental burdens associated with anaerobic digestion are reduced in comparison with the alternative options. The major benefit occurs as a result of the electricity produced from burning the biogas and then supplying the 'green power' to the local electrical grid. PMID:16180477

  3. Biodegradation of tert-butylphenyl diphenyl phosphate

    International Nuclear Information System (INIS)

    The biodegradation of tert-butylphenyl diphenyl phosphate (BPDP) was examined in microcosms containing sediment and water from five different ecosystems as part of studies to elucidate the environmental fate of phosphate ester flame retardants. Biodegradation of [14C]BPDP was monitored in the environmental microcosms by measuring the evolution of 14CO2. Over 37% of BPDP was mineralized after 8 weeks in microcosms from an ecosystem which had chronic exposure to agricultural chemicals. In contrast, only 1.7% of BPDP was degraded to 14CO2 in samples collected from a noncontaminated site. The exposure concentration of BPDP affected the percentage which was degraded to 14CO2 in microcosms from the two most active ecosystems. Mineralization was highest at a concentration of 0.1 mg of BPDP and was inhibited with 10- and 100-fold higher concentrations of BPDP. The authors observed adaptive increases in both microbial populations and phosphoesterase enzymes in some sediments acclimated to BPDP. Chemical analyses of the residues in the microcosms indicated undegraded BPDP and minor amounts of phenol, tert-butylphenol, diphenyl phosphate, and triphenyl phosphate as biodegradation products. These data suggest that the microbial degradation of BPDP results from at least three catabolic processes and is highest when low concentrations of BPDP are exposed to sediment microorganisms of eutrophic ecosystems which have high phosphotri- and diesterase activities and previous exposure to anthropogenic chemicals

  4. Decomposition of biodegradable films developed on the basis of polyvinyl alcohol in the natural environment

    Directory of Open Access Journals (Sweden)

    Timofiychuk O.A.

    2009-01-01

    Full Text Available The use of polymeric pack has made for many important problems. Biodegradable plastics may provide solutions to global environmental problems. The aim of this study is to examine the utilization possibilities in natural environment of biodegradable films, which was developed with polyvinyl alcohol and organic filler materials (amylum and cellulose. The films stability against the filamentous fungus was analyzed, the soil type with optimal conditions to the biodegradation of polymers was determined; the mold fungi were separated from biodegradable films and were identified to a genus.

  5. Biodegradation of phthalic acid esters by a newly isolated Mycobacterium sp. YC-RL4 and the bioprocess with environmental samples.

    Science.gov (United States)

    Ren, Lei; Jia, Yang; Ruth, Nahurira; Qiao, Cheng; Wang, Junhuan; Zhao, Baisuo; Yan, Yanchun

    2016-08-01

    Bacterial strain YC-RL4, capable of utilizing phthalic acid esters (PAEs) as the sole carbon source for growth, was isolated from petroleum-contaminated soil. Strain YC-RL4 was identified as Mycobacterium sp. by 16S rRNA gene analysis and Biolog tests. Mycobacterium sp. YC-RL4 could rapidly degrade dibutyl phthalate (DBP), diethyl phthalate (DEP), dimethyl phthalate (DMP), dicyclohexyl phthalate (DCHP), and di-(2-ethylhexyl) phthalate (DEHP) under both individual and mixed conditions, and all the degradation rates were above 85.0 % within 5 days. The effects of environmental factors which might affect the degrading process were optimized as 30 °C and pH 8.0. The DEHP metabolites were detected by HPLC-MS and the degradation pathway was deduced tentatively. DEHP was transformed into phthalic acid (PA) via mono (2-ethylhexyl) phthalate (MEHP) and PA was further utilized for growth via benzoic acid (BA) degradation pathway. Cell surface hydrophobicity (CSH) assays illuminated that the strain YC-RL4 was of higher hydrophobicity while grown on DEHP and CSH increased with the higher DEHP concentration. The degradation rates of DEHP by strain YC-RL4 in different environmental samples was around 62.0 to 83.3 % and strain YC-RL4 survived well in the soil sample. These results suggested that the strain YC-RL4 could be used as a potential and efficient PAE degrader for the bioremediation of contaminated sites. PMID:27178296

  6. Biodegradation of ion-exchange media

    International Nuclear Information System (INIS)

    Ion-exchange media, both bead resins and powdered filter media, are used in nuclear power plants to remove radioactivity from process water prior to reuse or environmental discharge. Since the ion- exchange media are made from synthetic hydrocarbon-based polymers, they may be susceptible to damage from biological activity. The purpose of this study was to investigate some of the more basic aspects of biodegradation of ion-exchange media, specifically to evaluate the ability of microorganisms to utilize the ion-exchange media or materials sorbed on them as a food source. The ASTM-G22 test, alone and combined with the Bartha Pramer respirometric method, failed to indicate the biodegradability of the ion-exchange media. The limitation of these methods was that they used a single test organism. In later phases of this study, a mixed microbial culture was grown from resin waste samples obtained from the BNL High Flux Beam Reactor. These microorganisms were used to evaluate the susceptibility of different types of ion-exchange media to biological attack. Qualitative assessments of biodegradability were based on visual observations of culture growths. Greater susceptibility was associated with increased turbidity in solution indicative of bacterial growth, and more luxuriant fungal mycelial growth in solution or directly on the ion-exchange resin beads. 21 refs., 9 figs., 18 tabs

  7. 可生物降解的环保型镁合金微乳化切削液的制备%Preparation of biodegradable environmental-friendly micro-emulsion cutting fluid for magnesium alloys

    Institute of Scientific and Technical Information of China (English)

    陈郁明; 周建辉; 周玉成; 孙雪飞

    2015-01-01

    A biodegradable environmental-friendly micro-emulsion cutting fluid for magnesium alloys was developed. The influence of base oil, corrosion inhibitor, chelator, anti-rust agent, lubricant, surfactant, and other additives on lubrication property of the cutting fluid were studied. The optimal formulation was determined as follows: naphthenic base oil 30.0wt%, modified organic alcohol chelator 1.5wt%, composite corrosion inhibitor 2.5wt%, triethanolamine 8.0wt%, long carbon chain polycarboxylic acid anti-rust agent 5.0wt%, polymerized glycerol trioleate lubricant 16.0wt%, polyoleate lubricant 6.0wt%, AEO fatty alcohol polyoxyethylene ether surfactant 2.5wt%, emulsion-type low-foam fatty alcohol polyoxyethylene ether surfactant 3.0wt%, fungicide 1.0wt%, defoamer 0.1wt%, and water 24.4wt%. In comparison with the marketable commercial products of Castrol and Master, the developed micro-emulsion cutting fluid for magnesium alloys has lower price but better performance in aspects of lubrication, hard water resistance, anti-corrosion, defoamation, and service life. Its biodegradation rate is 92.0% and hard water resistance reaches 8 330 mg/L. The green and highly efficient micro-emulsion cutting fluid is a special-purpose cutting fluid for magnesium alloys.%开发了一种可生物降解的环保型镁合金微乳化切削液,考察了基础油、缓蚀剂、螯合剂、防锈剂、润滑剂、表面活性剂和其他添加剂对切削液润滑性能的影响,筛选出最优的微乳化切削液配方(以质量分数表示):环烷基基础油30.0%,改性有机醇类螯合剂1.5%,复合缓蚀剂2.5%,三乙醇胺8.0%,长碳链多元羧酸防锈剂5.0%,聚合油酸合成酯润滑剂16.0%,多元油酸合成酯润滑剂6.0%,AEO类脂肪醇聚氧乙烯醚表面活性剂2.5%,脂肪醇聚氧乙烯醚类乳化型低泡表面活性剂3.0%,杀菌剂1.0%,消泡剂0.1%,水24.4%。所开发的镁合金微乳化切削液在润滑、抗硬水、防腐防锈、

  8. Preparation of a biodegradable oil absorber and its biodegradation.

    Science.gov (United States)

    Yoo, Su-Yong; Daud, Wan Mohd Ashri Wan; Lee, Min-Gyu

    2012-01-01

    The biodegradable oil absorption resin (B-PEHA) was prepared by suspension polymerization, and its preparation was confirmed by Fourier transform infrared analysis. The oil absorption capacities of the prepared B-PEHA were: chloroform 30.88, toluene 19.75, xylene, 18.78, THF 15.96, octane 11.43, hexane 9.5, diesel oil 12.80, and kerosene 13.79 g/g. The biodegradation of the prepared B-PEHA was also investigated by determination of reduced sugar produced after enzymatic hydrolysis, thermogravimetric analysis, and incubation with Aspergillus niger. The biodegradation of B-PEHA was ~18%. PMID:21909668

  9. Development of biodegradable fungicide by radiation

    International Nuclear Information System (INIS)

    To develop the fungicide which is biodegradable and alternative to chemical pesticide that has an side effect of environmental pollution, Mutant induction of the enhanced antifungal activity was studied by using radiation. Characteristics and structure of antifungal biomaterials derived from these mutants were analysed. Two biomaterials related to the antifungal activity from the above mutant were isolated and purified. Microbial pesticide were manufactured in combination of various additives. Antiphytopathogenic effects were proven by pot experiment and It was promising to prevent pepper, Chinese cabbage and radish from anthrax, phytophthora and root rot

  10. Development of biodegradable fungicide by radiation

    International Nuclear Information System (INIS)

    To develop the fungicide which is biodegradable and alternative to chemical pesticide that has an side effect of environmental pollution, Mutant induction of the enhanced antifungal activity was studied by using radiation. Characteristics and structure of antifungal biomaterials derived from these mutants were analysed. Sixteen antifungal microbes were isolated and 4 antifungal activity enhanced mutants were induced by using radiation. P. lentimorbus WJ5a17 had 41% higher antifungal activity than the wild type. Two biomaterials related to the antifungal activity from the above mutant were isolated and purified

  11. Development of biodegradable fungicide by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngkeun; Kim, Dongsub

    2012-03-15

    To develop the fungicide which is biodegradable and alternative to chemical pesticide that has an side effect of environmental pollution, Mutant induction of the enhanced antifungal activity was studied by using radiation. Characteristics and structure of antifungal biomaterials derived from these mutants were analysed. Two biomaterials related to the antifungal activity from the above mutant were isolated and purified. Microbial pesticide were manufactured in combination of various additives. Antiphytopathogenic effects were proven by field test and it was promising to prevent Chinese cabbage and radish from phytophthora and root rot.

  12. Biodegradation of Polypropylene Nonwovens

    Science.gov (United States)

    Keene, Brandi Nechelle

    The primary aim of the current research is to document the biodegradation of polypropylene nonwovens and filament under composting environments. To accelerate the biodegradat ion, pre-treatments and additives were incorporated into polypropylene filaments and nonwovens. The initial phase (Chapter 2) of the project studied the biodegradation of untreated polypropylene with/without pro-oxidants in two types of composting systems. Normal composting, which involved incubation of samples in food waste, had little effect on the mechanical properties of additive-free spunbond nonwovens in to comparison prooxidant containing spunbond nonwovens which were affected significantly. Modified composting which includes the burial of samples with food and compressed air, the polypropylene spunbond nonwovens with/without pro-oxidants displayed an extreme loss in mechanical properties and cracking on the surface cracking. Because the untreated spunbond nonwovens did not completely decompose, the next phase of the project examined the pre-treatment of gamma-irradiation or thermal aging prior to composting. After exposure to gamma-irradiation and thermal aging, polypropylene is subjected to oxidative degradation in the presence of air and during storage after irradiat ion. Similar to photo-oxidation, the mechanism of gamma radiation and thermal oxidative degradation is fundamentally free radical in nature. In Chapter 3, the compostability of thermal aged spunbond polypropylene nonwovens with/without pro-oxidant additives. The FTIR spectrum confirmed oxidat ion of the polypropylene nonwovens with/without additives. Cracking on both the pro-oxidant and control spunbond nonwovens was showed by SEM imaging. Spunbond polypropylene nonwovens with/without pro-oxidants were also preirradiated by gamma rays followed by composting. Nonwovens with/without pro-oxidants were severely degraded by gamma-irradiation after up to 20 kGy exposure as explained in Chapter 4. Furthermore (Chapter 5), gamma

  13. Biodegradable micromechanical sensors

    DEFF Research Database (Denmark)

    Keller, Stephan Sylvest; Greve, Anders; Schmid, Silvan;

    The development of biopolymers for food packaging, medical engineering or drug delivery is a growing field of research [1]. At the same time, the interest in methods for detailed analysis of biopolymers is increasing. Micromechanical sensors are versatile tools for the characterization of mechani......The development of biopolymers for food packaging, medical engineering or drug delivery is a growing field of research [1]. At the same time, the interest in methods for detailed analysis of biopolymers is increasing. Micromechanical sensors are versatile tools for the characterization...... of biopolymers to microfabrication is challenging, as these polymers are affected by common processes such as photolithography or wet etching. Here, we present two methods for fabrication of biodegradable micromechanical sensors. First, we fabricated bulk biopolymer microcantilevers using nanoimprint lithography...

  14. Biodegradation of biodiesel fuels

    International Nuclear Information System (INIS)

    Biodiesel fuel test substances Rape Ethyl Ester (REE), Rape Methyl Ester (RME), Neat Rape Oil (NR), Say Methyl Ester (SME), Soy Ethyl Ester (SEE), Neat Soy Oil (NS), and proportionate combinations of RME/diesel and REE/diesel were studied to test the biodegradability of the test substances in an aerobic aquatic environment using the EPA 560/6-82-003 Shake Flask Test Method. A concurrent analysis of Phillips D-2 Reference Diesel was also performed for comparison with a conventional fuel. The highest rates of percent CO2 evolution were seen in the esterified fuels, although no significant difference was noted between them. Ranges of percent CO2 evolution for esterified fuels were from 77% to 91%. The neat rape and neat soy oils exhibited 70% to 78% CO2 evolution. These rates were all significantly higher than those of the Phillips D-2 reference fuel which evolved from 7% to 26% of the organic carbon to CO2. The test substances were examined for BOD5 and COD values as a relative measure of biodegradability. Water Accommodated Fraction (WAF) was experimentally derived and BOD5 and COD analyses were carried out with a diluted concentration at or below the WAF. The results of analysis at WAF were then converted to pure substance values. The pure substance BOD5 and COD values for test substances were then compared to a control substance, Phillips D-2 Reference fuel. No significant difference was noted for COD values between test substances and the control fuel. (p > 0.20). The D-2 control substance was significantly lower than all test substances for BCD, values at p 5 value

  15. Biodegradation of plastics in soil and effects on nitrification activity. A laboratory approach.

    Directory of Open Access Journals (Sweden)

    Giulia eBettas Ardisson

    2014-12-01

    Full Text Available The progressive application of new biodegradable plastics in agriculture calls for improved testing approaches to assure their environmental safety. Full biodegradation (≥ 90% prevents accumulation in soil, which is the first tier of testing. The application of specific ecotoxicity tests is the second tier of testing needed to show safety for the soil ecosystem. Soil microbial nitrification is widely used as a bioindicator for evaluating the impact of chemicals on soil but it is not applied for evaluating the impact of biodegradable plastics. In this work the International Standard test for biodegradation of plastics in soil (ISO 17556, 2012 was applied both to measure biodegradation and to prepare soil samples needed for a subsequent nitrification test based on another International Standard (ISO 14238, 2012. The plastic mulch film tested in this work showed full biodegradability and no inhibition of the nitrification potential of the soil in comparison with the controls. The laboratory approach suggested in this Technology Report enables (i to follow the course of biodegradation, (ii a strict control of variables and environmental conditions, (iii the application of very high concentrations of test material (to maximize the possible effects. This testing approach could be taken into consideration in improved testing schemes aimed at defining the biodegradability of plastics in soil.

  16. FOSSIL FUEL BIODEGRADATION: LABORATORY STUDIES

    Science.gov (United States)

    Natural processes of biodegradation, that return carbon from its various organic forms to the inorganic state, are increasingly screened for bioremediation applications. ariety of microbial systems capable of degrading synthetic organic chemicals, from pesticides to polychlorinat...

  17. Modeling cutinase enzyme regulation in polyethylene terepthalate plastic biodegradation

    Science.gov (United States)

    Apri, M.; Silmi, M.; Heryanto, T. E.; Moeis, M. R.

    2016-04-01

    PET (Polyethylene terephthalate) is a plastic material that is commonly used in our daily life. The high production of PET and others plastics that can be up to three hundred million tons per year, is not matched by its degradation rate and hence leads to environmental pollution. To overcome this problem, we develop a biodegradation system. This system utilizes LC Cutinase enzyme produced by engineered escherichia coli bacteria to degrade PET. To make the system works efficaciously, it is important to understand the mechanism underlying its enzyme regulation. Therefore, we construct a mathematical model to describe the regulation of LC Cutinase production. The stability of the model is analyzed. We show that the designated biodegradation system can give an oscillatory behavior that is very important to control the amount of inclusion body (the miss-folded proteins that reduce the efficiency of the biodegradation system).

  18. Anaerobic biodegradability of kitchen waste

    OpenAIRE

    Neves, L.; Oliveira, Rosário; M. Mota; Alves, M.M.

    2002-01-01

    Biodegradability of synthetic and real kitchen wastes was assessed in batch assays, under different solid contents between 1,8 and 24% and waste/inoculum ratios between 0,2 and 29 VSwaste/Vsseed sludge. Methanization rate and cumulative methane production from synthetic wastes simulated with different blends of protein, carbohydrates, fat and cellulose were compared. Although the excess of protein, carbohydrates and cellulose enhanced the biodegradability by 16 to 48%, the excess of fat re...

  19. Adsorption and biodegradation of antidiabetic pharmaceuticals in soils.

    Science.gov (United States)

    Mrozik, Wojciech; Stefańska, Justyna

    2014-01-01

    Pharmaceuticals are emerging contaminants in the natural environment. Most studies of the environmental fate of these chemicals focus on their behavior in wastewater treatment processes and in sewage sludge. Little is known about their behavior in soils. In this study adsorption and biodegradation of four antidiabetic pharmaceuticals - glimepiride, glibenclamide, gliclazide and metformin - were examined in three natural soils. The sorption of sulfonylurea derivatives was high (higher than sulfonylurea herbicides for example), whereas metformin showed high mobility. Desorption rates were highest for metformin. Sorption isotherms in two of three soils fitted best to the Freundlich model. Despite their high affinity to for soil surfaces, biodegradation studies revealed that transformation of the drugs occurred. Biodegradation results were described by pseudo-first order kinetics with half-life values from 5 to over 120 d (under aerobic conditions) and indicate that none of the tested drugs can be classified as quickly biodegradable. Biodegradation under anoxic conditions was much slower; often degrading by less than 50% during time of the experiment. PMID:24083899

  20. Biodegradable and edible gelatine actuators for use as artificial muscles

    Science.gov (United States)

    Chambers, L. D.; Winfield, J.; Ieropoulos, I.; Rossiter, J.

    2014-03-01

    The expense and use of non-recyclable materials often requires the retrieval and recovery of exploratory robots. Therefore, conventional materials such as plastics and metals in robotics can be limiting. For applications such as environmental monitoring, a fully biodegradable or edible robot may provide the optimum solution. Materials that provide power and actuation as well as biodegradability provide a compelling dimension to future robotic systems. To highlight the potential of novel biodegradable and edible materials as artificial muscles, the actuation of a biodegradable hydrogel was investigated. The fabricated gelatine based polymer gel was inexpensive, easy to handle, biodegradable and edible. The electro-mechanical performance was assessed using two contactless, parallel stainless steel electrodes immersed in 0.1M NaOH solution and fixed 40 mm apart with the strip actuator pinned directly between the electrodes. The actuation displacement in response to a bias voltage was measured over hydration/de-hydration cycles. Long term (11 days) and short term (1 hour) investigations demonstrated the bending behaviour of the swollen material in response to an electric field. Actuation voltage was low (robotics.

  1. Cylindrospermopsin Biodegradation Abilities of Aeromonas sp. Isolated from Rusałka Lake.

    Science.gov (United States)

    Dziga, Dariusz; Kokocinski, Mikolaj; Maksylewicz, Anna; Czaja-Prokop, Urszula; Barylski, Jakub

    2016-03-01

    The occurrence of the cyanobacterial toxin cylindrospermopsin (CYN) in freshwater reservoirs is a common phenomenon. However, the biodegradation of this toxin in environmental samples has been observed only occasionally. In this work the biodegradation ability of cylindrospermopsin was investigated based on isolates from lakes with previous cyanotoxin history. Bacterial strains were identified based on the 16S rDNA and rpoD gene comparison. CYN biodegradation was monitored using the HPLC method. The R6 strain identified as Aeromonas sp. was documented as being capable of CYN removal. This biodegradation was dependent on the pH and temperature. Additionally, the stimulation of the growth of the R6 strain in the presence of CYN was indicated. Our discovery supports the hypothesis that (in analogy to the well-known phenomenon of microcystin biodegradation) in lakes dominated by potential CYN-producing cyanobacteria, the processes of microbial utilization of this toxin may occur. PMID:26927173

  2. Cylindrospermopsin Biodegradation Abilities of Aeromonas sp. Isolated from Rusałka Lake

    Science.gov (United States)

    Dziga, Dariusz; Kokocinski, Mikolaj; Maksylewicz, Anna; Czaja-Prokop, Urszula; Barylski, Jakub

    2016-01-01

    The occurrence of the cyanobacterial toxin cylindrospermopsin (CYN) in freshwater reservoirs is a common phenomenon. However, the biodegradation of this toxin in environmental samples has been observed only occasionally. In this work the biodegradation ability of cylindrospermopsin was investigated based on isolates from lakes with previous cyanotoxin history. Bacterial strains were identified based on the 16S rDNA and rpoD gene comparison. CYN biodegradation was monitored using the HPLC method. The R6 strain identified as Aeromonas sp. was documented as being capable of CYN removal. This biodegradation was dependent on the pH and temperature. Additionally, the stimulation of the growth of the R6 strain in the presence of CYN was indicated. Our discovery supports the hypothesis that (in analogy to the well-known phenomenon of microcystin biodegradation) in lakes dominated by potential CYN-producing cyanobacteria, the processes of microbial utilization of this toxin may occur. PMID:26927173

  3. Progress of biodegradable metals

    Directory of Open Access Journals (Sweden)

    Huafang Li

    2014-10-01

    Full Text Available Biodegradable metals (BMs are metals and alloys expected to corrode gradually in vivo, with an appropriate host response elicited by released corrosion products, then dissolve completely upon fulfilling the mission to assist with tissue healing with no implant residues. In the present review article, three classes of BMs have been systematically reviewed, including Mg-based, Fe-based and Zn-based BMs. Among the three BM systems, Mg-based BMs, which now have several systems reported the successful of clinical trial results, are considered the vanguards and main force. Fe-based BMs, with pure iron and Fe–Mn based alloys as the most promising, are still on the animal test stage. Zn-based BMs, supposed to have the degradation rate between the fast Mg-based BMs and the slow Fe-based BMs, are a rising star with only several reports and need much further research. The future research and development direction for the BMs are proposed, based on the clinical requirements on controllable degradation rate, prolonged mechanical stability and excellent biocompatibility, by optimization of alloy composition design, regulation on microstructure and mechanical properties, and following surface modification.

  4. Biodegradation of polyethoxylated nonylphenols.

    Science.gov (United States)

    Ruiz, Yassellis; Medina, Luis; Borusiak, Margarita; Ramos, Nairalith; Pinto, Gilberto; Valbuena, Oscar

    2013-01-01

    Polyethoxylated nonylphenols, with different ethoxylation degrees (NPEO x ), are incorporated into many commercial and industrial products such as detergents, domestic disinfectants, emulsifiers, cosmetics, and pesticides. However, the toxic effects exerted by their degradation products, which are persistent in natural environments, have been demonstrated in several animal and invertebrate aquatic species. Therefore, it seems appropriate to look for indigenous bacteria capable of degrading native NPEO x and its derivatives. In this paper, the isolation of five bacterial strains, capable of using NPEO 15 , as unique carbon source, is described. The most efficient NPEO 15 degrader bacterial strains were identified as Pseudomonas fluorescens (strain Yas2) and Klebsiella pneumoniae (strain Yas1). Maximal growth rates were reached at pH 8, 27°C in a 5% NPEO 15 medium. The NPEO 15 degradation extension, followed by viscometry assays, reached 65% after 54.5 h and 134 h incubation times, while the COD values decreased by 95% and 85% after 24 h for the Yas1 and Yas2 systems, respectively. The BOD was reduced by 99% and 99.9% levels in 24 h and 48 h incubations. The viscosity data indicated that the NPEO 15 biodegradation by Yas2 follows first-order kinetics. Kinetic rate constant (k) and half life time (τ) for this biotransformation were estimated to be 0.0072 h(-1) and 96.3 h, respectively. PMID:23936727

  5. Progress of biodegradable metals

    Institute of Scientific and Technical Information of China (English)

    Huafang Li; Yufeng Zheng; Ling Qin

    2014-01-01

    Biodegradable metals (BMs) are metals and alloys expected to corrode gradually in vivo, with an appropriate host response elicited by released corrosion products, then dissolve completely upon fulfilling the mission to assist with tissue healing with no implant residues. In the present review article, three classes of BMs have been systematically reviewed, including Mg-based, Fe-based and Zn-based BMs. Among the three BM systems, Mg-based BMs, which now have several systems reported the successful of clinical trial results, are considered the vanguards and main force. Fe-based BMs, with pure iron and Fe–Mn based alloys as the most promising, are still on the animal test stage. Zn-based BMs, supposed to have the degradation rate between the fast Mg-based BMs and the slow Fe-based BMs, are a rising star with only several reports and need much further research. The future research and development direction for the BMs are proposed, based on the clinical requirements on controllable degradation rate, prolonged mechanical stability and excellent biocompat-ibility, by optimization of alloy composition design, regulation on microstructure and mechanical properties, and following surface modification.

  6. New Biodegradable Thermoplastic Multiblock Copolymers from Lactic Acid, ε-Caprolactone, Poly(Ethylene Oxide) and Toluene Diisocyanate

    Institute of Scientific and Technical Information of China (English)

    Jen(o) Borda; Sándor Kéki; Ildikó Bodnár; Nóra Németh; Miklós Zsuga

    2005-01-01

    @@ 1Introduction The interest in finding new biodegradable materials for applications in important areas has been motivated by environmental protection aspects. Foremost among the potentially biodegradable and biocompatible polymers, poly(lactic acid) and poly(ε-caprolactone) received considerable attention as their potential application in a wide range of biomedical and pharmaceutical areas was recognized.

  7. Effects of the Biodegradation on Biodegradable Polymer Blends and Polypropylene

    Science.gov (United States)

    Pereira, R. C. T.; Franchetti, S. M. M.; Agnelli, J. A. M.; Mattoso, L. H. C.

    2008-08-01

    The large use of plastics in the world generates a large amount of waste which persists around 200 years in the environment. To minimize this effect is important to search some new polymer materials: the blends of biodegradable polymers with synthetic polymers. It is a large area that needs an intensive research to investigate the blends properties and its behavior face to the different treatments to aim at the biodegradation. The blends used in this work are: some biodegradable polymers such as: poly(hydroxybutyrate) (PHB) and poly(ɛ-polycaprolactone) (PCL) with a synthetic polymer, polypropylene (PP), in lower concentration. These blends were prepared using an internal mixer (Torque Rheometer), and pressed. These films were submitted to fungus biotreatment. The films analyses will be carried out by Fourier Transform Infrared (FTIR), UV-Vis absorption (UV-Vis), Scanning Electronic Microscopy (SEM), DSC and TGA.

  8. Adhesion of biocompatible and biodegradable micropatterned surfaces

    NARCIS (Netherlands)

    Kaiser, J.S.; Kamperman, M.M.G.; Souza, E.J.; Schick, B.; Arzt, E.

    2011-01-01

    We studied the effects of pillar dimensions and stiffness of biocompatible and biodegradable micropatterned surfaces on adhesion on different compliant substrates. The micropatterned adhesives were based on biocompatible polydimethylsiloxane (PDMS) and biodegradable poly(lactic-co-glycolic) acid (PL

  9. Poly (3-Hydroxyalkanoates: Biodegradable Plastics

    Directory of Open Access Journals (Sweden)

    Surbhi Jain

    2013-03-01

    Full Text Available During the 1920’s, a polyester called poly (3-hydroxybutyrate was discovered in bacterial cells. This compound, otherwise known as PHB, is part of a polyester family called polyhydroxyalkanoates (PHAs. Polyhydroxyalkanoates are used as an energy and carbon sto rage compound within certain bacterial cells. Polyhydroxyalkanoates (PHAs are thermoplastic, biodegradable polyesters synthesized by some bacteria from renewable carbon sources. However, their application is limited by high production cost. Polyhydroxyalkanoates (PHAs have attracted research and commercial interests worldwide because they can be used as biodegradable thermoplastics and also because they can be produced from renewable resources. This review will present an overview on synthesis and degradation of polyhydroxyalkanoates (PHAs, development as biodegradable plastics and its potential production from renewable resources such as palm oil products.

  10. Optimization of low ring polycylic aromatic biodegradation

    Science.gov (United States)

    Othman, N.; Abdul-Talib, S.; Tay, C. C.

    2016-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are recalcitrance and persistence that finally turn into problematic environmental contaminants. Microbial degradation is considered to be the primary mechanism of PAHs removal from the environment due to its organic criteria. This study is carried out to optimize degradation process of low ring PAHs. Bacteria used in this study was isolated from sludge collected from Kolej Mawar, Universiti Teknologi MARA, Shah Alam, Selangor. Working condition namely, substrate concentration, bacteria concentration, pH and temperature were optimized. PAHs in the liquid sample was extracted by using solid phase microextractio equipped with a 7 µm polydimethylsiloxane (PDMS) SPME fibr. Removal of PAHs were assessed by measuring PAHs concentration using GC-FID. Results from the optimization study of biodegradation indicated that maximum rate of PAHs removal occurred at 100 mgL-1 of PAHs, 10% bacteria concentration, pH 7.0 and 30°C. These working condition had proved the effectiveness of using bacteria in biodegradation process of PAHs.

  11. A microcosm study of the biodegradability of adsorbed toluene by acclimated bacteria in soils

    OpenAIRE

    Farmer, William S.

    1989-01-01

    Groundwater contamination by man-made chemicals is increasingly being reported in the United States. The potential for detrimental health effects is substantial and has been addressed by the environmental engineering profession. Typically, contaminated groundwater is pumped to the surface and treated in a variety of methods including air stripping, carbon adsorption, and biodegradation. In situ biodegradation is increasingly being considered as an alternative to pump-and-...

  12. Review of Methods of Wastewater Reuse to Diminish Non-Biodegradable Organic Compounds.

    OpenAIRE

    Bitow Meles, Desbele

    2014-01-01

    Wastewater reuse is very important in water resource management for both environmental and economic reasons. Unfortunately, wastewater from textile industries is difficult to treat by convectional wastewater treatment technologies. Now days, polluted water due to color from textile dyeing and finishing industries is burning issue for researchers. Textile or industrial wastewaters contain non-biodegradable organic compounds, which cannot be easily biodegraded because of their complex chemical ...

  13. Different indices to express biodegradability in organic solid wastes. Application to full scale waste treatment plants

    OpenAIRE

    Ponsá Salas, Sergio

    2010-01-01

    Biodegradable waste receives especial attention in the European Legislation (Revised Framework Directive 2008/98/CE) and this has been also reflected in Spanish Legislation in the Plan Nacional Integrado de Residuos 20082015 (PNIR), due to the high importance that this municipal solid waste fraction has on the waste treatment environmental impact when it is not treated correctly and the possibility of recycling the biodegradable waste, to finally obtain compost or/and biogas that means green ...

  14. Study and modification of poly(butylene succinate) properties, a biobased and biodegradable polyester

    OpenAIRE

    Freyermouth, Floriane

    2014-01-01

    Within the frame of sustainable development, biobased and biodegradable polymers are going to play an important role according to economic and environmental perspectives. The polyolefins currently used in packaging and automotive industries will be replaced by biomaterials. The poly(butylene succinate), an “old” aliphatic polyester, has recently regained interest thanks to its biobased and biodegradable potential and mechanical properties similar to polyolefins. However, this polyester is ver...

  15. Lignin biodegradation with laccase-mediator systems

    Directory of Open Access Journals (Sweden)

    Lew Paul Christopher

    2014-03-01

    Full Text Available Lignin has a significant and largely unrealized potential as a source for the sustainable production of fuels and bulk high-value chemicals. It can replace fossil-based oil as a renewable feedstock that would bring about socio-economic and environmental benefits in our transition to a biobased economy. The efficient utilization of lignin however requires its depolymerization to low molecular weight phenolics and aromatics that can then serve as the building blocks for chemical syntheses of high-value products. The ability of laccase to attack and degrade lignin in conjunction with laccase mediators is currently viewed as one of the potential breakthrough applications for lignin valorization. Here we review the recent progress in lignin biodegradation with laccase-mediator systems, and research needs that need to be addressed in this field.

  16. Biodegradation kinetics at low concentrations (

    DEFF Research Database (Denmark)

    Toräng, Lars; Albrechtsen, Hans-Jørgen; Nyholm, Niels

    Aerobic biodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was studied in groundwater added sediment fines. At concentrations at or below 1 mu g/L of 2,4-D degradation kinetic was of true first order without significant growth of specific degraders and with half-life for mineralization in the...

  17. Acute aquatic toxicity and biodegradation potential of biodiesel fuels

    International Nuclear Information System (INIS)

    Recent studies on the biodegradation potential and aquatic toxicity of biodiesel fuels are reviewed. Biodegradation data were obtained using the shaker flask method observing the appearance of CO2 and by observing the disappearance of test substance with gas chromatography. Additional BOD5 and COD data were obtained. The results indicate the ready biodegradability of biodiesel fuels as well as the enhanced co-metabolic biodegradation of biodiesel and petroleum diesel fuel mixtures. The study examined reference diesel, neat soy oil, neat rape oil, and the methyl and ethyl esters of these vegetable oils as well as various fuel blends. Acute toxicity tests on biodiesel fuels and blends were performed using Oncorhynchus mykiss (Rainbow Trout) in a static non-renewal system and in a proportional dilution flow replacement system. The study is intended to develop data on the acute aquatic toxicity of biodiesel fuels and blends under US EPA Good Laboratory Practice Standards. The test procedure is designed from the guidelines outlined in Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms and the Fish Acute Aquatic Toxicity Test guideline used to develop aquatic toxicity data for substances subject to environmental effects test regulations under TSCA. The acute aquatic toxicity is estimated by an LC50, a lethal concentration effecting mortality in 50% of the test population

  18. Bio-Based Polymers with Potential for Biodegradability

    Directory of Open Access Journals (Sweden)

    Thomas F. Garrison

    2016-07-01

    Full Text Available A variety of renewable starting materials, such as sugars and polysaccharides, vegetable oils, lignin, pine resin derivatives, and proteins, have so far been investigated for the preparation of bio-based polymers. Among the various sources of bio-based feedstock, vegetable oils are one of the most widely used starting materials in the polymer industry due to their easy availability, low toxicity, and relative low cost. Another bio-based plastic of great interest is poly(lactic acid (PLA, widely used in multiple commercial applications nowadays. There is an intrinsic expectation that bio-based polymers are also biodegradable, but in reality there is no guarantee that polymers prepared from biorenewable feedstock exhibit significant or relevant biodegradability. Biodegradability studies are therefore crucial in order to assess the long-term environmental impact of such materials. This review presents a brief overview of the different classes of bio-based polymers, with a strong focus on vegetable oil-derived resins and PLA. An entire section is dedicated to a discussion of the literature addressing the biodegradability of bio-based polymers.

  19. Peptide biomarkers as evidence of perchlorate biodegradation.

    Science.gov (United States)

    Bansal, Reema; Crawford, Ronald L; Paszczynski, Andrzej J

    2011-02-01

    Perchlorate is a known health hazard for humans, fish, and other species. Therefore, it is important to assess the response of an ecosystem exposed to perchlorate contamination. The data reported here show that a liquid chromatography-mass spectrometry-based proteomics approach for the detection of perchlorate-reducing enzymes can be used to measure the ability of microorganisms to degrade perchlorate, including determining the current perchlorate degradation status. Signature peptides derived from chlorite dismutase (CD) and perchlorate reductase can be used as biomarkers of perchlorate presence and biodegradation. Four peptides each derived from CD and perchlorate reductase subunit A (PcrA) and seven peptides derived from perchlorate reductase subunit B (PcrB) were identified as signature biomarkers for perchlorate degradation, as these sequences are conserved in the majority of the pure and mixed perchlorate-degrading microbial cultures examined. However, chlorite dismutase signature biomarker peptides from Dechloromonas agitata CKB were found to be different from those in other cultures used and should also be included with selected CD biomarkers. The combination of these peptides derived from the two enzymes represents a promising perchlorate presence/biodegradation biomarker system. The biomarker peptides were detected at perchlorate concentrations as low as 0.1 mM and at different time points both in pure cultures and within perchlorate-reducing environmental enrichment consortia. The peptide biomarkers were also detected in the simultaneous presence of perchlorate and an alternate electron acceptor, nitrate. We believe that this technique can be useful for monitoring bioremediation processes for other anthropogenic environmental contaminants with known metabolic pathways. PMID:21115710

  20. The Effects of Molecular Properties on Ready Biodegradation of Aromatic Compounds in the OECD 301B CO2 Evolution Test.

    Science.gov (United States)

    He, Mei; Mei, Cheng-Fang; Sun, Guo-Ping; Li, Hai-Bei; Liu, Lei; Xu, Mei-Ying

    2016-07-01

    Ready biodegradation is the primary biodegradability of a compound, which is used for discriminating whether a compound could be rapidly and readily biodegraded in the natural ecosystems in a short period and has been applied extensively in the environmental risk assessment of many chemicals. In this study, the effects of 24 molecular properties (including 2 physicochemical parameters, 10 geometrical parameters, 6 topological parameters, and 6 electronic parameters) on the ready biodegradation of 24 kinds of synthetic aromatic compounds were investigated using the OECD 301B CO2 Evolution test. The relationship between molecular properties and ready biodegradation of these aromatic compounds varied with molecular properties. A significant inverse correlation was found for the topological parameter TD, five geometrical parameters (Rad, CAA, CMA, CSEV, and N c), and the physicochemical parameter K ow, and a positive correlation for two topological parameters TC and TVC, whereas no significant correlation was observed for any of the electronic parameters. Based on the correlations between molecular properties and ready biodegradation of these aromatic compounds, the importance of molecular properties was demonstrated as follows: geometrical properties > topological properties > physicochemical properties > electronic properties. Our study first demonstrated the effects of molecular properties on ready biodegradation by a number of experiment data under the same experimental conditions, which should be taken into account to better guide the ready biodegradation tests and understand the mechanisms of the ready biodegradation of aromatic compounds. PMID:26498763

  1. Biodegradation of polystyrene-graft-starch copolymers in three different types of soil.

    Science.gov (United States)

    Nikolic, Vladimir; Velickovic, Sava; Popovic, Aleksandar

    2014-01-01

    Materials based on polystyrene and starch copolymers are used in food packaging, water pollution treatment, and textile industry, and their biodegradability is a desired characteristic. In order to examine the degradation patterns of modified, biodegradable derivates of polystyrene, which may keep its excellent technical features but be more environmentally friendly at the same time, polystyrene-graft-starch biomaterials obtained by emulsion polymerization in the presence of new type of initiator/activator pair (potassium persulfate/different amines) were subjected to 6-month biodegradation by burial method in three different types of commercially available soils: soil rich in humus and soil for cactus and orchid growing. Biodegradation was monitored by mass decrease, and the highest degradation rate was achieved in soil for cactus growing (81.30%). Statistical analysis proved that microorganisms in different soil samples have different ability of biodegradation, and there is a significant negative correlation between the share of polystyrene in copolymer and degree of biodegradation. Grafting of polystyrene on starch on one hand prevents complete degradation of starch that is present (with maximal percentage of degraded starch ranging from 55 to 93%), while on the other hand there is an upper limit of share of polystyrene in the copolymer (ranging from 37 to 77%) that is preventing biodegradation of degradable part of copolymers. PMID:24792982

  2. Biobased and biodegradable polymer nanocomposites

    Science.gov (United States)

    Qiu, Kaiyan

    In this dissertation, various noncrosslinked and crosslinked biobased and biodegradable polymer nanocomposites were fabricated and characterized. The properties of these polymer nanocomposites, and their relating mechanisms and corresponding applications were studied and discussed in depth. Chapter 1 introduces the research background and objectives of the current research. Chapter 2 presents the development of a novel low cost carbon source for bacterial cellulose (BC) production and fabrication and characterization of biobased polymer nanocomposites using produced BC and soy protein based resins. The carbon source, soy flour extract (SFE), was obtained from defatted soy flour (SF) and BC yield achieved using SFE medium was high. The results of this study showed that SFE consists of five sugars and Acetobacter xylinum metabolized sugars in a specific order. Chapter 3 discusses the fabrication and characterization of biodegradable polymer nanocomposites using BC and polyvinyl alcohol (PVA). These polymer nanocomposites had excellent tensile and thermal properties. Crosslinking of PVA using glutaraldehyde (GA) not only increased the mechanical and thermal properties but the water-resistance. Chapter 4 describes the development and characterization of microfibrillated cellulose (MFC) based biodegradable polymer nanocomposites by blending MFC suspension with PVA. Chemical crosslinking of the polymer nanocomposites was carried out using glyoxal to increase the mechanical and thermal properties as well as to make the PVA partially water-insoluble. Chapter 5 reports the development and characterization of halloysite nanotube (HNT) reinforced biodegradable polymer nanocomposites utilizing HNT dispersion and PVA. Several separation techniques were used to obtain individualized HNT dispersion. The results indicated uniform dispersion of HNTs in both PVA and malonic acid (MA) crosslinked PVA resulted in excellent mechanical and thermal properties of the materials, especially

  3. Comparison of the efficacy of biodegradable and non-biodegradable scintillation liquids on the counting of tritium- and [14C]- labeled compounds

    International Nuclear Information System (INIS)

    The widespread use of 3H and 14C in research has generated a large volume of waste mixed with scintillation liquid, requiring an effective control and appropriate storage of liquid radioactive waste. In the present study, we compared the efficacy of three commercially available scintillation liquids, Optiphase Hi Safe 3, Ultima-GoldTM AB (biodegradable) and Insta-Gel-XF (non-biodegradable), in terms of [14 C]-glucose and [3 H]-thymidine counting efficiency. We also analyzed the effect of the relative amount of water (1.6 to 50%), radioisotope concentration (0.1 to 100 nCi/ml), pH (2 to 10) and color of the solutions (samples containing 0.1 to 1.0 mg/ml of Trypan blue) on the counting efficiency in the presence of these scintillation liquids. There were few significant differences in the efficiency of 14C and 3H counting obtained with biodegradable or non-biodegradable scintillation liquids. However, there was an 83 and 94% reduction in the efficiency of 14 C and 3 H counting, respectively, in samples colored with 1 mg/ml Trypan blue, but not with 0.1 mg/ml, independent of the scintillation liquid used. Considering the low cost of biodegradable scintillation cocktails and their efficacy, these results show that traditional hazardous scintillation fluids may be replaced with the new safe biodegradable fluids without impairment of 3 H and 14 C counting efficiency. The use of biodegradable scintillation cocktails minimizes both human and environmental exposure to hazardous solvents. In addition, some biodegradable scintillation liquids can be 40% less expensive than the traditional hazardous cocktails. (author)

  4. Comparison of the efficacy of biodegradable and non-biodegradable scintillation liquids on the counting of tritium- and [14C]-labeled compounds

    Directory of Open Access Journals (Sweden)

    Medeiros R.B.

    2003-01-01

    Full Text Available The widespread use of ³H and 14C in research has generated a large volume of waste mixed with scintillation liquid, requiring an effective control and appropriate storage of liquid radioactive waste. In the present study, we compared the efficacy of three commercially available scintillation liquids, Optiphase HiSafe 3, Ultima-Gold(TM AB (biodegradable and Insta-Gel-XF (non-biodegradable, in terms of [14C]-glucose and [³H]-thymidine counting efficiency. We also analyzed the effect of the relative amount of water (1.6 to 50%, radioisotope concentration (0.1 to 100 nCi/ml, pH (2 to 10 and color of the solutions (samples containing 0.1 to 1.0 mg/ml of Trypan blue on the counting efficiency in the presence of these scintillation liquids. There were few significant differences in the efficiency of 14C and ³H counting obtained with biodegradable or non-biodegradable scintillation liquids. However, there was an 83 and 94% reduction in the efficiency of 14C and ³H counting, respectively, in samples colored with 1 mg/ml Trypan blue, but not with 0.1 mg/ml, independent of the scintillation liquid used. Considering the low cost of biodegradable scintillation cocktails and their efficacy, these results show that traditional hazardous scintillation fluids may be replaced with the new safe biodegradable fluids without impairment of ³H and 14C counting efficiency. The use of biodegradable scintillation cocktails minimizes both human and environmental exposure to hazardous solvents. In addition, some biodegradable scintillation liquids can be 40% less expensive than the traditional hazardous cocktails.

  5. Toxicity of Fluoranthene and Its Biodegradation by Cyclotella caspia Alga

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Fluoranthene is one of the polynuclear aromatic hydrocarbons with four benzene rings. Because of its toxicity,mutagenicity, and carcinogenicity, fluoranthene is on the black lists of 129 and 68 priority pollutants established by US Environmental Protection Agency and the People's Republic of China, respectively. In recent years, the amount of fluoranthene in the aquatic environment has been increasing with increases in anthropogenic discharge. Based on the biological investigation of tidal water in the Futian mangrove, Cyclotella caspia was selected as the dominant algal species to determine the toxicity of fluoranthene towards C. caspia alga and to investigate the biodegradation of fluoranthene by C. caspia under pure culture. The toxicity experiment showed that the 96-h EC50 vaiue for fluoranthene was 0.2 mg/mL. Four parameters, namely C. caspia algal growth rate,chlorophyll (Chi) a content, cell morphology, and superoxide dismutase (SOD) activity, were chosen as indices of toxicity and were measured at 6 d (144 h). The results showed that: (i) the toxicity of fluoranthene towards C.caspia alga was obvious; (ii) C. caspia algal growth rate and Chi a content decreased with increasing concentrations of fluoranthene; and (iii) the rate of cell deformation and SOD activity increased with increasing concentrations of fluoranthene. The biodegradation experiment showed that: (i) the rate of physical degradation of fluoranthene was only 5.86%; (ii) the rate of biodegradation of fluoranthene on the 1st and 6th days (i.e. at 24 and 144 h) was approximately 35% and 85%, respectively; and (iii) the biodegradation capability of C. caspia alga towards fluoranthene was high. It is suggested that further investigations on the toxicity of fluoranthene towards algae, as well as on algal biodegradation mechanisms, are of great importance to use C. caspia as a biological treatment species in an organic wastewater treatment system.

  6. BIODEGRADABLE COATING FROM AGATHIS ALBA

    Directory of Open Access Journals (Sweden)

    NORYAWATI MULYONO

    2012-11-01

    Full Text Available The adhesive property of copal makes it as a potential coating onto aluminum foil to replace polyethylene. This research aimed to develop copal-based coating. The coating was prepared by extracting the copal in ethyl acetate and dipping the aluminium foil in ethyl acetate soluble extract of copal. The characterization of coating included its thickness, weight, thermal and chemical resistance, and biodegradation. The results showed that the coating thickness and weight increased as the copal concentration and dipping frequency increased. Thermal resistance test showed that the coating melted after being heated at 110°C for 30 min. Copal-based coating wasresistant to acidic solution (pH 4.0, water, and coconut oil, but was deteriorated in detergent 1% (w/v and basic solution (pH 10.0. Biodegradability test using Pseudomonas aeruginosa showed weight reduction of 76.82% in 30 days.

  7. Engineering Flame Retardant Biodegradable Nanocomposites

    Science.gov (United States)

    He, Shan; Yang, Kai; Guo, Yichen; Zhang, Linxi; Pack, Seongchan; Davis, Rachel; Lewin, Menahem; Ade, Harald; Korach, Chad; Kashiwagi, Takashi; Rafailovich, Miriam

    2013-03-01

    Cellulose-based PLA/PBAT polymer blends can potentially be a promising class of biodegradable nanocomposites. Adding cellulose fiber reinforcement can improve mechanical properties of biodegradable plastics, but homogeneously dispersing hydrophilic cellulose in the hydrophobic polymer matrix poses a significant challenge. We here show that resorcinol diphenyl phosphates (RDP) can be used to modify the surface energy, not only reducing phase separation between two polymer kinds but also allowing the cellulose particles and the Halloysite clay to be easily dispersed within polymer matrices to achieve synergy effect using melt blending. Here in this study we describe the use of cellulose fiber and Halloysite clay, coated with RDP surfactant, in producing the flame retardant polymer blends of PBAT(Ecoflex) and PLA which can pass the stringent UL-94 V0 test. We also utilized FTIR, SEM and AFM nanoindentation to elucidate the role RDP plays in improving the compatibility of biodegradable polymers, and to determine structure property of chars that resulted in composites that could have optimized mechanical and thermal properties. Supported by Garcia Polymer Center and NSF Foundation.

  8. Biodegradable composites based on L-polylactide and jute fibres

    DEFF Research Database (Denmark)

    Plackett, David; Løgstrup Andersen, T.; Batsberg Pedersen, W.;

    2003-01-01

    Biodegradable polymers can potentially be combined with plant fibres to produce biodegradable composite materials. In our research, a commercial L-polylactide was converted to film and then used in combination with jute fibre mats to generate composites by a film stacking technique. Composite...... tensile properties were determined and tensile specimen fracture surfaces were examined using environmental scanning electron microscopy. Degradation of the polylactide during the process was investigated using size exclusion chromatography. The tensile properties of composites produced at temperatures in...... the 180-220 degreesC range were significantly higher than those of polylactide alone. Composite samples failed in a brittle fashion under tensile load and showed little sign of fibre pull-out. Examination of composite fracture surfaces using electron microscopy showed voids occurring between the jute...

  9. Evaluation of biodegradable plastics for rubber seedling applications

    Science.gov (United States)

    Mansor, Mohd Khairulniza; Dayang Habibah A. I., H.; Kamal, Mazlina Mustafa

    2015-08-01

    The main negative consequence of conventional plastics in agriculture is related to handling the wastes plasticand the associated environmental impact. Hence, a study of different types of potentially biodegradable plastics used for nursery applications have been evaluated on its mechanical,water absorption propertiesand Fourier transform infra-red (FTIR) spectroscopy. Supplied samples from different companies were designated as SF, CF and CO. Most of the polybags exhibited mechanical properties quite similar to the conventional plastics (polybag LDPE). CO polybag which is based on PVA however had extensively higher tensile strength and water absorption properties. FTIR study revealed a characteristics absorbance of conventional plastic, SF, CF and CO biodegradable polybag are associated with polyethylene, poly(butylene adipate-co-terephthalate) (PBAT), polyethylene and polyvinyl alcohol (PVA) structures respectively.

  10. Biodegradation of high molecular weight polylactic acid

    OpenAIRE

    Stloukal, Petr; Koutný, Marek; Sedlařík, Vladimír; Kucharczyk, Pavel

    2012-01-01

    Polylactid acid seems to be an appropriate replacement of conventional non-biodegradable synthetic polymer primarily due to comparable mechanical, thermal and processing properties in its high molecular weight form. Biodegradation of high molecular PLA was studied in compost for various forms differing in their specific surface area. The material proved its good biodegradability under composting conditions and all investigated forms showed to be acceptable for industrial composting. Despite e...

  11. Biodegradable materials as foundry moulding sands binders

    OpenAIRE

    K. Major-Gabryś

    2015-01-01

    The aim of this article is to show the possibility of using biodegradable materials as part of the composition of foundry moulding and core sand binders. Research shows that moulding sands with biodegradable materials selected as binders are not only less toxic but are also better suited to mechanical reclamation than moulding sands with phenol-furfuryl resin. The use of biodegradable materials as additives to typical synthetic resins can result in their decreased toxicity and improved abilit...

  12. Biodegradable materials as foundry moulding sands binders

    Directory of Open Access Journals (Sweden)

    K. Major - Gabryś

    2015-07-01

    Full Text Available The aim of this article is to show the possibility of using biodegradable materials as part of the composition of foundry moulding and core sand binders. Research shows that moulding sands with biodegradable materials selected as binders are not only less toxic but are also better suited to mechanical reclamation than moulding sands with phenol-furfuryl resin. The use of biodegradable materials as additives to typical synthetic resins can result in their decreased toxicity and improved ability to reclamation as well as in accelerated biodegradation of binding material leftovers of mechanical reclamation.

  13. SIFAT MEKANIK DAN MORFOLOGI PLASTIK BIODEGRADABLE DARI LIMBAH TEPUNG NASI AKING DAN TEPUNG TAPIOKA MENGGUNAKAN PEMLASTIK GLISEROL

    Directory of Open Access Journals (Sweden)

    Andri Cahyo Kumoro

    2014-10-01

    Full Text Available [Title: Mechanical Properties and Morfology of Biodegradable Plastic from Steamed Rice Waste and Cassava Flour with Glycerol as Plasticizer] The annual consumption of plastic packaging has increased significantly as a response to the increase of people’s need and buying power. As a packaging material, plastic is light, flexible, practical and inexpensive. Unfortunately, if the plastic is not biodegradable and dumped irresponsibly to the ecosystem may cause serious environmental problems. The objective of this research was to study the effect of glycerol on the characteristic of biodegradable plastic from steamed rice waste and cassava flours composites. The biodegradable plastic was manufactured by casting the warm solution of flours composite with addition of glycerol as plasticizer. The results showed that biodegradable plastic obtained from steamed rice waste and cassava flours composites has limited mechanical stress, but remains flexible in nature. Good quality biodegradable plastic was obtained when 15% weight of glycerol in addition to 30:70 ratio of steamed rice waste flour to cassava flour with tensile strength 20.65 MPa, elongation at break 4.7% and Young Modulus 1138 MPa. The biodegradable plastic exhibits discontinue microstructure, rough and porous. Fourier transform infrared analysis proved the existence of OH, CH2, amide III and amida I groups in the biodegradable plastic. 

  14. Environmental Science and Technology

    International Nuclear Information System (INIS)

    The Program on Environmental Science and Technology comprehends environmental chemistry (water, soil and atmospheric chemistry), clean technologies (desulfurization of diesel and oil, biodegradable polymers and structural modification of polymers, recycling, pyrolysis of dangerous chemicals by molten salt technology), nanotechnology (magnetic nanoparticles, dendrimers, nano biomarkers, catalyzers) and chemical characterization of nuclear fuel and nuclear fuel cycle waste (chemical and isotopic characterization)

  15. Application of micronucleus test and comet assay to evaluate BTEX biodegradation.

    Science.gov (United States)

    Mazzeo, Dânia Elisa Christofoletti; Matsumoto, Silvia Tamie; Levy, Carlos Emílio; de Angelis, Dejanira de Franceschi; Marin-Morales, Maria Aparecida

    2013-01-01

    The BTEX (benzene, toluene, ethylbenzene and xylene) mixture is an environmental pollutant that has a high potential to contaminate water resources, especially groundwater. The bioremediation process by microorganisms has often been used as a tool for removing BTEX from contaminated sites. The application of biological assays is useful in evaluating the efficiency of bioremediation processes, besides identifying the toxicity of the original contaminants. It also allows identifying the effects of possible metabolites formed during the biodegradation process on test organisms. In this study, we evaluated the genotoxic and mutagenic potential of five different BTEX concentrations in rat hepatoma tissue culture (HTC) cells, using comet and micronucleus assays, before and after biodegradation. A mutagenic effect was observed for the highest concentration tested and for its respective non-biodegraded concentration. Genotoxicity was significant for all non-biodegraded concentrations and not significant for the biodegraded ones. According to our results, we can state that BTEX is mutagenic at concentrations close to its water solubility, and genotoxic even at lower concentrations, differing from some described results reported for the mixture components, when tested individually. Our results suggest a synergistic effect for the mixture and that the biodegradation process is a safe and efficient methodology to be applied at BTEX-contaminated sites. PMID:22980962

  16. Biodegradation kinetics at low concentrations (

    DEFF Research Database (Denmark)

    Toräng, Lars; Albrechtsen, Hans-Jørgen; Nyholm, Niels

    2000-01-01

    Aerobic biodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was studied in groundwater added sediment fines. At concentrations at or below 1 mu g/L of 2,4-D degradation kinetic was of true first order without significant growth of specific degraders and with half-life for mineralization in the...... order of 200 days. Higher concentrations of 2,4-D resulted in a grossly overestimate of the actual degradation rate for concentrations characteristic for Danish found in groundwater....

  17. Kinetics of Organic Matter Biodegradation in Leachate from Tobacco Waste

    Directory of Open Access Journals (Sweden)

    Briški, F.

    2012-09-01

    Full Text Available Treatment of wastes and leachate evolved in landfills is today an imperative due to rigorous environmental protection legislation. In this work, biodegradation of the organic fraction in tobaccowaste leachate was studied. Experiments were carried out in a batch reactor at initial concentra tion of activated sludge of 3.03 g dm–3 and different initial concentrations of organic matter in leachate, expressed as COD, which ranged from 0.5 to 3.0 g dm–3 . The working volume of the reactor (Fig. 1 was 7 dm3 within the cylindrical porous liner and it was filled with the suspension of leachate and activated sludge . The liner was designed such that it did not allow activated sludge to pass through. Continuous up-flow aeration was provided by a membrane pump. The temperature during the biodegradation process was 23 ± 2 °C. Dissolved oxygen, pH and temperature in reactor were monitored continuously by probes connected to a remote meter. Toxicity of leachate was performed by toxicity test using marine bacteria Vibrio fischeri before starting with the biodegradation in the batch reactor. The obtained results showed that effective concentration of leachate is EC 50 = 1.6 g dm–3 and toxicity impact index is TII50 = 9.99, meaning that untreated leachate must not be discharged into the environment before treatment. The results of the biodegradation process of leachate in batch reactor are presented in Table 1 and Fig. 2. The ratio γXv/γX was almost constant throughout the experiments and ranged from 0.69 do 0.73. This implies that the concentration of biomass remained unchanged during the experiments, and average yield was 5.26 %. The important kinetic and stoichiometric parameters required for performance of the biological removal process, namely the Y, Ks, Kd, and μmax were calculated from the batch experiments (Table 2. The experimental results of the influence of initial substrate concentrations on substrate degradation rate, and influence of

  18. Biodegradation of Mexel 432 By Bacteria From the Seine River

    International Nuclear Information System (INIS)

    This report deals with a study of the biodegradation of a filmogenic organic product (Mexel 432) usable in the fight against corrosion, scale and fouling, presenting a certain interest in the research of processes enabling a functional and environmental efficiency for the cooling systems of thermal power stations. The study of the degradation of this product is followed by a global colorimetric method. It shows that the product is stable on the long-term in demineralized water. On the other hand, its rate of disappearance in river waters is significant (50 % in 2 or 3 days). In this phenomenon of disappearance, biodegradation seems to play a part. Some bacteria from the natural environment (river Seine) have been isolated. Two of them seem to play a significant part, since they can degrade the product in three weeks. During the degradation, the amines with long chains (more than six carbons) of the Mexel, measured by the colorimetric method, disappear. The other compounds generated by the biodegradation process are not identified. (authors)

  19. Biodegradation of VOCs: a unique oxygen-injection system

    International Nuclear Information System (INIS)

    In light of increased interest in methyl tert-butyl-ether (MTBE) remediation, a biodegradation test was carried out by Orchard Park, New York-based Matrix Environmental Technologies Inc. While a pilot project by others had shown MTBE remediation, this site was the first full-scale remediation process that successfully removed MTBE from groundwater. Matrix Technologies has remediated VOC-contaminated groundwater at a variety of petroleum release sites through the use of its novel biodegradation-enhancing oxygen injection system. The system features an AirSep Pressure Swing oxygen generator. At a site contaminated with less than one ppm enzene/toluene/ethlybenzene/xylene (BTEX) and 0.5-2.8 ppm MTBE, oxygen was injected at 80 standard cubic feet per hour at seven points directly down-gradient of the former source area. After approximately one year of oxygen injection, MTBE decreased to below 50 ppb state drinking water standard in groundwater from monitoring wells that did not contain BTEX. In another monitoring well, MTBE decreased by two orders of magnitude in groundwater, after BTEX was biodegraded to low levels

  20. Isolation and characterization of luminescent bacterium for sludge biodegradation.

    Science.gov (United States)

    Zahaba, Maryam; Halmi, Mohd Izuan Effendi; Ahmad, Siti Aqlima; Shukor, Mohd Yunus; Syed, Mohd Arif

    2015-11-01

    Microtox is based on the inhibition of luminescence of the bacterium Vibrio fischeri by the toxicants. This technique has been accepted by the USEPA (United States Environmental Protection Agency) as a biomonitoring tool for remediation of toxicants such as hydrocarbon sludge. In the present study, a luminescent bacterium was isolated from yellow striped scad (Selaroides leptolepis) and was tentatively identified as Vibrio sp. isolate MZ. This aerobic isolate showed high luminescence activity in a broad range of temperature from 25 to 35 °C. In addition, optimal conditions for high bioluminescence activity in range of pH 7.5 to 8.5 and 10 gl(-1) of sodium chloride, 10 gl(-1) of peptone and 10 gl(-1) of sucrose as carbon source. Bench scale biodegradation 1% sludge (w/v) was set up and degradation was determined using gas chromatography with flame ionised detector (GC-FID). In this study, Rhodococcus sp. strain AQ5NOL2 was used to degrade the sludge. Based on the preliminary results obtained, Vibrio sp. isolate MZwas able to monitor the biodegradation of sludge. Therefore, Vibrio sp. isolate MZ has the potential to be used as a biomonitoring agent for biomonitoring of sludge biodegradation particularly in the tropical ranged environment. PMID:26688958

  1. (Eco)toxicity and biodegradability of protic ionic liquids.

    Science.gov (United States)

    Oliveira, Maria V S; Vidal, Bruna T; Melo, Claudia M; de Miranda, Rita de C M; Soares, Cleide M F; Coutinho, João A P; Ventura, Sónia P M; Mattedi, Silvana; Lima, Álvaro S

    2016-03-01

    Ionic liquids (ILs) are often claimed to be "environmentally friendly" compounds however, the knowledge of their potential toxicity towards different organisms and trophic levels is still limited, in particular when protic ionic liquids (PILs) are addressed. This study aims to evaluate the toxicity against various microorganisms and the biodegradability of four PILs namely, N-methyl-2-hydroxyethylammonium acetate, m-2-HEAA; N-methyl-2-hydroxyethylammonium propionate, m-2-HEAPr; N-methyl-2-hydroxyethylammonium butyrate, m-2-HEAB; and N-methyl-2-hydroxyethylammonium pentanoate, m-2-HEAP. The antimicrobial activity was determined against the two bacteria, Sthaplylococcus aureus ATCC-6533 and Escherichia coli CCT-0355; the yeast Candida albicans ATCC-76645; and the fungi Fusarium sp. LM03. The toxicity of all PILs was tested against the aquatic luminescent marine bacterium Vibrio fischeri using the Microtox(®) test. The impact of the PILs was also studied regarding their effect on lettuce seeds (Lactuta sativa). The biodegradability of these PILs was evaluated using the ratio between the biochemical oxygen demand (BOD) and the chemical oxygen demand (COD). The results show that, in general, the elongation of the alkyl chain tends to increase the negative impact of the PILs towards the organisms and biological systems under study. According to these results, m-2-HEAA and m-2-HEAP are the less and most toxic PILs studied in this work, respectively. Additionally, all the PILs have demonstrated low biodegradability. PMID:26796340

  2. Occurrence and Biodegradation of Nonylphenol in the Environment

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2012-01-01

    Full Text Available Nonylphenol (NP is an ultimate degradation product of nonylphenol polyethoxylates (NPE that is primarily used in cleaning and industrial processes. Its widespread use has led to the wide existence of NP in various environmental matrices, such as water, sediment, air and soil. NP can be decreased by biodegradation through the action of microorganisms under aerobic or anaerobic conditions. Half-lives of biodegradation ranged from a few days to almost one hundred days. The degradation rate for NP was influenced by temperature, pH and additions of yeast extracts, surfactants, aluminum sulfate, acetate, pyruvate, lactate, manganese dioxide, ferric chloride, sodium chloride, hydrogen peroxide, heavy metals, and phthalic acid esters. Although NP is present at low concentrations in the environment, as an endocrine disruptor the risks of long-term exposure to low concentrations remain largely unknown. This paper reviews the occurrence of NP in the environment and its aerobic and anaerobic biodegradation in natural environments and sewage treatment plants, which is essential for assessing the potential risk associated with low level exposure to NP and other endocrine disruptors.

  3. Biodegradation and toxicological evaluation of lubricant oils

    Directory of Open Access Journals (Sweden)

    Ivo Shodji Tamada

    2012-12-01

    Full Text Available The aim of this work was to compare different toxicity levels of lubricant oils. The tests were performed using the earthworm (Eisenia andrei, arugula seeds (Eruca sativa and lettuce seeds (Lactuca sativa, with three types of contaminants (mineral lubricant oil, synthetic lubricant oil and used lubricant oil for various biodegradation periods in the soil. The toxicity tests indirectly measured the biodegradation of the contaminants. The samples were analyzed at t0, t60, t120 and t180 days of biodegradation. The used lubricant oil was proved very toxic in all the tests and even after biodegradation its toxicity was high. The mineral and synthetic oils were biodegraded efficiently in the soil although their toxicity did not disappear completely after 180 days.

  4. Extractability and subsequent biodegradation of PAHs from contaminated soil

    International Nuclear Information System (INIS)

    The biodegradation of polyaromatic hydrocarbons (PAHs) has been well documented; however, the biodegradation of PAHs in contaminated soil has proved to be problematic. Sorption of PAHs to soil over time can significantly decrease their availability for extraction much less than for biodegradation. In this study the ability of various organic solvents to extract PAHs from coal tar-contaminated soil obtained from former manufactured gas plant (MGP) sites was investigated. Solvents investigated included acetone/hexane, dichloromethane, ethanol, methanol, toluene, and water. The extraction of MGP soils with solvents was investigated using soxhlet extraction, multiple soxhlet extractions, sonication, and brief agitation at ambient temperature with a range of solvent concentrations. Of particular interest was the documentation of the recalcitrance of PAHs in weathered MGP soils to extraction and to bioremediation, as well as to demonstrate the ease with which PAHs extracted from these soils can be biodegarded. The efficiency of the extraction of PAHs from MGP soils was found to be more dependent upon the choice of solvent. The environmentally-benign solvent ethanol, was shown to be equal to if not better than acetone/hexane (the EPA recommended solvent) for the extraction of PAHs from MGP soils, brief contact/agitation times (minutes) using small quantities of ethanol (2 volumes or less) can achieve nearly quantitative extraction of PAHs from MGP soils. Moreover aqueous slurries of an MGP soil experienced less than 10% degradation of PAHs in 14 days while in the same period about 95% biodegradation was achieved using PAHs extracted from this soil by ethanol and subsequently added to aqueous bacterial suspensions. 27 refs., 9 figs., 1 tab

  5. Ecotoxicity by the biodegradation of alkylphenol polyethoxylates depends on the effect of trace elements.

    Science.gov (United States)

    Hotta, Yudai; Hosoda, Akifumi; Sano, Fumihiko; Wakayama, Manabu; Niwa, Katsuki; Yoshikawa, Hiromichi; Tamura, Hiroto

    2010-01-27

    The bacteria Sphingomonas sp. strain BSN22, isolated from bean fields, degraded octylphenol polyethoxylates (OPEO(n)) to octylphenol (OP) under aerobic conditions. This biodegradation mechanism proceeded by the following two-step degradation process: (1) degradation of OPEO(n) to octylphenol triethoxylate (OPEO(3)), (2) degradation from OPEO(3) to OP via octylphenoxy acetic acid (OPEC(1)). The chemical structure of OPEC(1) was confirmed by analysis using (18)O-labeled water. Quantitative studies revealed that magnesium (Mg(2+)) and calcium (Ca(2+)) ions were essential for the biodegradation of OPEO(n). Furthermore, the rate of biodegradation was especially accelerated by ferric ions (Fe(3+)), and the accumulated amounts of endocrine active chemicals, such as OP, OPEO(1), and OPEC(1), significantly increased to the concentration of 22.8, 221.7, and 961.1 microM in the presence of 37.0 microM Fe(3+), respectively. This suggests that environmental elements significantly influence the resultant ecotoxicity as well as the rate of their biodegradation in the environment. This study on the mechanism of OPEO(n) biodegradation may play an important role in understanding and managing environmental safety, including drinking water safety. PMID:20025273

  6. Mutagenicity, cytotoxicity and phytotoxicity evaluation of biodegraded textile effluent by fungal ligninolytic enzymes.

    Science.gov (United States)

    Bilal, Muhammad; Iqbal, Munawar; Hu, Hongbo; Zhang, Xuehong

    2016-01-01

    Colored effluents from the textile industry have led to severe environmental pollution, and this has emerged as a global issue. The feasibility of ligninolytic enzymes for the detoxification and degradation of textile wastewater was investigated. Ganoderma lucidum crude ligninolytic enzymes extract (MnP 717.7, LiP 576.3, and Laccase 323.2 IU/mL) was produced using solid-state culture using wheat bran as substrate. The biodegradation treatment efficiency was evaluated on the basis of degradation and detoxification of textile effluents. Standard bioassays were employed for mutagenicity, cytotoxicity and phytotoxicity evaluation before and after biodegradation. The degradation of Masood Textile, Kalash Textile, Khyber Textile and Sitara Textile effluents was achieved up to 87.29%, 80.17%, 77.31% and 69.04%, respectively. The biochemical oxygen demand, chemical oxygen demand, total suspended solids and total organic carbon were improved considerably as a result of biodegradation of textile effluents, which were beyond the permissible limits established by the National Environmental Quality Standards before treatment. The cytotoxicity (Allium cepa, hemolytic, Daphnia magna and brine shrimp), mutagenicity (Ames TA98 and TA100) and phytotoxicity (Triticum aestivum) tests revealed that biodegradation significantly (P < 0.05) detoxifies the toxic agents in wastewater. Results revealed that biodegradation could possibly be used for remediation of textile effluents. However, detoxification monitoring is crucial and should always be used to evaluate the bio-efficiency of a treatment technique. PMID:27191553

  7. Intimately coupling of photolysis accelerates nitrobenzene biodegradation, but sequential coupling slows biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lihui [Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234 (China); Zhang, Yongming, E-mail: zhym@shnu.edu.cn [Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234 (China); Bai, Qi; Yan, Ning; Xu, Hua [Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234 (China); Rittmann, Bruce E. [Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5701 (United States)

    2015-04-28

    Highlights: • Intimately coupled UV photolysis accelerated nitrobenzene biodegradation. • NB biodegradation was slowed by accumulation of nitrophenol. • Oxalic acid was a key product of UV photolysis. • Oxalic acid accelerated biodegradation of nitrobenzene and nitrophenol by a co-substrate effect. • Intimate coupling of UV and biodegradation accentuated the benefits of oxalic acid. - Abstract: Photo(cata)lysis coupled with biodegradation is superior to photo(cata)lysis or biodegradation alone for removal of recalcitrant organic compounds. The two steps can be carried out sequentially or simultaneously via intimate coupling. We studied nitrobenzene (NB) removal and mineralization to evaluate why intimate coupling of photolysis with biodegradation was superior to sequential coupling. Employing an internal circulation baffled biofilm reactor, we compared direct biodegradation (B), biodegradation after photolysis (P + B), simultaneous photolysis and biodegradation (P&B), and biodegradation with nitrophenol (NP) and oxalic acid (OA) added individually and simultaneously (B + NP, B + OA, and B + NP + OA); NP and OA were NB’s main UV-photolysis products. Compared with B, the biodegradation rate P + B was lower by 13–29%, but intimately coupling (P&B) had a removal rate that was 10–13% higher; mineralization showed similar trends. B + OA gave results similar to P&B, B + NP gave results similar to P + B, and B + OA + NP gave results between P + B and P&B, depending on the amount of OA and NP added. The photolysis product OA accelerated NB biodegradation through a co-substrate effect, but NP was inhibitory. Although decreasing the UV photolysis time could minimize the inhibition impact of NP in P + B, P&B gave the fastest removal of NB by accentuating the co-substrate effect of OA.

  8. Intimately coupling of photolysis accelerates nitrobenzene biodegradation, but sequential coupling slows biodegradation

    International Nuclear Information System (INIS)

    Highlights: • Intimately coupled UV photolysis accelerated nitrobenzene biodegradation. • NB biodegradation was slowed by accumulation of nitrophenol. • Oxalic acid was a key product of UV photolysis. • Oxalic acid accelerated biodegradation of nitrobenzene and nitrophenol by a co-substrate effect. • Intimate coupling of UV and biodegradation accentuated the benefits of oxalic acid. - Abstract: Photo(cata)lysis coupled with biodegradation is superior to photo(cata)lysis or biodegradation alone for removal of recalcitrant organic compounds. The two steps can be carried out sequentially or simultaneously via intimate coupling. We studied nitrobenzene (NB) removal and mineralization to evaluate why intimate coupling of photolysis with biodegradation was superior to sequential coupling. Employing an internal circulation baffled biofilm reactor, we compared direct biodegradation (B), biodegradation after photolysis (P + B), simultaneous photolysis and biodegradation (P&B), and biodegradation with nitrophenol (NP) and oxalic acid (OA) added individually and simultaneously (B + NP, B + OA, and B + NP + OA); NP and OA were NB’s main UV-photolysis products. Compared with B, the biodegradation rate P + B was lower by 13–29%, but intimately coupling (P&B) had a removal rate that was 10–13% higher; mineralization showed similar trends. B + OA gave results similar to P&B, B + NP gave results similar to P + B, and B + OA + NP gave results between P + B and P&B, depending on the amount of OA and NP added. The photolysis product OA accelerated NB biodegradation through a co-substrate effect, but NP was inhibitory. Although decreasing the UV photolysis time could minimize the inhibition impact of NP in P + B, P&B gave the fastest removal of NB by accentuating the co-substrate effect of OA

  9. Biodegradation of vapor phase contaminants in a packed column

    International Nuclear Information System (INIS)

    Bioremediation of a contaminated vapor stream involves overcoming at least three external mass transfer resistances in order to supply the contaminant to a biofilm where further diffusion and biodegradation occur. This paper reports on a process model incorporating these phenomena which has been developed, and several experimental systems are in use for its validation and calibration. Salient features of the model and system performance data will be presented in support of a rational basis for design and operation of vapor phase bioremediation systems for industrial and environmental applications

  10. Biodegradation of Mycotoxins: Tales from Known and Unexplored Worlds

    Science.gov (United States)

    Vanhoutte, Ilse; Audenaert, Kris; De Gelder, Leen

    2016-01-01

    Exposure to mycotoxins, secondary metabolites produced by fungi, may infer serious risks for animal and human health and lead to economic losses. Several approaches to reduce these mycotoxins have been investigated such as chemical removal, physical binding, or microbial degradation. This review focuses on the microbial degradation or transformation of mycotoxins, with specific attention to the actual detoxification mechanisms of the mother compound. Furthermore, based on the similarities in chemical structure between groups of mycotoxins and environmentally recalcitrant compounds, known biodegradation pathways and degrading organisms which hold promise for the degradation of mycotoxins are presented. PMID:27199907

  11. Synthesis and characterization of biodegradable lignin nanoparticles with tunable surface properties

    NARCIS (Netherlands)

    Richter, Alexander P.; Bharti, Bhuvnesh; Armstrong, Hinton B.; Brown, Joseph S.; Plemmons, Dayne; Paunov, Vesselin N.; Stoyanov, Simeon D.; Velev, Orlin D.

    2016-01-01

    Lignin nanoparticles can serve as biodegradable carriers of biocidal actives with minimal environmental footprint. Here we describe the colloidal synthesis and interfacial design of nanoparticles with tunable surface properties using two different lignin precursors, Kraft (Indulin AT) lignin and

  12. Neutron activation analysis for chemical characterization of Brazilian oxo-biodegradable plastics

    International Nuclear Information System (INIS)

    The chemical characterization of oxo-biodegradable plastic bags was performed by neutron activation analysis. The presence of several chemical elements (As, Br, Ca, Co, Cr, Fe, Hf, K, La, Na, Sb, Sc, Ta and Zn) with large variability of mass fractions amongst samples indicates that these plastics receive additives and may have been contaminated during manufacturing process thereby becoming potential environmental pollutants. (author)

  13. Genotoxicity as a criterion of the efficiency of textile dyes biodegradation in industrial waste

    Czech Academy of Sciences Publication Activity Database

    Doležílková, I.; Pavlíčková, Z.; Malachová, K.; Lednická, D.; Novotný, Čeněk; Šušla, Martin

    Ostrava : Verlag, 2006, s. 35-35. [Environmental Changes and Biological Assessment III. Ostrava (CZ), 26.04.2006-28.04.2006] R&D Projects: GA ČR GA526/00/1303 Institutional research plan: CEZ:AV0Z50200510 Keywords : genotoxicity * biodegradation Subject RIV: EE - Microbiology, Virology

  14. Biodegradable Metals From Concept to Applications

    CERN Document Server

    Hermawan, Hendra

    2012-01-01

    This book in the emerging research field of biomaterials covers biodegradable metals for biomedical applications. The book contains two main parts where each of them consists of three chapters. The first part introduces the readers to the field of metallic biomaterials, exposes the state of the art of biodegradable metals, and reveals its application for cardiovascular implants. It includes some fundamental aspects to give basic understanding on metals for further review on the degradable ones is covered in chapter one. The second chapter introduces the concept of biodegradable metals, it's st

  15. Biodegradation of surfactant bearing wastes

    International Nuclear Information System (INIS)

    In nuclear industry, during decontamination of protective wears and contaminated materials, detergents are employed to bring down the level of radioactive contamination within safe limits. However, the surfactant present in these wastes interferes in the chemical treatment process, reducing the decontamination factor. Biodegradation is an efficient and ecologically safe method for surfactant removal. A surfactant degrading culture was isolated and inoculated separately into simulated effluents containing 1% yeast extract and 5-100 ppm sodium lauryl sulphate (SLS) and 1% yeast extract and 5-100 ppm of commercial detergent respectively. The growth of the bacterial culture and the degradation characteristics of the surfactant in the above effluents were monitored under both dynamic and static conditions. (author). 6 refs., 6 figs., 1 tab

  16. Environmental silicate nano-biocomposites

    CERN Document Server

    Pollet, Eric

    2012-01-01

    Environmental Silicate Nano-Biocomposites focuses on nano-biocomposites, which are obtained by the association of silicates such as bioclays with biopolymers. By highlighting recent developments and findings, green and biodegradable nano-composites from both renewable and biodegradable polymers are explored. This includes coverage of potential markets such as packaging, agricultures, leisure and the fast food industry. The knowledge and experience of more than twenty international experts in diverse fields, from chemical and biochemical engineering to applications, is brought together in four different sections covering: Biodegradable polymers and Silicates, Clay/Polyesters Nano-biocomposites, Clay/Agropolymers Nano-biocomposites, and Applications and biodegradation of Nano-biocomposites. By exploring the relationships between the biopolymer structures, the processes, and the final properties Environmental Silicate Nano-Biocomposites explains how to design nano-materials to develop new, valuable, environmenta...

  17. Preparation and degradation mechanisms of biodegradable polymer: a review

    Science.gov (United States)

    Zeng, S. H.; Duan, P. P.; Shen, M. X.; Xue, Y. J.; Wang, Z. Y.

    2016-07-01

    Polymers are difficult to degrade completely in Nature, and their catabolites may pollute the environment. In recent years, biodegradable polymers have become the hot topic in people's daily life with increasing interest, and a controllable polymer biodegradation is one of the most important directions for future polymer science. This article presents the main preparation methods for biodegradable polymers and discusses their degradation mechanisms, the biodegradable factors, recent researches and their applications. The future researches of biodegradable polymers are also put forward.

  18. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review

    International Nuclear Information System (INIS)

    PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H2O, CO2 (aerobic) or CH4 (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions and the rate can be

  19. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review

    Energy Technology Data Exchange (ETDEWEB)

    Haritash, A.K., E-mail: akharitash@gmail.com [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana (India); Kaushik, C.P. [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana (India)

    2009-09-30

    PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H{sub 2}O, CO{sub 2} (aerobic) or CH{sub 4} (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions

  20. Biodegradation Kinetics of 1,4-Dioxane in Chlorinated Solvent Mixtures.

    Science.gov (United States)

    Zhang, Shu; Gedalanga, Phillip B; Mahendra, Shaily

    2016-09-01

    This study investigated the impacts of individual chlorinated solvents and their mixtures on aerobic 1,4-dioxane biodegradation by Pseudonocardia dioxanivorans CB1190. The established association of these co-occurring compounds suggests important considerations for their respective biodegradation processes. Our kinetics and mechanistic studies demonstrated that individual solvents inhibited biodegradation of 1,4-dioxane in the following order: 1,1-dichloroethene (1,1-DCE) > cis-1,2-diochloroethene (cDCE) > trichloroethene (TCE) > 1,1,1-trichloroethane (TCA). The presence of 5 mg L(-1) 1,1-DCE completely inhibited 1,4-dioxane biodegradation. Subsequently, we determined that 1,1-DCE was the strongest inhibitor of 1,4-dioxane biodegradation by bacterial pure cultures exposed to chlorinated solvent mixtures as well as in environmental samples collected from a site contaminated with chlorinated solvents and 1,4-dioxane. Inhibition of 1,4-dioxane biodegradation rates by chlorinated solvents was attributed to delayed ATP production and down-regulation of both 1,4-dioxane monooxygenase (dxmB) and aldehyde dehydrogenase (aldH) genes. Moreover, increasing concentrations of 1,1-DCE and cis-1,2-DCE to 50 mg L(-1) respectively increased 5.0-fold and 3.5-fold the expression of the uspA gene encoding a universal stress protein. In situ natural attenuation or enhanced biodegradation of 1,4-dioxane is being considered for contaminated groundwater and industrial wastewater, so these results will have implications for selecting 1,4-dioxane bioremediation strategies at sites where chlorinated solvents are present as co-contaminants. PMID:27486928

  1. Biodegradable polymers: Which, when and why?

    Directory of Open Access Journals (Sweden)

    Kotwal V

    2007-01-01

    Full Text Available The plethora of drug therapies and types of drugs demand different formulations, fabrications conditions and release kinetics. No single polymer can satisfy all the requirements. Therefore there have been tremendous advances in area of biodegradable copolymers over the last 30 years. This article reviews current research on biodegradable polymers, focusing their potential as drug carries. The major classes of polymers are briefly discussed with regard to synthesis, properties and biodegradability, and known degradation modes and products are indicated based on studies reported in the literature. A vast majority of biodegradable polymers studied belongs to the polyester family, which includes polyglycolides and polylactides. Other degradable polymers such as polyorthoesters, polyanhydrides and polyphosphazenes are also discussed and their advantages and disadvantages are summarized.

  2. Comparative Studies on Simultaneous Biodegradation of Phenol and Cyanide Using Different Strains

    OpenAIRE

    Neetu Singh; Bhumica Agarwal

    2014-01-01

    Removal of pollutants like phenol and cyanide is a serious environmental concern. Widespread studies on the biodegradation of phenol and cyanide have been carried out to overcome the environmental problems. This study provides an overview on the biological degradation of phenol and cyanide by isolated strain S.odorifera. For comparison three strains namely, A. chroococuum, E. coli and P. putida were also used for the degradation of phenol and cyanide. In this study, the effect ...

  3. Effect of test concentration in the ready biodegradability test for chemical substances: Improvement of OECD test guideline 301C.

    Science.gov (United States)

    Nabeoka, Ryosuke; Taruki, Masanori; Kayashima, Takakazu; Yoshida, Tomohiko; Kameya, Takashi

    2016-01-01

    In Japan, understanding the environmental persistence of chemicals is very important for risk assessment, and ready biodegradability tests are mainly conducted according to the Organisation for Economic Co-operation and Development test guideline 301C. However, the highest test concentration specified in test guideline 301C, 100 mg/L, may cause microbial toxicity and incomplete biodegradation. The authors performed test guideline 301C tests at test concentrations of 30 mg/L for 13 substances that were readily biodegradable in ready biodegradability tests but not in test guideline 301C tests. Of the 5 substances with potential to cause microbial toxicity at 100 mg/L, the percentage of biodegradation of sodium dimethyldithiocarbamate, 4-chloro-3-cresol (CC), thymol (THY), and p-tert-butyl-α-methylbenzenepropionaldehyde measured by biochemical oxygen demand (BOD) increased in the test guideline 301C test at 30 mg/L, suggesting a reduction in toxicity effects. Furthermore, CC and THY met the criteria for ready biodegradability, which are more than 60% of biodegradation by BOD and a 10-d window. Of the 8 substances with a low potential for causing microbial toxicity at 100 mg/L, the percentage of biodegradation of only 2-(diethylamino)ethanol increased in the test guideline 301C test at 30 mg/L. Employing a lower test concentration in the standard test guideline 301C test will contribute to improvement of consistency between results of a test guideline 301C test and other ready biodegradability tests. PMID:26211908

  4. Biodegradation of cresol isomers in anoxic aquifers.

    OpenAIRE

    Smolenski, W J; Suflita, J M

    1987-01-01

    The biodegradation of o-, m-, and p-cresol was examined in material obtained from a shallow anaerobic alluvial sand aquifer. The cresol isomers were preferentially metabolized, with p-cresol being the most easily degraded. m-Cresol was more persistent than the para-isomer, and o-cresol persisted for over 90 days. Biodegradation of cresol isomers was favored under sulfate-reducing conditions (SRC) compared with that under methanogenic conditions (MC). Slurries that were acclimated to p-cresol ...

  5. Biodegradation and toxicological evaluation of lubricant oils

    OpenAIRE

    Ivo Shodji Tamada; Paulo Renato Matos Lopes; Renato Nallin Montagnolli; Ederio Dino Bidoia

    2012-01-01

    The aim of this work was to compare different toxicity levels of lubricant oils. The tests were performed using the earthworm (Eisenia andrei), arugula seeds (Eruca sativa) and lettuce seeds (Lactuca sativa), with three types of contaminants (mineral lubricant oil, synthetic lubricant oil and used lubricant oil) for various biodegradation periods in the soil. The toxicity tests indirectly measured the biodegradation of the contaminants. The samples were analyzed at t0, t60, t120 and t180 days...

  6. Nutrient effects on the biodegradation rates of chemically-dispersed crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Harris, B.C. [Environmental Resources Management, Houston, TX (United States); Bonner, J.S.; McDonald, T.J.; Fuller, C.B.; Page, C.A.; Dimitriou-Christidis, P.; Sterling, M.C.; Autenrieth, R.L. [Texas A and M Univ., College Station, TX (United States)

    2002-07-01

    In addition to causing environmental, health, and economic problems, oil spills onto bodies of water present the problem of spill containment because they spread on the water surface. Booms and skimmers can be used to contain and capture the oil, but chemical dispersants are another way to reduce the adverse affects associated with oil spills. They increase the dispersion of the oil in the water column and stimulate the biodegradation of oil compounds. This study examined whether nitrogen and phosphorus addition would stimulate biodegradation. Crude oil was chemically dispersed with dispersant Corexit 9500 in Corpus Christi Bay water in a swirling flask. Nitrogen and phosphorus were then added to observe the nutrient effects. Analysis was done using gas chromatography-mass spectrometry. It was determined that the addition of nitrogen stimulated the biodegradation of alkane and polycyclic aromatic hydrocarbons (PAH). The addition of phosphorus increased the biodegradation rates of alkanes only, not PAH. The saturation attenuation factor constants for nitrogen concentrations related to biodegradation rates of alkanes and PAHs were 2.32 and 1.69 mg N per litre respectively. The attenuation factor constant for phosphorus addition was 1.42 mg P per litre. It was suggested that oil recovery can be further improved with more research into attenuation factors and methods to increase nutrient levels in oil plumes that have been chemically dispersed. 15 refs., 1 tab., 6 figs.

  7. Resolving biodegradation patterns of persistent saturated hydrocarbons in weathered oil samples from the Deepwater Horizon disaster.

    Science.gov (United States)

    Gros, Jonas; Reddy, Christopher M; Aeppli, Christoph; Nelson, Robert K; Carmichael, Catherine A; Arey, J Samuel

    2014-01-01

    Biodegradation plays a major role in the natural attenuation of oil spills. However, limited information is available about biodegradation of different saturated hydrocarbon classes in surface environments, despite that oils are composed mostly of saturates, due to the limited ability of conventional gas chromatography (GC) to resolve this compound group. We studied eight weathered oil samples collected from four Gulf of Mexico beaches 12-19 months after the Deepwater Horizon disaster. Using comprehensive two-dimensional gas chromatography (GC × GC), we successfully separated, identified, and quantified several distinct saturates classes in these samples. We find that saturated hydrocarbons eluting after n-C22 dominate the GC-amenable fraction of these weathered samples. This compound group represented 8-10%, or 38-68 thousand metric tons, of the oil originally released from Macondo well. Saturates in the n-C22 to n-C29 elution range were found to be partly biodegraded, but to different relative extents, with ease of biodegradation decreasing in the following order: n-alkanes > methylalkanes and alkylcyclopentanes+alkylcyclohexanes > cyclic and acyclic isoprenoids. We developed a new quantitative index designed to characterize biodegradation of >n-C22 saturates. These results shed new light onto the environmental fate of these persistent, hydrophobic, and mostly overlooked compounds in the unresolved complex mixtures (UCM) of weathered oils. PMID:24447243

  8. Experiments and modelling of phenanthrene biodegradation in the aqueous phase by a mixed culture

    Institute of Scientific and Technical Information of China (English)

    LIU Xiang; MAO Xiao-min; YANG Jian-gang; D.A. Barry; LI Ling

    2006-01-01

    Pollution by polycyclic aromatic hydrocarbons(PAHs) is widespread due to unsuitable disposal of industrial waste. They are mostly defined as priority pollutants by environmental protection authorities worldwide. Phenanthrene, a typical PAH, was selected as the target in this paper. The PAH-degrading mixed culture, named ZM, was collected from a petroleum contaminated river bed. This culture was injected into phenanthrene solutions at different concentrations to quantify the biodegradation process. Results show near-complete removal of phenanthrene in three days of biodegradation if the initial phenanthrene concentration is low. When the initial concentration is high, the removal rate is increased but 20%-40% of the phenanthrene remains at the end of the experiment.The biomass shows a peak on the third day due to the combined effects of microbial growth and decay. Another peak is evident for cases with a high initial concentration, possibly due to production of an intermediate metabolite. The pH generally decreased during biodegradation because of the production of organic acid. Two phenomenological models were designed to simulate the phenanthrene biodegradation and biomass growth. A relatively simple model that does not consider the intermediate metabolite and its inhibition of phenanthrene biodegradation cannot fit the observed data. A modified Monod model that considered an intermediate metabolite (organic acid) and its inhibiting reversal effect reasonably depicts the experimental results.

  9. Biodegradability of Chlorinated Anilines in Waters

    Institute of Scientific and Technical Information of China (English)

    CHAO WANG; GUAN-GHUA LU; YAN-JIE ZHOU

    2007-01-01

    Objective To identify the bacteria tolerating chlorinated anilines and to study the biodegradability of o-chloroaniline and its coexistent compounds. Methods Microbial community of complex bacteria was identified by plate culture observation techniques and Gram stain method. Bacterial growth inhibition test was used to determine the tolerance of complex bacteria to toxicant. Biodegradability of chlorinated anilines was determined using domesticated complex bacteria as an inoculum by shaking-flask test. Results The complex bacteria were identified, consisting of Xanthomonas, Bacillus alcaligenes,Acinetobacter, Pseudomonas, and Actinomycetaceae nocardia. The obtained complex bacteria were more tolerant to o-chloroaniline than mixture bacteria in natural river waters. The effects of exposure concentration and inoculum size on the biodegradability of o-chloroaniline were analyzed, and the biodegradation characteristics of single o-chloroaniline and 2,4-dichloroaniline were compared with the coexistent compounds. Conclusion The biodegradation rates can be improved by decreasing concentration of compounds and increasing inoculum size of complex bacteria. When o-chloroaniline coexists with aniline, the latter is biodegraded prior to the former, and as a consequence the metabolic efficiency of o-chloroaniline is improved with the increase of aniline concentration. Meanwhile, when o-chloroaniline coexists with 2,4-dichloroaniline, the metabolic efficiency of 2,4-dichloroaniline is markedly improved.

  10. PEMBUATAN FILM PLASTIK BIODEGRADABLE DARI LIMBAH BIJI DURIAN (Durio zibethinus Murr.

    Directory of Open Access Journals (Sweden)

    Prima Astuti Handayani

    2015-07-01

    relegated up to 15 days, after while the variation of mixing process temperature was not affect to the ability of the biodegradation. The functional groups that is contained in the bidegradable plastic film are including C-H,O-H, N-H, C-O, C=C, C=O, and C=C. The existence of amida and ester functional groups in the FTIR analysis showed that the bidegradable plastic film from this waste of durian seed can be degraded and can be regarded as an environmentally friendly plastic.Key word : biodegradable plastic film, durian seed, degradation, tensile strength, elongasi, and FTIR.

  11. The effect of gamma-radiation on biodegradability of natural FIBER/PP-HMSPP foams: A study of thermal stability and biodegradability

    International Nuclear Information System (INIS)

    This research was carried out to evaluate how gamma-radiation affected PP/HMSPP structural foams reinforced with sugarcane bagasse, in terms of thermal properties, biodegradability and infrared spectrum. Polymers are used in various applications and in different industrial areas providing enormous quantities of wastes in environment, contributing with 20 to 30% of total volume of solid residues. Besides, shortage of plastics resins obtained from oil and natural gas is addressing research and development toward alternative materials; environmental concerning in litter reduction is being directed to renewable polymers for manufacturing of polymeric foams. Biodegradable polymers, a new generation of polymers produced from various natural resources, environmentally safe and friendly, can contribute for pollution reduction, at a low cost. High density structural foams are specially used in civil construction, in replacement of metals, woods and concrete, but contribute for environmental pollution, due to components nature. In this study, it was incorporated sugarcane bagasse in PP/HMSPP polymeric matrix blends. Gamma radiation applied at 50, 100, 150, 200 and 500 kGy doses showed effective for biodegradability induction. TGA analyses pointed toward stability around 205 deg C; decomposition of both cellulose and hemicellulose took place at 310 deg C and above, whereas the degradation of reinforced fibers composites took place above 430 deg C. Infrared spectrum of foams were studied using FTIR, showing no sensitivity to the presence of C = C and C =O functional groups. (author)

  12. The effect of gamma-radiation on biodegradability of natural FIBER/PP-HMSPP foams: A study of thermal stability and biodegradability

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Elizabeth C.L.; Scagliusi, Sandra R.; Lugao, Ademar B., E-mail: eclcardo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    This research was carried out to evaluate how gamma-radiation affected PP/HMSPP structural foams reinforced with sugarcane bagasse, in terms of thermal properties, biodegradability and infrared spectrum. Polymers are used in various applications and in different industrial areas providing enormous quantities of wastes in environment, contributing with 20 to 30% of total volume of solid residues. Besides, shortage of plastics resins obtained from oil and natural gas is addressing research and development toward alternative materials; environmental concerning in litter reduction is being directed to renewable polymers for manufacturing of polymeric foams. Biodegradable polymers, a new generation of polymers produced from various natural resources, environmentally safe and friendly, can contribute for pollution reduction, at a low cost. High density structural foams are specially used in civil construction, in replacement of metals, woods and concrete, but contribute for environmental pollution, due to components nature. In this study, it was incorporated sugarcane bagasse in PP/HMSPP polymeric matrix blends. Gamma radiation applied at 50, 100, 150, 200 and 500 kGy doses showed effective for biodegradability induction. TGA analyses pointed toward stability around 205 deg C; decomposition of both cellulose and hemicellulose took place at 310 deg C and above, whereas the degradation of reinforced fibers composites took place above 430 deg C. Infrared spectrum of foams were studied using FTIR, showing no sensitivity to the presence of C = C and C =O functional groups. (author)

  13. Monitoring of the aerobe biodegradation of chlorinated organic solvents by stable isotope analysis

    Science.gov (United States)

    Horváth, Anikó; Futó, István; Palcsu, László

    2014-05-01

    Our chemical-biological basic research aims to eliminate chlorinated environmental contaminants from aquifers around industrial areas in the frame of research program supported by the European Social Fund (TÁMOP-4.2.2.A-11/1/KONV-2012-0043). The most careful and simplest way includes the in situ biodegradation with the help of cultured and compound specific strains. Numerous members of Pseudomonas bacteria are famous about function of bioremediation. They can metabolism the environmental hazardous chemicals like gas oils, dyes, and organic solvents. Our research based on the Pseudomonas putida F1 strain, because its ability to degrade halogenated hydrocarbons such as trichloroethylene. Several methods were investigated to estimate the rate of biodegradation, such as the measurement of the concentration of the pollutant along the contamination pathway, the microcosm's studies or the compound specific stable isotope analysis. In this area in the Transcarpathian basin we are pioneers in the stable isotope monitoring of biodegradation. The main goal is to find stable isotope fractionation factors by stable isotope analysis, which can help us to estimate the rate and effectiveness of the biodegradation. The subsequent research period includes the investigation of the method, testing its feasibility and adaptation in the environment. Last but not least, the research gives an opportunity to identify the producer of the contaminant based on the stable isotope composition of the contaminant.

  14. Atomic elucidation of the cyclodextrin effects on DDT solubility and biodegradation.

    Science.gov (United States)

    Ren, Baiping; Zhang, Mingzhen; Gao, Huipeng; Zheng, Jie; Jia, Lingyun

    2016-07-14

    DDT (1,1,1-trichloro-2.2-bis(p-chlorophenyl)ethane), one of the most abused insecticides, is a highly hazardous component for both human health and environmental applications. The biodegradation of DDT into non-toxic, environmentally benign components is strongly limited by the poor bioavailability of DDT. In this work, we combined experiments and molecular simulations to examine the effect of three cyclodextrins (α-, β-, and γ-CD) on their structure-specific interactions with DDT, specifically in relation to DDT solubility and biodegradability. It was found that all three CDs were able to bind to DDT with their inner hydrophobic cavity and different binding affinities and orientations, demonstrating their ability to improve DDT solubility. Different from the strong binding between DDT and β-/γ-CDs via a fully DDT bury mode, α-CD had a relatively weak binding with DDT via a partial DDT bury mode, which allowed DDT to be readily disassociated from α-CD at the lipid membrane interface, followed by DDT permeation into and across the cell membrane. The different binding modes between DDT and CDs explain why only α-CD can promote the bioavailability and biodegradation of DDT by simultaneously increasing its aqueous solubility and membrane interaction. This work provides structural-based binding information for the further modification and optimization of these three CDs to enhance their solubility and biodegradability of DDT. PMID:27301608

  15. Screening of Microorganisms for Biodegradation of Simazine Pollution (Obsolete Pesticide Azotop 50 WP).

    Science.gov (United States)

    Błaszak, Magdalena; Pełech, Robert; Graczyk, Paulina

    2011-09-01

    The capability of environmental microorganisms to biodegrade simazine-an active substance of 2-chloro-s-triazine herbicides (pesticide waste since 2007)-was assessed. An enormous metabolic potential of microorganisms impels to explore the possibilities of using them as an alternative way for thermal and chemical methods of utilization. First, the biotope rich in microorganisms resistant to simazine was examined. Only the higher dose of simazine (100 mg/l) had an actual influence on quantity of bacteria and environmental fungi incubated on substrate with simazine. Most simazine-resistant bacteria populated activated sludge and biohumus (vermicompost); the biggest strain of resistant fungi was found in floral soil and risosphere soil of maize. Compost and biohumus were the sources of microorganisms which biodegraded simazine, though either of them was the dominant considering the quantity of simazine-resistant microorganisms. In both cases of periodic culture (microorganisms from biohumus and compost), nearly 100% of simazine (50 mg/l) was degraded (within 8 days). After the repeated enrichment culture with simazine, the rate of its degradation highly accelerated, and just after 24 h, the significant decrease of simazine (20% in compost and 80% in biohumus) was noted. Although a dozen attempts of isolating various strains responsible for biodegradation of simazine from compost and biohumus were performed, only the strain identified as Arthrobacter urefaciens (NC) was obtained, and it biodegraded simazine with almost 100% efficiency (within 4 days). PMID:21949452

  16. Biodegradable compounds: Rheological, mechanical and thermal properties

    Science.gov (United States)

    Nobile, Maria Rossella; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R.

    2015-12-01

    Recently great attention from industry has been focused on biodegradable polyesters derived from renewable resources. In particular, PLA has attracted great interest due to its high strength and high modulus and a good biocompatibility, however its brittleness and low heat distortion temperature (HDT) restrict its wide application. On the other hand, Poly(butylene succinate) (PBS) is a biodegradable polymer with a low tensile modulus but characterized by a high flexibility, excellent impact strength, good thermal and chemical resistance. In this work the two aliphatic biodegradable polyesters PBS and PLA were selected with the aim to obtain a biodegradable material for the industry of plastic cups and plates. PBS was also blended with a thermoplastic starch. Talc was also added to the compounds because of its low cost and its effectiveness in increasing the modulus and the HDT of polymers. The compounds were obtained by melt compounding in a single screw extruder and the rheological, mechanical and thermal properties were investigated. The properties of the two compounds were compared and it was found that the values of the tensile modulus and elongation at break measured for the PBS/PLA/Talc compound make it interesting for the production of disposable plates and cups. In terms of thermal resistance the compounds have HDTs high enough to contain hot food or beverages. The PLA/PBS/Talc compound can be, then, considered as biodegradable substitute for polystyrene for the production of disposable plates and cups for hot food and beverages.

  17. Recent state-of-the-art of biodegradable scale inhibitors for cooling-water treatment applications (Review)

    Science.gov (United States)

    Popov, K. I.; Kovaleva, N. E.; Rudakova, G. Ya.; Kombarova, S. P.; Larchenko, V. E.

    2016-02-01

    Scale formation is a challenge worldwide. Recently, scale inhibitors represent the best solution of this problem. The polyaminocarboxylic acids have been the first to be successfully applied in the field, although their efficacy was rather low. The next generation was developed on the grounds of polyphosphonic acids. The main disadvantage of these is associated with low biodegradation level. Polyacrylate-based phosphorous free inhibitors proposed as an alternative to phosphonates all also had low biodegradability. Thus, the main trend of recent R&D is the development of a new generation: environmentally friendly biodegradable scale inhibitors. The recent state of the word and domestic scale inhibitors markets is considered, the main industrial inhibitors manufacturers and marketed substances, as well as the general trends of R&D in the field, are characterized. It is demonstrated that most research is focused on biodegradable polymers and on phosponates with low phosphorus content, as well as on implementation of biodegradable fragments into polyacrylate matrixes for biodegradability enhancement. The problem of research results comparability is indicated along with domestic-made inhibitors quality and the gaps in scale inhibition mechanism. The actuality of fluorescent indicator fragment implementation into the scale inhibitor molecule for the better reagent monitoring in a cooling water system is specially emphasized.

  18. Biodegradation of di(2-ethylhexyl)phthalate in a typical tropical soil

    Energy Technology Data Exchange (ETDEWEB)

    Castelo de Moura Carrara, Silvia Marta; Morita, Dione Mari [Polytechnic School, University of Sao Paulo (Brazil); Boscov, Maria Eugenia Gimenez, E-mail: meboscov@usp.br [Polytechnic School, University of Sao Paulo (Brazil)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Scarce literature on contamination of tropical soils by phthalates. Black-Right-Pointing-Pointer Investigation of mobility of DEHP in a tropical soil by infiltration tests showed that DEHP is retained in the upper layer of the soil. Black-Right-Pointing-Pointer Low air and water permeability indicate that in situ bioremediation is not feasible for this soil. Black-Right-Pointing-Pointer Respirometric tests were inadequate to investigate biodegradation because tropical soils are acidic. Black-Right-Pointing-Pointer Slurry-phase reactor with cement mixer provided significant biodegradation (99% in 49 days). - Abstract: The aim of this research was to evaluate the possibility of biodegradation of di(2-ethylhexyl)phthalate (DEHP), widely used as an industrial plasticizer and considered an endocrine-disrupting chemical included in the U.S. Environmental Protection Agency priority list, in a Brazilian tropical soil, which has not been previously reported in the literature, despite the geographic importance of tropical soils. Preliminary laboratory testing comprised respirometric, air and water permeability, and pilot scale infiltration tests. Standard respirometric tests were found inadequate for studying biodegradation in tropical contaminated soils, due to the effect of the addition of significant amounts of calcium carbonate, necessary to adjust soil pH. Pilot scale infiltration tests performed for 5 months indicated that DEHP was retained in the superficial layer of the soil, barely migrating downwards, whereas air and water permeability tests discarded in situ bioremediation. However, ex situ bioremediation was possible, using a slurry-phase reactor with acclimated microorganisms, in pilot scale tests conducted to remediate a total mass of 150 kg of contaminated soil with 100 mg DEHP/kg. The removal of DEHP in the slurry-phase reactor achieved the percentage of 99% in 49 days, with biodegradation following a first

  19. Biodegradation of di(2-ethylhexyl)phthalate in a typical tropical soil

    International Nuclear Information System (INIS)

    Highlights: ► Scarce literature on contamination of tropical soils by phthalates. ► Investigation of mobility of DEHP in a tropical soil by infiltration tests showed that DEHP is retained in the upper layer of the soil. ► Low air and water permeability indicate that in situ bioremediation is not feasible for this soil. ► Respirometric tests were inadequate to investigate biodegradation because tropical soils are acidic. ► Slurry-phase reactor with cement mixer provided significant biodegradation (99% in 49 days). - Abstract: The aim of this research was to evaluate the possibility of biodegradation of di(2-ethylhexyl)phthalate (DEHP), widely used as an industrial plasticizer and considered an endocrine-disrupting chemical included in the U.S. Environmental Protection Agency priority list, in a Brazilian tropical soil, which has not been previously reported in the literature, despite the geographic importance of tropical soils. Preliminary laboratory testing comprised respirometric, air and water permeability, and pilot scale infiltration tests. Standard respirometric tests were found inadequate for studying biodegradation in tropical contaminated soils, due to the effect of the addition of significant amounts of calcium carbonate, necessary to adjust soil pH. Pilot scale infiltration tests performed for 5 months indicated that DEHP was retained in the superficial layer of the soil, barely migrating downwards, whereas air and water permeability tests discarded in situ bioremediation. However, ex situ bioremediation was possible, using a slurry-phase reactor with acclimated microorganisms, in pilot scale tests conducted to remediate a total mass of 150 kg of contaminated soil with 100 mg DEHP/kg. The removal of DEHP in the slurry-phase reactor achieved the percentage of 99% in 49 days, with biodegradation following a first-order kinetic model with a biodegradation coefficient of 0.127 day−1.

  20. Biodegradable Photonic Melanoidin for Theranostic Applications.

    Science.gov (United States)

    Lee, Min-Young; Lee, Changho; Jung, Ho Sang; Jeon, Mansik; Kim, Ki Su; Yun, Seok Hyun; Kim, Chulhong; Hahn, Sei Kwang

    2016-01-26

    Light-absorbing nanoparticles for localized heat generation in tissues have various biomedical applications in diagnostic imaging, surgery, and therapies. Although numerous plasmonic and carbon-based nanoparticles with strong optical absorption have been developed, their clearance, potential cytotoxicity, and long-term safety issues remain unresolved. Here, we show that "generally regarded as safe (GRAS)" melanoidins prepared from glucose and amino acid offer a high light-to-heat conversion efficiency, biocompatibility, biodegradability, nonmutagenicity, and efficient renal clearance, as well as a low cost for synthesis. We exhibit a wide range of biomedical photonic applications of melanoidins, including in vivo photoacoustic mapping of sentinel lymph nodes, photoacoustic tracking of gastrointestinal tracts, photothermal cancer therapy, and photothermal lipolysis. The biodegradation rate and renal clearance of melanoidins are controllable by design. Our results confirm the feasibility of biodegradable melanoidins for various photonic applications to theranostic nanomedicines. PMID:26623481

  1. Biodegradable nanoparticles for gene therapy technology

    International Nuclear Information System (INIS)

    Rapid propagations in materials technology together with biology have initiated great hopes in the possibility of treating many diseases by gene therapy technology. Viral and non-viral gene carriers are currently applied for gene delivery. Non-viral technology is safe and effective for the delivery of genetic materials to cells and tissues. Non-viral systems are based on plasmid expression containing a gene encoding a therapeutic protein and synthetic biodegradable nanoparticles as a safe carrier of gene. Biodegradable nanoparticles have shown great interest in drug and gene delivery systems as they are easy to be synthesized and have no side effect in cells and tissues. This review provides a critical view of applications of biodegradable nanoparticles on gene therapy technology to enhance the localization of in vitro and in vivo and improve the function of administered genes

  2. Biodegradable Polymers and Stem Cells for Bioprinting

    Directory of Open Access Journals (Sweden)

    Meijuan Lei

    2016-04-01

    Full Text Available It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.

  3. Biodegradable Polymers and Stem Cells for Bioprinting.

    Science.gov (United States)

    Lei, Meijuan; Wang, Xiaohong

    2016-01-01

    It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism. PMID:27136526

  4. Petroleum biodegradation and oil spill bioremediation

    International Nuclear Information System (INIS)

    Hydrocarbon-utilizing microorganisms are ubiquitously distributed in the marine environment following oil spills. These microorganisms naturally biodegrade numerous contaminating petroleum hydrocarbons, thereby cleansing the oceans of oil pullutants. Bioremediation, which is accomplished by adding exogenous microbial populations or stimulating indigenous ones, attempts to raise the rates of degradation found naturally to significantly higher rates. Seeding with oil degraders has not been demonstrated to be effective, but addition of nitrogenous fertilizers has been shown to increase rates of petroleum biodegradation. In the case of the Exxon Valdez spill, the largest and most thoroughly studied application of bioremediation, the application of fertilizer (slow release or oleophilic) increased rates of biodegradation 3-5 times. Because of the patchiness of oil, an internally conserved compound, hopane, was critical for demonstrating the efficacy of bioremediation. Multiple regression models showed that the effectiveness of bioremediation depended upon the amount of nitrogen delivered, the concentration of oil, and time. (author)

  5. Biodegradable nanoparticles for gene therapy technology

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinkhani, Hossein, E-mail: hosseinkhani@mail.ntust.edu.tw; He, Wen-Jie [National Taiwan University of Science and Technology (Taiwan Tech), Graduate Institute of Biomedical Engineering (China); Chiang, Chiao-Hsi [School of Pharmacy, National Defense Medical Center (China); Hong, Po-Da [National Taiwan University of Science and Technology (Taiwan Tech), Graduate Institute of Biomedical Engineering (China); Yu, Dah-Shyong [Nanomedicine Research Center, National Defense Medical Center (China); Domb, Abraham J. [The Hebrew University of Jerusalem, Institute of Drug Research, School of Pharmacy, Faculty of Medicine, Center for Nanoscience and Nanotechnology and The Alex Grass Center for Drug Design and Synthesis (Israel); Ou, Keng-Liang [College of Oral Medicine, Taipei Medical University, Research Center for Biomedical Devices and Prototyping Production (China)

    2013-07-15

    Rapid propagations in materials technology together with biology have initiated great hopes in the possibility of treating many diseases by gene therapy technology. Viral and non-viral gene carriers are currently applied for gene delivery. Non-viral technology is safe and effective for the delivery of genetic materials to cells and tissues. Non-viral systems are based on plasmid expression containing a gene encoding a therapeutic protein and synthetic biodegradable nanoparticles as a safe carrier of gene. Biodegradable nanoparticles have shown great interest in drug and gene delivery systems as they are easy to be synthesized and have no side effect in cells and tissues. This review provides a critical view of applications of biodegradable nanoparticles on gene therapy technology to enhance the localization of in vitro and in vivo and improve the function of administered genes.

  6. WAXD and FTIR studies of electron beam irradiated biodegradable polymers

    International Nuclear Information System (INIS)

    Poly(L-lactic acid) (PLLA) and poly(e-caprolactone) (PCL) have been receiving much attention lately due to their biodegradability in human body as well as in the soil, biocompatibility, environmentally friendly characteristics and non-toxicity. Morphology of biodegradable polymers affects the rate of their biodegradation. A polymer that has high degree of crystallinity will degrade at a slower rate due to the inherent increased stability. PCL homopolymer cross-linking degree increases with increasing doses of high energy radiation. On the other hand, the irradiation of PLLA homopolymer promotes mainly chain-scissions at doses below 250 kGy. In the present work, twin screw extruded films of PLLA and PCL biodegradable homopolymers and 50:50 (w:w) blend were electron beam irradiated using electron beam accelerator Dynamitron (E = 1.5 MeV) from Radiation Dynamics, Inc. at doses in the range of 50 to 1000 kGy in order to evaluate the effect of electron beam radiation on the homopolymers and blend. Wide-angle X- ray diffraction (WAXD) patterns of non irradiated and irradiated samples were obtained using a diffractometer Rigaku Denki Co. Ltd., Multiflex model; and FTIR spectra was obtained using a NICOLET 4700, ATR technique, ZnSe crystal at 45o. By WAXD patterns of as extruded non irradiated and irradiated PLLA it was observed broad diffusion peaks corresponding to amorphous polymer. There was a slight increase of the mean crystallite size of PCL homopolymer with increasing radiation dose. PCL crystalline index (CI) was 68% and decreased with radiation dose above 500 kGy. On the other hand. PLLA CI was 10% and increased with radiation dose above 750 kGy. On the other hand, PLLA presence on the 50:50 blend did not interfere on the observed mean crystallite size increase up to 250 kGy. From 500 kGy to 1 MGy the crystallite size of PCL was a little bigger in the blend than the homopolymer. Also it could be observed that the PLLA peak increase at 14.2o was affected by PCL

  7. Processing and characterization of novel biobased and biodegradable materials

    Science.gov (United States)

    Pilla, Srikanth

    Human society has benefited tremendously from the use of petroleum-based plastics. However, there are growing concerns with their adverse environmental impacts and volatile costs attributed to the skyrocketing oil prices. Additionally most of the petroleum-based polymers are non-biodegradable causing problems about their disposal. Thus, during the last couple of decades, scientists ail over the world have been focusing on developing new polymeric materials that are biobased and biodegradable, also termed as green plastics . This study aims to develop green materials based on polylactide (PLA) biopolymer that can be made from plants. Although PLA can provide important advantages in terms of sustainability and biodegradability, it has its own challenges such as high cost, brittleness, and narrow processing window. These challenges are addressed in this study by investigating both new material formulations and processes. To improve the material properties and control the material costs, PLA was blended with various fillers and modifiers. The types of fillers investigated include carbon nanotube (CNT) nanoparticles and various natural fibers such as pine-wood four, recycled-wood fibers and flax fiber. Using natural fibers as fillers for PLA can result in fully biodegradable and eco-friendly biocomposites. Also due to PLA's sensitivity to moisture and temperature, molecular degradation can occur during processing leading to inferior material properties. To address this issue, one of the approaches adopted by this study was to incorporate a multifunctional chain-extender into PLA, which increased the molecular weight of PLA thereby improving the material properties. To improve the processability and reduce the material cost, both microcellular injection molding and extrusion processes have been studied. The microcellular technology allows the materials to be processed at a lower temperature, which is attractive for thermo- and moisture-sensitive materials like PLA. They

  8. Biodegradable Mg corrosion and osteoblast cell culture studies

    International Nuclear Information System (INIS)

    Magnesium (Mg) is a biodegradable metal that has significant potential advantages as an implant material. In this paper, corrosion and cell culture experiments were performed to evaluate the biocompatibility of Mg. The corrosion current and potential of a Mg disk were measured in different physiological solutions including deionized (DI) water, phosphate-buffered saline (PBS), and McCoy's 5A culture medium. The corrosion currents in the PBS and in the McCoy's 5A-5% FBS media were found to be higher than in DI water, which is expected because corrosion of Mg occurs faster in a chloride solution. Weight loss, open-circuit potential, and electrochemical impedance spectroscopy measurements were also performed. The Mg specimens were also characterized using an environmental scanning electron microscope and energy-dispersive X-ray analysis (EDAX). The X-ray analysis showed that in the cell culture media a passive interfacial layer containing oxygen, chloride, phosphate, and potassium formed on the samples. U2OS cells were then co-cultured with a Mg specimen for up to one week. Cytotoxicity results of magnesium using MTT assay and visual observation through cell staining were not significantly altered by the presence of the corroding Mg sample. Further, bone tissue formation study using von Kossa and alkaline phosphatase staining indicates that Mg may be suitable as a biodegradable implant material.

  9. The toxicity of oil-contaminated muskeg following biodegradation

    International Nuclear Information System (INIS)

    The current environmental criteria for the maximum allowable levels of hydrocarbons resulting from an oil spill assume that all detectable hydrocarbons are petroleum hydrocarbons (PHC) and do not account for naturally-occurring biogenic hydrocarbons (BHC). As such, some soils may be wrongfully assessed as being PHC contaminated. A false identification could lead to unnecessary and costly bioremediation that is potentially disruptive to functioning ecosystems. This study is part of a larger project to differentiate between natural and petroleum F3 hydrocarbons in muskeg material that has been impacted by an oil spill. The toxicity of oil-contaminated muskeg was examined following biodegradation in laboratory microcosms. Preliminary acute toxicity tests using locally purchased Sphagnum peat moss contaminated with Federated Crude oil had no effect on the survival of earthworms (Eisenia andrei), but springtails (Orthonychiurus folsomi) were more sensitive. Earthworm and springtail reproduction bioassays and a Northern wheatgrass (Elymus lanceolatus) growth bioassay was used to test the crude-oil-contaminated peat. All 3 test species will be used to test for reduced toxicity following biodegradation of Federated Crude oil-contaminated muskeg from northern Alberta under simulated conditions.

  10. The toxicity of oil-contaminated muskeg following biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Farwell, A.; Kelly-Hooper, F.; McAlear, J.; Sinnesael, K.; Dixon, D. [Waterloo Univ., Waterloo, ON (Canada)

    2009-07-01

    The current environmental criteria for the maximum allowable levels of hydrocarbons resulting from an oil spill assume that all detectable hydrocarbons are petroleum hydrocarbons (PHC) and do not account for naturally-occurring biogenic hydrocarbons (BHC). As such, some soils may be wrongfully assessed as being PHC contaminated. A false identification could lead to unnecessary and costly bioremediation that is potentially disruptive to functioning ecosystems. This study is part of a larger project to differentiate between natural and petroleum F3 hydrocarbons in muskeg material that has been impacted by an oil spill. The toxicity of oil-contaminated muskeg was examined following biodegradation in laboratory microcosms. Preliminary acute toxicity tests using locally purchased Sphagnum peat moss contaminated with Federated Crude oil had no effect on the survival of earthworms (Eisenia andrei), but springtails (Orthonychiurus folsomi) were more sensitive. Earthworm and springtail reproduction bioassays and a Northern wheatgrass (Elymus lanceolatus) growth bioassay was used to test the crude-oil-contaminated peat. All 3 test species will be used to test for reduced toxicity following biodegradation of Federated Crude oil-contaminated muskeg from northern Alberta under simulated conditions.

  11. Biodegradation of liquid coal tar in an aqueous bioreactor

    International Nuclear Information System (INIS)

    Coal tar is a by-product of the coal gasification process used between 1820 and 1950 to produce a gasified fuel. This material contains numerous monoaromatic and polynuclear aromatic hydrocarbons (PAH) some of which are considered to be carcinogenic. Environmentally disposed coal tar can migrate downward through the soil leaving a light fraction floating on the groundwater, referred to here as liquid coal tar. This research was carried out to determine whether liquid coal tar recovered during site clean-up operations could be cost-effectively biodegraded. Preliminary aqueous microcosm experiments demonstrated that the liquid tar was not toxic to site bacteria in concentrations up to 220,000 ppm. Liquid tar was treated in a 15 liter laboratory bioreactor operated in a batch mode with gas phase oxygen as the oxygen source. Thirty-nine major constituents were followed during treatment. In the first 63 days of operation 87% of these compounds were biodegraded or transformed. 2-, 3-, and 4-ring PAH were degraded 89%, 90%, and 70% respectively. Of the volatile compounds 89% were degraded and only 0.7% were trapped on carbon during reactor off-gassing

  12. Toxicity and biodegradation of PCBs in contaminated sediments

    International Nuclear Information System (INIS)

    PCBs represent a serious ecological problem due to their low degradability, high toxicity, and strong bioaccumulation. Because of many environmental and economical problems, there are efforts to develop bio-remediation technologies for decontamination of the PCB-polluted areas. PCB were used by storage of spent nuclear fuel in nuclear power plants Jaslovske Bohunice. In the locality of the former producer of PCB - Chemko Strazske a. s. - big amount of these substances is still persisting in sediments and soil. The goal of this study was to analyze the contaminated sediments from Strazsky canal and Zemplinska Sirava water reservoir from several points of view. The study of eco-toxicity confirmed that both sediments were toxic for various tested organisms. The genotoxicity test has not proved the mutagenic effect. The subsequent step included microbiological analysis of the contaminated sediments and isolation of pure bacterial cultures capable of degrading PCBs. In order to determine the genetic potential for their biodegradability, the gene bphA1 was identified using PCR technique in their genomes. This gene codes the enzyme biphenyl-dioxygenase, which is responsible for PCB degradation. The final goal was to perform aerobic biodegradation of PCBs in the sediments. The bacteria present in both sediments are able to degrade certain low chlorinated congeners. The issue of biodiversity is still open and has to be studied to reveal the real cooperation between bacteria. (authors)

  13. Biodegradability Evaluation of Polymers by ISO 14855-2

    OpenAIRE

    Masao Kunioka; Fumi Ninomiya; Masahiro Funabashi

    2009-01-01

    Biodegradabilities of polymers and their composites in a controlled compost were described. Polycaprolactone (PCL) and poly(lactic acid) (PLA) were employed as biodegradable polymers. Biodegradabilities of PCL and PLA samples in a controlled compost were measured using a Microbial Oxidative Degradation Analyzer (MODA) according to ISO 14855-2. Sample preparation method for biodegradation test according to ISO/DIS 10210 was also described. Effects of sizes and shapes of samples on biodegradabi...

  14. Biodegradable polyesters based on succinic acid

    Directory of Open Access Journals (Sweden)

    Nikolić Marija S.

    2003-01-01

    Full Text Available Two series of aliphatic polyesters based on succinic acid were synthesized by copolymerization with adipic acid for the first series of saturated polyesters, and with fumaric acid for the second series. Polyesters were prepared starting from the corresponding dimethyl esters and 1,4-butanediol by melt transesterification in the presence of a highly effective catalyst tetra-n-butyl-titanate, Ti(0Bu4. The molecular structure and composition of the copolyesters was determined by 1H NMR spectroscopy. The effect of copolymer composition on the physical and thermal properties of these random polyesters were investigated using differential scanning calorimetry. The degree of crystallinity was determined by DSC and wide angle X-ray. The degrees of crystallinity of the saturated and unsaturated copolyesters were generally reduced with respect to poly(butylene succinate, PBS. The melting temperatures of the saturated polyesters were lower, while the melting temperatures of the unsaturated copolyesters were higher than the melting temperature of PBS. The biodegradability of the polyesters was investigated by enzymatic degradation tests. The enzymatic degradation tests were performed in a buffer solution with Candida cylindracea lipase and for the unsaturated polyesters with Rhizopus arrhizus lipase. The extent of biodegradation was quantified as the weight loss of polyester films. Also the surface of the polyester films after degradation was observed using optical microscopy. It could be concluded that the biodegradability depended strongly on the degree of crystallinity, but also on the flexibility of the chain backbone. The highest biodegradation was observed for copolyesters containing 50 mol.% of adipic acid units, and in the series of unsaturated polyesters for copolyesters containing 5 and 10 mol.% of fumarate units. Although the degree of crystallinity of the unsaturated polyesters decreased slightly with increasing unsaturation, the biodegradation

  15. Histological evaluation of different biodegradable and non-biodegradable membranes implanted subcutaneously in rats

    DEFF Research Database (Denmark)

    Zhao, S; Pinholt, E M; Madsen, J E; Donath, K

    2000-01-01

    Different types of biodegradable membranes have become available for guided tissue regeneration. The purpose of this study was to evaluate histologically three different biodegradable membranes (Bio-Gide, Resolut and Vicryl) and one non-biodegradable membrane (expanded polytetrafluoroethylene/e-PTFE...... that e-PTFE was well tolerated and encapsulated by a fibrous connective tissue capsule. There was capsule formation around Resolut and Vicryl and around Bio-Gide in the early phase there was a wide inflammatory zone already. e-PTFE and Vicryl were stable materials while Resolut and Bio-Gide fragmented...

  16. Synthetic biodegradable functional polymers for tissue engineering: a brief review

    OpenAIRE

    BaoLin, GUO; Ma, Peter X.

    2014-01-01

    Scaffolds play a crucial role in tissue engineering. Biodegradable polymers with great processing flexibility are the predominant scaffolding materials. Synthetic biodegradable polymers with well-defined structure and without immunological concerns associated with naturally derived polymers are widely used in tissue engineering. The synthetic biodegradable polymers that are widely used in tissue engineering, including polyesters, polyanhydrides, polyphosphazenes, polyurethane, and poly (glyce...

  17. Soluble Eggshell Mebrane Protein:Antibacterial Property and Biodegradability

    Institute of Scientific and Technical Information of China (English)

    YI Feng; YU Jian; LI Qiang; GUO Zhaoxia

    2007-01-01

    The antibacterial property and biodegradability of soluble eggshell membrane protein (SEP)are reported. Unlike the natural eggshell membrane (ESM), SEP does not possess antibacterial property against E.coli. The biodegradation tests with trypsin show that both ESM and SEP are biodegradable.

  18. Comparative study on the biodegradation and biocompatibility of silicate bioceramic coatings on biodegradable magnesium alloy as biodegradable biomaterial

    Science.gov (United States)

    Razavi, M.; Fathi, M. H.; Savabi, O.; Razavi, S. M.; Hashemibeni, B.; Yazdimamaghani, M.; Vashaee, D.; Tayebi, L.

    2014-03-01

    Many clinical cases as well as in vivo and in vitro assessments have demonstrated that magnesium alloys possess good biocompatibility. Unfortunately, magnesium and its alloys degrade too quickly in physiological media. In order to improve the biodegradation resistance and biocompatibility of a biodegradable magnesium alloy, we have prepared three types of coating include diopside (CaMgSi2O6), akermanite (Ca2MgSi2O6) and bredigite (Ca7MgSi4O16) coating on AZ91 magnesium alloy through a micro-arc oxidation (MAO) and electrophoretic deposition (EPD) method. In this research, the biodegradation and biocompatibility behavior of samples were evaluated in vitro and in vivo. The in vitro analysis was performed by cytocompatibility and MTT-assay and the in vivo test was conducted on the implantation of samples in the greater trochanter of adult rabbits. The results showed that diopside coating has the best bone regeneration and bredigite has the best biodegradation resistance compared to others.

  19. Influence of organophilic ammonium-free nano clay incorporation on the mechanical properties and biodegradability of the Ecoflex; Influencia da adicao de nanoargila organofilica livre de sal de amonio nas propriedades mecanicas e na biodegradacao do Ecoflex

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Reinaldo Y.; Barbosa, Ronilson V. [Empresa IOTO International - Divisao Masterbatches, Campo Magro, PR (Brazil)], e-mail: juliana.kloss@gmail.com; Richart, Fabio S.; Kloss, Juliana R. [Universidade Federal do Parana, Departamento de Quimica - UFPR, Curitiba, PR (Brazil)

    2011-07-01

    The disposable of polymeric materials, petroleum derived, represents a growing global environmental problem, causing environmental pollution to assume alarming proportions. In this context, the interest in the use and production of biodegradable materials that have character and policy has raged in various sectors of society. Besides biodegradation, is also significant investment in research and development in the nanotechnology area. Given these factors, the objective of this work was the incorporation of organophilic nanoclay ammonium-free salt (Novaclay) in the Ecoflex, mechanical properties evaluation and influences this material of the biodegradation, according to ASTM G 160. The products were characterized before and after biodegradation by analysis: visual, weight loss, differential scanning calorimetry, mechanical testing and scanning electron microscopy. The results showed that the pure Ecoflex and Ecoflex/Novaclay nanocomposite were partially biodegraded in the method used and showed morphological and mechanical properties changes. (author)

  20. Preparation of biodegradable xanthan-glycerol hydrogel, foam, film, aerogel and xerogel at room temperature.

    Science.gov (United States)

    Bilanovic, Dragoljub; Starosvetsky, Jeanna; Armon, Robert H

    2016-09-01

    Polymers, hence hydrogels, pollute waters and soils accelerating environmental degradation. Environmentally benign hydrogels were made in water from biodegradable xanthan (X) and glycerol (G) at 22.5±2.5°C. Molar ratio [G]/[X]waste process which decreases pollution, eliminates waste disposal costs, and minimizes energy expenses. XG-materials are suitable for both industrial and environmental applications including slow release and concentration of cations. XG-materials, made of xanthan, microbial polysaccharide, could also be used in applications targeting populations that do not consume meat or meat based products. PMID:27185137

  1. Biodegradable polymers in clinical use and clinical development

    CERN Document Server

    Domb, Abraham J

    2011-01-01

    The definitive guide to biodegradable polymer science-where we are and what's to come The most comprehensive review of biodegradable polymers already utilized or under development for clinical use, Biodegradable Polymers in Clinical Use and Clinical Development looks at the state of biodegradable polymers now and over the next five years. Implantable molecules that break down within the body over a predetermined period of time, biodegradable polymers have been employed as drug carriers, orthopedic fixation devices, and absorbable sutures. Yet while hundreds of such polymers have been deve

  2. Biodegradation of chlorobenzoic acids by ligninolytic fungi

    Czech Academy of Sciences Publication Activity Database

    Muzikář, Milan; Křesinová, Zdena; Svobodová, Kateřina; Filipová, Alena; Čvančarová, Monika; Cajthamlová, Kamila; Cajthaml, Tomáš

    2011-01-01

    Roč. 196, - (2011), s. 386-394. ISSN 0304-3894 R&D Projects: GA MŠk 2B06156; GA ČR GA525/09/1058 Institutional research plan: CEZ:AV0Z50200510 Keywords : Chlorobenzoic acid * Polychlorinated biphenyls * Biodegradation Subject RIV: EE - Microbiology, Virology Impact factor: 4.173, year: 2011

  3. Natural Biodegradation of Phenolic Compounds in Groundwater

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A combination of field data and theoretical approaches is used to assess the natural attenuation and status of a complex plume of phenolic compounds (phenol, cresols, xylenols) in a deep, consolidated, UK Permo-Triassic sandstone aquifer. Biodegradation of the phenolic compounds at concentrations up to 12500mg·L-1 is occurring under aerobic, NO-3-reducing, Mn/Fe-reducing, SO2-4-reducing and methanogenic conditions in the aquifer, with the accumulation of inorganic and organic metabolites in the plume. An electron and carbon balance for the plume suggests that only 6% of the source term has been degraded in 50 years. The residual contaminant mass in the plume significantly exceeds estimates of electron acceptor inputs, indicating that the plume will grow. Two detailed vertical profiles through the plume show that contaminant distributions are controlled more by source history than by biodegradation processes. Microbiological and mass balance studies show that biodegradation is greatest at the plume fringe where contaminant concentrations are diluted by transverse mixing. Active bacterial populations exist throughout the plume but biodegradation is inhibited in the plume core by high contaminant concentrations. Stable isotope studies show that SO2-4-reduction is particularly sensitive to contaminant concentration. The aquifer is not oxidant-deficient but natural attenuation of the phenolic compounds in this system is limited by toxicity from the pollutant load and the bioavailability of electron acceptors. Natural attenuation of these contaminants will increase only after increased dilution of the plume.

  4. Biodegradable polymersomes for targeted ultrasound imaging

    NARCIS (Netherlands)

    Zhou, W.; Meng, F.; Engbers, G.H.M.; Feijen, J.

    2006-01-01

    Biodegradable polymersomes with a sub-micron size were prepared by using poly(ethylene glycol)–polylactide (PEG–PDLLA) block-copolymers in aqueous media. Air-encapsulated polymersomes could be obtained by a lyophilization/rehydration procedure. Preliminary results showed that these polymersomes were

  5. Transport of nonlinearly biodegradable contaminants in aquifers

    NARCIS (Netherlands)

    Keijzer, H.

    2001-01-01

    This thesis deals with the transport behavior of nonlinearly biodegradable contaminants in aquifers. Such transport occurs during in situ bioremediation which is based on the injection of an electron acceptor or electron donor. The main interests in this thesis are the mutual influences of underlyin

  6. Polyvinyl alcohol biodegradation under denitrifying conditions

    Czech Academy of Sciences Publication Activity Database

    Marušincová, H.; Husárová, L.; Růžička, J.; Ingr, M.; Navrátil, Václav; Buňková, L.; Koutný, M.

    2013-01-01

    Roč. 84, October (2013), s. 21-28. ISSN 0964-8305 Grant ostatní: GA ČR(CZ) GAP108/10/0200 Institutional support: RVO:61388963 Keywords : polyvinyl alcohol * biodegradation * denitrification * waste-water treatment * anaerobic * Steroidobacter Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.235, year: 2013

  7. Biodegradability of leathers through anaerobic pathway.

    Science.gov (United States)

    Dhayalan, K; Fathima, N Nishad; Gnanamani, A; Rao, J Raghava; Nair, B Unni; Ramasami, T

    2007-01-01

    Leather processing generates huge amounts of both solid and liquid wastes. The management of solid wastes, especially tanned leather waste, is a challenging problem faced by tanners. Hence, studies on biodegradability of leather become imperative. In this present work, biodegradability of untanned, chrome tanned and vegetable tanned leather under anaerobic conditions has been addressed. Two different sources of anaerobes have been used for this purpose. The effect of detanning as a pretreatment method before subjecting the leather to biodegradation has also been studied. It has been found that vegetable tanned leather leads to more gas production than chrome tanned leather. Mixed anaerobic isolates when employed as an inoculum are able to degrade the soluble organics of vegetable tanned material and thus exhibit an increased level of gas production during the initial days, compared to the results of the treatments that received the anaerobic sludge. With chrome tanned materials, there was not much change in the volume of the gas produced from the two different sources. It has been found that detanning tends to improve the biodegradability of both types of leathers. PMID:16740383

  8. Biodegradable synthetic polymers for tissue engineering

    Directory of Open Access Journals (Sweden)

    Gunatillake P. A.

    2003-05-01

    Full Text Available This paper reviews biodegradable synthetic polymers focusing on their potential in tissue engineering applications. The major classes of polymers are briefly discussed with regard to synthesis, properties and biodegradability, and known degradation modes and products are indicated based on studies reported in the literature. A vast majority of biodegradable polymers studied belongs to the polyester family, which includes polyglycolides and polylactides. Some disadvantages of these polymers in tissue engineering applications are their poor biocompatibility, release of acidic degradation products, poor processability and loss of mechanical properties very early during degradation. Other degradable polymers such as polyorthoesters, polyanhydrides, polyphosphazenes, and polyurethanes are also discussed and their advantages and disadvantages summarised. With advancements in tissue engineering it has become necessary to develop polymers that meet more demanding requirements. Recent work has focused on developing injectable polymer compositions based on poly (propylene fumarate and poly (anhydrides to meet these requirements in orthopaedic tissue engineering. Polyurethanes have received recent attention for development of degradable polymers because of their great potential in tailoring polymer structure to achieve mechanical properties and biodegradability to suit a variety of applications.

  9. Biodegradable Polymeric Microcapsules: Preparation and Properties

    NARCIS (Netherlands)

    Sawalha, H.I.M.; Schroën, C.G.P.H.; Boom, R.M.

    2011-01-01

    Biodegradable polymeric microcapsules can be produced through different methods of which emulsion solvent-evaporation/extraction is frequently used. In this technique, the polymer (often polylactide) is dissolved in a good solvent and is emulsified together with a poor solvent into a nonsolvent phas

  10. ENGINEERING BULLETIN: IN SITU BIODEGRADATION TREATMENT

    Science.gov (United States)

    In situ biodegradation may be used to treat low-to-intermediate concentrations of organic contaminants in place without disturbing or displacing the contaminated media. Although this technology has been used to degrade a limited number of inorganics, specifically cyanide and nitr...

  11. Biodegradable PEG-based drug carriers

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Braunová, Alena; Ulbrich, Karel; Jelínková, Markéta; Říhová, Blanka; Seymour, L. W.

    Glasgow : University of Strathclyde, 2005, s. 7-9. [Conference on New Approaches to Drug Delivery "Nanomedicines of the Future". Glasgow (GB), 18.11.2005] R&D Projects: GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505 Keywords : biodegradable polymers * drug carriers Subject RIV: EI - Biotechnology ; Bionics

  12. Biotransformation and Biodegradation of N-Substituted Aromatics in Methanogenic Granular Sludge.

    OpenAIRE

    Razo Flores, E.

    1997-01-01

    N-substituted aromatic compounds are environmental contaminants associated with the production and use of dyes, explosives, pesticides and pharmaceuticals among others. Nitro- and azo-substituted aromatic compounds with strong electron withdrawing groups are poorly biodegradable in aerobic treatment systems. Therefore anaerobic treatment technologies were considered in this research. The toxicity of these compounds to methanogenic bacteria was studied. Batch toxicity assays indicated that nit...

  13. Efficient biodegradation of chlorophenols in aqueous phase by magnetically immobilized aniline-degrading Rhodococcus rhodochrous strain

    OpenAIRE

    Hou, Jianfeng; Liu, Feixia; Wu, Nan; Ju, Jiansong; Yu, Bo

    2016-01-01

    Background Chlorophenols are environmental contaminants, which are highly toxic to living beings due to their carcinogenic, mutagenic and cytotoxic properties. Bacterial degradation has been considered a cost-effective and eco-friendly method of removing chlorophenols, compared to the traditional physical–chemical processes. Results In this study, we first developed an efficient process for the biodegradation of chlorophenols by magnetically immobilized Rhodococcus rhodochrous cells. R. rhodo...

  14. Use of a sonocatalytic process to improve the biodegradability of landfill leachate

    OpenAIRE

    A. Roodbari; R Nabizadeh Nodehi; a.h Mahvi; S Nasseri; Dehghani, M. H.; Alimohammadi, M.

    2012-01-01

    Landfill leachate is one of the most important sources of toxic organic compounds for ground and surface waters. Advanced oxidation processes can offer an effective and environmentally friendly method for pretreatment of landfill leachates. In this study, an ultrasonic process was used for the pre-treatment of landfill leachate with the objective of improving its overall biodegradability, evaluated in terms of the BOD5/COD ratio, up to a value compatible with biological treatment. Under optim...

  15. Potential for Polychlorinated Biphenyl Biodegradation in Sediments from Indiana Harbor and Ship Canal

    OpenAIRE

    Liang, Yi; Martinez, Andres; Hornbuckle, Keri C.; Mattes, Timothy E.

    2014-01-01

    Polychlorinated biphenyls (PCBs) are carcinogenic, persistent, and bioaccumulative contaminants that pose risks to human and environmental health. In this study, we evaluated the PCB biodegradation of sediments from Indiana Harbor and Ship Canal (IHSC), a PCB-contaminated site (average PCB concentration = 12,570 ng/g d.w.). PCB congener profiles and bacterial community structure in a core sediment sample (4.57 m long) were characterized. Analysis of vertical PCB congener profile patterns in s...

  16. Mesophilic and thermophilic anaerobic biodegradability of water hyacinth pre-treated at 80 °C

    OpenAIRE

    Ferrer Martí, Ivet; Campos Pozuelo, Elena; Flotats Ripoll, Xavier; Palatsi Civit, Jordi

    2010-01-01

    Water hyacinth (Eichornia crassipes) is a fast growing aquatic plant which causes environmental problems in continental water bodies. Harvesting and handling this plant becomes an issue, and focus has been put on the research of treatment alternatives. Amongst others, energy production through biomethanation has been proposed. The aim of this study was to assess the anaerobic biodegradability of water hyacinth under mesophilic and thermophilic conditions. The effect of a thermal sludge pre...

  17. Potential of Biogas Power Plant Produced by Anaerobic Digestion of Biodegradable Materials

    OpenAIRE

    Nur Shuhada Ghazali; Md Azree Othuman Mydin; Nik Fuaad Nik Abllah

    2013-01-01

    Biogas typically refers to a gas produced by the breakdown of organic matter in the absence of oxygen. It is a renewable energy source, like solar and wind energy. Furthermore, biogas can be produced from regionally available raw materials and recycled waste and is environmentally friendly and CO2 neutral. Biogas is produced by the anaerobic digestion or fermentation of biodegradable materials such as manure, sewage, municipal waste, green waste, plant material, and crops. B...

  18. Screening of Microorganisms for Biodegradation of Simazine Pollution (Obsolete Pesticide Azotop 50 WP)

    OpenAIRE

    Błaszak, Magdalena; Pełech, Robert; Graczyk, Paulina

    2011-01-01

    The capability of environmental microorganisms to biodegrade simazine—an active substance of 2-chloro-s-triazine herbicides (pesticide waste since 2007)—was assessed. An enormous metabolic potential of microorganisms impels to explore the possibilities of using them as an alternative way for thermal and chemical methods of utilization. First, the biotope rich in microorganisms resistant to simazine was examined. Only the higher dose of simazine (100 mg/l) had an actual influence on quantity o...

  19. VERMICOMPOSTING AS AN ALTERNATIVE WAY OF BIODEGRADABLE WASTE MANAGEMENT FOR SMALL MUNICIPALITIES

    OpenAIRE

    Aleksandra Sosnecka; Małgorzata Kacprzak; Agnieszka Rorat

    2016-01-01

    The aim of the study was to assess the usefulness of vermicomposting as a method of bioconversion of organic wastes, inter alia sewage sludge, biodegradable fraction of municipal solid wastes and green wastes. Vermicomposting is a biological process in which earthworms are employed to cooperate with microorganisms in order to convert organic wastes into a valuable product. It is considered as a relatively low cost and environmentally-friendly method of waste treatment. Nevertheless, as each b...

  20. Biodegradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1

    OpenAIRE

    Tallur, Preeti N.; Mulla, Sikandar I.; Megadi, Veena B.; Talwar, Manjunatha P.; Ninnekar, Harichandra Z.

    2015-01-01

    Pyrethroid pesticide cypermethrin is a environmental pollutant because of its widespread use, toxicity and persistence. Biodegradation of such chemicals by microorganisms may provide an cost-effective method for their detoxification. We have investigated the degradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1 in various matrices such as, polyurethane foam (PUF), polyacrylamide, sodium alginate and agar. The optimum temperature and pH for the degradation of cyperme...

  1. Biodegradability and groundwater pollutant potential of organic anti-freeze liquids used in borehole heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Klotzbuecher, Thimo; Kappler, Andreas; Straub, Kristina L.; Haderlein, Stefan B. [Center for Applied Geosciences, Institute for Geosciences, Eberhard-Karls-University Tuebingen, Sigwartstrasse 10, D-72076 Tuebingen (Germany)

    2007-08-15

    Ground source heat pump systems are increasingly being used to exploit the energy content of shallow geothermal resources for space heating and cooling. In this study we evaluate the potential for groundwater contamination of the different organic anti-freeze compounds (ethylene glycol, propylene glycol and betaine) used in these pumps, based on a literature review of their biodegradability and the results of our own laboratory experiments on aquifer material. Ethylene and propylene glycol were found to be readily biodegradable under both oxic and anoxic conditions, without formation of toxic or persistent intermediates. Long-term groundwater contamination by the glycols is therefore not expected. Betaine is also expected to be readily biodegradable in oxic and anoxic groundwater. The potential formation of trimethylamine, an intermediate of anaerobic betaine degradation, is, however, regarded as critical due to its unpleasant odor even at very low concentrations. Additionally, betaine has the potential to complex metal ions and thus may mobilize toxic metals in groundwater. We therefore recommend that betaine not be used in borehole heat exchanger fluids. In addition to organic anti-freeze compounds such as glycols, borehole heat exchanger fluids also contain additives such as corrosion inhibitors or biocides. We demonstrate that potentially toxic additives in these fluids inhibit biodegradation of the organic anti-freeze compounds. In order to ensure environmental compatibility of borehole heat exchanger fluids, further research should be conducted on the impact of additives on subsurface microbiological activity and on groundwater quality. (author)

  2. Investigation of an Optimum Method of Biodegradation Process for Jute Polymer Composites

    Directory of Open Access Journals (Sweden)

    Kh. Mumtahenah Siddiquee

    2016-07-01

    Full Text Available - Natural fiber reinforced polymer composites are currently being developed as an alternative for plastic material because of having some environmental benefits such as biodegradability, reduced dependence on non-renewable material, greenhouse gas emissions and enhanced energy recovery. This study focuses on the fabrication of jute polymer composites, biodegradation and the investigation of an optimum method of biodegradation. Polyethylene and Polypropylene were reinforced with 5%, 10% and 15% of fiber. Jute fiber of 1mm and 3mm fiber length were used to fabricate composites using compression molding. Degradation behavior of composites was studied in terms of percentage weight loss. Samples are kept in compost heap and in soil burial to observe the degradation of the specimens. In weather degradation the effect of natural phenomena were observed. The biodegradability of composites was enhanced in compost condition with respect to soil burial and weather degradation. Degradation rate were higher in compost condition considering natural weather and soil and higher fiber reinforced ratio shows higher degradation.

  3. Improving the biodegradative capacity of subsurface bacteria

    International Nuclear Information System (INIS)

    The continual release of large volumes of synthetic materials into the environment by agricultural and industrial sources over the last few decades has resulted in pollution of the subsurface environment. Cleanup has been difficult because of the relative inaccessibility of the contaminants caused by their wide dispersal in the deep subsurface, often at low concentrations and in large volumes. As a possible solution for these problems, interest in the introduction of biodegradative bacteria for in situ remediation of these sites has increased greatly in recent years (Timmis et al. 1988). Selection of biodegradative microbes to apply in such cleanup is limited to those strains that can survive among the native bacterial and predator community members at the particular pH, temperature, and moisture status of the site (Alexander, 1984). The use of microorganisms isolated from subsurface environments would be advantageous because the organisms are already adapted to the subsurface conditions. The options are further narrowed to strains that are able to degrade the contaminant rapidly, even in the presence of highly recalcitrant anthropogenic waste mixtures, and in conditions that do not require addition of further toxic compounds for the expression of the biodegradative capacity (Sayler et al. 1990). These obstacles can be overcome by placing the genes of well-characterized biodegradative enzymes under the control of promoters that can be regulated by inexpensive and nontoxic external factors and then moving the new genetic constructs into diverse groups of subsurface microbes. ne objective of this research is to test this hypothesis by comparing expression of two different toluene biodegradative enzymatic pathways from two different regulatable promoters in a variety of subsurface isolates

  4. Improving the biodegradative capacity of subsurface bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Romine, M.F.; Brockman, F.J.

    1993-04-01

    The continual release of large volumes of synthetic materials into the environment by agricultural and industrial sources over the last few decades has resulted in pollution of the subsurface environment. Cleanup has been difficult because of the relative inaccessibility of the contaminants caused by their wide dispersal in the deep subsurface, often at low concentrations and in large volumes. As a possible solution for these problems, interest in the introduction of biodegradative bacteria for in situ remediation of these sites has increased greatly in recent years (Timmis et al. 1988). Selection of biodegradative microbes to apply in such cleanup is limited to those strains that can survive among the native bacterial and predator community members at the particular pH, temperature, and moisture status of the site (Alexander, 1984). The use of microorganisms isolated from subsurface environments would be advantageous because the organisms are already adapted to the subsurface conditions. The options are further narrowed to strains that are able to degrade the contaminant rapidly, even in the presence of highly recalcitrant anthropogenic waste mixtures, and in conditions that do not require addition of further toxic compounds for the expression of the biodegradative capacity (Sayler et al. 1990). These obstacles can be overcome by placing the genes of well-characterized biodegradative enzymes under the control of promoters that can be regulated by inexpensive and nontoxic external factors and then moving the new genetic constructs into diverse groups of subsurface microbes. ne objective of this research is to test this hypothesis by comparing expression of two different toluene biodegradative enzymatic pathways from two different regulatable promoters in a variety of subsurface isolates.

  5. Hydrocarbons biodegradation in unsaturated porous medium

    International Nuclear Information System (INIS)

    Biological processes are expected to play an important role in the degradation of petroleum hydrocarbons in contaminated soils. However, factors influencing the kinetics of biodegradation are still not well known, especially in the unsaturated zone. To address these biodegradation questions in the unsaturated zone an innovative experimental set up based on a physical column model was developed. This experimental set up appeared to be an excellent tool for elaboration of a structured porous medium, with well defined porous network and adjusted water/oil saturations. Homogeneous repartition of both liquid phases (i.e., aqueous and non aqueous) in the soil pores, which also contain air, was achieved using ceramic membranes placed at the bottom of the soil column. Reproducible interfaces (and connectivity) are developed between gas, and both non mobile water and NAPL phases, depending on the above-defined characteristics of the porous media and on the partial saturations of these three phases (NAPL, water and gas). A respirometric apparatus was coupled to the column. Such experimental set up have been validated with hexadecane in dilution in an HMN phase. This approach allowed detailed information concerning n-hexadecane biodegradation, in aerobic condition, through the profile of the oxygen consumption rate. We have taken benefit of this technique, varying experimental conditions, to determine the main parameters influencing the biodegradation kinetics and compositional evolution of hydrocarbons, under steady state unsaturated conditions and with respect to aerobic metabolism. Impacts of the nitrogen quantity and of three different grain sizes have been examined. Biodegradation of petroleum cut, as diesel cut and middle distillate without aromatic fraction, were, also studied. (author)

  6. Evaluation of the hazardous impact of landfill leachates by toxicity and biodegradability tests.

    Science.gov (United States)

    Kalcíková, G; Vávrová, M; Zagorc-Koncan, J; Gotvajn, A Zgajnar

    2011-01-01

    The aim of our research was to assess the ecotoxicity and biodegradability of leachates originating from two parts of a municipal landfill before and after biological treatment in the existing treatment plant. Biotests represent important tools for adequate environmental characterization of landfill leachates and could be helpful in reliable assessment and monitoring of the treatment plant efficiency. For ecotoxicity testing of landfill leachate before and after biological treatment, different organisms were chosen: the bacteria Vibrio fischeri, a mixed culture of activated sludge, duckweed Lemna minor, white mustard Sinapis alba, brine shrimp Artemia salina, and water flea Daphnia magna. For assessment of biodegradability, the method for determination of oxygen demand in a closed respirometer was used. The investigated leachates were heavily polluted, and in some cases, effluent limits were exceeded even after treatment. Results indicated that toxicity tests and physico-chemical parameters determined before and after treatment equivalently assess the efficiency of the existing treatment plant. However, the investigated leachates showed higher toxicity to Daphnia magna and especially to Lemna minor in contrast to Vibrio fischeri and Artemia salina (neither was sensitive to any of the leachates). No leachates were readily biodegradable. Experiments confirmed that the battery of toxicity tests should be applied for more comprehensive assessment of landfill leachate treatment and for reliable assessment of the treated leachate's subsequent environmental impact. It was confirmed that treated leachate, in spite of its better physico-chemical characteristics, still represents a potential environmental risk and thus should not be released into the environment. PMID:21970176

  7. Environmental applications of manometric respirometric methods

    OpenAIRE

    Roppola, K. (Katri)

    2009-01-01

    Abstract In this work a manometric respirometric measuring system was applied to practical environmental cases related to wastewater management and biodegradation studies of oil-contaminated soils and materials used in landfill structures. Pollution of groundwater, surface water and soils is a worldwide problem. Therefore, tests simulating the biodegradation behaviour of organic compounds in water media and soils have become increasingly important. Respirometric methods provide direct meas...

  8. Tribological Performance of Hydrogenated Amorphous Carbon (a-C: H) DLC Coating when Lubricated with Biodegradable Vegetal Canola Oil

    OpenAIRE

    H.M. Mobarak; Chowdhury, M.

    2014-01-01

    Increasing environmental awareness and demands for lowering energy consumptions are strong driving forces behind the development of the vehicles of tomorrow. Without the advances of lubricant chemistry and adequate lubricant formulation, expansion of modern engines would not have been possible. Considering environmental awareness factors as compared to mineral oils, vegetal oil based biolubricants are renewable, biodegradable, non-toxic and have a least amount of greenhouse gases. Furthermore...

  9. Impact of biodegradation on the potential bioaccumulation and toxicity of refinery effluents.

    Science.gov (United States)

    Leonards, Pim E G; Postma, Jaap F; Comber, Mike; Whale, Graham; Stalter, George

    2011-10-01

    Whole effluent assessments (WEA) are being investigated as potential tools for controlling aqueous industrial discharges and minimizing environmental impact. The present study investigated how toxicity and the presence of potentially bioaccumulative substances altered when refinery effluents were subjected to biodegradation tests. Three petrochemical effluents were assessed, two freshwater and one saline, and subjected to two different types of biodegradation tests, resembling either a ready style (dissolved organic carbon (DOC)-die away) or an inherent style (Zahn-Wellens) test and the toxicity and potential to bioaccumulate parameters were re-analysed during and after biodegradation. A high proportion of the potentially bioaccumulative substances (PBS) in these effluents was easily biodegradable. Biodegradation not only lowered the PBS concentration but also toxicity. Appropriate controls are required however, as some increases in toxicity were observed after 4 h. In the present study, six other petrochemical effluents were also assessed for their PBS content and toxicity to increase the understanding of the relationship between PBS and toxicity. The results showed that the PBS concentrations in these samples were lower than the estimated benchmarks of acute toxicity for algae, fish and crustacean, although two samples were above the critical PBS values for chronic narcotic toxicity for Daphnia magna, which support the assumption that narcotic effects are mainly responsible for the observed toxicity in refinery effluents. It can be concluded that for facilities processing petroleum products that the measurement of PBS is a suitable surrogate for toxicity tests at the screening stage. Finally, the combination of persistency, bioaccumulation, and toxicity tests was shown to have additional value compared to an approach using only toxicity tests. PMID:21796668

  10. Optical and mechanical properties of UV-weathered biodegradable PHBV/PBAT nanocomposite films containing halloysite nanotubes

    Science.gov (United States)

    Scarfato, P.; Avallone, E.; Acierno, D.; Russo, P.

    2014-05-01

    Recently, the increasing use of plastics, stringent environmental issues and the awareness of the progressive reduction of available petrochemical resources have ever more guided the research interest towards the investigation and development of innovative materials intrinsically biodegradable or derived from renewable sources, and generally known as bio-based polymers. Amongst the biobased and biodegradable polymers, many investigations were reported in literature about a family of polyesters known as poly(hydroxyalkanoate)s (PHAs), one of whose most prevalent is poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). In this context, here we report the results of a photo-degradation study performed on biodegradable blown film samples based on a commercial grade PHBV/PBAT formulation. The films, subjected to photo-oxidative weathering in a climatic chamber under UV exposure, were systematically analysed in order to check the chemico-physical changes induced by the aging protocol, taking the as-produced films as the reference materials.

  11. Cloning and expression of vgb gene in Bacillus cereus, improve phenol and p-nitrophenol biodegradation

    Science.gov (United States)

    Vélez-Lee, Angel Eduardo; Cordova-Lozano, Felipe; Bandala, Erick R.; Sanchez-Salas, Jose Luis

    2016-02-01

    In this work, the vgb gene from Vitrocilla stercoraria was used to genetically modify a Bacillus cereus strain isolated from pulp and paper wastewater effluent. The gene was cloned in a multicopy plasmid (pUB110) or uni-copy gene using a chromosome integrative vector (pTrpBG1). B. cereus and its recombinant strains were used for phenol and p-nitrophenol biodegradation using aerobic or micro-aerobic conditions and two different temperatures (i.e. 37 and 25 °C). Complete (100%) phenol degradation was obtained for the strain where the multicopy of vgb gene was present, 98% for the strain where uni-copy gene was present and 45% for wild type strain for the same experimental conditions (i.e. 37 °C and aerobic condition). For p-nitrophenol degradation at the same conditions, the strain with the multi-copy vgb gene was capable to achieve 50% of biodegradation, ∼100% biodegradation was obtained using the uni-copy strain and ∼24% for wild type strain. When the micro-aerobic condition was tested, the biodegradation yield showed a significant decreased. The biodegradation trend observed for aerobic was similar for micro-aerobic assessments: the modified strains showed higher degradation rates when compared with wild type strain. For all experimental conditions, the highest p-nitrophenol degradation was observed using the strain with uni-copy of vgb gene. Besides the increase of biodegradative capability of the strain, insertion of the vgb gene was observed able to modify other morphological characteristics such as avoiding the typical flake formation in the B. cereus culture. In both cases, the modification seems to be related with the enhancement of oxygen supply to the cells generated by the vgb gene insertion. The application of the genetically modified microorganism (GMM) to the biodegradation of pollutants in contaminated water possesses high potential as an environmentally friendly technology to facing this emergent problem.

  12. Biodegradation of partially hydrolyzed polyacrylamide by bacteria isolated from production water after polymer flooding in an oil field

    International Nuclear Information System (INIS)

    Partially hydrolyzed polyacrylamide (HPAM) in production water after polymer flooding in oil filed causes environmental problems, such as increases the difficulty in oil-water separation, degrades naturally to produce toxic acrylamide and endanger local ecosystem. Biodegradation of HPAM may be an efficient way to solve these problems. The biodegradability of HPAM in an aerobic environment was studied. Two HPAM-degrading bacterial strains, named PM-2 and PM-3, were isolated from the produced water of polymer flooding. They were subsequently identified as Bacillus cereus and Bacillus sp., respectively. The utilization of HPAM by the two strains was explored. The amide group of HPAM could serve as a nitrogen source for the two microorganisms, the carbon backbone of these polymers could be partly utilized by microorganisms. The HPAM samples before and after bacterial biodegradation were analyzed by the infrared spectrum, high performance liquid chromatography and scanning electronic microscope. The results indicated that the amide group of HPAM in the biodegradation products had been converted to a carboxyl group, and no acrylamide monomer was found. The HPAM carbon backbone was metabolized by the bacteria during the course of its growth. Further more, the hypothesis about the biodegradation of HPAM in aerobic bacterial culture is proposed.

  13. Biodegradation of partially hydrolyzed polyacrylamide by bacteria isolated from production water after polymer flooding in an oil field

    Energy Technology Data Exchange (ETDEWEB)

    Bao Mutai, E-mail: mtbao@ouc.edu.cn [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); Chen Qingguo; Li Yiming [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); Jiang Guancheng [College of Petroleum Engineering, China University of Petroleum, Beijing 102249 (China)

    2010-12-15

    Partially hydrolyzed polyacrylamide (HPAM) in production water after polymer flooding in oil filed causes environmental problems, such as increases the difficulty in oil-water separation, degrades naturally to produce toxic acrylamide and endanger local ecosystem. Biodegradation of HPAM may be an efficient way to solve these problems. The biodegradability of HPAM in an aerobic environment was studied. Two HPAM-degrading bacterial strains, named PM-2 and PM-3, were isolated from the produced water of polymer flooding. They were subsequently identified as Bacillus cereus and Bacillus sp., respectively. The utilization of HPAM by the two strains was explored. The amide group of HPAM could serve as a nitrogen source for the two microorganisms, the carbon backbone of these polymers could be partly utilized by microorganisms. The HPAM samples before and after bacterial biodegradation were analyzed by the infrared spectrum, high performance liquid chromatography and scanning electronic microscope. The results indicated that the amide group of HPAM in the biodegradation products had been converted to a carboxyl group, and no acrylamide monomer was found. The HPAM carbon backbone was metabolized by the bacteria during the course of its growth. Further more, the hypothesis about the biodegradation of HPAM in aerobic bacterial culture is proposed.

  14. Controlled morphology of biodegradable polymer blends

    Science.gov (United States)

    Buddhiranon, Sasiwimon; Kyu, Thein

    2009-03-01

    Phase diagrams of biodegradable polymer blends containing poly(ɛ-caprolactone) (PCL) and poly(d,l-lactic acid) (PDLLA) having two different molecular weights were established by means of cloud point measurement and differential scanning calorimetry. Subsequently, the theoretical phase diagram was calculated self-consistently based on the combination of Flory-Huggins free energy for liquid-liquid phase separation and phase field free energy for crystal solidification. The phase diagrams thus obtained were LCST type or hour-glass type, which depended on molecular weight of PDLLA utilized. Guided by the phase diagram, the emerged morphology was determined as a function of blend concentration and temperature. It appears that the morphology control is feasible that ultimately affects the end-use property of PCL/PDLLA blends. A wide variety of morphology of biodegradable polymer may be developed with the porous structure and pore size to control scaffold porosity and the rate of drug delivery.

  15. Biodegradable Epoxy Networks Cured with Polypeptides

    Science.gov (United States)

    Nakamura, Shigeo; Kramer, Edward J.

    2006-03-01

    Epoxy resins are used widely for adhesives as well as coatings. However, once cured they are usually highly cross-linked and are not biodegradable. To obtain potentially biodegradable polypeptides that can cure with epoxy resins and achieve as good properties as the conventional phenol novolac hardeners, poly(succinimide-co-tyrosine) was synthesized by thermal polycondensation of L-aspartic acid and L-tyrosine with phosphoric acid under reduced pressure. The tyrosine/succinimide ratio in the polypeptide was always lower than the tyrosine/(aspartic acid) feed ratio and was influenced by the synthesis conditions. Poly(succinimide-tyrosine- phenylalanine) was also synthesized from L-aspartic acid, L- tyrosine and L-phenylalanine. The thermal and mechanical properties of epoxy resins cured with these polypeptides are comparable to those of similar resins cured with conventional hardeners. In addition, enzymatic degradability tests showed that Chymotrypsin or Subtilisin A could cleave cured films in an alkaline borate buffer.

  16. Anaerobic Biodegradability of Agricultural Renewable Fibers

    OpenAIRE

    Shi, Bo; Lortscher, Peter; Palfery, Doris

    2013-01-01

    Natural fiber-based paper and paperboard products are likely disposed of in municipal wastewater, composting, or landfill after an intended usage. However, there are few studies reporting anaerobic sludge digestion and biodegradability of agricultural fibers although the soiled sanitary products, containing agricultural fibers, are increasingly disposed of in municipal wastewater or conventional landfill treatment systems, in which one or more unit operations are anaerobic digestion. We condu...

  17. Assessment of polymer-based nanocomposites biodegradability

    OpenAIRE

    Machado, A.V.; Araújo, Andreia Isabel Silva; Oliveira, Manuel

    2015-01-01

    The management of solid waste is a growing concern in many countries. Municipal solid waste is a major component of the total solid waste generated by society, and the composting of municipal solid waste has gained some attention even though a composting treatment for it is not yet widespread. It may not be realistic to replace large portions of these plastics with biodegradable materials, and it may be more important to separate plastics unsuitable for the composting process at the generatin...

  18. Biodegradation of Petroleum Hydrocarbons in Soil

    OpenAIRE

    MR Mehrasbi; B Haghighi; M.Shariat; S Naseri; Naddafi, K

    2003-01-01

    Biodegradation of petroleum hydrocarbons (20 g/kg dw soil) was investigated in 3 media, differing in the kind of petroleum fractions. In the laboratory experiments, during 5 months, the activities of petroleum hydrocarbon-degrading microorganisms and dehydrogenase activity of soil was determined. Gas chromatographic analysis showed the biological decontaminations for gas oil, kerosene and synthetic mixture (gas oil, kerosene and furnace oil) are 60 %, 36 % and 55 %, respectively. Dehydrogenas...

  19. Nanomembranes and nanofibers from biodegradable conducting polymers

    OpenAIRE

    Jordi Puiggalí; Carlos Alemán; Luís Javier del Valle; Elaine Armelin; María del Mar Pérez-Madrigal; Elena Llorens

    2013-01-01

    This review provides a current status report of the field concerning preparation of fibrous mats based on biodegradable (e. g., aliphatic polyesters such as polylactide or polycaprolactone) and conducting polymers (e. g., polyaniline, polypirrole or polythiophenes). These materials have potential biomedical applications (e. g., tissue engineering or drug delivery systems) and can be combined to get free-standing nanomembranes and nanofibers that retain the better properties of their correspon...

  20. Nanomembranes and Nanofibers from Biodegradable Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Jordi Puiggalí

    2013-09-01

    Full Text Available This review provides a current status report of the field concerning preparation of fibrous mats based on biodegradable (e.g., aliphatic polyesters such as polylactide or polycaprolactone and conducting polymers (e.g., polyaniline, polypirrole or polythiophenes. These materials have potential biomedical applications (e.g., tissue engineering or drug delivery systems and can be combined to get free-standing nanomembranes and nanofibers that retain the better properties of their corresponding individual components. Systems based on biodegradable and conducting polymers constitute nowadays one of the most promising solutions to develop advanced materials enable to cover aspects like local stimulation of desired tissue, time controlled drug release and stimulation of either the proliferation or differentiation of various cell types. The first sections of the review are focused on a general overview of conducting and biodegradable polymers most usually employed and the explanation of the most suitable techniques for preparing nanofibers and nanomembranes (i.e., electrospinning and spin coating. Following sections are organized according to the base conducting polymer (e.g., Sections 4–6 describe hybrid systems having aniline, pyrrole and thiophene units, respectively. Each one of these sections includes specific subsections dealing with applications in a nanofiber or nanomembrane form. Finally, miscellaneous systems and concluding remarks are given in the two last sections.

  1. Titanate nanotube coatings on biodegradable photopolymer scaffolds

    International Nuclear Information System (INIS)

    Rigid, biodegradable photopolymer scaffolds were coated with titanate nanotubes (TNTs) by using a spin-coating method. TNTs were synthesized by a hydrothermal process at 150 °C under 4.7 bar ambient pressure. The biodegradable photopolymer scaffolds were produced by mask-assisted excimer laser photocuring at 308 nm. For scaffold coating, a stable ethanolic TNT sol was prepared by a simple colloid chemical route without the use of any binding compounds or additives. Scanning electron microscopy along with elemental analysis revealed that the scaffolds were homogenously coated by TNTs. The developed TNT coating can further improve the surface geometry of fabricated scaffolds, and therefore it can further increase the cell adhesion. Highlights: ► Biodegradable scaffolds were produced by mask-assisted UV laser photocuring. ► Titanate nanotube deposition was carried out without binding compounds or additives. ► The titanate nanotube coating can further improve the surface geometry of scaffolds. ► These reproducible platforms will be of high importance for biological applications

  2. Macmillan ring-free oil biodegradation project

    International Nuclear Information System (INIS)

    Crude oil processing at the Macmillan Ring-Free Oil Company facility (Macmillan Oil Refinery) began in approximately 1929. Operations produced naphtha, diesel fuel, insulating oil, lubricating oil, and asphalt until approximately 1987. The waste material generated by the process was Resource Conservation and Recovery Act (RCRA) listed waste K048-Dissolved Air Flotation (DAF) float containing volatile and semivolatile organic compounds. On-site unlined surface impoundments used to store DAF and crude oil wastes have periodically overflowed and contaminated two adjacent creeks. A series of extensive site investigation activities in 1992 and 1993 addressed tank and drum, asbestos, lagoon and groundwater contamination at the site. The results of the investigation indicated that the majority of the contamination is contained within 10 lagoons and surrounding soils. Volume calculations indicate that approximately 45,000 cubic yards of contaminated soils and sediments required treatment. A field simulation of biodegradation of these wastes in a land treatment unit was implemented during removal actions. Results of the remedy selection biodegradation assessment provided evidence of a 61 to 96 percent reduction in contaminant concentrations. These concentrations are below land disposal and health risk-based criteria. The technology of biodegradation meets the EPA criteria for inclusion in the potential remedies for the Macmillan Oil Refinery

  3. Biodegradation potential of photocatalyzed surfactant washwater.

    Science.gov (United States)

    Maillacheruvu, K; Buck, L; Lee, E

    2001-01-01

    Enhanced release of hydrophobic compounds from a soil matrix can be achieved by use of soil-washing or soil-flushing using various surfactants. However, the surfactants used in achieving the desorption of organic contaminants may also cause a problem in subsequent removal/disposal of these contaminants. UV radiation in the presence of TiO2 as a pre-treatment step to achieve initial (or partial) breakdown of naphthalene and Sodium Dodecyl Sulfate (SDS) using batch experiments indicated that 56% to 88% naphthalene degradation occurred within 30 minutes to one hour. Preliminary results on the estimate of the batch aerobic biodegradation potential of photocatalyzed washwater containing naphthalene and SDS suggested that SDS was the major carbon and energy source for an activated sludge enrichment culture and an enrichment culture obtained from microorganisms at a contaminated site. Continuous-flow stirred tank reactors (CSTRs) with with a solids retention time (SRT) of 4 days were not effective, but an SRT of 8 days was successful in biodegrading the naphthalene and surfactant. These results indicated that photocatalytic treatment as a pre-treatment step followed by a biodegradation step may offer potential in cleaning up surfactant washwaters containing organic contaminants. PMID:11501312

  4. Titanate nanotube coatings on biodegradable photopolymer scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Beke, S., E-mail: szabolcs.beke@iit.it [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Kőrösi, L. [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632, Pécs (Hungary); Scarpellini, A. [Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Anjum, F.; Brandi, F. [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy)

    2013-05-01

    Rigid, biodegradable photopolymer scaffolds were coated with titanate nanotubes (TNTs) by using a spin-coating method. TNTs were synthesized by a hydrothermal process at 150 °C under 4.7 bar ambient pressure. The biodegradable photopolymer scaffolds were produced by mask-assisted excimer laser photocuring at 308 nm. For scaffold coating, a stable ethanolic TNT sol was prepared by a simple colloid chemical route without the use of any binding compounds or additives. Scanning electron microscopy along with elemental analysis revealed that the scaffolds were homogenously coated by TNTs. The developed TNT coating can further improve the surface geometry of fabricated scaffolds, and therefore it can further increase the cell adhesion. Highlights: ► Biodegradable scaffolds were produced by mask-assisted UV laser photocuring. ► Titanate nanotube deposition was carried out without binding compounds or additives. ► The titanate nanotube coating can further improve the surface geometry of scaffolds. ► These reproducible platforms will be of high importance for biological applications.

  5. Biodegradation of dispersed oil in Arctic seawater at -1°C.

    Directory of Open Access Journals (Sweden)

    Kelly M McFarlin

    Full Text Available As offshore oil and gas exploration expands in the Arctic, it is important to expand the scientific understanding of arctic ecology and environmental impact to mitigate operational risks. Understanding the fate of oil in arctic seawater is a key factor for consideration. Here we report the chemical loss due to the biodegradation of Alaska North Slope (ANS crude oil that would occur in the water column following the successful dispersion of a surface oil slick. Primary biodegradation and mineralization were measured in mesocosms containing Arctic seawater collected from the Chukchi Sea, Alaska, incubated at -1°C. Indigenous microorganisms degraded both fresh and weathered oil, in both the presence and absence of Corexit 9500, with oil losses ranging from 46-61% and up to 11% mineralization over 60 days. When tested alone, 14% of 50 ppm Corexit 9500 was mineralized within 60 days. Our study reveals that microorganisms indigenous to Arctic seawater are capable of performing extensive biodegradation of chemically and physically dispersed oil at an environmentally relevant temperature (-1°C without any additional nutrients.

  6. Magnetic Susceptibility Measurements as a Proxy for Hydrocarbon Biodegradation

    Science.gov (United States)

    Mewafy, F.; Atekwana, E. A.; Slater, L. D.; Werkema, D.; Revil, A.; Ntarlagiannis, D.; Skold, M.

    2011-12-01

    Magnetic susceptibility (MS) measurements have been commonly used in paleoclimate studies, as a proxy for environmental pollution such as heavy metal contamination, and for delineating zones of oil seeps related to hydrocarbon exploration. Few studies have assessed the use of MS measurements for mapping zones of oil pollution. In this study, we investigated the variation in magnetic susceptibility across a hydrocarbon contaminated site undergoing biodegradation. Our objective was to investigate if MS measurements could be used as a proxy indicator of intrinsic bioremediation linked to the activity of iron reducing bacteria. An improved understanding of the mechanisms generating geophysical signatures associated with microbial enzymatic activity could permit the development of geophysical imaging technologies for long-term, minimally invasive and sustainable monitoring of natural biodegradation at oil spill sites. We used a Bartington MS probe to measure MS data along fifteen boreholes within contaminated (both free phase and dissolved phase hydrocarbon plumes) and clean areas. Our results show the following: (1) an enhanced zone of MS straddling the water table at the contaminated locations, not observed at the clean locations; (2) MS values within the free product plume are higher compared to values within the dissolved product plume; (3) the MS values within the vadoze zone above the free product plume are higher compared to values within the dissolved product plume; 4) the zone of high MS is thicker within the free product plume compared to the dissolved product plume. We suggest that the zone of enhanced MS results from the precipitation of magnetite related to the oxidation of the hydrocarbons coupled to iron reduction. Our data documents a strong correlation between MS and hydrocarbon concentration. We conclude that recognition of these zones of enhanced magnetite formation allows for the application of MS measurements as a: (1) low cost, rapid monitoring

  7. Stability of biodegradable waterborne polyurethane films in buffered saline solutions.

    Science.gov (United States)

    Lin, Ying Yi; Hung, Kun-Che; Hsu, Shan-Hui

    2015-01-01

    The stability of polyurethane (PU) is of critical importance for applications such as in coating industry or as biomaterials. To eliminate the environmental concerns on the synthesis of PU which involves the use of organic solvents, the aqueous-based or waterborne PU (WBPU) has been developed. WBPU, however, may be unstable in an electrolyte-rich environment. In this study, the authors reported the stability of biodegradable WBPU in the buffered saline solutions evaluated by atomic force microscopy (AFM). Various biodegradable WBPU films were prepared by spin coating on coverslip glass, with a thickness of ∼300 nm. The surface AFM images of poly(ε-caprolactone) (PCL) diol-based WBPU revealed nanoglobular structure. The same feature was observed when 20% molar of the PCL diol soft segment was replaced by polyethylene butylenes adipate diol. After hydration in buffered saline solutions for 24 h, the surface domains generally increased in sizes and became irregular in shape. On the other hand, when the soft segment was replaced by 20% poly(l-lactide) diol, a meshlike surface structure was demonstrated by AFM. When the latter WBPU was hydrated, the surface domains appeared to be disconnected. Results from the attenuated total reflectance infrared spectroscopy and x-ray photoelectron spectroscopy indicated that the surface chemistry of WBPU films was altered after hydration. These changes were probably associated with the neutralization of carboxylate by ions in the saline solutions, resulting in the rearrangements of soft and hard segments and causing instability of the WBPU. PMID:26296357

  8. Biodegradability evaluation of polymers by ISO 14855-2.

    Science.gov (United States)

    Funabashi, Masahiro; Ninomiya, Fumi; Kunioka, Masao

    2009-10-01

    Biodegradabilities of polymers and their composites in a controlled compost were described. Polycaprolactone (PCL) and poly(lactic acid) (PLA) were employed as biodegradable polymers. Biodegradabilities of PCL and PLA samples in a controlled compost were measured using a Microbial Oxidative Degradation Analyzer (MODA) according to ISO 14855-2. Sample preparation method for biodegradation test according to ISO/DIS 10210 was also described. Effects of sizes and shapes of samples on biodegradability were studied. Reproducibility of biodegradation test of ISO 14855-2 by MODA was confirmed. Validity of sample preparation method for polymer pellets, polymer film, and polymer products of ISO/DIS 10210 for ISO 14855-2 was confirmed. PMID:20111676

  9. Biodegradable materials as binders for IVth generation moulding sands

    Directory of Open Access Journals (Sweden)

    K. Major-Gabry

    2015-09-01

    Full Text Available This paper focuses on the possibility of using the biodegradable materials as binders (or parts of binders?compositions for foundry moulding and core sands. Results showed that there is a great possibility of using available biodegradable materials as foundry moulding sand binders. Using biodegradable materials as partial content of new binders, or additives to moulding sands may not only decrease the toxicity and increase reclamation ability of tested moulding sands, but also accelerate the biodegradation rate of used binders, and the new biodegradable additive (PCL did not decrease the strength and thermal properties. In addition, using polycaprolactone (PCL as a biodegradable material may improve the flexibility of moulding sands with polymeric binder and reduce toxicity.

  10. Fractionation of stable isotopes in perchlorate and nitrate during in situ biodegradation in a sandy aquifer

    Science.gov (United States)

    Hatzinger, P.B.; Böhlke, J.K.; Sturchio, N.C.; Gu, B.; Heraty, L.J.; Borden, R.C.

    2009-01-01

    Environmental context. Perchlorate (ClO4-) and nitrate (NO3-) are common co-contaminants in groundwater, with both natural and anthropogenic sources. Each of these compounds is biodegradable, so in situ enhanced bioremediation is one alternative for treating them in groundwater. Because bacteria typically fractionate isotopes during biodegradation, stable isotope analysis is increasingly used to distinguish this process from transport or mixing-related decreases in contaminant concentrations. However, for this technique to be useful in the field to monitor bioremediation progress, isotope fractionation must be quantified under relevant environmental conditions. In the present study, we quantify the apparent in situ fractionation effects for stable isotopes in ClO4- (Cl and O) and NO3- (N and O) resulting from biodegradation in an aquifer. Abstract. An in situ experiment was performed in a shallow alluvial aquifer in Maryland to quantify the fractionation of stable isotopes in perchlorate (Cl and O) and nitrate (N and O) during biodegradation. An emulsified soybean oil substrate that was previously injected into this aquifer provided the electron donor necessary for biological perchlorate reduction and denitrification. During the field experiment, groundwater extracted from an upgradient well was pumped into an injection well located within the in situ oil barrier, and then groundwater samples were withdrawn for the next 30 h. After correction for dilution (using Br- as a conservative tracer of the injectate), perchlorate concentrations decreased by 78% and nitrate concentrations decreased by 82% during the initial 8.6 h after the injection. The observed ratio of fractionation effects of O and Cl isotopes in perchlorate (18O/37Cl) was 2.6, which is similar to that observed in the laboratory using pure cultures (2.5). Denitrification by indigenous bacteria fractionated O and N isotopes in nitrate at a ratio of ???0.8 (18O/15N), which is within the range of values

  11. Ecotoxicity and biodegradability in soil and aqueous media of lubricants used in forestry applications.

    Science.gov (United States)

    Cecutti, Christine; Agius, Dominique

    2008-11-01

    The work presented in this article focuses on the environmental impact of hydraulic fluids used in forestry. Migration and biodegradability of three biolubricants and a mineral lubricant were monitored in two forest soils and in a liquid medium. These studies proved that biolubricants were easily degradable products and showed ultimate biodegradability rates significantly higher than those of the fluid of mineral origin, specially in a soil environment. This superiority was even greater when fluid behaviour was observed after 1000h of use. Ecotoxicity test enabled the classification and comparison of biolubricants and showed that toxicity levels of the biolubricants were never high however, even after use, as compared to petroleum-based fluid. PMID:18472418

  12. Aquatic ecotoxicity and biodegradability of cracked gas oils. Summary of relevant test data

    Energy Technology Data Exchange (ETDEWEB)

    Comber, M.I.H.; Den Haan, K.; Djemel, N.; Eadsforth, C.V.; King, D.; Parkerton, T.; Leon Paumen, M.; Dmytrasz, B.; Del Castillo, F.

    2013-09-15

    This report describes the experimental procedures and the results obtained in acute and chronic ecotoxicity tests as well as a biodegradation study on cracked gas oil samples. In a CONCAWE study, three samples were tested for toxicity to the crustacean zooplankter, Daphnia magna and the algae, Pseudokirchneriella subcapitata (alternatively known as Selenastrum capricornutum) using water accommodated fractions. In addition, another sample was tested in a separate API study for toxicity to the fish, Oncorhynchus mykiss, the crustacean zooplankter, Daphnia magna (acute and chronic) and the algae, Pseudokirchneriella subcapitata using water accommodated fractions. The API sample was also tested for ready biodegradability in a manometric respirometry test. All these results assist in determining the environmental hazard posed by cracked gas oils.

  13. Effects of nutrients on crude oil biodegradation in the upper intertidal zone

    Energy Technology Data Exchange (ETDEWEB)

    Youngsook Oh [Myongji Univ., Dept. of Environmental Engineering and Biotechnology, Yongin (Korea); Dooseup Sim; Sangjin Kim [Korea Ocean Research and Development Inst., Microbiology Lab., Ansan (Korea)

    2001-07-01

    To enhance biodegradation, nutrients in the form of slow-release fertilizer (SRF) were applied to oil-contaminated microcosms (3%, v/v) which simulated intertidal environmental systems. Although nutrient concentrations in the interstitial water were not proportional to those in amended SRF, microbial activity, growth of oil-degrading microorganisms, and oil-degradation rate were closely related to the concentration of nutrients in the interstitial water. Adding nutrients at higher dose (microcosm I, 144.4 mg C/kg sand/day, versus microcosm II, 8.5 mg C/kg sand/day) had a positive effect on oil degradation rate, which was especially obvious during the early phase of treatment. Use of pristane, phytane, and nor-hopane as biomarkers enabled the detection of significant treatment differences in hydrocarbon biodegradation, which were not reliable enough when the data were normalised to sand mass. (Author)

  14. Biodegradation of aliphatic hydrocarbons in the presence of hydroxy cucurbit[6]uril.

    Science.gov (United States)

    Pasumarthi, Rajesh; Kumar, Vikash; Chandrasekharan, Sivaraman; Ganguly, Anasuya; Banerjee, Mainak; Mutnuri, Srikanth

    2014-11-15

    Aliphatic hydrocarbons are one of the major environmental pollutants with reduced bioavailability. The present study focuses on the effect of hydroxy cucurbit[6]uril on the bioavailability of hydrocarbons. A bacterial consortium was used for biodegradation studies under saline and non-saline conditions. Based on denaturing gradient gel electrophoresis results it was found that the consortium under saline conditions had two different strains. The experiment was conducted in microcosms with tetradecane, hexadecane, octadecane and mixture of the mentioned hydrocarbons as the sole carbon source. The residual hydrocarbon was quantified using gas chromatography every 24h. It was found that biodegradation of tetradecane and hexadecane, as individual carbon source increased in the presence of hydroxy CB[6], probably due to the increase in their bioavailability. In case of octadecane this did not happen. Bioavailability of all three aliphatic hydrocarbons was increased when provided as a mixture to the consortium under saline conditions. PMID:25277552

  15. Use of a sonocatalytic process to improve the biodegradability of landfill leachate

    Directory of Open Access Journals (Sweden)

    A. Roodbari

    2012-06-01

    Full Text Available Landfill leachate is one of the most important sources of toxic organic compounds for ground and surface waters. Advanced oxidation processes can offer an effective and environmentally friendly method for pretreatment of landfill leachates. In this study, an ultrasonic process was used for the pre-treatment of landfill leachate with the objective of improving its overall biodegradability, evaluated in terms of the BOD5/COD ratio, up to a value compatible with biological treatment. Under optimized experimental conditions (pH of 10, power of 110 watts, frequency of 60 kHz, TiO2 concentration of 5 mg/L and exposure time of 120 min, this method showed suitability for partial removal of chemical oxygen demand (COD. The biodegradability was significantly improved (BOD5/COD increased from 0.210 to 0.786 which allowed an almost total removal of COD by a sequential activated sludge process.

  16. Environmental application of radiation grafting

    International Nuclear Information System (INIS)

    Adsorbent having high selectivity against a certain metal ion was synthesized by means of radiation-induced graft polymerization for the purpose of environmental application. The resulting adsorbents were utilized for the removal of toxic metal from scallop waste and the collection of uranium from seawater. As a novel application of grafting, the biodegradability of poly-hydroxybutylate was controlled by grafting. The biodegradability could be depressed by the graft chain and then recovered by external stimuli such as thermal and chemical treatments. (author)

  17. Biodegradation of flax fiber reinforced poly lactic acid

    Directory of Open Access Journals (Sweden)

    2010-07-01

    Full Text Available Woven and nonwoven flax fiber reinforced poly lactic acid (PLA biocomposites were prepared with amphiphilic additives as accelerator for biodegradation. The prepared composites were buried in farmland soil for biodegradability studies. Loss in weight of the biodegraded composite samples was determined at different time intervals. The surface morphology of the biodegraded composites was studied with scanning electron microscope (SEM. Results indicated that in presence of mandelic acid, the composites showed accelerated biodegradation with 20–25% loss in weight after 50–60 days. On the other hand, in presence of dicumyl peroxide (as additive, biodegradation of the composites was relatively slow as confirmed by only 5–10% loss in weight even after 80–90 days. This was further confirmed by surface morphology of the biodegraded composites. We have attempted to show that depending on the end uses, we can add different amphiphilic additives for delayed or accelerated biodegradability. This work gives us the idea of biodegradation of materials from natural fiber reinforced PLA composites when discarded carelessly in the environment instead of proper waste disposal site.

  18. Silicon microneedles array with biodegradable tips for transdermal drug delivery

    CERN Document Server

    Chen, B; Tay, Francis; Wong, Y T; Iliescu, C

    2008-01-01

    This paper presents the fabrication process, characterization results and basic functionality of silicon microneedles array with biodegradable tips. In order to avoid the main problems related to silicon microneedles : broking of the top part of the needles inside the skin, a simple solution can be fabrication of microneedles array with biodegradable tips. The silicon microneedles array was fabricated by using reactive ion etching while the biodegradable tips were performed using and anodization process that generates selectively porous silicon only on the top part of the skin. The paper presents also the results of in vitro release of calcein using microneedles array with biodegradable tips

  19. Critical evaluation of biodegradable polymers used in nanodrugs.

    Science.gov (United States)

    Marin, Edgar; Briceño, Maria Isabel; Caballero-George, Catherina

    2013-01-01

    Use of biodegradable polymers for biomedical applications has increased in recent decades due to their biocompatibility, biodegradability, flexibility, and minimal side effects. Applications of these materials include creation of skin, blood vessels, cartilage scaffolds, and nanosystems for drug delivery. These biodegradable polymeric nanoparticles enhance properties such as bioavailability and stability, and provide controlled release of bioactive compounds. This review evaluates the classification, synthesis, degradation mechanisms, and biological applications of the biodegradable polymers currently being studied as drug delivery carriers. In addition, the use of nanosystems to solve current drug delivery problems are reviewed. PMID:23990720

  20. Strawberry under low-tunnel protected with experimental biodegradable films

    International Nuclear Information System (INIS)

    A research was carried out in order to test innovative biodegradable materials for the protected cultivation of strawberry in Southern Italy. A field test was carried out in order to evaluate the agronomic performances of the biodegradable materials in comparison with non biodegradable LDPE materials. Different kinds of biodegradable black films were used for soil mulching and transparent biodegradable films for the covering of the low tunnels. Climatic data of the site, air temperature and relative humidity inside the low tunnels and soil temperature under the mulching films were gathered during the test. Besides, laboratory radiometric tests were executed on the films in order to evaluate parameters such as the transmissivity in different wavelength ranges. The biodegradable materials showed a high capacity to induce greenhouse effect due to their very low transmissivity in the long wave infrared range. The yield obtained using biodegradable materials was on average 12% higher then the one obtained with traditional films. Concerning the earliness, at the first day of the harvest, the yield obtained with biodegradable materials was 70% higher in comparison with the case of LDPE films. The research showed that the biodegradable materials could be a sustainable alternative to the plastic films based on fossil raw materials

  1. Influence of inorganic salt on aerobic biodegradability of dyestuffs

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    this paper, the influence of inorganic salt on aerobic biodegradability of dyestuffs was studied by means of semicontinuous activated sludge method. It was found that: biodegradability of dyestuffs would decrease with the increase of the concentration of NaCl; however, biodegradability in the condition of NaCl = 30 g/L was better than that in the condition of NaCl =15 g/L; in the three NaCl conditions, biodegradability of tasted dyestuffs followed the following order: NaCl= 0 g/L > NaCl= 30g/L>NaCl= 15 g/L.

  2. New aspects on atrazine biodegradation

    Directory of Open Access Journals (Sweden)

    Luciane Sene

    2010-04-01

    Full Text Available The world practice of using agrochemicals for long periods, in an indiscriminated and abusive way, has been a concern of the authorities involved in public health and sustainability of the natural resources, as a consequence of environmental contamination. Agrochemicals refer to a broad range of insecticides, fungicides and herbicides, and among them stands out atrazine, a herbicide intensively used in sugarcane, corn and sorghum cultures, among others. Researches have demonstrated that atrazine has toxic effects in algae, aquatic plants, aquatic insects, fishes and mammals. Due to the toxicity and persistence of atrazine in the environment, the search of microbial strains capable of degrading it is fundamental to the development of bioremediation processes, as corrective tools to solve the current problems of the irrational use of agrochemicals. This review relates the main microbial aspects and research on atrazine degradation by isolated microbial species and microbial consortia, as well as approaches on the development of techniques for microbial removal of atrazine in natural environments.A prática mundial do uso de agroquímicos por períodos extensos, de maneira indiscriminada e abusiva, tem mobilizado as autoridades envolvidas em saúde pública e sustentabilidade de fontes naturais, como uma conseqüência da contaminação ambiental. Agroquímicos referem-se a uma ampla variedade de inseticidas, fungicidas e herbicidas, entre estes a atrazina, um herbicida intensivamente usado em culturas de cana-de-açúcar, milho, sorgo, entre outros. Pesquisadores têm demonstrado que a atrazina tem efeitos tóxicos em algas, plantas aquáticas, insetos aquáticos, peixes e mamíferos. Devido à toxicidade e à persistência da atrazina no ambiente, a busca de linhagens microbianas capazes de degradá-la é fundamental para o desenvolvimento de processos de biorremediação, com uma ferramenta corretiva para solucionar problemas decorridos do uso

  3. New insights into polyurethane biodegradation and realistic prospects for the development of a sustainable waste recycling process.

    Science.gov (United States)

    Cregut, Mickael; Bedas, M; Durand, M-J; Thouand, G

    2013-12-01

    Polyurethanes are polymeric plastics that were first used as substitutes for traditional polymers suspected to release volatile organic hazardous substances. The limitless conformations and formulations of polyurethanes enabled their use in a wide variety of applications. Because approximately 10 Mt of polyurethanes is produced each year, environmental concern over their considerable contribution to landfill waste accumulation appeared in the 1990s. To date, no recycling processes allow for the efficient reuse of polyurethane waste due to their high resistance to (a)biotic disturbances. To find alternatives to systematic accumulation or incineration of polyurethanes, a bibliographic analysis was performed on major scientific advances in the polyurethane (bio)degradation field to identify opportunities for the development of new technologies to recondition this material. Until polymers exhibiting oxo- or hydro-biodegradative traits are generated, conventional polyurethanes that are known to be only slightly biodegradable are of great concern. The research focused on polyurethane biodegradation highlights recent attempts to reprocess conventional industrial polyurethanes via microbial or enzymatic degradation. This review describes several wonderful opportunities for the establishment of new processes for polyurethane recycling. Meeting these new challenges could lead to the development of sustainable management processes involving polymer recycling or reuse as environmentally safe options for industries. The ability to upgrade polyurethane wastes to chemical compounds with a higher added value would be especially attractive. PMID:23978675

  4. Influence of microbial adaption and supplementation of nutrients on the biodegradation of ionic liquids in sewage sludge treatment processes.

    Science.gov (United States)

    Markiewicz, Marta; Stolte, Stefan; Lustig, Zofia; Łuczak, Justyna; Skup, Michał; Hupka, Jan; Jungnickel, Christian

    2011-11-15

    As ionic liquids are winning more attention from industry as a replacement of more hazardous chemicals, some of their structures have the potential to become persistent pollutants due to high stability towards abiotic and biotic degradation processes. Therefore it is important to determine the hazard associated with the presence of ILs in the environment, for example biodegradation under real conditions. Standard biodegradation testing procedures generally permit pre-conditioning of inoculum but do not allow for pre-exposition to the test substance. These are usually conducted in a mineral medium which does not provide additional organic nutrients. Though very valuable, as a point of reference, these tests do not fully represent real conditions. In in situ conditions, for example in wastewater treatment plants or natural soils and water bodies, the presence of readily available sources of energy and nutrients as well as the process of adaptation may often alter the fate and metabolic pathways of xenobiotics. Our results have shown that these are the opposing processes influencing the biodegradation rate of ILs in sewage sludge. The results have significant practical implications with respect to the assessment of biodegradability and environmental fate of ILs and other xenobiotics in environmental conditions and their potential remediation options. PMID:21907490

  5. Sociobiology of biodegradation and the role of predatory protozoa in biodegrading communities

    Indian Academy of Sciences (India)

    Tejashree Modak; Shalmali Pradhan; Milind Watve

    2007-06-01

    Predatory protozoa are known to enhance biodegradation by bacteria in a variety of systems including rumen. This is apparently counterintuitive since many protozoa do not themselves produce extracellular degradative enzymes and prey upon bacterial degraders. We propose a mechanism of protozoal enhancement of bacterial biodegradation based on the sociobiology of biodegradation. Since extracellular enzyme production by degraders involves a cost to the bacterial cell, cheaters that do not make the enzyme will have a selective advantage. In the presence of cheaters, degraders that physically attach to water-insoluble substrate will have a selective advantage over free-floating degraders. On the other hand, cheaters will benefit by being free floaters since they consume the solubilized products of extracellular enzymes. Predatory ciliated protozoa are more likely to consume free-floating cheaters. Thus, due to protozoan predation a control is exerted on the cheater population. We illustrate the dynamics of such a system with the help of a computer simulation model. Available data on rumen and other biodegradation systems involving protozoa are compatible with the assumptions and predictions of the model.

  6. Biodegradable and semi-biodegradable composite hydrogels as bone substitutes: morphology and mechanical characterization.

    Science.gov (United States)

    Sanginario, V; Ginebra, M P; Tanner, K E; Planell, J A; Ambrosio, L

    2006-05-01

    Biodegradable and semi-biodegradable composite hydrogels are proposed as bone substitutes. They consist of an hydrophilic biodegradable polymer (HYAFF 11) as matrix and two ceramic powders (alpha-TCP and HA) as reinforcement. Both components of these composites have been of great interest in biomedical applications due to their excellent biocompatibility and tissue interactions, however they have never been investigated as bone substitute composites. Morphological and mechanical analysis have shown that the two fillers behave in a very different way. In the HYAFF 11/alpha-TCP composite, alpha-TCP is able to hydrolyze in contact with water while in the HYAFF 11 matrix. As a result, the composite sets and hardens, and entangled CDHA crystals are formed in the hydrogel phase and increases in the mechanical properties are obtained. In the HYAFF11/HA composite the ceramic reinforcement acts as inert phase leading to lower mechanical properties. Both mechanical properties and microstructure analysis have demonstrated the possibility to design hydrophilic biodegradable composite structures for bone tissue substitution applications. PMID:16688585

  7. Biodegradation of ibuprofen, diclofenac and carbamazepine in nitrifying activated sludge under 12 °C temperature conditions

    International Nuclear Information System (INIS)

    Pharmaceuticals constitute a well-known group of emerging contaminants with an increasing significance in water pollution. This study focuses on three pharmaceuticals extensively used in Finland and which can be found in environmental waters: ibuprofen, diclofenac and carbamazepine. Biodegradation experiments were conducted in a full-scale Wastewater Treatment Plant (WWTP) and in laboratory-scale Sequencing Batch Reactors (SBRs). The SBRs were operated at 12 °C, with a sludge retention time (SRT) 10–12 d and organic loading rates (OLRs) of 0.17, 0.27 and 0.33 kg BOD7 m-3d-1. Ibuprofen was found to biodegrade up to 99%. The biodegradation rate constants (kbiol) for ibuprofen were calculated for full-scale and laboratory processes as well as under different laboratory conditions and found to differ from 0.9 up to 5.0 l gSS−1 d−1. Diclofenac demonstrated an unexpected immediate drop of concentration in three SBRs and partial recovery of the initial concentration in one of the reactors. High fluctuating in diclofenac concentration was presumably caused by removal of this compound under different concentrations of nitrites during development of nitrifying activated sludge. Carbamazepine showed no biodegradation in all the experiments. - Highlights: • The biodegradation of three pharmaceuticals examined under 12 °C conditions. • kbiol constants for ibuprofen proposed for full-scale and laboratory-scale processes. • Influence of OLR on ibuprofen biodegradation was studied. • Removal followed by recovery of diclofenac detected in nitrifying activated sludge

  8. Biodegradation of ibuprofen, diclofenac and carbamazepine in nitrifying activated sludge under 12 °C temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kruglova, Antonina; Ahlgren, Pia; Korhonen, Nasti; Rantanen, Pirjo; Mikola, Anna; Vahala, Riku

    2014-11-15

    Pharmaceuticals constitute a well-known group of emerging contaminants with an increasing significance in water pollution. This study focuses on three pharmaceuticals extensively used in Finland and which can be found in environmental waters: ibuprofen, diclofenac and carbamazepine. Biodegradation experiments were conducted in a full-scale Wastewater Treatment Plant (WWTP) and in laboratory-scale Sequencing Batch Reactors (SBRs). The SBRs were operated at 12 °C, with a sludge retention time (SRT) 10–12 d and organic loading rates (OLRs) of 0.17, 0.27 and 0.33 kg BOD{sub 7} m{sup -3}d{sup -1}. Ibuprofen was found to biodegrade up to 99%. The biodegradation rate constants (k{sub biol}) for ibuprofen were calculated for full-scale and laboratory processes as well as under different laboratory conditions and found to differ from 0.9 up to 5.0 l g{sub SS}{sup −1} d{sup −1}. Diclofenac demonstrated an unexpected immediate drop of concentration in three SBRs and partial recovery of the initial concentration in one of the reactors. High fluctuating in diclofenac concentration was presumably caused by removal of this compound under different concentrations of nitrites during development of nitrifying activated sludge. Carbamazepine showed no biodegradation in all the experiments. - Highlights: • The biodegradation of three pharmaceuticals examined under 12 °C conditions. • k{sub biol} constants for ibuprofen proposed for full-scale and laboratory-scale processes. • Influence of OLR on ibuprofen biodegradation was studied. • Removal followed by recovery of diclofenac detected in nitrifying activated sludge.

  9. Aplicação do modelo Tucker-3 para a análise da biodegradação de diesel Application of the Tucker-3 model to the study of diesel biodegradation

    Directory of Open Access Journals (Sweden)

    Marlon M. Reis

    2010-01-01

    Full Text Available Tucker-3 model offers several advantages for analysis of environmental data but its interpretation is still challenging. A Tucker-3 model was applied to a biodegradation experiment involving a large number of overlapped chromatographic peaks and a temporal variation. The Tucker-3 model allowed the data to be decomposed in two processes: evaporation and biodegradation. The results suggest that linear hydrocarbons were those biodegraded first and demonstrate that the data analysis can be simplified by interpreting the elements of the core array. The approach discussed in this work can be applied in similar problems involving multi-way data in other areas of chemistry.

  10. Lipase biocatalysis for useful biodegradable products

    Energy Technology Data Exchange (ETDEWEB)

    Linko, Y.Y.; Wang, Zhuo Lin; Uosukainen, E.; Seppaelae, J. [Helsinki Univ. of Technology, Espoo (Finland); Laemsae, M. [Raisio Group Oil Milling Industry, Raisio (Finland)

    1996-12-31

    It was shown that lipases can be used as biocatalysts in the production of useful biodegradable compounds such as 1-butyl oleate by direct esterification of butanol and oleic acid to decrease viscosity of biodiesel in winter use. By enzymic transesterification, a mixture of 2-ethyl-1-hexyl esters from rapeseed oil fatty acids can be obtained in good yields for use as a solvent, and of trimethylolpropane esters for use as a lubricant. Finally, it was demonstrated that polyesters with a mass average molar mass in excess of 75,000 g mol{sup -}1 can be obtained by esterification or transesterification by using lipase as biocatalyst. (author) (3 refs.)

  11. Biodegradation of petroleum hydrocarbons in hypersaline environments

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Martins

    2012-09-01

    Full Text Available Literature on hydrocarbon degradation in extreme hypersaline media presents studies that point to a negative effect of salinity increase on hydrocarbonoclastic activity, while several others report an opposite tendency. Based on information available in the literature, we present a discussion on the reasons that justify these contrary results. Despite the fact that microbial ability to metabolize hydrocarbons is found in extreme hypersaline media, indeed some factors are critical for the occurrence of hydrocarbon degradation in such environments. How these factors affect hydrocarbon degradation and their implications for the assessment of hydrocarbon biodegradation in hypersaline environments are presented in this review.

  12. Hydrocarbons biodegradation in unsaturated porous medium; Biodegradation des hydrocarbures en milieu poreux insature

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, C

    2007-12-15

    Biological processes are expected to play an important role in the degradation of petroleum hydrocarbons in contaminated soils. However, factors influencing the kinetics of biodegradation are still not well known, especially in the unsaturated zone. To address these biodegradation questions in the unsaturated zone an innovative experimental set up based on a physical column model was developed. This experimental set up appeared to be an excellent tool for elaboration of a structured porous medium, with well defined porous network and adjusted water/oil saturations. Homogeneous repartition of both liquid phases (i.e., aqueous and non aqueous) in the soil pores, which also contain air, was achieved using ceramic membranes placed at the bottom of the soil column. Reproducible interfaces (and connectivity) are developed between gas, and both non mobile water and NAPL phases, depending on the above-defined characteristics of the porous media and on the partial saturations of these three phases (NAPL, water and gas). A respirometric apparatus was coupled to the column. Such experimental set up have been validated with hexadecane in dilution in an HMN phase. This approach allowed detailed information concerning n-hexadecane biodegradation, in aerobic condition, through the profile of the oxygen consumption rate. We have taken benefit of this technique, varying experimental conditions, to determine the main parameters influencing the biodegradation kinetics and compositional evolution of hydrocarbons, under steady state unsaturated conditions and with respect to aerobic metabolism. Impacts of the nitrogen quantity and of three different grain sizes have been examined. Biodegradation of petroleum cut, as diesel cut and middle distillate without aromatic fraction, were, also studied. (author)

  13. Compared in vivo toxicity in mice of lung delivered biodegradable and non-biodegradable nanoparticles.

    Science.gov (United States)

    Aragao-Santiago, Letícia; Hillaireau, Hervé; Grabowski, Nadège; Mura, Simona; Nascimento, Thais L; Dufort, Sandrine; Coll, Jean-Luc; Tsapis, Nicolas; Fattal, Elias

    2016-04-01

    To design nanoparticle (NP)-based drug delivery systems for pulmonary administration, biodegradable materials are considered safe, but their potential toxicity is poorly explored. We here explore the lung toxicity in mice of biodegradable nanoparticles (NPs) and compare it to the toxicity of non-biodegradable ones. NP formulations of poly(d,l-lactide-co-glycolide) (PLGA) coated with chitosan (CS), poloxamer 188 (PF68) or poly(vinyl alcohol) (PVA), which renders 200 nm NPs of positive, negative or neutral surface charge respectively, were analyzed for their biodistribution by in vivo fluorescence imaging and their inflammatory potential after single lung nebulization in mice. After exposure, analysis of bronchoalveolar lavage (BAL) cell population, protein secretion and cytokine release as well as lung histology were carried out. The inflammatory response was compared to the one induced by non-biodegradable counterparts, namely, TiO2 of rutile and anatase crystal form and polystyrene (PS). PLGA NPs were mostly present in mice lungs, with little passage to other organs. An increase in neutrophil recruitment was observed in mice exposed to PS NPs 24 h after nebulization, which declined at 48 h. This result was supported by an increase in interleukin (IL)-6 and tumor necrosis factor α (TNFα) in BAL supernatant at 24 h. TiO2 anatase NPs were still present in lung cells 48 h after nebulization and induced the expression of pro-inflammatory cytokines and the recruitment of polymorphonuclear cells to BAL. In contrast, regardless of their surface charge, PLGA NPs did not induce significant changes in the inflammation markers analyzed. In conclusion, these results point out to a safe use of PLGA NPs regardless of their surface coating compared to non-biodegradable ones. PMID:26573338

  14. Biodegradable elastomers for biomedical applications and regenerative medicine

    NARCIS (Netherlands)

    Bat, Erhan; Zhang, Zheng; Feijen, Jan; Grijpma, Dirk W.; Poot, Andre A.

    2014-01-01

    Synthetic biodegradable polymers are of great value for the preparation of implants that are required to reside only temporarily in the body. The use of biodegradable polymers obviates the need for a second surgery to remove the implant, which is the case when a nondegradable implant is used. After

  15. Biodegradation of Phosphonomycin by Rhizobium huakuii PMY1

    OpenAIRE

    McGrath, John W.; Hammerschmidt, Friedrich; Quinn, John P.

    1998-01-01

    The biodegradation by Rhizobium huakuii PMY1 of up to 10 mM phosphonomycin as a carbon, energy, and phosphorus source with accompanying Pi release is described. This biodegradation represents a further mechanism of resistance to this antibiotic and a novel, phosphate-deregulated route for organophosphonate metabolism by Rhizobium spp.

  16. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO2 are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO2 compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO2 blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM)

  17. Development of partially biodegradable foams from PP/HMSPP blends with natural and synthetic polymers

    International Nuclear Information System (INIS)

    Polymers are used in various application and in different industrial areas providing enormous quantities of wastes in environment. Among diverse components of residues in landfills are polymeric materials, including Polypropylene, which contribute with 20 to 30% of total volume of solid residues. As polymeric materials are immune to microbial degradation, they remain in soil and in landfills as a semi-permanent residue. Environmental concerning in litter reduction is being directed to renewable polymers development for manufacturing of polymeric foams. Foamed polymers are considered future materials, with a wide range of applications; high density structural foams are specially used in civil construction, in replacement of metal, woods and concrete with a final purpose of reducing materials costs. At present development, it was possible the incorporation of PP/HMSPP polymeric matrix blends with sugarcane bagasse, PHB and PLA, in structural foams production. Thermal degradation at 100, 120 and 160 deg C temperatures was not enough to induce biodegradability. Gamma irradiation degradation, at 50, 100, 200 and 500 kGy showed effective for biodegradability induction. Irradiated bagasse blends suffered surface erosion, in favor of water uptake and consequently, a higher biodegradation in bulk structure. (author)

  18. Monitoring the degree of biodegradation of oil spill in marine environment with NIR spectroscopy

    International Nuclear Information System (INIS)

    An analytical technique for oil analysis using near-infrared (NIR) spectroscopy was presented and the feasibility of using NIR spectroscopy in oil spill incidents was discussed. In the event of a marine oil spill, rapid decisions must be made about which control measures should be taken to contain the spill and which types of procedures should be followed to reduce the environmental impact of the oil. In order to make the most appropriate decision, it is crucial for the on-site coordinator to have knowledge of the physical and chemical state of the oil (such as how much it has biodegraded). NIR spectroscopy can quickly determine the degree of biodegradation of oil and requires very little, if any, sample preparation, thereby offering fast and simple analyses. Oil-containing samples were taken from two biodegradation experiments and multivariate calibration models were established for the C17/pristane and C18/phytane ratios, and for hydrocarbon content. 16 refs., 1 tab., 5 figs

  19. Biodegradation of Textile Dyes by Fungi Isolated from North Indian Field Soil

    Directory of Open Access Journals (Sweden)

    Arshi Shahid

    2013-07-01

    Full Text Available In this study one azo dye "Congo red", two triphenymethane dyes "Crystal violet" and "Methylene blue" have been selected for biodegradation using three soil fungal isolates A. niger, F. oxysporum and T. lignorum. These fungal strains were isolated from field soil. Three methods were selected for biodegradation, viz. agar overlay and liquid media methods; stationary and shaking conditions at 25°C. The experiment was conducted for 10 days and the results were periodically observed. Aspergillus niger decolorized maximum Congo red (74.07% followed by Crystal violet (33.82% and Methylene blue (22.44% under liquid medium (stationary condition. Whereas, under same conditions, T. lignorum decolorized maximum crystal violet (92.7%, Methylene blue (48.3% and Congo red (35.25%. Use of T. lignorum as dye bio degrader or decolorizer has been done first time in this study. Fusarium oxysporum performed better under shaking conditions compared to stationary and overlay method. It can be concluded that among soil fungus T. lignorum could be used as efficient dye decolorizer especially for crystal violet and A. niger for Congo red. The excellent performance of T. lignorum and F. oxysporum in the biodegradation of textile dyes of different chemical structures reinforces the potential of these fungi for environmental decontamination similar to white rot fungi.

  20. Toxicological evaluation of vegetable oils and biodiesel in soil during the biodegradation process

    Directory of Open Access Journals (Sweden)

    Ivo S. Tamada

    2012-12-01

    Full Text Available Vegetable oils and their derivatives, like biodiesel, are used extensively throughout the world, thus posing an environmental risk when disposed. Toxicity testing using test organisms shows how these residues affect ecosystems. Toxicity tests using earthworms (Eisenia foetida. are widespread because they are a practical resource for analyzing terrestrial organisms. For phytotoxicological analysis, we used seeds of arugula (Eruca sativa and lettuce (Lactuca sativa. to analyze the germination of seeds in contaminated soil samples. The toxicological experiment was conducted with four different periods of biodegradation in soil: zero days, 60 days, 120 days and 180 days. The studied contaminants were soybean oil (new and used and biodiesel (B100. An evaluation of the germination of both seeds showed an increased toxicity for all contaminants as the biodegradation occurred, biodiesel being the most toxic among the contaminants. On the other hand, for the tests using earthworms, the biodiesel was the only contaminant that proved to be toxic. Therefore, the higher toxicity of the sample containing these hydrocarbons over time can be attributed to the secondary compounds formed by microbial action. Thus, we conclude that the biodegradation in soil of the studied compounds requires longer periods for the sample toxicity to be decreased with the action of microorganisms.

  1. Radiation modified sago-blends and its potential for biodegradable packaging materials

    International Nuclear Information System (INIS)

    As a result of rapid population and economic growth, many countries are facing environmental problems created from plastic consumption and those related to garbage disposal. One of the items that is contributing further to this problem would be the foams and plastic wrappers used in packaging. The development of biodegradable packaging material such as foam and film would thus be a step forward in the right direction for the aforementioned industry. This paper highlights work at BTPS on the development of sago blends as alternative biodegradable packaging materials. A study was undertaken to investigate the effect of formulation, mixing temperature and irradiation dosage on expansion of sago starch-polyvinyl alcohol (PVA) and sago-polyvinyl pyrrolidone (PVP) blends based foam. In the beginning foams produced from irradiated hydrogels were achieved by steam expansion in a microwave oven. Some follow-up work using extrusion was also carried out. In the development of starch-based plastic film, the effect of different composition and different irradiation dosage were studied to evaluate films with good tensile properties, elongation, gas permeability and water vapor transmission rate and also the biodegradability of the film using soil burial test. (Author)

  2. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Zufira, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung (Indonesia)

    2014-03-24

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO{sub 2} are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO{sub 2} compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO{sub 2} blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM)

  3. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Putri, Zufira; Arcana, I. Made

    2014-03-01

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO2 are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO2 compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO2 blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM).

  4. Anaerobic Biodegradation of Alternative Fuels and Associated Biocorrosion of Carbon Steel in Marine Environments.

    Science.gov (United States)

    Liang, Renxing; Aktas, Deniz F; Aydin, Egemen; Bonifay, Vincent; Sunner, Jan; Suflita, Joseph M

    2016-05-01

    Fuels that biodegrade too easily can exacerbate through-wall pitting corrosion of pipelines and tanks and result in unintentional environmental releases. We tested the biological stability of two emerging naval biofuels (camelina-JP5 and Fischer-Tropsch-F76) and their potential to exacerbate carbon steel corrosion in seawater incubations with and without a hydrocarbon-degrading sulfate-reducing bacterium. The inclusion of sediment or the positive control bacterium in the incubations stimulated a similar pattern of sulfate reduction with different inocula. However, the highest rates of sulfate reduction were found in incubations amended with camelina-JP5 [(57.2 ± 2.2)-(80.8 ± 8.1) μM/day] or its blend with petroleum-JP5 (76.7 ± 2.4 μM/day). The detection of a suite of metabolites only in the fuel-amended incubations confirmed that alkylated benzene hydrocarbons were metabolized via known anaerobic mechanisms. Most importantly, general (r(2) = 0.73) and pitting (r(2) = 0.69) corrosion were positively correlated with sulfate loss in the incubations. Thus, the anaerobic biodegradation of labile fuel components coupled with sulfate respiration greatly contributed to the biocorrosion of carbon steel. While all fuels were susceptible to anaerobic metabolism, special attention should be given to camelina-JP5 biofuel due to its relatively rapid biodegradation. We recommend that this biofuel be used with caution and that whenever possible extended storage periods should be avoided. PMID:27058258

  5. Composite Films from Sodium Alginate and High Methoxyl Pectin - Physicochemical Properties and Biodegradation in Soil

    Directory of Open Access Journals (Sweden)

    Ayten O. Solak

    2014-12-01

    Full Text Available The increased public attention on the waste pollution and the awareness of the hard environmental problems is the reason for the need of new materials which are susceptible to degradation in nature for a short period of time. The biopolymer films and coatings based on renewable natural sources are suitable for obtaining of biodegradable packaging. The newly developed composite films based on sodium alginate and apple high methoxyl pectin were studied for total soluble matter, swelling in water, water vapors transmission rate and biodegradation in soil. The analysis of their behavior in water medium showed a considerably higher rate and degree of dissolution of the pectin monocomponent film compared to the composite and alginate films. The composite alginate-pectin films showed lower water vapors transmission rate even under extreme conditions (38ºC, RH 90 % compared to the monocomponent films. All investigated films degraded in soil up to 80 days. The good barrier properties to water vapors and the complete biodegradation in soil make the films based on sodium alginate and high methoxyl pectin potential ecological materials for packing and coating of foods and pharmaceutical products.

  6. Experimental studies of biodegradation of asphalt by microorganisms

    International Nuclear Information System (INIS)

    On the geological disposal system of the radioactive wastes, the activities of the microorganisms that could degrade the asphalt might be significant for the assessment of the system performance. As the main effects of the biodegradation of the asphalt, the fluctuation of leaching behavior of the nuclides included in asphalt waste has been indicated. In this study, the asphalt biodegradation test was carried out. The microorganism of which asphalt degradation ability was comparatively higher under aerobic condition and anaerobic condition was used. The asphalt biodegradation rate was calculated and it was evaluated whether the asphalt biodegradation in this system could occur. The results show that the asphalt biodegradation rate under anaerobic and high alkali condition will be 300 times lower than under aerobic and neutral pH. (author)

  7. Critical evaluation of biodegradable polymers used in nanodrugs

    Directory of Open Access Journals (Sweden)

    Marin E

    2013-08-01

    Full Text Available Edgar Marin,1–3 Maria Isabel Briceño,2 Catherina Caballero-George11Unit of Pharmacology, Center of Biodiversity and Drug Discovery, Institute of Scientific Research and High Technology Services, 2Nano Dispersions Technology, Panama, Republic of Panama; 3Department of Biotechnology, Archaria Nagarjuna University, Guntur, IndiaAbstract: Use of biodegradable polymers for biomedical applications has increased in recent decades due to their biocompatibility, biodegradability, flexibility, and minimal side effects. Applications of these materials include creation of skin, blood vessels, cartilage scaffolds, and nanosystems for drug delivery. These biodegradable polymeric nanoparticles enhance properties such as bioavailability and stability, and provide controlled release of bioactive compounds. This review evaluates the classification, synthesis, degradation mechanisms, and biological applications of the biodegradable polymers currently being studied as drug delivery carriers. In addition, the use of nanosystems to solve current drug delivery problems are reviewed.Keywords: biodegradable polymers, nanoparticles, drug delivery, cellular uptake, biomedical applications

  8. Polymeric Biodegradable Stent Insertion in the Esophagus

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2016-04-01

    Full Text Available Esophageal stent insertion has been used as a well-accepted and effective alternative to manage and improve the quality of life for patients diagnosed with esophageal diseases and disorders. Current stents are either permanent or temporary and are fabricated from either metal or plastic. The partially covered self-expanding metal stent (SEMS has a firm anchoring effect and prevent stent migration, however, the hyperplastic tissue reaction cause stent restenosis and make it difficult to remove. A fully covered SEMS and self-expanding plastic stent (SEPS reduced reactive hyperplasia but has a high migration rate. The main advantage that polymeric biodegradable stents (BDSs have over metal or plastic stents is that removal is not require and reduce the need for repeated stent insertion. But the slightly lower radial force of BDS may be its main shortcoming and a post-implant problem. Thus, strengthening support of BDS is a content of the research in the future. BDSs are often temporarily effective in esophageal stricture to relieve dysphagia. In the future, it can be expect that biodegradable drug-eluting stents (DES will be available to treat benign esophageal stricture, perforations or leaks with additional use as palliative modalities for treating malignant esophageal stricture, as the bridge to surgery or to maintain luminal patency during neoadjuvant chemoradiation.

  9. Biodegradation of cresol isomers in anoxic aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Smolenski, W.J.; Suflita, J.M.

    1987-04-01

    The biodegradation of o-, m-, and p-cresol was examined in material obtained from a shallow anaerobic alluvial sand aquifer. The cresol isomers wer preferentially metabolized, with p-cresol being the most easily degraded. m-Cresol was more persistent than the para-isomer, and o-cresol persisted for over 90 days. Biodegradations of cresol isomers was favored under sulfate-reducing conditions (SRC) compared with that under methanogenic conditions (MC). Slurries that were acclimated to p-cresol metabolism transformed this substrate at 18 and 330 nmol/h per g (dry weight) for MC and SRC, respectively. Inhibition of electron flow to sulfate reduction with 2.0 mM molybdate reduced p-cresol metabolism in incubations containing sulfate. When methanogenesis was blocked with 5 mM bromoethanesulfonic acid in incubations lacking sulfate, p-cresol catabolism was retarded. Under SRC 3.4 mol of sulfate was consumed per mol of p-cresol metabolized. The addition of sulfate to methanogenic incubations stimulated p-cresol degradation. Simultaneous adaptation studies in combination with spectrophotometric and chromatographic analysis of metabolites indicated that p-cresol was oxidized under SRC to p-hydroxybenzoate via the corresponding alcohol and aldehyde. This series of reactions was inhibited under sulfate-limited or aerobic conditions. Therefore, the primary catabolic event for p-cresol decomposition under SRC appears to involve the hydroxylation of the aryl methyl group.

  10. Monitoring Biodegradation of Magnesium Implants with Sensors

    Science.gov (United States)

    Zhao, Daoli; Wang, Tingting; Guo, Xuefei; Kuhlmann, Julia; Doepke, Amos; Dong, Zhongyun; Shanov, Vesselin N.; Heineman, William R.

    2016-04-01

    Magnesium and its alloys exhibit properties such as high strength, light weight, and in vivo corrosion that make them promising candidates for the development of biodegradable metallic implant materials for bone repair, stents and other medical applications. Sensors have been used to monitor the corrosion of magnesium and its alloys by measuring the concentrations of the following corrosion products: magnesium ions, hydroxyl ions and hydrogen gas. The corrosion characterization system with home-made capillary pH and Mg2+ microsensors has been developed for real-time detection of magnesium corrosion in vitro. A hydrogen gas sensor was used to monitor the corrosion of magnesium by measuring the concentration of the hydrogen gas reaction product in vivo. The high permeability of hydrogen through skin allows transdermal monitoring of the biodegradation of a magnesium alloy implanted beneath the skin by detecting hydrogen gas at the skin surface. The sensor was used to map hydrogen concentration in the vicinity of an implanted magnesium alloy.

  11. Immunological Response to Biodegradable Magnesium Implants

    Science.gov (United States)

    Pichler, Karin; Fischerauer, Stefan; Ferlic, Peter; Martinelli, Elisabeth; Brezinsek, Hans-Peter; Uggowitzer, Peter J.; Löffler, Jörg F.; Weinberg, Annelie-Martina

    2014-04-01

    The use of biodegradable magnesium implants in pediatric trauma surgery would render surgical interventions for implant removal after tissue healing unnecessary, thereby preventing stress to the children and reducing therapy costs. In this study, we report on the immunological response to biodegradable magnesium implants—as an important aspect in evaluating biocompatibility—tested in a growing rat model. The focus of this study was to investigate the response of the innate immune system to either fast or slow degrading magnesium pins, which were implanted into the femoral bones of 5-week-old rats. The main alloying element of the fast-degrading alloy (ZX50) was Zn, while it was Y in the slow-degrading implant (WZ21). Our results demonstrate that degrading magnesium implants beneficially influence the immune system, especially in the first postoperative weeks but also during tissue healing and early bone remodeling. However, rodents with WZ21 pins showed a slightly decreased phagocytic ability during bone remodeling when the degradation rate reached its maximum. This may be due to the high release rate of the rare earth-element yttrium, which is potentially toxic. From our results we conclude that magnesium implants have a beneficial effect on the innate immune system but that there are some concerns regarding the use of yttrium-alloyed magnesium implants, especially in pediatric patients.

  12. Modification of Biodegradable Polyesters Using Electron Beam

    International Nuclear Information System (INIS)

    Poly(4-Hydroxybutyrate) P4HB, Poly(butylene succinate-co-adipate) PBSA and Poly(ε-caprolactone) PCL were electron beam (EB)-irradiated. Poly(4-Hydroxybutyrate) was irradiated without any polyfunctional monomers (PFM). While PBSA and PCL were irradiated in the presence of polyfunctional monomers such as Trimethallyl isocyanurate (TMAIC), Polyethyleneglycol dimethacrylate (2G, 4G), Trimethylolpropane trimethacrylate (TMPT) and Tetramethylolmethane tetraacrylate (A-TMMT) at ambient temperature. Aim of the study is to improve the properties of biodegradable polyester. It was pointed out that crosslinking yield of P4HB (6.39% gel) was formed at dose of 90 kGy irradiated in vacuum conditions. Radiation degradation promoted, when P4HB was irradiated in air. The optimum crosslinking yield of PCL and PBSA respectively, were formed in the presence of 1% TMAIC at dose of 50 kGy. The biodegradability of the crosslinked PBSA evaluated by soil burial test is slightly retarded by increasing crosslinking yields. (author)

  13. A REVIEW ON BIODEGRADABLE STARCH BASED FILM

    Directory of Open Access Journals (Sweden)

    Hooman Molavi

    2015-04-01

    Full Text Available In recent years, biodegradable edible films have become very important in research related to food, due to their compatibility with the environment and their use in the food packaging industry. Various sources can be used in the production of biopolymers as biodegradable films that include polysaccharides, proteins and lipids. Among the various polysaccharides, starch due to its low price and its abundance in nature is of significant importance. Several factors affect the properties of starch films; such as the source which starch is obtained from, as well as the ratio of constituents of the starch. Starch films have advantages such as low thickness, flexibility and transparency though; there are some downsides to mention, such as the poor mechanical properties and water vapor permeability. Thus, using starch alone to produce the film will led to restrictions on its use. To improve the mechanical properties of starch films and also increases resistance against humidity, several methods can be used; including the starch modifying techniques such as cross linking of starch and combining starch with other natural polymers. Other methods such as the use of lipid in formulations of films to increase the resistance to moisture are possible, but lipids are susceptible to oxidation. Therefore, new approaches are based on the integration of different biopolymers in food packaging.

  14. Vault Nanoparticles Packaged with Enzymes as an Efficient Pollutant Biodegradation Technology.

    Science.gov (United States)

    Wang, Meng; Abad, Danny; Kickhoefer, Valerie A; Rome, Leonard H; Mahendra, Shaily

    2015-11-24

    Vault nanoparticles packaged with enzymes were synthesized as agents for efficiently degrading environmental contaminants. Enzymatic biodegradation is an attractive technology for in situ cleanup of contaminated environments because enzyme-catalyzed reactions are not constrained by nutrient requirements for microbial growth and often have higher biodegradation rates. However, the limited stability of extracellular enzymes remains a major challenge for practical applications. Encapsulation is a recognized method to enhance enzymatic stability, but it can increase substrate diffusion resistance, lower catalytic rates, and increase the apparent half-saturation constants. Here, we report an effective approach for boosting enzymatic stability by single-step packaging into vault nanoparticles. With hollow core structures, assembled vault nanoparticles can simultaneously contain multiple enzymes. Manganese peroxidase (MnP), which is widely used in biodegradation of organic contaminants, was chosen as a model enzyme in the present study. MnP was incorporated into vaults via fusion to a packaging domain called INT, which strongly interacts with vaults' interior surface. MnP fused to INT and vaults packaged with the MnP-INT fusion protein maintained peroxidase activity. Furthermore, MnP-INT packaged in vaults displayed stability significantly higher than that of free MnP-INT, with slightly increased Km value. Additionally, vault-packaged MnP-INT exhibited 3 times higher phenol biodegradation in 24 h than did unpackaged MnP-INT. These results indicate that the packaging of MnP enzymes in vault nanoparticles extends their stability without compromising catalytic activity. This research will serve as the foundation for the development of efficient and sustainable vault-based bioremediation approaches for removing multiple contaminants from drinking water and groundwater. PMID:26493711

  15. Linear and nonlinear relationships between biodegradation potential and molecular descriptors/fragments for organic pollutants and a theoretical interpretation

    Energy Technology Data Exchange (ETDEWEB)

    He, Jia; Qin, Weichao; Zhang, Xujia; Wen, Yang; Su, Limin; Zhao, Yuanhui, E-mail: zhaoyh@nenu.edu.cn

    2013-02-01

    Prediction of the biodegradability of organic pollutants is an ecologically desirable and economically feasible tool for estimating the environmental fate of chemicals. In this paper, linear and nonlinear relationships between biological oxygen demand (BOD) and molecular descriptors/fragments have been investigated for 1130 organic chemicals. Significant relationships have been observed between the simple molecular descriptors and %BOD for some homologous compounds, but not for the whole set of compounds. Electronic parameters, such as E{sub HOMO} and E{sub LUMO}, are the dominant factors affecting the biodegradability for some homologous chemicals. However, other descriptors, such as molecular weight, acid dissociation constant and polarity still have a significant impact on the biodegradation. The best global model for %BOD prediction is that developed from a chain-based fragmentation scheme. At the same time, the theoretical relationship between %BOD and molecular descriptors/fragments has been investigated, based on a first-order kinetic process. The %BOD is nonlinearly, rather than linearly, related to the descriptors. The coefficients of determination can be significantly improved by using nonlinear models for the homologous compounds and the whole data set. After analysing 1130 ready and not ready biodegradable compounds using 23 simple descriptors and various fragmentation schemes, it was revealed that biodegradation could be well predicted from a chain-based fragmentation scheme, a decision tree and a %BOD model. The models were capable of separating NRB and RB with an overall accuracy of 87.2%, 83.0% and 82.5%, respectively. The best classification model developed was a chain-based model but it used 155 fragments. The simplest model was a decision tree which only used 10 structural fragments. The effect of structures on the biodegradation has been analysed and the biodegradation pathway and mechanisms have been discussed based on activating and

  16. Linear and nonlinear relationships between biodegradation potential and molecular descriptors/fragments for organic pollutants and a theoretical interpretation

    International Nuclear Information System (INIS)

    Prediction of the biodegradability of organic pollutants is an ecologically desirable and economically feasible tool for estimating the environmental fate of chemicals. In this paper, linear and nonlinear relationships between biological oxygen demand (BOD) and molecular descriptors/fragments have been investigated for 1130 organic chemicals. Significant relationships have been observed between the simple molecular descriptors and %BOD for some homologous compounds, but not for the whole set of compounds. Electronic parameters, such as EHOMO and ELUMO, are the dominant factors affecting the biodegradability for some homologous chemicals. However, other descriptors, such as molecular weight, acid dissociation constant and polarity still have a significant impact on the biodegradation. The best global model for %BOD prediction is that developed from a chain-based fragmentation scheme. At the same time, the theoretical relationship between %BOD and molecular descriptors/fragments has been investigated, based on a first-order kinetic process. The %BOD is nonlinearly, rather than linearly, related to the descriptors. The coefficients of determination can be significantly improved by using nonlinear models for the homologous compounds and the whole data set. After analysing 1130 ready and not ready biodegradable compounds using 23 simple descriptors and various fragmentation schemes, it was revealed that biodegradation could be well predicted from a chain-based fragmentation scheme, a decision tree and a %BOD model. The models were capable of separating NRB and RB with an overall accuracy of 87.2%, 83.0% and 82.5%, respectively. The best classification model developed was a chain-based model but it used 155 fragments. The simplest model was a decision tree which only used 10 structural fragments. The effect of structures on the biodegradation has been analysed and the biodegradation pathway and mechanisms have been discussed based on activating and inactivating fragments

  17. Polímeros biodegradáveis - uma solução parcial para diminuir a quantidade dos resíduos plásticos Biodegradable polymers - a partial way for decreasing the amount of plastic waste

    Directory of Open Access Journals (Sweden)

    Sandra Mara Martins Franchetti

    2006-07-01

    Full Text Available The large use of plastics has generated a waste deposit problem. Today plastic wastes represent 20% in volume of the total waste in the municipal landfills. To solve the disposal problem of plastics methods have been employed such as incineration, recycling, landfill disposal, biodegradation and the use of biodegradable polymers. Incineration of plastic wastes provokes pollution due to the production of poisonous gases. Recycling is important to reduce final costs of plastic materials, but is not enough in face of the amount of discarded plastic. In landfills plastic wastes remain undegraded for a long time, causing space and pollution problems. Biodegradation is a feasible method to treat some plastics, but intensive research is necessary to find conditions for the action of microorganisms. All of these methods are important and the practical application of each one depends on the type and amount of the plastic wastes and the environmental conditions. Therefore, a great deal of research has focused on developing biodegradable plastics and its application because it is an important way for minimizing the effect of the large volume of plastic waste discarded in the world.

  18. Stereoselective biodegradation of amphetamine and methamphetamine in river microcosms.

    Science.gov (United States)

    Bagnall, John; Malia, Louis; Lubben, Anneke; Kasprzyk-Hordern, Barbara

    2013-10-01

    Here presented for the first time is the enantioselective biodegradation of amphetamine and methamphetamine in river microcosm bioreactors. The aim of this investigation was to test the hypothesis that mechanisms governing the fate of amphetamine and methamphetamine in the environment are mostly stereoselective and biological in nature. Several bioreactors were studied over the duration of 15 days (i) in both biotic and abiotic conditions, (ii) in the dark or exposed to light and (iii) in the presence or absence of suspended particulate matter. Bioreactor samples were analysed using SPE-chiral-LC-(QTOF)MS methodology. This investigation has elucidated the fundamental mechanism for degradation of amphetamine and methamphetamine as being predominantly biological in origin. Furthermore, stereoselectivity and changes in enantiomeric fraction (EF) were only observed under biotic conditions. Neither amphetamine nor methamphetamine appeared to demonstrate adsorption to suspended particulate matter. Our experiments also demonstrated that amphetamine and methamphetamine were photo-stable. Illicit drugs are present in the environment at low concentrations but due to their pseudo-persistence and non-racemic behaviour, with two enantiomers revealing significantly different potency (and potentially different toxicity towards aquatic organisms) the risk posed by illicit drugs in the environment should not be under- or over-estimated. The above results demonstrate the need for re-evaluation of the procedures utilised in environmental risk assessment, which currently do not recognise the importance of the phenomenon of chirality in pharmacologically active compounds. PMID:23886544

  19. Rational redesign of the biodegradative enzyme cytochrome P450 cam:

    International Nuclear Information System (INIS)

    Cytochromes P450, a superfamily of monooxygenase enzymes present in all kingdoms of living organisms, are very versatile with respect to substrate range and catalytic functionality. Many recalcitrant halogenated hydrocarbons, on DOE sites and throughout the nation, result in serious environmental impact. Cytochromes P450 have been shown to be catalytically capable of, at least partial, dehalogenation of some such compounds. Clearly, however, their active site stereochemistry and related functional components are not well suited for this role because the rates of dehalogenation are generally rather modest. The evolution of modified active site and access channel structures may proceed very slowly if multiple genetic changes are simultaneously required for enzyme adaptation. Since each mutational event is by itself a rare event, a basic premise of our research is that designing multiple changes into an enzyme may be more timely than waiting for them to occur biologically either via natural selection or under laboratory-controlled conditions. Starting with available high-resolution x-ray crystal structures, molecular modeling and molecular dynamics simulations have been used to probe the basic structure/function principles and conformational fluctuations of the biodegradative enzyme, cytochrome P450cam (camphor hydroxylase from Pseudomonas putida) and active site mutants, to provide the fundamental understanding necessary for rational engineering of the enzyme for modified substrate specificity. In the present paper, we review our progress to data, in the area of molecular dynamics simulations and active site redesign of P450cam. 36 refs., 2 figs

  20. Use of functional gene arrays for elucidating in situ biodegradation

    Directory of Open Access Journals (Sweden)

    JoyD.Van Nostrand

    2012-09-01

    Full Text Available Microarrays have revolutionized the study of microbiology by providing a high-throughput method for examining thousands of genes with a single test and overcome the limitations of many culture-independent approaches. Functional gene arrays (FGA probe a wide range of genes involved in a variety of functions of interest to microbial ecology (e.g., carbon degradation, N-fixation, metal resistance from many different microorganisms, cultured and uncultured. The most comprehensive FGA to date is the GeoChip array, which targets tens of thousands of genes involved in the geochemical cycling of carbon, nitrogen, phosphorus, and sulphur, metal resistance and reduction, energy processing, antibiotic resistance and contaminant degradation as well as phylogenetic information (gyrB. Since the development of GeoChips, many studies have been performed using this FGA and have shown it to be a powerful tool for rapid, sensitive and specific examination of microbial communities in a high-throughput manner. As such, the GeoChip is well-suited for linking geochemical processes with microbial community function and structure. This technology has been used successfully to examine microbial communities before, during and after in situ bioremediation at a variety of contaminated sites. These studies have expanded our understanding of biodegradation and bioremediation processes and the associated microorganisms and environmental conditions responsible. This review provides an overview of FGA development with a focus on the GeoChip and highlights specific GeoChip studies involving in situ bioremediation.

  1. Whole-Cell Fluorescent Biosensors for Bioavailability and Biodegradation of Polychlorinated Biphenyls

    Directory of Open Access Journals (Sweden)

    David Ryan

    2010-02-01

    Full Text Available Whole-cell microbial biosensors are one of the newest molecular tools used in environmental monitoring. Such biosensors are constructed through fusing a reporter gene such as lux, gfp or lacZ,to a responsive promoter. There have been many reports of the applications of biosensors, particularly their use in assaying pollutant toxicity and bioavailability. This paper reviews the basic concepts behind the construction of whole-cell microbial biosensors for pollutant monitoring, and describes the applications of two such biosensors for detecting the bioavailability and biodegradation of Polychlorinated Biphenyls (PCBs.

  2. Using an automated Iatroscan TLC/FID system to measure compositional hydrocarbons associated with petroleum biodegradation

    International Nuclear Information System (INIS)

    The use of Iatroscan thin-layer chromatography (TLC)/flame ionization detector (FID) system to perform quantitative gas compositional analysis of oil samples was demonstrated. Results of the field experiment at Parker's Cove, an estuarine wetland east of Houston, Texas, showed significant biodegradation, as evidenced by initially rapid decrease in the compositional saturate and aromatic fractions coinciding with an increasing resin fraction. Details of the results were described, confirming that the Iatroscan TLC/FID system can be an effective tool for monitoring and measuring environmental processes. 10 refs., 5 figs

  3. A Multi-Criteria Decision Analysis of Waste Treatment Options for Food and Biodegradable Waste Management in Japan

    OpenAIRE

    Babalola, Micky A.

    2015-01-01

    Dealing with large-scale Food and Biodegradable Waste (FBW) often results in many logistical problems and environmental impacts to be considered. These can become great hindrances when the integration of solid waste management is concerned. Extra care is needed to plan such waste disposal or treatment services and facilities, especially with respect to the ecological impact. Decision-making with regards to the sustainable use of these facilities also involves tradeoffs between a number of con...

  4. Regeneration of Three-Way Automobile Catalysts using Biodegradable Metal Chelating Agent – S, S-Ethylenediamine Disuccinic Acid (S, S-EDDS)

    Science.gov (United States)

    Regeneration of the activity of three-way catalytic converters (TWCs) was tested for the first time using a biodegradable metal chelating agent (S, S. Ethylenediamine disuccinic acid (S, S-EDDS). The efficiency of this novel environmentally friendly solvent in removing various c...

  5. Biodegradation of hydrocarbon cuts used for diesel oil formulation

    Energy Technology Data Exchange (ETDEWEB)

    Penet, S.; Marchal, R.; Monot, F. [Departement de Biotechnologie et Chimie de la Biomasse, Institut Francais de Petrole, Rueil-Malmaison (France); Sghir, A. [Genoscope, CNRS UMR 8030, Structure et Evolution des Genomes, Evry (France)

    2004-11-01

    The biodegradability of various types of diesel oil (DO), such as straight-run DO, light-cycle DO, hydrocracking DO, Fischer-Tropsch DO and commercial DO, was investigated in biodegradation tests performed in closed-batch systems using two microflorae. The first microflora was an activated sludge from an urban wastewater treatment plant as commonly used in biodegradability tests of commercial products and the second was a microflora from a hydrocarbon-polluted soil with possible specific capacities for hydrocarbon degradation. Kinetics of CO{sub 2} production and extent of DO biodegradation were obtained by chromatographic procedures. Under optimised conditions, the polluted-soil microflora was found to extensively degrade all the DO types tested, the degradation efficiencies being higher than 88%. For all the DOs tested, the biodegradation capacities of the soil microflora were significantly higher than those of the activated sludge. Using both microflora, the extent of biodegradation was highly dependent upon the type of DO used, especially its hydrocarbon composition. Linear alkanes were completely degraded in each test, whereas identifiable branched alkanes such as farnesane, pristane or phytane were degraded to variable extents. Among the aromatics, substituted mono-aromatics were also variably biodegraded. (orig.)

  6. [Biodegradation Coefficients of Typical Pollutants in the Plain Rivers Network].

    Science.gov (United States)

    Feng, Shuai; Li, Xu-yongl; Deng, Jian-cai

    2016-05-15

    Biodegradation is a significant part of pollutant integrated degradation, the process rate of which is represented by the biodegradation coefficient. To investigate the biodegradation law of typical pollutants in the plain rivers network located in the upstream of the Lake Taihu, experiments were conducted in site in September 2015, one order kinetics model was used to measure the biodegradation coefficients for permanganate index, ammonia, total nitrogen and total phosphorus, and influencing factors of the biodegradation coefficients were also analyzed. The results showed that the biodegradation coefficients for permanganate index, ammonia, total nitrogen and total phosphorus were 0.008 3-0.126 4 d⁻¹, 0.002 1-0.213 8 d⁻¹, 0.002 1-0.090 5 d⁻¹ and 0.011 0- 0.152 8 d⁻¹, respectively. The influencing factors of the biodegradation coefficients for permanganate index were permanganate index and pH; those for ammonia were ammonia concentration and pH; those for total nitrogen were inorganic nitrogen concentration, total dissolved solid concentration and nitrite concentration; and those for total phosphorus were background concentration and pH. The research results were of important guiding significance for pollutants removal and ecological restoration of the plain rivers network located in the unstream of the Lake Taihu. PMID:27506025

  7. Distribution of petroleum hydrocarbons and toluene biodegradation, Knox Street fire pits, Fort Bragg, North Carolina

    Science.gov (United States)

    Harden, S.L.; Landmeyer, J.E.

    1996-01-01

    ground-water toluene concentration data, a maximum rate constant for anaerobic biodegradation of toluene in the saturated zone was estimated to be as low as 0.002 d-1 or as high as 0.026 d-1. Based on analyses of ground-water/vapor samples, toluene was the prin- cipal TEX compound identified in ground water discharging to Beaver Creek. Observed decreases in ground-water/vapor toluene concentrations during the study period may reflect a decrease in source inputs, an increase in dilution caused by higher ground-water flow, and(or) removal by biological or other physical processes. Rate constants of toluene anaerobic biodegradation determined by laboratory measurements illustrate a typical acclimation response of micro-organisms to hydrocarbon contamination in sediments collected from the site. Toluene biodegradation rate constants derived from laboratory microcosm studies ranged from 0.001 to 0.027 d-1, which is similar to the range of 0.002 to 0.026 d-1 for toluene biodegradation rate constants derived from ground-water analytical data. The close agreement of toluene biodegradation rate constants reported using both approaches offer strong evidence that toluene can be degraded at environmentally significant rates at the study site.

  8. Biodegradability enhancement of textile wastewater by electron beam irradiation

    Science.gov (United States)

    Kim, Tak-Hyun; Lee, Jae-Kwang; Lee, Myun-Joo

    2007-06-01

    Textile wastewater generally contains various pollutants, which can cause problems during biological treatment. Electron beam radiation technology was applied to enhance the biodegradability of textile wastewater for an activated sludge process. The biodegradability (BOD 5/COD) increased at a 1.0 kGy dose. The biorefractory organic compounds were converted into more easily biodegradable compounds such as organic acids having lower molecular weights. In spite of the short hydraulic retention time (HRT) of the activated sludge process, not only high organic removal efficiencies, but also high microbial activities were achieved. In conclusion, textile wastewater was effectively treated by the combined process of electron beam radiation and an activated sludge process.

  9. "Rational" management of dichlorophenols biodegradation by the microalga Scenedesmus obliquus.

    Directory of Open Access Journals (Sweden)

    Aikaterini Papazi

    Full Text Available The microalga Scenedesmus obliquus exhibited the ability to biodegrade dichlorophenols (dcps under specific autotrophic and mixotrophic conditions. According to their biodegradability, the dichlorophenols used can be separated into three distinct groups. Group I (2,4-dcp and 2,6 dcp - no meta-substitution consisted of quite easily degraded dichlorophenols, since both chloride substituents are in less energetically demanding positions. Group II (2,3-dcp, 2,5-dcp and 3,4-dcp - one meta-chloride was less susceptible to biodegradation, since one of the two substituents, the meta one, required higher energy for C-Cl-bond cleavage. Group III (3,5-dcp - two meta-chlorides could not be biodegraded, since both chlorides possessed the most energy demanding positions. In general, when the dcp-toxicity exceeded a certain threshold, the microalga increased the energy offered for biodegradation and decreased the energy invested for biomass production. As a result, the biodegradation per cell volume of group II (higher toxicity was higher, than group I (lower toxicity and the biodegradation of dichlorophenols (higher toxicity was higher than the corresponding monochlorophenols (lower toxicity. The participation of the photosynthetic apparatus and the respiratory mechanism of microalga to biodegrade the group I and the group II, highlighted different bioenergetic strategies for optimal management of the balance between dcp-toxicity, dcp-biodegradability and culture growth. Additionally, we took into consideration the possibility that the intermediates of each dcp-biodegradation pathway could influence differently the whole biodegradation procedures. For this reason, we tested all possible combinations of phenolic intermediates to check cometabolic interactions. The present contribution bring out the possibility of microalgae to operate as "smart" bioenergetic "machines", that have the ability to continuously "calculate" the energy reserves and "use" the most

  10. Biodegradable Polyphosphazene Based Peptide-Polymer Hybrids

    Directory of Open Access Journals (Sweden)

    Anne Linhardt

    2016-04-01

    Full Text Available A novel series of peptide based hybrid polymers designed to undergo enzymatic degradation is presented, via macrosubstitution of a polyphosphazene backbone with the tetrapeptide Gly-Phe-Leu-Gly. Further co-substitution of the hybrid polymers with hydrophilic polyalkylene oxide Jeffamine M-1000 leads to water soluble and biodegradable hybrid polymers. Detailed degradation studies, via 31P NMR spectroscopy, dynamic light scattering and field flow fractionation show the polymers degrade via a combination of enzymatic, as well as hydrolytic pathways. The peptide sequence was chosen due to its known property to undergo lysosomal degradation; hence, these degradable, water soluble polymers could be of significant interest for the use as polymer therapeutics. In this context, we investigated conjugation of the immune response modifier imiquimod to the polymers via the tetrapeptide and report the self-assembly behavior of the conjugate, as well as its enzymatically triggered drug release behavior.

  11. Purified terephthalic acid wastewater biodegradation and toxicity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xu-xiang; LUO Xiang; GU Ji-dong; WAN Yu-qiu; CHENG Shu-pei; SUN Shi-lei; ZHU Cheng-jun; LI Wei-xin; ZHANG Xiao-chun; WANG Gui-lin; LU Jian-hua

    2005-01-01

    The biodegradation and toxicity of the purified terephthalic acid(PTA) processing wastewater was researched at NJYZ pilot with the fusant strain Fhhh in the carrier activated sludge process(CASP). Sludge loading rate(SLR) for Fhhh to COD of the wastewater was 1.09 d-1 and to PTA in the wastewater was 0.29 d-1. The results of bioassay at the pilot and calculation with software Ebis3 showed that the 48h-LC50 (median lethal concentration) to Daphnia magna for the PTA concentration in the wastewater was only 1/10 of that for the chemical PTA. There were 5 kinds of benzoate pollutants and their toxicities existing in the wastewater at least. The toxicity parameter value of the pure chemical PTA cannot be used to predicate the PTA wastewater toxicity. The toxicity of the NJYZ PTA wastewater will be discussed in detail in this paper.

  12. Biodegradation of lignin by Agaricus Bisporus

    Energy Technology Data Exchange (ETDEWEB)

    Vane, C.H.; Abbott, G.D.; Head, I.M. [Univ. of Newcastle upon Tyne (United Kingdom)

    1996-12-31

    The lignolytic activity of Agaricus bisporus will be addressed in this paper. Sound and fungally degraded lignins were characterized by Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC-MS), Fourier Transform Infrared Spectroscopy (FnR) and elemental analysis. Fungally degraded lignins displayed increased wt%N, wt%H and wt%O content and decreased wt%C content The FTIR spectrum of decayed lignin showed an increase in the relative intensity of absorption bands assigned to carbonyl and carboxyl functional groups located on the aliphatic side chain and a decrease in absorption bands assigned to aromatic skeletal vibration modes. Semiquantitative Py-GC-MS revealed an 82% decrease in lignin derived pyrolysis products upon biodegradation. No significant increase in pyrolysis products with an oxygenated aliphatic side chain were detected in the fungally degraded lignin however shortening of the aliphatic side chain via cleavage at the {alpha}, {beta} and {gamma} positions was observed.

  13. Biodegradation and flushing of MBT wastes.

    Science.gov (United States)

    Siddiqui, A A; Richards, D J; Powrie, W

    2013-11-01

    Mechanical-biological treatment (MBT) processes are increasingly being adopted as a means of diverting biodegradable municipal waste (BMW) from landfill, for example to comply with the EU Landfill Directive. However, there is considerable uncertainty concerning the residual pollution potential of such wastes. This paper presents the results of laboratory experiments on two different MBT waste residues, carried out to investigate the remaining potential for the generation of greenhouse gases and the flushing of contaminants from these materials when landfilled. The potential for gas generation was found to be between 8% and 20% of that for raw MSW. Pretreatment of the waste reduced the potential for the release of organic carbon, ammoniacal nitrogen, and heavy metal contents into the leachate; and reduced the residual carbon remaining in the waste after final degradation from ∼320g/kg dry matter for raw MSW to between 183 and 195g/kg dry matter for the MBT wastes. PMID:23973052

  14. Biodegradation of Petroleum Hydrocarbons in Soil

    Directory of Open Access Journals (Sweden)

    MR Mehrasbi

    2003-09-01

    Full Text Available Biodegradation of petroleum hydrocarbons (20 g/kg dw soil was investigated in 3 media, differing in the kind of petroleum fractions. In the laboratory experiments, during 5 months, the activities of petroleum hydrocarbon-degrading microorganisms and dehydrogenase activity of soil was determined. Gas chromatographic analysis showed the biological decontaminations for gas oil, kerosene and synthetic mixture (gas oil, kerosene and furnace oil are 60 %, 36 % and 55 %, respectively. Dehydrogenase activity which was assessed by TTC technique, correlated significantly positive with the numbers of microorganisms. The Spearman rank correlation coefficients(r in contaminated soils with gas oil, kerosene and synthetic mixture were 0.79, 0.80 and 0.69, respectively.

  15. Gas foamed open porous biodegradable polymeric microspheres.

    Science.gov (United States)

    Kim, Taek Kyoung; Yoon, Jun Jin; Lee, Doo Sung; Park, Tae Gwan

    2006-01-01

    Highly open porous biodegradable polymeric microspheres were fabricated for use as injectable scaffold microcarriers for cell delivery. A modified water-in-oil-in-water (W1/O/W2) double emulsion solvent evaporation method was employed for producing the microspheres. The incorporation of an effervescent salt, ammonium bicarbonate, in the primary W1 droplets spontaneously produced carbon dioxide and ammonia gas bubbles during the solvent evaporation process, which not only stabilized the primary emulsion, but also created well inter-connected pores in the resultant microspheres. The porous microspheres fabricated under various gas foaming conditions were characterized. The surface pores became as large as 20 microm in diameter with increasing the concentration of ammonium bicarbonate, being sufficient enough for cell infiltration and seeding. These porous scaffold microspheres could be potentially utilized for cultivating cells in a suspension manner and for delivering the seeded cells to the tissue defect site in an injectable manner. PMID:16023197

  16. Biodegradation of polyester. Polyester no bunkai sei

    Energy Technology Data Exchange (ETDEWEB)

    Tokiwa, Y. (Agency of Industrial Science and Technology, Tokyo (Japan). Fermentation Research Inst.)

    1991-09-10

    Penicillium sp. 14-3 and penicillium sp. 26-1 can degrade various kinds of polyester. The results of studies made on hydrolysis of polyester by enzyme, hydrolysis of polyester by various kinds of lipase, and degradation of ester type polyurethane by microbes and lipase are introduced. For the improvement of physical properties of aliphatic polyester, aromatic-aliphatic polyester copolymers (CPE) have been synthesized to study the biodegradability. Copolymer in which a number of polyamide (nylon) are alternately introduced (CPAE) to aliphatic polyester has been developed. The result of studies made on the degradability of a blended body of PCL and natural high polymer, and on the collapsibility by lipase of high polymer materials including aliphatic polyamide are introduced. 26 refs., 5 figs., 1 tab.

  17. Biodegradation of concrete intended for their decontamination

    International Nuclear Information System (INIS)

    The decontamination of sub-structural materials represents a stake of high importance because of the high volume generated. It is agreed then to propose efficient and effective processes. The process of bio-decontamination of the hydraulic binders leans on the mechanisms of biodegradation of concretes, phenomenon characterized in the 40's by an indirect attack of the material by acids stem from the microbial metabolism: sulphuric acid (produced by Thiobacillus), nitric acid (produced by Nitrosomonas and Nitrobacter) and organic acids (produced by fungi). The principle of the bio-decontamination process is to apply those microorganisms on the surface of the contaminated material, in order to damage its surface and to retrieve the radionuclides. One of the multiple approaches of the process is the use of a bio-gel that makes possible the micro-organisms application. (author)

  18. Novel bio-based and biodegradable polymer blends

    Science.gov (United States)

    Yang, Shengzhe

    Most plastic materials, including high performance thermoplastics and thermosets are produced entirely from petroleum-based products. The volatility of the natural oil markets and the increasing cost of petroleum have led to a push to reduce the dependence on petroleum products. Together with an increase in environmental awareness, this has promoted the use of alternative, biorenewable, environmentally-friendly products, such as biomass. The growing interest in replacing petroleum-based products by inexpensive, renewable, natural materials is important for sustainable development into the future and will have a significant impact on the polymer industry and the environment. This thesis involved characterization and development of two series of novel bio-based polymer blends, namely polyhydroxyalkanoate (PHA)/polyamide (PA) and poly(lactic acid) (PLA)/soy protein. Blends with different concentrations and compatible microstructures were prepared using twin-screw extruder. For PHA/PA blends, the poor mechanical properties of PHA improved significantly with an excellent combination of strength, stiffness and toughness by adding PA. Furthermore, the effect of blending on the viscoelastic properties has been investigated using small-amplitude oscillatory shear flow experiments as a function of blend composition and angular frequency. The elastic shear modulus (G‧) and complex viscosity of the blends increased significantly with increasing the concentration of PHA. Blending PLA with soy protein aims at reducing production cost, as well as accelerating the biodegradation rate in soil medium. In this work, the mechanical, thermal and morphological properties of the blends were investigated using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile tests.

  19. Antibacterial biodegradable Mg-Ag alloys

    Directory of Open Access Journals (Sweden)

    D Tie

    2013-06-01

    Full Text Available The use of magnesium alloys as degradable metals for biomedical applications is a topic of ongoing research and the demand for multifunctional materials is increasing. Hence, binary Mg-Ag alloys were designed as implant materials to combine the favourable properties of magnesium with the well-known antibacterial property of silver. In this study, three Mg-Ag alloys, Mg2Ag, Mg4Ag and Mg6Ag that contain 1.87 %, 3.82 % and 6.00 % silver by weight, respectively, were cast and processed with solution (T4 and aging (T6 heat treatment.The metallurgical analysis and phase identification showed that all alloys contained Mg4Ag as the dominant β phase. After heat treatment, the mechanical properties of all Mg-Ag alloys were significantly improved and the corrosion rate was also significantly reduced, due to presence of silver. Mg(OH2 and MgO present the main magnesium corrosion products, while AgCl was found as the corresponding primary silver corrosion product. Immersion tests, under cell culture conditions, demonstrated that the silver content did not significantly shift the pH and magnesium ion release. In vitro tests, with both primary osteoblasts and cell lines (MG63, RAW 264.7, revealed that Mg-Ag alloys show negligible cytotoxicity and sound cytocompatibility. Antibacterial assays, performed in a dynamic bioreactor system, proved that the alloys reduce the viability of two common pathogenic bacteria, Staphylococcus aureus (DSMZ 20231 and Staphylococcus epidermidis (DSMZ 3269, and the results showed that the killing rate of the alloys against tested bacteria exceeded 90%. In summary, biodegradable Mg-Ag alloys are cytocompatible materials with adjustable mechanical and corrosion properties and show promising antibacterial activity, which indicates their potential as antibacterial biodegradable implant materials.

  20. Biodegradation of crystal violet by Agrobacterium radiobacter.

    Science.gov (United States)

    Parshetti, G K; Parshetti, S G; Telke, A A; Kalyani, D C; Doong, R A; Govindwar, S P

    2011-01-01

    Agrobacterium radiobacter MTCC 8161 completely decolorized the Crystal Violet with 8 hr (10 mg/L) at static anoxic conditions. The decreased decolorization capability by A. radiobacter was observed, when the Crystal Violet concentration was increased from 10 to 100 mg/L. Semi-synthetic medium containing 1% yeast extract and 0.1% NH4C1 has shown 100% decolorization of Crystal Violet within 5 hr. A complete degradation of Crystal Violet by A. radiobacter was observed up to 7 cycles of repeated addition (10 mg/L). When the effect of increasing inoculum concentration on decolorization of Crystal Violet (100 mg/L) was studied, maximum decolorization was observed with 15% inoculum concentration. A significant increase in the activities of laccase (184%) and aminopyrine N-demethylase (300%) in cells obtained after decolorization indicated the involvement of these enzymes in decolorization process. The intermediates formed during the degradation of Crystal Violet were analyzed by gas chromatography and mass spectroscopy (GC/MS). It was detected the presence of N,N,N',N"-tetramethylpararosaniline, [N, N-dimethylaminophenyl] [N-methylaminophenyl] benzophenone, N, N-dimethylaminobenzaldehyde, 4-methyl amino phenol and phenol. We proposed the hypothetical metabolic pathway of Crystal Violet biodegradation by A. radiobacter. Phytotoxicity and microbial toxicity study showed that Crystal Violet biodegradation metabolites were less toxic to bacteria (A. radiobacter, P. aurugenosa and A. vinelandii) contributing to soil fertility and for four kinds of plants (Sorghum bicolor Vigna radiata, Lens culinaris and Triticum aestivum) which are most sensitive, fast growing and commonly used in Indian agriculture. PMID:22128547

  1. Mathematical modelling of oil spill fate and transport in the marine environment incorporating biodegradation kinetics of oil droplets

    Science.gov (United States)

    Spanoudaki, Katerina

    2016-04-01

    Oil biodegradation by native bacteria is one of the most important natural processes that can attenuate the environmental impacts of marine oil spills. However, very few numerical models of oil spill fate and transport include biodegradation kinetics of spilled oil. Furthermore, in models where biodegradation is included amongst the oil transformation processes simulated, it is mostly represented as a first order decay process neglecting the effect of several important parameters that can limit biodegradation rate, such as oil composition and oil droplets-water interface. To this end, the open source numerical model MEDSKIL-II, which simulates oil spill fate and transport in the marine environment, has been modified to include biodegradation kinetics of oil droplets dispersed in the water column. MEDSLIK-II predicts the transport and weathering of oil spills following a Lagrangian approach for the solution of the advection-diffusion equation. Transport is governed by the 3D sea currents and wave field provided by ocean circulation models. In addition to advective and diffusive displacements, the model simulates several physical and chemical processes that transform the oil (evaporation, emulsification, dispersion in the water column, adhesion to coast). The fate algorithms employed in MEDSLIK-II consider the oil as a uniform substance whose properties change as the slick weathers, an approach that can lead to reduced accuracy, especially in the estimation of oil evaporation and biodegradation. Therefore MEDSLIK-II has been modified by adopting the "pseudo-component" approach for simulating weathering processes. Spilled oil is modelled as a relatively small number of discrete, non-interacting components (pseudo-components). Chemicals in the oil mixture are grouped by physical-chemical properties and the resulting pseudo-component behaves as if it were a single substance with characteristics typical of the chemical group. The fate (evaporation, dispersion

  2. Evaluation of ethyl tert-butyl ether biodegradation in a contaminated aquifer by compound-specific isotope analysis and in situ microcosms

    Energy Technology Data Exchange (ETDEWEB)

    Bombach, Petra, E-mail: petra.bombach@ufz.de [UFZ – Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstrasse 15, D-04318 Leipzig (Germany); Isodetect GmbH Leipzig, Deutscher Platz 5b, D-04103 Leipzig (Germany); Nägele, Norbert [Kuvier the Biotech Company S.L., Ctra. N-I, p.k. 234–P.E. INBISA 23" a, E-09001 Burgos (Spain); Rosell, Mònica [UFZ – Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstrasse 15, D-04318 Leipzig (Germany); Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristallografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), C/Martí i Franquès s/n, 08028 Barcelona (Spain); Richnow, Hans H. [UFZ – Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstrasse 15, D-04318 Leipzig (Germany); Fischer, Anko [Isodetect GmbH Leipzig, Deutscher Platz 5b, D-04103 Leipzig (Germany)

    2015-04-09

    Highlights: • In situ biodegradation of ETBE was investigated in a fuel contaminated aquifer. • Degradation was studied by CSIA and in situ microcosms in combination with TLFA-SIP. • ETBE was degraded when ETBE was the main groundwater contaminant. • ETBE was also degraded in the presence of BTEX and MTBE. • Hydrochemical analysis indicated aerobic and anaerobic ETBE biodegradation. - Abstract: Ethyl tert-butyl ether (ETBE) is an upcoming groundwater pollutant in Europe whose environmental fate has been less investigated, thus far. In the present study, we investigated the in situ biodegradation of ETBE in a fuel-contaminated aquifer using compound-specific stable isotope analysis (CSIA), and in situ microcosms in combination with total lipid fatty acid (TLFA)-stable isotope probing (SIP). In a first field investigation, CSIA revealed insignificant carbon isotope fractionation, but low hydrogen isotope fractionation of up to +14‰ along the prevailing anoxic ETBE plume suggesting biodegradation of ETBE. Ten months later, oxygen injection was conducted to enhance the biodegradation of petroleum hydrocarbons (PH) at the field site. Within the framework of this remediation measure, in situ microcosms loaded with [{sup 13}C{sub 6}]-ETBE (BACTRAP{sup ®}s) were exposed for 119 days in selected groundwater wells to assess the biodegradation of ETBE by TLFA-SIP under the following conditions: (i) ETBE as main contaminant; (ii) ETBE as main contaminant subjected to oxygen injection; (iii) ETBE plus other PH; (iv) ETBE plus other PH subjected to oxygen injection. Under all conditions investigated, significant {sup 13}C-incorporation into microbial total lipid fatty acids extracted from the in situ microcosms was found, providing clear evidence of ETBE biodegradation.

  3. Contribution of microorganisms to non-extractable residue formation during biodegradation of ibuprofen in soil

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Karolina M., E-mail: karolina.nowak@ufz.de [UFZ, Helmholtz Centre for Environmental Research, Department of Environmental Biotechnology, Permoserstraße 15, 04318 Leipzig (Germany); Department of Environmental Biology and Chemodynamics, Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); Girardi, Cristobal; Miltner, Anja [UFZ, Helmholtz Centre for Environmental Research, Department of Environmental Biotechnology, Permoserstraße 15, 04318 Leipzig (Germany); Gehre, Matthias [UFZ, Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstraße 15, 04318 Leipzig (Germany); Schäffer, Andreas [Department of Environmental Biology and Chemodynamics, Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); Kästner, Matthias [UFZ, Helmholtz Centre for Environmental Research, Department of Environmental Biotechnology, Permoserstraße 15, 04318 Leipzig (Germany)

    2013-02-15

    Non-extractable residues (NER) formed during biodegradation of organic contaminants in soil are considered to be mainly composed of parent compounds or their primary metabolites with hazardous potential. However, in the case of biodegradable organic compounds, the soil NER may also contain microbial biomass components, for example fatty acids (FA) and amino acids (AA). After cell death, these biomolecules are subsequently incorporated into non-living soil organic matter (SOM) and are stabilised ultimately forming hardly extractable residues of biogenic origin. We investigated biodegradation of {sup 13}C{sub 6}-ibuprofen, in particular the metabolic incorporation of the {sup 13}C-label into FA and AA and their fate in soil over 90 days. {sup 13}C-FA and {sup 13}C-AA amounts in the living microbial biomass fraction initially increased, then decreased over time and were continuously incorporated into the non-living SOM pool. The {sup 13}C-FA in the non-living SOM remained stable from day 59 whereas the contents of {sup 13}C-AA slightly increased until the end. After 90 days, nearly all NER were biogenic as they were made up almost completely by natural biomass compounds. The presented data demonstrated that the potential environmental risks related to the ibuprofen-derived NER are overestimated. - Highlights: ► Biogenic residue formation during microbial degradation of ibuprofen was studied. ► Nearly all non-extractable residues derived from ibuprofen were biogenic. ► Fatty acids and amino acids formed biogenic non-extractable residues and were stabilised in soil. ► Environmental risks of ibuprofen-derived non-extractable residues are overestimated.

  4. Contribution of microorganisms to non-extractable residue formation during biodegradation of ibuprofen in soil

    International Nuclear Information System (INIS)

    Non-extractable residues (NER) formed during biodegradation of organic contaminants in soil are considered to be mainly composed of parent compounds or their primary metabolites with hazardous potential. However, in the case of biodegradable organic compounds, the soil NER may also contain microbial biomass components, for example fatty acids (FA) and amino acids (AA). After cell death, these biomolecules are subsequently incorporated into non-living soil organic matter (SOM) and are stabilised ultimately forming hardly extractable residues of biogenic origin. We investigated biodegradation of 13C6-ibuprofen, in particular the metabolic incorporation of the 13C-label into FA and AA and their fate in soil over 90 days. 13C-FA and 13C-AA amounts in the living microbial biomass fraction initially increased, then decreased over time and were continuously incorporated into the non-living SOM pool. The 13C-FA in the non-living SOM remained stable from day 59 whereas the contents of 13C-AA slightly increased until the end. After 90 days, nearly all NER were biogenic as they were made up almost completely by natural biomass compounds. The presented data demonstrated that the potential environmental risks related to the ibuprofen-derived NER are overestimated. - Highlights: ► Biogenic residue formation during microbial degradation of ibuprofen was studied. ► Nearly all non-extractable residues derived from ibuprofen were biogenic. ► Fatty acids and amino acids formed biogenic non-extractable residues and were stabilised in soil. ► Environmental risks of ibuprofen-derived non-extractable residues are overestimated

  5. Biodegradation of different petroleum hydrocarbons by free and immobilized microbial consortia.

    Science.gov (United States)

    Shen, Tiantian; Pi, Yongrui; Bao, Mutai; Xu, Nana; Li, Yiming; Lu, Jinren

    2015-12-01

    The efficiencies of free and immobilized microbial consortia in the degradation of different types of petroleum hydrocarbons were investigated. In this study, the biodegradation rates of naphthalene, phenanthrene, pyrene and crude oil reached about 80%, 30%, 56% and 48% under the optimum environmental conditions of free microbial consortia after 7 d. We evaluated five unique co-metabolic substances with petroleum hydrocarbons, α-lactose was the best co-metabolic substance among glucose, α-lactose, soluble starch, yeast powder and urea. The orthogonal biodegradation analysis results showed that semi-coke was the best immobilized carrier followed by walnut shell and activated carbon. Meanwhile, the significance of various factors that contribute to the biodegradation of semi-coke immobilized microbial consortia followed the order of: α-lactose > semi-coke > sodium alginate > CaCl2. Moreover, the degradation rate of the immobilized microbial consortium (47%) was higher than that of a free microbial consortium (26%) under environmental conditions such as the crude oil concentration of 3 g L(-1), NaCl concentration of 20 g L(-1), pH at 7.2-7.4 and temperature of 25 °C after 5 d. SEM and FTIR analyses revealed that the structure of semi-coke became more porous and easily adhered to the microbial consortium; the functional groups (e.g., hydroxy and phosphate) were identified in the microbial consortium and were changed by immobilization. This study demonstrated that the ability of microbial adaptation to the environment can be improved by immobilization which expands the application fields of microbial remediation. PMID:26565634

  6. Vectorization of copper complexes via biocompatible and biodegradable PLGA nanoparticles

    International Nuclear Information System (INIS)

    A double emulsion-solvent diffusion approach with fully biocompatible materials was used to encapsulate copper complexes within biodegradable nanoparticles, for which the release kinetics profiles have highlighted their potential use for a prolonged circulating administration.

  7. Biodegradation of waste PET based copolyesters in thermophilic anaerobic sludge

    Czech Academy of Sciences Publication Activity Database

    Hermanová, S.; Šmejkalová, P.; Merna, J.; Zarevúcka, Marie

    2015-01-01

    Roč. 111, Jan (2015), s. 176-184. ISSN 0141-3910 Institutional support: RVO:61388963 Keywords : poly(ethylene terephthalate) * copolymers * sludge * biodegradation * hydrolysis * waste Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.163, year: 2014

  8. Biodegradation of cycloalkane carboxylic acids in oil sand tailings

    International Nuclear Information System (INIS)

    The biodegradation of both an n-alkane and several carboxylated cycloalkanes was examined experimentally within tailings produced by the extraction of bitumen from the Athabasca oil sands. The carboxylated cycloalkanes examined were structurally similar to naphthenic acids that have been associated with the acute toxicity of oil sand tailings. The biodegradation potential of naphthenic acids was estimated by determining the biodegradation of both the carboxylated cycloalkanes and hexadecane in oil sand tailings. Carboxylated cycloalkanes were biodegraded within oil sands tailings, although compounds with methyl substitutions on the cycloalkane ring were more resistant to microbial degradation. Microbial activity against hexadecane and certain carboxylated cycloalkanes was found to be nitrogen and phosphorus limited. 21 refs., 3 refs., 1 tab

  9. Fade to Green: A Biodegradable Stack of Microbial Fuel Cells.

    Science.gov (United States)

    Winfield, Jonathan; Chambers, Lily D; Rossiter, Jonathan; Stinchcombe, Andrew; Walter, X Alexis; Greenman, John; Ieropoulos, Ioannis

    2015-08-24

    The focus of this study is the development of biodegradable microbial fuel cells (MFCs) able to produce useful power. Reactors with an 8 mL chamber volume were designed using all biodegradable products: polylactic acid for the frames, natural rubber as the cation-exchange membrane and egg-based, open-to-air cathodes coated with a lanolin gas diffusion layer. Forty MFCs were operated in various configurations. When fed with urine, the biodegradable stack was able to power appliances and was still operational after six months. One useful application for this truly sustainable MFC technology includes onboard power supplies for biodegradable robotic systems. After operation in remote ecological locations, these could degrade harmlessly into the surroundings to leave no trace when the mission is complete. PMID:26212495

  10. Kinetics of Enzyme Biodegradation of New Synthesized Copolymers

    Directory of Open Access Journals (Sweden)

    Rosa Mateva

    2005-04-01

    Full Text Available Block copolymers of the poly-(hexanlactam-co-block-poly-(?-valerolactone from ABA-type were synthesized via anionic polymerization of hexanlactam (HL with the sodium salt of hexanlactam (Na-HL as an initiator and polymeric activator (PAC. PAC, on the base of poly-?-valerolactone (PVL, was used as a soft central block. Synthetic PVL is very attractive biomaterial - nontoxic, biocompatibility and biodegradable polyester[5-8]. Modification of HL with PVL, renders these system biodegradable[1]. Isolated copolymers were characterized by various spectroscopic techniques. The effect of the chemical and physical structure of the synthesized block copolymers on the biodegradation was investigated. Biodegradation of block copolyester amides was studied by means of lipase and involves the enzymatic hydrolysis of ester groups in PVL.

  11. Molecular bioanalytical methods for monitoring polynuclear aromatic hydrocarbon biodegradation in manufactured-gas-plant soils. Volume 2. Final report, September 1987-August 1991

    International Nuclear Information System (INIS)

    The objectives of work described in the report were to provide fundamental information on the microbiology and biochemistry of polynuclear aromatic hydrocarbon (PAH) biodegradation, and to continue development and initiate applications for molecular techniques in providing needed information for biodegradation process monitoring and control. A significant portion of the effort was in support of research studies on dynamic systems analysis for PAH (presented in Volume I, GRI-91-0193). Specific work included: (1) Analyzing and developing a PAH degradative mixed bacterial culture for standardized bioreactor operation; (2) Developing a bacterial culture collection of organisms involved in PAH degradation; (3) Applying molecular techniques, principally DNA gene probe technology, for environmental diagnostic assessment of PAH bioremediation potential and biodegradation processes performance evaluation; (4) Development and application of reporter strain bioluminescent technology to improve capabilities of analysis for enzyme expression and/or bioavailability

  12. Biodegradation of azaarenes and creosote in aqueous and organic liquid phase immobilized cell bioreactors by bacteria isolated from creosote contaminated soil

    International Nuclear Information System (INIS)

    The biodegradation of azaarenes and coal-tar creosote was studied using aerobic bacteria isolated from creosote contaminated soil as inocula in batch cultures and in immobilized cell bioreactors. Biodegradation of quinoline, isoquinoline, and 6-methylquinoline by pure and mixed cultures yielded mono-hydroxylated metabolites as the primary products of azaarene metabolism. All azaarene degrading cultures could degrade quinoline, suggesting a common metabolic pathway based on quinoline metabolism. Mixed cultures attacking creosote degraded 2- and 3-ring polyaromatic hydrocarbons and heterocycles, but were unable to degrade 4- and 5-ring PAH. The degradation rate and loading capacity for quinoline was greatly enhanced in the bioreactors in comparison to batch cultures. The rates of isoquinoline, 6-methylquinoline degrading strain of Pseudomonas putida successfully removed 6-methylquinoline from solution in decane in a water-limited, non-aqueous liquid phase immobilized cell bioreactor. These experiments demonstrate the ability of environmental organisms to biodegrade several biologically active compounds under conditions suitable for bioremediation applications

  13. Biodegradable Nanocomposite Films Based on Sodium Alginate and Cellulose Nanofibrils

    OpenAIRE

    B. Deepa; Eldho Abraham; Pothan, Laly A; Nereida Cordeiro; Marisa Faria; Sabu Thomas

    2016-01-01

    Biodegradable nanocomposite films were prepared by incorporation of cellulose nanofibrils (CNF) into alginate biopolymer using the solution casting method. The effects of CNF content (2.5, 5, 7.5, 10 and 15 wt %) on mechanical, biodegradability and swelling behavior of the nanocomposite films were determined. The results showed that the tensile modulus value of the nanocomposite films increased from 308 to 1403 MPa with increasing CNF content from 0% to 10%; however, it decreased with further...

  14. Study of the biodegradation in soil of new generation plactics

    OpenAIRE

    Siotto,

    2011-01-01

    The intense use of plastic contributes to increase the amount of municipal waste that are generally disposed in landfill. For some applications and sectors, an important alternative to the conventional plastic materials can be found in the use of the new generation materials: the biodegradable polymers. Their use can be an alternative to landfill disposal and can thus reduce the cost of waste management and the accumulation in the environment. The biodegradable polymers, in fact, are used by ...

  15. Biodegradation of Asphalt Cement-20 by Aerobic Bacteria

    OpenAIRE

    Pendrys, John P.

    1989-01-01

    Seven gram-negative, aerobic bacteria were isolated from a mixed culture enriched for asphalt-degrading bacteria. The predominant genera of these isolates were Pseudomonas, Acinetobacter, Alcaligenes, Flavimonas, and Flavobacterium. The mixed culture preferentially degraded the saturate and naphthene aromatic fractions of asphalt cement-20. A residue remained on the surface which was resistant to biodegradation and protected the underlying asphalt from biodegradation. The most potent asphalt-...

  16. Biodegradability determination of municipal waste: an evaluation of methods

    OpenAIRE

    Godley, Andrew R.; Lewin, Kathy; Graham, Adele; Barker, H.; Smith, Richard

    2004-01-01

    The Environment Agency is required to monitor the diversion of biodegradable municipal waste (BMW) from landfill. Reliable methods are needed to measure the biodegradability of municipal waste, both as mixed municipal waste and as individually separated fractions. An evaluation of several methods was carried out using a variety of organic materials typically found in municipal solid waste. The assessment considered biological and non-biological methods to determine which provid...

  17. Critical evaluation of biodegradable polymers used in nanodrugs

    OpenAIRE

    Marin E; Briceño MI; Caballero-George C

    2013-01-01

    Edgar Marin,1–3 Maria Isabel Briceño,2 Catherina Caballero-George11Unit of Pharmacology, Center of Biodiversity and Drug Discovery, Institute of Scientific Research and High Technology Services, 2Nano Dispersions Technology, Panama, Republic of Panama; 3Department of Biotechnology, Archaria Nagarjuna University, Guntur, IndiaAbstract: Use of biodegradable polymers for biomedical applications has increased in recent decades due to their biocompatibility, biodegradability, ...

  18. Biodegradation and biocompatibility of a degradable chitosan vascular prosthesis

    OpenAIRE

    Kong, Xiaoying; Xu, Wenhua

    2015-01-01

    An instrument made by ourselves was used to fabricate biodegradable chitosan-heparin artificial vascular prosthesis with small internal diameter (2 mm) and different crosslinking degree from biodegradable chitosan, chitosan derivates and heparin. In vivo and in vitro degradation studies, inflammatory analysis and electron microscope scanning of this artificial vascular prosthesis were performed. It was observed that 50% of the prosthesis decomposed in vivo and was replaced by natural tissues....

  19. Factors influencing crude oil biodegradation by Yarrowia lipolytica

    OpenAIRE

    Tatiana Felix Ferreira; Maria Alice Zarur Coelho; Maria Helena Miguez da Rocha-Leão

    2012-01-01

    Yarrowia lipolytica is unique strictly aerobic yeast with the ability to efficiently degrade hydrophobic substrates such as n-alkenes, fatty acids, glycerol and oils. In the present work, a 2(4) full factorial design was used to investigate the influence of the independent variables of temperature, agitation, initial cell concentration and initial petroleum concentration on crude oil biodegradation. The results showed that all variables studied had significant effects on the biodegradation pr...

  20. Removal of Textile Dyestufes From Wastewater by Adsorptive Biodegradation

    OpenAIRE

    KAPDAN, İlgi KARAPINAR; KARGI, Fikret

    2000-01-01

    Removal of dyestuffs from a synthetic wastewater by adsorptive biodegradation was investigated in this study. The dyestuff adsorption capacities of granular, powdered activated carbon (GAC and PAC) and low-cost adsorbents such as zeolite, wood chips and wood ash were evaluated in order to obtain a low-cost adsorbent for use in an activated sludge unit. Then various activated sludge cultures were tested for biodegradation of a selected dyestuff. An activated sludge unit with the selected activ...

  1. Kinetics of Enzyme Biodegradation of New Synthesized Copolymers

    OpenAIRE

    Rosa Mateva; Natalia Toncheva; Lubov Yotova

    2005-01-01

    Block copolymers of the poly-(hexanlactam)-co-block-poly-(?-valerolactone) from ABA-type were synthesized via anionic polymerization of hexanlactam (HL) with the sodium salt of hexanlactam (Na-HL) as an initiator and polymeric activator (PAC). PAC, on the base of poly-?-valerolactone (PVL), was used as a soft central block. Synthetic PVL is very attractive biomaterial - nontoxic, biocompatibility and biodegradable polyester[5-8]. Modification of HL with PVL, renders these system biodegradable...

  2. Base Oils Biodegradability Prediction with Data Mining Techniques

    OpenAIRE

    Malika Trabelsi; Saloua Saidane; Sihem Ben Abdelmelek

    2010-01-01

    In this paper, we apply various data mining techniques including continuous numeric and discrete classification prediction models of base oils biodegradability, with emphasis on improving prediction accuracy. The results show that highly biodegradable oils can be better predicted through numeric models. In contrast, classification models did not uncover a similar dichotomy. With the exception of Memory Based Reasoning and Decision Trees, tested classification techniques achieved high classifi...

  3. BACTERIAL BIODEGRADATION OF PERMETRINA AND CIPERMETRINA PESTICIDES IN CULTURE LOT

    OpenAIRE

    José C. Mendoza; Yazmin S. Perea; Jaime A. Salvador; Janette A. Morales; Gabriela Pérez

    2011-01-01

    The biodegradation of permetrhin and cypermethrin (50 and 100 mg/L) with Pseudomonas putida, Pseudomonas mendocina, Chromobacterium violaceum and Burkholderia cepacia in batch reactors was studied. The strain of Pseudomonas putida and Pseudomonas mendocina showed a greater capability of biodegradation of pesticides, after 5 days, this is of 65% for both pesticides and after the 15 days it practically stays constant, being of until 95% for permetrina to 50 and 100 mg/l and for cipermetrina fr...

  4. Biodegradation of bioaccessible textile azo dyes by Phanerochaete chrysosporium

    OpenAIRE

    Martins, Maria Adosinda; Ferreira, Isabel C.F.R.; Santos, Isabel; Queiroz, Maria João R. P.; Lima, Nelson

    2000-01-01

    Azo dyes are important chemical pollutants of industrial origin. Textile azo dyes with bioaccessible groups for lignin degrading fungi, such as 2-methoxyphenol (guaiacol) and 2,6-dimethoxyphenol (syringol), were synthesised using different aminobenzoic and aminosulphonic acids as diazo components. The inocula of the best biodegradation assays were obtained from a pre-growth medium (PAM), containing one of the synthesised dyes. The results of the dye biodegradation assays were eval...

  5. Development of biodegradable magnesium alloy stents with coating

    OpenAIRE

    Lorenza Petrini; Wei Wu; Dario Gastaldi; Lina Altomare; Silvia Farè; Francesco Migliavacca; Ali Gökhan Demir; Barbara Previtali; Maurizio Vedani

    2014-01-01

    Biodegradable stents are attracting the attention of many researchers in biomedical and materials research fields since they can absolve their specific function for the expected period of time and then gradually disappear. This feature allows avoiding the risk of long-term complications such as restenosis or mechanical instability of the device when the vessel grows in size in pediatric patients. Up to now biodegradable stents made of polymers or magnesium alloys have been propose...

  6. Spills of Hydraulic Fracturing Chemicals on Agricultural Topsoil: Biodegradation, Sorption, and Co-contaminant Interactions.

    Science.gov (United States)

    McLaughlin, Molly C; Borch, Thomas; Blotevogel, Jens

    2016-06-01

    Hydraulic fracturing frequently occurs on agricultural land. Yet the extent of sorption, transformation, and interactions among the numerous organic frac fluid and oil and gas wastewater constituents upon environmental release is hardly known. Thus, this study aims to advance our current understanding of processes that control the environmental fate and toxicity of commonly used hydraulic fracturing chemicals. Poly(ethylene glycol) surfactants were completely biodegraded in agricultural topsoil within 42-71 days, but their transformation was impeded in the presence of the biocide glutaraldehyde and was completely inhibited by salt at concentrations typical for oil and gas wastewater. At the same time, aqueous glutaraldehyde concentrations decreased due to sorption to soil and were completely biodegraded within 33-57 days. While no aqueous removal of polyacrylamide friction reducer was observed over a period of 6 months, it cross-linked with glutaraldehyde, further lowering the biocide's aqueous concentration. These findings highlight the necessity to consider co-contaminant effects when we evaluate the risk of frac fluid additives and oil and gas wastewater constituents in agricultural soils in order to fully understand their human health impacts, likelihood for crop uptake, and potential for groundwater contamination. PMID:27171137

  7. Identification and isolation of bacteria containing OPH enzyme for biodegradation of organophosphorus pesticide diazinon from contaminated agricultural soil

    Directory of Open Access Journals (Sweden)

    Sara Mobarakpoor

    2015-04-01

    Full Text Available Background: Organophosphorus insecticide diazinon has been widely used in agriculture and has the ability to transfer and accumulate in soil, water and animal tissues, and to induce toxicity in plants, animals and humans. In humans, diazinon inhibits nerve transmission by inactivating acetylcholinesterase enzyme. The present study was carried out to identify bacteria containing OPH enzyme for biodegradation of diazinon from contaminated agricultural soil. Methods: In this study, 8 contaminated agricultural soil samples that were exposed to pesticides, especially diazinon in the last two decades, were collected from the farms of Hamedan province. After preparing the media, for isolation of several bacterial strains containing OPH enzyme that are capable of biodegrading organophosphorus pesticides by diazinon enzymatic hydrolysis, bacterial genomic DNA extraction, plasmid product sequencing, phylogenetic sequence processing and phylogenetic tree drawing were carried out. Results: Eight bacterial strains, capable of secreting OPH enzyme, were isolated from soil samples, one of which named BS-1 with 86% similarity to Bacillus safensis displayed the highest organophosphate-hydrolyzing capability and can be used as a source of carbon and phosphorus. Conclusion: It can be concluded that the isolated bacterial strain identified in this study with OPH enzyme secretion has the potential for biodegradation of organophosphorus pesticides, especially diazinon in invitro conditions. Also, further studies such as the environmental stability and interaction, production strategies, safety, cost-benefit, environmental destructive parameters, and, toxicological, genetic and biochemical aspects are recommended prior to the application of bacterial strains in the field-scale bioremediation.

  8. Evaluation of the biodegradation of Alaska North Slope oil in microcosms using the biodegradation model BIOB

    Directory of Open Access Journals (Sweden)

    Jagadish eTorlapati

    2014-05-01

    Full Text Available We present the details of a numerical model, BIOB that is capable of simulating the biodegradation of oil entrapped in the sediment. The model uses Monod kinetics to simulate the growth of bacteria in the presence of nutrients and the subsequent consumption of hydrocarbons. The model was used to simulate experimental results of Exxon Valdez oil biodegradation in laboratory columns (Venosa et al. (2010. In that study, samples were collected from three different islands: Eleanor Island (EL107, Knight Island (KN114A, and Smith Island (SM006B, and placed in laboratory microcosms for a duration of 168 days to investigate oil bioremediation through natural attenuation and nutrient amendment. The kinetic parameters of the BIOB model were estimated by fitting to the experimental data using a parameter estimation tool based on Genetic Algorithms (GA. The parameter values of EL107 and KN114A were similar whereas those of SM006B were different from the two other sites; in particular biomass growth at SM006B was four times slower than at the other two islands. Grain size analysis from each site revealed that the specific surface area per unit mass of sediment was considerably lower at SM006B, which suggest that the surface area of sediments is a key control parameter for microbial growth in sediments. Comparison of the BIOB results with exponential decay curves fitted to the data indicated that BIOB provided better fit for KN114A and SM006B in nutrient amended treatments, and for EL107 and KN114A in natural attenuation. In particular, BIOB was able to capture the initial slow biodegradation due to the lag phase in microbial growth. Sensitivity analyses revealed that oil biodegradation at all three locations were sensitive to nutrient concentration whereas SM006B was sensitive to initial biomass concentration due to its slow growth rate. Analyses were also performed to compare the half-lives of individual compounds with the decay rate of the overall PAH.

  9. Biodegradation and surfactant-mediated biodegradation of diesel fuel by 218 microbial consortia are not correlated to cell surface hydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Owsianiak, Mikolaj; Szulc, Alicja; Chrzanowski, Lukasz; Bogacki, Mariusz [Poznan Univ. of Technology (Poland). Inst. of Chemical Technology and Engineering; Cyplik, Pawel; Olejnik-Schmidt, Agniezka K. [Poznan Univ. of Life Sciences (Poland). Dept. of Biotechnology and Food Microbiology; Heipieper, Hermann J. [Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany). Dept. of Environmental Biotechnology

    2009-09-15

    In this study, we elucidated the role of cell surface hydrophobicity (microbial adhesion to hydrocarbons method, MATH) and the effect of anionic rhamnolipids and nonionic Triton X-100 surfactants on biodegradation of diesel fuel employing 218 microbial consortia isolated from petroleum-contaminated soils. Applied enrichment procedure with floating diesel fuel as a sole carbon source in liquid cultures resulted in consortia of varying biodegradation potential and diametrically different cell surface properties, suggesting that cell surface hydrophobicity is a conserved parameter. Surprisingly, no correlations between cell surface hydrophobicity and biodegradation of diesel fuel were found. Nevertheless, both surfactants altered cell surface hydrophobicity of the consortia in similar manner: increased for the hydrophilic and decreased for the hydrophobic cultures. In addition to this, the surfactants exhibited similar influence on diesel fuel biodegradation: Increase was observed for initially slow-degrading cultures and the opposite for fast degraders. This indicates that in the surfactant-mediated biodegradation, effectiveness of surfactants depends on the specification of microorganisms and not on the type of surfactant. In contrary to what was previously reported for pure strains, cell surface hydrophobicity, as determined by MATH, is not a good descriptor of biodegrading potential for mixed cultures. (orig.)

  10. Multiple lines of evidence to demonstrate vinyl chloride aerobic biodegradation in the vadose zone, and factors controlling rates

    Science.gov (United States)

    Patterson, B. M.; Aravena, R.; Davis, G. B.; Furness, A. J.; Bastow, T. P.; Bouchard, D.

    2013-10-01

    rates were independent of substrate (VC and/or oxygen) concentration. The high correlation (R = 0.962 to 0.975) between CO2 concentrations and temperature suggested that aerobic biodegradation of VC was controlled by bacterial activity that was regulated by the temperature within the vadose zone. When assessing a contaminated site for possible vapour intrusion into buildings, accounting for environmental conditions for aerobic biodegradation of VC in the vadose zone should improve the assessment of environmental risk of VC intrusion into buildings, enabling better identification and prioritisation of contaminated sites to be remediated.

  11. Biodegradation Of Polycyclic Aromatic Hydrocarbons In Petroleum Oil Contaminating The Environment

    International Nuclear Information System (INIS)

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants in urban atmospheres (Chen et al., 2013). PAHs enter the environment via incomplete combustion of fossil fuels and accidental leakage of petroleum products, and as components of products such as creosote (Muckian et al., 2009). Due to PAHs carcinogenic activity, they have been included in the European Union (EU) and the Environmental Protection Agency (EPA) priority pollutant lists. Human exposure to PAHs occurs in three ways, inhalation, dermal contact and consumption of contaminated foods, which account for 88-98% of such contamination; in other words, diet is the major source of human exposure to these contaminants (Rey-Salgueiro et al., 2008). Both the World Health Organization and the UK Expert Panel on Air Quality Standards (EPAQS) have considered benzo(a)pyrene (BaP) as a marker of the carcinogenic potency of the polycyclic aromatic hydrocarbons (PAH) mixture (Delgado-Saborit et al., 2011). Polycyclic aromatic and heavier aliphatic hydrocarbons, which have a stable recalcitrant molecular structure, exhibit high hydrophobicity and low aqueous solubility, are not readily removed from soil through leaching and volatilization (Brassington et al., 2007). The hydrophobicity of PAHs limits desorption to the aqueous phase (Donlon et al., 2002). Six main ways of dissipation, i.e. disappearance, are recognized in the environment: volatilization, photooxidation, Aim of the Work chemical oxidation, sorption, leaching and biodegradation. Microbial degradation is considered to be the main process involved in the dissipation of PAH (Yuan et al., 2002). Thus, more and more research interests are turning to the biodegradation of PAHs. Some microorganisms can utilize PAHs as a source of carbon and energy so that PAHs can be degraded to carbon dioxide and water, or transformed to other nontoxic or low-toxic substances (Perelo, 2010). Compared with other physical and chemical methods such as combustion

  12. Biodegradability enhancement of municipal landfill leachate

    Directory of Open Access Journals (Sweden)

    Pi Kewu

    2008-12-01

    Full Text Available The method of enhancing the biodegradability of landfill leachate via air stripping followed by coagulation/ultrafiltration (UF processes is introduced. In this study, the air stripping process obtained a removal efficiency of 88.6% for ammonia nitrogen (NH3-N, at an air-to-liquid ratio (A/L of 3 300 (pH = 11 and after 18 h of stripping. The single coagulation process increased the BOD (biological oxygen demand/COD (chemical oxygen demand ratio by 0.089 with a FeCl3 dosage of 570 mg/L, at pH 7.0, and the single UF process increased the BOD/COD ratio from 0.049 to 0.311. However, the combination of coagulation and UF increased the BOD/COD ratio from 0.049 to 0.423, and the final BOD, COD, NH3-N, and colour of the leachate were 1 023 mg/L, 2 845 mg/L, 145 mg/L, and 2 056, respectively, when a 3 kDa molecular weight cut-off (MWCO membrane was used at an operating pressure of 0.7 MPa. In the ultrafiltration process, the average solution flux (JV, concentration multiple (MC, and retention rate (R for the COD were 107.3 L/(m2·h, 6.3, and 84.2%, respectively.

  13. Microbial ecology of bacterially mediated PCB biodegradation

    International Nuclear Information System (INIS)

    The roles of plasmid mediated and consortia mediated polychlorinated biphenyl (PCB) biodegradation by bacterial populations isolated from PCB contaminated freshwater sediments were investigated. PCB degrading bacteria were isolated by DNA:DNA colony hybridization, batch enrichments, and chemostat enrichment. Analysis of substrate removal and metabolite production were done using chlorinated biphenyl spray plates, reverse phase high pressure liquid chromatography, Cl- detection, and 14C-labeled substrate mineralization methods. A bacterial consortium, designated LPS10, involved in a concerted metabolic attack on chlorinated biphenyls, was shown to mineralize 4-chlorobiphenyl (4CB) and 4,4'-dichlorobiphenyl (4,4' CB). The LPS10 consortium was isolated by both batch and chemostat enrichment using 4CB and biphenyl (BP) as sole carbon source and was found to have tree bacterial isolates that predominated; these included: Pseudomonas, testosteroni LPS10A which mediated the breakdown of 4CB and 4,4' CB to the putative meta-cleavage product and subsequently to 4-chlorobenzoic acid (4CBA), an isolate tentatively identified as an Arthrobacter sp. LPS10B which mediated 4CBA degradation, and Pseudomonas putida by A LPS10C whose role in the consortium has not been determined

  14. Equilibrium gold nanoclusters quenched with biodegradable polymers.

    Science.gov (United States)

    Murthy, Avinash K; Stover, Robert J; Borwankar, Ameya U; Nie, Golay D; Gourisankar, Sai; Truskett, Thomas M; Sokolov, Konstantin V; Johnston, Keith P

    2013-01-22

    Although sub-100 nm nanoclusters of metal nanoparticles are of interest in many fields including biomedical imaging, sensors, and catalysis, it has been challenging to control their morphologies and chemical properties. Herein, a new concept is presented to assemble equilibrium Au nanoclusters of controlled size by tuning the colloidal interactions with a polymeric stabilizer, PLA(1k)-b-PEG(10k)-b-PLA(1k). The nanoclusters form upon mixing a dispersion of ~5 nm Au nanospheres with a polymer solution followed by partial solvent evaporation. A weakly adsorbed polymer quenches the equilibrium nanocluster size and provides steric stabilization. Nanocluster size is tuned from ~20 to ~40 nm by experimentally varying the final Au nanoparticle concentration and the polymer/Au ratio, along with the charge on the initial Au nanoparticle surface. Upon biodegradation of the quencher, the nanoclusters reversibly and fully dissociate to individual ~5 nm primary particles. Equilibrium cluster size is predicted semiquantitatively with a free energy model that balances short-ranged depletion and van der Waals attractions with longer-ranged electrostatic repulsion, as a function of the Au and polymer concentrations. The close spacings of the Au nanoparticles in the clusters produce strong NIR extinction over a broad range of wavelengths from 650 to 900 nm, which is of practical interest in biomedical imaging. PMID:23230905

  15. Microporous biodegradable polyurethane membranes for tissue engineering.

    Science.gov (United States)

    Tsui, Yuen Kee; Gogolewski, Sylwester

    2009-08-01

    Microporous membranes with controlled pore size and structure were produced from biodegradable polyurethane based on aliphatic diisocyanate, poly(epsilon-caprolactone) diol and isosorbide chain extender using the modified phase-inversion technique. The following parameters affecting the process of membrane formation were investigated: the type of solvent, solvent-nonsolvent ratio, polymer concentration in solution, polymer solidification time, and the thickness of the polymer solution layer cast on a substrate. The experimental systems evaluated were polymer-N,N-dimethylformamide-water, polymer-N,N-dimethylacetamide-water and polymer-dimethylsulfoxide-water. From all three systems evaluated the best results were obtained for the system polymer-N,N-dimethylformamide-water. The optimal conditions for the preparation of microporous polyurethane membranes were: polymer concentration in solution 5% (w/v), the amount of nonsolvent 10% (v/v), the cast temperature 23 degrees C, and polymer solidification time in the range of 24-48 h depending on the thickness of the cast polymer solution layer. Membranes obtained under these conditions had interconnected pores, well defined pore size and structure, good water permeability and satisfactory mechanical properties to allow for suturing. Potential applications of these membranes are skin wound cover and, in combination with autogenous chondrocytes, as an "artificial periosteum" in the treatment of articular cartilage defects. PMID:19301104

  16. Kinetics of dimethoate biodegradation in bacterial system

    Directory of Open Access Journals (Sweden)

    Manisha DebMandal

    2011-11-01

    Full Text Available The present study is an investigation on the kinetics of dimethoate biodegradation and an estimation of residual dimethoate in bacterial culture by spectrophotometry. The methylene chloride extract of the culture medium was used for determination of dimethoate through its reaction with 1 chloro-2, 4 dinitrobenzene to produce methylamine whose absorbance at 505 nm gave an estimation of dimethoate content. The dimethoate standard curve follows Beer’s law at 505 nm with a slope of 0.0129 absorbance units per µg/mL. The regression equation relating concentration of dimethoate (x with the absorbance is (y: y = 0.037 + 0.0129x. The amount of residual dimethoate after 7 days were 0, 4, 17, 28 and 29 µg/mL; the rate constants were 0.775, 0.305, 0.225, 0.167 and 0.127 each per day, and the efficiency of dimethoate degradation were 100%, 96%, 83%, 72% and 71%, for Bacillus licheniformis, Pseudomonas aeruginosa, Aeromonas hydrophila, Proteus mirabilis and Bacillus pumilus respectively. Dimethoate remediation could be attained through bacterial metabolism of the pesticide and colorimetric analysis might be useful in the estimation of dimethoate within a detection limit of 5-100 µg/mL.

  17. Biodegradability enhancement of municipal landfill leachate

    Institute of Scientific and Technical Information of China (English)

    Pi Kewu; Gong Wenqi

    2008-01-01

    The method of enhancing the biodegradability of landfill leachate via air stripping followed by coagulation/ultrafiltration (UF) processes is introduced. In this study, the air stripping process obtained a removal efficiency of 88.6% for ammonia nitrogen (NH3-N), at an air-to-liquid ratio (A/L) of 3 300 (pH=11) and after 18 h of stripping. The single coagulation process increased the BOD (biological oxygen demand)/COD (chemical oxygen demand) ratio by 0.089 with a FeCl3 dosage of 570 mg/L, at pH 7.0, and the single UF process increased the BOD/COD ratio from 0.049 to 0.311. However, the combination of coagulation and UF increased the BOD/COD ratio from 0.049 to 0.423, and the final BOD, COD, NH3-N, and colour of the leachate were 1 023 mg/L, 2 845 mg/L, 145 mg/L, and 2 056, respectively, when a 3 kDa molecular weight cut-off (MWCO) membrane was used at an operating pressure of 0.7 MPa. In the ultrafiltration process, the average solution flux (JⅤ), concentration multiple (MC), and retention rate (R) for the COD were 107.3 L/(m2.h), 6.3, and 84.2%, respectively.

  18. Electrospun biodegradable polymers loaded with bactericide agents

    Directory of Open Access Journals (Sweden)

    Ramaz Katsarava

    2016-03-01

    Full Text Available Development of materials with an antimicrobial activity is fundamental for different sectors, including medicine and health care, water and air treatment, and food packaging. Electrospinning is a versatile and economic technique that allows the incorporation of different natural, industrial, and clinical agents into a wide variety of polymers and blends in the form of micro/nanofibers. Furthermore, the technique is versatile since different constructs (e.g. those derived from single electrospinning, co-electrospinning, coaxial electrospinning, and miniemulsion electrospinning can be obtained to influence the ability to load agents with different characteristics and stability and to modify the release behaviour. Furthermore, antimicrobial agents can be loaded during the electrospinning process or by a subsequent coating process. In order to the mitigate burst release effect, it is possible to encapsulate the selected drug into inorganic nanotubes and nanoparticles, as well as in organic cyclodextrine polysaccharides. In the same way, processes that involve covalent linkage of bactericide agents during surface treatment of electrospun samples may also be considered. The present review is focused on more recent works concerning the electrospinning of antimicrobial polymers. These include chitosan and common biodegradable polymers with activity caused by the specific load of agents such as metal and metal oxide particles, quaternary ammonium compounds, hydantoin compounds, antibiotics, common organic bactericides, and bacteriophages.

  19. Pharmacokinetics and biodegradation of chitosan in rats

    Science.gov (United States)

    Li, Hui; Jiang, Zhiwen; Han, Baoqin; Niu, Shuyi; Dong, Wen; Liu, Wanshun

    2015-10-01

    Chitosan, an excellent biomedical material, has received a widespread in vivo application. In contrast, its metabolism and distribution once being implanted were less documented. In this study, the pharmacokinetics and biodegradation of fluorescein isothiocyanate (FITC) labeled and muscle implantation administrated chitosan in rats were investigated with fluorescence spectrophotometry, histological assay and gel chromatography. After implantation, chitosan was degraded gradually during its distribution to diverse organs. Among the tested organs, liver and kidney were found to be the first two highest in chitosan content, which was followed by heart, brain and spleen. Urinary excretion was believed to be the major pathway of chitosan elimination, yet 80% of chitosan administered to rats was not trackable in their urine. This indicated that the majority of chitosan was degraded in tissues. In average, the molecular weight of the degradation products of chitosan in diverse organs and urine was found to be <65 kDa. This further confirmed the in vivo degradation of chitosan. Our findings provided new evidences for the intensive and safe application of chitosan as a biomedical material.

  20. Oxygen and chlorine isotopic fractionation during perchlorate biodegradation: Laboratory results and implications for forensics and natural attenuation studies

    Science.gov (United States)

    Sturchio, N.C.; Böhlke, J.K.; Beloso, A.D., Jr.; Streger, S.H.; Heraty, L.J.; Hatzinger, P.B.

    2007-01-01

    Perchlorate is a widespread environmental contaminant having both anthropogenic and natural sources. Stable isotope ratios of O and Cl in a given sample of perchlorate may be used to distinguish its source(s). Isotopic ratios may also be useful for identifying the extent of biodegradation of perchlorate, which is critical for assessing natural attenuation of this contaminant in groundwater. For this approach to be useful, however, the kinetic isotopic fractionations of O and Cl during perchlorate biodegradation must first be determined as a function of environmental variables such as temperature and bacterial species. A laboratory study was performed in which the O and Cl isotope ratios of perchlorate were monitored as a function of degradation by two separate bacterial strains (Azospira suillum JPLRND and Dechlorospirillum sp. FBR2) at both 10??C and 22??C with acetate as the electron donor. Perchlorate was completely reduced by both strains within 280 h at 22??C and 615 h at 10??C. Measured values of isotopic fractionation factors were ??18O = -36.6 to -29.0??? and ??37Cl = -14.5 to -11.5???, and these showed no apparent systematic variation with either temperature or bacterial strain. An experiment using 18O-enriched water (??18O = +198???) gave results indistinguishable from those observed in the isotopically normal water (??18O = -8.1???) used in the other experiments, indicating negligible isotope exchange between perchlorate and water during biodegradation. The fractionation factor ratio ??18O/??37Cl was nearly invariant in all experiments at 2.50 ?? 0.04. These data indicate that isotope ratio analysis will be useful for documenting perchlorate biodegradation in soils and groundwater. The establishment of a microbial fractionation factor ratio (??18O/??37Cl) also has significant implications for forensic studies. ?? 2007 American Chemical Society.

  1. Parallel pathways of ethoxylated alcohol biodegradation under aerobic conditions.

    Science.gov (United States)

    Zembrzuska, Joanna; Budnik, Irena; Lukaszewski, Zenon

    2016-07-01

    Non-ionic surfactants (NS) are a major component of the surfactant flux discharged into surface water, and alcohol ethoxylates (AE) are the major component of this flux. Therefore, biodegradation pathways of AE deserve more thorough investigation. The aim of this work was to investigate the stages of biodegradation of homogeneous oxyethylated dodecanol C12E9 having 9 oxyethylene subunits, under aerobic conditions. Enterobacter strain Z3 bacteria were chosen as biodegrading organisms under conditions with C12E9 as the sole source of organic carbon. Bacterial consortia of river water were used in a parallel test as an inoculum for comparison. The LC-MS technique was used to identify the products of biodegradation. Liquid-liquid extraction with ethyl acetate was selected for the isolation of C12E9 and metabolites from the biodegradation broth. The LC-MS/MS technique operating in the multiple reaction monitoring (MRM) mode was used for quantitative determination of C12E9, C12E8, C12E7 and C12E6. Apart from the substrate, the homologues C12E8, C12E7 and C12E6, being metabolites of C12E9 biodegradation by shortening of the oxyethylene chain, as well as intermediate metabolites having a carboxyl end group in the oxyethylene chain (C12E8COOH, C12E7COOH, C12E6COOH and C12E5COOH), were identified. Poly(ethylene glycols) (E) having 9, 8 and 7 oxyethylene subunits were also identified, indicating parallel central fission of C12E9 and its metabolites. Similar results were obtained with river water as inoculum. It is concluded that AE, under aerobic conditions, are biodegraded via two parallel pathways: by central fission with the formation of PEG, and by Ω-oxidation of the oxyethylene chain with the formation of carboxylated AE and subsequent shortening of the oxyethylene chain by a single unit. PMID:27037882

  2. Intrinsic aromatic hydrocarbon biodegradation for groundwater remediation; Biodegradation intrinseque des hydrocarbures aromatiques pour la rehabilitation de nappes aquiferes

    Energy Technology Data Exchange (ETDEWEB)

    Tiehm, A.; Schulze, S. [Water Technology Center, Karlsruher (Germany)

    2003-08-01

    Intrinsic biodegradation, representing the key process in natural attenuation, is increasingly considered for the remediation of contaminated sites as an alternative to more active measures. In this paper, intrinsic biodegradation is discussed with respect to BTEX and PAH. In the first part, an overview is given summarizing the current understanding of microbial aromatic hydrocarbon degradation and the methods available for the assessment of intrinsic bio-remediation. In the second part, the concept and selected results of a case study are presented. Both aerobic and anaerobic biodegradation of aromatic hydrocarbons contribute to pollutant elimination at contaminated sites such as former manufactured gas plants and tar-oil polluted disposal sites. Intrinsic biodegradation processes usually result in a sequence of redox zones (methanogenic, sulfate-reducing, Fe(III)-reducing, denitrifying, aerobic) in the groundwater plume down-gradient the source of contamination. Methods to assess redox zonation include hydro- and geochemical analysis, measurement of the redox potential, and determination of hydrogen. Biodegradation of target pollutants can be demonstrated by alterations in the pollutant profiles, isotopic fractionation, specific metabolic products, and by microcosm studies with authentic field samples. Microcosm studies in particular are a useful tool to identify degradation mechanisms and to understand the role of specific electron acceptors and redox conditions. In a case study, intrinsic biodegradation was examined at a tar-oil polluted disposal site. Due to the low sorption capacity of the aquifer, decreasing pollutant concentrations with increasing plume length were attributed predominantly to biodegradation. Sulfate reduction and Fe(III) reduction were the most important redox processes in the anaerobic core of tire groundwater plume. Changing pollutant profiles with increasing plume length indicated active biodegradation processes, e.g. biodegradation of

  3. Enhanced alkaline hydrolysis and biodegradability studies of nitrocellulose-bearing missile propellant

    Science.gov (United States)

    Sidhoum, Mohammed; Christodoulatos, Christos; Su, Tsan-Liang; Redis, Mercurios

    1995-01-01

    Large amounts of energetic materials which have been accumulated over the years in various manufacturing and military installations must be disposed of in an environmentally sound manner. Historically, the method of choice for destruction of obsolete or aging energetic materials has been open burning or open detonation (OB/OD). This destruction approach has become undesirable due to air pollution problems. Therefore, there is a need for new technologies which will effectively and economically deal with the disposal of energetic materials. Along those lines, we have investigated a chemical/biological process for the safe destruction and disposal of a double base solid rocket propellant (AHH), which was used in several 8 inch projectile systems. The solid propellant is made of nitrocellulose and nitroglycerin as energetic components, two lead salts which act as ballistic modifiers, triacetin as a plasticizer and 2-Nitrodiphenylamine (2-NDPA) as a stabilizer. A process train is being developed to convert the organic components of the propellant to biodegradable products and remove the lead from the process stream. The solid propellant is first hydrolyzed through an enhanced alkaline hydrolysis process step. Following lead removal and neutralization, the digested liquor rich in nitrates and nitrites is found to be easily biodegradable. The digestion rate of the intact ground propellant as well as the release of nitrite and nitrate groups were substantially increased when ultrasound were supplied to the alkaline reaction medium compared to the conventional alkaline hydrolysis. The effects of reaction time, temperature, sodium hydroxide concentration and other relevant parameters on the digestion efficiency and biodegradability have been studied. The present work indicates that the AHH propellant can be disposed of safely with a combination of physiochemical and biological processes.

  4. Intrinsic and Stimulated In Situ Biodegradation of Hexachlorocyclohexane (HCH)

    International Nuclear Information System (INIS)

    The feasibility of the biodegradation of HCH and its intermediates has been investigated. A recent characterisation of two sites in The Netherlands has shown intrinsic biodegradation of HCH. At one site, breakdown products (monochlorobenzene, benzene and chlorophenol) were found in the core of the HCH-plume, whereas the HCH-concentration decreased over time and space. Characterisation of a second, industrial site indicated less intrinsic biodegradation and the need to stimulate biodegradation. In the laboratory, enhanced HCH degradation was tested with soil and groundwater material from both sites, and the required conversion to the intermediates benzene and monochlorobenzene was demonstrated. Furthermore, the biodegradation of these intermediates could be initiated by adding low amounts of oxygen (<5%). Adding nitrate enhanced this degradation. We hypothesise that this occurs through anaerobic nitrate reducing conversion of oxidised intermediates.At the non-industrial other site, intrinsic degradation took place, as shown in the laboratory experiments. Interpretation of the field data with computer codes Modflow and RT3D was performed. As a result of the modelling study, it has been proposed to monitor natural attenuation for several years before designing the final approach.At the industrial site, the results of the batch experiments are applied. Anaerobic HCH degradation to monochlorobenzene and benzene is stimulated via the addition of an electron donor.Infiltration facilities have been installed at the site to create an anaerobic infiltration zone in which HCH will be degraded, and these facilities are combined with the redevelopment of the site

  5. [Biodegradation characteristics of organic pollutants contained in tannery wastewater].

    Science.gov (United States)

    Wang, Yong; Li, Wei-Guang; Yang, Li; Su, Cheng-Yuan

    2013-02-01

    In the batch experiments inoculated with activated sludge from tannery wastewater treatment plant, biodegradation characteristics and kinetics of three tanning agents, naphthalene-2-sulfonic sodium, tannic acid and bayberry tannin, were studied under aerobic and anaerobic conditions. And the aerobic/anaerobic biodegradation laws of real tannery wastewater with respect to COD change were also investigated using the same batch experiments. The results showed aerobic degradation was superior to anaerobic degradation for tanning agent removal and mineralization. The removal rates of naphthalene-2-sulfonic sodium, tannic acid and bayberry tannin by aerobic biodegradation were >90% , >90% and 50% -75% , respectively whereas 10%-40%, >95% and 20% -30%, respectively by anaerobic degradation. In terms of COD removal about tannic acid biodegradation, the removal rates under aerobic and anaerobic conditions were >75% and or= 70 mg.L-1 was toxic to microorganism leading to a significant decline of kinetic constants. Biodegradation of real tannery wastewater under aerobic and anaerobic conditions represented obvious stage characteristics and the COD concentration had a good linear correlation with reaction time in the phases of fast degradation and slow degradation. The aerobic maximum specific degradation rate wqas 11.6 times higher of anaerobic degradation. PMID:23668129

  6. Biodegradable and radically polymerized elastomers with enhanced processing capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Ifkovits, Jamie L; Burdick, Jason A [Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 (United States); Padera, Robert F [Department of Pathology, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA 02115 (United States)], E-mail: burdick2@seas.upenn.edu

    2008-09-01

    The development of biodegradable materials with elastomeric properties is beneficial for a variety of applications, including for use in the engineering of soft tissues. Although others have developed biodegradable elastomers, they are restricted by their processing at high temperatures and under vacuum, which limits their fabrication into complex scaffolds. To overcome this, we have modified precursors to a tough biodegradable elastomer, poly(glycerol sebacate) (PGS) with acrylates to impart control over the crosslinking process and allow for more processing options. The acrylated-PGS (Acr-PGS) macromers are capable of crosslinking through free radical initiation mechanisms (e.g., redox and photo-initiated polymerizations). Alterations in the molecular weight and % acrylation of the Acr-PGS led to changes in formed network mechanical properties. In general, Young's modulus increased with % acrylation and the % strain at break increased with molecular weight when the % acrylation was held constant. Based on the mechanical properties, one macromer was further investigated for in vitro and in vivo degradation and biocompatibility. A mild to moderate inflammatory response typical of implantable biodegradable polymers was observed, even when formed as an injectable system with redox initiation. Moreover, fibrous scaffolds of Acr-PGS and a carrier polymer, poly(ethylene oxide), were prepared via an electrospinning and photopolymerization technique and the fiber morphology was dependent on the ratio of these components. This system provides biodegradable polymers with tunable properties and enhanced processing capabilities towards the advancement of approaches in engineering soft tissues.

  7. Intrinsic and Stimulated In Situ Biodegradation of Hexachlorocyclohexane (HCH)

    Energy Technology Data Exchange (ETDEWEB)

    Langenhoff, A. A. M., E-mail: a.a.m.langenhoff@mep.tno.nl; Staps, J. J. M. [TNO Environmental, Energy and Process Innovation, Department of Environmental Biotechnology (Netherlands); Pijls, C.; Alphenaar, A. [Tauw Milieu Consultancy (Netherlands); Zwiep, G. [Akzo Nobel Chemicals (Netherlands); Rijnaarts, H. H. M. [TNO Environmental, Energy and Process Innovation, Department of Environmental Biotechnology (Netherlands)

    2002-05-15

    The feasibility of the biodegradation of HCH and its intermediates has been investigated. A recent characterisation of two sites in The Netherlands has shown intrinsic biodegradation of HCH. At one site, breakdown products (monochlorobenzene, benzene and chlorophenol) were found in the core of the HCH-plume, whereas the HCH-concentration decreased over time and space. Characterisation of a second, industrial site indicated less intrinsic biodegradation and the need to stimulate biodegradation. In the laboratory, enhanced HCH degradation was tested with soil and groundwater material from both sites, and the required conversion to the intermediates benzene and monochlorobenzene was demonstrated. Furthermore, the biodegradation of these intermediates could be initiated by adding low amounts of oxygen (<5%). Adding nitrate enhanced this degradation. We hypothesise that this occurs through anaerobic nitrate reducing conversion of oxidised intermediates.At the non-industrial other site, intrinsic degradation took place, as shown in the laboratory experiments. Interpretation of the field data with computer codes Modflow and RT3D was performed. As a result of the modelling study, it has been proposed to monitor natural attenuation for several years before designing the final approach.At the industrial site, the results of the batch experiments are applied. Anaerobic HCH degradation to monochlorobenzene and benzene is stimulated via the addition of an electron donor.Infiltration facilities have been installed at the site to create an anaerobic infiltration zone in which HCH will be degraded, and these facilities are combined with the redevelopment of the site.

  8. Biodegradable HEMA-based hydrogels with enhanced mechanical properties.

    Science.gov (United States)

    Moghadam, Mohamadreza Nassajian; Pioletti, Dominique P

    2016-08-01

    Hydrogels are widely used in the biomedical field. Their main purposes are either to deliver biological active agents or to temporarily fill a defect until they degrade and are followed by new host tissue formation. However, for this latter application, biodegradable hydrogels are usually not capable to sustain any significant load. The development of biodegradable hydrogels presenting load-bearing capabilities would open new possibilities to utilize this class of material in the biomedical field. In this work, an original formulation of biodegradable photo-crosslinked hydrogels based on hydroxyethyl methacrylate (HEMA) is presented. The hydrogels consist of short-length poly(2-hydroxyethyl methacrylate) (PHEMA) chains in a star shape structure, obtained by introducing a tetra-functional chain transfer agent in the backbone of the hydrogels. They are cross-linked with a biodegradable N,O-dimethacryloyl hydroxylamine (DMHA) molecule sensitive to hydrolytic cleavage. We characterized the degradation properties of these hydrogels submitted to mechanical loadings. We showed that the developed hydrogels undergo long-term degradation and specially meet the two essential requirements of a biodegradable hydrogel suitable for load bearing applications: enhanced mechanical properties and low molecular weight degradation products. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1161-1169, 2016. PMID:26061346

  9. Biodegradable Polymers in Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Leon E. Govaert

    2009-07-01

    Full Text Available The use ofdegradable polymers in medicine largely started around the mid 20th century with their initial use as in vivo resorbing sutures. Thorough knowledge on this topic as been gained since then and the potential applications for these polymers were, and still are, rapidly expanding. After improving the properties of lactic acid-based polymers, these were no longer studied only from a scientific point of view, but also for their use in bone surgery in the 1990s. Unfortunately, after implanting these polymers, different foreign body reactions ranging from the presence of white blood cells to sterile sinuses with resorption of the original tissue were observed. This led to the misconception that degradable polymers would, in all cases, lead to inflammation and/or osteolysis at the implantation site. Nowadays, we have accumulated substantial knowledge on the issue of biocompatibility of biodegradable polymers and are able to tailor these polymers for specific applications and thereby strongly reduce the occurrence of adverse tissue reactions. However, the major issue of biofunctionality, when mechanical adaptation is taken into account, has hitherto been largely unrecognized. A thorough understanding of how to improve the biofunctionality, comprising biomechanical stability, but also visualization and sterilization of the material, together with the avoidance of fibrotic tissue formation and foreign body reactions, may greatly enhance the applicability and safety of degradable polymers in a wide area of tissue engineering applications. This review will address our current understanding of these biofunctionality factors, and will subsequently discuss the pitfalls remaining and potential solutions to solve these problems.

  10. Biodegradation of diesel/biodiesel blends in saturated sand microcosms

    DEFF Research Database (Denmark)

    Lisiecki, Piotr; Chrzanowski, Łukasz; Szulc, Alicja;

    2014-01-01

    The aim of the study was to evaluate the biodegradation extent of both aromatic and aliphatic hydrocarbon fractions in saturated sandy microcosm spiked with diesel/biodiesel blends (D, B10, B20, B30, B40, B50, B60, B70, B80, B90 and B100, where D is commercial petroleum diesel fuel and B is...... commercial biodiesel blend) augmented with a bacterial consortium of petroleum degraders. The biodegradation kinetics for blends were evaluated based on measuring the amount of emitted CO2 after 578 days. Subsequently, the residual aromatic and aliphatic fractions were separated and determined by employing...... GC-FID and GC _ GC–TOF-MS. Additionally, the influence of biodiesel-amendment on the community dynamics was assessed based on the results of real-time PCR analyzes. Our results suggest that the biodegradation extents of both aliphatic and aromatic hydrocarbon were uninfluenced by the addition of...

  11. Disposition and safety of inhaled biodegradable nanomedicines: Opportunities and challenges.

    Science.gov (United States)

    Haque, Shadabul; Whittaker, Michael R; McIntosh, Michelle P; Pouton, Colin W; Kaminskas, Lisa M

    2016-08-01

    The inhaled delivery of nanomedicines can provide a novel, non-invasive therapeutic strategy for the more localised treatment of lung-resident diseases and potentially also enable the systemic delivery of therapeutics that are otherwise administered via injection alone. However, the clinical translation of inhalable nanomedicine is being hampered by our lack of understanding about their disposition and clearance from the lungs. This review provides a comprehensive overview of the biodegradable nanomaterials that are currently being explored as inhalable drug delivery systems and our current understanding of their disposition within, and clearance from the lungs. The safety of biodegradable nanomaterials in the lungs is discussed and latest updates are provided on the impact of inflammation on the pulmonary pharmacokinetics of inhaled nanomaterials. Overall, the review provides an in-depth and critical assessment of the lung clearance mechanisms for inhaled biodegradable nanomedicines and highlights the opportunities and challenges for their translation into the clinic. PMID:27033834

  12. Modeling Biodegradation Kinetics on Benzene and Toluene and Their Mixture

    Directory of Open Access Journals (Sweden)

    Aparecido N. Módenes

    2007-10-01

    Full Text Available The objective of this work was to model the biodegradation kinetics of toxic compounds toluene and benzene as pure substrates and in a mixture. As a control, Monod and Andrews models were used. To predict substrates interactions, more sophisticated models of inhibition and competition, and SKIP (sum kinetics interactions parameters model were applied. The models evaluation was performed based on the experimental data from Pseudomonas putida F1 activities published in the literature. In parameter identification procedure, the global method of particle swarm optimization (PSO was applied. The simulation results show that the better description of the biodegradation process of pure toxic substrate can be achieved by Andrews' model. The biodegradation process of a mixture of toxic substrates is modeled the best when modified competitive inhibition and SKIP models are used. The developed software can be used as a toolbox of a kinetics model catalogue of industrial wastewater treatment for process design and optimization.

  13. QSBR Study on the Anaerobic Biodegradation of Chlorophenols

    Institute of Scientific and Technical Information of China (English)

    YANG Da-Sen; DAI You-Zhi; LI Jian-Hua; ZHU Fei

    2006-01-01

    18 Physicochemical and quantum chemical parameters of 12 kinds of chlorophenols are calculated in this paper. QSBR (quantitative structure-biodegradability relationship) study is performed using simca statistical software by PLS regression analysis method on anaerobic biodegradation data (logKb), and the QSBR model is developed with favorable prediction. The model shows that the size and energy of the molecule are the dominant factors affecting the anaerobic biodegradation of chlorophenols. And the degradation rate constants (logKb) increase with the increase of core-core repulsion (CCR), average molecular polarizability (α), total surface area (TSA), heat of formation (HOF) and total energy (TE), while decrease with the increase of molecular connectivity index (1XV), relative molecular mass (Mw) and electronic energy (EE).

  14. BIODEGRADABILITY AND MECHANICAL BEHAVIOUR OF SUGAR PALM STARCH BASED BIOPOLYMER

    Directory of Open Access Journals (Sweden)

    J. Sahari

    2014-01-01

    Full Text Available A new Sugar Palm Starch (SPS based biopolymer was successfully developed using glycerol as plasticizer. The effect of glycerol concentration (viz., 15, 20, 30 and 40 by weight percent to the mechanical properties of plasticized SPS biopolymer was investigated. From this investigation, it was found that the 30% glycerol concentrated biopolymer showed the highest flexural strength and impact with the value of 0.13 MPa and 6.13 kJ/m2 respectively. Later, the above 30% glycerol biopolymer was undergone through weathering and biodegradation test. The biodegradability test showed 78.09% of tensile strength lost after 72 h of weathering testing period. Meanwhile, the weight loss (% of the same biopolymer was 63.58% after 72 h of biodegradation test.

  15. Molecular Design of Synthetic Biodegradable Polymers as Cell Scaffold Materials

    Institute of Scientific and Technical Information of China (English)

    WANG Shen-guo; WAN Yu-qing; CAI Qing; HE Bin; CHEN Wen-na

    2004-01-01

    Poly(lactic acid) and its copolymers are regarded as the most useful biomaterials. The good biocompatibility, biodegradability and mechanical properties of them make the synthetic biodegradable polymers have primary application to tissue engineering. The advantages and disadvantages of the synthetic biodegradable polymers as cell scaffold materials are evaluated. This article reviews the modification of polylactide-family aliphatic polymers to improve the cell affinity when the polymers are used as cell scaffolds. We have developed four main approaches: to modify polyester cell scaffolds in combination of plasma treating and collagen coating; to introduce hydrophilic segments into aliphatic polyester backbones; to introduce pendant functional groups into polyester chains; to modify polyester with dextran. The results of the cell cultures prove that the approaches mentioned above have improved the cell affinity of the polyesters and have modulated cell function such as adhesion, proliferation and migration.

  16. Preliminary study of biodegradation of AZ31B magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    REN Yibin; HUANG Jingjing; ZHANG Bingchun; YANG Ke

    2007-01-01

    Magnesium alloys are potential to be developed as a new type of biodegradable implant material by use of their active corrosion behavior.Both in vitro and in vivo biodegradation properties of an AZ31B magnesium alloy were investigated in this work.The results showed that AZ31B alloy has a proper degradation rate and much lower hydrogen release in Hank's solution,with a degradation rate of about 0.3 mm/year and hydrogen release below 0.15mL/cm2.The animal implantation test showed that the AZ31B alloy could slowly biodegrade in femur of the rabbit and form calcium phosphate around the alloy sample,with the Ca/P ratio close to the natural bone.

  17. Processing and characterization of solid and microcellular biobased and biodegradable PHBV-based polymer blends and composites

    Science.gov (United States)

    Javadi, Alireza

    Petroleum-based polymers have made a significant contribution to human society due to their extraordinary adaptability and processability. However, due to the wide-spread application of plastics over the past few decades, there are growing concerns over depleting fossil resources and the undesirable environmental impact of plastics. Most of the petroleum-based plastics are non-biodegradable and thus will be disposed in landfills. Inappropriate disposal of plastics may also become a potential threat to the environment. Many approaches, such as efficient plastics waste management and replacing petroleum-based plastics with biodegradable materials obtained from renewable resources, have been put forth to overcome these problems. Plastics waste management is at its beginning stages of development which is also more expensive than expected. Thus, there is a growing interest in developing sustainable biobased and biodegradable materials produced from renewable resources such as plants and crops, which can offer comparable performance with additional advantages, such as biodegradability, biocompatibility, and reducing the carbon footprint. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is one of the most promising biobased and biodegradable polymers, In fact many petroleum based polymers such as poly(propylene) (PP) can be potentially replaced by PHBV because of the similarity in their properties. Despite PHBV's attractive properties, there are many drawbacks such as high cost, brittleness, and thermal instability, which hamper the widespread usage of this specific polymer. The goals of this study are to investigate various strategies to address these drawbacks, including blending with other biodegradable polymers such as poly (butylene adipate-coterephthalate) (PBAT) or fillers (e.g., coir fiber, recycled wood fiber, and nanofillers) and use of novel processing technologies such as microcellular injection molding technique. Microcellular injection molding technique

  18. Bacterial Dispersal Promotes Biodegradation in Heterogeneous Systems Exposed to Osmotic Stress

    Science.gov (United States)

    Worrich, Anja; König, Sara; Banitz, Thomas; Centler, Florian; Frank, Karin; Thullner, Martin; Harms, Hauke; Miltner, Anja; Wick, Lukas Y.; Kästner, Matthias

    2016-01-01

    Contaminant biodegradation in soils is hampered by the heterogeneous distribution of degrading communities colonizing isolated microenvironments as a result of the soil architecture. Over the last years, soil salinization was recognized as an additional problem especially in arid and semiarid ecosystems as it drastically reduces the activity and motility of bacteria. Here, we studied the importance of different spatial processes for benzoate biodegradation at an environmentally relevant range of osmotic potentials (ΔΨo) using model ecosystems exhibiting a heterogeneous distribution of the soil-borne bacterium Pseudomonas putida KT2440. Three systematically manipulated scenarios allowed us to cover the effects of (i) substrate diffusion, (ii) substrate diffusion and autonomous bacterial dispersal, and (iii) substrate diffusion and autonomous as well as mediated bacterial dispersal along glass fiber networks mimicking fungal hyphae. To quantify the relative importance of the different spatial processes, we compared these heterogeneous scenarios to a reference value obtained for each ΔΨo by means of a quasi-optimal scenario in which degraders were ab initio homogeneously distributed. Substrate diffusion as the sole spatial process was insufficient to counteract the disadvantage due to spatial degrader heterogeneity at ΔΨo ranging from 0 to −1 MPa. In this scenario, only 13.8−21.3% of the quasi-optimal biodegradation performance could be achieved. In the same range of ΔΨo values, substrate diffusion in combination with bacterial dispersal allowed between 68.6 and 36.2% of the performance showing a clear downwards trend with decreasing ΔΨo. At −1.5 MPa, however, this scenario performed worse than the diffusion scenario, possibly as a result of energetic disadvantages associated with flagellum synthesis and emerging requirements to exceed a critical population density to resist osmotic stress. Network-mediated bacterial dispersal kept biodegradation

  19. Bacterial Dispersal Promotes Biodegradation in Heterogeneous Systems Exposed to Osmotic Stress.

    Science.gov (United States)

    Worrich, Anja; König, Sara; Banitz, Thomas; Centler, Florian; Frank, Karin; Thullner, Martin; Harms, Hauke; Miltner, Anja; Wick, Lukas Y; Kästner, Matthias

    2016-01-01

    Contaminant biodegradation in soils is hampered by the heterogeneous distribution of degrading communities colonizing isolated microenvironments as a result of the soil architecture. Over the last years, soil salinization was recognized as an additional problem especially in arid and semiarid ecosystems as it drastically reduces the activity and motility of bacteria. Here, we studied the importance of different spatial processes for benzoate biodegradation at an environmentally relevant range of osmotic potentials (ΔΨo) using model ecosystems exhibiting a heterogeneous distribution of the soil-borne bacterium Pseudomonas putida KT2440. Three systematically manipulated scenarios allowed us to cover the effects of (i) substrate diffusion, (ii) substrate diffusion and autonomous bacterial dispersal, and (iii) substrate diffusion and autonomous as well as mediated bacterial dispersal along glass fiber networks mimicking fungal hyphae. To quantify the relative importance of the different spatial processes, we compared these heterogeneous scenarios to a reference value obtained for each ΔΨo by means of a quasi-optimal scenario in which degraders were ab initio homogeneously distributed. Substrate diffusion as the sole spatial process was insufficient to counteract the disadvantage due to spatial degrader heterogeneity at ΔΨo ranging from 0 to -1 MPa. In this scenario, only 13.8-21.3% of the quasi-optimal biodegradation performance could be achieved. In the same range of ΔΨo values, substrate diffusion in combination with bacterial dispersal allowed between 68.6 and 36.2% of the performance showing a clear downwards trend with decreasing ΔΨo. At -1.5 MPa, however, this scenario performed worse than the diffusion scenario, possibly as a result of energetic disadvantages associated with flagellum synthesis and emerging requirements to exceed a critical population density to resist osmotic stress. Network-mediated bacterial dispersal kept biodegradation almost

  20. Biodegradation of explosives mixture in soil under different water-content conditions.

    Science.gov (United States)

    Sagi-Ben Moshe, S; Dahan, O; Weisbrod, N; Bernstein, A; Adar, E; Ronen, Z

    2012-02-15

    Soil redox potential plays a key role in the rates and pathways of explosives degradation, and is highly influenced by water content and microbial activity. Soil redox potential can vary significantly both temporally and spatially in micro-sites. In this study, when soil water content increased, the redox potential decreased, and there was significant enhancement in the biodegradation of a mixture of three explosives. Whereas TNT degradation occurred under both aerobic and anaerobic conditions, RDX and HMX degradation occurred only when water content conditions resulted in a prolonged period of negative redox potential. Moreover, under unsaturated conditions, which are more representative of real environmental conditions, the low redox potential, even when measured for temporary periods, was sufficient to facilitate anaerobic degradation. Our results clearly indicate a negative influence of TNT on the biodegradation of RDX and HMX, but this effect was less pronounced than that found in previous slurry batch experiments: this can be explained by a masking effect of the soil in the canisters. Fully or partially saturated soils can promote the existence of micro-niches that differ considerably in their explosives concentration, microbial community and redox conditions. PMID:22226717

  1. Gamma Irradiation Effect on Biodegradable Poly (Hydroxybutyrate) Studied by Positron Annihilation Technique

    International Nuclear Information System (INIS)

    -Bacterial polyesters have attracted much attention as biodegradable polymers. An ecofriendly alternative to this biodegradable material is poly-3-hydroxybutyrate (PHB) which has attracted industrial attention as an environmentally degradable plastic for a wide range of medical applications. Free volume holes in polymers play a crucial role in determining its physical properties. The Positron Annihilation Lifetime (PAL) technique has been established as a powerful probe for microstructures of polymers, in particular, angstrom-sized free volume holes. The PHB samples were irradiated using 60Co source at room temperature with doss ranging from 5 to 300 kGy. The PAL spectra for all the samples have been measured at room temperature as a function of gamma-irradiation dose. The free volume hole size decreases with increasing the irradiation dose up to 25 kGy followed by slowly increases up to 200 kGy, then decreases at higher doses. On the other hand, the free volume content decreases with increasing the gamma-irradiation dose which is due to the increase of the degree of crystallinity. The variations in the free volume with the irradiation dose will be discussed in the frame of free volume model. A correlation between the macroscopic mechanical properties Hv and positron annihilation parameters has been done

  2. Comparative Examination of the Olive Mill Wastewater Biodegradation Process by Various Wood-Rot Macrofungi

    Directory of Open Access Journals (Sweden)

    Georgios Koutrotsios

    2014-01-01

    Full Text Available Olive mill wastewater (OMW constitutes a major cause of environmental pollution in olive-oil producing regions. Sixty wood-rot macrofungi assigned in 43 species were evaluated for their efficacy to colonize solidified OMW media at initially established optimal growth temperatures. Subsequently eight strains of the following species were qualified: Abortiporus biennis, Ganoderma carnosum, Hapalopilus croceus, Hericium erinaceus, Irpex lacteus, Phanerochaete chrysosporium, Pleurotus djamor, and P. pulmonarius. Fungal growth in OMW (25%v/v in water resulted in marked reduction of total phenolic content, which was significantly correlated with the effluent’s decolorization. A. biennis was the best performing strain (it decreased phenolics by 92% and color by 64% followed by P. djamor and I. lacteus. Increase of plant seeds germination was less pronounced evidencing that phenolics are only partly responsible for OMW’s phytotoxicity. Laccase production was highly correlated with all three biodegradation parameters for H. croceus, Ph. chrysosporium, and Pleurotus spp., and so were manganese-independent and manganese dependent peroxidases for A. biennis and I. lacteus. Monitoring of enzymes with respect to biomass production indicated that Pleurotus spp., H. croceus, and Ph. chrysosporium shared common patterns for all three activities. Moreover, generation of enzymes at the early biodegradation stages enhanced the efficiency of OMW treatment.

  3. Biodegradability enhancement by wet oxidation in alkaline media: delignification as a case study.

    Science.gov (United States)

    Verenich, S; Kallas, J

    2002-06-01

    Nowadays many industries are considering the recycling of process waters as a way of improving environmental safety, preventing pollution, and avoiding the loss of valuable production materials. One industry in the forefront of this trend is the pulp and paper industry. Lignin is a pollutant present in the mill process waters and such macromolecules can cause problems during biological treatment of process waters. Wet oxidation (WO) is a process that can be used as a pre-treatment method for lignin fragmentation and improvement of biodegradability. Wet oxidation (WO) under alkaline conditions permits faster lignin fragmentation than the conventional WO process and, therefore, should favour biodegradability improvement. In this study, the experiments were carried out in a high-pressure batch reactor with an alkali lignin solution at temperatures up to 438 K, an alkali concentration of 1.5-3.5 g l(-1) and an oxygen partial pressure of 0.4 to 1.5 MPa. At an alkali concentration of 3.5 g l(-1)1 and 0.4 MPa of oxygen partial pressure, an increase in BOD/COD ratio was achieved from an initial 11% to 71%. The experiments also showed that the amount of small molecules in the solution measured by Immediately Available BOD (IA BOD) depends on the amount of alkali added and the operating temperature. PMID:12118617

  4. Mesophilic and thermophilic anaerobic biodegradability of water hyacinth pre-treated at 80 oC

    International Nuclear Information System (INIS)

    Water hyacinth (Eichornia crassipes) is a fast growing aquatic plant which causes environmental problems in continental water bodies. Harvesting and handling this plant becomes an issue, and focus has been put on the research of treatment alternatives. Amongst others, energy production through biomethanation has been proposed. The aim of this study was to assess the anaerobic biodegradability of water hyacinth under mesophilic and thermophilic conditions. The effect of a thermal sludge pre-treatment at 80 oC was also evaluated. To this end, anaerobic biodegradability tests were carried out at 35 oC and 55 oC, with raw and pre-treated water hyacinth. According to the results, the thermal pre-treatment enhanced the solubilisation of water hyacinth (i.e. increase in the soluble to total chemical oxygen demand (COD)) from 4% to 12% after 30 min. However, no significant effect was observed on the methane yields (150-190 L CH4/kg volatile solids). Initial methane production rates for thermophilic treatments were two fold those of mesophilic ones (6-6.5 L vs. 3-3.5 L CH4/kg COD.day). Thus, higher methane production rates might be expected from thermophilic reactors working at short retention times. The study of longer low temperature pre-treatments or pre-treatments at elevated temperatures coupled to thermophilic reactors should be considered in the future.

  5. Genetic Engineering of a Radiation-Resistant Bacterium for Biodegradation of Mixed Wastes. Final Report

    International Nuclear Information System (INIS)

    Aqueous mixed low level wastes (MLLW) containing radionuclides, solvents, and/or heavy metals represent a serious current and future problem for DOE environmental management and cleanup. In order to provide low-cost treatment alternatives under mild conditions for such contained wastes, we have proposed to use the radiation-resistant bacterium, Deinococcus radiodurans. This project has focused on developing D. radiodurans strains for dual purpose processes: cometabolic treatment of haloorganics and other solvents and removal of heavy metals from waste streams in an above-ground reactor system. The characteristics of effective treatment strains that must be attained are: (a) high biodegradative and metal binding activity; (b) stable treatment characteristics in the absence of selection and in the presence of physiological stress; (c) survival and activity under harsh chemical conditions, including radiation. The result of this project has been a suite of strains with high biodegradative capabilities that are candidates for pilot stage treatment systems. In addition, we have determined how to create conditions to precipitate heavy metals on the surface of the bacterium, as the first step towards creating dual-use treatment strains for contained mixed wastes of importance to the DOE. Finally, we have analyzed stress response in this bacterium, to create the foundation for developing treatment processes that maximize degradation while optimizing survival under high stress conditions

  6. Genetic Engineering of a Radiation-Resistant Bacterium for Biodegradation of Mixed Wastes--Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mary E. Lidstrom

    2003-12-26

    Aqueous mixed low level wastes (MLLW) containing radionuclides, solvents, and/or heavy metals represent a serious current and future problem for DOE environmental management and cleanup. In order to provide low-cost treatment alternatives under mild conditions for such contained wastes, we have proposed to use the radiation-resistant bacterium, Deinococcus radiodurans. This project has focused on developing D. radiodurans strains for dual purpose processes: cometabolic treatment of haloorganics and other solvents and removal of heavy metals from waste streams in an above-ground reactor system. The characteristics of effective treatment strains that must be attained are: (a) high biodegradative and metal binding activity; (b) stable treatment characteristics in the absence of selection and in the presence of physiological stress; (c) survival and activity under harsh chemical conditions, including radiation. The result of this project has been a suite of strains with high biodegradative capabilities that are candidates for pilot stage treatment systems. In addition, we have determined how to create conditions to precipitate heavy metals on the surface of the bacterium, as the first step towards creating dual-use treatment strains for contained mixed wastes of importance to the DOE. Finally, we have analyzed stress response in this bacterium, to create the foundation for developing treatment processes that maximize degradation while optimizing survival under high stress conditions.

  7. Biodegradable polymers: emerging excipients for the pharmaceutical and medical device industries.

    OpenAIRE

    Bhavesh Patel; Subhashis Chakraborty

    2013-01-01

    Worldwide many researchers are exploring the potential use of biodegradable polymerics as carriers for a wide range of therapeutic applications. In the past two decades, considerable progress has been made in the development of biodegradable polymeric materials, mainly in the biomedical and pharmaceutical industries due to their versatility, biocompatibility and biodegradability properties. The present review focuses on the use of biodegradable polymers in various therapeutic areas like or...

  8. Biodegradability of poly(lactic-co-glycolic acid) after femtosecond laser irradiation

    OpenAIRE

    Akimichi Shibata; Shuhei Yada; Mitsuhiro Terakawa

    2016-01-01

    Biodegradation is a key property for biodegradable polymer-based tissue scaffolds because it can provide suitable space for cell growth as well as tailored sustainability depending on their role. Ultrashort pulsed lasers have been widely used for the precise processing of optically transparent materials, including biodegradable polymers. Here, we demonstrated the change in the biodegradation of a poly(lactic-co-glycolic acid) (PLGA) following irradiation with femtosecond laser pulses at diffe...

  9. Enzymatic oxidative biodegradation of nanoparticles: Mechanisms, significance and applications.

    Science.gov (United States)

    Vlasova, Irina I; Kapralov, Alexandr A; Michael, Zachary P; Burkert, Seth C; Shurin, Michael R; Star, Alexander; Shvedova, Anna A; Kagan, Valerian E

    2016-05-15

    Biopersistence of carbon nanotubes, graphene oxide (GO) and several other types of carbonaceous nanomaterials is an essential determinant of their health effects. Successful biodegradation is one of the major factors defining the life span and biological responses to nanoparticles. Here, we review the role and contribution of different oxidative enzymes of inflammatory cells - myeloperoxidase, eosinophil peroxidase, lactoperoxidase, hemoglobin, and xanthine oxidase - to the reactions of nanoparticle biodegradation. We further focus on interactions of nanomaterials with hemoproteins dependent on the specific features of their physico-chemical and structural characteristics. Mechanistically, we highlight the significance of immobilized peroxidase reactive intermediates vs diffusible small molecule oxidants (hypochlorous and hypobromous acids) for the overall oxidative biodegradation process in neutrophils and eosinophils. We also accentuate the importance of peroxynitrite-driven pathways realized in macrophages via the engagement of NADPH oxidase- and NO synthase-triggered oxidative mechanisms. We consider possible involvement of oxidative machinery of other professional phagocytes such as microglial cells, myeloid-derived suppressor cells, in the context of biodegradation relevant to targeted drug delivery. We evaluate the importance of genetic factors and their manipulations for the enzymatic biodegradation in vivo. Finally, we emphasize a novel type of biodegradation realized via the activation of the "dormant" peroxidase activity of hemoproteins by the nano-surface. This is exemplified by the binding of GO to cyt c causing the unfolding and 'unmasking' of the peroxidase activity of the latter. We conclude with the strategies leading to safe by design carbonaceous nanoparticles with optimized characteristics for mechanism-based targeted delivery and regulatable life-span of drugs in circulation. PMID:26768553

  10. Biodegradation of concrete intended for their decontamination; Biodegradation de matrices cimentaires en vue de leur decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Jestin, A

    2005-05-15

    The decontamination of sub-structural materials represents a stake of high importance because of the high volume generated. It is agreed then to propose efficient and effective processes. The process of bio-decontamination of the hydraulic binders leans on the mechanisms of biodegradation of concretes, phenomenon characterized in the 40's by an indirect attack of the material by acids stem from the microbial metabolism: sulphuric acid (produced by Thiobacillus), nitric acid (produced by Nitrosomonas and Nitrobacter) and organic acids (produced by fungi). The principle of the bio-decontamination process is to apply those microorganisms on the surface of the contaminated material, in order to damage its surface and to retrieve the radionuclides. One of the multiple approaches of the process is the use of a bio-gel that makes possible the micro-organisms application. (author)

  11. Development of environmental adaptable polymer

    International Nuclear Information System (INIS)

    Biodegradable polymers were modified by radiation crosslinking techniques to develop environmental adaptable polymer. Poly(ε-caprolactone), OCL, (melting temperature, 60 deg C) by irradiation in the supercooled state led to the highest gel content and this polymer has high heat resistance. Relatively smaller dose such as 15 and 30 kGy were effective to improve process ability of aliphatic polyester by formation of branch structure during irradiation. It was found that sodium carboxymethyl cellulose (CMC-Na) with degree of substitution (DS) from 0.7 to 2.2 and sodium carboxymethyl starch (CMS-Na) with DS 0.15 caused crosslinking at past like condition by irradiation. The condition with higher concentration such as 50-60% was most effective for crosslinking of CMC-Na and CMS-Na. Crosslinked CMC-Na and CMS-Na formed hydrogel. PCL, CMC-Na, and CMS-Na had biodegradability even after crosslinking in irradiation. (author)

  12. A sustainable slashing industry using biodegradable sizes from modified soy protein to replace petro-based poly(vinyl alcohol).

    Science.gov (United States)

    Zhao, Yi; Zhao, Yuzhu; Xu, Helan; Yang, Yiqi

    2015-02-17

    Biodegradable sizing agents from triethanolamine (TEA) modified soy protein could substitute poly(vinyl alcohol)(PVA) sizes for high-speed weaving of polyester and polyester/cotton yarns to substantially decrease environmental pollution and impel sustainability of textile industry. Nonbiodegradable PVA sizes are widely used and mainly contribute to high chemical oxygen demand (COD) in textile effluents. It has not been possible to effectively degrade, reuse or replace PVA sizes so far. Soy protein with good biodegradability showed potential as warp sizes in our previous studies. However, soy protein sizes lacked film flexibility and adhesion for required high-speed weaving. Additives with multiple hydroxyl groups, nonlinear molecule, and electric charge could physically modify secondary structure of soy protein and lead to about 23.6% and 43.3% improvement in size adhesion and ability of hair coverage comparing to unmodified soy protein. Industrial weaving results showed TEA-soy protein had relative weaving efficiency 3% and 10% higher than PVA and chemically modified starch sizes on polyester/cotton fabrics, and had relative weaving efficiency similar to PVA on polyester fabrics, although with 3- 6% lower add-on. In addition, TEA-soy sizes had a BOD5/COD ratio of 0.44, much higher than 0.03 for PVA, indicating that TEA-soy sizes were easily biodegradable in activated sludge. PMID:25687520

  13. Aerobic biodegradation potential of endocrine-disrupting chemicals in surface-water sediment at Rocky Mountain National Park, USA.

    Science.gov (United States)

    Bradley, Paul M; Battaglin, William A; Iwanowicz, Luke R; Clark, Jimmy M; Journey, Celeste A

    2016-05-01

    Endocrine-disrupting chemicals (EDCs) in surface water and bed sediment threaten the structure and function of aquatic ecosystems. In natural, remote, and protected surface-water environments where contaminant releases are sporadic, contaminant biodegradation is a fundamental driver of exposure concentration, timing, duration, and, thus, EDC ecological risk. Anthropogenic contaminants, including known and suspected EDCs, were detected in surface water and sediment collected from 2 streams and 2 lakes in Rocky Mountain National Park (Colorado, USA). The potential for aerobic EDC biodegradation was assessed in collected sediments using 6 (14) C-radiolabeled model compounds. Aerobic microbial mineralization of natural (estrone and 17β-estradiol) and synthetic (17α-ethinylestradiol) estrogen was significant at all sites. Bed sediment microbial communities in Rocky Mountain National Park also effectively degraded the xenoestrogens bisphenol-A and 4-nonylphenol. The same sediment samples exhibited little potential for aerobic biodegradation of triclocarban, however, illustrating the need to assess a wider range of contaminant compounds. The present study's results support recent concerns over the widespread environmental occurrence of carbanalide antibacterials, like triclocarban and triclosan, and suggest that backcountry use of products containing these compounds should be discouraged. Environ Toxicol Chem 2016;35:1087-1096. Published 2015 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America. PMID:26588039

  14. Aerobic biodegradation potential of endocrine disrupting chemicals in surface-water sediment at Rocky Mountains National Park, USA

    Science.gov (United States)

    Bradley, Paul M.; Battaglin, William A.; Iwanowicz, Luke; Clark, Jimmy M.; Journey, Celeste A.

    2016-01-01

    Endocrine disrupting chemicals (EDC) in surface water and bed sediment threaten the structure and function of aquatic ecosystems. In natural, remote, and protected surface-water environments where contaminant releases are sporadic, contaminant biodegradation is a fundamental driver of exposure concentration, timing, duration, and, thus, EDC ecological risk. Anthropogenic contaminants, including known and suspected EDC, were detected in surface water and sediment collected from 2 streams and 2 lakes in Rocky Mountains National Park (ROMO). The potential for aerobic EDC biodegradation was assessed in collected sediments using 6 14C-radiolabeled model compounds. Aerobic microbial mineralization of natural (estrone and 17β-estradiol) and synthetic (17α-ethinylestradiol) estrogen was significant at all sites. ROMO bed sediment microbial communities also effectively degraded the xenoestrogens, bisphenol-A and 4-nonylphenol. The same sediment samples exhibited little potential for aerobic biodegradation of triclocarban, however, illustrating the need to assess a wider range of contaminant compounds. The current results support recent concerns over the widespread environmental occurrence of carbanalide antibacterials, like triclocarban and triclosan, and suggest that backcountry use of products containing these compounds should be discouraged.

  15. Effects of Biodegradation on Crude Oils from Karamay Oilfield

    Institute of Scientific and Technical Information of China (English)

    杨斌; 杨坚强; 等

    1989-01-01

    Studies of biological marker compou nds in five oil samples from a profile wherenormal crude oil,low condensate oil and heavy oil are produced in the Karamay Oilfield have been carried out with great empha-sis on the biodegradation-resisting capability of 13,17 secosteranes,8,14 secohopanes,gammacerane and carotenes.Based on these studies,a sequence of biodegradation-resisting intensities has been established for saturated hydrocarbon biomarkers in crude oils from the Karamay Oilfield.

  16. Development of biodegradable packing for agriculture in application

    OpenAIRE

    Mota, Carlos Miguel Costa

    2013-01-01

    Dissertação de mestrado integrado em Engenharia de Polímeros Este projeto nasce com a necessidade da indústria agrícola beneficiar das propriedades e funcionalidades dos polímeros biodegradáveis que se encontram em franca expansão no mercado global. Desta forma foram estudadas diversas formulações com base na matriz termoplástica biodegradável de PLA 3251D, e diversos aditivos orgânicos e inorgânicos como as borras de café, fibras de madeira e o adubo para, desta forma, desenvo...

  17. Biodegradation of mixture of VOC's in a biofilter

    Institute of Scientific and Technical Information of China (English)

    D. Arulneyam; T. Swaminathan

    2004-01-01

    Volatile organic compounds(VOC' s) in air have become major concem in recent years. Biodegradation of a mixture of ethanol and methanol vapor was evaluated in a laboratory biofilter with a bed of compost and polystyrene particles using an acclimated mixed culture. The continuous performance of the biofilter was studied with different proportion of ethanol and methanol at different initial concentration and flow rates. The result showed significant removal for both ethanol and methanol, which were composition dependent.The presence of either compound in the mixture inhibited the biodegradation of the other.

  18. Biodegraded and Polyurethane Drape-formed Urea Fertilizer

    Institute of Scientific and Technical Information of China (English)

    WANG Yong; LI Jian; CHEN Xiaoyao

    2005-01-01

    Natural water absorbent konjac flour participates in synthesizing biodegraded and polyurethane foamed drape, which is used to release urea slowly.The experimental results indicate that the slowly-releasing velocity of urea nitrogen and the degrading velocity of the drape can be controlled by regulating the thicknesses of drapes, the amount of konjac flour and the water content. In addition, the biodegradability of the drape was investigated by burying the specimens in earth afterwards,and results show this drape can be degraded naturally.

  19. Corrosion protection of mesoporous bioactive glass coating on biodegradable magnesium

    Science.gov (United States)

    Wang, Xiaojian; Wen, Cuie

    2014-06-01

    A mesoporous bioactive glass (MBG) coating was synthesized and coated on pure Mg substrate using a sol-gel dip-coating method. The MBG coating uniformly covered the Mg substrate with a thickness of ˜1.5 μm. Electrochemical and immersion tests were performed in order to investigate the biodegradation performance of Mg with and without different surface coatings in simulated body fluids (SBF) at 37 °C. Results revealed that the MBG coated Mg displayed a significantly lower biodegradation rate, in comparison with normal bioactive glass (BG) coated and uncoated Mg samples.

  20. Effects of Biodegradation on the Distribution of Alkylcarbazoles in Crude Oils

    Institute of Scientific and Technical Information of China (English)

    ZHANG CHUNMING(张春明); MEI BOWEN(梅博文); STEVE R.LARTER; MARTIN P.KOOPMANS; XIAO QIANHUA(肖乾华)

    2002-01-01

    We have investigated the distributions of alkylcarbazoles in a series of crude oils with different biodegradation extents, in combination with biomarker parameters, stable carbon isotopic ratios and viscosities. The analyses showed that slight biodegradation has little effect on alkylcarbazoles. The concentrations of C0-, C1-, and C2-carbazoles seem to display a slight decrease with biodegradation through the moderately biodegraded stage, and an abrupt decrease to the heavily biodegraded stage. The relative concentrations of C0-, C1-, and C2-carbazoles do not show any apparent change in the non-heavily biodegraded stages, but through non-heavily biodegraded to heavily biodegraded stages, the percentages of C0- and C1-carbazoles decrease,and those of C2-carbazoles increase significantly, which may indicate that C2-carbazoles are more resistant to biodegradation than lower homologous species. As to C2-carbazole isomers,the relative concentrations of the pyrrolic N-H-shielded, pyrrolic N-H partially shielded and pyrrolic N-H-exposed isomers do not show any obvious variation in the non-heavily biodegraded oil, but there is an abrupt change through the mid-biodegraded stage to the heavily biodegraded stage.

  1. Mechanical characterization of commercial biodegradable plastic films

    Science.gov (United States)

    Vanstrom, Joseph R.

    Polylactic acid (PLA) is a biodegradable plastic that is relatively new compared to other plastics in use throughout industry. The material is produced by the polymerization of lactic acid which is produced by the fermentation of starches derived from renewable feedstocks such as corn. Polylactic acid can be manufactured to fit a wide variety of applications. This study details the mechanical and morphological properties of selected commercially available PLA film products. Testing was conducted at Iowa State University and in conjunction with the United States Department of Agriculture (USDA) BioPreferred ProgramRTM. Results acquired by Iowa State were compared to a similar study performed by the Cortec Corporation in 2006. The PLA films tested at Iowa State were acquired in 2009 and 2010. In addition to these two studies at ISU, the films that were acquired in 2009 were aged for a year in a controlled environment and then re-tested to determine effects of time (ageing) on the mechanical properties. All films displayed anisotropic properties which were confirmed by inspection of the films with polarized light. The mechanical testing of the films followed American Society for Testing and Materials (ASTM) standards. Mechanical characteristics included: tensile strength (ASTM D882), elongation of material at failure (ASTM D882), impact resistance (ASTM D1922), and tear resistance (ASTM D4272). The observed values amongst all the films ranged as followed: tensile strength 33.65--8.54 MPa; elongation at failure 1,665.1%--47.2%; tear resistance 3.61--0.46 N; and puncture resistance 2.22--0.28 J. There were significant differences between the observed data for a number of films and the reported data published by the Cortec Corp. In addition, there were significant differences between the newly acquired material from 2009 and 2010, as well as the newly acquired materials in 2009 and the aged 2009 materials, suggesting that ageing and manufacturing date had an effect on

  2. Nanoscale zerovalent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242-contaminated soil

    International Nuclear Information System (INIS)

    Nanoscale zerovalent iron (nZVI) has potential for the remediation of organochlorine-contaminated environments. Environmental safety concerns associated with in situ deployment of nZVI include potential negative impacts on indigenous microbes whose biodegradative functions could contribute to contaminant remediation. With respect to a two-step polychlorinated biphenyl remediation scenario comprising nZVI dechlorination followed by aerobic biodegradation, we examined the effect of polyacrylic acid (PAA)-coated nZVI (mean diameter = 12.5 nm) applied at 10 g nZVI kg−1 to Aroclor-1242 contaminated and uncontaminated soil over 28 days. nZVI had a limited effect on Aroclor congener profiles, but, either directly or indirectly via changes to soil physico-chemical conditions (pH, Eh), nZVI addition caused perturbation to soil bacterial community composition, and reduced the activity of chloroaromatic mineralizing microorganisms. We conclude that nZVI addition has the potential to inhibit microbial functions that could be important for PCB remediation strategies combining nZVI treatment and biodegradation. Highlights: ► Impact of nano-sized zerovalent iron on microbes was investigated in soil microcosms. ► Zerovalent iron had short-lived effects on redox potential and Aroclor dechlorination. ► Microbial populations also showed short-lived perturbations in their size. ► The activity of chloroaromatic degrading microbes did not recover within 28 days. ► Zerovalent iron application inhibits ensuing PCB bioremediative microbial functions. - nZVI inhibits microbial functions of potential importance for remediation strategies combining nZVI treatment and biodegradation.

  3. Biodegradability of fuel-ethers in environment; Biodegradabilite des ethers-carburants dans l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    Fayolle-Guichard, F.

    2005-04-01

    Fuel ethers (methyl tert-butyl ether or MTBE, ethyl tert-butyl ether or ETBE and tert-amyl methyl ether or TAME have been used as gasoline additives since about twenty years in order to meet the requirements for the octane index and to limit the polluting emission in exhaust pipe gas (unburnt hydrocarbons and carbon monoxide). The high water solubility and the poor biodegradability of these compounds make them pollutants frequently encountered in aquifers. The present manuscript summarizes the knowledge concerning the biodegradability of fuel ethers obtained both at IFP and during collaborations with the Pasteur Institute (Paris), the Biotechnology Research Institute (Montreal, Canada) and the Center for Environmental Biotechnology (University of Tennessee, USA). Rhodococcus ruber IFP 2001 and Mycobacterium austroafricanum IFP 2012, two microorganisms isolated at IFP for their ability to grow, respectively, on ETBE and MTBE, were studied in order to determine the intermediates produced during MTBE and ETBE biodegradation and the enzymes required for each biodegradation step, thus allowing us to propose MTBE and ETBE catabolic pathways. A proteomic approach, from the protein induced during the degradation of ETBE or MTBE to the genes encoding these different enzymes, was carried out. The isolation of such genes is required:1) to use them for help in determining the bio-remediation capacities in polluted aquifers (DNA micro-arrays), 2) to monitor the microorganisms isolated for their degradative capacities during bio-remediation processes (fluorescent in situ hybridization or FISH) and 3) to create new tools for the detection and the quantification of ETBE or MTBE in contaminated aquifers (bio-sensor). The manuscript also describes the different ways for the adaptation of microorganisms to the presence of a xenobiotic compound. (author)

  4. Perspectives in Biodegradation of Alkanes and PCBs

    Czech Academy of Sciences Publication Activity Database

    Káš, J.; Burkhard, J.; Demnerová, K.; Košťál, J.; Macek, Tomáš; Macková, M.; Pazlarová, J.

    Palmerston North: Massey University, 1996 - (Manderson, G.; Bhamidimarri, R.), s. 2-30 [Environmental Biotechnology '96. Palmerston North (NZ), 01.09.1996-04.09.1996] R&D Projects: GA ČR GA104/94/1315; GA ČR 204/96/0499 Grant ostatní: PECO-CIPA-CT(XE) 3020

  5. Biodegradation Of Persistent Organic Pollutants (POPs):I The Case Of Polychlorinated Biphenyls (PCB)

    International Nuclear Information System (INIS)

    Persistent organic pollutants are chemicals that are toxic to humans and wildlife, remain intact in the environment for long periods, accumulate in living organisms and can become widely distributed geographically by air, water or migrating species. As a result, these contaminants have been found all over the world including in places,such as the Polar Regions, which are very far from their application site. The Stockholm Convention was signed in 23/5/01 in order to cope with this international environmental problem. Although POPs were banned by most countries, there are still a lot of sites contaminated with these substances. The remediation of these sites is problematic and requires distinct considerations from those which are established for hydrocarbon remediation. This manuscript reviews the literature about anaerobic and aerobic biodegradation of polychlorinated biphenyls (PCB) and possible strategies to stimulate these processes. The degradation of the other POPs would be reviewed in additional texts.

  6. In vivo biodegradation of colloidal quantum dots by a freshwater invertebrate, Daphnia magna

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Dongwook; Kim, Min Jung; Park, Chansik; Park, Jaehong [Department of Chemistry, Hanyang University, Seoul 133-791 (Korea, Republic of); Choi, Kyungho [Department of Environmental Health, Seoul National University, Seoul 151-742 (Korea, Republic of); Yoon, Tae Hyun, E-mail: thyoon@gmail.com [Department of Chemistry, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2012-06-15

    Impacts of planktonic invertebrate, Daphnia magna, on the speciation of colloidal quantum dots (QD) were investigated using fluorescence spectromicroscopic technique. Well-dispersed {sup GA/TOPO}QD were prepared by forming a supramolecular assembly of hydrophobic {sup TOPO}QD with biomacromolecules (i.e., Gum Arabic, GA). Biological degradation of this nanomaterial was monitored by fluorescence spectromicroscopic methods. Our study confirmed the major uptake pathway of manufactured nanomaterials and in vivo biodegradation processes in a well-known toxicity test organism, D. magna. In addition, we also found that D. magna can induce significant deterioration of aquatic media by releasing fragments of partially degraded QD colloids. These biological processes may significantly change the predicted toxicities of nanomaterials in aquatic environments. Thus, we propose that the impacts of aquatic living organisms on the environmental fate of manufactured nanomaterials (MNs) should be carefully taken into account when assessing the risk of MNs to the environment and human health.

  7. In vivo biodegradation of colloidal quantum dots by a freshwater invertebrate, Daphnia magna

    International Nuclear Information System (INIS)

    Impacts of planktonic invertebrate, Daphnia magna, on the speciation of colloidal quantum dots (QD) were investigated using fluorescence spectromicroscopic technique. Well-dispersed GA/TOPOQD were prepared by forming a supramolecular assembly of hydrophobic TOPOQD with biomacromolecules (i.e., Gum Arabic, GA). Biological degradation of this nanomaterial was monitored by fluorescence spectromicroscopic methods. Our study confirmed the major uptake pathway of manufactured nanomaterials and in vivo biodegradation processes in a well-known toxicity test organism, D. magna. In addition, we also found that D. magna can induce significant deterioration of aquatic media by releasing fragments of partially degraded QD colloids. These biological processes may significantly change the predicted toxicities of nanomaterials in aquatic environments. Thus, we propose that the impacts of aquatic living organisms on the environmental fate of manufactured nanomaterials (MNs) should be carefully taken into account when assessing the risk of MNs to the environment and human health.

  8. The non-steroidal anti-inflammatory drug diclofenac is readily biodegradable in agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne [Agriculture and Agri-Food Canada, London, ON, Canada N5V 4T3 (Canada); Lapen, David R. [Agriculture and Agri-Food Canada, Ottawa ON, Canada K1A 0C6 (Canada); Topp, Edward, E-mail: ed.topp@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON, Canada N5V 4T3 (Canada)

    2010-12-01

    Diclofenac, 2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetic acid, is an important non-steroidal anti-inflammatory drug widely used for human and animals to reduce inflammation and pain. Diclofenac could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in agricultural soils incubated in the laboratory. {sup 14}C-Diclofenac was rapidly mineralized without a lag when added to soils varying widely in texture (sandy loam, loam, clay loam). Over a range of temperature and moisture conditions extractable {sup 14}C-diclofenac residues decreased with half lives < 5 days. No extractable transformation products were detectable by HPLC. Diclofenac mineralization in the loam soil was abolished by heat sterilization. Addition of biosolids to sterile or non-sterile soil did not accelerate the dissipation of diclofenac. These findings indicate that diclofenac is readily biodegradable in agricultural soils.

  9. The non-steroidal anti-inflammatory drug diclofenac is readily biodegradable in agricultural soils

    International Nuclear Information System (INIS)

    Diclofenac, 2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetic acid, is an important non-steroidal anti-inflammatory drug widely used for human and animals to reduce inflammation and pain. Diclofenac could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in agricultural soils incubated in the laboratory. 14C-Diclofenac was rapidly mineralized without a lag when added to soils varying widely in texture (sandy loam, loam, clay loam). Over a range of temperature and moisture conditions extractable 14C-diclofenac residues decreased with half lives < 5 days. No extractable transformation products were detectable by HPLC. Diclofenac mineralization in the loam soil was abolished by heat sterilization. Addition of biosolids to sterile or non-sterile soil did not accelerate the dissipation of diclofenac. These findings indicate that diclofenac is readily biodegradable in agricultural soils.

  10. Molecular design of biodegradable polymers for tissue engineering

    Czech Academy of Sciences Publication Activity Database

    Rypáček, František; Kubies, Dana; Machová, Luďka; Proks, Vladimír; Popelka, Štěpán

    Myconos : Aegean Conferences, 2002. s. 75. [Symposium on Tissue Engineering Science : Critical Elements in the Research Development Continuum. 19.05.2002-23.05.2002, Myconos] R&D Projects: GA AV ČR IAA4050202 Institutional research plan: CEZ:AV0Z4050913 Keywords : biodegradable polymers * tissue engineering Subject RIV: CD - Macromolecular Chemistry

  11. Interspecific interactions in mixed microbial cultures in a biodegradation perspective

    Czech Academy of Sciences Publication Activity Database

    Mikesková, Hana; Novotný, Čeněk; Svobodová, Kateřina

    2012-01-01

    Roč. 95, č. 4 (2012), s. 861-870. ISSN 0175-7598 R&D Projects: GA AV ČR IAAX00200901 Institutional support: RVO:61388971 Keywords : Microbial consortia * Consortium development * Biodegradation Subject RIV: EE - Microbiology, Virology Impact factor: 3.689, year: 2012

  12. Biodegradable copolymers carrying cell-adhesion peptide sequences

    Czech Academy of Sciences Publication Activity Database

    Proks, Vladimír; Machová, Luďka; Popelka, Štěpán; Rypáček, František

    Antalya : Ankara University, Tissue Engineering and Biomaterials Laboratory, 2002. s. P-35. [International Symposium on Biomedical Science and Technology BIOMED /9./. 19.09.2002-22.09.2002, Antalya ] R&D Projects: GA AV ČR IAA4050202; GA MŠk LN00A065 Keywords : amphiphilic block copolymers * cell adhesion * biodegradable Subject RIV: CD - Macromolecular Chemistry

  13. The development and performance testing of a biodegradable scale inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, Julie; Fidoe, Steve; Jones, Chris

    2006-03-15

    The oil industry is currently facing severe restrictions concerning the discharge of oil field chemicals into the environment. Many commonly used materials in both topside and downhole applications are phased for substitution for use in the North Sea, and more will be identified. The development of biodegradable and low toxicity chemicals, which afford equal or improved efficacy, compared to conventional technology, available at a competitive price, is a current industry challenge. A range of biodegradable materials are increasingly available, however their limited performance can result in a restricted range of applications. This paper discusses the development and commercialization of a readily biodegradable scale inhibitor, ideal for use in topside applications. This material offers a broad spectrum of activity, notably efficiency against barium sulphate, calcium sulphate and calcium carbonate scales, in a range of water chemistries. A range of performance testing, compatibility, stability and OCNS dataset will be presented. Comparisons with commonly used chemicals have been made to identify the superior performance of this phosphate ester. This paper will discuss a scale inhibitor suitable for use in a variety of conditions which offers enhanced performance combined with a favourable biodegradation profile. This material is of great benefit to the industry, particularly in North Sea applications. (author) (tk)

  14. Effects of nitrogen source on crude oil biodegradation

    International Nuclear Information System (INIS)

    The effects of NH4Cl and KNO3 on biodegradation of light Arabian crude oil by an oil-degrading enrichment culture were studied in respirometers. In poorly buffered sea salts medium, the pH decreased dramatically in cultures that contained NH4Cl, but not in those supplied with KNO3. The ammonia-associated pH decline was severe enough to completely stop oil biodegradation as measured by oxygen uptake. Regular adjustment of the culture pH allowed oil biodegradation to proceed normally. A small amount of nitrate accumulated in all cultures that contained ammonia, but nitrification accounted for less than 5% of the acid that was observed. The nitrification inhibitor, nitrapyrin, had no effect on the production of nitrate or acid in ammonia-containing cultures. When the culture pH was controlled, either by regular adjustment of the culture pH or by supplying adequate buffering capacity in the growth medium, the rate and extent of oil biodegradation were similar in NH4Cl- and KNO3-containing cultures. The lag time was shorter in pH-controlled cultures supplied with ammonia than in nitrate-containing cultures. (author)

  15. Anaerobic biodegradation of spent sulphite liquor in a UASB reactor

    DEFF Research Database (Denmark)

    Jantsch, T.G.; Angelidaki, Irini; Schmidt, Jens Ejbye;

    2002-01-01

    Anaerobic biodegradation of fermented spent sulphite liquor, SSL, which is produced during the manufacture of sulphite pulp, was investigated. SSL contains a high concentration of lignin products in addition to hemicellulose and has a very high COD load (173 g COD l1). Batch experiments with...

  16. Pharmacokinetics and biodegradation performance of a hydroxypropyl chitosan derivative

    Science.gov (United States)

    Shao, Kai; Han, Baoqin; Dong, Wen; Song, Fulai; Liu, Weizhi; Liu, Wanshun

    2015-10-01

    Hydroxypropyl chitosan (HP-chitosan) has been shown to have promising applications in a wide range of areas due to its biocompatibility, biodegradability and various biological activities, especially in the biomedical and pharmaceutical fields. However, it is not yet known about its pharmacokinetics and biodegradation performance, which are crucial for its clinical applications. In order to lay a foundation for its further applications and exploitations, here we carried out fluorescence intensity and GPC analyses to determine the pharmacokinetics mode of fluorescein isothiocyanate-labeled HP-chitosan (FITC-HP-chitosan) and its biodegradability. The results showed that after intraperitoneal administration at a dose of 10 mg per rat, FITC-HP-chitosan could be absorbed rapidly and distributed to liver, kidney and spleen through blood. It was indicated that FITC-HP-chitosan could be utilized effectively, and 88.47% of the FITC-HP-chitosan could be excreted by urine within 11 days with a molecular weight less than 10 kDa. Moreover, our data indicated that there was an obvious degradation process occurred in liver (chitosan has excellent bioavailability and biodegradability, suggesting the potential applications of hydroxypropyl-modified chitosan as materials in drug delivery, tissue engineering and biomedical area.

  17. Biodegradable composite films from chitosan and chitin nanofibrils

    Czech Academy of Sciences Publication Activity Database

    Tishchenko, Galina; Kelnar, Ivan; Kaprálková, Ludmila; Pavlová, Eva; Kovářová, Jana; Mikešová, Jana; Brožová, Libuše; Strachota, Adam; Špírková, Milena; Kobera, Libor; Netopilík, Miloš; Bastl, Zdeněk; Carezzi, F.; Morganti, P.

    Pisa : University of Pisa, Department of Civil and Industrial Engineering, 2013, s. 58-59. [Workshop Green Chemistry and Nanotechnologies in Polymer Chemistry /4./. Pisa (IT), 04.09.2013-06.09.2013] EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 ; RVO:61388955 Keywords : biodegradable films * chitosan chitin nanofibrils Subject RIV: CD - Macromolecular Chemistry

  18. Influence of saponins on the biodegradation of halogenated phenols.

    Science.gov (United States)

    Kaczorek, Ewa; Smułek, Wojciech; Zdarta, Agata; Sawczuk, Agata; Zgoła-Grześkowiak, Agnieszka

    2016-09-01

    Biotransformation of aromatic compounds is a challenge due to their low aqueous solubility and sorptive losses. The main obstacle in this process is binding of organic pollutants to the microbial cell surface. To overcome these, we applied saponins from plant extract to the microbial culture, to increase pollutants solubility and enhance diffusive massive transfer. This study investigated the efficiency of Quillaja saponaria and Sapindus mukorossi saponins-rich extracts on biodegradation of halogenated phenols by Raoultella planticola WS2 and Pseudomonas sp. OS2, as an effect of cell surface modification of tested strains. Both strains display changes in inner membrane permeability and cell surface hydrophobicity in the presence of saponins during the process of halogenated phenols biotransformation. This allows them to more efficient pollutants removal from the environment. However, only in case of the Pseudomonas sp. OS2 the addition of surfactants to the culture improved effectiveness of bromo-, chloro- and fluorophenols biodegradation. Also introduction of surfactant allowed higher biodegradability of halogenated phenols and can shorten the process. Therefore this suggests that usage of plant saponins can indicate more successful halogenated phenols biodegradation for selected strains. PMID:27232205

  19. Application of a Biodegradable Lubricant in a Diesel Vehicle

    DEFF Research Database (Denmark)

    Schramm, Jesper

    2003-01-01

    , NOx, THC, PM, lubricant-SOF and PAH from one diesel and one gasoline type vehicle using biodegradable lubricants and conventional lubricants. This paper describes the results of the experiments with the diesel type vehicle only. Lubricant consumption and fuel consumption are other important parameters...

  20. Physical, mechanical, and biodegradable properties of meranti wood polymer composites

    International Nuclear Information System (INIS)

    Highlights: • In-situ polymerization and solution casting method used to manufacture WPC. • In-situ WPC exhibited better properties compared to pure wood, 5% WPC and 20% WPC. • Lowest water absorption and least biodegradability shown by In-situ wood. - Abstract: In-situ polymerization and solution casting techniques are two effective methods to manufacture wood polymer composites (WPCs). In this study, wood polymer composites (WPCs) were manufactured from meranti sapwood by solution casting and in-situ polymerization process using methyl methacrylate (MMA) and epoxy matrix respectively. Physical, mechanical, and morphological characterizations of fabricated WPCs were then carried out to analyse their properties. Morphological properties of composites samples were analyzed through scanning electron microscopy (SEM). The result reveals that in-situ wood composite exhibited better properties compared to pure wood, 5% WPC and 20% WPC. Moreover, in-situ WPC had lowest water absorption and least biodegraded. Conversely, pure wood shown moderate mechanical strength, high biodegradation and water absorption rate. In term of biodegradation, earth-medium brought more severe effect than water in deteriorating the properties of the specimens

  1. Biodegradation of oil refinery wastes under OPA and CERCLA

    Energy Technology Data Exchange (ETDEWEB)

    Gamblin, W.W.; Banipal, B.S.; Myers, J.M. [Ecology and Environment, Inc., Dallas, TX (United States)] [and others

    1995-12-31

    Land treatment of oil refinery wastes has been used as a disposal method for decades. More recently, numerous laboratory studies have been performed attempting to quantify degradation rates of more toxic polycyclic aromatic hydrocarbon compounds (PAHs). This paper discusses the results of the fullscale aerobic biodegradation operations using land treatment at the Macmillan Ring-Free Oil refining facility. The tiered feasibility approach of evaluating biodegradation as a treatment method to achieve site-specific cleanup criteria, including pilot biodegradation operations, is discussed in an earlier paper. Analytical results of biodegradation indicate that degradation rates observed in the laboratory can be met and exceeded under field conditions and that site-specific cleanup criteria can be attained within a proposed project time. Also prevented are degradation rates and half-lives for PAHs for which cleanup criteria have been established. PAH degradation rates and half-life values are determined and compared with the laboratory degradation rates and half-life values which used similar oil refinery wastes by other in investigators (API 1987).

  2. MICROORGANISMS’ SURFACE ACTIVE SUBSTANCES ROLE IN HYDROCARBONS BIODEGRADATION

    Directory of Open Access Journals (Sweden)

    Оlga Vasylchenko

    2012-09-01

    Full Text Available  Existing data and publications regarding oil, hydrocarbon biodegradation, metabolism, and bioremediation were analyzed. Search of hydrocarbon degrading bacteria which are producers of biosurfactants was provided, types of microbial surfactants and their physiological role were analyzed and ordered. The study of factors affecting the surface active properties of producers’ cultures was done.

  3. Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities

    Directory of Open Access Journals (Sweden)

    Maryam Moravej

    2011-06-01

    Full Text Available During the last decade, biodegradable metallic stents have been developed and investigated as alternatives for the currently-used permanent cardiovascular stents. Degradable metallic materials could potentially replace corrosion-resistant metals currently used for stent application as it has been shown that the role of stenting is temporary and limited to a period of 6–12 months after implantation during which arterial remodeling and healing occur. Although corrosion is generally considered as a failure in metallurgy, the corrodibility of certain metals can be an advantage for their application as degradable implants. The candidate materials for such application should have mechanical properties ideally close to those of 316L stainless steel which is the gold standard material for stent application in order to provide mechanical support to diseased arteries. Non-toxicity of the metal itself and its degradation products is another requirement as the material is absorbed by blood and cells. Based on the mentioned requirements, iron-based and magnesium-based alloys have been the investigated candidates for biodegradable stents. This article reviews the recent developments in the design and evaluation of metallic materials for biodegradable stents. It also introduces the new metallurgical processes which could be applied for the production of metallic biodegradable stents and their effect on the properties of the produced metals.

  4. Resonant infrared pulsed laser deposition of thin biodegradable polymer films

    DEFF Research Database (Denmark)

    Bubb, D.M.; Toftmann, B.; Haglund Jr., R.F.;

    2002-01-01

    Thin films of the biodegradable polymer poly(DL-lactide-co-glycolide) (PLGA) were deposited using resonant infrared pulsed laser deposition (RIR-PLD). The output of a free-electron laser was focused onto a solid target of the polymer, and the films were deposited using 2.90 (resonant with O...

  5. Biodegradable thermosensitive polymers: synthesis, characterization and drug delivery applications

    NARCIS (Netherlands)

    Soga, Osamu

    2006-01-01

    The aim of the research described in this Thesis is to design polymeric micelles showing controlled instability due to "hydrophobic to hydrophilic" conversion of the core, and to demonstrate its utility as a drug delivery vehicle. For that purpose, a novel class of thermosensitive and biodegradable

  6. Biodegradable xylitol-based elastomers: In vivo behavior and biocompatibility

    NARCIS (Netherlands)

    J.P. Bruggeman (Joost); C.J. Bettinger (Christopher); R.S. Langer (Robert)

    2010-01-01

    textabstractBiodegradable elastomers based on polycondensation reactions of xylitol with sebacic acid, referred to as poly(xylitol sebacate) (PXS) elastomers have recently been developed. We describe the in vivo behavior of PXS elastomers. Four PXS elastomers were synthesized, characterized, and com

  7. Anaerobic Biodegradation of Pristane by Nitrate Reducing Bacteria

    Science.gov (United States)

    Dawson, K. S.; Freeman, K. H.; Macalady, J. L.

    2007-12-01

    In recent sediments, microbial biodegradation provides a control on the long-term preservation of organic matter, through the preferential loss of certain biomolecules and the alteration and concentration of other more recalcitrant molecules. Biodegradation of hydrocarbons derived from membrane lipids, has been demonstrated by both aerobic and strictly anaerobic culturing experiments. The isoprenoid pristane, once considered stable under anaerobic conditions, is in fact degraded by a denitrifying microcosm (BREGNARD et al., 1997) and a methanogenic, sulphate-reducing enrichment culture (GROSSI, 2000). We recently demonstrated pristane biodegradation and accompanying loss of nitrate by an activated sludge isolate. The measured nitrate consumption accounts for a 7.1 +/- 0.4 mg loss of pristane, 4.74% of the initial substrate, in 181 days, assuming pristane conversion to CO2. We have characterized the microorganisms active in the biodegradation process, through the creation of a 16S rDNA clone library, as well as fluorescence in situ hybridization (FISH). Experiments are in progress to enrich cultures of sulfate reducing bacteria that utilize pristane as a sole carbon source and to characterize reaction mechanisms in pristane-oxidizing pathways.

  8. Study on the Synthesis and Biodegradation of Aliphatic Polyester

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An aliphatic polyester, poly(hexalene adipate) (PHA) and an aliphatic copolyester, poly (hexalene adipate succinate) (PHAS) were synthesized by direct condensation of corresponding binary acid and binary alcohol in the presence of a catalyst, p-toluene sulfonic acid. The biodegradation of these polyesters were studied in the laboratory by enzyme attack and outdoor soil burial. The results show that these polyesters have good biodegradability and the copolyester PHAS, even displayed a better biodegradability than the polyester PHA. In the presence of Penicillium chrysogenum the weight loss reached 18.3% for the PHAS (film thickness 1.0 mm)and 9.1% for the PHA (film thickness 1.0 mm) after 28 days. Outdoor soil burial tests indicate that these polyesters also have good biodegradability in natural conditions. The weight loss reached 14.2% for PHAS (film thickness 0.1 mm) and 6.7% for PHA (film thickness 0.1mm) after burying in soil for 36 days.

  9. Biodegradable polyurethanes for short-term outdoor usage

    Czech Academy of Sciences Publication Activity Database

    Kredatusová, Jana; Beneš, Hynek; Gawelczyk, Alexandra; Horák, Pavel; Kruliš, Zdeněk; Kobetičová, K.

    Cracow : Fampur A. Przekurat, Cracow University of Technology, Faculty of Chemical Engineering and Technology, 2015, P12. [Polyurethanes 2015 - cooperation for innovation . Kraków (PL), 09.09.2015-11.09.2015] R&D Projects: GA TA ČR(CZ) TA04020853 Institutional support: RVO:61389013 Keywords : polyurethane * biodegradable Subject RIV: CD - Macromolecular Chemistry

  10. Ecotoxicity and biodegradability of new brominated flame retardants: A review

    Czech Academy of Sciences Publication Activity Database

    Ezechiáš, Martin; Covino, Stefano; Cajthaml, Tomáš

    2014-01-01

    Roč. 110, č. 2 (2014), s. 153-167. ISSN 0147-6513 R&D Projects: GA MŠk(CZ) EE2.3.30.0003; GA TA ČR TE01020218 Institutional support: RVO:61388971 Keywords : Ecotoxicity * brominated flame retardants * biodegradation * review Subject RIV: EE - Microbiology, Virology Impact factor: 2.762, year: 2014

  11. Biodegradation of Lignocelluloses in Sewage Sludge Composting and Vermicomposting

    Directory of Open Access Journals (Sweden)

    Hosein Alidadi

    2012-08-01

    Full Text Available Please cite this article as: Alidadi H, Najafpour AA, Vafaee A, Parvaresh A, Peiravi R. Biodegradation of lignocelluloses in sewage sludge composting and vermicomposting. Arch Hyg Sci 2012;1(1:1-5.   Aims of the Study: The aim of this study was to determine the amount of lignin degradation and biodegradation of organic matter and change of biomass under compost and vermicomposting of sewage sludge. Materials & Methods: Sawdust was added to sewage sludge at 1:3 weight bases to Carbon to Nitrogen ratio of 25:1 for composting or vermicomposting. Lignin and volatile solids were determined at different periods, of 0, 10, 30, 40 and 60 days of composting or vermicomposting period to determine the biodegradation of lignocellulose to lignin. Results were expressed as mean of two replicates and the comparisons among means were made using the least significant difference test calculated (p <0.05. Results: After 60 days of experiment period, the initial lignin increased from 3.46% to 4.48% for compost and 3.46% to 5.27% for vermicompost. Biodegradation of lignocellulose was very slow in compost and vermicompost processes. Vermicomposting is a much faster process than compost to convert lignocellulose to lignin (p <0.05. Conclusions: The organic matter losses in sewage sludge composting and vermicomposting are due to the degradation of the lignin fractions. By increasing compost age, the amount of volatile solids will decrease.

  12. Diesel Pollution Biodegradation: Synergetic Effect of Mycobacterium and Filamentous Fungi

    Institute of Scientific and Technical Information of China (English)

    YOU-QING LI; HONG-FANG LIU; ZHEN-LE TIAN; LI-HUA ZHU; YIN-GHUI WU; HE-QING TANG

    2008-01-01

    Objective To biodegrade the diesel pollution in aqueous solution inoculated with Mycobacterium and filamentous fungi.Methods Bacteria sampled from petroleum hydrocarbons contaminated sites in Karamay Oilfield were isolated and identified as Mycobacterium hyalinum (MH) and cladosporium. Spectrophotometry and gas chromatography (GC) were used to analyze of the residual concentrations of diesel oil and its biodegradation products. Results From the GC data, the values of apparent biodegradation ratio of the bacterial strain MH to diesel oil were close to those obtained in the control experiments. Moreover, the number of MH did not increase with degradation time. However, by using n-octadecane instead of diesel oil, the real biotic degradation ratio increased to 20.9% over 5 days of degradation. Cladosporium strongly biodegraded diesel oil with a real degradation ratio of up to 34% after 5 days treatment. When the two strains were used simultaneously, a significant synergistic effect between them resulted in almost cornplete degradation of diesel off, achieving a total diesel removal of 99% over 5 days of treatment, in which one part of about 80% and another part of about 19% were attributed to biotic and abiotic processes, respectively. Conclusion The observed synergistic effect was closely related to the aromatics-degrading ability of Cladosporium, which favored the growth of MH and promoted the bioavailability of diesel oil.

  13. Artificial biodegradable materials for tissue engineering: synthesis and biomimetic modification

    Czech Academy of Sciences Publication Activity Database

    Kotelnikov, Ilya; Pop-Georgievski, Ognen; Novotná, Katarína; Kučka, Jan; Bačáková, Lucie; Proks, Vladimír; Rypáček, František

    Prague : Institute of Macromolecular Chemistry AS CR, 2013. L22. ISBN 978-80-85009-76-7. [Workshop "Career in Polymers" /5./. 12.07.2013-13.07.2013, Prague] Institutional support: RVO:61389013 ; RVO:67985823 Keywords : tissue engineering * biodegradable materials Subject RIV: CD - Macromolecular Chemistry

  14. A modelling implementation of climate change on biodegradation of Low-Density Polyethylene (LDPE by Aspergillus niger in soil

    Directory of Open Access Journals (Sweden)

    Farzin Shabani

    2015-07-01

    Main conclusions:  Accurately evaluating the impact of landfilling on land use and predicting future climate are vital components for effective long-term planning of waste management. From a social and economic perspective, utilization of our mapped projections to detect suitable regions for establishing landfills in areas highly sustainable for microorganisms like A. niger growth will allow a significant cost reduction and improve the performance of biodegradation of LDPE over a long period of time, through making use of natural climatic and environmental factors.

  15. Biodegradação de efluente têxtil por Pleurotus sajor-caju Biodegradation of textile effluents by Pleurotus sajor-caju

    OpenAIRE

    Hélio Mitoshi Kamida; Lucia Regina Durrant; Regina Teresa Rosim Monteiro; Eduardo Dutra de Armas

    2005-01-01

    Effluents generated by the textile industry are of environmental concern because of the presence of dyes with complex molecular structure, which confer them recalcitrant characteristics. Indigo is one of the most widely used dyes within the textile sector and studies have suggested that edible fungi may be capable of its biodegradation. A textile effluent was mixed with sugarcane bagasse and inoculated with Pleurotus sajor-caju, the decolorization being evaluated after 14 days, when the proce...

  16. A Low-Cost Wheat Bran Medium for Biodegradation of the Benzidine-Based Carcinogenic Dye Trypan Blue Using a Microbial Consortium

    OpenAIRE

    Harshad Lade; Avinash Kadam; Diby Paul; Sanjay Govindwar

    2015-01-01

    Environmental release of benzidine-based dyes is a matter of health concern. Here, a microbial consortium was enriched from textile dye contaminated soils and investigated for biodegradation of the carcinogenic benzidine-based dye Trypan Blue using wheat bran (WB) as growth medium. The PCR-DGGE analysis of enriched microbial consortium revealed the presence of 15 different bacteria. Decolorization studies suggested that the microbial consortium has high metabolic activity towards Trypan Blue ...

  17. Variovorax sp.-mediated biodegradation of the phenyl urea herbicide linuron at micropollutant concentrations and effects of natural dissolved organic matter as supplementary carbon source

    OpenAIRE

    Horemans, Benjamin; Vandermaesen, Joke; Smolders, Erik; Springael, Dirk

    2013-01-01

    In nature, pesticides are often present as micropollutants with concentrations too low for efficient biodegradation and growth of heterotrophic pollutant degrading bacteria. Instead, organic carbon present in environmental dissolved organic matter (eDOM) constitutes the main carbon source in nature. Information on how natural organic carbon affects degradation of pollutants and micropollutants in particular, is however poor. Linuron degrading Variovorax sp. strains SRS16, WDL1 and PBLH6 and a...

  18. Prospects for microbiological solutions to environmental pollution with plastics.

    Science.gov (United States)

    Krueger, Martin C; Harms, Hauke; Schlosser, Dietmar

    2015-11-01

    Synthetic polymers, commonly named plastics, are among the most widespread anthropogenic pollutants of marine, limnic and terrestrial ecosystems. Disruptive effects of plastics are known to threaten wildlife and exert effects on natural food webs, but signs for and knowledge on plastic biodegradation are limited. Microorganisms are the most promising candidates for an eventual bioremediation of environmental plastics. Laboratory studies have reported various effects of microorganisms on many types of polymers, usually by enzymatic hydrolysis or oxidation. However, most common plastics have proved to be highly recalcitrant even under conditions known to favour microbial degradation. Knowledge on environmental degradation is yet scarcer. With this review, we provide a comprehensive overview of the current knowledge on microbiological degradation of several of the most common plastic types. Furthermore, we illustrate the analytical challenges concerning the evaluation of plastic biodegradation as well as constraints likely standing against the evolution of effective biodegradation pathways. PMID:26318446

  19. Resistance to moist conditions of whey protein isolate and pea starch biodegradable films and low density polyethylene nondegradable films: a comparative study

    Science.gov (United States)

    Mehyar, G. F.; Bawab, A. Al

    2015-10-01

    Biodegradable packaging materials are degraded under the natural environmental conditions. Therefore using them could alleviate the problem of plastics accumulation in nature. For effective replacement of plastics, with biodegradable materials, biodegradable packages should keep their properties under the high relative humidity (RH) conditions. Therefore the objectives of the study were to develop biodegradable packaging material based on whey protein isolate (WPI) and pea starch (PS). To study their mechanical, oxygen barrier and solubility properties under different RHs compared with those of low density polyethylene (LDPE), the most used plastic in packaging. Films of WPI and PS were prepared separately and conditioned at different RH (30-90%) then their properties were studied. At low RHs ( 40% RH. Oxygen permeability of WPI and LDPE did not adversely affected by increasing RH to 65%. Furthermore, WPI and LDPE films had lower degree of hydration at 50% and 90% RH and total soluble matter than PS films. These results suggest that WPI could be successfully replacing LDPE in packaging of moist products.

  20. Mechanisms of electron acceptor utilization: implications for simulating anaerobic biodegradation.

    Science.gov (United States)

    Schreiber, M E; Carey, G R; Feinstein, D T; Bahr, J M

    2004-09-01

    Simulation of biodegradation reactions within a reactive transport framework requires information on mechanisms of terminal electron acceptor processes (TEAPs). In initial modeling efforts, TEAPs were approximated as occurring sequentially, with the highest energy-yielding electron acceptors (e.g. oxygen) consumed before those that yield less energy (e.g., sulfate). Within this framework in a steady state plume, sequential electron acceptor utilization would theoretically produce methane at an organic-rich source and Fe(II) further downgradient, resulting in a limited zone of Fe(II) and methane overlap. However, contaminant plumes often display much more extensive zones of overlapping Fe(II) and methane. The extensive overlap could be caused by several abiotic and biotic processes including vertical mixing of byproducts in long-screened monitoring wells, adsorption of Fe(II) onto aquifer solids, or microscale heterogeneity in Fe(III) concentrations. Alternatively, the overlap could be due to simultaneous utilization of terminal electron acceptors. Because biodegradation rates are controlled by TEAPs, evaluating the mechanisms of electron acceptor utilization is critical for improving prediction of contaminant mass losses due to biodegradation. Using BioRedox-MT3DMS, a three-dimensional, multi-species reactive transport code, we simulated the current configurations of a BTEX plume and TEAP zones at a petroleum-contaminated field site in Wisconsin. Simulation results suggest that BTEX mass loss due to biodegradation is greatest under oxygen-reducing conditions, with smaller but similar contributions to mass loss from biodegradation under Fe(III)-reducing, sulfate-reducing, and methanogenic conditions. Results of sensitivity calculations document that BTEX losses due to biodegradation are most sensitive to the age of the plume, while the shape of the BTEX plume is most sensitive to effective porosity and rate constants for biodegradation under Fe(III)-reducing and

  1. A life cycle framework to support materials selection for Ecodesign: A case study on biodegradable polymers

    International Nuclear Information System (INIS)

    Highlights: • Life cycle framework to support material selection in Ecodesign. • Early design stage estimates and sensitivity analyses based on process-based models. • Sensitivity analysis to product geometry, industrial context and EoL scenarios. • Cost and environmental performance comparison – BDP vs. fossil based polymers. • Best alternatives mapping integrating cost and environmental performances. - Abstract: Nowadays society compels designers to develop more sustainable products. Ecodesign directs product design towards the goal of reducing environmental impacts. Within Ecodesign, materials selection plays a major role on product cost and environmental performance throughout its life cycle. This paper proposes a comprehensive life cycle framework to support Ecodesign in material selection. Dealing with new materials and technologies in early design stages, process-based models are used to represent the whole life cycle and supply integrated data to assess material alternatives, considering cost and environmental dimensions. An integrated analysis is then proposed to support decision making by mapping the best alternative materials according to the importance given to upstream and downstream life phases and to the environmental impacts. The proposed framework is applied to compare the life cycle performance of injection moulded samples made of four commercial biodegradable polymers with different contents of Thermo Plasticized Starch and PolyLactic Acid and a common fossil based polymer, Polypropylene. Instead of labelling materials just as “green”, the need to fully capture all impacts in the whole life cycle was shown. The fossil based polymer is the best economic alternative, but polymers with higher content of Thermo Plasticized Starch have a better environmental performance. However, parts geometry and EoL scenarios play a major role on the life cycle performance of candidate materials. The selection decision is then supported by mapping

  2. Biodegradable Magnetic Particles for Cellular MRI

    Science.gov (United States)

    Nkansah, Michael Kwasi

    Cell transplantation has the potential to treat numerous diseases and injuries. While magnetic particle-enabled, MRI-based cell tracking has proven useful for visualizing the location of cell transplants in vivo, current formulations of particles are either too weak to enable single cell detection or have non-degradable polymer matrices that preclude clinical translation. Furthermore, the off-label use of commercial agents like Feridex®, Bangs beads and ferumoxytol for cell tracking significantly stunts progress in the field, rendering it needlessly susceptible to market externalities. The recent phasing out of Feridex from the market, for example, heightens the need for a dedicated agent specifically designed for MRI-based cell tracking. To this end, we engineered clinically viable, biodegradable particles of iron oxide made using poly(lactide-co-glycolide) (PLGA) and demonstrated their utility in two MRI-based cell tracking paradigms in vivo. Both micro- and nanoparticles (2.1±1.1 μm and 105±37 nm in size) were highly magnetic (56.7-83.7 wt% magnetite), and possessed excellent relaxometry (r2* relaxivities as high as 614.1 s-1mM-1 and 659.1 s -1mM-1 at 4.7 T respectively). Magnetic PLGA micropartides enabled the in vivo monitoring of neural progenitor cell migration to the olfactory bulb in rat brains over 2 weeks at 11.7 T with ˜2-fold greater contrast-to-noise ratio and ˜4-fold better sensitivity at detecting migrated cells in the olfactory bulb than Bangs beads. Highly magnetic PLGA nanoparticles enabled MRI detection (at 11.7 T) of up to 10 rat mesenchymal cells transplanted into rat brain at 100-μm resolution. Highly magnetic PLGA particles were also shown to degrade by 80% in mice liver over 12 weeks in vivo. Moreover, no adverse effects were observed on cellular viability and function in vitro after labeling a wide range of cells. Magnetically labeled rat mesenchymal and neural stem cells retained their ability to differentiate into multiple

  3. Poly-γ-Glutamic Acid: Biodegradable Polymer for Potential Protection of Beneficial Viruses

    Directory of Open Access Journals (Sweden)

    Ibrahim R. Khalil

    2016-01-01

    Full Text Available Poly-γ-glutamic acid (γ-PGA is a naturally occurring polymer, which due to its biodegradable, non-toxic and non-immunogenic properties has been used successfully in the food, medical and wastewater industries. A major hurdle in bacteriophage application is the inability of phage to persist for extended periods in the environment due to their susceptibility to environmental factors such as temperature, sunlight, desiccation and irradiation. Thus, the aim of this study was to protect useful phage from the harmful effect of these environmental factors using the γ-PGA biodegradable polymer. In addition, the association between γ-PGA and phage was investigated. Formulated phage (with 1% γ-PGA and non-formulated phage were exposed to 50 °C. A clear difference was noticed as viability of non-formulated phage was reduced to 21% at log10 1.3 PFU/mL, while phage formulated with γ-PGA was 84% at log10 5.2 PFU/mL after 24 h of exposure. In addition, formulated phage remained viable at log10 2.5 PFU/mL even after 24 h of exposure at pH 3 solution. In contrast, non-formulated phages were totally inactivated after the same time of exposure. In addition, non-formulated phages when exposed to UV irradiation died within 10 min. In contrast also phages formulated with 1% γ-PGA had a viability of log10 4.1 PFU/mL at the same exposure time. Microscopy showed a clear interaction between γ-PGA and phages. In conclusion, the results suggest that γ-PGA has an unique protective effect on phage particles.

  4. Anaerobic biodegradation of soybean biodiesel and diesel blends under sulfate-reducing conditions.

    Science.gov (United States)

    Wu, Shuyun; Yassine, Mohamad H; Suidan, Makram T; Venosa, Albert D

    2016-10-01

    Biotransformation of soybean biodiesel and its biodiesel/petrodiesel blends were investigated under sulfate-reducing conditions. Three blends of biodiesel, B100, B50, and B0, were treated using microbial cultures pre-acclimated to B100 (biodiesel only) and B80 (80% biodiesel and 20% petrodiesel). Results indicate that the biodiesel could be effectively biodegraded in the presence or absence of petrodiesel, whereas petrodiesel could not be biodegraded at all under sulfate-reducing conditions. The kinetics of biodegradation of individual Fatty Acid Methyl Ester (FAME) compounds and their accompanying sulfate-reduction rates were studied using a serum bottle test. As for the biodegradation of individual FAME compounds, the biodegradation rates for the saturated FAMEs decreased with increasing carbon chain length. For unsaturated FAMEs, biodegradation rates increased with increasing number of double bonds. The presence of petrodiesel had a greater effect on the rate of biodegradation of biodiesel than on the extent of removal. PMID:27448319

  5. Cementation of biodegraded radioactive oils and organic waste

    International Nuclear Information System (INIS)

    The possibility of the microbiological pre-treatment of the oil-containing organic liquid radioactive waste (LRW) before solidification in the cement matrix has been studied. It is experimentally proved that the oil containing cement compounds during long-term storage are subject to microbiological degradation due to the reaction of biogenic organic acids with the minerals of the cement matrix. We recommend to biodegrade the LRW components before their solidification, which reduces the volume of LRW and prevent the destruction of the inorganic cement matrix during the long term storage. The biodegradation of the oil containing LRW is possible by using the radioresistant microflora which oxidize the organic components of the oil to carbon dioxide and water. Simultaneously there is the bio-sorption of the radionuclides by bacteria and emulsification of oil in cement slurry due to biogenic surface-active substances of glycolipid nature. It was experimentally established that after 7 days of biodegradation of oil-containing liquid radioactive waste the volume of LRW is reduced by the factor from 2 to 10 due to the biodegradation of the organic phase to the non-radioactive gases (CH4, H2O, CO2, N2), which are excluded from the volume of the liquid radioactive waste. At the same time, the microorganisms are able to extract from the LRW up to 80-90% of alpha-radionuclides, up to 50% of 90Sr, up to 20% of 137Cs due to sorption processes at the cellular structures. The radioactive biomass is subject to dehydration and solidification in the matrix. The report presents the following experimental data: type of bacterial flora, the parameters of biodegradation, the cementing parameters, the properties of the final cement compound with oil-containing liquid radioactive waste

  6. Quantifying RDX biodegradation in groundwater using δ15N isotope analysis

    Science.gov (United States)

    Bernstein, Anat; Adar, Eilon; Ronen, Zeev; Lowag, Harald; Stichler, Willibald; Meckenstock, Rainer U.

    2010-01-01

    Isotope analysis was used to examine the extent of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) biodegradation in groundwater along a ca. 1.35-km contamination plume. Biodegradation was proposed as a natural attenuating remediation method for the contaminated aquifer. By isotope analysis of RDX, the extent of biodegradation was found to reach up to 99.5% of the initial mass at a distance of 1.15-1.35 km down gradient from the contamination sources. A range of first-order biodegradation rates was calculated based on the degradation extents, with average half-life values ranging between 4.4 and 12.8 years for RDX biodegradation in the upper 15 m of the aquifer, assuming purely aerobic biodegradation, and between 10.9 and 31.2 years, assuming purely anaerobic biodegradation. Based on the geochemical data, an aerobic biodegradation pathway was suggested as the dominant attenuation process at the site. The calculated biodegradation rate was correlated with depth, showing decreasing degradation rates in deeper groundwater layers. Exceptionally low first-order kinetic constants were found in a borehole penetrating the bottom of the aquifer, with half life ranging between 85.0 to 161.5 years, assuming purely aerobic biodegradation, and between 207.5 and 394.3 years, assuming purely anaerobic biodegradation. The study showed that stable isotope fractionation analysis is a suitable tool to detect biodegradation of RDX in the environment. Our findings clearly indicated that RDX is naturally biodegraded in the contaminated aquifer. To the best of our knowledge, this is the first reported use of RDX isotope analysis to quantify its biodegradation in contaminated aquifers.

  7. Environmental protection

    International Nuclear Information System (INIS)

    In this chapter environmental protection in the Slovak Republic in 1997 are reviewed. The economics of environmental protection, state budget, Slovak state environmental fund, economic instruments, environmental laws, environmental impact assessment, environmental management systems, and environmental education are presented

  8. Biodegradation of free cyanide and subsequent utilisation of biodegradation by-products by Bacillus consortia: optimisation using response surface methodology.

    Science.gov (United States)

    Mekuto, Lukhanyo; Ntwampe, Seteno Karabo Obed; Jackson, Vanessa Angela

    2015-07-01

    A mesophilic alkali-tolerant bacterial consortium belonging to the Bacillus genus was evaluated for its ability to biodegrade high free cyanide (CN(-)) concentration (up to 500 mg CN(-)/L), subsequent to the oxidation of the formed ammonium and nitrates in a continuous bioreactor system solely supplemented with whey waste. Furthermore, an optimisation study for successful cyanide biodegradation by this consortium was evaluated in batch bioreactors (BBs) using response surface methodology (RSM). The input variables, that is, pH, temperature and whey-waste concentration, were optimised using a numerical optimisation technique where the optimum conditions were found to be as follows: pH 9.88, temperature 33.60 °C and whey-waste concentration of 14.27 g/L, under which 206.53 mg CN(-)/L in 96 h can be biodegraded by the microbial species from an initial cyanide concentration of 500 mg CN(-)/L. Furthermore, using the optimised data, cyanide biodegradation in a continuous mode was evaluated in a dual-stage packed-bed bioreactor (PBB) connected in series to a pneumatic bioreactor system (PBS) used for simultaneous nitrification, including aerobic denitrification. The whey-supported Bacillus sp. culture was not inhibited by the free cyanide concentration of up to 500 mg CN(-)/L, with an overall degradation efficiency of ≥ 99 % with subsequent nitrification and aerobic denitrification of the formed ammonium and nitrates over a period of 80 days. This is the first study to report free cyanide biodegradation at concentrations of up to 500 mg CN(-)/L in a continuous system using whey waste as a microbial feedstock. The results showed that the process has the potential for the bioremediation of cyanide-containing wastewaters. PMID:25721526

  9. Comprehensive GC²/MS for the monitoring of aromatic tar oil constituents during biodegradation in a historically contaminated soil.

    Science.gov (United States)

    Vasilieva, Viktoriya; Scherr, Kerstin E; Edelmann, Eva; Hasinger, Marion; Loibner, Andreas P

    2012-02-20

    The constituents of tar oil comprise a wide range of physico-chemically heterogeneous pollutants of environmental concern. Besides the sixteen polycyclic aromatic hydrocarbons defined as priority pollutants by the US-EPA (EPA-PAHs), a wide range of substituted (NSO-PAC) and alkylated (alkyl-PAC) aromatic tar oil compounds are gaining increased attention for their toxic, carcinogenic, mutagenic and/or teratogenic properties. Investigations on tar oil biodegradation in soil are in part hampered by the absence of an efficient analytical tool for the simultaneous analysis of this wide range of compounds with dissimilar analytical properties. Therefore, the present study sets out to explore the applicability of comprehensive two-dimensional gas chromatography (GC²/MS) for the simultaneous measurement of compounds with differing polarity or that are co-eluting in one-dimensional systems. Aerobic tar oil biodegradation in a historically contaminated soil was analyzed over 56 days in lab-scale bioslurry tests. Forty-three aromatic compounds were identified with GC²/MS in one single analysis. The number of alkyl chains on a molecule was found to prime over alkyl chain length in hampering compound biodegradation. In most cases, substitution of carbon with nitrogen and oxygen was related to increased compound degradation in comparison to unalkylated and sulphur- or unsubstituted PAH with a similar ring number.The obtained results indicate that GC²/MS can be employed for the rapid assessment of a large variety of structurally heterogeneous environmental contaminants. Its application can contribute to facilitate site assessment, development and control of microbial cleanup technologies for tar oil contaminated sites. PMID:21924301

  10. Environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Program on Environmental Science and Technology developed at the Chemical and Environmental Technology Center comprehends environmental chemistry (water, soil and atmospheric chemistry), clean technologies (desulfurization of diesel and oil, biodegradable polymers and structural modification of polymers, recycling, pyrolysis of dangerous chemicals by molten salt technology), nanotechnology (magnetic nanoparticles, dendrimers, nano biomarkers, catalysts) and chemical characterization of nuclear fuel and nuclear fuel cycle waste (chemical and isotopic characterization). The Chemical and Environmental Technology Center was established in 1995, as an evolution of the former Department of Chemistry Engineering (1970). The program on environment science and technology was structured as consequence of the continuous growth of environmental activities on areas related to nuclear programs of IPEN. Moreover, it was an answer to the society concerning the climate changes and biodiversity preservation. All activities of research and development, services, supervision of graduate and under graduated students and courses performance at the center were related to the development, improvement and establishment of new technologies. The highlights of this period (2011 - 2013) were: - Development and use of modern analytical technology for the characterization of persistent pollutants and endocrine disrupters (metals, PAHA’s, PCBs, Pesticides, hormones, surfactants, plasticizer and human pharmaceuticals) in order to evaluate water quality and/or sediments; - Atmospheric chemistry and greenhouse gases: Evaluating an estimation of surface trace gas fluxes from aircraft measurements above the Amazon; - Cooperation with SABESP (Water and Sewage Company) and CETESB (State Environment Agency) in program for the development of public policies; - Studies and development in biodegradable polymers, polyolefins and advanced methods for polymer and rubber recycling and re-use; - Studies

  11. Environmental science and technology

    International Nuclear Information System (INIS)

    The Program on Environmental Science and Technology developed at the Chemical and Environmental Technology Center comprehends environmental chemistry (water, soil and atmospheric chemistry), clean technologies (desulfurization of diesel and oil, biodegradable polymers and structural modification of polymers, recycling, pyrolysis of dangerous chemicals by molten salt technology), nanotechnology (magnetic nanoparticles, dendrimers, nano biomarkers, catalysts) and chemical characterization of nuclear fuel and nuclear fuel cycle waste (chemical and isotopic characterization). The Chemical and Environmental Technology Center was established in 1995, as an evolution of the former Department of Chemistry Engineering (1970). The program on environment science and technology was structured as consequence of the continuous growth of environmental activities on areas related to nuclear programs of IPEN. Moreover, it was an answer to the society concerning the climate changes and biodiversity preservation. All activities of research and development, services, supervision of graduate and under graduated students and courses performance at the center were related to the development, improvement and establishment of new technologies. The highlights of this period (2011 - 2013) were: - Development and use of modern analytical technology for the characterization of persistent pollutants and endocrine disrupters (metals, PAHA’s, PCBs, Pesticides, hormones, surfactants, plasticizer and human pharmaceuticals) in order to evaluate water quality and/or sediments; - Atmospheric chemistry and greenhouse gases: Evaluating an estimation of surface trace gas fluxes from aircraft measurements above the Amazon; - Cooperation with SABESP (Water and Sewage Company) and CETESB (State Environment Agency) in program for the development of public policies; - Studies and development in biodegradable polymers, polyolefins and advanced methods for polymer and rubber recycling and re-use; - Studies

  12. Polyhydroxyalkanoates: Much More than Biodegradable Plastics.

    Science.gov (United States)

    López, Nancy I; Pettinari, M Julia; Nikel, Pablo I; Méndez, Beatriz S

    2015-01-01

    Bacterial polyhydroxyalkanoates (PHAs) are isotactic polymers that play a critical role in central metabolism, as they act as dynamic reservoirs of carbon and reducing equivalents. These polymers have a number of technical applications since they exhibit thermoplastic and elastomeric properties, making them attractive as a replacement of oil-derived materials. PHAs are accumulated under conditions of nutritional imbalance (usually an excess of carbon source with respect to a limiting nutrient, such as nitrogen or phosphorus). The cycle of PHA synthesis and degradation has been recognized as an important physiological feature when these biochemical pathways were originally described, yet its role in bacterial processes as diverse as global regulation and cell survival is just starting to be appreciated in full. In the present revision, the complex regulation of PHA synthesis and degradation at the transcriptional, translational, and metabolic levels are explored by analyzing examples in natural producer bacteria, such as Pseudomonas species, as well as in recombinant Escherichia coli strains. The ecological role of PHAs, together with the interrelations with other polymers and extracellular substances, is also discussed, along with their importance in cell survival, resistance to several types of environmental stress, and planktonic-versus-biofilm lifestyle. Finally, bioremediation and plant growth promotion are presented as examples of environmental applications in which PHA accumulation has successfully been exploited. PMID:26505689

  13. Sixth annual coal preparation, utilization, and environmental control contractors conference

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    A conference was held on coal preparation, utilization and environmental control. Topics included: combustion of fuel slurries; combustor performance; desulfurization chemically and by biodegradation; coal cleaning; pollution control of sulfur oxides and nitrogen oxides; particulate control; and flue gas desulfurization. Individual projects are processed separately for the databases. (CBS).

  14. How UV photolysis accelerates the biodegradation and mineralization of sulfadiazine (SD).

    Science.gov (United States)

    Pan, Shihui; Yan, Ning; Liu, Xinyue; Wang, Wenbing; Zhang, Yongming; Liu, Rui; Rittmann, Bruce E

    2014-11-01

    Sulfadiazine (SD), one of broad-spectrum antibiotics, exhibits limited biodegradation in wastewater treatment due to its chemical structure, which requires initial mono-oxygenation reactions to initiate its biodegradation. Intimately coupling UV photolysis with biodegradation, realized with the internal loop photobiodegradation reactor, accelerated SD biodegradation and mineralization by 35 and 71 %, respectively. The main organic products from photolysis were 2-aminopyrimidine (2-AP), p-aminobenzenesulfonic acid (ABS), and aniline (An), and an SD-photolysis pathway could be identified using C, N, and S balances. Adding An or ABS (but not 2-AP) into the SD solution during biodegradation experiments (no UV photolysis) gave SD removal and mineralization rates similar to intimately coupled photolysis and biodegradation. An SD biodegradation pathway, based on a diverse set of the experimental results, explains how the mineralization of ABS and An (but not 2-AP) provided internal electron carriers that accelerated the initial mono-oxygenation reactions of SD biodegradation. Thus, multiple lines of evidence support that the mechanism by which intimately coupled photolysis and biodegradation accelerated SD removal and mineralization was through producing co-substrates whose oxidation produced electron equivalents that stimulated the initial mono-oxygenation reactions for SD biodegradation. PMID:25199943

  15. Biodegradation of chlorinated and non-chlorinated VOCs from pharmaceutical industries.

    Science.gov (United States)

    Balasubramanian, P; Philip, Ligy; Bhallamudi, S Murty

    2011-02-01

    Biodegradation studies were conducted for major organic solvents such as methanol, ethanol, isopropanol, acetone, acetonitrile, toluene, chloroform, and carbon tetrachloride commonly used in pharmaceutical industries. Various microbial isolates were enriched and screened for their biodegradation potential. An aerobic mixed culture that had been previously enriched for biodegradation of mixed pesticides was found to be the most effective. All the organic solvents except chloroform and carbon tetrachloride were consumed as primary substrates by this mixed culture. Biodegradation rates of methanol, ethanol, isopropanol, acetone, acetonitrile, and toluene were measured individually in batch systems. Haldane model was found to best fit the kinetics of biodegradation. Biokinetic parameters estimated from single-substrate experiments were utilized to simulate the kinetics of biodegradation of mixture of substrates. Among the various models available for simulating the kinetics of biodegradation of multi-substrate systems, competitive inhibition model performed the best. Performance of the models was evaluated statistically using the dimensionless modified coefficient of efficiency (E). This model was used for simulating the kinetics of biodegradation in binary, ternary, and quaternary substrate systems. This study also reports batch experiments on co-metabolic biodegradation of chloroform, with acetone and toluene as primary substrates. The Haldane model, modified for inhibition due to chloroform, could satisfactorily predict the biodegradation of primary substrate, chloroform, and the microbial growth. PMID:20799072

  16. Biodegradable polymers: emerging excipients for the pharmaceutical and medical device industries.

    Directory of Open Access Journals (Sweden)

    Bhavesh Patel

    2013-12-01

    Full Text Available Worldwide many researchers are exploring the potential use of biodegradable polymerics as carriers for a wide range of therapeutic applications. In the past two decades, considerable progress has been made in the development of biodegradable polymeric materials, mainly in the biomedical and pharmaceutical industries due to their versatility, biocompatibility and biodegradability properties. The present review focuses on the use of biodegradable polymers in various therapeutic areas like orthopedic and contraceptive device, surgical sutures, implants, depot parenteral injections, etc. Biodegradable polymers have also contributed significantly to the development of drug-eluting stents (DES used for the treatment of obstructive coronary artery disease, such as angioplasty. Biodegradable synthetic polymers have potential applications in orthopedic device fixation due to properties that impact bone healing, formation, regeneration or substitution in the human body. The present review also emphasizes areas such as the chemistry of polymer synthesis, factors affecting the biodegradation, methods for the production of biodegradable polymer based formulations, the application of biodegradable polymers in dental implants, nasal drug deliveries, contraceptive devices, immunology, gene, transdermal, ophthalmic and veterinary applications, as well as, the sterilization of biodegradable based formulations and regulatory considerations for product filing.

  17. Comparative study of toxicity of azo dye Procion Red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus.

    Science.gov (United States)

    Almeida, E J R; Corso, C R

    2014-10-01

    Azo dyes are an important class of environmental contaminants and are characterized by the presence of one or more azo bonds (-N=N-) in their molecular structure. Effluents containing these compounds resist many types of treatments due to their molecular complexity. Therefore, alternative treatments, such as biosorption and biodegradation, have been widely studied to solve the problems caused by these substances, such as their harmful effects on the environment and organisms. The aim of the present study was to evaluate biosorption and biodegradation of the azo dye Procion Red MX-5B in solutions with the filamentous fungi Aspergillus niger and Aspergillus terreus. Decolorization tests were performed, followed by acute toxicity tests using Lactuca sativa seeds and Artemia salina larvae. Thirty percent dye removal of the solutions was achieved after 3 h of biosorption. UV-Vis spectroscopy revealed that removal of the dye molecules occurred without major molecular changes. The acute toxicity tests confirmed lack of molecular degradation following biosorption with A. niger, as toxicity to L. sativa seed reduced from 5% to 0%. For A. salina larvae, the solutions were nontoxic before and after treatment. In the biodegradation study with the fungus A. terreus, UV-Vis and FTIR spectroscopy revealed molecular degradation and the formation of secondary metabolites, such as primary and secondary amines. The biodegradation of the dye molecules was evaluated after 24, 240 and 336 h of treatment. The fungal biomass demonstrated considerable affinity for Procion Red MX-5B, achieving approximately 100% decolorization of the solutions by the end of treatment. However, the solutions resulting from this treatment exhibited a significant increase in toxicity, inhibiting the growth of L. sativa seeds by 43% and leading to a 100% mortality rate among the A. salina larvae. Based on the present findings, biodegradation was effective in the decolorization of the samples, but generated

  18. Blendas PHB/copoliésteres biodegradáveis : biodegradação em solo Biodegradable PHB/copolyester blends : biodegradation in soil

    Directory of Open Access Journals (Sweden)

    Suzan A. Casarin

    2013-01-01

    Full Text Available Este trabalho apresenta os resultados do comportamento de blendas do polímero biodegradável PHB poli(hidroxibutirato com os copoliésteres também biodegradáveis EastarBio® e Ecoflex®, na composição de 75% de PHB e 25% dos copoliésteres, em contato com solo composto simulado. Foi também avaliada a influência da adição de pó de serra ou farinha de madeira, na proporção de 70% da blenda e 30% de pó de serra (p.d.s.. A biodegradação foi avaliada para amostras após 30, 60 e 90 dias em contato com solo, através de análises gravimétricas, morfológicas e mecânicas. A preparação inicial dos grânulos dos compostos poliméricos foi feita por extrusão, utilizando uma extrusora dupla-rosca e a moldagem dos corpos de prova foi realizada através da moldagem por injeção. Os materiais estudados biodegradam nas condições testadas. A blenda PHB/EastarBio® (75/25 + 30% p.d.s. apresentou maior redução de massa, 29% após 90 dias. Notou-se que a biodegradação se inicia pela superfície do material e que 90 dias são insuficientes para observar alterações internas.This paper reports on blends made with the biodegradable polymers poly(hydroxybutyrate (PHB and Eastar Bio® or Ecoflex® copolyesters, in contact with simulated compound soil. The blends had 75% of PHB and 25% of copolyesters. We also analyzed the influence from adding 30% of powder-wood or wood flour (WPC to 70% of the blend. Biodegradation was analyzed for samples after 30, 60 and 90 days in contact with soil, through thermogravimetric, morphological and mechanical analyses. The initial preparation of the granules of polymeric compounds was made by extrusion, using a twin-screw extruder and the molding of the specimens was performed by injection molding. The analysis indicated material biodegradation under the conditions tested. The PHB/Eastar Bio® blend (75/25 + 30% WPC exhibited the highest degradation with 29% of mass loss at the end of 90 days. Biodegradation

  19. Genetic engineering strategies for environmental applications.

    Science.gov (United States)

    de Lorenzo, V

    1992-06-01

    Environmental applications of genetically engineered microorganisms are currently hampered not only by legal regulations restricting their release, but also by the frequent dearth of adequate genetic tools for their construction in the laboratory. Recent approaches to strain development include the use of non-antibiotic markers as selection determinants, the use of transposon-vectors for the permanent acquisition of recombinant genes, and the utilization of expression devices based on promoters from promiscuous plasmids and biodegradative pathway genes. PMID:1369388

  20. Study on biodegradated ability of thirteen edible fungi to straw

    Institute of Scientific and Technical Information of China (English)

    SONGRui-qing; DENGXun

    2004-01-01

    The biodegradated abilities of 13 edible fungi to straw were studied. The results showed that all the experimental fungi except Tricholama mongolicum had definite biodegradated abilities to the lignin and cellulose of straw. The Ideal fungus for straw degradation was screened out as Pleurotus ostreatus, which showed a higher degradation ability for lignin (17.86%) and lower degradation rate for cellulose (2.24%), with a Selection Factor (SF) of 7.97. The degradation rates of lignin and cellulose for other fungi ranged from 2.30% to 16.54% and 5.60% to 17.32%, respectively, and the SF was very low in range of 0.14 to 2.24.The ratio of colony's diameters to the color-zone (d1/d2) and SF are negative correlation, with a correlation coefficient of -0.1476.

  1. Design considerations for developing biodegradable and bioabsorbable magnesium implants

    Science.gov (United States)

    Brar, Harpreet S.; Keselowsky, Benjamin G.; Sarntinoranont, Malisa; Manuel, Michele V.

    2011-04-01

    The integration of biodegradable and bioabsorbable magnesium implants into the human body is a complex undertaking that faces major challenges. Candidate biomaterials must meet both engineering and physiological requirements to ensure the desired properties. Historically, efforts have been focused on the behavior of commercial magnesium alloys in biological environments and their resultant effect on cell-mediated processes. Developing causal relationships between alloy chemistry and microstructure, and effects as a cellular behavior can be a difficult and time-intensive process. A systems design approach has the power to provide significant contributions in the development of the next generation of magnesium alloy implants with controlled degradability, biocompatibility, and optimized mechanical properties, at reduced time and cost. This approach couples experimental research with theory and mechanistic modeling for the accelerated development of materials. The aim of this article is to enumerate this strategy, design considerations, and hurdles for developing new cast magnesium alloys for use as biodegradable implant materials.

  2. Factors influencing crude oil biodegradation by Yarrowia lipolytica

    Directory of Open Access Journals (Sweden)

    Tatiana Felix Ferreira

    2012-10-01

    Full Text Available Yarrowia lipolytica is unique strictly aerobic yeast with the ability to efficiently degrade hydrophobic substrates such as n-alkenes, fatty acids, glycerol and oils. In the present work, a 2(4 full factorial design was used to investigate the influence of the independent variables of temperature, agitation, initial cell concentration and initial petroleum concentration on crude oil biodegradation. The results showed that all variables studied had significant effects on the biodegradation process. Temperature, agitation speed and initial cell concentration had positive effects, and initial petroleum concentration had a negative effect. Among the crude oil removal conditions studied, the best temperature and agitation conditions were 28ºC and 250 rpm, respectively.

  3. Biodegradable polymeric microcarriers with controllable porous structure for tissue engineering.

    Science.gov (United States)

    Shi, Xudong; Sun, Lei; Jiang, Jian; Zhang, Xiaolin; Ding, Wenjun; Gan, Zhihua

    2009-12-01

    Porous microspheres fabricated by biodegradable polymers show great potential as microcarriers for cell cultivation in tissue engineering. Herein biodegradable poly(DL-lactide) (PLA) was used to fabricate porous microspheres through a modified double emulsion solvent evaporation method. The influence of fabrication parameters, such as the stirring speed of the primary and secondary emulsion, the polymer concentration of the oil phase, and solvent type, as well as the post-hydrolysis treatment of the porous structure of the PLA microspheres are discussed. Good attachment and an active spread of MG-63 cells on the microspheres is observed, which indicates that the PLA microspheres with controllable porous structure are of great potential as cell delivery carriers for tissue engineering. PMID:19821453

  4. Naphthalene biodegradation kinetics in an aerobic slurry-phase bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Collina, E.; Bestetti, G.; Di Gennaro, P.; Franzetti, A.; Gugliersi, F.; Lasagni, M.; Pitea, D. [Milano-Bicocca Univ. (Italy). Dip. Scienze dell' Ambiente e del Territorio

    2005-02-01

    The research was focused on the slurry-phase biodegradation of naphthalene in soil. Among ex situ techniques, the slurry phase offers the advantage of increased availability of contaminants to bacteria. From naphthalene contaminated soil, a Pseudomonas putida M8 strain capable to degrade naphthalene was selected. Experiments were performed in a stirred and oxygenated reactor. In this study, the influence of air flow rate and agitation rate on volatilisation and biodegradation of naphthalene was investigated. The hydrocarbon disappearance, the carbon dioxide production, and the ratio of total heterotrophic and naphthalene-degrading bacteria was monitored. The results obtained confirm that the selected bioremediation technology is successful in the treatment of contaminated soils. (author)

  5. Biodegradability and ecotoxicity of commercially available geothermal heat transfer fluids

    Science.gov (United States)

    Schmidt, Kathrin R.; Körner, Birgit; Sacher, Frank; Conrad, Rachel; Hollert, Henner; Tiehm, Andreas

    2016-03-01

    Commercially available heat transfer fluids used in borehole heat exchangers were investigated for their composition, their biodegradability as well as their ecotoxicity. The main components of the fluids are organic compounds (often glycols) for freezing protection. Biodegradation of the fluids in laboratory studies caused high oxygen depletion as well as nitrate/iron(III) reduction under anaerobic conditions. Additives such as benzotriazoles for corrosion protection were persistent. Ecotoxicity data show that the commercially available fluids caused much higher ecotoxicity than their main organic constituents. Consequently, with regard to groundwater protection pure water as heat transfer medium is recommended. The second best choice is the usage of glycols without any additives. Effects on groundwater quality should be considered during ecological-economical cost-benefit-analyses of further geothermal energy strategies. The protection of groundwater as the most important drinking water resource must take priority over the energy gain from aquifers.

  6. Biodegradability of leachates from Chinese and German municipal solid waste

    Institute of Scientific and Technical Information of China (English)

    SELIC E.; WANG Chi; BOES N., HERBELL J.D.

    2007-01-01

    The quantitative and qualitative composition of Chinese municipal solid waste (MSW) differs significantly from German waste. The focus of this paper is on whether these differences also lead to dissimilar qualities of leachates during storage or landfilling. Leachates ingredients determine the appropriate treatment technique. MSW compositions of the two cities Guilin (China) and Essen (Germany), each with approx. 600000 inhabitants, are used to simulate Chinese and German MSW types. A sequencing batch reactor (SBR) is used, combining aerobic and anaerobic reaction principles, to test the biodegradability of leachates. Leachates are tested for temperature, pH-value, redox potentials, and oxygen concentration. Chemical oxygen demand (COD) values are determined. Within 8 h, the biodegradation rates for both kinds of leachates are more than 90%. Due to the high organic content of Chinese waste, the degradation rate for Guilin MSW leachate is even higher, up to 97%. The effluent from SBR technique is suitable for direct discharge into bodies of water.

  7. Spatial disorder and degradation kinetics in intrinsic biodegradation schemes

    Energy Technology Data Exchange (ETDEWEB)

    LaViolette, R.A.; Stoner, D.L. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States); Watwood, M.E. [Idaho State Univ., Pocatello, ID (United States). Dept. of Biological Sciences; Ginn, T.R. [Univ. of California, Davis, CA (United States). Dept. of Civil and Environmental Engineering

    1999-06-10

    The restoration of contaminated soils by intrinsic biodegradation employs microorganisms in the subsurface that degrade the contaminant substrate infiltrating the subsurface matrix. The outcome of intrinsic biodegradation has been difficult to predict. The authors examine a source of the difficulty with a computational model of diffusive-reactive transport that introduces spatial disorder in the arrangement of the degrading microorganisms. Spatial disorder alone, even on the small scales that characterize the distance between aggregates of microorganisms, is enough to induce a wide range of times to complete the degradation to an arbitrary limit. The mean time for the concentration to achieve the limit becomes twice that for the case of spatial order. Bounds on the range of the effective degradation kinetics can be obtained by computing the distribution of times to complete degradation.

  8. Biodegradation and recycling potential of barrier coated paperboards

    Directory of Open Access Journals (Sweden)

    Nazhad, M.

    2007-05-01

    Full Text Available Four commercial barrier coated boards (i.e., internally-sized uncoated board, one-side polyethylene coated board, double-side polyethylene coated board, and multilayer laminated board were examined for biodegradation using a soil burial approach on a laboratory scale. It was observed that the base-boards were fully biodegradable in a matter of weeks or months, and the degradation process could be accelerated either by sample size modification or enrichment of the soil microbial population. Freezing pretreatment of boards or the fiber directionality of boards had no influence on the rate of degradation. The boards were also found to be recyclable following a simple procedure of re-slushing and screening. The base-boards became almost fully separated from the polyethylene coated material without any special pretreatment.

  9. Biodegradable resistive switching memory based on magnesium difluoride.

    Science.gov (United States)

    Zhang, Zhiping; Tsang, Melissa; Chen, I-Wei

    2016-08-11

    This study presents a new type of resistive switching memory device that can be used in biodegradable electronic applications. The biodegradable device features magnesium difluoride as the active layer and iron and magnesium as the corresponding electrodes. This is the first report on magnesium difluoride as a resistive switching layer. With on-off ratios larger than one hundred, the device on silicon switches at voltages less than one volt and requires only sub-mA programming current. AC endurance of 10(3) cycles is demonstrated with ±1 V voltage pulses. The switching mechanism is attributed to the formation and rupture of conductive filaments comprising fluoride vacancies in magnesium difluoride. Devices fabricated on a flexible polyethylene terephthalate substrate are tested for functionality, and degradation is subsequently demonstrated in de-ionized water. An additional layer of magnesium difluoride is used to hinder the degradation and extend the lifetime of the device. PMID:27476796

  10. Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria.

    Science.gov (United States)

    Nikodinovic-Runic, Jasmina; Guzik, Maciej; Kenny, Shane T; Babu, Ramesh; Werker, Alan; O Connor, Kevin E

    2013-01-01

    Research into the production of biodegradable polymers has been driven by vision for the most part from changes in policy, in Europe and America. These policies have their origins in the Brundtland Report of 1987, which provides a platform for a more sustainable society. Biodegradable polymers are part of the emerging portfolio of renewable raw materials seeking to deliver environmental, social, and economic benefits. Polyhydroxyalkanoates (PHAs) are naturally-occurring biodegradable-polyesters accumulated by bacteria usually in response to inorganic nutrient limitation in the presence of excess carbon. Most of the early research into PHA accumulation and technology development for industrial-scale production was undertaken using virgin starting materials. For example, polyhydroxybutyrate and copolymers such as polyhydroxybutyrate-co-valerate are produced today at industrial scale from corn-derived glucose. However, in recent years, research has been undertaken to convert domestic and industrial wastes to PHA. These wastes in today's context are residuals seen by a growing body of stakeholders as platform resources for a biobased society. In the present review, we consider residuals from food, plastic, forest and lignocellulosic, and biodiesel manufacturing (glycerol). Thus, this review seeks to gain perspective of opportunities from literature reporting the production of PHA from carbon-rich residuals as feedstocks. A discussion on approaches and context for PHA production with reference to pure- and mixed-culture technologies is provided. Literature reports advocate results of the promise of waste conversion to PHA. However, the vast majority of studies on waste to PHA is at laboratory scale. The questions of surmounting the technical and political hurdles to industrialization are generally left unanswered. There are a limited number of studies that have progressed into fermentors and a dearth of pilot-scale demonstration. A number of fermentation studies show

  11. ENDOCRINE DISUPTIVE CHEMICALS: MECHANISMS OF WHITE ROT FUNGI BIODEGRADATION

    Czech Academy of Sciences Publication Activity Database

    Cajthaml, Tomáš; Křesinová, Zdena; Čvančarová, Monika; Maternová, H.; Filipová, A.

    Praha : Vodní zdroje Ekomonitor, 2013, s. 176-181. ISBN 978-80-86832-73-9. [Inovativní sanační technologie ve výzkumu a praxi /6./. Praha (CZ), 16.10.2013-17.10.2013] R&D Projects: GA TA ČR TA01020804 Institutional support: RVO:61388971 Keywords : biodegradation Subject RIV: EE - Microbiology, Virology

  12. Long-term release of clodronate from biodegradable microspheres

    OpenAIRE

    Perugini, Paola; Genta, Ida; Conti, Bice; Modena, Tiziana; Pavanetto, Franca

    2001-01-01

    This paper describes the formulation of a biodegradable microparticulate drug delivery system containing clodronate, a bisphosphonate intended for the treatment of bone diseases. Microspheres were prepared with several poly(D,L-lactide-co-glycolide) (PLGA) copolymers of various molecular weights and molar compositions and 1 poly(D,L-lactide) (PDLLA) homopolymer by a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation procedure. Critical process parameters and formulation variabl...

  13. Analysis of methane biodegradation by Methylosinus trichosporium OB3b

    OpenAIRE

    Rodrigues, Andréa dos Santos; Salgado, Belkis Valdman e Andréa Medeiros

    2009-01-01

    The microbial oxidation of methane in the atmosphere is performed by methanotrophic bacteria that use methane as a unique source of carbon and energy. The objective of this work consisted of the investigation of the best conditions of methane biodegradation by methanotrophic bacteria Methylosinus trichosporium OB3b that oxidize it to carbon dioxide, and the use of these microorganisms in monitoring methods for methane. The results showed that M. trichosporium OB3b was capable to degrade metha...

  14. Preparation and performance of Ecobras/bentonite biodegrading films

    International Nuclear Information System (INIS)

    Compounds based on the biodegradable polymer Ecobras and bentonite clay in its pristine, sonicated, and organically modified with a quaternary ammonium salt forms were prepared as flat films. Clays and compounds were characterized by x-ray diffraction and scanning electron microscopy. Mechanical properties of the films were determined according to pertinent ASTM standards. Reasonable properties, higher than those of the matrix, were obtained with compounds prepared with purified clays and organoclays, particularly for low clay loading. (author)

  15. MODIFICACION ESTRUCTURAL DEL POLIETILENTEREFTALATO. SINTESIS DE POLIMEROS BIODEGRADABLES

    OpenAIRE

    PERALES CASTRO, MAGDA ELVA

    2013-01-01

    Polyethylene terephthalate (PET) is a very important polymer, but this kind of synthetic polymer is resistant to biological degradation, so it is necessary to add to its polymeric matrix another material that provides such characteristic. An interesting biodegradable polymer is poly(lactide acid) (PLA), which made primarily from renewable agricultural resources. Extrusion is widely used for processing thermoplastic polymer, and studies indicate that, under the high-shear and high-temperat...

  16. Obtaining nanofibers from sisal to reinforce nanocomposites biodegradable matrixes

    International Nuclear Information System (INIS)

    Cellulose nanofibers have been extracted by acid hydrolysis from sisal fibers. They are seen a good source material due to availability and low cost. The nanofibers was evaluated by thermal degradation behavior using thermogravimetry (TG), crystallinity by X-ray diffraction and morphological structure was investigated by atomic force microscopy (AFM) experiments. The resulting nanofibers was shown high crystallinity and a network of rodlike cellulose elements. The nanofibers will be incorporated as reinforcement in a biodegradable matrix and evaluated. (author)

  17. Biodegradable copolymers carrying cell-adhesion peptide sequences

    Czech Academy of Sciences Publication Activity Database

    Proks, Vladimír; Machová, Luďka; Popelka, Štěpán; Rypáček, František

    New York : Kluwer Academic/Plenum Publ., 2003 - (Elcin, Y.), s. 191-199 ISSN 0065-2598. - (Advances in Experimental Medicine and Biology.. 534). [International Symposium on Biomedical Science and Technology /9./. Antalya (TR), 19.09.2002-22.09.2002] R&D Projects: GA AV ČR IAA4050202; GA MŠk LN00A065 Institutional research plan: CEZ:AV0Z4050913 Keywords : biodegradable polymers Subject RIV: CD - Macromolecular Chemistry

  18. Biodegradation of polystyrene, poly(metnyl methacrylate), and phenol formaldehyde.

    Science.gov (United States)

    Kaplan, D L; Hartenstein, R; Sutter, J

    1979-01-01

    The biodegradation of three synthetic 14C-labeled polymers, poly(methyl methacrylate), phenol formaldehyde, and polystyrene, was studied with 17 species of fungi in axenic cultures, five groups of soil invertebrates, and a variety of mixed microbial communities including sludges, soils, manures, garbages, and decaying plastics. Extremely low decomposition rates were found. The addition of cellulose and mineral failed to increase decomposition rates significantly. PMID:533278

  19. Biodegradable Polycaprolactone-Titania Nanocomposites: Preparation, Characterization and Antimicrobial Properties

    OpenAIRE

    Alexandra Muñoz-Bonilla; Cerrada, María L.; Marta Fernández-García; Anna Kubacka; Manuel Ferrer; Marcos Fernández-García

    2013-01-01

    Nanocomposites obtained from the incorporation of synthesized TiO2 nanoparticles (≈10 nm average primary particle size) in different amounts, ranging from 0.5 to 5 wt.%, into a biodegradable polycaprolactone matrix are achieved via a straightforward and commercial melting processing. The resulting nanocomposites have been structurally and thermally characterized by transmission electron microscopy (TEM), wide/small angle X-ray diffraction (WAXS/SAXS, respectively) and differential scanning ca...

  20. Insights on the biodegradation of acrylic reline resins

    OpenAIRE

    Neves, Maria Cristina Bettencourt, 1976-

    2012-01-01

    Acrylic reline resins are extensively used in dentistry, since they readapt dentures to the continuous reabsorbed underlying tissues. Since present in the oral cavity for long periods of time, these materials are objective of the biodegradation phenomena, which represents the change on their chemical, physical and mechanical properties due to the oral environment conditions and its constituents. These processes may permanently alter the properties of the material and compromise its function. ...

  1. Trichloroethylene Biodegradation by a Methane-Oxidizing Bacterium

    OpenAIRE

    Little, C. Deane; Palumbo, Anthony V; Herbes, Stephen E.; Lidstrom, Mary E.; Tyndall, Richard L.; Gilmer, Penny J.

    1988-01-01

    Trichloroethylene (TCE), a common groundwater contaminant, is a suspected carcinogen that is highly resistant to aerobic biodegradation. An aerobic, methane-oxidizing bacterium was isolated that degrades TCE in pure culture at concentrations commonly observed in contaminated groundwater. Strain 46-1, a type I methanotrophic bacterium, degraded TCE if grown on methane or methanol, producing CO2 and water-soluble products. Gas chromatography and 14C radiotracer techniques were used to determine...

  2. Properties of biodegradable PCL/B-starch composites

    Czech Academy of Sciences Publication Activity Database

    Kruliš, Zdeněk; Kovářová, Jana; Kotek, Jiří; Růžek, L.; Šárka, E.

    Praha : Ústav makromolekulární chemie AV ČR, v. v. i., 2010. s. 118-120. ISBN 978-80-85009-64-4. [Česko-slovenská konference POLYMERY 2010 /6./. 04.10.2010-07.10.2010, Liblice] R&D Projects: GA ČR GA525/09/0607 Institutional research plan: CEZ:AV0Z40500505 Keywords : biodegradable * PCL/B- starch composites Subject RIV: JI - Composite Materials

  3. Biodegradable polymeric materials based on B-starch

    Czech Academy of Sciences Publication Activity Database

    Ponyrko, Sergii; Kruliš, Zdeněk; Kotek, Jiří

    Halle (Saale) : Martin Luther University Halle-Wittenberg, 2010 - (Radusch, H.; Fiedler, L.). s. 91 ISBN 978-3-86829-282-4. [International Scientific Conference on Polymeric Materials /14./. 15.09.2010-17.09.2010, Halle (Saale)] R&D Projects: GA ČR GA525/09/0607 Institutional research plan: CEZ:AV0Z40500505 Keywords : starch -derived polymers * biodegradability * B- starch Subject RIV: GM - Food Processing

  4. Biodegradation studies of oil sludge containing high hydrocarbons concentration

    Energy Technology Data Exchange (ETDEWEB)

    Olguin-Lora, P.; Munoz-Colunga, A.; Castorena-Cortes, G.; Roldan-Carrillo, T.; Quej Ake, L.; Reyes-Avila, J.; Zapata-Penasco, I.; Marin-Cruz, J.

    2009-07-01

    Oil industry has a significant impact on environment due to the emission of, dust, gases, waste water and solids generated during oil production all the way to basic petrochemical product manufacturing stages. the aim of this work was to evaluate the biodegradation of sludge containing high hydrocarbon concentration originated by a petroleum facility. A sludge sampling was done at the oil residuals pool (ORP) on a gas processing center. (Author)

  5. Biodegradation studies of oil sludge containing high hydrocarbons concentration

    International Nuclear Information System (INIS)

    Oil industry has a significant impact on environment due to the emission of, dust, gases, waste water and solids generated during oil production all the way to basic petrochemical product manufacturing stages. the aim of this work was to evaluate the biodegradation of sludge containing high hydrocarbon concentration originated by a petroleum facility. A sludge sampling was done at the oil residuals pool (ORP) on a gas processing center. (Author)

  6. Synthesis and Characterization of Biodegradable Polyurethane for Hypopharyngeal Tissue Engineering

    OpenAIRE

    Shen, Zhisen; Lu, Dakai; Li, Qun; Zhang, Zongyong; Zhu, Yabin

    2015-01-01

    Biodegradable crosslinked polyurethane (cPU) was synthesized using polyethylene glycol (PEG), L-lactide (L-LA), and hexamethylene diisocyanate (HDI), with iron acetylacetonate (Fe(acac)3) as the catalyst and PEG as the extender. Chemical components of the obtained polymers were characterized by FTIR spectroscopy, 1H NMR spectra, and Gel Permeation Chromatography (GPC). The thermodynamic properties, mechanical behaviors, surface hydrophilicity, degradability, and cytotoxicity were tested via d...

  7. Anaerobic Biodegradation of Ethylene Glycol within Hydraulic Fracturing Fluid

    Science.gov (United States)

    Heyob, K. M.; Mouser, P. J.

    2014-12-01

    Ethylene glycol (EG) is a commonly used organic additive in hydraulic fracturing fluids used for shale gas recovery. Under aerobic conditions, this compound readily biodegrades to acetate and CO2 or is oxidized through the glycerate pathway. In the absence of oxygen, organisms within genera Desulfovibrio, Acetobacterium, and others can transform EG to acetaldehyde, a flammable and suspected carcinogenic compound. Acetaldehyde can then be enzymatically degraded to ethanol or acetate and CO2. However, little is known on how EG degrades in the presence of other organic additives, particularly under anaerobic conditions representative of deep groundwater aquifers. To better understand the fate and attenuation of glycols within hydraulic fracturing fluids we are assessing their biodegradation potential and pathways in batch anaerobic microcosm treatments. Crushed Berea sandstone was inoculated with groundwater and incubated with either EG or a synthetic fracturing fluid (SFF) containing EG formulations. We tracked changes in dissolved organic carbon (DOC), EG, and its transformation products over several months. Approximately 41% of bulk DOC in SFF is degraded within 21 days, with 58% DOC still remaining after 63 days. By comparison, this same SFF degrades by 70% within 25 days when inoculated with sediment-groundwater microbial communities, suggesting that bulk DOC degradation occurs at a slower rate and to a lesser extent with bedrock. Aerobic biodegradation of EG occurs rapidly (3-7 days); however anaerobic degradation of EG is much slower, requiring several weeks for substantial DOC loss to be observed. Ongoing experiments are tracking the degradation pathways of EG alone and in the presence of SFF, with preliminary data showing incomplete glycol transformation within the complex hydraulic fracturing fluid mixture. This research will help to elucidate rates, processes, and pathways for EG biodegradation and identify key microbial taxa involved in its degradation.

  8. Biodegradable polymer gadolinium contrast agents for magnetic resonance imaging

    Czech Academy of Sciences Publication Activity Database

    Braunová, Alena; Kříž, Jaroslav; Pechar, Michal; Šubr, Vladimír; Ulbrich, Karel

    Egmond aan Zee : University of Twente, 2012 - (Engbersen, J.), s. 72-73 [European Symposium on Controlled Drug Delivery /12./. Egmond aan Zee (NL), 04.04.2012-06.04.2012] R&D Projects: GA AV ČR IAAX00500803 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : biodegradable polymer carrier * polyethylene glycol * PEG Subject RIV: CD - Macromolecular Chemistry

  9. Biodegradation testing of solidified low-level waste streams

    International Nuclear Information System (INIS)

    The NRC Technical Position on Waste Form (TP) specifies that waste should be resistant to biodegradation. The methods recommended in the TP for testing resistance to fungi, ASTM G21, and for testing resistance to bacteria, ASTM G22, were carried out on several types of solidified simulated wastes, and the effect of microbial activity on the mechanical strength of the materials tested was examined. The tests are believed to be sufficient for distinguishing between materials that are susceptible to biodegradation and those that are not. It is concluded that failure of these tests should not be regarded of itself as an indication that the waste form will biodegrade to an extent that the form does not meet the stability requirements of 10 CFR Part 61. In the case of failure of ASTM G21 or ASTM G22 or both, it is recommended that additional data be supplied by the waste generator to demonstrate the resistance of the waste form to microbial degradation. To produce a data base on the applicability of the biodegradation tests, the following simulated laboratory-scale waste forms were prepared and tested: boric acid and sodium sulfate evaporator bottoms, mixed-bed bead resins and powdered resins each solidified in asphalt, cement, and vinyl ester-styrene. Cement solidified wastes supported neither fungal nor bacterial growth. Of the asphalt solidified wastes, only the forms of boric acid evaporator bottoms did not support fungal growth. Bacteria grew on all of the asphalt solidified wastes. Cleaning the surface of these waste forms did not affect bacterial growth and had a limited effect on the fungal growth. Only vinyl esterstyrene solidified sodium sulfate evaporator bottoms showed viable fungi cultures, but surface cleaning with solvents eliminated fungal growth in subsequent testing. Some forms of all the waste streams solidified in vinyl ester-styrene showed viable bacteria cultures. 13 refs., 12 tabs

  10. Complex resistivity signatures of ethanol biodegradation in porous media

    Science.gov (United States)

    Personna, Yves Robert; Slater, Lee; Ntarlagiannis, Dimitrios; Werkema, Dale; Szabo, Zoltan

    2013-01-01

    Numerous adverse effects are associated with the accidental release of ethanol (EtOH) and its persistence in the subsurface. Geophysical techniques may permit non-invasive, real time monitoring of microbial degradation of hydrocarbon. We performed complex resistivity (CR) measurements in conjunction with geochemical data analysis on three microbial-stimulated and two control columns to investigate changes in electrical properties during EtOH biodegradation processes in porous media. A Debye Decomposition approach was applied to determine the chargeability (m), normalized chargeability (mn) and time constant (τ) of the polarization magnitude and relaxation length scale as a function of time. The CR responses showed a clear distinction between the bioaugmented and control columns in terms of real (σ′) and imaginary (σ″) conductivity, phase (ϕ) and apparent formation factor (Fapp). Unlike the control columns, a substantial decrease in σ′ and increase in Fapp occurred at an early time (within 4 days) of the experiment for all three bioaugmented columns. The observed decrease in σ′ is opposite to previous studies on hydrocarbon biodegradation. These columns also exhibited increases in ϕ (up to ~ 9 mrad) and σ″ (up to two order of magnitude higher) 5 weeks after microbial inoculation. Variations in m and mn were consistent with temporal changes in ϕ and σ″ responses, respectively. Temporal geochemical changes and high resolution scanning electron microscopy imaging corroborated the CR findings, thus indicating the sensitivity of CR measurements to EtOH biodegradation processes. Our results offer insight into the potential application of CR measurements for long-term monitoring of biogeochemical and mineralogical changes during intrinsic and induced EtOH biodegradation in the subsurface.

  11. Biodegradable porous silicon barcode nanowires with defined geometry

    OpenAIRE

    Chiappini, Ciro; Liu, Xuewu; Fakhoury, Jean Raymond; Ferrari, Mauro

    2010-01-01

    Silicon nanowires are of proven importance in diverse fields such as energy production and storage, flexible electronics, and biomedicine due to the unique characteristics emerging from their one-dimensional semiconducting nature and their mechanical properties. Here we report the synthesis of biodegradable porous silicon barcode nanowires by metal assisted electroless etch of single crystal silicon with resistivity ranging from 0.0008 Ω-cm to 10 Ω-cm. We define the geometry of the barcode na...

  12. Application of wheat B-starch in biodegradable plastic materials

    Czech Academy of Sciences Publication Activity Database

    Šárka, E.; Kruliš, Zdeněk; Kotek, Jiří; Růžek, L.; Korbářová, A.; Bubník, Z.; Růžková, M.

    2011-01-01

    Roč. 29, č. 3 (2011), s. 232-242. ISSN 1212-1800 R&D Projects: GA ČR GA525/09/0607 Institutional research plan: CEZ:AV0Z40500505 Keywords : biodegradable plastic * polycaprolactone * B-starch Subject RIV: JI - Composite Materials Impact factor: 0.522, year: 2011 http://www.agriculturejournals.cz/publicFiles/39918.pdf

  13. The characterization of novel biodegradable blends based on polyhydroxybutyrate

    OpenAIRE

    Pankova, Yulia; Shchegolikhin, Alexandr; lordanskii, Alexey; Zhulkina, Anna; Ol'khov, Anatoliy; Zaikov, Gennady

    2011-01-01

    The present paper focuses on the study of novel blends based on poly(3-hydroxybutyrate) (PHB) and polymers with different hydrophilicity (LDPE and PA). Polymer blends were produced from five ratios of PHB/LDPE in order to regulate the resistance to hydrolysis or (bio)degradation through the control of water permeability. The relation between the water transport and morphology (TEM data) shows the impact of polymer component ratio on the regulating water flux in a hydrophobic matrix. To elucid...

  14. Biodegradable Xylitol-Based Elastomers: In Vivo Behavior and Biocompatibility

    OpenAIRE

    Bruggeman, Joost; Bettinger, Christopher; Langer, Robert

    2010-01-01

    textabstractBiodegradable elastomers based on polycondensation reactions of xylitol with sebacic acid, referred to as poly(xylitol sebacate) (PXS) elastomers have recently been developed. We describe the in vivo behavior of PXS elastomers. Four PXS elastomers were synthesized, characterized, and compared with poly(L-lactic-co-glycolic acid) (PLGA). PXS elastomers displayed a high level of structural integrity and form stability during degradation. The in vivo half-life ranged from approximate...

  15. The Aerobic Biodegradation Kinetics of Plant Tannins in Industrial Wastewater

    OpenAIRE

    Tramšek, Marko; Goršek, Andreja; Glavič, Peter

    2006-01-01

    This paper describes an experimental determination of the biodegradation rate for tannins present in industrial wastewater, after the extraction of chestnut chips. Experiments were performed in a laboratory aerobic reactor (Armfield) by using biomass from an existing industrial wastewater treatment plant. The outlet tannins concentration was determined under various processing conditions. Simultaneously, an optical microscope was used to monitor the mix of microbiological cultures in the biom...

  16. Protein-Reactive, Thermoresponsive Copolymers with High Flexibility and Biodegradability

    OpenAIRE

    Guan, Jianjun; Hong, Yi; Ma, Zuwei; Wagner, William R.

    2008-01-01

    A family of injectable, biodegradable, and thermosensitive copolymers based on N-isopropylacrylamide, acrylic acid, N-acryloxysuccinimide, and a macromer polylactide–hydroxyethyl methacrylate were synthesized by free radical polymerization. Copolymers were injectable at or below room temperature and formed robust hydrogels at 37 °C. The effects of monomer ratio, polylactide length, and AAc content on the chemical and physical properties of the hydrogel were investigated. Copolymers exhibited ...

  17. Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium.

    OpenAIRE

    Cripps, C.; Bumpus, J A; Aust, S D

    1990-01-01

    Biodegradation of Orange II, Tropaeolin O, Congo Red, and Azure B in cultures of the white rot fungus, Phanerochaete chrysosporium, was demonstrated by decolarization of the culture medium, the extent of which was determined by monitoring the decrease in absorbance at or near the wavelength maximum for each dye. Metabolite formation was also monitored. Decolorization of these dyes was most extensive in ligninolytic cultures, but substantial decolorization also occurred in nonligninolytic cult...

  18. FUNGAL BIODEGRADATION OF POLYVINYL ALCOHOL IN SOIL AND COMPOST ENVIRONMENTS

    OpenAIRE

    Mollasalehi, Somayeh

    2013-01-01

    For over 50 years, synthetic petrochemical-based plastics have been produced in ever growing volumes globally and since their first commercial introduction; they have been continually developed with regards to quality, colour, durability, and resistance. With some exceptions, such as polyurethanes, most plastics are very stable and are not readily degraded when they enter the ground as waste, taking decades to biodegrade and therefore are major pollutants of terrestrial and marine ecosystems....

  19. Clay-biodegradable polymer combination for pollutant removal from water

    OpenAIRE

    M. F. Mohd Amin; S. G. J. Heijman; L. C. Rietveld

    2015-01-01

    In this study, a new treatment alternative is investigated to remove micropollutants from wastewater effectively and in a more cost-effective way. A potential solution is the use of clay in combination with biodegradable polymeric flocculants. Flocculation is viewed as the best method to get the optimum outcome from the combination of clay with starch. Clay is naturally abundantly available and relatively inexpensive compared to the conven...

  20. Biodegradable nanocomposite coatings accelerate bone healing: In vivo evaluation

    OpenAIRE

    Mehdi Mehdikhani-Nahrkhalaji; Mohammad Hossein Fathi; Vajihesadat Mortazavi; Sayed Behrouz Mousavi; Ali Akhavan; Abbas Haghighat; Batool Hashemi-Beni; Sayed Mohammad Razavi; Fatemeh Mashhadiabbas

    2015-01-01

    Background: The aim of this study was to evaluate the interaction of bioactive and biodegradable poly (lactide-co-glycolide)/bioactive glass/hydroxyapatite (PBGHA) and poly (lactide-co-glycolide)/bioactive glass (PBG) nanocomposite coatings with bone. Materials and Methods: Sol-gel derived 58S bioactive glass nanoparticles, 50/50 wt% poly (lactic acid)/poly (glycolic acid) and hydroxyapatite nanoparticles were used to prepare the coatings. The nanocomposite coatings were characterized by ...

  1. A biodegradable and biocompatible gecko-inspired tissue adhesive

    OpenAIRE

    Mahdavi, Alborz; Ferreira, Lino; Sundback, Cathryn; Nichol, Jason W.; Chan, Edwin P.; Carter, David J. D.; Bettinger, Chris J.; Patanavanich, Siamrut; Chignozha, Loice; Ben-Joseph, Eli; Galakatos, Alex; Pryor, Howard; Pomerantseva, Irina; Masiakos, Peter T.; Faquin, William

    2008-01-01

    There is a significant medical need for tough biodegradable polymer adhesives that can adapt to or recover from various mechanical deformations while remaining strongly attached to the underlying tissue. We approached this problem by using a polymer poly(glycerol-co-sebacate acrylate) and modifying the surface to mimic the nanotopography of gecko feet, which allows attachment to vertical surfaces. Translation of existing gecko-inspired adhesives for medical applications is complex, as multipl...

  2. High purity biodegradable magnesium coating for implant application

    International Nuclear Information System (INIS)

    This paper describes efforts to create high purity Mg coating by Physical Vapor Deposition (PVD) technique that is appropriate for implant applications and to improve the interaction between the implant and the biological environment. The in vitro and in vivo tests conducted with Mg coatings that consist of grains with controlled size demonstrated promising properties in terms of lower corrosion and acceptable foreign body reaction which makes them prospective as biodegradable metallic materials.

  3. Biodegradable blends based on Polyhydroxybutyrate: structure and water diffusion

    OpenAIRE

    OLKHOV ANATOLIY ALEKSANDROVICH; MARKIN VALERIY SERGEEVICH; KOSENKO REGINA YUDELEVNA; GOLDSHTRAKH MARIANNA ALEKSANDROVNA; ZAIKOV GENNADIY EFREMOVICH; IORDANSKIY ALEKSEY LEONIDOVICH; PANKOVA YULIYA NIKOLAEVNA

    2015-01-01

    The present article focuses on the study of novel blends based on poly(3-hydroxybutyrate) (PHB) and polymers with different hydrophilicity (PELD, PA and PVA). Polymer blends were produced from five ratios of PHB/PELD in an effort to regulate the resistance to hydrolysis or (bio)degradation through the control of water permeability. The relation between the water transport and morphology (TEM data) shows the impact of polymer component ratio on the regulation of water flux in hydrophobic matri...

  4. Synthetic biodegradable vascular grafts for the regeneration of arteries

    OpenAIRE

    De Valence De Minardiere, Sarra

    2012-01-01

    There is an important clinical need for suitable vascular grafts, especially for small diameter vessel replacements in adult patients and for pediatric reconstructions. The objective of this thesis was to develop a synthetic biodegradable vascular graft to guide the regeneration of a natural artery. The developed graft was made of micro and nano fibers of polycaprolactone, forming a porous, but mechanically strong structure. The long term in vivo performance of the graft was evaluated in an a...

  5. Porous biodegradable polyurethane nanocomposites: preparation, characterization, and biocompatibility tests

    OpenAIRE

    Regina Coeli Moreira Dias; Alfredo de Miranda Góes; Rogéria Serakides; Eliane Ayres; Rodrigo Lambert Oréfice

    2010-01-01

    A porous biodegradable polyurethane nanocomposite based on poly(caprolactone) (PCL) and nanocomponents derived from montmorillonite (Cloisite®30B) was synthesized and tested to produce information regarding its potential use as a scaffold for tissue engineering. Structural and morphological characteristics of this nanocomposite were studied by infrared spectroscopy (FTIR), X-ray diffraction (XRD), small angle X-ray scattering (SAXS) and scanning electron microscopy (SEM). The reaction between...

  6. An Overview of Biodegradation of LNAPLs in Coastal (Semi)-arid Environment.

    Science.gov (United States)

    Yadav, Brijesh Kumar; Hassanizadeh, S Majid

    2011-09-01

    Contamination of soil and water due to the release of light non-aqueous phase liquids (LNAPLs) is a ubiquitous problem. The problem is more severe in arid and semi-arid coastal regions where most of the petroleum production and related refinery industries are located. Biological treatment of these organic contaminated resources is receiving increasing interests and where applicable, can serve as a cost-effective remediation alternative. The success of bioremediation greatly depends on the prevailing environmental variables, and their remediation favoring customization requires a sound understanding of their integrated behavior on fate and transport of LNAPLs under site-specific conditions. The arid and semi-arid coastal sites are characterized by specific environmental extremes; primarily, varying low and high temperatures, high salinity, water table dynamics, and fluctuating soil moisture content. An understanding of the behavior of these environmental variables on biological interactions with LNAPLs would be helpful in customizing the bioremediation for restoring problematic sites in these regions. Therefore, this paper reviews the microbial degradation of LNAPLs in soil-water, considering the influences of prevailing environmental parameters of arid and semi-arid coastal regions. First, the mechanism of biodegradation of LNAPLs is discussed briefly, followed by a summary of popular kinetic models used by researchers for describing the degradation rate of these hydrocarbons. Next, the impact of soil moisture content, water table dynamics, and soil-water temperature on the fate and transport of LNAPLs are discussed, including an overview of the studies conducted so far. Finally, based on the reviewed information, a general conclusion is presented with recommendations for future research subjects on optimizing the bioremediation technique in the field under the aforesaid environmental conditions. The present review will be useful to better understand the

  7. An Overview of Biodegradation of LNAPLs in Coastal (Semi)-arid Environment.

    KAUST Repository

    Yadav, Brijesh Kumar

    2011-02-22

    Contamination of soil and water due to the release of light non-aqueous phase liquids (LNAPLs) is a ubiquitous problem. The problem is more severe in arid and semi-arid coastal regions where most of the petroleum production and related refinery industries are located. Biological treatment of these organic contaminated resources is receiving increasing interests and where applicable, can serve as a cost-effective remediation alternative. The success of bioremediation greatly depends on the prevailing environmental variables, and their remediation favoring customization requires a sound understanding of their integrated behavior on fate and transport of LNAPLs under site-specific conditions. The arid and semi-arid coastal sites are characterized by specific environmental extremes; primarily, varying low and high temperatures, high salinity, water table dynamics, and fluctuating soil moisture content. An understanding of the behavior of these environmental variables on biological interactions with LNAPLs would be helpful in customizing the bioremediation for restoring problematic sites in these regions. Therefore, this paper reviews the microbial degradation of LNAPLs in soil-water, considering the influences of prevailing environmental parameters of arid and semi-arid coastal regions. First, the mechanism of biodegradation of LNAPLs is discussed briefly, followed by a summary of popular kinetic models used by researchers for describing the degradation rate of these hydrocarbons. Next, the impact of soil moisture content, water table dynamics, and soil-water temperature on the fate and transport of LNAPLs are discussed, including an overview of the studies conducted so far. Finally, based on the reviewed information, a general conclusion is presented with recommendations for future research subjects on optimizing the bioremediation technique in the field under the aforesaid environmental conditions. The present review will be useful to better understand the

  8. Biodegradation of pitch-based high performance carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T. (Yamaguchi Univ., Yamaguchi, (Japan). Faculty of Education)

    1992-09-10

    Although carbon fibers are widely used in various purposes because of their excellent mechanical properties, their behavior under biodegradation by microorganisms has not been elucidated. To elucidate the process of biodegradation of carbon fibers is important for understanding thoroughly the durability and the functionality of the fibers. In this article, a study has been made on biodegradation of pitch-based high performance carbon fibers by microorganisms. The fiber which was degraded has been examined with a scanning electron microscope. Aspergillus flavus has broken surface areas of high performance carbon fibers in 60 days and the fibril structure under the surface layer of the fiber has been exfoliated by degradation. The fibrils on the second layer have been 100-110nm wide. The fibrils have been in line nearly parallel to the fiber axis. The above carbon fibers are carbon type, but in case of graphite type high performance carbon fibers, its broken areas have not been shown and they have shown much stronger resistance against microbial attacks. 11 refs., 8 figs., 2 tabs.

  9. Viability of biocompatible and biodegradable seeds production with incorporated radionuclides

    International Nuclear Information System (INIS)

    The present work aims the development of radioactive seeds, biocompatible and biodegradable, with the objective of adding options in the cancer treatment. The work focus on the production of seeds biodegradable that incorporate radioisotopes with half life inferior than the degradation time of the material. The idea of producing devices with biodegradable materials impregnated with radioisotopes of short half life will offer new possibilities in the cancer treatment, since they can be used following the same procedures of the permanent interstitial brachytherapy, but using degradable materials compatible with the physiological environment. It will be discussed in particular the possible application of these seeds in the treatment of prostate cancer. A review of the subject and a preliminary evaluation of the viability of production of the seeds will be presented. The method of production of the seeds is based on the incorporation of Iodine and Samarium in glass matrixes obtained by sol-gel processing. X-ray fluorescence was done in the samples produced and the incorporation of Iodine and Samarium atoms was confirmed. (author)

  10. Investigation of wheat straw biodegradation by Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    Production of renewable fuels and chemicals from biomass requires an efficient pretreatment technology, which further depends on better understanding of biodegradation process of such lignocellulosic biomass. The biodegradation of wheat straw by Phanerochaete chrysosporium was investigated in this study. The fungal secretomes and compositional, functional groups and structural changes of the fungal spent wheat straw lignin were determined. The result showed ∼ 30% loss of total lignin within three weeks of biopretreatment by P. chrysosporium. Detailed structural analysis through two dimentional heteronuclear multiple quantum coherence nuclear magnatic resonance (2D HMQC NMR) of the pretreated lignin (acetylated) revealed low abundance of substructures D (dibenzodioxacin) and E (cinnamyl alcohol). Further, analysis of lignin by Fourier Transmission Infrared (FTIR) and Pyrolysis Gas Chromatography/Mass Spectrometry (Py-GC/MS) demonstrated the significant decrease of guaiacyl (G) units. The results support the previous findings in the biodegradation of wheat straw analyzed by 13C cross polarization magic angle spinning (CPMAS). Revealing the characteristic behavior of P. chrysosporium mediated biomass degradation, the information presented in this paper offers new insights for understanding the biological lignin degradation of wheat straw by P. chrysosporium.

  11. Analysis of proteins involved in biodegradation of crop biomass

    Science.gov (United States)

    Crawford, Kamau; Trotman, Audrey

    1998-01-01

    The biodegradation of crop biomass for re-use in crop production is part of the bioregenerative life support concept proposed by the National Aeronautics and Space Administration (NASA) for long duration, manned space exploration. The current research was conducted in the laboratory to evaluate the use of electrophoretic analysis as a means of rapidly assaying for constitutive and induced proteins associated with the bacterial degradation of crop residue. The proteins involved in crop biomass biodegradation are either constitutive or induced. As a result, effluent and cultures were examined to investigate the potential of using electrophoretic techniques as a means of monitoring the biodegradation process. Protein concentration for optimum banding patterns was determined using the Bio-Rad Protein Assay kit. Four bacterial soil isolates were obtained from the G.W. Carver research Farm at Tuskegee University and used in the decomposition of components of plant biomass. The culture, WDSt3A was inoculated into 500 mL of either Tryptic Soy Broth or Nutrient Broth. Incubation, with shaking of each flask was for 96 hours at 30 C. The cultures consistently gave unique banding patterns under denaturing protein electrophoresis conditions, The associated extracellular enzymes also yielded characteristic banding patterns over a 14-day period, when native electrophoresis techniques were used to examine effluent from batch culture bioreactors. The current study evaluated sample preparation and staining protocols to determine the ease of use, reproducibility and reliability, as well as the potential for automation.

  12. Preliminary Ecotoxicity and Biodegradability Assessment of Metalworking Fluids

    Science.gov (United States)

    Gerulová, Kristína; Amcha, Peter; Filická, Slávka

    2010-01-01

    The main aim of this study was to evaluate the potential of activated sludge from sewage treatment plant to degrade selected MWFs (ecotoxicity to bacterial consortium) and to evaluate the ecotoxicity by Lemna minor-higher plant. After evaluating the ecotoxicity, biodegradations rate with activated sludge was assessed on the basis of COD measurement. Preliminary study of measuring the ecotoxicity according to OECD 221 by Lemna minor shows effective concentration of Emulzin H at the rate of 81.6 mg l-1, for Ecocool 82.9 mg l-1, for BC 25 about 99.3 mg l-1, and for Dasnobor about 97.3 mg l-1. Preliminary study of measuring the ecotoxicity by bacterial consortium according to OECD 209 (STN EN ISO 8192) shows effective concentration of Blasocut BC 25 at the rate 227.4 mg l-1. According to OECD 302B, the biodegradations level of Emulzin H, Ecocool and BC 25 achieved 80% in 10 days. It can be stated that these MWFs have potential to ultimate degradation, but the statement has to be confirmed by a biodegradability test with other parameters than COD, which exhibits some disadvantages in testing O/W emulsions.

  13. In-situ biodegradation of ethanolamine in low permeability soils

    International Nuclear Information System (INIS)

    A research program to investigate whether ethanolamine is susceptible to biodegradation is described. The project was undertaken at a former Edmonton area gas plant site to demonstrate in-situ site remediation techniques. A horizontal well was drilled at a depth of four metres below ground surface and hydraulically fractured to increase permeability of the glacial till soils. A sand propant was used to prevent the subsequent closure of the water-based slurry used in fracturing the soil, with phosphoric acid added to provide a source of phospate to stimulate bacterial growth. A network of monitoring wells was installed along the horizontal wells to monitor bacterial respiration. Field test results showed oxygen depletion and carbon dioxide production. Bioventing was restricted as a result of unexpectedly high water levels, but in a subsequent dewatering bioventing program the ethanolamine levels in groundwater extracted from the monitoring wells showed an overall decline in concentration. There were no changes in ammonia levels. Since ammonia is a breakdown product of amines its increase in the groundwater would have provided positive proof of biodegradation. However, the fact that there was no change, is not taken as an indication of the total absence of biodegradation. Rather, it is suspected that the concentration of the ammonia in the groundwater is at a level that it exerts a a toxic influence on the soil bacteria, thus preventing additional degradation. 14 refs., 4 tabs.7 figs

  14. Assessing the toxicity and biodegradability of deep eutectic solvents.

    Science.gov (United States)

    Wen, Qing; Chen, Jing-Xin; Tang, Yu-Lin; Wang, Juan; Yang, Zhen

    2015-08-01

    Deep eutectic solvents (DESs) have emerged as a new type of promising ionic solvents with a broad range of potential applications. Although their ecotoxicological profile is still poorly known, DESs are generally regarded as "green" because they are composed of ammonium salts and H-bond donors (HBDs) which are considered to be eco-friendly. In this work, cholinium-based DESs comprised of choline chloride (ChCl) and choline acetate (ChAc) as the salt and urea (U), acetamide (A), glycerol (G) and ethylene glycol (EG) as the HBD were evaluated for their toxic effects on different living organisms such as Escherichia coli (a bacterium), Allium sativum (garlic, a plant) and hydra (an invertebrate), and their biodegradabilities were assessed by means of closed bottle tests. These DESs possessed an anti-bacterial property and exhibited inhibitory effects on the test organisms adopted, depending on the composition and concentration of the DES. The mechanism for the impact of DESs and their components on different living organisms can be associated to their interactions with the cellular membranes. Not all DESs can be considered readily biodegradable. By extending the limited knowledge about the toxicity and biodegradation of this particular solvent family, this investigation on DESs provides insight into our structure-based understanding of their ecotoxicological behavior. PMID:25800513

  15. Surface characterization and cytotoxicity response of biodegradable magnesium alloys

    International Nuclear Information System (INIS)

    Magnesium alloys have raised an immense amount of interest to many researchers because of their evolution as a new kind of third generation materials. Due to their biocompatibility, density, and mechanical properties, magnesium alloys are frequently reported as prospective biodegradable implant materials. Moreover, magnesium alloys experience a natural phenomenon to biodegrade in aqueous solutions due to its corrosion activity, which is excellent for orthopedic and cardiovascular applications. However, a major concern with such alloys is fast and non-uniform corrosion degradation. Controlling the degradation rate in the physiological environment determines the success of biodegradable implants. In this investigation, three different grades of magnesium alloys: AZ31B, AZ91E and ZK60A were studied for their corrosion resistance and biocompatibility. Scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy and contact angle meter are used to study surface morphology, chemistry, roughness and wettability, respectively. Additionally, the cytotoxicity of the leached metal ions was evaluated by using a tetrazolium based bio-assay, MTS. - Highlights: • Micro-textured features formed after the anodization of magnesium alloys. • Contact angle increased and surface free energy decreased by anodization. • Corrosion rate increased for anodized surfaces compared to untreated samples. • Cell viability was greater than 75% implying the cytocompatibility of Mg alloys

  16. Characterization and biodegradation of polycyclic aromatic hydrocarbons in radioactive wastewater

    International Nuclear Information System (INIS)

    Highlights: → Biodegradation of recalcitrant toxic organics under radioactive conditions. → Biodegradation of PAHs of varying size and complexity in mixed waste streams. → Validation of radiation-tolerance and performance of the isolated organisms. - Abstract: PAH degrading Pseudomonad and Alcaligenes species were isolated from landfill soil and mine drainage in South Africa. The isolated organisms were mildly radiation tolerant and were able to degrade PAHs in simulated nuclear wastewater. The radiation in the simulated wastewater, at 0.677 Bq/μL, was compatible to measured values in wastewater from a local radioisotope manufacturing facility, and was enough to inhibit metabolic activity of known PAH degraders from soil such as Pseudomonas putida GMP-1. The organic constituents in the original radioactive waste stream consisted of the full range of PAHs except fluoranthene. Among the observed PAHs in the nuclear wastewater from the radioisotope manufacturing facility, acenaphthene and chrysene predominated-measured at 25.1 and 14.2 mg/L, respectively. Up to sixteen U.S.EPA priority PAHs were detected at levels higher than allowable limits in drinking water. The biodegradation of the PAHs was limited by the solubility of the compounds. This contributed to the observed faster degradation rates in low molecular weight (LMW) compounds than in high molecular weight compounds.

  17. Enhancement of spilled oil biodegradation by nutrients of natural origin

    International Nuclear Information System (INIS)

    Ten years ago, Elf Aquitaine began developing the technologies for the acceleration of hydrocarbon biodegradation. The continuation of this work has involved the study of new additives to complement the oleophilic nutrient, INIPOL EAP 22. In particular, it has been shown in both laboratory and in situ tests that hydrocarbon degradation can be accelerated by animal meals, which are natural products. Preliminary laboratory studies carried out under batch conditions have shown that the use of these products has resulted in considerable growth of the bacteria, coupled with a notable increase in the biological degradation kinetics of the hydrocarbons. These results are comparable with the performance of the nutrient INIPOL EAP 22. In situ experiments undertaken on soils polluted by hydrocarbons have shown that by using animal meals, 50 percent biodegradation was obtained after six weeks and this increased to 80 percent when mechanical aeration was also employed. Under nutrient-free control conditions, 25 percent biodegradation was obtained with no aeration and 35 percent with mechanical aeration. In trials using coastal sandy sediments, the use of these nutrients has resulted in an increase of both the number of hydrocarbon specific bacteria and the hydrocarbon degradation. It can be concluded from these pilot experiments that in the development of bioremediation as an operational tool in the response to accidental oil spills, these nutrients of natural origin represent an interesting advance

  18. Anaerobic biodegradability of fish remains: experimental investigation and parameter estimation.

    Science.gov (United States)

    Donoso-Bravo, Andres; Bindels, Francoise; Gerin, Patrick A; Vande Wouwer, Alain

    2015-01-01

    The generation of organic waste associated with aquaculture fish processing has increased significantly in recent decades. The objective of this study is to evaluate the anaerobic biodegradability of several fish processing fractions, as well as water treatment sludge, for tilapia and sturgeon species cultured in recirculated aquaculture systems. After substrate characterization, the ultimate biodegradability and the hydrolytic rate were estimated by fitting a first-order kinetic model with the biogas production profiles. In general, the first-order model was able to reproduce the biogas profiles properly with a high correlation coefficient. In the case of tilapia, the skin/fin, viscera, head and flesh presented a high level of biodegradability, above 310 mLCH₄gCOD⁻¹, whereas the head and bones showed a low hydrolytic rate. For sturgeon, the results for all fractions were quite similar in terms of both parameters, although viscera presented the lowest values. Both the substrate characterization and the kinetic analysis of the anaerobic degradation may be used as design criteria for implementing anaerobic digestion in a recirculating aquaculture system. PMID:25812103

  19. Effect of degumming time on silkworm silk fibre for biodegradable polymer composites

    Science.gov (United States)

    Ho, Mei-po; Wang, Hao; Lau, Kin-tak

    2012-02-01

    Recently, many studies have been conducted on exploitation of natural materials for modern product development and bioengineering applications. Apart from plant-based materials (such as sisal, hemp, jute, bamboo and palm fibre), animal-based fibre is a kind of sustainable natural materials for making novel composites. Silkworm silk fibre extracted from cocoon has been well recognized as a promising material for bio-medical engineering applications because of its superior mechanical and bioresorbable properties. However, when producing silk fibre reinforced biodegradable/bioresorbable polymer composites, hydrophilic sericin has been found to cause poor interfacial bonding with most polymers and thus, it results in affecting the resultant properties of the composites. Besides, sericin layers on fibroin surface may also cause an adverse effect towards biocompatibility and hypersensitivity to silk for implant applications. Therefore, a proper pre-treatment should be done for sericin removal. Degumming is a surface modification process which allows a wide control of the silk fibre's properties, making the silk fibre possible to be used for the development and production of novel bio-composites with unique/specific mechanical and biodegradable properties. In this paper, a cleaner and environmentally friendly surface modification technique for tussah silk in polymer based composites is proposed. The effectiveness of different degumming parameters including degumming time and temperature on tussah silk is discussed through the analyses of their mechanical and morphological properties. Based on results obtained, it was found that the mechanical properties of tussah silk are affected by the degumming time due to the change of the fibre structure and fibroin alignment.

  20. Durability of Starch Based Biodegradable Plastics Reinforced with Manila Hemp Fibers

    Directory of Open Access Journals (Sweden)

    Shinji Ochi

    2011-02-01

    Full Text Available The biodegradability of Manila hemp fiber reinforced biodegradable plastics was studied for 240 days in a natural soil and 30 days in a compost soil. After biodegradability tests, weights were measured and both tensile strength tests and microscopic observation were performed to evaluate the biodegradation behavior of the composites. The results indicate that the tensile strength of the composites displays a sharp decrease for up to five days, followed by a gradual decrease. The weight loss and the reduction in tensile strength of biodegradable composite materials in the compost soil are both significantly greater than those buried in natural soil. The biodegradability of these composites is enhanced along the lower portion because this area is more easily attacked by microorganisms.