WorldWideScience

Sample records for biodegradable polymer compositions

  1. Biodegradable Polymers

    OpenAIRE

    Vroman, Isabelle; Tighzert, Lan

    2009-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  2. Physical, mechanical, and biodegradable properties of meranti wood polymer composites

    International Nuclear Information System (INIS)

    Enamul Hoque, M.; Aminudin, M.A.M.; Jawaid, M.; Islam, M.S.; Saba, N.; Paridah, M.T.

    2014-01-01

    Highlights: • In-situ polymerization and solution casting method used to manufacture WPC. • In-situ WPC exhibited better properties compared to pure wood, 5% WPC and 20% WPC. • Lowest water absorption and least biodegradability shown by In-situ wood. - Abstract: In-situ polymerization and solution casting techniques are two effective methods to manufacture wood polymer composites (WPCs). In this study, wood polymer composites (WPCs) were manufactured from meranti sapwood by solution casting and in-situ polymerization process using methyl methacrylate (MMA) and epoxy matrix respectively. Physical, mechanical, and morphological characterizations of fabricated WPCs were then carried out to analyse their properties. Morphological properties of composites samples were analyzed through scanning electron microscopy (SEM). The result reveals that in-situ wood composite exhibited better properties compared to pure wood, 5% WPC and 20% WPC. Moreover, in-situ WPC had lowest water absorption and least biodegraded. Conversely, pure wood shown moderate mechanical strength, high biodegradation and water absorption rate. In term of biodegradation, earth-medium brought more severe effect than water in deteriorating the properties of the specimens

  3. Effect of Material Parameters on Mechanical Properties of Biodegradable Polymers/Nanofibrillated Cellulose (NFC) Nano Composites

    Science.gov (United States)

    Yottha Srithep; Ronald Sabo; Craig Clemons; Lih-Sheng Turng; Srikanth Pilla; Jun Peng

    2012-01-01

    Using natural cellulosic fibers as fillers for biodegradable polymers can result in fully biodegradable composites. Biodegradable composites were prepared using nanofibrillated cellulose (NFC) as the reinforcement and poly (3-hydroxybutyrate-co-3-hydroxyvalerate, PHBV) as the polymer matrix. The objective of this study was to determine how various additives (i.e.,...

  4. Biodegradation of New Polymer Foundry Binders for the Example of the Composition Polyacrylic Acid/Starch

    Directory of Open Access Journals (Sweden)

    Beata Grabowska

    2011-04-01

    Full Text Available The investigations on the biodegradation process pathway of the new polymer binders for the example of water soluble compositionpolyacrylic acid/starch are presented in the hereby paper. Degradation was carried out in water environment and in a soil. Thedetermination of the total oxidation biodegradation in water environment was performed under laboratory conditions in accordance with the static water test system (Zahn-Wellens method, in which the mixture undergoing biodecomposition contained inorganic nutrient,activated sludge and the polymer composition, as the only carbon and energy source. The biodecomposition progress of the polymercomposition sample in water environment was estimated on the basis of the chemical oxygen demand (COD measurements and thedetermination the biodegradation degree, Rt, during the test. These investigations indicated that the composition polyacrylic acid/starchconstitutes the fully biodegradable material in water environment. The biodegradation degree Rt determined in the last 29th day of the test duration achieved 65%, which means that the investigated polymer composition can be considered to be fully biodegradable.During the 6 months biodegradation process of the cross-linked sample of the polymer composition in a garden soil several analysis ofsurface and structural changes, resulting from the sample decomposition, were performed. Those were: thermal analyses (TG-DSC,structural analyses (Raman spectroscopy and microscopic analyses (optical microscopy, AFM.

  5. Computational modeling of biodegradable starch based polymer composites

    Science.gov (United States)

    Joshi, Sachin Sudhakar

    2007-12-01

    Purpose. The goal of this study is to improve the favorable molecular interactions between starch and PPC by addition of grafting monomers MA and ROM as compatibilizers, which would advance the mechanical properties of starch/PPC composites. Methodology. DFT and semi-empirical methods based calculations were performed on three systems: (a) starch/PPC, (b) starch/PPC-MA, and (c) starch-ROM/PPC. Theoretical computations involved the determination of optimal geometries, binding-energies and vibrational frequencies of the blended polymers. Findings. Calculations performed on five starch/PPC composites revealed hydrogen bond formation as the driving force behind stable composite formation, also confirmed by the negative relative energies of the composites indicating the existence of binding forces between the constituent co-polymers. The interaction between starch and PPC is also confirmed by the computed decrease in stretching CO and OH group frequencies participating in hydrogen bond formation, which agree qualitatively with the experimental values. A three-step mechanism of grafting MA on PPC was proposed to improve the compatibility of PPC with starch. Nine types of 'blends' produced by covalent bond formation between starch and MA-grafted PPC were found to be energetically stable, with blends involving MA grafted at the 'B' and 'C' positions of PPC indicating a binding-energy increase of 6.8 and 6.2 kcal/mol, respectively, as compared to the non-grafted starch/PPC composites. A similar increase in binding-energies was also observed for three types of 'composites' formed by hydrogen bond formation between starch and MA-grafted PPC. Next, grafting of ROM on starch and subsequent blend formation with PPC was studied. All four types of blends formed by the reaction of ROM-grafted starch with PPC were found to be more energetically stable as compared to the starch/PPC composite and starch/PPC-MA composites and blends. A blend of PPC and ROM grafted at the '

  6. Morphology and transport in biodegradable polymer compositions based on poly(3-hydroxybutyrate) and polyamide 54C

    Energy Technology Data Exchange (ETDEWEB)

    Zhul' kina, A. L.; Ivantsova, E. L.; Filatova, A. G.; Kosenko, R. Yu.; Gumargalieva, K. Z.; Iordanskii, A. L., E-mail: iordan@chph.ras.ru [Russian Academy of Sciences, Semenov Institute of Chemical Physics (Russian Federation)

    2009-05-15

    Complex investigation of the equilibrium sorption of water, diffusive transport of antiseptic, and morphology of mixed compositions based on polyoxybutirate and polyamide resin 54C has been performed to develop and analyze new biodegradable polymer compositions for controlled release of medicinal substances. Samples of mixtures were prepared by two methods: pressing under pressure and solvent evaporation from a polymer solution. The samples were compared and their morphology was analyzed by scanning electron microscopy. It is shown that the component ratio in the obtained mixtures affects their morphological, transport, and sorption characteristics.

  7. Morphology and transport in biodegradable polymer compositions based on poly(3-hydroxybutyrate) and polyamide 54C

    International Nuclear Information System (INIS)

    Zhul'kina, A. L.; Ivantsova, E. L.; Filatova, A. G.; Kosenko, R. Yu.; Gumargalieva, K. Z.; Iordanskii, A. L.

    2009-01-01

    Complex investigation of the equilibrium sorption of water, diffusive transport of antiseptic, and morphology of mixed compositions based on polyoxybutirate and polyamide resin 54C has been performed to develop and analyze new biodegradable polymer compositions for controlled release of medicinal substances. Samples of mixtures were prepared by two methods: pressing under pressure and solvent evaporation from a polymer solution. The samples were compared and their morphology was analyzed by scanning electron microscopy. It is shown that the component ratio in the obtained mixtures affects their morphological, transport, and sorption characteristics.

  8. Synthesis of biodegradable polymer/glass fiber composite by EB irradiation and its biodegradability

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Doam Thi The

    2006-01-01

    A composite was synthesized by irradiation of poly (butylene succinate), PBS and glass fiber (GF) in the presence of a polyfunctional monomer, trimethallyl isocyanurate (TMAIC), which accelerates gel formation of the matrix (PBS). The highest gel fraction was achieved at 1% concentration of TMAIC at the dose level of 200 kGy. Mechanical properties of the composites were highly dependent on the gel fraction of the polymer and volume fraction of glass fiber reinforcement in the composite. Optimal conditions to synthesize a PBS/GF composite reaching maximum value of bending strength were 1% TMAIC, 67% fiber volume fraction, and radiation dose of 200 kGy. These synthesized PBS/GF composites can be degraded by enzymes produced by the microorganism population in soil. (author)

  9. Electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration.

    Science.gov (United States)

    Zhang, Ze; Rouabhia, Mahmoud; Wang, Zhaoxu; Roberge, Christophe; Shi, Guixin; Roche, Phillippe; Li, Jiangming; Dao, Lê H

    2007-01-01

    Normal and electrically stimulated PC12 cell cultures and the implantation of nerve guidance channels were performed to evaluate newly developed electrically conductive biodegradable polymer composites. Polypyrrole (PPy) doped by butane sulfonic acid showed a significantly higher number of viable cells compared with PPy doped by polystyrenesulfonate after a 6-day culture. The PC12 cells were left to proliferate for 6 days, and the PPy-coated membranes, showing less initial cell adherence, recorded the same proliferation rate as did the noncoated membranes. Direct current electricity at various intensities was applied to the PC12 cell-cultured conductive membranes. After 7 days, the greatest number of neurites appeared on the membranes with a current intensity approximating 1.7-8.4 microA/cm. Nerve guidance channels made of conductive biodegradable composite were implanted into rats to replace 8 mm of sciatic nerve. The implants were harvested after 2 months and analyzed with immunohistochemistry and transmission electron microscopy. The regenerated nerve tissue displayed myelinated axons and Schwann cells that were similar to those in the native nerve. Electrical stimulation applied through the electrically conductive biodegradable polymers therefore enhanced neurite outgrowth in a current-dependent fashion. The conductive polymers also supported sciatic nerve regeneration in rats.

  10. Composite implants coated with biodegradable polymers prevent stimulating tumor progression

    International Nuclear Information System (INIS)

    Litviakov, N. V.; Tsyganov, M. M.; Cherdyntseva, N. V.; Tverdokhlebov, S. I.; Bolbasov, E. N.; Perelmuter, V. M.; Kulbakin, D. E.; Zheravin, A. A.; Svetlichnyi, V. A.

    2016-01-01

    In this experiment we studied oncologic safety of model implants created using the solution blow spinning method with the use of the PURASORB PL-38 polylactic acid polymer and organic mineral filler which was obtained via laser ablation of a solid target made of dibasic calcium phosphate dihydrate. For this purpose the implant was introduced into the area of Wistar rats’ iliums, and on day 17 after the surgery the Walker sarcoma was transplanted into the area of the implant. We evaluated the implant’s influence on the primary tumor growth, hematogenous and lymphogenous metastasis of the Walker sarcoma. In comparison with sham operated animals the implant group demonstrated significant inhibition of hematogenous metastasis on day 34 after the surgery. The metastasis inhibition index (MII) equaled 94% and the metastases growth inhibition index (MGII) equaled 83%. The metastasis frequency of the Walker sarcoma in para aortic lymph nodes in the implant group was not statistically different from the control frequency; there was also no influence of the implant on the primary tumor growth noted. In case of the Walker sarcoma transplantation into the calf and the palmar pad of the ipsilateral limb to the one with the implant in the ilium, we could not note any attraction of tumor cells to the implant area, i.e. stimulation of the Walker sarcoma relapse by the implant. Thus, the research concluded that the studied implant meets the requirements of oncologic safety.

  11. Composite implants coated with biodegradable polymers prevent stimulating tumor progression

    Energy Technology Data Exchange (ETDEWEB)

    Litviakov, N. V., E-mail: nvlitv72@yandex.ru; Tsyganov, M. M., E-mail: TsyganovMM@yandex.ru; Cherdyntseva, N. V., E-mail: nvch@oncology.tomsk.ru [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Tverdokhlebov, S. I., E-mail: tverd@tpu.ru; Bolbasov, E. N., E-mail: ebolbasov@gmail.com [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Perelmuter, V. M., E-mail: pvm@ngs.ru; Kulbakin, D. E., E-mail: kulbakin2012@gmail.com [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); Zheravin, A. A., E-mail: zheravin2010@yandex.ru [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); Academician E.N. Meshalkin Novosibirsk State Research Institute of Circulation Pathology, Novosibirsk (Russian Federation); Svetlichnyi, V. A., E-mail: v-svetlichnyi@bk.ru [National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2016-08-02

    In this experiment we studied oncologic safety of model implants created using the solution blow spinning method with the use of the PURASORB PL-38 polylactic acid polymer and organic mineral filler which was obtained via laser ablation of a solid target made of dibasic calcium phosphate dihydrate. For this purpose the implant was introduced into the area of Wistar rats’ iliums, and on day 17 after the surgery the Walker sarcoma was transplanted into the area of the implant. We evaluated the implant’s influence on the primary tumor growth, hematogenous and lymphogenous metastasis of the Walker sarcoma. In comparison with sham operated animals the implant group demonstrated significant inhibition of hematogenous metastasis on day 34 after the surgery. The metastasis inhibition index (MII) equaled 94% and the metastases growth inhibition index (MGII) equaled 83%. The metastasis frequency of the Walker sarcoma in para aortic lymph nodes in the implant group was not statistically different from the control frequency; there was also no influence of the implant on the primary tumor growth noted. In case of the Walker sarcoma transplantation into the calf and the palmar pad of the ipsilateral limb to the one with the implant in the ilium, we could not note any attraction of tumor cells to the implant area, i.e. stimulation of the Walker sarcoma relapse by the implant. Thus, the research concluded that the studied implant meets the requirements of oncologic safety.

  12. Effect of sterilization dose on electron beam irradiated biodegradable polymers and coconut fiber based composites

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, Yasko; Machado, Luci D.B., E-mail: ykodama@ipen.b, E-mail: lmachado@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Oishi, Akihiro; Nakayama, Kazuo, E-mail: a.oishi@aist.go.j, E-mail: kazuo-nakayama@jcom.home.ne.j [National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki-ken (Japan). Research Institute for Sustainable Chemical Innovation; Nagasawa, Naotsugu; Tamada, Masao, E-mail: nagasawa.naotsugu@jaea.go.j [Japan Atomic Energy Agency (JAEA), Gunma-ken (Japan). Quantum Beam Science Directorate

    2009-07-01

    In Brazil, annual production of coconut fruit is 1.5 billion in a cultivated area of 2.7 million ha. Coconut fiber applications as reinforcement for polymer composites, besides reducing the coconut waste, would reduce cost of the composite. On the other hand, biodegradable polymers have been receiving much attention due to the plastic waste problem. Poly(e-caprolactone), PCL, and poly(lactic acid), PLA, besides being biodegradable aliphatic polyesters, are biocompatible polymers. Considering the biomedical application of PLA and PCL, their products must be sterilized for use, and ionizing radiation has been widely used for medical devices sterilization. It is important to study the effect of ionizing radiation on the blends and composites due to the fact that they are based on biocompatible polymers. Is this research, hot pressed samples based on PLA:PCL (80:20, ratio of weight:weight) blend and the composites containing chemically treated or untreated coconut fiber (5, 10%) were irradiated by electron beams and gamma radiation from Co-60 source at doses in the range up to 200 kGy. Thermal mechanical analysis (TMA) and gel fraction measurements were performed in irradiated samples. From TMA curves it can be observed that thermal stability of samples with untreated coconut fiber slightly decreased with increasing fiber content. On the other hand, deformation increased with increasing fiber content. Acetylated coconut fibers slightly decreased thermal stability of samples. It seems that no interaction occurs between the natural fibers and the polymeric matrix due to irradiation. PLLA undergoes to main chain scission under ionizing irradiation according to thermal stability results and also because no gel fraction was observed. In contrast, PCL cross-linking is induced by ionizing radiation that increases thermal stability and decreases deformation. (author)

  13. Effect of sterilization dose on electron beam irradiated biodegradable polymers and coconut fiber based composites

    International Nuclear Information System (INIS)

    Kodama, Yasko; Machado, Luci D.B.; Oishi, Akihiro; Nakayama, Kazuo; Nagasawa, Naotsugu; Tamada, Masao

    2009-01-01

    In Brazil, annual production of coconut fruit is 1.5 billion in a cultivated area of 2.7 million ha. Coconut fiber applications as reinforcement for polymer composites, besides reducing the coconut waste, would reduce cost of the composite. On the other hand, biodegradable polymers have been receiving much attention due to the plastic waste problem. Poly(e-caprolactone), PCL, and poly(lactic acid), PLA, besides being biodegradable aliphatic polyesters, are biocompatible polymers. Considering the biomedical application of PLA and PCL, their products must be sterilized for use, and ionizing radiation has been widely used for medical devices sterilization. It is important to study the effect of ionizing radiation on the blends and composites due to the fact that they are based on biocompatible polymers. Is this research, hot pressed samples based on PLA:PCL (80:20, ratio of weight:weight) blend and the composites containing chemically treated or untreated coconut fiber (5, 10%) were irradiated by electron beams and gamma radiation from Co-60 source at doses in the range up to 200 kGy. Thermal mechanical analysis (TMA) and gel fraction measurements were performed in irradiated samples. From TMA curves it can be observed that thermal stability of samples with untreated coconut fiber slightly decreased with increasing fiber content. On the other hand, deformation increased with increasing fiber content. Acetylated coconut fibers slightly decreased thermal stability of samples. It seems that no interaction occurs between the natural fibers and the polymeric matrix due to irradiation. PLLA undergoes to main chain scission under ionizing irradiation according to thermal stability results and also because no gel fraction was observed. In contrast, PCL cross-linking is induced by ionizing radiation that increases thermal stability and decreases deformation. (author)

  14. Radiation processing of indigenous natural polymers. Properties of radiation modified blends from sago-starch for biodegradable composite

    International Nuclear Information System (INIS)

    Ghazali, Z.; Dahlan, K.Z.; Wongsuban, B.; Idris, S.; Muhammad, K.

    2001-01-01

    Research and development on biodegradable polymer blends and composites have gained wider interest to offer alternative eco-friendly products. Natural polysaccharide such as sago-starch offers the most promising raw material for the production of biodegradable composites. The potential of sago, which is so abundant in Malaysia, to produce blends for subsequent applications in composite material, was evaluated and explored. Blends with various formulations of sago starch and polyvinyl alcohol (PVA), and polyvinyl pyrrolidone (PVP) polymers were prepared and subjected to radiation modification using electron beam irradiation. The effect of irradiation on the sago and its blends was evaluated and their properties were characterized. The potential of producing composite from sago blends was explored. Foams from these blends were produced using microwave oven while films were produced through casting method. The properties such as mechanical, water absorption, expansion ratio, and biodegradability were characterized and reported in this paper. (author)

  15. Radiation processing of indigenous natural polymers. Properties of radiation modified blends from sago-starch for biodegradable composite

    Energy Technology Data Exchange (ETDEWEB)

    Ghazali, Z.; Dahlan, K.Z. [Malaysian Institute for Nuclear and Technology Research (MINT), Bangi, Kajang (Malaysia); Wongsuban, B.; Idris, S.; Muhammad, K. [Universiti Putra Malaysia, Faculty of Food Science and Biotechnology, Department of Food Science, Serdang (Malaysia)

    2001-03-01

    Research and development on biodegradable polymer blends and composites have gained wider interest to offer alternative eco-friendly products. Natural polysaccharide such as sago-starch offers the most promising raw material for the production of biodegradable composites. The potential of sago, which is so abundant in Malaysia, to produce blends for subsequent applications in composite material, was evaluated and explored. Blends with various formulations of sago starch and polyvinyl alcohol (PVA), and polyvinyl pyrrolidone (PVP) polymers were prepared and subjected to radiation modification using electron beam irradiation. The effect of irradiation on the sago and its blends was evaluated and their properties were characterized. The potential of producing composite from sago blends was explored. Foams from these blends were produced using microwave oven while films were produced through casting method. The properties such as mechanical, water absorption, expansion ratio, and biodegradability were characterized and reported in this paper. (author)

  16. Core–shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Chiemi; Ushimaru, Kazunori [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Horiishi, Nanao [Bengala Techno Laboratory, 9-5-1006, 1-1 Kodai, Miyamae-ku, Kawasaki 216-0007 (Japan); Tsuge, Takeharu [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Kitamoto, Yoshitaka, E-mail: kitamoto.y.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2015-05-01

    Core–shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core–shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body. - Highlights: • Core−shell composites with biodegradability and magnetism are prepared. • O/W emulsion stabilized by iron oxide nanoparticles is utilized for the preparation. • The nanoparticle's dispersibility is crucial for controlling the composite structure. • Composites loading a model drug are also prepared. • The model drug is released with decomposition of the composites.

  17. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  18. Formation of biodegradated polymers as components of future composite materials on the basis of shape memory alloy of medical appointment

    Science.gov (United States)

    Nasakina, E. O.; Baikin, A. S.; Sergiyenko, K. V.; Kaplan, M. A.; Konushkin, S. V.; Yakubov, A. D.; Izvin, A. V.; Sudarchikova, M. A.; Sevost’yanov, M. A.; Kolmakov, A. G.

    2018-04-01

    The processes of formation of polymer polylactide or polyglycylidactide films for the subsequent creation of a layered composite with a biodegradable layer on the basis of a nickel-free shape memory alloy TiNbTaZr are studied. The structure of the samples was determined using an SEM. The correspondence of morphology of surfaces of and the substrate itself is noted. High adhesion of the polymer to the future basis of the developed composite material is supposed. The formed films is homogeneous and amorphous throughout the polymer volume. By varying the volume of solutions, it is possible to obtain films of a given thickness for any type of polymer, its molecular weight, and the solution concentration of the polymer in chloroform. Poly (glycolide-lactide) should be more plastic than polylactide.

  19. Processing and characterization of solid and microcellular biobased and biodegradable PHBV-based polymer blends and composites

    Science.gov (United States)

    Javadi, Alireza

    Petroleum-based polymers have made a significant contribution to human society due to their extraordinary adaptability and processability. However, due to the wide-spread application of plastics over the past few decades, there are growing concerns over depleting fossil resources and the undesirable environmental impact of plastics. Most of the petroleum-based plastics are non-biodegradable and thus will be disposed in landfills. Inappropriate disposal of plastics may also become a potential threat to the environment. Many approaches, such as efficient plastics waste management and replacing petroleum-based plastics with biodegradable materials obtained from renewable resources, have been put forth to overcome these problems. Plastics waste management is at its beginning stages of development which is also more expensive than expected. Thus, there is a growing interest in developing sustainable biobased and biodegradable materials produced from renewable resources such as plants and crops, which can offer comparable performance with additional advantages, such as biodegradability, biocompatibility, and reducing the carbon footprint. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is one of the most promising biobased and biodegradable polymers, In fact many petroleum based polymers such as poly(propylene) (PP) can be potentially replaced by PHBV because of the similarity in their properties. Despite PHBV's attractive properties, there are many drawbacks such as high cost, brittleness, and thermal instability, which hamper the widespread usage of this specific polymer. The goals of this study are to investigate various strategies to address these drawbacks, including blending with other biodegradable polymers such as poly (butylene adipate-coterephthalate) (PBAT) or fillers (e.g., coir fiber, recycled wood fiber, and nanofillers) and use of novel processing technologies such as microcellular injection molding technique. Microcellular injection molding technique

  20. Casein and soybean protein-based thermoplastics and composites as alternative biodegradable polymers for biomedical applications

    NARCIS (Netherlands)

    Vaz, C.M.; Fossen, M.; Tuil, van R.F.; Graaf, de L.A.; Reis, R.L.; Cunha, A.M.

    2003-01-01

    This work reports on the development and characterization of novel meltable polymers and composites based on casein and soybean proteins. The effects of inert (Al2O3) and bioactive (tricalcium phosphate) ceramic reinforcements over the mechanical performance, water absorption, and bioactivity

  1. Biodegradability and mechanical properties of PP/HMSPP and natural polymers bio-composites in function of gamma-irradiation

    International Nuclear Information System (INIS)

    Cardoso, Elisabeth C.L.; Scagliusi, Sandra R.; Lima, Luis F.C.P.; Bueno, Nelson R.; Parra, Duclerc F.; Lugao, Ademar B.

    2013-01-01

    PP, expressed as C n H 2n , is one of the most widely used linear hydrocarbon polymers; its versatility arises from the fact that it is made from cheap petrochemical feed stocks through efficient catalytic polymerization process and easy processing to various products. Thus, enormous production and utilization of polymers, in general, lead to their accumulation in the environment, since they are not easily degraded by microorganisms, presenting a serious source of pollution affecting both flora and fauna. These polymers are very bio-resistant due to the involvement of only carbon atoms in main chain with no hydrolyzable functional group. Non-degradable plastics accumulate in the environment at a rate of 25 million tons per year. In recent years, as a result of growing environmental awareness, natural polymers have been increasingly used as reinforcing fillers in thermoplastic composite materials. Sugarcane bagasse was used as reinforcing filler, considering that Brazil is the largest world producer of this crop, with a 101 Mt main agro-industrial residue of sugarcane processing from 340 Mt of sugarcane. Bio-composites were compounded on a twin-screw extruder and samples collected directly from the die. This study aims to investigate mechanical properties of PP/HMSPP-sugarcane bagasse 10, 15, 30 and 50% blends gamma-irradiated at 50, 100, 150 and 200 kGy doses. Degradation essays will comprise DSC and TGA tests and biodegradability behavior will be indicated by Laboratory Soil Burial Test. The main objective of this work is to support the application of these composites as environmentally friendly materials, without prejudicing mechanicals properties, in spite of applied gamma-irradiation. (author)

  2. Nanocomposites Based on Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Ilaria Armentano

    2018-05-01

    Full Text Available In the present review paper, our main results on nanocomposites based on biodegradable polymers (on a time scale from 2010 to 2018 are reported. We mainly focused our attention on commercial biodegradable polymers, which we mixed with different nanofillers and/or additives with the final aim of developing new materials with tunable specific properties. A wide list of nanofillers have been considered according to their shape, properties, and functionalization routes, and the results have been discussed looking at their roles on the basis of different adopted processing routes (solvent-based or melt-mixing processes. Two main application fields of nanocomposite based on biodegradable polymers have been considered: the specific interaction with stem cells in the regenerative medicine applications or as antimicrobial materials and the active role of selected nanofillers in food packaging applications have been critically revised, with the main aim of providing an overview of the authors’ contribution to the state of the art in the field of biodegradable polymeric nanocomposites.

  3. CLASSIFICATION OF BIODEGRADABLE POLYMERS

    Directory of Open Access Journals (Sweden)

    I. I. Karpunin

    2015-01-01

    Full Text Available The executed investigations have made it possible to ascertain that a morphological structure of starch granules mainly determine technological peculiarities of starch isolation from raw material, its modification and its later use. Morphological structure of starch granules primarily depends on type of plant starch-containing raw material which has been used for its isolation. Class of raw material exerts a strong impact on the shape and size of the granules. Linear “light” amylose chains and “heavy” amylopectin branch chains form a starch granule ultrastructure. X-ray research has proved that starch granules are characterized by presence of interlacing amorphous and crystalline regions. In this case polymer orientation using stretching of the obtained end product influences on its physical and mechanical  indices which are increasing due to polymer orientation. For the purpose of packaging orientation of polymer films can solve such important problems as significant improvement of operational properties, creation of  thermosetting film materials, improvement of qualitative indices of the recycled film.Results of the conducted research have proved the fact that it is necessary to make changes in technology in order to increase biological degradability of the recycled packaging made from polymers and improve physical and mechanical indices. In this regard film production technology presupposes usage of such substances as stark and others which are characterized by rather large presence of branch chains of molecules and interlacing amorphous and crystalline regions. Such approach makes it possible to obtain after-use package which is strong and quickly degradable by micro-organisms.

  4. Engineered biosynthesis of biodegradable polymers.

    Science.gov (United States)

    Jambunathan, Pooja; Zhang, Kechun

    2016-08-01

    Advances in science and technology have resulted in the rapid development of biobased plastics and the major drivers for this expansion are rising environmental concerns of plastic pollution and the depletion of fossil-fuels. This paper presents a broad view on the recent developments of three promising biobased plastics, polylactic acid (PLA), polyhydroxyalkanoate (PHA) and polybutylene succinate (PBS), well known for their biodegradability. The article discusses the natural and recombinant host organisms used for fermentative production of monomers, alternative carbon feedstocks that have been used to lower production cost, different metabolic engineering strategies used to improve product titers, various fermentation technologies employed to increase productivities and finally, the different downstream processes used for recovery and purification of the monomers and polymers.

  5. Synthetic biodegradable functional polymers for tissue engineering: a brief review

    OpenAIRE

    BaoLin, GUO; MA, Peter X.

    2014-01-01

    Scaffolds play a crucial role in tissue engineering. Biodegradable polymers with great processing flexibility are the predominant scaffolding materials. Synthetic biodegradable polymers with well-defined structure and without immunological concerns associated with naturally derived polymers are widely used in tissue engineering. The synthetic biodegradable polymers that are widely used in tissue engineering, including polyesters, polyanhydrides, polyphosphazenes, polyurethane, and poly (glyce...

  6. Biodegradable Polymers and Stem Cells for Bioprinting

    Directory of Open Access Journals (Sweden)

    Meijuan Lei

    2016-04-01

    Full Text Available It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.

  7. Biodegradable Polymers and Stem Cells for Bioprinting.

    Science.gov (United States)

    Lei, Meijuan; Wang, Xiaohong

    2016-04-29

    It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.

  8. Biodegradable Shape Memory Polymers in Medicine.

    Science.gov (United States)

    Peterson, Gregory I; Dobrynin, Andrey V; Becker, Matthew L

    2017-11-01

    Shape memory materials have emerged as an important class of materials in medicine due to their ability to change shape in response to a specific stimulus, enabling the simplification of medical procedures, use of minimally invasive techniques, and access to new treatment modalities. Shape memory polymers, in particular, are well suited for such applications given their excellent shape memory performance, tunable materials properties, minimal toxicity, and potential for biodegradation and resorption. This review provides an overview of biodegradable shape memory polymers that have been used in medical applications. The majority of biodegradable shape memory polymers are based on thermally responsive polyesters or polymers that contain hydrolyzable ester linkages. These materials have been targeted for use in applications pertaining to embolization, drug delivery, stents, tissue engineering, and wound closure. The development of biodegradable shape memory polymers with unique properties or responsiveness to novel stimuli has the potential to facilitate the optimization and development of new medical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.

    Science.gov (United States)

    Lu, Helen H; El-Amin, Saadiq F; Scott, Kimberli D; Laurencin, Cato T

    2003-03-01

    In the past decade, tissue engineering-based bone grafting has emerged as a viable alternative to biological and synthetic grafts. The biomaterial component is a critical determinant of the ultimate success of the tissue-engineered graft. Because no single existing material possesses all the necessary properties required in an ideal bone graft, our approach has been to develop a three dimensional (3-D), porous composite of polylactide-co-glycolide (PLAGA) and 45S5 bioactive glass (BG) that is biodegradable, bioactive, and suitable as a scaffold for bone tissue engineering (PLAGA-BG composite). The objectives of this study were to examine the mechanical properties of a PLAGA-BG matrix, to evaluate the response of human osteoblast-like cells to the PLAGA-BG composite, and to evaluate the ability of the composite to form a surface calcium phosphate layer in vitro. Structural and mechanical properties of PLAGA-BG were measured, and the formation of a surface calcium phosphate layer was evaluated by surface analysis methods. The growth and differentiation of human osteoblast-like cells on PLAGA-BG were also examined. A hypothesis was that the combination of PLAGA with BG would result in a biocompatible and bioactive composite, capable of supporting osteoblast adhesion, growth and differentiation, with mechanical properties superior to PLAGA alone. The addition of bioactive glass granules to the PLAGA matrix resulted in a structure with higher compressive modulus than PLAGA alone. Moreover, the PLAGA-BA composite was found to be a bioactive material, as it formed surface calcium phosphate deposits in a simulated body fluid (SBF), and in the presence of cells and serum proteins. The composite supported osteoblast-like morphology, stained positively for alkaline phosphatase, and supported higher levels of Type I collagen synthesis than tissue culture polystyrene controls. We have successfully developed a degradable, porous, polymer bioactive glass composite possessing

  10. Nanomembranes and Nanofibers from Biodegradable Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Jordi Puiggalí

    2013-09-01

    Full Text Available This review provides a current status report of the field concerning preparation of fibrous mats based on biodegradable (e.g., aliphatic polyesters such as polylactide or polycaprolactone and conducting polymers (e.g., polyaniline, polypirrole or polythiophenes. These materials have potential biomedical applications (e.g., tissue engineering or drug delivery systems and can be combined to get free-standing nanomembranes and nanofibers that retain the better properties of their corresponding individual components. Systems based on biodegradable and conducting polymers constitute nowadays one of the most promising solutions to develop advanced materials enable to cover aspects like local stimulation of desired tissue, time controlled drug release and stimulation of either the proliferation or differentiation of various cell types. The first sections of the review are focused on a general overview of conducting and biodegradable polymers most usually employed and the explanation of the most suitable techniques for preparing nanofibers and nanomembranes (i.e., electrospinning and spin coating. Following sections are organized according to the base conducting polymer (e.g., Sections 4–6 describe hybrid systems having aniline, pyrrole and thiophene units, respectively. Each one of these sections includes specific subsections dealing with applications in a nanofiber or nanomembrane form. Finally, miscellaneous systems and concluding remarks are given in the two last sections.

  11. Effect of electron beam irradiation on the enzymatic degradation of composites based on biodegradable polymers and coconut fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, Yasko; Bardi, Marcelo Augusto Goncalves; Machado, Luci Diva Brocardo, E-mail: ykodama@ipen.b, E-mail: marcelo.bardi@usp.b, E-mail: lmachado@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rosa, Derval dos Santos, E-mail: derval.rosa@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2011-07-01

    The development of polymeric materials that are susceptible to microbiological degradation and that have properties similar to the conventional polymers would reduce waste deposit. Degradable plastics suffer significant change on chemical structure when submitted to specific environmental condition. PCL and PLLA have been extensively investigated due to their bio-assimilation and because they are considered as eco-friendly. So the degradation of PCL and PLLA homopolymers, PCL:PLLA 20:80 (w:w) blend and coconut fiber-modified composites were studied by means of their degradation under lipase enzyme from Pseudomonas cepacia. Non-irradiated and EB-irradiated samples at 50 kGy and 100 kGy were exposed during 24, 72, 120 and 168 hours to the enzyme-buffer solution and the retained mass of dried samples was accompanied over time. The results were compared to the not submitted to the enzyme solution samples. Degradation rate of PCL was higher than PLLA in the presence of Pseudomonas lipase. PLLA presence reduced PCL's enzymatic degradation in the PCL:PLLA 20:80 w:w blend. After 120 h exposure, blend mass loss variation approached pure PLLA behavior. Composites degradation behavior through time was similar to the blend. Values of retained mass for composites were superior to the blends suggesting that coconut fiber did not significantly degrade in the period of test. Degradation rate of 50 kGy-irradiated PCL slightly reduced, and it was observed increase of degradation rate of samples irradiated with 100 kGy, probably attributed to its crystallinity decrease. Degradation rate of irradiated composite was similar to the blend, suggesting that fiber presence did not affect significantly this parameter. Samples tested during 168 h were affected by the water absorption by PLLA or coconut fibers through time testing. Studied samples degraded accentuatedly in the enzyme presence and were not negatively affected by the radiation processing. (author)

  12. Effect of electron beam irradiation on the enzymatic degradation of composites based on biodegradable polymers and coconut fiber

    International Nuclear Information System (INIS)

    Kodama, Yasko; Bardi, Marcelo Augusto Goncalves; Machado, Luci Diva Brocardo; Rosa, Derval dos Santos

    2011-01-01

    The development of polymeric materials that are susceptible to microbiological degradation and that have properties similar to the conventional polymers would reduce waste deposit. Degradable plastics suffer significant change on chemical structure when submitted to specific environmental condition. PCL and PLLA have been extensively investigated due to their bio-assimilation and because they are considered as eco-friendly. So the degradation of PCL and PLLA homopolymers, PCL:PLLA 20:80 (w:w) blend and coconut fiber-modified composites were studied by means of their degradation under lipase enzyme from Pseudomonas cepacia. Non-irradiated and EB-irradiated samples at 50 kGy and 100 kGy were exposed during 24, 72, 120 and 168 hours to the enzyme-buffer solution and the retained mass of dried samples was accompanied over time. The results were compared to the not submitted to the enzyme solution samples. Degradation rate of PCL was higher than PLLA in the presence of Pseudomonas lipase. PLLA presence reduced PCL's enzymatic degradation in the PCL:PLLA 20:80 w:w blend. After 120 h exposure, blend mass loss variation approached pure PLLA behavior. Composites degradation behavior through time was similar to the blend. Values of retained mass for composites were superior to the blends suggesting that coconut fiber did not significantly degrade in the period of test. Degradation rate of 50 kGy-irradiated PCL slightly reduced, and it was observed increase of degradation rate of samples irradiated with 100 kGy, probably attributed to its crystallinity decrease. Degradation rate of irradiated composite was similar to the blend, suggesting that fiber presence did not affect significantly this parameter. Samples tested during 168 h were affected by the water absorption by PLLA or coconut fibers through time testing. Studied samples degraded accentuatedly in the enzyme presence and were not negatively affected by the radiation processing. (author)

  13. Biodegradable composites based on L-polylactide and jute fibres

    DEFF Research Database (Denmark)

    Plackett, David; Løgstrup Andersen, T.; Batsberg Pedersen, W.

    2003-01-01

    Biodegradable polymers can potentially be combined with plant fibres to produce biodegradable composite materials. In our research, a commercial L-polylactide was converted to film and then used in combination with jute fibre mats to generate composites by a film stacking technique. Composite...... in the 180-220 degreesC range were significantly higher than those of polylactide alone. Composite samples failed in a brittle fashion under tensile load and showed little sign of fibre pull-out. Examination of composite fracture surfaces using electron microscopy showed voids occurring between the jute...

  14. State-of-the-art of biodegradable composite materials

    International Nuclear Information System (INIS)

    Baley, Ch.; Grohens, Y.; Pillin, I.

    2004-01-01

    Nowadays, the market demand for environment friendly materials is in strong growth. The biodegradable composites (biodegradable fibres and polymers) mainly extracted from renewable resources will be a major contributor to the production of new industrial high performance products partially solving the problem of waste management. At the end of the lifetime, a structural bio-composite could be be crushed and recycled through a controlled industrial composting process. This the state-of-the-art report focuses on the biopolymers the vegetable fibres properties, the mechanisms of biodegradation and the examples of biodegradable composites. Eco-design of new products requires these new materials for which a life cycle analysis is nevertheless necessary to validate their environmental benefits. (authors)

  15. Microgel polymer composite fibres

    OpenAIRE

    Kehren, Dominic

    2014-01-01

    In this thesis some novel ideas and advancements in the field of polymer composite fibres, specifically microgel-based polymer composite fibres have been achieved. The main task was to investigate and understand the electrospinning process of microgels and polymers and the interplay of parameter influences, in order to fabricate reproducible and continuously homogenous composite fibres. The main aim was to fabricate a composite material which combines the special properties of polymer fibres ...

  16. Tribology of natural fiber polymer composites

    CERN Document Server

    Chand, N

    2008-01-01

    Environmental concerns are driving demand for bio-degradable materials such as plant-based natural fiber reinforced polymer composites. These composites are fast replacing conventional materials in many applications, especially in automobiles, where tribology (friction, lubrication and wear) is important. This book covers the availability and processing of natural fiber polymer composites and their structural, thermal, mechanical and, in particular, tribological properties.Chapter 1 discusses sources of natural fibers, their extraction and surface modification. It also reviews the ther

  17. Aerogel / Polymer Composite Materials

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2017-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  18. Electrospun biodegradable polymers loaded with bactericide agents

    Directory of Open Access Journals (Sweden)

    Ramaz Katsarava

    2016-03-01

    Full Text Available Development of materials with an antimicrobial activity is fundamental for different sectors, including medicine and health care, water and air treatment, and food packaging. Electrospinning is a versatile and economic technique that allows the incorporation of different natural, industrial, and clinical agents into a wide variety of polymers and blends in the form of micro/nanofibers. Furthermore, the technique is versatile since different constructs (e.g. those derived from single electrospinning, co-electrospinning, coaxial electrospinning, and miniemulsion electrospinning can be obtained to influence the ability to load agents with different characteristics and stability and to modify the release behaviour. Furthermore, antimicrobial agents can be loaded during the electrospinning process or by a subsequent coating process. In order to the mitigate burst release effect, it is possible to encapsulate the selected drug into inorganic nanotubes and nanoparticles, as well as in organic cyclodextrine polysaccharides. In the same way, processes that involve covalent linkage of bactericide agents during surface treatment of electrospun samples may also be considered. The present review is focused on more recent works concerning the electrospinning of antimicrobial polymers. These include chitosan and common biodegradable polymers with activity caused by the specific load of agents such as metal and metal oxide particles, quaternary ammonium compounds, hydantoin compounds, antibiotics, common organic bactericides, and bacteriophages.

  19. Critical evaluation of biodegradable polymers used in nanodrugs

    Science.gov (United States)

    Marin, Edgar; Briceño, Maria Isabel; Caballero-George, Catherina

    2013-01-01

    Use of biodegradable polymers for biomedical applications has increased in recent decades due to their biocompatibility, biodegradability, flexibility, and minimal side effects. Applications of these materials include creation of skin, blood vessels, cartilage scaffolds, and nanosystems for drug delivery. These biodegradable polymeric nanoparticles enhance properties such as bioavailability and stability, and provide controlled release of bioactive compounds. This review evaluates the classification, synthesis, degradation mechanisms, and biological applications of the biodegradable polymers currently being studied as drug delivery carriers. In addition, the use of nanosystems to solve current drug delivery problems are reviewed. PMID:23990720

  20. Biodegraded polymers as materials for sowing of grain crops seeds

    Directory of Open Access Journals (Sweden)

    L. S. Shibryaeva

    2015-01-01

    Full Text Available Increase of efficiency of grain production, solution of problems of food security demand search and development of innovative technologies at all stages. One of ways of environmentally friendly production is sowing of seeds on an excipient located in the soil, for example, nonwoven fabric made of eco- decomposable decomposed biodegraded polymer. Biodegraded polymeric materials influence on sowing properties of grain crops seeds and provide realization of their potential productivity. The authors used an electroforming method with chloroform and a dichloroethane application to receive nonwoven fabric from poly-3-hydroxybutyrate (PHB and its compositions together with synthetic nitrile rubber (PHB-SNR. Polymeric material influences on energy of germination and viability of wheat seeds. Germination index is calculated, heat physical parameters are determined for the polymeric excipient. The major factor influencing seeds germination is a structure of nonwoven fabric. Water diffusion, its supply to seeds and their viability depend on morphological features of polymeric material. Polymer excipient structure influence on speed of development of root system on which, in turn, intensity of destruction of polymer depends. The best indicators of energy of germination and viability of seeds correspond to the greatest value of decrease of melting heat of PHB in mix PHB-SNR. In addition, among the studied samples of PHB-SNR the material received from blend of solvents is most effective. The cause is in feature of its structure favorable for a seed germination.

  1. Control of colloidal CaCO3 suspension by using biodegradable polymers during fabrication

    Directory of Open Access Journals (Sweden)

    Nemany Abdelhamid Nemany Hanafy

    2015-03-01

    The aim of this work was to investigate the synthesis process of CaCO3 particles in different experimental conditions: calcium carbonate was produced in presence and in absence of water and with addition of appropriate polymers. In particular, chitosan (CHI and poly acrylic acid (PAA were chosen as biodegradable polymers whereas PSS and PAH were chosen as non-biodegradable polymers. Shape and diameter of particles were investigated by using transmission and scanning electron microscopy, elemental composition was inferred by energy dispersive X-ray analyses whereas their charges were explored by using zeta potential.

  2. Modern mass spectrometry in the characterization and degradation of biodegradable polymers

    International Nuclear Information System (INIS)

    Rizzarelli, Paola; Carroccio, Sabrina

    2014-01-01

    Graphical abstract: -- Highlights: •Recent trends in the structural characterization of biodegradable polymers by MALDI and ESI MS are discussed. •MALDI MS as a noteworthy tool to follow the synthetic polymerization route of biodegradable materials is evidenced. •Elucidation of degradation mechanisms by modern MS techniques is examined. •ESI MS and HPLC–ESI MS are highlighted as highly suitable methods for structural and quantitative analysis of water-soluble biodegradation products. •Novel MS methods developed ad hoc and new MALDI matrices for biodegradable polymers are reviewed. -- Abstract: In the last decades, the solid-waste management related to the extensively growing production of plastic materials, in concert with their durability, have stimulated increasing interest in biodegradable polymers. At present, a variety of biodegradable polymers has already been introduced onto the market and can now be competitive with non biodegradable thermoplastics in different fields (packaging, biomedical, textile, etc.). However, a significant economical effort is still directed in tailoring structural properties in order to further broaden the range of applications without impairing biodegradation. Improving the performance of biodegradable materials requires a good characterization of both physico-chemical and mechanical parameters. Polymer analysis can involve many different features including detailed characterization of chemical structures and compositions as well as average molecular mass determination. It is of outstanding importance in troubleshooting of a polymer manufacturing process and for quality control, especially in biomedical applications. This review describes recent trends in the structural characterization of biodegradable materials by modern mass spectrometry (MS). It provides an overview of the analytical tools used to evaluate their degradation. Several successful applications of MALDI-TOF MS (matrix assisted laser desorption ionization

  3. Modern mass spectrometry in the characterization and degradation of biodegradable polymers

    Energy Technology Data Exchange (ETDEWEB)

    Rizzarelli, Paola, E-mail: paola.rizzarelli@cnr.it; Carroccio, Sabrina

    2014-01-15

    Graphical abstract: -- Highlights: •Recent trends in the structural characterization of biodegradable polymers by MALDI and ESI MS are discussed. •MALDI MS as a noteworthy tool to follow the synthetic polymerization route of biodegradable materials is evidenced. •Elucidation of degradation mechanisms by modern MS techniques is examined. •ESI MS and HPLC–ESI MS are highlighted as highly suitable methods for structural and quantitative analysis of water-soluble biodegradation products. •Novel MS methods developed ad hoc and new MALDI matrices for biodegradable polymers are reviewed. -- Abstract: In the last decades, the solid-waste management related to the extensively growing production of plastic materials, in concert with their durability, have stimulated increasing interest in biodegradable polymers. At present, a variety of biodegradable polymers has already been introduced onto the market and can now be competitive with non biodegradable thermoplastics in different fields (packaging, biomedical, textile, etc.). However, a significant economical effort is still directed in tailoring structural properties in order to further broaden the range of applications without impairing biodegradation. Improving the performance of biodegradable materials requires a good characterization of both physico-chemical and mechanical parameters. Polymer analysis can involve many different features including detailed characterization of chemical structures and compositions as well as average molecular mass determination. It is of outstanding importance in troubleshooting of a polymer manufacturing process and for quality control, especially in biomedical applications. This review describes recent trends in the structural characterization of biodegradable materials by modern mass spectrometry (MS). It provides an overview of the analytical tools used to evaluate their degradation. Several successful applications of MALDI-TOF MS (matrix assisted laser desorption ionization

  4. New biocomposites based on bioplastic flax fibers and biodegradable polymers.

    Science.gov (United States)

    Wróbel-Kwiatkowska, Magdalena; Czemplik, Magdalena; Kulma, Anna; Zuk, Magdalena; Kaczmar, Jacek; Dymińska, Lucyna; Hanuza, Jerzy; Ptak, Maciej; Szopa, Jan

    2012-01-01

    A new generation of entirely biodegradable and bioactive composites with polylactic acid (PLA) or poly-ε-caprolactone (PCL) as the matrix and bioplastic flax fibers as reinforcement were analyzed. Bioplastic fibers contain polyhydroxybutyrate and were obtained from transgenic flax. Biochemical analysis of fibers revealed presence of several antioxidative compounds of hydrophilic (phenolics) and hydrophobic [cannabidiol (CBD), lutein] nature, indicating their high antioxidant potential. The presence of CBD and lutein in flax fibers is reported for the first time. FTIR analysis showed intermolecular hydrogen bonds between the constituents in composite PLA+flax fibers which were not detected in PCL-based composite. Mechanical analysis of prepared composites revealed improved stiffness and a decrease in tensile strength. The viability of human dermal fibroblasts on the surface of composites made of PLA and transgenic flax fibers was the same as for cells cultured without composites and only slightly lower (to 9%) for PCL-based composites. The amount of platelets and Escherichia coli cells aggregated on the surface of the PLA based composites was significantly lower than for pure polymer. Thus, composites made of PLA and transgenic flax fibers seem to have bacteriostatic, platelet anti-aggregated, and non-cytotoxic effect. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  5. Methods for Evaluating the Biodegradability of Environmentally Degradable Polymers

    NARCIS (Netherlands)

    Zee, van der M.

    2014-01-01

    This chapter presents an overview of the current knowledge on experimental methods for monitoring the biodegradability of polymeric materials. The focus is, in particular, on the biodegradation of materials under environmental conditions. Examples of in vivo degradation of polymers used in

  6. Computational analysis for biodegradation of exogenously depolymerizable polymer

    Science.gov (United States)

    Watanabe, M.; Kawai, F.

    2018-03-01

    This study shows that microbial growth and decay in a biodegradation process of exogenously depolymerizable polymer are controlled by consumption of monomer units. Experimental outcomes for residual polymer were incorporated in inverse analysis for a degradation rate. The Gauss-Newton method was applied to an inverse problem for two parameter values associated with the microbial population. A biodegradation process of polyethylene glycol was analyzed numerically, and numerical outcomes were obtained.

  7. Modern mass spectrometry in the characterization and degradation of biodegradable polymers.

    Science.gov (United States)

    Rizzarelli, Paola; Carroccio, Sabrina

    2014-01-15

    In the last decades, the solid-waste management related to the extensively growing production of plastic materials, in concert with their durability, have stimulated increasing interest in biodegradable polymers. At present, a variety of biodegradable polymers has already been introduced onto the market and can now be competitive with non biodegradable thermoplastics in different fields (packaging, biomedical, textile, etc.). However, a significant economical effort is still directed in tailoring structural properties in order to further broaden the range of applications without impairing biodegradation. Improving the performance of biodegradable materials requires a good characterization of both physico-chemical and mechanical parameters. Polymer analysis can involve many different features including detailed characterization of chemical structures and compositions as well as average molecular mass determination. It is of outstanding importance in troubleshooting of a polymer manufacturing process and for quality control, especially in biomedical applications. This review describes recent trends in the structural characterization of biodegradable materials by modern mass spectrometry (MS). It provides an overview of the analytical tools used to evaluate their degradation. Several successful applications of MALDI-TOF MS (matrix assisted laser desorption ionization time of flight) and ESI MS (electrospray mass spectrometry) for the determination of the structural architecture of biodegradable macromolecules, including their topology, composition, chemical structure of the end groups have been reported. However, MS methodologies have been recently applied to evaluate the biodegradation of polymeric materials. ESI MS represents the most useful technique for characterizing water-soluble polymers possessing different end group structures, with the advantage of being easily interfaced with solution-based separation techniques such as high-performance liquid

  8. Biodegradable polymers for targeted delivery of anti-cancer drugs.

    Science.gov (United States)

    Doppalapudi, Sindhu; Jain, Anjali; Domb, Abraham J; Khan, Wahid

    2016-06-01

    Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.

  9. Bio-Based Polymers with Potential for Biodegradability

    Directory of Open Access Journals (Sweden)

    Thomas F. Garrison

    2016-07-01

    Full Text Available A variety of renewable starting materials, such as sugars and polysaccharides, vegetable oils, lignin, pine resin derivatives, and proteins, have so far been investigated for the preparation of bio-based polymers. Among the various sources of bio-based feedstock, vegetable oils are one of the most widely used starting materials in the polymer industry due to their easy availability, low toxicity, and relative low cost. Another bio-based plastic of great interest is poly(lactic acid (PLA, widely used in multiple commercial applications nowadays. There is an intrinsic expectation that bio-based polymers are also biodegradable, but in reality there is no guarantee that polymers prepared from biorenewable feedstock exhibit significant or relevant biodegradability. Biodegradability studies are therefore crucial in order to assess the long-term environmental impact of such materials. This review presents a brief overview of the different classes of bio-based polymers, with a strong focus on vegetable oil-derived resins and PLA. An entire section is dedicated to a discussion of the literature addressing the biodegradability of bio-based polymers.

  10. Conductive polymer composition

    NARCIS (Netherlands)

    2010-01-01

    The present invention relates to a process for the preparation of a conductive polymer composition comprising graphene and the articles obtained by this process. The process comprises the following steps: A) contacting graphite oxide in an aqueous medium with a water-soluble or dispersible

  11. Bamboo reinforced polymer composite - A comprehensive review

    Science.gov (United States)

    Roslan, S. A. H.; Rasid, Z. A.; Hassan, M. Z.

    2018-04-01

    Bamboo has greatly attention of researchers due to their advantages over synthetic polymers. It is entirely renewable, environmentally-friendly, non-toxic, cheap, non-abrasive and fully biodegradable. This review paper summarized an oveview of the bamboo, fiber extraction and mechanical behavior of bamboo reinforced composites. A number of studies proved that mechanical properties of bamboo fibers reinforced reinforced polymer composites are excellent and competent to be utilized in high-tech applications. The properties of the laminate are influenced by the fiber loading, fibre orientation, physical and interlaminar adhesion between fibre and matrix. In contrast, the presence of chemical constituents such as cellulose, lignin, hemicellulose and wax substances in natural fibres preventing them from firmly binding with polymer resin. Thus, led to poor mechanical properties for composites. Many attempt has been made in order to overcome this issue by using the chemical treatment.

  12. Study on the Antimicrobial Properties of Citrate-Based Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Lee-Chun eSu

    2014-07-01

    Full Text Available Citrate-based polymers possess unique advantages for various biomedical applications since citric acid is a natural metabolism product, which is biocompatible and antimicrobial. In polymer synthesis, citric acid also provides multiple functional groups to control the crosslinking of polymers and active binding sites for further conjugation of biomolecules. Our group recently developed a number of citrate-based polymers for various biomedical applications by taking advantage of their controllable chemical, mechanical, and biological characteristics. In this study, various citric acid derived biodegradable polymers were synthesized and investigated for their physicochemical and antimicrobial properties. Results indicate that citric acid derived polymers reduced bacterial proliferation to different degrees based on their chemical composition. Among the studied polymers, poly(octamethylene citrate (POC showed approximately 70-80% suppression to microbe proliferation, owing to its relatively higher ratio of citric acid contents. Crosslinked urethane-doped polyester elastomers (CUPEs and biodegradable photoluminescent polymers (BPLPs also exhibited significant bacteria reduction of ~20% and ~50% for Staphylococcus aureus and Escherichia coli, respectively. Thus, the intrinsic antibacterial properties in citrate-based polymers enable them to inhibit bacteria growth without incorporation of antibiotics, silver nanoparticles, and other traditional bacteria-killing agents suggesting that they are unique beneficial materials for wound dressing, tissue engineering, and other potential medical applications where antimicrobial property is desired.

  13. Precursor polymer compositions comprising polybenzimidazole

    Science.gov (United States)

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.

    2015-07-14

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  14. Biodegradation of Synthetic Polymers by Composting and Fungal Treatment

    Czech Academy of Sciences Publication Activity Database

    Šašek, Václav; Vitásek, J.; Chromcová, D.; Prokopová, I.; Brožek, J.; Náhlík, J.

    2006-01-01

    Roč. 51, č. 5 (2006), s. 425-430 ISSN 0015-5632 R&D Projects: GA ČR GA203/03/0508 Institutional research plan: CEZ:AV0Z50200510 Keywords : biodegradation * composting * synthetic polymers Subject RIV: EE - Microbiology, Virology Impact factor: 0.963, year: 2006

  15. Identification of market bags composition for biodegradable and oxo-biodegradable samples through thermal analysis in inert and oxidizer atmosphere

    International Nuclear Information System (INIS)

    Finzi-Quintao, Cristiane M.; Novack, Katia M.

    2015-01-01

    Plastic films used to make market bags are based on polymers such as polyethylene, polystyrene and polypropylene, these materials require a long time to degrade in the environment. The alternative technologies of polymers have been developed to reduce the degradation time and the impact on the environment caused by the conventional materials, using pro-degrading additives or by the development biodegradable polymers. In Brazil, the laws of some municipalities require the use of biodegradable material in the production of market bags but the absence of specific surveillance policies makes its chemical composition unknown. In this paper, we analyzed 7 samples that was obtained from a a trading company and commercial market of Belo Horizonte . The samples were characterized by TGA / DTA , XRF , FTIR and MEV which allowed the identification and evaluation of the thermal behavior of the material in inert and oxidizing atmosphere. (author)

  16. Biodegradability and biodegradation rate of poly(caprolactone)-starch blend and poly(butylene succinate) biodegradable polymer under aerobic and anaerobic environment.

    Science.gov (United States)

    Cho, H S; Moon, H S; Kim, M; Nam, K; Kim, J Y

    2011-03-01

    The biodegradability and the biodegradation rate of two kinds biodegradable polymers; poly(caprolactone) (PCL)-starch blend and poly(butylene succinate) (PBS), were investigated under both aerobic and anaerobic conditions. PCL-starch blend was easily degraded, with 88% biodegradability in 44 days under aerobic conditions, and showed a biodegradation rate of 0.07 day(-1), whereas the biodegradability of PBS was only 31% in 80 days under the same conditions, with a biodegradation rate of 0.01 day(-1). Anaerobic bacteria degraded well PCL-starch blend (i.e., 83% biodegradability for 139 days); however, its biodegradation rate was relatively slow (6.1 mL CH(4)/g-VS day) compared to that of cellulose (13.5 mL CH(4)/g-VS day), which was used as a reference material. The PBS was barely degraded under anaerobic conditions, with only 2% biodegradability in 100 days. These results were consistent with the visual changes and FE-SEM images of the two biodegradable polymers after the landfill burial test, showing that only PCL-starch blend had various sized pinholes on the surface due to attack by microorganisms. This result may be use in deciding suitable final disposal approaches of different types of biodegradable polymers in the future. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Novel bio-based and biodegradable polymer blends

    Science.gov (United States)

    Yang, Shengzhe

    Most plastic materials, including high performance thermoplastics and thermosets are produced entirely from petroleum-based products. The volatility of the natural oil markets and the increasing cost of petroleum have led to a push to reduce the dependence on petroleum products. Together with an increase in environmental awareness, this has promoted the use of alternative, biorenewable, environmentally-friendly products, such as biomass. The growing interest in replacing petroleum-based products by inexpensive, renewable, natural materials is important for sustainable development into the future and will have a significant impact on the polymer industry and the environment. This thesis involved characterization and development of two series of novel bio-based polymer blends, namely polyhydroxyalkanoate (PHA)/polyamide (PA) and poly(lactic acid) (PLA)/soy protein. Blends with different concentrations and compatible microstructures were prepared using twin-screw extruder. For PHA/PA blends, the poor mechanical properties of PHA improved significantly with an excellent combination of strength, stiffness and toughness by adding PA. Furthermore, the effect of blending on the viscoelastic properties has been investigated using small-amplitude oscillatory shear flow experiments as a function of blend composition and angular frequency. The elastic shear modulus (G‧) and complex viscosity of the blends increased significantly with increasing the concentration of PHA. Blending PLA with soy protein aims at reducing production cost, as well as accelerating the biodegradation rate in soil medium. In this work, the mechanical, thermal and morphological properties of the blends were investigated using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile tests.

  18. Role of different biodegradable polymers on the permeability of ciprofloxacin

    OpenAIRE

    Chakraborti, Chandra Kanti; Sahoo, Subhashree; Behera, Pradipta Kumar

    2014-01-01

    Since permeability across biological membranes is a key factor in the absorption and distribution of drugs, drug permeation characteristics of three oral suspensions of ciprofloxacin were designed and compared. The three suspensions of ciprofloxacin were prepared by taking biodegradable polymers such as carbopol 934, carbopol 940, and hydroxypropyl methylcellulose (HPMC). The permeability study was performed by using a Franz diffusion cell through both synthetic cellulose acetate membrane and...

  19. Micro fabrication of biodegradable polymer drug delivery devices

    DEFF Research Database (Denmark)

    Nagstrup, Johan

    The pharmaceutical industry is presently facing several obstacles in developing oral drug delivery systems. This is primarily due to the nature of the discovered drug candidates. The discovered drugs often have poor solubility and low permeability across the gastro intestinal epithelium. Furtherm......The pharmaceutical industry is presently facing several obstacles in developing oral drug delivery systems. This is primarily due to the nature of the discovered drug candidates. The discovered drugs often have poor solubility and low permeability across the gastro intestinal epithelium...... permeability and degradation. These systems are for the majority based on traditional materials used in micro technology, such as SU-8, silicon, poly(methyl methacrylate). The next step in developing these new drug delivery systems is to replace classical micro fabrication materials with biodegradable polymers....... In order to successfully do this, methods for fabricating micro structures in biodegradable polymers need to be developed. The goal of this project has been to develop methods for micro fabrication in biodegradable polymers and to use these methods to produce micro systems for oral drug delivery. This has...

  20. Application of Composite Polymer Electrolytes

    National Research Council Canada - National Science Library

    Scrosati, Bruno

    2001-01-01

    ...)PEO-based composite polymer electrolytes, by a series of specifically addressed electrochemical tests which included the determination of the conductivity and of the lithium transference number...

  1. Nanofibers extraction from palm mesocarp fiber for biodegradable polymers incorporation

    International Nuclear Information System (INIS)

    Kuana, Vanessa A.; Rodrigues, Vanessa B.; Takahashi, Marcio C.; Campos, Adriana de; Sena Neto, Alfredo R.; Mattoso, Luiz H.C.; Marconcini, Jose M.

    2015-01-01

    The palm mesocarp fibers are residues produced by the palm oil industries. The objective of this paper is to determine an efficient treatment to extract crystal cellulose nanofibers from the palm mesocarp fibers to be incorporated in biodegradable polymeric composites. The fibers were saponified, bleached and analyzed with thermal gravimetric analysis, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. (author)

  2. Biodegradable-Polymer Biolimus-Eluting Stents versus Durable-Polymer Everolimus-Eluting Stents at One-Year Follow-Up: A Registry-Based Cohort Study.

    Science.gov (United States)

    Parsa, Ehsan; Saroukhani, Sepideh; Majlessi, Fereshteh; Poorhosseini, Hamidreza; Lofti-Tokaldany, Masoumeh; Jalali, Arash; Salarifar, Mojtaba; Nematipour, Ebrahim; Alidoosti, Mohammad; Aghajani, Hassan; Amirzadegan, Alireza; Kassaian, Seyed Ebrahim

    2016-04-01

    We compared outcomes of percutaneous coronary intervention patients who received biodegradable-polymer biolimus-eluting stents with those who received durable-polymer everolimus-eluting stents. At Tehran Heart Center, we performed a retrospective analysis of the data from January 2007 through December 2011 on 3,270 consecutive patients with coronary artery disease who underwent percutaneous coronary intervention with the biodegradable-polymer biolimus-eluting stent or the durable-polymer everolimus-eluting stent. We excluded patients with histories of coronary artery bypass grafting or percutaneous coronary intervention, acute ST-segment-elevation myocardial infarction, or the implantation of 2 different stent types. Patients were monitored for 12 months. The primary endpoint was a major adverse cardiac event, defined as a composite of death, nonfatal myocardial infarction, and target-vessel and target-lesion revascularization. Durable-polymer everolimus-eluting stents were implanted in 2,648 (81%) and biodegradable-polymer biolimus-eluting stents in 622 (19%) of the study population. There was no significant difference between the 2 groups (2.7% vs 2.7%; P=0.984) in the incidence of major adverse cardiac events. The cumulative adjusted probability of major adverse cardiac events in the biodegradable-polymer biolimus-eluting stent group did not differ from that of such events in the durable-polymer everolimus-eluting stent group (hazard ratio=0.768; 95% confidence interval, 0.421-1.44; P=0.388). We conclude that in our patients the biodegradable-polymer biolimus-eluting stent was as effective and safe, during the 12-month follow-up period, as was the durable-polymer everolimus-eluting stent.

  3. Comparison of Durable-Polymer Zotarolimus-Eluting and Biodegradable-Polymer Biolimus-Eluting Coronary Stents in Patients With Coronary Artery Disease

    DEFF Research Database (Denmark)

    Raungaard, Bent; Christiansen, Evald H; Bøtker, Hans Erik

    2017-01-01

    artery disease or acute coronary syndromes and at least 1 coronary artery lesion requiring treatment with a drug-eluting stent. Endpoints included major adverse cardiac events (MACE), a composite of safety (cardiac death and myocardial infarction not clearly attributable to a non-target lesion......OBJECTIVES: The authors sought to compare the safety and efficacy of the biocompatible durable-polymer zotarolimus-eluting stent with the biodegradable-polymer biolimus-eluting stent in unselected coronary patients. BACKGROUND: Biodegradable-polymer biolimus-eluting stents are superior to first......-generation durable-polymer drug-eluting stents in long-term randomized all-comer trials. Long-term data comparing them to second-generation durable-polymer drug-eluting stents are lacking. METHODS: The study was a randomized, multicenter, all-comer, noninferiority trial in patients with chronic stable coronary...

  4. Zotarolimus-eluting durable-polymer-coated stent versus a biolimus-eluting biodegradable-polymer-coated stent in unselected patients undergoing percutaneous coronary intervention (SORT OUT VI)

    DEFF Research Database (Denmark)

    Raungaard, Bent; Jensen, Lisette Okkels; Tilsted, Hans-Henrik

    2015-01-01

    BACKGROUND: New-generation drug-eluting coronary stents have reduced the risk of coronary events, especially in patients with complex disease or lesions. To what extent different stent platforms, polymers, and antiproliferative drugs affect outcomes, however, is unclear. We investigated the safety...... and efficacy of a third-generation stent by comparing a highly biocompatible durable-polymer-coated zotarolimus-eluting stent with a biodegradable-polymer-coated biolimus-eluting stent. METHODS: This open-label, randomised, multicentre, non-inferiority trial was done at three sites across western Denmark. All......-polymer zotarolimus-eluting stent or the biodegradable-polymer biolimus-eluting stent. The primary endpoint was a composite of safety (cardiac death and myocardial infarction not clearly attributable to a non-target lesion) and efficacy (target-lesion revascularisation) at 12 months, analysed by intention to treat...

  5. Radiation processing of biodegradable polymer and hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Fumio [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Poly({epsilon}-caprolactone), PCL, (melting temperature 60degC) was gamma-irradiated in the solid state at 30 to 55degC, the molten state, and the supercooled state(irradiation at 45 to 55degC after melting, 80degC) under vacuum to improve its heat resistance. Irradiation of PCL in the supercooled state led to the highest gel content and this polymer has high heat resistance. On the other hand, relatively smaller doses such as 15 and 30 kGy were effective to improve processability of PCL by formation of branch structure during irradiation. It was found that carboxymethylcellulose with relatively high degree of substitution led crosslinking at high concentration in aqueous solution such as 10% by irradiation. (author)

  6. Radiation processing of biodegradable polymer and hydrogel

    International Nuclear Information System (INIS)

    Yoshii, Fumio

    2000-01-01

    Poly(ε-caprolactone), PCL, (melting temperature 60degC) was gamma-irradiated in the solid state at 30 to 55degC, the molten state, and the supercooled state(irradiation at 45 to 55degC after melting, 80degC) under vacuum to improve its heat resistance. Irradiation of PCL in the supercooled state led to the highest gel content and this polymer has high heat resistance. On the other hand, relatively smaller doses such as 15 and 30 kGy were effective to improve processability of PCL by formation of branch structure during irradiation. It was found that carboxymethylcellulose with relatively high degree of substitution led crosslinking at high concentration in aqueous solution such as 10% by irradiation. (author)

  7. Biodegradable polymer nanocomposites based on natural nanotubes: effect of magnetically modified halloysite on the behaviour of polycaprolactone

    Czech Academy of Sciences Publication Activity Database

    Khunová, V.; Šafařík, Ivo; Škrátek, M.; Kelnar, Ivan; Tomanová, K.

    2016-01-01

    Roč. 51, č. 3 (2016), s. 435-444 ISSN 0009-8558 R&D Projects: GA ČR(CZ) GA13-15255S Institutional support: RVO:60077344 ; RVO:61389013 Keywords : magnetically modified HNTs * biodegradable polymer nanocomposites * polycaprolactone Subject RIV: CD - Macromolecular Chemistry ; JI - Composite Materials (UMCH-V) Impact factor: 1.052, year: 2016

  8. Wear of polymers and composites

    CERN Document Server

    Abdelbary, Ahmed

    2015-01-01

    In the field of tribology, the wear behaviour of polymers and composite materials is considered a highly non-linear phenomenon. Wear of Polymers and Composites introduces fundamentals of polymers and composites tribology. The book suggests a new approach to explore the effect of applied load and surface defects on the fatigue wear behaviour of polymers, using a new tribometer and thorough experiments. It discusses effects of surface cracks, under different static and cyclic loading parameters on wear, and presents an intelligent algorithm, in the form of a neural network, to map the relations

  9. Measuring the Biodegradability of Plastic Polymers in Olive-Mill Waste Compost with an Experimental Apparatus

    Directory of Open Access Journals (Sweden)

    Francesco Castellani

    2016-01-01

    Full Text Available The use of biodegradable polymers is spreading in agriculture to replace those materials derived from petroleum, thus reducing the environmental concerns. However, to issue a significant assessment, biodegradation rate must be measured in case-specific standardized conditions. In accordance with ISO 14855-1, we designed and used an experimental apparatus to evaluate the biodegradation rate of three biopolymers based on renewable resources, two poly(ε-caprolactone (PCL composites, and a compatibilized polylactic acid and polybutyrate (PLA/PBAT blend. Biodegradation tests were carried out under composting condition using mature olive-mill waste (OMW compost as inoculum. Carbon dioxide emissions were automatically recorded by infrared gas detectors and also trapped in saturated Ba(OH2 solution and evaluated via a standard titration method to check the results. Some of the samples reached more than 80% biodegradation in less than 20 days. Both the experimental apparatus and the OMW compost showed to be suitable for the cases studied.

  10. Wood and concrete polymer composites

    International Nuclear Information System (INIS)

    Singer, K.

    1974-01-01

    There are several ways to prepare and use wood and concrete polymer composites. The most important improvements in the case of concrete polymer composites are obtained for compressive and tensile strengths. The progress in this field in United States and other countries is discussed in this rview. (M.S.)

  11. Multilayer Electroactive Polymer Composite Material

    Science.gov (United States)

    Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Park, Cheol (Inventor); Draughon, Gregory K. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  12. A phenomenological constitutive model for the nonlinear viscoelastic responses of biodegradable polymers

    KAUST Repository

    Khan, Kamran; El Sayed, Tamer S.

    2012-01-01

    We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer

  13. Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering

    CERN Document Server

    Sultana, Naznin

    2013-01-01

    This book addresses the principles, methods and applications of biodegradable polymer based scaffolds for bone tissue engineering. The general principle of bone tissue engineering is reviewed and the traditional and novel scaffolding materials, their properties and scaffold fabrication techniques are explored. By acting as temporary synthetic extracellular matrices for cell accommodation, proliferation, and differentiation, scaffolds play a pivotal role in tissue engineering. This book does not only provide the comprehensive summary of the current trends in scaffolding design but also presents the new trends and directions for scaffold development for the ever expanding tissue engineering applications.

  14. The Recent Developments in Biobased Polymers toward General and Engineering Applications : Polymers that Are Upgraded from Biodegradable Polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed

    NARCIS (Netherlands)

    Nakajima, Hajime; Dijkstra, Peter; Loos, Katja

    2017-01-01

    The main motivation for development of biobased polymers was their biodegradability, which is becoming important due to strong public concern about waste. Reflecting recent changes in the polymer industry, the sustainability of biobased polymers allows them to be used for general and engineering

  15. Characterization of biodegradable polymers irradiated with swift heavy ions

    International Nuclear Information System (INIS)

    Salguero, N.G.; Grosso, M.F. del; Durán, H.; Peruzzo, P.J.; Amalvy, J.I.

    2012-01-01

    In view of their application as biomaterials, there is an increasing interest in developing new methods to induce controlled cell adhesion onto polymeric materials. The critical step in all these methods involves the modification of polymer surfaces, to induce cell adhesion, without changing theirs degradation and biocompatibility properties. In this work two biodegradable polymers, polyhydroxybutyrate (PHB) and poly-L-lactide acid (PLLA) were irradiated using carbon and sulfur beams with different energies and fluences. Pristine and irradiated samples were degradated by immersion in a phosphate buffer at pH 7.0 and then characterized. The analysis after irradiation and degradation showed a decrease in the contact angle values and changes in their crystallinity properties.

  16. Characterization of biodegradable polymers irradiated with swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Salguero, N.G. [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA, Av. Gral. Paz 1499 (B1650KNA) San Martin, Buenos Aires (Argentina); Grosso, M.F. del, E-mail: delgrosso@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA, Av. Gral. Paz 1499 (B1650KNA) San Martin, Buenos Aires (Argentina); CONICET, Av. Rivadavia 1917 C1033AAJ CABA (Argentina); Duran, H. [CONICET, Av. Rivadavia 1917 C1033AAJ CABA (Argentina); Gerencia de Desarrollo Tecnologico y Proyectos Especiales, CNEA, Av. Gral. Paz 1499 (B1650KNA) San Mart Latin-Small-Letter-Dotless-I Acute-Accent n, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, H. Yrigoyen 3100, CP 1650, San Martin, UNSAM (Argentina); Peruzzo, P.J. [CICPBA - Grupo de Materiales y Nanomateriales Polimericos, Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), CCT La Plata CONICET - Universidad Nacional de La Plata, La Plata (Argentina); Amalvy, J.I. [CICPBA - Grupo de Materiales y Nanomateriales Polimericos, Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), CCT La Plata CONICET - Universidad Nacional de La Plata, La Plata (Argentina); Facultad de Ingenieria, Universidad Nacional de La Plata, Calle 116 y 48 (B1900TAG), La Plata (Argentina); Departamento de Ingenieria Quimica, Facultad Regional La Plata, Universidad Tecnologica Nacional, 60 y 124 (1900), La Plata (Argentina); and others

    2012-02-15

    In view of their application as biomaterials, there is an increasing interest in developing new methods to induce controlled cell adhesion onto polymeric materials. The critical step in all these methods involves the modification of polymer surfaces, to induce cell adhesion, without changing theirs degradation and biocompatibility properties. In this work two biodegradable polymers, polyhydroxybutyrate (PHB) and poly-L-lactide acid (PLLA) were irradiated using carbon and sulfur beams with different energies and fluences. Pristine and irradiated samples were degradated by immersion in a phosphate buffer at pH 7.0 and then characterized. The analysis after irradiation and degradation showed a decrease in the contact angle values and changes in their crystallinity properties.

  17. Radiation processing of biodegradable polymer hydrogel from cellulose derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Wach, Radoslaw A.; Mitomo, Hiroshi [Gunma Univ., Faculty of Engineering, Department of Biological and Chemical Engineering, Kiryu, Gunma (Japan); Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    The effects of high-energy radiation on ethers of cellulose: carboxymethyl-, hydroxypropyl- and hydroxyethylcellulose have been investigated. Polymers were irradiated in solid state and aqueous solution at various concentrations. Degree of substitution (DS), the concentration in the solution and irradiation conditions had a significant impact on the obtained products. Irradiation of polymers in solid and in diluted solution resulted in their degradation. A novel hydrogels of such natural polymers were synthesized, without using any additives, by irradiation at high concentration. It was found that high DS of CMC promoted crosslinking and, for all of the ethers, the gel formation occurred easier for more concentrated solutions. Paste-like form of the initial material, when water plasticised the bulk of polymer mass, along with the high dose rate and preventing oxygen accessibility to the sample during irradiation were favorable for hydrogel preparation. Up to 95% of gel fraction was obtained from 50 and 60% CMC solutions irradiated by gamma rays or by a beam of accelerated electrons (EB). The other polymers were more sensitive to the dose rate and formed gels with higher gel fraction while processed by EB. Moreover, polymers (except CMC) treated by gamma rays were susceptible to degradation after application of a dose over 50-100 kGy. The presence of oxygen in the system during irradiation limited a gel content and was prone to easier degradation of already formed gel. Produced hydrogels swelled markedly by absorption when paced in the solvent. Crosslinked polymers showed susceptibility to degradation by cellulase enzyme and by the action of microorganisms in compost or under natural conditions in soil thus could be included into the group of biodegradable materials. (author)

  18. Radiation processing of biodegradable polymer hydrogel from cellulose derivatives

    International Nuclear Information System (INIS)

    Wach, Radoslaw A.; Mitomo, Hiroshi; Yoshii, Fumio; Kume, Tamikazu

    2001-01-01

    The effects of high-energy radiation on ethers of cellulose: carboxymethyl-, hydroxypropyl- and hydroxyethylcellulose have been investigated. Polymers were irradiated in solid state and aqueous solution at various concentrations. Degree of substitution (DS), the concentration in the solution and irradiation conditions had a significant impact on the obtained products. Irradiation of polymers in solid and in diluted solution resulted in their degradation. A novel hydrogels of such natural polymers were synthesized, without using any additives, by irradiation at high concentration. It was found that high DS of CMC promoted crosslinking and, for all of the ethers, the gel formation occurred easier for more concentrated solutions. Paste-like form of the initial material, when water plasticised the bulk of polymer mass, along with the high dose rate and preventing oxygen accessibility to the sample during irradiation were favorable for hydrogel preparation. Up to 95% of gel fraction was obtained from 50 and 60% CMC solutions irradiated by gamma rays or by a beam of accelerated electrons (EB). The other polymers were more sensitive to the dose rate and formed gels with higher gel fraction while processed by EB. Moreover, polymers (except CMC) treated by gamma rays were susceptible to degradation after application of a dose over 50-100 kGy. The presence of oxygen in the system during irradiation limited a gel content and was prone to easier degradation of already formed gel. Produced hydrogels swelled markedly by absorption when paced in the solvent. Crosslinked polymers showed susceptibility to degradation by cellulase enzyme and by the action of microorganisms in compost or under natural conditions in soil thus could be included into the group of biodegradable materials. (author)

  19. Synthesis and characterization of an electrolyte system based on a biodegradable polymer

    Directory of Open Access Journals (Sweden)

    K. Sownthari

    2013-06-01

    Full Text Available A polymer electrolyte system has been developed using a biodegradable polymer namely poly-ε-caprolactone (PCL in combination with zinc triflate [Zn(CF3SO32] in different weight percentages and characterized during this investigation. Free-standing thin films of varying compositions were prepared by solution casting technique. The successful doping of the polymer has been confirmed by means of Fourier transform infrared spectroscopy (FTIR by analyzing the carbonyl (C=O stretching region of the polymer. The maximum ionic conductivity obtained at room temperature (25°C was found to be 8.8x10–6 S/cm in the case of PCL complexed with 25 wt% Zn(CF3SO32 which is five orders of magnitude higher than that of the pure polymer host material. The increase in amorphous phase with an increase in salt concentration of the prepared polymer electrolyte has also been confirmed from the concordant results obtained from X-ray diffraction (XRD, differential scanning calorimetry (DSC and scanning electron microscopic (SEM analyses. Furthermore, the electrochemical stability window of the prepared polymer electrolyte was found to be 3.7 V. An electrochemical cell has been fabricated based on Zn/MnO2 electrode couple as an application area and its discharge characteristics were evaluated.

  20. Biodegradable conductive composites of poly(3-hydroxybutyrate and polyaniline nanofibers: Preparation, characterization and radiolytic effects

    Directory of Open Access Journals (Sweden)

    2011-01-01

    Full Text Available Poly(3-hydroxybutyrate is a biodegradable polyester produced by microorganisms under nutrient limitation conditions. We obtained a biodegradable poly(3-hydroxybutyrate composite having 8 to 55% of chemically in situ polymerized hydrochloric acid-doped polyaniline nanofibers (70-100 nm in diameter. Fourier transform infrared spectroscopy and X-rays diffractometry data did not show evidence of significant interaction between the two components of the nanocomposite, and polyaniline semiconductivity was preserved in all studied compositions. Gamma-irradiation at 25 kGy absorbed dose on the semiconductive composite presenting 28% of doped polyaniline increased its conductivity from 4.6*10-2 to 1.1 S/m, while slightly decreasing its biodegradability. PANI-HCl biodegradation is negligible when compared to PHB biodegradability in an 80 day timeframe. Thus, this unprecedented all-polymer nanocomposite presents, at the same time, semiconductivity and biodegradability and was proven to maintain these properties after gamma irradiation. This new material has many potential applications in biological science, engineering, and medicine.

  1. Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate.

    Science.gov (United States)

    Guzik, Maciej W; Kenny, Shane T; Duane, Gearoid F; Casey, Eoin; Woods, Trevor; Babu, Ramesh P; Nikodinovic-Runic, Jasmina; Murray, Michael; O'Connor, Kevin E

    2014-05-01

    A process for the conversion of post consumer (agricultural) polyethylene (PE) waste to the biodegradable polymer medium chain length polyhydroxyalkanoate (mcl-PHA) is reported here. The thermal treatment of PE in the absence of air (pyrolysis) generated a complex mixture of low molecular weight paraffins with carbon chain lengths from C8 to C32 (PE pyrolysis wax). Several bacterial strains were able to grow and produce PHA from this PE pyrolysis wax. The addition of biosurfactant (rhamnolipids) allowed for greater bacterial growth and PHA accumulation of the tested strains. Some strains were only capable of growth and PHA accumulation in the presence of the biosurfactant. Pseudomonas aeruginosa PAO-1 accumulated the highest level of PHA with almost 25 % of the cell dry weight as PHA when supplied with the PE pyrolysis wax in the presence of rhamnolipids. The change of nitrogen source from ammonium chloride to ammonium nitrate resulted in faster bacterial growth and the earlier onset of PHA accumulation. To our knowledge, this is the first report where PE is used as a starting material for production of a biodegradable polymer.

  2. Layered plasma polymer composite membranes

    Science.gov (United States)

    Babcock, Walter C.

    1994-01-01

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is .gtoreq.2 and is the number of selective layers.

  3. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Putri, Zufira; Arcana, I Made

    2014-01-01

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO 2 are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO 2 compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO 2 blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM)

  4. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Zufira, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung (Indonesia)

    2014-03-24

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO{sub 2} are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO{sub 2} compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO{sub 2} blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM)

  5. The Recent Developments in Biobased Polymers toward General and Engineering Applications: Polymers that Are Upgraded from Biodegradable Polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed

    OpenAIRE

    Nakajima, Hajime; Dijkstra, Peter; Loos, Katja

    2017-01-01

    The main motivation for development of biobased polymers was their biodegradability, which is becoming important due to strong public concern about waste. Reflecting recent changes in the polymer industry, the sustainability of biobased polymers allows them to be used for general and engineering applications. This expansion is driven by the remarkable progress in the processes for refining biomass feedstocks to produce biobased building blocks that allow biobased polymers to have more versati...

  6. Imaging the intracellular degradation of biodegradable polymer nanoparticles

    Directory of Open Access Journals (Sweden)

    Anne-Kathrin Barthel

    2014-10-01

    Full Text Available In recent years, the development of smart drug delivery systems based on biodegradable polymeric nanoparticles has become of great interest. Drug-loaded nanoparticles can be introduced into the cell interior via endocytotic processes followed by the slow release of the drug due to degradation of the nanoparticle. In this work, poly(L-lactic acid (PLLA was chosen as the biodegradable polymer. Although common degradation of PLLA has been studied in various biological environments, intracellular degradation processes have been examined only to a very limited extent. PLLA nanoparticles with an average diameter of approximately 120 nm were decorated with magnetite nanocrystals and introduced into mesenchymal stem cells (MSCs. The release of the magnetite particles from the surface of the PLLA nanoparticles during the intracellular residence was monitored by transmission electron microscopy (TEM over a period of 14 days. It was demonstrated by the release of the magnetite nanocrystals from the PLLA surface that the PLLA nanoparticles do in fact undergo degradation within the cell. Furthermore, even after 14 days of residence, the PLLA nanoparticles were found in the MSCs. Additionally, the ultrastructural TEM examinations yield insight into the long term intercellular fate of these nanoparticles. From the statistical analysis of ultrastructural details (e.g., number of detached magnetite crystals, and the number of nanoparticles in one endosome, we demonstrate the importance of TEM studies for such applications in addition to fluorescence studies (flow cytometry and confocal laser scanning microscopy.

  7. Biodegradable 3D printed polymer microneedles for transdermal drug delivery.

    Science.gov (United States)

    Luzuriaga, Michael A; Berry, Danielle R; Reagan, John C; Smaldone, Ronald A; Gassensmith, Jeremiah J

    2018-04-17

    Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1-55 μm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.

  8. Biolimus-eluting biodegradable polymer-coated stent versus durable polymer-coated sirolimus-eluting stent in unselected patients receiving percutaneous coronary intervention (SORT OUT V)

    DEFF Research Database (Denmark)

    Christiansen, Evald Høj; Jensen, Lisette Okkels; Thayssen, Per

    2013-01-01

    Third-generation biodegradable polymer drug-eluting stents might reduce the risk of stent thrombosis compared with first-generation permanent polymer drug-eluting stents. We aimed to further investigate the effects of a biodegradable polymer biolimus-eluting stent compared with a durable polymer......-coated sirolimus-eluting stent in a population-based setting....

  9. Biodegradability of PP/HMSPP and natural and synthetic polymers blends in function of gamma irradiation degradation

    Science.gov (United States)

    Cardoso, Elisabeth C. L.; Scagliusi, Sandra R.; Lima, Luis F. C. P.; Bueno, Nelson R.; Brant, Antonio J. C.; Parra, Duclerc F.; Lugão, Ademar B.

    2014-01-01

    Polymers are used for numerous applications in different industrial segments, generating enormous quantities of discarding in the environment. Polymeric materials composites account for an estimated from 20 to 30% total volume of solid waste. Polypropylene (PP) undergoes crosslinking and extensive main chain scissions when submitted to ionizing irradiation; as one of the most widely used linear hydrocarbon polymers, PP, made from cheap petrochemical feed stocks, shows easy processing leading it to a comprehensive list of finished products. Consequently, there is accumulation in the environment, at 25 million tons per year rate, since polymeric products are not easily consumed by microorganisms. PP polymers are very bio-resistant due to involvement of only carbon atoms in main chain with no hydrolysable functional group. Several possibilities have been considered to minimize the environmental impact caused by non-degradable plastics, subjecting them to: physical, chemical and biological degradation or combination of all these due to the presence of moisture, air, temperature, light, high energy radiation or microorganisms. There are three main classes of biodegradable polymers: synthetic polymers, natural polymers and blends of polymers in which one or more components are readily consumed by microorganisms. This work aims to biodegradability investigation of a PP/HMSPP (high melt strength polypropylene) blended with sugarcane bagasse, PHB (poly-hydroxy-butyrate) and PLA (poly-lactic acid), both synthetic polymers, at a 10% level, subjected to gamma radiation at 50, 100, 150 and 200 kGy doses. Characterization will comprise IR, DSC, TGA, OIT and Laboratory Soil Burial Test (LSBT).

  10. Polymer compositions and methods

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Scott D.; Willkomm, Wayne R.

    2018-02-06

    The present invention encompasses polyurethane compositions comprising aliphatic polycarbonate chains. In one aspect, the present invention encompasses polyurethane foams, thermoplastics and elastomers derived from aliphatic polycarbonate polyols and polyisocyanates wherein the polyol chains contain a primary repeating unit having a structure: ##STR00001## In another aspect, the invention provides articles comprising the inventive foam and elastomer compositions as well as methods of making such compositions.

  11. The SYNERGY biodegradable polymer everolimus eluting coronary stent: Porcine vascular compatibility and polymer safety study.

    Science.gov (United States)

    Wilson, Gregory J; Marks, Angela; Berg, Kimberly J; Eppihimer, Michael; Sushkova, Natalia; Hawley, Steve P; Robertson, Kimberly A; Knapp, David; Pennington, Douglas E; Chen, Yen-Lane; Foss, Aaron; Huibregtse, Barbara; Dawkins, Keith D

    2015-11-15

    SYNERGY is a novel platinum chromium alloy stent that delivers abluminal everolimus from an ultrathin poly-lactide-co-glycide (PLGA) biodegradable polymer. This study evaluated the in vivo degradation of the polymer coating, everolimus release time course, and vascular compatibility of the SYNERGY stent. SYNERGY stents were implanted in arteries of domestic swine. Devices were explanted at predetermined time points (up to 120 days) and the extent of PLGA coating or everolimus remaining on the stents was quantified. Everolimus levels in the arterial tissue were also evaluated. A pathological analysis on coronary arteries of single and overlapping stents was performed at time points between 5 and 270 days. PLGA bioabsorption began immediately after implantation, and drug release was essentially complete by 90 days; PLGA absorption was substantially complete by 120 days (>90% of polymer was absorbed) leaving a bare metal SYNERGY stent. Vascular response was similar among SYNERGY and control stents (bare metal, polymer-only, and 3× polymer-only). Mild increases in para-strut fibrin were seen for SYNERGY at an early time point with no significant differences in all other morphological and morphometric parameters through 270 days or endothelial function (eNOS immunostaining) at 90 or 180 days. Inflammation was predominantly minimal to mild for all device types. In a swine model, everolimus was released by 90 days and PLGA bioabsorption was complete shortly thereafter. The SYNERGY stent and its biodegradable polymer, even at a 3× safety margin, demonstrated vascular compatibility similar to bare metal stent controls. © 2015 Wiley Periodicals, Inc.

  12. Science and sustainability? Biodegradable polymers from canola and flaxseed oils

    Energy Technology Data Exchange (ETDEWEB)

    Narins, S.S. [Alberta Univ., Edmonton, AB (Canada). Alberta Bioplastics Network

    2002-07-01

    Little progress has been made in value-added development to crops. The development of biodegradable plastics was spurred by environmental concerns and the use of renewable resources. There is a worldwide market for such products, which complements the strategy of the petrochemical industry. Greater sustainability achieved by partnering with the value-added agricultural industry. The drivers impacting the future polymer industry are: environmental and health concerns, consumer attitudes, cost of cheap feedstocks, carbon credits, greenhouse gases reduction, and criteria air contaminant reduction. Two niche markets are food packaging and biomedical products. The opportunity exists for the development of poly lactic acid (PLA) using canola as a primary feedstock in Alberta as there is a well established petrochemical industry, a vegetable oil infrastructure, and a desire to match petrochemical with bio-renewable. The benefits are higher value processing and a new source of monomers from renewable biomass. The main objective is the development of bio-polymer industry in Alberta based on canola and flaxseed oils. Food and agricultural materials have a similar structure and identical instrumentation to study structure and functionality. The author displayed pictures of the major instrumentation required to conduct this type of research. The rheological properties of polymers include flow, mechanical strength, and thermal properties. The author, along with colleagues, has developed a unique approach. The team members were identified, as well as an overview of the expertise required to perform this research. The author is about to file three related patents. This process is not energy intensive and does not use solvent. The author is about to move into scale-up phase of the reactions which produce the monomers. tabs., figs.

  13. Polyester-Based (Bio)degradable Polymers as Environmentally Friendly Materials for Sustainable Development

    Science.gov (United States)

    Rydz, Joanna; Sikorska, Wanda; Kyulavska, Mariya; Christova, Darinka

    2014-01-01

    This review focuses on the polyesters such as polylactide and polyhydroxyalkonoates, as well as polyamides produced from renewable resources, which are currently among the most promising (bio)degradable polymers. Synthetic pathways, favourable properties and utilisation (most important applications) of these attractive polymer families are outlined. Environmental impact and in particular (bio)degradation of aliphatic polyesters, polyamides and related copolymer structures are described in view of the potential applications in various fields. PMID:25551604

  14. Preparation and Characterization of PLA-Starch Biodegradable Composites Via Radiation Processing

    Energy Technology Data Exchange (ETDEWEB)

    Hemvichian, K.; Suwanmala, P. [Thailand Institute of Nuclear Technology (TINT) (Thailand); Kungsumrith, W. [Department of Industrial Engineering, Faculty of Engineering, Thammasat University (TU) (Thailand); Pongprayoon, T. [Department of Chemical Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok (Thailand)

    2011-07-01

    This research project aims to apply the use of radiation processing to prepare biodegradable composites from poly(lactic acid) or polylactide (PLA) and cassava starch. Cassava starch, a natural polymer that is inexpensive and abundant, especially in Thailand, will be used as starting material. Functional group of cassava starch will be modified first in order to render starch more compatible with PLA. The monomer with desired functional groups will be grafted onto the backbone of starch via radiation-induced grafting polymerization. Different parameters will be examined to determine the optimum conditions for the grafting polymerization. The modified starch will subsequently be blended with PLA, with and without clay, to form biodegradable composites. In order to further improve the thermal properties, the blends and their composites will be subjected to radiation to induce crosslinking between the molecules of PLA and starch derivatives. (author)

  15. Preparation and Characterization of PLA-Starch Biodegradable Composites Via Radiation Processing

    International Nuclear Information System (INIS)

    Hemvichian, K.; Suwanmala, P.; Kungsumrith, W.; Pongprayoon, T.

    2011-01-01

    This research project aims to apply the use of radiation processing to prepare biodegradable composites from poly(lactic acid) or polylactide (PLA) and cassava starch. Cassava starch, a natural polymer that is inexpensive and abundant, especially in Thailand, will be used as starting material. Functional group of cassava starch will be modified first in order to render starch more compatible with PLA. The monomer with desired functional groups will be grafted onto the backbone of starch via radiation-induced grafting polymerization. Different parameters will be examined to determine the optimum conditions for the grafting polymerization. The modified starch will subsequently be blended with PLA, with and without clay, to form biodegradable composites. In order to further improve the thermal properties, the blends and their composites will be subjected to radiation to induce crosslinking between the molecules of PLA and starch derivatives. (author)

  16. Biodegradability of PP/HMSPP and natural and synthetic polymers blends in function of gamma irradiation degradation

    International Nuclear Information System (INIS)

    Cardoso, Elisabeth C.L.; Scagliusi, Sandra R.; Lima, Luis F.C.P.; Bueno, Nelson R.; Brant, Antonio J.C.; Parra, Duclerc F.; Lugão, Ademar B.

    2014-01-01

    Polymers are used for numerous applications in different industrial segments, generating enormous quantities of discarding in the environment. Polymeric materials composites account for an estimated from 20 to 30% total volume of solid waste. Polypropylene (PP) undergoes crosslinking and extensive main chain scissions when submitted to ionizing irradiation; as one of the most widely used linear hydrocarbon polymers, PP, made from cheap petrochemical feed stocks, shows easy processing leading it to a comprehensive list of finished products. Consequently, there is accumulation in the environment, at 25 million tons per year rate, since polymeric products are not easily consumed by microorganisms. PP polymers are very bio-resistant due to involvement of only carbon atoms in main chain with no hydrolysable functional group. Several possibilities have been considered to minimize the environmental impact caused by non-degradable plastics, subjecting them to: physical, chemical and biological degradation or combination of all these due to the presence of moisture, air, temperature, light, high energy radiation or microorganisms. There are three main classes of biodegradable polymers: synthetic polymers, natural polymers and blends of polymers in which one or more components are readily consumed by microorganisms. This work aims to biodegradability investigation of a PP/HMSPP (high melt strength polypropylene) blended with sugarcane bagasse, PHB (poly-hydroxy-butyrate) and PLA (poly-lactic acid), both synthetic polymers, at a 10% level, subjected to gamma radiation at 50, 100, 150 and 200 kGy doses. Characterization will comprise IR, DSC, TGA, OIT and Laboratory Soil Burial Test (LSBT). - Highlights: • Polymeric materials composites account for an estimated from 20 to 30% total volume of solid waste. • Landfills will not be enough for an estimated accumulation of 25 million tons per year of plastics. • Incorporation of natural/synthetic polymers in PP/HMSPP to reduce

  17. Extracellular matrix production by human osteoblasts cultured on biodegradable polymers applicable for tissue engineering.

    Science.gov (United States)

    El-Amin, S F; Lu, H H; Khan, Y; Burems, J; Mitchell, J; Tuan, R S; Laurencin, C T

    2003-03-01

    The nature of the extracellular matrix (ECM) is crucial in regulating cell functions via cell-matrix interactions, cytoskeletal organization, and integrin-mediated signaling. In bone, the ECM is composed of proteins such as collagen (CO), fibronectin (FN), laminin (LM), vitronectin (VN), osteopontin (OP) and osteonectin (ON). For bone tissue engineering, the ECM should also be considered in terms of its function in mediating cell adhesion to biomaterials. This study examined ECM production, cytoskeletal organization, and adhesion of primary human osteoblastic cells on biodegradable matrices applicable for tissue engineering, namely polylactic-co-glycolic acid 50:50 (PLAGA) and polylactic acid (PLA). We hypothesized that the osteocompatible, biodegradable polymer surfaces promote the production of bone-specific ECM proteins in a manner dependent on polymer composition. We first examined whether the PLAGA and PLA matrices could support human osteoblastic cell growth by measuring cell adhesion at 3, 6 and 12h post-plating. Adhesion on PLAGA was consistently higher than on PLA throughout the duration of the experiment, and comparable to tissue culture polystyrene (TCPS). ECM components, including CO, FN, LM, ON, OP and VN, produced on the surface of the polymers were quantified by ELISA and localized by immunofluorescence staining. All of these proteins were present at significantly higher levels on PLAGA compared to PLA or TCPS surfaces. On PLAGA, OP and ON were the most abundant ECM components, followed by CO, FN, VN and LN. Immunofluorescence revealed an extracellular distribution for CO and FN, whereas OP and ON were found both intracellularly as well as extracellularly on the polymer. In addition, the actin cytoskeletal network was more extensive in osteoblasts cultured on PLAGA than on PLA or TCPS. In summary, we found that osteoblasts plated on PLAGA adhered better to the substrate, produced higher levels of ECM molecules, and showed greater cytoskeletal

  18. Role of different biodegradable polymers on the permeability of ciprofloxacin

    Directory of Open Access Journals (Sweden)

    Chandra Kanti Chakraborti

    2014-01-01

    Full Text Available Since permeability across biological membranes is a key factor in the absorption and distribution of drugs, drug permeation characteristics of three oral suspensions of ciprofloxacin were designed and compared. The three suspensions of ciprofloxacin were prepared by taking biodegradable polymers such as carbopol 934, carbopol 940, and hydroxypropyl methylcellulose (HPMC. The permeability study was performed by using a Franz diffusion cell through both synthetic cellulose acetate membrane and excised goat gastrointestinal membranes in acidic as well as alkaline pH. To know the permeability of drug from control/formulations through different membranes in acidic/alkaline pH, cumulative percentage drug permeation, apparent permeability (Papp, flux, and enhancement ratio (ER were calculated. Considering Papp and flux values of all formulations, it is evident that formulation containing HPMC was the most beneficial for improving permeation and diffusivity of ciprofloxacin even after 16 h. Hence, this preparation may be considered as the most suitable formulation to obtain prolonged release action of the drug. The ER values of all formulations, through excised goat intestinal mucosal membrane in alkaline pH, were higher than those formulations through goat stomach mucosal membrane in acidic pH. Enhancement ratio values of those formulations indicate that the permeability of the drug was more enhanced by the polymers in the intestinal part, leading to more bioavailability and prolonged action in that portion of the gastrointestinal tract. It may also be concluded from our results that HPMC containing formulation was the best suspension, which may show effective controlled release action. Even carbopol containing formulations might also produce controlled release action.

  19. High temperature polymer concrete compositions

    Science.gov (United States)

    Fontana, Jack J.; Reams, Walter

    1985-01-01

    This invention is concerned with a polymer concrete composition, which is a two-component composition useful with many bases including metal. Component A, the aggregate composition, is broadly composed of silica, silica flour, portland cement, and acrylamide, whereas Component B, which is primarily vinyl and acrylyl reactive monomers, is a liquid system. A preferred formulation emphasizing the major necessary components is as follows: ______________________________________ Component A: Silica sand 60-77 wt. % Silica flour 5-10 wt. % Portland cement 15-25 wt. % Acrylamide 1-5 wt. % Component B: Styrene 50-60 wt. % Trimethylolpropane 35-40 wt. % trimethacrylate ______________________________________ and necessary initiators, accelerators, and surfactants.

  20. Graphene reinforced biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate nano-composites

    Directory of Open Access Journals (Sweden)

    V. Sridhar

    2013-04-01

    Full Text Available Novel biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate [PHBV]/graphene nanocomposites were prepared by solution casting. The thermal properties, crystallization behavior, microstructure, and fracture morphology of the composites were investigated. Scanning electron microscope (SEM results show that graphene layers are homogeneously dispersed in the polymer matrix. X-ray diffraction (XRD and dynamic scanning calorimetry (DSC studies show that the well dispersed graphene sheets act as nucleating agent for crystallization. Consequently, the mechanical properties of the composites have been substantially improved as evident from dynamic mechanical and static tensile tests. Differential thermal analysis (DTA showed an increase in temperature of maximum degradation. Soil degradation tests of PHBV/graphene nanocomposites showed that presence of graphene doesn’t interfere in its biodegradability.

  1. Lactic Acid Polymers as Biodegradable Carriers of Fluoroquinolones: An In Vitro Study

    OpenAIRE

    Kanellakopoulou, Kyriaki; Kolia, Maria; Anastassiadis, Antonios; Korakis, Themistoklis; Giamarellos-Bourboulis, Evangelos J.; Andreopoulos, Andreas; Dounis, Eleftherios; Giamarellou, Helen

    1999-01-01

    A biodegradable polymer of dl-dilactide that facilitates release of ciprofloxacin or pefloxacin at levels exceeding MICs for the causative microorganisms of chronic osteomyelitis is described. Duration and peak of release were found to depend on the molecular weight of the polymer. Its characteristics make it promising for treating chronic bone infections.

  2. Biodegradability of carbon nanotube/polymer nanocomposites under aerobic mixed culture conditions.

    Science.gov (United States)

    Phan, Duc C; Goodwin, David G; Frank, Benjamin P; Bouwer, Edward J; Fairbrother, D Howard

    2018-10-15

    The properties and commercial viability of biodegradable polymers can be significantly enhanced by the incorporation of carbon nanotubes (CNTs). The environmental impact and persistence of these carbon nanotube/polymer nanocomposites (CNT/PNCs) after disposal will be strongly influenced by their microbial interactions, including their biodegradation rates. At the end of consumer use, CNT/PNCs will encounter diverse communities of microorganisms in landfills, surface waters, and wastewater treatment plants. To explore CNT/PNC biodegradation under realistic environmental conditions, the effect of multi-wall CNT (MWCNT) incorporation on the biodegradation of polyhydroxyalkanoates (PHA) was investigated using a mixed culture of microorganisms from wastewater. Relative to unfilled PHA (0% w/w), the MWCNT loading (0.5-10% w/w) had no statistically significant effect on the rate of PHA matrix biodegradation. Independent of the MWCNT loading, the extent of CNT/PNC mass remaining closely corresponded to the initial mass of CNTs in the matrix suggesting a lack of CNT release. CNT/PNC biodegradation was complete in approximately 20 days and resulted in the formation of a compressed CNT mat that retained the shape of the initial CNT/PNC. This study suggests that although CNTs have been shown to be cytotoxic towards a range of different microorganisms, this does not necessarily impact the biodegradation of the surrounding polymer matrix in mixed culture, particularly in situations where the polymer type and/or microbial population favor rapid polymer biodegradation. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Modelling anisotropic water transport in polymer composite

    Indian Academy of Sciences (India)

    This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation models were ...

  4. Biodegradable toughened nanohybrid shape memory polymer for smart biomedical applications.

    Science.gov (United States)

    Biswas, Arpan; Singh, Akhand Pratap; Rana, Dipak; Aswal, Vinod K; Maiti, Pralay

    2018-05-17

    A polyurethane nanohybrid has been prepared through the in situ polymerization of an aliphatic diisocyanate, ester polyol and a chain extender in the presence of two-dimensional platelets. Polymerization within the platelet galleries helps to intercalate, generate diverse nanostructure and improve the nano to macro scale self-assembly, which leads to a significant enhancement in the toughness and thermal stability of the nanohybrid in comparison to pure polyurethane. The extensive interactions, the reason for property enhancement, between nanoplatelets and polymer chains are revealed through spectroscopic measurements and thermal studies. The nanohybrid exhibits significant improvement in the shape memory phenomena (91% recovery) at the physiological temperature, which makes it suitable for many biomedical applications. The structural alteration, studied through temperature dependent small angle neutron scattering and X-ray diffraction, along with unique crystallization behavior have extensively revealed the special shape memory behavior of this nanohybrid and facilitated the understanding of the molecular flipping in the presence of nanoplatelets. Cell line studies and subsequent imaging testify that this nanohybrid is a superior biomaterial that is suitable for use in the biomedical arena. In vivo studies on albino rats exhibit the potential of the shape memory effect of the nanohybrid as a self-tightening suture in keyhole surgery by appropriately closing the lips of the wound through the recovery of the programmed shape at physiological temperature with faster healing of the wound and without the formation of any scar. Further, the improved biodegradable nature along with the rapid self-expanding ability of the nanohybrid at 37 °C make it appropriate for many biomedical applications including a self-expanding stent for occlusion recovery due to its tough and flexible nature.

  5. Biodegradable Polymers Induce CD54 on THP-1 Cells in Skin Sensitization Test.

    Science.gov (United States)

    Jung, Yeon Suk; Kato, Reiko; Tsuchiya, Toshie

    2011-01-01

    Currently, nonanimal methods of skin sensitization testing for various chemicals, biodegradable polymers, and biomaterials are being developed in the hope of eliminating the use of animals. The human cell line activation test (h-CLAT) is a skin sensitization assessment that mimics the functions of dendritic cells (DCs). DCs are specialized antigen-presenting cells, and they interact with T cells and B cells to initiate immune responses. Phenotypic changes in DCs, such as the production of CD86 and CD54 and internalization of MHC class II molecules, have become focal points of the skin sensitization test. In this study, we used h-CLAT to assess the effects of biodegradable polymers. The results showed that several biodegradable polymers increased the expression of CD54, and the relative skin sensitizing abilities of biodegradable polymers were PLLG (75 : 25) < PLLC (40 : 60) < PLGA (50 : 50) < PCG (50 : 50). These results may contribute to the creation of new guidelines for the use of biodegradable polymers in scaffolds or allergenic hazards.

  6. Biodegradable Polymers Induce CD54 on THP-1 Cells in Skin Sensitization Test

    Directory of Open Access Journals (Sweden)

    Yeon Suk Jung

    2011-01-01

    Full Text Available Currently, nonanimal methods of skin sensitization testing for various chemicals, biodegradable polymers, and biomaterials are being developed in the hope of eliminating the use of animals. The human cell line activation test (h-CLAT is a skin sensitization assessment that mimics the functions of dendritic cells (DCs. DCs are specialized antigen-presenting cells, and they interact with T cells and B cells to initiate immune responses. Phenotypic changes in DCs, such as the production of CD86 and CD54 and internalization of MHC class II molecules, have become focal points of the skin sensitization test. In this study, we used h-CLAT to assess the effects of biodegradable polymers. The results showed that several biodegradable polymers increased the expression of CD54, and the relative skin sensitizing abilities of biodegradable polymers were PLLG (75 : 25 < PLLC (40 : 60 < PLGA (50 : 50 < PCG (50 : 50. These results may contribute to the creation of new guidelines for the use of biodegradable polymers in scaffolds or allergenic hazards.

  7. Modelling anisotropic water transport in polymer composite ...

    Indian Academy of Sciences (India)

    Parameters for Fickian diffusion and polymer relaxation models were determined by .... Water transport process of resin and polymer composite specimens at ..... simulation. ... Kwon Y W and Bang H 1997 Finite element method using matlab.

  8. Development and characterization of biodegradable polymer blends - PHBV/PCL irradiated with gamma rays

    International Nuclear Information System (INIS)

    Rosario, F.; Casarin, S.A.; Agnelli, J.A.M.; Souza Junior, O.F. de

    2010-01-01

    This paper presents the results of a study that aimed to develop PHBV biodegradable polymer blends, in a major concentration with PCL, irradiate the pure polymers and blends in two doses of gamma radiation and to analyze the changes in chemical and mechanical properties. The blends used in this study were from natural biodegradable copolymer poly (hydroxybutyrate-valerate) (PHBV) and synthetic biodegradable polymer poly (caprolactone) (PCL 2201) with low molar mass (2,000 g/mol). Several samples were prepared in a co-rotating twin-screw extruder and afterwards, the tensile specimens were injected for the irradiation treatment with 50 kGy to 100 kGy doses and for the mechanical tests. The characterization of the samples before and after the irradiation treatments was performed through scanning electron microscopy (SEM), dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and mechanical tensile tests. (author)

  9. Sago Starch-Mixed Low-Density Polyethylene Biodegradable Polymer: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Md Enamul Hoque

    2013-01-01

    Full Text Available This research focuses on synthesis and characterization of sago starch-mixed LDPE biodegradable polymer. Firstly, the effect of variation of starch content on mechanical property (elongation at break and Young’s modulus and biodegradability of the polymer was studied. The LDPE was combined with 10%, 30%, 50%, and 70% of sago for this study. Then how the cross-linking with trimethylolpropane triacrylate (TMPTA and electron beam (EB irradiation influence the mechanical and thermal properties of the polymer was investigated. In the 2nd study, to avoid overwhelming of data LDPE polymer was incorporated with only 50% of starch. The starch content had direct influence on mechanical property and biodegradability of the polymer. The elongation at break decreased with increase of starch content, while Young’s modulus and mass loss (i.e., degradation were found to increase with increase of starch content. Increase of cross-linker (TMPTA and EB doses also resulted in increased Young’s modulus of the polymer. However, both cross-linking and EB irradiation processes rendered lowering of polymer’s melting temperature. In conclusion, starch content and modification processes play significant roles in controlling mechanical, thermal, and degradation properties of the starch-mixed LDPE synthetic polymer, thus providing the opportunity to modulate the polymer properties for tailored applications.

  10. Nanocomposite bone scaffolds based on biodegradable polymers and hydroxyapatite.

    Science.gov (United States)

    Becker, Johannes; Lu, Lichun; Runge, M Brett; Zeng, Heng; Yaszemski, Michael J; Dadsetan, Mahrokh

    2015-08-01

    In tissue engineering, development of an osteoconductive construct that integrates with host tissue remains a challenge. In this work, the effect of bone-like minerals on maturation of pre-osteoblast cells was investigated using polymer-mineral scaffolds composed of poly(propylene fumarate)-co-poly(caprolactone) (PPF-co-PCL) and nano-sized hydroxyapatite (HA). The HA of varying concentrations was added to an injectable formulation of PPF-co-PCL and the change in thermal and mechanical properties of the scaffolds was evaluated. No change in onset of degradation temperature was observed due to the addition of HA, however compressive and tensile moduli of copolymer changed significantly when HA amounts were increased in composite formulation. The change in mechanical properties of copolymer was found to correlate well to HA concentration in the constructs. Electron microscopy revealed mineral nucleation and a change in surface morphology and the presence of calcium and phosphate on surfaces was confirmed using energy dispersive X-ray analysis. To characterize the effect of mineral on attachment and maturation of pre-osteoblasts, W20-17 cells were seeded on HA/copolymer composites. We demonstrated that cells attached more to the surface of HA containing copolymers and their proliferation rate was significantly increased. Thus, these findings suggest that HA/PPF-co-PCL composite scaffolds are capable of inducing maturation of pre-osteoblasts and have the potential for use as scaffold in bone tissue engineering. © 2014 Wiley Periodicals, Inc.

  11. Mechanical, thermal, and fire properties of biodegradable polylactide/boehmite alumina composites

    CSIR Research Space (South Africa)

    Das, K

    2013-05-01

    Full Text Available Industrial & Engineering Chemistry Research May 2013/ Vol. 52(18), pp 6083-6091 Mechanical, Thermal, and Fire Properties of Biodegradable Polylactide/Boehmite Alumina Composites Kunal Das,*,† Suprakas Sinha Ray,†,‡ Steve Chapple,§ and James Wesley...-Smith‡ †Department of Applied Chemistry, University of Johannesburg, Doornforntein 2028, Johannesburg, South Africa ‡DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa §Polymer...

  12. Asphaltenes-based polymer nano-composites

    Science.gov (United States)

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  13. Effect of chemical heterogeneity of biodegradable polymers on surface energy: A static contact angle analysis of polyester model films

    Energy Technology Data Exchange (ETDEWEB)

    Belibel, R.; Avramoglou, T. [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Garcia, A. [CNRS UPR 3407, Laboratoire des Sciences des Procédés et des Matériau, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Barbaud, C. [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Mora, L., E-mail: Laurence.mora@univ-paris13.fr [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France)

    2016-02-01

    Biodegradable and bioassimilable poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) derivatives were synthesized and characterized in order to develop a new coating for coronary endoprosthesis enabling the reduction of restenosis. The PDMMLA was chemically modified to form different custom groups in its side chain. Three side groups were chosen: the hexyl group for its hydrophobic nature, the carboxylic acid and alcohol groups for their acid and neutral hydrophilic character, respectively. The sessile drop method was applied to characterize the wettability of biodegradable polymer film coatings. Surface energy and components were calculated. The van Oss approach helped reach not only the dispersive and polar acid–base components of surface energy but also acid and basic components. Surface topography was quantified by atomic force microscopy (AFM) and subnanometer average values of roughness (Ra) were obtained for all the analyzed surfaces. Thus, roughness was considered to have a negligible effect on wettability measurements. In contrast, heterogeneous surfaces had to be corrected by the Cassie–Baxter equation for copolymers (10/90, 20/80 and 30/70). The impact of this correction was quantified for all the wettability parameters. Very high relative corrections (%) were found, reaching 100% for energies and 30% for contact angles. - Highlights: • We develop different polymers with various chemical compositions. • Wettability properties were calculated using Cassie corrected contact angles. • Percentage of acid groups in polymers is directly correlated to acid part of SFE. • Cassie corrections are necessary for heterogeneous polymers.

  14. Biodegradable aliphatic-aromatic copolyester/corn starch blend composite reinforced with coffee parchment husk

    International Nuclear Information System (INIS)

    Silva, Valquiria A.; Teixeira, Jaciele G.; Gomes, Michelle G.; Ortiz, Angel V.; Oliveira, Rene R.; Scapin, Marcos A.; Moura, Esperidiana A.B.; Colombo, Maria A.

    2013-01-01

    In recent years, studies have shown that the addition of natural fiber or proper filler is an effective strategy for achieving improved properties in biodegradable polymer materials. Moreover, is especially important if such fibers are residues of agro-industrial processes. In this work, a promising technique to develop biodegradable polymer matrix composite based on aliphatic-aromatic copolyester/corn starch blend (Evela®) and coffee parchment husk, which is residue from coffee processing is described. The biodegradable polymeric blend (Evela®) with 5 % (w/w) of ball-milled coffee parchment husk fiber powder, with size ≤250 μm, without any modification was prepared by melt-mixing processing, using a twin screw extruder machine and then pelletized. In a second step, the pelletized Evela®)/coffee parchment (Composite) was then dried at 70 ± 2 deg C for 24 h in a circulating air oven, fed into injection molding machine and test specimens were obtained. The Composite specimen samples were irradiated using an electron beam accelerator, at radiation dose of 20 and 40 kGy, at room temperature in presence of air. The irradiated and non-irradiated samples were characterized by means of scanning electron microscopy (SEM), X-Ray diffraction (XRD), tensile tests and sol-gel analysis and the correlation between their properties was discussed. In addition, coffee parchment husk fiber characterization by SEM, EDS, XRD and WDXRF have also been carried out with a view to evaluate its importance in determining the end-use properties of the composite. (author)

  15. Biodegradable aliphatic-aromatic copolyester/corn starch blend composite reinforced with coffee parchment husk

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Valquiria A.; Teixeira, Jaciele G.; Gomes, Michelle G.; Ortiz, Angel V.; Oliveira, Rene R.; Scapin, Marcos A.; Moura, Esperidiana A.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Colombo, Maria A., E-mail: valquiriaalves36@yahoo.com.br [Faculdade de Tecnologia da Zona Leste (FATEC), Sao Paulo, SP (Brazil)

    2013-07-01

    In recent years, studies have shown that the addition of natural fiber or proper filler is an effective strategy for achieving improved properties in biodegradable polymer materials. Moreover, is especially important if such fibers are residues of agro-industrial processes. In this work, a promising technique to develop biodegradable polymer matrix composite based on aliphatic-aromatic copolyester/corn starch blend (Evela®) and coffee parchment husk, which is residue from coffee processing is described. The biodegradable polymeric blend (Evela®) with 5 % (w/w) of ball-milled coffee parchment husk fiber powder, with size ≤250 μm, without any modification was prepared by melt-mixing processing, using a twin screw extruder machine and then pelletized. In a second step, the pelletized Evela®)/coffee parchment (Composite) was then dried at 70 ± 2 deg C for 24 h in a circulating air oven, fed into injection molding machine and test specimens were obtained. The Composite specimen samples were irradiated using an electron beam accelerator, at radiation dose of 20 and 40 kGy, at room temperature in presence of air. The irradiated and non-irradiated samples were characterized by means of scanning electron microscopy (SEM), X-Ray diffraction (XRD), tensile tests and sol-gel analysis and the correlation between their properties was discussed. In addition, coffee parchment husk fiber characterization by SEM, EDS, XRD and WDXRF have also been carried out with a view to evaluate its importance in determining the end-use properties of the composite. (author)

  16. Biodegradable Polymer Biolimus-Eluting Stents Versus Durable Polymer Everolimus-Eluting Stents in Patients With Coronary Artery Disease: Final 5-Year Report From the COMPARE II Trial (Abluminal Biodegradable Polymer Biolimus-Eluting Stent Versus Durable Polymer Everolimus-Eluting Stent).

    Science.gov (United States)

    Vlachojannis, Georgios J; Smits, Pieter C; Hofma, Sjoerd H; Togni, Mario; Vázquez, Nicolás; Valdés, Mariano; Voudris, Vassilis; Slagboom, Ton; Goy, Jean-Jaques; den Heijer, Peter; van der Ent, Martin

    2017-06-26

    This analysis investigates the 5-year outcomes of the biodegradable polymer biolimus-eluting stent (BP-BES) and durable polymer everolimus-eluting stent (DP-EES) in an all-comers population undergoing percutaneous coronary intervention. Recent 1- and 3-year results from randomized trials have indicated similar safety and efficacy outcomes of BP-BES and DP-EES. Whether benefits of the biodegradable polymer device arise over longer follow-up is unknown. Moreover, in-depth, prospective, long-term follow-up data on metallic drug-eluting stents with durable or biodegradable polymers are scarce. The COMPARE II trial (Abluminal Biodegradable Polymer Biolimus-Eluting Stent Versus Durable Polymer Everolimus-Eluting Stent) was a prospective, randomized, multicenter, all-comers trial in which 2,707 patients were randomly allocated (2:1) to BP-BES or DP-EES. The pre-specified endpoint at 5 years was major adverse cardiac events, a composite of cardiac death, nonfatal myocardial infarction, or target vessel revascularization. Five-year follow-up was available in 2,657 patients (98%). At 5 years, major adverse cardiac events occurred in 310 patients (17.3%) in the BP-BES group and 142 patients (15.6%) in the DP-EES group (p = 0.26). The rate of the combined safety endpoint all-cause death or myocardial infarction was 15.0% in the BP-BES group versus 14.8% in the DP-EES group (p = 0.90), whereas the efficacy measure target vessel revascularization was 10.6% versus 9.0% (p = 0.18), respectively. Interestingly, definite stent thrombosis rates did not differ between groups (1.5% for BP-BES vs. 0.9% for DP-EES; p = 0.17). The 5-year analysis comparing biodegradable polymer-coated BES and the durable polymer-coated EES confirms the initial early- and mid-term results regarding similar safety and efficacy outcomes in this all-comers percutaneous coronary intervention population. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights

  17. Modified hydrotalcite-like compounds as active fillers of biodegradable polymers for drug release and food packaging applications.

    Science.gov (United States)

    Costantino, Umberto; Nocchetti, Morena; Tammaro, Loredana; Vittoria, Vittoria

    2012-11-01

    This review treats the recent patents and related literature, mainly from the Authors laboratories, on biomedical and food packaging applications of nano-composites constituted of biodegradable polymers filled with micro or nano crystals of organically modified Layered Double Hydroxides of Hydrotalcite type. After a brief outline of the chemical and structural aspects of Hydrotalcite-like compounds (HTlc) and of their manipulation via intercalation of functional molecular anions to obtain materials for numerous, sometime unexpected applications, the review approaches the theme in three separated parts. Part 1 deals with the synthetic method used to prepare the pristine Mg-Al and Zn-Al HTlc and with the procedures of their functionalization with anti-inflammatory (diclofenac), antibacterial (chloramphenicol hemisuccinate), antifibrinolytic (tranexamic acid) drugs and with benzoates with antimicrobial activity. Procedures used to form (nano) composites of polycaprolactone, used as an example of biodegradable polymer, and functionalized HTlc are also reported. Part 2 discusses a patent and related papers on the preparation and biomedical use of a controlled delivery system of the above mentioned pharmacologically active substances. After an introduction dealing with the recent progress in the field of local drug delivery systems, the chemical and structural aspects of the patented system constituted of a biodegradable polymer and HTlc loaded with the active substances will be presented together with an extensive discussion of the drug release in physiological medium. Part 3 deals with a recent patent and related papers on chemical, structural and release property of antimicrobial species of polymeric films containing antimicrobial loaded HTlc able to act as active packaging for food products prolonging their shelf life.

  18. Matrix-assisted laser desorption/ionization mass spectrometric analysis of aliphatic biodegradable photoluminescent polymers using new ionic liquid matrices.

    Science.gov (United States)

    Serrano, Carlos A; Zhang, Yi; Yang, Jian; Schug, Kevin A

    2011-05-15

    In this study, two novel ionic liquid matrices (ILMs), N,N-diisopropylethylammonium 3-oxocoumarate and N,N-diisopropylethylammonium dihydroxymonooxoacetophenoate, were tested for the structural elucidation of recently developed aliphatic biodegradable polymers by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The polymers, formed by a condensation reaction of three components, citric acid, octane diol, and an amino acid, are fluorescent, but the exact mechanism behind their luminescent properties has not been fully elucidated. In the original studies, which introduced the polymer class (J. Yang et al., Proc. Natl. Acad. Sci. USA 2009, 106, 10086-10091), a hyper-conjugated cyclic structure was proposed as the source for the photoluminescent behavior. With the use of the two new ILMs, we present evidence that supports the presence of the proposed cyclization product. In addition, the new ILMs, when compared with a previously established ILM, N,N-diisopropylethylammonium α-cyano-3-hydroxycinnimate, provided similar signal intensities and maintained similar spectral profiles. This research also established that the new ILMs provided good spot-to-spot reproducibility and high ionization efficiency compared with corresponding crystalline matrix preparations. Many polymer features revealed through the use of the ILMs could not be observed with crystalline matrices. Ultimately, the new ILMs highlighted the composition of the synthetic polymers, as well as the loss of water that was expected for the formation of the proposed cyclic structure on the polymer backbone. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Unprecedented access to functional biodegradable polymers and coatings

    NARCIS (Netherlands)

    Lee, Jung Seok; Wang, Rong; Chen, Wei; Meng, Fenghua; Cheng, Ru; Deng, Chao; Feijen, Jan; Zhong, Zhiyuan

    2011-01-01

    The ever-growing biomedical technology such as tissue engineering, regenerative medicine, and controlled drug release intimately relies on the development of advanced functional biomaterials. Here, we report on versatile and robust synthesis of novel vinyl sulfone (VS)-functionalized biodegradable

  20. Bio-degradable highly fluorescent conjugated polymer nanoparticles for bio-medical imaging applications.

    Science.gov (United States)

    Repenko, Tatjana; Rix, Anne; Ludwanowski, Simon; Go, Dennis; Kiessling, Fabian; Lederle, Wiltrud; Kuehne, Alexander J C

    2017-09-07

    Conjugated polymer nanoparticles exhibit strong fluorescence and have been applied for biological fluorescence imaging in cell culture and in small animals. However, conjugated polymer particles are hydrophobic and often chemically inert materials with diameters ranging from below 50 nm to several microns. As such, conjugated polymer nanoparticles cannot be excreted through the renal system. This drawback has prevented their application for clinical bio-medical imaging. Here, we present fully conjugated polymer nanoparticles based on imidazole units. These nanoparticles can be bio-degraded by activated macrophages. Reactive oxygen species induce scission of the conjugated polymer backbone at the imidazole unit, leading to complete decomposition of the particles into soluble low molecular weight fragments. Furthermore, the nanoparticles can be surface functionalized for directed targeting. The approach opens a wide range of opportunities for conjugated polymer particles in the fields of medical imaging, drug-delivery, and theranostics.Conjugated polymer nanoparticles have been applied for biological fluorescence imaging in cell culture and in small animals, but cannot readily be excreted through the renal system. Here the authors show fully conjugated polymer nanoparticles based on imidazole units that can be bio-degraded by activated macrophages.

  1. Influence of Biodegradation on the Organic Compounds Composition of Peat.

    Science.gov (United States)

    Serebrennikova, Olga; Svarovskaya, Lidiya; Duchko, Maria; Strelnikova, Evgeniya; Russkikh, Irina

    2016-06-01

    Largest wetland systems are situated on the territory of the Tomsk region. They are characterized by the high content of organic matter (OM), which undergoes transformation as a result of physical, chemical and biological processes. The composition of peat OM is determined by the nature of initial peat-forming plants, their transformation products and bacteria. An experiment in stimulated microbial impact was carried out for estimating the influence of biodegradation on the composition of peat lipids. The composition of the functional groups in the bacterial biomass, initial peat and peat after biodegradation was determined by IR-spectroscopy using the spectrometer NICOLET 5700. The IR spectra of peat and bacteria organic matter are characterized by the presence of absorption bands in ranges: 3400-3200 cm-1, which refers to the stretching vibrations of OH-group of carboxylic acids and various types of hydrogen bonds; 1738-1671 cm-1 - characteristic stretching vibrations of the C = O group of carboxylic acids and ketones; 1262 cm-1 - stretching vibrations of C-O of carboxylic acids. Group and individual composition of organic compounds in studied samples was determined by gas chromatography-mass-spectrometry.

  2. A phenomenological constitutive model for the nonlinear viscoelastic responses of biodegradable polymers

    KAUST Repository

    Khan, Kamran

    2012-11-09

    We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer. The large-deformation, time-dependent behavior of viscoelastic solids is described using an Ogden-type hyperviscoelastic model. A deformation-induced degradation mechanism is assumed in which a scalar field depicts the local state of the degradation, which is responsible for the changes in the material\\'s properties. The degradation process introduces another timescale (the intrinsic material clock) and an entropy production mechanism. Examples of the degradation of a polymer under various loading conditions, including creep, relaxation and cyclic loading, are presented. Results from parametric studies to determine the effects of various parameters on the process of degradation are reported. Finally, degradation of an annular cylinder subjected to pressure is also presented to mimic the effects of viscoelastic arterial walls (the outer cylinder) on the degradation response of a biodegradable stent (the inner cylinder). A general contact analysis is performed. As the stiffness of the biodegradable stent decreases, stress reduction in the stented viscoelastic arterial wall is observed. The integration of the proposed constitutive model with finite element software could help a designer to predict the time-dependent response of a biodegradable stent exhibiting finite deformation and under complex mechanical loading conditions. © 2012 Springer-Verlag Wien.

  3. Fluid Effects in Polymers and Polymeric Composites

    CERN Document Server

    Weitsman, Y Jack

    2012-01-01

    Fluid Effects in Polymers and Polymeric Composites, written by the late Dr. Y. Jack Weitsman, addresses the wide range of parameters that affect the interaction of fluids with polymers and polymeric composites. The book aims at broadening the scope of available data, mostly limited up to this time to weight-gain recordings of fluid ingress into polymers and composites, to the practical circumstances of fluctuating exposure. Various forms of experimental data are given, in conjunction with theoretical models derived from basic scientific principles, and correlated with severity of exposure conditions and interpreted by means of rationally based theoretical models. The practical implications of the effects of fluids are discussed. The issue of fluid effects on polymers and polymeric composites is of concern to engineers and scientists active in aerospace and naval structures, as an increasing portion of these structures are made of polymeric composites and employ polymeric adhesives as a joining device. While...

  4. Mechanical Properties in a Bamboo Fiber/PBS Biodegradable Composite

    Science.gov (United States)

    Ogihara, Shinji; Okada, Akihisa; Kobayashi, Satoshi

    In recent years, biodegradable plastics which have low effect on environment have been developed. However, many of them have lower mechanical properties than conventional engineering plastics. Reinforcing them with a natural fiber is one of reinforcing methods without a loss of their biodegradability. In the present study, we use a bamboo fiber as the reinforcement and polybutylenesuccinate (PBS) as the matrix. We fabricate long fiber unidirectional composites and cross-ply laminate with different fiber weight fractions (10, 20, 30, 40 and 50wt%). We conduct tensile tests to evaluate the mechanical properties of these composites. In addition, we measure bamboo fiber strength distribution. We discuss the experimentally-obtained properties based on the mechanical properties of the constituent materials. Young's modulus and tensile strength in unidirectional composite and cross-ply laminate increase with increasing fiber weight fraction. However, the strain at fracture showed decreasing tendency. Young's modulus in fiber and fiber transverse directions are predictable by the rules of mixture. Tensile strength in fiber direction is lower than Curtin's prediction of strength which considers distribution of fiber strength. Young's modulus in cross-ply laminate is predictable by the laminate theory. However, analytical prediction of Poisson's ratio in cross-ply laminate by the laminate theory is lower than the experimental results.

  5. Mechanics of biological polymer composites

    Science.gov (United States)

    Lomakin, Joseph

    2009-12-01

    Cartilage and cuticle are two natural materials capable of remarkable mechanical performance, especially considering the limitations on composition and processing conditions under which they are constructed. Their impressive properties are postulated to be a consequence of their complex multi-scale organization which has commonly been characterized by biochemical and microscopic methods. The objective of this dissertation is to overcome the limitations of such methods with mechanical analysis techniques generally reserved for the study of synthetic polymers. Methods for transient and dynamic mechanical analysis (DMA) of porcine TMJ disc sections and Tribolium castaneum and Tenebrio molitor elytral (modified forewing) cuticle were developed to characterize the mechanical performance of these biomaterials. The TMJ disc dynamic elastic modulus (E') was determined to be a strong function of disc orientation and pretension ranging from 700+/-240 kPa at (1g pretension) in the mediolateral direction to 73+/-8.5 MPa (150g preload) in the anteroposterior direction. Analogous mechanical testing was used to understand the relationship between composition and mechanical properties of beetle elytral cuticle at variable stages of maturation (tanning). Untanned elytra of both beetle species were ductile with a Young's modulus (E) of 44+/-8 MPa, but became brittle with an E of 2400+/-1100 MPa when fully tanned. Significantly, the E' of the TMJ disc and elytral cuticle exhibited a weak power law increase as a function of oscillation frequency. The exponent of the power law fit ( n) was determined to be a sensitive measure of molecular structure within these biomaterials. With increasing cuticular tanning, more so than with drying, the frequency dependence of cuticle E' diminished, suggesting cuticular cross-linking was an important component of tanning, as postulated by the quinone tanning hypothesis. The natural Black phenotype as well as TcADC iRNA suppressed Tribolium cuticle

  6. Irradiatable polymer composition with improved oxidation resistance

    International Nuclear Information System (INIS)

    Lyons, B.J.

    1977-01-01

    A method is described for the incorporation of a substantially insoluble organic phosphite into a polymer composition such as polyolefin polymers or ethylene copolymers to prevent oxidation of the polymer at elevated temperatures after radiation-induced crosslinking. The crosslinking is readily achieved without affecting the antioxidant properties of the organic phosphite. Particularly suitable organic compounds are derivatives of pentaerythritol, dipentaerythritol, and tripentaerythritol in cooncentrations of 1 to 3% of the mixture to be irradiated

  7. Anion-conducting polymer, composition, and membrane

    Science.gov (United States)

    Pivovar, Bryan S [Los Alamos, NM; Thorn, David L [Los Alamos, NM

    2009-09-01

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  8. Investigating the crystal growth behavior of biodegradable polymer blend thin films using in situ atomic force microscopy

    CSIR Research Space (South Africa)

    Malwela, T

    2014-01-01

    Full Text Available This article reports the crystal growth behavior of biodegradable polylactide (PLA)/poly[(butylene succinate)-co-adipate] (PBSA) blend thin films using atomic force microscopy (AFM). Currently, polymer thin films have received increased research...

  9. Controlled synthesis of biodegradable lactide polymers and copolymers using novel in situ generated or single-site stereoselective polymerisation initiators

    NARCIS (Netherlands)

    Zhong, Zhiyuan; Dijkstra, Pieter J.; Feijen, Jan

    2004-01-01

    Polylactides and their copolymers are key biodegradable polymers used widely in biomedical, pharmaceutical and ecological applications. The development of synthetic pathways and catalyst/initiator systems to produce pre-designed polylactides, as well as the fundamental understanding of the

  10. High temperature performance of polymer composites

    CERN Document Server

    Keller, Thomas

    2014-01-01

    The authors explain the changes in the thermophysical and thermomechanical properties of polymer composites under elevated temperatures and fire conditions. Using microscale physical and chemical concepts they allow researchers to find reliable solutions to their engineering needs on the macroscale. In a unique combination of experimental results and quantitative models, a framework is developed to realistically predict the behavior of a variety of polymer composite materials over a wide range of thermal and mechanical loads. In addition, the authors treat extreme fire scenarios up to more than 1000°C for two hours, presenting heat-protection methods to improve the fire resistance of composite materials and full-scale structural members, and discuss their performance after fire exposure. Thanks to the microscopic approach, the developed models are valid for a variety of polymer composites and structural members, making this work applicable to a wide audience, including materials scientists, polymer chemist...

  11. Biodegradation of thermoplastic starch/eggshell powder composites.

    Science.gov (United States)

    Bootklad, Munlika; Kaewtatip, Kaewta

    2013-09-12

    Thermoplastic starch (TPS) was prepared using compression molding and chicken eggshell was used as a filler. The effect of the eggshell powder (EP) on the properties of TPS was compared with the effect of commercial calcium carbonate (CC). The organic compound on the surface of the eggshell powder acted as a coupling agent that resulted in a strong adhesion between the eggshell powder and the TPS matrix, as confirmed by SEM micrographs. The biodegradation was determined by the soil burial test. The TPS/EP composites were more rapidly degraded than the TPS/CC composites. In addition, the eggshell powder improved the water resistance and thermal stability of the TPS. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Physical and Degradable Properties of Mulching Films Prepared from Natural Fibers and Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Zhijian Tan

    2016-05-01

    Full Text Available The use of plastic film in agriculture has the serious drawback of producing vast quantities of waste. In this work, films were prepared from natural fibers and biodegradable polymers as potential substitutes for the conventional non-biodegradable plastic film used as mulching material in agricultural production. The physical properties (e.g., mechanical properties, heat preservation, water permeability, and photopermeability and degradation characteristics (evaluated by micro-organic culture testing and soil burial testing of the films were studied in both laboratory and field tests. The experimental results indicated that these fiber/polymer films exhibited favorable physical properties that were sufficient for use in mulching film applications. Moreover, the degradation degree of the three tested films decreased in the following order: fiber/starch (ST film > fiber/poly(vinyl alcohol (PVA film > fiber/polyacrylate (PA film. The fiber/starch and fiber/PVA films were made from completely biodegradable materials and demonstrated the potential to substitute non-biodegradable films.

  13. Poly(dopamine) coating to biodegradable polymers for bone tissue engineering.

    Science.gov (United States)

    Tsai, Wei-Bor; Chen, Wen-Tung; Chien, Hsiu-Wen; Kuo, Wei-Hsuan; Wang, Meng-Jiy

    2014-02-01

    In this study, a technique based on poly(dopamine) deposition to promote cell adhesion was investigated for the application in bone tissue engineering. The adhesion and proliferation of rat osteoblasts were evaluated on poly(dopamine)-coated biodegradable polymer films, such as polycaprolactone, poly(l-lactide) and poly(lactic-co-glycolic acid), which are commonly used biodegradable polymers in tissue engineering. Cell adhesion was significantly increased to a plateau by merely 15 s of dopamine incubation, 2.2-4.0-folds of increase compared to the corresponding untreated substrates. Cell proliferation was also greatly enhanced by poly(dopamine) deposition, indicated by shortened cell doubling time. Mineralization was also increased on the poly(dopamine)-deposited surfaces. The potential of poly(dopamine) deposition in bone tissue engineering is demonstrated in this study.

  14. Study of in vitro degradation of biodegradable polymer based thin ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... Science and Biomedical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia. Accepted 7 November, 2011 .... polymers approved by the US Food and Drug. Administration (FDA) for certain ... equation is applicable when the extent of reaction is slow or before the specimen ...

  15. Study of in vitro degradation of biodegradable polymer based thin ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... treatment of bone fracture costs over Ł 900 million annually in the ... implantation when the cells start to migrate deep into the scaffold (Ma .... DISCUSSION. Figure 8 is ... polymer-based materials proceeds via a surface erosion mechanism. ... materials and the critical thickness above which the degradation ...

  16. A model for hydrolytic degradation and erosion of biodegradable polymers.

    Science.gov (United States)

    Sevim, Kevser; Pan, Jingzhe

    2018-01-15

    For aliphatic polyesters such as PLAs and PGAs, there is a strong interplay between the hydrolytic degradation and erosion - degradation leads to a critically low molecular weight at which erosion starts. This paper considers the underlying physical and chemical processes of hydrolytic degradation and erosion. Several kinetic mechanisms are incorporated into a mathematical model in an attempt to explain different behaviours of mass loss observed in experiments. In the combined model, autocatalytic hydrolysis, oligomer production and their diffusion are considered together with surface and interior erosion using a set of differential equations and Monte Carlo technique. Oligomer and drug diffusion are modelled using Fick's law with the diffusion coefficients dependent on porosity. The porosity is due to the formation of cavities which are a result of polymer erosion. The model can follow mass loss and drug release up to 100%, which cannot be explained using a simple reaction-diffusion. The model is applied to two case studies from the literature to demonstrate its validity. The case studies show that a critical molecular weight for the onset of polymer erosion and an incubation period for the polymer dissolution are two critical factors that need to be considered when predicting mass loss and drug release. In order to design bioresorbable implants, it is important to have a mathematical model to predict polymer degradation and corresponding drug release. However, very different behaviours of polymer degradation have been observed and there is no single model that can capture all these behaviours. For the first time, the model presented in this paper is capable of capture all these observed behaviours by switching on and off different underlying mechanisms. Unlike the existing reaction-diffusion models, the model presented here can follow the degradation and drug release all the way to the full disappearance of an implant. Crown Copyright © 2017. Published by

  17. Obtaining and characterization of a biodegradable polymer starting from the tapioca starch

    International Nuclear Information System (INIS)

    Ruiz Aviles, Gladys

    2006-01-01

    This study focuses on the preparation of tapioca starch biodegradable polymer, processed by blends of starch modified with glycerin and water as plasticizers, by using roll mill and a single-screw extruder in the process. During extrusion, there is a series of variables to control namely: the barrel temperature profile, screw torque and screw rotation speed. Tensile test, differential scanning calorimetric (DSC), thermogravimetric analysis (TGA), Fourier transformer infrared spectroscopy (FTIR) and morphology were used in the process

  18. A study on thermal properties of biodegradable polymers using photothermal methods

    Science.gov (United States)

    Siqueira, A. P. L.; Poley, L. H.; Sanchez, R.; da Silva, M. G.; Vargas, H.

    2005-06-01

    In this work is reported the use of photothermal techniques applied to the thermal characterization of biodegradable polymers of Polyhydroxyalkanoates (PHAs) family. This is a family of polymer produced by bacteria using renewable resources. It exhibits thermoplastic properties and therefore it can be an alternative product for engineering plastics, being also applied as packages for food industry and fruits. Thermal diffusivities were determined using the open photoacoustic cell (OPC) configuration. Specific heat capacity measurements were performed monitoring temperature of the samples under white light illumination against time. Typical values obtained for the thermal properties are in good agreement with those found in the literature for other polymers. Due to the incorporation of hydroxyvalerate in the monomer structure, the thermal diffusivity and thermal conductivity increase reaching a saturation value, otherwise the specific thermal capacity decreases as the concentration of the hydroxyvalerate (HV) increases. These results can be explained by polymers internal structure and are allowing new applications of these materials.

  19. Development of partially biodegradable foams from PP/HMSPP blends with natural and synthetic polymers

    International Nuclear Information System (INIS)

    Cardoso, Elizabeth Carvalho Leite

    2014-01-01

    Polymers are used in various application and in different industrial areas providing enormous quantities of wastes in environment. Among diverse components of residues in landfills are polymeric materials, including Polypropylene, which contribute with 20 to 30% of total volume of solid residues. As polymeric materials are immune to microbial degradation, they remain in soil and in landfills as a semi-permanent residue. Environmental concerning in litter reduction is being directed to renewable polymers development for manufacturing of polymeric foams. Foamed polymers are considered future materials, with a wide range of applications; high density structural foams are specially used in civil construction, in replacement of metal, woods and concrete with a final purpose of reducing materials costs. At present development, it was possible the incorporation of PP/HMSPP polymeric matrix blends with sugarcane bagasse, PHB and PLA, in structural foams production. Thermal degradation at 100, 120 and 160 deg C temperatures was not enough to induce biodegradability. Gamma irradiation degradation, at 50, 100, 200 and 500 kGy showed effective for biodegradability induction. Irradiated bagasse blends suffered surface erosion, in favor of water uptake and consequently, a higher biodegradation in bulk structure. (author)

  20. Nanocomposite scaffold fabrication by incorporating gold nanoparticles into biodegradable polymer matrix: Synthesis, characterization, and photothermal effect

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrasoul, Gaser N.; Farkas, Balazs; Romano, Ilaria; Diaspro, Alberto; Beke, Szabolcs, E-mail: szabolcs.beke@iit.it

    2015-11-01

    Nanoparticle incorporation into scaffold materials is a valuable route to deliver various therapeutic agents, such as drug molecules or large biomolecules, proteins (e.g. DNA or RNA) into their targets. In particular, gold nanoparticles (Au NPs) with their low inherent toxicity, tunable stability and high surface area provide unique attributes facilitating new delivery strategies. A biodegradable, photocurable polymer resin, polypropylene fumarate (PPF) along with Au NPs were utilized to synthesize a hybrid nanocomposite resin, directly exploitable in stereolithography (SL) processes. To increase the particles' colloidal stability, the Au NP nanofillers were coated with polyvinyl pyrrolidone (PVP). The resulting resin was used to fabricate a new type of composite scaffold via mask projection excimer laser stereolithography. The thermal properties of the nanocomposite scaffolds were found to be sensitive to the concentration of NPs. The mechanical properties were augmented by the NPs up to 0.16 μM, though further increase in the concentration led to a gradual decrease. Au NP incorporation rendered the biopolymer scaffolds photosensitive, i.e. the presence of Au NPs enhanced the optical absorption of the scaffolds as well, leading to possible localized temperature rise when irradiated with 532 nm laser, known as the photothermal effect. - Highlights: • Gold nanoparticle incorporation into biopolymer resin was realized. • Gold incorporation into biopolymer resin is a big step in tissue engineering. • Composite scaffolds were synthesized and thoroughly characterized. • Gold nanoparticles are remarkable candidates to be utilized as “transport vehicles”. • The photothermal effect was demonstrated using a 532-nm laser.

  1. Identification of market bags composition for biodegradable and oxo-biodegradable samples through thermal analysis in inert and oxidizer atmosphere; Identificacao da composicao de amostras de sacolas plasticas biodegradaveis e oxobiodegradaveis atraves de analises termicas em atmosfera inerte e oxidante

    Energy Technology Data Exchange (ETDEWEB)

    Finzi-Quintao, Cristiane M., E-mail: inzi@ufsj.edu.br [Universidade Federal de Sao Joao del-Rei (UFSJ), MG (Brazil); Novack, Katia M. [Universidade Federal de Ouro Preto (DEQUI/UFOP), MG (Brazil)

    2015-07-01

    Plastic films used to make market bags are based on polymers such as polyethylene, polystyrene and polypropylene, these materials require a long time to degrade in the environment. The alternative technologies of polymers have been developed to reduce the degradation time and the impact on the environment caused by the conventional materials, using pro-degrading additives or by the development biodegradable polymers. In Brazil, the laws of some municipalities require the use of biodegradable material in the production of market bags but the absence of specific surveillance policies makes its chemical composition unknown. In this paper, we analyzed 7 samples that was obtained from a a trading company and commercial market of Belo Horizonte . The samples were characterized by TGA / DTA , XRF , FTIR and MEV which allowed the identification and evaluation of the thermal behavior of the material in inert and oxidizing atmosphere. (author)

  2. Biodegradable star HPMA polymer-drug conjugates: biodegradability, distribution and anti-tumor efficacy

    Czech Academy of Sciences Publication Activity Database

    Etrych, Tomáš; Kovář, Lubomír; Strohalm, Jiří; Chytil, Petr; Říhová, Blanka; Ulbrich, Karel

    2011-01-01

    Roč. 154, č. 3 (2011), s. 241-248 ISSN 0168-3659 R&D Projects: GA AV ČR IAA400500806; GA AV ČR IAAX00500803; GA ČR GAP301/11/0325 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50200510 Keywords : star polymer * HPMA copolymers * drug release Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.732, year: 2011

  3. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2017-10-17

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  4. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    Science.gov (United States)

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2015-07-21

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  5. Evaluation of the influence of the use of waste from the processing of rice in physicochemical properties and biodegradability of PHB in composites

    Directory of Open Access Journals (Sweden)

    Ana Paula Wünsch Boitt

    2014-12-01

    Full Text Available The high calorific value of rice husks has elevated its reuse as an energy source; however, the burning of these shells generates a waste ash from rice husk ash (RHA, which makes its disposal a concern. Despite advances, biodegradable polymers are not yet able to compete with those of traditional thermoplastics, which have lower production cost and higher performance. Based on this background, this paper studies the feasibility of reuse of RHA as filler in polymer matrices replacing the conventional filler. This study consists of applying different percentages of RHA in the formulation of polyhydroxybutyrate composite (PHB and the use of talc (TA for comparison purposes as conventional filler. The composites used in this assay were obtained by twin-screw extrusion and injection molding of the polymer plus the fillers under study. Physicochemical and biodegradability properties of the composites were evaluated. The composite PHB/RHA was superior in the biodegradability tests and the properties remain practically unchanged in the presence of the filler. Thus, composites with RHA are promising because they take an abundant residue combined with degradation capacity of the polymer, therefore reducing cost and the environmental impact.

  6. Polymer Composites Corrosive Degradation: A Computational Simulation

    Science.gov (United States)

    Chamis, Christos C.; Minnetyan, Levon

    2007-01-01

    A computational simulation of polymer composites corrosive durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured pH factor and is represented by voids, temperature and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  7. Engineering Biodegradable Flame Retardant Wood-Plastic Composites

    Science.gov (United States)

    Zhang, Linxi

    Wood-plastic composites (WPCs), which are produced by blending wood and polymer materials, have attracted increasing attentions in market and industry due to the low cost and excellent performance. In this research, we have successfully engineered WPC by melt blending Polylactic Acid (PLA) and Poly(butylene adipate-co-terphthalate) (PBAT) with recycled wood flour. The thermal property and flammability of the composite are significantly improved by introducing flame retardant agent resorcinol bis(biphenyl phosphate) (RDP). The mechanical and morphological properties are also investigated via multiple techniques. The results show that wood material has increased toughness and impact resistance of the PLA/PBAT polymer matrix. SEM images have confirmed that PLA and PBAT are immiscible, but the incompatibility is reduced by the addition of wood. RDP is initially dispersed in the blends evenly. It migrates to the surface of the sample after flame application, and serves as a barrier between the fire and underlying polymers and wood mixture. It is well proved in the research that RDP is an efficient flame retardant agent in the WPC system.

  8. PEO + PVP blended polymer composite

    Indian Academy of Sciences (India)

    Blended polymer films of polyethylene oxide + polyvinyl pyrrolidone (PEO + PVP) containing transition metal (TM) ions like Fe3+, Co2+ and Ni2+ have been synthesized by a solution casting method. For these films, structural, thermal, magnetic and optical properties have been studied. X-ray diffraction results reveal the ...

  9. Biodegradable green composites reinforced by the fiber recycling from disposable chopsticks

    International Nuclear Information System (INIS)

    Shih, Yeng-Fong; Huang, Chien-Chung; Chen, Po-Wei

    2010-01-01

    The use of disposable chopsticks is very popular in chopsticks-using countries, such as Taiwan, China and Japan, and is one of the major sources of waste in these countries. In this study, the fiber recycling from disposable chopsticks was chemically modified by coupling agents. Furthermore, the modified fiber was added to the biodegradable polymer (polylactic acid, PLA), to form novel fiber-reinforced green composites. These composites prepared by melt-mixing method, were examined by scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, and mechanical tests. The results indicated that the T g of PLA was increased by the addition of fiber, which may improve the heat resistance of PLA. The thermogravimetric analysis of the composites showed that the degradation process of fiber-filled systems started earlier than that of plain PLA, but possessed a higher char yield. Mechanical tests showed that the tensile strength of the composites markedly increased with the fiber content, reaching 115 MPa in the case of being reinforced with 40 phr fiber, which is about 3 times higher as compared to the pristine PLA. Furthermore, this type of reinforced PLA would be more environmental friendly than the artificial additive-reinforced one, and could effectively reduce and reuse the waste of disposable chopsticks.

  10. Characterization of wood polymer composite and design of root trainer

    Science.gov (United States)

    Chitra, K. N.; Abhilash, R. M.; Chauhan, Shakti Singh; Venkatesh, G. S.; Shivkumar, N. D.

    2018-04-01

    Biopolymers have received much attention of researchers due to concerns over disposal of plastics, greenhouse gas emission and environmental problems associated with it. Polylactic Acid (PLA) is one of the thermoplastic biopolymer made from lactic acid by using agricultural resources. PLA has received significant interest due to its competitive properties when compared to commodity plastics such as Polyethylene, Polypropylene and Polystyrene. PLA has interesting properties such as high stiffness, UV stability, clear and glossy finish. However, application of PLA is restricted due to its brittle nature. Engineering and thermal properties of PLA can be improved by reinforcing fibres and fillers. Lignocelluloses or natural fibres such as Jute, Hemp, Bamboo, Sisal and Wood fibres can be used as reinforcement. By using natural fibres, a very bio-compostable composite can be produced. In the present study, short fibres from Melia Dubia wood were extracted and used as reinforcement to PLA Bio-Polymer matrix. Characterization of developed composite was obtained using tensile and flexural tests. Tensile test simulation of composite was performed using Altair Hypermesh, a Finite Element (FE) preprocessor and LS-Dyna an explicit FE solver. MAT_01, an elastic material model in LS-Dyna was used to model the behaviour. Further, the design of Root Trainer using developed composite has been explored. A Root Trainer is an aid to the cultivation of seedlings in nurseries. Root Trainer made by using developed composite has advantage of biodegradability and eco-friendly nature.

  11. Polymer/Layered Silicate Nano composites

    International Nuclear Information System (INIS)

    Bakhit, M.E.E.H.

    2012-01-01

    Polymer–clay nano composites have attracted the attention of many researchers and experimental results are presented in a large number of recent papers and patents because of the outstanding mechanical properties and low gas permeabilities that are achieved in many cases. Polymer-clay nano composites are a new class of mineral-field polymer that contain relatively small amounts (<10%) of nanometer-sized clay particles. Polymer/clay nano composites have their origin in the pioneering research conducted at Toyota Central Research Laboratories and the first historical record goes back to 1987. The matrix was nylon-6 and the filler MMT. Because of its many advantages such as high mechanical properties, good gas barrier, flame retardation, etc. polymer/clay nano composites have been intensely investigated and is currently the subject of many research programs. Nano composite materials are commercially important and several types of products with different shapes and applications including food packaging films and containers, engine parts, dental materials, etc. are now available in markets. A number of synthesis routes have been developed in the recent years to prepare these materials, which include intercalation of polymers or prepolymers from solution, in-situ polymerization, melt intercalation etc. In this study, new nano composite materials were produced from the components of rubber (Nbr, SBR and EPDM) as the polymeric matrix and organically modified quaternary alkylammonium montmorillonite in different contents (3, 5, 7, and 10 phr) as the filler by using an extruder then, the rubber nano composite sheets were irradiated at a dose of 0, 50, 75, 100 and 150 KGy using Electron beam Irradiation technique as a crosslinking agent. These new materials can be characterized by using various analytical techniques including X-ray diffractometer XRD, Thermogravimetric analyzer TGA, scanning electron microscope (SEM), transmission electron microscope (TEM),Fourier transform

  12. Investigation of Bauschinger effect in thermo-plastic polymers for biodegradable stents

    Directory of Open Access Journals (Sweden)

    Schümann Kerstin

    2017-09-01

    Full Text Available The Bauschinger effect is a phenomenon metals show as a result of plastic deformation. After a primary plastic deformation the yield strength in the opposite loading direction decreases. The aim of this study is to investigate if there is a phenomenon similar to Bauschinger effect in thermoplastic polymers for stent application that would influence the mechanical properties of these biodegradable implants. Combined uniaxial tensile with subsequent compression tests as well as conventional compression tests without prior tensile loading were performed using biodegradable polymers for stent application (PLLA and a PLLA based blend. Comparing the results of compression tests with prior tensile loading to the compression-only tests a decrease in compressive strength can be observed for both of the tested materials. The conclusion of the performed experiments is that there is a phenomenon similar to Bauschinger effect not only in metallic materials but also in the examined thermoplastic polymers. The observed reduction of compressive strength as a consequence of prior tensile loading can influence the mechanical behaviour, e.g. the radial strength, of polymeric stents after sustaining a complex load history due to crimping and expansion.

  13. Impact strength and flexural properties enhancement of methacrylate silane treated oil palm mesocarp fiber reinforced biodegradable hybrid composites.

    Science.gov (United States)

    Eng, Chern Chiet; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Ariffin, Hidayah; Yunus, Wan Md Zin Wan

    2014-01-01

    Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites.

  14. Fabrication of a Delaying Biodegradable Magnesium Alloy-Based Esophageal Stent via Coating Elastic Polymer

    Directory of Open Access Journals (Sweden)

    Tianwen Yuan

    2016-05-01

    Full Text Available Esophageal stent implantation can relieve esophageal stenosis and obstructions in benign esophageal strictures, and magnesium alloy stents are a good candidate because of biodegradation and biological safety. However, biodegradable esophageal stents show a poor corrosion resistance and a quick loss of mechanical support in vivo. In this study, we chose the elastic and biodegradable mixed polymer of Poly(ε-caprolactone (PCL and poly(trimethylene carbonate (PTMC as the coated membrane on magnesium alloy stents for fabricating a fully biodegradable esophageal stent, which showed an ability to delay the degradation time and maintain mechanical performance in the long term. After 48 repeated compressions, the mechanical testing demonstrated that the PCL-PTMC-coated magnesium stents possess good flexibility and elasticity, and could provide enough support against lesion compression when used in vivo. According to the in vitro degradation evaluation, the PCL-PTMC membrane coated on magnesium was a good material combination for biodegradable stents. During the in vivo evaluation, the proliferation of the smooth muscle cells showed no signs of cell toxicity. Histological examination revealed the inflammation scores at four weeks in the magnesium-(PCL-PTMC stent group were similar to those in the control group (p > 0.05. The α-smooth muscle actin layer in the media was thinner in the magnesium-(PCL-PTMC stent group than in the control group (p < 0.05. Both the epithelial and smooth muscle cell layers were significantly thinner in the magnesium-(PCL-PTMC stent group than in the control group. The stent insertion was feasible and provided reliable support for at least four weeks, without causing severe injury or collagen deposition. Thus, this stent provides a new stent for the treatment of benign esophageal stricture and a novel research path in the development of temporary stents in other cases of benign stricture.

  15. Biodegradation Study of Nanocomposites of Phenol Novolac Epoxy/Unsaturated Polyester Resin/Egg Shell Nanoparticles Using Natural Polymers

    Directory of Open Access Journals (Sweden)

    S. M. Mousavi

    2015-01-01

    Full Text Available Nanocomposite materials refer to those materials whose reinforcing phase has dimensions on a scale from one to one hundred nanometers. In this study, the nanocomposite biodegradation of the phenol Novolac epoxy and the unsaturated polyester resins was investigated using the egg shell nanoparticle as bioceramic as well as starch and glycerin as natural polymers to modify their properties. The phenol Novolac epoxy resin has a good compatibility with the unsaturated polyester resin. The prepared samples with different composition of materials for specified time were buried under soil and their biodegradation was studied using FTIR and SEM. The FTIR results before and after degradation showed that the presence of the hydroxyl group increased the samples degradation. Also adding the egg shell nanoparticle to samples had a positive effect on its degradation. The SEM results with and without the egg shell nanoparticle also showed that use of the egg shell nanoparticle increases the samples degradation. Additionally, increasing the amount of starch, and glycerol and the presence of egg shell nanoparticles can increase water adsorption.

  16. Driving degradation within biodegradable polymers with embedded nanoparticles

    Science.gov (United States)

    Gorga, Russell; Firestone, Gabriel; Fontecha, Daniela; Bochinski, Jason; Clarke, Laura

    The ability to controllably trigger breaking of chemical bonds enables a substance that has robust material properties during use but can be re-worked or deteriorated upon command. Photothermal heating creates intense local heat at isolated nanoparticle locations within a sample and can result in very different material responses than those achievable with conventional (uniform) heating. In this process, irradiation with visible light resonant with the nanoparticle's surface plasmon resonance results in dramatic local heating of the particles and the surrounding material. This work studies intentional thermal degradation of poly ethyl cyanoacrylate-starch composites doped with metal nanoparticles, and explores differences in degradation speed, efficiency, and resultant mechanical properties when heated via the photothermal effect. This work was supported by the National Science Foundation, Grant #: CMMI-1462966.

  17. Optical absorption studies on biodegradable PVA/PVP blend polymer electrolyte system

    Science.gov (United States)

    Basha, S. K. Shahenoor; Reddy, K. Veera Bhadra; Rao, M. C.

    2018-05-01

    Biodegradable blend polymer electrolytes of PVA/PVP with different wt% ratios of MgCl2.6H2O have been prepared using solution cast technique. Optical absorption studies were carried-out on to the prepared films at room temperature using JASCO V-670 Spectrophotometer in the wavelength region 200-600 nm. Due to the clusters between the vibrations of molecules a broad peak is obtained due to п-п* transition in the wavelength region 310-340 nm.

  18. Diamond structures grown from polymer composite nanofibers

    Czech Academy of Sciences Publication Activity Database

    Potocký, Štěpán; Kromka, Alexander; Babchenko, Oleg; Rezek, Bohuslav; Martinová, L.; Pokorný, P.

    2013-01-01

    Roč. 5, č. 6 (2013), s. 519-521 ISSN 2164-6627 R&D Projects: GA ČR GAP108/12/0910; GA ČR GAP205/12/0908 Institutional support: RVO:68378271 Keywords : chemical vapour deposition * composite polymer * nanocrystalline diamond * nanofiber sheet * SEM Subject RIV: BM - Solid Matter Physics ; Magnetism

  19. Polymer-ceramic piezoelectric composites (PZT)

    International Nuclear Information System (INIS)

    Bassora, L.A.; Eiras, J.A.

    1992-01-01

    Polymer-ceramic piezoelectric transducers, with 1-3 of connectivity were prepared with different concentration of ceramic material. Piezoelectric composites, with equal electromechanical coupling factor and acoustic impedance of one third from that ceramic transducer, were obtained when the fractionary volume of PZT reach 30%. (C.G.C.)

  20. Nanocellulose based polymer composite for acoustical materials

    Science.gov (United States)

    Farid, Mohammad; Purniawan, Agung; Susanti, Diah; Priyono, Slamet; Ardhyananta, Hosta; Rahmasita, Mutia E.

    2018-04-01

    Natural fibers are biodegradable materials that are innovatively and widely used for composite reinforcement in automotive components. Nanocellulose derived from natural fibers oil palm empty bunches have properties that are remarkable for use as a composite reinforcement. However, there have not been many investigations related to the use of nanocellulose-based composites for wideband sound absorption materials. The specimens of nanocellulose-based polyester composite were prepared using a spray method. An impedance tube method was used to measure the sound absorption coefficient of this composite material. To reveal the characteristics of the nanocellulose-based polyester composite material, SEM (scanning electron microscope), TEM (Transmission Electron Microscope), FTIR (Fourier Transform Infra Red), TGA (Thermogravimetric Analysis), and density tests were performed. Sound absorption test results showed the average value of sound absorption coefficient of 0.36 to 0,46 for frequency between 500 and 4000 Hz indicating that this nanocellulose-based polyester composite materials had a tendency to wideband sound absorption materials and potentially used as automotive interior materials.

  1. A novel biodegradable nicotinic acid/calcium phosphate composite coating on Mg-3Zn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yingwei, E-mail: ywsong@imr.ac.cn; Shan, Dayong; Han, En-Hou

    2013-01-01

    A novel biodegradable composite coating is prepared to reduce the biodegradation rate of Mg-3Zn alloy. The Mg-3Zn substrate is first immersed into 0.02 mol L{sup -1} nicotinic acid (NA) solution, named as vitamin B{sub 3}, to obtain a pretreatment film, and then the electrodeposition of calcium phosphate coating with ultrasonic agitation is carried out on the NA pretreatment film to obtain a NA/calcium phosphate composite coating. Surface morphology is observed by scanning electron microscopy (SEM). Chemical composition is determined by X-ray diffraction (XRD) and EDX. Protection property of the coatings is evaluated by electrochemical tests. The biodegradable behavior is investigated by immersion tests. The results indicate that a thin but compact bottom layer can be obtained by NA pretreatment. The electrodeposition calcium phosphate coating consists of many flake particles and ultrasonic agitation can greatly improve the compactness of the coating. The composite coating is biodegradable and can reduce the biodegradation rate of Mg alloys in stimulated body fluid (SBF) for twenty times. The biodegradation process of the composite coating can be attributed to the gradual dissolution of the flake particles into chippings. - Highlights: Black-Right-Pointing-Pointer NA/calcium phosphate composite coating is prepared to protect Mg-3Zn alloy implant. Black-Right-Pointing-Pointer Nicotinic acid (vitamin B{sub 3}) is available to obtain a protective bottom film. Black-Right-Pointing-Pointer Ultrasonic agitation greatly improves the compactness of calcium phosphate coating. Black-Right-Pointing-Pointer The composite coating can reduce the biodegradation rate of Mg-3Zn twenty times. Black-Right-Pointing-Pointer The composite coating is biodegraded by the dissolution of flakes into chippings.

  2. Characterization and evaluation physical properties biodegradable plastic composite from seaweed (Eucheuma cottonii)

    Science.gov (United States)

    Deni, Glar Donia; Dhaningtyas, Shalihat Afifah; Fajar, Ibnu; Sudarno

    2015-12-01

    The characterization and evaluation of biodegradable plastic composed of a mixture PVA - carrageenan - chitosan was conducted in this study. Obtained data were then compared to commercial biodegradable plastic. Characteristic of plastic was mechanical tested such as tensile - strength and elongation. Plastic degradation was studied using composting method for 7 days and 14 days. The results showed that the increase carrageenan will decrease tensile-strength and elongation plastic composite. In addition, increase carrageenan would increase the degraded plastics composite.

  3. Study of biodegradation of partially hydrolyzed polyacrylamide in an oil reservoir after polymer flooding

    International Nuclear Information System (INIS)

    Bao, M.; Chen, Q.; Li, Y.; Jiang, G.

    2009-01-01

    Studies have demonstrated that the amide group of polyacrylamides can provide a nitrogen source for microorganisms. However, the carbon backbone of the polymers cannot be cleaved by microbial activity. This study examined the biodegradability of partially hydrolyzed polyacrylamide (HPAM) in an aerobic environment both before and after bacterial biodegradation. Results of the infrared spectrum study indicated that the amide group of HPAM in the products was converted to a carboxyl group. High performance liquid chromatography analyses did not demonstrate the presence of acrylamide monomers. A scanning electron microscopy (SEM) study showed that the surfaces of HPAM particles had been altered by the biodegradation process. Results of the study indicated that the HPAM carbon backbone was metabolized by the bacteria during the course of its growth. It was hypothesized that the HPAM was initially utilized by the bacteria as a nitrogen source by the hydrolysis of the HPAM amide groups using an amidase enzyme. Oxidation of the carbon backbone chain then occurred by monooxygenase catalysis. It was concluded that the HPAM carbon backbone then served as a source for further bacterial growth and metabolism. 13 refs., 5 figs

  4. Numerical study on injection parameters optimization of thin wall and biodegradable polymers parts

    Science.gov (United States)

    Santos, C.; Mendes, A.; Carreira, P.; Mateus, A.; Malça, C.

    2017-07-01

    Nowadays, the molds industry searches new markets, with diversified and added value products. The concept associated to the production of thin walled and biodegradable parts mostly manufactured by injection process has assumed a relevant importance due to environmental and economic factors. The growth of a global consciousness about the harmful effects of the conventional polymers in our life quality associated with the legislation imposed, become key factors for the choice of a particular product by the consumer. The target of this work is to provide an integrated solution for the injection of parts with thin walls and manufactured using biodegradable materials. This integrated solution includes the design and manufacture processes of the mold as well as to find the optimum values for the injection parameters in order to become the process effective and competitive. For this, the Moldflow software was used. It was demonstrated that this computational tool provides an effective responsiveness and it can constitute an important tool in supporting the injection molding of thin-walled and biodegradable parts.

  5. Polymer - (BEDT-TTF) polyiodide composites

    Energy Technology Data Exchange (ETDEWEB)

    Ulanski, J [Polymer Inst., Technical Univ. of Lodz (Poland); Glowacki, I [Polymer Inst., Technical Univ. of Lodz (Poland); Kryszewski, M [Polymer Inst., Technical Univ. of Lodz (Poland); Jeszka, J K [Center of Molecular and Macromolecular Studies, Lodz (Poland); Tracz, A [Center of Molecular and Macromolecular Studies, Lodz (Poland); Laukhina, E [Inst. of Chemical Physics, Chernogolovka (Russian Federation)

    1993-03-29

    Preparation and properties of reticulate doped polymers containing BEDT-TTF polyiodide crystalline network are discussed. The highly conducting films are obtained using different methods, including recently developed one in which oxidation of the donor with iodine and crystallization of the resulting salt take place simultaneously in situ, in the swollen polymer matrix. It was found that the temperature dependence of conductivity of the separated microcrystal grown in the film exhibits metallic character with a maximum around 100K. The conductivity of the as-obtained composite increases with temperature up to ca. 120K with an activation energy of ca. 50 meV, then levels off. Annealing of the composites in order to transform the BEDT-TTF polyiodide crystalites into superconducting [beta][sup *]-phase causes dramatic changes in the conductivity behaviour; the [sigma](T) dependence of the composite switches from semiconductor- to metal-like. Stability of the films at ambient conditions is good. (orig.)

  6. A sacrificial process for fabrication of biodegradable polymer membranes with submicron thickness.

    Science.gov (United States)

    Beardslee, Luke A; Stolwijk, Judith; Khaladj, Dimitrius A; Trebak, Mohamed; Halman, Justin; Torrejon, Karen Y; Niamsiri, Nuttawee; Bergkvist, Magnus

    2016-08-01

    A new sacrificial molding process using a single mask has been developed to fabricate ultrathin 2-dimensional membranes from several biocompatible polymeric materials. The fabrication process is similar to a sacrificial microelectromechanical systems (MEMS) process flow, where a mold is created from a material that can be coated with a biodegradable polymer and subsequently etched away, leaving behind a very thin polymer membrane. In this work, two different sacrificial mold materials, silicon dioxide (SiO2 ) and Liftoff Resist (LOR) were used. Three different biodegradable materials; polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and polyglycidyl methacrylate (PGMA), were chosen as model polymers. We demonstrate that this process is capable of fabricating 200-500 nm thin, through-hole polymer membranes with various geometries, pore-sizes and spatial features approaching 2.5 µm using a mold fabricated via a single contact photolithography exposure. In addition, the membranes can be mounted to support rings made from either SU8 or PCL for easy handling after release. Cell culture compatibility of the fabricated membranes was evaluated with human dermal microvascular endothelial cells (HDMECs) seeded onto the ultrathin porous membranes, where the cells grew and formed confluent layers with well-established cell-cell contacts. Furthermore, human trabecular meshwork cells (HTMCs) cultured on these scaffolds showed similar proliferation as on flat PCL substrates, further validating its compatibility. All together, these results demonstrated the feasibility of our sacrificial fabrication process to produce biocompatible, ultra-thin membranes with defined microstructures (i.e., pores) with the potential to be used as substrates for tissue engineering applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1192-1201, 2016. © 2015 Wiley Periodicals, Inc.

  7. Technology and development of self-reinforced polymer composites

    NARCIS (Netherlands)

    Alcock, B.; Peijs, T.

    2013-01-01

    In recent years there has been an increasing amount of interest, both commercially and scientifically, in the emerging field of "self-reinforced polymer composites". These materials, which are sometimes also referred to as "single polymer composites", or "all-polymer composites", were first

  8. Chemical microsensors based on polymer fiber composites

    Science.gov (United States)

    Kessick, Royal F.; Levit, Natalia; Tepper, Gary C.

    2005-05-01

    There is an urgent need for new chemical sensors for defense and security applications. In particular, sensors are required that can provide higher sensitivity and faster response in the field than existing baseline technologies. We have been developing a new solid-state chemical sensor technology based on microscale polymer composite fiber arrays. The fibers consist of an insulating polymer doped with conducting particles and are electrospun directly onto the surface of an interdigitated microelectrode. The concentration of the conducting particles within the fiber is controlled and is near the percolation threshold. Thus, the electrical resistance of the polymer fiber composite is very sensitive to volumetric changes produced in the polymer by vapor absorption. Preliminary results are presented on the fabrication and testing of the new microsensor. The objective is to take advantage of the very high surface to volume ratio, low thermal mass and linear geometry of the composite fibers to produce sensors exhibiting an extremely high vapor sensitivity and rapid response. The simplicity and low cost of a resistance-based chemical microsensor makes this sensing approach an attractive alternative to devices requiring RF electronics or time-of-flight analysis. Potential applications of this technology include battlespace awareness, homeland security, environmental surveillance, medical diagnostics and food process monitoring.

  9. Polymer compositions, polymer films and methods and precursors for forming same

    Science.gov (United States)

    Klaehn, John R; Peterson, Eric S; Orme, Christopher J

    2013-09-24

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  10. Optical and thermal properties in ultrafast laser surface nanostructuring on biodegradable polymer

    Science.gov (United States)

    Yada, Shuhei; Terakawa, Mitsuhiro

    2015-03-01

    We investigate the effect of optical and thermal properties in laser-induced periodic surface structures (LIPSS) formation on a poly-L-lactic acid (PLLA), a biodegradable polymer. Surface properties of biomaterials are known to be one of the key factors in tissue engineering. Methods to process biomaterial surfaces have been studied widely to enhance cell adhesive and anisotropic properties. LIPSS formation has advantages in a dry processing which is able to process complex-shaped surfaces without using a toxic chemical component. LIPSS, however, was difficult to be formed on PLLA due to its thermal and optical properties compared to other polymers. To obtain new perspectives in effect of these properties above, LIPSS formation dependences on wavelength, pulse duration and repetition rate have been studied. At 800 nm of incident wavelength, high-spatial frequency LIPSS (HSFL) was formed after applying 10000 femtosecond pulses at 1.0 J/cm2 in laser fluence. At 400 nm of the wavelength, HSFL was formed at fluences higher than 0.20 J/cm2 with more than 3000 pulses. Since LIPSS was less formed with lower repetition rate, certain heat accumulation may be required for LIPSS formation. With the pulse duration of 2.0 ps, higher laser fluence as well as number of pulses compared to the case of 120 fs was necessary. This indicates that multiphoton absorption process is essential for LIPSS formation. Study on biodegradation modification was also performed.

  11. Biodegradable Composites Based on Starch/EVOH/Glycerol Blends and Coconut Fibers

    Science.gov (United States)

    Unripe coconut fibers were used as fillers in a biodegradable polymer matrix of starch/Ethylene vinyl alcohol (EVOH)/glycerol. The effects of fiber content on the mechanical, thermal and structural properties were evaluated. The addition of coconut fiber into starch/EVOH/glycerol blends reduced the ...

  12. Biodegradable modified Phba systems

    International Nuclear Information System (INIS)

    Aniscenko, L.; Dzenis, M.; Erkske, D.; Tupureina, V.; Savenkova, L.; Muizniece - Braslava, S.

    2004-01-01

    Compositions as well as production technology of ecologically sound biodegradable multicomponent polymer systems were developed. Our objective was to design some bio plastic based composites with required mechanical properties and biodegradability intended for use as biodegradable packaging. Significant characteristics required for food packaging such as barrier properties (water and oxygen permeability) and influence of γ-radiation on the structure and changes of main characteristics of some modified PHB matrices was evaluated. It was found that barrier properties were plasticizers chemical nature and sterilization with γ-radiation dependent and were comparable with corresponding values of typical polymeric packaging films. Low γ-radiation levels (25 kGy) can be recommended as an effective sterilization method of PHB based packaging materials. Purposely designed bio plastic packaging may provide an alternative to traditional synthetic packaging materials without reducing the comfort of the end-user due to specific qualities of PHB - biodegradability, Biocompatibility and hydrophobic nature

  13. The radiation chemistry of polymer composites

    International Nuclear Information System (INIS)

    Dole, M.

    1991-01-01

    With the use of plastics in the construction of space satellites which may be exposed in geosynchronous orbit to 100 MGy (10,000 Mrad) of high-energy radiation in 30 years of use, the effect of these radiations on the polymer becomes of practical importance. To understand the effects we consider first various radiation-resistant groups that are incorporated into the polymer and their relative effectiveness in reducing molecular scissions due to the radiation. The location of such groups in the polymer is also discussed. Next the chemical structures of a number of resins such as epoxies, polyimides, etc. are described followed by a detailed account of methods of improving the radiation resistance of plastics by the incorporation of carbon or glass fibers. Finally, the role of oxygen in causing chain scissions and other effects during irradiation which reduce the mechanical strength of the plastics and the fiber resin composites are also considered. (author)

  14. Biodegradation of partially hydrolyzed polyacrylamide by bacteria isolated from production water after polymer flooding in an oil field

    International Nuclear Information System (INIS)

    Bao Mutai; Chen Qingguo; Li Yiming; Jiang Guancheng

    2010-01-01

    Partially hydrolyzed polyacrylamide (HPAM) in production water after polymer flooding in oil filed causes environmental problems, such as increases the difficulty in oil-water separation, degrades naturally to produce toxic acrylamide and endanger local ecosystem. Biodegradation of HPAM may be an efficient way to solve these problems. The biodegradability of HPAM in an aerobic environment was studied. Two HPAM-degrading bacterial strains, named PM-2 and PM-3, were isolated from the produced water of polymer flooding. They were subsequently identified as Bacillus cereus and Bacillus sp., respectively. The utilization of HPAM by the two strains was explored. The amide group of HPAM could serve as a nitrogen source for the two microorganisms, the carbon backbone of these polymers could be partly utilized by microorganisms. The HPAM samples before and after bacterial biodegradation were analyzed by the infrared spectrum, high performance liquid chromatography and scanning electronic microscope. The results indicated that the amide group of HPAM in the biodegradation products had been converted to a carboxyl group, and no acrylamide monomer was found. The HPAM carbon backbone was metabolized by the bacteria during the course of its growth. Further more, the hypothesis about the biodegradation of HPAM in aerobic bacterial culture is proposed.

  15. Experimental degradation of polymer shopping bags (standard and degradable plastic, and biodegradable) in the gastrointestinal fluids of sea turtles.

    Science.gov (United States)

    Müller, Christin; Townsend, Kathy; Matschullat, Jörg

    2012-02-01

    The persistence of marine debris such as discarded polymer bags has become globally an increasing hazard to marine life. To date, over 177 marine species have been recorded to ingest man-made polymers that cause life-threatening complications such as gut impaction and perforation. This study set out to test the decay characteristics of three common types of shopping bag polymers in sea turtle gastrointestinal fluids (GIF): standard and degradable plastic, and biodegradable. Fluids were obtained from the stomachs, small intestines and large intestines of a freshly dead Green turtle (Chelonia mydas) and a Loggerhead turtle (Caretta caretta). Controls were carried out with salt and freshwater. The degradation rate was measured over 49 days, based on mass loss. Degradation rates of the standard and the degradable plastic bags after 49 days across all treatments and controls were negligible. The biodegradable bags showed mass losses between 3 and 9%. This was a much slower rate than reported by the manufacturers in an industrial composting situation (100% in 49 days). The GIF of the herbivorous Green turtle showed an increased capacity to break down the biodegradable polymer relative to the carnivorous Loggerhead, but at a much lower rate than digestion of natural vegetative matter. While the breakdown rate of biodegradable polymers in the intestinal fluids of sea turtles is greater than standard and degradable plastics, it is proposed that this is not rapid enough to prevent morbidity. Further study is recommended to investigate the speed at which biodegradable polymers decompose outside of industrial composting situations, and their durability in marine and freshwater systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Smooth Nanowire/Polymer Composite Transparent Electrodes

    KAUST Repository

    Gaynor, Whitney; Burkhard, George F.; McGehee, Michael D.; Peumans, Peter

    2011-01-01

    Smooth composite transparent electrodes are fabricated via lamination of silver nanowires into the polymer poly-(4,3-ethylene dioxythiophene): poly(styrene-sulfonate) (PEDOT:PSS). The surface roughness is dramatically reduced compared to bare nanowires. High-efficiency P3HT:PCBM organic photovoltaic cells can be fabricated using these composites, reproducing the performance of cells on indium tin oxide (ITO) on glass and improving the performance of cells on ITO on plastic. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Smooth Nanowire/Polymer Composite Transparent Electrodes

    KAUST Repository

    Gaynor, Whitney

    2011-04-29

    Smooth composite transparent electrodes are fabricated via lamination of silver nanowires into the polymer poly-(4,3-ethylene dioxythiophene): poly(styrene-sulfonate) (PEDOT:PSS). The surface roughness is dramatically reduced compared to bare nanowires. High-efficiency P3HT:PCBM organic photovoltaic cells can be fabricated using these composites, reproducing the performance of cells on indium tin oxide (ITO) on glass and improving the performance of cells on ITO on plastic. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Solid particle erosion of polymers and composites

    Science.gov (United States)

    Friedrich, K.; Almajid, A. A.

    2014-05-01

    After a general introduction to the subject of solid particle erosion of polymers and composites, the presentation focusses more specifically on the behavior of unidirectional carbon fiber (CF) reinforced polyetheretherketone (PEEK) composites under such loadings, using different impact conditions and erodents. The data were analyzed on the basis of a newly defined specific erosive wear rate, allowing a better comparison of erosion data achieved under various testing conditions. Characteristic wear mechanisms of the CF/PEEK composites consisted of fiber fracture, matrix cutting and plastic matrix deformation, the relative contribution of which depended on the impingement angles and the CF orientation. The highest wear rates were measured for impingement angles between 45 and 60°. Using abrasion resistant neat polymer films (in this case PEEK or thermoplastic polyurethane (TPU) ones) on the surface of a harder substrate (e.g. a CF/PEEK composite plate) resulted in much lower specific erosive wear rates. The use of such polymeric films can be considered as a possible method to protect composite surfaces from damage caused by minor impacts and erosion. In fact, they are nowadays already successfully applied as protections for wind energy rotor blades.

  19. A Review on Recent Advances in Stabilizing Peptides/Proteins upon Fabrication in Hydrogels from Biodegradable Polymers

    OpenAIRE

    Faisal Raza; Hajra Zafar; Ying Zhu; Yuan Ren; Aftab -Ullah; Asif Ullah Khan; Xinyi He; Han Han; Md Aquib; Kofi Oti Boakye-Yiadom; Liang Ge

    2018-01-01

    Hydrogels evolved as an outstanding carrier material for local and controlled drug delivery that tend to overcome the shortcomings of old conventional dosage forms for small drugs (NSAIDS) and large peptides and proteins. The aqueous swellable and crosslinked polymeric network structure of hydrogels is composed of various natural, synthetic and semisynthetic biodegradable polymers. Hydrogels have remarkable properties of functionality, reversibility, sterilizability, and biocompatibility. All...

  20. Microwave Measurements of Ferrite Polymer Composite Materials

    Directory of Open Access Journals (Sweden)

    Rastislav Dosoudil

    2004-01-01

    Full Text Available The article focuses on the microwave measurements performed on the nickel-zinc sintered ferrite with the chemical formula Ni0.3Zn0.7Fe2O4 produced by the ceramic technique and composite materials based on this ferrite and a non-magnetic polymer (polyvinyl chloride matrix. The prepared composite samples had the same particle size distribution 0-250um but different ferrite particle concentrations between 23 vol% and 80 vol%. The apparatus for measurement of the signal proportional to the absolute value of scattering parameter S11 (reflexion coefficient is described and the dependence of measured reflected signal on a bias magnetic field has been studied. By means of experiments, the resonances to be connected with the geometry of microwave experimental set-up were distinguished from ferromagnetic resonance arising in ferrite particles of composite structure. The role of local interaction fields of ferrite particles in composite material has been discussed.

  1. Tubular array, dielectric, conductivity and electrochemical properties of biodegradable gel polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Sudhakar, Y.N. [Department of Chemistry, Manipal Institute of Technology, Manipal, Karnataka (India); Selvakumar, M., E-mail: chemselva78@gmail.com [Department of Chemistry, Manipal Institute of Technology, Manipal, Karnataka (India); Bhat, D. Krishna [Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore (India)

    2014-02-15

    Highlights: • A new finding of tubular array of 10–20 μm in length and 1–2 μm in thickness of gel polymer electrolyte (GPE) having 2.2 × 10{sup −3} S cm{sup −1} conductivity is reported. • Thermal and electrochemical characterizations of GPEs show good interaction among the polymer, plasticizer and salt. • GPE based supercapacitor demonstrates high capacitance of 186 F g{sup −1}. • Low temperature studies did not influence much on capacitance values obtained from AC impedance studies. • Charge–discharge exhibits high capacity with excellent cyclic stability and energy density. -- Abstract: A supercapacitor based on a biodegradable gel polymer electrolyte (GPE) has been fabricated using guar gum (GG) as the polymer matrix, LiClO{sub 4} as the doping salt and glycerol as the plasticizer. The scanning electron microscopy (SEM) images of the gel polymer showed an unusual tubular array type surface morphology. FTIR, DSC and TGA results of the GPE indicated good interaction between the components used. Highest ionic conductivity and lowest activation energy values were 2.2 × 10{sup −3} S cm{sup −1} and 0.18 eV, respectively. Dielectric studies revealed ionic behavior and good capacitance with varying frequency of the GPE system. The fabricated supercapacitor showed a maximum specific capacitance value of 186 F g{sup −1} using cyclic voltammetry. Variation of temperature from 273 K to 293 K did not significantly influence the capacitance values obtained from AC impedance studies. Galvanostatic charge–discharge study of supercapacitor indicated that the device has good stability, high energy density and power density.

  2. A life cycle framework to support materials selection for Ecodesign: A case study on biodegradable polymers

    International Nuclear Information System (INIS)

    Ribeiro, I.; Peças, P.; Henriques, E.

    2013-01-01

    Highlights: • Life cycle framework to support material selection in Ecodesign. • Early design stage estimates and sensitivity analyses based on process-based models. • Sensitivity analysis to product geometry, industrial context and EoL scenarios. • Cost and environmental performance comparison – BDP vs. fossil based polymers. • Best alternatives mapping integrating cost and environmental performances. - Abstract: Nowadays society compels designers to develop more sustainable products. Ecodesign directs product design towards the goal of reducing environmental impacts. Within Ecodesign, materials selection plays a major role on product cost and environmental performance throughout its life cycle. This paper proposes a comprehensive life cycle framework to support Ecodesign in material selection. Dealing with new materials and technologies in early design stages, process-based models are used to represent the whole life cycle and supply integrated data to assess material alternatives, considering cost and environmental dimensions. An integrated analysis is then proposed to support decision making by mapping the best alternative materials according to the importance given to upstream and downstream life phases and to the environmental impacts. The proposed framework is applied to compare the life cycle performance of injection moulded samples made of four commercial biodegradable polymers with different contents of Thermo Plasticized Starch and PolyLactic Acid and a common fossil based polymer, Polypropylene. Instead of labelling materials just as “green”, the need to fully capture all impacts in the whole life cycle was shown. The fossil based polymer is the best economic alternative, but polymers with higher content of Thermo Plasticized Starch have a better environmental performance. However, parts geometry and EoL scenarios play a major role on the life cycle performance of candidate materials. The selection decision is then supported by mapping

  3. THE BIODEGRADABILITY AND MECHANICAL STRENGTH OF NUTRITIVE POTS FOR VEGETABLE PLANTING BASED ON LIGNOCELLULOSE COMPOSITE MATERIALS

    OpenAIRE

    Petronela Nechita; Elena Dobrin; Florin Ciolacu; Elena Bobu

    2010-01-01

    Considering the mild degradation strength and the fact that it may be an organic matter reserve for the soil, in the past years lignocellulosic materials have been used as fibrous raw materials in the manufacture of biodegradable nutritive pots for the seedling in vegetable containerized production. This paper analyses the behavior of the nutritive pots made from biodegradable composites for the vegetable seedling production process, focusing on their mechanical strength properties and biodeg...

  4. A Wireless Pressure Sensor Integrated with a Biodegradable Polymer Stent for Biomedical Applications.

    Science.gov (United States)

    Park, Jongsung; Kim, Ji-Kwan; Patil, Swati J; Park, Jun-Kyu; Park, SuA; Lee, Dong-Weon

    2016-06-02

    This paper describes the fabrication and characterization of a wireless pressure sensor for smart stent applications. The micromachined pressure sensor has an area of 3.13 × 3.16 mm² and is fabricated with a photosensitive SU-8 polymer. The wireless pressure sensor comprises a resonant circuit and can be used without the use of an internal power source. The capacitance variations caused by changes in the intravascular pressure shift the resonance frequency of the sensor. This change can be detected using an external antenna, thus enabling the measurement of the pressure changes inside a tube with a simple external circuit. The wireless pressure sensor is capable of measuring pressure from 0 mmHg to 230 mmHg, with a sensitivity of 0.043 MHz/mmHg. The biocompatibility of the pressure sensor was evaluated using cardiac cells isolated from neonatal rat ventricular myocytes. After inserting a metal stent integrated with the pressure sensor into a cardiovascular vessel of an animal, medical systems such as X-ray were employed to consistently monitor the condition of the blood vessel. No abnormality was found in the animal blood vessel for approximately one month. Furthermore, a biodegradable polymer (polycaprolactone) stent was fabricated with a 3D printer. The polymer stent exhibits better sensitivity degradation of the pressure sensor compared to the metal stent.

  5. A Wireless Pressure Sensor Integrated with a Biodegradable Polymer Stent for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Jongsung Park

    2016-06-01

    Full Text Available This paper describes the fabrication and characterization of a wireless pressure sensor for smart stent applications. The micromachined pressure sensor has an area of 3.13 × 3.16 mm2 and is fabricated with a photosensitive SU-8 polymer. The wireless pressure sensor comprises a resonant circuit and can be used without the use of an internal power source. The capacitance variations caused by changes in the intravascular pressure shift the resonance frequency of the sensor. This change can be detected using an external antenna, thus enabling the measurement of the pressure changes inside a tube with a simple external circuit. The wireless pressure sensor is capable of measuring pressure from 0 mmHg to 230 mmHg, with a sensitivity of 0.043 MHz/mmHg. The biocompatibility of the pressure sensor was evaluated using cardiac cells isolated from neonatal rat ventricular myocytes. After inserting a metal stent integrated with the pressure sensor into a cardiovascular vessel of an animal, medical systems such as X-ray were employed to consistently monitor the condition of the blood vessel. No abnormality was found in the animal blood vessel for approximately one month. Furthermore, a biodegradable polymer (polycaprolactone stent was fabricated with a 3D printer. The polymer stent exhibits better sensitivity degradation of the pressure sensor compared to the metal stent.

  6. Durable polymer-aerogel based superhydrophobic coatings, a composite material

    Science.gov (United States)

    Kissel, David J; Brinker, Charles Jeffrey

    2014-03-04

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  7. Durable polymer-aerogel based superhydrophobic coatings: a composite material

    Science.gov (United States)

    Kissel, David J.; Brinker, Charles Jeffrey

    2016-02-02

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  8. The Compositions: Biodegradable Material - Typical Resin, as Moulding Sands’ Binders

    Directory of Open Access Journals (Sweden)

    Major-Gabryś K.

    2015-03-01

    Full Text Available The paper presents possibility of using biodegradable materials as parts of moulding sands’ binders based on commonly used in foundry practice resins. The authors focus on thermal destruction of binding materials and thermal deformation of moulding sands with tested materials. All the research is conducted for the biodegradable material and two typical resins separately. The point of the article is to show if tested materials are compatible from thermal destruction and thermal deformation points of view. It was proved that tested materials characterized with similar thermal destruction but thermal deformation of moulding sands with those binders was different.

  9. The analysis of thermoplastic characteristics of special polymer sulfur composite

    Science.gov (United States)

    Książek, Mariusz

    2017-01-01

    Specific chemical environments step out in the industry objects. Portland cement composites (concrete and mortar) were impregnated by using the special polymerized sulfur and technical soot as a filler (polymer sulfur composite). Sulfur and technical soot was applied as the industrial waste. Portland cement composites were made of the same aggregate, cement and water. The process of special polymer sulfur composite applied as the industrial waste is a thermal treatment process in the temperature of about 150-155°C. The result of such treatment is special polymer sulfur composite in a liquid state. This paper presents the plastic constants and coefficients of thermal expansion of special polymer sulfur composites, with isotropic porous matrix, reinforced by disoriented ellipsoidal inclusions with orthotropic symmetry of the thermoplastic properties. The investigations are based on the stochastic differential equations of solid mechanics. A model and algorithm for calculating the effective characteristics of special polymer sulfur composites are suggested. The effective thermoplastic characteristics of special polymer sulfur composites, with disoriented ellipsoidal inclusions, are calculated in two stages: First, the properties of materials with oriented inclusions are determined, and then effective constants of a composite with disoriented inclusions are determined on the basis of the Voigt or Rice scheme. A brief summary of new products related to special polymer sulfur composites is given as follows: Impregnation, repair, overlays and precast polymer concrete will be presented. Special polymer sulfur as polymer coating impregnation, which has received little attention in recent years, currently has some very interesting applications.

  10. Tethered Nanoparticle–Polymer Composites: Phase Stability and Curvature

    KAUST Repository

    Srivastava, Samanvaya; Agarwal, Praveen; Archer, Lynden A.

    2012-01-01

    different small-angle X-ray scattering signatures in comparison to phase-separated composites comprised of bare or sparsely grafted nanoparticles. A general diagram for the dispersion state and phase stability of polymer tethered nanoparticle-polymer

  11. In vitro degradation of biodegradable polymer-coated magnesium under cell culture condition

    Energy Technology Data Exchange (ETDEWEB)

    Xu Liping [Biometals Group, Biomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki, 305-0044 (Japan); Yamamoto, Akiko, E-mail: yamamoto.akiko@nims.go.jp [Biometals Group, Biomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki, 305-0044 (Japan)

    2012-06-15

    Magnesium (Mg) coated with four kinds of polymers, poly (L-lactic acid) (PLLA)-high molecular weight (HMW), PLLA-low molecular weight (LMW), poly ({epsilon}-caprolactone) (PCL)-HMW and PCL-LMW, and uncoated Mg were immersed under cell culture condition to study the degradation/corrosion behavior of the polymer-coated Mg. The releases of Mg{sup 2+} are measured during the immersion. Surface morphology and chemical composition are observed and identified by SEM and EDX. The tomography is obtained by X-ray CT observation and degradation rate is calculated by image analysis after 10-day immersion. All kinds of polymer-coated Mg showed significantly low release of Mg{sup 2+} (p < 0.05) in the whole immersion process comparing to that of uncoated Mg. In SEM and EDX results show, a corrosion layer can be observed on both polymer-coated and uncoated Mg after immersion. There is no obvious difference on the morphology and chemical composition of the corrosion layer between polymer-coated and uncoated Mg, indicating the corrosion/degradation process and corrosion product of Mg substrate are not changed by the polymer films under the present condition compared with uncoated Mg. Concerning the tomography and degradation rate of 10-day immersion, it can be found that the polymer-coated Mg shows a significantly low corrosion rate (p < 0.05) compared with that of uncoated Mg. PLLA coated Mg shows relatively uniform corrosion than PCL coated Mg and uncoated Mg. The largest pitting corrosion depth of PCL-LMW is about 3 times as large as the PLLA-LMW, which might be attributed to the difference of polymer microstructure. It is suggested that PLLA coating might be a suitable option for retarding the loss of mechanical properties of Mg substrate.

  12. In vitro degradation of biodegradable polymer-coated magnesium under cell culture condition

    International Nuclear Information System (INIS)

    Xu Liping; Yamamoto, Akiko

    2012-01-01

    Magnesium (Mg) coated with four kinds of polymers, poly (L-lactic acid) (PLLA)-high molecular weight (HMW), PLLA-low molecular weight (LMW), poly (ε-caprolactone) (PCL)-HMW and PCL-LMW, and uncoated Mg were immersed under cell culture condition to study the degradation/corrosion behavior of the polymer-coated Mg. The releases of Mg 2+ are measured during the immersion. Surface morphology and chemical composition are observed and identified by SEM and EDX. The tomography is obtained by X-ray CT observation and degradation rate is calculated by image analysis after 10-day immersion. All kinds of polymer-coated Mg showed significantly low release of Mg 2+ (p < 0.05) in the whole immersion process comparing to that of uncoated Mg. In SEM and EDX results show, a corrosion layer can be observed on both polymer-coated and uncoated Mg after immersion. There is no obvious difference on the morphology and chemical composition of the corrosion layer between polymer-coated and uncoated Mg, indicating the corrosion/degradation process and corrosion product of Mg substrate are not changed by the polymer films under the present condition compared with uncoated Mg. Concerning the tomography and degradation rate of 10-day immersion, it can be found that the polymer-coated Mg shows a significantly low corrosion rate (p < 0.05) compared with that of uncoated Mg. PLLA coated Mg shows relatively uniform corrosion than PCL coated Mg and uncoated Mg. The largest pitting corrosion depth of PCL-LMW is about 3 times as large as the PLLA-LMW, which might be attributed to the difference of polymer microstructure. It is suggested that PLLA coating might be a suitable option for retarding the loss of mechanical properties of Mg substrate.

  13. Phase stability and dynamics of entangled polymer-nanoparticle composites.

    KAUST Repository

    Mangal, Rahul

    2015-06-05

    Nanoparticle-polymer composites, or polymer-nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales, where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host.

  14. Phase stability and dynamics of entangled polymer-nanoparticle composites.

    KAUST Repository

    Mangal, Rahul; Srivastava, Samanvaya; Archer, Lynden A

    2015-01-01

    Nanoparticle-polymer composites, or polymer-nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales, where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host.

  15. Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially-guided osteochondral tissue repair

    NARCIS (Netherlands)

    Lu, S.; Lam, J.; Trachtenberg, J.E.; Lee, E.J.; Seyednejad, H.; van den Beucken, J.J.; Tabata, Y.; Wong, M.E.; Jansen, J.A.; Mikos, A.G.; Kasper, F.K.

    2014-01-01

    The present work investigated the use of biodegradable hydrogel composite scaffolds, based on the macromer oligo(poly(ethylene glycol) fumarate) (OPF), to deliver growth factors for the repair of osteochondral tissue in a rabbit model. In particular, bilayered OPF composites were used to mimic the

  16. Composite biodegradable biopolymer coatings of silk fibroin - Poly(3-hydroxybutyric-acid-co-3-hydroxyvaleric-acid) for biomedical applications

    Science.gov (United States)

    Miroiu, Floralice Marimona; Stefan, Nicolaie; Visan, Anita Ioana; Nita, Cristina; Luculescu, Catalin Romeo; Rasoga, Oana; Socol, Marcela; Zgura, Irina; Cristescu, Rodica; Craciun, Doina; Socol, Gabriel

    2015-11-01

    Composite silk fibroin-poly(3-hydroxybutyric-acid-co-3-hydroxyvaleric-acid) (SF-PHBV) biodegradable coatings were grown by Matrix Assisted Pulsed Laser Evaporation on titanium substrates. Their physico-chemical properties and particularly the degradation behavior in simulated body fluid at 37 °C were studied as first step of applicability in local controlled release for tissue regeneration applications. SF and PHBV, natural biopolymers with excellent biocompatibility, but different biodegradability and tensile strength properties, were combined in a composite to improve their properties as coatings for biomedical uses. FTIR analyses showed the stoichiometric transfer from targets to coatings by the presence in the spectra of the main absorption maxima characteristic of both polymers. XRD investigations confirmed the FTIR results showing differences in crystallization behavior with respect to the SF and PHBV content. Contact angle values obtained through wettability measurements indicated the MAPLE deposited coatings were highly hydrophilic; surfaces turning hydrophobic with the increase of the PHBV component. Degradation assays proved that higher PHBV contents resulted in enhanced resistance and a slower degradation rate of composite coatings in SBF. Distinct drug-release schemes could be obtained by adjusting the SF:PHBV ratio to controllably tuning the coatings degradation rate, from rapid-release formulas, where SF predominates, to prolonged sustained ones, for larger PHBV content.

  17. Poly-γ-Glutamic Acid: Biodegradable Polymer for Potential Protection of Beneficial Viruses

    Directory of Open Access Journals (Sweden)

    Ibrahim R. Khalil

    2016-01-01

    Full Text Available Poly-γ-glutamic acid (γ-PGA is a naturally occurring polymer, which due to its biodegradable, non-toxic and non-immunogenic properties has been used successfully in the food, medical and wastewater industries. A major hurdle in bacteriophage application is the inability of phage to persist for extended periods in the environment due to their susceptibility to environmental factors such as temperature, sunlight, desiccation and irradiation. Thus, the aim of this study was to protect useful phage from the harmful effect of these environmental factors using the γ-PGA biodegradable polymer. In addition, the association between γ-PGA and phage was investigated. Formulated phage (with 1% γ-PGA and non-formulated phage were exposed to 50 °C. A clear difference was noticed as viability of non-formulated phage was reduced to 21% at log10 1.3 PFU/mL, while phage formulated with γ-PGA was 84% at log10 5.2 PFU/mL after 24 h of exposure. In addition, formulated phage remained viable at log10 2.5 PFU/mL even after 24 h of exposure at pH 3 solution. In contrast, non-formulated phages were totally inactivated after the same time of exposure. In addition, non-formulated phages when exposed to UV irradiation died within 10 min. In contrast also phages formulated with 1% γ-PGA had a viability of log10 4.1 PFU/mL at the same exposure time. Microscopy showed a clear interaction between γ-PGA and phages. In conclusion, the results suggest that γ-PGA has an unique protective effect on phage particles.

  18. Effect of starch types on properties of biodegradable polymer based on thermoplastic starch process by injection molding technique

    Directory of Open Access Journals (Sweden)

    Yossathorn Tanetrungroj

    2015-04-01

    Full Text Available In this study effects of different starch types on the properties of biodegradable polymer based on thermoplastic starch (TPS were investigated. Different types of starch containing different contents of amylose and amylopectin were used, i.e. cassava starch, mungbean starch, and arrowroot starch. The TPS polymers were compounded and shaped using an internal mixer and an injection molding machine, respectively. It was found that the amount of amylose and amylopectin contents on native starch influence the properties of the TPS polymer. A high amylose starch of TPMS led to higher strength, hardness, degree of crystallization than the high amylopectin starch of TPCS. In addition, function group analysis by Fourier transforms infrared spectrophotometer, water absorption, and biodegradation by soil burial test were also examined.

  19. Time Course-Dependent Methanogenic Crude Oil Biodegradation: Dynamics of Fumarate Addition Metabolites, Biodegradative Genes, and Microbial Community Composition

    Directory of Open Access Journals (Sweden)

    Courtney R. A. Toth

    2018-01-01

    Full Text Available Biodegradation of crude oil in subsurface petroleum reservoirs has adversely impacted most of the world's oil, converting this resource to heavier forms that are of lower quality and more challenging to recover. Oil degradation in deep reservoir environments has been attributed to methanogenesis over geological time, yet our understanding of the processes and organisms mediating oil transformation in the absence of electron acceptors remains incomplete. Here, we sought to identify hydrocarbon activation mechanisms and reservoir-associated microorganisms that may have helped shape the formation of biodegraded oil by incubating oilfield produced water in the presence of light (°API = 32 or heavy crude oil (°API = 16. Over the course of 17 months, we conducted routine analytical (GC, GC-MS and molecular (PCR/qPCR of assA and bssA genes, 16S rRNA gene sequencing surveys to assess microbial community composition and activity changes over time. Over the incubation period, we detected the formation of transient hydrocarbon metabolites indicative of alkane and alkylbenzene addition to fumarate, corresponding with increases in methane production and fumarate addition gene abundance. Chemical and gene-based evidence of hydrocarbon biodegradation under methanogenic conditions was supported by the enrichment of hydrocarbon fermenters known to catalyze fumarate addition reactions (e.g., Desulfotomaculum, Smithella, along with syntrophic bacteria (Syntrophus, methanogenic archaea, and several candidate phyla (e.g., “Atribacteria”, “Cloacimonetes”. Our results reveal that fumarate addition is a possible mechanism for catalyzing the methanogenic biodegradation of susceptible saturates and aromatic hydrocarbons in crude oil, and we propose the roles of community members and candidate phyla in our cultures that may be involved in hydrocarbon transformation to methane in crude oil systems.

  20. Creep of plain weave polymer matrix composites

    Science.gov (United States)

    Gupta, Abhishek

    Polymer matrix composites are increasingly used in various industrial sectors to reduce structural weight and improve performance. Woven (also known as textile) composites are one class of polymer matrix composites with increasing market share mostly due to their lightweight, their flexibility to form into desired shape, their mechanical properties and toughness. Due to the viscoelasticity of the polymer matrix, time-dependent degradation in modulus (creep) and strength (creep rupture) are two of the major mechanical properties required by engineers to design a structure reliably when using these materials. Unfortunately, creep and creep rupture of woven composites have received little attention by the research community and thus, there is a dire need to generate additional knowledge and prediction models, given the increasing market share of woven composites in load bearing structural applications. Currently, available creep models are limited in scope and have not been validated for any loading orientation and time period beyond the experimental time window. In this thesis, an analytical creep model, namely the Modified Equivalent Laminate Model (MELM), was developed to predict tensile creep of plain weave composites for any orientation of the load with respect to the orientation of the fill and warp fibers, using creep of unidirectional composites. The ability of the model to predict creep for any orientation of the load is a "first" in this area. The model was validated using an extensive experimental involving the tensile creep of plain weave composites under varying loading orientation and service conditions. Plain weave epoxy (F263)/ carbon fiber (T300) composite, currently used in aerospace applications, was procured as fabrics from Hexcel Corporation. Creep tests were conducted under two loading conditions: on-axis loading (0°) and off-axis loading (45°). Constant load creep, in the temperature range of 80-240°C and stress range of 1-70% UTS of the

  1. Controlled drug release from a novel injectable biodegradable microsphere/scaffold composite based on poly(propylene fumarate).

    Science.gov (United States)

    Kempen, Diederik H R; Lu, Lichun; Kim, Choll; Zhu, Xun; Dhert, Wouter J A; Currier, Bradford L; Yaszemski, Michael J

    2006-04-01

    The ideal biomaterial for the repair of bone defects is expected to have good mechanical properties, be fabricated easily into a desired shape, support cell attachment, allow controlled release of bioactive factors to induce bone formation, and biodegrade into nontoxic products to permit natural bone formation and remodeling. The synthetic polymer poly(propylene fumarate) (PPF) holds great promise as such a biomaterial. In previous work we developed poly(DL-lactic-co-glycolic acid) (PLGA) and PPF microspheres for the controlled delivery of bioactive molecules. This study presents an approach to incorporate these microspheres into an injectable, porous PPF scaffold. Model drug Texas red dextran (TRD) was encapsulated into biodegradable PLGA and PPF microspheres at 2 microg/mg microsphere. Five porous composite formulations were fabricated via a gas foaming technique by combining the injectable PPF paste with the PLGA or PPF microspheres at 100 or 250 mg microsphere per composite formulation, or a control aqueous TRD solution (200 microg per composite). All scaffolds had an interconnected pore network with an average porosity of 64.8 +/- 3.6%. The presence of microspheres in the composite scaffolds was confirmed by scanning electron microscopy and confocal microscopy. The composite scaffolds exhibited a sustained release of the model drug for at least 28 days and had minimal burst release during the initial phase of release, as compared to drug release from microspheres alone. The compressive moduli of the scaffolds were between 2.4 and 26.2 MPa after fabrication, and between 14.9 and 62.8 MPa after 28 days in PBS. The scaffolds containing PPF microspheres exhibited a significantly higher initial compressive modulus than those containing PLGA microspheres. Increasing the amount of microspheres in the composites was found to significantly decrease the initial compressive modulus. The novel injectable PPF-based microsphere/scaffold composites developed in this study

  2. Development of biodegradable metaloxide/polymer nanocomposite films based on poly-ε-caprolactone and terephthalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Varaprasad, Kokkarachedu, E-mail: varmaindian@gmail.com [Centro de Investigación de Polímeros Avanzados (CIPA), Avenida Collao 1202, Edificio de Laboratorios, Concepción (Chile); Pariguana, Manuel [Centro de Investigación de Polímeros Avanzados (CIPA), Avenida Collao 1202, Edificio de Laboratorios, Concepción (Chile); Centro de Innovación Tecnológica Agroindustrial CITE Agroindustrial, Panamericana Sur Km, 293.3, Ica (Peru); Raghavendra, Gownolla Malegowd [Department of Packaging, Yonsei University, Wonju, Gangwon-do 220 710 (Korea, Republic of); Jayaramudu, Tippabattini [Center for Nano Cellulose Future Composites, Department of Mechanical Engineering, Inha University, 253 Yonghyun-Dong, Nam-Ku, Incheon 402–751 (Korea, Republic of); Sadiku, Emmanuel Rotimi [Department of Polymer Technology, Tshwane University of Technology, CSIR-Campus, Pretoria 0040 (South Africa)

    2017-01-01

    The present investigation describes the development of metal-oxide polymer nanocomposite films from biodegradable poly-ε-caprolactone, disposed poly(ethylene terephthalate) oil bottles monomer and zinc oxide-copper oxide nanoparticles. The terephthalic acid and zinc oxide-copper oxide nanoparticles were synthesized by using a temperature-dependent precipitation technique and double precipitation method, respectively. The terephthalic acid synthesized was confirmed by FTIR analysis and furthermore, it was characterized by thermal analysis. The as-prepared CuO-ZnO nanoparticles structure was confirmed by XRD analysis and its morphology was analyzed by SEM/EDS and TEM. Furthermore, the metal-oxide polymer nanocomposite films have excellent mechanical properties, with tensile strength and modulus better than pure films. The metal-oxide polymer nanocomposite films that were successfully developed show a relatively brighter colour when compared to CuO film. These new metal-oxide polymer nanocomposite films can replace many non-degradable plastics. The new metal-oxide polymer nanocomposite films developed are envisaged to be suitable for use in industrial and domestic packaging applications. - Graphical abstract: Biodegradable metal-oxide/polymer nanocomposites films prepared by using poly-ε-caprolactone with disposed PET oil bottles terephthalic acid monomer. The development of biodegradable film provides a new material with desirable mechanical, physical and chemical properties and can be utilized for industrial applications. - Highlights: • Terephthalic acid obtained from disposed PET oil bottles via precipitation technique. • New nano metal-oxides were developed by double precipitation technique. • Nano metal-oxide polymer films were synthesized by solvent evaporation method. • Nano metal-oxide polymer films exhibit superior mechanical characteristics.

  3. Effect of platy and tubular nanoclays on behaviour of biodegradable PCL/PLA blend and related microfibrillar composites

    Science.gov (United States)

    Kelnar, Ivan; Kratochvíl, Jaroslav

    2016-05-01

    Blending of ductile poly(ɛ-caprolactone) (PCL) and rigid polylactic acid (PLA) is a promising way to tailor biodegradable materials with broad range of properties. But the mutual incompatibility of both polyesters leads to compromised behaviour only. Alternative to PCL/PLA blends is application of PLA in the form of short fibres, however, difficult dispergation of flexible fibres including their poor adhesion and limited processing is a significant restriction. More effective is in situ formation of polymeric fibre-reinforced materials using microfibrillar composites (MFC) concept based on melt- or cold-drawing of a polymer blend. Important advantage of MFC is efficient dispersion and bonding of in-situ formed reinforcing fibres This work deals with combination of structure-directing and reinforcing effects of montmorillonite (oMMT) and halloysite nanotubes (HNT) in the PCL/PLA 80/20 blend with in-situ formation of PLA fibrils in the PCL matrix. In the resulting microfibrillar composite, reinforcement by rigid PLA fibrils is combined with strengthening of both components by the nanofiller (NF). Moreover, PLA fibrils formation via melt-drawing is only possible after nanofiller addition due to favourable affecting of rheological parameters of the polymer components. The structure-properties relationship and complex effect of NF on microfibrillar composite performance, causing e.g., quite comparable parameters of both microfibrillar composites in spite of lower reinforcing effect of halloysite nanotubes on components, are discussed.

  4. Combined use of polymer composites and metals in engineering structures

    International Nuclear Information System (INIS)

    Hoa, S.V.

    2002-01-01

    Polymer matrix composites have found many applications in the construction of light weight structures such as those in aircrafts, automobiles, sports equipment etc. This is because these materials possess high stiffness, high strength and low densities. In applications of polymer matrix composites in the light weight structures, the polymer composites are however, not used by themselves alone in most cases. Usually the polymer composites are used in conjunction with some metal components. The metal components are used either to provide means for joining the composite components or the composites are used to repair the cracked metal structures. The synergistic effect of both metals and composites can provide excellent performance with good economy. This paper presents a few applications where polymer composites are used in conjunction with metals in engineering structures. (author)

  5. Biodegradable poly lactone-family polymer and their applications in medical field

    International Nuclear Information System (INIS)

    Wang, S.; Bei, J.

    2005-01-01

    Poly lactone-family polymers such as poly lactide, poly glycolide and polycaprolactone are kind aliphatic polyester. Since they can degrade by hydrolysis reaction under all the ph condition and possess biocompatibility, biodegradability and other good properties, especially they included not peptide bond in their molecules, they are non-antigen and non-immunization, as well as have no-toxicity and no-stimulation. So they are interested biomaterials and very useful in medical field. However the properties of all of the homo-poly lactones can not be changed in a large range, the limited properties result in limited applications of these homo-poly lactones. Based on macromolecular design, a series of copolylactones such as poly(lactide-co-glycolide) (PLGA), poly(glycolide-co-lactide-co-caprolactone) tri- component copolymer (PGLC), tri- and multi-block poly lactide/poly(ethylene oxide) copolymer (TPLE and BPLE), as well as polycaprolactone/poly lactide/poly(ethylene oxide) copolymer (PCEL) et al were synthesized by copolymerization among various lactone monomers or lactone monomers with poly(ethylene glycol). These copolylactones have wide range of degradation life from several months to years and different mechanical properties. After plasma treatment the surface property of the copolylactones were improved further and cell affinity of the copolylactones was improved obviously. The applications of these poly lactone-family polymers in medical field for used as drug carrier in drug delivery system, and as cell scaffold in tissue engineering were discussed

  6. Rapid prototyping of biodegradable microneedle arrays by integrating CO2 laser processing and polymer molding

    International Nuclear Information System (INIS)

    Tu, K T; Chung, C K

    2016-01-01

    An integrated technology of CO 2 laser processing and polymer molding has been demonstrated for the rapid prototyping of biodegradable poly-lactic-co-glycolic acid (PLGA) microneedle arrays. Rapid and low-cost CO 2 laser processing was used for the fabrication of a high-aspect-ratio microneedle master mold instead of conventional time-consuming and expensive photolithography and etching processes. It is crucial to use flexible polydimethylsiloxane (PDMS) to detach PLGA. However, the direct CO 2 laser-ablated PDMS could generate poor surfaces with bulges, scorches, re-solidification and shrinkage. Here, we have combined the polymethyl methacrylate (PMMA) ablation and two-step PDMS casting process to form a PDMS female microneedle mold to eliminate the problem of direct ablation. A self-assembled monolayer polyethylene glycol was coated to prevent stiction between the two PDMS layers during the peeling-off step in the PDMS-to-PDMS replication. Then the PLGA microneedle array was successfully released by bending the second-cast PDMS mold with flexibility and hydrophobic property. The depth of the polymer microneedles can range from hundreds of micrometers to millimeters. It is linked to the PMMA pattern profile and can be adjusted by CO 2 laser power and scanning speed. The proposed integration process is maskless, simple and low-cost for rapid prototyping with a reusable mold. (paper)

  7. Rapid prototyping of biodegradable microneedle arrays by integrating CO2 laser processing and polymer molding

    Science.gov (United States)

    Tu, K. T.; Chung, C. K.

    2016-06-01

    An integrated technology of CO2 laser processing and polymer molding has been demonstrated for the rapid prototyping of biodegradable poly-lactic-co-glycolic acid (PLGA) microneedle arrays. Rapid and low-cost CO2 laser processing was used for the fabrication of a high-aspect-ratio microneedle master mold instead of conventional time-consuming and expensive photolithography and etching processes. It is crucial to use flexible polydimethylsiloxane (PDMS) to detach PLGA. However, the direct CO2 laser-ablated PDMS could generate poor surfaces with bulges, scorches, re-solidification and shrinkage. Here, we have combined the polymethyl methacrylate (PMMA) ablation and two-step PDMS casting process to form a PDMS female microneedle mold to eliminate the problem of direct ablation. A self-assembled monolayer polyethylene glycol was coated to prevent stiction between the two PDMS layers during the peeling-off step in the PDMS-to-PDMS replication. Then the PLGA microneedle array was successfully released by bending the second-cast PDMS mold with flexibility and hydrophobic property. The depth of the polymer microneedles can range from hundreds of micrometers to millimeters. It is linked to the PMMA pattern profile and can be adjusted by CO2 laser power and scanning speed. The proposed integration process is maskless, simple and low-cost for rapid prototyping with a reusable mold.

  8. A new nano-TiO2 immobilized biodegradable polymer with self-cleaning properties.

    Science.gov (United States)

    Sökmen, Münevver; Tatlıdil, Ilknur; Breen, Chris; Clegg, Francis; Buruk, Celal Kurtuluş; Sivlim, Tuğba; Akkan, Senay

    2011-03-15

    This study concentrated on the direct immobilization of anatase nano titanium dioxide particles (TiO(2), 10nm particle size) into or onto a biodegradable polymer, polycaprolactone, by solvent-cast processes. The self-cleaning, namely photocatalytic properties of the produced materials were tested by photocatalytic removal of methylene blue as model compound and antimicrobial properties were investigated using Candida albicans as model microorganism. Produced TiO(2) immobilized polymer successfully removed methylene blue (MB, 1 × 10(-5)M) from aqueous solution without additional pH arrangement employing a UV-A light (365 nm) source. Almost 83.2% of dye was removed or decomposed by 5 wt% TiO(2) immobilized into PCL (0.08 g) and removal percentage reached to 94.2% with 5 wt% TiO(2) immobilized onto PCL after a 150 min exposure period. Although removal percentage decrease with increased ionic strength and usage of a visible light source, produced materials were still effective. TiO(2) immobilized onto PCL (5 wt%) was quite effective killing almost 54% of C. albicans (2 × 10(6)CFU/mL) after only 60 min exposure with a near visible light source. Control experiments employing PCL alone in the presence and absence of light were ineffective under the same condition. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Accelerated Aging of Polymer Composite Bridge Materials

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Nancy Margaret; Blackwood, Larry Gene; Torres, Lucinda Laine; Rodriguez, Julio Gallardo; Yoder, Timothy Scott

    1999-03-01

    Accelerated aging research on samples of composite material and candidate ultraviolet (UV) protective coatings is determining the effects of six environmental factors on material durability. Candidate fastener materials are being evaluated to determine corrosion rates and crevice corrosion effects at load-bearing joints. This work supports field testing of a 30-ft long, 18-ft wide polymer matrix composite (PMC) bridge at the Idaho National Engineering and Environmental Laboratory (INEEL). Durability results and sensor data from tests with live loads provide information required for determining the cost/benefit measures to use in life-cycle planning, determining a maintenance strategy, establishing applicable inspection techniques, and establishing guidelines, standards, and acceptance criteria for PMC bridges for use in the transportation infrastructure.

  10. Solid polymer composite electrolytes for PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Zaidi, S M.J.; Mikhailenko, S D; Kaliaguine, S

    1998-07-01

    Composite electrolyte membranes for fuel cell technology were prepared from solid state proton conductors and polymer binders. The polymers were partially sulfonated and non-sulfonated polysulfone (PS), porous polyetherimide (PEI) and polymethylmethacrylate (PMMA). As proton conductors H-chabazite, tungstophosphoric acid and its Na-salt and non-stoichiometric boron phosphate were employed. All membranes prepared using sulfonated PS as a binder with sulfonation degree higher than 50% were found to be mechanically unstable. They possess however reasonably high conductivity up to 6{times}10{sup {minus}3} S/cm. Introducing the tungstophosphoric acid (TPA) into the nonsulfonated porous PS makes possible to obtain strong and flexible membranes with s=4{times}10{sup {minus}3} S/cm, while use of boron phosphate in that case results in the conductivity of about 10{sup {minus}5} S/cm. Porous PEI impregnated with aqueous solution of TPA retains its original tensile strength and exhibited the conductivity s=2{times}10{sup {minus}4} S/cm. It however fell to 3{times}10{sup {minus}5} S/cm when the binder was modified with 2% of propionic acid, which caused a decrease in polymer pore size. Incorporation of the sodium acid salt of TPA into PEI allows one to obtain a composite with reasonably good mechanical properties and a conductivity of ca 10{sup {minus}5} S/cm for membranes prepared by the cast method. Using the phase inversion technique for preparation of the membranes of the same composition makes possible to increase their conductivity up to 10{sup {minus}4} S/cm. When boron phosphate was used in lieu of TPA salt the conductivity obtained is still higher reaching 3{times}10{sup {minus}5} and 3{times}10{sup {minus}4} S/cm for membranes prepared by cast and phase inversion techniques respectively. The PMMA based membranes were mechanically stable even when a solid content reached 55wt.%. Among PMMA membranes the highest conductivity of 10{sup {minus}3} S/cm was registered for

  11. A review of electrohydrodynamic casting energy conversion polymer composites

    Directory of Open Access Journals (Sweden)

    Yong X. Gan

    2018-03-01

    Full Text Available This paper provides a brief review on manufacturing polymer composite materials through the nontraditional electrohydrodynamic (EHD casting approach. First, the EHD technology will be introduced. Then, typical functional polymer composite materials including thermoelectric and photoelectric energy conversion polymers and their composites will be presented. Specifically, how to make composite materials containing functional nanoparticles will be discussed. Converting polymeric fibers into partially carbonized fiber composites will also be shown. The latest research results of polymeric composite materials with energy conversion and sensing functions will be given.

  12. THE BIODEGRADABILITY AND MECHANICAL STRENGTH OF NUTRITIVE POTS FOR VEGETABLE PLANTING BASED ON LIGNOCELLULOSE COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    Petronela Nechita

    2010-04-01

    Full Text Available Considering the mild degradation strength and the fact that it may be an organic matter reserve for the soil, in the past years lignocellulosic materials have been used as fibrous raw materials in the manufacture of biodegradable nutritive pots for the seedling in vegetable containerized production. This paper analyses the behavior of the nutritive pots made from biodegradable composites for the vegetable seedling production process, focusing on their mechanical strength properties and biodegradability. It was found that the biodegradability of composite materials obtained from a mixture of secondary cellulosic fibers, peat, and additives, is strongly influenced by the presence or absence of the rhizosphere effect and the synergistic relations set in the culture substrate between the plant roots and microorganisms, which develop permanently the recycling and solubilization of mineral nutrients. The results showed that the presence in the substrate of some complex populations made by heterotrophic bacteria favors full degradation of the pulp and lignin contained in the substrate and pots composition. Therefore, unlike the reference sample (plant-free, cultivated versions exhibited an intense biodegradation on the account of rhizosphere effect.

  13. Microbial biodegradable potato starch based low density polyethylene

    African Journals Online (AJOL)

    USER

    2010-06-28

    Jun 28, 2010 ... Key words: Low density polyethylene, fungi, biodegradable polymer, Pseudomonas aeruginosa. ... particle such as CO2 or water by microorganism's activities. ... package and production of bags, composites and agricultural.

  14. Monitoring of the Enzymatically Catalyzed Degradation of Biodegradable Polymers by Means of Capacitive Field-Effect Sensors.

    Science.gov (United States)

    Schusser, Sebastian; Krischer, Maximilian; Bäcker, Matthias; Poghossian, Arshak; Wagner, Patrick; Schöning, Michael J

    2015-07-07

    Designing novel or optimizing existing biodegradable polymers for biomedical applications requires numerous tests on the effect of substances on the degradation process. In the present work, polymer-modified electrolyte-insulator-semiconductor (PMEIS) sensors have been applied for monitoring an enzymatically catalyzed degradation of polymers for the first time. The thin films of biodegradable polymer poly(D,L-lactic acid) and enzyme lipase were used as a model system. During degradation, the sensors were read-out by means of impedance spectroscopy. In order to interpret the data obtained from impedance measurements, an electrical equivalent circuit model was developed. In addition, morphological investigations of the polymer surface have been performed by means of in situ atomic force microscopy. The sensor signal change, which reflects the progress of degradation, indicates an accelerated degradation in the presence of the enzyme compared to hydrolysis in neutral pH buffer media. The degradation rate increases with increasing enzyme concentration. The obtained results demonstrate the potential of PMEIS sensors as a very promising tool for in situ and real-time monitoring of degradation of polymers.

  15. Technology and Development of Self-Reinforced Polymer Composites

    Science.gov (United States)

    Alcock, Ben; Peijs, Ton

    In recent years there has been an increasing amount of interest, both commercially and scientifically, in the emerging field of "self-reinforced polymer composites". These materials, which are sometimes also referred to as "single polymer composites", or "all-polymer composites", were first conceived in the 1970s, and are now beginning to appear in a range of commercial products. While high mechanical performance polymer fibres or tapes are an obvious precursor for composite development, various different technologies have been developed to consolidate these into two- or three-dimensional structures. This paper presents a review of the various processing techniques that have been reported in the literature for the manufacture of self-reinforced polymer composites from fibres or tapes of different polymers, and so exploit the fibre or tape performance in a commercial material or product.

  16. Inorganic-whisker-reinforced polymer composites synthesis, properties and applications

    CERN Document Server

    Sun, Qiuju

    2015-01-01

    Inorganic-Whisker-Reinforced Polymer Composites: Synthesis, Properties and Applications gives a comprehensive presentation of inorganic microcrystalline fibers, or whiskers, a polymer composite filler. It covers whisker synthesis, surface modification, applications for reinforcing polymer-matrix composites, and analysis of resulting filled polymer composites. It focuses on calcium carbonate whiskers as a primary case study, introducing surface treatment methods for calcium carbonate whiskers and factors that influence them. Along with calcium carbonate, the book discusses potassium titanate and aluminum borate whiskers, which also comprise the new generation of inorganic whiskers. According to research results, composites filled by inorganic whiskers show improved strength, wear-resistance, thermal conductivity, and antistatic properties. It explains the importance of modifying polymer materials for use with inorganic whiskers and describes preparation and evaluation methods of polymers filled with inorganic ...

  17. Biodegradable shape-memory block co-polymers for fast self-expandable stents.

    Science.gov (United States)

    Xue, Liang; Dai, Shiyao; Li, Zhi

    2010-11-01

    Block co-polymers PCTBVs (M(n) of 36,300-65,300 g/mol, T(m) of 39-40 and 142 degrees C) containing hyperbranched three-arm poly(epsilon-caprolactone) (PCL) as switching segment and microbial polyester PHBV as crystallizable hard segment were designed as biodegradable shape-memory polymer (SMP) for fast self-expandable stent and synthesized in 96% yield by the reaction of three-arm PCL-triol (M(n) of 4200 g/mol, T(m) of 47 degrees C) with methylene diphenyl 4,4'-diisocyanate isocynate (MDI) to form the hyperbrached MDI-linked PCL (PTCM; M(n) of 25,400 g/mol and a T(m) of 38 degrees C), followed by further polymerization with PHBV-diol (M(n) of 2200 g/mol, T(m) of 137 and 148 degrees C). The polymers were characterized by (1)H NMR, GPC, DSC, tensile test, and cyclic thermomechanical tensile test. PCTBVs showed desired thermal properties, mechanical properties, and ductile nature. PCTBV containing 25 wt% PHBV (PCTBV-25) demonstrated excellent shape-memory property at 40 degrees C, with R(f) of 94%, R(r) of 98%, and shape recovery within 25s. PCTBV-25 was also shown as a safe material with good biocompatibility by cytotoxicity tests and cell growth experiments. The stent made from PCTBV-25 film showed nearly complete self-expansion at 37 degrees C within only 25 s, which is much better and faster than the best known self-expandable stents. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. Mucoadhesive Polymer Hyaluronan as Biodegradable Cationic/Zwitterionic-Drug Delivery Vehicle

    Directory of Open Access Journals (Sweden)

    Francisco Torrens

    2015-01-01

    Full Text Available Mucoadhesive polymers in pharmaceutical formulations release drugs in mucosal areas. They interact and fix to mucus via molecular interpenetration, etc., which increase drug bioavailability. Polymers physicochemical properties affect formulation mucoadhesion, rheological behaviour and drug absorption. Hyaluronan (HA is selected as a mucoadhesive and biodegradable polymer. Geometric, topological and fractal analyses are carried out with program TOPO. Reference calculations are performed with algorithm GEPOL. Procedure TOPO underestimates molecular volume by 0.7%. Error results 5% in surface area and derived topological indices. Solvent-accessible surface is undercalculated by 3%: from hexamer HA to HA·3Ca and hydrate, the hydrophobic term rises by 42% and decays by 26%, and hydrophilic part drops by 14% and rises by 58% in agreement with the number of H-bonds. Accessibility rises by 9% and decays by 8%. Fractal dimension is underevaluated by 1% and for HA it results 1.566; on going to HA·3Ca and hydrate it rises by 2% and 1%. External-atoms dimension increases by 11%: for HA it results 1.725. When going to HA·3Ca and hydrate, it augments by 4% and 0.3%. On going from HA to HA·3Ca and hydrate, nonburied minus molecular dimension enlarges by 20% and decays by 9%. The hydrate globularity is lower than for water, Ca2+ and averages of O-atoms in HA. Ca2+ rugosity is smaller than for hydrate, averages of O-atoms in HA and water. Ca2+ and water accessibilities are greater than for hydrate. As cations exchange in HA·3Ca requires Ca2+ alteration, rises of drug zwitterionic character and acidic pH increase absorption.

  19. Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging.

    Science.gov (United States)

    Jin, T; Zhang, H

    2008-04-01

    Biodegradable polylactic acid (PLA) polymer was evaluated for its application as a material for antimicrobial food packaging. PLA films were incorporated with nisin to for control of foodborne pathogens. Antimicrobial activity of PLA/nisin films against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Enteritidis were evaluated in culture media and liquid foods (orange juice and liquid egg white). Scanned electron micrograph and confocal laser microscopy revealed that nisin particles were evenly distributed in PLA polymer matrix on the surface and inside of the PLA/nisin films. PLA/nisin significantly inhibited growth of L. monocytogenes in culture medium and liquid egg white. The greatest inhibition occurred at 24 h when the cell counts of L. monocytogenes in the PLA/nisin samples were 4.5 log CFU/mL less than the controls. PLA/nisin reduced the cell population of E. coli O157:H7 in orange juice from 7.5 to 3.5 log at 72 h whereas the control remained at about 6 log CFU/mL. PLA/nisin treatment resulted in a 2 log reduction of S. Enteritidis in liquid egg white at 24 degrees C. After 21 d at 4 degrees C the S. Enteritidis population from PLA/nisin treated liquid egg white (3.5 log CFU/mL) was significantly less than the control (6.8 log CFU/mL). E. coli O157:H7 in orange juice was more sensitive to PLA/nisin treatments than in culture medium. The results of this research demonstrated the retention of nisin activity when incorporated into the PLA polymer and its antimicrobial effectiveness against foodborne pathogens. The combination of a biopolymer and natural bacteriocin has potential for use in antimicrobial food packaging.

  20. Advanced bredigite-containing magnesium-matrix composites for biodegradable bone implant applications.

    Science.gov (United States)

    Dezfuli, Sina Naddaf; Huan, Zhiguang; Mol, Arjan; Leeflang, Sander; Chang, Jiang; Zhou, Jie

    2017-10-01

    The present research was aimed at developing magnesium-matrix composites that could allow effective control over their physiochemical and mechanical responses when in contact with physiological solutions. A biodegradable, bioactive ceramic - bredigite was chosen as the reinforcing phase in the composites, based on the hypothesis that the silicon- and magnesium-containing ceramic could protect magnesium from fast corrosion and at the same time stimulate cell proliferation. Methods to prepare composites with integrated microstructures - a prerequisite to achieve controlled biodegradation were developed. A systematic experimental approach was taken in order to elucidate the in vitro biodegradation mechanisms and kinetics of the composites. It was found that the composites with 20-40% homogenously dispersed bredigite particles, prepared from powders, could indeed significantly decrease the degradation rate of magnesium by up to 24 times. Slow degradation of the composites resulted in the retention of the mechanical integrity of the composites within the strength range of cortical bone after 12days of immersion in a cell culture medium. Cell attachment, cytotoxicity and bioactivity tests confirmed the stimulatory effects of bredigite embedded in the composites on the attachment, viability and differentiation of bone marrow stromal cells. Thus, the multiple benefits of adding bredigite to magnesium in enhancing degradation behavior, mechanical properties, biocompatibility and bioactivity were obtained. The results from this research showed the excellent potential of the bredigite-containing composites for bone implant applications, thus warranting further in vitro and in vivo research. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Mechanical Evaluation of Polymer Composite Hip Protectors

    Directory of Open Access Journals (Sweden)

    Jose Daniel Diniz Melo

    2010-01-01

    Full Text Available Hip fractures often result in serious health implications, particularly in the geriatric population, and have been related to long-term morbidity and death. In most cases, these fractures are caused by impact loads in the area of the greater trochanter, which are produced in a fall. This work is aimed at developing hip protectors using composite materials and evaluating their effectiveness in preventing hip fractures under high impact energy (120 J. The hip protectors were developed with an inner layer of energy absorbing soft material and an outer rigid shell of fiberglass-reinforced polymer composite. According to the experimental results, all tested configurations proved to be effective at reducing the impact load to below the average fracture threshold of proximal femur. Furthermore, an addition of Ethylene Vinyl Acetate (EVA to the impacted area of the composite shell proved to be beneficial to increase impact strength of the hip protectors. Thus, composite hip protectors proved to be a viable alternative for a mechanically efficient and cost-effective solution to prevent hip fractures.

  2. Challenges and opportunities in using Life Cycle Assessment and Cradle to Cradle® for biodegradable bio-based polymers: a review

    DEFF Research Database (Denmark)

    Niero, Monia; Manat, Renil; Møller, Birger Lindberg

    2015-01-01

    Both Life Cycle Assessment (LCA) and Cradle to Cradle® (C2C) approaches can provide operative insightsin the design of biodegradable bio-based polymers. Some of the challenges shared by both LCA and C2Cthat need further investigation are the use of lab scale data versus primary data from establis......Both Life Cycle Assessment (LCA) and Cradle to Cradle® (C2C) approaches can provide operative insightsin the design of biodegradable bio-based polymers. Some of the challenges shared by both LCA and C2Cthat need further investigation are the use of lab scale data versus primary data from...... establishedtechnologies and the identification of the best option for the end of use stage, e.g. for use as packaging. Weconsider the case of a natural fiber-based composite material obtained from barley straw and present someinsights from both LCA and C2C perspectives in the identification of the best option for its end...

  3. Metal-polymer composites comprising nanostructures and applications thereof

    Science.gov (United States)

    Wang, Hsing-Lin [Los Alamos, NM; Jeon, Sea Ho [Dracut, MA; Mack, Nathan H [Los Alamos, NM

    2011-08-02

    Metal-polymer composites, and methods of making and use thereof, said composites comprising a thermally-cured dense polyaniline substrate; an acid dopant; and, metal nanostructure deposits wherein the deposits have a morphology dependent upon the acid dopant.

  4. Structure and Dynamics of Polymer/Polymer grafted nanoparticle composite

    Science.gov (United States)

    Archer, Lynden

    Addition of nanoparticles to polymers is a well-practiced methodology for augmenting various properties of the polymer host, including mechanical strength, thermal stability, barrier properties, dimensional stability and wear resistance. Many of these property changes are known to arise from nanoparticle-induced modification of polymer structure and chain dynamics, which are strong functions of the dispersion state of the nanoparticles' and on their relative size (D) to polymer chain dimensions (e.g. Random coil radius Rg or entanglement mesh size a) . This talk will discuss polymer nanocomposites (PNCs) comprised of Polyethylene Glycol (PEG) tethered silica nanoparticles (SiO2-PEG) dispersed in polymers as model systems for investigating phase stability and dynamics of PNCs. On the basis of small-angle X-ray Scattering, it will be shown that favorable enthalpic interactions between particle-tethered chains and a polymer host provides an important mechanism for creating PNCs in which particle aggregation is avoided. The talk will report on polymer and particle scale dynamics in these materials and will show that grafted nanoparticles well dispersed in a polymer host strongly influence the host polymer relaxation dynamics on all timescales and the polymers in turn produce dramatic changes in the nature (from diffusive to hyperdiffusive) and speed of nano particle decorrelation dynamics at the polymer entanglement threshold. A local viscosity model capable of explaining these observations is discussed and the results compared with scaling theories for NP motions in polymers This material is based on work supported by the National Science Foundation Award Nos. DMR-1609125 and CBET-1512297.

  5. Preparation of pinewood/polymer/composites using gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ajji, Zaki [Polymer Technology Division, Department of Radiation Technology, Atomic Energy Commission, P.O. Box 6091, Damascus (Syrian Arab Republic)]. E-mail: atomic@aec.org.sy

    2006-09-15

    Wood/polymer composites (WPC) have been prepared from pinewood with different compounds using gamma irradiation: butyl acrylate, butyl methacrylate, styrene, acrylamide, acrylonitrile, and unsaturated polyester styrene resin. The polymer loading was determined with respect to the compound concentration and the irradiation dose. The polymer loading increases generally with increase in the monomer or polymer concentration. Tensile and compression strength have been improved in the four cases, but no improvement was observed using unsaturated polyester styrene resin or acrylamide.

  6. Microencapsulation of chemotherapeutics into monodisperse and tunable biodegradable polymers via electrified liquid jets: control of size, shape, and drug release.

    Science.gov (United States)

    Fattahi, Pouria; Borhan, Ali; Abidian, Mohammad Reza

    2013-09-06

    This paper describes microencapsulation of antitumor agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU, Carmustine) into biodegradable polymer poly(lactic-co-glycolic) acid (PLGA) using an electrojetting technique. The resulting BCNU-loaded PLGA microcapsules have significantly higher drug encapsulation efficiency, more tunable drug loading capacity, and (3) narrower size distribution than those generated using other encapsulation methods. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Biodegradation of composites based on maltodextrin and wheat B-starch in compost

    Czech Academy of Sciences Publication Activity Database

    Růžek, L.; Růžková, M.; Koudela, M.; Bečková, L.; Bečka, D.; Kruliš, Zdeněk; Šárka, E.; Voříšek, K.; Ledvina, Š.; Šalounová, B.; Venyercsanová, J.

    2015-01-01

    Roč. 42, č. 4 (2015), s. 209-214 ISSN 0862-867X R&D Projects: GA ČR GA525/09/0607 Institutional support: RVO:61389013 Keywords : biodegradable plastics * acetylated maltodextrin * lettuce Subject RIV: JI - Composite Materials Impact factor: 0.436, year: 2015

  8. Advanced bredigite-containing magnesium-matrix composites for biodegradable bone implant applications

    NARCIS (Netherlands)

    Naddaf Dezfuli, S.; Huan, Z.; Mol, J.M.C.; Leeflang, M.A.; Chang, Jiang; Zhou, J.

    2017-01-01

    The present research was aimed at developing magnesium-matrix composites that could allow effective control over their physiochemical and mechanical responses when in contact with physiological solutions. A biodegradable, bioactive ceramic - bredigite was chosen as the reinforcing phase in the

  9. Biodegradable composites from polyester and sugar beet pulp with antimicrobial coating for food packaging

    Science.gov (United States)

    Totally biodegradable, double-layered antimicrobial composite Sheets were introduced for food packaging. The substrate layers of the sheets were prepared from poly (lactic acid) (PLA) and sugar beet pulp (SBP) or poly (butylene adipate-co-terephthalate (PBAT) and SBP by a twin-screw extruder. The ac...

  10. An Osteoinductive Polymer Composite for Cranial and Maxillofacial Bone Repair,

    Science.gov (United States)

    1985-01-01

    a suitable level of anesthesia , a semi-lunar incision was made in the midline from the superior sagittal crest to the middle of the nasal bone. The...internal fixation of Fractures, and as intraosseous bone repair materials. A promising use for these polymers has been as carriers for osteogenic...acids. Oral Surg. 37:142, 1974. 7. Getter, L., Cutright, D.E., Bhaskar, S.N., and Augsburg, J.K. A biodegradable intraosseous apliance in the

  11. Preparation and properties of biodegradable films from Sterculia urens short fiber/cellulose green composites.

    Science.gov (United States)

    Jayaramudu, J; Reddy, G Siva Mohan; Varaprasad, K; Sadiku, E R; Sinha Ray, S; Varada Rajulu, A

    2013-04-02

    The development of commercially viable "green products", based on natural resources for the matrices and reinforcements, in a wide range of applications, is on the rise. The present paper focuses on Sterculia urens short fiber reinforced pure cellulose matrix composite films. The morphologies of the untreated and 5% NaOH (alkali) treated S. urens fibers were observed by SEM. The effect of 5% NaOH treated S. urens fiber (5, 10, 15 and 20% loading) on the mechanical properties and thermal stability of the composites films is discussed. This paper presents the developments made in the area of biodegradable S. urens short fiber/cellulose (SUSF/cellulose) composite films, buried in the soil and later investigated by the (POM), before and after biodegradation has taken place. SUSF/cellulose composite films have great potential in food packaging and for medical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Developing polymer composite materials: carbon nanotubes or graphene?

    Science.gov (United States)

    Sun, Xuemei; Sun, Hao; Li, Houpu; Peng, Huisheng

    2013-10-04

    The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the unique structure and remarkable mechanical, electrical, thermal, optical and catalytic properties, carbon nanotube and graphene have been mostly studied as a second phase to produce high performance polymer composites. Although carbon nanotube and graphene share some advantages in both structure and property, they are also different in many aspects including synthesis of composite material, control in composite structure and interaction with polymer molecule. The resulting composite materials are distinguished in property to meet different applications. This review article mainly describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them. Some general and effective strategies are summarized for the development of polymer composite materials based on carbon nanotube and graphene. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Processing and characterization of ceramic superconductor/polymer composites

    International Nuclear Information System (INIS)

    Kander, R.G.; Namboodri, S.L.

    1993-01-01

    One way to more easily process a brittle high-temperature ceramic superconductor into a useful structure is to combine it with a polymer to form a composite material. Processing of polymer-based composites into complex shapes is well established and relatively easy when compared with traditional ceramic processing unit operations. In addition, incorporating a ceramic superconductor into a polymer matrix can improve mechanical performance as compared with a monolithic ceramic. Finally, because ceramic superconductors are susceptible to attack by moisture, a polymer-based composite structure can also provide protection from deleterious environmental effects. This paper focuses on the processing and subsequent characterization of ceramic superconductor/polymer composites designed primarily for electromagnetic shielding and diamagnetic applications. YBa 2 Cu 3 O 7-x [YBCO] ceramic superconductor is combined with poly(methyl methacrylate) [PMMA] to form novel composite structures. Composite structures have been molded with both a discontinuous superconducting phase (i.e., ceramic particulate reinforced polymers) and with a continuous superconducting phase (i.e., polymer infiltrated porous ceramics). Characterization of these composite structures includes the determination of diamagnetic strength, electromagnetic shielding effectiveness, mechanical performance, and environmental resistance. The goal of this program is to produce a composite structure with increased mechanical integrity and environmental resistance at liquid nitrogen temperatures without compromising the electromagnetic shielding and diamagnetic properties of the superconducting phase. Composites structures of this type are potentially useful in numerous magnetic applications including electromagnetic shielding, magnetic sensors, energy storage, magnetic levitation, and motor windings

  14. Tissue soldering with biodegradable polymer films: in-vitro investigation of hydration effects on weld strength

    Science.gov (United States)

    Sorg, Brian S.; Welch, Ashley J.

    2001-05-01

    Previous work demonstrated increased breaking strengths of tissue repaired with liquid albumin solder reinforced with a biodegradable polymer film compared to unreinforced control specimens. It was hypothesized that the breaking strength increase was due to reinforcement of the liquid solder cohesive strength. Immersion in a moist environment can decrease the adhesion of solder to tissue and negate any strength benefits gained from reinforcement. The purpose of this study was to determine if hydrated specimens repaired with reinforced solder would still be stronger than unreinforced controls. A 50%(w/v) bovine serum albumin solder with 0.5 mg/mL Indocyanine Green dye was used to repair an incision in bovine aorta. The solder was coagulated with 806-nm diode laser light. A poly(DL-lactic- co-glycolic acid) film was used to reinforce the solder (the controls had no reinforcement). The repaired tissues were immersed in phosphate buffered saline for time periods of 1 and 2 days. The breaking strengths of all of the hydrated specimens decreased compared to the acute breaking strengths. However, the reinforced specimens still had larger breaking strengths than the unreinforced controls. These results indicate that reinforcement of a liquid albumin solder may have the potential to improve the breaking strength in a clinical setting.

  15. The effect of additives interaction on the miscibility and crystal structure of two immiscible biodegradable polymers

    Directory of Open Access Journals (Sweden)

    Ahmed Mohamed El-Hadi

    2014-01-01

    Full Text Available Poly lactic acid (PLLA is a promising biopolymer, obtained from polymerization of lactic acid that is derived from renewable resources through fermentation. The characteristic brittleness of PLLA is attributed to slow crystallization rates, which results in the formation of the large spherulites. Its glass temperature is relative high, above room temperature and close to 60 ºC, and therefore its applications are limited. The additives poly((R-3-hydroxybutyrate (PHB, poly(vinyl acetate (PVAc and tributyl citrate (TBC were used as compatibilizers in the biodegradable polymer blend of (PLLA/PPC. Results from DSC and POM analysis indicated that the blends of PLLA and PPC are immiscible. However, the blends with additives are miscible. TBC as plasticizer was added to PLLA to reduce its Tg. PVAc was used as compatibilizer to improve the miscibility between PLLA and PPC. FT-IR showed about 7 cm-1 shift in the C=O peak in miscible blends due to physical interactions. POM experiments together with the results of DSC and WAXD showed that PHB enhances the crystallization behavior of PLLA by acting as bio nuclei and the crystallization process can occur more quickly. Consequently an increase was observed in the peak intensity in WAXD.

  16. Biodegradable polymer for sealing porous PEO layer on pure magnesium: An in vitro degradation study

    Science.gov (United States)

    Alabbasi, Alyaa; Mehjabeen, Afrin; Kannan, M. Bobby; Ye, Qingsong; Blawert, Carsten

    2014-05-01

    An attempt was made to seal the porous silicate-based plasma electrolytic oxidation (PEO) layer on pure magnesium (Mg) with a biodegradable polymer, poly(L-lactide) (PLLA), to delay the localized degradation of magnesium-based implants in body fluid for better in-service mechanical integrity. Firstly, a silicate-based PEO coating on pure magnesium was performed using a pulsed constant current method. In order to seal the pores in the PEO layer, PLLA was coated using a two-step spin coating method. The performance of the PEO-PLLA Mg was evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The EIS results showed that the polarization resistance (Rp) of the PEO-PLLA Mg was close to two orders of magnitude higher than that of the PEO Mg. While the corrosion current density (icorr) of the pure Mg was reduced by 65% with the PEO coating, the PEO-PLLA coating reduced the icorr by almost 100%. As expected, the Rp of the PEO-PLLA Mg decreased with increase in exposure time. However, it was noted that the Rp of the PEO-PLLA Mg even after 100 h was six times higher than that of the PEO Mg after 48 h exposure, and did not show any visible localized attack.

  17. Biodegradation of naphthalenesulphonate polymers: the potential of a combined application of fungi and bacteria.

    Science.gov (United States)

    Gullotto, Antonella; Lubello, Claudio; Mannucci, Alberto; Gori, Riccardo; Munz, Giulio; Briganti, Fabrizio

    2015-01-01

    The potential of several fungi and their synergy with bacterial biomasses were evaluated as a solution for the removal of 2-naphthalensulphonic acid polymers (2-NSAPs) from petrochemical wastewater, characterized by a chemical oxygen demand (COD) greater than 9000 mg/L. The ability of fungi to grow on 2-NSAP mixtures was preliminarily investigated using a solid medium, and then the action of the selected strains, both in suspended and immobilized form, was evaluated in terms of degradation, depolymerization, sorption and an increase in biodegradability of 2-NSAP. Among the 25 fungi evaluated two, in particular, Bjerkandera adusta and Pleurotus ostreatus, have been found to significantly depolymerize 2-NSAP yielding to the corresponding monomer (2-naphthalenesulphonic acid, 2-NSA), which has been further degraded by a bacterial consortia selected in a wastewater treatment plant (WWTP). The fungal treatment alone was able to reduce the COD value up to 44%, while activated sludge removed only 9% of the initial COD. In addition, the combined treatment (fungi and bacteria) allowed an increase in the COD removal up to 62%.

  18. Drug release control in delivery system for biodegradable polymer drugs by γ-radiation

    International Nuclear Information System (INIS)

    Yoshioka, Sumie; Azo, Yukio; Kojima, Shigeo

    1997-01-01

    Characterizations of the drug release from microsphere and hydrogel preparation made from biodegradable polymers were investigated aiming at development of a drug delivery system which allows an optimum drug delivery and the identification of the factors which control its delivery. Poly-lactic acid microspheres containing 10% of progesterone were produced from poly DL-lactic acid and exposed to γ-ray at 5-1000 kGy. And its glass transition temperature (Tg) was determined by differential scanning calorimetry. The temperature was gradually lowered with an increase in the dose of radiation. Tg of the microsphere exposed at 1000 kGy was lower by 10degC compared with the untreated one, showing that Tg control is possible without changing the size distribution of microsphere. Then, the amount of progesterone released from microsphere was determined. The release rate of the drug linearly increased with a square root of radiation time. These results indicate that the control of drug release rate is possible through controling the microsphere's Tg by γ-ray radiation. (M.N.)

  19. Multilayer Electroactive Polymer Composite Material Comprising Carbon Nanotubes

    Science.gov (United States)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2009-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  20. Cost-effectiveness analysis of biodegradable polymer versus durable polymer drug-eluting stents incorporating real-world evidence.

    Science.gov (United States)

    Teng, Monica; Zhao, Ying Jiao; Khoo, Ai Leng; Ananthakrishna, Rajiv; Yeo, Tiong Cheng; Lim, Boon Peng; Chan, Mark Y; Loh, Joshua P

    2018-06-05

    Compared with second-generation durable polymer drug-eluting stents (DP-DES), the cost-effectiveness of biodegradable polymer drug-eluting stents (BP-DES) remains unclear in the real-world setting. We assessed the cost-effectiveness of BP-DES in patients with coronary artery disease undergoing percutaneous coronary intervention (PCI). We developed a decision-analytic model to compare the cost-effectiveness of BP-DES to DP-DES over one year and five years from healthcare payer perspective. Relative treatment effects during the first year post-PCI were obtained from a real-world population analysis while clinical event risks in the subsequent four years were derived from a meta-analysis of published studies. At one year, based on the clinical data analysis of 497 propensity-score matched pairs of patients, BP-DES were associated with an incremental cost-effectiveness ratio (ICER) of USD20,503 per quality-adjusted life-year (QALY) gained. At five years, BP-DES yielded an ICER of USD4,062 per QALY gained. At the willingness-to-pay threshold of USD50,400 (one gross domestic product per capita in Singapore in 2015), BP-DES were cost-effective. Sensitivity analysis showed that the cost of stents had a significant impact on the cost-effectiveness of BP-DES. Threshold analysis demonstrated that if the cost difference between BP-DES and DP-DES exceeded USD493, BP-DES would not be cost-effective in patients with one-year of follow-up. BP-DES were cost-effective compared with DP-DES in patients with coronary artery disease at one year and five years after PCI. It is worth noting that the cost of stents had a significant impact on the findings. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Characterization of fabricated three dimensional scaffolds of bio ceramic-polymer composite via microstereolithography technique

    International Nuclear Information System (INIS)

    Marina Talib; Covington, J.A.; Bolarinwa, A.

    2013-01-01

    Full-text: Microstereolithography is a method used for rapid proto typing of polymeric and ceramic components. This technique converts a computer-aided design (CAD) to a three dimensional (3D) model, and enables layer per layer fabrication curing a liquid resin with UV-light or laser source. The aim of this project was to formulate photo curable polymer reinforced with synthesized calcium pyrophosphate (CPP), and to fabricate a 3D scaffolds with optimum mechanical properties for specific tissue engineering applications. The photo curable ceramic suspension was prepared with acrylate polyester, multifunctional acrylate monomer with the addition of 50-70 wt % of CPP, photo initiators and photo inhibitors. The 3D structure of disc (5 mm height x 4 mm diameter) was successfully fabricated using Envisiontec Perfactory3. They were then sintered at high temperature for polymer removal, to obtain a ceramic of the desired porosity. The density increased to more than 35 % and the dimensional shrinkage after sintering were 33 %. The discs were then subjected compressive measurement, biodegradation and bioactivity test. Morphology and CPP content of the sintered polymer was investigated with SEM and XRD, respectively. The addition of CPP coupled with high temperature sintering, had a significant effect on the compressive strength exhibited by the bio ceramic. The values are in the range of cancellous bone (2-4 MPa). In biodegradation and bioactivity test, the synthesized CPP induced the formation of apatite layer and its nucleation onto the composite surface. (author)

  2. A Review on Potentiality of Nano Filler/Natural Fiber Filled Polymer Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Naheed Saba

    2014-08-01

    Full Text Available The increasing demand for greener and biodegradable materials leading to the satisfaction of society requires a compelling towards the advancement of nano-materials science. The polymeric matrix materials with suitable and proper filler, better filler/matrix interaction together with advanced and new methods or approaches are able to develop polymeric composites which shows great prospective applications in constructions and buildings, automotive, aerospace and packaging industries. The biodegradability of the natural fibers is considered as the most important and interesting aspects of their utilization in polymeric materials. Nanocomposite shows considerable applications in different fields because of larger surface area, and greater aspect ratio, with fascinating properties. Being environmentally friendly, applications of nanocomposites offer new technology and business opportunities for several sectors, such as aerospace, automotive, electronics, and biotechnology industries. Hybrid bio-based composites that exploit the synergy between natural fibers in a nano-reinforced bio-based polymer can lead to improved properties along with maintaining environmental appeal. This review article intended to present information about diverse classes of natural fibers, nanofiller, cellulosic fiber based composite, nanocomposite, and natural fiber/nanofiller-based hybrid composite with specific concern to their applications. It will also provide summary of the emerging new aspects of nanotechnology for development of hybrid composites for the sustainable and greener environment.

  3. Large Dielectric Constant Enhancement in MXene Percolative Polymer Composites

    KAUST Repository

    Tu, Shao Bo

    2018-04-06

    near the percolation limit of about 15.0 wt % MXene loading, which surpasses all previously reported composites made of carbon-based fillers in the same polymer. With up to 10 wt % MXene loading, the dielectric loss of the MXene/P(VDF-TrFE-CFE) composite indicates only an approximately 5-fold increase (from 0.06 to 0.35), while the dielectric constant increased by 25 times over the same composition range. Furthermore, the ratio of permittivity to loss factor of the MXene-polymer composite is superior to that of all previously reported fillers in this same polymer. The dielectric constant enhancement effect is demonstrated to exist in other polymers as well when loaded with MXene. We show that the dielectric constant enhancement is largely due to the charge accumulation caused by the formation of microscopic dipoles at the surfaces between the MXene sheets and the polymer matrix under an external applied electric field.

  4. Mass spectrometry for the elucidation of the subtle molecular structure of biodegradable polymers and their degradation products.

    Science.gov (United States)

    Kowalczuk, Marek; Adamus, Grażyna

    2016-01-01

    Contemporary reports by Polish authors on the application of mass spectrometric methods for the elucidation of the subtle molecular structure of biodegradable polymers and their degradation products will be presented. Special emphasis will be given to natural aliphatic (co)polyesters (PHA) and their synthetic analogues, formed through anionic ring-opening polymerization (ROP) of β-substituted β-lactones. Moreover, the application of MS techniques for the evaluation of the structure of biodegradable polymers obtained in ionic and coordination polymerization of cyclic ethers and esters as well as products of step-growth polymerization, in which bifunctional or multifunctional monomers react to form oligomers and eventually long chain polymers, will be discussed. Furthermore, the application of modern MS techniques for the assessment of polymer degradation products, frequently bearing characteristic end groups that can be revealed and differentiated by MS, will be discussed within the context of specific degradation pathways. Finally, recent Polish accomplishments in the area of mass spectrometry will be outlined. © 2015 Wiley Periodicals, Inc.

  5. Biodegradation of oil palm empty fruit bunch by composite micro-organisms

    International Nuclear Information System (INIS)

    Yusri Atan; Mat Rasol Awang; Mohammed Omar; Azizah Hashim; Tamikazu Kume; Shoji Hashimoto

    1998-01-01

    A comparison study on the comparative biodegradation ability on EFB by five groups of composite micro-organisms [Organomine, Thomas, Ohres C, Ohres II and micro-organisms from POME (palm oil mill effluent)] has been performed with the aim of producing a compost at a faster rate than that by natural biodegradation. The experiment was carried out by mixing 50 gram EFB (dry weight basis) with 3% ammonium sulphate to which was added 1% composite micro-organisms and water to produce a composting media of moisture content about 60%. Respiration of composite micro-organisms as well as from decomposition of EFB releasing CO sub 2. The choice of useful micro-organisms was based on its ability to degrade EFB as reflected by higher evolution rate of CO sub 2 released and retaining higher percentage of nitrogen in the final product

  6. New Microlayer and Nanolayer Polymer Composites

    National Research Council Canada - National Science Library

    Baer, E

    2001-01-01

    ... (see attached, interim report (1/1/99 - 12/31/99). (4) High barrier, injection moldable systems have been produced by microlayering a polymer with good water barrier and a polymer with good oxygen barrier...

  7. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites.

    Science.gov (United States)

    Zia, Khalid Mahmood; Tabasum, Shazia; Nasif, Muhammad; Sultan, Neelam; Aslam, Nosheen; Noreen, Aqdas; Zuber, Mohammad

    2017-03-01

    Carrageenan is a natural polysaccharide extracted from edible red seaweeds of Rhodophycea class. It has been used as a viscosity increasing or gelling agent for prolonged and controlled drug release, food, pharmaceuticals and other industries. However, in spite of wide range of applications, carrageenan has some drawbacks and adverse effects on the biological systems, so its modifications with natural and synthetic polymers are carried out. This review article presents different sources and properties of carrageenans with special emphasis on natural polymer based carrageenan blends and composites and their applications in controlled drug delivery system, wound dressing and tissue engineering because of their biodegradability and biocompatibility, food industry as thickening/gelling materials, cosmeceuticals and making polyelectrolyte complexes. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Field desorption mass spectroscopy monitoring of changes in hydrocarbon type composition during petroleum biodegradation

    International Nuclear Information System (INIS)

    Huesemann, M.H.

    1995-01-01

    A comprehensive petroleum hydrocarbon characterization procedure involving group type separation, boiling point distribution, and hydrocarbon typing by field desorption mass spectroscopy (FDMS) has been developed to quantify changes in hydrocarbon type composition during bioremediation of petroleum-contaminated soils. FDMS is able to quantify the concentration of hundreds of specific hydrocarbon types based on their respective hydrogen deficiency (z-number) and molecular weight (carbon number). Analytical results from two bioremediation experiments involving soil contaminated with crude oil and motor oil indicate that alkanes and two-ring saturates (naphthenes) were readily biodegradable. In addition, low-molecular-weight hydrocarbons generally were biodegraded to a larger extent than those of high molecular weight. More importantly, it was found that the extent of biodegradation of specific hydrocarbon types was comparable between treatments and appeared to be unaffected by the petroleum contaminant source, soil type, or experimental conditions. It was therefore concluded that in these studies the extent of total petroleum hydrocarbon (TPH) biodegradation is primarily affected by the molecular composition of the petroleum hydrocarbons present in the contaminated soil

  9. Researches on the development of new composite materials complete / partially biodegradable using natural textile fibers of new vegetable origin and those recovered from textile waste

    Science.gov (United States)

    Todor, M. P.; Bulei, C.; Heput, T.; Kiss, I.

    2018-01-01

    The objective of the research is to develop new fully / partially biodegradable composite materials by using new natural fibers and those recovered from various wastes. Thus, the research aims to obtain some composites with matrix of various types of polymeric materials and the reinforcement phase of textile materials (of different natures, morphologies and composites) so that the resulting products to be (bio)degradable. The textile inserts used as raffle are ecological, non-toxic and biodegradable and they contain (divided or in combination) bast fibers (flax, hemp, jute) and other vegetable fibers (cotton, wool) as plain yarn or fabric, which can replace fibers of glass commonly used in polymeric composites. The main activities described in this article are carried out during the first phase of the research (phase I - initiation of research) and they are oriented towards the choice of types of textile inserts from which the composites will be obtained (the materials needed for the raffle), the choice of the types of polymers (the necessary materials for matrices) and choosing the variants of composites with different types and proportions of the constituent content (proposals and working variants) and choosing the right method for obtaining samples of composite materials (realization technology). The purpose of the research is to obtain composite materials with high structural, thermo-mechanical and / or tribological performances, according to ecological norms and international requirements in order to replace the existing classical materials, setting up current, innovative and high performance solutions, for applications in top areas such as automotive industry and not only.

  10. A new material for chemical industry - wood polymer composites

    International Nuclear Information System (INIS)

    Majali, A.B.; Patil, N.D.

    1979-01-01

    The paper outlines the advantages of the radiation cured wood-polymer composites (WPC) for application in certain critical areas of chemical industry. The wood-polymer composite made filterpress frames and plates were tested in a chemical plant. The entire exercise is elaborated. The radiation cured wood exhibited a considerably extended useful life in alkaline and acidic solutions. Composites based on teak wood showed a remarkable improvement with a nominal polymer loading of 10%. The reports of accelerated aging test of WPC are also presented. (auth.)

  11. Investigation of a nanoconfined, ceramic composite, solid polymer electrolyte

    International Nuclear Information System (INIS)

    Jayasekara, Indumini; Poyner, Mark; Teeters, Dale

    2017-01-01

    The challenges for further development of lithium rechargeable batteries are finding electrolyte materials that are safe, have mechanical and thermal stability and have sufficiently high ionic conduction. Polymer electrolytes have many of these advantages, but suffer with low ionic conduction. This study involves the use of anodic aluminum oxide (AAO) membranes having nanochannels filled with polymer electrolyte to make composite solid electrolytes having ionic conductivity several orders of magnitude higher (10 −4 Ω ‐1 cm −1 ) than non-confined polymer. SEM, ac impedance spectroscopy, temperature dependence studies, XRD, ATR- FTIR and DSC studies were done in order to characterize and understand the behavior of nanoconfined polymer electrolytes. The composite polymer electrolyte was found to be more amorphous with polymer chains aligned in the direction of the nanochannels, which is felt to promote ion conduction. The electrolyte systems, confined in nanoporous membranes, can be used as electrolytes for the fabrication of a room temperature all solid state battery.

  12. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    Science.gov (United States)

    Liu, Han [Waltham, MA; LaConti, Anthony B [Lynnfield, MA; Mittelsteadt, Cortney K [Natick, MA; McCallum, Thomas J [Ashland, MA

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  13. Ultra low density biodegradable shape memory polymer foams with tunable physical properties

    Science.gov (United States)

    Singhal, Pooja; Wilson, Thomas S.; Cosgriff-Hernandez, Elizabeth; Maitland, Duncan J.

    2017-12-12

    Compositions and/or structures of degradable shape memory polymers (SMPs) ranging in form from neat/unfoamed to ultra low density materials of down to 0.005 g/cc density. These materials show controllable degradation rate, actuation temperature and breadth of transitions along with high modulus and excellent shape memory behavior. A method of m ly low density foams (up to 0.005 g/cc) via use of combined chemical and physical aking extreme blowing agents, where the physical blowing agents may be a single compound or mixtures of two or more compounds, and other related methods, including of using multiple co-blowing agents of successively higher boiling points in order to achieve a large range of densities for a fixed net chemical composition. Methods of optimization of the physical properties of the foams such as porosity, cell size and distribution, cell openness etc. of these materials, to further expand their uses and improve their performance.

  14. Thermal Degradation of Lead Monoxide Filled Polymer Composite Radiation Shields

    International Nuclear Information System (INIS)

    Harish, V.; Nagaiah, N.

    2011-01-01

    Lead monoxide filled Isophthalate resin particulate polymer composites were prepared with different filler concentrations and investigated for physical, thermal, mechanical and gamma radiation shielding characteristics. This paper discusses about the thermo gravimetric analysis of the composites done to understand their thermal properties especially the effect of filler concentration on the thermal stability and degradation rate of composites. Pristine polymer exhibits single stage degradation whereas filled composites exhibit two stage degradation processes. Further, the IDT values as well as degradation rates decrease with the increased filler content in the composite.

  15. Electron beam curing of polymer matrix composites

    International Nuclear Information System (INIS)

    Janke, C.J.; Wheeler, D.; Saunders, C.

    1998-01-01

    The purpose of the CRADA was to conduct research and development activities to better understand and utilize the electron beam PMC curing technology. This technology will be used to replace or supplement existing PMC thermal curing processes in Department of Energy (DOE) Defense Programs (DP) projects and American aircraft and aerospace industries. This effort involved Lockheed Martin Energy Systems, Inc./Lockheed Martin Energy Research Corp. (Contractor), Sandia National Laboratories, and ten industrial Participants including four major aircraft and aerospace companies, three advanced materials companies, and three electron beam processing organizations. The technical objective of the CRADA was to synthesize and/or modify high performance, electron beam curable materials that meet specific end-use application requirements. There were six tasks in this CRADA including: Electron beam materials development; Electron beam database development; Economic analysis; Low-cost Electron Beam tooling development; Electron beam curing systems integration; and Demonstration articles/prototype structures development. The contractor managed, participated and integrated all the tasks, and optimized the project efforts through the coordination, exchange, and dissemination of information to the project participants. Members of the Contractor team were also the principal inventors on several electron beam related patents and a 1997 R and D 100 Award winner on Electron-Beam-Curable Cationic Epoxy Resins. The CRADA achieved a major breakthrough for the composites industry by having successfully developed high-performance electron beam curable cationic epoxy resins for use in composites, adhesives, tooling compounds, potting compounds, syntactic foams, etc. UCB Chemicals, the world's largest supplier of radiation-curable polymers, has acquired a license to produce and sell these resins worldwide

  16. Photoactive glazed polymer-cement composite

    Science.gov (United States)

    Baltes, Liana; Patachia, Silvia; Tierean, Mircea; Ekincioglu, Ozgur; Ozkul, Hulusi M.

    2018-04-01

    Macro defect free cements (MDF), a kind of polymer-cement composites, are characterized by remarkably high mechanical properties. Their flexural strengths are 20-30 times higher than those of conventional cement pastes, nearly equal to that of an ordinary steel. The main drawback of MDF cements is their sensitivity to water. This paper presents a method to both diminish the negative impact of water on MDF cements mechanical properties and to enlarge their application by conferring photoactivity. These tasks were solved by glazing MDF cement with an ecological glaze containing nano-particles of TiO2. Efficiency of photocatalytic activity of this material was tested against methylene blue aqueous solution (4.4 mg/L). Influence of the photocatalyst concentration in the glaze paste and of the contact time on the photocatalysis process (efficiency and kinetic) was studied. The best obtained photocatalysis yield was of 97.35%, after 8 h of exposure to 254 nm UV radiation when used an MDF glazed with 10% TiO2 in the enamel paste. Surface of glazed material was characterized by optic microscopy, scratch test, SEM, XRD, and EDS. All these properties were correlated with the aesthetic aspect of the glazed surface aiming to propose using of this material for sustainable construction development.

  17. Natural fiber-reinforced polymer composites

    International Nuclear Information System (INIS)

    Taj, S.; Khan, S.; Munawar, M.A.

    2007-01-01

    Natural fibers have been used to reinforce materials for over 3,000 years. More recently they have been employed in combination with plastics. Many types of natural fi fibers have been investigated for use in plastics including Flax, hemp, jute, straw, wood fiber, rice husks, wheat, barley, oats, rye, cane (sugar and bamboo), grass reeds, kenaf, ramie, oil palm empty fruit bunch, sisal, coir, water hyacinth, pennywort, kapok, paper-mulberry, raphia, banana fiber, pineapple leaf fiber and papyrus. Natural fibers have the advantage that they are renewable resources and have marketing appeal. The Asian markets have been using natural fibers for many years e.g., jute is a common reinforcement in India. Natural fibers are increasingly used in automotive and packaging materials. Pakistan is an agricultural country and it is the main stay of Pakistan's economy. Thousands of tons of different crops are produced but most of their wastes do not have any useful utilization. Agricultural wastes include wheat husk, rice husk, and their straw, hemp fiber and shells of various dry fruits. These agricultural wastes can be used to prepare fiber reinforced polymer composites for commercial use. This report examines the different types of fibers available and the current status of research. Many references to the latest work on properties, processing and application have been cited in this review. (author)

  18. Biodegradable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents for primary percutaneous coronary revascularisation of acute myocardial infarction.

    Science.gov (United States)

    Pilgrim, Thomas; Piccolo, Raffaele; Heg, Dik; Roffi, Marco; Tüller, David; Vuilliomenet, André; Muller, Olivier; Cook, Stéphane; Weilenmann, Daniel; Kaiser, Christoph; Jamshidi, Peiman; Khattab, Ahmed A; Taniwaki, Masanori; Rigamonti, Fabio; Nietlispach, Fabian; Blöchlinger, Stefan; Wenaweser, Peter; Jüni, Peter; Windecker, Stephan

    2016-12-10

    Our aim was to compare the safety and efficacy of a novel, ultrathin strut, biodegradable polymer sirolimus-eluting stent (BP-SES) with a thin strut, durable polymer everolimus-eluting stent (DP-EES) in a pre-specified subgroup of patients with acute ST-segment elevation myocardial infarction (STEMI) enrolled in the BIOSCIENCE trial. The BIOSCIENCE trial is an investigator-initiated, single-blind, multicentre, randomised non-inferiority trial (NCT01443104). Randomisation was stratified according to the presence or absence of STEMI. The primary endpoint, target lesion failure (TLF), is a composite of cardiac death, target vessel myocardial infarction, and clinically indicated target lesion revascularisation within 12 months. Between February 2012 and May 2013, 407 STEMI patients were randomly assigned to treatment with BP-SES or DP-EES. At one year, TLF occurred in seven (3.4%) patients treated with BP-SES and 17 (8.8%) patients treated with DP-EES (RR 0.38, 95% CI: 0.16-0.91, p=0.024). Rates of cardiac death were 1.5% in the BP-SES group and 4.7% in the DP-EES group (RR 0.31, 95% CI: 0.08-1.14, p=0.062); rates of target vessel myocardial infarction were 0.5% and 2.6% (RR 0.18, 95% CI: 0.02-1.57, p=0.082), respectively, and rates of clinically indicated target lesion revascularisation were 1.5% in the BP-SES group versus 2.1% in the DP-EES group (RR 0.69, 95% CI: 0.16-3.10, p=0.631). There was no difference in the risk of definite stent thrombosis. In this pre-specified subgroup analysis, BP-SES was associated with a lower rate of target lesion failure at one year compared to DP-EES in STEMI patients. These findings require confirmation in a dedicated STEMI trial.

  19. Laser-tissue soldering with biodegradable polymer films in vitro: film surface morphology and hydration effects.

    Science.gov (United States)

    Sorg, B S; Welch, A J

    2001-01-01

    Previous research introduced the concept of using biodegradable polymer film reinforcement of a liquid albumin solder for improvement of the tensile strength of repaired incisions in vitro. In this study, the effect of creating small pores in the PLGA films on the weld breaking strength is studied. Additionally, the effect of hydration on the strength of the reinforced welds is investigated. A 50%(w/v) bovine serum albumin solder with 0.5 mg/mL Indocyanine Green dye was used to repair an incision in bovine aorta. The solder was coagulated with an 806-nm CW diode laser. A poly(DL-lactic-co-glycolic acid) (PLGA) film was used to reinforce the solder (the controls had solder but no reinforcement). Breaking strengths were measured acutely and after hydration in saline for 1 and 2 days. The data were analyzed by ANOVA (P < 0.05) and multiple comparisons of means were performed using the Newman-Keuls test. The creation of pores in the PLGA films qualitatively improved the film flexibility without having an apparent adverse effect on the breaking strength, while the actual technique of applying the film and solder had more of an effect. The acute maximum average breaking strengths of some of the film reinforced specimens (114.7 g-134.4 g) were significantly higher (P < 0.05) than the acute maximum average breaking strength of the unreinforced control specimens (68.3 g). Film reinforced specimens were shown to have a statistically significantly higher breaking strength than unreinforced controls after 1- and 2-day hydration. Reinforcement of liquid albumin solders in laser-assisted incision repair appears to have advantages over conventional methods that do not reinforce the cohesive strength of the solder in terms of acute breaking strength and after immersion in moist environments for short periods of time. Using a film with the solder applied to one surface only may be advantageous over other techniques.

  20. Biodegradable polymer for sealing porous PEO layer on pure magnesium: An in vitro degradation study

    International Nuclear Information System (INIS)

    Alabbasi, Alyaa; Mehjabeen, Afrin; Kannan, M. Bobby; Ye, Qingsong; Blawert, Carsten

    2014-01-01

    Graphical abstract: - Highlights: • Poly(L-lactide) was used to seal the porous PEO layer on Mg. • The dual-layer coating improved the in vitro degradation resistance of Mg. • Localized degradation was inhibited in the dual-layer coated Mg. - Abstract: An attempt was made to seal the porous silicate-based plasma electrolytic oxidation (PEO) layer on pure magnesium (Mg) with a biodegradable polymer, poly(L-lactide) (PLLA), to delay the localized degradation of magnesium-based implants in body fluid for better in-service mechanical integrity. Firstly, a silicate-based PEO coating on pure magnesium was performed using a pulsed constant current method. In order to seal the pores in the PEO layer, PLLA was coated using a two-step spin coating method. The performance of the PEO–PLLA Mg was evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The EIS results showed that the polarization resistance (R p ) of the PEO–PLLA Mg was close to two orders of magnitude higher than that of the PEO Mg. While the corrosion current density (i corr ) of the pure Mg was reduced by 65% with the PEO coating, the PEO–PLLA coating reduced the i corr by almost 100%. As expected, the R p of the PEO–PLLA Mg decreased with increase in exposure time. However, it was noted that the R p of the PEO–PLLA Mg even after 100 h was six times higher than that of the PEO Mg after 48 h exposure, and did not show any visible localized attack

  1. Biodegradable polymer for sealing porous PEO layer on pure magnesium: An in vitro degradation study

    Energy Technology Data Exchange (ETDEWEB)

    Alabbasi, Alyaa; Mehjabeen, Afrin [Biomaterials and Engineering Materials (BEM) Laboratory, James Cook University, Townsville 4811, Queensland (Australia); Kannan, M. Bobby, E-mail: bobby.mathan@jcu.edu.au [Biomaterials and Engineering Materials (BEM) Laboratory, James Cook University, Townsville 4811, Queensland (Australia); Ye, Qingsong [Discipline of Dentistry, James Cook University, Townsville 4811, Queensland (Australia); Blawert, Carsten [Magnesium Innovation Centre, Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Geesthacht 21502 (Germany)

    2014-05-01

    Graphical abstract: - Highlights: • Poly(L-lactide) was used to seal the porous PEO layer on Mg. • The dual-layer coating improved the in vitro degradation resistance of Mg. • Localized degradation was inhibited in the dual-layer coated Mg. - Abstract: An attempt was made to seal the porous silicate-based plasma electrolytic oxidation (PEO) layer on pure magnesium (Mg) with a biodegradable polymer, poly(L-lactide) (PLLA), to delay the localized degradation of magnesium-based implants in body fluid for better in-service mechanical integrity. Firstly, a silicate-based PEO coating on pure magnesium was performed using a pulsed constant current method. In order to seal the pores in the PEO layer, PLLA was coated using a two-step spin coating method. The performance of the PEO–PLLA Mg was evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The EIS results showed that the polarization resistance (R{sub p}) of the PEO–PLLA Mg was close to two orders of magnitude higher than that of the PEO Mg. While the corrosion current density (i{sub corr}) of the pure Mg was reduced by 65% with the PEO coating, the PEO–PLLA coating reduced the i{sub corr} by almost 100%. As expected, the R{sub p} of the PEO–PLLA Mg decreased with increase in exposure time. However, it was noted that the R{sub p} of the PEO–PLLA Mg even after 100 h was six times higher than that of the PEO Mg after 48 h exposure, and did not show any visible localized attack.

  2. Biodegradable polymer nanofiber membrane for the repair of cutaneous wounds in dogs - two case reports

    Directory of Open Access Journals (Sweden)

    Lívia Gomes Amaral

    2016-12-01

    Full Text Available The study of wound healing and its treatment is extremely important in veterinary medicine due to the high frequency of wounds and the difficulty in treating wounds by second intention. Thus, the objective of this study was to evaluate the use of a nanofiber membrane made of biodegradable polymers as a method of wound treatment in dogs. This study comprised two dogs with bite wounds. Debridement and cleaning was performed followed by the application of the membrane. In one dog, the wound was in the left proximal calcaneal region with clinical signs of infection, necrotic tissue, and muscle and the gastrocnemius tendon were exposed. The wound displayed rapid formation of granulation tissue which became excessive, so it was necessary to debride several times. However, with the suspension of the use of the membrane, formation of this tissue was not observed, and the wound evolved to epithelialization and fast contraction. In the second dog, there was a deep wound on the medial aspect of the proximal right hind limb, with clinical signs of infection, with muscle exposure. Once the membrane was placed, granulation tissue formed, and the membrane was used until the level of this tissue reached the skin. The wound underwent rapid epithelialization and contraction, without developing exuberant granulation tissue. Efficient wound repair was observed and the dogs exhibited greater comfort during application and use of the membrane. More studies should be conducted in dogs focusing on the application of this membrane until the appearance of healthy granulation tissue, as continued use seems to stimulate the formation of exuberant granulation tissue.

  3. Biodegradable polymer based theranostic agents for photoacoustic imaging and cancer therapy

    Science.gov (United States)

    Wang, Yan J.; Strohm, Eric M.; Kolios, Michael C.

    2016-03-01

    In this study, multifunctional theranostic agents for photoacoustic (PA), ultrasound (US), fluorescent imaging, and for therapeutic drug delivery were developed and tested. These agents consisted of a shell made from a biodegradable Poly(lactide-co-glycolic acid) (PLGA) polymer, loaded with perfluorohexane (PFH) liquid and gold nanoparticles (GNPs) in the core, and lipophilic carbocyanines fluorescent dye DiD and therapeutic drug Paclitaxel (PAC) in the shell. Their multifunctional capacity was investigated in an in vitro study. The PLGA/PFH/DiD-GNPs particles were synthesized by a double emulsion technique. The average PLGA particle diameter was 560 nm, with 50 nm diameter silica-coated gold nano-spheres in the shell. MCF7 human breast cancer cells were incubated with PLGA/PFH/DiDGNPs for 24 hours. Fluorescent and PA images were recorded using a fluorescent/PA microscope using a 1000 MHz transducer and a 532 nm pulsed laser. For the particle vaporization and drug delivery test, MCF7 cells were incubated with the PLGA/PFH-GNPs-PAC or PLGA/PFH-GNPs particles for 6, 12 and 24 hours. The effects of particle vaporization and drug delivery inside the cells were examined by irradiating the cells with a laser fluence of 100 mJ/cm2, and cell viability quantified using the MTT assay. The PA images of MCF7 cells containing PLGA/PFH/DiD-GNPs were spatially coincident with the fluorescent images, and confirmed particle uptake. After exposure to the PLGA/PFHGNP- PAC for 6, 12 and 24 hours, the cell survival rate was 43%, 38%, and 36% respectively compared with the control group, confirming drug delivery and release inside the cells. Upon vaporization, cell viability decreased to 20%. The particles show potential as imaging agents and drug delivery vehicles.

  4. New biodegradable air-entraining admixture based on LAS for cement-based composites

    International Nuclear Information System (INIS)

    Mendes, J.C.; Moro, T.K.; Dias, L.S.; Campos, P.A.M.; Silva, G.J.B.; Peixoto, R.A.F.; Cury, A.A.

    2016-01-01

    The active principle of Air Entraining Admixtures (AEA) are surfactants, analogously to washing up liquids. Washing up (or dishwashing) liquids are widely available products, relatively inexpensive, non-toxic and biodegradable, thus presenting smaller environmental impact. Therefore, the present work proposes the use of a biodegradable surfactant comprised in washing up liquids, Linear Alkylbenzene Sulfonate (LAS), as sustainable air entraining agent for cement-based composites. In this sense, a performance evaluation of the proposed AEA is carried out, by comparing the properties of mortars with proposed AEA, commercial AEA and ones without any admixture. Through the physical, mechanical and microstructural analysis, it was possible to determine the efficiency of the proposed AEA, as well as its optimum range of dosage. As a result, we seek to contribute to the technical development of cement-based composites in Brazil and in the world. (author)

  5. The impact of nanoclay on the crystal growth kinetics and morphology of biodegradable poly(ethylene succinate) composite

    CSIR Research Space (South Africa)

    Bandyopadhyay, J

    2012-07-01

    Full Text Available The impact of nanoclay on the isothermal crystal growth kinetics and morphology of biodegradable poly(ethylene succinate) (PES) is reported. A PES composite (PESNC) containing 5 wt% organically modified montmorillonite, was prepared via solvent...

  6. Process for the preparation of a vinylidene chloride polymer composite

    NARCIS (Netherlands)

    2013-01-01

    Process for the preparation of a vinylidene chloride polymer composite comprising a solid particulate encapsulated in the vinylidene chloride polymer. The process comprises providing a dispersion of a solid particulate material in a liquid phase, said dispersion comprising a RAFT/MADIX agent;

  7. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications

    Directory of Open Access Journals (Sweden)

    Layth Mohammed

    2015-01-01

    Full Text Available Natural fibers are getting attention from researchers and academician to utilize in polymer composites due to their ecofriendly nature and sustainability. The aim of this review article is to provide a comprehensive review of the foremost appropriate as well as widely used natural fiber reinforced polymer composites (NFPCs and their applications. In addition, it presents summary of various surface treatments applied to natural fibers and their effect on NFPCs properties. The properties of NFPCs vary with fiber type and fiber source as well as fiber structure. The effects of various chemical treatments on the mechanical and thermal properties of natural fibers reinforcements thermosetting and thermoplastics composites were studied. A number of drawbacks of NFPCs like higher water absorption, inferior fire resistance, and lower mechanical properties limited its applications. Impacts of chemical treatment on the water absorption, tribology, viscoelastic behavior, relaxation behavior, energy absorption flames retardancy, and biodegradability properties of NFPCs were also highlighted. The applications of NFPCs in automobile and construction industry and other applications are demonstrated. It concluded that chemical treatment of the natural fiber improved adhesion between the fiber surface and the polymer matrix which ultimately enhanced physicomechanical and thermochemical properties of the NFPCs.

  8. Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization

    Science.gov (United States)

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-02-01

    In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (106 ~ 109 Ω/◻).

  9. Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization.

    Science.gov (United States)

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-02-03

    In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (10(6)~ 10(9) Ω/◻).

  10. Elaboration d'un matériau composite innovant à base de bois et de bio-polymère d'acide lactique

    OpenAIRE

    Galhac-Noel , Marion

    2007-01-01

    Composites from petroleum based polymers and synthetical or mineral fibers can be advantageously replaced by biomaterials from biopolymers and vegetal fibrous reinforcements, allowing recycling and /or biodegradation at the end of their lifecycle. In this purpose, we prepared a wood / lactic acid biopolymer based bio composite. Wood vacuum / pressure impregnation by lactic acid oligomers containing chemical catalyst or not, was followed by a heating process in a drying kiln. The aim of this s...

  11. Polylactide-based renewable composites from natural products residues by encapsulated film bag: characterization and biodegradability.

    Science.gov (United States)

    Wu, Chin-San

    2012-09-01

    In the present study, the biodegradability, morphology, and mechanical properties of composite materials consisting of acrylic acid-grafted polylactide (PLA-g-AA) and natural products residues (corn starch, CS) were evaluated. Composites containing acrylic acid-grafted PLA (PLA-g-AA/CS) exhibited noticeably superior mechanical properties due to their greater compatibility with CS compared with PLA/CS. The feasibility of using PLA-g-AA/CS as a film bag material to facilitate the controlled release of an encapsulated phosphate-solubilizing bacterium (PSB) Burkholderia cepacia as a fertilizer use promoter was then evaluated. For purposes of comparison and accurate characterization, a PLA film bag was also assessed. The results showed that the bacterium completely degraded both the PLA and the PLA-g-AA/CS composite film bags, resulting in cell release. The PLA-g-AA/CS (20 wt%) film bags were more biodegradable than those made of PLA, and displayed a higher loss of molecular weight and intrinsic viscosity, indicating a strong connection between these characteristics and biodegradability. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Investigating accidents involving aircraft manufactured from polymer composite materials

    OpenAIRE

    Dunn, Leigh

    2013-01-01

    This thesis looks into the examination of polymer composite wreckage from the perspective of the aircraft accident investigator. It develops an understanding of the process of wreckage examination as well as identifying the potential for visual and macroscopic interpretation of polymer composite aircraft wreckage. The in-field examination of aircraft wreckage, and subsequent interpretations of material failures, can be a significant part of an aircraft accident investigation. ...

  13. Influence of composition of functional additives and deformation modes on flow behavior of polymer composite materials

    Science.gov (United States)

    Onoprienko, N. N.; Rahimbaev, Sh M.

    2018-03-01

    The paper presents the results of the influence of composition of functional water-soluble polymers and viscosity of domestic and foreign one-percent water solution polymer on flow parameters of cement and polymer test. It also gives the results of rheogoniometry of Eunice Granit tile adhesive used for large-size plates from natural stone and ceramic granite.

  14. Biodegradable multiblock polymers based on N-(2-hydroxypropyl)methacrylamide designed as drug carriers for tumor-targeted delivery

    Czech Academy of Sciences Publication Activity Database

    Mužíková, Gabriela; Pola, Robert; Laga, Richard; Pechar, Michal

    2016-01-01

    Roč. 217, č. 15 (2016), s. 1690-1703 ISSN 1022-1352 R&D Projects: GA ČR(CZ) GA14-12742S; GA ČR(CZ) GA16-17207S; GA MŠk(CZ) LO1507; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : biodegradable polymers * click chemistry * drug delivery systems Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.500, year: 2016

  15. Mechanical Behavior of Polymer Nano Bio Composite for Orthopedic Implants

    Science.gov (United States)

    Marimuthu, K., Dr.; Rajan, Sankar

    2018-04-01

    The bio-based polymer composites have been the focus of many scientific and research projects, as well as many commercial programs. In recent years, scientists and engineers have been working together to use the inherent strength and performance of the new class of bio-based composites which is compactable with human body and can act as a substitute for living cells. In this stage the polymer composites also stepped into human bone implants as a replacement for metallic implants which was problems like corrosion resistance and high cost. The polymer composite have the advantage that it can be molded to the required shape, the polymers have high corrosion resistance, less weight and low cost. The aim of this research is to develop and analyze the suitable bio compactable polymer composite for human implants. The nano particles reinforced polymer composites provides good mechanical properties and shows good tribological properties especially in the total hip and knee replacements. The graphene oxide powders are bio compactable and acts as anti biotic. GO nano powder where reinforced into High-density polyethylene in various weight percentage of 0.5% to 2%. The performance of GO nano powder shows better tribological properties. The material produced does not cause any pollution to the environment and at the same time it can be bio compactable and sustainable. The product will act environmentally friendly.

  16. Tethered Nanoparticle–Polymer Composites: Phase Stability and Curvature

    KAUST Repository

    Srivastava, Samanvaya

    2012-04-17

    Phase behavior of poly(ethylene glycol) (PEG) tethered silica nanoparticles dispersed in PEG hosts is investigated using small-angle X-ray scattering. Phase separation in dispersions of densely grafted nanoparticles is found to display strikingly different small-angle X-ray scattering signatures in comparison to phase-separated composites comprised of bare or sparsely grafted nanoparticles. A general diagram for the dispersion state and phase stability of polymer tethered nanoparticle-polymer composites incorporating results from this as well as various other contemporary studies is presented. We show that in the range of moderate to high grafting densities the dispersion state of nanoparticles in composites is largely insensitive to the grafting density of the tethered chains and chemistry of the polymer host. Instead, the ratio of the particle diameter to the size of the tethered chain and the ratio of the molecular weights of the host and tethered polymer chains (P/N) are shown to play a dominant role. Additionally, we find that well-functionalized nanoparticles form stable dispersions in their polymer host beyond the P/N limit that demarcates the wetting/dewetting transition in polymer brushes on flat substrates interacting with polymer melts. A general strategy for achieving uniform nanoparticle dispersion in polymers is proposed. © 2012 American Chemical Society.

  17. Development of biodegradable metaloxide/polymer nanocomposite films based on poly-ε-caprolactone and terephthalic acid.

    Science.gov (United States)

    Varaprasad, Kokkarachedu; Pariguana, Manuel; Raghavendra, Gownolla Malegowd; Jayaramudu, Tippabattini; Sadiku, Emmanuel Rotimi

    2017-01-01

    The present investigation describes the development of metal-oxide polymer nanocomposite films from biodegradable poly-ε-caprolactone, disposed poly(ethylene terephthalate) oil bottles monomer and zinc oxide-copper oxide nanoparticles. The terephthalic acid and zinc oxide-copper oxide nanoparticles were synthesized by using a temperature-dependent precipitation technique and double precipitation method, respectively. The terephthalic acid synthesized was confirmed by FTIR analysis and furthermore, it was characterized by thermal analysis. The as-prepared CuO-ZnO nanoparticles structure was confirmed by XRD analysis and its morphology was analyzed by SEM/EDS and TEM. Furthermore, the metal-oxide polymer nanocomposite films have excellent mechanical properties, with tensile strength and modulus better than pure films. The metal-oxide polymer nanocomposite films that were successfully developed show a relatively brighter colour when compared to CuO film. These new metal-oxide polymer nanocomposite films can replace many non-degradable plastics. The new metal-oxide polymer nanocomposite films developed are envisaged to be suitable for use in industrial and domestic packaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Full-scale performance of selected starch-based biodegradable polymers in sludge dewatering and recommendation for applications.

    Science.gov (United States)

    Zhou, Kuangxin; Stüber, Johan; Schubert, Rabea-Luisa; Kabbe, Christian; Barjenbruch, Matthias

    2018-01-01

    Agricultural reuse of dewatered sludge is a valid route for sludge valorization for small and mid-size wastewater treatment plants (WWTPs) due to the direct utilization of nutrients. A more stringent of German fertilizer ordinance requires the degradation of 20% of the synthetic additives like polymeric substance within two years, which came into force on 1 January 2017. This study assessed the use of starch-based polymers for full-scale dewatering of municipal sewage sludge. The laboratory-scale and pilot-scale trials paved the way for full-scale trials at three WWTPs in Germany. The general feasibility of applying starch-based 'green' polymers in full-scale centrifugation was demonstrated. Depending on the sludge type and the process used, the substitution potential was up to 70%. Substitution of 20-30% of the polyacrylamide (PAM)-based polymer was shown to achieve similar total solids (TS) of the dewatered sludge. Optimization of operational parameters as well as machinery set up in WWTPs is recommended in order to improve the shear stability force of sludge flocs and to achieve higher substitution potential. This study suggests that starch-based biodegradable polymers have great potential as alternatives to synthetic polymers in sludge dewatering.

  19. 3D Printing of Biocompatible Supramolecular Polymers and their Composites.

    Science.gov (United States)

    Hart, Lewis R; Li, Siwei; Sturgess, Craig; Wildman, Ricky; Jones, Julian R; Hayes, Wayne

    2016-02-10

    A series of polymers capable of self-assembling into infinite networks via supramolecular interactions have been designed, synthesized, and characterized for use in 3D printing applications. The biocompatible polymers and their composites with silica nanoparticles were successfully utilized to deposit both simple cubic structures, as well as a more complex twisted pyramidal feature. The polymers were found to be not toxic to a chondrogenic cell line, according to ISO 10993-5 and 10993-12 standard tests and the cells attached to the supramolecular polymers as demonstrated by confocal microscopy. Silica nanoparticles were then dispersed within the polymer matrix, yielding a composite material which was optimized for inkjet printing. The hybrid material showed promise in preliminary tests to facilitate the 3D deposition of a more complex structure.

  20. Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s.

    Science.gov (United States)

    Díaz, Angélica; Katsarava, Ramaz; Puiggalí, Jordi

    2014-04-25

    Poly(alkylene dicarboxylate)s constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amide)s derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed.

  1. METHOD FOR PROVIDING SHAPED BIODEGRADABLE AND ELASTOMERIC STRUCTURES OF (CO) POLYMERS OF 1,3-TRIMETHYLENE CARBONATE (TMC), SHAPED BIODEGRADABLE AND ELASTOMERIC STRUCTURES, AND THE USE OF THESE STRUCTURES

    NARCIS (Netherlands)

    Grijpma, D.W.; Pêgo, A.P.; Feijen, Jan

    2004-01-01

    The present invention relates to methods for providing shaped biodegradable and elastomeric structures of (co)polymers of 1,3­trimethylene carbonate (TMC) with improved (mechanical) properties which can be used for tissue or tissue component support, generation or regeneration. Such shaped

  2. The application of radiothermoluminescence method to the analysis of polymers and polymer composites

    International Nuclear Information System (INIS)

    Nikol'skii, V.G.

    1982-01-01

    The basic results concerning the examination of copolymers, cross-linked polymers and polyblends structure, obtained by means of radiothermoluminescence method, are reviewed. The main emphasis is on the glow curve shape analysis that allows: a) to determine quantitatively the random copolymer composition; b) to reveal the existence of blocks in macromolecules; c) to examine the grafted copolymer distribution in polymer matrix; d) to estimate the degree of cross-linking both for individual polymers and heterogeneous polyblends; e) to study the mutual solubility of polymers. (author)

  3. Graphene-Reinforced Metal and Polymer Matrix Composites

    Science.gov (United States)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-06-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  4. Low Density Polyethylene (LDPE blends based on Poly(3-Hydroxi-Butyrate (PHB and Guar Gum (GG biodegradable polymers

    Directory of Open Access Journals (Sweden)

    Marisa Cristina Guimarães Rocha

    2015-02-01

    Full Text Available LDPE blends based on PHB and GG biodegradable polymers were prepared by melt mixing in a twin screw extruder. The mechanical properties of the materials were evaluated. Preliminary information about the biodegradation behavior of the specimens was obtained by visual observation of samples removed from the simulated soil in 90 days. The results indicated that LDPE/PHB blends may be used for designing LDPE based materials with increased susceptibility to degradation, if elongation at break and impact properties are not determinant factors of their performance. LDPE based materials on GG present values of flexural and mechanical strength lower than those of LDPE/PHB blends. LDPE/PHB/GG blends exhibit unsatisfactory properties. Apparently, the effect of addition of GG to LDPE on the biodegradation behavior of LDPE/GG blends was less intense than the effect caused by addition of PHB to the blends. Similar observation has occurred with the partial replacement of GG by PHB in the ternary blends.

  5. Products Based on Bio-Resourced Materials for Agriculture. Radiation Processed Biodegradable Polymers, Plant Growth Promoters and Superabsorbent Polymers. Chapter 9

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, K. A.; Bhardwaj, Y. K.; Chaudhari, C. V.; Varshney, L. [Radiation Technology Development Division, Bhabha Atomic Research Centre (India)

    2014-07-15

    Radiation-processed natural polymers and their derivatives, namely starch, alginate, chitosan and carboxymethyl cellulose (CMC) were explored for different agricultural applications such as biodegradable mulch films, super adsorbent polymers (SAPs), and plant growth promoters (PGPs). It was observed that gamma radiation-processed starch can lead to a better processability of starch/synthetic polymer alloys, and can offer tuneable biodegradability (as low as one month) with acceptable physico-mechanical properties. Acrylic acid/CMC-based SAP was prepared using {sup 60}Co gamma radiation, for soil conditioning. The equilibrium degree of swelling (EDS) of the acrylic acid/CMC SAP was found to be 460 g/g. The field trial of the SAP was conducted on sorghum. It was found that, with the use of 20 kg/ha of SAP, the crop yield can be increased by almost 18.5% whereas the increase in plant height was 8.5%. A new super adsorbent polymer with a much higher water uptake capacity was also developed by adding a small fraction of carrageenan to neutralized acrylic acid (AA). This SAP had EDS of 800 g/g, with the addition of only 1% carrageenan. Experiments to check the soil conditioning efficacy of AA/carrageenan SAP are in progress. Oligomers of chitosan and alginates were prepared by gamma irradiation and were tried as plant growth promoters in wheat (Triticum aestivum), mung bean (Vigna radiata), linseed (Linum usitatissimum), mentha (Mentha arvensis), and lemon grass. The results suggest that these oligomers have a significant impact on the grain and oil yield. Large scale field trials on Mentha arvensis in collaboration with an industry are in progress, and efforts are going on to formulate a policy framework for the use of oligosaccharides as plant growth promoters. (author)

  6. Biocompatibility, osteointegration, osteoconduction, and biodegradation of a hydroxyapatite-polyhydroxybutyrate composite

    Directory of Open Access Journals (Sweden)

    Emily Correna Carlo Reis

    2010-08-01

    Full Text Available In this work, biocompatibility, osteointegration, osteoconductivity, and biodegradation of a hydroxyapatite polyhydroxybutyrate new composite were evaluated. The composite was implanted in rabbits' bone defects and clinical, radiographic, histological, and histomorphometric data of these animals were compared with those of unfilled defects on the days 8th, 45th, and 90th after surgery. No significant differences existed between the groups for the evaluated clinical parameters. Radiographs showed bone-composite direct contact. Bone formed within the defect, interface and inside the composite. Significant differences were found between the bone and connective tissues percentage within the defect at all dates and at the interface on the 45th day, bone tissue prevailing. Composite's biodegradation signs were evident: giant cells on the surface of composite fragments separated from the original block in the absence of inflammatory infiltrate. These data supported that such composite was biocompatible, biodegradable, osteoconductive and integrate to bone.A biocompatibilidade, osteointegração, osteocondução e biodegradação de um novo compósito de hidroxiapatita e polihidroxibutirato foram avaliados. O compósito foi implantado em defeitos ósseos em coelhos e dados clínicos, radiográficos, histológicos e histomorfométricos foram comparados aos de defeitos não preenchidos aos 8, 45 e 90 dias após a cirurgia. Não foram observadas diferenças significantes entre os grupos para os parâmetros clínicos avaliados. Contato direto entre osso e compósito foi observado nas radiografias. Tecido ósseo se formou dentro do defeito, interface e dentro do compósito. Foram observadas diferenças significativas entre a porcentagem dos tecidos ósseo e conjuntivo dentro do defeito em todas as datas de avaliação e na interface aos 45 dias, com predominância do tecido ósseo. Sinais de biodegradação foram observados: células gigantes na superf

  7. Multifunctional Hybrid Carbon Nanotube/Carbon Fiber Polymer Composites

    Science.gov (United States)

    Kang, Jin Ho; Cano, Roberto J.; Ratcliffe, James G.; Luong, Hoa; Grimsley, Brian W.; Siochi, Emilie J.

    2016-01-01

    For aircraft primary structures, carbon fiber reinforced polymer (CFRP) composites possess many advantages over conventional aluminum alloys due to their light weight, higher strengthand stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low electrical and thermal conductivities of CFRP composites fail to provide structural safety in certain operational conditions such as lightning strikes. Despite several attempts to solve these issues with the addition of carbon nanotubes (CNT) into polymer matrices, and/or by interleaving CNT sheets between conventional carbon fiber (CF) composite layers, there are still interfacial problems that exist between CNTs (or CF) and the resin. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel® IM7/8852 prepreg. Resin concentrations from 1 wt% to 50 wt% were used to infuse the CNT sheets prior to composite fabrication. The interlaminar properties of the resulting hybrid composites were characterized by mode I and II fracture toughness testing (double cantilever beam and end-notched flexure test). Fractographical analysis was performed to study the effect of resin concentration. In addition, multi-directional physical properties like thermal conductivity of the orthotropic hybrid polymer composite were evaluated. Interleaving CNT sheets significantly improved the in-plane (axial and perpendicular direction of CF alignment) thermal conductivity of the hybrid composite laminates by 50 - 400%.

  8. Pneumatically Powered Drilling of Carbon Fibre Composites Using Synthetic Biodegradable Lubricating Oil: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Corydon M. J. Morrell

    2018-01-01

    Full Text Available Carbon fibre composites are a key component of aircraft structures because of their enhanced material properties such as favourable strength to weight ratios when compared to metal alloys. During the assembly process of an aircraft, carbon fibre components are joined to other structures using rivets, bolts, and fasteners, and as part of the joining process, the components will need to be machined or drilled. Unlike metal alloys, composites are sensitive to heat and are vulnerable to internal structural damage from machining tools. They are also susceptible to a reduction in strength when fibres are exposed to moisture. In the machining process, carbon fibre composites may be drilled using oils to lubricate carbide machining tools. In this study, a description of the experimental apparatus is provided along with an investigation to determine the influence synthetic biodegradable lubricating oil has on drill rotational speed, drilling load, and drilling temperature when using a pneumatic drill to machine carbon fibre composite material.

  9. Disposal Options of Bamboo Fabric-Reinforced Poly(Lactic Acid Composites for Sustainable Packaging: Biodegradability and Recyclability

    Directory of Open Access Journals (Sweden)

    M.R. Nurul Fazita

    2015-08-01

    Full Text Available The present study was conducted to determine the recyclability and biodegradability of bamboo fabric-reinforced poly(lactic acid (BF-PLA composites for sustainable packaging. BF-PLA composite was recycled through the granulation, extrusion, pelletization and injection processes. Subsequently, mechanical properties (tensile, flexural and impact strength, thermal stability and the morphological appearance of recycled BF-PLA composites were determined and compared to BF-PLA composite (initial materials and virgin PLA. It was observed that the BF-PLA composites had the adequate mechanical rigidity and thermal stability to be recycled and reused. Moreover, the biodegradability of BF-PLA composite was evaluated in controlled and real composting conditions, and the rate of biodegradability of BF-PLA composites was compared to the virgin PLA. Morphological and thermal characteristics of the biodegradable BF-PLA and virgin PLA were obtained by using environment scanning electron microscopy (ESEM and differential scanning calorimetry (DSC, respectively. The first order decay rate was found to be 0.0278 and 0.0151 day−1 in a controlled composting condition and 0.0008 and 0.0009 day−1 in real composting conditions for virgin PLA and BF-PLA composite, respectively. Results indicate that the reinforcement of bamboo fabric in PLA matrix minimizes the degradation rate of BF-PLA composite. Thus, BF-PLA composite has the potential to be used in product packaging for providing sustainable packaging.

  10. A Mechanistic Model for Drug Release in PLGA Biodegradable Stent Coatings Coupled with Polymer Degradation and Erosion

    Science.gov (United States)

    Zhu, Xiaoxiang; Braatz, Richard D.

    2015-01-01

    Biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) coating for applications in drug-eluting stents has been receiving increasing interest as a result of its unique properties compared with biodurable polymers in delivering drug for reducing stents-related side effects. In this work, a mathematical model for describing the PLGA degradation and erosion and coupled drug release from PLGA stent coating is developed and validated. An analytical expression is derived for PLGA mass loss that predicts multiple experimental studies in the literature. An analytical model for the change of the number-average degree of polymerization (or molecular weight) is also derived. The drug transport model incorporates simultaneous drug diffusion through both the polymer solid and the liquid-filled pores in the coating, where an effective drug diffusivity model is derived taking into account factors including polymer molecular weight change, stent coating porosity change, and drug partitioning between solid and aqueous phases. The model is used to describe in vitro sirolimus release from PLGA stent coating, and demonstrates the significance of simultaneous sirolimus release via diffusion through both polymer solid and pore space. The proposed model is compared to existing drug transport models, and the impact of model parameters, limitations and possible extensions of the model are also discussed. PMID:25345656

  11. Biodegradable Nanoparticles Made of Amino-Acid-Based Ester Polymers: Preparation, Characterization, and In Vitro Biocompatibility Study

    Directory of Open Access Journals (Sweden)

    Temur Kantaria

    2016-12-01

    Full Text Available A systematic study of fabricating nanoparticles (NPs by cost-effective polymer deposition/solvent displacement (nanoprecipitation method has been carried out. Five amino acid based biodegradable (AABB ester polymers (four neutral and one cationic, four organic solvents miscible with water, and eight surfactants were tested for the fabrication of the goal NPs. Depending on the nature of the AABB polymers, organic solvents and surfactants, as well as on the fabrication conditions, the size (Mean Particle Diameter of the NPs could be tuned within 42 ÷ 398 nm, the zeta-potential within 12.5 ÷ +28 mV. The stability (resuspendability of the NPs upon storage (at room temperature and refrigerated was tested as well. In Vitro biocompatibility study of the NPs was performed with four different stable cell lines: A549, HeLa (human; RAW264.7, Hepa 1-6 (murine. Comparing the NPs parameters, their stability upon storage, and the data of biological examinations the best were found: As the AABB polymer, a poly(ester amide composed of l-leucine, 1,6-hexanediol and sebacic acid–8L6, as a solvent (organic phase—DMSO, and as a surfactant, Tween 20.

  12. A novel polymer nanotube composite for photovoltaic packaging applications

    International Nuclear Information System (INIS)

    Ravichandran, J; Manna, I; Manoj, A G; Liu, J; Carroll, D L

    2008-01-01

    Packaging of organic photovoltaic (OPV) devices is an important issue which has been rarely addressed in the past. With the recent reports of high efficiency organic photovoltaics (6%), the need to produce materials which can effectively protect the device from degradation due to exposure to oxygen, moisture and radiation is pressing. We report a novel Saran (a co-polymer of vinylidene chloride and acrylonitrile) based polymer nanotube composite, which shows high transparency in the visible region, good barrier properties and thermal stability, for use as an encapsulant for OPV devices. Different loadings of Saran and boron nitride nanotubes were taken and the composites were prepared to optimize the composition of the composite. UV-visible spectroscopy, infra-red spectroscopy and thermal analysis were used to characterize the composite. The barrier properties of the composite were tested on poly(3-hexylthiophene), which is used in high efficiency OPV devices

  13. Standard Guide for Testing Polymer Matrix Composite Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This guide summarizes the application of ASTM standard test methods (and other supporting standards) to continuous-fiber reinforced polymer matrix composite materials. The most commonly used or most applicable ASTM standards are included, emphasizing use of standards of Committee D30 on Composite Materials. 1.2 This guide does not cover all possible standards that could apply to polymer matrix composites and restricts discussion to the documented scope. Commonly used but non-standard industry extensions of test method scopes, such as application of static test methods to fatigue testing, are not discussed. A more complete summary of general composite testing standards, including non-ASTM test methods, is included in the Composite Materials Handbook (MIL-HDBK-17). Additional specific recommendations for testing textile (fabric, braided) composites are contained in Guide D6856. 1.3 This guide does not specify a system of measurement; the systems specified within each of the referenced standards shall appl...

  14. Research regarding biodegradable properties of food polymeric products under microorganism activity

    Science.gov (United States)

    Opran, Constantin; Lazar, Veronica; Fierascu, Radu Claudiu; Ditu, Lia Mara

    2018-02-01

    Aim of this research is the structural analysis by comparison of the biodegradable properties of two polymeric products made by non-biodegradable polymeric material (polypropylene TIPPLEN H949 A) and biodegradable polymeric material (ECOVIO IS 1335), under microorganism activity in order to give the best solution for the manufacture of food packaging biodegradable products. It presents the results of experimental determinations on comparative analysis of tensile strength for the two types of polymers. The sample weight variations after fungal biodegradation activity revealed that, after 3 months, there are no significant changes in polymeric substratum for non-biodegradable polymeric. The microscopically analysis showed that the fungal filaments did not strongly adhered on the non-biodegradable polymeric material, instead, both filamentous fungi strains adhered and covered the surface of the biodegradable sample with germinated filamentous conidia. The spectral analysis of polymer composition revealed that non-biodegradable polymer polypropylene spectra are identical for control and for samples that were exposed to fungal activity, suggesting that this type of sample was not degraded by the fungi strains. Instead, for biodegradable polymer sample, it was observed significant structural changes across multiple absorption bands, suggesting enzyme activity manifested mainly by Aspergillus niger strain. Structural analysis of interdisciplinary research results, lead, to achieving optimal injection molded technology emphasizing technological parameters, in order to obtain food packaging biodegradable products.

  15. The effect of water on thermal stresses in polymer composites

    Science.gov (United States)

    Sullivan, Roy M.

    1994-01-01

    The fundamentals of the thermodynamic theory of mixtures and continuum thermochemistry are reviewed for a mixture of condensed water and polymer. A specific mixture which is mechanically elastic with temperature and water concentration gradients present is considered. An expression for the partial pressure of water in the mixture is obtained based on certain assumptions regarding the thermodynamic state of the water in the mixture. Along with a simple diffusion equation, this partial pressure expression may be used to simulate the thermostructural behavior of polymer composite materials due to water in the free volumes of the polymer. These equations are applied to a specific polymer composite material during isothermal heating conditions. The thermal stresses obtained by the application of the theory are compared to measured results to verify the accuracy of the approach.

  16. Compositions, methods, and systems comprising fluorous-soluble polymers

    Science.gov (United States)

    Swager, Timothy M.; Lim, Jeewoo; Takeda, Yohei

    2015-10-13

    The present invention generally relates to compositions, methods, and systems comprising polymers that are fluorous-soluble and/or organize at interfaces between a fluorous phase and a non-fluorous phase. In some embodiments, emulsions or films are provided comprising a polymer. The polymers, emulsions, and films can be used in many applications, including for determining, treating, and/or imaging a condition and/or disease in a subject. The polymer may also be incorporated into various optoelectronic device such as photovoltaic cells, organic light-emitting diodes, organic field effect transistors, or the like. In some embodiments, the polymers comprise pi-conjugated backbones, and in some cases, are highly emissive.

  17. Nano-structured polymer composites and process for preparing same

    Science.gov (United States)

    Hillmyer, Marc; Chen, Liang

    2013-04-16

    A process for preparing a polymer composite that includes reacting (a) a multi-functional monomer and (b) a block copolymer comprising (i) a first block and (ii) a second block that includes a functional group capable of reacting with the multi-functional monomer, to form a crosslinked, nano-structured, bi-continuous composite. The composite includes a continuous matrix phase and a second continuous phase comprising the first block of the block copolymer.

  18. Conductive polymer composites with carbonic fillers: Shear induced electrical behaviour

    Czech Academy of Sciences Publication Activity Database

    Starý, Zdeněk; Krückel, J.

    2018-01-01

    Roč. 139, 14 March (2018), s. 52-59 ISSN 0032-3861 R&D Projects: GA ČR(CZ) GA17-05654S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : polymer-matrix composites * carbon fibres * electrical properties Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer sci ence Impact factor: 3.684, year: 2016

  19. Ceramic matrix composites using polymer pyrolysis and liquid densification processing

    International Nuclear Information System (INIS)

    Davis, H.O.; Petrak, D.R.

    1995-01-01

    The polymer precursor approach for manufacture of ceramic matrix composites (CMCs) is both flexible and tailorable to shape and engineering requirements. The tailorability includes a wide range of reinforcements, polymer matrix precursors and fillers. Processing is selected based on cure/pressure requirements to best produce the required shape, radii, fiber volume and fiber orientation. Combinations of tooling used for cure/pressure applications are discussed and fabricated components are shown. ((orig.))

  20. Effects of gamma irradiation on the molecular structure and mechanical properties of biodegradable polymer poly(hydroxybutyrate)

    International Nuclear Information System (INIS)

    Oliveira, Leticia M. de; Araujo, Elmo S.

    2005-01-01

    The effects of gamma irradiation ( 60 Co) on the properties of the Brazilian biodegradable polymer, Poly(hydroxybutyrate), PHB, i.e. chemical, mechanical and structural properties were investigated. PHB is a natural polyester biosynthesized by different bacteria as a form to store carbon and energy. This new biopolymer shows a great potential in the medical and pharmaceutical applications due to the biocompatibility and biodegradation capacity, since it is reabsorbed by organism without liberation of toxic substances. As it.s well known, gamma irradiation have been considered the more functional sterilization mechanism applied to medical devices. This way, it is necessary to know the effects caused by energy transfer to the polymer system. The viscosity-average molar mass (Mv) of the irradiated PHB, measured using an Ostwald-type capillary viscometer, significantly decreased. The irradiated samples (test specimens) showed a molecular degradation degree, G (scissions/100 eV) value, in the sterilization dose range (0-25 kGy) about 11.4, and 20.9 to doses above 35 kGy. Other results also indicate that the gamma irradiation significantly affected the mechanical properties of PHB. Tensile strength, impact strength and elongation at break decreased dramatically, indicating increasing on the brittleness, because significant chain scissions take place in the amorphous region of irradiated PHB. On the other hand, Young modulus does not significantly change on irradiated polymer. 13 C NMR spectra of irradiated PHB at dose of 200 kGy did not show arising of new structural groups. (author)

  1. Polymer-Nanoparticle Composites: From Synthesis to Modern Applications

    Directory of Open Access Journals (Sweden)

    Thomas Hanemann

    2010-05-01

    Full Text Available The addition of inorganic spherical nanoparticles to polymers allows the modification of the polymers physical properties as well as the implementation of new features in the polymer matrix. This review article covers considerations on special features of inorganic nanoparticles, the most important synthesis methods for ceramic nanoparticles and nanocomposites, nanoparticle surface modification, and composite formation, including drawbacks. Classical nanocomposite properties, as thermomechanical, dielectric, conductive, magnetic, as well as optical properties, will be summarized. Finally, typical existing and potential applications will be shown with the focus on new and innovative applications, like in energy storage systems.

  2. Improved safety and reduction in stent thrombosis associated with biodegradable polymer-based biolimus-eluting stents versus durable polymer-based sirolimus-eluting stents in patients with coronary artery disease: final 5-year report of the LEADERS (Limus Eluted From A Durable Versus ERodable Stent Coating) randomized, noninferiority trial.

    Science.gov (United States)

    Serruys, Patrick W; Farooq, Vasim; Kalesan, Bindu; de Vries, Ton; Buszman, Pawel; Linke, Axel; Ischinger, Thomas; Klauss, Volker; Eberli, Franz; Wijns, William; Morice, Marie Claude; Di Mario, Carlo; Corti, Roberto; Antoni, Diethmar; Sohn, Hae Y; Eerdmans, Pedro; Rademaker-Havinga, Tessa; van Es, Gerrit-Anne; Meier, Bernhard; Jüni, Peter; Windecker, Stephan

    2013-08-01

    This study sought to report the final 5 years follow-up of the landmark LEADERS (Limus Eluted From A Durable Versus ERodable Stent Coating) trial. The LEADERS trial is the first randomized study to evaluate biodegradable polymer-based drug-eluting stents (DES) against durable polymer DES. The LEADERS trial was a 10-center, assessor-blind, noninferiority, "all-comers" trial (N = 1,707). All patients were centrally randomized to treatment with either biodegradable polymer biolimus-eluting stents (BES) (n = 857) or durable polymer sirolimus-eluting stents (SES) (n = 850). The primary endpoint was a composite of cardiac death, myocardial infarction (MI), or clinically indicated target vessel revascularization within 9 months. Secondary endpoints included extending the primary endpoint to 5 years and stent thrombosis (ST) (Academic Research Consortium definition). Analysis was by intention to treat. At 5 years, the BES was noninferior to SES for the primary endpoint (186 [22.3%] vs. 216 [26.1%], rate ratio [RR]: 0.83 [95% confidence interval (CI): 0.68 to 1.02], p for noninferiority 1 year) and associated composite clinical outcomes. (Limus Eluted From A Durable Versus ERodable Stent Coating [LEADERS] trial; NCT00389220). Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  3. Electrospinning of polymer-aerogel composite fibres

    DEFF Research Database (Denmark)

    Christiansen, Lasse; Fojan, Peter

    En poster om produktion af polymer-aerogel kompositfibre ved hjælp af elektrospinning. Fiberne er produceret fra en opløsning af aerogel og polyethylene oxide i vand, som er elektrospundet gennem en enkeltnålsprocess....

  4. Compositions for directed alignment of conjugated polymers

    Science.gov (United States)

    Kim, Jinsang; Kim, Bong-Gi; Jeong, Eun Jeong

    2016-04-19

    Conjugated polymers (CPs) achieve directed alignment along an applied flow field and a dichroic ratio of as high as 16.67 in emission from well-aligned thin films and fully realized anisotropic optoelectronic properties of CPs in field-effect transistor (FET).

  5. Enhanced electrokinetic properties and antimicrobial activities of biodegradable chitosan/organo-bentonite composites.

    Science.gov (United States)

    Cabuk, Mehmet; Alan, Yusuf; Unal, H Ibrahim

    2017-04-01

    In this study, chitosan (CS), Na + -bentonite (Na + -BNT) and chitosan/organo-bentonite (CS/O-BNT) biodegradable composites having three different compositions were investigated. Electrokinetic measurements were examined in aqueous medium by taking the effects pH, electrolytes (NaCl and BaCl 2 ), surfactants (CTAB and SDS), and temperature into account. It was noticed that the initial ζ-potential of Na + -BNT shifted from negative (ζ=-35mV) to positive region (ζ=+13mV) with increasing polycationic CS content in the composite structure as aimed. Divalent 2:1 electrolyte (BaCl 2 ) caused to shift the ζ-potentials of all the dispersions to more positive regions. While the most negative effect on ζ-potential of the composites was reached with SDS, which reduced the value of ζ-potential to -39mV for CS(1)/O-BNT composite, the most positive effect was monitored with CTAB (ζ=+40mV) for CS(3)/O-BNT composite. Further, the composites were tested against various bacterial (Gram-positive and Gram-negative) and fungal microorganisms at various concentrations and results obtained were compared with the reference antibiotics and fungicide. According to inhibition zone values accomplished, antibacterial and antifungal activities of the CS/O-BNT composites are increased with increasing CS content as proportional with their positive ζ-potential values. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Electro-optics of novel polymer-liquid crystalline composites

    International Nuclear Information System (INIS)

    Ibragimov, T.D.; Bayramov, G.M.; Imamaliyev, A.R.; Bayramov, G.M.

    2014-01-01

    The polymer network liquid crystals based on the liquid crystals H37 and 5CB with PMVP and PEG have been developed. Mesogene substance HOBA is served for stabilization of obtaining composites. Kinetics of network formation is investigated by methods of polarization microscopy and integrated small-angle scattering. It is shown that gel-like states of the composite H-37+PMVP+HOBA and 5CB+PEG+HOBA are formed at polymer concentration above 7 percent and 9 percent, correspondingly. The basic electro-optic parameters of the obtained composites are determined at room temperature. Experimental results are explained by phase separation of the system, diminution of a working area of electro-optical effects and influence of areas with high polymer concentration on areas with their low concentration

  7. Fabrication of an Electrically-Resistive, Varistor-Polymer Composite

    Directory of Open Access Journals (Sweden)

    Sanaz A. Mohammadi

    2012-11-01

    Full Text Available This study focuses on the fabrication and electrical characterization of a polymer composite based on nano-sized varistor powder. The polymer composite was fabricated by the melt-blending method. The developed nano-composite was characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, field emission scanning electron microscopy (FeSEM, and energy-dispersive X-ray spectroscopy (EDAX. The XRD pattern revealed the crystallinity of the composite. The XRD study also showed the presence of secondary phases due to the substitution of zinc by other cations, such as bismuth and manganese. The TEM picture of the sample revealed the distribution of the spherical, nano-sized, filler particles throughout the matrix, which were in the 10–50 nm range with an average of approximately 11 nm. The presence of a bismuth-rich phase and a ZnO matrix phase in the ZnO-based varistor powder was confirmed by FeSEM images and EDX spectra. From the current-voltage curves, the non-linear coefficient of the varistor polymer composite with 70 wt% of nano filler was 3.57, and its electrical resistivity after the onset point was 861 KΩ. The non-linear coefficient was 1.11 in the sample with 100 wt% polymer content. Thus, it was concluded that the composites established a better electrical non-linearity at higher filler amounts due to the nano-metric structure and closer particle linkages.

  8. Biodegradable Polydepsipeptides

    Directory of Open Access Journals (Sweden)

    Jintang Guo

    2009-02-01

    Full Text Available This paper reviews the synthesis, characterization, biodegradation and usage of bioresorbable polymers based on polydepsipeptides. The ring-opening polymerization of morpholine-2,5-dione derivatives using organic Sn and enzyme lipase is discussed. The dependence of the macroscopic properties of the block copolymers on their structure is also presented. Bioresorbable polymers based on polydepsipeptides could be used as biomaterials in drug controlled release, tissue engineering scaffolding and shape-memory materials.

  9. MANUFACTURING BIODEGRADABLE COMPOSITE MATERIALS BASED ON POLYETHYLENE AND FUNCTIONALIZED BY ALCOHOLYSIS OF ETHYLENE-VINYL ACETATE COPOLYMER

    Directory of Open Access Journals (Sweden)

    Aleksandr A. Shabarin

    2016-06-01

    Full Text Available Introduction. The continuous growth of production and consumption of plastic packaging creates a serious problem of disposal of package. This problem has ecological character, because the contents of the landfills decompose for decades, emit toxic com¬pounds and pollute the environment. The work is devoted to obtaining and investigation mechanical and rheological properties of biodegradable composite materials based on polyethylene and starch. Materials and Methods. In this work the author used polyethylene grade HDPE 273- 83 (GOST 16338-85, Sevilen brand 12206-007 (TU 6-05-1636-97 and potato starch (GOST 53876-2010 as a filler. Functionalization of sevilen was carried in the 30 % ethanol solution KOH at a temperature 80 °C during 3 hours. Compounding components was carried out at the laboratory of the two rotary mixer HAAKE PolyLab Rheomix 600 OS with rotors Banbury. Formation of plates for elastic strength and rheological studies were carried out on a hydraulic press Gibitre. Elastic and strength tests were carried out on the tensile machine the UAI-7000 M. Rheology tests were carried out on the rheometer Haake MARS III. The humidity filler (starch authors determined by the thermogravimetric method on the analyzer of moisture “Evlas-2M”. Results. It is shown, that the filler should not contain more than 7% moisture. Functionalization of ethylene with vinyl acetate copolymer (sevilen has performed by the method of alkaline alcoholysis. By the method of IC – spectroscopy the authors confirmed the presence of hydroxyl groups in the polymer. Using as a compatibilizer functionalized by the method of alcoholises has greatly ( significantly improved physical, mechanical and rheological properties of composite materials. Optimal content of sevilen (F in the compound according to the results of experiments amount 10 %. Discussion and Conclusions. Using of functionalized by the method of alcoholysis ethy-lene-vinyl acetate copolymer as a

  10. Thermal Protective Coating for High Temperature Polymer Composites

    Science.gov (United States)

    Barron, Andrew R.

    1999-01-01

    The central theme of this research is the application of carboxylate-alumoxane nanoparticles as precursors to thermally protective coatings for high temperature polymer composites. In addition, we will investigate the application of carboxylate-alumoxane nanoparticle as a component to polymer composites. The objective of this research was the high temperature protection of polymer composites via novel chemistry. The significance of this research is the development of a low cost and highly flexible synthetic methodology, with a compatible processing technique, for the fabrication of high temperature polymer composites. We proposed to accomplish this broad goal through the use of a class of ceramic precursor material, alumoxanes. Alumoxanes are nano-particles with a boehmite-like structure and an organic periphery. The technical goals of this program are to prepare and evaluate water soluble carboxylate-alumoxane for the preparation of ceramic coatings on polymer substrates. Our proposed approach is attractive since proof of concept has been demonstrated under the NRA 96-LeRC-1 Technology for Advanced High Temperature Gas Turbine Engines, HITEMP Program. For example, carbon and Kevlar(tm) fibers and matting have been successfully coated with ceramic thermally protective layers.

  11. Quickly updatable hologram images with high performance photorefractive polymer composites

    Science.gov (United States)

    Tsutsumi, Naoto; Kinashi, Kenji; Nonomura, Asato; Sakai, Wataru

    2012-02-01

    We present here quickly updatable hologram images using high performance photorefractive (PR) polymer composite based on poly(N-vinyl carbazole) (PVCz). PVCz is one of the pioneer materials for photoconductive polymer. PVCz/7- DCST/CzEPA/TNF (44/35/20/1 by wt) gives high diffraction efficiency of 68 % at E = 45 V/μm with fast response speed. Response speed of optical diffraction is the key parameter for real-time 3D holographic display. Key parameter for obtaining quickly updatable hologram images is to control the glass transition temperature lower enough to enhance chromophore orientation. Object image of the reflected coin surface recorded with reference beam at 532 nm (green beam) in the PR polymer composite is simultaneously reconstructed using a red probe beam at 642 nm. Instead of using coin object, object image produced by a computer was displayed on a spatial light modulator (SLM) is used as an object for hologram. Reflected object beam from a SLM interfered with reference beam on PR polymer composite to record a hologram and simultaneously reconstructed by a red probe beam. Movie produced in a computer was recorded as a realtime hologram in the PR polymer composite and simultaneously clearly reconstructed with a video rate.

  12. Biocompatible, biodegradable polymer-based, lighter than or light as water scaffolds for tissue engineering and methods for preparation and use thereof

    Science.gov (United States)

    Khan, Mohammed Yusuf (Inventor); Laurencin, Cato T. (Inventor); Lu, Helen H. (Inventor); Botchwey, Edward (Inventor); Pollack, Solomon R. (Inventor); Levine, Elliot (Inventor)

    2012-01-01

    Scaffolds for tissue engineering prepared from biocompatible, biodegradable polymer-based, lighter than or light as water microcarriers and designed for cell culturing in vitro in a rotating bioreactor are provided. Methods for preparation and use of these scaffolds as tissue engineering devices are also provided.

  13. Method for producing nanowire-polymer composite electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Qibing; Yu, Zhibin

    2017-11-21

    A method for producing flexible, nanoparticle-polymer composite electrodes is described. Conductive nanoparticles, preferably metal nanowires or nanotubes, are deposited on a smooth surface of a platform to produce a porous conductive layer. A second application of conductive nanoparticles or a mixture of nanoparticles can also be deposited to form a porous conductive layer. The conductive layer is then coated with at least one coating of monomers that is polymerized to form a conductive layer-polymer composite film. Optionally, a protective coating can be applied to the top of the composite film. In one embodiment, the monomer coating includes light transducing particles to reduce the total internal reflection of light through the composite film or pigments that absorb light at one wavelength and re-emit light at a longer wavelength. The resulting composite film has an active side that is smooth with surface height variations of 100 nm or less.

  14. Quantitative radiographic analysis of fiber reinforced polymer composites.

    Science.gov (United States)

    Baidya, K P; Ramakrishna, S; Rahman, M; Ritchie, A

    2001-01-01

    X-ray radiographic examination of the bone fracture healing process is a widely used method in the treatment and management of patients. Medical devices made of metallic alloys reportedly produce considerable artifacts that make the interpretation of radiographs difficult. Fiber reinforced polymer composite materials have been proposed to replace metallic alloys in certain medical devices because of their radiolucency, light weight, and tailorable mechanical properties. The primary objective of this paper is to provide a comparable radiographic analysis of different fiber reinforced polymer composites that are considered suitable for biomedical applications. Composite materials investigated consist of glass, aramid (Kevlar-29), and carbon reinforcement fibers, and epoxy and polyether-ether-ketone (PEEK) matrices. The total mass attenuation coefficient of each material was measured using clinical X-rays (50 kev). The carbon fiber reinforced composites were found to be more radiolucent than the glass and kevlar fiber reinforced composites.

  15. High field dielectric properties of anisotropic polymer-ceramic composites

    International Nuclear Information System (INIS)

    Tomer, V.; Randall, C. A.

    2008-01-01

    Using dielectrophoretic assembly, we create anisotropic composites of BaTiO 3 particles in a silicone elastomer thermoset polymer. We study a variety of electrical properties in these composites, i.e., permittivity, dielectric breakdown, and energy density as function of ceramic volume fraction and connectivity. The recoverable energy density of these electric-field-structured composites is found to be highly dependent on the anisotropy present in the system. Our results indicate that x-y-aligned composites exhibit higher breakdown strengths along with large recoverable energy densities when compared to 0-3 composites. This demonstrates that engineered anisotropy can be employed to control dielectric breakdown strengths and nonlinear conduction at high fields in heterogeneous systems. Consequently, manipulation of anisotropy in high-field dielectric properties can be exploited for the development of high energy density polymer-ceramic systems

  16. Large energy absorption in Ni-Mn-Ga/polymer composites

    International Nuclear Information System (INIS)

    Feuchtwanger, Jorge; Richard, Marc L.; Tang, Yun J.; Berkowitz, Ami E.; O'Handley, Robert C.; Allen, Samuel M.

    2005-01-01

    Ferromagnetic shape memory alloys can respond to a magnetic field or applied stress by the motion of twin boundaries and hence they show large hysteresis or energy loss. Ni-Mn-Ga particles made by spark erosion have been dispersed and oriented in a polymer matrix to form pseudo 3:1 composites which are studied under applied stress. Loss ratios have been determined from the stress-strain data. The loss ratios of the composites range from 63% to 67% compared to only about 17% for the pure, unfilled polymer samples

  17. Reduced loss of NH 3 by coating urea with biodegradable polymers ...

    African Journals Online (AJOL)

    In agricultural lands, the loss of NH3 from surface-applied urea and micronutrient deficiencies are the two most common problems, which can be solved by using coated urea with micronutrients and biodegradable natural materials. These coatings can improve the nutrient status in the soil and simultaneously reduce ...

  18. Nanophosphor composite scintillators comprising a polymer matrix

    Science.gov (United States)

    Muenchausen, Ross Edward; Mckigney, Edward Allen; Gilbertson, Robert David

    2010-11-16

    An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.

  19. Bioactivity of freeze-dried platelet-rich plasma in an adsorbed form on a biodegradable polymer material.

    Science.gov (United States)

    Nakajima, Yu; Kawase, Tomoyuki; Kobayashi, Mito; Okuda, Kazuhiro; Wolff, Larry F; Yoshie, Hiromasa

    2012-01-01

    Owing to the necessity for the immediate preparation from patients' blood, autologous platelet-rich plasma (PRP) limits its clinical applicability. To address this concern and respond to emergency care and other unpredictable uses, we have developed a freeze-dried PRP in an adsorbed form on a biodegradable polymer material (Polyglactin 910). On the polymer filaments of PRP mesh, which was prepared by coating the polymer mesh with human fresh PRP and subsequent freeze-drying, platelets were incorporated, and related growth factors were preserved at high levels. This new PRP mesh preparation significantly and reproducibly stimulated the proliferation of human periodontal ligament cells in vitro and neovascularization in a chorioallantoic membrane assay. A full-thickness skin defect model in a diabetic mouse demonstrated the PRP mesh, although prepared from human blood, substantially facilitated angiogenesis, granulation tissue formation, and re-epithelialization without inducing severe inflammation in vivo. These data demonstrate that our new PRP mesh preparation functions as a bioactive material to facilitate tissue repair/regeneration. Therefore, we suggest that this bioactive material, composed of allogeneic PRP, could be clinically used as a promising alternative in emergency care or at times when autologous PRP is not prepared immediately before application.

  20. Biodegradation study of enzymatically catalyzed interpenetrating polymer network: Evaluation of agrochemical release and impact on soil fertility

    Directory of Open Access Journals (Sweden)

    Saruchi

    2016-03-01

    Full Text Available A novel interpenetrating polymer network (IPN has been synthesized through enzymatic initiation using lipase as initiator, glutaraldehyde as cross-linker, acrylic acid as primary monomer and acrylamide as secondary monomer. Biodegradability of synthesized interpenetrating polymer network was studied through soil burial and composting methods. Synthesized hydrogel was completely degraded within 70 days using composting method, while it was 86.03% degraded within 77 days using soil burial method. This was confirmed by Fourier transform Infrared spectroscopy (FTIR and Scanning electron microscopy (SEM techniques. Synthesized interpenetrating polymer network hydrogel was used as a device for controlled release of urea and also act as water releasing device. Their impact on soil fertility and plant growth was also studied. The initial diffusion coefficient has a greater value than the later diffusion coefficient indicating a higher fertilizer release rate during the early stage. Fertilizer release kinetic was also studied which showed Non-Fickian diffusion behavior, as the rate of fertilizer release was comparable to the relaxation time of the synthesized matrix. Synthesized IPN enhance the water uptake capacity up to 6.2% and 7.2% in sandy loam and clay soil, respectively.

  1. Biodegradation behaviors and color change of composites based on type of bagasse pulp/polylactic acid

    Directory of Open Access Journals (Sweden)

    maryam allahdadi

    2017-05-01

    Full Text Available In this research, appearance quality and decay resistance of polylactic acid (PLA based green composites made from monoethanolamine (MEA bagasse pulp, alkaline sulfite-anthraquinone (AS bagasse pulp, bleached soda (B S bagasse pulp, unbleached soda (UN S bagasse pulp (UN S bagasse pulp and raw bagasse fibers (B were investigated. For the investigation of biodegradation behaviors, effect of the white rot fungi (Coriolus versicolor on the neat PLA and composites with natural fibers during 30 and 60 days were studied. It is found that when the bagasse fibers were incorporated into composites matrix, percentage weight reduction and stiffness of samples have been increased. Also, the rate of loss mentioned of the composites made from bagasse pulp fibers were superior to the relevant raw bagase fibers. This can be explained by the removal of non-cellulosic components such as lignin and hemicelluloses from the fibers by pulping process. Also, the results indicates the inferior of surface qualities of fabricated composites regarding to neat PLA. Depending on the fiber type, different reductions of the surface qualities were attained. However, the degree of color change of the composites with any type of bagasse pulp fibers were lower compared with composite with raw bagasse fiber. Finally, as compared with the raw bagasse fibers, bagasse pulp fibers have better reinforcing capability.

  2. Investigating accidents involving aircraft manufactured from polymer composite materials

    Science.gov (United States)

    Dunn, Leigh

    This study looks into the examination of polymer composite wreckage from the perspective of the aircraft accident investigator. It develops an understanding of the process of wreckage examination as well as identifying the potential for visual and macroscopic interpretation of polymer composite aircraft wreckage. The in-field examination of aircraft wreckage, and subsequent interpretations of material failures, can be a significant part of an aircraft accident investigation. As the use of composite materials in aircraft construction increases, the understanding of how macroscopic failure characteristics of composite materials may aid the field investigator is becoming of increasing importance.. The first phase of this research project was to explore how investigation practitioners conduct wreckage examinations. Four accident investigation case studies were examined. The analysis of the case studies provided a framework of the wreckage examination process. Subsequently, a literature survey was conducted to establish the current level of knowledge on the visual and macroscopic interpretation of polymer composite failures. Relevant literature was identified and a compendium of visual and macroscopic characteristics was created. Two full-scale polymer composite wing structures were loaded statically, in an upward bending direction, until each wing structure fractured and separated. The wing structures were subsequently examined for the existence of failure characteristics. The examination revealed that whilst characteristics were present, the fragmentation of the structure destroyed valuable evidence. A hypothetical accident scenario utilising the fractured wing structures was developed, which UK government accident investigators subsequently investigated. This provided refinement to the investigative framework and suggested further guidance on the interpretation of polymer composite failures by accident investigators..

  3. Rapid Prototyping Amphiphilic Polymer/Hydroxyapatite Composite Scaffolds with Hydration-Induced Self-Fixation Behavior

    Science.gov (United States)

    Kutikov, Artem B.; Gurijala, Anvesh

    2015-01-01

    Two major factors hampering the broad use of rapid prototyped biomaterials for tissue engineering applications are the requirement for custom-designed or expensive research-grade three-dimensional (3D) printers and the limited selection of suitable thermoplastic biomaterials exhibiting physical characteristics desired for facile surgical handling and biological properties encouraging tissue integration. Properly designed thermoplastic biodegradable amphiphilic polymers can exhibit hydration-dependent hydrophilicity changes and stiffening behavior, which may be exploited to facilitate the surgical delivery/self-fixation of the scaffold within a physiological tissue environment. Compared to conventional hydrophobic polyesters, they also present significant advantages in blending with hydrophilic osteoconductive minerals with improved interfacial adhesion for bone tissue engineering applications. Here, we demonstrated the excellent blending of biodegradable, amphiphilic poly(D,L-lactic acid)-poly(ethylene glycol)-poly(D,L-lactic acid) (PLA-PEG-PLA) (PELA) triblock co-polymer with hydroxyapatite (HA) and the fabrication of high-quality rapid prototyped 3D macroporous composite scaffolds using an unmodified consumer-grade 3D printer. The rapid prototyped HA-PELA composite scaffolds and the PELA control (without HA) swelled (66% and 44% volume increases, respectively) and stiffened (1.38-fold and 4-fold increases in compressive modulus, respectively) in water. To test the hypothesis that the hydration-induced physical changes can translate into self-fixation properties of the scaffolds within a confined defect, a straightforward in vitro pull-out test was designed to quantify the peak force required to dislodge these scaffolds from a simulated cylindrical defect at dry versus wet states. Consistent with our hypothesis, the peak fixation force measured for the PELA and HA-PELA scaffolds increased 6-fold and 15-fold upon hydration, respectively. Furthermore, we showed that

  4. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  5. A poly(glycerol sebacate) based photo/thermo dual curable biodegradable and biocompatible polymer for biomedical applications.

    Science.gov (United States)

    Wang, Min; Lei, Dong; Liu, Zenghe; Chen, Shuo; Sun, Lijie; Lv, Ziying; Huang, Peng; Jiang, Zhongxing; You, Zhengwei

    2017-10-01

    Due to its biomimetic mechanical properties to soft tissues, excellent biocompatibility and biodegradability, poly (glycerol sebacate) (PGS) has emerged as a representative bioelastomer and been widely used in biomedical engineering. However, the typical curing of PGS needs high temperature (>120 °C), high vacuum (>1 Torr), and long duration (>12 h), which limit its further applications. Accordingly, we designed, synthesized and characterized a photo/thermo dual curable polymer based on PGS. Treatment of PGS with 2-isocyanatoethyl methacrylate without additional reagents readily produced a methacrylated PGS (PGS-IM). Photo-curing of PGS-IM for 10 min at room temperature using salt leaching method efficiently produced porous scaffolds with a thickness up to 1 mm. PGS-IM was adapt to thermo-curing as well. The combination of photo and thermo curing provided a further way to modulate the properties of resultant porous scaffolds. Interestingly, photo-cured scaffolds exhibited hierarchical porous structures carrying extensive micropores with a diameter from several to hundreds micrometers. All the scaffolds showed good elasticity and biodegradability. In addition, PGS-IM exhibited good compatibility with L929 fibroblast cells. We expect this new PGS based biomaterial will have a wide range of biomedical applications.

  6. Progressive delamination in polymer matrix composite laminates: A new approach

    Science.gov (United States)

    Chamis, C. C.; Murthy, P. L. N.; Minnetyan, L.

    1992-01-01

    A new approach independent of stress intensity factors and fracture toughness parameters has been developed and is described for the computational simulation of progressive delamination in polymer matrix composite laminates. The damage stages are quantified based on physics via composite mechanics while the degradation of the laminate behavior is quantified via the finite element method. The approach accounts for all types of composite behavior, laminate configuration, load conditions, and delamination processes starting from damage initiation, to unstable propagation, and to laminate fracture. Results of laminate fracture in composite beams, panels, plates, and shells are presented to demonstrate the effectiveness and versatility of this new approach.

  7. Mechanical and thermal properties of promising polymer composites for food packaging applications

    Science.gov (United States)

    Abdellah Ali, S. F.

    2016-07-01

    Blending starches with biodegradable polycaprolactone (PCL) was used as a route to make processable thermoplastics. When developing biodegradable polymer composites it is important to use high concentrations of starch for legislative and cost reasons. The addition of starch has a significant effect on all physical properties including toughness, elongation at break and the rheological behaviour of the melt. To enhance the physical properties, we used cellulose acetate propionate (CAP) as a cellulose derivative with high amylase starch and PCL blends. It is suggested that the PCL/starch/CAP blends are partially miscible. It was found that the yield tensile strengths of most PCL/Starch/CAP blends were higher than that of pure PCL itself. There was a big difference between glass transition temperature values of PCL/Starch/CAP blends and the pure PCL glass transition temperature which indicates that no phase separation occurs. Addition of CAP to starch and PCL blends improved the mechanical and thermal properties even at high content of starch.

  8. Conductive polymer/metal composites for interconnect of flexible devices

    Science.gov (United States)

    Kawakita, Jin; Hashimoto Shinoda, Yasuo; Shuto, Takanori; Chikyow, Toyohiro

    2015-06-01

    An interconnect of flexible and foldable devices based on advanced electronics requires high electrical conductivity, flexibility, adhesiveness on a plastic substrate, and efficient productivity. In this study, we investigated the applicability of a conductive polymer/metal composite to the interconnect of flexible devices. By combining an inkjet process and a photochemical reaction, micropatterns of a polypyrrole/silver composite were formed on flexible plastic substrates with an average linewidth of approximately 70 µm within 10 min. The conductivity of the composite was improved to 6.0 × 102 Ω-1·cm-1. From these results, it is expected that the conducting polymer/metal composite can be applied to the microwiring of flexible electronic devices.

  9. Nanoporous materials modified with biodegradable polymers as models for drug delivery applications

    DEFF Research Database (Denmark)

    Gruber, Mathias F; Schulte, Lars; Ndoni, Sokol

    2013-01-01

    of principle for a system combining these two encapsulation methods and consisting of a nanoporous polymer (NP) with the pores filled with a degradable polymer mixed with a drug model. Rhodamine 6G (R6G) mixed with Poly(l-Lactic Acid) (PLLA) were confined within the 14nm pores of a NP with gyroid morphology...

  10. Properties of Polymer Composites Used in High-Voltage Applications

    Directory of Open Access Journals (Sweden)

    Ilona Pleşa

    2016-04-01

    Full Text Available The present review article represents a comprehensive study on polymer micro/nanocomposites that are used in high-voltage applications. Particular focus is on the structure-property relationship of composite materials used in power engineering, by exploiting fundamental theory as well as numerical/analytical models and the influence of material design on electrical, mechanical and thermal properties. In addition to describing the scientific development of micro/nanocomposites electrical features desired in power engineering, the study is mainly focused on the electrical properties of insulating materials, particularly cross-linked polyethylene (XLPE and epoxy resins, unfilled and filled with different types of filler. Polymer micro/nanocomposites based on XLPE and epoxy resins are usually used as insulating systems for high-voltage applications, such as: cables, generators, motors, cast resin dry-type transformers, etc. Furthermore, this paper includes ample discussions regarding the advantages and disadvantages resulting in the electrical, mechanical and thermal properties by the addition of micro- and nanofillers into the base polymer. The study goals are to determine the impact of filler size, type and distribution of the particles into the polymer matrix on the electrical, mechanical and thermal properties of the polymer micro/nanocomposites compared to the neat polymer and traditionally materials used as insulation systems in high-voltage engineering. Properties such as electrical conductivity, relative permittivity, dielectric losses, partial discharges, erosion resistance, space charge behavior, electric breakdown, tracking and electrical tree resistance, thermal conductivity, tensile strength and modulus, elongation at break of micro- and nanocomposites based on epoxy resin and XLPE are analyzed. Finally, it was concluded that the use of polymer micro/nanocomposites in electrical engineering is very promising and further research work

  11. Gamma and electron beam curing of polymers and composites

    International Nuclear Information System (INIS)

    Saunders, C.B.; Dickson, L.W.; Singh, A.

    1987-01-01

    Radiation polymerization has helped us understand polymer chemistry, and is also playing an increasing role in the field of practical applications. Radiation curing has a present market share of about 5% of the total market for curing of polymers and composites and the annual growth rate of the radiation curing market is ≥20% per year. Advantages of radiation curing over thermal or chemical curing methods include: improved control of the curing rate, reduced curing times, curing at ambient temperatures, curing without the need for chemical initiators, and complete (100%) curing with minimal toxic chemical emissions. Radiation treatment may also be used to effect crosslinking and grafting of polymer and composite materials. The major advantage in these cases is the ability to process products in their final shape. Cable insulation, automotive and aircraft components, and improved construction materials are some of the current and near-future industrial applications of radiation curing and crosslinking. 19 refs

  12. Fluorescent Pressure Response of Protein-Nanocluster Polymer Composites

    Science.gov (United States)

    2016-05-01

    composites as pressure sensitive indicators of brain damage. The PNC composites are made up of protein coated gold nanoclusters and a styrene-ethylene...enhancement of the BSA- protected gold nanoclusters and the corresponding conformational changes of protein, J Phys Chem C. 2013;117:639–647...public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This research focuses on the uses of polymer gold nanocluster (PNC

  13. Biodegradable and compostable alternatives to conventional plastics

    Science.gov (United States)

    Song, J. H.; Murphy, R. J.; Narayan, R.; Davies, G. B. H.

    2009-01-01

    Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all ‘good’ or petrochemical-based products are all ‘bad’. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated ‘home’ composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted. PMID:19528060

  14. Biodegradable and compostable alternatives to conventional plastics.

    Science.gov (United States)

    Song, J H; Murphy, R J; Narayan, R; Davies, G B H

    2009-07-27

    Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all 'good' or petrochemical-based products are all 'bad'. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated 'home' composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted.

  15. Advanced moisture modeling of polymer composites.

    Science.gov (United States)

    2014-04-01

    Long term moisture exposure has been shown to affect the mechanical performance of polymeric composite structures. This reduction : in mechanical performance must be considered during product design in order to ensure long term structure survival. In...

  16. Self healing in polymers and polymer composites. Concepts, realization and outlook: A review

    Directory of Open Access Journals (Sweden)

    2008-04-01

    Full Text Available Formation of microcracks is a critical problem in polymers and polymer composites during their service in structural applications. Development and coalescence of microcracks would bring about catastrophic failure of the materials and then reduce their lifetimes. Therefore, early sensing, diagnosis and repair of microcracks become necessary for removing the latent perils. In this context, the materials possessing self-healing function are ideal for long-term operation. Self-repairing polymers and polymer composites have attracted increasing research interests. Attempts have been made to develop solutions in this field. The present article reviews state-of-art of the achievements on the topic. According to the ways of healing, the smart materials are classified into two categories: (i intrinsic self-healing ones that are able to heal cracks by the polymers themselves, and (ii extrinsic in which healing agent has to be pre-embedded. The advances in this field show that selection and optimization of proper repair mechanisms are prerequisites for high healing efficiency. It is a challenging job to either invent new polymers with inherent crack repair capability or integrate existing materials with novel healing system.

  17. Tribological performance of polymer composites used in electrical ...

    Indian Academy of Sciences (India)

    engineering applications. ZAFER DEMIR. Anadolu University, Eskisehir, Turkey. MS received 28 December 2011; revised 13 March 2012. Abstract. Sliding wear performance of 20% mica-filled polyamide 6 (PA6 + 20% mica) and 20% short glass fibre- reinforced polysulphone (PSU + 20 GFR) polymer composites used in ...

  18. Large Dielectric Constant Enhancement in MXene Percolative Polymer Composites

    KAUST Repository

    Tu, Shao Bo; Jiang, Qiu; Zhang, Xixiang; Alshareef, Husam N.

    2018-01-01

    near the percolation limit of about 15.0 wt % MXene loading, which surpasses all previously reported composites made of carbon-based fillers in the same polymer. With up to 10 wt % MXene loading, the dielectric loss of the MXene

  19. Modulatory effect of polymer type and composition on drug release ...

    African Journals Online (AJOL)

    The purpose of this study was to investigate the effects of polymer type and composition on drug release from the matrix of diclofenac sodium sustained release tablets formulated using three different granulation methods. Ten (10) batches of diclofenac sodium tablets (F01 - F10) were prepared by melt granulation, ...

  20. Machining of Machine Elements Made of Polymer Composite Materials

    Science.gov (United States)

    Baurova, N. I.; Makarov, K. A.

    2017-12-01

    The machining of the machine elements that are made of polymer composite materials (PCMs) or are repaired using them is considered. Turning, milling, and drilling are shown to be most widely used among all methods of cutting PCMs. Cutting conditions for the machining of PCMs are presented. The factors that most strongly affect the roughness parameters and the accuracy of cutting PCMs are considered.

  1. Mechanical properties of natural fibre reinforced polymer composites

    Indian Academy of Sciences (India)

    In the present communication, a study on the synthesis and mechanical properties of new series of green composites involving Hibiscus sabdariffa fibre as a reinforcing material in urea–formaldehyde (UF) resin based polymer matrix has been reported. Static mechanical properties of randomly oriented intimately mixed ...

  2. Biodegradable and bio-based polymers: future prospects of eco-friendly plastics.

    Science.gov (United States)

    Iwata, Tadahisa

    2015-03-09

    Currently used plastics are mostly produced from petrochemical products, but there is a growing demand for eco-friendly plastics. The use of bio-based plastics, which are produced from renewable resources, and biodegradable plastics, which are degraded in the environment, will lead to a more sustainable society and help us solve global environmental and waste management problems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Extrudable polymer-polymer composites based on ultra-high molecular weight polyethylene

    Science.gov (United States)

    Panin, S. V.; Kornienko, L. A.; Alexenko, V. O.; Buslovich, D. G.; Dontsov, Yu. V.

    2017-12-01

    Mechanical and tribotechnical characteristics of polymer-polymeric composites of UHMWPE are studied with the aim of developing extrudable, wear-resistant, self-lubricant polymer mixtures for Additive Manufacturing (AM). The motivation of the study is their further application as feedstocks for 3D printing. Blends of UHMWPE with graft- and block copolymers of low-density polyethylene (HDPE-g-VTMS, HDPE-g-SMA, HDPE-b-EVA), polypropylene (PP), block copolymers of polypropylene and polyamide with linear low density polyethylene (PP-b-LLDPE, PA-b-LLDPE), as well as cross-linked polyethylene (PEX-b), are examined. The choice of compatible polymer components for an ultra- high molecular weight matrix for increasing processability (extrudability) is motivated by the search for commercially available and efficient additives aimed at developing wear-resistant extrudable polymer composites for additive manufacturing. The extrudability, mechanical properties and wear resistance of UHMWPE-based polymer-polymeric composites under sliding friction with different velocities and loads are studied.

  4. Glass transition temperature of polymer nano-composites with polymer and filler interactions

    Science.gov (United States)

    Hagita, Katsumi; Takano, Hiroshi; Doi, Masao; Morita, Hiroshi

    2012-02-01

    We systematically studied versatile coarse-grained model (bead spring model) to describe filled polymer nano-composites for coarse-grained (Kremer-Grest model) molecular dynamics simulations. This model consists of long polymers, crosslink, and fillers. We used the hollow structure as the filler to describe rigid spherical fillers with small computing costs. Our filler model consists of surface particles of icosahedra fullerene structure C320 and a repulsive force from the center of the filler is applied to the surface particles in order to make a sphere and rigid. The filler's diameter is 12 times of beads of the polymers. As the first test of our model, we study temperature dependence of volumes of periodic boundary conditions under constant pressures through NPT constant Andersen algorithm. It is found that Glass transition temperature (Tg) decrease with increasing filler's volume fraction for the case of repulsive interaction between polymer and fillers and Tg weakly increase for attractive interaction.

  5. Corn gluten meal as a biodegradable matrix material in wood fibre reinforced composites

    International Nuclear Information System (INIS)

    Beg, M.D.H.; Pickering, K.L.; Weal, S.J.

    2005-01-01

    This study was undertaken to investigate corn gluten meal (CGM) as a biodegradable matrix material for wood fibre reinforced composites. CGM was used alone, as well as hybridized with polypropylene, and reinforced with radiata pine (Pinus Radiata) fibre using a twin-screw extruder followed by injection moulding. Tensile testing, scanning electron microscopy and differential scanning calorimetry were carried out to assess the composites. For composites from CGM and wood fibres, extrusion was carried out with the aid of the following plasticizers: octanoic acid, glycerol, polyethylene glycol and water. Windows of processability for the different plasticizers were obtained for all plasticizers. These were found to lie between 20 and 50 wt.% of plasticizer with a maximum of approximately 20% wood fibre reinforcement. The best mechanical properties were obtained with a matrix containing 10 wt.% octanoic acid and 30 wt.% water, which gave a tensile strength and Young's modulus of 18.7 MPa and 4 GPa, respectively. Hybrid matrix composites were compounded with a maleated polypropylene coupling agent and benzoyl peroxide as a cross-linking agent. The highest tensile strength and Young's modulus obtained from hybrid matrix composites were 36.9 MPa and 5.8 GPa with 50 wt.% fibre

  6. Corn gluten meal as a biodegradable matrix material in wood fibre reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Beg, M.D.H. [Department of Materials and Process Engineering, University of Waikato, Private Bag 3105, Hamilton (New Zealand); Pickering, K.L. [Department of Materials and Process Engineering, University of Waikato, Private Bag 3105, Hamilton (New Zealand)]. E-mail: klp@waikato.ac.nz; Weal, S.J. [Department of Materials and Process Engineering, University of Waikato, Private Bag 3105, Hamilton (New Zealand)

    2005-12-05

    This study was undertaken to investigate corn gluten meal (CGM) as a biodegradable matrix material for wood fibre reinforced composites. CGM was used alone, as well as hybridized with polypropylene, and reinforced with radiata pine (Pinus Radiata) fibre using a twin-screw extruder followed by injection moulding. Tensile testing, scanning electron microscopy and differential scanning calorimetry were carried out to assess the composites. For composites from CGM and wood fibres, extrusion was carried out with the aid of the following plasticizers: octanoic acid, glycerol, polyethylene glycol and water. Windows of processability for the different plasticizers were obtained for all plasticizers. These were found to lie between 20 and 50 wt.% of plasticizer with a maximum of approximately 20% wood fibre reinforcement. The best mechanical properties were obtained with a matrix containing 10 wt.% octanoic acid and 30 wt.% water, which gave a tensile strength and Young's modulus of 18.7 MPa and 4 GPa, respectively. Hybrid matrix composites were compounded with a maleated polypropylene coupling agent and benzoyl peroxide as a cross-linking agent. The highest tensile strength and Young's modulus obtained from hybrid matrix composites were 36.9 MPa and 5.8 GPa with 50 wt.% fibre.

  7. Porous polymer networks and ion-exchange media and metal-polymer composites made therefrom

    Energy Technology Data Exchange (ETDEWEB)

    Kanatzidis, Mercouri G.; Katsoulidis, Alexandros

    2016-10-18

    Porous polymeric networks and composite materials comprising metal nanoparticles distributed in the polymeric networks are provided. Also provided are methods for using the polymeric networks and the composite materials in liquid- and vapor-phase waste remediation applications. The porous polymeric networks, are highly porous, three-dimensional structures characterized by high surface areas. The polymeric networks comprise polymers polymerized from aldehydes and phenolic molecules.

  8. Properties of Plant Fiber Yarn Polymer Composites

    DEFF Research Database (Denmark)

    Madsen, Bo

    2004-01-01

    . The thesis presents experimental investigations and modelling of the properties of aligned plant fibre composites based on textile hemp yarn and thermoplastic matrices. The textile hemp yarn has been characterised. It is high in cellulose and with fibres well separated from each other; i.e. only few fibres...... are situated in bundles. The twisting angle is low; i.e. about 15 o for the outermost fibres in the yarn. The moisture sorption capacity of the yarn fibres is much lower than that of raw hemp fibres. Stiffness and strength of the fibres as calculated from composite data are in the ranges 50-65 GPa and 530......-650 MPa respectively. These properties show that textile hemp yarn is well suited as composite reinforcement. The relationship between fibre volume fraction and porosity has been studied. A model has been developed that predicts porosity from experimentally determined parameters such as fibre lumen...

  9. Electrochemical properties of polypyrrole/polyfuran polymer composite electrode

    International Nuclear Information System (INIS)

    Cha, Seong Keuck

    1998-01-01

    Poly pyrrole polymer(ppy) has an excellent electrical conductivity and can be easily polymerized on anode to give various morphology according to doped anion on electroactive sites. To improve the properties of brittleness, ageing and hydrophobicity, poly furan polymer(pfu) having a high initiation potential was anodically implanted in this porous ppy film matrix to get the Pt/ppy/pfu(x)type of polymer campsite electrode. Cyclic voltammetry and electrochemical impedance methods were used to these electrode, where PF 6 - , BF 4 - , and ClO 4 - ions were employed as dopants. The composition of the pfu(x) at the electrode was changed from 0 to 1.10, but the range was useful only at 0.1 to 0.2 as the redox electrode. The polymer composite electrode doped with PF 6 - was better in charge transfer resistance by a factor of 40 times and in double layer capacitance by a factor of 20 times than others. The charge transfer in the polymer film of the electrode was influenced on frequency change and equivalent circuit of this electrode had Warburg impedance including mass transfer

  10. Cement-Polymer Composite Containers for Radioactive Wastes Disposal

    International Nuclear Information System (INIS)

    Ghattas, N.K.; Eskander, S.B.; Bayoumi, T.A.; Saleh, H.M.

    2009-01-01

    Improving cement-composite containers using polymer as organic additives was studied extensively. Both unsaturated styrenated polyester (SPE) and polymethyl methacrylate (PMMA) were used to fill the pores in cement containers that used for disposal of radioactive wastes. Two different techniques were adopted for the addition of organic polymers based on their viscosity. The low density PMMA was added using impregnation technique. On the other hand high density SPE was mixed with cement paste as a premix process. Predetermined weight of dried borate radioactive powder waste simulate was introduced into the Cement-polymer composite (CPC) container and then closed before subjecting it to leaching characterization. The effect of the organic polymers on the hydration of cement matrix and on the properties of the obtained CPC container has been studied using X-ray diffraction, IR-analysis, thermal effects and weight loss. Porosity, pore parameters and rate of release were also determined. The results obtained showed that for the candidate CPC container positive effect of polymer dominates and an improvement in the retardation rate of PMMA release radionuclides was observed

  11. Injectable biocompatible and biodegradable pH-responsive hollow particle gels containing poly(acrylic acid): the effect of copolymer composition on gel properties.

    Science.gov (United States)

    Halacheva, Silvia S; Adlam, Daman J; Hendow, Eseelle K; Freemont, Tony J; Hoyland, Judith; Saunders, Brian R

    2014-05-12

    The potential of various pH-responsive alkyl (meth)acrylate ester- and (meth)acrylic acid-based copolymers, including poly(methyl methacrylate-co-acrylic acid) (PMMA-AA) and poly(n-butyl acrylate-co-methacrylic acid) (PBA-MAA), to form pH-sensitive biocompatible and biodegradable hollow particle gel scaffolds for use in non-load-bearing soft tissue regeneration have been explored. The optimal copolymer design criteria for preparation of these materials have been established. Physical gels which are both pH- and redox-sensitive were formed only from PMMA-AA copolymers. MMA is the optimal hydrophobic monomer, whereas the use of various COOH-containing monomers, e.g., MAA and AA, will always induce a pH-triggered physical gelation. The PMMA-AA gels were prepared at physiological pH range from concentrated dispersions of swollen, hollow, polymer-based particles cross-linked with either cystamine (CYS) or 3,3'-dithiodipropionic acid dihydrazide (DTP). A linear relationship between particle swelling ratios, gel elasticity, and ductility was observed. The PMMA-AA gels with lower AA contents feature lower swelling ratios, mechanical strengths, and ductilities. Increasing the swelling ratio (e.g., through increasing AA content) decreased the intraparticle elasticity; however, intershell contact and gel elasticity were found to increase. The mechanical properties and performance of the gels were tuneable upon varying the copolymers' compositions and the structure of the cross-linker. Compared to PMMA-AA/CYS, the PMMA-AA/DTP gels were more elastic and ductile. The biodegradability and cytotoxicity of the new hollow particle gels were tested for the first time and related to their composition, mechanical properties, and morphology. The new PMMA-AA/CYS and PMMA-AA/DTP gels have shown good biocompatibility, biodegradability, strength, and interconnected porosity and therefore have good potential as a tissue repair agent.

  12. Chemical composition dependence of exposure buildup factors for some polymers

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Tejbir [Department of Physics, S.D.D.I.E.T., Barwala, District Panchkula, Haryana 134 118 (India)], E-mail: tejbir.s@rediffmail.com; Kumar, Naresh [Department of Physics, Lovely Professional University, Phagwara 144 402 (India)], E-mail: naresh20dhiman@yahoo.com; Singh, Parjit S. [Department of Physics, Punjabi University, Patiala 147 002 (India)], E-mail: dr_parjit@hotmail.com

    2009-01-15

    Exposure buildup factors for some polymers such as poly-acrylo-nitrile (PAN), poly-methyl-acrylate (PMA), poly-vinyl-chloride (PVC), synthetic rubber (SR), tetra-fluro-ethylene (Teflon) have been computed using the G.P. fitting method in the energy range of 0.015-15.0 MeV, up to the penetration of 40 mean free paths (mfp). The variation of exposure buildup factors for all the selected polymers with incident photon energy at the fixed penetration depths has been studied, mainly emphasizing on chemical composition (equivalent atomic number) of the selected polymers. It has been observed that for the lower penetration depths (below 10 mfp), the exposure buildup factor decreases with the increase in equivalent atomic number of the selected polymers at all the incident photon energies. However, at the penetration depth of 10 mfp and incident photon energy above 3 MeV, the exposure buildup factor becomes almost independent of the equivalent atomic number of the selected polymers. Further, above the fixed penetration depth of 15 mfp of the selected polymers and above the incident photon energy of 3 MeV, reversal in the trend has been observed, i.e., the exposure buildup factor increases with the increase in equivalent atomic number.

  13. Chemical composition dependence of exposure buildup factors for some polymers

    International Nuclear Information System (INIS)

    Singh, Tejbir; Kumar, Naresh; Singh, Parjit S.

    2009-01-01

    Exposure buildup factors for some polymers such as poly-acrylo-nitrile (PAN), poly-methyl-acrylate (PMA), poly-vinyl-chloride (PVC), synthetic rubber (SR), tetra-fluro-ethylene (Teflon) have been computed using the G.P. fitting method in the energy range of 0.015-15.0 MeV, up to the penetration of 40 mean free paths (mfp). The variation of exposure buildup factors for all the selected polymers with incident photon energy at the fixed penetration depths has been studied, mainly emphasizing on chemical composition (equivalent atomic number) of the selected polymers. It has been observed that for the lower penetration depths (below 10 mfp), the exposure buildup factor decreases with the increase in equivalent atomic number of the selected polymers at all the incident photon energies. However, at the penetration depth of 10 mfp and incident photon energy above 3 MeV, the exposure buildup factor becomes almost independent of the equivalent atomic number of the selected polymers. Further, above the fixed penetration depth of 15 mfp of the selected polymers and above the incident photon energy of 3 MeV, reversal in the trend has been observed, i.e., the exposure buildup factor increases with the increase in equivalent atomic number

  14. Composite Polymer Electrolytes: Nanoparticles Affect Structure and Properties

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2016-11-01

    Full Text Available Composite polymer electrolytes (CPEs can significantly improve the performance in electrochemical devices such as lithium-ion batteries. This review summarizes property/performance relationships in the case where nanoparticles are introduced to polymer electrolytes. It is the aim of this review to provide a knowledge network that elucidates the role of nano-additives in the CPEs. Central to the discussion is the impact on the CPE performance of properties such as crystalline/amorphous structure, dielectric behavior, and interactions within the CPE. The amorphous domains of semi-crystalline polymer facilitate the ion transport, while an enhanced mobility of polymer chains contributes to high ionic conductivity. Dielectric properties reflect the relaxation behavior of polymer chains as an important factor in ion conduction. Further, the dielectric constant (ε determines the capability of the polymer to dissolve salt. The atom/ion/nanoparticle interactions within CPEs suggest ways to enhance the CPE conductivity by generating more free lithium ions. Certain properties can be improved simultaneously by nanoparticle addition in order to optimize the overall performance of the electrolyte. The effects of nano-additives on thermal and mechanical properties of CPEs are also presented in order to evaluate the electrolyte competence for lithium-ion battery applications.

  15. Sensing and Energy Harvesting Novel Polymer Composites

    NARCIS (Netherlands)

    Zwaag, S. van der; Ende, D.A. van der; Groen, W.A.

    2014-01-01

    This chapter describes the development and properties of novel functional composite materials consisting of aligned piezo-ceramic particles or fibers in a polymeric matrix, which can be fully integrated in thermoset or thermoplastic products. The materials have a low potential for applications

  16. Additive Manufacturing of Ultem Polymers and Composites

    Science.gov (United States)

    Chuang, Kathy C.; Grady, Joseph E.; Draper, Robert D.; Shin, Euy-Sik E.; Patterson, Clark; Santelle, Thomas D.

    2015-01-01

    The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimdes Ultem 9085 and experimental Ultem 1000 filled with 10 chopped carbon fiber. A property comparison between FDM-printed and injection molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25-31. Coupons of Ultem 9085, experimental Ultem 1000 composites and XH6050 resin were tested at room temperature and 400F to evaluate their corresponding mechanical properties.

  17. Advances and challenges of wood polymer composites

    Science.gov (United States)

    Roger M. Rowell

    2006-01-01

    Wood flour and fiber have been blended with thermoplastic such as polyethylene, polypropylene, polylactic acid and polyvinyl chloride to form wood plastic composites (WPC). WPCs have seen a large growth in the United States in recent years mainly in the residential decking market with the removal of CCA treated wood decking from residential markets. While there are...

  18. Graphene network organisation in conductive polymer composites

    NARCIS (Netherlands)

    Syurik, Y.V.; Ghislandi, M.G.; Tkalya, E.; Paterson, G.; McGrouther, D.; Ageev, O.A.; Loos, J.

    2012-01-01

    A latex technique is used to prepare graphene/polystyrene and graphene/poly(propylene) composites with varying GR loadings. Their electrical properties and the corresponding volume organisation of GR networks are studied. Percolation thresholds for conduction are found to be about 0.9 and 0.4 wt%

  19. Biodegradation Resistance and Bioactivity of Hydroxyapatite Enhanced Mg-Zn Composites via Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Cijun Shuai

    2017-03-01

    Full Text Available Mg-Zn alloys have attracted great attention as implant biomaterials due to their biodegradability and biomechanical compatibility. However, their clinical application was limited due to the too rapid degradation. In the study, hydroxyapatite (HA was incorporated into Mg-Zn alloy via selective laser melting. Results showed that the degradation rate slowed down due to the decrease of grain size and the formation of protective layer of bone-like apatite. Moreover, the grain size continually decreased with increasing HA content, which was attributed to the heterogeneous nucleation and increased number of nucleation particles in the process of solidification. At the same time, the amount of bone-like apatite increased because HA could provide favorable areas for apatite nucleation. Besides, HA also enhanced the hardness due to the fine grain strengthening and second phase strengthening. However, some pores occurred owing to the agglomerate of HA when its content was excessive, which decreased the biodegradation resistance. These results demonstrated that the Mg-Zn/HA composites were potential implant biomaterials.

  20. Biodegradation Resistance and Bioactivity of Hydroxyapatite Enhanced Mg-Zn Composites via Selective Laser Melting.

    Science.gov (United States)

    Shuai, Cijun; Zhou, Yuanzhuo; Yang, Youwen; Feng, Pei; Liu, Long; He, Chongxian; Zhao, Mingchun; Yang, Sheng; Gao, Chengde; Wu, Ping

    2017-03-17

    Mg-Zn alloys have attracted great attention as implant biomaterials due to their biodegradability and biomechanical compatibility. However, their clinical application was limited due to the too rapid degradation. In the study, hydroxyapatite (HA) was incorporated into Mg-Zn alloy via selective laser melting. Results showed that the degradation rate slowed down due to the decrease of grain size and the formation of protective layer of bone-like apatite. Moreover, the grain size continually decreased with increasing HA content, which was attributed to the heterogeneous nucleation and increased number of nucleation particles in the process of solidification. At the same time, the amount of bone-like apatite increased because HA could provide favorable areas for apatite nucleation. Besides, HA also enhanced the hardness due to the fine grain strengthening and second phase strengthening. However, some pores occurred owing to the agglomerate of HA when its content was excessive, which decreased the biodegradation resistance. These results demonstrated that the Mg-Zn/HA composites were potential implant biomaterials.

  1. Nanomodified polymer composites: Thermophysical and physico-mechanical properties

    Science.gov (United States)

    Shchegolkov, Alexander; Shchegolkov, Alexey; Dyachkova, Tatyana; Borovskikh, Pavel

    2017-11-01

    The paper presents the results of investigation of thermophysical and physicomechanical properties of polymer-based composites modified with paraffin and carbon nanotubes (CNTs) mixture. Thermal conductivity of composites based on polyethylene, fluoroplastic, polyvinyl chloride (PVC) is 0.48, 0.42 and 0.36 W/(m.°C), respectively, compared to thermal conductivity of pure paraffin - 0.25 W/(m.°C). It has been revealed that for materials heat capacity the polymer matrix determines the position of the maximum point on temperature dependence having extreme nature. Temperature changes in composites volume do not exceed 3% from the initial state to the phase transition, that allows them to be used in a combination with other materials.

  2. Improvement of acoustical characteristics : wideband bamboo based polymer composite

    Science.gov (United States)

    Farid, M.; Purniawan, A.; Rasyida, A.; Ramadhani, M.; Komariyah, S.

    2017-07-01

    Environmental friendly and comfortable materials are desirable for applications in the automobile interior. The objective of this research was to examine and develop bamboo based polymer composites applied to the sound absorption materials of automobile door panels. Morphological analysis of the polyurethane/bamboo powder composite materials was carried out using scanning electron microscope to reveal the microscopic material behavior and followed by the FTIR and TGA testing. The finding demonstrated that this acoustical polymer composite materials provided a potential wideband sound absorption material. The range of frequency can be controlled between 500 and 4000 Hz with an average of sound absorption coefficient around 0.411 and it met to the door panels criteria.

  3. Thermoresistive mechanisms of carbon nanotube/polymer composites

    Science.gov (United States)

    Cen-Puc, M.; Oliva-Avilés, A. I.; Avilés, F.

    2018-01-01

    The mechanisms governing thermoresistivity of carbon nanotube (CNT)/polymer composites are theoretically and experimentally investigated. Two modeling approaches are proposed to this aim considering a broad range of CNT concentrations (0.5-50 wt%). In the first model, thermal expansion of the polymer composite is predicted using a finite element model; the resulting CNT-to-CNT separation distance feeds a classical tunneling model to predict the dependence of the electrical resistance with temperature. The second approach uses the general effective medium considering the dilution of the CNT volume fraction due to the thermal expansion of the polymer. Both models predict that the electrical resistance increases with increased temperature (i.e. a positive temperature coefficient of resistance, TCR) for all investigated CNT concentrations, with higher TCRs for lower CNT concentrations. Comparison between modeling outcomes and experimental data suggests that polymer thermal expansion (and tunneling) play a dominant role for low CNT concentrations (≤ 10 wt%) heated above room temperature. On the other hand, for composites at high CNT concentrations (50 wt%) or for freezing temperatures (-110 °C), a negative TCR was experimentally obtained, suggesting that for those conditions the CNT intrinsic thermoresistivity and the electronic conduction between CNTs by thermal activation may play a paramount role.

  4. RF electromagnetic wave absorbing properties of ferrite polymer composite materials

    International Nuclear Information System (INIS)

    Dosoudil, Rastislav; Usakova, Marianna; Franek, Jaroslav; Slama, Jozef; Olah, Vladimir

    2006-01-01

    The frequency dispersion of complex initial (relative) permeability (μ * =μ ' -jμ ' ') and the electromagnetic wave absorbing properties of composite materials based on NiZn sintered ferrite and a polyvinylchloride (PVC) polymer matrix have been studied in frequency range from 1MHz to 1GHz. The complex permeability of the composites was found to increase as the ferrite content increased, and was characterized by frequency dispersion localized above 50MHz. The variation of return loss (RL) of single-layer RF absorbers using the prepared composite materials has been investigated as a function of frequency, ferrite content and the thickness of the absorbers

  5. Gender difference on five-year outcomes of EXCEL biodegradable polymer-coated sirolimus-eluting stents implantation: results from the CREATE study.

    Science.gov (United States)

    Zhang, Lei; Qiao, Bing; Han, Ya-Ling; Li, Yi; Xu, Kai; Zhang, Quan-Yu; Yang, Li-Xia; Liu, Hui-Liang; Xu, Bo; Gao, Run-Lin

    2013-03-01

    The gender difference on long-term outcome in unselected patients after percutaneous coronary intervention (PCI) has not yet been fully investigated. This study aimed to evaluate the gender difference on five-year outcomes following EXCEL biodegradable polymer-coated sirolimus-eluting stenting in patients with coronary disease. A total of 2077 "all comers", consisting of 1528 (73.6%) men and 549 (26.4%) women, who were exclusively treated with EXCEL coronary stents were enrolled in the prospective CREATE study at 59 centers from four countries. After propensity score matching, the baseline characteristics of the two groups were well matched. Recommended antiplatelet regimen was clopidogrel and aspirin for six months followed by chronic aspirin therapy. The primary outcome that was the rate of major adverse cardiac events (MACE), defined as a composite of cardiac mortality, non-fatal myocardial infarction (MI) and target lesion revascularization (TLR), and stent thrombosis (ST) at five years were compared between the two gender groups. In the two groups, women had higher proportions of clinical risk factors, such as being elderly, diabetes mellitus, hypertension and hyperlipidemia, compared to men. Besides, the mean target vessel number per patient was higher and the mean reference vessel diameter smaller for women. Men had higher risks of cardiac death (3.7% vs. 1.6%, P = 0.021) and MACE (8.4% vs. 4.7%, P = 0.004) at five years compared with women. However, the cumulative hazards of non-fatal MI and TLR were similar between men and women. The incidence of Academic Research Consortium (ARC) definite or probable stent thrombosis was similar between the two groups (1.3% vs. 1.0%, P = 0.639). Prolonged clopidogrel therapy (>6 months) did not reduce the cumulative hazards of ST from six months to five years in both men (χ(2) = 0.098, log rank P = 0.754) and women (χ(2) = 2.043, log rank P = 0.153) patients. Women had a lower MACE and cardiac death rate than men after

  6. Tridimensional ionic polymer metal composites: optimization of the manufacturing techniques

    International Nuclear Information System (INIS)

    Bonomo, C; Brunetto, P; Fortuna, L; Graziani, S; Bottino, M; Di Pasquale, G; Pollicino, A

    2010-01-01

    Ionic polymer metal composites (IPMCs) belong to electroactive polymers (EAPs) and have been suggested for various applications due to their light weight and to the fact that they react mechanically when stimulated by an electrical signal and vice versa. Thick IPMCs (3D-IPMCs) have been fabricated by hot pressing several Nafion ® 117 films. Additional post-processes (more cycles of Pt electroless plating and dispersing agents) have been applied to improve the 3D-IPMC performance. The electromechanical response of 3D-IPMCs has been examined by applying electrical signals and measuring the displacement and blocking force produced

  7. Favorable Outcomes after Implantation of Biodegradable Polymer Coated Sirolimus-Eluting Stents in Diabetic Population: Results from INDOLIMUS-G Diabetic Registry

    Directory of Open Access Journals (Sweden)

    Anurag Polavarapu

    2015-01-01

    Full Text Available Objective. The main aim is to evaluate safety, efficacy, and clinical performance of the Indolimus (Sahajanand Medical Technologies Pvt. Ltd., Surat, India sirolimus-eluting stent in high-risk diabetic population with complex lesions. Methods. It was a multicentre, retrospective, non-randomized, single-arm study, which enrolled 372 diabetic patients treated with Indolimus. The primary endpoint of the study was major adverse cardiac events (MACE, which is a composite of cardiac death, target lesion revascularization (TLR, target vessel revascularization (TVR, myocardial infarction (MI, and stent thrombosis (ST. The clinical follow-ups were scheduled at 30 days, 6 months, and 9 months. Results. The mean age of the enrolled patients was 53.4 ± 10.2 years. A total of 437 lesions were intervened successfully with 483 stents (1.1 ± 0.3 per lesion. There were 256 (68.8% male patients. Hypertension and totally occluded lesions were found in 202 (54.3% and 45 (10.3% patients, respectively. The incidence of MACE at 30 days, 6 months and 9 months was 0 (0%, 6 (1.6%, and 8 (2.2%, respectively. The event-free survival at 9-month follow-up by Kaplan Meier method was found to be 97.8%. Conclusion. The use of biodegradable polymer coated sirolimus-eluting stent is associated with favorable outcomes. The results demonstrated in our study depict its safety and efficacy in diabetic population.

  8. Thermal Conductivities of Some Polymers and Composites

    Science.gov (United States)

    2018-02-01

    conductivities (Kt) of epoxies, polyurethanes, and hydrocarbons of interest to the Army. The study explores the effects of different curing agents...obtained. 4.12 p-DCPD P-DCPD is currently of interest for composite armor applications because of its unusual ballistic properties and its high TG...the matrix, and recalling that Kt for the fiber does not dominate in the simple model above, a reasonable upper bound for Kt for a 50 volume

  9. Design and characterization of a biodegradable composite scaffold for ligament tissue engineering.

    Science.gov (United States)

    Hayami, James W S; Surrao, Denver C; Waldman, Stephen D; Amsden, Brian G

    2010-03-15

    Herein we report on the development and characterization of a biodegradable composite scaffold for ligament tissue engineering based on the fundamental morphological features of the native ligament. An aligned fibrous component was used to mimic the fibrous collagen network and a hydrogel component to mimic the proteoglycan-water matrix of the ligament. The composite scaffold was constructed from cell-adherent, base-etched, electrospun poly(epsilon-caprolactone-co-D,L-lactide) (PCLDLLA) fibers embedded in a noncell-adherent photocrosslinked N-methacrylated glycol chitosan (MGC) hydrogel seeded with primary ligament fibroblasts. Base etching improved cellular adhesion to the PCLDLLA material. Cells within the MGC hydrogel remained viable (72 +/- 4%) during the 4-week culture period. Immunohistochemistry staining revealed ligament ECM markers collagen type I, collagen type III, and decorin organizing and accumulating along the PCLDLLA fibers within the composite scaffolds. On the basis of these results, it was determined that the composite scaffold design was a viable alternative to the current approaches used for ligament tissue engineering and merits further study. (c) 2009 Wiley Periodicals, Inc.

  10. Geobacteraceae community composition is related to hydrochemistry and biodegradation in an iron-reducing aquifer polluted by a neighboring landfill.

    NARCIS (Netherlands)

    Lin, B.; Braster, M.; van Breukelen, B.M.; van Verseveld, H.W.; Westerhoff, H.V.; Roling, W.F.M.

    2005-01-01

    Relationships between community composition of the iron-reducing Geobacteraceae, pollution levels, and the occurrence of biodegradation were established for an iron-reducing aquifer polluted with landfill leachate by using cultivation-independent Geobacteraceae 16S rRNA gene-targeting techniques.

  11. Polymer sol-gel composite inverse opal structures.

    Science.gov (United States)

    Zhang, Xiaoran; Blanchard, G J

    2015-03-25

    We report on the formation of composite inverse opal structures where the matrix used to form the inverse opal contains both silica, formed using sol-gel chemistry, and poly(ethylene glycol), PEG. We find that the morphology of the inverse opal structure depends on both the amount of PEG incorporated into the matrix and its molecular weight. The extent of organization in the inverse opal structure, which is characterized by scanning electron microscopy and optical reflectance data, is mediated by the chemical bonding interactions between the silica and PEG constituents in the hybrid matrix. Both polymer chain terminus Si-O-C bonding and hydrogen bonding between the polymer backbone oxygens and silanol functionalities can contribute, with the polymer mediating the extent to which Si-O-Si bonds can form within the silica regions of the matrix due to hydrogen-bonding interactions.

  12. Radiation chemical treatment of cement mortar - polymer composites

    International Nuclear Information System (INIS)

    Younes, M.M.

    1994-01-01

    The development of the hardened cement pastes,mortars and concretes which contain polymers has progressed rapidly in years. Developmental work has identified a number of applications where the high strength and excellent durability of the composite materials will provide definite advantages over conventional mortars and concretes. The first investigations of polymer - impregnated concrete tried mainly to increase the quantity of absorbed and polymerised monomer because this gave a greater decrease in the original of concrete and a subsequent improvement in physico - mechanical properties. However, the production costs which is due mainly to the organic polymer, becomes the most important item. In this respect recent research showed the possibility of obtaining with a very compact concrete, of relative low porosity, a compound material with high performances after impregnation 26 tabs.,28 figs.,109 refs

  13. Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Yar, Muhammad, E-mail: drmyar@ciitlahore.edu.pk [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Farooq, Ariba [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Shahzadi, Lubna; Khan, Abdul Samad [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Mahmood, Nasir [Department of Allied Health Sciences and Chemical Pathology, Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore (Pakistan); Rauf, Abdul [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Chaudhry, Aqif Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Rehman, Ihtesham ur [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Materials Science and Engineering, The Kroto Research Institute, The University of Sheffield, North Campus, Broad Lane, Sheffield S3 7HQ (United Kingdom)

    2016-07-01

    Periodontal disease is associated with the destruction of periodontal tissues, along with other disorders/problems including inflammation of tissues and severe pain. This paper reports the synthesis of meloxicam (MX) immobilized biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) based electrospun (e-spun) fibers and films. Electrospinning was employed to produce drug loaded fibrous mats, whereas films were generated by solvent casting method. In-vitro drug release from materials containing varying concentrations of MX revealed that the scaffolds containing higher amount of drug showed comparatively faster release. During initial first few hours fast release was noted from membranes and films; however after around 5 h sustained release was achieved. The hydrogels showed good swelling property, which is highly desired for soft tissue engineered implants. To investigate the biocompatibility of our synthesized materials, VERO cells (epithelial cells) were selected and cell culture results showed that these all materials were non-cytotoxic and also these cells were very well proliferated on these synthesized scaffolds. These properties along with the anti-inflammatory potential of our fabricated materials suggest their effective utilization in periodontital treatments. - Highlights: • NSAIDs releasing scaffolds for periodontal regeneration applications • Meloxicam immobilized biodegradable nanocomposite electrospun membranes and films • Good swelling properties • Controlled drug release • VERO cells were very well proliferated and synthesized materials were found to be non-cytotoxic.

  14. Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications

    International Nuclear Information System (INIS)

    Yar, Muhammad; Farooq, Ariba; Shahzadi, Lubna; Khan, Abdul Samad; Mahmood, Nasir; Rauf, Abdul; Chaudhry, Aqif Anwar; Rehman, Ihtesham ur

    2016-01-01

    Periodontal disease is associated with the destruction of periodontal tissues, along with other disorders/problems including inflammation of tissues and severe pain. This paper reports the synthesis of meloxicam (MX) immobilized biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) based electrospun (e-spun) fibers and films. Electrospinning was employed to produce drug loaded fibrous mats, whereas films were generated by solvent casting method. In-vitro drug release from materials containing varying concentrations of MX revealed that the scaffolds containing higher amount of drug showed comparatively faster release. During initial first few hours fast release was noted from membranes and films; however after around 5 h sustained release was achieved. The hydrogels showed good swelling property, which is highly desired for soft tissue engineered implants. To investigate the biocompatibility of our synthesized materials, VERO cells (epithelial cells) were selected and cell culture results showed that these all materials were non-cytotoxic and also these cells were very well proliferated on these synthesized scaffolds. These properties along with the anti-inflammatory potential of our fabricated materials suggest their effective utilization in periodontital treatments. - Highlights: • NSAIDs releasing scaffolds for periodontal regeneration applications • Meloxicam immobilized biodegradable nanocomposite electrospun membranes and films • Good swelling properties • Controlled drug release • VERO cells were very well proliferated and synthesized materials were found to be non-cytotoxic.

  15. A Biodegradable Thermoset Polymer Made by Esterification of Citric Acid and Glycerol

    Science.gov (United States)

    Halpern, Jeffrey M.; Urbanski, Richard; Weinstock, Allison K.; Iwig, David F.; Mathers, Robert T.; von Recum, Horst

    2014-01-01

    A new biomaterial, a degradable thermoset polymer, was made from simple, economical, biocompatable monomers without the need for a catalyst. Glycerol and citric acid, non-toxic and renewable reagents, were crosslinked by a melt polymerization reaction at temperatures from 90-150°C. Consistent with a condensation reaction, water was determined to be the primary byproduct. The amount of crosslinking was controlled by the reaction conditions, including temperature, reaction time, and ratio between glycerol and citric acid. Also, the amount of crosslinking was inversely proportional to the rate of degradation. As a proof-of-principle for drug delivery applications, gentamicin, an antibiotic, was incorporated into the polymer with preliminary evaluations of antimicrobial activity. The polymers incorporating gentamicin had significantly better bacteria clearing of Staphylococcus aureus compared to non-gentamicin gels for up to nine days. PMID:23737239

  16. Self-healing polymer cement composites for geothermal wellbore applications

    Science.gov (United States)

    Rod, K. A.; Fernandez, C.; Childers, I.; Koech, P.; Um, W.; Roosendaal, T.; Nguyen, M.; Huerta, N. J.; Chun, J.; Glezakou, V. A.

    2017-12-01

    Cement is vital for controlling leaks from wellbores employed in oil, gas, and geothermal operations by sealing the annulus between the wellbore casing and geologic formation. Wellbore cement failure due to physical and chemical stresses is common and can result in significant environmental consequences and ultimately significant financial costs due to remediation efforts. To date numerous alternative cement blends have been proposed for the oil and gas industry. Most of these possess poor mechanical properties, or are not designed to work in high temperature environments. This research investigates novel polymer-cement composites which could function at most geothermal temperatures. Thermal stability and mechanical strength of the polymer is attributed to the formation of a number of chemical interactions between the polymer and cement matrix including covalent bonds, hydrogen bonding, and van der Waals interactions. It has been demonstrated that the bonding between cement and casing is more predictable when polymer is added to cement and can even improve healing of adhesion break when subjected to stresses such as thermal shock. Fractures have also been healed, effectively reducing permeability with fractures up to 0.3-0.5mm apertures, which is two orders of magnitude larger than typical wellbore fractures. Additionally, tomography analysis was used to determine internal structure of the cement polymer composite and imaging reveals that polymers fill fractures in the cement and between the cement and casing. By plugging fractures that occur in wellbore cement, reducing permeability of fractures, both environmental safety and economics of subsurface operations will be improved for geothermal energy and oil and gas production.

  17. Basalt fiber reinforced polymer composites: Processing and properties

    Science.gov (United States)

    Liu, Qiang

    A high efficiency rig was designed and built for in-plane permeability measurement of fabric materials. A new data derivation procedure to acquire the flow fluid pattern in the experiment was developed. The measurement results of the in-plane permeability for basalt twill 31 fabric material showed that a high correlation exists between the two principal permeability values for this fabric at 35% fiber volume fraction. This may be the most important scientific contribution made in this thesis. The results from radial measurements corresponded quite well with those from Unidirectional (UD) measurements, which is a well-established technique. No significant differences in mechanical properties were found between basalt fabric reinforced polymer composites and glass composites reinforced by a fabric of similar weave pattern. Aging results indicate that the interfacial region in basalt composites may be more vulnerable to environmental damage than that in glass composites. However, the basalt/epoxy interface may have been more durable than the glass/epoxy interface in tension-tension fatigue because the basalt composites have significantly longer fatigue life. In this thesis, chapter I reviews the literature on fiber reinforced polymer composites, with concentration on permeability measurement, mechanical properties and durability. Chapter II discusses the design of the new rig for in-plane permeability measurement, the new derivation procedure for monitoring of the fluid flow pattern, and the permeability measurement results. Chapter III compares the mechanical properties and durability between basalt fiber and glass fiber reinforced polymer composites. Lastly, chapter IV gives some suggestions and recommendations for future work.

  18. Control of enzymatic degradation of biodegradable polymers by treatment with biosurfactants, mannosylerythritol lipids, derived from Pseudozyma spp. yeast strains.

    Science.gov (United States)

    Fukuoka, Tokuma; Shinozaki, Yukiko; Tsuchiya, Wataru; Suzuki, Ken; Watanabe, Takashi; Yamazaki, Toshimasa; Kitamoto, Dai; Kitamoto, Hiroko

    2016-02-01

    Cutinase-like esterase from the yeasts Pseudozyma antarctica (PaE) shows strong degradation activity in an agricultural biodegradable plastic (BP) model of mulch films composed of poly(butylene succinate-co-adipate) (PBSA). P. antarctica is known to abundantly produce a glycolipid biosurfactant, mannosylerythritol lipid (MEL). Here, the effects of MEL on PaE-catalyzed degradation of BPs were investigated. Based on PBSA dispersion solution, the degradation of PBSA particles by PaE was inhibited in the presence of MEL. MEL behavior on BP substrates was monitored by surface plasmon resonance (SPR) using a sensor chip coated with polymer films. The positive SPR signal shift indicated that MEL readily adsorbed and spread onto the surface of a BP film. The amount of BP degradation by PaE was monitored based on the negative SPR signal shift and was decreased 1.7-fold by MEL pretreatment. Furthermore, the shape of PBSA mulch films in PaE-containing solution was maintained with MEL pretreatment, whereas untreated films were almost completely degraded and dissolved. These results suggest that MEL covering the surface of BP film inhibits adsorption of PaE and PaE-catalyzed degradation of BPs. We applied the above results to control the microbial degradation of BP mulch films. MEL pretreatment significantly inhibited BP mulch film degradation by both PaE solution and BP-degradable microorganism. Moreover, the degradation of these films was recovered after removal of the coated MEL by ethanol treatment. These results demonstrate that the biodegradation of BP films can be readily and reversibly controlled by a physical approach using MEL.

  19. Thermosetting Polymer-Matrix Composites for Strucutral Repair Applications

    Energy Technology Data Exchange (ETDEWEB)

    Goertzen, William Kirby [Iowa State Univ., Ames, IA (United States)

    2007-12-01

    Several classes of thermosetting polymer matrix composites were evaluated for use in structural repair applications. Initial work involved the characterization and evaluation of woven carbon fiber/epoxy matrix composites for structural pipeline repair. Cyanate ester resins were evaluated as a replacement for epoxy in composites for high-temperature pipe repair applications, and as the basis for adhesives for resin infusion repair of high-temperature composite materials. Carbon fiber/cyanate ester matrix composites and fumed silica/cyanate ester nanocomposites were evaluated for their thermal, mechanical, viscoelastic, and rheological properties as they relate to their structure, chemistry, and processing characteristics. The bisphenol E cyanate ester under investigation possesses a high glass transition temperature, excellent mechanical properties, and unique ambient temperature processability. The incorporate of fumed silica served to enhance the mechanical and rheological properties of the polymer and reduce thermal expansion without sacrificing glass transition or drastically altering curing kinetics. Characterization of the composites included dynamic mechanical analysis, thermomechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy.

  20. Conducting polymer/carbon nanocoil composite electrodes for efficient supercapacitors

    KAUST Repository

    Baby, Rakhi Raghavan

    2012-01-01

    Herein, we report for the first time, conducting polymer (polyaniline (PANI) and polypyrrole (PPY)) coated carbon nanocoils (CNCs) as efficient binder-free electrode materials for supercapacitors. CNCs act as a perfect backbone for the uniform distribution of the conducting polymers in the composites. In two electrode configuration, the samples exhibited high specific capacitance with the values reaching up to 360 and 202 F g -1 for PANI/CNCs and PPY/CNCs respectively. The values obtained for specific capacitance and maximum storage energy per unit mass of the composites were found to be comparable to one of the best reported values for polymer coated multi-walled carbon nanotubes. In addition, the fabricated PANI/CNC based supercapacitors exhibited a high value of 44.61 Wh kg -1 for maximum storage energy per unit mass. Although the devices exhibit an initial capacitance loss due to the instability of the polymer, the specific capacitance stabilizes at a fixed value after 500 charge-discharge cycles. © 2012 The Royal Society of Chemistry.

  1. Nanocellulose in Polymer Composites and Biomedical: Research and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuan [ORNL; Tekinalp, Halil L [ORNL; Peter, William H [ORNL; Eberle, Cliff [ORNL; Naskar, Amit K [ORNL; Ozcan, Soydan [ORNL

    2014-01-01

    Nanocellulose materials are nano-sized cellulose fibers or crystals that are produced by bacteria or derived from plants. These materials exhibit exceptional strength characteristics, light weight, transparency, and excellent biocompatibility. Compared to some other nanomaterials, nanocellulose is renewable and less expensive to produce. As such, a wide range of applications for nanocellulose has been envisioned. Most extensively studied areas include polymer composites and biomedical applications. Cellulose nanofibrils and nanocrystals have been used to reinforce both thermoplastic and thermoset polymers. Given the hydrophilic nature of these materials, the interfacial properties with most polymers are often poor. Various surface modification procedures have thus been adopted to improve the interaction between polymer matrix and cellulose nanofibrils or nanocrystals. In addition, the applications of nanocellulose as biomaterials have been explored including wound dressing, tissue repair, and medical implants. Nanocellulose materials for wound healing and periodontal tissue recovery have become commercially available, demonstrating the great potential of nanocellulose as a new generation of biomaterials. In this review, we highlight the applications of nanocellulose as reinforcing fillers for composites and the effect of surface modification on the mechanical properties as well as the application as biomaterials.

  2. Polímeros biodegradáveis - uma solução parcial para diminuir a quantidade dos resíduos plásticos Biodegradable polymers - a partial way for decreasing the amount of plastic waste

    Directory of Open Access Journals (Sweden)

    Sandra Mara Martins Franchetti

    2006-07-01

    Full Text Available The large use of plastics has generated a waste deposit problem. Today plastic wastes represent 20% in volume of the total waste in the municipal landfills. To solve the disposal problem of plastics methods have been employed such as incineration, recycling, landfill disposal, biodegradation and the use of biodegradable polymers. Incineration of plastic wastes provokes pollution due to the production of poisonous gases. Recycling is important to reduce final costs of plastic materials, but is not enough in face of the amount of discarded plastic. In landfills plastic wastes remain undegraded for a long time, causing space and pollution problems. Biodegradation is a feasible method to treat some plastics, but intensive research is necessary to find conditions for the action of microorganisms. All of these methods are important and the practical application of each one depends on the type and amount of the plastic wastes and the environmental conditions. Therefore, a great deal of research has focused on developing biodegradable plastics and its application because it is an important way for minimizing the effect of the large volume of plastic waste discarded in the world.

  3. Tissue ingrowth polymers and degradation of two biodegradable porous with different porosities and pore sizes

    NARCIS (Netherlands)

    van Tienen, TG; Heijkants, RGJC; Buma, P; de Groot, JH; Pennings, AJ; Veth, RPH

    Commonly, spontaneous repair of lesions in the avascular zone of the knee meniscus does not occur. By implanting a porous polymer scaffold in a knee meniscus defect, the lesion is connected with the abundantly vascularized knee capsule and heating can be realized. Ingrowth of fibrovascular tissue

  4. Polymer-Cement Composites Containing Waste Perlite Powder

    Directory of Open Access Journals (Sweden)

    Paweł Łukowski

    2016-10-01

    Full Text Available Polymer-cement composites (PCCs are materials in which the polymer and mineral binder create an interpenetrating network and co-operate, significantly improving the performance of the material. On the other hand, the need for the utilization of waste materials is a demand of sustainable construction. Various mineral powders, such as fly ash or blast-furnace slag, are successfully used for the production of cement and concrete. This paper deals with the use of perlite powder, which is a burdensome waste from the process of thermal expansion of the raw perlite, as a component of PCCs. The results of the testing of the mechanical properties of the composite and some microscopic observations are presented, indicating that there is a possibility to rationally and efficiently utilize waste perlite powder as a component of the PCC. This would lead to creating a new type of building material that successfully meets the requirements of sustainable construction.

  5. Electron Beam Curing of Polymer Matrix Composites - CRADA Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Janke, C. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howell, Dave [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Norris, Robert E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    1997-05-01

    The major cost driver in manufacturing polymer matrix composite (PMC) parts and structures, and one of the elements having the greatest effect on their quality and performance, is the standard thermal cure process. Thermal curing of PMCs requires long cure times and high energy consumption, creates residual thermal stresses in the part, produces volatile toxic by-products, and requires expensive tooling that is tolerant of the high cure temperatures.

  6. High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures.

    Science.gov (United States)

    Montufar, E B; Casas-Luna, M; Horynová, M; Tkachenko, S; Fohlerová, Z; Diaz-de-la-Torre, S; Dvořák, K; Čelko, L; Kaiser, J

    2018-04-01

    In this work alpha tricalcium phosphate (α-TCP)/iron (Fe) composites were developed as a new family of biodegradable, load-bearing and cytocompatible materials. The composites with composition from pure ceramic to pure metallic samples were consolidated by pulsed electric current assisted sintering to minimise processing time and temperature while improving their mechanical performance. The mechanical strength of the composites was increased and controlled with the Fe content, passing from brittle to ductile failure. In particular, the addition of 25 vol% of Fe produced a ceramic matrix composite with elastic modulus much closer to cortical bone than that of titanium or biodegradable magnesium alloys and specific compressive strength above that of stainless steel, chromium-cobalt alloys and pure titanium, currently used in clinic for internal fracture fixation. All the composites studied exhibited higher degradation rate than their individual components, presenting values around 200 μm/year, but also their compressive strength did not show a significant reduction in the period required for bone fracture consolidation. Composites showed preferential degradation of α-TCP areas rather than β-TCP areas, suggesting that α-TCP can produce composites with higher degradation rate. The composites were cytocompatible both in indirect and direct contact with bone cells. Osteoblast-like cells attached and spread on the surface of the composites, presenting proliferation rate similar to cells on tissue culture-grade polystyrene and they showed alkaline phosphatase activity. Therefore, this new family of composites is a potential alternative to produce implants for temporal reduction of bone fractures. Biodegradable alpha-tricalcium phosphate/iron (α-TCP/Fe) composites are promising candidates for the fabrication of temporal osteosynthesis devices. Similar to biodegradable metals, these composites can avoid implant removal after bone fracture healing, particularly in

  7. Magnetoimpedance of cobalt-based amorphous ribbons/polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Semirov, A.V., E-mail: semirov@mail.ru [Irkutsk State University, Irkutsk (Russian Federation); Derevyanko, M.S.; Bukreev, D.A.; Moiseev, A.A.; Kudryavtsev, V.O. [Irkutsk State University, Irkutsk (Russian Federation); Safronov, A.P. [Ural Federal University, Yekaterinburg (Russian Federation)

    2016-10-01

    The combined influence of the temperature, the elastic tensile stress and the external magnetic field on the total impedance and impedance components were studied for rapidly quenched amorphous Co{sub 75}Fe{sub 5}Si{sub 4}B{sub 16} ribbons. Both as-cast amorphous ribbons and Co{sub 75}Fe{sub 5}Si{sub 4}B{sub 16}/polymer amorphous ribbon based composites were considered. Following polymer coverings were studied: modified rubber solution in o-xylene, solution of butyl methacrylate and methacrylic acid copolymer in isopropanol and solution of polymethylphenylsiloxane resin in toluene. All selected composites showed very good adhesion of the coverings and allowed to provide temperature measurements from 163 K up to 383 K under the applied deforming tensile force up to 30 N. The dependence of the modulus of the impedance and its components on the external magnetic field was influenced by the elastic tensile stresses and was affected by the temperature of the samples. It was shown that maximal sensitivity of the impedance and its components to the external magnetic field was observed at minimal temperature and maximal deforming force depended on the frequency of an alternating current. - Highlights: • Impedance and its components of amorphous Co{sub 75}Fe{sub 5}Si{sub 4}B{sub 16} ribbons were studied. • MI sensitivity to the magnetic field depends on a temperature and a deforming force. • Polymer covering can affect the functional properties of the composite.

  8. Wood-Polymer composites obtained by gamma irradiation

    International Nuclear Information System (INIS)

    Gago, J.; Lopez, A.; Rodriguez, J.; Santiago, J.; Acevedo, M.

    2007-01-01

    In this work we impregnate three Peruvian woods (Calycophy spruceanum Be, Aniba amazonica Meiz and Hura crepitans L) with styrene-polyester resin and methyl methacrylate. The polymerization of the system was promoted by gamma radiation and the experimental optimal condition was obtained with styrene-polyester 1:1 and 15 kGy. The obtained composites show reduced water absorption and better mechanical properties compared to the original wood. The structure of the wood-polymer composites was studied by light microscopy. Water absorption and hardness were also obtained

  9. Wood-Polymer composites obtained by gamma irradiation

    Science.gov (United States)

    Gago, J.; López, A.; Santiago, J.; Acevedo, M.; Rodríguez, J.

    2007-10-01

    In this work we impregnate three Peruvian woods (Calycophy spruceanum Be, Aniba amazonica Meiz and Hura crepitans L) with styrene-polyester resin and methyl methacrylate. The polymerization of the system was promoted by gamma radiation and the experimental optimal condition was obtained with styrene-polyester 1:1 and 15 kGy. The obtained composites show reduced water absorption and better mechanical properties compared to the original wood. The structure of the wood-polymer composites was studied by light microscopy. Water absorption and hardness were also obtained.

  10. Inorganic Polymer Matrix Composite Strength Related to Interface Condition

    Directory of Open Access Journals (Sweden)

    John Bridge

    2009-12-01

    Full Text Available Resin transfer molding of an inorganic polymer binder was successfully demonstrated in the preparation of ceramic fiber reinforced engine exhaust valves. Unfortunately, in the preliminary processing trials, the resulting composite valves were too brittle for in-engine evaluation. To address this limited toughness, the effectiveness of a modified fiber-matrix interface is investigated through the use of carbon as a model material fiber coating. After sequential heat treatments composites molded from uncoated and carbon coated fibers are compared using room temperature 3-point bend testing. Carbon coated Nextel fiber reinforced geopolymer composites demonstrated a 50% improvement in strength, versus that of the uncoated fiber reinforced composites, after the 250 °C postcure.

  11. Progressive fracture of polymer matrix composite structures: A new approach

    Science.gov (United States)

    Chamis, C. C.; Murthy, P. L. N.; Minnetyan, L.

    1992-01-01

    A new approach independent of stress intensity factors and fracture toughness parameters has been developed and is described for the computational simulation of progressive fracture of polymer matrix composite structures. The damage stages are quantified based on physics via composite mechanics while the degradation of the structural behavior is quantified via the finite element method. The approach account for all types of composite behavior, structures, load conditions, and fracture processes starting from damage initiation, to unstable propagation and to global structural collapse. Results of structural fracture in composite beams, panels, plates, and shells are presented to demonstrate the effectiveness and versatility of this new approach. Parameters and guidelines are identified which can be used as criteria for structural fracture, inspection intervals, and retirement for cause. Generalization to structures made of monolithic metallic materials are outlined and lessons learned in undertaking the development of new approaches, in general, are summarized.

  12. PolyMorphine: an innovative biodegradable polymer drug for extended pain relief

    OpenAIRE

    Rosario-Meléndez, Roselin; Harris, Carolyn L.; Delgado-Rivera, Roberto; Yu, Lei; Uhrich, Kathryn E.

    2012-01-01

    Morphine, a potent narcotic analgesic used for the treatment of acute and chronic pain, was chemically incorporated into a poly(anhydride-ester) backbone. The polymer termed “PolyMorphine”, was designed to degrade hydrolytically releasing morphine in a controlled manner to ultimately provide analgesia for an extended time period. PolyMorphine was synthesized via melt-condensation polymerization and its structure was characterized using proton and carbon nuclear magnetic resonance spectroscopi...

  13. Thermal conductivity of polymer composites with oriented boron nitride

    International Nuclear Information System (INIS)

    Ahn, Hong Jun; Eoh, Young Jun; Park, Sung Dae; Kim, Eung Soo

    2014-01-01

    Highlights: • Thermal conductivity depended on the orientation of BN in the polymer matrices. • Hexagonal boron nitride (BN) particles were treated by C 27 H 27 N 3 O 2 and C 14 H 6 O 8 . • Amphiphilic-agent-treated BN particles are more easily oriented in the composite. • BN/PVA composites with C 14 H 6 O 8 -treated BN showed the highest thermal conductivity. • Thermal conductivity of the composites was compared with several theoretical models. - Abstract: Thermal conductivity of boron nitride (BN) with polyvinyl alcohol (PVA) and/or polyvinyl butyral (PVB) was investigated as a function of the degree of BN orientation, the numbers of hydroxyl groups in the polymer matrices and the amphiphilic agents used. The composites with in-plane orientation of BN showed a higher thermal conductivity than the composites with out-of-plane orientation of BN due to the increase of thermal pathway. For a given BN content, the composites with in-plane orientation of BN/PVA showed higher thermal conductivity than the composites with in-plane orientation of BN/PVB. This result could be attributed to the improved degree of orientation of BN, caused by a larger number of hydroxyl groups being present. Those treated with C 14 H 6 O 8 amphiphilic agent demonstrated a higher thermal conductivity than those treated by C 27 H 27 N 3 O 2 . The measured thermal conductivity of the composites was compared with that predicted by the several theoretical models

  14. Effect of cross-linked biodegradable polymers on sustained release of sodium diclofenac-loaded microspheres

    Directory of Open Access Journals (Sweden)

    Avik Kumar Saha

    2013-12-01

    Full Text Available The objective of this study was to formulate an oral sustained release delivery system of sodium diclofenac(DS based on sodium alginate (SA as a hydrophilic carrier in combination with chitosan (CH and sodium carboxymethyl cellulose (SCMC as drug release modifiers to overcome the drug-related adverse effects and to improve bioavailability. Microspheres of DS were prepared using an easy method of ionotropic gelation. The prepared beads were evaluated for mean particle size, entrapment efficiency, swelling capacity, erosion and in-vitro drug release. They were also subjected to various studies such as Fourier Transform Infra-Red Spectroscopy (FTIR for drug polymer compatibility, Scanning Electron Microscopy for surface morphology, X-ray Powder Diffraction Analysis (XRD and Differential Scanning Calorimetric Analysis (DSC to determine the physical state of the drug in the beads. The addition of SCMC during the preparation of polymeric beads resulted in lower drug loading and prolonged release of the DS. The release profile of batches F5 and F6 showed a maximum drug release of 96.97 ± 0.356% after 8 h, in which drug polymer ratio was decreased. The microspheres of sodium diclofenac with the polymers were formulated successfully. Analysis of the release profiles showed that the data corresponds to the diffusion-controlled mechanism as suggested by Higuchi.

  15. First-in-man randomised comparison of the BuMA Supreme biodegradable polymer sirolimus-eluting stent versus a durable polymer zotarolimus-eluting coronary stent: the PIONEER trial.

    Science.gov (United States)

    von Birgelen, Clemens; Asano, Taku; Amoroso, Giovanni; Aminian, Adel; Brugaletta, Salvatore; Vrolix, Mathias; Hernandez-Antolín, Rosana; van de Harst, Pim; Iñiguez, Andres; Janssens, Luc; Smits, Pieter C; Wykrzykowska, Joanna J; Ribeiro, Vasco Gama; Pereira, Hélder; da Silva, Pedro Canas; Piek, Jan J; Onuma, Yoshinobu; Serruys, Patrick W; Sabaté, Manel

    2018-04-20

    A second iteration of a sirolimus-eluting stent (SES) that has a biodegradable PLGA polymer coating with an electrografting base layer on a thin-strut (80 µm) cobalt-chromium platform (BuMA Supreme; SINOMED, Tianjin, China) has been developed. This first-in-man trial aimed to assess the efficacy and safety of the novel device. This randomised, multicentre, single-blinded, non-inferiority trial compared the BuMA Supreme SES versus a contemporary durable polymer zotarolimus-eluting stent (ZES) in terms of angiographic in-stent late lumen loss (LLL) at nine-month follow-up as the primary endpoint. A total of 170 patients were randomly allocated to treatment with either SES (n=83) or ZES (n=87). At nine-month angiographic follow-up, in-stent LLL was 0.29±0.33 mm in the SES group and 0.14±0.37 mm in the ZES group (pnon-inferiority=0.45). The in-stent percent diameter stenosis and the binary restenosis rate of the two treatment arms were similar (19.2±12.0% vs. 16.1±12.6%, p=0.09, and 3.3% vs. 4.4%, p=1.00, respectively). At 12-month clinical follow-up, there was no difference between treatment arms with regard to the device-oriented composite clinical endpoint (4.9% vs. 5.7%; p=0.72). The PIONEER trial did not meet its primary endpoint in terms of in-stent LLL at nine-month follow-up. However, this result did not translate into any increase in restenosis rate or impairment in 12-month clinical outcomes.

  16. A Review on Recent Advances in Stabilizing Peptides/Proteins upon Fabrication in Hydrogels from Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Faisal Raza

    2018-01-01

    Full Text Available Hydrogels evolved as an outstanding carrier material for local and controlled drug delivery that tend to overcome the shortcomings of old conventional dosage forms for small drugs (NSAIDS and large peptides and proteins. The aqueous swellable and crosslinked polymeric network structure of hydrogels is composed of various natural, synthetic and semisynthetic biodegradable polymers. Hydrogels have remarkable properties of functionality, reversibility, sterilizability, and biocompatibility. All these dynamic properties of hydrogels have increased the interest in their use as a carrier for peptides and proteins to be released slowly in a sustained manner. Peptide and proteins are remarkable therapeutic agents in today’s world that allow the treatment of severe, chronic and life-threatening diseases, such as diabetes, rheumatoid arthritis, hepatitis. Despite few limitations, hydrogels provide fine tuning of proteins and peptides delivery with enormous impact in clinical medicine. Novels drug delivery systems composed of smart peptides and molecules have the ability to drive self-assembly and form hydrogels at physiological pH. These hydrogels are significantly important for biological and medical fields. The primary objective of this article is to review current issues concerned with the therapeutic peptides and proteins and impact of remarkable properties of hydrogels on these therapeutic agents. Different routes for pharmaceutical peptides and proteins and superiority over other drugs candidates are presented. Recent advances based on various approaches like self-assembly of peptides and small molecules to form novel hydrogels are also discussed. The article will also review the literature concerning the classification of hydrogels on a different basis, polymers used, “release mechanisms” their physical and chemical characteristics and diverse applications.

  17. A Review on Recent Advances in Stabilizing Peptides/Proteins upon Fabrication in Hydrogels from Biodegradable Polymers.

    Science.gov (United States)

    Raza, Faisal; Zafar, Hajra; Zhu, Ying; Ren, Yuan; -Ullah, Aftab; Khan, Asif Ullah; He, Xinyi; Han, Han; Aquib, Md; Boakye-Yiadom, Kofi Oti; Ge, Liang

    2018-01-18

    Hydrogels evolved as an outstanding carrier material for local and controlled drug delivery that tend to overcome the shortcomings of old conventional dosage forms for small drugs (NSAIDS) and large peptides and proteins. The aqueous swellable and crosslinked polymeric network structure of hydrogels is composed of various natural, synthetic and semisynthetic biodegradable polymers. Hydrogels have remarkable properties of functionality, reversibility, sterilizability, and biocompatibility. All these dynamic properties of hydrogels have increased the interest in their use as a carrier for peptides and proteins to be released slowly in a sustained manner. Peptide and proteins are remarkable therapeutic agents in today's world that allow the treatment of severe, chronic and life-threatening diseases, such as diabetes, rheumatoid arthritis, hepatitis. Despite few limitations, hydrogels provide fine tuning of proteins and peptides delivery with enormous impact in clinical medicine. Novels drug delivery systems composed of smart peptides and molecules have the ability to drive self-assembly and form hydrogels at physiological pH. These hydrogels are significantly important for biological and medical fields. The primary objective of this article is to review current issues concerned with the therapeutic peptides and proteins and impact of remarkable properties of hydrogels on these therapeutic agents. Different routes for pharmaceutical peptides and proteins and superiority over other drugs candidates are presented. Recent advances based on various approaches like self-assembly of peptides and small molecules to form novel hydrogels are also discussed. The article will also review the literature concerning the classification of hydrogels on a different basis, polymers used, "release mechanisms" their physical and chemical characteristics and diverse applications.

  18. Shape memory-based tunable resistivity of polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hongsheng, E-mail: hongshengluo@163.com [Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Zhou, Xingdong; Ma, Yuanyuan [Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Yi, Guobin, E-mail: ygb116@163.com [Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Cheng, Xiaoling [Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Zhu, Yong [Shanghai Hiend Polyurethane Inc., No. 389, Jinshan District, Shanghai (China); Zu, Xihong; Zhang, Nanjun; Huang, Binghao; Yu, Lifang [Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China)

    2016-02-15

    Graphical abstract: Hybrid nanofillers of the CNTs and AgNPs were embedded into a shape memory polyurethane. The composites exhibited tunable conduction, which could be facially tailored by the compositions and the thermal–mechanical programming. - Highlights: • Electrically conductive polymer composites in bi-layer structure were fabricated. • The CNTs/AgNPs layer had influence on the mechanics and thermal transitions. • The conductivity could be facially tailored via a thermo-mechanical programming. • The AgNPs contents enlarged the gauge factor of the resistivity–strain curves. • Tunneling theory was suitable for simulating the strain-dependent behaviors. - Abstract: A conductive composite in bi-layer structure was fabricated by embedding hybrid nanofillers, namely carbon nanotubes (CNTs) and silver nanoparticles (AgNPs), into a shape memory polyurethane (SMPU). The CNT/AgNP-SMPU composites exhibited a novel tunable conductivity which could be facially tailored in wide range via the compositions or a specifically designed thermo-mechanical shape memory programming. The morphologies of the conductive fillers and the composites were investigated by scanning electron microscope (SEM). The mechanical and thermal measurements were performed by tensile tests and differential scanning calorimetry (DSC). By virtue of a specifically explored shape memory programming, the composites were stretched and fixed into different temporary states. The electrical resistivity (R{sub s}) varied accordingly, which was able to be stabilized along with the shape fixing. Theoretical prediction based upon the tunneling model was performed. The R{sub s}–strain curves of the composites with different compositions were well fitted. Furthermore, the relative resistivity and the Gauge factor along with the elongation were calculated. The influence of the compositions on the strain-dependent R{sub s} was disclosed. The findings provided a new avenue to tailor the conductivity

  19. Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre.

    Science.gov (United States)

    Priya, Bhanu; Gupta, Vinod Kumar; Pathania, Deepak; Singha, Amar Singh

    2014-08-30

    Cellulosic fibres reinforced composite blend films of starch/poly(vinyl alcohol) (PVA) were prepared by using citric acid as plasticizer and glutaraldehyde as the cross-linker. The mechanical properties of cellulosic fibres reinforced composite blend were compared with starch/PVA crossed linked blend films. The increase in the tensile strength, elongation percentage, degree of swelling and biodegradability of blend films was evaluated as compared to starch/PVA crosslinked blend films. The value of different evaluated parameters such as citric acid, glutaraldehyde and reinforced fibre to starch/PVA (5:5) was found to be 25 wt.%, 0.100 wt.% and 20 wt.%, respectively. The blend films were characterized using Fourier transform-infrared spectrophotometry (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA/DTA/DTG). Scanning electron microscopy illustrated a good adhesion between starch/PVA blend and fibres. The blend films were also explored for antimicrobial activities against pathogenic bacteria like Staphylococcus aureus and Escherichia coli. The results confirmed that the blended films may be used as exceptional material for food packaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. High-performance biodegradable polylactide composites fabricated using a novel plasticizer and functionalized eggshell powder.

    Science.gov (United States)

    Kong, Junjun; Li, Yi; Bai, Yungang; Li, Zonglin; Cao, Zengwen; Yu, Yancun; Han, Changyu; Dong, Lisong

    2018-06-01

    A novel polyester poly(diethylene glycol succinate) (PDEGS) was synthesized and evaluated as a plasticizer for polylactide (PLA) in this study. Meanwhile, an effective sustainable filler, functionalized eggshell powder (FES) with a surface layer of calcium phenyphosphonate was also prepared. Then, PLA biocomposites were prepared from FES and PDEGS using a facile melt blending process. The addition of 15 wt% PDEGS as plasticizer showed good miscibility with PLA macromolecules and increased the chain mobility of PLA. The crystallization kinetics of PLA composites revealed that the highly effective nucleating FES significantly improved the crystallization ability of PLA at both of non-isothermal and isothermal conditions. In addition, the effective plasticizer and well-dispersed FES increased the elongation at break from 6% of pure PLA to over 200% for all of the plasticized PLA composites. These biodegradable PLA biocomposites, coupled with excellent crystallization ability and tunable mechanical properties, demonstrate their potential as alternatives to traditional commodity plastics. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Innovative biodegradable poly(L-lactide/collagen/hydroxyapatite composite fibrous scaffolds promote osteoblastic proliferation and differentiation

    Directory of Open Access Journals (Sweden)

    Zhou GQ

    2017-10-01

    Full Text Available Guoqiang Zhou,1–3 Sudan Liu,1 Yanyan Ma,1 Wenshi Xu,1 Wei Meng,1 Xue Lin,1 Wenying Wang,1,3 Shuxiang Wang,1–3 Jinchao Zhang1–3 1College of Chemistry and Environmental Science, 2Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, 3Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, People’s Republic of China Abstract: The development of an artificial bone graft which can promote the regeneration of fractures or diseased bones is currently the most challenging aspect in bone tissue engineering. To achieve the purpose of promoting bone proliferation and differentiation, the artificial graft needs have a similar structure and composition of extracellular matrix. One-step electrospinning method of biocomposite nanofibers containing hydroxyapatite (HA nanoparticles and collagen (Coll were developed for potential application in bone tissue engineering. Nanocomposite scaffolds of poly(L-lactide (PLLA, PLLA/HA, PLLA/Coll, and PLLA/Coll/HA were fabricated by electrospinning. The morphology, diameter, elements, hydrophilicity, and biodegradability of the composite scaffolds have been investigated. The biocompatibility of different nanocomposite scaffolds was assessed using mouse osteoblasts MC3T3-E1 in vitro, and the proliferation, differentiation, and mineralization of cells on different nanofibrous scaffolds were investigated. The results showed that PLLA/Coll/HA nanofiber scaffolds enhanced cell adhesion, spreading, proliferation, differentiation, mineralization, and gene expression of osteogenic markers compared to other scaffolds. In addition, the nanofibrous scaffolds maintained a stable composition at the beginning of the degradation period and morphology wastage and weight loss were observed when incubated for up to 80 days in physiological simulated conditions. The PLLA/Coll/HA composite nanofibrous scaffolds could be a potential material for guided bone regeneration

  2. Enhancement of the optical response in a biodegradable polymer/azo-dye film by the addition of carbon nanotubes

    International Nuclear Information System (INIS)

    Costanzo, Guadalupe Díaz; Ledesma, Silvia; Ribba, Laura; Goyanes, Silvia

    2014-01-01

    A new biodegradable photoresponsive material was developed using poly(lactic acid) (PLA) as the matrix material and Disperse Orange 3 (DO3) as photoisomerizable azo-dye. It was observed that the addition of multi-walled carbon nanotubes (MWCNTs) leads to a new phenomenon consisting of an enhancement of the optical anisotropy in a wide range of temperatures. In particular, the optical anisotropy increases 100% at room temperature. Moreover, the material containing MWCNTs shows a faster optical response that is evidenced as an increase in the growth rate of optical anisotropy. Spectroscopic data is provided to study the interaction among DO3, MWCNTs and PLA. The enhancement of optical anisotropy obtained with the addition of MWCNTs was related to the glass transition temperature (T g ) of each material. Maximum optical anisotropy was obtained 15 °C below the T g for both materials. Results are interpreted in terms of the interactions among DO3, MWCNTs and PLA and the packing density of the dye into the polymer chains. (paper)

  3. On Healable Polymers and Fiber-Reinforced Composites

    Science.gov (United States)

    Nielsen, Christian Eric

    Polymeric materials capable of healing damage would be valuable in structural applications where access for repair is limited. Approaches to creating such materials are reviewed, with the present work focusing on polymers with thermally reversible covalent cross-links. These special cross-links are Diels-Alder (DA) adducts, which can be separated and re-formed, enabling healing of mechanical damage at the molecular level. Several DA-based polymers, including 2MEP4FS, are mechanically and thermally characterized. The polymerization reaction of 2MEP4FS is modeled and the number of established DA adducts is associated with the glass transition temperature of the polymer. The models are applied to concentric cylinder rotational measurements of 2MEP4FS prepolymer at room and elevated temperatures to describe the viscosity as a function of time, temperature, and conversion. Mechanical damage including cracks and scratches are imparted in cured polymer samples and subsequently healed. Damage due to high temperature thermal degradation is observed to not be reversible. The ability to repair damage without flowing polymer chains makes DA-based healable polymers particularly well-suited for crack healing. The double cleavage drilled compression (DCDC) fracture test is investigated as a useful method of creating and incrementally growing cracks in a sample. The effect of sample geometry on the fracture behavior is experimentally and computationally studied. Computational and empirical models are developed to estimate critical stress intensity factors from DCDC results. Glass and carbon fiber-reinforced composites are fabricated with 2MEP4FS as the matrix material. A prepreg process is developed that uses temperature to control the polymerization rate of the monomers and produce homogeneous prepolymer for integration with a layer of unidirectional fiber. Multiple prepreg layers are laminated to form multi-layered cross-ply healable composites, which are characterized in

  4. Compositional and sensory characterization of red wine polymers.

    Science.gov (United States)

    Wollmann, Nadine; Hofmann, Thomas

    2013-03-06

    After isolation from red wine by means of ultrafiltration and gel adsorption chromatography, the composition of the highly astringent tasting high-molecular weight polymers was analyzed by means of HPLC-MS/MS, HPLC-UV/vis, and ion chromatography after thiolytic, alkaline, and acidic depolymerization and, on the basis of the quantitative data obtained as well as model incubation experiments, key structural features of the red wine polymers were proposed. The structural backbone of the polymers seems to be comprised of a procyanidin chain with (-)-epicatechin, (+)-catechin, (-)-epicatechin-3-O-gallate units as extension and terminal units as well as (-)-epigallocatechin as extension units. In addition, acetaldehyde was shown to link different procyanidins at the A-ring via an 1,1-ethylene bridge and anthocyanins and pyranoanthocyanins were found to be linked to the procyanidin backbone via a C-C-linkage at position C(6) or C(8), respectively. Alkaline hydrolysis demonstrated the polymeric procyanidins to be esterified with various organic acids and phenolic acids, respectively. In addition, the major part of the polysaccharides present in the red wine polymeric fraction were found not to be covalently linked to procyanidins. Interestingly, sensory evaluation of individual fractions of the red wine polymers did not show any significant difference in the astringent threshold concentrations, nor in the astringency intensity in supra-threshold concentrations and demonstrated the mean degree of polymerization as well as the galloylation degree not to have an significant influence on the astringency perception.

  5. Composition inversion in mixtures of binary colloids and polymer

    Science.gov (United States)

    Zhang, Isla; Pinchaipat, Rattachai; Wilding, Nigel B.; Faers, Malcolm A.; Bartlett, Paul; Evans, Robert; Royall, C. Patrick

    2018-05-01

    Understanding the phase behaviour of mixtures continues to pose challenges, even for systems that might be considered "simple." Here, we consider a very simple mixture of two colloidal and one non-adsorbing polymer species, which can be simplified even further to a size-asymmetrical binary mixture, in which the effective colloid-colloid interactions depend on the polymer concentration. We show that this basic system exhibits surprisingly rich phase behaviour. In particular, we enquire whether such a system features only a liquid-vapor phase separation (as in one-component colloid-polymer mixtures) or whether, additionally, liquid-liquid demixing of two colloidal phases can occur. Particle-resolved experiments show demixing-like behaviour, but when combined with bespoke Monte Carlo simulations, this proves illusory, and we reveal that only a single liquid-vapor transition occurs. Progressive migration of the small particles to the liquid phase as the polymer concentration increases gives rise to composition inversion—a maximum in the large particle concentration in the liquid phase. Close to criticality, the density fluctuations are found to be dominated by the larger colloids.

  6. Stable Biodegradable Polymers for Delivery of Both Polar and Non-Polar Drugs. Phase I

    Science.gov (United States)

    1996-10-01

    containing hydromorphone hydrochloride (HMh). In two, containing HMh at 25 and 50% (w/w), the lactide to glycolide ratio of the polymer was 85:15...semisynthetic opioid analgesic which meets these criteria. It is sold as the hydrochloride under the trade name Dilaudid. A dose of 1.5 mg can achieve a 50...Numorphan) 1.0-1.1 Slightly shorter Levorphanol tartrate (Levo-Dromoran) 2.0-2.3 Same Butorphanol tartrate (Stadol) 1.5-2.5 Same Methadone HC1 (Dolophine

  7. Nanofibers extraction from palm mesocarp fiber for biodegradable polymers incorporation; Extracao de nanofibras a partir do mesocarpo do dende para incorporacao em polimeros biodegradsveis

    Energy Technology Data Exchange (ETDEWEB)

    Kuana, Vanessa A.; Rodrigues, Vanessa B.; Takahashi, Marcio C., E-mail: ayu.kuana@gmail.com [Universidade Federal de Sao Carlos (UFSCar), Sao Carlos, SP (Brazil); Campos, Adriana de; Sena Neto, Alfredo R.; Mattoso, Luiz H.C.; Marconcini, Jose M. [Embrapa Instrumentacao (EMBRAPA/CNPDIA), Sao Carlos, SP (Brazil)

    2015-07-01

    The palm mesocarp fibers are residues produced by the palm oil industries. The objective of this paper is to determine an efficient treatment to extract crystal cellulose nanofibers from the palm mesocarp fibers to be incorporated in biodegradable polymeric composites. The fibers were saponified, bleached and analyzed with thermal gravimetric analysis, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. (author)

  8. Fique Fabric: A Promising Reinforcement for Polymer Composites

    Directory of Open Access Journals (Sweden)

    Sergio Neves Monteiro

    2018-02-01

    Full Text Available A relatively unknown natural fiber extracted from the leaves of the fique plant, native of the South American Andes, has recently shown potential as reinforcement of polymer composites for engineering applications. Preliminary investigations indicated a promising substitute for synthetic fibers, competing with other well-known natural fibers. The fabric made from fique fibers have not yet been investigated as possible composite reinforcement. Therefore, in the present work a more thorough characterization of fique fabric as a reinforcement of composites with a polyester matrix was performed. Thermal mechanical properties of fique fabric composites were determined by dynamic mechanical analysis (DMA. The ballistic performance of plain woven fique fabric-reinforced polyester matrix composites was investigated as a second layer in a multilayered armor system (MAS. The results revealed a sensible improvement in thermal dynamic mechanical behavior. Both viscoelastic stiffness and glass transition temperature were increased with the amount of incorporated fique fabric. In terms of ballistic results, the fique fabric composites present a performance similar to that of the much stronger KevlarTM as an MAS second layer with the same thickness. A cost analysis indicated that armor vests with fique fabric composites as an MAS second layer would be 13 times less expensive than a similar creation made with Kevlar™.

  9. Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper.

    Science.gov (United States)

    Song, Zhaoping; Xiao, Huining; Zhao, Yi

    2014-10-13

    New biodegradable nanocomposites have been successfully prepared by incorporating modified nano-cellulose fibers (NCF) in a biodegradable polylactic acid (PLA) matrix in this work. The hydrophobic-modified NCF was obtained by grafting hydrophobic monomers on NCF to improve the compatibility between NCF and PLA during blending. The resulting NCF/PLA composites were then applied on paper surface via a cast-coating process in an attempt to reduce the water vapor transmission rate (WVTR) of paper. The WVTR tests, conducted under various testing conditions and with different coating weights, demonstrated that the modified NCF/PLA composites coating played a critical role in lowering WVTR of paper. The lowest WVTR value was 34 g/m(2)/d, which was obtained with an addition of 1% of modified NCF to PLA and the composites coating weight at 40 g/m(2) and substantially lower than the control value at 1315 g/m(2)/d. The paper coated with the modified biodegradable composite is promising as green-based packaging materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Meta-Analysis of Randomized Clinical Trials Comparing Biodegradable Polymer Drug-Eluting Stent to Second-Generation Durable Polymer Drug-Eluting Stents.

    Science.gov (United States)

    El-Hayek, Georges; Bangalore, Sripal; Casso Dominguez, Abel; Devireddy, Chandan; Jaber, Wissam; Kumar, Gautam; Mavromatis, Kreton; Tamis-Holland, Jacqueline; Samady, Habib

    2017-03-13

    The authors sought to perform a meta-analysis of randomized clinical trials (RCTs) comparing the safety and efficacy of biodegradable polymer drug-eluting stents (BP-DES) to second-generation durable polymer drug-eluting stents (DP-DES). Prior meta-analyses have established the superiority of BP-DES over bare-metal stents and first-generation DP-DES; however, their advantage compared with second-generation DP-DES remains controversial. The authors searched PubMed and Scopus databases for RCTs comparing BP-DES to the second-generation DP-DES. Outcomes included target vessel revascularization (TVR) as efficacy outcome and cardiac death, myocardial infarction (MI), and definite or probable stent thrombosis (ST) as safety outcomes. In addition, we performed landmark analysis for endpoints beyond 1 year of follow-up and a subgroup analysis based on the stent characteristics. The authors included 16 RCTs comprising 19,886 patients in the meta-analysis. At the longest available follow-up (mean duration 26 months), we observed no significant differences in TVR (p = 0.62), cardiac death (p = 0.46), MI (p = 0.98), or ST (risk ratio: 0.83, 95% confidence interval: 0.64 to 1.09; p = 0.19). Our landmark analysis showed that BP-DES were not associated with a reduction in the risk of very late ST (risk ratio: 0.87, 95% confidence interval: 0.49 to 1.53; p = 0.62). Similar outcomes were seen regardless of the eluting drug (biolimus vs. sirolimus), the stent platform (stainless steel vs. alloy), the kinetics of polymer degradation or drug release (6 months), the strut thickness of the BP-DES (thin 100 μm), or the DAPT duration (≥6 months vs. ≥12 months). BP-DES have similar safety and efficacy profiles to second-generation DP-DES. Published by Elsevier Inc.

  11. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    Science.gov (United States)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  12. Long fiber polymer composite property calculation in injection molding simulation

    Science.gov (United States)

    Jin, Xiaoshi; Wang, Jin; Han, Sejin

    2013-05-01

    Long fiber filled polymer composite materials have attracted a great attention and usage in recent years. However, the injection and compression molded long fiber composite materials possess complex microstructures that include spatial variations in fiber orientation and length. This paper presents the recent implemented anisotropic rotary diffusion - reduced strain closure (ARD-RSC) model for predicting fiber orientation distribution[1] and a newly developed fiber breakage model[2] for predicting fiber length distribution in injection and compression molding simulation, and Eshelby-Mori-Tanaka model[3,4] with fiber-matrix de-bonding model[5] have been implemented to calculate the long fiber composite property distribution with predicted fiber orientation and fiber length distributions. A validation study on fiber orientation, fiber breakage and mechanical property distributions are given with injection molding process simulation.

  13. Charge Transport in Carbon Nanotubes-Polymer Composite Photovoltaic Cells

    Science.gov (United States)

    Ltaief, Adnen; Bouazizi, Abdelaziz; Davenas, Joel

    2009-01-01

    We investigate the dark and illuminated current density-voltage (J/V) characteristics of poly(2-methoxy-5-(2’-ethylhexyloxy)1-4-phenylenevinylene) (MEH-PPV)/single-walled carbon nanotubes (SWNTs) composite photovoltaic cells. Using an exponential band tail model, the conduction mechanism has been analysed for polymer only devices and composite devices, in terms of space charge limited current (SCLC) conduction mechanism, where we determine the power parameters and the threshold voltages. Elaborated devices for MEH-PPV:SWNTs (1:1) composites showed a photoresponse with an open-circuit voltage Voc of 0.4 V, a short-circuit current density JSC of 1 µA/cm² and a fill factor FF of 43%. We have modelised the organic photovoltaic devices with an equivalent circuit, where we calculated the series and shunt resistances.

  14. Encapsulation of anticancer drug and magnetic particles in biodegradable polymer nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Koneracka, M; Zavisova, V; Tomasovicova, N; Kopcansky, P; Timko, M; JurIkova, A; Csach, K; Kavecansky, V; Lancz, G [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice (Slovakia); Muckova, M [Hameln rds a.s., Horna 36, Modra (Slovakia)], E-mail: konerack@saske.sk

    2008-05-21

    In this study, we have prepared PLGA (poly-D,L-lactide-co-glycolide) nanospheres loaded with biocompatible magnetic fluid and anticancer drug taxol by a modified nanoprecipitation technique and investigated their magnetic properties. A magnetic fluid, MF-PEG, with a biocompatible layer of polyethylene glycol (PEG), was chosen as a magnetic carrier. The PLGA, whose copolymer ratio of D,L-lactide to glycolide is 85:15, was utilized as a capsulation material. Taxol, as an important anticancer drug, was chosen for its significant role against a wide range of tumours. The morphology and particle size distributions of the prepared nanospheres were investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and showed a spherical shape of prepared nanospheres with size 250 nm. Infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetry (TGA) analysis confirmed incorporation of magnetic particles and taxol into the PLGA polymer. The results showed good encapsulation with magnetite content 21.5 wt% and taxol 0.5 wt%. Magnetic properties of magnetic fluids and taxol within the PLGA polymer matrix were investigated by SQUID magnetometry from 4.2 to 300 K. The SQUID measurements showed superparamagnetism of prepared nanospheres with a blocking temperature of 160 K and saturation magnetization 1.4 mT.

  15. PolyMorphine: an innovative biodegradable polymer drug for extended pain relief.

    Science.gov (United States)

    Rosario-Meléndez, Roselin; Harris, Carolyn L; Delgado-Rivera, Roberto; Yu, Lei; Uhrich, Kathryn E

    2012-09-28

    Morphine, a potent narcotic analgesic used for the treatment of acute and chronic pain, was chemically incorporated into a poly(anhydride-ester) backbone. The polymer termed "PolyMorphine", was designed to degrade hydrolytically releasing morphine in a controlled manner to ultimately provide analgesia for an extended time period. PolyMorphine was synthesized via melt-condensation polymerization and its structure was characterized using proton and carbon nuclear magnetic resonance spectroscopies, and infrared spectroscopy. The weight-average molecular weight and the thermal properties were determined. The hydrolytic degradation pathway of the polymer was determined by in vitro studies, showing that free morphine is released. In vitro cytocompatibility studies demonstrated that PolyMorphine is non-cytotoxic towards fibroblasts. In vivo studies using mice showed that PolyMorphine provides analgesia for 3 days, 20 times the analgesic window of free morphine. The animals retained full responsiveness to morphine after being subjected to an acute morphine challenge. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Simple and cost-effective fabrication of solid biodegradable polymer microneedle arrays with adjustable aspect ratio for transdermal drug delivery using acupuncture microneedles

    International Nuclear Information System (INIS)

    Cha, Kyoung Je; Kim, Taewan; Park, Sung Jea; Kim, Dong Sung

    2014-01-01

    Polymer microneedle arrays (MNAs) have received much attention for their use in transdermal drug delivery and microneedle therapy systems due to the advantages they offer, such as low cost, good mechanical properties, and a versatile choice of materials. Here, we present a simple and cost-effective method for the fabrication of a biodegradable polymer MNA in which the aspect ratio of each microneedle is adjustable using commercially available acupuncture microneedles. In our process, a master template with acupuncture microneedles, whose shape will be the final MNA, was carefully prepared by fixing them onto a plastic substrate with selectively drilled holes which, in turn, determine the aspect ratios of the microneedles. A polylactic acid (PLA; a biodegradable polymer) MNA was fabricated by a micromolding process with a polydimethylsiloxane (PDMS) mold containing the cavity of the microneedles, which was obtained by the PDMS replica molding against the master template. The mechanical force and degradation behavior of the replicated PLA MNA were characterized with the help of a compression test and an accelerated degradation test, respectively. Finally, the transdermal drug delivery performance of the PLA MNA was successfully simulated by two different methods of penetration and staining, using the skin of a pig cadaver. These results indicated that the proposed method can be effectively used for the fabrication of polymer MNAs which can be used in various microneedle applications. (paper)

  17. Simple and cost-effective fabrication of solid biodegradable polymer microneedle arrays with adjustable aspect ratio for transdermal drug delivery using acupuncture microneedles

    Science.gov (United States)

    Cha, Kyoung Je; Kim, Taewan; Jea Park, Sung; Kim, Dong Sung

    2014-11-01

    Polymer microneedle arrays (MNAs) have received much attention for their use in transdermal drug delivery and microneedle therapy systems due to the advantages they offer, such as low cost, good mechanical properties, and a versatile choice of materials. Here, we present a simple and cost-effective method for the fabrication of a biodegradable polymer MNA in which the aspect ratio of each microneedle is adjustable using commercially available acupuncture microneedles. In our process, a master template with acupuncture microneedles, whose shape will be the final MNA, was carefully prepared by fixing them onto a plastic substrate with selectively drilled holes which, in turn, determine the aspect ratios of the microneedles. A polylactic acid (PLA; a biodegradable polymer) MNA was fabricated by a micromolding process with a polydimethylsiloxane (PDMS) mold containing the cavity of the microneedles, which was obtained by the PDMS replica molding against the master template. The mechanical force and degradation behavior of the replicated PLA MNA were characterized with the help of a compression test and an accelerated degradation test, respectively. Finally, the transdermal drug delivery performance of the PLA MNA was successfully simulated by two different methods of penetration and staining, using the skin of a pig cadaver. These results indicated that the proposed method can be effectively used for the fabrication of polymer MNAs which can be used in various microneedle applications.

  18. The dynamic response of carbon fiber-filled polymer composites

    Directory of Open Access Journals (Sweden)

    Patterson B.

    2012-08-01

    Full Text Available The dynamic (shock responses of two carbon fiber-filled polymer composites have been quantified using gas gun-driven plate impact experimentation. The first composite is a filament-wound, highly unidirectional carbon fiber-filled epoxy with a high degree of porosity. The second composite is a chopped carbon fiber- and graphite-filled phenolic resin with little-to-no porosity. Hugoniot data are presented for the carbon fiber-epoxy (CE composite to 18.6 GPa in the through-thickness direction, in which the shock propagates normal to the fibers. The data are best represented by a linear Rankine-Hugoniot fit: Us = 2.87 + 1.17 ×up(ρ0 = 1.536g/cm3. The shock wave structures were found to be highly heterogeneous, both due to the anisotropic nature of the fiber-epoxy microstructure, and the high degree of void volume. Plate impact experiments were also performed on a carbon fiber-filled phenolic (CP composite to much higher shock input pressures, exceeding the reactants-to-products transition common to polymers. The CP was found to be stiffer than the filament-wound CE in the unreacted Hugoniot regime, and transformed to products near the shock-driven reaction threshold on the principal Hugoniot previously shown for the phenolic binder itself. [19] On-going research is focused on interrogating the direction-dependent dyanamic response and dynamic failure strength (spall for the CE composite in the TT and 0∘ (fiber directions.

  19. Biodegradable polymer nanocarriers for therapeutic antisense microRNA delivery in living animals

    Science.gov (United States)

    Paulmurugan, Ramasamy; Sekar, Narayana M.; Sekar, Thillai V.

    2012-03-01

    MicroRNAs are endogenous regulators of gene expression, deregulated in several cellular diseases including cancer. Altering the cellular microenvironment by modulating the microRNAs functions can regulate different genes involved in major cellular processes, and this approach is now being investigated as a promising new generation of molecularly targeted anti-cancer therapies. AntagomiRs (Antisense-miRNAs) are a novel class of chemically modified stable oligonucleotides used for blocking the functions of endogenous microRNAs, which are overexpressed. A key challenge in achieving effective microRNAbased therapeutics lies in the development of an efficient delivery system capable of specifically delivering antisense oligonucleotides and target cancer cells in living animals. We are now developing an effective delivery system designed to selectively deliver antagomiR- 21 and antagomiR-10b to triple negative breast cancer cells, and to revert tumor cell metastasis and invasiveness. The FDA-approved biodegradable PLGA-nanoparticles were selected as a carrier for antagomiRs delivery. Chemically modified antagomiRs (antagomiR-21 and antagomiR-10b) were co-encapsulated in PEGylated-PLGA-nanoparticles by using the double-emulsification (W/O/W) solvent evaporation method, and the resulting average particle size of 150-200nm was used for different in vitro and in vivo experiments. The antagomiR encapsulated PLGA-nanoparticles were evaluated for their in vitro antagomiRs delivery, intracellular release profile, and antagomiRs functional effects, by measuring the endogenous cellular targets, and the cell growth and metastasis. The xenografts of tumor cells in living mice were used for evaluating the anti-metastatic and anti-invasive properties of cells. The results showed that the use of PLGA for antagomiR delivery is not only efficient in crossing cell membrane, but can also maintain functional intracellular antagomiRs level for a extended period of time and achieve

  20. Dual Functional Nanocarrier for Cellular Imaging and Drug Delivery in Cancer Cells Based on π-Conjugated Core and Biodegradable Polymer Arms.

    Science.gov (United States)

    Kulkarni, Bhagyashree; Surnar, Bapurao; Jayakannan, Manickam

    2016-03-14

    Multipurpose polymer nanoscaffolds for cellular imaging and delivery of anticancer drug are urgently required for the cancer therapy. The present investigation reports a new polymer drug delivery concept based on biodegradable polycaprolactone (PCL) and highly luminescent π-conjugated fluorophore as dual functional nanocarrier for cellular imaging and delivery vehicles for anticancer drug to cancer cells. To accomplish this goal, a new substituted caprolactone monomer was designed, and it was subjected to ring opening polymerization using a blue luminescent bishydroxyloligo-phenylenevinylene (OPV) fluorophore as an initiator. A series of A-B-A triblock copolymer building blocks with a fixed OPV π-core and variable chain biodegradable PCL arm length were tailor-made. These triblocks self-assembled in organic solvents to produce well-defined helical nanofibers, whereas in water they produced spherical nanoparticles (size ∼150 nm) with blue luminescence. The hydrophobic pocket of the polymer nanoparticle was found to be an efficient host for loading water insoluble anticancer drug such as doxorubicin (DOX). The photophysical studies revealed that there was no cross-talking between the OPV and DOX chromophores, and their optical purity was retained in the nanoparticle assembly for cellular imaging. In vitro studies revealed that the biodegradable PCL arm was susceptible to enzymatic cleavage at the intracellular lysosomal esterase under physiological conditions to release the loaded drugs. The nascent nanoparticles were found to be nontoxic to cancer cells, whereas the DOX-loaded nanoparticles accomplished more than 80% killing in HeLa cells. Confocal microscopic analysis confirmed the cell penetrating ability of the blue luminescent polymer nanoparticles and their accumulation preferably in the cytoplasm. The DOX loaded red luminescent polymer nanoparticles were also taken up by the cells, and the drug was found to be accumulated at the perinuclear environment

  1. Effect of filler loading and silane modification on the biodegradability of SBR composites reinforced with peanut shell powder

    Science.gov (United States)

    Shaniba, V.; Balan, Aparna K.; Sreejith, M. P.; Jinitha, T. V.; Subair, N.; Purushothaman, E.

    2017-06-01

    The development of biocomposites and their applications are important in material science due to environmental and sustainability issues. The extent of degradation depends on the nature of reinforcing filler, particle size and their modification. In this article, we tried to focus on the biodegradation of composites of Styrene Butadiene Rubber (SBR) reinforced with Peanut Shell Powder (PSP) by soil burial test. The composites of SBR with untreated PSP (UPSP) and silane modified PSP (SPSP) of 10 parts per hundred rubber (phr) and 20 phr filler loading in two particle size were buried in the garden soil for six months. The microbial degradation were assessed through the measurement of weight loss, tensile strength and hardness at definite period. The study shows that degradation increases with increase in filler loading and particle size. The chemical treatment of filler has been found to resist the degradation. The analysis of morphological properties by the SEM also confirmed biodegradation process by the microorganism in the soil.

  2. Biodegradable micromechanical sensors

    DEFF Research Database (Denmark)

    Keller, Stephan Sylvest; Greve, Anders; Schmid, Silvan

    of mechanical and thermal properties of polymers. For example, measurements of the resonance frequency of cantilevers were used to characterize thin polymer coatings in various environmental conditions [2]. Also, the influence of humidity on the Young’s modulus of SU-8 was evaluated [3]. However, introduction...... (NIL). Second, we used spray-coating to deposit thin biodegradable films on microcantilevers. Both approaches allowed the determination of the Young’s modulus of the biopolymer. Furthermore, biodegradation by enzymes was investigated....

  3. Influence of copper composition on mechanical properties of biodegradable material Mg-Zn-Cu for orthopedic application

    Science.gov (United States)

    Purniawan, A.; Maulidiah, H. M.; Purwaningsih, H.

    2018-04-01

    Implant is usually used as a treatment of bone fracture. At the moment, non-biodegradable implants is still widely employed in this application. Non-biodegradable implant requires re-surgery to retrieve implants that are installed in the body. It increase the cost and it is painful for the patient itself. In order to solve the problem, Mg-based biodegradable metals is developing so that the material will be compatible with body and gradually degrade in patient's body. However, magnesium has several disadvantages such as high degradation rates and low mechanical properties when compared to the mechanical properties of natural bone. Therefore, it is necessary to add elements into the magnesium alloy. In this research, copper (Cu) was alloyed in Mg alloy based biodegradable material. In addition, Cu is not only strengthening the structure but also for supporting element for the immune system, antibacterial and antifungal. The purpose of this research is to improve mechanical properties of Mg-based biodegradable material using Cu alloying. Powder metallurgy method was used to fabricate the device. The variation used in this research is the composition of Cu (0.5, 1, and 1.5% Cu). The porosity test was performed using apparent porosity test, compressive test and hardness test to know the mechanical properties of the alloy, and the weightless test to find out the material degradation rate. Based on the results can be conclude that Mg-Zn-Cu alloy material with 1% Cu composition is the most suitable specimen to be applied as a candidate for orthopedic devices material with hardness value is 393.6 MPa. Also obtained the value of the compressive test is 153 MPa.

  4. Thermal Conductivity of Polymer Composite poypropilene-Sand

    International Nuclear Information System (INIS)

    Betha; Mashuri; Sudirman; Karo Karo, Aloma

    2001-01-01

    Thermal conductivity composite materials polypropylene (PP)-sand have been investigated. PP composite with sand to increase thermal conductivity from the polymer. The composite in this observation is done by mixing matrix (PP melt flow 2/10)and filler sand)by means tool labo plastomil. The result of thermal conductivity is composite of PP-sand which is obtained increase and followed by the raising of filler particle volume fraction. The analysis of thermal conductivity based on the model Cheng and Vachon, model Lewis and Nielsen where this model has the function to support experiment finding. It is proved that Lewis' and Nielsen's model almost approach experiment result. And then thermal conductivity raising will be analyzed by the model of pararel-series conductive with the two (2)phases system. It is showed that sand in PP MF 2 composite have the big role to increase the thermal conductivity than sand in PP MF 10 composition, but it is not easy to shape conductive medium

  5. Development of biodegradable polymer based tamoxifen citrate loaded nanoparticles and effect of some manufacturing process parameters on them: a physicochemical and in-vitro evaluation

    Directory of Open Access Journals (Sweden)

    Basudev Sahana

    2010-08-01

    Full Text Available Basudev Sahana, Kousik Santra, Sumit Basu, Biswajit MukherjeeDepartment of Pharmaceutical Technology, Jadavpur University, Kolkata, IndiaAbstract: The aim of the present study was to develop nanoparticles of tamoxifen citrate, a non-steroidal antiestrogenic drug used for the treatment of breast cancer. Biodegradable poly (D, L- lactide-co-glycolide-85:15 (PLGA was used to develop nanoparticles of tamoxifen citrate by multiple emulsification (w/o/w and solvent evaporation technique. Drug-polymer ratio, polyvinyl alcohol concentrations, and homogenizing speeds were varied at different stages of preparation to optimize the desired size and release profile of drug. The characterization of particle morphology and shape was performed by field emission scanning electron microscope (FE-SEM and particle size distribution patterns were studied by direct light scattering method using zeta sizer. In vitro drug release study showed that release profile of tamoxifen from biodegradable nanoparticles varied due to the change in speed of centrifugation for separation. Drug loading efficiency varied from 18.60% to 71.98%. The FE-SEM study showed that biodegradable nanoparticles were smooth and spherical in shape. The stability studies of tamoxifen citrate in the experimental nanoparticles showed the structural integrity of tamoxifen citrate in PLGA nanoparticles up to 60°C in the tested temperatures. Nanoparticles containing tamoxifen citrate could be useful for the controlled delivery of the drug for a prolonged period.Keywords: biodegradable, nanoparticles, PLGA, stability, tamoxifen citrate

  6. Study on the control of the compositions and properties of a biodegradable polyester elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Liu Quanyong; Weng Jingyi; Zhang Liqun [Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Tan Tianwei, E-mail: liu_quanyong@126.co, E-mail: zhanglq@mail.buct.edu.c [Key Laboratory of Bioprocess of Beijing, Beijing University of Chemical Technology, Beijing 100029 (China)

    2009-04-15

    Biodegradable polyester elastomers are widely reported to be applied in varied biomedical fields. In this paper, we attempt to investigate how both the thermal-curing time and molar ratio of the monomers affect the final compositions and properties of the novel poly(glycerol-sebacate-citrate) (PGSC) elastomers. First, PGSC elastomers are obtained after the thermal curing of the moldable mixtures consisting of citric acid and poly(glycerol-sebacate) (PGS) prepolymers synthesized in the lab. Then further studies show that, on the one hand, the control of longer thermal-curing time results in elastomers with less sol, lower swelling degree, slower degradation, greater mechanical strength and higher glass transition temperature and, on the other hand, the crosslink with more citric acid is advantageous to greatly improving their mechanical strength and glass transition temperatures, simultaneously decreasing their sol contents, swelling degrees and degradation rates. The PGSC elastomers show thermosetting properties, certain strength, mass losses lower than 20% after 4-week degradation and durative water absorption during degradation. Thus they might be potentially used as degradable bio-coatings, varied soft biomedical membranes and drug delivery matrices.

  7. Strengthening of the Timber Members Using Fibre Reinforced Polymer Composites

    Directory of Open Access Journals (Sweden)

    Ioana-Sorina Enţuc

    2004-01-01

    Full Text Available The reinforcement of structural wood products has become in the last decades an efficient method of improving structural capabilities of load carrying members made of this material. Some important steps in earlier stages of research were focused on using metallic reinforcement, including steel bars, prestressed stranded cables, and bonded steel and aluminum plates. A disadvantage of the metallic reinforcement was the poor compatibility between the wood and the reinforcing materials. In comparison with metallic reinforcement, fiber reinforced polymers (FRP composites are compatible with structural wood products leading to efficient hybrid members. Some interesting strengthening alternatives using FRP applied to wood beams and to wood columns are presented in this paper.

  8. Atomic Origins of the Self-Healing Function in Cement–Polymer Composites

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Manh Thuong; Wang, Zheming; Rod, Kenton A.; Childers, Matthew I.; Fernandez, Carlos A.; Koech, Phillip K.; Bennett, Wendy D.; Rousseau, Roger J.; Glezakou, Vassiliki-Alexandra

    2018-01-09

    Motivated by recent advances in self-healing cement and epoxy polymer composites, we present a combined ab initio molecular dynamics and sum frequency generation (SFG) spectroscopy study of a calcium-silicate-hydrate/polymer interface. On stable, low-defect surfaces, the polymer only weakly adheres through coordination and hydrogen bonding interactions and can be easily mobilized towards defected surfaces. Conversely, on fractured surfaces, the polymer strongly anchors through ionic Ca-O bonds resulting from the deprotonation of polymer hydroxyl groups. In addition, polymer S-S groups are turned away from the cement/polymer interface, allowing for the self-healing function within the polymer. The overall elasticity and healing properties of these composites stem from a flexible hydrogen bonding network that can readily adapt to surface morphology. The theoretical vibrational signals associated with the proposed cement-polymer interfacial chemistry were confirmed experimentally by SFG spectroscopy.

  9. AC Electric Field Activated Shape Memory Polymer Composite

    Science.gov (United States)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  10. Biodegradability of Plastics

    Directory of Open Access Journals (Sweden)

    Yutaka Tokiwa

    2009-08-01

    Full Text Available Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.. In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  11. Biodegradability of plastics.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi

    2009-08-26

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  12. Methods of enhancing conductivity of a polymer-ceramic composite electrolyte

    Science.gov (United States)

    Kumar, Binod

    2003-12-02

    Methods for enhancing conductivity of polymer-ceramic composite electrolytes are provided which include forming a polymer-ceramic composite electrolyte film by a melt casting technique and uniaxially stretching the film from about 5 to 15% in length. The polymer-ceramic composite electrolyte is also preferably annealed after stretching such that it has a room temperature conductivity of from 10.sup.-4 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1. The polymer-ceramic composite electrolyte formed by the methods of the present invention may be used in lithium rechargeable batteries.

  13. Biochemical methane potential, biodegradability, alkali treatment and influence of chemical composition on methane yield of yard wastes.

    Science.gov (United States)

    Gunaseelan, Victor Nallathambi

    2016-03-01

    In this study, the biochemical CH4 potential, rate, biodegradability, NaOH treatment and the influence of chemical composition on CH4 yield of yard wastes generated from seven trees were examined. All the plant parts were sampled for their chemical composition and subjected to the biochemical CH4 potential assay. The component parts exhibited significant variation in biochemical CH4 potential, which was reflected in their ultimate CH4 yields that ranged from 109 to 382 ml g(-1) volatile solids added and their rate constants that ranged from 0.042 to 0.173 d(-1). The biodegradability of the yard wastes ranged from 0.26 to 0.86. Variation in the biochemical CH4 potential of the yard wastes could be attributed to variation in the chemical composition of the different fractions. In the Thespesia yellow withered leaf, Tamarindus fruit pericarp and Albizia pod husk, NaOH treatment enhanced the ultimate CH4 yields by 17%, 77% and 63%, respectively, and biodegradability by 15%, 77% and 61%, respectively, compared with the untreated samples. The effectiveness of NaOH treatment varied for different yard wastes, depending on the amounts of acid detergent fibre content. Gliricidia petals, Prosopis leaf, inflorescence and immature pod, Tamarindus seeds, Albizia seeds, Cassia seeds and Delonix seeds exhibited CH4 yields higher than 300 ml g(-1) volatile solids added. Multiple linear regression models for predicting the ultimate CH4 yield and biodegradability of yard wastes were designed from the results of this work. © The Author(s) 2016.

  14. Satisfactory arterial repair 1 year after ultrathin strut biodegradable polymer sirolimus-eluting stent implantation: an angioscopic observation.

    Science.gov (United States)

    Ishihara, Takayuki; Awata, Masaki; Iida, Osamu; Fujita, Masashi; Masuda, Masaharu; Okamoto, Shin; Nanto, Kiyonori; Kanda, Takashi; Tsujimura, Takuya; Uematsu, Masaaki; Mano, Toshiaki

    2018-01-15

    The ultrathin strut biodegradable polymer sirolimus-eluting stent (Orsiro, O-SES) exhibits satisfactory clinical outcomes. However, no report to date has documented the intravascular status of artery repair after O-SES implantation. We examined 5 O-SES placed in 4 patients (age 65 ± 12 years, male 75%) presenting with stable angina pectoris due to de novo lesions in native coronary arteries. Coronary angioscopy was performed immediately after percutaneous coronary intervention and 1 year later. Angioscopic images were analyzed to determine the following: (1) dominant grade of neointimal coverage (NIC) over the stent; (2) maximum yellow plaque grade; and (3) existence of thrombus. Yellow plaque grade was evaluated both immediately after stent implantation and at the time of follow-up observation. The other parameters were evaluated at the time of follow-up examination. NIC was graded as: grade 0, stent struts exposed; grade 1, struts bulging into the lumen, although covered; grade 2, struts embedded in the neointima, but translucent; grade 3, struts fully embedded and invisible. Yellow plaque severity was graded as: grade 0, white; grade 1, light yellow; grade 2, yellow; and grade 3, intensive yellow. Angioscopic findings at 1 year demonstrated the following: dominant NIC grade 1, grade 2, and grade 3 in 1, 2, and 2 stents, respectively; all stents were covered to some extent; focal thrombus adhesion was observed in only 1 stent. Yellow plaque grade did not change from immediately after stent implantation to follow-up. O-SES demonstrated satisfactory arterial repair 1 year after implantation.

  15. Ionic polymer metal composites with polypyrrole-silver electrodes

    Science.gov (United States)

    Cellini, F.; Grillo, A.; Porfiri, M.

    2015-03-01

    Ionic polymer metal composites (IPMCs) are a class of soft active materials that are finding increasing application in robotics, environmental sensing, and energy harvesting. In this letter, we demonstrate the fabrication of IPMCs via in-situ photoinduced polymerization of polypyrrole-silver electrodes on an ionomeric membrane. The composition, morphology, and sheet resistance of the electrodes are extensively characterized through a range of experimental techniques. We experimentally investigate IPMC electrochemistry through electrochemical impedance spectroscopy, and we propose a modified Randle's model to interpret the impedance spectrum. Finally, we demonstrate in-air dynamic actuation and sensing and assess IPMC performance against more established fabrication methods. Given the simplicity of the process and the short time required for the formation of the electrodes, we envision the application of our technique in the development of a rapid prototyping technology for IPMCs.

  16. New transparent conductive metal based on polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Keshavarz Hedayati, Mehdi; Jamali, Mohammad [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Strunkus, Thomas; Zaporochentko, Vladimir; Faupel, Franz [Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Elbahri, Mady [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Helmholtz-Zentrum Geesthacht GmbH, Institute of Polymer Research, Nanochemistry and Nanoengineering (Germany)

    2011-07-01

    Currently great efforts are made to develop new kind of transparent conductors (TCs) to replace ITO. In this regard different materials and composites have been proposed and studied including conductive polymers, carbon nanotubes (CNTs), metal grids, and random networks of metallic nanowires. But so far none of them could be used as a replacing material, since either they are either fragile and brittle or their electrical conductivity is below the typical ITO. Thin metallic films due to their high electrical conductivity could be one of the best replacing materials for ITO, however their poor transparency makes their application as TCs limited. Here we design and fabricate a new polymeric composite coating which enhances the transparency of the thin metal film up to 100% relative to the initial value while having a high electrical conductivity of typical metals. Therefore our proposed device has a great potential to be used as new transparent conductor.

  17. Mechanical behavior of chemically treated Jute/Polymer composites

    Directory of Open Access Journals (Sweden)

    Murali B

    2014-03-01

    Full Text Available Fiber which serves as a reinforcement in reinforced plastics may be synthetic or natural past studies show that only artificial fibers such as glass, carbon etc., have been used in fiber reinforced plastics. Although glass and other synthetic fiber reinforced plastics possess high specific strength, their fields of application are very limited because of their inherent higher cost of production. In this connection, an investigation has been carried out to make use of jute , a natural fiber abundantly available in India. Natural fibers are not only strong and lightweight but also relatively very cheap. In the present work, jute composites are developed and their mechanical properties are evaluated. Mechanical properties of jute/polymer and compared with glass fiber/epoxy. These results indicate that jute can be used as a potential reinforcing material for making low load bearing thermoplastic composites.

  18. Composites of 3D-Printed Polymers and Textile Fabrics*

    Science.gov (United States)

    Martens, Yasmin; Ehrmann, Andrea

    2017-08-01

    3D printing belongs to the rapidly emerging technologies of our time. Due to its recent drawback - the technology is relatively slow compared with other primary shaping methods, such as injection molding -, 3D printing is often not used for creating complete large components but to add specific features to existing larger objects. One of the possibilities to create such composites with an additional value consists in combining 3D printed polymers with textile fabrics. Several attempts have been made to enhance the adhesion between both materials, a task which is still challenging for diverse material combinations. Our paper reports about new experiments combining 3D printed embossed designs, snap fasteners and zip fasteners with different textile base materials, showing the possibilities and technical limits of these novel composites.

  19. Electrostatically Induced Carbon Nanotube Alignment for Polymer Composite Applications

    Science.gov (United States)

    Chapkin, Wesley Aaron

    We have developed a non-invasive technique utilizing polarized Raman spectroscopy to measure changes in carbon nanotube (CNT) alignment in situ and in real time in a polymer matrix. With this technique, we have confirmed the prediction of faster alignment for CNTs in higher electric fields. Real-time polarized Raman spectroscopy also allows us to demonstrate the loss of CNT alignment that occurs after the electric field is removed, which reveals the need for fast polymerization steps or the continued application of the aligning force during polymerization to lock in CNT alignment. Through a study on the effect of polymer viscosity on the rate of CNT alignment, we have determined that shear viscosity serves as the controlling mechanism for CNT rotation. This finding matches literature modeling of rigid rod mobility in a polymer melt and demonstrates that the rotational mobility of CNTs can be explained by a continuum model even though the diameters of single-walled CNTs are 1-2 nm. The viscosity dependence indicates that the manipulation of temperature (and indirectly viscosity) will have a direct effect on the rate of CNT alignment, which could prove useful in expediting the manufacturing of CNT-reinforced composites cured at elevated temperatures. Using real-time polarized Raman spectroscopy, we also demonstrate that electric fields of various strengths lead not only to different speeds of CNT rotation but also to different degrees of alignment. We hypothesize that this difference in achievable alignment results from discrete populations of nanotubes based on their length. The results are then explained by balancing the alignment energy for a given electric field strength with the randomizing thermal energy of the system. By studying the alignment dynamics of different CNT length distributions, we show that different degrees of alignment achieved as a function of the applied electric field strength are directly related to the square of the nanotube length. This

  20. Radiation Processing of Active Biodegradable Green Nano Composite Materials for Packaging Purposes

    International Nuclear Information System (INIS)

    AbdEl-Rehim, Hassan A.; Hegazy, El-Sayed A.; Raafat, Ahmed

    2011-01-01

    Clean and green reduction process of silver ions and graphene (GO) into nanosilver metal and graphene (GR) nanosheets respectively was achieved via gamma irradiation. The efficiency of gamma radiation to reduce silver ions and graphene oxide (GO) was investigated using UV-vis spectroscopy. Effects of gaseous atmosphere type, dispersion pH value, capping agent type and irradiation dose on GR nano-sheets formation were investigated. The presence of capping agent such as sodium carboxymethyl cellulose (CMC) or cellulose acetate is proven to be crucial. The obtained GR nanosheets and nanosilver metals are characterized using atomic force microscopy (AFM), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD) as well as thermo-gravimetric analyzer (TGA) and differential scanning calorimeter (DSC). Effectiveness, simplicity, reproducibility, and low energy consumption are the merits of using the Gamma radiation technique. Furthermore, the capping agent is eco-friendly and the dispersion is stable for months at room temperature. This approach can open up large-scale production of GR nanosheets and nanosilver metals. The prepared Nano-silver can be mixed with different natural polymer like CA to form Nano-composite films. The excellent physical properties of CA did not affect by addling Ag. The ionizing radiation has un-significant effect on the properties of CA-Ag nano composites films The CA-Ag nano composites posses biological activity towards different microorganisms. On other hand graphene or graphene oxide dispersions might be of interesting for producing biological active packaging films. Go as nanofillers has used for fabrication of a biocomposite with chitosan. The significantly improved in Chitosan /Go nano composites physical properties, including mechanical property, electrical conductivity, and structural stability, was demonstrated. Properties of the CA-Ag and Chitosan /Go nano composites suggest

  1. Radiation Processing of Active Biodegradable Green Nano Composite Materials for Packaging Purposes

    Energy Technology Data Exchange (ETDEWEB)

    AbdEl-Rehim, Hassan A.; Hegazy, El-Sayed A.; Raafat, Ahmed [National Center for Radiation Research and Technology NCRRT, Atomic Energy Authority, Cairo, Egypt P. O. Box 29, Nasr City, Cairo (Egypt)

    2011-07-01

    Clean and green reduction process of silver ions and graphene (GO) into nanosilver metal and graphene (GR) nanosheets respectively was achieved via gamma irradiation. The efficiency of gamma radiation to reduce silver ions and graphene oxide (GO) was investigated using UV-vis spectroscopy. Effects of gaseous atmosphere type, dispersion pH value, capping agent type and irradiation dose on GR nano-sheets formation were investigated. The presence of capping agent such as sodium carboxymethyl cellulose (CMC) or cellulose acetate is proven to be crucial. The obtained GR nanosheets and nanosilver metals are characterized using atomic force microscopy (AFM), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD) as well as thermo-gravimetric analyzer (TGA) and differential scanning calorimeter (DSC). Effectiveness, simplicity, reproducibility, and low energy consumption are the merits of using the Gamma radiation technique. Furthermore, the capping agent is eco-friendly and the dispersion is stable for months at room temperature. This approach can open up large-scale production of GR nanosheets and nanosilver metals. The prepared Nano-silver can be mixed with different natural polymer like CA to form Nano-composite films. The excellent physical properties of CA did not affect by addling Ag. The ionizing radiation has un-significant effect on the properties of CA-Ag nano composites films The CA-Ag nano composites posses biological activity towards different microorganisms. On other hand graphene or graphene oxide dispersions might be of interesting for producing biological active packaging films. Go as nanofillers has used for fabrication of a biocomposite with chitosan. The significantly improved in Chitosan /Go nano composites physical properties, including mechanical property, electrical conductivity, and structural stability, was demonstrated. Properties of the CA-Ag and Chitosan /Go nano composites suggest

  2. Self Healing Fibre-reinforced Polymer Composites: an Overview

    Science.gov (United States)

    Bond, Ian P.; Trask, Richard S.; Williams, Hugo R.; Williams, Gareth J.

    Lightweight, high-strength, high-stiffness fibre-reinforced polymer composite materials are leading contenders as component materials to improve the efficiency and sustainability of many forms of transport. For example, their widespread use is critical to the success of advanced engineering applications, such as the Boeing 787 and Airbus A380. Such materials typically comprise complex architectures of fine fibrous reinforcement e.g. carbon or glass, dispersed within a bulk polymer matrix, e.g. epoxy. This can provide exceptionally strong, stiff, and lightweight materials which are inherently anisotropic, as the fibres are usually arranged at a multitude of predetermined angles within discrete stacked 2D layers. The direction orthogonal to the 2D layers is usually without reinforcement to avoid compromising in-plane performance, which results in a vulnerability to damage in the polymer matrix caused by out-of-plane loading, i.e. impact. Their inability to plastically deform leaves only energy absorption via damage creation. This damage often manifests itself internally within the material as intra-ply matrix cracks and inter-ply delaminations, and can thus be difficult to detect visually. Since relatively minor damage can lead to a significant reduction in strength, stiffness and stability, there has been some reticence by designers for their use in safety critical applications, and the adoption of a `no growth' approach (i.e. damage propagation from a defect constitutes failure) is now the mindset of the composites industry. This has led to excessively heavy components, shackling of innovative design, and a need for frequent inspection during service (Richardson 1996; Abrate 1998).

  3. APPLICATION OF ADDITIVELY MANUFACTURED POLYMER COMPOSITE PROTOTYPES IN FOUNDRY

    Directory of Open Access Journals (Sweden)

    Wiesław Kuczko

    2015-05-01

    Full Text Available The paper presents a method, developed by the authors, for manufacturing polymer composites with the matrix manufactured in a layered manner (via 3D printing – Fused Deposition Modeling out of a thermoplastic material. As an example of practical application of this method, functional prototypes are presented, which were used as elements of foundry tooling – patterns for sand molding. In case of manufacturing prototype castings or short series of products, foundries usually cooperate with modeling studios, which produce patterns by conventional, subtractive manufacturing technologies. If patterns have complex shapes, this results in high manufacturing costs and significantly longer time of tooling preparation. The method proposed by the authors allows manufacturing functional prototypes in a short time thanks to utilizing capabilities of additive manufacturing (3D printing technology. Thanks to using two types of materials simultaneously (ABS combined with chemically hardened resins, the produced prototypes are capable of carrying increased loads. Moreover, the method developed by the authors is characterized by manufacturing costs lower than in the basic technology of Fused Deposition Modeling. During the presented studies, the pattern was produced as a polymer composite and it was used to prepare a mold and a set of metal castings.

  4. Stress-tuned conductor-polymer composite for use in sensors

    Science.gov (United States)

    Martin, James E; Read, Douglas H

    2013-10-22

    A method for making a composite polymeric material with electrical conductivity determined by stress-tuning of the conductor-polymer composite, and sensors made with the stress-tuned conductor-polymer composite made by this method. Stress tuning is achieved by mixing a miscible liquid into the polymer precursor solution or by absorbing into the precursor solution a soluble compound from vapor in contact with the polymer precursor solution. The conductor may or may not be ordered by application of a magnetic field. The composite is formed by polymerization with the stress-tuning agent in the polymer matrix. The stress-tuning agent is removed following polymerization to produce a conductor-polymer composite with a stress field that depends on the amount of stress-tuning agent employed.

  5. Long-Term Efficacy and Safety of Biodegradable-Polymer Biolimus-Eluting Stents

    DEFF Research Database (Denmark)

    Kaiser, Christoph; Galatius, Søren; Jeger, Raban

    2015-01-01

    -DES, or thin-strut silicon-carbide-coated BMS in 8 European centers. All patients were treated with aspirin and risk-adjusted doses of prasugrel. The primary end point was combined cardiac death, myocardial infarction, and clinically indicated target-vessel revascularization within 2 years. The combined...... secondary safety end point was a composite of VLST, myocardial infarction, and cardiac death. The cumulative incidence of the primary end point was 7.6% with BP-DES, 6.8% with DP-DES, and 12.7% with BMS. By intention-to-treat BP-DES were noninferior (predefined margin, 3.80%) compared with DP-DES (absolute...

  6. Effect of Polymer Matrix on the Structure and Electric Properties of Piezoelectric Lead Zirconatetitanate/Polymer Composites

    Directory of Open Access Journals (Sweden)

    Rui Li

    2017-08-01

    Full Text Available Piezoelectric lead zirconatetitanate (PZT/polymer composites were prepared by two typical polymer matrixes using the hot-press method. The micromorphology, microstructure, dielectric properties, and piezoelectric properties of the PZT/polymer composites were characterized and investigated. The results showed that when the condition of frequency is 103 Hz, the dielectric and piezoelectric properties of PZT/poly(vinylidene fluoride were both better than that of PZT/polyvinyl chloride (PVC. When the volume fraction of PZT was 50%, PZT/PVDF prepared by the hot-press method had better comprehensive electric property.

  7. Release characteristics of selected carbon nanotube polymer composites

    Science.gov (United States)

    Multi-walled carbon nanotubes (MWCNTs) are commonly used in polymer formulations to improve strength, conductivity, and other attributes. A developing concern is the potential for carbon nanotube polymer nanocomposites to release nanoparticles into the environment as the polymer ...

  8. Effect of seaweed on mechanical, thermal, and biodegradation properties of thermoplastic sugar palm starch/agar composites.

    Science.gov (United States)

    Jumaidin, Ridhwan; Sapuan, Salit M; Jawaid, Mohammad; Ishak, Mohamad R; Sahari, Japar

    2017-06-01

    The aim of this paper is to investigate the characteristics of thermoplastic sugar palm starch/agar (TPSA) blend containing Eucheuma cottonii seaweed waste as biofiller. The composites were prepared by melt-mixing and hot pressing at 140°C for 10min. The TPSA/seaweed composites were characterized for their mechanical, thermal and biodegradation properties. Incorporation of seaweed from 0 to 40wt.% has significantly improved the tensile, flexural, and impact properties of the TPSA/seaweed composites. Scanning electron micrograph of the tensile fracture showed homogeneous surface with formation of cleavage plane. It is also evident from TGA results that thermal stability of the composites were enhanced with addition of seaweed. After soil burial for 2 and 4 weeks, the biodegradation of the composites was enhanced with addition of seaweed. Overall, the incorporation of seaweed into TPSA enhances the properties of TPSA for short-life product application such as tray, plate, etc. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effect of carrageenan on properties of biodegradable thermoplastic cassava starch/low-density polyethylene composites reinforced by cotton fibers

    International Nuclear Information System (INIS)

    Prachayawarakorn, Jutarat; Pomdage, Wanida

    2014-01-01

    Highlights: • We prepared the TPCS/LDPE composites modified by carrageenan and/or cotton fibers. • The IR O–H stretching peak of the modified composites shifts to lower wavenumber. • Stress and Young’s modulus of the modified composites increase significantly. • The modified composites degrade faster than the non-modified composite. - Abstract: Applications of biodegradable thermoplastic starch (TPS) have been restricted due to its poor mechanical properties, limited processability and high water uptake. In order to improve properties and processability, thermoplastic cassava starch (TPCS) was compounded with low-density polyethylene (LDPE). The TPCS/LDPE blend was, then, modified by a natural gelling agent, i.e. carrageenan and natural fibers, i.e. cotton fibers. All composites were compounded and processed using an internal mixer and an injection molding machine, respectively. It was found that stress at maximum load and Young’s modulus of the TPCS/LDPE composites significantly increased by the addition of the carrageenan and/or the cotton fibers. The highest mechanical properties were obtained from the TPCS/LDPE composites modified by both the carrageenan and the cotton fibers. Percentage water absorption of all of the TPCS/LDPE composites was found to be similar. All modified composites were also degraded easier than the non-modified one. Furthermore, all the composites were analyzed using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM)

  10. Hybrid polymer composite membrane for an electromagnetic (EM) valveless micropump

    Science.gov (United States)

    Said, Muzalifah Mohd; Yunas, Jumril; Bais, Badariah; Azlan Hamzah, Azrul; Yeop Majlis, Burhanuddin

    2017-07-01

    In this paper, we report on a hybrid membrane used as an actuator in an electromagnetically driven valveless micropump developed using MEMS processes. The membrane structure consists of the combination of a magnetic polymer composite membrane and an attached bulk permanent magnet which is expected to have a compact structure and a strong magnetic force with maintained membrane flexibility. A soft polymeric material made of polydimethylsiloxane (PDMS) is initially mixed with neodymium magnetic particles (NdFeB) to form a magnetic polymer composite membrane. The membrane is then bonded with the PDMS based microfluidic part, developed using soft lithography process. The developed micropump was tested in terms of the actuator membrane deflection capability and the fluidic flow of the injected fluid sample through the microfluidic channel. The experimental results show that the magnetic composite actuator membrane with an attached bulk permanent magnet is capable of producing a maximum membrane deflection of up to 106 µm. The functionality test of the electromagnetic (EM) actuator for fluid pumping purposes was done by supplying an AC voltage with various amplitudes, signal waves and frequencies. A wide range of sample injection rates from a few µl min-1 to tens of nl min-1 was achieved with a maximum flow rate of 6.6 µl min-1. The injection flow rate of the EM micropump can be controlled by adjusting the voltage amplitude and frequency supplied to the EM coil, to control the membrane deflection in the pump chamber. The designed valveless EM micropump has a very high potential to enhance the drug delivery system capability in biomedical applications.

  11. Self-assembly of biodegradable copolyester and reactive HPMA-based polymers into nanoparticles as an alternative stealth drug delivery system

    Czech Academy of Sciences Publication Activity Database

    Jäger, Eliezer; Jäger, Alessandro; Etrych, Tomáš; Giacomelli, F. C.; Chytil, Petr; Jigounov, Alexander; Putaux, J.-L.; Říhová, Blanka; Ulbrich, Karel; Štěpánek, Petr

    2012-01-01

    Roč. 8, č. 37 (2012), s. 9563-9575 ISSN 1744-683X R&D Projects: GA AV ČR IAAX00500803; GA ČR GAP208/10/1600 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50200510 Institutional support: RVO:61389013 ; RVO:61388971 Keywords : biodegradable nanoparticles * light scattering from polymer nanoparticles * doxorubicin drug release Subject RIV: CF - Physical ; Theoretical Chemistry; EC - Immunology (MBU-M) Impact factor: 3.909, year: 2012

  12. On the mechanical behaviours of a craze in particulate-polymer composites

    Science.gov (United States)

    Zhang, Y. M.; Zhang, W. G.; Fan, M.; Xiao, Z. M.

    2018-05-01

    In polymeric composites, well-defined inclusions are incorporated into the polymer matrix to alleviate the brittleness of polymers. When a craze is initiated in such a composite, the interaction between the craze and the surrounding inclusions will greatly affect the composite's mechanical behaviours and toughness. To the best knowledge of the authors, only little research work has been found so far on the interaction between a craze and the near-by inclusions in particulate-polymer composites. In the current study, the first time, the influences of the surrounding inclusions on the craze are investigated in particulate-polymer composites. The three-phase model is adopted to study the fracture behaviours of the craze affected by multiple inclusions. An iterative procedure is proposed to solve the stress intensity factors. Parametric studies are performed to investigate the influences of the reinforcing particle volume fraction and the shear modulus ratio on fracture behaviours of particulate-polymer composites.

  13. Low-biodegradable composite chemical wastewater treatment by biofilm configured sequencing batch reactor (SBBR)

    International Nuclear Information System (INIS)

    Mohan, S. Venkata; Rao, N. Chandrasekhara; Sarma, P.N.

    2007-01-01

    Biofilm configured system with sequencing/periodic discontinuous batch mode operation was evaluated for the treatment of low-biodegradable composite chemical wastewater (low BOD/COD ratio ∼0.3, high sulfate content: 1.75 g/l) in aerobic metabolic function. Reactor was operated under anoxic-aerobic-anoxic microenvironment conditions with a total cycle period of 24 h [fill: 15 min; reaction: 23 h (aeration along with recirculation); settle: 30 min; decant: 15 min] and the performance of the system was studied at organic loading rates (OLR) of 0.92, 1.50, 3.07 and 4.76 kg COD/cum-day. Substrate utilization showed a steady increase with increase in OLR and system performance sustained at higher loading rates. Maximum non-cumulative substrate utilization was observed after 4 h of the cycle operation. Sulfate removal efficiency of 20% was observed due to the induced anoxic conditions prevailing during the sequence phase operation of the reactor and the existing internal anoxic zones in the biofilm matrix. Biofilm configured sequencing batch reactor (SBR) showed comparatively higher efficiency to the corresponding suspended growth and granular activated carbon (GAC) configured systems studied with same wastewater. Periodic discontinuous batch mode operation of the biofilm reactors results in a more even distribution of the biomass throughout the reactor and was able to treat large shock loads than the continuous flow process. Biofilm configured system coupled with periodic discontinuous batch mode operation imposes regular variations in the substrate concentration on biofilm organisms. As a result, organisms throughout the film achieve maximum growth rates resulting in improved reaction potential leading to stable and robust system which is well suited for treating highly variable wastes

  14. Low-biodegradable composite chemical wastewater treatment by biofilm configured sequencing batch reactor (SBBR)

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, S. Venkata [Bioengineering and Environmental Engineering Centre, Indian Institute of Chemical Technology, Hyderabad 500 007 (India)]. E-mail: vmohan_s@yahoo.com; Rao, N. Chandrasekhara [Bioengineering and Environmental Engineering Centre, Indian Institute of Chemical Technology, Hyderabad 500 007 (India); Biotechnologies and Process Engineering for the Environment, Universite de Savoie Technolac, Chambery, 73376 Le Bourget Du Lac Cedex (France); Sarma, P.N. [Bioengineering and Environmental Engineering Centre, Indian Institute of Chemical Technology, Hyderabad 500 007 (India)

    2007-06-01

    Biofilm configured system with sequencing/periodic discontinuous batch mode operation was evaluated for the treatment of low-biodegradable composite chemical wastewater (low BOD/COD ratio {approx}0.3, high sulfate content: 1.75 g/l) in aerobic metabolic function. Reactor was operated under anoxic-aerobic-anoxic microenvironment conditions with a total cycle period of 24 h [fill: 15 min; reaction: 23 h (aeration along with recirculation); settle: 30 min; decant: 15 min] and the performance of the system was studied at organic loading rates (OLR) of 0.92, 1.50, 3.07 and 4.76 kg COD/cum-day. Substrate utilization showed a steady increase with increase in OLR and system performance sustained at higher loading rates. Maximum non-cumulative substrate utilization was observed after 4 h of the cycle operation. Sulfate removal efficiency of 20% was observed due to the induced anoxic conditions prevailing during the sequence phase operation of the reactor and the existing internal anoxic zones in the biofilm matrix. Biofilm configured sequencing batch reactor (SBR) showed comparatively higher efficiency to the corresponding suspended growth and granular activated carbon (GAC) configured systems studied with same wastewater. Periodic discontinuous batch mode operation of the biofilm reactors results in a more even distribution of the biomass throughout the reactor and was able to treat large shock loads than the continuous flow process. Biofilm configured system coupled with periodic discontinuous batch mode operation imposes regular variations in the substrate concentration on biofilm organisms. As a result, organisms throughout the film achieve maximum growth rates resulting in improved reaction potential leading to stable and robust system which is well suited for treating highly variable wastes.

  15. Lignin peroxidase isoenzyme: a novel approach to biodegrade the toxic synthetic polymer waste.

    Science.gov (United States)

    Khatoon, Nazia; Jamal, Asif; Ali, Muhammad Ishtiaq

    2018-01-05

    Fungal metabolites are playing an immense role in developing various sustainable waste treatment processes. The present study aimed at production and characterization of fungal lignin peroxidase (EC 1.11.1.14) with a potential to degrade Polyvinyl Chloride. Optimization studies revealed that the maximum enzyme production occurred at a temperature 25°C, pH 5 in the 4th week of the incubation period with fungal strain. Enzyme assay was performed to find out the dominating enzyme in the culture broth. The molecular weight of the enzyme was found to be 46 kDa. Partially purified lignin peroxidase from Phanerocheate chrysosporium was used for the degradation of PVC films. A significant reduction in the weight of PVC film was observed (31%) in shake flask experiment. FTIR spectra of the enzyme-treated plastic film revealed structural changes in the chemical composition, indicating a specific peak at 2943 cm -1 that corresponded to alkenyl C-H stretch. Moreover, deterioration on the surface of PVC films was confirmed by Scanning Electron Microscopy tracked through activity assay for the lignin peroxidase. Extracellular lignin peroxidases from P. chrysosporium play a significant role in the degradation of complex polymeric compounds like PVC.

  16. Applicability and limits of Sturm modified method for evaluation of polymer biodegradability. Applicabilita' e limiti del metodo di Sturm modificato per valutare biodegradabilita' di polimeri plastici

    Energy Technology Data Exchange (ETDEWEB)

    Musmeci, L.; Volterra, L.; Gucci, P.M.B.; Semproni, M.; Coccia, A.M. (Istituto Superiore di Sanita, Rome (Italy))

    1993-01-01

    The admission of 'biodegradable' plastics on the market has determined the development of analytical methods for measuring and controlling their biodegradation. The Modified Sturm Test was selected as a method. This paper presents the results of two experiments in which different and acclimatized/acclimatization microorganisms were used as inocula. The pre-acclimatization was performed on polyethylene alone or with starch additions, respectively. Starch addition in the acclimatization phase induces the selection of a population able to speed up the starch mineralization but not equally able to further biodegrade plastic polymers.

  17. Self-Healing Composite of Thermoset Polymer and Programmed Super Contraction Fibers

    Science.gov (United States)

    Li, Guoqiang (Inventor); Meng, Harper (Inventor)

    2016-01-01

    A composition comprising thermoset polymer, shape memory polymer to facilitate macro scale damage closure, and a thermoplastic polymer for molecular scale healing is disclosed; the composition has the ability to resolve structural defects by a bio-mimetic close-then heal process. In use, the shape memory polymer serves to bring surfaces of a structural defect into approximation, whereafter use of the thermoplastic polymer for molecular scale healing allowed for movement of the thermoplastic polymer into the defect and thus obtain molecular scale healing. The thermoplastic can be fibers, particles or spheres which are used by heating to a level at or above the thermoplastic's melting point, then cooling of the composition below the melting temperature of the thermoplastic. Compositions of the invention have the ability to not only close macroscopic defects, but also to do so repeatedly even if another wound/damage occurs in a previously healed/repaired area.

  18. ROMP-based polymer composites and biorenewable rubbers

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Wonje [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    This research is divided into two related topics. In the first topic, the synthesis and characterization of novel composite materials reinforced with MWCNTs by ring-opening metathesis polymerization (ROMP) is reported for two ROMP based monomers: dicyclopentadiene (DCPD) and 5-ethylidene-2-norbornene (ENB). Homogeneous dispersion of MWCNTs in the polymer matrices is achieved by grafting norbornene moieties onto the nanotube surface. For the DCPD-based system, the investigation of mechanical properties of the composites shows a remarkable increase of tensile toughness with just 0.4 wt % of functionalized MWCNTs (f-MWCNTs). To our knowledge, this represents the highest toughness enhancement efficiency in thermosetting composites ever reported. DMA results show that there is a general increase of thermal stability (rg) with the addition of f-MWCNTs, which means that covalently bonded f-MWCNTs can reduce the local chain mobility of the matrix by interfacial interactions. The ENB system also shows significant enhancement of the toughness using just 0.8 wt % f-MWCNTs. These results indicate that the ROMP approach for polyENB is also very effective. The second topic is an investigation of the biorenewable rubbers synthesized by the tandem ROMP and cationic polymerization. The resin consists of a norbornenyl-modified linseed oil and a norbornene diester. Characterization of the bio-based rubbers includes dynamic mechanical analysis, tensile testing, and thermogravimetric analysis. The experimental results show that there is a decrease in glass transition temperature and slight increase of elongation with increased diester loading.

  19. High actuation properties of shape memory polymer composite actuator

    International Nuclear Information System (INIS)

    Basit, A; L’Hostis, G; Durand, B

    2013-01-01

    The shape memory polymers (SMPs) possess two shapes: permanent shape and temporary shape. This property leads to replacement of shape memory alloys by SMPs in various applications. In this work, two properties, namely structure activeness and the shape memory property of ‘controlled behavior composite material (CBCM)’ plate and its comparison with the conventional symmetrical composite plate (SYM), are studied. The SMPC plates (CBCM and SYM) are manufactured using epoxy resin with a thermal glass transition temperature (T g ) of 130 °C. The shape memory properties of these composites are investigated (under three-point bending test) and compared by deforming them to the same displacement. Three types of recoveries are conducted: unconstrained recovery, constrained recovery, and partial recovery under load. It is found that by coupling the structure activeness (due to its asymmetry) and its shape memory property, higher activated displacement is obtained during the unconstrained recovery. Also, at a lower recovery temperature (90 °C) than the fixing temperature, a recovery close to 100% is obtained for CBCM, whereas for SYM it is only 25%. During constrained recovery, CBCM produces five times larger recovery force than SYM. In addition, higher actuation properties are demonstrated by calculating recovered work and recovery percentages during partial recovery under load. (paper)

  20. Healable thermoset polymer composite embedded with stimuli-responsive fibres

    Science.gov (United States)

    Li, Guoqiang; Meng, Harper; Hu, Jinlian

    2012-01-01

    Severe wounds in biological systems such as human skin cannot heal themselves, unless they are first stitched together. Healing of macroscopic damage in thermoset polymer composites faces a similar challenge. Stimuli-responsive shape-changing polymeric fibres with outstanding mechanical properties embedded in polymers may be able to close macro-cracks automatically upon stimulation such as heating. Here, a stimuli-responsive fibre (SRF) with outstanding mechanical properties and supercontraction capability was fabricated for the purpose of healing macroscopic damage. The SRFs and thermoplastic particles (TPs) were incorporated into regular thermosetting epoxy for repeatedly healing macroscopic damages. The system works by mimicking self-healing of biological systems such as human skin, close (stitch) then heal, i.e. close the macroscopic crack through the thermal-induced supercontraction of the SRFs, and bond the closed crack through melting and diffusing of TPs at the crack interface. The healing efficiency determined using tapered double-cantilever beam specimens was 94 per cent. The self-healing process was reasonably repeatable. PMID:22896563

  1. A resonant force sensor based on ionic polymer metal composites

    International Nuclear Information System (INIS)

    Bonomo, Claudia; Fortuna, Luigi; Giannone, Pietro; Graziani, Salvatore; Strazzeri, Salvatore

    2008-01-01

    In this paper a novel force sensor, based on ionic polymer metal composites (IPMCs), is presented. The system has DC sensing capabilities and is able to work in the range of a few millinewtons. IPMCs are emerging materials used to realize motion actuators and sensors. An IPMC strip is activated in a beam fixed/simply-supported configuration. The beam is tightened at the simply-supported end by a force. This influences the natural resonant frequency of the beam; the value of the resonant frequency is used in the proposed system to estimate the force applied in the axial direction. The performance of the system based on the IPMC material has proved to be comparable with that of sensors based on other sensing mechanisms. This suggests the possibility of using this class of polymeric devices to realize PMEMS (plastic micro electrical mechanical systems) sensors

  2. A model for ionic polymer metal composites as sensors

    Science.gov (United States)

    Bonomo, C.; Fortuna, L.; Giannone, P.; Graziani, S.; Strazzeri, S.

    2006-06-01

    This paper introduces a comprehensive model of sensors based on ionic polymer metal composites (IPMCs) working in air. Significant quantities ruling the sensing properties of IPMC-based sensors are taken into account and the dynamics of the sensors are modelled. A large amount of experimental evidence is given for the excellent agreement between estimations obtained using the proposed model and the observed signals. Furthermore, the effect of sensor scaling is investigated, giving interesting support to the activities involved in the design of sensing devices based on these novel materials. We observed that the need for a wet environment is not a key issue for IPMC-based sensors to work well. This fact allows us to put IPMC-based sensors in a totally different light to the corresponding actuators, showing that sensors do not suffer from the same drawbacks.

  3. A resonant force sensor based on ionic polymer metal composites

    Science.gov (United States)

    Bonomo, Claudia; Fortuna, Luigi; Giannone, Pietro; Graziani, Salvatore; Strazzeri, Salvatore

    2008-02-01

    In this paper a novel force sensor, based on ionic polymer metal composites (IPMCs), is presented. The system has DC sensing capabilities and is able to work in the range of a few millinewtons. IPMCs are emerging materials used to realize motion actuators and sensors. An IPMC strip is activated in a beam fixed/simply-supported configuration. The beam is tightened at the simply-supported end by a force. This influences the natural resonant frequency of the beam; the value of the resonant frequency is used in the proposed system to estimate the force applied in the axial direction. The performance of the system based on the IPMC material has proved to be comparable with that of sensors based on other sensing mechanisms. This suggests the possibility of using this class of polymeric devices to realize PMEMS (plastic micro electrical mechanical systems) sensors.

  4. Polymer-SnO2 composite membranes

    DEFF Research Database (Denmark)

    Nørgaard, Casper Frydendal; Skou, Eivind Morten

    . This work utilizes the latter approach and makes use of particles of tin dioxide (SnO2). Polymer-SnO2 composite membranes were successfully prepared using an ion-exchange method. SnO2 was incorporated into membranes by ion-exchange in solutions of SnCl2 ∙ 2 H2O in methanol, followed by oxidation to SnO2...... in air. The content of SnO2 proved controllable by adjusting the concentration of the ion-exchange solution. The prepared nanocomposite membranes were characterized by powder XRD, 119Sn MAS NMR, electrochemical impedance spectroscopy, water uptake and tensile stress-strain measurements. For Nafion 117...

  5. Electromagnetic properties of photodefinable barium ferrite polymer composites

    Science.gov (United States)

    Sholiyi, Olusegun; Lee, Jaejin; Williams, John D.

    2014-07-01

    This article reports the magnetic and microwave properties of a Barium ferrite powder suspended in a polymer matrix. The sizes for Barium hexaferrite powder are 3-6 μm for coarse and 0.8-1.0 μm for the fine powder. Ratios 1:1 and 3:1 (by mass) of ferrite to SU8 samples were characterized and analyzed for predicting the necessary combinations of these powders with SU8 2000 Negative photoresist. The magnetization properties of these materials were equally determined and were analyzed using Vibrating Sample Magnetometer (VSM). The Thru, Reflect, Line (TRL) calibration technique was employed in determining complex relative permittivity and permeability of the powders and composites with SU8 between 26.5 and 40 GHz.

  6. Electromagnetic properties of photodefinable barium ferrite polymer composites

    Directory of Open Access Journals (Sweden)

    Olusegun Sholiyi

    2014-07-01

    Full Text Available This article reports the magnetic and microwave properties of a Barium ferrite powder suspended in a polymer matrix. The sizes for Barium hexaferrite powder are 3–6 μm for coarse and 0.8–1.0 μm for the fine powder. Ratios 1:1 and 3:1 (by mass of ferrite to SU8 samples were characterized and analyzed for predicting the necessary combinations of these powders with SU8 2000 Negative photoresist. The magnetization properties of these materials were equally determined and were analyzed using Vibrating Sample Magnetometer (VSM. The Thru, Reflect, Line (TRL calibration technique was employed in determining complex relative permittivity and permeability of the powders and composites with SU8 between 26.5 and 40 GHz.

  7. Preparation of polymer composite nanomembranes with a conductivity asymmetry

    International Nuclear Information System (INIS)

    Kravets, L.I.; Dmitriev, S.N.; Satulu, B.; Mitu, B.; Dinescu, G.

    2009-01-01

    The structure and charge transport properties of the poly(ethylene terephthalate) track membrane modified by a pyrrole plasma have been studied. It was found that polymer deposition on the surface of a track membrane via the plasma polymerization of pyrrole results in the creation of a composite nanomembrane that, in the case of the formation of a semipermeable layer covering the pores, possesses conductivity asymmetry in electrolyte solutions - a rectification effect similar to that of a p-n junction in semiconductors. It is caused by presence in the membrane of two layers with different functional groups and also by the pore geometry. Such a type of membranes can be used for creation of chemical and biochemical sensors

  8. Electromechanical modelling of tapered ionic polymer metal composites transducers

    Directory of Open Access Journals (Sweden)

    Rakesha Chandra Dash

    2016-09-01

    Full Text Available Ionic polymer metal composites (IPMCs are relatively new smart materials that exhibit a bidirectional electromechanical coupling. IPMCs have large number of important engineering applications such as micro robotics, biomedical devices, biomimetic robotics etc. This paper presents a comparison between tapered and uniform cantilevered Nafion based IPMCs transducer. Electromechanical modelling is done for the tapered beam. Thickness can be varied according to the requirement of force and deflection. Numerical results pertaining to the force and deflection characteristics of both type IPMCs transducer are obtained. It is shown that the desired amount of force and deflections for tapered IPMCs can be achieved for a given voltage. Different fixed end (t0 and free end (t1 thickness values have been taken to justify the results using MATLAB.

  9. Method of Making an Electroactive Sensing/Actuating Material for Carbon Nanotube Polymer Composite

    Science.gov (United States)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2009-01-01

    An electroactive sensing or actuating material comprises a composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation of the composite when such composite is affected by an external stimulus. In another embodiment, the composite comprises a, third component of micro -sized to nano-sized particles of an electroactive ceramic that is also incorporated in the polymer matrix. The method for making the three-phase composite comprises either incorporating the carbon nanotubes in the polymer matrix before incorporation of the particles of ceramic or mixing the carbon nanotubes and particles of ceramic together in a solution before incorporation in the polymer matrix.

  10. Highly ductile UV-shielding polymer composites with boron nitride nanospheres as fillers.

    Science.gov (United States)

    Fu, Yuqiao; Huang, Yan; Meng, Wenjun; Wang, Zifeng; Bando, Yoshio; Golberg, Dmitri; Tang, Chengchun; Zhi, Chunyi

    2015-03-20

    Polymer composites with enhanced mechanical, thermal or optical performance usually suffer from poor ductility induced by confined mobility of polymer chains. Herein, highly ductile UV-shielding polymer composites are successfully fabricated. Boron nitride (BN) materials, with a wide band gap of around ∼6.0 eV, are used as fillers to achieve the remarkably improved UV-shielding performance of a polymer matrix. In addition, it is found that spherical morphology BN as a filler can keep the excellent ductility of the composites. For a comparison, it is demonstrated that traditional fillers, including conventional BN powders can achieve the similar UV-shielding performance but dramatically decrease the composite ductility. The mechanism behind this phenomenon is believed to be lubricant effects of BN nanospheres for sliding of polymer chains, which is in consistent with the thermal analyses. This study provides a new design to fabricate UV-shielding composite films with well-preserved ductility.

  11. 2014 Global Conference on Polymer and Composite Materials (PCM 2014)

    Science.gov (United States)

    2014-08-01

    The 2014 Global Conference on Polymer and Composite Materials (PCM 2014) sponsored by Ningbo Adhesives and Products Industry Association, Shanghai Bonding Technology Association, Zhejiang Bonding Technology Association, Wuhan Bonding Technology Association, Hebei Bonding and Coatings Association and Polyurethane Industry Association was held from May 27 to May 29 2014 in Ningbo, China. The technical program consisted of 8 international keynote speakers, oral presentations, and a poster session. The conference also included an industrial exhibition where more than 50 companies displayed in their booths their most recent advanced products and services. The present issue of IOP Conference Series: Materials Science and Engineering (MSE) records the proceedings of PCM 2014 and contains 37 specially selected manuscripts submitted to PCM2014 conference. The electronic submission and handling of manuscripts via the conference website, including the selection of reviewers and evaluation of manuscripts, were identical to the procedures applied to manuscripts submitted as regular contributions for publication. The organization of this conference and the preparation of proceedings volumes would have been impossible without the tremendous efforts and dedication of many individuals, especially from Ms. Yin Pan, who oversaw the organization of the conference and the program; and a large team of reviewers with their timely submission of quality reports. We express our sincere thanks to all authors and presenters for their contributions. We also thank very much our sponsors for their generous support. The 2015 Global Conference on Polymer and Composite Materials (PCM2015) will be held in Beijing, China on May 16-18, 2015. Beijing, the capital of the People's Republic of China and one of the most populous cities in the world, will welcome to all participants for a renewed and vibrant conference. Prof. Dr. Esteban Broitman Linköping University, Sweden Editor in Chief — PCM2014

  12. 2014 Global Conference on Polymer and Composite Materials (PCM 2014)

    International Nuclear Information System (INIS)

    2014-01-01

    The 2014 Global Conference on Polymer and Composite Materials (PCM 2014) sponsored by Ningbo Adhesives and Products Industry Association, Shanghai Bonding Technology Association, Zhejiang Bonding Technology Association, Wuhan Bonding Technology Association, Hebei Bonding and Coatings Association and Polyurethane Industry Association was held from May 27 to May 29 2014 in Ningbo, China. The technical program consisted of 8 international keynote speakers, oral presentations, and a poster session. The conference also included an industrial exhibition where more than 50 companies displayed in their booths their most recent advanced products and services. The present issue of IOP Conference Series: Materials Science and Engineering (MSE) records the proceedings of PCM 2014 and contains 37 specially selected manuscripts submitted to PCM2014 conference. The electronic submission and handling of manuscripts via the conference website, including the selection of reviewers and evaluation of manuscripts, were identical to the procedures applied to manuscripts submitted as regular contributions for publication. The organization of this conference and the preparation of proceedings volumes would have been impossible without the tremendous efforts and dedication of many individuals, especially from Ms. Yin Pan, who oversaw the organization of the conference and the program; and a large team of reviewers with their timely submission of quality reports. We express our sincere thanks to all authors and presenters for their contributions. We also thank very much our sponsors for their generous support. The 2015 Global Conference on Polymer and Composite Materials (PCM2015) will be held in Beijing, China on May 16–18, 2015. Beijing, the capital of the People's Republic of China and one of the most populous cities in the world, will welcome to all participants for a renewed and vibrant conference. Prof. Dr. Esteban Broitman Linköping University, Sweden Editor in Chief — PCM

  13. Enhancement of biodegradation and osseointegration of poly(ε-caprolactone)/calcium phosphate ceramic composite screws for osteofixation using calcium sulfate.

    Science.gov (United States)

    Wu, Chang-Chin; Hsu, Li-Ho; Tsai, Yuh-Feng; Sumi, Shoichiro; Yang, Kai-Chiang

    2016-04-04

    Internal fixation devices, which can stabilize and realign fractured bone, are widely used in fracture management. In this paper, a biodegradable composite fixator, composed of poly(ε-caprolactone), calcium phosphate ceramic and calcium sulfate (PCL/CPC/CS), is developed. The composition of CS, which has a high dissolution rate, was expected to create a porous structure to improve osteofixation to the composite fixator. PCL, PCL/CPC, and PCL/CPC/CS samples were prepared and their physical properties were characterized in vitro. In vivo performance of the composite screws was verified in the distal femurs of rabbits. Results showed that the PCL/CPC/CS composite had a higher compressive strength (28.55 ± 3.32 MPa) in comparison with that of PCL (20.64 ± 1.81 MPa) (p < 0.05). A larger amount of apatite was formed on PCL/CPC/CS than on PCL/CPC, while no apatite was found on PCL after simulated body fluid immersion. In addition, PCL/CPC/CS composites also had a faster in vitro degradation rate (13.05 ± 3.42% in weight loss) relative to PCL (1.79 ± 0.23%) and PCL/CPC (4.32 ± 2.18%) (p < 0.001). In animal studies, PCL/CPC/CS screws showed a greater volume loss than that of PCL or PCL/CPC at 24 weeks post-implantation. Under micro-computerized tomography observation, animals with PCL/CPC/CS implants had better osseointegration in terms of the structural parameters of the distal metaphysis, including trabecular number, trabecular spacing, and connectivity density, than the PCL screw. This study reveals that the addition of CS accelerates the biodegradation and enhanced apatite formation of the PCL/CPC composite screw. This osteoconductive PCL/CPC/CS is a good candidate material for internal fixation devices.

  14. Composite gel polymer electrolyte for lithium ion batteries

    Science.gov (United States)

    Naderi, Roya

    Composite gel polymer electrolyte (CGPE) films, consisting of poly (vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) as the membrane, DMF and PC as solvent and plasticizing agent, mixture of charge modified TiO2 and SiO 2 nano particles as ionic conductors, and LiClO4+LiPF 6 as lithium salts were fabricated. Following the work done by Li et al., CGPE was coated on an O2-plasma treated trilayer polypropylene-polyethylene-polypropylene membrane separator using solution casting technique in order to improve the adhesive properties of gel polymer electrolyte to the separator membrane and its respective ionic conductivity due to decreasing the bulk resistance. In acidic CGPE with, the mixture of acid treated TiO2 and neutral SiO2 nano particles played the role of the charge modified nano fillers with enhanced hydroxyl groups. Likely, the mixture of neutral TiO 2 nano particles with basic SiO2 prepared through the hydrolization of tetraethyl orthosilicate (TEOS) provided a more basic environment due to the residues of NH4OH (Ammonium hydroxide) catalyst. The O2 plasma treated separator was coated with the solution of PVDF-HFP: modified nano fillers: Organic solvents with the mixture ratio of 0.1:0.01:1. After the evaporation of the organic solvents, the dried coated separator was soaked in PC-LiClO4+LiPF6 in EC: DMC:DEC (4:2:4 in volume) solution (300% wt. of PVDF-HFP) to form the final CGPE. Lim et al. has reported the enhanced ionic conductivity of 9.78*10-5 Scm-1 in an acidic composite polystyrene-Al2O3 solid electrolyte system with compared to that of basic and neutral in which the ionic conductivity undergoes an ion hopping process in solid interface rather than a segmental movement of ions through the plasticized polymer chain . Half-cells with graphite anode and Li metal as reference electrode were then assembled and the electrochemical measurements and morphology examinations were successfully carried out. Half cells demonstrated a considerable change in their

  15. Dielectric Property Enhancement in Polymer Composites with Engineered Interfaces

    Science.gov (United States)

    Krentz, Timothy Michael

    This thesis reports studies into the dielectric behavior of polymer composites filled with silica nanoparticles. The permittivity and dielectric breakdown strength (DBS) of these materials are critical to their performance in insulating applications such as high voltage power transmission. Until now, the mechanisms which lead to improvements in DBS in these systems have been poorly understood, in part because the effects of dispersion of the filler and the filler's surface electronic characteristics have been confused. The new surface modifications created in this thesis permit these two parameters to be addressed independently, leading to the hypothesis that nanocomposite dielectric materials exhibit DBS enhancement when electron avalanches are prevented from proceeding to reach a critical size capable of causing failure. The same control of dispersion and surface properties also lead to changes in the permittivity of the composite based upon the polarizability and trapping behavior of the filler. In this work, the dispersion and surface states of silica nanoparticles were independently controlled with two separate populations of surface molecules. Two matrix materials were studied, and in each system, a different, matrix-compatible long chain polymer is required to control dispersion. Conversely, a second population of short molecules is shown to be capable of creating electronic traps associated with the silica nanoparticle surface which lead to DBS enhancements largely independent of the matrix, indicating that the same failure mechanism is operating in both epoxy and polypropylene. Progressive variation in dispersion quality is attained with this surface modification scheme. This creates progressively smaller volumes of matrix polymer unaffected by the filler. This work shows that when these volumes approach and become smaller than the same scale as predicted for electron avalanches, the greatest changes in DBS are seen. Likewise, the plateau behavior of this

  16. Wood-plastic composites as promising green-composites for automotive industries!

    Science.gov (United States)

    Ashori, Alireza

    2008-07-01

    Wood-plastic composite (WPC) is a very promising and sustainable green material to achieve durability without using toxic chemicals. The term WPCs refers to any composites that contain plant fiber and thermosets or thermoplastics. In comparison to other fibrous materials, plant fibers are in general suitable to reinforce plastics due to relative high strength and stiffness, low cost, low density, low CO2 emission, biodegradability and annually renewable. Plant fibers as fillers and reinforcements for polymers are currently the fastest-growing type of polymer additives. Since automakers are aiming to make every part either recyclable or biodegradable, there still seems to be some scope for green-composites based on biodegradable polymers and plant fibers. From a technical point of view, these bio-based composites will enhance mechanical strength and acoustic performance, reduce material weight and fuel consumption, lower production cost, improve passenger safety and shatterproof performance under extreme temperature changes, and improve biodegradability for the auto interior parts.

  17. Effect of photodegradation and biodegradation on the concentration and composition of dissolved organic matter in diverse waterbodies

    Science.gov (United States)

    Manalilkada Sasidharan, S.; Dash, P.; Singh, S.; Lu, Y.

    2017-12-01

    The objective of this research was to quantify the effects of photodegradation and biodegradation on the dissolved organic matter (DOM) concentration and composition in five distinct waterbodies with diverse types of watershed land use and land cover in the southeastern United States. The water bodies included an agricultural pond, a lake in a predominantly forested watershed, a man-made reservoir, an estuary, and a bay. Two sets of samples were prepared from these water bodies by dispensing filtered water samples to unfiltered samples in 10:1 ratio. The first set was kept in the sunlight during the day (12 hours), and colored dissolved organic matter (CDOM) absorption and fluorescence were measured periodically over a 30-day period for examining the effects of combined photo- and biodegradation. The second set of samples was kept in the dark for examining the effects of biodegradation alone, and CDOM absorption and fluorescence were measured at the same time as the sunlight-exposed samples. Subsequently, spectrometric results in tandem with multivariate statistical analysis were used to interpret the lability vs. composition of DOM. Parallel factor analysis (PARAFAC) revealed the presence of four DOM components (C1-C4). C1 and C4 were microbial tryptophan-like, labile lighter components, while C2 and C3 were terrestrial humic like or fulvic acid type, larger aromatic refractory components. The principal component analysis (PCA) also revealed two distinct groups of DOM - C1 and C4 vs. C2 and C3. The negative PC1 loadings of C2, C3, HIX, a254 and SUVA indicated humic-like or fulvic-like structurally complex refractory aromatic DOM originated from higher plants in forested areas. C1, C4, SR, FI and BI had positive PC1 loadings, which indicated structurally simpler labile DOM were derived from agricultural areas or microbial activity. There was a decrease in dissolved organic carbon (DOC) due to combined photo- and biodegradation, and transformation of components C2

  18. Photocatalytic activity of PANI loaded coordination polymer composite materials: Photoresponse region extension and quantum yields enhancement via the loading of PANI nanofibers on surface of coordination polymer

    International Nuclear Information System (INIS)

    Cui, Zhongping; Qi, Ji; Xu, Xinxin; Liu, Lu; Wang, Yi

    2013-01-01

    To enhance photocatalytic property of coordination polymer in visible light region, polyaniline (PANI) loaded coordination polymer photocatalyst was synthesized through in-situ chemical oxidation of aniline on the surface of coordination polymer. The photocatalytic activity of PANI loaded coordination polymer composite material for degradation of Rhodamine B (RhB) was investigated. Compared with pure coordination polymer photocatalyst, which can decompose RhB merely under UV light irradiation, PANI loaded coordination polymer photocatalyst displays more excellent photocatalytic activity in visible light region. Furthermore, PANI loaded coordination polymer photocatalyst exhibits outstanding stability during the degradation of RhB. - Graphical abstract: PANI loaded coordination polymer composite material, which displays excellent photocatalytic activity under visible light was firstly synthesized through in-situ chemical oxidation of aniline on surface of coordination polymer. Display Omitted - Highlights: • This PANI loaded coordination polymer composite material represents the first conductive polymer loaded coordination polymer composite material. • PANI/coordination polymer composite material displays more excellent photocatalytic activity for the degradation of MO in visible light region. • The “combination” of coordination polymer and PANI will enable us to design high-activity, high-stability and visible light driven photocatalyst in the future

  19. Production of polymer-plaster composite by gamma irradiation

    International Nuclear Information System (INIS)

    Gazineu, Maria Helena Paranhos; Santos, Valdemir Alexandre dos; Dantas, Carlos Costa

    2009-01-01

    The estimated amount of plaster wastes in the construction industry is 45%. The reduction of this waste is of concern, because the cost of lost material and the waste management can affect the competitiveness of the company. The mixture of plaster with a particular resin generates a composite, which gives the pre-molded obtained from this mixture, special properties. In this case, the plasticity of the plaster generates pre-molded products with wealth of details. Additionally, the use of nuclear techniques for the initiation of polymerization reaction for obtaining this type of composite can eliminate the need for a heat source which is the conventional way to obtain polymerization, considerably reducing the costs of the process. As a function of the availability and the cost of styrene monomer, in the initial phase of the research test samples were prepared from plaster composites with this type of material. The test samples, composed of plaster and styrene, were irradiated in the presence of a Cs-137 (662 keV) gamma source for a period of time of two days in an air pressurized chamber. Tests of resistance to compression, tensile strength in bending and water absorption, were based on a type of experimental design, CCRD (Central Composite Rotatable Design). The percent average weight of polymer by weight of the test sample was 14.0%. The presence of a polymerized resin gives the sample qualities such as being highly impervious to water and high mechanical strength, allowing its use in the manufacture of different types of materials. (author)

  20. Surface modified carbon nanoparticle papers and applications on polymer composites

    Science.gov (United States)

    Ouyang, Xilian

    Free-standing paper like materials are usually employed as protective layers, chemical filters, components of electrical batteries or supercapacitors, adhesive layers, and electronic or optoelectric components. Free-standing papers made from carbon nanoparticles have drawn increased interest because they have a variety of superior chemical and physical characteristics, such as light weight, high intrinsic mechanical properties, and extraordinary high electrical conductivity. Nanopapers fabricated from 1- D shape carbon nanofibers (CNFs) and carbon nanotubes (CNTs) are promising reinforcing materials for polymer composites, because the highly porous CNF and CNT nanopapers (porosity ˜80% and ˜70% respectively) can be impregnated with matrix polymers. In the first part of this work, polyaniline (PANI) was used to functionalize the surface of CNFs, and the resultant carbon nanopapers presented impressive mechanical strength and electrical conductivity that it could be used in the in-mold coating (IMC)/ injection molding process to achieve high electromagnetic interference (EMI) shielding effectiveness. Aniline modified (AF) CNT nanopapers were used as a 3D network in gas separation membranes. The resultant composite membranes demonstrated better and stable CO2 permeance and CO 2/H2 selectivity in a high temperature (107°C) and high pressure (15-30 atm) gas separation process, not achievable by conventional polymer membranes. In the second part, we demonstrated that 2-D graphene (GP) or graphene oxide (GO) nanosheets could be tightly packed into a film which was impermeable to most gases and liquids. GP or GO nanopapers could be coated on polymer composites. In order to achieve well-dispersed single-layer graphene in aqueous medium, we developed a facile approach to synthesize functional GP bearing benzenesulfonic acid groups which allow the preparation of nanopapers by water based assembly. With the optimized processing conditions, our best GP nanopapers could reach

  1. EB treatment of carbon nanotube-reinforced polymer composites

    International Nuclear Information System (INIS)

    Szebenyi, G.; Romhany, G.; Czvikovszky, T.; Vajna, B.

    2011-01-01

    Complete text of publication follows. A small amount - less than 0.5% - carbon nanotube reinforcement may improve significantly the mechanical properties of epoxy based composite materials. The basic technical problem is on one side the dispersion of the nanotubes into the viscous matrix resin. Namely the fine, powder-like - less than 100 nanometer diameter - nanotubes are prone to form aggregates. On the other side, the good connection between the nanofiber and matrix, - which is determining the success of the reinforcement, - requires some efficient adhesion promoting treatment. After an elaborate masterbatch mixing technology we applied Electron Beam treatment of epoxy-matrix polymer composites containing carbon nanotubes in presence of vinylester resins. The Raman spectra of vinylester-epoxy mixtures treated by an 8 MeV EB showed the advantage of the electron treatment. Even in the case of partially immiscible epoxy and vinylester resins, the anchorage of carbon nanotubes reflects improvement if a reasonable 25 kGy EB dose is applied. Atomic Force Microscopy as well as mechanical tests on flexural and impact properties confirm the benefits of EB treatment. Simultaneous application of multiwall carbon nanotubes and 'conventional' carbon fibers as reinforcement in vinylester modified epoxies results in new types of hybrid nanocomposites as engineering materials. The bending- and interlaminar properties of such hybrid systems showed the beneficial effect of the EB treatment. Acknowledgement: This work has been supported by the New Hungary Development Plan (Project ID: TAMOP-4.2.1/B-09/1/KMR-2010-0002).

  2. A novel bio-degradable polymer stabilized Ag/TiO2 nanocomposites and their catalytic activity on reduction of methylene blue under natural sun light.

    Science.gov (United States)

    Geetha, D; Kavitha, S; Ramesh, P S

    2015-11-01

    In the present work we defined a novel method of TiO2 doped silver nanocomposite synthesis and stabilization using bio-degradable polymers viz., chitosan (Cts) and polyethylene glycol (PEG). These polymers are used as reducing agents. The instant formation of AgNPs was analyzed by visual observation and UV-visible spectrophotometer. TiO2 nanoparticles doped at different concentrations viz., 0.03, 0.06 and 0.09mM on PEG/Cts stabilized silver (0.04wt%) were successfully synthesized. This study presents a simple route for the in situ synthesis of both metal and polymer confined within the nanomaterial, producing ternary hybrid inorganic-organic nanomaterials. The results reveal that they have higher photocatalytic efficiencies under natural sun light. The synthesized TiO2 doped Ag nanocomposites (NCs) were characterized by SEM/EDS, TEM, XRD, FTIR and DLS with zeta potential. The stability of Ag/TiO2 nanocomposite is due to the high negative values of zeta potential and capping of constituents present in the biodegradable polymer which is evident from zeta potential and FT-IR studies. The XRD and EDS pattern of synthesized Ag/TiO2 NCs showed their crystalline structure, with face centered cubic geometry oriented in (111) plane. AFM and DLS studies revealed that the diameter of stable Ag/TiO2 NCs was approximately 35nm. Moreover the catalytic activity of synthesize Ag/TiO2 NCs in the reduction of methylene blue was studied by UV-visible spectrophotometer. The synthesized Ag/TiO2 NCs are observed to have a good catalytic activity on the reduction of methylene blue by bio-degradable which is confirmed by the decrease in absorbance maximum value of methylene blue with respect to time using UV-vis spectrophotometer. The significant enhancement in the photocatalytic activity of Ag/TiO2 nanocomposites under sun light irradiation can be ascribed to the effect of noble metal Ag by acting as electron traps in TiO2 band gap. Copyright © 2015. Published by Elsevier Inc.

  3. Conductive polymer and Si nanoparticles composite secondary particles and structured current collectors for high loading lithium ion negative electrode application

    Science.gov (United States)

    Liu, Gao

    2017-07-11

    Embodiments of the present invention disclose a composition of matter comprising a silicon (Si) nanoparticle coated with a conductive polymer. Another embodiment discloses a method for preparing a composition of matter comprising a plurality of silicon (Si) nanoparticles coated with a conductive polymer comprising providing Si nanoparticles, providing a conductive polymer, preparing a Si nanoparticle, conductive polymer, and solvent slurry, spraying the slurry into a liquid medium that is a non-solvent of the conductive polymer, and precipitating the silicon (Si) nanoparticles coated with the conductive polymer. Another embodiment discloses an anode comprising a current collector, and a composition of matter comprising a silicon (Si) nanoparticle coated with a conductive polymer.

  4. Fundamental studies of low velocity impact resistance of graphite fiber reinforced polymer matrix composites

    International Nuclear Information System (INIS)

    Bowles, K.J.

    1985-01-01

    A study was conducted to relate the impact resistance of graphite fiber reinforced composites with matrix properties through gaining an understanding of the basic mechanics involved in the deformation and fracture process, and the effect of the polymer matrix structure on these mechanisms. It was found that the resin matrix structure influences the composite impact resistance in at least two ways. The integration of flexibilizers into the polymer chain structure tends to reduce the T/sub G/ and the mechanical properties of the polymer. The reduction in the mechanical properties of the matrix does not enhance the composite impact resistance because it allows matrix controlled failure to initiate impact damage. Linear polymers, which contain no active groups for cross-linking, do not toughen composites because the fiber-matrix interfacial bond is not of sufficient strength to prevent interfacial failure from occurring. Toughness must be built into the basic polymer backbone and cross-linking structure

  5. Microbuckling compression failure of a radiation-induced wood/polymer composite

    International Nuclear Information System (INIS)

    Boey, F.Y.C.

    1990-01-01

    A wood/polymer composite was produced by impregnating Ramin wood with methyl methacrylate monomer and subsequently polymerizing it by gamma irradiation. To assess the improvement in compression strength of the wood caused by the polymer impregnation, a microbuckling compression failure mechanism was used to model the compression failure of the composite. Such a mechanism was found to predict a linear relationship between the compression strength and the percentage polymer impregnation (by weight). Uniaxial compression test results at 45(±5)% and 90(±5)% relative humidity levels, after being statistically analysed, showed that such a linear relationship was valid for up to 100% polymer impregnation. (author)

  6. Characteristics of porous polymer composite columns prepared by radiation cast-polymerization

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Kaetsu, Isao; Asami, Kazuhiro; Suzuki, Shuichi

    1989-01-01

    Porous polymer composite columns having porous structure were prepared by radiation cast-polymerization of hydrophilic monomers at low temperature and their characteristics were studied. The porosity of the polymer increased with decreasing monomer concentration. The elution time of water in the polymer column increased with increasing monomer concentration and with decreasing irradiation temperature. The elution time was dependent on the degree of hydration of the polymer. The polymer with a degree of hydration of 0.2 to 0.4 gave the minimum elution time. The elution time decreased with the addition of porous inorganic substances. (author)

  7. Performance enhancement of quantum dot-sensitized solar cells based on polymer nano-composite catalyst

    International Nuclear Information System (INIS)

    Seo, Hyunwoong; Gopi, Chandu V.V.M.; Kim, Hee-Je; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu

    2017-01-01

    Highlights: •We studied polymer nano-composite containing TiO 2 nano-particles as a catalyst. •Polymer nano-composite was applied for quantum dot-sensitized solar cells. •Polymer nano-composite catalyst was considerably improved with TiO 2 nano-particles. •Polymer nano-composite showed higher photovoltaic performance than conventional Au. -- Abstract: Polymer nano-composite composed of poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) and TiO 2 nano-particles was deposited on fluorine-doped tin oxide substrate and applied as an alternative to Au counter electrode of quantum dot-sensitized solar cell (QDSC). It became surface-richer with the increase in nano-particle amount so that catalytic reaction was increased by widened catalytic interface. Electrochemical impedance spectroscopy and cyclic voltammetry clearly demonstrated the enhancement of polymer nano-composite counter electrode. A QDSC based on polymer nano-composite counter electrode showed 0.56 V of V OC , 12.24 mA cm −2 of J SC , 0.57 of FF, and 3.87% of efficiency and this photovoltaic performance was higher than that of QDSC based on Au counter electrode (3.75%).

  8. A novel use of bio-based natural fibers, polymers, and rubbers for composite materials

    Science.gov (United States)

    Modi, Sunny Jitendra

    The composites, materials, and packaging industries are searching for alternative materials to attain environmental sustainability. Bio-plastics are highly desired and current microbially-derived bio-plastics, such as PHA (poly-(hydroxy alkanoate)), PHB (poly-(hydroxybutyrate)), and PHBV (poly-(beta-hydroxy butyrate-co-valerate)) could be engineered to have similar properties to conventional thermoplastics. Poly-(hydroxybutyrate) (PHB) is a bio-degradable aliphatic polyester that is produced by a wide range of microorganisms. Basic PHB has relatively high glass transition and melting temperatures. To improve flexibility for potential packaging applications, PHB is synthesized with various co-polymers such as Poly-(3-hydroxyvalerate) (HV) to decrease the glass and melting temperatures and, since there is improved melt stability at lower processing temperatures, broaden the processing window. However, previous work has shown that this polymer is too brittle, temperature-sensitive, and hydrophilic to meet packaging material physical requirements. Therefore, the proposed work focuses on addressing the needs for bio-derived and bio-degradable materials by creating a range of composite materials using natural fibers as reinforcement agents in bio-polymers and bio- plastic-rubber matrices. The new materials should possess properties lacking in PHBV and broaden the processing capabilities, elasticity, and improve the mechanical properties. The first approach was to create novel composites using poly-(beta-hydroxy butyrate-co-valerate) (PHBV) combined with fibers from invasive plants such as common reed (Phragmites australis), reed canary grass (Phalaris arundinacea), and water celery ( Vallisneria americana). The composites were manufactured using traditional processing techniques of extrusion compounding followed by injection molding of ASTM type I parts. The effects of each bio-fiber at 2, 5, and 10% loading on the mechanical, morphological, rheological, and thermal

  9. Effect of Biomass Waste Filler on the Dielectric Properties of Polymer Composites

    Directory of Open Access Journals (Sweden)

    Yew Been Seok

    2016-07-01

    Full Text Available The effect of biomass waste fillers, namely coconut shell (CS and sugarcane bagasse (SCB on the dielectric properties of polymer composite was investigated. The aim of this study is to investigate the potential of CS and SCB to be used as conductive filler (natural source of carbon in the polymer composite. The purpose of the conductive filler is to increase the dielectric properties of the polymer composite. The carbon composition the CS and SCB was determine through carbon, hydrogen, nitrogen and sulphur (CHNS elemental analysis whereas the structural morphology of CS and SCB particles was examined by using scanning electron microscope. Room temperature open-ended coaxial line method was used to determine the dielectric constant and dielectric loss factor over broad band frequency range of 200 MHz-20 GHz. Based on this study, the results found that CS and SCB contain 48% and 44% of carbon, which is potentially useful to be used as conductive elements in the polymer composite. From SEM morphology, presence of irregular shape particles (size ≈ 200 μm and macroporous structure (size ≈ 2.5 μm were detected on CS and SCB. For dielectric properties measurement, it was measured that the average dielectric constant (ε' is 3.062 and 3.007 whereas the average dielectric loss factor (ε" is 0.282 and 0.273 respectively for CS/polymer and SCB/polymer composites. The presence of the biomass waste fillers have improved the dielectric properties of the polymer based composite (ε' = 2.920, ε" = 0.231. However, the increased in the dielectric properties is not highly significant, i.e. up to 4.86 % increase in ε' and 20% increase in ε". The biomass waste filler reinforced polymer composites show typical dielectric relaxation characteristic at frequency of 10 GHz - 20 GHz and could be used as conducting polymer composite for suppressing EMI at high frequency range.

  10. Molecular and structural properties of polymer composites filled with activated charcoal particles

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Dahlang, E-mail: dtahir@fmipa.unhas.ac.id; Bakri, Fahrul [Department of Physics, Hasanuddin University, Makassar 90245 Indonesia (Indonesia); Liong, Syarifuddin [Department of Chemistry, Hasanuddin University, Makassar 90245 Indonesia (Indonesia)

    2016-03-11

    We have studied the molecular properties, structural properties, and chemical composition of composites by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, and X-ray fluorescence (XRF) spectroscopy, respectively. FTIR spectra shows absorption band of hydroxyl group (-OH), methyl group (-CH{sub 3}) and aromatic group (C-C). The absorption band for aromatic group (C-C) shows the formation of carbonaceous in composites. XRF shows chemical composition of composites, which the main chemicals are SO{sub 3}, Cl, and ZnO. The loss on ignition value (LOI) of activated charcoal indicates high carbonaceous matter. The crystallite size for diffraction pattern from hydrogel polymer is about 17 nm and for activated charcoal are about 19 nm. The crystallite size of the polymer is lower than that of activated charcoal, which make possible of the particle from filler in contact with each other to form continuous conducting polymer through polymer matrix.

  11. Fabrication of submicron structures in nanoparticle/polymer composite by holographic lithography and reactive ion etching

    Science.gov (United States)

    Zhang, A. Ping; He, Sailing; Kim, Kyoung Tae; Yoon, Yong-Kyu; Burzynski, Ryszard; Samoc, Marek; Prasad, Paras N.

    2008-11-01

    We report on the fabrication of nanoparticle/polymer submicron structures by combining holographic lithography and reactive ion etching. Silica nanoparticles are uniformly dispersed in a (SU8) polymer matrix at a high concentration, and in situ polymerization (cross-linking) is used to form a nanoparticle/polymer composite. Another photosensitive SU8 layer cast upon the nanoparticle/SU8 composite layer is structured through holographic lithography, whose pattern is finally transferred to the nanoparticle/SU8 layer by the reactive ion etching process. Honeycomb structures in a submicron scale are experimentally realized in the nanoparticle/SU8 composite.

  12. Antimicrobial polymers - The antibacterial effect of photoactivated nano titanium dioxide polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Huppmann, T., E-mail: teresa.huppmann@tum.de; Leonhardt, S., E-mail: stefan.leonhardt@mytum.de, E-mail: erhard.krampe@tum.de; Krampe, E., E-mail: stefan.leonhardt@mytum.de, E-mail: erhard.krampe@tum.de; Wintermantel, E., E-mail: wintermantel@tum.de [Institute of Medical and Polymer Engineering, Technische Universität München (Germany); Yatsenko, S., E-mail: s.yatsenko@skz.de; Radovanovic, I., E-mail: i.radovanovic@skz.de, E-mail: m.bastian@skz.de; Bastian, M., E-mail: i.radovanovic@skz.de, E-mail: m.bastian@skz.de [SKZ- German Plastics Center, Würzburg (Germany)

    2014-05-15

    To obtain a polymer with antimicrobial properties for medical and sanitary applications nanoscale titanium dioxide (TiO{sub 2}) particles have been incorporated into a medical grade polypropylene (PP) matrix with various filler contents (0 wt %, 2 wt %, 10 wt % and 15 wt %). The standard application of TiO{sub 2} for antimicrobial efficacy is to deposit a thin TiO{sub 2} coating on the surface. In contrast to the common way of applying a coating, TiO{sub 2} particles were applied into the bulk polymer. With this design we want to ensure antimicrobial properties even after application of impact effects that could lead to surface defects. The filler material (Aeroxide® TiO{sub 2} P25, Evonik) was applied via melt compounding and the compounding parameters were optimized with respect to nanoscale titanium dioxide. In a next step the effect of UV-irradiation on the compounds concerning their photocatalytic activity, which is related to the titanium dioxide amount, was investigated. The photocatalytic effect of TiO{sub 2}-PP-composites was analyzed by contact angle measurement, by methylene blue testing and by evaluation of inactivation potential for Escherichia coli (E.coli) bacteria. The dependence of antimicrobial activity on the filler content was evaluated, and on the basis of different titanium dioxide fractions adequate amounts of additives within the compounds were discussed. Specimens displayed a higher photocatalytic and also antimicrobial activity and lower contact angles with increasing titania content. The results suggest that the presence of titania embedded in the PP matrix leads to a surface change and a photocatalytic effect with bacteria killing result.

  13. Antimicrobial polymers - The antibacterial effect of photoactivated nano titanium dioxide polymer composites

    International Nuclear Information System (INIS)

    Huppmann, T.; Leonhardt, S.; Krampe, E.; Wintermantel, E.; Yatsenko, S.; Radovanovic, I.; Bastian, M.

    2014-01-01

    To obtain a polymer with antimicrobial properties for medical and sanitary applications nanoscale titanium dioxide (TiO 2 ) particles have been incorporated into a medical grade polypropylene (PP) matrix with various filler contents (0 wt %, 2 wt %, 10 wt % and 15 wt %). The standard application of TiO 2 for antimicrobial efficacy is to deposit a thin TiO 2 coating on the surface. In contrast to the common way of applying a coating, TiO 2 particles were applied into the bulk polymer. With this design we want to ensure antimicrobial properties even after application of impact effects that could lead to surface defects. The filler material (Aeroxide® TiO 2 P25, Evonik) was applied via melt compounding and the compounding parameters were optimized with respect to nanoscale titanium dioxide. In a next step the effect of UV-irradiation on the compounds concerning their photocatalytic activity, which is related to the titanium dioxide amount, was investigated. The photocatalytic effect of TiO 2 -PP-composites was analyzed by contact angle measurement, by methylene blue testing and by evaluation of inactivation potential for Escherichia coli (E.coli) bacteria. The dependence of antimicrobial activity on the filler content was evaluated, and on the basis of different titanium dioxide fractions adequate amounts of additives within the compounds were discussed. Specimens displayed a higher photocatalytic and also antimicrobial activity and lower contact angles with increasing titania content. The results suggest that the presence of titania embedded in the PP matrix leads to a surface change and a photocatalytic effect with bacteria killing result

  14. The conductivity and stability of polymer composite solid electrolyte upon addition of graphene

    Science.gov (United States)

    Hamid, Farzana Abd.; Salleh, Fauzani Md.; Mohamed, Nor Sabirin

    2017-12-01

    The effect of graphene composition on the conductivity and stability of polymer composite solid electrolyte was studied. These polymer composite solid electrolytes were synthesized by sol gel method and prepared via the solution-casting technique. The compositions of graphene were varied between 10 wt% to 70 wt%. The changes in the functional group of polymer composite after the addition of graphene were characterized by Fourier Transform InfraRed spectroscopy. Electrochemical impedance spectroscopy was conducted at ambient temperature in the frequency range of 10 Hz to 1 MHz to study the conductivity of the polymer composite. The highest conductivity was obtained at 60 wt% graphene with the value of 2.85×10-4 Scm-1. Sample without the addition of graphene showed the lowest conductivity value of 1.77×10-7 Scm-1 and acts as an insulator. The high conductivity at 60 wt% graphene loading is related to dehydration of cellulose. This is supported by the FTIR spectrum where the absorption peaks of C-O stretching vibrations of polymer composite is weakened and the hydroxyl group is slightly shifted compared to the FTIR spectrum without the addition of graphene. Linear sweep voltammetry results demonstrated that the polymer composite solid electrolyte exhibited electrochemical stability up to 3.2 V.

  15. The biodegradable composites of Polyhydroxybutyrate (phb) reinforced by wood flour: properties and degradation

    OpenAIRE

    Caraschi, José Claudio; UEM; Ramos, Uriá Manzolli; UNESP; Leão, ALcides Lopes; UNESP

    2008-01-01

    O objetivo deste trabalho foi preparar e avaliar compósitos poliméricos mais compatíveis com o ambiente, ou seja, a obtenção de materiais que sejam biodegradáveis e que apresentem uma maior velocidade de degradação no ambiente. Os compósitos foram preparados a partir do plástico biodegradável polihidroxibutirato (PHB) com e sem reforço de farinha de madeira, um resíduo agroindustrial, nas proporções de 10% a 40% em massa, pelo processo de extrusão e moldagem por injeção. As amostras foram ava...

  16. A review of mechanical and tribological behaviour of polymer composite materials

    Science.gov (United States)

    Prabhakar, K.; Debnath, S.; Ganesan, R.; Palanikumar, K.

    2018-04-01

    Composite materials are finding increased applications in many industrial applications. A nano-composite is a matrix to which nanosized particles have been incorporated to drastically improve the mechanical performance of the original material. The structural components produced using nano-composites will exhibit a high strength-to-weight ratio. The properties of nano-composites have caused researchers and industries to consider using this material in several fields. Polymer nanocomposites consists of a polymer material having nano-particles or nano-fillers dispersed in the polymer matrix which may be of different shapes with at least one of the dimensions less than 100nm. In this paper, comprehensive review of polymer nanocomposites was done majorly in three different areas. First, mechanical behaviour of polymer nanocomposites which focuses on the mechanical property evaluation such as tensile strength, impact strength and modulus of elasticity based on the different combination of filler materials and nanoparticle inclusion. Second, wear behavior of Polymer composite materials with respect to different impingement angles and variation of filler composition using different processing techniques. Third, tribological (Friction and Wear) behaviour of nanocomposites using various combination of nanoparticle inclusion and time. Finally, it summarized the challenges and prospects of polymer nanocomposites.

  17. Does magnesium compromise the high temperature processability of novel biodegradable and bioresorbables PLLA/Mg composites?

    Directory of Open Access Journals (Sweden)

    Cifuentes, Sandra C.

    2014-06-01

    Full Text Available This paper addresses the influence of magnesium on melting behaviour and thermal stability of novel bioresorbable PLLA/Mg composites as a way to investigate their processability by conventional techniques, which likely will require a melt process at high temperature to mould the material by using a compression, extrusion or injection stage. For this purpose, and to avoid any high temperature step before analysis, films of PLLA loaded with magnesium particles of different sizes and volume fraction were prepared by solvent casting. DSC, modulated DSC and thermogravimetry analysis demonstrate that although thermal stability of PLLA is reduced, the temperature window for processing the PLLA/Mg composites by conventional thermoplastic routes is wide enough. Moreover, magnesium particles do not alter the crystallization behaviour of the polymer from the melt, which allows further annealing treatments to optimize the crystallinity in terms of the required combination of mechanical properties and degradation rate.Este trabajo aborda la influencia de magnesio en el comportamiento a fusión y en la estabilidad térmica de nuevos compuestos de PLLA / Mg biorreabsorbibles como una forma de investigar su procesabilidad mediante técnicas convencionales, lo que probablemente requerirá una etapa en estado fundido a alta temperatura para moldear el material mediante el uso de una etapa de compresión, extrusión o inyección. Para este fin, los materiales de PLLA cargados con partículas de magnesio, de diferentes tamaños y fracción de volumen, se prepararon por la técnica de disolución y colada, evitando así el procesado a alta temperatura antes del análisis. El análisis mediante DSC, DSC modulada y termogravimetría demuestra que, aunque la estabilidad térmica de PLLA se reduce, el intervalo de temperatura para su procesado por rutas convencionales es suficientemente amplio. Además, las partículas de magnesio no alteran la cristalización del pol

  18. Antibacterial glass and glass-biodegradable matrix composites for bone tissue engineering

    OpenAIRE

    Fernandes, João Pedro Silva

    2017-01-01

    Multiple joint and bone diseases affect millions of people worldwide. In fact the Bone and Joint Decade’s association predicted that the percentage of people over 50 years of age affected by bone diseases will double by 2020. Bone diseases commonly require the need for surgical intervention, often involving partial or total bone substitution. Therefore biodegradable biomaterials designed as bone tissue engineered (BTE) devices to be implanted into the human body, function as a ...

  19. Manufacturing Technology of Composite Materials-Principles of Modification of Polymer Composite Materials Technology Based on Polytetrafluoroethylene.

    Science.gov (United States)

    Panda, Anton; Dyadyura, Kostiantyn; Valíček, Jan; Harničárová, Marta; Zajac, Jozef; Modrák, Vladimír; Pandová, Iveta; Vrábel, Peter; Nováková-Marcinčínová, Ema; Pavelek, Zdeněk

    2017-03-31

    The results of the investigations into the technological formation of new wear-resistant polymer composites based on polytetrafluoroethylene (PTFE) filled with disperse synthetic and natural compounds are presented. The efficiency of using PTFE composites reinforced with carbon fibers depends on many factors, which influence the significant improvement of physicomechanical characteristics. The results of this research allow stating that interfacial and surface phenomena of the polymer-solid interface and composition play a decisive role in PTFE composites properties. Fillers hinder the relative movement of the PTFE molecules past one another and, in this way, reduce creep or deformation of the pa