WorldWideScience

Sample records for biocontrol agent trichoderma

  1. Trichoderma spp.: a biocontrol agent for sustainable management of plant diseases

    International Nuclear Information System (INIS)

    Trichoderma spp. are mainly asexual fungi that are present in all types of agricultural soils and also in decaying wood. The antagonistic activity of Trichoderma species showed that it is parasitic on many soil-borne and foliage pathogens. The fungus is also a decomposer of cellulosic waste materials. Recent discoveries show that the fungi not only act as biocontrol agents, but also stimulate plant resistance, and plant growth and development resulting in an increase in crop production. The biocontrol activity involving mycoparasitism, antibiotics and competition for nutrients, also induces defence responses or systemic resistance responses in plants. These responses are an important part of Trichoderma in biocontrol program. Currently, Trichoderma spp., is being used to control plant diseases in sustainable diseases management systems. This paper reviews the published information on Trichoderma spp., and its biocontrol activity in sustainable disease management programs. (author)

  2. Trichoderma harzianum: a biocontrol agent against Bipolaris oryzae.

    Science.gov (United States)

    Abdel-Fattah, Gamal M; Shabana, Yasser M; Ismail, Adel E; Rashad, Younes Mohamed

    2007-08-01

    Rice brown spot, caused by Bipolaris oryzae, can be a serious disease causing a considerable yield loss. Trichoderma harzianum is an effective biocontrol agent for a number of plant fungal diseases. Thus, this research was carried out to investigate the mechanisms of action by which T. harzianum antagonizes Bipolaris oryzae in vitro, and the efficacy of spray application of a spore suspension of T. harzianum for control of rice brown spot disease under field conditions. In vitro, the antagonistic behavior of T. harzianum resulted in the overgrowth of B. oryzae by T. harzianum, while the antifungal metabolites of T. harzianum completely prevented the linear growth of B. oryzae. Light and scanning electron microscope (SEM) observations showed no evidence that mycoparasitism contributed to the aggressive nature of the tested isolate of T. harzianum against B. oryzae. Under field conditions, spraying of a spore suspension of T. harzianum at 10(8)spore ml(-1) significantly reduced the disease severity (DS) and disease incidence (DI) on the plant leaves, and also significantly increased the grain yield, total grain carbohydrate, and protein, and led to a significant increase in the total photosynthetic pigments (chlorophyll a and b and carotenoids) in rice leaves. PMID:17592758

  3. Utilization of winery wastes for Trichoderma viride biocontrol agent production by solid state fermentation

    Institute of Scientific and Technical Information of China (English)

    BAI Zhihui; JIN Bo; LI Yuejie; CHEN Jian; LI Zuming

    2008-01-01

    Biocontrol agents are safe and environmental friendly alternatives for pesticides in agriculture application.Trichoderma v/ride WEBL0703 performed a high level of antagonistic activity toward a broad spectrum of phytopathogens and was determined as a biocontrol agent,which was produced by solid state fermentation using grape marc and wine lees.The maximum yield of T.viride conidia was up to 6.65×109 CFU/g initial dry substrate (IDS) after 10 d fermentation.As important enzymes for protecting plants from disease,ehitinase,β-glucanase,and pectinase yields were 47.8 U/g IDS,8.32 U/g IDS and 9.83 U/g IDS,respectively.These results show that it is feasible to convert winery wastes to a value-added and environmental friendly biocontrol agent.

  4. Improvement of the Fungal Biocontrol Agent Trichoderma atroviride To Enhance both Antagonism and Induction of Plant Systemic Disease Resistance

    OpenAIRE

    Brunner, Kurt; Zeilinger, Susanne; Ciliento, Rosalia; Woo, Sheridian L.; Lorito, Matteo; Kubicek, Christian P; Mach, Robert L.

    2005-01-01

    Biocontrol agents generally do not perform well enough under field conditions to compete with chemical fungicides. We determined whether transgenic strain SJ3-4 of Trichoderma atroviride, which expresses the Aspergillus niger glucose oxidase-encoding gene, goxA, under a homologous chitinase (nag1) promoter had increased capabilities as a fungal biocontrol agent. The transgenic strain differed only slightly from the wild-type in sporulation or the growth rate. goxA expression occurred immediat...

  5. Molecular Characterization and Identification of Biocontrol Isolates of Trichoderma spp.

    OpenAIRE

    Hermosa, M. R.; Grondona, I; Iturriaga, E A; Diaz-Minguez, J. M.; Castro, C.; Monte, E.; Garcia-Acha, I.

    2000-01-01

    The most common biological control agents (BCAs) of the genus Trichoderma have been reported to be strains of Trichoderma virens, T. harzianum, and T. viride. Since Trichoderma BCAs use different mechanisms of biocontrol, it is very important to explore the synergistic effects expressed by different genotypes for their practical use in agriculture. Characterization of 16 biocontrol strains, previously identified as “Trichoderma harzianum” Rifai and one biocontrol strain recognized as T. virid...

  6. Native isolate of Trichoderma: a biocontrol agent with unique stress tolerance properties.

    Science.gov (United States)

    Mishra, N; Khan, S S; Sundari, S Krishna

    2016-08-01

    Species of Trichoderma are widely recognized for their biocontrol abilities, but seldom studied collectively, for their plant growth promotion, abiotic stress tolerance and bioremediation properties. Our study is a concentrated effort to establish the potential of native isolate Trichoderma harzianum KSNM (T103) to tolerate biotic (root pathogens) and abiotic stresses [high salt (100-1000 mM); heavy metal (chromium, nickel and zinc: 1-10 mM); pesticides: malathion (100-600 ppm), carbofuran (100-600 ppb)], along with its ability to support plant growth. In vitro growth promotion assays with T103 treated Vigna radiata, Vigna mungo and Hordeum vulgare confirmed 'non-species specific' growth promotion effects of T103. At lower metal concentration, T103 treatment was found to completely negate the impact of metal stress [60 % increase in radicle length (RL) with no significant decrease in %germination (%G)]. Even at 10 mM metal, T103 inoculation gave 80 % increase in %G and >50 % increase in RL. In vitro experiments confirmed high metal reduction capacity (47 %-Cr, 35 %-Ni and 42 %-Zn) of T103 at concentrations as high as 4 mM. At maximum residual concentrations of malathion (440 ppm) and carbofuran (100 ppb) reported in agricultural soils, T103 maintained 80 and 100 % survivability, respectively. T103 treatment has improved %G and RL in all three hosts challenged with pesticide. Isolate T103 was found to effectively suppress growth of three major root pathogens: Macrophomina phaseolina (65.83 %) followed by Sclerotium rolfsii (19.33 %) and Fusarium oxysporum (19.18 %). In the light of these observations, native T. harzianum (T103) seems to be a competent biocontrol agent for tropical agricultural soils contaminated with residual pesticides and heavy metals. PMID:27339311

  7. Characterization of Novel Trichoderma asperellum Isolates to Select Effective Biocontrol Agents Against Tomato Fusarium Wilt.

    Science.gov (United States)

    El Komy, Mahmoud H; Saleh, Amgad A; Eranthodi, Anas; Molan, Younes Y

    2015-03-01

    The use of novel isolates of Trichoderma with efficient antagonistic capacity against Fusarium oxysporum f. sp. lycopersici (FOL) is a promising alternative strategy to pesticides for tomato wilt management. We evaluated the antagonistic activity of 30 isolates of T. asperellum against 4 different isolates of FOL. The production of extracellular cell wall degrading enzymes of the antagonistic isolates was also measured. The random amplified polymorphic DNA (RAPD) method was applied to assess the genetic variability among the T. asperellum isolates. All of the T. asperellum isolates significantly reduced the mycelial growth of FOL isolates but the amount of growth reduction varied significantly as well. There was a correlation between the antagonistic capacity of T. asperellum isolates towards FOL and their lytic enzyme production. Isolates showing high levels of chitinase and β-1,3-glucanase activities strongly inhibited the growth of FOL isolates. RAPD analysis showed a high level of genetic variation among T. asperellum isolates. The UPGMA dendrogram revealed that T. asperellum isolates could not be grouped by their anta- gonistic behavior or lytic enzymes production. Six isolates of T. asperellum were highly antagonistic towards FOL and potentially could be used in commercial agriculture to control tomato wilt. Our results are consistent with the conclusion that understanding the genetic variation within Trichoderma isolates and their biochemical capabilities are required for the selection of effective indigenous fungal strains for the use as biocontrol agents. PMID:25774110

  8. Peptaibol, Secondary‐Metabolite, and Hydrophobin Pattern of Commercial Biocontrol Agents Formulated with Species of the Trichoderma harzianum Complex

    DEFF Research Database (Denmark)

    Degenkolb, Thomas; Nielsen, Kristian Fog; Dieckmann, Ralf;

    2015-01-01

    The production of bioactive polypeptides (peptaibiotics) in vivo is a sophisticated adaptation strategy of both mycoparasitic and saprotrophic Trichoderma species for colonizing and defending their natural habitats. This feature is of major practical importance, as the detection of peptaibiotics in...... plant‐protective Trichoderma species, which are successfully used against economically relevant bacterial and fungal plant pathogens, certainly contributes to a better understanding of these complex antagonistic interactions. We analyzed five commercial biocontrol agents (BCAs), namely Canna®, Trichosan......®, Vitalin®, Promot® WP, and TrichoMax®, formulated with recently described species of the Trichoderma harzianum complex, viz. T. afroharzianum, T. simmonsii, and T. guizhouense. By using the well‐established, HPLC/MS‐based peptaibiomics approach, it could unequivocally be demonstrated that all of these...

  9. Influence of Environmental Parameters on Trichoderma Strains with Biocontrol Potential

    OpenAIRE

    Kredics, László; Antal, Zsuzsanna; Manczinger, László; Szekeres, András; Kevei, Ferenc; Nagy, Erzsébet

    2003-01-01

    Several mycoparasitic strains belonging to the filamentous fungal genus Trichoderma are promising candidates for the biological control of plant pathogenic fungi. When planning the application of antagonistic Trichoderma strains for the purposes of biological control, it is very important to consider the environmental parameters affecting the biocontrol agents in the soil. A series of abiotic and biotic environmental parameters has an influence on the biocontrol efficacy of Trichoderma. Some ...

  10. Genome Sequencing and Comparative Analysis of the Biocontrol Agent Trichoderma harzianum sensu stricto TR274

    Energy Technology Data Exchange (ETDEWEB)

    Steindorff, Andrei S.; Noronha, Elilane F.; Ulhoa, Cirano J.; Kuo, Alan; Salamov, Asaf A.; Haridas, Sajeet; Riley, Robert W.; Druzhinina, Irina S.; Kubicek, Christian P.; Grigoriev, Igor V.

    2015-03-17

    Biological control is a complex process which requires many mechanisms and a high diversity of biochemical pathways. The species of Trichoderma harzianum are well known for their biocontrol activity against many plant pathogens. To gain new insights into the biocontrol mechanism used by T. harzianum, we sequenced the isolate TR274 genome using Illumina. The assembly was performed using AllPaths-LG with a maximum coverage of 100x. The assembly resulted in 2282 contigs with a N50 of 37033bp. The genome size generated was 40.8 Mb and the GC content was 47.7%, similar to other Trichoderma genomes. Using the JGI Annotation Pipeline we predicted 13,932 genes with a high transcriptome support. CEGMA tests suggested 100% genome completeness and 97.9% of RNA-SEQ reads were mapped to the genome. The phylogenetic comparison using orthologous proteins with all Trichoderma genomes sequenced at JGI, corroborates the Trichoderma (T. asperellum and T. atroviride), Longibrachiatum (T. reesei and T. longibrachiatum) and Pachibasium (T. harzianum and T. virens) section division described previously. The comparison between two Trichoderma harzianum species suggests a high genome similarity but some strain-specific expansions. Analyses of the secondary metabolites, CAZymes, transporters, proteases, transcription factors were performed. The Pachybasium section expanded virtually all categories analyzed compared with the other sections, specially Longibrachiatum section, that shows a clear contraction. These results suggests that these proteins families have an important role in their respective phenotypes. Future analysis will improve the understanding of this complex genus and give some insights about its lifestyle and the interactions with the environment.

  11. [Improvement of Trichoderma strains for biocontrol].

    Science.gov (United States)

    Benítez, T; Rey, M; Delgado-Jarana, J; Rincón, A M; Limón, M C

    2000-03-01

    The use of the fungal genus Trichoderma to control fungal plant diseases is a promising alternative to the use of chemical compounds. The aim of this work has been to obtain Trichoderma strains with improved capacity as biological control agents. To do so, the hydrolytic capacity on fungal cell walls of strains of the fungus Trichoderma harzianum has been increased. On one hand, transformation experiments with genes which coded for chitinases and glucanases have been carried out in T. harzianumstra ins. On the other hand, the medium composition has also been modified in order to eliminate proteolytic degradation of some of the overproduced enzymes. Finally, hybrid chitinolytic enzymes with substrate-binding domains have been produced as an alternative to obtain improved biocontrol strains. The transformant strains, when compared with the wild type, showed improved antifungal capacity against the phytopathogenic fungus Rhizoctonia solani, in in vitro experiments. PMID:15762779

  12. Trichoderma harzianum as a biocontrol agent against Alternaria alternata on tobacco

    Directory of Open Access Journals (Sweden)

    Jugoslav Ziberoski

    2012-06-01

    Full Text Available Trichoderma fungi are the most popular agents used in a biological control. Therefore, our aim was to determine an impact of Trichoderma harzianum on the fungus Alternaria alternata - a causing agent of the brown spot disease on tobacco. In vitro analyses were made in several variants of double culture, in order to study the effect of difusible and volatile metabolites. There was strong reducing effect on the development of A.alternata with various mechanisms of antagonistic influence. The volatile metabolites have also shown reducing effect. Some abnormalities were observed in the pathogen's morphology both in difusible and volatile metabolites. The strong reducing effect of T.harzianum towards A. alternata can be applied in biological control of this pathogen.

  13. Advances in biocontrol mechanism and application of Trichoderma spp. for plant diseases

    Institute of Scientific and Technical Information of China (English)

    HUANG Caihong; YANG Qian

    2007-01-01

    Trichoderma spp. is a filamentous soil fungus known as an effective biocontrol agent of a range of important airborne and soilborne pathogens, it has universal distribution and economic importance. This article reviewed the researches on biocontrol mechanism for plant diseases and application of Trichoderma spp., especially Trichoderma harzianum in recent years.

  14. Molecular Identification Of Trichoderma Strains Collected To Develop Plant Growth-Promoting And Biocontrol Agents

    Directory of Open Access Journals (Sweden)

    Oskiera Michał

    2015-06-01

    Full Text Available Trichoderma strains that are beneficial to both the growth and health of plants can be used as plant growth-promoting fungi (PGPF or biological control agents (BCA in agricultural and horticultural practices. In order to select PGPF or BCA strains, their biological properties and taxonomy must be carefully studied. In this study, 104 strains of Trichoderma collected at geographically different locations in Poland for selection as PGPF or BCA were identified by DNA barcoding, based on the sequences of internal transcribed spacers 1 and 2 (ITS1 and 2 of the ribosomal RNA gene cluster and on the sequences of translation elongation factor 1 alpha (tef1, chitinase 18-5 (chi18-5, and RNA polymerase II subunit (rpb2 gene fragments. Most of the strains were classified as: T. atroviride (38%, T. harzianum (21%, T. lentiforme (9%, T. virens (9%, and T. simmonsii (6%. Single strains belonging to T. atrobrunneum, T. citrinoviride, T. crassum, T. gamsii, T. hamatum, T. spirale, T. tomentosum, and T. viridescens were identified. Three strains that are potentially pathogenic to cultivated mushrooms belonging to T. pleuroticola and T. aggressivum f. europaeum were also identified. Four strains: TRS4, TRS29, TRS33, and TRS73 were classified to Trichoderma spp. and molecular identification was inconclusive at the species level. Phylogeny analysis showed that three of these strains TRS4, TRS29, and TRS33 belong to Trichoderma species that is not yet taxonomically established and strain TRS73 belongs to the T. harzianum complex, however, the species could not be identified with certainty.

  15. Trichoderma Biocontrol: Signal Transduction Pathways Involved in Host Sensing and Mycoparasitism

    OpenAIRE

    Susanne Zeilinger; Markus Omann

    2007-01-01

    Fungi of the genus Trichoderma are used as biocontrol agents against several plant pathogenic fungi like Rhizoctonia spp., Pythium spp., Botrytis cinerea and Fusarium spp. which cause both soil-borne and leaf- or flower-borne diseases of agricultural plants. Plant disease control by Trichoderma is based on complex interactions between Trichoderma, the plant pathogen and the plant. Until now, two main components of biocontrol have been identified: direct activity of Trichoderma against the pla...

  16. RNA Interference of Endochitinases in the Sugarcane Endophyte Trichoderma virens 223 Reduces Its Fitness as a Biocontrol Agent of Pineapple Disease

    OpenAIRE

    Aline S Romão-Dumaresq; Welington Luiz Araújo; Nicholas J Talbot; Thornton, Christopher R.

    2012-01-01

    The sugarcane root endophyte Trichoderma virens 223 holds enormous potential as a sustainable alternative to chemical pesticides in the control of sugarcane diseases. Its efficacy as a biocontrol agent is thought to be associated with its production of chitinase enzymes, including N-acetyl-ß-D-glucosaminidases, chitobiosidases and endochitinases. We used targeted gene deletion and RNA-dependent gene silencing strategies to disrupt N-acetyl-ß-D-glucosaminidase and endochitinase activities of t...

  17. RNA interference of endochitinases in the sugarcane endophyte Trichoderma virens 223 reduces its fitness as a biocontrol agent of pineapple disease.

    Directory of Open Access Journals (Sweden)

    Aline S Romão-Dumaresq

    Full Text Available The sugarcane root endophyte Trichoderma virens 223 holds enormous potential as a sustainable alternative to chemical pesticides in the control of sugarcane diseases. Its efficacy as a biocontrol agent is thought to be associated with its production of chitinase enzymes, including N-acetyl-ß-D-glucosaminidases, chitobiosidases and endochitinases. We used targeted gene deletion and RNA-dependent gene silencing strategies to disrupt N-acetyl-ß-D-glucosaminidase and endochitinase activities of the fungus, and to determine their roles in the biocontrol of soil-borne plant pathogens. The loss of N-acetyl-ß-D-glucosaminidase activities was dispensable for biocontrol of the plurivorous damping-off pathogens Rhizoctonia solani and Sclerotinia sclerotiorum, and of the sugarcane pathogen Ceratocystis paradoxa, the causal agent of pineapple disease. Similarly, suppression of endochitinase activities had no effect on R. solani and S. sclerotiorum disease control, but had a pronounced effect on the ability of T. virens 223 to control pineapple disease. Our work demonstrates a critical requirement for T. virens 223 endochitinase activity in the biocontrol of C. paradoxa sugarcane disease, but not for general antagonism of other soil pathogens. This may reflect its lifestyle as a sugarcane root endophyte.

  18. RNA interference of endochitinases in the sugarcane endophyte Trichoderma virens 223 reduces its fitness as a biocontrol agent of pineapple disease.

    Science.gov (United States)

    Romão-Dumaresq, Aline S; de Araújo, Welington Luiz; Talbot, Nicholas J; Thornton, Christopher R

    2012-01-01

    The sugarcane root endophyte Trichoderma virens 223 holds enormous potential as a sustainable alternative to chemical pesticides in the control of sugarcane diseases. Its efficacy as a biocontrol agent is thought to be associated with its production of chitinase enzymes, including N-acetyl-ß-D-glucosaminidases, chitobiosidases and endochitinases. We used targeted gene deletion and RNA-dependent gene silencing strategies to disrupt N-acetyl-ß-D-glucosaminidase and endochitinase activities of the fungus, and to determine their roles in the biocontrol of soil-borne plant pathogens. The loss of N-acetyl-ß-D-glucosaminidase activities was dispensable for biocontrol of the plurivorous damping-off pathogens Rhizoctonia solani and Sclerotinia sclerotiorum, and of the sugarcane pathogen Ceratocystis paradoxa, the causal agent of pineapple disease. Similarly, suppression of endochitinase activities had no effect on R. solani and S. sclerotiorum disease control, but had a pronounced effect on the ability of T. virens 223 to control pineapple disease. Our work demonstrates a critical requirement for T. virens 223 endochitinase activity in the biocontrol of C. paradoxa sugarcane disease, but not for general antagonism of other soil pathogens. This may reflect its lifestyle as a sugarcane root endophyte. PMID:23110120

  19. Draft Whole-Genome Sequence of Trichoderma gamsii T6085, a Promising Biocontrol Agent of Fusarium Head Blight on Wheat.

    Science.gov (United States)

    Baroncelli, Riccardo; Zapparata, Antonio; Piaggeschi, Giulia; Sarrocco, Sabrina; Vannacci, Giovanni

    2016-01-01

    Trichoderma gamsii T6085 is a promising beneficial isolate whose effects consist of growth inhibition of the main agents causing Fusarium head blight, reduction of mycotoxin accumulation, competition for wheat debris, and reduction of the disease in both the lab and the field. Here, we present the first genome assembly of a T. gamsii isolate, providing a useful platform for the scientific community. PMID:26893428

  20. Trichoderma Biocontrol: Signal Transduction Pathways Involved in Host Sensing and Mycoparasitism

    Directory of Open Access Journals (Sweden)

    Susanne Zeilinger

    2007-01-01

    Full Text Available Fungi of the genus Trichoderma are used as biocontrol agents against several plant pathogenic fungi like Rhizoctonia spp., Pythium spp., Botrytis cinerea and Fusarium spp. which cause both soil-borne and leaf- or flower-borne diseases of agricultural plants. Plant disease control by Trichoderma is based on complex interactions between Trichoderma, the plant pathogen and the plant. Until now, two main components of biocontrol have been identified: direct activity of Trichoderma against the plant pathogen by mycoparasitism and induced systemic resistance in plants. As the mycoparasitic interaction is host-specific and not merely a contact response, it is likely that signals from the host fungus are recognised by Trichoderma and provoke transcription of mycoparasitism-related genes.In the last few years examination of signalling pathways underlying Trichoderma biocontrol started and it was shown that heterotrimeric G-proteins and mitogen-activated protein (MAP kinases affected biocontrol-relevant processes such as the production of hydrolytic enzymes and antifungal metabolites and the formation of infection structures. MAPK signalling was also found to be involved in induction of plant systemic resistance in Trichoderma virens and in the hyperosmotic stress response in Trichoderma harzianum. Analyses of the function of components of the cAMP pathway during Trichoderma biocontrol revealed that mycoparasitism-associated coiling and chitinase production as well as secondary metabolism are affected by the internal cAMP level; in addition, a cross talk between regulation of light responses and the cAMP signalling pathway was found in Trichoderma atroviride.

  1. Colonization and degradation of senescent flowers of zucchini squash by Trichoderma harzianum YC459, a biocontrol agent of gray mold, Botrytis cinerea

    Institute of Scientific and Technical Information of China (English)

    Geun Gon Kim; Young Ryun Chung

    2004-01-01

    @@ In commercial greenhouses, senescent flower petals or flowers of vegetables such as tomato,strawberry, hot pepper and zucchini squash were blighted to be removed from fruits within five days after spraying of Trichoderna harzianun YC459 (TORY() , JGreen Inc.), a biocontrol agent with good and consistent efficacy as chemical fungicides for the control of gray mold rot caused by B.cinerea. The mechanism for selective colonization of senescent floral tissues by T. harzianum YCA59was elucidated using fresh and senescent (4 days and 14 days after pollination, respectively) floral tissues of zucchini squash (Cucurbita moschata Duchesne) . The spores of T. harzianum YCA59were produced much more on water agar and liquid culture media supplemented with 5% dry powder of senescent floral tissues than with fresh tissues during 15 days incubation. Mycelial growth was also much better in the media with senescent tissues than with fresh tissues. Enzyme activities of carboxymethyl cellulase, amylase and polygalacturonase in the liquid media, which might be involved in the colonization and degradation of tissues by T. harzianum YCA59 were compared. The activities of three enzymes were significantly higher in the media with senescent floral tissues than with fresh floral tissues reaching to the maximum during 9 to 12 days of incubation. Especially, the activities of carboxymethyl cellulase and polygalacturonase of T. harzianum YC459 were much higher than those of other Trichoderma species, T. asperellum, T. viride and T. koningii in the liquid media with senescent floral tissues. Based on the results, the selective colonization and degradation of senescent floral tissues, an important habitat for B. cinerea, may be another mechanism for the biocontrol of gray mold rot of vegetables by T. harzianurm YC459.

  2. Biocontrol of Rhizoctonia solani with Trichoderma Spp.

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ From over 800 fungal strains of Trichoderma Spp. , 6 strains were found to greatly inhibit the growing of Rhizocotonia solani, the pathogen of rice sheath blight in dual culture. Among them, strain T3 was the best antagonist,which reduced the growing of the pathogen by 52.54% (Table 1). In field, both the pesticide Jinggangmycin and the mixture of T1 T6 could reduce the severity of rice sheath blight(Table 2), which resulted in the increases of seed setting rate and 1000 grain weight. Because the effect of the antagonists on the control of the pathogen could be partially realized in the watery environment, studies on the biocontrol mechanism of the fungi should be strengthened to help the establishment of a best way of antagonist utilization.

  3. Biocontrol potential of Trichoderma Sp. against plant pathogens

    Directory of Open Access Journals (Sweden)

    Anand S.

    2009-12-01

    Full Text Available Forty two strains of Trichoderma sp. were isolated from cultivated lands around Bangalore andanalyzed for their antagonistic potential against Sclerotium rolfsii and Fusarium ciceri. The potential ofbiocontrol agents ultimately lies in their capacity to control pathogens in vivo. Bioefficacy studies were henceconducted using chickpea (Cicer argentums c.v. Annigeri as an experimental plant by the roll paper towelmethod. Overall the isolates T40, T35, T30 and T25 showed better antagonistic potential in addition toenhancing plant growth. The production of chitinases to break down the mycelial cell walls of fungal plantpathogens has been implicated as a major cause of biocontrol activity (Inbar and Chet, 1995. In order tostudy the mechanism of biocontrol, ten better performing strains were plated on media, amended withcolloidal chitin and Sclerotium rolfsii cell wall extract. All the isolates showed chitinolytic activity on day threeas well as day five. Production of endochitinase and exochitinase were assayed in liquid media usingcolloidal chitin amended broth. Strains T35 and T6 displayed maximum endochitinase and exochitinaseactivity. Although all strains exhibited cellulase activity, the quantum of enzyme produced was higher in T35and T6. The results also indicate a positive correlation between enzyme production and bioefficacy.

  4. Biocontrol of sheath blight by Trichoderma asperellum in tropical lowland rice

    OpenAIRE

    de França, Suenny Kelly Santos; Cardoso, Aline Figueiredo; Lustosa, Denise Castro; Ramos, Edson Marcos Leal Soares; de Filippi, Marta Cristina Corsi; da Silva, Gisele Barata

    2015-01-01

    Crop damage by rice sheath blight, Rhizoctonia solani, can decrease rice yield by up to 45 %. The classical control method of rice sheath blight in the Amazon region is the application of fungicides. Therefore, we tested here the efficiency of a biocontrol agent, Trichoderma asperellum, and fungicides. Two experiments of rice cultivation were carried out with seven treatments: four isolates of T. asperellum, a mixture of the four isolates, the fungicide pencycuron, and the control. The first ...

  5. Biocontrol agents in signalling resistance

    OpenAIRE

    Loon, L C; Pieterse, C.M.J.

    2002-01-01

    The mechanisms by which biological control agents suppress disease comprise competition for nutrients, notably iron, production of antibiotics, and secretion of lytic enzymes, as well as inducing resistance in the plant. The former three mechanisms act primarily on the pathogen by decreasing its activity, growth, and/or survival and require the biocontrol agent and the pathogen to be in close proximity. Because microorganisms with biocontrol properties and soilborne pathogens are both attract...

  6. Pathogenic fungi and Bio-control agents: Competitive bio-assay research

    OpenAIRE

    Olabiyi, T.I.; Ruocco, M.; Lanzuize, S.

    2014-01-01

    Fungi of the genus Trichoderma have a track record of being antagonist to quite of a number of agricultural important pathogens. Trichoderma have some unique characteristics that make it scientifically proven and suitable bio-control agents against varieties of pathogenic organism infecting economic food crops. Trichoderma has the advantage of being environment friendly and not hazardous to the health of human beings, livestock, soil and environment. Competitive bio-assay experiment was carri...

  7. Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean.

    Science.gov (United States)

    Zhang, Fuli; Ge, Honglian; Zhang, Fan; Guo, Ning; Wang, Yucheng; Chen, Long; Ji, Xiue; Li, Chengwei

    2016-03-01

    Sclerotinia stem rot, caused by Sclerotinia sclerotiorum (Lib.) de Bary is a major disease of soybean (Glycine max (L.) Merr.). At present, we revealed the three-way interaction between Trichoderma harzianum T-aloe, pathogen S. sclerotiorum and soybean plants in order to demonstrate biocontrol mechanism and evaluate biocontrol potential of T-aloe against S. sclerotiorum in soybean. In our experiments, T-aloe inhibited the growth of S. sclerotiorum with an efficiency of 56.3% in dual culture tests. T-aloe hyphae grew in parallel or intertwined with S. sclerotiorum hyphae and produced hooked contact branches, indicating mycoparasitism. Plate tests showed that T-aloe culture filtrate inhibited S. sclerotiorum growth with an inhibition efficiency of 51.2% and sclerotia production. T-aloe pretreatment showed growth-promoting effect on soybean plants. The activities of peroxidase, superoxide dismutase, and catalase increased, and the hydrogen peroxide (H2O2) as well as the superoxide radical (O2(-)) content in soybean leaves decreased after T-aloe pretreatment in response to S. sclerotiorum pathogen challenge. T-aloe treatment diminished damage caused by pathogen stress on soybean leaf cell membrane, and increased chlorophyll as well as total phenol contents. The defense-related genes PR1, PR2, and PR3 were expressed in the leaves of T-aloe-treated plants. In summary, T-aloe displayed biocontrol potential against S. sclerotiorum. This is the first report of unraveling biocontrol potential of Trichoderma Spp. to soybean sclerotinia stem rot from the three-way interaction between the biocontrol agent, pathogen S. sclerotiorum and soybean plants. PMID:26774866

  8. EFFECT OF BIO-CONTROL AGENTS ON RADIAL GROWTH OF SCLEROTIUM ROLFSII IN VITRO

    OpenAIRE

    G. Darvin; V. Prasanna Kumari

    2013-01-01

    To know the efficacy of bio-control agents on growth of Sclerotium rolfsii causing stem rot of groundnut, an in vitro study was conducted in the Department of Plant Pathology, Agricultural College, Bapatla. For this, three Trichoderma spp., two Pseudomonas fluorescens isolates and one Bacillus subtilis were selected as biocontrol agents. We observed that, there is a significant difference among all the treatments. The lowest radial growth (1.9 cm) and highest per cent inhibition (79.26%) were...

  9. GENETIC DIVERSITY OF POTENTIAL BIOCONTROL AGENTS AGAINST COLLECTOTRICHUM GLOEOSPORIOIDES CAUSING MANGO ANTHRACNOSE AGAINST COLLECTOTRICHUM GLOEOSPORIOIDES CAUSING MANGO ANTHRACNOSE

    OpenAIRE

    NAGALAKSHMI DEVAMMA M; J. Patricia Rajkumari; P. Suvarnalatha Devi

    2014-01-01

    The antagonistic potential biocontrol agents was evaluated against the isolate PTR6 since it was found to be highly virulent based on the results obtained in pathogenic variability test. The antagonistic effect of native microflora was assessed based on their ability to inhibit the pathogen growth in dual culture technique. Among the 21 bacterial biocontrol agents, the antagonist BP6 and BL5 completely (100%) inhibited growth of the pathogen. Among the 21Trichoderma biocontrol...

  10. Selection and characterization of Argentine isolates of Trichoderma harzianum for effective biocontrol of Septoria leaf blotch of wheat.

    Science.gov (United States)

    Stocco, Marina C; Mónaco, Cecilia I; Abramoff, Cecilia; Lampugnani, Gladys; Salerno, Graciela; Kripelz, Natalia; Cordo, Cristina A; Consolo, Verónica F

    2016-03-01

    Species of the genus Trichoderma are economically important as biocontrol agents, serving as a potential alternative to chemical control. The applicability of Trichoderma isolates to different ecozones will depend on the behavior of the strains selected from each zone. The present study was undertaken to isolate biocontrol populations of Trichoderma spp. from the Argentine wheat regions and to select and characterize the best strains of Trichoderma harzianum by means of molecular techniques. A total of 84 out of the 240 strains of Trichoderma were able to reduce the disease severity of the leaf blotch of wheat. Thirty-seven strains were selected for the reduction equal to or greater than 50 % of the severity, compared with the control. The percentage values of reduction of the pycnidial coverage ranged between 45 and 80 %. The same last strains were confirmed as T. harzianum by polymerase chain reaction amplification of internal transcribed spacers, followed by sequencing. Inter-simple sequence repeat was used to examine the genetic variability among isolates. This resulted in a total of 132 bands. Further numerical analysis revealed 19 haplotypes, grouped in three clusters (I, II, III). Shared strains, with different geographical origins and isolated in different years, were observed within each cluster. The origin of the isolates and the genetic group were partially related. All isolates from Paraná were in cluster I, all isolates from Lobería were in cluster II, and all isolates from Pergamino and Santa Fe were in cluster III. Our results suggest that the 37 native strains of T. harzianum are important in biocontrol programs and could be advantageous for the preparation of biopesticides adapted to the agroecological conditions of wheat culture. PMID:26873560

  11. Development of a biocontrol agent for plant disease control with special emphasis on the near commercial fungal antagonist Clonostachys rosea strain "IK726"

    DEFF Research Database (Denmark)

    Jensen, Dan Funck; Knudsen, Inge M.B.; Lübeck, Mette;

    2007-01-01

    . Among the success stories for control of seed- and soilborne diseases are fungal biocontrol agents based on Trichoderma harzianum, Clonostachys rosea and Conithyrium minitans, and bacterial biocontrol agents based on strains of Agrobacterium, Pseudomonas and Streptomyces. We have developed C. rosea...

  12. Trichoderma spp.capable of growing at low temperatures with biocontrol potential

    Institute of Scientific and Technical Information of China (English)

    Szakacs G; Tavaszi A

    2004-01-01

    @@ Though there are successful commercial biocontrol products with Trichoderma spp. In many countries including US, Israel and Europe, their usefulness is limited in cold environments such as mid-and northern part of Europe, US and Canada, especially in the late fall, winter and early spring period.Trichoderma isolates capable of growing at low temperatures (5-10 ℃) and showing good antagonistic properties against plant pathogenic fungi may have therefore both scientific and commercial value.

  13. Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase

    OpenAIRE

    Mendoza-Mendoza, Artemio; Pozo, María J.; Grzegorski, Darlene; Martínez, Pedro; García, Juan M.; Olmedo-Monfil, Vianey; Cortés, Carlos; Kenerley, Charles; Herrera-Estrella, Alfredo

    2003-01-01

    The production of lytic enzymes in Trichoderma is considered determinant in its parasitic response against fungal species. A mitogen-activated protein kinase encoding gene, tvk1, from Trichoderma virens was cloned, and its role during the mycoparasitism, conidiation, and biocontrol was examined in tvk1 null mutants. These mutants showed a clear increase in the level of the expression of mycoparasitism-related genes under simulated mycoparasitism and during direct confrontation with the plant ...

  14. Disruption of the Eng18B ENGase gene in the fungal biocontrol agent Trichoderma atroviride affects growth, conidiation and antagonistic ability.

    Directory of Open Access Journals (Sweden)

    Mukesh K Dubey

    Full Text Available The recently identified phylogenetic subgroup B5 of fungal glycoside hydrolase family 18 genes encodes enzymes with mannosyl glycoprotein endo-N-acetyl-β-D-glucosaminidase (ENGase-type activity. Intracellular ENGase activity is associated with the endoplasmic reticulum associated protein degradation pathway (ERAD of misfolded glycoproteins, although the biological relevance in filamentous fungi is not known. Trichoderma atroviride is a mycoparasitic fungus that is used for biological control of plant pathogenic fungi. The present work is a functional study of the T. atroviride B5-group gene Eng18B, with emphasis on its role in fungal growth and antagonism. A homology model of T. atroviride Eng18B structure predicts a typical glycoside hydrolase family 18 (αβ(8 barrel architecture. Gene expression analysis shows that Eng18B is induced in dual cultures with the fungal plant pathogens Botrytis cinerea and Rhizoctonia solani, although a basal expression is observed in all growth conditions tested. Eng18B disruption strains had significantly reduced growth rates but higher conidiation rates compared to the wild-type strain. However, growth rates on abiotic stress media were significantly higher in Eng18B disruption strains compared to the wild-type strain. No difference in spore germination, germ-tube morphology or in hyphal branching was detected. Disruption strains produced less biomass in liquid cultures than the wild-type strain when grown with chitin as the sole carbon source. In addition, we determined that Eng18B is required for the antagonistic ability of T. atroviride against the grey mould fungus B. cinerea in dual cultures and that this reduction in antagonistic ability is partly connected to a secreted factor. The phenotypes were recovered by re-introduction of an intact Eng18B gene fragment in mutant strains. A putative role of Eng18B ENGase activity in the endoplasmic reticulum associated protein degradation pathway of endogenous

  15. Disruption of the Eng18B ENGase Gene in the Fungal Biocontrol Agent Trichoderma atroviride Affects Growth, Conidiation and Antagonistic Ability

    Science.gov (United States)

    Dubey, Mukesh K.; Ubhayasekera, Wimal; Sandgren, Mats; Funck Jensen, Dan; Karlsson, Magnus

    2012-01-01

    The recently identified phylogenetic subgroup B5 of fungal glycoside hydrolase family 18 genes encodes enzymes with mannosyl glycoprotein endo-N-acetyl-β-D-glucosaminidase (ENGase)-type activity. Intracellular ENGase activity is associated with the endoplasmic reticulum associated protein degradation pathway (ERAD) of misfolded glycoproteins, although the biological relevance in filamentous fungi is not known. Trichoderma atroviride is a mycoparasitic fungus that is used for biological control of plant pathogenic fungi. The present work is a functional study of the T. atroviride B5-group gene Eng18B, with emphasis on its role in fungal growth and antagonism. A homology model of T. atroviride Eng18B structure predicts a typical glycoside hydrolase family 18 (αβ)8 barrel architecture. Gene expression analysis shows that Eng18B is induced in dual cultures with the fungal plant pathogens Botrytis cinerea and Rhizoctonia solani, although a basal expression is observed in all growth conditions tested. Eng18B disruption strains had significantly reduced growth rates but higher conidiation rates compared to the wild-type strain. However, growth rates on abiotic stress media were significantly higher in Eng18B disruption strains compared to the wild-type strain. No difference in spore germination, germ-tube morphology or in hyphal branching was detected. Disruption strains produced less biomass in liquid cultures than the wild-type strain when grown with chitin as the sole carbon source. In addition, we determined that Eng18B is required for the antagonistic ability of T. atroviride against the grey mould fungus B. cinerea in dual cultures and that this reduction in antagonistic ability is partly connected to a secreted factor. The phenotypes were recovered by re-introduction of an intact Eng18B gene fragment in mutant strains. A putative role of Eng18B ENGase activity in the endoplasmic reticulum associated protein degradation pathway of endogenous glycoproteins in T

  16. Antagonistic and Biocontrol Potential of Trichoderma asperellum ZJSX5003 Against the Maize Stalk Rot Pathogen Fusarium graminearum.

    Science.gov (United States)

    Li, Yaqian; Sun, Ruiyan; Yu, Jia; Saravanakumar, Kandasamy; Chen, Jie

    2016-09-01

    The efficacy of seven strains of Trichoderma asperellum collected from the fields in Southern China was assessed against Fusarium graminearum (FG) the causal agent of corn stalk rot of maize were in vitro for their antagonistic properties followed by statistical model of principal compound analysis to identify the beneficial antagonist T. asperellum strain. The key factors of antagonist activity were attributed to a total of 13 factors including cell wall degrading enzymes (chitnase, protease and β-glucanases), secondary metabolites and peptaibols and these were analyzed from eight strains of Trichoderma. A linear regression model demonstrated that interaction of enzymes and secondary metabolites of T. asperellum strain ZJSX5003 enhanced the antagonist activity against FG. Further, this strain displayed a disease reduction of 71 % in maize plants inoculated with FG compared to negative control. Pointing out that the T. asperellum strain ZJSX5003 is a potential source for the development of a biocontrol agent against corn stalk rot. PMID:27407296

  17. Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants

    NARCIS (Netherlands)

    Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A.; van Wees, Saskia C M

    2014-01-01

    The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the ph

  18. CHARACTERIZATION OF SOIL TRICHODERMA ISOLATES FOR POTENTIAL BIOCONTROL OF PLANT PATHOGENS

    OpenAIRE

    S. Matei; Gabi-Mirela Matei; Petruta Cornea; Gabriela Popa

    2011-01-01

    Various fungal strains belonging to genus Trichoderma act as biological control agents for soil born plant pathogens. Two new strains of Trichoderma harzianum (T.h.) and Trichoderma viride (T.v.) were isolated from forest soils in Ilfov county and their morphological aspects, enzymatic and antagonistic activity were examined. Current chemical fungicides had constantly, in time, less influence on pathogens due to their diversity, adaptability and increasing resistance.The paper present the mor...

  19. Método para preservação da viabilidade e atividade antagônica de Trichoderma stromaticum , agente de biocontrole da vassoura-de-bruxa do cacaueiro Method for preservation of viability and antagonic activity of Trichoderma stromaticum, biocontrol agent of witches´broom disease of cocoa

    Directory of Open Access Journals (Sweden)

    Cleber Novais Bastos

    2008-09-01

    Full Text Available Avaliou-se a viabilidade da massa esporógena de Trichoderma stromaticum, através do crescimento micelial em meio de cultivo e a atividade antagônica (parasitária em vassouras secas de cacaueiro, após a preservação de quatro isolados (Ts1606, Ts3107, Ts0108, Ts2705 do antagonista por quatro anos em fragmentos de vassoura secas, acondicionados em tubos de ensaio e mantidos em refrigerador com temperatura aproximada de 5 °C. Todos os isolados preservados apresentaram-se viáveis, com crescimento e esporulação normais e continuavam antagônicos a Crinipellis perniciosa. Os resultados obtidos indicam a eficiência do método, que é capaz de manter os isolados de T. stromaticum viáveis por longos períodos de tempo, preservando características morfológicas, fisiológicas e antagônicas.After four years of preservation by using dried cocoa brooms in fridge at 5 °C, the viability of four isolates (Ts1606, Ts3107, Ts0108, Ts2705 of Trichoderma stromaticum was evaluated based on germination of conidia, mycelium growth in a culture medium and antagonistic activity on dry cocoa brooms. All the isolates preserved maintained viability, showing normal growth, sporulation and antagonistic activity against Crinipellis perniciosa.. These results indicate the efficience of the method for the long term preservation of T. stromaticum, maintaining their morphological, physiological, and antagonistic characteristics.

  20. Saprotrophic competitiveness and biocontrol fitness of a genetically modified strain of the plant-growth-promoting fungus Trichoderma hamatum GD12.

    Science.gov (United States)

    Ryder, Lauren S; Harris, Beverley D; Soanes, Darren M; Kershaw, Michael J; Talbot, Nicholas J; Thornton, Christopher R

    2012-01-01

    Trichoderma species are ubiquitous soil fungi that hold enormous potential for the development of credible alternatives to agrochemicals and synthetic fertilizers in sustainable crop production. In this paper, we show that substantial improvements in plant productivity can be met by genetic modification of a plant-growth-promoting and biocontrol strain of Trichoderma hamatum, but that these improvements are obtained in the absence of disease pressure only. Using a quantitative monoclonal antibody-based ELISA, we show that an N-acetyl-β-d-glucosaminidase-deficient mutant of T. hamatum, generated by insertional mutagenesis of the corresponding gene, has impaired saprotrophic competitiveness during antagonistic interactions with Rhizoctonia solani in soil. Furthermore, its fitness as a biocontrol agent of the pre-emergence damping-off pathogen Sclerotinia sclerotiorum is significantly reduced, and its ability to promote plant growth is constrained by the presence of both pathogens. This work shows that while gains in T. hamatum-mediated plant-growth-promotion can be met through genetic manipulation of a single beneficial trait, such a modification has negative impacts on other aspects of its biology and ecology that contribute to its success as a saprotrophic competitor and antagonist of soil-borne pathogens. The work has important implications for fungal morphogenesis, demonstrating a clear link between hyphal architecture and secretory potential. Furthermore, it highlights the need for a holistic approach to the development of genetically modified Trichoderma strains for use as crop stimulants and biocontrol agents in plant agriculture. PMID:21835878

  1. Variabilidade genética na região its do rDNA de isolados de trichoderma spp. (Biocontrolador e Fusarium oxysporum f. sp. Chrysanthemi Genetic variability in rDNA ITS region of Trichoderma spp. (biocontrole agent and Fusarium oxysporum f. sp. chrysanthemi isolates

    Directory of Open Access Journals (Sweden)

    Josiane Pacheco Menezes

    2010-02-01

    Full Text Available A análise de características morfológicas e culturais podem não ser suficientes para uma caracterização precisa das espécies de Trichoderma e Fusarium. Objetivou-se, neste trabalho, caracterizar a região do Espaço Interno Transcrito (ITS do rDNA dos isolados UFSMT15.1, UFSMT16 e UFSMT17 de Trichoderma spp. utilizados no biocontrole de Fusarium oxysporum f. sp. chrysanthemi (isolado UFSMF6. A extração de DNA de cada isolado foi realizada a partir de micélio produzido em meio líquido Batata-Dextrose. As amostras de DNA genômico foram submetidas à Reação em Cadeia da Polimerase (PCR com os oligonucleotídeos iniciadores universais ITS1 e ITS4 e o produto gerado foi sequenciado. Os fragmentos gerados pela amplificação da PCR foram tratados com as enzimas de restrição HaeIII, HinfI e MboI. As regiões ITS1, ITS2 e 5.8S do rDNA desses isolados fúngicos foram amplificadas com sucesso. A região ITS dos isolados UFSMT15.1, UFSMT16 e UFSMT17 de Trichoderma e o isolado UFSMF6 de Fusarium apresentaram uma banda simples com um fragmento de aproximadamente 600 pares de base (pb. As enzimas de restrição HaeIII, HinfI e MboI geraram polimorfismo de bandas entre os isolados. Com base nas análises da sequência de DNA, os isolados UFSMT15.1, UFSMT16, UFSMT17 e UFSMF6 apresentaram maior similaridade com as espécies Trichoderma koningiopsis, Hypocrea virens, Hypocrea lixii e Fusarium oxysporum, respectivamente.The analysis of morphological and cultural characteristics may not enough for the characterization of the species of Trichoderma and Fusarium. The aim of this work was to characterize the Internal Transcribed Spacer (ITS region of the rDNA of UFSMT15.1, UFSMT16 and UFSMT17 isolates of Trichoderma spp. used in the biocontrol of Fusarium oxysporum f. sp. chrysanthemi UFSMF6. DNA extraction of each isolate was accomplished starting from hyphae produced in liquid medium Potato-Dextrose-Agar. The samples of genomic DNA were submitted to

  2. Cell wall degrading isoenzyme profiles of Trichoderma biocontrol strains show correlation with rDNA species

    Institute of Scientific and Technical Information of China (English)

    Sanz L; Hermosa M R; González F J; Monte E

    2004-01-01

    @@ Species of the fungus Trichoderma, a genus of Hyphomycetes, are ubiquitous in the environment, but especially in soil. They have been used in a wide range of commercial applications including the production of hydrolases and in the biological control of plant diseases. A fundamental part of the Trichoderma antifungal system consists of a series of genes coding for a surprising variety of extracellular cell wall degrading enzymes (CWDE).Characterisation and identification of strains at the species level is the first step in utilizing the full potential of fungi in specific applications. One aim when isolating Trichoderma strains is to identify those which can be used in new agricultural and industrial applications. In the past it was not uncommon that biocontrol strains were defined as T. harzianum Rifai, due to the limited classification system of the genus Trichoderma. In recent years, several PCR-based molecular techniques have been used to detect and discriminate among microorganisms. Sequence analysis of the ITS regions of the ribosomal DNA and gene fragments as those corresponding to tef1 gene have been helpful in the neotypification, description and characterization of species in the genus Trichoderna.Another useful method for the identification of Trichoderma strains is the randomly amplified polymorphic DNA (RAPD) technique.Isozyme polymorphisms evaluation of five putative extracellular lytic enzymes loci (β-1,3-glucanase, β-1,6-glucanase, cellulase, chitinase and protease antivities) were carried out using representative strains of defined molecular groups. CWDE groupings obtained from biocontrol strains are discussed in relation to their phylogenetic location and antifungal activities.Compiling morphological, biochemical and sequence information data into a common database would provide a useful resource that could be used to accurately name new haplotypes identified in the future and correctly place them within the genus Trichoderma.

  3. Phytohormone profiles induced by trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants.

    Science.gov (United States)

    Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A; Van Wees, Saskia C M

    2014-07-01

    The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the phytohormonal network of their host plant, thus leading to an improvement of plant growth and stress tolerance. In this study, we tested whether alterations in the phytohormone signature induced by different Trichoderma isolates correspond with their ability for biocontrol and growth promotion. Four Trichoderma isolates were collected from agricultural soils and were identified as the species Trichoderma harzianum (two isolates), Trichoderma ghanense, and Trichoderma hamatum. Their antagonistic activity against the plant pathogen Fusarium oxysporum f. sp. melonis was tested in vitro, and their plant growth-promoting and biocontrol activity against Fusarium wilt on melon plants was examined in vivo, and compared to that of the commercial strain T. harzianum T-22. Several growth- and defense-related phytohormones were analyzed in the shoots of plants that were root-colonized by the different Trichoderma isolates. An increase in auxin and a decrease in cytokinins and abscisic acid content were induced by the isolates that promoted the plant growth. Principal component analysis (PCA) was used to evaluate the relationship between the plant phenotypic and hormonal variables. PCA pointed to a strong association of auxin induction with plant growth stimulation by Trichoderma. Furthermore, the disease-protectant ability of the Trichoderma strains against F. oxysporum infection seems to be more related to their induced alterations in the content of the hormones abscisic acid, ethylene, and the cytokinin trans-zeatin riboside than to the in vitro antagonism activity against F. oxysporum. PMID:25023078

  4. The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease.

    Science.gov (United States)

    Vos, Christine M F; De Cremer, Kaat; Cammue, Bruno P A; De Coninck, Barbara

    2015-05-01

    Botrytis cinerea is a necrotrophic fungal pathogen causing disease in many plant species, leading to economically important crop losses. So far, fungicides have been widely used to control this pathogen. However, in addition to their detrimental effects on the environment and potential risks for human health, increasing fungicide resistance has been observed in the B. cinerea population. Biological control, that is the application of microbial organisms to reduce disease, has gained importance as an alternative or complementary approach to fungicides. In this respect, the genus Trichoderma constitutes a promising pool of organisms with potential for B. cinerea control. In the first part of this article, we review the specific mechanisms involved in the direct interaction between the two fungi, including mycoparasitism, the production of antimicrobial compounds and enzymes (collectively called antagonism), and competition for nutrients and space. In addition, biocontrol has also been observed when Trichoderma is physically separated from the pathogen, thus implying an indirect systemic plant defence response. Therefore, in the second part, we describe the consecutive steps leading to induced systemic resistance (ISR), starting with the initial Trichoderma-plant interaction and followed by the activation of downstream signal transduction pathways and, ultimately, the defence response resulting in ISR (ISR-prime phase). Finally, we discuss the ISR-boost phase, representing the effect of ISR priming by Trichoderma spp. on plant responses after additional challenge with B. cinerea. PMID:25171761

  5. In-vitro evaluation of fungicides, plant extracts and bio-control agents against rice blast pathogen magnaporthe oryzae couch

    International Nuclear Information System (INIS)

    Among 5 fungicides viz., Thiophanate-methyl, Carbendazim, Fosetyl-aluminium, Mancozeb and Copper oxychloride, used against the Magnaporthe oryzae, only Mancozeb appeared as the highly effective fungicide that completely inhibited the mycelial growth of the fungus. All other fungicides showed little effect at higher concentrations. The extracts of garlic (Allium sativum L.), neem (Azadirachta indica L.) and calatropis (Calotropis procera L.) when used against M. oryzae by food poisoning method, only higher dose of garlic completely inhibited the mycelial growth of the test fungus. Six bio-control agents viz., Trichoderma harzianum, Trichoderma polysporum, Trichoderma pseudokoningii, Gliocladium virens, Paecilomyces variotii and Paecilomyces lilacinus were used. Maximum mycelial inhibition of M. oryzae was provided by P. lilacinus followed by Trichoderma spp. (author)

  6. Nutrient activation of Trichoderma fungal spores for improved biocontrol activity

    Institute of Scientific and Technical Information of China (English)

    Linda Gordon Hjeljord; Arne Tronsmo

    2004-01-01

    @@ The effect of preliminary nutrient activation on the ability of conidia of the antagonist Trichoderma harzianum P1 (ThP1) to suppress Botrytis cinerea was investigated in laboratory, greenhouse and field trials. Preliminary nutrient activation at 21 ℃ accelerated subsequent germination of the antagonist at temperatures from 9 ℃ to 21 ℃; at ≥ 18 ℃ the germination time of preactivated ThP1conidia did not differ significantly from that of B. cinerea. When coinoculated with B. cinerea,concentrated inocula of preactivated but ungerminated ThP1 conidia reduced in vitro germination of the pathogen by ≥ 87 % at 12 ℃ to 25 ℃; initially-quiescent conidia achieved this level of suppression only at 25 ℃. Application of quiescent ThP1 conidia to detached strawberry flowers in moist chambers reduced infection by B. cinerea by ≥85 % at 24 ℃ , but only by 35 % at 12 ℃. Preactivated conidia reduced infection by ≥60% at 12 ℃. Both quiescent and preactivated conidia significantly reduced latent infection in greenhouse-grown strawberries at a mean temperture of 19 ℃, while only preactivated conidia were effective in the field at a mean temperature of 14 ℃ on the day of treatment application.

  7. Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase.

    Science.gov (United States)

    Mendoza-Mendoza, Artemio; Pozo, María J; Grzegorski, Darlene; Martínez, Pedro; García, Juan M; Olmedo-Monfil, Vianey; Cortés, Carlos; Kenerley, Charles; Herrera-Estrella, Alfredo

    2003-12-23

    The production of lytic enzymes in Trichoderma is considered determinant in its parasitic response against fungal species. A mitogen-activated protein kinase encoding gene, tvk1, from Trichoderma virens was cloned, and its role during the mycoparasitism, conidiation, and biocontrol was examined in tvk1 null mutants. These mutants showed a clear increase in the level of the expression of mycoparasitism-related genes under simulated mycoparasitism and during direct confrontation with the plant pathogen Rhizoctonia solani. The null mutants displayed an increased protein secretion phenotype as measured by the production of lytic enzymes in culture supernatant compared to the wild type. Consistently, biocontrol assays demonstrated that the null mutants were considerably more effective in disease control than the wild-type strain or a chemical fungicide. In addition, tvk1 gene disruptant strains sporulated abundantly in submerged cultures, a condition that is not conducive to sporulation in the wild type. These data suggest that Tvk1 acts as a negative modulator during host sensing and sporulation in T. virens. PMID:14673101

  8. Use of Hypocrea jecorina (anamorph Trichoderma reesei) as a model system for Trichoderma biocontrol of Pythium blight identifies new targets for genetic strain improvement

    Institute of Scientific and Technical Information of China (English)

    Seidl V; Schmoll M; Scherm B; Balmas V; Seiboth B; Migheli Q; Kubicek C P

    2004-01-01

    @@ Biocontrol by Trichoderma has been studied mainly with selected isolates of T. harzianum, T.atroviride and T. asperellum, which are members of sections Pachybasium and Trichoderma. In contrast, species from section Longibrachiatum have only rarely been studied. On the other hand, one taxon from this section-Hypocrea jecorina (anamorph: Trichoderma reesei)-has been widely used for the production of cellulolytic and hemicellulolytic enzymes and recombinant proteins. As far as Trichoderma is concerned, molecular genetic methods and tools are most advanced in H. jecorina,and its genome has recently been fully sequenced, thus making this taxon a model organism for the genus. Here we will demonstrate that H. jecorina is able to antagonize plant pathogenic fungi in plate confrontation tests, and can protect tomato and cucumber plants against Pythium ultimum blight.Using this as a model case, we made use of available H. jecorina mutants to investigate (a) whether carbon catabolite repression via the Cre1-regulator protein has an impact on biocontrol, and (b)whether cellulase gene expression is necessary for biocontrol of P. ultimum. In the first case, plate confrontation tests and in planta experiments yielded opposite results, i.e. while a Cre1 mutant was more active in antagonization of fungi on plates, the survival rates of P. ultimum-inoculated cucumber plants was lower than with the H. jecorina wild-type strain. Mutants of H. jecorina,unable to form cellulases, were still able to antagonize fungi on plates and provided similar protection of tomatos against P. ultimum as the wild type, indicating that the pronounced biocontrol ability of H.jecorina against fungi with cellulose-containing cell-walls is not due to its high cellulolytic activity. A strain disrupted in the light-modulator gene envoy (Schmoll et al., ms submitted) exhibited in planta biocontrol activity strongly exceeding that of the wild-type strain, thereby providing a first link between Trichoderma

  9. Assessment of metabolic capacity of Trichoderma inhamatum Bol12 QD biocontrol on native strains of Phytophthora infestans in vitro

    Directory of Open Access Journals (Sweden)

    Puño Ramon

    2011-08-01

    Full Text Available Plant pathogen Phytophthora infestans is a cause of decreased crop yield of tomato, to control these losses, farmers use chemicals. This has consequences for the environment, human health and beneficial organisms in the ecosystem. The objective was to obtain and identify native isolates of Trichoderma spp. In soil planted with tomato Tlayacapan, Morelos (Mexico, Alternaria solani problems and Phytophthora infestans, also determine their antagonistic capacity in vitro. Trichoderma was isolated directly from soil by dilution in culture medium plate with potato dextrose agar (PDA. On the other side plate dilutions of yeast T. QD Bol12 inhamatum crops produced in batch for 30 days to compare the effectiveness of biocontrol. The filtered yeast inhibited mycelial growth kinetic of the agent in laboratory with the 1:2 dilution growth was 32.5% for the 1:4 dilution mycelial growth was 69.1% and finally to the dilution of 1:8 of the yeast biocontrol mycelium grew to 95.2%. To demonstrate the inhibitory activity on the pathogen in field crops, there were 3 L batch for four months. The application of three doses (undiluted, diluted 1:2 and 1:4 plus a control dilution water only was performed in a complete block design with four replications randomly with the tomato crop, belonging to the variety Santa Cruz Kada Gigante in the plots of the Academic Rural United Campesina Carmen Pampa. Statistical analysis by Duncan's test showed that the pure leaven reduce infection by Phytophthora infestans significantly in tomato. Appeared another tomato plant pathogen, Septoria lycopersici, in the course of fieldwork. We also evaluated the effect of the dose of yeast to this disease, and also noticed a significant reduction with all doses of yeast. These experiments demonstrated that the seeds of T. QD Bol12 inhamatum have biocontrol effect on the tomato crop. The antagonistic capacity was assessed using the cellophane and the kind of antagonism with the dual culture

  10. CHARACTERIZATION OF SOIL TRICHODERMA ISOLATES FOR POTENTIAL BIOCONTROL OF PLANT PATHOGENS

    Directory of Open Access Journals (Sweden)

    S. Matei

    2011-12-01

    Full Text Available Various fungal strains belonging to genus Trichoderma act as biological control agents for soil born plant pathogens. Two new strains of Trichoderma harzianum (T.h. and Trichoderma viride (T.v. were isolated from forest soils in Ilfov county and their morphological aspects, enzymatic and antagonistic activity were examined. Current chemical fungicides had constantly, in time, less influence on pathogens due to their diversity, adaptability and increasing resistance.The paper present the morphological characterization of two strains of Trichoderma isolated from forest soils. Growth rate was higher in strain T.v.SP456 (0,675mm/h than in strain T.h.P8 (0,505mm/h when fungi were grown on Czapek culture medium.Morphological description is completed with photographs of colonies in Petri plates and microscopical aspects of fungal structures belonging to Trichoderma strains SP456 and P8.Comparative aspects concerning the level of main enzymes released by T.h. isolate P8 and T.v.SP456 in liquid culture media showed differences as a function of genetic structure of each fungal isolate. The optimum culture media for inducing peroxidase, polyphenol-oxidase, β-1,3-glucanase activity in T.v.SP456 isolate was Czapek and PDA for phenil-alanin-ammonium-oxidase and chitinase. T.v.SP456 was more efficient than T.h.P8 concerning enzymes activity.The interaction between Trichoderma fungal strains SP456 and P8 and strawberry plant pathogen strains, three belonging to Botrytis cinerea (S1, P1, P2 and one to Phytophtora spp. were examined, also. Both Trichoderma strains act as mycoparasites for plant pathogens. The inhibition percent of radial growth was higher for T.v.SP456 when compared with T.h.P8 for almost all pathogenic isolates.

  11. The importance of chorismate mutase in the biocontrol potential of Trichoderma parareesei.

    Science.gov (United States)

    Pérez, Esclaudys; Rubio, M Belén; Cardoza, Rosa E; Gutiérrez, Santiago; Bettiol, Wagner; Monte, Enrique; Hermosa, Rosa

    2015-01-01

    Species of Trichoderma exert direct biocontrol activity against soil-borne plant pathogens due to their ability to compete for nutrients and to inhibit or kill their targets through the production of antibiotics and/or hydrolytic enzymes. In addition to these abilities, Trichoderma spp. have beneficial effects for plants, including the stimulation of defenses and the promotion of growth. Here we study the role in biocontrol of the T. parareesei Tparo7 gene, encoding a chorismate mutase (CM), a shikimate pathway branch point leading to the production of aromatic amino acids, which are not only essential components of protein synthesis but also the precursors of a wide range of secondary metabolites. We isolated T. parareesei transformants with the Tparo7 gene silenced. Compared with the wild-type, decreased levels of Tparo7 expression in the silenced transformants were accompanied by reduced CM activity, lower growth rates on different culture media, and reduced mycoparasitic behavior against the phytopathogenic fungi Rhizoctonia solani, Fusarium oxysporum and Botrytis cinerea in dual cultures. By contrast, higher amounts of the aromatic metabolites tyrosol, 2-phenylethanol and salicylic acid were detected in supernatants from the silenced transformants, which were able to inhibit the growth of F. oxysporum and B. cinerea. In in vitro plant assays, Tparo7-silenced transformants also showed a reduced capacity to colonize tomato roots. The effect of Tparo7-silencing on tomato plant responses was examined in greenhouse assays. The growth of plants colonized by the silenced transformants was reduced and the plants exhibited an increased susceptibility to B. cinerea in comparison with the responses observed for control plants. In addition, the plants turned yellowish and were defective in jasmonic acid- and ethylene-regulated signaling pathways which was seen by expression analysis of lipoxygenase 1 (LOX1), ethylene-insensitive protein 2 (EIN2) and pathogenesis

  12. The importance of chorismate mutase in the biocontrol potential of Trichoderma parareesei

    Directory of Open Access Journals (Sweden)

    Esclaudys ePérez

    2015-10-01

    Full Text Available Species of Trichoderma exert direct biocontrol activity against soil-borne plant pathogens due to their ability to compete for nutrients and to inhibit or kill their targets through the production of antibiotics and/or hydrolytic enzymes. In addition to these abilities, Trichoderma spp. have beneficial effects for plants, including the stimulation of defenses and the promotion of growth. Here we study the role in biocontrol of the T. parareesei Tparo7 gene, encoding a chorismate mutase (CM, a shikimate pathway branch point leading to the production of aromatic amino acids, which are not only essential components of protein synthesis but also the precursors of a wide range of secondary metabolites. We isolated T. parareesei transformants with the Tparo7 gene silenced. Compared with the wild-type, decreased levels of Tparo7 expression in the silenced transformants were accompanied by reduced CM activity, lower growth rates on different culture media, and reduced mycoparasitic behavior against the phytopathogenic fungi Rhizoctonia solani, Fusarium oxysporum and Botrytis cinerea in dual cultures. By contrast, higher amounts of the aromatic metabolites tyrosol, 2-phenylethanol and salicylic acid were detected in supernatants from the silenced transformants, which were able to inhibit the growth of F. oxysporum and B. cinerea. In in vitro plant assays, Tparo7-silenced transformants also showed a reduced capacity to colonize tomato roots. The effect of Tparo7-silencing on tomato plant responses was examined in greenhouse assays. The growth of plants colonized by the silenced transformants was reduced and the plants exhibited an increased susceptibility to B. cinerea in comparison with the responses observed for control plants. In addition, the plants turned yellowish and were defective in jasmonic acid- and ethylene-regulated signaling pathways which was seen by expression analysis of lipoxygenase 1 (LOX1, ethylene-insensitive protein 2 (EIN2 and

  13. Evaluation of the enzymatic activity of Trichoderma inhamatum (BOL-12QD as possible biocontroller

    Directory of Open Access Journals (Sweden)

    García-Espejo Cielo Noemí

    2016-02-01

    Full Text Available It is known that Trichoderma spp. acts as a natural biocontroller of pathogen fungi, is for this reason, that this research studies the potential of its hydrolytic enzyme activity. In this article, first we determined that the speed of growth of Trichoderma inhamatum cepa BOL-12QD is 9 hours. Later, we proposed a simple and sensitive method based in the use of basal media (BM with coloidal chitin as the only carbon resource and supplemented with bromocresol purple for the qualitative determination of chitinase activi-ty. On the other hand, it was determined the celullolytic and proteolytic activities of Trichoderma in-hamatum cepa BOL-12QD and it was observed that agitation, type and concentration of sustrate are determinant factors in enzymatic production. Then, we evaluated the cellulolytic activity of Trichoderma inhamatum cepa BOL-12QD in agitation and stationary using carboxymethylcellulose (CMC as sustrate, finding that using a 2% of sustrate the highest activity is registered at 8 days of incubation in agitation with a value of 99.23 IU/L. In relation to the results at stationary the optimal value is at the fourth day with a value of 92.76 IU/L. The protease activity it was determined taking in consideration variables of agitation and stationary, using different types and concentration of sustrate at 2%, 4% y 6% (w/v of meat extract, 1%, 3%, 5% (w/v of jelly and 1%, 2%, 4% (w/v of casein. The highest protease activity was obtained at the end of the sev-enth day with an enzymatic activity of 3075.45 IU/L at stationary using a concentration of 6% (w/v of meat extract, and using jelly at 3% (w/v at stationary it was found an activity of 568.36 IU/L on the tenth day and in agitation a value of 547.27 IU/L was reached on the twelveth day, while using casein at 1% (w/v at stationary an activity of 407.06 IU/L is reached in the fifth day, and in agitation at 4% (w/v of casein a value of 547.27 IU/L is obtained on the twelfth day, while using

  14. Biocontrol potential of salinity tolerant mutants of Trichoderma harzianum against Fusarium oxysporum Potencial de biocontrole de mutantes sal-tolerantes de Trichoderma harzianum contra Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Hassan Abdel-Latif A. Mohamed

    2006-06-01

    Full Text Available Exposing a wild-type culture of Trichoderma harzianum to gamma irradiation induced two stable salt-tolerant mutants (Th50M6 and Th50M11. Under saline conditions, both mutants greatly surpassed their wild type strain in growth rate, sporulation and biological proficiency against Fusarium oxysporum, the causal agent of tomato wilt disease. Tolerant T. harzianum mutants detained a capability to grow and convinced sporulation in growth media containing up to 69 mM NaCl. In comparison with their parent strain, characterization of both mutants confirmed that they have reinforced contents of proline and hydroxyproline, relatively higher sodium content compared to potassium, calcium or magnesium contents, higher level of total phenols. Electrophoretic analysis of total soluble proteins in the salt tolerance mutant Th50M6 showed different bands accumulated in response to 69 mM NaCl. Data also showed that mutants produce certain active metabolites, such as chitinases, cellulases, beta-galactosidases, as well as, some antibiotics i.e., trichodermin, gliotoxin and gliovirin. Trichoderma mutants significantly reduced wilt disease incidence and improved yield and mineral contents of tomato plants under both saline and non-saline soil conditions, as well as, under infested and natural conditions. T. harzianum mutants were also more efficient in dropping the F. oxysporum growth in rhizosphere compared to the wild type strain. Population density of both mutants in rhizosphere far exceeded that of T. harzianum wild type strain.A exposição de uma cepa selvagem de Trichoderma harzianum à irradiação gama induziu dois mutantes tolerantes a sal (Th50M6 e Th50M11. Em condições salinas, os dois mutantes foram muito superiores à cepa selvagem em relação à velocidade de multiplicação, esporulação e eficiência contra Fusarium oxysporum, o agente causador da doença wilt do tomate. Os mutantes tolerantes foram capazes de multiplicação e esporulação em

  15. Effect of microelement and chemical fungicides on biocontrol effect of Trichoderma T23

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Jing-hua; GAO Zeng-gui; YANG Chang-cheng; LIU Xian; CHEN Jie

    2004-01-01

    @@ Recently there have been many reports about soil diseases controlled by Trichoderma, but few could be applied on agriculture production in large areas. T23 isolated from soil around plant roots in the field by Biopesticide Engineering Center of Shenyang Agricultural University could control effectively Cucurbits Fusarium Wilt. The effects of 9 microelements which include copper, zinc, iron, boron,molybdenum, calcium, manganese, magnesium, potassium and frequently-used chemical fungicides,such as-carbendazim, thiram, thiophanate-methyl, chlorothalonil and hymexazol on the growth and the amounts of spores of Fusarium oxysporum FJ and Trichoderma T23 were studied. The effects of those factors on control effect of T23 to melon diseases were discussed and gave basis for the screening of synergistic agents and fungicides in controlling synergistically the pathogen.

  16. BIOLOGICAL CONTROL OF SUGAR BEET DAMPING-OFF WITH TRICHODERMA SPP.

    Science.gov (United States)

    Biological control of damping-off in sugar beet seedlings with Trichoderma species. Isolates of Trichoderma virens and other Trichoderma species are effective biocontrol agents for diseases of several crops. Control of damping-off caused by Rhizoctonia solani has been observed in a number of c...

  17. Construction of engineering Trichoderma strains and their characteristics against tomato gray mold

    Institute of Scientific and Technical Information of China (English)

    LIU Xian; ZHUANG Jing-hua; GAO Zeng-gui; YANG Chang-cheng; CHEN Jie

    2004-01-01

    @@ The transformed Trichoderma strains Ttrm31, Ttrm34 and Ttrm55 were obtained from Trichoderma wild strain T21 mutated by REMI technique for more effective biocontrol of tomato gray mold (Botrytis cinerea) with Trichoderma agent. Those transformants appeared much better in biocontrol activity in vitro or in vivo against tomato gray mold were better than that of wild strain T21. The main results were as follow:

  18. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma

    OpenAIRE

    Kubicek, Christian P.; Herrera-Estrella, Alfredo; Seidl-Seiboth, Verena; Martinez, Diego A.; Druzhinina, Irina S.; Thon, Michael; Zeilinger, Susanne; Casas-Flores, Sergio; Horwitz, Benjamin A.; Mukherjee, Prasun K; Mukherjee, Mala; Kredics László; Alcaraz, Luis D; Aerts, Andrea; Antal Zsuzsanna (Szeged)

    2011-01-01

    Background Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma. Results Here we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Gliocl...

  19. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma

    OpenAIRE

    Kubichek, C.P.; Tamayo Ramos, J.A.

    2011-01-01

    Background: Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma. Results: Here we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Glio...

  20. Biocontrol Agents for Take-all.

    OpenAIRE

    Raaijmakers, J. M.; Weller, D.M.; Thomashow, L S; Cook, R J

    1997-01-01

    Fluorescent Pseudomonas spp. are described which are effective for the control of diseases caused by the soil-borne fungus, Gaeumannomyces graminis (Gg), such as take-all, in small grain crops or turf grass. The subject biocontrol strains have a unique genotype as shown by a characteristic banding pattern, and exhibit root-colonizing ability which is characterized by both higher population density on roots and extended colonizing activity compared to known Gg-suppressive strains. A further pr...

  1. Biocontrol mechanisms of Thrichoderma strains

    OpenAIRE

    Benítez Fernández, Concepción Tahía; Rincón Romero, Ana María; Limón Mirón, María del Carmen; Carballo Codón, Antonio

    2004-01-01

    The genus Trichoderma comprises a great number of fungal strains that act as biological control agents, the antagonistic properties of which are based on the activation of multiple mechanisms. Trichoderma strains exert biocontrol against fungal phytopathogens either indirectly, by competing for nutrients and space, modifying the environmental conditions, or promoting plant growth and plant defensive mechanisms and antibiosis, or directly, by mechanisms such as mycoparasitism. These indirect a...

  2. Management of Brown Leaf Rust, Puccinia recondita of Wheat Using Natural Products and Biocontrol Agents

    Directory of Open Access Journals (Sweden)

    Hamdy A. Eldoksch

    2001-01-01

    Full Text Available The effect of biocontrol agents and natural products on brown leaf rust, Puccinia recondita f.sp. tritici, of wheat were studied under greenhouse and field conditions in 1998/99 and 1999/2000 seasons. Under greenhouse conditions, application of Plant guard (Trichoderma harizianum, Rhizo-N (Bacillus subtilis and the yeast (Saccharomyces cerevisiae gave reasonable control of leaf rust severity with disease reduction percentages of 64.29, 57.14 and 19.14%, respectively. Field application of formulated natural products during two successive seasons gave effective control of brown rust disease. Natural oil, peppermint oil, jojoba oil, eucalyptus oil and chenopodium oil were the most effective treatments in reducing leaf rust severity and also in improving grain yield. All natural products significantly reduced the rust disease incidence in wheat by 55.5-98.2% and subsequently led to an increase in the grain yield that ranged from 8.5-51.8%. Of the biocontrol agents applied in the field, Plant guard was the most effective treatment followed by yeast and then Rhizo-N. These bioagents significantly improved grain yield and increased 100 kernel weight relative to the untreated control. Sumi-8 fungicide (diniconazole showed complete protection against rust disease incidence in both greenhouse and field trials.

  3. Characterization of novel Trichoderma spp. isolates as a search for effective biocontrollers of fungal diseases of economically important crops in Argentina.

    Science.gov (United States)

    Consolo, Verónica Fabiana; Mónaco, Cecilia Inés; Cordo, Cristina Alicia; Salerno, Graciela Lidia

    2012-04-01

    Monoconidial cultures of 33 isolates of Trichoderma from Buenos Aires Province, Argentina were characterized on the basis of twenty eight morphological, physiological and biochemical features. All of them were screened for proteinase, endochitinase and β-1,3 glucanase activity. Universally primed PCR (UP-PCR) and inter-simple sequence repeat (ISSR) techniques were used to examine the genetic variability among isolates, which resulted in 127 bands for the total number of isolates. These results were subjected to numerical analysis revealing 20 haplotypes grouped in five clusters. The ability of Trichoderma isolates to antogonize soil-borne fungal plant pathogens using a dual culture assay was done against five fungal species: Alternaria sp., Bipolaris sorokiniana, Fusarium graminearum, F. solani, and Pyricularia oryzae. The highest inhibition values (85% RI) were obtained against B. sorokiniana and P. oryzae. Three isolates of T. harzianum named as FCCT2, FCCT3 and FCCT9 were capable of causing a high growth inhibition on four of the fungal species assayed, which was in agreement with their higher extracellular hydrolytic activity. Our results suggest that these isolates have the potential to be effective agents for biocontrol of cereal and tomato fungal pathogens. PMID:22805919

  4. Production of trichodiene by Trichoderma harzianum alters the perception of this biocontrol strain by plants and antagonized fungi.

    Science.gov (United States)

    Malmierca, Mónica G; McCormick, Susan P; Cardoza, Rosa E; Alexander, Nancy J; Monte, Enrique; Gutiérrez, Santiago

    2015-08-01

    Trichothecenes are phytotoxic sesquiterpenic mycotoxins that can act as virulence factors in plant diseases. Harzianum A (HA) is a non-phytotoxic trichothecene produced by Trichoderma arundinaceum. The first step in HA biosynthesis is the conversion of farnesyl diphosphate to trichodiene (TD), a volatile organic compound (VOC), catalysed by a sesquiterpene synthase encoded by the tri5 gene. Expression of tri5 in the biocontrol strain Trichoderma harzianum CECT 2413 resulted in production of TD in parallel with a reduction of ergosterol biosynthesis and an unexpected increase in the level of squalene. Transformants expressing tri5 displayed low chitinase activity and induced expression of Botrytis cinerea BOT genes, although their total antagonistic potential against phytopathogenic fungi was not reduced. VOCs released by the tri5-transformant induced expression of tomato defence genes related to salicylic acid (SA), and TD itself strongly induced the expression of SA-responsive genes and reduced the development of lateral roots. Together, these results suggest that TD acts as a signalling VOC in the interactions of Trichoderma with plants and other microorganisms by modulating the perception of this fungus to a given environment. Moreover, the TD ability to induce systemic defences indicates that complex trichothecene structures may not be necessary for inducing such responses. PMID:24813508

  5. Environmental impact assessment of genetically modified biocontrol agents

    International Nuclear Information System (INIS)

    This review summarises the theoretical basis of risk analysis, and the political and social implications of introducing new biotechnology products in agricultural environments. The main factors to be considered under the present European regulation in the environmental impact assessment of genetically modified biocontrol agents are briefly discussed. Finally, an alternative risk assessment paradigm is proposed for genetically modified microorganisms, which shall consider the intrinsic properties of each antagonist, rather than the method used for generating it

  6. Biocontrol de la pudrición de raíz de nochebuena de interior con Trichoderma spp. Root rot biocontrol for indoor poinsettia with Trichoderma spp.

    Directory of Open Access Journals (Sweden)

    Felipe de Jesús Osuna-Canizalez

    2012-06-01

    Full Text Available En Morelos, la pudrición de la raíz causada por Fusarium spp., es una de las principales enfermedades de la nochebuena de interior. Por su efecto devastador, en su prevención o control se realizan aplicaciones frecuentes de productos químicos, con los riesgos inherentes a la salud humana y al ambiente. En la búsqueda de alternativas bioracionales al manejo de esta enfermedad, se realizó un ensayo en el que se evaluaron tres cepas comerciales de Trichoderma spp., en tres diferentes sustratos: S1= "tierra de hoja" (70% v/v+tezontle grueso (15% v/v+tezontle fino (10% v/v+agrolita (5% v/v; S2= turba (80% v/v+ fibra de coco (20% v/v; S3= "tierra de hoja" (70% + "tepojal" (30%, en las variedades comerciales más comunes, Freedom Red y Prestige Red. Se utilizó un diseño factorial de tratamientos 4 x 3 x 2 y los tratamientos resultantes se evaluaron en un diseño completamente al azar con seis repeticiones. Respecto a la incidencia de pudrición de la raíz, las cepas comerciales de Trichoderma spp., no mostraron diferencias entre sí ni con el testigo químico. La pudrición de la raíz estuvo asociada con S2, debido a una baja capacidad de aireación, y sólo se presentó en Prestige Red. La población (UFC g-¹ de Trichoderma spp., en el sustrato al término del ciclo, fue igual (pIn Morelos, root rot caused by Fusarium spp., is one of the main diseases of indoor poinsettia. In order to prevent or control its devastating effect, frequent applications of chemical products are performed, with inherent risks to human health and environment. In quest for alternative biorational options, an essay in which three commercial strains of Trichoderma spp., was done, in three different substrates: S1= "organic soil" (70% v/v+thick tezontle (15% v/v+thin tezontle (10% v/v+agrolita (5% v/v; S2= peat moss (80% v/v+ coconut fiber (20% v/v; S3= "organic soil" (70%+"tepojal" (30%, in most common commercial varieties, Freedom Red and Prestige Red. A factorial

  7. TmkA, a Mitogen-Activated Protein Kinase of Trichoderma virens, Is Involved in Biocontrol Properties and Repression of Conidiation in the Dark

    OpenAIRE

    Mukherjee, Prasun K.; Latha, Jagannathan; Hadar, Ruthi; Horwitz, Benjamin A.

    2003-01-01

    Trichoderma virens is a mycoparasitic fungus used in biocontrol of soilborne plant pathogens. It inhibits or kills plant-pathogenic fungi through production of antifungal antibiotics and parasitism of hyphae and sclerotia. Conidiation, or the production of asexual spores, an inducible process triggered by light or nutrient stress, is an important trait in survival and also development of formulation products. In many fungi, signaling pathways, including mitogen-activated protein kinase (MAPK)...

  8. The SRAP based molecular diversity related to antifungal and antioxidant bioactive constituents for biocontrol potentials of Trichoderma against Sclerotium rolfsii Scc.

    Science.gov (United States)

    Hirpara, Darshna G; Gajera, H P; Bhimani, R D; Golakiya, B A

    2016-08-01

    The study was performed to examine 11 isolates of Trichoderma for their bio-control potentials against Sclerotium rolfsii Sacc. causing stem rot in groundnut. The antagonists Trichoderma were subjected to sequence related amplified polymorphism (SRAP) based molecular diversity analysis and compared with their hardness to S. rolfsii with respect to secretary antifungal and antioxidant profile. T. virens NBAII Tvs 12 evident highest (87.91 %) growth inhibition of test pathogen followed by T. koningii MTCC 796 (67.03 %) at 7 days after inoculation (DAI). Microscopic study confirmed biocontrol mechanism as mycoparasitism for Tvs 12 and antibiosis for MTCC 796. The growth inhibition of test pathogen was significantly negatively correlated with sclerotia formation and lipid peroxidation during antagonism due to release of secretary bioactive antioxidants by antagonists to terminate oxidative burst generated by S. rolfsii and causing inhibition of sclerotium formation. The GC-MS profile identified antifungal and antioxidant constituents hexadecane, 1,2-benzenedicarboxylic acid, mono (2-ethylhexyl) ester, 1-hexadecanesulfonyl chloride, and octadecane in potent antagonists Tvs 12; and nonacosane and octadecane in MTCC 796 along with two novel compounds 1-pentadecene and 1-heneicosyl formate for biocontrol activity. Molecular diversity of Trichoderma isolates associated with antagonistic activity was assessed by SRAP markers. The 115 primer combinations generate total 1328 amplified products of which, 1095 are shared polymorphic and 199 are unique polymorphic. The 15 SRAP combinations produced 18 bands to diagnose best antagonist Tvs 12 and 13 SRAP combinations generated 19 unique bands for identification of MTCC 796. The mycoparasitic antagonist Tvs 12 would be the best antagonist and released unique antifungal and antioxidant constituents to combat pathogen infection. The SRAP based genetic diversity indicates Tvs12 strain clustered with T. viride NBAII Tv23 and shared

  9. Patogenicidade de Pythium aphanidermatum a alface cultivada em hidroponia e seu biocontrole com Trichoderma Pythium aphanidermatum pathogenicity to hydroponics lettuce and its biocontrol with Trichoderma

    Directory of Open Access Journals (Sweden)

    Katya da Silva Patekoski

    2010-08-01

    Full Text Available O objetivo deste trabalho foi avaliar a patogenicidade de Pythium aphanidermatum a variedades de alface, e a ação do produto Biotrich, formulado com Trichoderma, no controle deste patógeno e na promoção do crescimento das plantas. Em experimento in vitro, plântulas recém-germinadas das variedades de alface Vera e Elisa foram colocadas em placas de Petri com ágar-água e 1 mL de suspensão do produto Biotrich (0,2 mL L-1 e, após 24 horas, em discos com micélio do isolado de Pythium. As avaliações foram realizadas após dez dias de incubação a 20 e 31ºC. Os testes in vivo foram realizados na primavera e verão, em sistema hidropônico "Nutrient Film Technique" (NFT, em delineamento inteiramente casualizado, em esquema fatorial 2x2x2, como segue: duas variedades; presença ou ausência do patógeno; e presença ou ausência de Biotrich. Ao final do cultivo, foram avaliadas as massas de matéria fresca e seca das plantas. No experimento in vitro, P. aphanidermatum apresentou maior agressividade a 31ºC. Contudo, não foi verificada patogenicidade nos testes in vivo. De modo geral, o Biotrich não promoveu o crescimento das plantas, mas foi efetivo no controle do patógeno in vitro. Pythium aphanidermatum é patogênico às variedades de alface Vera e Elisa, a 20 e 31ºC, e o Biotrich é efetivo para o controle desse patógeno nessas temperaturas.The objective of this work was to evaluate the pathogenicity of Pythium aphanidermatum to lettuce varieties, and the action of the product Biotrich, formulated with Trichoderma, in the control of this pathogen and its effect on plant growth promotion. In a in vitro experiment, germinated seedlings of Vera and Elisa lettuce varieties were placed in Petri dishes with water-agar and 1mL Biotrich suspension (0.2 mL L-1, and after 24 hours, on plugs with the Pythium isolate mycelium. The evaluations were done ten days after the incubation at 20 and 31ºC. In vivo experiments were carried out during

  10. Study on the Biocontrol Activities of Trichoderma species in Greengram with Infected Fungal Pathogens

    International Nuclear Information System (INIS)

    Seven species of Trichoderma were isolated from rhizospheric soil sources and studied by cultural morphology and microscopic examinations. In dual plate assay, antifungal effects of seven Trichoderma strains were screened against three plant pathogenic fungi (Fusarium oxysporum, Rhizoctonia solani and Pythium sp.) on PDA medium and T-5 isolate showed a wide percentage of inhibitory effects on target pathogens with PIRG value. All Trichoderma strains exhibited a clear zone formation on minimal synthetic medium supplemented with 1% colloidal chitin. T-2 and T-5 were the best chitinase producer strains. In vitro screening for protease activity, the highest protease producing activity of Trichoderma isolate (T-2) were observed in pH indicator medium after 7 days incubation. In pot trial experiment, only T-5 strain exhibited more fungal suppression efficiency on green gram plant than commercial fungicide, Trisan and the other strains. So, it can be said that the effective strain was T-5 strain only which have been more antifungal producing power on three fungal pathogens than Trisan and the resting strains.

  11. Effect of fungicides and of biocontrol agents against powdery mildew of turnip.

    Science.gov (United States)

    Gilardi, G; Gullino, M L; Garibaldi, A

    2008-01-01

    The activity of several fungicides and of two biocontrol agents, Bacillus subtilis and Ampelomyces quisqualis, alone and in combination, against Erysiphe cruciferarum, causal agent of powdery mildew, was evaluated on turnip under controlled conditions. Among the tested fungicides, quinoxyfen and azoxystrobin provided the best disease control, followed by penconazole, myclobutanil, dinocap and meptyldinocap. Sulphur provided a only partial control. The two biocontrol agents used alone provided a only partial disease control, with B. subtilis being generally more effective. The mixture B. subtilis + azoxystrobin was very effective and generally more active than the two components applied alone. The possibility of introducing biocontrol agents into IPM is discussed. PMID:19226738

  12. LACK OF ANTAGONISM BETWEEN THE BIOCONTROL AGENT GLIOCLADIUM VIRENS AND VESICULAR ARBUSCULAR MYCORRHIZAL FUNGI

    Science.gov (United States)

    Fungal biocontrol agent Gliocladium virens Miller, Giddens & Foster on the colonization of cucumber by the VA mycorrhizal fungi Glomus etunicatum Becker & Gerdemann and Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe was investigated. noculum of G. virens grown on wheat bran o...

  13. Plant pathogens as biocontrol agents of Cirsium arvense – an overestimated approach?

    OpenAIRE

    Esther Müller; Wolfgang Nentwig

    2011-01-01

    Cirsium arvense is one of the worst weeds in agriculture. As herbicides are not very effective and not accepted by organic farming and special habitats, possible biocontrol agents have been investigated since many decades. In particular plant pathogens of C. arvense have received considerable interest and have been promoted as “mycoherbicides” or “bioherbicides”. A total of 10 fungi and one bacterium have been proposed and tested as biocontrol agents against C. arvense...

  14. Potencialidade antagonística detectada em alguns procariotas agentes de biocontrole de enfermidades de plantas Antagonistic potentiality in prokaryotic biocontrol agents for plant diseases

    OpenAIRE

    Victor Rafael Barra; Reginaldo da Silva; Hélio Glelson Maciel Ferraz; Dirceu Macagnan; Harllen Sandro Alves Silva; Andréa Bittencourt Moura; Bernardo de Almeida Halfeld-Vieira; Henrique Lopes Mendonça; José Roberto Vieira Júnior

    2008-01-01

    Ao longo de vários anos, no Laboratório de Bacteriologia de Plantas e Controle Biológico (LBPCB) do Departamento de Fitopatologia da Universidade Federal de Viçosa têm-se, sistematicamente, isolado, de rizosfera, rizoplano e filoplano de plantas cultivadas de importância econômica, milhares de procariotas os quais são testados, um a um, como agentes de biocontrole de enfermidades. A grande maioria deles, como esperado, não exibe qualquer potencialidade como agente de biocontrole e é descartad...

  15. Biocontrol of fouling pests: Effect of diversity, identity and density of control agents.

    Science.gov (United States)

    Atalah, Javier; Newcombe, Emma M; Zaiko, Anastasija

    2016-04-01

    Augmentative biocontrol, using native natural enemies, has been suggested as a promising tool to control marine biofouling pests on artificial structures. However, there are still important knowledge gaps to be addressed before biocontrol can be considered as a management tool. In a field experiment on floating marine structures we examined intra- and interspecific consumer interactions among biocontrol agents on different surface orientations. We tested the effect of identity, density and diversity of three invertebrates (the 11-arm seastar Coscinasterias muricata, the sea urchin Evechinus chloroticus and the gastropod Cook's turban Cookia sulcata) to reduce established biofouling and to prevent fouling growth on defouled surfaces. High densities of biocontrol agents were not more effective at fouling control (cover and biomass) than low densities. Nor did multi-species treatments function more effectively than mono-specific ones. However, biocontrol agent identity was important, with the 11-arm seastar and Cook's turban being the most effective at fouling reduction and prevention, respectively. Surface orientation had a strong effect on the effectiveness of control agents, with the best results obtained on vertical compared to diagonal and underside surfaces. This study confirmed the potential of biocontrol as a management tool for marine pest, indicating that identity is more important than richness and density of control agents. It also highlighted the limitations of this approach on diagonal and underside surfaces, where control agents have limited retention ability. PMID:26845376

  16. Proteins Related to the Biocontrol of Pythium Damping-off in Maize with Trichoderma harzianum Rifai

    Institute of Scientific and Technical Information of China (English)

    Jie CHEN; Gary E HARMAN; Afio COMIS; Gen-Wu CHENG

    2005-01-01

    Induced resistance has been evidenced as one of mechanisms of Trichoderma to control plantdiseases, however, no study showed the change of host proteomics in Trichoderma-induced resistance ofmaize against damping-off caused by Pythium ultimum Trow. The mechanism of Trichoderma harzianumRifai for controlling maize seedling disease caused by Pythium ultimum Trow was investigated firstly byproteome technique and the result suggested that T. harzianum strain T22 was not only able to promoteseedling growth but also protein accumulation. One-dimensional electrophoresis assay showed that morebands appeared on the gel with T22 or T22 combined with P. ultimum (T22 + P. ultimum) treatment than withother treatments. Enzyme assay showed that two chitinases of the root sample were more activated in thetreatments with T22 than in the other treatments without T22. Proteins in the seedling roots from the varioustreatments were separated through protein extraction and 2-D electrophoresis technique. In the seedlingsproduced from the T22-treated seeds, there were 104 up-regulated proteins and 164 down-regulated pro-teins relative to the control, and 97 and 150, respectively, after treatment with T22 + P. ultimum; however,with P. ultimum alone the values were much lower than with the other two treatments. The correlationcoefficient values were 0.72, 0.51 and 0.49 for the comparison of protein spot distribution on gel amongcontrol with T22, P. ultimum and T22 + P. ultimum, respectively. So it seemed that P. ultimum infection wasmore effective than T22 in interfering with the host proteome profile. Furthermore, analysis with MALDI-TOF-MAS showed that some important proteins associated with defensive reactions were identified in T22or T22 + P. ultimum treatments, including endochitinase, pathogenesis-related protein PRMS (pathogenesis-related maize seed), GTP-binding protein, isoflavone reductase and other proteins related to respiration. Allthose proteins are probably part of the

  17. Nitrogen fertilization impacts biocontrol of tomato gray mold

    OpenAIRE

    Abro, Manzoor Ali; Lecompte, François; Bardin, Marc

    2014-01-01

    Gray mold, caused by Botrytis cinerea, is a common threat for greenhouse production of tomatoes. Control of this disease can be difficult even with chemical treatments, and alternative methods are needed. Nitrogen (N) fertilization is known to modify the impact of pathogens on plants. However, there is scarce knowledge about the effect of fertilization on the efficacy of biocontrol. Here, we studied the effect of N fertilization on biocontrol agents Trichoderma atroviride and Microdochium dim...

  18. A New Biocontrol Fungus Trichoderma Kongii in the Kingdom of Saudi Arabia Isolation and Identification

    International Nuclear Information System (INIS)

    A total of 164 soil and root samples of different plant groups were collected from Abu-Arish governorate , Jazan province South West Saudi Arabia during the period of 2004-2005. Each sample contained feeder roots and approximately 250 g soil, taken from a depth of 20 cm of the soil surface. Samples were analyzed by two different media. Culture fungi on Malt Extract Agar identified by Biolog Systems and culture fungi on Potato Dextrose Agar medium containing chloramphenicol were identified by microscopic characterization. Results showed that, 11 different types of fungi isolated from tested samples, Fusarium spp (40%), Rhizoctonia solani,(12%) Trichoderma spp (12%), Macrophomina phaseoina. (7 %), Aspergillus spp (18 %) were the predominant fungal species. Helminthosporium spp (3%), Alternaria alternate (2%), Pythium spp (2%), Curviularia spp (2%), Cladsporium spp. (1%) and Mucor spp. (1%) were less frequent. (author)

  19. Competition in artifical plant growth media by Trichoderma spp

    DEFF Research Database (Denmark)

    Sarocco, Sabrina; Lübeck, Mette; Vannacci, Giovanni

    reason why more biocontrol agents are reaching the market place. A comparative evaluation of life strategies of both the pathogen and its antagonists is required to predict the fate of a biopesticide in agricultural systems.The objectives of this work have been: 1) to screen a collection of Trichoderma...... isolates in a natural pot mix in order to select potential fungal antagonists to be employed in the biocontrol of Rhizoctonia solani damping-off of radish, and 2) to verify the hypothesis that competition for a food base plays a role in reducing pathogen activity. Fifteen Trichoderma spp., selected among...

  20. Purification and characterization of a beta-Glucanase produced by Trichoderma harzianum showing biocontrol potential

    Directory of Open Access Journals (Sweden)

    Janice Lisboa de Marco

    2007-01-01

    Full Text Available A beta-1,3-glucanase was produced by Trichoderma harzianum in cultures containing chitin as the sole substrate. Two proteins showing beta-1,3-glucanase activity were purified to apparent homogeneity by hydrophobic chromatography. The molecular masses of these proteins were 29 and 36 kDa. The 36 kDa protein was further characterized. It was active on a broad pH range, and maximal activity was detected at pH 5.0. The optimum temperature of the 36 kDa beta-1,3-glucanase was 50ºC, but the purified enzyme was very sensitive to temperature. It lost about 60% or more of the activity after incubation for 30 min at 45, 50 and 60ºC. The apparent K M and Vmax for hydrolysis of laminarin at pH 5.0 and 37ºC, were 0.099 mg of reducing sugar/mL and 0.3 mg of reducing sugar/min.mL, respectively. The enzyme was insensitive to organic compound and metal ions, except for the ferric ion which inhibited about 100% of the original activity at the concentration of 1 mM. In contrast to other hydrolytic enzymes (a chitinase and a protease produced by the same T. harzianum isolate (1051, the beta-1,3-glucanase showed no effect on the cell wall of the phytopathogenic fungus Crinipellis perniciosa.Uma beta-1,3-glucanase foi produzida por Trichoderma harzianum em cultura contendo quitina como fonte de carbono. Duas proteínas com atividade de beta-1,3-glucanase foram purificadas através de cromatografia de interação hidrofóbica. As massas moleculares destas proteínas foram de 29 kDa e 36 kDa. A proteína de 36 kDa foi caracterizada quanto à influência das condições de pH e temperatura. A atividade máxima foi encontrada em pH 5,0 e temperatura de 50ºC. A proteína purificada mostrou-se muito sensível à temperatura. Aproximadamente 60% da atividade original foi perdida por incubação da proteína a 45ºC, 50ºC e 60ºC, por 30 min. O K M aparente e a Vmax para hidrólise de laminarina em pH 5,0 à 37ºC, foram de 0,099 mg de açúcar redutor/mL e 0,3 mg de a

  1. Gene expression analysis of the biocontrol fungus Trichoderma harzianum in the presence of tomato plants, chitin, or glucose using a high-density oligonucleotide microarray

    Directory of Open Access Journals (Sweden)

    Suárez M Belén

    2009-10-01

    Full Text Available Abstract Background It has recently been shown that the Trichoderma fungal species used for biocontrol of plant diseases are capable of interacting with plant roots directly, behaving as symbiotic microorganisms. With a view to providing further information at transcriptomic level about the early response of Trichoderma to a host plant, we developed a high-density oligonucleotide (HDO microarray encompassing 14,081 Expressed Sequence Tag (EST-based transcripts from eight Trichoderma spp. and 9,121 genome-derived transcripts of T. reesei, and we have used this microarray to examine the gene expression of T. harzianum either alone or in the presence of tomato plants, chitin, or glucose. Results Global microarray analysis revealed 1,617 probe sets showing differential expression in T. harzianum mycelia under at least one of the culture conditions tested as compared with one another. Hierarchical clustering and heat map representation showed that the expression patterns obtained in glucose medium clustered separately from the expression patterns observed in the presence of tomato plants and chitin. Annotations using the Blast2GO suite identified 85 of the 257 transcripts whose probe sets afforded up-regulated expression in response to tomato plants. Some of these transcripts were predicted to encode proteins related to Trichoderma-host (fungus or plant associations, such as Sm1/Elp1 protein, proteases P6281 and PRA1, enchochitinase CHIT42, or QID74 protein, although previously uncharacterized genes were also identified, including those responsible for the possible biosynthesis of nitric oxide, xenobiotic detoxification, mycelium development, or those related to the formation of infection structures in plant tissues. Conclusion The effectiveness of the Trichoderma HDO microarray to detect different gene responses under different growth conditions in the fungus T. harzianum strongly indicates that this tool should be useful for further assays that

  2. Proteomics related to the biocontrol of Pythium damping off in maize with Trichoderma harzianum

    Institute of Scientific and Technical Information of China (English)

    CHEN Jie; Gary G Harman; Alfio Comis

    2004-01-01

    @@ Trichoderma harzianum strain T22 controls various diseases of maize and other crops, including seedling and root rots caused by Pythium ultimum. Seedlings of inbred line Mo17 were grown from T22-treated or untreated seeds in field soil or in field soil intested with the pathogen. Five days after planting, seedlings of Mo17 (5-days-old) were smaller in the presence of P. ultimum and larger in the presence of T22 relative to the control. The combination of T22 with P. ultimum (T22 + P.ultimum ) resulted in plants as large as T22 alone. Methods for protein extraction and 2-D gel electrophoresis were developed. Proteins in seedlings roots from the various treatments were separated on 2-D gels and analyzed using PDQuestTM 2-D software. With seedlings produced from T22-treated seeds, there were 104 unmatched proteins and 164 matched proteins relative to the control, and 97 and 150 from the treatment with T22 + P. ultimum, respectively, however, with P. ultimum alone the numbers were much lower than above two treatments. Comparatively, there was very lower similarity of proteome patterns of seedling roots with T22 or P. ultimum or both to control seedlings,the correlative coefficient values were 0.72, 0.51 and 0.49 for the comparisons among control with T22, P. ultimum and T22 + P. ultimum, respectively. Moreover, correlative coefficient of proteome patterns between T22 with P. ultimum was only 0.65, and T22 fungal proteome were also not same as any one of seedling roots with various treatments. Taken together, the components in seedling root proteome seemed to be mostly coming from Mo17 plants themselves and affected strongly by either microbes, but the effects appeared to be stronger by P. ultimum than by T22. 41 spots were selected for protein mass fingerprinting identification, and most detected-spots were intensified in abundance by T22 or T22 + P. ultimum treatments such as pathogenesis-related protein and endochitnase etc. SOD (Mn) was found to be involved in

  3. Incorporating Ecologically Relevant Measures of Pesticide Effect for Estimating the Compatibility of Pesticides and Biocontrol Agents

    Science.gov (United States)

    The compatibility of biological control agents with pesticides is a central concern in integrated pest management programs. The most common assessments of compatibility consist of simple comparisons of acute toxicity among pest species and select biocontrol agents. A more sophisticated approach, d...

  4. Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungus Botrytis cinerea

    OpenAIRE

    Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes; Beltrán-Peña, Elda; Herrera-Estrella, Alfredo; López-Bucio, José

    2011-01-01

    Filamentous fungi belonging to the genus Trichoderma have long been recognized as agents for the biocontrol of plant diseases. In this work, we investigated the mechanisms involved in the defense responses of Arabidopsis thaliana seedlings elicited by co-culture with Trichoderma virens and Trichoderma atroviride. Interaction of plant roots with fungal mycelium induced growth and defense responses, indicating that both processes are not inherently antagonist. Expression studies of the pathogen...

  5. Responses of Yeast Biocontrol Agents to Environmental Stress

    OpenAIRE

    Sui, Yuan; Wisniewski, Michael; Droby, Samir; Liu, Jia

    2015-01-01

    Biological control of postharvest diseases, utilizing wild species and strains of antagonistic yeast species, is a research topic that has received considerable attention in the literature over the past 30 years. In principle, it represents a promising alternative to chemical fungicides for the management of postharvest decay of fruits, vegetables, and grains. A yeast-based biocontrol system is composed of a tritrophic interaction between a host (commodity), a pathogen, and a yeast species, a...

  6. Multiplication of bio-control agents on locally available organic media

    OpenAIRE

    Devakumar, N.; Shubha, S.; Rao, G.G.E.

    2014-01-01

    Multiplication of micro organisms used as bio control agents can be done by using locally available organic materials viz., compost extract, Jeevamrutha, Press mud, digested biogas slurry only. Performance of bio control agents was better with the combination of digested biogas slurry+ Panchagavya; Press mud + Panchagavya and digested biogas slurry + Press mud. Bio-control agents can be multiplied locally with low cost by adding Jaggery solution.

  7. SELECTING FUNGAL BIOCONTROL AGENTS AMENABLE TO PRODUCTION BY LIQUID CULTURE FERMENTATION

    Science.gov (United States)

    Numerous fungi show excellent potential for use as biocontrol agents due to their ability to selectively infect and kill a variety of weedy and insect pests or their ability to antagonize or exclude plant disease-causing organisms through parasitism or competitive exclusion. The lack of suitable me...

  8. Isolation and identification of actinomycetes from a compost-amended soils biocontrol agents

    International Nuclear Information System (INIS)

    Compost capability to suppress soil-borne plant pathogens has become an interesting subject as a strategy for reducing the adverse effects of massive fungicides application in the environmental. In this context, actinomycetes have received considerable attention as biocontrol agents, particularly Streptomyces species. (Author)

  9. Isolation and identification of actinomycetes from a compost-amended soils biocontrol agents

    Energy Technology Data Exchange (ETDEWEB)

    Garcia de la Fuente, R.; Cuesta, G.; Fornes, F.; Abad, M.

    2009-07-01

    Compost capability to suppress soil-borne plant pathogens has become an interesting subject as a strategy for reducing the adverse effects of massive fungicides application in the environmental. In this context, actinomycetes have received considerable attention as biocontrol agents, particularly Streptomyces species. (Author)

  10. Identification of Biocontrol Agents to Control the Fungal Pathogen, Geomyces destructans, in Bats

    Science.gov (United States)

    Braunstein, S.; Cheng, T.

    2013-12-01

    The fungal pathogen Geomyces destructans (Gd) causes the disease White-nose Syndrome (WNS) in bats and is estimated to have killed millions of bats since its emergence in North America in 2006. Gd is predicted to cause the local extinction of at least three bat species if rates of decline continue unabated. Given the devastating impacts of Gd to bat populations, identifying a viable method for controlling the pathogen is pertinent for conservation of affected bat species. Our work focuses on identifying naturally-occurring skin bacteria on bats that are antagonistic to Gd that could potentially be used as a biocontrol. We cultured bacteria from skin swabs taken from wild bats (Myotis lucifugus, Eptesicus fuscus, Myotis sodalis, Perimyotis subflavus). We conducted challenge experiments to identify bacterial strains that inhibited Gd growth. Bacteria that exhibited antifungal properties were identified using 16S and gyrB markers. Our methods identified several bacteria in the Pseudomonas fluorescens complex as potential biocontrol agents. Future work will continue to test the viability of these bacteria as biocontrol agents via experimental treatments with live captive bats. The failure of previous non-biocontrol methods highlights the importance of developing these bacteria as a biologically-friendly method for controlling Gd. A bat infected with Geomyces destructans. Photo by West Virginia Division of Natural Resources Bacterial culture from the swab of a bat's wings

  11. 保护地土壤生防木霉菌种群多样性研究%Study on Genetic Diversity of Biocontrol Trichoderma Population in Greenhouse Soils

    Institute of Scientific and Technical Information of China (English)

    贺字典; 高增贵; 高玉峰; 张洋

    2011-01-01

    采用传统的形态学特征和分子方法(ITS、TEF序列和UP-PCR)研究了蔬菜保护地土壤中木霉菌种群多样性及其影响因素.结果表明:提交genbank 11个木霉种的序列,分别为长枝木霉(Trichoderma longibrachiatum)、拟康氏木霉(Trichoderma pseudokoningii)、黄绿木霉(Trichoderma aureoviride)、棘孢木霉(Trichoderma asperellum)、深绿木霉(Trichoderma atroviride)、哈茨木霉(Trichoderma harzianum)、非钩木霉(Trichoderma inhamatum)、微孢木霉(Trichoderma minutisporum)、长孢木霉(Trichoderma longipile)和粘绿木霉(Trichoderma virens);木霉菌24个菌株经UP-PCR扩增,引物AS4、AS19、L45扩增出一条500 bp大小的木霉菌种的特征性谱带,其他谱带则为多态性谱带,多态性达93.5%;营养条件、杀菌剂及土壤因素对不同种木霉菌的影响不同,得到2株适应性较强的木霉菌株,有望成为生防菌株.%11 Trichoderma species were submitted to genbank by ITS ,TEF sequences analysis methods and effect factors of population diversity were studied in this paper, which included T. Longibrachiatum, T. Atroviride, T. Harziamun, T. Viren, T. Minutisporum, T. Pseudokoningii, T. Aureoviride, T. Inhamatum, T. Asperellum, T. Longipile and T. Helicum. At the same time, genetic diversity of Tnchoderma isolates were analyzed by Universally Primed PCR. A feature band ,500 bp, was the common one in 11 Trichoderma species,other bands were polymorphic,93.5 %. Futhermore, the effect of nutrition conditions, fungicides, soil factors etc. On Trichoderma was greatly different. 2 obtained strains which were strong adaptation, would be good bio-control strains.

  12. Bio-prospecting of distillery yeasts as bio-control and bio-remediation agents.

    Science.gov (United States)

    Ubeda, Juan F; Maldonado, María; Briones, Ana I; Francisco, J Fernández; González, Francisco J

    2014-05-01

    This work constitutes a preliminary study in which the capacity of non-Saccharomyces yeasts isolated from ancient distilleries as bio-control agents against moulds and in the treatment of waste waters contaminated by heavy metals-i.e. bio-remediation-is shown. In the first control assays, antagonist effect between non-Saccharomyces yeasts, their extracts and supernatants against some moulds, analysing the plausible (not exhaustive) involved factors were qualitatively verified. In addition, two enzymatic degrading properties of cell wall plant polymers, quitinolitic and pectinolitic, were screened. Finally, their use as agents of bio-remediation of three heavy metals (cadmium, chromium and lead) was analysed semi-quantitatively. The results showed that all isolates belonging to Pichia species effectively inhibited all moulds assayed. Moreover, P. kudriavzevii is a good candidate for both bio-control and bio-remediation because it inhibited moulds and accumulated the major proportion of the three tested metals. PMID:24370629

  13. Production of trichodiene by Trichoderma harzianum alters the perception of this biocontrol strain by plants and antagonized fungi

    Science.gov (United States)

    Trichothecenes are phytotoxic sesquiterpenoid compounds of fungal origin which can act as virulence factors in plant diseases. Harzianum A (HA) is a non-phytotoxic trichothecene produced by Trichoderma arundinaceum. The first step in the biosynthesis of HA is the conversion of farnesyl diphosphate t...

  14. Lectins of fungal pathogens as potential tools in selecting promising biological control agents of Trichoderma spp%植物病原菌凝集素用于筛选生防木霉菌

    Institute of Scientific and Technical Information of China (English)

    杨合同; 唐文华; Maarten Ryder; 李纪顺; 郭勇; 周红姿

    2004-01-01

    In this article, lectins of eight pathogen strains were extracted and purified. By testing agglutination lectins with 19 Trichoderma spp. srains, all lectins from fungi agglutinated the conidia of Trichoderma spp. with different titers, except lectin from Alternaria solani Ms. Result indicated that the agglutination of Trichoderma conidia by fungal lectins was related to their effectiveness caused by the corresponding pathogens. Statistical analysis showed significant correlation between titers of Fusarium lectin and the effectiveness of Trichoderma against the disease.The agglutination test might be applied to predict potential effectiveness of a given Trichoderma strain against the corresponding disease and the lectins could be employed in screening Trichoderma spp as biocontrol agents efficiently.%提取并纯化了番茄早疫病、黑根霉、棉花立枯病菌和黄瓜灰霉病菌等8个植物病原菌菌株的凝集素,试验观察凝集素与供试19个木霉菌株的凝集反应效价,结果表明除番茄早疫病外,木霉菌分生孢子不同浓度悬浮液与植物病原菌产生的凝集素均有凝集反应,并且木霉菌分生孢子与病原菌凝集素的凝集反应效价与木霉菌对其防效有显著相关性,统计分析表明镰刀菌产生的凝集素与木霉菌的凝集反应效价与木霉菌对它的防效具有显著相关性.因此可以利用凝集素筛选木霉高效生防菌株.

  15. EFFICACY OF BIOCONTROL AGENTS IN CONTROLLING RHIZOCTONIA SOLANI ON NAGA KING CHILLI ( Capsicum chinense Jacq.)

    OpenAIRE

    Marinus Ngullie; Loli Daiho

    2013-01-01

    Available biocontrol agents were evaluated either alone or in various combinations for finding out their efficacy in suppressing Rhizoctonia seedling rot incidence and promoting plant growth of Naga king chilli (Capsicum chinense Jacq.) in green house as well field conditions. Among all tested combination, the treatment containing combination of T. viride +P. fluorescens was found most effective in reducing the incidence of seedling rot in both greenhouse and field condition. Highest pe...

  16. Viunalikeviruses are environmentally common agents of horizontal gene transfer in pathogens and biocontrol bacteria

    OpenAIRE

    Matilla, M. A.; Fang, X.; Salmond, George P. C.

    2014-01-01

    Bacteriophages have been used as natural biocontrol and therapeutic agents, but also as biotechnological tools for bacterial engineering. We showed recently that the transducing bacteriophage ϕMAM1 is a ViI-like phage and a member of the new genus, ‘Viunalikevirus'. Here, we show that four additional ViI-like phages and three new environmentally isolated viunalikeviruses, all infecting plant and human pathogens, are very efficient generalised transducers capable of transducing chromosomal mar...

  17. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents

    OpenAIRE

    Anelise Beneduzi; Adriana Ambrosini; Luciana M.P. Passaglia

    2012-01-01

    Bacteria that colonize plant roots and promote plant growth are referred to as plant growth-promoting rhizobacteria (PGPR). PGPR are highly diverse and in this review we focus on rhizobacteria as biocontrol agents. Their effects can occur via local antagonism to soil-borne pathogens or by induction of systemic resistance against pathogens throughout the entire plant. Several substances produced by antagonistic rhizobacteria have been related to pathogen control and indirect promotion of growt...

  18. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi

    OpenAIRE

    Trias Mansilla, Rosalia; Bañeras Vives, Lluís; Montesinos Seguí, Emilio; Badosa Romañó, Esther

    2008-01-01

    This study evaluated the efficacy of lactic acid bacteria (LAB) isolated from fresh fruits and vegetables as biocontrol agents against the phytopathogenic and spoilage bacteria and fungi, Xanthomonas campestris, Erwinia carotovora, Penicillium expansum, Monilinia laxa, and Botrytis cinerea. The antagonistic activity of 496 LAB strains was tested in vitro and all tested microorganisms except P. expansum were inhibited by at least one isolate. The 496 isolates were also analyzed for the inhibit...

  19. Cucumber Rhizosphere Microbial Community Response to Biocontrol Agent Bacillus subtilis B068150

    OpenAIRE

    Lihua Li; Jincai Ma; A. Mark Ibekwe; Qi Wang; Ching-Hong Yang

    2015-01-01

    Gram-positive bacteria Bacillus subtilis B068150 has been used as a biocontrol agent against the pathogen Fusarium oxysporum cucumerinum. Cucumber was grown in three soils with strain B068150 inoculated in a greenhouse for 90 days, and the colonization ability of strain B068150 in cucumber rhizosphere and non-rhizosphere soils was determined. Changes in total bacteria and fungi community composition and structures using denaturing gradient gel electrophoresis (DGGE) and sequencing were determ...

  20. Is it possible to improve biocontrol agents to practical applications? the pantoea agglomerans CPA-2 example

    OpenAIRE

    Teixidó, Neus; Cañamás, Teresa Paula; Torres, Rosario; Usall, Josep; Viñas, Inma

    2010-01-01

    A major hurdle in exploitation of biocontrol agents is the limited tolerance of fluctuating environmental conditions practically and the difficulties in developing a shelf-stable formulated product as effective as fresh cells. Most of microorganisms are very sensitive to drying processes involved in formulation and biological control is usually limited by the narrow range of conditions below microorganisms are able to survive, establish and effectively control pests and diseases. ...

  1. Integrated genomic and transcriptomic analysis reveals mycoparasitism as the ancestoral life style of Trichoderma

    OpenAIRE

    Kubicek, Christian P

    2011-01-01

    Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma.

  2. Integrated genomic and transcriptomic analysis reveals mycoparasitism as the ancestoral life style of Trichoderma

    Energy Technology Data Exchange (ETDEWEB)

    Kubicek, Christian P.; Herrera-Estrella, Alfredo; Seidl, Verena; Crom, St& #233; phane Le; Martinez, Diego A.; Druzhinina, Irina S.; Zeilinger, Susanne; Casas-Flores, Sergio; Horwitz, Benjamin A.; Mukherjee, Prasun K.; Mukherjee, Mala; Kredics, L& #225; szlo; Alcaraz, Luis David; Aerts, Andrea; Antal, Zsuzsanna; Atanasova, Lea; Cervantes-Badillo, Mayte Guadalupe; Challacombe, Jean; Chertkov, Olga; McCluskey, Kevin; Coulpier, Fanny; Deshpande, Nandan; D& #246; hren, Hans von; Ebbole, Daniel J.; Esquivel-Naranjo, Edgardo Ulises; Fekete, Erzs& #233; bet; Flipphi, Michel; Glaser, Fabian; Gomez-Rodriguez, Elida Yazmin; Gruber, Sabine; Han, Cliff; Henrissat, Bernard; Hermosa, Rosa; Hern& #225; ndez-O?ate, Miguel; Karaffa, Levente; Kosti, Idit; Lindquist, Erika; Lucas, Susan; L& #252; beck, Mette; L& #252; beck, Peter Stephensen; Margeot, Antoine; Metz, Benjamin; Misra, Monica; Nevalainen, Helena; Omann, Markus; Packer, Nicolle; Perrone, Giancarlo; Uresti-Rivera, Edith Elena; Salamov, Asaf; Schmoll, Monika; Seiboth, Bernhard; Shapiro, Harris; Sukno, Serenella; Tamayo-Ramos, Juan Antonio; Thon, Michael; Tisch, Doris; Wiest, Aric; Wilkinson, Heather H.; Zhang, Michael; Coutinho, Pedro M.; Kenerley, Charles M.; Monte, Enrique; Baker, Scott E.; Grigoriev, Igor V.

    2011-04-29

    Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma.

  3. Combinations of Biocontrol Agents for Management of Plant-Parasitic Nematodes and Soilborne Plant-Pathogenic Fungi

    OpenAIRE

    Meyer, Susan L. F.; Roberts, Daniel P.

    2002-01-01

    Numerous microbes are antagonistic to plant-parasitic nematodes and soilborne plant-pathogenic fungi, but few of these organisms are commercially available for management of these pathogens. Inconsistent performance of applied biocontrol agents has proven to be a primary obstacle to the development of successful commercial products. One of the strategies for overcoming inconsistent performance is to combine the disease-suppressive activity of two (or more) beneficial microbes in a biocontrol ...

  4. Hrp mutant bacteria as biocontrol agents: Toward a sustainable approach in the fight against plant pathogenic bacteria

    OpenAIRE

    Hanemian, Mathieu; Zhou, Binbin; Deslandes, Laurent; Marco, Yves; Trémousaygue, Dominique

    2013-01-01

    Sustainable agriculture necessitates development of environmentally safe methods to protect plants against pathogens. Among these methods, application of biocontrol agents has been efficiently used to minimize disease development. Here we review current understanding of mechanisms involved in biocontrol of the main Gram-phytopathogenic bacteria-induced diseases by plant inoculation with strains mutated in hrp (hypersensitive response and pathogenicity) genes. These mutants are able to penetra...

  5. Bioprospection of yeasts as biocontrol agents against phytopathogenic molds

    OpenAIRE

    Márcia Maria Rosa-Magri; Sâmia Maria Tauk-Tornisielo; Sandra Regina Ceccato-Antonini

    2011-01-01

    Yeasts isolated from sugar cane and maize rhizosphere, leaves and stalks were screened against the phytopathogenic molds Colletotrichum sublineolum and Colletotrichum graminicola, both causal agents of the anthracnose disease in sorghum and maize, respectively. Strains identified as Torulaspora globosa and Candida intermedia were able to inhibit the mold growth, with the first species also exhibiting killer activity. No previous report on the application and potentiality of these yeasts as bi...

  6. Production of spores of Trichoderma harzianum on sugar cane molasses and bagasse pith in solid state fermentation for biocontrol

    OpenAIRE

    Jose A. Rodríguez-León; Domenech, F.; M. León; Méndez, T.; D. E. Rodríguez; Ashok Pandey

    1999-01-01

    Solid state fermentation was carried out for the production of spores from Trichoderma harzianum No 53 using sugar cane bagasse pith as solid matrix and sugar cane molasses as carbon and energy source. Different nitrogen sources such as urea, (NH4)2SO4 , NH4H2PO4 and (NH4)2HPO4 were added in the media to test their effect on spores production. Among these, urea was found most useful that resulted high no of spores (1x10(9)/gDM). The influence of temperature and initial moisture of the substra...

  7. Biocontrol agents promote growth of potato pathogens, depending on environmental conditions.

    Science.gov (United States)

    Cray, Jonathan A; Connor, Mairéad C; Stevenson, Andrew; Houghton, Jonathan D R; Rangel, Drauzio E N; Cooke, Louise R; Hallsworth, John E

    2016-05-01

    There is a pressing need to understand and optimize biological control so as to avoid over-reliance on the synthetic chemical pesticides that can damage environmental and human health. This study focused on interactions between a novel biocontrol-strain, Bacillus sp. JC12GB43, and potato-pathogenic Phytophthora and Fusarium species. In assays carried out in vitro and on the potato tuber, the bacterium was capable of near-complete inhibition of pathogens. This Bacillus was sufficiently xerotolerant (water activity limit for growth = 0.928) to out-perform Phytophthora infestans (~0.960) and challenge Fusarium coeruleum (~0.847) and Fusarium sambucinum (~0.860) towards the lower limits of their growth windows. Under some conditions, however, strain JC12GB43 stimulated proliferation of the pathogens: for instance, Fusarium coeruleum growth-rate was increased under chaotropic conditions in vitro (132 mM urea) by >100% and on tubers (2-M glycerol) by up to 570%. Culture-based assays involving macromolecule-stabilizing (kosmotropic) compatible solutes provided proof-of-principle that the Bacillus may provide kosmotropic metabolites to the plant pathogen under conditions that destabilize macromolecular systems of the fungal cell. Whilst unprecedented, this finding is consistent with earlier reports that fungi can utilize metabolites derived from bacterial cells. Unless the antimicrobial activities of candidate biocontrol strains are assayed over a full range of field-relevant parameters, biocontrol agents may promote plant pathogen infections and thereby reduce crop yields. These findings indicate that biocontrol activity, therefore, ought to be regarded as a mode-of-behaviour (dependent on prevailing conditions) rather than an inherent property of a bacterial strain. PMID:26880001

  8. Biodegradation of polycyclic aromatic hydrocarbons by Trichoderma species: a mini review.

    Science.gov (United States)

    Zafra, German; Cortés-Espinosa, Diana V

    2015-12-01

    Fungi belonging to Trichoderma genus are ascomycetes found in soils worldwide. Trichoderma has been studied in relation to diverse biotechnological applications and are known as successful colonizers of their common habitats. Members of this genus have been well described as effective biocontrol organisms through the production of secondary metabolites with potential applications as new antibiotics. Even though members of Trichoderma are commonly used for the commercial production of lytic enzymes, as a biological control agent, and also in the food industry, their use in xenobiotic biodegradation is limited. Trichoderma stands out as a genus with a great range of substrate utilization, a high production of antimicrobial compounds, and its ability for environmental opportunism. In this review, we focused on the recent advances in the research of Trichoderma species as potent and efficient aromatic hydrocarbon-degrading organisms, as well as aimed to provide insight into its potential role in the bioremediation of soils contaminated with heavy hydrocarbons. Several Trichoderma species are associated with the ability to metabolize a variety of both high and low molecular weight polycyclic aromatic hydrocarbons (PAHs) such as naphthalene, phenanthrene, chrysene, pyrene, and benzo[a]pyrene. PAH-degrading species include Trichoderma hamatum, Trichoderma harzianum, Trichoderma reesei, Trichoderma koningii, Trichoderma viride, Trichoderma virens, and Trichoderma asperellum using alternate enzyme systems commonly seen in other organisms, such as multicooper laccases, peroxidases, and ring-cleavage dioxygenases. Within these species, T. asperellum stands out as a versatile organism with remarkable degrading abilities, high tolerance, and a remarkable potential to be used as a remediation agent in polluted soils. PMID:26498812

  9. Enhancement of Biocontrol Activities and Cyclic Lipopeptides Production by Chemical Mutagenesis of Bacillus subtilis XF-1, a Biocontrol Agent of Plasmodiophora brassicae and Fusarium solani

    OpenAIRE

    Li, Xing-Yu; Yang, Jing-Jing; Mao, Zi-Chao; Ho, Hon-Hing; Wu, Yi-Xing; He, Yue-qiu

    2014-01-01

    Bacillus subtilis XF-1 has been used as a biocontrol agent of clubroot disease of crucifers infected by Plasmodiophora brassicae, an obligate pathogen. In order to maximize the growth inhibition of the pathogen, random mutagenesis using N-methyl-N′-nitro-N-nitrosoguanidine was applied to strain XF-1. The efficacy of 226 selected mutants was assessed against the growth of an indicator fungal pathogen: Fusarium solani using agar plate assay and the disruptive effects on the resting spores of P....

  10. Potential Bio-Control Agent from Rhodomyrtus tomentosa against Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Grace Fiyinfoluwa Odedina

    2015-09-01

    Full Text Available Listeria monocytogenes is an important foodborne pathogen implicated in many outbreaks of listeriosis. This study aimed at screening for the potential use of Rhodomyrtus tomentosa ethanolic leaf extract as a bio-control agent against L. monocytogenes. Twenty-two L. monocytogenes isolates were checked with 16 commercial antibiotics and isolates displayed resistance to 10 antibiotics. All the tested isolates were sensitive to the extract with inhibition zones ranging from 14 to 16 mm. Minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC values ranged from 16 to 32 µg/mL and 128 to 512 µg/mL, respectively. Time-kill assay showed that the extract had remarkable bactericidal effects on L. monocytogenes. The extract at a concentration of 16 µg/mL reduced tolerance to 10% NaCl in L. monocytogenes in 4 h. Stationary phase L. monocytogenes cells were rapidly inactivated by greater than 3-log units within 30 min of contact time with R. tomentosa extract at 128 µg/mL. Electron microscopy revealed fragmentary bacteria with changes in the physical and morphological properties. Our study demonstrates the potential of the extract for further development into a bio-control agent in food to prevent the incidence of L. monocytogenes contamination.

  11. Potential Bio-Control Agent from Rhodomyrtus tomentosa against Listeria monocytogenes

    Science.gov (United States)

    Odedina, Grace Fiyinfoluwa; Vongkamjan, Kitiya; Voravuthikunchai, Supayang Piyawan

    2015-01-01

    Listeria monocytogenes is an important foodborne pathogen implicated in many outbreaks of listeriosis. This study aimed at screening for the potential use of Rhodomyrtus tomentosa ethanolic leaf extract as a bio-control agent against L. monocytogenes. Twenty-two L. monocytogenes isolates were checked with 16 commercial antibiotics and isolates displayed resistance to 10 antibiotics. All the tested isolates were sensitive to the extract with inhibition zones ranging from 14 to 16 mm. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values ranged from 16 to 32 µg/mL and 128 to 512 µg/mL, respectively. Time-kill assay showed that the extract had remarkable bactericidal effects on L. monocytogenes. The extract at a concentration of 16 µg/mL reduced tolerance to 10% NaCl in L. monocytogenes in 4 h. Stationary phase L. monocytogenes cells were rapidly inactivated by greater than 3-log units within 30 min of contact time with R. tomentosa extract at 128 µg/mL. Electron microscopy revealed fragmentary bacteria with changes in the physical and morphological properties. Our study demonstrates the potential of the extract for further development into a bio-control agent in food to prevent the incidence of L. monocytogenes contamination. PMID:26371033

  12. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi.

    Science.gov (United States)

    Trias, Rosalia; Bañeras, Lluís; Montesinos, Emilio; Badosa, Esther

    2008-12-01

    This study evaluated the efficacy of lactic acid bacteria (LAB) isolated from fresh fruits and vegetables as biocontrol agents against the phytopathogenic and spoilage bacteria and fungi, Xanthomonas campestris, Erwinia carotovora, Penicillium expansum, Monilinia laxa, and Botrytis cinerea. The antagonistic activity of 496 LAB strains was tested in vitro and all tested microorganisms except P. expansum were inhibited by at least one isolate. The 496 isolates were also analyzed for the inhibition of P. expansum infection in wounds of Golden Delicious apples. Four strains (TC97, AC318, TM319, and FF441) reduced the fungal rot diameter of the apples by 20%; only Weissella cibaria strain TM128 decreased infection levels by 50%. Cell-free supernatants of selected antagonistic bacteria were studied to determine the nature of the antimicrobial compounds produced. Organic acids were the preferred mediators of inhibition but hydrogen peroxide was also detected when strains BC48, TM128, PM141 and FF441 were tested against E. carotovora. While previous reports of antifungal activity by LAB are scarce, our results support the potential of LAB as biocontrol agents against postharvest rot. PMID:19204894

  13. Enhancement of Biocontrol Activities and Cyclic Lipopeptides Production by Chemical Mutagenesis of Bacillus subtilis XF-1, a Biocontrol Agent of Plasmodiophora brassicae and Fusarium solani.

    Science.gov (United States)

    Li, Xing-Yu; Yang, Jing-Jing; Mao, Zi-Chao; Ho, Hon-Hing; Wu, Yi-Xing; He, Yue-Qiu

    2014-12-01

    Bacillus subtilis XF-1 has been used as a biocontrol agent of clubroot disease of crucifers infected by Plasmodiophora brassicae, an obligate pathogen. In order to maximize the growth inhibition of the pathogen, random mutagenesis using N-methyl-N'-nitro-N-nitrosoguanidine was applied to strain XF-1. The efficacy of 226 selected mutants was assessed against the growth of an indicator fungal pathogen: Fusarium solani using agar plate assay and the disruptive effects on the resting spores of P. brassicae. Four mutants exhibited inhibition activity significantly higher than the wild type. The cell extracts of these mutants and the XF-1 were subjected to matrix-assisted laser desorption ionization-time of flight mass spectra analysis, and three families of cyclic lipopeptides (CLPs) fengycin, surfactin and iturin were identified from the parental strain and the screened mutants. However, the relative contents and compound diversity changed after mutagenesis, and there was slight variation in the surfactin and fengycin. Notably, only 5 iturin components were discovered from the wild strain XF-1, but 13 were obtained from the mutant strains, and the relative CLPs contents of all mutant strains increased substantially. The results suggested that CLPs might be one of main biocontrol mechanisms of the clubroot disease by XF-1. The 4 mutants are far more effective than the parental strain, and they would be promising biocontrol candidates not only against P. brassicae but probably other plant diseases caused by fungi. PMID:25320450

  14. Isolation of Stem rot Disease Causing Organism of Brinjal and their in-vitro Inhibition with Fungicides and Bio-control Agents

    Directory of Open Access Journals (Sweden)

    Shaily Javeria

    2014-09-01

    Full Text Available Different strains of Sclerotinia sclerotiorum were isolated from the diseased samples collected from different hosts and locations. Among the 14 isolates, 12 isolates colonies covered the entire Petri plates within 96 hours but, two isolates from fababean and yellow mustard showed slow colony growth within 96 hours. All isolates produced sclerotia which were varied in number, but the fenugreek isolate produced maximum (43 number of sclerotia and lambs quarter isolate produced minimum number of sclerotia (12 on PDA medium. To examine inhibitory effect of fungicide on the mycelial growth of the pathogen, 9 fungicides were tested in vitro against Sclerotinia sclerotiorum, of those carbendazim, carboxin, topsin-M and carbendazim+ mancozeb (SAAF were found most effective and inhibited the mycelial growth of pathogen up to 100 per cent at 0.05%, 0.1%, and 0.2% concentration. The effect of different bioagents viz., Trichoderma harzianum, T. viride, T. koningii, T. atroviride, T. longibraciatum, Aspergillus niger, Chaetomium globosome and Penicillium notatum in inhibiting the growth of Sclerotinia sclerotiorum was studied through “Dual Culture Technique”. The data showed that among the eight biocontrol agent six were fond effective. The maximum inhibition was found by T. harzianum causing 70.82% inhibition of mycelial growth of the pathogen S. sclerotiorum.

  15. Phaeobacter inhibens as biocontrol agent against Vibrio vulnificus in oyster models.

    Science.gov (United States)

    Porsby, Cisse Hedegaard; Gram, Lone

    2016-08-01

    Molluscan shellfish can cause food borne diseases and here we investigated if addition of Vibrio-antagonising bacteria could reduce Vibrio vulnificus in model oyster systems and prevent its establishment in live animals. Phaeobacter inhibens, which produces an antibacterial compound, tropodithietic acid (TDA), inhibited V. vulnificus as did pure TDA (MIC of 1-3.9 μM). P. inhibens DSM 17395 (at 10(6) cfu/ml) eradicated 10(5) cfu/ml V. vulnificus CMCP6 (a rifampicin resistant variant) from a co-culture oyster model system (oyster juice) whereas the pathogen grew to 10(7) cfu/ml when co-cultured with a TDA negative Phaeobacter mutant. P. inhibens grew well in oyster juice to 10(8) CFU/ml and sterile filtered samples from these cultures were inhibitory to Vibrio spp. P. inhibens established itself in live European flat oysters (Ostrea edulis) and remained at 10(5) cfu/g for five days. However, the presence of P. inhibens could not prevent subsequently added V. vulnificus from entering the live animals, likely because of too low levels of the biocontrol strain. Whilst the oyster model studies provided indication that P. inhibens DSM 17395 could be a good candidate as biocontrol agent against V. vulnificus further optimization is need in the actual animal rearing situation. PMID:27052703

  16. Plant growth-promoting rhizobacteria (PGPR: their potential as antagonists and biocontrol agents

    Directory of Open Access Journals (Sweden)

    Anelise Beneduzi

    2012-01-01

    Full Text Available Bacteria that colonize plant roots and promote plant growth are referred to as plant growth-promoting rhizobacteria (PGPR. PGPR are highly diverse and in this review we focus on rhizobacteria as biocontrol agents. Their effects can occur via local antagonism to soil-borne pathogens or by induction of systemic resistance against pathogens throughout the entire plant. Several substances produced by antagonistic rhizobacteria have been related to pathogen control and indirect promotion of growth in many plants, such as siderophores and antibiotics. Induced systemic resistance (ISR in plants resembles pathogen-induced systemic acquired resistance (SAR under conditions where the inducing bacteria and the challenging pathogen remain spatially separated. Both types of induced resistance render uninfected plant parts more resistant to pathogens in several plant species. Rhizobacteria induce resistance through the salicylic acid-dependent SAR pathway, or require jasmonic acid and ethylene perception from the plant for ISR. Rhizobacteria belonging to the genera Pseudomonas and Bacillus are well known for their antagonistic effects and their ability to trigger ISR. Resistance-inducing and antagonistic rhizobacteria might be useful in formulating new inoculants with combinations of different mechanisms of action, leading to a more efficient use for biocontrol strategies to improve cropping systems.

  17. Functional and Structural Microbial Diversity in Organic and Conventional Viticulture: Organic Farming Benefits Natural Biocontrol Agents ▿ †

    OpenAIRE

    Schmid, Florian; Moser, Gerit; Müller, Henry; Berg, Gabriele

    2011-01-01

    Statistically significant differences in the structure and function of above-ground grapevine-associated microorganisms from organically and conventionally managed vineyards were found. Aureobasidium pullulans, a copper-detoxifying fungus and biocontrol agent, plays a key role in explaining these differences. The black fungus was strongly enriched in the communities of organically managed plants and yielded a higher indigenous antiphytopathogenic potential.

  18. CUTICULAR HYDROCARBONS OF THE FLEA BEETLES, APHTHONA LACERTOSA AND APHTHONA NIGRISCUTIS, BIOCONTROL AGENTS FOR LEAFY SPURGE, EUPHORBIA ESULA

    Science.gov (United States)

    The adult beetles, Aphthona lacertosa and Aphthona nigriscutis, used as biocontrol agents for leafy spurge, had a complex mixture of hydrocarbons on their cuticular surface consisting of alkanes, methylalkanes, alkenes and alkadienes as determined by gas chromatography-mass spectrometry. In both ...

  19. Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms

    Science.gov (United States)

    Isolates of several Trichoderma spp., were collected from tropical environments as potential biocontrol agents for cacao (Theobroma cacao) diseases. The diversity of isolates collected, including new species, and there endophytic nature on their host plants, led us to consider if these isolates have...

  20. Integrated effect of gamma radiation and biocontrol agent on quality parameters of apple fruit: An innovative commercial preservation method

    International Nuclear Information System (INIS)

    Effects of gamma irradiation and biocontrol agent (Pseudomonas fluorescens) on the physico-chemical parameters (including moisture, total soluble solids, antioxidant activity, phenolic content and firmness) of cv. Golden Delicious apples were investigated for their ability to avoid the post-harvest blue mold caused by Penicillium expansum during cold storage. Freshly harvested apples were inoculated with P. expansum. Treated fruits were irradiated at doses of 0, 200, 400, 600 and 800 Gy and then inoculated with P. fluorescens suspension. Samples were evaluated at 3 month intervals. The results demonstrated a clear link between antioxidant activity and phenolic content, so that dose range of 200–400 Gy significantly increased phenolic content and antioxidant activity. Effect of P. fluorescens was similar to irradiation at 200 and 400 Gy that could prevent lesion diameter in pathogen-treated apples. As dose and storage time increased firmness decreased but, combination of P. fluorescens as well as irradiation (at 200–400 Gy) could decrease softening apple fruits during storage. In all parameters, P. fluorescens (as biocontrol agent) inhibited P. expansum similar to irradiation at 200–400 Gy. So, integrated treatment of irradiation and biocontrol agent explored the potential dual benefit of low doses (200 and 400 Gy) as a suitable method to sustain physico-chemical quality and conclusively reduce apple fruits losses during post-harvest preservation. - Highlights: • A suitable method to reduce apple quality losses during 9 month storage period. • Effects of γ radiation in combination with biocontrol agent on physico-chemical parameters of the apple fruits during cold storage. • The potential dual benefit of low irradiation dose combined with biocontrol agent. • Radiation dose determination for Penicillium expansum (postharvest pathogen) control

  1. Non-aflatoxigenic Aspergillus flavus as potential biocontrol agents to reduce aflatoxin contamination in peanuts harvested in Northern Argentina.

    Science.gov (United States)

    Alaniz Zanon, María Silvina; Barros, Germán Gustavo; Chulze, Sofía Noemí

    2016-08-16

    Biological control is one of the most promising strategies for preventing aflatoxin contamination in peanuts at field stage. A population of 46 native Aspergillus flavus nonaflatoxin producers were analysed based on phenotypic, physiological and genetic characteristics. Thirty-three isolates were characterized as L strain morphotype, 3 isolates as S strain morphotype, and 10 isolates did not produce sclerotia. Only 11 of 46 non-aflatoxigenic isolates did not produce cyclopiazonic acid. The vegetative compatibility group (VCG) diversity index for the population was 0.37. For field trials we selected the non-aflatoxigenic A. flavus AR27, AR100G and AFCHG2 strains. The efficacy of single and mixed inocula as potential biocontrol agents in Northern Argentina was evaluated through a 2-year study (2014-2015). During the 2014 peanut growing season, most of the treatments reduced the incidence of aflatoxigenic strains in both soil and peanut kernel samples, and no aflatoxin was detected in kernels. During the 2015 growing season, there was a reduction of aflatoxigenic strains in kernel samples from the plots treated with the potential biocontrol agents. Reductions of aflatoxin contamination between 78.36% and 89.55% were observed in treated plots in comparison with the un-inoculated control plots. This study provides the first data on aflatoxin biocontrol based on competitive exclusion in the peanut growing region of Northern Argentina, and proposes bioproducts with potential use as biocontrol agents. PMID:27220011

  2. Preliminary in vitro insights into the use of natural fungal pathogens of leaf-cutting ants as biocontrol agents.

    Science.gov (United States)

    Folgarait, Patricia; Gorosito, Norma; Poulsen, Michael; Currie, Cameron R

    2011-09-01

    Leaf-cutting ants are one of the main herbivores of the Neotropics, where they represent an important agricultural pest. These ants are particularly difficult to control because of the complex network of microbial symbionts. Leaf-cutting ants have traditionally been controlled through pesticide application, but there is a need for alternative, more environmentally friendly, control methods such as biological control. Potential promising biocontrol candidates include the microfungi Escovopsis spp. (anamorphic Hypocreales), which are specialized pathogens of the fungi the ants cultivate for food. These pathogens are suppressed through ant behaviors and ant-associated antibiotic-producing Actinobacteria. In order to be an effective biocontrol agent, Escovopsis has to overcome these defenses. Here, we evaluate, using microbial in vitro assays, whether defenses in the ant-cultivated fungus strain (Leucoagaricus sp.) and Actinobacteria from the ant pest Acromyrmex lundii have the potential to limit the use of Escovopsis in biocontrol. We also explore, for the first time, possible synergistic biocontrol between Escovopsis and the entomopathogenic fungus Lecanicillium lecanii. All strains of Escovopsis proved to overgrow A. lundii cultivar in less than 7 days, with the Escovopsis strain isolated from a different leaf-cutting ant species being the most efficient. Escovopsis challenged with a Streptomyces strain isolated from A. lundii did not exhibit significant growth inhibition. Both results are encouraging for the use of Escovopsis as a biocontrol agent. Although we found that L. lecanii can suppress the growth of the cultivar, it also had a negative impact on Escovopsis, making the success of simultaneous use of these two fungi for biocontrol of A. lundii questionable. PMID:21739253

  3. EFFICACY OF BIOCONTROL AGENTS IN CONTROLLING RHIZOCTONIA SOLANI ON NAGA KING CHILLI ( Capsicum chinense Jacq.

    Directory of Open Access Journals (Sweden)

    Marinus Ngullie

    2013-07-01

    Full Text Available Available biocontrol agents were evaluated either alone or in various combinations for finding out their efficacy in suppressing Rhizoctonia seedling rot incidence and promoting plant growth of Naga king chilli (Capsicum chinense Jacq. in green house as well field conditions. Among all tested combination, the treatment containing combination of T. viride +P. fluorescens was found most effective in reducing the incidence of seedling rot in both greenhouse and field condition. Highest per plant yield was also recorded from the same combination and it was followed by T. viride. However, the commercially available fungicide Copper oxychloride (0.1% showed 9.82 % and11.88% disease incidence in greenhouse and field condition respectively

  4. Production of a newly isolated Paenibacillus polymyxa biocontrol agent using monosodium glutamate wastewater and potato wastewater.

    Science.gov (United States)

    Gu, Likun; Bai, Zhihui; Jin, Bo; Zhang, Jianyun; Li, Wenying; Zhuang, Guoqiang; Zhang, Hongxun

    2010-01-01

    A phyllosphere bacterial strain EBL-06 was isolated from wheat leaves. The morphology, cultural characteristics, phospholipid fatty acids, physiological and antagonistic fungus activities of this strain were investigated. A phylogenetic tree was constructed by comparing with the published 16S rDNA sequences of the relevant bacteria. The results showed that the isolate EBL-06 was a strain of Paenibacillus polymyxa; this strain performed a high level of antagonistic fungus activity toward a broad spectrum of phytopathogens, such as Botrytis cinerea, Cladosporium cucumerinum, Fusarium spp. The isolate EBL-06 can grow well using monosodium glutamate wastewater (MGW) and potato wastewater (PW) as culture medium. The maximum yield of 6.5 x 10(9) CFU/mL of the isolate EBL-06 anti-fungus biocontrol agent was reached in 15 hr cultivation at 28 degrees C, pH 6.0-7.5 using the mixture of MGW and PW (1:9). PMID:21174972

  5. A Novel Bacteriophage Targeting Cronobacter sakazakii Is a Potential Biocontrol Agent in Foods.

    Science.gov (United States)

    Lee, Ju-Hoon; Bai, Jaewoo; Shin, Hakdong; Kim, Yeran; Park, Bookyung; Heu, Sunggi; Ryu, Sangryeol

    2016-01-01

    Cronobacter sakazakii is an important pathogen that causes high mortality in infants. Due to its occasional antibiotic resistance, a bacteriophage approach might be an alternative effective method for the control of this pathogen. To develop a novel biocontrol agent using bacteriophages, the C. sakazakii-infecting phage CR5 was newly isolated and characterized. Interestingly, this phage exhibited efficient and relatively durable host lysis activity. In addition, a specific gene knockout study and subsequent complementation experiment revealed that this phage infected the host strain using the bacterial flagella. The complete genome sequence analysis of phage CR5 showed that its genome contains 223,989 bp of DNA, including 231 predicted open reading frames (ORFs), and it has a G+C content of 50.06%. The annotated ORFs were classified into six functional groups (structure, packaging, host lysis, DNA manipulation, transcription, and additional functions); no gene was found to be related to virulence or toxin or lysogen formation, but >80% of the predicted ORFs are unknown. In addition, a phage proteomic analysis using SDS-PAGE and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) revealed that seven phage structural proteins are indeed present, supporting the ORF predictions. To verify the potential of this phage as a biocontrol agent against C. sakazakii, it was added to infant formula milk contaminated with a C. sakazakii clinical isolate or food isolate, revealing complete growth inhibition of the isolates by the addition of phage CR5 when the multiplicity of infection (MOI) was 10(5). PMID:26497465

  6. Production and oil-emulsion formulation of Cadophora malorum and Alternaria jacinthicola, two biocontrol agents against Water Hyacinth (Eichhornia crassipes)

    OpenAIRE

    Dagno, Karim; Lahlali, Rachid; Diourté, Mamourou; Jijakli, Haissam

    2011-01-01

    Cadophora malorum isolate Mln715 and Alternaria jacinthicola strain MUCL 53159 are under development as biocontrol agents against Water Hyacinth (Eichhornia crassipes) in Mali. Production of spores of these agents on locally available substrates (Water Hyacinth, powdered paddy rice chaff, wheat semolina) was assessed with a view to mass production. The C. malorum isolate sporulated best on Water Hyacinth (4.08 × 107 spores ml-1), followed by wheat (1.06 ×107 spores ml-1), whereas A. jacint...

  7. Production of spores of Trichoderma harzianum on sugar cane molasses and bagasse pith in solid state fermentation for biocontrol

    Directory of Open Access Journals (Sweden)

    Jose A. Rodríguez-León

    1999-01-01

    Full Text Available Solid state fermentation was carried out for the production of spores from Trichoderma harzianum No 53 using sugar cane bagasse pith as solid matrix and sugar cane molasses as carbon and energy source. Different nitrogen sources such as urea, (NH42SO4 , NH4H2PO4 and (NH42HPO4 were added in the media to test their effect on spores production. Among these, urea was found most useful that resulted high no of spores (1x10(9/gDM. The influence of temperature and initial moisture of the substrate was studied through a 2² experimental plan design. No statistical differences were found within the range of 30-35ºC and 60-70% for temperature and moisture respectively. The biotechnological parameters of the process were derived from the Oxygen Uptake Rate (OUR pattern, which corresponded to the order of 10(9spores/g moist material. The specific growth rate, maintenance coefficient and the yield based on O2 consumption were 0.108 h-1, 0.001 g.O2/g.biomass.h and 2.7 g biomass/g O2 consumed, respectively.Esporos de Tricoderma harzianum Nº 53 foram produzidos por fermentação no estado sólido (FES utilizando bagaço de cana como suporte e melaço de cana como fonte de carbono. Diferentes fontes de nitrogênio foram testadas (uréia, (NH42 SO4 , NH4H2PO4 e (NH42HPO4 na produção de esporos. As mais elevadas concentrações de esporos (10(9 esporos/g de suporte úmido foram obtidas utilizando a uréia como fonte de nitrogênio. O efeito da temperatura e umidade inicial foram estudadas através da utilização da planificação experimental utilizando um modelo 2². Não foi encontrada diferença estatística na produção de esporos na faixa de temperatura compreendida entre 30-35 ° C e umidade inicial de 60-70%. Os parâmetros biotecnológicos foram determinados através da taxa de oxigênio consumido (OUR correspondente a uma produção de 10(9 esporos/g de suporte úmido. A taxa de crescimento especifico, coeficiente de manutenção e rendimento foram

  8. Identification of novel Trichoderma hamatum genes expressed during mycoparasitism

    Institute of Scientific and Technical Information of China (English)

    Margaret Carpenter; Alison Stewart; Hayley Ridgway

    2004-01-01

    @@ Trichoderma species are currently used as biocontrol agents for crop diseases caused by a number of fungal plant pathogens. However, their biocontrol performance in the field can be unreliable and it is likely that more consistent performance could be achieved through knowledge and manipulation of the genes involved. For example, induction of the genes could be optimised for variable environmental and physiological conditions, superior strains could be selected more effectively and novel strains could be created. One method by which Trichoderma species accomplish biocontrol is mycoparasitism. Several genes involved in the mycoparasitic interaction have previously been characterised, however these consist predominantly of those that encode enzymes that degrade fungal cell walls. In the current study subtractive hybridisation was used to target genes expressed when Trichoderma hamatum and the plant pathogen Sclerotinia sclerotiorum were cultured together, subtracting genes expressed when each are grown individually. This experimental design has the potential to yield T.hamatum genes involved in mycoparasitism of S. sclerotiorum, and S. sclerotiorum genes upregulated in host defence. The cDNA fragments yielded by the subtraction were characterised with respect to expression, sequence and species of origin. A number of novel T. hamatum genes which were up-regulated during mycoparasitism were identified.

  9. Microscopic Examination of Chitosan Polyphosphate Beads with Entrapped Spores of the Biocontrol Agent, Streptomyces melanosporofaciens EF-76

    Science.gov (United States)

    Jobin, Guy; Grondin, Gilles; Couture, Geneviève; Beaulieu, Carole

    2005-04-01

    Spores of the biocontrol agent, Streptomyces melanosporofaciens EF-76, were entrapped by complex coacervation in beads composed of a macromolecular complex (MC) of chitosan and polyphosphate. A proportion of spores entrapped in beads survived the entrapment procedure as shown by treating spores from chitosan beads with a dye allowing the differentiation of live and dead cells. The spore-loaded chitosan beads could be digested by a chitosanase, suggesting that, once introduced in soil, the beads would be degraded to release the biocontrol agent. Spore-loaded beads were examined by optical and scanning electron microscopy because the release of the biological agent depends on the spore distribution in the chitosan beads. The microscopic examination revealed that the beads had a porous surface and contained a network of inner microfibrils. Spores were entrapped in both the chitosan microfibrils and the bead lacuna.

  10. Biocontrol con Trichoderma spp. de Fusarium oxysporum causal del “mal de almácigos” en pre y post emergencia en cebolla

    OpenAIRE

    Sánchez, Aixa D.; Barrera, Viviana; Reybet, Graciela; Sosa, M. Cristina

    2015-01-01

    En Argentina, la “podredumbre basal” y el “mal de almácigos” causados por el complejo Fusarium spp. constituyen uno de los problemas más serios en cebolla. En este trabajo se estudió el uso de especies del género Trichoderma como agentes de control biológico (ACB) de F. oxysporum, causal del “mal de almácigos” en cebolla. Se identificaron y caracterizaron morfológica, cultural y fisiológicamente a 10 aislamientos de Trichoderma spp. del cepario de Fitopatología. Por secuenciación del gen TEF-...

  11. Potencialidade de um actinomiceto de rizosfera de tomateiro como agente de biocontrole de doenças Potenciality of an actinomycete from tomato rhizosphere as a biocontrol agent for tomato diseases

    Directory of Open Access Journals (Sweden)

    Renato Carrer Filho

    2009-09-01

    Full Text Available Um actinomiceto (Streptomyces setonii, isolado 'UFV-RD1', obtido de rizosfera de planta sadia de tomateiro, foi selecionado dentre outros 117, como promissor agente de biocontrole de enfermidades da cultura. Em testes de antagonismo in vitro contra patógenos do tomateiro, o isolado 'UFV-RD1' foi incapaz de inibir o crescimento de bactérias (Pseudomonas syringae pv. tomato, Ralstonia solanacearum, Pectobacterium carotovorum subsp. carotovorum, Xanthomonas campestris pv. vesicatoria mas inibiu a germinação de conídios de alguns fungos (Alternaria solani, Phytophthora infestans, Corynespora cassiicola, Stemphylium solani. Em ensaios de biocontrole experimental in vivo, em casa de vegetação, o actinomiceto foi efetivo em reduzir a severidade de sintomas no caso de patógenos fúngicos e bacterianos testados como desafiantes. A campo, quando A. solani e P. infestans ocorreram naturalmente, as plantas originárias de sementes microbiolizadas com propágulos da estirpe 'UFV-RD1' exibiram sintomas menos severos que as plantas controle para o caso da pinta preta. O agente de biocontrole é promissor para futuros protocolos de manejo integrado, como forma de reduzir a quantidade de defensivos utilizados.An actinomycete (Streptomyces setonii, isolate 'UFV-RD1', isolated from the rhizosphere of a healthy tomato plant was selected out of 117 as a promising biocontrol agent for tomato diseases. In in vitro antagonism tests against tomato pathogens, the isolate 'UFV-RD1' was unable to inhibit growth of bacterial pathogens (Pseudomonas syringae pv. tomato, Ralstonia solanacearum, Pectobacterium carotovorum subsp. carotovorum, Xanthomonas campestris pv. vesicatoria but inhibited conidium germination of fungi (Alternaria solani, Phytophthora infestans, Corynespora cassiicola, Stemphylium solani. Experimental biocontrol assays in a greenhouse indicated that the actinomycete was effective for reducing symptom severity in the case of bacteria and fungi tested

  12. Selection rhizosphere-competent microbes for development of microbial products as biocontrol agents

    Science.gov (United States)

    Mashinistova, A. V.; Elchin, A. A.; Gorbunova, N. V.; Muratov, V. S.; Kydralieva, K. A.; Khudaibergenova, B. M.; Shabaev, V. P.; Jorobekova, Sh. J.

    2009-04-01

    Rhizosphere-borne microorganisms reintroduced to the soil-root interface can establish without inducing permanent disturbance in the microbial balance and effectively colonise the rhizosphere due to carbon sources of plant root exudates. A challenge for future development of microbial products for use in agriculture will be selection of rhizosphere-competent microbes that both protect the plant from pathogens and improve crop establishment and persistence. In this study screening, collection, identification and expression of stable and technological microbial strains living in soils and in the rhizosphere of abundant weed - couch-grass Elytrigia repens L. Nevski were conducted. A total of 98 bacteria isolated from the rhizosphere were assessed for biocontrol activity in vitro against phytopathogenic fungi including Fusarium culmorum, Fusarium heterosporum, Fusarium oxysporum, Drechslera teres, Bipolaris sorokiniana, Piricularia oryzae, Botrytis cinerea, Colletothrichum atramentarium and Cladosporium sp., Stagonospora nodorum. Biocontrol activity were performed by the following methods: radial and parallel streaks, "host - pathogen" on the cuts of wheat leaves. A culture collection comprising 64 potential biocontrol agents (BCA) against wheat and barley root diseases has been established. Of these, the most effective were 8 isolates inhibitory to at least 4 out of 5 phytopathogenic fungi tested. The remaining isolates inhibited at least 1 of 5 fungi tested. Growth stimulating activity of proposed rhizobacteria-based preparations was estimated using seedling and vegetative pot techniques. Seeds-inoculation and the tests in laboratory and field conditions were conducted for different agricultural crops - wheat and barley. Intact cells, liquid culture filtrates and crude extracts of the four beneficial bacterial strains isolated from the rhizosphere of weed were studied to stimulate plant growth. As a result, four bacterial strains selected from rhizosphere of weed

  13. IN-VITRO EVALUATION OF FUNGICIDES, BIOCONTROL AGENTS AND PLANT EXTRACTS AGAINST RICE SHEATH BLIGHT PATHOGEN RHIZOCTONIA SOLANI

    OpenAIRE

    P. Srinivas; P. Narayan Reddy; Ved Ratan; G. Bindu Madhavi

    2014-01-01

    Of the fourteen fungicides of different groups evaluated in-vitro against Rhizoctonia solani , Metalaxyl (0.1%), Mancozeb (0.1%), Tricyclazole (0.1%), Thiophenate methyl (0.1%), Carbendizm+ Mancozeb (0.1%) were proved to be most effective in inhibiting the growth of the fungus. Among the bio-agents screened, Trichoderma viride was most effective in restricting the growth of Rhizoctonia solani followed by Penicillium notatum where as Aspergillus niger was proved least effective. Among the thir...

  14. Enhancement of biocontrol efficacy against Botrytis cinerea through the manipulation of nitrogen fertilization of tomato plants

    OpenAIRE

    Abro, Manzoor Ali; Lecompte, François; Bardin, Marc; Duffaud, Magali

    2013-01-01

    Although nitrogen fertilization is known to affect plant susceptibility to certain pathogens, little is known on its possible effect on the efficacy of biological control. In the present study we examined the effect of five levels of NO3- nutrition on the efficacy of two biocontrol agents (Trichoderma harzianum and Microdochium dimerum) to protect pruning wounds of tomato against Botrytis cinerea. Plants were grown for two months in a greenhouse with a soil-less drip-irrigationsystem. Differe...

  15. Novel plant bio-protectants based on Trichoderma spp. strains with superior characteristics

    OpenAIRE

    Abadi, Khalid M.

    2008-01-01

    Global warming caused by the greenhouse effect will alter the geographical distribution of host and pathogen populations, thus affecting the natural physiology of their interaction and reducing the efficacy of chemical and biological control strategies presently used in agriculture. In perspective to this scenario, new management practices will be required. The main task of this thesis was to isolate and characterize new biocontrol agents of the genus Trichoderma originating from Libya, where...

  16. Phylogeny and biodiversity of Trichoderma and Hypocrea and its implications on taxonomy

    Institute of Scientific and Technical Information of China (English)

    Christian P Kubicek

    2004-01-01

    @@ Safe strain identification and species recognition is an important issue for Trichoderma and Hypocrea,because members of the genus are economically important producers of industrial enzymes and antibiotics, have application as biocontrol agents against plant pathogens, whereas some have become known as opportunistic pathogens of immunocompromised mammals and humans. However, classical approaches based on the use of morphological and phenetic characters have been difficult to apply, due to the plasticity of characters and the discordance of morphological and molecular evolution.

  17. Integrated effect of gamma radiation and biocontrol agent on quality parameters of apple fruit: An innovative commercial preservation method

    Science.gov (United States)

    Ahari Mostafavi, Hossein; Mahyar Mirmajlessi, Seyed; Fathollahi, Hadi; Shahbazi, Samira; Mohammad Mirjalili, Seyed

    2013-10-01

    Effects of gamma irradiation and biocontrol agent (Pseudomonas fluorescens) on the physico-chemical parameters (including moisture, total soluble solids, antioxidant activity, phenolic content and firmness) of cv. Golden Delicious apples were investigated for their ability to avoid the post-harvest blue mold caused by Penicillium expansum during cold storage. Freshly harvested apples were inoculated with P. expansum. Treated fruits were irradiated at doses of 0, 200, 400, 600 and 800 Gy and then inoculated with P. fluorescens suspension. Samples were evaluated at 3 month intervals. The results demonstrated a clear link between antioxidant activity and phenolic content, so that dose range of 200-400 Gy significantly increased phenolic content and antioxidant activity. Effect of P. fluorescens was similar to irradiation at 200 and 400 Gy that could prevent lesion diameter in pathogen-treated apples. As dose and storage time increased firmness decreased but, combination of P. fluorescens as well as irradiation (at 200-400 Gy) could decrease softening apple fruits during storage. In all parameters, P. fluorescens (as biocontrol agent) inhibited P. expansum similar to irradiation at 200-400 Gy. So, integrated treatment of irradiation and biocontrol agent explored the potential dual benefit of low doses (200 and 400 Gy) as a suitable method to sustain physico-chemical quality and conclusively reduce apple fruits losses during post-harvest preservation.

  18. Genetic regulation of conidiation in Trichoderma hamatun

    Institute of Scientific and Technical Information of China (English)

    Johanna Steyaert; Travis Glare; Alison Stewart; Margaret Carpenter; Hayley Ridgway

    2004-01-01

    @@ Achieving a balance between vegetative growth and spore production is essential for successful biocontrol by fungi. Low sporulation rates in the field can result in poor establishment and survival,whereas failure of conidia to recognise hosts can lead to persistence without efficacy. Commercial biocontrol products involve bulk preparations of conidia, however considerable variability in conidiation rates exists between biocontrol agents, which can restrict choice of strain for production. The majority of studies on Trichoderma conidiation have focused on the species T. viride and T. atroviride.These species form conidia in response to blue and near-UV light and/or nutrient deprivation and conidiation proceeds in a highly co-ordinated fashion, however relatively little is known on the genetic basis of Trichoderrma conidiation. In addition, whilst photoconidiation appears to be a general response detailed studies in other Trichoderma species are absent. In this study, conidiation in the lesser known biocontrol species T. hamatum is being investigated using a combined morphological and molecular approach. In contrast to T. atroviride, conidiation in response to blue-light was weaker and variable and suggested that additional triggers may be required for the T. hamatum photoresponse. A series of comparative photoconidiation assays are currently being undertaken investigating the effect of inoculum type and abiotic factors on timing and intensity of the response.Results will be discussed in relation to the current knowledge on conidial morphogenesis in Trichoderma. In addition to these morphological assays, a selection of genes implicated in sporulation and the blue-light responses are currently being isolated and characterised from T. hamatum. Two genes, phr1 and cmp1 , which were isolated previously from T. atroviride will be used as early and late markers of gene expression during the photoresponse in T. hamatum in order to define time points for harvesting

  19. Selection and Characterization of Endophytic Bacteria as Biocontrol Agents of Tomato Bacterial Wilt Disease

    Directory of Open Access Journals (Sweden)

    ABDJAD ASIH NAWANGSIH

    2011-06-01

    Full Text Available Biological control of bacterial wilt pathogen (Ralstonia solanacearum of tomato using endophytic bacteria is one of the alternative control methods to support sustainable agriculture. This study was conducted to select and characterize endophytic bacteria isolated from healthy tomato stems and to test their ability to promote plant growth and suppress bacterial wilt disease. Among 49 isolates successfully isolated, 41 were non-plant pathogenic. Green house test on six selected isolates based on antagonistic effect on R. solanacearum or ability to suppress R. solanacearum population in dual culture assays obtained BC4 and BL10 isolates as promising biocontrol agents. At six weeks after transplanting, plants treated with BC4 isolate showed significantly lower disease incidence (33% than that of control (83%. Plants height was not significantly affected by endophytic bacterial treatments. Based on 16S rRNA sequence, BC4 isolate had 97% similarity with Staphylococcus epidermidis (accession number EU834240.1, while isolate BL10 had 98% similarity with Bacillus amyloliquefaciens strain JK-SD002 (accession number AB547229.1.

  20. Purification of an antifungal endochitinase from a potential biocontrol Agent Streptomyces griseus.

    Science.gov (United States)

    Rabeeth, M; Anitha, A; Srikanth, Geetha

    2011-08-15

    Streptomyces griseus (MTCC 9723) is a chitinolytic bacterium isolated from prawn cultivated pond soil of Peddapuram Village; East Godavari District was studied in detailed. Chitinase (EC 3.2.1.14) was extracted from the culture filtrate of Streptomyces griseus and purified by ammonium sulfate precipitation, DEAE-cellulose ionexchange chromatography, Sephadex G-100 and Sephadex G-200 gel filtration chromatography. The molecular mass of the purified chitinase was estimated to be 34, 32 kDa by SDS gel electrophoresis and confirmed by activity staining with Calcofluor White M2R. Chitinase was optimally active at pH of 6.0 and at 40 degrees C. The enzyme was stable from pH 5-9 and up to 20-50 degrees C. The chitinase exhibited Km and Vmax values of 400 mg and 180 IU mL(-1) for colloidal chitin. Among the metals and inhibitors that were tested, the Hg+, Hg2+ and P-chloromercuribenzoic acid completely inhibited the chitinase activity at 1 mM concentration. The purified chitinase showed high activity on colloidal chitin, chitobiose, and chitooligosaccharide. An in vitro assay proved that the crude chitinase, actively growing cells of S. griseus having antifungal activity against all studied fungal pathogen. This result implies that characteristics of S. griseus producing endochitinase made them suitable for biotechnological purpose such as for degradation of chitin containing waste and it might be a promising biocontrol agent for plant pathogens. PMID:22545353

  1. A full factorial analysis of nine factors influencing in vitro antagonistic screens for potential biocontrol agents.

    Science.gov (United States)

    Dickie, G A; Bell, C R

    1995-03-01

    The effect of nine factors on the outcome of classic in vitro screens testing the antagonistic action of endophytic bacterial isolates from grape vines against virulent Agrobacterium vitis has been examined. These factors were (i) the strain of A. vitis, (ii) the strain of endophyte, (iii) the growth medium of the pathogen, (iv) the growth medium of the endophyte, (v) the temperature of growth of the pathogen, (vi) the temperature of growth of the endophyte, (vii) the pH of growth of the pathogen, (viii) the pH of growth of the endophyte, and (ix) the medium of the assay plate. Analyses of variance of the full factorial design incorporating main effects and two- and three-way interactions accounted for 66% of the variance. All nine factors had a significant effect on the diameter of inhibition zones (p antagonism (especially the composition of the growth medium and the temperature of growth), had a profound effect on the outcome of the test. Generally the more chemically defined media produced less inhibition whereas the lower growth temperature of 15 degrees C produced more inhibition. These findings could be relevant to in situ inhibitory activity. The method used to conduct the inhibitory screen (order of strain application and the medium of the assay plate) had a profound influence on the results. These influences add to the caution necessary in the use of in vitro antagonistic screens for finding successful biocontrol agents. PMID:7736357

  2. OPTIMIZATION AND EVALUATION OF MICROBE FORTIFIED COMPOSTS AS BIOCONTROL AGENTS AGAINST PHYTOPATHOGENIC FUNGI

    Directory of Open Access Journals (Sweden)

    Ajinath S. Dukare

    2013-04-01

    Full Text Available A set of bacterial (B1-10 and cyanobacterial strains (C1-C14 were evaluated for their fungicidal activity against selected phytopathogenic fungi - Fusarium solani, Fusarium oxysporum, Fusarium oxysporum lycopersici, Fusarium moniliforme, Pythium debaryanum and Rhizoctonia solani. Further, they were used to amend rice straw compost and the filtrates were evaluated against the selected fungi after 10 and 20 days of incubation. Six promising strains, including three bacterial and three cyanobacterial strains were selected and characterised in terms of activity of hydrolytic enzymes. Interestingly, C12 strain (Anabaena spp. showed highest activity of cellulase, chitosanase and β 1, 3 glucanase. These strains were then evaluated by optimization of inoculum levels (1-5% in the rice straw compost. The strains B3, B5, C8 and C12 were observed to be most promising as they exhibited inhibition and significantly higher activity of microbiological parameters and hydrolytic enzymes at 1-2% level of inoculum in the compost. Further investigations are being undertaken to scale up the development of compost based biocontrol agents using these strains for evaluation at field level.

  3. Candida parapsilosis as a Potent Biocontrol Agent against Growth and Aflatoxin Production by Aspergillus Species

    Science.gov (United States)

    Niknejad, F; Zaini, F; Faramarzi, MA; Amini, M; Kordbacheh, P; Mahmoudi, M; Safara, M

    2012-01-01

    Background: Aflatoxin contamination of food and feed stuff is a serious health problem and significant economic concerns. In the present study, the inhibitory effect of Candida parapsilosis IP1698 on mycelial growth and aflatoxin production in aflatoxigenic strains of Aspergillus species was investigated. Methods: Mycelial growth inhibitions of nine strains of aflatoxigenic and non-aflatoxigenic Aspergillus species in the presence of C. parapsilosis investigated by pour plate technique at different pH, temperature and time of incubation. Reduction of aflatoxin was evaluated in co-cultured fungi in yeast extract sucrose broth after seven days of incubation using HPLC method. The data were analyzed by SPSS 11.5. Results: The presence of the C. parapsilosis at different pH did not affect significantly the growth rate of Aspergillus isolates. On the other hand, temperature and time of incubation showed to be significantly effective when compared to controls without C. parapsilosis (P≤0.05). In aflatoxigenic strains, minimum percentage of reductions in total aflatoxin and B1, B2, G1, G2 fractions were 92.98, 92.54, 77.48, 54.54 and 72.22 and maximum percentage of reductions were 99.59, not detectable, 94.42, and not detectable in both G1 and G2, respectively. Conclusion: C. parapsilosis might employ as a good biocontrol agent against growth and aflatoxin production by aflatoxigenic Aspergillus species PMID:23308351

  4. Candida Parapsilosis as a Potent Biocontrol Agent against Growth and Aflatoxin Production by Aspergillus Species

    Directory of Open Access Journals (Sweden)

    F Niknejad

    2012-10-01

    Full Text Available Background: Aflatoxin contamination of food and feed stuff is a serious health problem and significant economic concerns. In the present study, the inhibitory effect of Candida parapsilosis IP1698 on mycelial growth and aflatoxin production in aflatoxigenic strains of Aspergillus species was investigated.Methods: Mycelial growth inhibitions of nine strains of aflatoxigenic and non-aflatoxigenic Aspergillus species in thepresence of C. parapsilosis investigated by pour plate technique at different pH, temperature and time of incubation.Reduction of aflatoxin was evaluated in co-cultured fungi in yeast extract sucrose broth after seven days of incubation using HPLC method. The data were analyzed by SPSS 11.5.Results: The presence of the C. parapsilosis at different pH did not affect significantly the growth rate of Aspergillus isolates. On the other hand, temperature and time of incubation showed to be significantly effective when compared to controls without C. parapsilosis (P≤0.05. In aflatoxigenic strains, minimum percentage of reductions in total aflatoxin and B1, B2, G1, G2 fractions were 92.98, 92.54, 77.48, 54.54 and 72.22 and maximum percentage ofreductions were 99.59, not detectable, 94.42, and not detectable in both G1 and G2, respectively.Conclusion: C. parapsilosis might employ as a good biocontrol agent against growth and aflatoxin production by aflatoxigenic Aspergillus species.

  5. Cucumber Rhizosphere Microbial Community Response to Biocontrol Agent Bacillus subtilis B068150

    Directory of Open Access Journals (Sweden)

    Lihua Li

    2015-12-01

    Full Text Available Gram-positive bacteria Bacillus subtilis B068150 has been used as a biocontrol agent against the pathogen Fusarium oxysporum cucumerinum. Cucumber was grown in three soils with strain B068150 inoculated in a greenhouse for 90 days, and the colonization ability of strain B068150 in cucumber rhizosphere and non-rhizosphere soils was determined. Changes in total bacteria and fungi community composition and structures using denaturing gradient gel electrophoresis (DGGE and sequencing were determined. Colony counts showed that B068150 colonization in the rhizosphere was significantly higher (p < 0.001 than in non-rhizosphere soils. Based on our data, the introduction of B. bacillus B068150 did not change the diversity of microbial communities significantly in the rhizosphere of three soils. Our data showed that population density of B068150 in clay soil had a significant negative correlation on bacterial diversity in cucumber rhizosphere in comparison to loam and sandy soils, suggesting that the impact of B068150 might be soil specific.

  6. Calcium-mediated perception and defense responses activated in plant cells by metabolite mixtures secreted by the biocontrol fungus Trichoderma atroviride

    Directory of Open Access Journals (Sweden)

    Mariani Paola

    2007-07-01

    Full Text Available Abstract Background Calcium is commonly involved as intracellular messenger in the transduction by plants of a wide range of biotic stimuli, including signals from pathogenic and symbiotic fungi. Trichoderma spp. are largely used in the biological control of plant diseases caused by fungal phytopathogens and are able to colonize plant roots. Early molecular events underlying their association with plants are relatively unknown. Results Here, we investigated the effects on plant cells of metabolite complexes secreted by Trichoderma atroviride wild type P1 and a deletion mutant of this strain on the level of cytosolic free Ca2+ and activation of defense responses. Trichoderma culture filtrates were obtained by growing the fungus alone or in direct antagonism with its fungal host, the necrotrophic pathogen Botrytis cinerea, and then separated in two fractions (>3 and Glycine max L. cell suspension cultures, Trichoderma and Botrytis metabolite mixtures were distinctively perceived and activated transient intracellular Ca2+ elevations with different kinetics, specific patterns of intracellular accumulation of reactive oxygen species and induction of cell death. Both Ca2+ signature and cellular effects were modified by the culture medium from the knock-out mutant of Trichoderma, defective for the production of the secreted 42 kDa endochitinase. Conclusion New insights are provided into the mechanism of interaction between Trichoderma and plants, indicating that secreted fungal molecules are sensed by plant cells through intracellular Ca2+ changes. Plant cells are able to discriminate signals originating in the single or two-fungal partner interaction and modulate defense responses.

  7. Selection rhizosphere-competent microbes for development of microbial products as biocontrol agents

    Science.gov (United States)

    Mashinistova, A. V.; Elchin, A. A.; Gorbunova, N. V.; Muratov, V. S.; Kydralieva, K. A.; Khudaibergenova, B. M.; Shabaev, V. P.; Jorobekova, Sh. J.

    2009-04-01

    Rhizosphere-borne microorganisms reintroduced to the soil-root interface can establish without inducing permanent disturbance in the microbial balance and effectively colonise the rhizosphere due to carbon sources of plant root exudates. A challenge for future development of microbial products for use in agriculture will be selection of rhizosphere-competent microbes that both protect the plant from pathogens and improve crop establishment and persistence. In this study screening, collection, identification and expression of stable and technological microbial strains living in soils and in the rhizosphere of abundant weed - couch-grass Elytrigia repens L. Nevski were conducted. A total of 98 bacteria isolated from the rhizosphere were assessed for biocontrol activity in vitro against phytopathogenic fungi including Fusarium culmorum, Fusarium heterosporum, Fusarium oxysporum, Drechslera teres, Bipolaris sorokiniana, Piricularia oryzae, Botrytis cinerea, Colletothrichum atramentarium and Cladosporium sp., Stagonospora nodorum. Biocontrol activity were performed by the following methods: radial and parallel streaks, "host - pathogen" on the cuts of wheat leaves. A culture collection comprising 64 potential biocontrol agents (BCA) against wheat and barley root diseases has been established. Of these, the most effective were 8 isolates inhibitory to at least 4 out of 5 phytopathogenic fungi tested. The remaining isolates inhibited at least 1 of 5 fungi tested. Growth stimulating activity of proposed rhizobacteria-based preparations was estimated using seedling and vegetative pot techniques. Seeds-inoculation and the tests in laboratory and field conditions were conducted for different agricultural crops - wheat and barley. Intact cells, liquid culture filtrates and crude extracts of the four beneficial bacterial strains isolated from the rhizosphere of weed were studied to stimulate plant growth. As a result, four bacterial strains selected from rhizosphere of weed

  8. Killer yeasts as biocontrol agents of spoilage yeasts and bacteria isolated from wine

    Directory of Open Access Journals (Sweden)

    Fernández de Ullivarri Miguel

    2014-01-01

    Full Text Available During the winemaking process Saccharomyces cerevisiae is the main yeast species but other yeasts called non-Saccharomyces as well as different species of lactic acid bacteria (LAB are also present. Then, one strategy to prevent or reduce microbial contamination during the winemaking process is the use of killer yeasts. The aim of this study was to evaluate the killer activity (KA of autochthonous yeasts from Northwest region of Argentine (S. cerevisiae Cf8 and Wickerhamomyces anomalus Cf20 on spoilage yeasts and in LAB of the wine. The KA was evaluated using cell-free supernatants obtained from pure and mixed cultures of strains Cf8-Cf20. S. cerevisiae Cf8 showed a growth reduction between 7 and 48% on D. anomala BDa15, P. membranifaciens BPm481 and Z. bailii Bzb317 while W. anomalus Cf20 exhibited KA of 20, 61, 91 and 92% against B. bruxellensis Ld1, D. anomala BDa15, P. membranifaciens BPm481 and P. guilliermondii Cd6, respectively. Killer mixed supernatants showed growth inhibition similar to strain Cf20. Screening against LAB showed that both killer toxins were able to inhibit the growth of L. hilgardii 5w as well as to reduce a 16–31% histamine production by this LAB strain. These results confirm the potential of autochthonous killer yeasts as biocontrol agents in winemaking process. The mixed culture S. cerevisiae Cf8-W. anomalus Cf20 presented a wide range of KA on spoilage yeasts as well as on L. hilgardii. Therefore, the use of killer yeasts as starter cultures would allow producing wines with controlled quality.

  9. Detection and quantification by PCR assay of the biocontrol agent Pantoea agglomerans CPA-2 on apples.

    Science.gov (United States)

    Soto-Muñoz, Lourdes; Teixidó, Neus; Usall, Josep; Viñas, Inmaculada; Torres, Rosario

    2014-04-01

    The registration of biological control agents requires the development of monitoring systems to detect and quantify the agent in the environment. Pantoea agglomerans CPA-2 is an effective biocontrol agent for postharvest diseases of citrus and pome fruits. The monitoring of CPA-2 in postharvest semi-commercial trials was evaluated by Rodac impression plates and the colonies isolated were confirmed by conventional PCR using the SCAR primers PAGA1 and PAGB1. Samples were taken from different surfaces that had contact with CPA-2, the surrounding environment and working clothes worn by handlers. Moreover, population dynamics of the strain CPA-2 were determined on apple surfaces using both the classical plating technique and real-time quantitative PCR (qPCR). A qPCR assay using a 3'-minor groove-binding (MGB) probe was developed for the specific detection and quantification of P. agglomerans strain CPA-2. Based on the nucleotide sequence of a SCAR fragment of CPA-2, one primer set and TaqMan MGB probe were designed. The primers SP2-F/SP2-R and the TaqMan MGB probe showed a specific detection of strain CPA-2 on apple surfaces, which was verified tested against purified DNA from 17 strains of P. agglomerans, 4 related Pantoea species, and 21 bacterial strains from other genera isolated from whole and also freshly-cut fruit and vegetables. The detection level was approximately 10(3) cells per reaction, and the standard curve was linear within a range of 5log units. Results from semi-commercial trials showed that CPA-2 had a low impact. The maximum persistence of P. agglomerans CPA-2 was not longer than 5days in plastic boxes stored at 0°C. Significant differences in CPA-2 population level dynamics were observed in results obtained by qPCR and dilution plating. These differences may indicate the presence of non-degraded DNA from non-viable cells. In conclusion, qPCR is a novel potential tool to quickly and specifically monitor recent surface colonisation by CPA-2

  10. Initial Steps towards Biocontrol in Hops: Successful Colonization and Plant Growth Promotion by Four Bacterial Biocontrol Agents

    OpenAIRE

    Gabriele Berg; Stefan Seefelder; Katja A. Maurer; Christin Zachow

    2013-01-01

    Verticillium wilt, caused by Verticillium nonalfalfae and V. dahliae, is a devastating disease in hops that can cause considerable economic crop losses. The perennial use of hops combined with the long persistence of the pathogen in soil make it difficult to suppress the disease with conventional measures. Biological control agents (BCA) are the basis of an environmentally friendly plant protection strategy that uses plant promotion and antagonistic effects of microorganisms. We evaluated the...

  11. Evaluation of biocontrol ability of native strains of Trichoderma spp on Rhizoctonia and Fusarium sp in coffee (Coffea arabica in experimental conditions

    Directory of Open Access Journals (Sweden)

    Nina Rudy

    2016-06-01

    Full Text Available Due to the indiscriminate use agrochemicals in conventional agriculture, it is causing pollution problems in the environment (soil, air and water, hence the search for alternatives that contribute to agricultural production by agro-chemical free sustainable production. This paper studies the biological control of damping off in coffee (Coffea arabica by applying antagonistic fungus Trichoderma sp. Under experimental conditions at laboratory facilities of the Academic Unit Carmen Pampa Campesina, a community of Carmen Pampa, Township Coroico. The aim of this study was to biologically control the "damping off", they found two genera that cause damping off in seedbed of coffee: Rhizoctonia sp. and Fusarium sp.To determine the percentage of growth and control in the culture medium, we used the method of counting quarters, where they gave the mycelial growth of antagonistic fungus Trichoderma sp., And the fungal pathogens Rhizoctonia sp. and Fusarium sp. Statistically there was a highly significant difference in the variable growth rate of Trichoderma sp. on pathogenic fungi Rhizoctonia sp. and Fusarium sp. at 3, 6 and 9 days that announces the time factor and treatments are interdependent. The control variable showed a highly significant difference in the time factor and treatment, but the interaction shows no significant difference this makes known factors that are independent, so the fungus Trichoderma sp. not depend on time in treatment, thus showing its inhibitory power to Rhizoctonia sp. and Fusarium sp .. This test gives references that there is antagonistic fungus control on the fungal pathogens Rhizoctonia sp. and Fusarium sp.

  12. New solid-state fermentation chamber for bulk production of aerial conidia of fungal biocontrol agents on rice.

    Science.gov (United States)

    Ye, S D; Ying, S H; Chen, C; Feng, M G

    2006-06-01

    A novel solid-state fermentation apparatus, namely an upright multi-tray conidiation chamber, was developed to facilitate the production of aerial conidia of fungal biocontrol agents, such as Beauveria bassiana. The chamber with 25 bottom-meshed metal trays had a capacity of > or =50 kg rice with each tray holding > or =2 kg. In repeated trials, a mean yield of 2.4 (1.8-2.7) x 10(12) conidia kg(-1) rice was harvested from the 7-day cultures of B. bassiana in a fully loaded chamber. The new apparatus has a high potential for bulk production of fungal conidia. PMID:16786244

  13. Fungal genus Hypocrea/Trichoderma: from barcodes to biodiversity

    Institute of Scientific and Technical Information of China (English)

    Christian P. KUBICEK; Monika KOMON-ZELAZOWSKA; Irina S. DRUZHININA

    2008-01-01

    Hypocrea/Trichoderma is a genus of soil-borne or wood-decaying fungi containing members important to mankind as producers of industrial enzymes and biocontrol agents against plant pathogens, but also as opportunistic pathogens of immuno-compromised humans and animals, while others can cause damage to cultivated mushroom. With the recent advent of a reliable, BarCode-aided identification system for all known taxa of Trichoderma and Hypocrea, it became now possible to study some of the biological fundamentals of the diversity in this fungal genus in more detail. In this article, we will therefore review recent progress in (1) the understanding of the geographic distribution of individual taxa; (2) mechanisms of speciation leading to development of mushroom diseases and facultative human mycoses; and (3) the possible correlation of specific traits of secondary metabolism and molecular phylogeny.

  14. The Development and Use of Microbial Biocontrol Agents for Agricultural Pests

    Science.gov (United States)

    The idea of using microbial pathogens of agronomic pests as a method of biological control dates back to the 19th century. Two approaches to biological control have been employed: the “classical” and the “inundative” approach. The classical approach to biocontrol is generally practiced on public o...

  15. Screening of Pseudomonas sp. Isolated from Rhizosphere of Soybean Plant as Plant Growth Promoter and Biocontrol Agent

    Directory of Open Access Journals (Sweden)

    Aris T. Wahyudi

    2011-01-01

    Full Text Available Problem statement: Pseudomonas spesies are one of the rihizobacterial group that have an important role in plant growth promoter and plant health. To prepare them as inoculants, they must have a range of characters as growth promoter such as Indole Acetic Acid (IAA producers which can promote the growth of plants and solubilize phosphates. In addition, they must also have the various characters that act as biocontrol agents such as siderofor, chitinase and anti-fungal compound producers. Approach: Pseudomonas sp isolated from soybeans rhizospere and identified based on physiological reactions and 16S rRNA gene sequences. Various tests for the determination of the growth promoter were based on IAA production, phosphate solubilization and growth promoter of length of root and stems and number of lateral roots of soybean sprouts. Test of siderophore, chitinase, as well as anti anti-fungal compounds productions to inhibit the growth of Fusarium oxysporum, Rhizoctonia solani and Sclerotium rolfsii, were used as a biocontrol agent determination. Hypersensitivity test was used to screen for Pseudomonas sp classified as non-pathogenic rhizobacteria. Results: Fourteen isolates identified as a non-pathogenic Pseudomonas sp that produced IAA and Promoted enhancement of root length, shoot length, or number of lateral root. Among those 14 isolates, 8 isolates showed phosphate solubilizing activity, 12 isolates capable of producing siderophore and six isolates were observed to have chitinolytic activity. Only three isolates were able to inhibit the growth of Fusarium oxysporum in high level. While one and two isolates inhibited Sclerotium rolfsii and Rhizoctonia solani in high level, respectively. Conclusion: On the basis of excellent growth promoter and biocontrol activities, we recommended 5 isolates of Pseudomonas sp which were Crb-3, Crb-16, Crb-17, Crb-44 and Crb-94 as potential isolates of Pseudomonas sp that could be applied as

  16. Trichodiene Production in a Trichoderma harzianum erg1-Silenced Strain Provides Evidence of the Importance of the Sterol Biosynthetic Pathway in Inducing Plant Defense-Related Gene Expression.

    Science.gov (United States)

    Malmierca, M G; McCormick, S P; Cardoza, R E; Monte, E; Alexander, N J; Gutiérrez, S

    2015-11-01

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both the antagonistic fungus and the plant. The terpene trichodiene (TD) elicits the expression of genes related to tomato defense and to Botrytis virulence. We show here that TD itself is able to induce the expression of Botrytis genes involved in the synthesis of botrydial (BOT) and also induces terpene gene expression in Trichoderma spp. The terpene ergosterol, in addition to its role as a structural component of the fungal cell membranes, acts as an elicitor of defense response in plants. In the present work, using a transformant of T. harzianum, which is silenced in the erg1 gene and accumulates high levels of squalene, we show that this ergosterol precursor also acts as an important elicitor molecule of tomato defense-related genes and induces Botrytis genes involved in BOT biosynthesis, in both cases, in a concentration-dependent manner. Our data emphasize the importance of a balance of squalene and ergosterol in fungal interactions as well as in the biocontrol activity of Trichoderma spp. PMID:26168138

  17. Evaluation of biocontrol ability of native strains of Trichoderma spp on Rhizoctonia and Fusarium sp in coffee (Coffea arabica) in experimental conditions

    OpenAIRE

    Nina Rudy; Smeltekop Hugh; Almanza JC; Loza-Murguia Manuel

    2016-01-01

    Due to the indiscriminate use agrochemicals in conventional agriculture, it is causing pollution problems in the environment (soil, air and water), hence the search for alternatives that contribute to agricultural production by agro-chemical free sustainable production. This paper studies the biological control of damping off in coffee (Coffea arabica) by applying antagonistic fungus Trichoderma sp. Under experimental conditions at laboratory facilities of the Academic Unit Carmen Pampa Campe...

  18. A mutant of the nematophagous fungus Paecilomyces lilacinus (Thom) is a novel biocontrol agent for Sclerotinia sclerotiorum.

    Science.gov (United States)

    Yang, Fan; Abdelnabby, Hazem; Xiao, Yannong

    2015-12-01

    Sclerotinia sclerotiorum causes severe stem rot and yield loss in oilseed rape (Brassica napus L.) and other crops worldwide. Extensive studies have been conducted on Paecilomyces lilacinus as a nematophagous bioagent. However, no reports stated the effect of P. lilacinus as a biocontrol agent against oilseed rape rot S. sclerotiorum. This study describes such effect in lab and field trials using the new transformant pt361 derived from the wild strain P. lilacinus 36-1. Unlike the wild-type strain, the mutant pt361 showed high antagonistic effect against S. Sclerotiorum A. Under lab conditions, the pt361 inhibited (65%) radial mycelial growth of S. sclerotiorum in dual culture test producing 5.9 mm inhibition zone IZ in front of the S. sclerotiorum colony. Moreover, the cell-free filtrate of pt361 culture showed strong inhibitory effects (60.3-100%) on mycelial growth of S. sclerotiorum. In leaf detached assay, pt361 significantly (p rape stem rot, promoted growth and increased yield compared to the control and exceeded, at dose 100%, the action of the fungicide procymidone(®). In conclusion, the mutant pt361 of P. lilacinus is a novel and promising biocontrol agent against oilseed rape Sclerotinia stem rot. PMID:26521137

  19. Teste de especificidade hospedeira de Phaedon confinis (Coleoptera, Chrysomelidae, um potencial agente de biocontrole de Senecio brasiliensis (Asteraceae.

    Directory of Open Access Journals (Sweden)

    Julianne Milléo

    2011-07-01

    Abstract. Senecio brasiliensis (Spreng. Less when ingested by cattle and horses, the plant causes seneciosis, a serious poisoning. Due to the great financial losses to cattle ranchers, controlling the plant using insects has become attractive. Systematic survey efforts have revealed that Phaedon confinis Klug causes serious damage to the plant, and may be a great biocontrol agent. The object was to extend the tests of host specificity to 52 plants using 1st larval instar and adult chrysomelid bettles. The insects were submitted to “no-choice” and “multiple-choice” tests. The following results were obtained: “NO-CHOICE” L1 – 52 plants tested: null 90.39%; negligible damage 5.77%; light 1.92%; and normal in only S. brasiliensis 1.92%, where 31.67% of larvae obtained an adult phase. “NO-CHOICE” ADULTS – 46 plants. Null damage was recorded in 82.60%; 13.04% showed negligible damage; 2.17% light; 2.17% normal in S. brasiliensis. The chysomelids oviposited during observation days only on S. brasiliensis leaves. 615 eggs were oviposited with 73.01% viability. “MULTIPLE CHOICE” LARVAE – nine plants tested. 66.67% null; 11.11% weak; 11.11% negligible damage; and 11.11% normal in S. brasiliensis. The results indicate that the normal diet, oviposition, survival and development of P. confinis is restricted to S. brasiliensis and corroborates its potential as a biocontrol agent.

  20. Ecology of Anti-Biofilm Agents II: Bacteriophage Exploitation and Biocontrol of Biofilm Bacteria

    OpenAIRE

    Stephen T. Abedon

    2015-01-01

    Bacteriophages are the viruses of bacteria. In the guise of phage therapy they have been used for decades to successfully treat what are probable biofilm-containing chronic bacterial infections. More recently, phage treatment or biocontrol of biofilm bacteria has been brought back to the laboratory for more rigorous assessment as well as towards the use of phages to combat environmental biofilms, ones other than those directly associated with bacterial infections. Considered in a companion ar...

  1. Selection of Yeasts Antagonists as Biocontrol Agent of Mango Fruit Rot caused by Botryodiplodia theobromae

    OpenAIRE

    DWI SUGIPRIHATINI; SURYO WIYONO; WIDODO

    2011-01-01

    Fruit rot caused by Botryodiplodia theobromae is one of the most important post harvest disease of mango in Indonesia. Study on biological control on the disease is required to develop environmentally-sound control technology. The research objectives were to study the potency of yeasts in controlling post harvest mango disease i.e. fruit rot caused by B. theobromae and mechanism involve in the biocontrol. Total yeast isolates used for screening were twenty one, four from collection of Plant ...

  2. 木霉对玉米纹枯病的生物防治%Biocontrol of maize sheath blight with Trichoderma spp.

    Institute of Scientific and Technical Information of China (English)

    张广志; 文成敬

    2005-01-01

    为明确木霉菌在玉米纹枯病防治上的作用,研究了从雅安郊区大田玉米根际土壤中分离到的18个木霉菌株对立枯丝核菌的抑制作用及对玉米纹枯病的田间防治效果.对峙培养结果表明,这些木霉菌株对立枯丝核菌的抑制率为39.44%~84.98%;而木霉发酵滤液的抑菌作用为13.48%~85.81%.对峙培养和液体发酵滤液的抑菌测定相结合,筛选出木霉菌株T8、T2、T13,经鉴定分别为哈茨木霉Trichoderma harzianum、黄绿木霉Trichoderma aureoviride和长枝木霉Trichoderma Longibrachiatum.用这3种木霉的固体培养物作进一步的田间防治试验,防治效果分别为62.75%、64.48%、68.52%,比井冈霉素(49.68%)效果高;T13菌株的发酵滤液的防治效果仅为40.07%.3株木霉固体培养物对玉米产量影响显著,增产率依次为29.77%、43.37%、54.21%.

  3. Screening of Trichoderma strains tolerant to benzimidazole

    Institute of Scientific and Technical Information of China (English)

    LIU Kai-qi; XIANG Mei-mei; LIU Ren; ZENG Yong-san; ZHOU Hong-zi; YU Jin-feng; JIANG Xin-yin; ZHANG Yue-li

    2004-01-01

    @@ The screening of isolates and the assay of biocontrol mechanisms of Trichoderma were studied systematically in laboratory and greenhouse in vivo. The proteins tolerant to benzimidazole in Trichoderma strains were purified, and their physical and chemical properties were detected. Compared their biological activities in vitro and vivo in greenhouse, nine biocontrol strains (including Ty- 10-2, LTR-2, Tj-5-1, Tj-5-4, Ty- 11-1, Tj-11-3, Ty- 11-3, Tj-3-3-2, Tj-3-3-4) were screened. These biocontrol strains had faster rates of growth and higher inhibition to gray mould (Bortrytis cinerea),and the inhibition was stable. The effects of controlling gray mould in greenhouse with the screened Trichoderma strains were 70 % and 50 % in vivo.

  4. Control of Fusarium Wilt of Tomato by Combination of Fluorescent Pseudomonas, Non-pathogen Fusarium and Trichoderma harzianum T-22 in Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Fahri Yigit

    2007-01-01

    Full Text Available Ability of biocontrol agents, fluorescent Pseudomonas, non-pathogen Fusarium strain and Trichoderma harzianum T-22 applied in combination and alone, to control of Fusarium oxysporum f. sp. lycopersici was studied in the greenhouse. Tomato roots were treated with biomass of flourescens Pseudomonas strain from rhizosphere, non-pathogen Fuasrium sp. and Trichoderma harzianum T-22 individually and in combination and planted in artificially infested soil with pathogen F. oxysporum f. sp. lycopersici. Although all biocontrol agents applied individually reduced disease incidence, treatments as combination, except for nonpathogen Fusarium strain + T. harzianum T-22, showed more protective effect. Combination of T. harzianum T-22 + fluorescent Pseudomonas isolate gave the best control (70.2%.

  5. Evaluation of yeasts obtained from Antarctic soil samples as biocontrol agents for the management of postharvest diseases of apple (Malus x domestica)

    Science.gov (United States)

    Psychrotrophic yeasts isolated from soils collected in Antarctica and selected by its capacity of growing in apple juice at low temperatures were evaluated for their potential as biocontrol agents for the management of postharvest diseases of apple during cold storage. Among the species recovered, ...

  6. Draft Genome Sequence of Cryptococcus flavescens Strain OH182.9_3C, a Biocontrol Agent against Fusarium Head Blight of Wheat

    OpenAIRE

    Rong, Xiaoqing; McSpadden Gardener, Brian B.

    2013-01-01

    Cryptococcus flavescens strain OH182.9_3C (3C) is a novel biopesticidal agent that can be used to control fusarium head blight of wheat. Here we present the draft genome sequence for 3C, the first for the species C. flavescens. Additionally, several genes that may contribute to the biocontrol activities of 3C were identified in silico.

  7. Development of SCAR markers for typing the Trichoderma asperellum strains used as potential microbial control agents of the Black Pod Disease in Cameroon

    Science.gov (United States)

    Phytophthora megakarya is the most aggressive cocoa pathogen in Central and West Africa where total loss of pods can occur. In the near future, microbial control agents such as Trichoderma asperellum against this pathogen should become an important component of integrated pest management since chem...

  8. IN-VITRO EVALUATION OF FUNGICIDES, BIOCONTROL AGENTS AND PLANT EXTRACTS AGAINST RICE SHEATH BLIGHT PATHOGEN RHIZOCTONIA SOLANI

    Directory of Open Access Journals (Sweden)

    P. Srinivas

    2014-02-01

    Full Text Available Of the fourteen fungicides of different groups evaluated in-vitro against Rhizoctonia solani , Metalaxyl (0.1%, Mancozeb (0.1%, Tricyclazole (0.1%, Thiophenate methyl (0.1%, Carbendizm+ Mancozeb (0.1% were proved to be most effective in inhibiting the growth of the fungus. Among the bio-agents screened, Trichoderma viride was most effective in restricting the growth of Rhizoctonia solani followed by Penicillium notatum where as Aspergillus niger was proved least effective. Among the thirteen plant extracts evaluated garlic extract (10% was most effective in inhibiting the growth of fungus followed by calotropis (10%. Datura leaf extract (10% was found to be least effective in inhibiting the growth of Rhizoctonia solani.

  9. Potencial de la cepa CPA-8 de Bacillus subtilis como agente de biocontrol de enfermedades de postcosecha de fruta

    OpenAIRE

    Yánez Mandizábal, Viviana del Rocío

    2012-01-01

    La limitació en l’ús de fungicides per al control de malalties en postcollita de fruita és una problemàtica d’elevada magnitud en el sector fructícola actual. Degut a això l’ús d’estratègies alternatives com el control biològic microbià són fonamentals per a la producció de fruita de qualitat. Malgrat tot, el desenvolupament de programes de biocontrol eficaços requereix d’un coneixement profund de la capacitat de control i els mecanismes d’acció utilitzats per l’agent microbià ...

  10. Effect of Trichoderma sp. on Sclerotium rolfsii, the Causative Agent of Collar Rot on Zamioculcas zamiifolia and an on Farm Method to Mass Produce Trichoderma species

    Directory of Open Access Journals (Sweden)

    R.L.C. Wijesundera

    2010-01-01

    Full Text Available The antagonistic effect of three local isolates of Trichoderma viride and one local isolate of Trichoderma harzianum were tested against the pathogenic fungus Sclerotium rolfsii. The latter organism is responsible for major loss due to collar rot of the ornamental crop Zamioculcas zamiifolia in Sri Lanka. The disease causes massive losses. The antagonistic potential of the local isolates against the phytopathogenic fungi Sclerotium rolfsii was investigated in dual culture, poison food technique, pot trials and field trials on Zamioculcas zamiifolia plants. All Trichoderma isolates tested under in-vitro conditions significantly inhibited the growth of S. rolfsii. Of these isolates, Trichoderma viride isolate Tv1, showed highest percentage inhibition and was thus selected for in vivo field trials. Data recorded from bi monthly field application of this organism over the two growing seasons, confirmed the success of the treatment in controlling collar rot disease at the economic threshold level. Field application of testing isolate T. viride Tv1 as a conidial suspension (1011 cfu mL-1 greatly reduced the disease incidence of Zamioculcas zamiifolia plants by a percentage of 75.54%. On farm mass production of this isolate was developed to help facilitate the establishment of an integrated eco-friendly disease management system for growers of Zamioculcas zamiifolia. Different media was also evaluated to mass produce the Trichoderma isolate. The media evaluated in this study included the solid substrates barley seeds, paddy, cow pea, maize and sorghum and semi solid, liquid substrates such as potato dextrose, rice extract, paddy extracts, respectively. Although mycelial growth was fastest in barley and paddy media. And the highest yield of spores of the Trichoderma isolate was observed 7 days after inoculation in Barley and Paddy media.

  11. Características de Trichoderma harzianum, como agente limitante en el cultivo de hongos comestibles

    Directory of Open Access Journals (Sweden)

    Omar Romero Arenas

    2009-10-01

    Full Text Available El incremento dramático de incidencia y severidad de los “mohos verdes” en la producción de hongos comestibles se refleja en la aparición de formas altamente agresivas de éstos patógenos, como es el caso de los biotipos de Trichoderma harzianum (Th1, Th2., Th3 y Th4, que han sido encontrados en Europa y Norte América, donde la importancia de la patogenicidad de dicho “moho” se comprobó en 1995 con las pérdidas del 30-100% en las plantas de hongos comestibles en Chester, Pennsylvania. En México se han identificado diversos “mohos contaminantes”, entre los cuales Trichoderma spp., se encuentra frecuentemente en la producción de hongos comestibles (Agaricus bisporus, Pleurotus ostreatus y Lentinula edodes, en el 2004, un grupo de investigación detectó la presencia de cepas altamente agresivas de T. aggressivum f. aggressivum, identificadas con técnicas clásicas y moleculares, en muestras de substrato (compost contaminado, proporcionado por la principal planta de hongos de México. Actualmente se desconoce la situación sobre la distribución de Trichoderma harzianum y los problemas de contaminación en la producción de hongos comestibles, tanto de zonas rurales, como de zonas industrializadas en México, puede causar serias disminuciones en la producción de hongos comestibles y presentar pérdidas económicas para los productores de la región. Palabras Claves: T. harzianum; T. aggressivum; patogenicidad; producción de hongos comestibles. Abstract The dramatic increase of green mould incidence and severity in edible mushroom production has been reflected in the emergence of highly aggressive forms of these pathogens, such as Trichoderma harzianum biotypes (Th1, Th2, Th3 and Th4. These have been found in Europe and North America where the importance of the mould’s pathogenicity was discovered in 1995 leading to 30%-100% losses from Th4 in edible mushrooms from farms in Chester, Pennsylvania. Several contaminating

  12. Características de Trichoderma harzianum, como agente limitante en el cultivo de hongos comestibles

    OpenAIRE

    Omar Romero-Arenas; Manuel Huerta Lara; Miguel Angel Damián Huato; Francisco Domínguez Hernández; Daniel Alfonso Arellano Victoria

    2009-01-01

    El incremento dramático de incidencia y severidad de los mohos verdes en la producción de hongos comestibles se refleja en la aparición de formas altamente agresivas de éstos patógenos, como es el caso de los biotipos de Trichoderma harzianum (Th1, Th2., Th3 y Th4), que han sido encontrados en Europa y Norte América, donde la importancia de la patogenicidad de dicho moho se comprobó en 1995 con las pérdidas del 30-100% en las plantas de hongos comestibles en Chester, Pennsylvania. En Méxi...

  13. Mycotoxigenic Fusarium and Deoxynivalenol Production Repress Chitinase Gene Expression in the Biocontrol Agent Trichoderma atroviride P1

    OpenAIRE

    Lutz, Matthias P.; Feichtinger, Georg; Défago, Geneviève; Duffy, Brion

    2003-01-01

    Mycotoxin contamination associated with head blight of wheat and other grains caused by Fusarium culmorum and F. graminearum is a chronic threat to crop, human, and animal health throughout the world. One of the most important toxins in terms of human exposure is deoxynivalenol (DON) (formerly called vomitoxin), an inhibitor of protein synthesis with a broad spectrum of toxigenicity against animals. Certain Fusarium toxins have additional antimicrobial activity, and the phytotoxin fusaric aci...

  14. Isolation and identification of actinomycetes from a compost-amended soil with potential as biocontrol agents.

    Science.gov (United States)

    Cuesta, Gonzalo; García-de-la-Fuente, Rosana; Abad, Manuel; Fornes, Fernando

    2012-03-01

    The search for new biocontrol strategies to inhibit the growth of phytopathogenic microorganisms has become widely widespread due to environmental concerns. Among actinomycetes, Streptomyces species have been extensively studied since they have been recognized as important sources of antibiotics. Actinomycete strains were isolated from a calcareous soil, 2 two-phase olive mill waste ('alperujo') composts, and the compost-amended soil by using selective media, and they were then co-cultured with 5 phytopathogenic fungi and 1 bacterium to perform an in vitro antagonism assay. Forty-nine actinomycete strains were isolated, 12 of them showing a great antagonistic activity towards the phytopathogenic microorganisms tested. Isolated strains were identified by 16S rDNA sequence analysis and phenotypic procedures. Eleven isolates concerned the genus Streptomyces and 1 actinomycete with chitinolytic activity belonged to the genus Lechevalieria. PMID:21190787

  15. DegQ regulates the production of fengycins and biofilm formation of the biocontrol agent Bacillus subtilis NCD-2.

    Science.gov (United States)

    Wang, Peipei; Guo, Qinggang; Ma, Yinan; Li, Shezeng; Lu, Xiuyun; Zhang, Xiaoyun; Ma, Ping

    2015-09-01

    Bacillus subtilis NCD-2 is an excellent biocontrol agent for tomato gray mold and cotton soil-borne diseases. The fengycin lipopeptides serve as a major role in its biocontrol ability. A previous study revealed that insertion of degQ with the mini-Tn10 transposon decreased the antifungal activity of strain NCD-2 against the growth of Botrytis cinerea. To clarify the regulation of degQ on the production of fengycin, we deleted degQ by in-frame mutagenesis. Compared with the wild-type strain NCD-2, the degQ-null mutant had decreased extracellular protease and cellulase activities as well as antifungal ability against the growth of B. cinerea in vitro. The lipopeptides from the degQ-null mutant also had significantly decreased antifungal activity against B. cinerea in vitro and in vivo. This result was confirmed by the decreased fengycin production in the degQ-null mutant that was detected by fast protein liquid chromatography analysis. Quantitative reverse transcription PCR further demonstrated that degQ positively regulated the expression of the fengycin synthetase gene. In addition, the degQ-null mutant also had a flatter colony phenotype and significantly decreased biofilm formation ability relative to the wild-type strain. All of those characteristics from degQ-null mutant could be restored to the strain NCD-2 wild-type level by complementation of intact degQ in the mutant. Therefore, DegQ may be an important regulator of fengycin production and biofilm formation in B. subtilis NCD-2. PMID:26302846

  16. Seleção de bactérias endofíticas de tomateiro como potenciais agentes de biocontrole e de promoção de crescimento Screening of endophytic bacteria isolated from tomato plants as potencial biocontrol agents and growth promotion

    Directory of Open Access Journals (Sweden)

    Patrícia Baston Barretti

    2009-01-01

    Full Text Available Quarenta isolados bacterianos endofíticos de plantas sadias de tomateiro foram avaliados quanto à sua potencialidade como agentes de biocontrole de doenças do tomateiro. Foi realizada, em casa de vegetação, uma seleção massal utilizando-se Pseudomonas syringae pv. tomato e Alternaria solani, como patógenos desafiantes. Com base na média do número de lesões por planta, quatro isolados foram selecionados como potenciais agentes de biocontrole dessas enfermidades fúngica e bacteriana do tomateiro. Esses isolados foram identificados, por meio do sequenciamento do gene 16S do DNA ribossômico, como Acinetobacter johnsonii (UFV-E05, Serratia marcescens (UFV-E13, Sinorhizobium sp. (UFV-E25 e Bacillus megaterium (UFV-E26. Os mesmos isolados selecionados para o biocontrole também foram avaliados quanto à sua capacidade de promover o crescimento em plantas e somente S. marcescens (UFV-E13 proporcionou aumento na altura das plantas.Forty isolates of endophytic bacteria obtained from healthy tomato plants were tested for their potential as biocontrol agents of tomato diseases. A massal screening was performed at greenhouse using Pseudomonas syringae pv. tomato and Alternaria solani as challenging pathogens. Based on the average number of lesions per plant, four isolates were selected as potential agents of biocontrol of these tomato diseases caused by fungi and bacteria. These isolates were identified by 16S ribosomal DNA sequence analysis as Acinetobacter johnsonii (UFV-E05, Serratia marcescens (UFV-E13, Sinorhizobium sp. (UFV-E25 and Bacillus megaterium (UFV-E26. The four endophytes selected for biocontrol were also evaluated for their ability of promoting plant growth and only S. marcescens (UFV-E13 presented increase in the height of the plants.

  17. Fusarium oxysporum strains as biocontrol agents against Fusarium wilt: effects on soil microbial biomass and activity Linhagens de Fusarium oxysporum como agentes de biocontrole da murcha-de-Fusarium: efeitos na biomassa e atividade microbiana do solo

    Directory of Open Access Journals (Sweden)

    Raquel Ghini

    2000-01-01

    Full Text Available Before planning the large-scale use of nonpathogenic strains of Fusarium oxysporum as biocontrol agents of Fusarium wilt, their behaviour and potential impact on soil ecosystems should be carefully studied as part of risk assessment. The aim of this work was to evaluate the effects of antagonistic F. oxysporum strains, genetically manipulated (T26/6 or not (233/1, on soil microbial biomass and activity. The effects were evaluated, in North-western Italy, in two soils from different sites at Albenga, one natural and the other previously solarized, and in a third soil obtained from a 10-year-old poplar stand (Popolus sp., near Carignano. There were no detectable effects on ATP, fluorescein diacetate hydrolysis, and biomass P that could be attributed to the introduction of the antagonists. A transient increase of carbon dioxide evolution and biomass C was observed in response to the added inoculum. Although the results showed only some transient alterations, further studies are required to evaluate effects on specific microorganism populations.Antes do uso em larga escala de linhagens não-patogênicas de Fusarium oxysporum como agentes de biocontrole da murcha-de-Fusarium, o seu comportamento e seus impactos potenciais no solo devem ser estudados como parte da avaliação de riscos. O objetivo do presente trabalho foi avaliar os efeitos de linhagens antagonistas de F. oxysporum, geneticamente manipuladas (T26/6 ou não (233/1, na biomassa e atividade microbiana do solo. Os efeitos foram avaliados no noroeste da Itália em dois solos de Albenga, sendo um natural e outro previamente solarizado, e em um terceiro solo obtido numa plantação de 10 anos de Popolus sp., em Carignano. Não foram observados efeitos significativos na quantidade de ATP, hidrólise de diacetato de fluoresceina e biomassa P, após a introdução dos antagonistas. Um aumento transitório foi observado na evolução de dióxido de carbono e no carbono da biomassa em resposta

  18. Bacillus amyloliquefaciens subsp. plantarum GR53, a potent biocontrol agent resists Rhizoctonia disease on Chinese cabbage through hormonal and antioxidants regulation.

    Science.gov (United States)

    Kang, Sang-Mo; Radhakrishnan, Ramalingam; Lee, In-Jung

    2015-10-01

    The fungus Rhizoctonia solani is one of the causal agents of numerous diseases that affect crop growth and yield. The aim of this present investigation was to identify a biocontrol agent that acts against R. solani and to determine the agent's protective effect through phytohormones and antioxidant regulation in experimentally infected Chinese cabbage plants. Four rhizospheric soil bacterial isolates GR53, GR169, GR786, and GR320 were tested for their antagonistic activity against R. solani. Among these isolates, GR53 significantly suppressed fungal growth. GR53 was identified as Bacillus amyloliquefaciens subsp. plantarum by phylogenetic analysis of the 16S rDNA sequence. The biocontrol activity of B. amyloliquefaciens subsp. plantarum GR53 was tested in Chinese cabbage plants under controlled conditions. Results showed that R. solani inhibited plant growth (length, width, fresh and dry weight of leaves) by reducing chlorophyll and total phenolic content, as well as by increasing the levels of salicylic acid, jasmonic acid, abscisic acid, and DPPH scavenging activity. By regulating the levels of these compounds, the co-inoculation of B. amyloliquefaciens subsp. plantarum GR53 heightened induced systemic resistance in infected Chinese cabbage, effectively mitigating R. solani-induced damaging effects and improving plant growth. The results obtained from this study suggest that B. amyloliquefaciens subsp. plantarum GR53 is an effective biocontrol agent to prevent the damage caused by R. solani in Chinese cabbage plants. PMID:26160009

  19. Plot- and landscape-level changes in climate and vegetation following defoliation of exotic saltcedar (Tamarix sp.) from the biocontrol agent Diorhabda carinulata along a stream in the Mojave Desert (USA)

    Science.gov (United States)

    Bateman, H.L.; Nagler, P.L.; Glenn, E.P.

    2013-01-01

    The biocontrol agent, northern tamarisk beetle (Diorhabda carinulata), has been used to defoliate non-native saltcedar (Tamarix spp.) in USA western riparian systems since 2001. Biocontrol has the potential to impact biotic communities and climatic conditions in affected riparian areas. To determine the relationships between biocontrol establishment and effects on vegetation and climate at the plot and landscape scales, we measured temperature, relative humidity, foliage canopy, solar radiation, and used satellite imagery to assess saltcedar defoliation and evapotranspiration (ET) along the Virgin River in the Mojave Desert. Following defoliation solar radiation increased, daily humidity decreased, and maximum daily temperatures tended to increase. MODIS and Landsat satellite imagery showed defoliation was widespread, resulting in reductions in ET and vegetation indices. Because biocontrol beetles are spreading into new saltcedar habitats on arid western rivers, and the eventual equilibrium between beetles and saltcedar is unknown, it is necessary to monitor trends for ecosystem functions and higher trophic-level responses in habitats impacted by biocontrol.

  20. In Vitro Evaluation Of Selected Plant Extracts As Biocontrol Agents Against Black Mold Aspergillus Niger Van Tieghem Of Onion Bulbs Allium Cepa L.

    OpenAIRE

    SAIFELDIN A. F. EL-NAGERABI; Awad H. M. Ahmed; ABDULKADIR E. ELSHAFIE

    2015-01-01

    Black mold disease caused by Aspergillus niger V. Tiegh. is the most devastating infection occurs in onions Allium cepa L. under field and store conditions. The use of biocontrol agents is ecofriendly approach for controlling seedborne and soilborne diseases compared to the use of toxic synthetic fungicides. This study has been designed to assess the contamination levels of onion seeds with A. niger and its effect on seed germination and to evaluate the in vitro antifungal activity of Prunus ...

  1. Survival of the biocontrol agents Brevibacillus brevis ZJY-1 and Bacillus subtilis ZJY-116 on the spikes of barley in the field*

    OpenAIRE

    Xin ZHANG; Zhang, Bing-xin; Zhang, Zhen; Shen, Wei-feng; Yang, Ching-Hong; Yu, Jing-Quan; ZHAO, YU-HUA

    2005-01-01

    Fusarium head blight (FHB) caused by Fusarium graminearum is a devastating disease that results in extensive yield losses to wheat and barley. A green fluorescent protein (GFP) expressing plasmid pRP22-GFP was constructed for monitoring the colonization of two biocontrol agents, Brevibacillus brevis ZJY-1 and Bacillus subtilis ZJY-116, on the spikes of barley and their effect on suppression of FHB. Survival and colonization of the Brevibacillus brevis ZJY-1 and Bacillus subtilis ZJY-116 strai...

  2. Aislamiento, caracterización y análisis funcional del gen "Thpg1" de "Trichoderma harzianum"

    OpenAIRE

    Morán Díez, María Eugenia

    2008-01-01

    Muchas especies del género Trichoderma son utilizadas como agentes de control biológico en agricultura. En este sentido, se han propuesto varios mecanismos de acción como el micoparasitismo, la antibiosis y la competencia por el espacio. Parte de la actividad antagonista de este agente de biocontrol está basada en la secreción de enzimas, como quitinasas o glucanasas, que participan en la penetración del patógeno. Sin embargo, en los últimos años se está prestando una mayor atención a la rela...

  3. Species concepts and biodiversity in Trichoderma and Hypocrea: from aggregate species to species clusters?

    Institute of Scientific and Technical Information of China (English)

    DRUZHININA Irina; KUBICEK Christian P.

    2005-01-01

    Trichoderma/Hypocrea is a genus of soil-borne or wood-decaying fungi containing members important to mankind as producers of industrial enzymes and biocontrol agents against plant pathogens, but also as opportunistic pathogens of immunocompromised humans. Species identification, while essential in view of the controversial properties of taxa ofthis genus, has been problematic by traditional methods. Here we will present a critical survey of the various identification methods in use. In addition,we will present an update on the taxonomy and phylogeny of the 88 taxa (which occur as 14 holomorphs, 49 teleomorphs and 25 anamorphs in nature) of Trichoderma/Hypocrea that have been confirmed by a combination of morphological, physiological and genetic approaches.

  4. Biology and host preferences of Cryptorhynchus melastomae (Coleoptera: Curculionidae), a possible biocontrol agent for Miconia calvescens (Melastomataceae) in Hawaii.

    Science.gov (United States)

    Reichert, Elisabeth; Johnson, M Tracy; Chacón, Eduardo; Anderson, Robert S; Wheeler, Terry A

    2010-12-01

    The introduced plant Miconia calvescens (Melastomataceae) poses a grave threat to Hawaii's native ecosystems and biodiversity. One potential candidate for classical biological control is Cryptorhynchus melastomae (Coleoptera: Curculionidae: Cryptorhynchinae), a stem-boring weevil from Central and South America. This weevil feeds on M. calvescens in its native Costa Rica and has been successfully reared under greenhouse conditions. Comparison of its environmental conditions in Costa Rica with those in the Miconia infested areas of Hawaii indicates the latter is a suitable habitat for C. melastomae. C. melastomae has one or two generations per year. Adults feed on new stems, petioles, leaf buds, veins, and lamina, whereas larvae mine the stem until pupation. Adults appear to prefer saplings for oviposition and feeding. Under greenhouse conditions both adults and larvae can seriously damage and kill small M. calvescens. Preliminary host testing indicates that C. melastomae may be family specific on Melastomataceae. However, because Hawaii lacks native melastomes and has many other serious melastome weeds, a family specific insect may be suitable as a biocontrol agent in this case. PMID:22182550

  5. Conservation of bio-control agents in cotton, gossypium hirsutum l. field by food supplements for insect pests management

    International Nuclear Information System (INIS)

    The study reports the use of artificial food sprays to conserve the parasitoids and predators for the management of insect pests in cotton field. Cotton crop was treated with bio-control agents, Chrysoperla carnea and Trichogramma chilonis alongwith different food attractants such as Protein hydrolysate and sugar alone and in combination in a randomized complete block design. Each treatment was applied on one-acre field with three replications. Results showed that the chemicals tested helped in increasing the populations of beneficial insects including; C. carnea, T. chilonis and Orius spp., in the field. The populations of C. carnea and T. chilonis were found the highest in the combined treatment of protein hydrolysate and sugar as compared to other treatments where protein hydrolysate and sugar were used separately. However, the population of Orius spp. was higher in the treatment where only sugar solution was sprayed as food supplement. Consequently, incorporation of food supplements in the trial increased the establishment of natural enemies and subsequently the predation/ parasitism percentage enhanced on the insect pests of cotton. (author)

  6. Statistical culture-based strategies to enhance chlamydospore production by Trichoderma harzianum SH2303 in liquid fermentation.

    Science.gov (United States)

    Li, Ya-Qian; Song, Kai; Li, Ya-Chai; Chen, Jie

    2016-08-01

    Trichoderma-based formulations are applied as commercial biocontrol agents for soil-borne plant pathogens. Chlamydospores are active propagules in Trichoderma spp., but their production is currently limited due to a lack of optimal liquid fermentation technology. In this study, we explored response surface methodologies for optimizing fermentation technology in Trichoderma SH2303. Our initial studies, using the Plackett-Burman design, identified cornmeal, glycerol, and initial pH levels as the most significant factors (P<0.05) for enhancing the production of chlamydospores. Subsequently, we applied the Box-Behnken design to study the interactions between, and optimal levels of, a number of factors in chlamydospore production. These statistically predicted results indicated that the highest number of chlamydospores (3.6×10(8) spores/ml) would be obtained under the following condition: corn flour 62.86 g/L, glycerol 7.54 ml/L, pH 4.17, and 6-d incubation in liquid fermentation. We validated these predicted values via three repeated experiments using the optimal culture and achieved maximum chlamydospores of 4.5×10(8) spores/ml, which approximately a 8-fold increase in the number of chlamydospores produced by T. harzianum SH2303 compared with that before optimization. These optimized values could help make chlamydospore production cost-efficient in the future development of novel biocontrol agents. PMID:27487807

  7. Survival of the biocontrol agents Brevibacillus brevis ZJY-1 and Bacillus subtilis ZJY-116 on the spikes of barley in the field

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin; ZHANG Bing-xin; ZHANG Zhen; SHEN Wei-feng; YANG Ching-hong; YU Jing-quan; ZHAO Yu-hua

    2005-01-01

    Fusarium head blight (FHB) caused by Fusarium graminearum is a devastating disease that results in extensive yield losses to wheat and barley. A green fluorescent protein (GFP) expressing plasmid pRP22-GFP was constructed for monitoring the colonization of two biocontrol agents, Brevibacillus brevis ZJY-1 and Bacillus subtilis ZJY-116, on the spikes of barley and their effect on suppression of FHB. Survival and colonization of the Brevibacillus brevis ZJY- 1 and Bacillus subtilis ZJY- 116 strains on spikes of barley were observed by tracking the bacterial transformants with GFP expression. Our field study revealed that plasmid pRP22-GFP was stably maintained in the bacterial strains without selective pressure. The retrieved GFP-tagged strains showed that the bacterial population fluctuation accorded with that of the rain events. Furthermore, both biocontrol strains gave significant protection against FHB on spikes of barley in fields. The greater suppression of barley FHB disease was resulted from the treatment of barley spikes with biocontrol agents before inoculation with F. graminearum.

  8. Occurrence and impact of the root-rot biocontrol agent Phlebiopsis gigantea on soil fungal communities in Picea abies forests of northern Europe.

    Science.gov (United States)

    Menkis, Audrius; Burokienė, Daiva; Gaitnieks, Talis; Uotila, Antti; Johannesson, Hanna; Rosling, Anna; Finlay, Roger D; Stenlid, Jan; Vasaitis, Rimvydas

    2012-08-01

    The aim of this study was to assess belowground occurrence, persistence and possible impact of the biocontrol agent Phlebiopsis gigantea (Fr.) Jülich on soil fungi. Sampling of soil and roots of Picea abies (L.) H. Karst. was carried out at 12 P. gigantea-treated and five nontreated control sites representing 1- to 60-month-old clear-cuts and thinned forest sites in Finland and Latvia. The 454-sequencing of ITS rRNA from fine roots, humus and mineral soil resulted in 8626 high-quality fungal sequences. Phlebiopsis gigantea represented 1.3% of all fungal sequences and was found in 14 treated and nontreated sites and in all three substrates. In different substrates, the relative abundance of P. gigantea at stump treatment sites either did not differ significantly or was significantly lower than in nontreated controls. No significant correlation was found between the time elapsed since the tree harvesting and/or application of the biocontrol and abundance of P. gigantea in different substrates. In conclusion, the results demonstrate that P. gigantea occasionally occurs belowground in forest ecosystems but that stump treatment with the biocontrol agent has little or no impact on occurrence and persistence of P. gigantea belowground, and consequently no significant impact on soil fungi. PMID:22443512

  9. Evaluation of antifungal activity of carbonate and bicarbonate salts alone or in combination with biocontrol agents in control of citrus green mold.

    Science.gov (United States)

    Zamani, M; Sharifi Tehrani, A; Ali Abadi, A Alizadeh

    2007-01-01

    The aim of this research was to determine if the attacks of green mold on orange could be reduced by edible salts alone or in combination with biocontrol agent. For this purpose toxicity to Pantoea digitatum and practical use of sodium carbonate (SC), sodium bicarbonate (SBC) and potassium carbonate, and potassium bicarbonate alone or in combination with antagonistic bacteria (Pseudomonas fluorescens isolate PN, Bacillus subtilis isolate VHN, Pantoea agglomerans isolate CA) to control green mold were determined. All were fungistatic. SC and SBC were equal and superior to the other salts for control of green mold on oranges inoculated 6h before treatment and were chosen for subsequent trails under cold storage conditions. The biocontrol agents were found completely tolerant to 3% sodium bicarbonate and sodium carbonate at room temperature; although their culturability was reduced by > 1000-fold after 60 min in 1% other salt solutions. Satisfactory results were also obtained with the combined treatment for control of green mold. A significant increase in biocontrol activity of all isolate was observed when combined with sodium carbonate and sodium bicarbonate. The treatments comprising CA combined with SB was as effective as fungicide treatment. Thus, use of sodium bicarbonate treatment at 3% followed by the antagonist P. agglomerans CA could be an alternative to chemical fungicides for control of green mold on oranges. PMID:18396809

  10. Field Studies on the Relationship between Fusarium verticillioides and Maize (Zea mays L.: Effect of Biocontrol Agents on Fungal Infection and Toxin Content of Grains at Harvest

    Directory of Open Access Journals (Sweden)

    Paola Pereira

    2011-01-01

    Full Text Available Maize (Zea mays L. is a staple food for the majority of the world's population. Fusarium verticillioides (Sacc. Nirenberg (Teleomorph: Gibberella moniliformis Wineland; synonym: F. moniliformis is both a saprophyte and a parasite of maize and can also be found as an endophyte. The presence of this fungus in maize constitutes an imminent risk due to its ability to produce fumonisins, mycotoxins with proven carcinogenic effects. The present work investigated biocontrol activity of Bacillus amyloliquefaciens and Microbacterium oleovorans against F. verticillioides infection and fumonisin B1 production in field-grown maize during four consecutive growing seasons. Treatment with B. amyloliquefaciens consistently reduced F. verticillioides inoculum and fumonisin content of harvested grains. F. verticillioides count and fumonisin levels correlated negatively with rainfall regimes; however, none of these parameters showed significant correlation with yields. Treatment with these biocontrol agents may improve phytosanitary quality of the grains and reduce toxicological risk in the maize agroecosystem.

  11. Effectiveness of Lysiphlebus testaceïpes Cresson as biocontrol agent of Aphis gossypii Glover infesting pepper plants

    Directory of Open Access Journals (Sweden)

    M. Ben Halima Kamel

    2011-12-01

    Full Text Available In Tunisia, greenhouse crops are damaged by Aphis gossypii Glover and Myzus persicae Sulzer (Ben Halima Kamel 1991; Ben Halima Kamel and Ben Hamouda 1993, 1998. These aphids are considered to be the most dangerous pests of pepper because of their biology and biotic potential (Ben Halima Kamel 1991; Blackman and Eastop 2000. There are several ways of controlling these pests with chemical control being the most widely used. This method has more disadvantages than benefits (Gibson et al. 1982. The use of natural enemies to control aphids is an effective way of improving the yield and quality of protected crops. There are many studies on the following naturally occurring enemies of A. gossypii: Aphidius matricariae Haliday, Lysiphlebus fabarum Marshall, Aphidoletes aphidimyza (Rondani, Episyrphus balteatus (De Geer (Ben Halima Kamel and Ben Hamouda 1998 and Lysiphlebus testaceipes (Cresson (Ben Halima Kamel, unpublished data, 1999. It is now important to evaluate the effectiveness of L. testaceipes as a biocontrol agent of A. gossypii. This parasitoďd was introduced into the Mediterranean area (Carver and Franzmann 2001 and is thought to be an important parasite of A. gossypii (Lopes et al. 2007. The aim of this mainly laboratory study was to determine the factors affecting the establishment and success of a biological control agent, in particular the number of L. testaceďpes relative to the initial density of A. gossypii, needed to control the aphid. In addition, the effect of the L. testaceďpes on structure of A. gossypii populations was evaluated. Furthermore, the effectiveness of L. testaceipes in controlling A. gossypii infesting a protected crop of pepper plants and the subsequent effect on the growth of the pepper plants was also evaluated.

  12. Draft Genome Sequence of Chromobacterium vaccinii, a Potential Biocontrol Agent against Mosquito (Aedes aegypti) Larvae

    OpenAIRE

    Vöing, Kristin; Harrison, Alisha; Soby, Scott D.

    2015-01-01

    Chromobacterium vaccinii has been isolated only from cranberry bogs in Massachusetts. While it is unknown what role these bacteria play in their natural environments, they hold potential as biological control agents against the larvae of insect pests. Potential virulence genes were identified, including the violacein synthesis pathway, siderophores, and chitinases.

  13. DISCUSSION SUMMARY: APPLICATION OF BIOTECHNOLOGY TO THE SYSTEMATICS AND MONITORING OF BIOCONTROL AGENTS

    Science.gov (United States)

    This is a general discussion of the application of biotechnology to the systematics and monitoring of microbial agents used in biotechnology. resent conventional methods such as microscropy, selective media, marker utilization, etc. were described. wo newer methods, rRNA sequenci...

  14. F1 Sterility: A Novel Approach for Risk Assessment of Biocontrol Agents in Open Field Trials

    Science.gov (United States)

    Because of the growing concern of the potential risk of non-target effects, more stringent host-specificity testing is required to import and release exotic biological control agents. Appropriate host-specificity testing beyond quarantine conditions could reduce the risks of releasing biological con...

  15. The Potential of Bdellovibrio For the Biocontrol of the Infectious Agent Vibrio cholerae

    Directory of Open Access Journals (Sweden)

    Natalia Olsson Markelova

    2015-12-01

    Full Text Available Members of the genus Bdellovibrio are small and highly motile Gram-negative predators of other Gram-negative bacteria. Bdellovibrio enters the prey cell, transforming it into a structure that is referred to as a bdelloplast. It then grows and divides inside the bdelloplast, ending in lysis and the release of the Bdellovibrio progeny. Because of this capability, Bdellovibrio is a potential antibacterial agent. In this article, we report the results of studies on the interactions of Bdellovibrio with actively growing and viable but nonculturable (VBNC Vibrio cholerae. A significant observation was that Bdellovibrio attacked both VBNC and actively growing V. cholerae. These results indicate that Bdellovibrio, a “living antibiotic,” has potential as an antibacterial agent in environmental and public health bioprotection.

  16. Studies of plant colonisation by closely related Bacillus amyloliquefaciens biocontrol agents using strain specific quantitative PCR assays.

    Science.gov (United States)

    Johansson, Anna H; Bejai, Sarosh; Niazi, Adnan; Manzoor, Shahid; Bongcam-Rudloff, Erik; Meijer, Johan

    2014-12-01

    Certain strains of Bacillus amyloliquefaciens can colonize plants and improve growth and stress management. In order to study these effects, bacterial growth dynamics on plants and in the rhizosphere are of interest calling for specific analytical tools. For that purpose, quantitative real-time PCR (qPCR) assays were developed in order to differentiate among three closely related B. amyloliquefaciens subsp. plantarum strains (UCMB5033, UCMB5036, UCMB5113) and to determine their levels with high accuracy. Oligonucleotide primers were designed for strain unique gene sequences and used for SYBR green based qPCR analysis. Standard curves covered a wide linear range (10(6)) of DNA amounts with the lowest detection level at 50 fg. Post-reaction melting curve analysis showed only a single product. Accurate threshold cycles were obtained, even in the presence of high excess of related Bacillus strains and total bacterial DNA from soil. Analysis of Bacillus colonisation after seed treatment of two oilseed rape cultivars (Oase and Ritz) grown on agar support showed a time dependent effect but that the bacteria mostly were found on root tissues and little on green tissues. The colonisation on plants grown in soil varied among the Bacillus strains where Oase seemed to house more bacteria than Ritz. Applied as a mixture, all three Bacillus strains co-existed on the roots of plants grown in soil. The qPCR assay in combination with other techniques will be a powerful tool to study plant interactions of these B. amyloliquefaciens biocontrol agents to further understand the requirements for successful interactions and improvement of plant properties. PMID:25294724

  17. Characterization of a protease produced by a Trichoderma harzianum isolate which controls cocoa plant witches' broom disease

    Directory of Open Access Journals (Sweden)

    Felix Carlos

    2002-01-01

    Full Text Available Abstract Background Several Trichoderma strains have been reported to be effective in controlling plant diseases, and the action of fungal hydrolytic enzymes has been considered as the main mechanism involved in the antagonistic process. However, although Trichoderma strains were found to impair development of Crinipellis perniciosa, the causal agent of cocoa plant witches' broom disease, no fungal strain is available for effective control of this disease. We have then undertaken a program of construction of hydrolytic enzyme-overproducing Trichoderma strains aiming improvement of the fungal antagonistic capacity. The protease of an indian Trichoderma isolate showing antagonistic activity against C. perniciosa was purified to homogeneity and characterized for its kinetic properties and action on the phytopathogen cell wall. Results A protease produced by the Trichoderma harzianum isolate 1051 was purified to homogeneity by precipitation with ammonium sulfate followed by hydrophobic chromatography. The molecular mass of this protease as determined by SDS-polyacrylamide gel electrophoresis was about 18.8 kDa. Its N-terminal amino acid sequence shares no homology with any other protease. The purified enzyme substantially affected the cell wall of the phytopathogen C. perniciosa. Western-blotting analysis showed that the enzyme was present in the culture supernatant 24 h after the Trichoderma started to grow in casein-containing liquid medium. Conclusions The capacity of the Trichoderma harzianum protease to hydrolyze the cell wall of C. perniciosa indicates that this enzyme may be actually involved in the antagonistic process between the two fungi. This fact strongly suggest that hydrolytic enzyme over-producing transgenic fungi may show superior biocontrol capacity.

  18. Identification of growth stage molecular markers in Trichoderma sp. 'atroviride type B' and their potential application in monitoring fungal growth and development in soil.

    Science.gov (United States)

    Mendoza-Mendoza, Artemio; Steyaert, Johanna; Nieto-Jacobo, Maria Fernanda; Holyoake, Andrew; Braithwaite, Mark; Stewart, Alison

    2015-11-01

    Several members of the genus Trichoderma are biocontrol agents of soil-borne fungal plant pathogens. The effectiveness of biocontrol agents depends heavily on how they perform in the complex field environment. Therefore, the ability to monitor and track Trichoderma within the environment is essential to understanding biocontrol efficacy. The objectives of this work were to: (a) identify key genes involved in Trichoderma sp. 'atroviride type B' morphogenesis; (b) develop a robust RNA isolation method from soil; and (c) develop molecular marker assays for characterizing morphogenesis whilst in the soil environment. Four cDNA libraries corresponding to conidia, germination, vegetative growth and conidiogenesis were created, and the genes identified by sequencing. Stage specificity of the different genes was confirmed by either Northern blot or quantitative reverse-transcriptase PCR (qRT-PCR) analysis using RNA from the four stages. con10, a conidial-specific gene, was observed in conidia, as well as one gene also involved in subsequent stages of germination (L-lactate/malate dehydrogenase encoding gene). The germination stage revealed high expression rates of genes involved in amino acid and protein biosynthesis, while in the vegetative-growth stage, genes involved in differentiation, including the mitogen-activated protein kinase kinase similar to Kpp7 from Ustilago maydis and the orthologue to stuA from Aspergillus nidulans, were preferentially expressed. Genes involved in cell-wall synthesis were expressed during conidiogenesis. We standardized total RNA isolation from Trichoderma sp. 'atroviride type B' growing in soil and then examined the expression profiles of selected genes using qRT-PCR. The results suggested that the relative expression patterns were cyclic and not accumulative. PMID:26341342

  19. Caracterización de películas biodegradables con la incorporación de un agente de biocontrol

    OpenAIRE

    TORREGROSA MORENO, BELÉN

    2016-01-01

    [ES] El control biológico es una de las alternativas más eficientes y prácticas a los fungicidas químicos para el control de enfermedades producidas por hongos en agricultura. Su aplicación práctica no ha tenido lugar en gran medida por la sensibilidad de los agentes de biocontrol (ABCs) a condiciones ambientales adversas, que dan lugar a variabilidad y poca reproducibilidad en los resultados. Se ha trabajado con el ABC Candida sake, una levadura efectiva en el control de enfer...

  20. Effects of plant virus and its insect vector on Encarsia formosa, a biocontrol agent of whiteflies.

    Science.gov (United States)

    Liu, Xiaoyuan; Xiang, Wensheng; Jiao, Xiaoguo; Zhang, Youjun; Xie, Wen; Wu, Qingjun; Zhou, Xuguo; Wang, Shaoli

    2014-01-01

    In this study, we investigated the tritrophic interactions among a persistently transmitted plant virus, Tomato yellow leaf curl virus (TYLCV), its insect vector, the sweetpotato whitefly Bemisia tabaci, and a parasitoid, Encarsia formosa Gahan, one of the most extensively used biological control agents. As an emerging invasive pest worldwide, the two most damaging whiteflies are B. tabaci B and Q cryptic species. On healthy tomato plants, parasitoid-induced mortality was significantly higher in B. tabaci B than in Q. In contrast, similar mortality levels of B and Q were observed on TYLCV-infected plants. A higher rate of parasitism was consistently observed in B, independent of the TYLCV infection. Similarly, the life history traits of E. formosa were influenced by both TYLCV and the two cryptic species of B. tabaci. Specifically, E. formosa parasitizing B had a greater adult longevity and shorter developmental time on healthy plants, whereas the parasitoids developing from Q has a greater adult longevity on TYLCV-infected plants. The emergence rate of E. formosa was unaffected by either B. tabaci cryptic species or the virus. These results suggest that the vector-borne pathogen can manipulate the host suitability of a parasitoid and hence the parasitoid-host interactions. PMID:25096549

  1. EVALUACIÓN DE MICROORGANISMOS AISLADOS DE GALLINAZA POR SU POTENCIAL PARA EL BIOCONTROL DE FUSARIUM (F. OXYSPORUM EN PLÁNTULAS DE UCHUVA (PHYSALIS PERUVIANA EVALUATION OF MICROORGANISMS INSOLATED FROM HEN MANURE FOR THEIR POTENCIAL AS BIOCONTROL AGENTS OF FUSARIUM (F. OXYSPORUM IN GOOSEBERRY (PHYSALIS PERUVIANA SEEDLINGS

    Directory of Open Access Journals (Sweden)

    Jorge Enrique Rodríguez Amézquita

    2010-12-01

    Full Text Available En Colombia, las pérdidas económicas ocasionadas por Fusarium oxysporum en el cultivo de uchuva son considerables. Se evaluaron hongos y bacterias aislados de 2 fuentes de gallinaza, su potencial como agentes de biocontrol de este patógeno. La evaluación se realizó en cajas de Petri con PDA para lo cual se colocó en el centro de las mismas, un disco de 5 mm de diámetro colonizado por el patógeno y a 3 cm del centro, sobre los ejes horizontal y vertical, cada uno de los aislamientos de la gallinaza. Los aislamientos que mostraron antagonismo fueron posteriormente evaluados in vitro por su capacidad de restringir el crecimiento y esporulación de F. oxysporum. Cada uno de los aislamientos que mostró el mayor potencial antagónico fue inoculado simultáneamente con el patógeno en plántulas de uchuva y evaluado por sus efectos en contra de la incidencia de la enfermedad y la muerte de las plántulas. Los resultados indicaron que de los 39 microorganismos aislados de la gallinaza pura, 6 mostraron antagonismo contra F. oxysporum y entre ellos los más efectivos para restringir in vitro su crecimiento y esporulación fueron los hongos H2 y H6 y las bacterias B17 y B19. Las bacterias B17 y B19 resultaron ser las más efectivas en reducir no sólo la incidencia sino también la muerte de plántulas ocasionada por el patógeno. Según los resultados de la identificación, los hongos H2 y H6 pertenecen a los géneros Geotrichum sp. y Trichoderma sp, respectivamente y las bacterias B17 y B19 al género Bacillus.In Colombia, economic losses due to attack of Fusarium oxysporum in the gooseberry plantation are considerable. Fungi and bacteria isolated from 2 hen manure sources were evaluated for their potential as biological control agents of this pathogen. The evaluation was conducted in Petri dishes containing PDA by placing a 5 mm diameter disk, colonized by this pathogen, in the center of the plates and at 3 cm from the center, over the

  2. Biocontrol of Rhizoctonia solani, the causal agent of bean damping-off by fluorescent pseudomonads.

    Science.gov (United States)

    Afsharmanesh, H; Ahmadzadeh, M; Sharifi-Tehrani, A

    2006-01-01

    Rhizosphere bacteria belonging to the fluorescent pseudomonads are receiving increasing attention for the protection of plants against soil-borne fungal pathogens. Among these pathogens, Rhizoctonia solani, the causal agent of bean damping- off is very important in bean fields of Iran. In this study, the antagonistic activity of 46 isolates of fluorescent pseudomonads (isolated from different area of Iran) and Pseudomonas fluorescens strain CHA0 investigated against one isolate of R. solani. About 64% of isolates revealed antagonistic activity against R. solani. Production of antifungal metabolites such as HCN, siderophore and protease was evaluated. The results showed that 97.8%, 17% and 78% of isolates produced siderophore, HCN and protease respectively. There was no significant correlation between antagonistic activity and production of these metabolites. Isolates P-5, P-10 and P-32 with strain CHA0 were selected in order to investigate involvement of siderophore, volatile metabolites (HCN), and non-volatile metabolites in reducing mycelial growth of R. olani. Isolate P-5 showed much more inhibitory effect by production of volatile metabolites and siderophore. Non-volatile metabolites in isolates P-32 and P-5 completely inhibited mycelial growth of the fungus. After the primary labrotory tests, isolates P-14, P-35, P-30, P-5 and strain CHA0 were selected for in vivo experiments. These selected isolates with benomyl fungicide were used as seed coating and soil drenching in sterile soil under greenhouse condition. The result indicated that in seed treatment method, isolates P-30 by 66% had the most effect in disease reduction while in soil treatment method, strain CHAO by 60% had the most effect, such that this two isolates showed significant differences in comparison with plants inoculated with R. solani inoculums. PMID:17390854

  3. [Effect of Trichoderma species fungi on soil micromycetes, causing infectious conifer seedling lodging in Siberian tree nurseries].

    Science.gov (United States)

    Iakimenko, E E; Grodinitskaia, I D

    2000-01-01

    Soils in the tree nurseries studied were characterized by a lower species diversity of fungi than adjacent virgin soils. In particular, the relative abundances of representatives of the genera Mucor, Chaetomium, and Trichoderma in the nursery soil were two times lower than in adjacent virgin soils. On the other hand, the nursery soil exhibited greater abundances of fungi of the genus Fusarium, which are causative agents of many diseases of conifer seedlings. To appreciate the efficiency of biocontrol of the infectious diseases of conifer seedlings, we introduced several indigenous Trichoderma strains into the nursery soil and found that this affected the species composition of soil microflora considerably. Changes in the species composition of mycobiota beneficially influenced the phytosanitary state of soils and reduced the infectious lodging of conifer seedlings. PMID:11195586

  4. Potential of osmoadaptation for improving Pantoea agglomerans E325 as biocontrol agent for fire blight of apple and pear

    Science.gov (United States)

    Pantoea agglomerans biocontrol strain E325 is the active ingredient in a commercial product for fire blight, a destructive disease of apple and pear initiated by Erwinia amylovora in flowers. Osmoadaptation, involving the combination of saline osmotic stress and osmolyte amendment to growth media, w...

  5. Evaluation of Some Biocontrol Agents/Antagonistic Microbes Against Pastule Development of Leaf Rust of Wheat Caused by Puccinia recondita f. sp. Tritici Roberge ex. Desmaz (Erikson and Henn D.M. Henderson

    Directory of Open Access Journals (Sweden)

    A. Sheroze

    2002-01-01

    Full Text Available Out of five biocontrol agents/antagonistic microbes viz., Verticillium lecanii, Paecilomyces fumosoroseus, Beauveria bassiana, Cladosporium cladosporiodes and Metarrhizium anisopliae, Beauveria bassiana proved the best in retarding the postulation/rust development in wheats. When the microbes tested alone against leaf rust development, B. bassiana proved excellent and in combination with Verticillium lecanii and Paecilomyces furnosoroseus. Although there was an increase in colony diameter after 2nd week but the pattern of growth was the same as after one week of incubation of bio-control agents application.

  6. Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea.

    Science.gov (United States)

    Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes; Beltrán-Peña, Elda; Herrera-Estrella, Alfredo; López-Bucio, José

    2011-10-01

    Filamentous fungi belonging to the genus Trichoderma have long been recognized as agents for the biocontrol of plant diseases. In this work, we investigated the mechanisms involved in the defense responses of Arabidopsis thaliana seedlings elicited by co-culture with Trichoderma virens and Trichoderma atroviride. Interaction of plant roots with fungal mycelium induced growth and defense responses, indicating that both processes are not inherently antagonist. Expression studies of the pathogenesis-related reporter markers pPr1a:uidA and pLox2:uidA in response to T. virens or T. atroviride provided evidence that the defense signaling pathway activated by these fungi involves salicylic acid (SA) and/or jasmonic acid (JA) depending on the amount of conidia inoculated. Moreover, we found that Arabidopsis seedlings colonized by Trichoderma accumulated hydrogen peroxide and camalexin in leaves. When grown under axenic conditions, T. virens produced indole-3-carboxaldehyde (ICAld) a tryptophan-derived compound with activity in plant development. In Arabidopsis seedlings whose roots are in contact with T. virens or T. atroviride, and challenged with Botrytis cinerea in leaves, disease severity was significantly reduced compared to axenically grown seedlings. Our results indicate that the defense responses elicited by Trichoderma in Arabidopsis are complex and involve the canonical defense hormones SA and JA as well as camalexin, which may be important factors in boosting plant immunity. PMID:21931272

  7. Transformation of Cyclaneusma minus with Green Fluorescent Protein (GFP to Enable Screening of Fungi for Biocontrol Activity

    Directory of Open Access Journals (Sweden)

    Alison Stewart

    2012-02-01

    Full Text Available Cyclaneusma needle-cast has a major impact on the New Zealand forest industry. The causal agent, Cyclaneusma minus, causes most severe damage to 11–20 year-old trees and currently there are no economically viable procedures for control of the disease in New Zealand. Here we present a method for genetic transformation of C. minus using protoplasts generated by incubation with Glucanex™ enzyme. C. minus was transformed with a gene encoding green fluorescent protein (GFP and expression was stable after successive sub-culturing of the strain in the absence of selective pressure. Expression of the gfp gene allowed us to utilize an in vitro GFP-based screening method to identify strains of Trichoderma with potential for biocontrol of this disease. The strain that showed the most promise as a potential biocontrol candidate exhibited a low level of inhibition by uncharacterized metabolite(s that C. minus secretes into the medium, and consistently caused a loss of GFP expression from the GFP-labeled C. minus strain. The interaction between C. minus and the biocontrol strain, in the interaction zone where GFP expression was lost, was determined to be fungicidal. The utility of such biocontrol strains is discussed. This study represents the first genetic manipulation of C. minus and will pave the way for further studies of the life cycle and infection biology of this organism.

  8. Postharvest Biocontrol: Introspection and Paradigm Shifts

    Science.gov (United States)

    The use of postharvest biocontrol agents as an alternative to the synthetic, chemical fungicides on a widespread basis has many constraints. During the last twenty years, the field of postharvest biocontrol research has significantly grown and developed and seen the creation of several products. Des...

  9. The effect of locust bean gum (LBG)-based edible coatings carrying biocontrol yeasts against Penicillium digitatum and Penicillium italicum causal agents of postharvest decay of mandarin fruit.

    Science.gov (United States)

    Parafati, Lucia; Vitale, Alessandro; Restuccia, Cristina; Cirvilleri, Gabriella

    2016-09-01

    Strains belonging to Wickerhamomyces anomalus, Metschnikowia pulcherrima and Aureobasidium pullulans species were tested in vitro as biocontrol agents (BCAs) against the post-harvest pathogenic molds Penicillium digitatum and Penicillium italicum. Moreover, studies aimed at screening the antifungal activity of selected yeast strains in vivo conditions against P. digitatum and P. italicum, and investigated the efficacy of a polysaccharidic matrix, locust bean gum (LBG), enriched with the tested BCAs, in controlling postharvest decays in artificially inoculated mandarins. The population dynamics of BCAs on wounds and the magnitude of peroxidase (POD) and superoxide dismutase (SOD) in fruit tissues were also investigated after treatments of mandarins with antagonistic yeasts. W. anomalus BS91, M. pulcherrima MPR3 and A. pullulans PI1 provided excellent control of postharvest decays caused by P. digitatum and P. italicum on mandarins, both when the yeasts were used alone and in combination with LBG, which enhanced the yeast cell viability over time. Finally, the increased activity of POD and lower decrease in SOD activity in response to BCAs application in mandarin fruits confirmed their involvement in the biocontrol mechanism. PMID:27217363

  10. Applications of Trichoderma formulations in crop protection

    Institute of Scientific and Technical Information of China (English)

    Monte E; Rodríguez A; Rey M; Axpilicueta A; Gómez M I; de la Vina G; Grondona I; Llobell A

    2004-01-01

    @@ The choice of active Trichoderma strains is important in designing effective and safe biocontrol applications. Many species of Trichoderma have multiple strategies for fungal antagonism and indirect effects on plant health, such as growth promotion, systemic resistance induction and fertility improvements. Some strains are powerful antibiotic producers, and their suitability for use in biocontrol systems must be carefully assessed. However, many other active strains have no antibiotic capacity, and these are likely to be more useful in food production systems since they have not adverse effects on important groups of beneficial soil organisms. We have assessed the performance of selected naturally occurring Trichoderma strains (singly and in combination) and developed TUSAL , a mixture of Trichoderma harzianum and T. viride that has demonstrated to be effective against major pathogens in sugar beet and horticulture. TUSAL , has been bulked up and tested under field conditions, showing positive effects on precocity and root development, and increasing the crop production in field trials carried out in different pathosystems. The environmental impact of TUSAL strains on beneficial organisms in the environment were assessed before release, and molecular detection methods were developed to monitor the presence and performance of strains in the field.

  11. Effect of Seed Quality and Combination Fungicide-Trichoderma spp. Seed Treatments on Pre- and Postemergence Damping-Off in Cotton.

    Science.gov (United States)

    Howell, Charles R

    2007-01-01

    ABSTRACT Good quality seeds of cotton cultivars often escaped pre-emergence damping-off incited by Pythium spp. and Rhizopus oryzae, and they were resistant to postemergence damping-off incited by Rhizoctonia solani. Poor quality seeds, however, were highly susceptible to both phases of seedling disease and required seed treatment in order to survive. Pre-emergence damping-off incited by Pythium spp. and Rhizopus oryzae could be controlled by seed treatment with biocontrol preparations of a number of Trichoderma spp., but these treatments were much less effective in controlling postemergence disease incited by Rhizoctonia solani. Postemergence seedling disease can be controlled by fungicides, but they were much less effective in controlling the pre-emergence phase of the disease. Combination seed treatments of poor quality cotton seeds with fungicides and Trichoderma spp. preparations, followed by planting in pathogen-infested soil, indicated that this technique will control both phases of seedling disease. Seed treatment with either the fungicides or the biocontrol agents alone did not achieve this goal. The optimum combination treatment for disease control was that of chloroneb plus Trichoderma spp., followed by chloroneb plus metalaxyl (Deltacoat AD) plus T. virens strain G-6. PMID:18942938

  12. Proteome scale census of major facilitator superfamily transporters in Trichoderma reesei using protein sequence and structure based classification enhanced ranking.

    Science.gov (United States)

    Chaudhary, Nitika; Kumari, Indu; Sandhu, Padmani; Ahmed, Mushtaq; Akhter, Yusuf

    2016-07-01

    Trichoderma spp. have been acknowledged as potent bio-control agents against microbial pathogens and also as plant growth promoters. Various secondary metabolites are attributed for these beneficial activities. Major facilitator superfamily (MFS) includes the large proportion of efflux-pumps which are linked with membrane transport of these secondary metabolites. We have carried out a proteome-wide identification of MFS transporters using protein sequence and structure based hierarchical method in Trichoderma reesei. 448 proteins out of 9115 were detected to carry transmembrane helices. MFS specific intragenic gene duplication and its context with transport function have been presented. Finally, using homology based techniques, domains and motifs of MFS families have been identified and utilized to classify them. From query dataset of 448 transmembrane proteins, 148 proteins are identified as potential MFS transporters. Sugar porter, drug: H(+) antiporter-1, monocarboxylate porter and anion: cation symporter emerged as major MFS families with 51, 35, 17 and 11 members respectively. Representative protein tertiary structures of these families are homology modeled for structure-function analysis. This study may help to understand the molecular basis of secretion and transport of agriculturally valuable secondary metabolites produced by these bio-control fungal agents which may be exploited in future for enhancing its biotechnological applications in eco-friendly sustainable development. PMID:27041239

  13. IN VITRO MANAGEMENT OF CURVULARIA LEAF SPOT OF MAIZE USING BOTANICALS, ESSENTIAL OILS AND BIO-CONTROL AGENTS

    OpenAIRE

    JYOTIKA PUROHIT; SRINIVASANRAGHVAN, A.; PRADEEP KUMAR; SUNAINA BISHT

    2013-01-01

    Different plant extracts, essential oils and different strains of Trichoderma harzianum were evaluated in vitroagainst Curvularia lunata. Amongst the plant extracts, Lantana was highly effective @ 15 per cent (86.76 inhibition%) and 20 per cent (89.49 inhibition %) followed by Morphankhi @ 5 per cent (83.53 %) and 10 per cent (85.88%) respectively. Among the essential oils, complete inhibition was recorded in Citronella oil at all 3 concentrations(2µL, 4µL and 8) and Peppermint oil at 4µL and...

  14. Trichoderma chlorosporum,a new record of endophytic fungi from Dendrobium nobile in China%中国木霉属内生真菌一个新记录种Trichoderma chlorosporum

    Institute of Scientific and Technical Information of China (English)

    袁志林; 陈益存; 章初龙; 林福呈; 陈连庆

    2008-01-01

    @@ 1 INTRODUCTION Typically,Trichoderma spp.are free-living fungi most frequently isolated from soils and have been extensively studied due to their remarkable biocontrol and plant-growth promoting capacity.There is increasing evidence that sometimes they display flexible lifestyle and penetrate epidermis of roots and act as opportunistic,avirulent plant symbiont(Harman et al.2004).Recently,a Trichoderma species living as endophyte,Trichoderma taxi C.L.Zhang et al.(2007),has been recognized.

  15. Typhlodromus pyri and Euseius finlandicus (Acari: Phytoseiidae) as potential biocontrol agents against spider mites (Acari: Tetranychidae) inhabiting willows: laboratory studies on predator development and reproduction on four diets.

    Science.gov (United States)

    Puchalska, Ewa K; Kozak, Marcin

    2016-01-01

    Typhlodromus pyri Scheuten and Euseius finlandicus (Oudemans) are important predators of phytophagous mites. The present laboratory study aimed to determine whether both species can develop and reach maturity feeding on spider mites occurring on willows, i.e., Schizotetranychus schizopus (Zacher), Schizotetranychus garmani Pritchard & Baker, and Tetranychus urticae Koch, and on Brassica napus L. pollen. The predators' development, reproduction and demographic parameters were significantly affected by diet. The data suggest that rape pollen can be useful in mass rearing of E. finlandicus but is completely unsuitable as alternative food for T. pyri. Short development time and high values of population parameters achieved by T. pyri feeding on larvae and protonymphs of S. schizopus and by E. finlandicus feeding on juvenile stages of S. garmani indicate great suitability of these preys as food for the phytoseiids, and make both predatory species promising biocontrol agents in spider mite control on willows. PMID:26530991

  16. Environmental impact assessment of genetically modified biocontrol agents; La valutazione di impatto ambientale per gli antagonisti microbici geneticamente modificati. Come conciliare apprensione, razionalita' e sicurezza?

    Energy Technology Data Exchange (ETDEWEB)

    Migheli, Q. [Sassari Univ., Sassari (Italy). Dipt. di Protezione delle Piante

    2001-04-01

    This review summarises the theoretical basis of risk analysis, and the political and social implications of introducing new biotechnology products in agricultural environments. The main factors to be considered under the present European regulation in the environmental impact assessment of genetically modified biocontrol agents are briefly discussed. Finally, an alternative risk assessment paradigm is proposed for genetically modified microorganisms, which shall consider the intrinsic properties of each antagonist, rather than the method used for generating it. [Italian] In questo articolo sono presentati punti di vista politici e sociali nell'introduzione di nuovi prodotti biotecnologici nell'agricoltura. Vi sono affrontati anche i nuovi regolamenti europei in materia di agenti geneticamente modificati, stabilendo che gli antagonisti geneticamente modificati richiedono una ulteriore analisi del rischio associato alla modificazione genetica e che una volta stabilito che l'antagonista non arrechi rischi possa essere diffuso nell'ambiente.

  17. Trichoderma genes

    Science.gov (United States)

    Foreman, Pamela; Goedegebuur, Frits; Van Solingen, Pieter; Ward, Michael

    2012-06-19

    Described herein are novel gene sequences isolated from Trichoderma reesei. Two genes encoding proteins comprising a cellulose binding domain, one encoding an arabionfuranosidase and one encoding an acetylxylanesterase are described. The sequences, CIP1 and CIP2, contain a cellulose binding domain. These proteins are especially useful in the textile and detergent industry and in pulp and paper industry.

  18. Cow dung extract: a medium for the growth of pseudomonads enhancing their efficiency as biofertilizer and biocontrol agent in rice.

    Science.gov (United States)

    Srivastava, Rashmi; Aragno, Michel; Sharma, A K

    2010-09-01

    Some pseudomands are being utilized as biofertilizers and biopesticides because of their role in plant growth promotion and plant protection against root parasites, respectively. Two strains of Pseudomonas, P. jessenii LHRE62 and P. synxantha HHRE81, recovered from wheat rhizosphere, have shown their potential in field bioinoculation tests under rice-wheat and pulse-wheat rotation systems. Normally, pseudomonads are cultivated on synthetic media-like King's B and used for inoculation on seeds/soil drench with talcum or charcoal as carrier material. Cow dung is being used for different purposes from the ancient time and has a significant role in crop growth because of the content in humic compounds and fertilizing bioelements available in it. Here, cow dung extract was tested as a growth medium for strains LHRE62 and HHRE81, in comparison with growth in King's B medium. The log phase was delayed by 2 h as compared to growth in King's B medium. The bacterial growth yield, lower in plain cow dung extract as compared to King's B medium, was improved upon addition of different carbon substrates. Growth of rice var. Pant Dhan 4 in pot cultures was increased using liquid formulation of cow dung extract and bacteria as foliar spray, compared to their respective controls. Biocontrol efficacy of the bioagents was assessed by challenging rice crop with Rhizoctonia solani, a sheath blight pathogen. The growth promotion and biocontrol efficiencies were more pronounced in the case of mixed inocula of strains LHRE62 and HHRE81. PMID:23100852

  19. The Cerato-Platanin protein Epl-1 from Trichoderma harzianum is involved in mycoparasitism, plant resistance induction and self cell wall protection

    Science.gov (United States)

    Gomes, Eriston Vieira; Costa, Mariana do Nascimento; de Paula, Renato Graciano; Ricci de Azevedo, Rafael; da Silva, Francilene Lopes; Noronha, Eliane F.; José Ulhoa, Cirano; Neves Monteiro, Valdirene; Elena Cardoza, Rosa; Gutiérrez, Santiago; Nascimento Silva, Roberto

    2015-01-01

    Trichoderma harzianum species are well known as biocontrol agents against important fungal phytopathogens. Mycoparasitism is one of the strategies used by this fungus in the biocontrol process. In this work, we analyzed the effect of Epl-1 protein, previously described as plant resistance elicitor, in expression modulation of T. harzianum genes involved in mycoparasitism process against phytopathogenic fungi; self cell wall protection and recognition; host hyphae coiling and triggering expression of defense-related genes in beans plants. The results indicated that the absence of Epl-1 protein affects the expression of all mycoparasitism genes analyzed in direct confrontation assays against phytopathogen Sclerotinia sclerotiorum as well as T. harzianum itself; the host mycoparasitic coiling process and expression modulation of plant defense genes showing different pattern compared with wild type strain. These data indicated the involvement T. harzianum Epl-1 in self and host interaction and also recognition of T. harzianum as a symbiotic fungus by the bean plants. PMID:26647876

  20. The Cerato-Platanin protein Epl-1 from Trichoderma harzianum is involved in mycoparasitism, plant resistance induction and self cell wall protection.

    Science.gov (United States)

    Gomes, Eriston Vieira; Costa, Mariana do Nascimento; de Paula, Renato Graciano; de Azevedo, Rafael Ricci; da Silva, Francilene Lopes; Noronha, Eliane F; Ulhoa, Cirano José; Monteiro, Valdirene Neves; Cardoza, Rosa Elena; Gutiérrez, Santiago; Silva, Roberto Nascimento

    2015-01-01

    Trichoderma harzianum species are well known as biocontrol agents against important fungal phytopathogens. Mycoparasitism is one of the strategies used by this fungus in the biocontrol process. In this work, we analyzed the effect of Epl-1 protein, previously described as plant resistance elicitor, in expression modulation of T. harzianum genes involved in mycoparasitism process against phytopathogenic fungi; self cell wall protection and recognition; host hyphae coiling and triggering expression of defense-related genes in beans plants. The results indicated that the absence of Epl-1 protein affects the expression of all mycoparasitism genes analyzed in direct confrontation assays against phytopathogen Sclerotinia sclerotiorum as well as T. harzianum itself; the host mycoparasitic coiling process and expression modulation of plant defense genes showing different pattern compared with wild type strain. These data indicated the involvement T. harzianum Epl-1 in self and host interaction and also recognition of T. harzianum as a symbiotic fungus by the bean plants. PMID:26647876

  1. Novel understanding of Trichoderma interaction mechanisms

    Institute of Scientific and Technical Information of China (English)

    Matteo Lorito

    2004-01-01

    @@ Trichoderma- based biofungicides are a reality in commercial agriculture, with more than 50formulations registered worldwide as biopesticides or biofertilizers. Several research strategies have been applied to identify the main genes and compounds involved in the complex, three-way interactions between fungal antagonists, plants and microbial pathogens. Proteome and genome analyses have greatly enhanced our ability to conduct targeted and genome-based functional studies. We have obtained reproducible 2-D maps of the entire fungal proteome in various conditions of interaction,which permitted the isolation of many proteins related to specific functions. Many differential proteins from several biocontrol strains of Trichoderma spp. during the in vivo interaction with different plants and/or several phytopathogenic fungi have been isolated and analyzed by MALDI-TOF.Relevant genes have been cloned and specifically inactivated, to demonstrate their function in biocontrol and induction of disease resistance. GFP-based reporter systems with interaction-inducible promoters allowed the characterization of regulatory sequences activated by the presence of the pathogen or the plant. From extensive cDNA and EST libraries of genes expressed during Trichoderma-pathogen-plant interactions, we are identified and determined the role of a variety of novel genes and gene-products, including ABC transporters specifically induced during antagonism with other microbes; enzymes and other proteins that produce or act as novel elicitors of Induced Resistance in plant and promote root growth and crop yield; proteins possibly responsible of a gene-forgene avirulent interaction between Trichoderma and plants; mycoparasitism-related inducers released from fungal pathogens and that activate biocontrol in Trichoderma; fungal promoters specifically induced during mycoparasitism and plant colonization; plant proteins and a novel phytoalexin induced by the presence of the fungal antagonist; etc

  2. INDUCTION OF SYSTEMIC RESISTANCE BY BIOCONTROL AGENTS AGAINST BACTERIAL BLIGHT OF COTTON CAUSED BY XANTHOMONAS CAMPESTRIS PV. MALVACEARUM

    Directory of Open Access Journals (Sweden)

    Niranjana S. Ramachandrappa

    2013-04-01

    Full Text Available Bioagents such as Trichoderma harzianum, Pseudomonas fluorescens and Bacillus subtilis were isolated from cotton rhizosphere soil and tested individually for their effectiveness in controlling bacterial blight of cotton caused by Xanthomonas campestris pv. malvacearum (Xcm. Talc based formulations were prepared and used for seed treatment at different concentrations for assessing their ability to stimulate plant growth and to control bacterial blight disease. Among bioagents, P. fluorescens and T. harzianum proved to be effective in controlling disease under field conditions.  Other than direct action, these bioagents triggered the defense related enzymes involved in synthesis of phenols. Higher activity of peroxidase, phenylalanine ammonia-lyase, polyphenol oxidase and b-1,3-glucanase was observed in P. fluorescens and T. harzianum treated cotton plants after challenge inoculation with Xcm. Seed treatment with these bioagents enhanced the seed germination and growth parameters against blight disease and they also induced systemic resistance in plant for defense mechanisms. 

  3. Identification of Volatiles Produced by Cladosporium cladosporioides CL-1, a Fungal Biocontrol Agent That Promotes Plant Growth

    Directory of Open Access Journals (Sweden)

    Diby Paul

    2013-10-01

    Full Text Available Certain microbial Volatile Organic Compounds (VOCs have been reported to enhance the growth and development of plants. The biocontrol fungi, Cladosporium cladosporioides CL-1 significantly improved the growth of tobacco seedlings in vitro when they were co-cultivated without physical contact. SPME Quadrupole GC/MS/MS revealed that CL-1 emited the volatiles α-pinene, (−-trans-caryophyllene, tetrahydro-2,2,5,5-tetramethylfuran, dehydroaromadendrene, and (+-sativene. Potential roles of these volatiles in plant growth and development are discussed. Even though there were several fungal VOCs reported in the past that could influence plant growth, their exact mechanisms of action are not fully known. Fungal VOC-mediated plant growth promotion requires in-depth study in order for this technology to be used in large scale for crops, especially those grown under greenhouse conditions.

  4. Biocontrol of Botrytis allii Munn the Causal Agent of Neck Rot, the Post Harvest Disease in Onion, by use of a New Iranian Isolate of Streptomyces

    Directory of Open Access Journals (Sweden)

    M. Jorjandi

    2009-01-01

    Full Text Available Problem statement: Soil actinomycetes particularly Streptomyces spp. showed antagonistic activity against wide range of plant pathogens. In the recent decades they have attracted high interests as biocontrol agents. Onion neck rot or gray mold caused by Botrytis allii have imposed economic post harvest damages to onion bulbs and decreased its storage durability and market value. Approach: To investigate for biocontrol means against the pathogen, antagonistic activity of 50 isolates of soil Actinomycetes were assayed through agar disk method and dual culture bioassays. Active isolates were exposed to chloroform for detection of antibiotic. Minimum Inhibitory Concentration (MIC value and solubility of active crude extract in organic solvents were determined for Streptomyces isolate No. 347 which showed a unique and stable property of inhibiting Botrytis allii. To investigate the antagonistic effect of Streptomyces isolate No. 347 on control of onion gray mold, 4 different treatments were tested by means of Tukey HSD test. Results: From the tested isolates, 13 showed anti gray mold activities. Exposure of active isolates to chloroform revealed that Streptomyces isolates No. 347, 263 and 350 retained their antifungal activities. The active metabolite(s of Streptomyces isolate No. 347 was polar, soluble in H2O but insoluble in chloroform and methanol. MIC of the crude was determined as 0.05 mg mL-1 against B. allii. Stability of the active crude in distilled water at room temperature (12-30°C was about 6 months. Statistical studies indicated that Streptomyces isolates No. 347 can decrease losses of neck rot with significant level (pConclusion: The future goals include investigation of the antifungal genes in active isolates as candidates for genetic engineering of onion for increased tolerance against B. allii.

  5. In Vitro Inhibition of Cellulolytic Enzymes of Fusarium Oxysporum by Trichoderma spp and Pseudomonas Fluorescens on Arachis Hypogaea L

    Directory of Open Access Journals (Sweden)

    P. Rajeswari

    2015-03-01

    Full Text Available In an attempt to develop biocontrol system for management of Fusarium wilt in groundnut, Trichoderma viride, Trichoderma harzianum,and Pseudomonas fluorescens were evaluated for their antagonistic activity against Fusarium oxysporum in vitro. .Fusarium wilt diseasescaused by the fungus Fusarium oxysporum lead to significant yield losses of crops. Experiments were conducted on the effect of culture filtratesof T.viride (1%, T. harzianum (1.5%, and P. fluorescens (2% on the in vitro inhibition of cellulolytic enzymes of Fusarium oxysporum. Theactivity of 1,4 endoglucanases, 1,4exoglucanase Cellobiase produced by Fusariumoxysporum was higher, when compared to control.Maximum inhibition of above Cellulolytic enzymes (1, 4 endoglucanases, 1,4exoglucanase, Cellobiase was shown by T. viride treatment wasfollowed by T. harzianum and P. fluorescens. Of all the treatments, T. viride treatment showed higher rate of inhibition of Cellulolytic enzymesof Fusarium oxysporum followed by that of T. harzianum and P. fluorescens.This present study indicates that culture filtrate of T.viride(1%is the best biocontrol agent in the inhibition of Fusarium oxysporum causing Fusarium wilt of Arachis hypogaea .L

  6. Genome-scale investigation of phenotypically distinct but nearly clonal Trichoderma strains

    Science.gov (United States)

    Weld, Richard J.; Cox, Murray P.; Bradshaw, Rosie E.; McLean, Kirstin L.; Stewart, Alison; Steyaert, Johanna M.

    2016-01-01

    Biological control agents (BCA) are beneficial organisms that are applied to protect plants from pests. Many fungi of the genus Trichoderma are successful BCAs but the underlying mechanisms are not yet fully understood. Trichoderma cf. atroviride strain LU132 is a remarkably effective BCA compared to T. cf. atroviride strain LU140 but these strains were found to be highly similar at the DNA sequence level. This unusual combination of phenotypic variability and high DNA sequence similarity between separately isolated strains prompted us to undertake a genome comparison study in order to identify DNA polymorphisms. We further investigated if the polymorphisms had functional effects on the phenotypes. The two strains were clearly identified as individuals, exhibiting different growth rates, conidiation and metabolism. Superior pathogen control demonstrated by LU132 depended on its faster growth, which is a prerequisite for successful distribution and competition. Genome sequencing identified only one non-synonymous single nucleotide polymorphism (SNP) between the strains. Based on this SNP, we successfully designed and validated an RFLP protocol that can be used to differentiate LU132 from LU140 and other Trichoderma strains. This SNP changed the amino acid sequence of SERF, encoded by the previously undescribed single copy gene “small EDRK-rich factor” (serf). A deletion of serf in the two strains did not lead to identical phenotypes, suggesting that, in addition to the single functional SNP between the nearly clonal Trichoderma cf. atroviride strains, other non-genomic factors contribute to their phenotypic variation. This finding is significant as it shows that genomics is an extremely useful but not exhaustive tool for the study of biocontrol complexity and for strain typing. PMID:27190719

  7. Identificación de genes inducidos en la cepa de biocontrol Trichoderma harzianum cect 2413 durante la interacción con plantas de tomate. Caracterización biológico-funcional de los genes qid74 y asp1

    OpenAIRE

    Samolski Klein, Ilanit

    2014-01-01

    [ES]Tradicionalmente, las especies del género Trichoderma eran consideradas como hongos saprófitos del suelo, de vida libre, cuya habilidad para parasitar a hongos fitopatógenos dio lugar a su uso como agentes de control biológico. Posteriormente, han sido definidas como simbiontes oportunistas avirulentos de plantas por su capacidad de asociarse de manera íntima con las raíces vegetales y, como resultado, promover el crecimiento de los cultivos y estimular sus respuestas de defensa frente al...

  8. mRNA Expression of EgCHI1, EgCHI2, and EgCHI3 in Oil Palm Leaves (Elaeis guineesis Jacq.) after Treatment with Ganoderma boninense Pat. and Trichoderma harzianum Rifai

    OpenAIRE

    Laila Naher; Soon Guan Tan; Chai Ling Ho; Umi Kalsom Yusuf; Siti Hazar Ahmad; Faridah Abdullah

    2012-01-01

    Background. Basal stem rot (BSR) disease caused by the fungus Ganoderma boninense is the most serious disease affecting the oil palm; this is because the disease escapes the early disease detection. The biocontrol agent Trichoderma harzianum can protect the disease only at the early stage of the disease. In the present study, the expression levels of three oil palm (Elaeis guineensis Jacq.) chitinases encoding EgCHI1, EgCHI2, and EgCHI3 at 2, 5, and 8 weeks inoculation were measured in oil pa...

  9. “Integration of plant resistance, cropping practices, and biocontrol agents for enhancing disease management, yield efficiency, and biodiversity in organic European vineyards – VineMan.org” - FINAL PROJECT REPORT

    OpenAIRE

    Rossi, Vittorio

    2015-01-01

    The Project aimed at improving disease control, which is one of the main and most difficult tasks in organic viticulture, integrating plant resistance against pathogens, cropping practices, use of weather-driven disease models, and use of biocontrol agents (BCAs). All these aspects were firstly considered separately in each WP by the competent partners, then efforts were made to develop innovative vineyard management strategies that consider all these aspects. All plants have an innate imm...

  10. Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, Verena; Song, Lifu; Lindquist, Erika; Gruber, Sabine; Koptchinskiy, Alexeji; Zeilinger, Susanne; Schmoll, Monika; Martinez, Pedro; Sun, Jibin; Grigoriev, Igor V.; Herrera-Estrella, Alfredo; Baker, Scott E.; Kubicek, Christian P.

    2009-11-30

    Background: Fungi of the genus Trichoderma are effective mycoparasites an for this reason used as biocontrol agents agents plant pathogenic fungi. The ability to recognize, combat and finally besiege and kill the prey are essential skills for this process. Only fragments of the biochemical processes related to this ability have been uncovered so far, however. This study aims at uncovering transcriptional responses occurring in the mycoparasite Trichoderma atroviride when being confronted with a potential prey. Results: T. atroviride was confronted with two fungal preys, Botrytis cinerea and Rhizoctonia solani, and cDNAs prepared from mycelia immediately before getting into physical contact with them (“onset of mycoparasitism”), and compared with such prepared from mycelial and conidiating cultures, respectively. About 3000 ESTs, representing about 900 genes each, were obtained from each of these three conditions. 65 genes, represented by 439 ESTs, were specifically and significantly overexpressed during onset of mycoparasitism, and the expression of a subset thereof verified by expression analysis. They comprised 18 KOG groups, but were most abundant from those including posttranslational processing (159 from 183 ESTs), and amino acid metabolism (70 of 84 ESTs), respectively. Several heat shock factors and tRNA synthases were particularly abundant. Metabolic network analysis confirmed the upregulation of the amino acid biosynthesic and the lipid catabolic capacity. Conclusion: Analysis of the genes overexpressed during the onset of mycoparasitism in T. atroviride has revealed that the fungus reacts to this condition with several previously undetected physiological reactions including strong stress response, sensing of nitrogen shortage and lipid catabolism. The data enable a new and more comprehensive interpretation of the physiology of mycoparasitism, and will aid in the selection of traits for breeding of biocontrol strains by recombinant techniques.

  11. EVALUATION OF TRICHODERMA SPP. ON BEAN CULTURE, IN ANTHRACNOSE, WEB BLIGHT AND ROOT-KNOT NEMATODE

    Directory of Open Access Journals (Sweden)

    P. E. V. Aguiar

    2014-09-01

    Full Text Available Mato Grosso is the third largest producer of bean from Brazil, being the third harvest (irrigated the most productive, but diseases such as anthracnose, web blight and nematodes of galls cause losses to producers. In addition, a measure widely used and little studied for the control of diseases and nematodes in Mato Grosso is the biological control, which consists of the action of other microorganisms on phytopathogens. Thus, the objective of the present study was to evaluate the effect of Trichoderma harzianum and T. asperellum in the development (height of plants, chlorophyll and number of pods of culture of bean, in the control of anthracnose (Colletotrichum lindemuthianum, web blight (Rhizoctonia solani and in the population of Meloidogyne spp. in the soil. The experiment was accomplished in area experimental of University Federal of Mato Grosso/Campus Sinop. The experimental design was of entirely randomized with 12 parcels of 5m² each, with 3 treatments and 4 replications. The cultivar used was Whitey, carioca group, and the seed treatment performed with product Pyraclostrobin + Thiophanate Methyl + Fipronil and after drying of the inoculation of biocontrol agents and manual seeding. It was observed that the application of T. harzianum and T. asperellum, not promoted increase of chlorophyll, height of plants in bean culture, without reducing the population of Meloidogyne spp.. However, biocontrol agents have reduced the severity of anthracnose and web blight and promoted an increase in the average number of plant pods-1. It is therefore concluded that biocontrol agents show potential for application in bean culture in the North of Mato Grosso.

  12. MULTI-TRAITS OF NON-PATHOGENIC FLUORESCENT PSEUDOMONAS AND EVALUATION OF THEIR POTENTIEL AS BIOCONTROL AGENTS

    Directory of Open Access Journals (Sweden)

    Mehri Inès

    2014-01-01

    Full Text Available In recent years, certain strains of fluorescent pseudomonads called PGPB have drawn attention due to their abilities to promote plant growth. Therefore, in this investigation, we have explored the adhesive properties, the phytostimulator effects and the biocontrol activities of 40 isolates, with the aim to select potential inoculants to improve crop yields. Ten different colony morphotypes were detected on CRA plates. PsTp172 described as “ST” showed the highest adherence ability to abiotic surface (OD550 = 2.102. 31 isolates were positive for the plant growth-promoting hormone (IAA production and 30 stains solubilised tri-calcium phosphate in Pikovskaya’s agar. Furthermore, the highest pyoverdine concentration was detected with PsTp172 strain (172.50 µM under iron starvation conditions. This strain also exhibited a co-resistance against Zn2+ and Mn2+ and displayed high values of Minimum Inhibitory Concentrations (MIC for each heavy metal. Additionally, among the tested isolates, eight strains (PsS15, PsTp172, PsS28, PsTp171, PsS31, PsS67, PsS18, PsS39 and PsS93 were found to be efficient antagonists against the 3 pathogenic strains and 6 isolates (PsS15, PsTp156, PsTp172, PsC54, PsTp171 and PsS102 were considered as lactone inhibitors of the 3 tested strains, as shown by their ability to inhibit the cellular communication. The majority of isolates showed various phytobeneficial traits and the most effective strains are P. putida (PsTp172 and PsS15 and P. mosseli (PsTp171.

  13. Selective Media for In Vitro Activity Evaluation of Bacterial Biocontrol Against Pathogenic Vibrio

    OpenAIRE

    ALIM ISNANSETYO; MUHTADI; INDAH ISTIQOMAH; KAMISO HANDOYO NITIMULYO; TRIYANTO

    2011-01-01

    In vitro activity test is a critical evaluation to screen the potential biocontrol agent. We developed a selective medium for quantitative in vitro activity evaluation of bacterial biocontrol agents against pathogenic Vibrio in aquaculture. Sensitivity test of bacterial biocontrol and Vibrio spp. to nine antibiotics showed that oxytetracycline inhibited the growth of Vibrio spp., but did not inhibit the growth of the bacterial biocontrol. This selective inhibition activity of oxytetracycline ...

  14. Production and characterization of rhamnolipids produced by Serratia rubidaea SNAU02 under solid-state fermentation and its application as biocontrol agent.

    Science.gov (United States)

    Nalini, S; Parthasarathi, R

    2014-12-01

    The present study aimed at exploring mahua (Madhuca indica) oil cake as a novel substrate for the production of biosurfactant by Serratia rubidaea SNAU02 under solid-state fermentation (SSF). Response surface methodology showed followings as the optimal conditions for the production of biosurfactant: mahua oil cake 7.48 g, 2.5 ml inoculum size (1×10(8) cells/ml), and pH 7.22 and 31 °C temperature. The characterization of the biosurfactant by TLC, FT-IR and GC-MS revealed the presence of rhamnolipid. The presence of rhamnosyl transferase gene responsible for biosynthesis of rhamnolipid was identified. The strain SNAU02 exhibited antifungal activity and demonstrated no toxicity against the seeds of Brassica oleracea and Artemia salina employed as a bio-indicator. The present findings indicated the potential of mahua oil cake as suitable substrate for the production of rhamnolipids in SSF by S. rubidaea SNAU02 and application potential of the biosurfactant produced as biocontrol agent against plant pathogens. PMID:25305653

  15. Biocontrol traits and antagonistic potential of Bacillus amyloliquefaciens strain NJZJSB3 against Sclerotinia sclerotiorum, a causal agent of canola stem rot.

    Science.gov (United States)

    Wu, Yuncheng; Yuan, Jun; Raza, Waseem; Shen, Qirong; Huang, Qiwei

    2014-10-01

    Bacillus amyloliquefaciens strain NJZJSB3 has shown antagonism of several phytopathogens in vitro, especially Sclerotinia sclerotiorum. Both the broth culture and cell suspension of strain NJZJSB3 could completely protect the detached leaves of canola (Brassica napus) from S. sclerotiorum infection. In pot experiments, the application of strain NJZJSB3 cell suspension (10(8) CFU/ml) decreased the disease incidence by 83.3%, a result similar to commercially available fungicide (Dimetachlone). In order to investigate the potential biocontrol mechanisms of strain NJZJSB3, the nonvolatile antifungal compounds it produces were identified as iturin homologs using HPLC-ESI-MS. Antifungal volatile organic compounds were identified by gas chromatography-mass spectrometry. The detected volatiles toluene, phenol, and benzothiazole showed antifungal effects against S. sclerotiorum in chemical control experiments. Strain NJZJSB3 also produced biofilm, siderophores and cell-wall-degrading enzymes (protease and β-1,3-glucanase). These results suggest that strain NJZJSB3 can be a tremendous potential agent for the biological control of sclerotinia stem rot. PMID:24861342

  16. Mechanisms involved in biocontrol by microbial inoculants

    OpenAIRE

    Dunne, Colum; Delany, Isabel; Fenton, Anne; O'Gara, Fergal

    1996-01-01

    Biological control offers alternative environmentally friendly strategies for the control of phytopathogens in agriculture and horticulture. Biocontrol metabolites are designed so that they do not have any adverse effects on host plants or on indigenous microflora and, in addition, resistance to these metabolites does not appear to develop. As promising alternatives to chemical pesticides, some biocontrol agents have been found to produce a variety of antifungal secondary metaboli...

  17. Targeted precision biocontrol and enhanced pollination

    OpenAIRE

    Hokkanen, Heikki; Boecking, Otto; Cokl, Andrej; Cotes, Belen; Eken, Cafer; Karise, Reet; Krajl, Jasna; Maccagnani, Bettina; Menzler-Hokkanen, Ingeborg; Mommaerts, Veerle; Mänd, Marika; Smagghe, Guy; Söderlund, Niklas; Tuncer, Serdar; Veromann, Eve

    2012-01-01

    BICOPOLL and BICOPOLL-NET connect 12 research units from 10 European countries and autonomous regions into a concerted effort to develop and bring into practice improved methods of biocontrol and pollination services, using strawberry as the case study. BICOPOLL partners will use bees to (i) precision deliver biocontrol agents to the flowers of the target crops to provide control of diseases, (ii) improve the pollination of horticultural crops.

  18. Study on optimum growth condition and designing formulation for increasing shelf life of Streptomyces rimosus strain C-2012 as biocontrol agent

    Directory of Open Access Journals (Sweden)

    Ebrahim Karimi

    2015-12-01

    Full Text Available Introduction: An important issue in microbial biotechnology is linkage between screened beneficial strains in laboratory and industry. Therefore, to develop beneficial microbial biocontrol agents; optimization of nutritional and physiological condition for high level production and selection of carrier for final formulation are necessary. In this research we tried to find the best growth condition and suitable formulation for biocontrol Streptomyces rimosus strain C-2012. Materials and methods: For optimization of growth condition of strain C-2012, utilization of carbon sources, growth in different media, effect of temperature, pH and NaCl were investigated. Then the effect of different carriers and additives in final formulation and shelf life of microbial community were studied. Results: Study on utilization of carbon sources showed that glucose, fructose and mannitole were suitable carbon sources for growth and the best initial pH and temperature were 7 and 28°C, respectively. Results showed that the culture medium containing glucose, yeast extract and malt extract was the best medium. Investigation on NaCl effect showed that from 0 up to 300 mM sodium chloride could increase microbial community and salinity more than this range decreased microbial community. Based on the results we found that sand is suitable as microbial carrier comparing hydrogel polymers. Viability test during 36 months showed that formulation with NaCl content could keep 200 times (8*106 cfu/g more than samples without salinity at last month. Discussion and conclusion: Using suitable carbon sources such as glucose at 28 °C and pH at 7 are important items in optimum growth and preparing final formulation with good level of microbial community. Capability in secondary volatile and liquid metabolites production and fungal pathogen control by Streptomyces rimosus in the presence of NaCl showed that this strain has high potentiality to apply in both normal and saline area

  19. Evaluation of Trichoderma spp. and Clonostachys spp. Strains to Control Fusarium circinatum in Pinus radiata Seedlings Evaluación de Cepas de Trichoderma spp. y Clonostachys spp. para Controlar Fusarium circinatum en Plántulas de Pinus radiata

    Directory of Open Access Journals (Sweden)

    Priscila Moraga-Suazo

    2011-09-01

    Full Text Available The fungus Fusarium circinatum Nirenberg & O’Donnell causes pine pitch canker, an important disease for conifers worldwide. F. circinatum was first detected in Chile in 2001 and to date is present in nurseries and clonal hedges from Libertador General Bernardo O’Higgins Region to Los Rios Region. The purpose of this study was to evaluate the potential of Trichoderma spp. and Clonostachys spp. strains to control F. circinatum in Pinus radiata D. Don seedlings in the absence of other effective control methods. Eighty-one Trichoderma spp. and Clonostachys spp. strains were evaluated through in vitro assays to determine their ability to act as antagonists of F. circinatum and 21 strains were tested for their ability to reduce post-emergence mortality and increase P. radiata survival under greenhouse conditions. During in vitro experiments, 15 strains of Trichoderma inhibited mycelial growth of the pathogen by more than 60% and one strain of Clonostachys showed parasitism of F. circinatum hyphae. Greenhouse experiments showed no control of the disease when the antagonists were added to substrate after the pathogen. However, when the antagonists were added before the pathogen, four strains (Clonostachys UDC-32 and UDC-222 and Trichoderma UDC-23 and UDC-408 reduced post-emergence mortality between 80 and 100%. Among these strains, only Clonostachys UDC-222 significantly increased the survival of P. radiata seedlings. These results showed that Clonostachys UDC-222 has the potential to be used as a biocontrol agent against F. circinatum in the production of P. radiata plants.Fusarium circinatum Nirenberg & O’Donnell es el hongo que causa el cancro resinoso del pino, una enfermedad de importancia mundial en coníferas. En Chile, F. cicirnatum fue detectado por primera vez el año 2001 y a la fecha se encuentra presente en algunos viveros y huertos clonales desde la Región del Libertador General Bernardo O’Higgins hasta la Región de Los R

  20. IMPROVMENT BIOCONTROL OF DAMPING-OFF AND ROOT ROT/WILT OF FABA BEAN BY SALICYLIC ACID AND HYDROGEN PEROXIDE

    Directory of Open Access Journals (Sweden)

    Montaser F. Abdel-Monaim

    2013-04-01

    Full Text Available Rhizoctonia solani, Fusarium solani, F. oxysporum and Macrophomina phaseolina were found to be associated with root rot and wilt symptoms of faba bean plants collected from different fields in New Valley governorate, Egypt. All the obtained isolates were able to attack faba bean plants (cv. Giza 40 causing damping-off and root rot/wilt diseases. R. solani isolates 2 and 5, F. solani isolate 8, F. oxysporum isolate 12 and M. phaseolina isolate 14 were the more virulent ones in the pathogenicity tests. Biocontrol agents (Trichoderma viride, Bacillus megaterium and chemical inducers (salicylic acid and hydrogen peroxide individually or in combination were examined for biological control of damping-off and root rot/wilt and growth promotion of faba bean plants in vitro and in vivo. Both antagonistic biocontrol agents and chemical inducers either individually or in combination inhibited growth of the tested pathogenic fungi.Biocontrol agents combined with chemical inducers recorded the highest inhibited growth especially in case SA + T. viride and SA+ B. megaterium. Under green house and field conditions, all treatments significantly reduced damping-off and root rot/ wilt severity and increased survival of plants. Also, these treatments increased fresh and dry weights of the survived plants in pots compared with control.  The combination of biocontrol agents and chemical inducers were more effective than using them individually and SA+ T. viride was the best treatment in this respect. Under field conditions, all these treatments significantly increased growth parameters (plant height and No. of branches plant-1 and yield components (No. of pods and seedsplant-1, weight of 100 seeds and total yield feddan-1 and protein content in both seasons (2010-2011 and 2011-2012. Faba bean seeds soaked in SA+ T. viride and SA+ B. megaterium were recorded the highest growth parameters and yield components. Generally, the combination of biocontrol agents and

  1. Artificial diets for classical weed biocontrol agents-it's been done. The Cactoblastis cactorum story in the USA

    Science.gov (United States)

    The South American cactus moth, Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae) is celebrated for its role as a biological control agent for weedy Opuntia spp., but its unintentional arrival in North America represents an economic and ecological threat to native Opuntia spp. in the U. S. and ...

  2. Effects of selected pesticides and adjuvants on germination and vegetative growth of Phomopsis amaranthicola, a biocontrol agent for Amaranthus spp.

    OpenAIRE

    Wyss, G. S.; Charudattan, R.; Rosskopf, E.; Littell, R.

    2004-01-01

    Summary: Phomopsis amaranthicola, a bioherbicide agent for Amaranthus spp., was tested in vitro for its compatibility with commercial formulations of 16 adjuvants, 24 herbicides, nine fungicides and four insecticides at 2X, 1X (highest labelled product dose rate), 0.75X, 0.5X and 0.25X concentrations. These chemicals were tested for their effects on spore germination. Selected herbicides and fungicides at 1X were also tested for their influence on colony growth and sporulation. All tested ...

  3. The Biocontrol Agent Phlebiopsis gigantea: Efficacy and Impacts on the Stump Bacterial Biota and Conifer tree Defences

    OpenAIRE

    Sun, Hui

    2011-01-01

    Phlebiopsis gigantea has been for a long time known as a strong competitor against Heterobasidion annosum and intensively applied as a biological control agent on stump surfaces of Picea abies in Fennoscandia. However, the mechanism underlying its antagonistic activity is still unknown. A primary concern is the possible impact of P. gigantea treatment on resident non-target microbial biota of conifer stumps. Additional risk factor is the potential of P. gigantea to acquire a necrotrophic habi...

  4. Screening Commercially Available Entomopathogenic Biocontrol Agents for the Control of Aethina tumida (Coleoptera: Nitidulidae) in the UK

    OpenAIRE

    Budge, Giles E.; Brown, Mike A; Stephane Pietravalle; Gay Marris; Powell, Michelle E.; Andrew G. S. Cuthbertson; Blackburn, Lisa F.; Mathers, James J.

    2012-01-01

    The Small hive beetle, Aethina tumida, is an invasive pest of honey bees. Indigenous to sub-Saharan Africa, it has now become established in North America and Australia. It represents a serious threat to European honey bees. Commercially available entomopathogenic agents were screened for their potential to control beetle larvae. Entomopathogenic fungi investigated had minimal impact. The nematodes Steinernema kraussei and

  5. Mejora de la eficacia de Penicillium oxalicum como agente de biocontrol en enfermedades de plantas hortícolas

    OpenAIRE

    Vázquez García, Gema

    2014-01-01

    Actualmente, la reducción de materias activas (UE) y la implantación de la nueva Directiva comunitaria 2009/128/ que establece el marco de actuación para conseguir un uso sostenible de los plaguicidas químicos y la preferencia de uso de métodos biológicos, físicos y otros no químicos, obliga a buscar métodos de control menos perjudiciales para el medio ambiente. El control biológico (CB) de enfermedades vegetales empleando agentes de control biológico (ACB) se percibe como una alternativa más...

  6. Complete Genome Sequence of Biocontrol Strain Pseudomonas fluorescens LBUM 223

    OpenAIRE

    Roquigny, Roxane; Arseneault, Tanya; Gadkar, Vijay J.; Novinscak, Amy; Joly, David L.; Filion, Martin

    2015-01-01

    Pseudomonas fluorescens LBUM 223 is a plant growth-promoting rhizobacterium (PGPR) with biocontrol activity against various plant pathogens. It produces the antimicrobial metabolite phenazine-1-carboxylic acid, which is involved in the biocontrol of Streptomyces scabies, the causal agent of common scab of potato. Here, we report the complete genome sequence of P. fluorescens LBUM 223.

  7. Effect of endophytic pseudomonas aeruinosa and trichoderma harzianum on soil-borne diseases, mycorrhizae and induction of systemic resistance in okra grown in soil amended with vernonia anthelmintica (L.) seeds powder

    International Nuclear Information System (INIS)

    Biostimulants are used in agricultural practices for plant growth improvement. These fertilizers improve microbial activity and cause a negative impact on soil-borne pathogens. In recent years, stimulating plant natural defense is considered as most promising alternative strategy for crop productivity. The present study was carried out to examine the effect of endophytic Pseudomonas aeruginosa and Trichoderma harzianum in soil amendment with Vernonia anthelmintica seeds powder, on root rotting fungi, plant growth, mycorrhizal population around roots, phosphorous uptake and stimulation of plant defense markers like poylphenol and antioxidant status in okra. Combine application of Vernonia with Pseudomonas aeruginosa and Trichoderma harzianum significantly (p<0.05) suppressed Rhizoctonia solani and Fusarium oxysporum with complete reduction of Macrophomina phaseolina and Fusarium solani. Pseudomonas aeruginosa and T. harzianum alone or in Vernonia amended soil significantly reduced nematode galls on roots. Organic amendment also improved plant resistance against root diseases as evident from enhanced DPPH radical scavenging capacity and polyphenol content in treated plants as compare to control. VA Mycorrhizal spores were found significantly (p<0.05) higher in number around roots received Pseudomonas aeruginosa or T. harzianum alone or in Vernonia amended soil. Whereas, higher concentrations of phosphorus in okra shoots were found in plants received biocontrol agents in amended soil. Mixed application of PGPR and T. harzianum in amended soil produced tallest plants than other treatments. Soil amendment with Vernonia seed powder alone or with biocontrol agents offer a non-chemical means of plant disease control. (author)

  8. Screening Commercially Available Entomopathogenic Biocontrol Agents for the Control of Aethina tumida (Coleoptera: Nitidulidae) in the UK.

    Science.gov (United States)

    Cuthbertson, Andrew G S; Mathers, James J; Blackburn, Lisa F; Powell, Michelle E; Marris, Gay; Pietravalle, Stephane; Brown, Mike A; Budge, Giles E

    2012-01-01

    The Small hive beetle, Aethina tumida, is an invasive pest of honey bees. Indigenous to sub-Saharan Africa, it has now become established in North America and Australia. It represents a serious threat to European honey bees. Commercially available entomopathogenic agents were screened for their potential to control beetle larvae. Entomopathogenic fungi investigated had minimal impact. The nematodes Steinernema kraussei and S. carpocapsae provided excellent control with 100% mortality of larvae being obtained. Sequential applications of the nematodes following larvae entering sand to pupate also provided excellent control for up to 3 weeks. The information gained supports the development of contingency plans to deal with A. tumida should it occur in the UK, and is relevant to the management of Small hive beetle where it is already present. PMID:26466625

  9. Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp.

    Science.gov (United States)

    Shi, Wei-Ling; Chen, Xiu-Lan; Wang, Li-Xia; Gong, Zhi-Ting; Li, Shuyu; Li, Chun-Long; Xie, Bin-Bin; Zhang, Wei; Shi, Mei; Li, Chuanyou; Zhang, Yu-Zhong; Song, Xiao-Yan

    2016-04-01

    Trichodermaspp. are well known biocontrol agents that produce a variety of antibiotics. Peptaibols are a class of linear peptide antibiotics mainly produced byTrichoderma Alamethicin, the most studied peptaibol, is reported as toxic to plants at certain concentrations, while the mechanisms involved are unclear. We illustrated the toxic mechanisms of peptaibols by studying the growth-inhibitory effect of Trichokonin VI (TK VI), a peptaibol fromTrichoderma longibrachiatumSMF2, onArabidopsisprimary roots. TK VI inhibited root growth by suppressing cell division and cell elongation, and disrupting root stem cell niche maintenance. TK VI increased auxin content and disrupted auxin response gradients in root tips. Further, we screened theArabidopsisTK VI-resistant mutanttkr1tkr1harbors a point mutation inGORK, which encodes gated outwardly rectifying K(+)channel proteins. This mutation alleviated TK VI-induced suppression of K(+)efflux in roots, thereby stabilizing the auxin gradient. Thetkr1mutant also resisted the phytotoxicity of alamethicin. Our results indicate that GORK channels play a key role in peptaibol-plant interaction and that there is an inter-relationship between GORK channels and maintenance of auxin homeostasis. The cellular and molecular insight into the peptaibol-induced inhibition of plant root growth advances our understanding ofTrichoderma-plant interactions. PMID:26850879

  10. Implementación de técnicas moleculares para la detección y cuantificación del agente de biocontrol Pantoea agglomerans CPA-2

    OpenAIRE

    Soto Muñoz, Lourdes

    2014-01-01

    Pantoea agglomerans CPA-2 es un agente de biocontrol (ACB) eficaz en el control de enfermedades de postcosecha en fruta de pepita y cítricos. No obstante, para implementar y registrar su uso como estrategia práctica de control en Europa es importante evaluar la capacidad del ACB para colonizar, persistir y propagarse en condiciones habituales de aplicación con un método de detección que permita diferenciar al antagonista del resto de la microbiota. La presente tesis doctoral tuvo como objetiv...

  11. In Vitro Inhibition of Cellulolytic Enzymes of Fusarium Oxysporum by Trichoderma spp and Pseudomonas Fluorescens on Arachis Hypogaea L

    OpenAIRE

    P.Rajeswari

    2015-01-01

    In an attempt to develop biocontrol system for management of Fusarium wilt in groundnut, Trichoderma viride, Trichoderma harzianum,and Pseudomonas fluorescens were evaluated for their antagonistic activity against Fusarium oxysporum in vitro. .Fusarium wilt diseasescaused by the fungus Fusarium oxysporum lead to significant yield losses of crops. Experiments were conducted on the effect of culture filtratesof T.viride (1%), T. harzianum (1.5%), and P. fluorescens (2%) on the in vitro inhibiti...

  12. Production of hydrolytic enzymes by Trichoderma isolates with antagonistic activity against Crinipellis perniciosa, the causal agent of witches' broom of cocoa

    Directory of Open Access Journals (Sweden)

    Marco Janice Lisboa De

    2003-01-01

    Full Text Available Two isolates of Trichoderma, which reduce the incidence of witches'broom disease caused in cocoa by Crinipellis perniciosa, were evaluated for their potential to produce hydrolases in liquid medium. Very low or no hydrolytic activity was produced in the absence of any substrate. The activities of chitinase, N-acetylglucosaminidase, beta-1,3-glucanase, total cellulase, endoglucanase, aryl- beta-glucosidase, beta-glucosidase, protease and amylase increased dramatically within 72-120 h of growth in the presence of specific substrates. Except for N-acetylglucosaminidase and beta-glucosidase Trichoderma harzianum isolate 1051 produced the largest amounts of hydrolases. The possible involvement of these enzymes in the antagonistic interaction between Trichoderma and C. perniciosa is discussed.

  13. Q69, an E. faecalis-infecting bacteriophage, as a biocontrol agent for reducing tyramine in dairy products

    Directory of Open Access Journals (Sweden)

    Victor eLadero

    2016-04-01

    Full Text Available Biogenic amines (BAs are low molecular weight nitrogenous compounds with biological activity, formed from amino acids by decarboxylation. BAs are naturally present in all living organisms playing essential roles. However, their accumulation in food through the metabolic activity of certain microorganisms constitutes a toxicological hazard. Among foods, cheeses accumulate some of the highest concentrations of BAs since they provide an ideal environment for their accumulation. Most of the methods proposed for reducing BAs in cheese, such as milk pasteurisation, have not only failed to completely solve the problem, they also affect non-BA producing lactic acid bacteria (LAB, i.e., the bacteria that participate in the development of the organoleptic characteristics of cheese. Novel technologies specifically targeted against BA producers are therefore needed to control BA accumulation. Bacteriophages have been proposed as agents for specifically controlling the presence of foodborne pathogens in food. Due to its specificity, they could be used as a biotechnological tool targeted to reduce the population of BA-producing bacteria. The present work reports the isolation, from cheese, and the characterisation of bacteriophage Q69, which infects specifically Enterococcus faecalis, the species mainly responsible of the accumulation of the BA tyramine in foods. Furthermore, its capacity to reduce the accumulation of tyramine in different conditions –including a model cheese- was proven. The obtained results open up the possibility of use bacteriophages to prevent BA accumulation in fermented foods.

  14. Q69 (an E. faecalis-Infecting Bacteriophage) As a Biocontrol Agent for Reducing Tyramine in Dairy Products.

    Science.gov (United States)

    Ladero, Victor; Gómez-Sordo, Carolina; Sánchez-Llana, Esther; Del Rio, Beatriz; Redruello, Begoña; Fernández, María; Martín, M Cruz; Alvarez, Miguel A

    2016-01-01

    Biogenic amines (BAs) are low molecular weight nitrogenous compounds with biological activity, formed from amino acids by decarboxylation. BAs are naturally present in all living organisms playing essential roles. However, their accumulation in food through the metabolic activity of certain microorganisms constitutes a toxicological hazard. Among foods, cheeses accumulate some of the highest concentrations of BAs since they provide an ideal environment for their accumulation. Most of the methods proposed for reducing BAs in cheese, such as milk pasteurization, have not only failed to completely solve the problem, they also affect non-BA producing lactic acid bacteria, i.e., the bacteria that participate in the development of the organoleptic characteristics of cheese. Novel technologies specifically targeted against BA producers are therefore needed to control BA accumulation. Bacteriophages have been proposed as agents for specifically controlling the presence of foodborne pathogens in food. Due to its specificity, they could be used as a biotechnological tool targeted to reduce the population of BA-producing bacteria. The present work reports the isolation, from cheese, and the characterization of bacteriophage Q69, which infects specifically Enterococcus faecalis, the species mainly responsible of the accumulation of the BA tyramine in foods. Furthermore, its capacity to reduce the accumulation of tyramine in different conditions -including a model cheese- was proven. The obtained results open up the possibility of use bacteriophages to prevent BA accumulation in fermented foods. PMID:27092117

  15. Q69 (an E. faecalis-Infecting Bacteriophage) As a Biocontrol Agent for Reducing Tyramine in Dairy Products

    Science.gov (United States)

    Ladero, Victor; Gómez-Sordo, Carolina; Sánchez-Llana, Esther; del Rio, Beatriz; Redruello, Begoña; Fernández, María; Martín, M. Cruz; Alvarez, Miguel A.

    2016-01-01

    Biogenic amines (BAs) are low molecular weight nitrogenous compounds with biological activity, formed from amino acids by decarboxylation. BAs are naturally present in all living organisms playing essential roles. However, their accumulation in food through the metabolic activity of certain microorganisms constitutes a toxicological hazard. Among foods, cheeses accumulate some of the highest concentrations of BAs since they provide an ideal environment for their accumulation. Most of the methods proposed for reducing BAs in cheese, such as milk pasteurization, have not only failed to completely solve the problem, they also affect non-BA producing lactic acid bacteria, i.e., the bacteria that participate in the development of the organoleptic characteristics of cheese. Novel technologies specifically targeted against BA producers are therefore needed to control BA accumulation. Bacteriophages have been proposed as agents for specifically controlling the presence of foodborne pathogens in food. Due to its specificity, they could be used as a biotechnological tool targeted to reduce the population of BA-producing bacteria. The present work reports the isolation, from cheese, and the characterization of bacteriophage Q69, which infects specifically Enterococcus faecalis, the species mainly responsible of the accumulation of the BA tyramine in foods. Furthermore, its capacity to reduce the accumulation of tyramine in different conditions –including a model cheese- was proven. The obtained results open up the possibility of use bacteriophages to prevent BA accumulation in fermented foods. PMID:27092117

  16. Bacteriophage biocontrol of foodborne pathogens.

    Science.gov (United States)

    Kazi, Mustafa; Annapure, Uday S

    2016-03-01

    Bacteriophages are viruses that only infect bacterial cells. Phages are categorized based on the type of their life cycle, the lytic cycle cause lysis of the bacterium with the release of multiple phage particles where as in lysogenic phase the phage DNA is incorporated into the bacterial genome. Lysogeny does not result in lysis of the host. Lytic phages have several potential applications in the food industry as biocontrol agents, biopreservatives and as tools for detecting pathogens. They have also been proposed as alternatives to antibiotics in animal health. Two unique features of phage relevant for food safety are that they are harmless to mammalian cells and high host specificity, keeping the natural microbiota undisturbed. However, the recent approval of bacteriophages as food additives has opened the discussion about 'edible viruses'. This article reviews in detail the application of phages for the control of foodborne pathogens in a process known as "biocontrol". PMID:27570260

  17. Microecological Relationship Between Metarizium and Trichoderma in Artificial Medium and Soil%培养基和土壤中木霉菌与绿僵菌微生态关系

    Institute of Scientific and Technical Information of China (English)

    衣思瑶; 吕淑霞; 陈捷; 宋磊; 黄磊; 李雅乾

    2012-01-01

    The relationship between Trichoderma and Metarhizium cultured on the plate and in soil were studied respectively. The growth of Trichoderma and Metarhizium and the interacting effect between the two strains were observed according to the morphological colony confrontation on plate and re-isolation test from soil when the strains of Trichoderma and Metarhizium were inoculated at different proportion simultaneously. The similar observation was conducted when Metarhizium was inoculated and cultured first followed by inoculating Trichoderma at different intervals. The results showed that when Trichoderma and Metarhizium were inoculated simultaneously at the ratio of 1:100, the average growth distance of Trichoderma was as 6 times as that of Metarhizium on the plate. Metarhizium hardly isolated from Trichoderma after culturing for 4 days in soil. Therefore, Trichoderma inhibited to Metarhizium growth significantly, and it was hard for Metarhizium to grow due to the dominant growth of Trichoderma. When Metarhizium was inoculated and cultured for 7 days before inoculating Trichoderma, the growth distance of Metarhizium was lmm lower than that of Trichoderma, and the spores quantity of Metarhizium was higher than that of Trichoderma after the two strains were in a stable growth. The growth of Trichoderma turned to be weak and the growth rate of Metarhizium increased, consequently the growth of the two strains tended to be balanced, and it could achieve a certain level of co-existence. The thorough research need to be done further more in terms of the complex microbial ecological relationships between Trichoderma and Metarhizium in soil, in order to obtain the key techniques for avoiding the direct ecologic competition of the two strains and to realize the application of the two bio-control agents together synergistically.%为研究木霉菌与绿僵菌在平板及土壤中相互关系,以不同配比同时接种2株菌,采用平板对峙和土壤再分离试验,观察2种

  18. 木霉制剂改良滨海盐渍土台田生态效应%Ecological effect of Trichoderma agent on platform field soil improvement in saline coastal area

    Institute of Scientific and Technical Information of China (English)

    陈建爱; 段友臣; 郭峰; 杨武汉; 陈为京; 万书波

    2016-01-01

    Application of biological agents to improve saline soil is a relatively fast, economical, simple method with long-term effectiveness. Trichoderma spp. are free-living fungi that are highly active in interaction among root, soil and foliar environments. Biological agents application in agricultural systems is a potential method to ameliorate saline soil, eventually benefiting the environment or ecosystem by regulating soil physical and chemical properties and microbial population. In this study, broadcast granule preparation of Trichoderma agent (containing at least 1×107 colony-forming units of active ingredients for per gram dry weight) was applied to soil of moderately saline coastal platform fields to explore effect of Trichoderma agent on soil properties of moderately saline coastal platform field. Arable layers soils were sampled, which included moderately saline coastal platform field with (T1010) and without (CK) Trichoderma agent under peanut cropping (sandy loam soil with salt content of 2.99 g·kg-1), flood land in coastal saline area (sandy loam soil with salt content of 26.19 g·kg-1), reclaimed field in coastal slight saline area under continuous cotton cropping (light loam soil with salt content of 1.75 g·kg-1), non-saline solar-greenhouse soil under continuous tomato cropping (loam soil with salt content of 0.98 g·kg-1). All the plot samples were repeated four times, and the physical, chemical and biological properties tested in laboratory. The results showed that Trichoderma agent amended soil physical properties. Compared with CK, T1010 increased soil compaction by 177.04%, content of water stable aggregate of ≥0.25 mm by 265.78%, soil moisture content by 320.83%. In this study, soil chemical properties also changed. The contents of nitrogen, phosphorus, potassium and organic matter increased by 96.14%, 42.17%, 105.65% and 63.79%, respectively, under T1010 compared with those under CK. Under T1010, soil bacteria, actinomyce, fungi and

  19. Integrated application of some compatible biocontrol agents along with mustard oil seed cake and furadan on Meloidogyne incognita infecting tomato plants

    OpenAIRE

    Goswami, Bijoy Kumar; Pandey, Rajesh Kumar; Rathour, Kabindra Singh; Bhattacharya, Chaitali; SINGH, LOKENDRA

    2006-01-01

    Experiments were carried out to study the effect of two fungal bioagents along with mustard oil cake and furadan against root knot nematode Meloidogyne incognita infecting tomato under greenhouse condition. Bioagents viz., Paecilomyces lilacinus and Trichoderma viride alone or in combination with mustard cake and furadan promoted plant growth, reduced number of galls/plant, egg masses/root system and eggs/egg mass. The fungal bioagents along with mustard cake and nematicide showed least nemat...

  20. Improvement of Biocontrol of Damping-off and Root Rot/Wilt of Faba Bean by Salicylic Acid and Hydrogen Peroxide.

    Science.gov (United States)

    Abdel-Monaim, Montaser Fawzy

    2013-03-01

    Rhizoctonia solani, Fusarium solani, F. oxysporum, and Macrophomina phaseolina were found to be associated with root rott and wilt symptoms of faba bean plants collected from different fieldes in New Valley governorate, Egypt. All the obtained isolates were able to attack faba bean plants (cv. Giza 40) causing damping-off and root rot/wilt diseases. R. solani isolates 2 and 5, F. solani isolate 8, F. oxysporum isolate 12 and M. phaseolina isolate 14 were the more virulent ones in the pathogenicity tests. Biocontrol agents (Trichoderma viride and Bacillus megaterium) and chemical inducers (salicylic acid [SA] and hydrogen peroxide) individually or in combination were examined for biological control of damping-off and root rot/wilt and growth promoting of faba bean plants in vitro and in vivo. Both antagonistic biocontrol agents and chemical inducers either individually or in combination inhibited growth of the tested pathogenic fungi. Biocontrol agents combined with chemical inducers recorded the highest inhibited growth especially in case SA + T. viride and SA + B. megaterium. Under green house and field conditions, all treatments significantly reduced damping-off and root rot/wilt severity and increased of survival plants. Also, these treatments increased fresh and weights of the survival plants in pots compared with control. The combination between biocontrol agents and chemical inducers were more effective than used of them individually and SA + T. viride was the best treatment in this respect. Also, under field conditions, all these treatments significantly increased growth parameters (plant height and number of branches per plant) and yield components (number of pods per plant and number of seeds per plant, weight of 100 seeds and total yield per feddan) and protein content in both seasons (2010~2011 and 2011~2012). Faba bean seeds soaked in SA + T. viride and SA + B. megaterium were recorded the highest growth parameters and yield components. Generally, the

  1. Short communication. A review on the efficacy tests and risk analyses conducted on Chondrostereum purpureum, a potential biocontrol agent, in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Hantula, J.; Hamberg, L.; Vartiamaki, H.; Korhonen, K.; Uotila, A.

    2012-11-01

    Hardwood sprouting is a problem in forest regeneration areas, under electric lines, on roadsides and railways. In Finland, isolates of Chondrostereum purpureum were screened by field experiments for their efficiency to control sprouting. The proportion of dead stumps with the best isolates exceeded 80% on birch (Betula pendula and B. pubescens), and C. purpureum was also found to affect the sprouting of aspen (Populus tremula) and rowan (Sorbus aucuparia). The risks of C. purpureum based biocontrol were evaluated by population genetic analysis. It showed that C. purpureum is a geographically undifferentiated species that does not reproduce clonally. The risk of infection of non-target trees was found to be highest in early spring. These findings suggest that the risks of using C. purpureum in biocontrol are small. (Author) 36 refs.

  2. Functional genomic approach to the study of biodiversitywithin Trichoderma

    Institute of Scientific and Technical Information of China (English)

    Monte E; Hermosa M R; González F J; Rey M; Cardoza R E; Gutiérrez S; Delgado Jarana J; Llobell A

    2004-01-01

    @@ Trichoderma is a fungal genus of great and demonstrable biotechnological value, but its genome is poorly surveyed compared with other model microorganisms. Due to their ubiquity and rapid substrate colonization, Trichoderma species have been widely used as biocontrol organisms for agriculture, and their enzyme systems are widely used in industry. Therefore, there is a clear interest to explore beyond the phenotype to exploit the underlying genetic systems using functional genomics tools. The great diversity of species within the Trichoderma genus, the absence of optimized systems for its exploration, and the great variety of genes expressed under a wide range of ambient conditions are the main challenges to consider when starting a comprehensive functional genomics study. An initial project started by three Spanish groups has been extended into the project TRICHOEST, funded by the EU (FP5, QLRT-2001-02032) to target the transcriptome analysis of selected Trichoderma strains with biocontrol potential, in conditions related to antagonism, nutrient stress and plant interactions. Once specific conditions were defined, cDNA libraries were produced and used for EST sequencing. Nine strains from seven Trichoderma species have been considered in this study and an important amount of gene sequence data has been generated, analyzed and used to compare the gene expression in different strains.In parallel to sequencing, genomic expression studies were carried out by means of macro-arrays to identify genes expressed in specific conditions. In silico analysis of DNA sequencing data together with macro-array expression results have lead to a selection based on the potential use of the gene sequences.The selected clone sequences were completed and cloned in appropriate vectors to initiate functional analysis by means of expression studies in homologous and heterologous systems.

  3. Nitrogen Metabolism and Growth Enhancement in Tomato Plants Challenged with Trichoderma harzianum Expressing the Aspergillus nidulans Acetamidase amdS Gene

    Science.gov (United States)

    Domínguez, Sara; Rubio, M. Belén; Cardoza, Rosa E.; Gutiérrez, Santiago; Nicolás, Carlos; Bettiol, Wagner; Hermosa, Rosa; Monte, Enrique

    2016-01-01

    Trichoderma is a fungal genus that includes species that are currently being used as biological control agents and/or as biofertilizers. In addition to the direct application of Trichoderma spp. as biocontrol agents in plant protection, recent studies have focused on the beneficial responses exerted on plants, stimulating the growth, activating the defenses, and/or improving nutrient uptake. The amdS gene, encoding an acetamidase of Aspergillus, has been used as a selectable marker for the transformation of filamentous fungi, including Trichoderma spp., but the physiological effects of the introduction of this gene into the genome of these microorganisms still remains unexplored. No evidence of amdS orthologous genes has been detected within the Trichoderma spp. genomes and the amdS heterologous expression in Trichoderma harzianum T34 did not affect the growth of this fungus in media lacking acetamide. However, it did confer the ability for the fungus to use this amide as a nitrogen source. Although a similar antagonistic behavior was observed for T34 and amdS transformants in dual cultures against Rhizoctonia solani, Botrytis cinerea, and Fusarium oxysporum, a significantly higher antifungal activity was detected in amdS transformants against F. oxysporum, compared to that of T34, in membrane assays on media lacking acetamide. In Trichoderma-tomato interaction assays, amdS transformants were able to promote plant growth to a greater extent than the wild-type T34, although compared with this strain the transformants showed similar capability to colonize tomato roots. Gene expression patterns from aerial parts of 3-week-old tomato plants treated with T34 and the amdS transformants have also been investigated using GeneChip Tomato Genome Arrays. The downregulation of defense genes and the upregulation of carbon and nitrogen metabolism genes observed in the microarrays were accompanied by (i) enhanced growth, (ii) increased carbon and nitrogen levels, and (iii) a

  4. Effect of Combined Use of Bacillus subtilis CA32 and Trichoderma harzianum RU01 on Biological Control of Rhizoctonia solani on Solanum melongena and Capsicum annuum

    Directory of Open Access Journals (Sweden)

    S. Abeysinghe

    2009-01-01

    Full Text Available A combination of two compatible biological control agents, Bacillus subtilis CA32 and Trichoderma harzianum RU01, both antagonistic to the pathogen Rhizoctonia solani, was used to control damping-off in Solanum melongena and Capsicum annuum. Radial growth of the mycelium of R. solani was inhibited by T. harzianum RU01 in dual Petri plate assay. T. harzianum RU01 was capable to invading the whole surface of the pathogen colony, sporulating on it and suppress the production of sclerotia of R. solani. Microscopic studies showed the hyphae of R. solani surrounded by the T. harzianum RU01 and subsequent disintegration. B. subtilis CA32 produced a zone of inhibition only with the pathogen and no sings of antagonism between the bacteria and T. harzianum RU01 on dual Petri plate assay. Significant plant protection was achieved when either B. subtilis added to the seeds or T. harzianum added to soil. However, when combine application of biocontrol agents, seed bacterization and T. harzianum application to soil, significantly enhanced the plant protection from R. solani. Soil application of B. subtilis and seed application of T. harzianum either singly or in combination did not protect from R. solani infection indicating that the importance of mode of application of biocontrol agents.

  5. Field Studies on the Relationship between Fusarium verticillioides and Maize (Zea mays L.): Effect of Biocontrol Agents on Fungal Infection and Toxin Content of Grains at Harvest

    OpenAIRE

    Paola Pereira; Andrea Nesci; Carlos Castillo; Miriam Etcheverry

    2011-01-01

    Maize (Zea mays L.) is a staple food for the majority of the world's population. Fusarium verticillioides (Sacc.) Nirenberg (Teleomorph: Gibberella moniliformis Wineland; synonym: F. moniliformis) is both a saprophyte and a parasite of maize and can also be found as an endophyte. The presence of this fungus in maize constitutes an imminent risk due to its ability to produce fumonisins, mycotoxins with proven carcinogenic effects. The present work investigated biocontrol activity of Bacillus a...

  6. Carbendazim resistance and calculation effective concentration of carbendazim for Trichoderma harzianum

    Institute of Scientific and Technical Information of China (English)

    Elham Siassi; YANG Qian

    2005-01-01

    There is a method for investigating the transformation of resistance gene of carbendazim into Trichoderma harzianum. In order to introduce the resistance to benzimidazole fungicide into bio-control microorganism Trichoderma harzianum was transformed with the resistance gene. In this study, we investigate resistance level and calculate EC 50 ( effective concentration of carbendazim that can survive 50% of Trichoderma harzianum in that concentration) and stability of the resistance for the transformant isolate of Trichoderma harzianum.Results show the transformants can growth on the medium containing more than 1 000 μg/ml carbendazim and the resistance is stabled after 10 times transfer on non-selective medium and have EC 50 average about, 1 200μg/ml.

  7. Genetic improvement of Trichoderma ability to induce systemic resistance

    Institute of Scientific and Technical Information of China (English)

    Ciliento R; Mach R L; Lorito M; Woo S L; Di Benedetto P; Ruocco M; Scala F; Soriente I; Ferraioli S; Brunner K; Zeilinger S

    2004-01-01

    @@ The beneficial applications of Trichoderma spp. in agriculture include not only the control of plant pathogens, but also the improvement of plant growth, micronutrient availability, and plant tolerance to abiotic stress. In addition, it has been suggested that these fungi are able to increase plant disease resistance by activating induced systemic resistance (ISR) . The mode of action of these beneficial fungi in the Trichoderma -plant-pathogen interaction are many, complex and not completely understood. Numerous lytic enzymes have been characterized, the encoding genes (ech42 gluc78,nag1 from T. atroviride strain P1) cloned, and their role in biocontrol demonstrated. The corresponding biocontrol-related inducible promoters have been used in a reporter system based on the Aspergillus niger glucose oxidase gene (goxA) to monitor biocontrol activity. Glucose oxidase catalyzes the oxygen-dependent oxidation of D-glucose to D-glucono-1, 5-lactone and hydrogen peroxide; this latter compound is known to have an antifungal effect and activate the plant defence cascade, thus increasing resistance to pathogen attack. T. atroviride P1 transformants with various promoters gox were tested as seed coating treatments on bean seeds planted in soil infested with a soilborne fungal pathogen. Successively, the emergent leaves were inoculated with a foliar pathogen to determine the effect of the GOX transformants on biocontrol and resistance to pathogen attack.Inoculations with the P1-GOX transformants not only reduced disease symptoms caused by a soil pathogen, but also the lesions of various foliar pathogens applied far from the Trichoderma colonization, thus activating ISR. A similar approach is being use to genetically improve T.harzianum T22, a rhizosphere competent and commercially marketed strain not transformed yet, by using four different gox gene constructs under the control of constitutive and inducible promoters.Plasmids have been introduced in Trichoderma by

  8. Trichoderma species from China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chu-long; XU Tong

    2004-01-01

    @@ Seventeen species of Trichoderma, isolated from soil or tree bark from China are identified based on morphological and physiological characters, and from their phylogenetic position inferred from parsimony analyses of nucleotide sequences of the internal transcribed spacer regions of the rDNA cluster (ITS1 and 2) and partial sequences of translation elongation factor 1-alpha (tef1) . There were T. citrinoviride, T. longibrachiatum, T. sinensis in section Longibrachiatum, T. atroviride, T.koningii, T. viride, T. asperellum, T. hamatum, T. erinaceum in section Trichoderma, T.harzianum (H.lixii) , T. inhamatum, T. velutinum , T. cerinum , T. strictipile , T. spirale ,T. virens, H. nigrovirens (Trichoderma sp.) in section Pachybasium. Among them four species:T. asperellum , T. velutinum , T. cerinum , T. spirale were reported firstly in China. In addition, two suspected new taxa (Trichoderma spp.) in Trichoderma section were proposed:Trichoderma sp. 1 (ZAUT261, 4, 4A, 15A, 2C), Trichoderma sp. 2 (2B, 5, 7A, 7B, 9A).Trichoderma sp. 1 was similar to T. hamatum , but the temperature optimum for mycelial growth was lower than that of T. hamatum and the species tended to form hemisphaerical pustule with Telatively larger conidia (average length 4.6 μm × 2.8 μm). Trichoderma sp. 2 was distinguished morphologically from related species T. strigosum, T. pubescens, T. erinaceum, T. hamatum and Trichoderma sp. 1 in pustules on CMD without fertile or sterile conidiophore elongation and distinctive phialide shape, the conidiophore branches similar to T. koningii, but the conidia similar to T. viride, subglobose, conspicuously tuberculate.

  9. Investigating the compatibility of the biocontrol agent Clonostachys rosea IK726 with prodigiosin-producing Serratia rubidaea S55 and phenazine-producing Pseudomonas chlororaphis ToZa7.

    Science.gov (United States)

    Kamou, Nathalie N; Dubey, Mukesh; Tzelepis, Georgios; Menexes, Georgios; Papadakis, Emmanouil N; Karlsson, Magnus; Lagopodi, Anastasia L; Jensen, Dan Funck

    2016-05-01

    This study was carried out to assess the compatibility of the biocontrol fungus Clonostachys rosea IK726 with the phenazine-producing Pseudomonas chlororaphis ToZa7 or with the prodigiosin-producing Serratia rubidaea S55 against Fusarium oxysporum f. sp. radicis-lycopersici. The pathogen was inhibited by both strains in vitro, whereas C. rosea displayed high tolerance to S. rubidaea but not to P. chlororaphis. We hypothesized that this could be attributed to the ATP-binding cassette (ABC) proteins. The results of the reverse transcription quantitative PCR showed an induction of seven genes (abcB1, abcB20, abcB26, abcC12, abcC12, abcG8 and abcG25) from subfamilies B, C and G. In planta experiments showed a significant reduction in foot and root rot on tomato plants inoculated with C. rosea and P. chlororaphis. This study demonstrates the potential for combining different biocontrol agents and suggests an involvement of ABC transporters in secondary metabolite tolerance in C. rosea. PMID:26860841

  10. Antagonismo de Trichoderma SPP. E Bacillus subtilis (UFV3918 a Fusarium sambucinum em Pinus elliottii engelm

    Directory of Open Access Journals (Sweden)

    Caciara Gonzatto Maciel

    2014-06-01

    Full Text Available Pinus elliottii é uma espécie de importância no setor florestal e apresenta vulnerabilidade na qualidade sanitária de suas sementes, especialmente pela associação de Fusarium spp., responsável por perdas de plântulas no viveiro. Este trabalho teve como objetivo avaliar a ação antagonista in vitro e in vivo dos agentes Trichoderma spp. e Bacillus subtilis (UFV3918 no controle de Fusarium sambucinum, responsável por danos em plântulas de Pinus elliottii. O controle in vitro foi avaliado através da inibição do crescimento micelial (confronto pareado de culturas, após a incubação a 25±2 ºC e fotoperíodo de 12 h. Para os testes in vivo (desenvolvidos em condições de viveiro, as sementes inicialmente foram inoculadas com o patógeno e, na sequência, microbiolizadas com os agentes antagônicos, para posterior semeadura. Utilizaram-se as técnicas de contato com o biocontrolador em meio BDA por 48 h e peliculização, como formas de microbiolização. Tanto Trichoderma spp. quanto Bacillus subtilis (UFV3918 foram eficientes no controle in vitro de F. sambucinum, e no teste de biocontrole in vivo o produto Bacillus subtilis (UFV3918 destacou-se, reduzindo as perdas de plântulas causadas pelo patógeno, assim como potencializando as variáveis de comprimento de plântula, massa verde e massa seca.

  11. Integrated application of some compatible biocontrol agents along with mustard oil seed cake and furadan on Meloidogyne incognita infecting tomato plants

    Institute of Scientific and Technical Information of China (English)

    GOSWAMI Bijoy Kumar; PANDEY Rajesh Kumar; RATHOUR Kabindra Singh; BHATTACHARYA Chaitali; SINGH Lokendra

    2006-01-01

    Experiments were carried out to study the effect of two fungal bioagents along with mustard oil cake and furadan against root knot nematode Meloidogyne incognita infecting tomato under greenhouse condition. Bioagents viz., Paecilomyces lilacinus and Trichoderma viride alone or in combination with mustard cake and furadan promoted plant growth, reduced number of galls/plant, egg masses/root system and eggs/egg mass. The fungal bioagents along with mustard cake and nematicide showed least nematodes reproduction factor as compared to untreated infested soil.

  12. Viability and stability of biological control agents on cotton and snap bean seeds.

    Science.gov (United States)

    Elliott, M L; Des Jardin, E A; Batson, W E; Caceres, J; Brannen, P M; Howell, C R; Benson, D M; Conway, K E; Rothrock, C S; Schneider, R W; Ownley, B H; Canaday, C H; Keinath, A P; Huber, D M; Sumner, D R; Motsenbocker, C E; Thaxton, P M; Cubeta, M A; Adams, P D; Backman, P A; Fajardo, J; Newman, M A; Pereira, R M

    2001-08-01

    Cotton and snap bean were selected for a multi-year, multi-state regional (south-eastern USA) research project to evaluate the efficacy of both commercial and experimental bacterial and fungal biological control agents for the management of damping-off diseases. The goal for this portion of the project was to determine the viability and stability of biological agents after application to seed. The biological seed treatments used included: (1) Bacillaceae bacteria, (2) non-Bacillaceae bacteria, (3) the fungus Trichoderma and (4) the fungus Beauveria bassiana. Seed assays were conducted to evaluate the following application factors: short-term (seed treatment; quality (i.e. isolate purity); compatibility with chemical pesticides and other biocontrol agents; application uniformity between years and plant species. For the bacterial treatments, the Bacillaceae genera (Bacillus and Paenibacillus) maintained the greatest population of bacteria per seed, the best viability over time and the best application uniformity across years and seed type. The non-Bacillaceae genera Burkholderia and Pseudomonas had the least viability and uniformity. Although Beauveria bassiana was only evaluated one year, the seed fungal populations were high and uniform. The seed fungal populations and uniformity for the Trichoderma isolates were more variable, except for the commercial product T-22. However, this product was contaminated with a Streptomyces isolate in both the years that it was evaluated. The study demonstrated that Bacillaceae can be mixed with Trichoderma isolates or with numerous pesticides to provide an integrated pest control/growth enhancement package. PMID:11517723

  13. Characterization of PhlG, a Hydrolase That Specifically Degrades the Antifungal Compound 2,4-Diacetylphloroglucinol in the Biocontrol Agent Pseudomonas fluorescens CHA0

    OpenAIRE

    Bottiglieri, Mélanie; Keel, Christoph

    2006-01-01

    The potent antimicrobial compound 2,4-diacetylphloroglucinol (DAPG) is a major determinant of biocontrol activity of plant-beneficial Pseudomonas fluorescens CHA0 against root diseases caused by fungal pathogens. The DAPG biosynthetic locus harbors the phlG gene, the function of which has not been elucidated thus far. The phlG gene is located upstream of the phlACBD biosynthetic operon, between the phlF and phlH genes which encode pathway-specific regulators. In this study, we assigned a func...

  14. Effect of Bio-Control Agents on Yield, Yield Components and Root Rot Control in two Wheat Cultivars at New Valley Region

    Directory of Open Access Journals (Sweden)

    Mohamed Yosseif MOUBARK

    2011-11-01

    Full Text Available This study evaluated the effectiveness of applying the bioagents Bacillus subtilis (isolate BSM1, B. megaterium (isolate BMM5, Trichoderma viride (isolate TVM2 and T. harzianum (isolate THM4 for the control of rot root disease caused by Fusarium graminearum, Drechslera halodes and Rhizoctonia solani on two wheat cultivars (�Sakha 93� and �Bani Suif 5� under greenhouse conditions. Moreover, their effect wheat growth and yield were also studied under field conditions. In vitro, all tested bioagents were significantly in the reduced redial growth of the pathogenic fungi. Trichoderma viride was active more than the other tested bioagents followed by T. harzianum, while B. subtilis was the least ones. Under greenhouse conditions, all tested bioagents were able to reduce significantly damping-off and root rot caused by the tested pathogens compared with control and increased fresh and dry weight of the survival plants when applied as soil or grain treatments however, there was variation among bioagent isolates effect on reduction of disease severity both application methods. Trichoderma viride and B. megaterium were recorded the highest effective in this respect compared with other tested bioagents. Under field conditions, analysis of variance and mean performance were estimated for four characters: grain yield 4.8 m-2, No. of spikes m-2, No. of kernels spike-1 and 1000-kernel weight. Significant mean squares were obtained for all studied characters between the seasons (S, methods (M, (S (M, treatments (T, (S (T, (M (T and (S (M (T for �Sakha 93� cultivar and �Bani Suif 5� cultivars except application methods and (S (M for number of kernels spike-1 and 1000-kernel weight, respectively. While the treatments T. harzianum and B. megaterium were best treatments to increase grain yield, the treatments B. subtilis and T. harzianum were best treatments to increase number of spikes and the treatments B. subtilis and B. megaterium were best

  15. Method To Enhance Growth and Sporulation of Pelletized Biocontrol Fungi †

    OpenAIRE

    Knudsen, G R; Eschen, D. J.; Dandurand, L. M.; Wang, Z. G.

    1991-01-01

    The biocontrol fungi Trichoderma harzianum, used to control soilborne plant pathogens, and Beauveria bassiana, used to control insect pests, were formulated as mycelial biomass in alginate pellets with wheat bran added. After drying for 0, 4, or 16 h, pellets were placed in water or in aqueous solutions of polyethylene glycol (PEG) 8000 for 4 to 24 h and then allowed to continue drying. PEG-treated pellets containing T. harzianum showed significantly greater proliferation of hyphae in soil th...

  16. Draft Genome Sequence of a Chitinase-producing Biocontrol Bacterium Serratia sp. C-1

    OpenAIRE

    Seur Kee Park; Young Cheol Kim

    2015-01-01

    The chitinase-producing bacterial strain C-1 is one of the key chitinase-producing biocontrol agents used for effective bioformulations for biological control. These bioformulations are mixed cultures of various chitinolytic bacteria. However, the precise identification, biocontrol activity, and the underlying mechanisms of the strain C-1 have not been investigated so far. Therefore, we evaluated in planta biocontrol efficacies of C-1 and determined the draft genome sequence of the strain in ...

  17. Reservorio fenotípico de cepas de Trichoderma spp con capacidad biocontroladora: su aporte para un manejo agroecológico de enfermedades

    OpenAIRE

    Stocco, Marina Celeste; Mónaco, Cecilia; Lampugnani, Gladys Adelma; Abramoff, Cecilia; Kripelz, Natalia; Consolo, Fabiana; Cordo, Cristina Alicia

    2015-01-01

    Las especies de Trichoderma son los antagonistas más utilizados para el biocontrol de enfermedades de plantas, debido a su ubicuidad y su facilidad para ser aisladas y cultivadas. El objetivo fue lograr una colección de especies de Trichoderma, de distinto origen geográfico y actividad biocontroladora sobre Zymoseptoria tritici, en trigo. Se evaluaron 240 aislamientos de Trichoderma obtenidos de muestras de suelo de la región triguera argentina. La capacidad antagónica se ensayó en plántulas ...

  18. Control of Botrytis cinerea in Eucalyptus globulus Mini-Cuttings Using Clonostachys and Trichoderma Strains Control de Botrytis cinerea en miniestacas de Eucalyptus globulus Utilizando Cepas de Clonostachys y Trichoderma

    Directory of Open Access Journals (Sweden)

    Salomé Zaldúa

    2010-12-01

    Full Text Available Botrytis cinerea Pers. ex Fr. causes the disease known as gray mold in more than 200 hosts. It is one of the most important pathogens in Chilean forest nurseries and Eucalyptus globulus Labill. is one of the most susceptible species, especially in vegetative reproduction systems. Clonostachys and Trichoderma strains were selected as potential biocontrol agents of gray mold in previous research by the authors. The objective of this study was to evaluate the effectiveness of antagonistic fungi to control B. cinerea in E. globulus mini-cuttings. Five fungi strains were tested and applied weekly, two Clonostachys and three Trichoderma (5 x 10(6 conidia mL-1. In addition, comparison treatments were also used: absolute control (water and fungicide application. The experiment was carried out under operational conditions to produce E. globulus mini-cuttings. The Clonostachys UDC-A10 and UDC-A11 strains reduce mini-cutting mortality caused by B. cinerea in 54 and 71%, respectively, and with effects similar to those achieved by fungicides. Clonostachys UDC-A11 reduces the disease progression rate with the same statistical results as fungicides. A negative effect of applying fungicides on rooting of the surviving mini-cuttings was also confirmed. These results demonstrate the effectiveness of Clonostachys as a control agent against gray mold disease in E. globulus mini-cuttings.Botrytis cinerea Pers. ex Fr. ocasiona la enfermedad conocida como moho gris en más de 200 hospederos. En Chile es uno de los patógenos más importantes en viveros forestales, siendo Eucalyptus globulus Labill. una de las especies más susceptibles, especialmente en los sistemas de reproducción vegetativa. En investigaciones previas, realizadas por los autores, se seleccionaron cepas de Clonostachys y Trichoderma como potenciales agentes de biocontrol del moho gris. El objetivo fue evaluar la eficacia de hongos antagonistas en el control de B. cinerea en mini-estacas de E

  19. Tolerance to chitosan by Trichoderma species is associated with low membrane fluidity.

    Science.gov (United States)

    Zavala-González, Ernesto A; Lopez-Moya, Federico; Aranda-Martinez, Almudena; Cruz-Valerio, Mayra; Lopez-Llorca, Luis Vicente; Ramírez-Lepe, Mario

    2016-07-01

    The effect of chitosan on growth of Trichoderma spp., a cosmopolitan genus widely exploited for their biocontrol properties was evaluated. Based on genotypic (ITS of 18S rDNA) characters, four isolates of Trichoderma were identified as T. pseudokoningii FLM16, T. citrinoviride FLM17, T. harzianum EZG47, and T. koningiopsis VSL185. Chitosan reduces radial growth of Trichoderma isolates in concentration-wise manner. T. koningiopsis VSL185 was the most chitosan tolerant isolate in all culture media amended with chitosan (0.5-2.0 mg ml(-1) ). Minimal Inhibitory Concentration (MIC) and Minimal Fungicidal Concentration (MFC) were determined showing that T. koningiopsis VSL185 displays higher chitosan tolerance with MIC value >2000 μg ml(-1) while for other Trichoderma isolates MIC values were around 10 μg ml(-1) . Finally, free fatty acid composition reveals that T. koningiopsis VSL185, chitosan tolerant isolate, displays lower linolenic acid (C18:3) content than chitosan sensitive Trichoderma isolates. Our findings suggest that low membrane fluidity is associated with chitosan tolerance in Trichoderma spp. PMID:27213758

  20. Biocontrol Ability and Action Mechanism of Starmerella bacillaris (Synonym Candida zemplinina) Isolated from Wine Musts against Gray Mold Disease Agent Botrytis cinerea on Grape and Their Effects on Alcoholic Fermentation

    Science.gov (United States)

    Lemos, Wilson J.; Bovo, Barbara; Nadai, Chiara; Crosato, Giulia; Carlot, Milena; Favaron, Francesco; Giacomini, Alessio; Corich, Viviana

    2016-01-01

    Gray mold is one of the most important diseases of grapevine in temperate climates. This plant pathogen affects plant growth and reduces wine quality. The use of yeasts as biocontrol agents to apply in the vineyard have been investigated in recent years as an alternative to agrochemicals. In this work, fermenting musts obtained from overripe grape berries, therefore more susceptible to infection by fungal pathogens such as Botrytis cinerea, were considered for the selection of yeasts carrying antifungal activity. Thirty-six isolates were identified as Starmerella bacillaris, a species recently proven to be of enological interest. Among them 14 different strains were studied and antifungal activity against B. cinerea was demonstrated, for the first time, to be present in S. bacillaris species. The production of volatile organic compounds (VOCs), tested in vitro, was found to be the main responsible of S. bacillaris antifungal effects. All the strains were able to reduce B. cinerea decay on wounded grape berries artificially inoculated with gray mold. The colonization level of wound was very high reaching, after 5 days, a concentration of 106 cells per ml of grape juice obtained after berry crushing. At this cell concentration S. bacillaris strains were used to ferment synthetic and natural musts. The sequential yeast inoculation, performed by adding S. cerevisiae 48 h after S. bacillaris, was needed to complete sugar consumption and determined a significant increase in glicerol content and a reduction of ethanol and acetic acid concentrations. The high wound colonization ability, found in this work, together with the propensity to colonize grape berry and the interesting enological traits possessed by the selected S. bacillaris strains allow the use of this yeast as biocontrol agent on vine and grape berries with possible positive effects on must fermentation, although the presence of S. cerevisiae is needed to complete the fermentation process. This work introduces

  1. Space mutagenic effect of Trichoderma reesei

    International Nuclear Information System (INIS)

    The slant mycelia cultured with or without mutagenic agent diethyl sulfate (DS) and spores of Trichoderma reesei were loaded in the 18th returning satellite. Systematical screening showed that the life cycle and morphology of some strains had changed after space flight. After selection and domestication, 3 mutant strains with high cellulose enzyme activity were isolated. The cellulose enzyme productivities of the mutants were significantly increased more than 50%, and the mutant were generically stable. (authors)

  2. Studies on Exo-Chitinase Production from Trichoderma asperellum UTP-16 and Its Characterization.

    Science.gov (United States)

    Kumar, D Praveen; Singh, Rajesh Kumar; Anupama, P D; Solanki, Manoj Kumar; Kumar, Sudheer; Srivastava, Alok K; Singhal, Pradeep K; Arora, Dilip K

    2012-09-01

    The growth conditions for chitinase production by Trichoderma asperellum UTP-16 in solid state fermentation was optimized using response surface methodology based on central composite design. The chitinase production was optimized, using one-factor at a time approach, with six independent variables (temperature, pH, NaCl, incubation period, nitrogen and carbon sources) and 3.31 Units per gram dry substrate (U gds(-1)) exo-chitinase yield was obtained. A 21.15% increase was recorded in chitinase activity (4.01 U gds(-1)) through surface response methodology, indicates that it is a powerful and rapid tool for optimization of physical and nutritional variables. Further, efficiency of crude enzyme was evaluated against phytopathogenic Fusarium spp. and a mycelial growth inhibition up to 3.5-6.5 mm was achieved in well diffusion assay. These results could be supplemented as basic information for the development of enzyme based formulation of T. asperellum UTP-16 and its use as a biocontrol agent. PMID:23997329

  3. Are mycoparasitism and chitinase production species or isolate dependent in Trichoderma ?

    Institute of Scientific and Technical Information of China (English)

    Szakacs G; Nagy V; Kovacs K

    2004-01-01

    @@ The relationship between taxonomic status of Trichoderma spp., chitinase production in solid substrate fermentation (SSF) on four media and mycoparasitism in dual culture (confrontation assay)against four plant pathogenic fungi was studied. Seventy five Trichoderma isolates belonging to 35species have been screened. The plant pathogenic fungi used in confrontation assay were Botrytis cinerea , Fusarium oxysporum f. sp. dianthi , Rhizoctonia solani and Sclerotinia sclerotiorum . The SSF media contained wheat bran, crude chitin (from crab shells, SIGMA) and salt solutions. The best performing isolates in mycoparasitism tests were Trichoderma flavofuscum, T. harzianum, T.inhamatum, T. koningii and T. strigosum. Some isolates exhibiting good mycoparasitism produced chitinase in SSF only at low or medium level. In contrary there were isolates with excellent extracellular chitinase production but their biocontrol potential did not belong to the leading group.Statistical methods have been used to evaluate the data.

  4. Trichoderma harzianum L1 as a potential source for lytic enzymes and elicitor of defense responses in chickpea (Cicer arietinum L. against wilt disease caused by Fusarium oxysporum f. sp. ciceri.

    Directory of Open Access Journals (Sweden)

    Sreeramulu K

    2009-01-01

    Full Text Available The effect of some natural lignocellulosic substances on the production of ß-glucanase, chitinase, protease and xylanase from Trichoderma harzianum L1 has been studied under solid state fermentation conditions. Maximum activities of all these enzymes were observed in the fermentation medium containing the mixture of 1% rice bran, neem cake and 0.1% crab shell powder. The induction of plant defense response was investigated by inoculating the roots of chickpea cv JG62 with the biocontrol agent, T. harzianum L1. A root extract of chickpea inoculated with T. harzianum L1 showed increased activities of phenylalanine ammonia lyase and polyphenol oxidase, as well as induction of new trypsin and chymotrypsin inhibitors. The Fusarium oxysporum protease-2 was inhibited completely by root extract of chickpea inoculated with T. harzianum L1 and showed maximum resistance to rotting of roots caused by wilt disease

  5. Commercial development of Trichoderma species for control of soil-borne vegetable diseases and their integration into standard crop management practices

    Institute of Scientific and Technical Information of China (English)

    Kirstin L McLean; John S Hunt; Alison Stewart

    2004-01-01

    @@ A 10 year research programme at Lincoln University, investigating the use of Trichoderma species for biological control of soil-borne diseases of vegetable crops, has resulted in the development of two commercial products. TrichodryTM 6S and TrichoflowTM 6S based upon Trichoderma hamatum isolate 6SR4, are used to control Sclerotinia lettuce drop disease. The Trichodry 6S product is formulated as a dry flake, which is incorporated into nursery seedling mix and the Trichoflow 6S is a wettable powder which is used as a top-up drench before planting. The treatment stimulates seedling establishment and vigour and protects the developing seedling from Sclerotinia minor infection after transplanting in the field. The second commercial product is TrichopelTM Ali 52. Based upon Trichoderma atroviride isolate C52, which is used to control Sclerotium cepivorum, the causal agent of Allium white rot disease. The product is formulated as a granule and applied into the furrow at planting time. The fungus proliferates in the rhizosphere region and protects the growing seedling from pathogen attack by a combination of nutrient competition, antibiosis and mycoparasitism. The use of Trichopel Ali 52 under low to medium disease pressure in Pukekohe, the main vegetable growing region of New Zealand, gave a three fold cost benefit through yield increases in the 2003-2004 season. Current field development work involves the use of a wettable powder formulation of T. Atroviride distributed via a T-tape irrigation system to target mid-season applications of the product to the onion roots. Both products perform well under low to moderate disease pressure but, when there is high disease pressure, an integrated programme is required to give satisfactory control. Current research is focused on gaining a greater understanding of the biotic and abiotic factors, which influence biocontrol activity under field conditions as a means to enhance integrated control approaches. For example, T

  6. The relationship of biofilm production to biocontrol activity of Burkholderia pyrrocinia FP62

    Science.gov (United States)

    Foliar biocontrol agent (BCA) efficacy is often inconsistent due to poor colonization and survival on plant surfaces. Burkholderia pyrrocinia FP62, a superior leaf colonist and BCA of Botrytis cinerea, forms unsaturated biofilms on plant surfaces. To determine the relationship between biocontrol act...

  7. Yeast microflora of nectarines and their potential for biocontrol of brown rot

    Science.gov (United States)

    Resident fruit microflora has been the source of biocontrol agents for the control of postharvest decays of fruits and the active ingredient in commercialized biocontrol products. With the exception of grapes and apples, information on the resident microflora of other fruits is only fragmentary; ho...

  8. Ecological plasticity of Trichoderma fungi in leached chernozem

    Science.gov (United States)

    Svistova, I. D.; Senchakova, T. Yu.

    2010-03-01

    The autecological properties of Trichoderma fungi ecotypes isolated from the leached chernozem of the forest-steppe zone of the European part of Russia have been studied. We were the first who carried out the complex study of the synecological relations of micromycetes of such kinds in a system including the soil, microbial community, and plants, i.e., their relations with soil saprotrophic fungi, bacteria, actinomycetes, plants, and pathogenic fungi. It was shown that the ecological plasticity of the Trichoderma genus in the soil of this zone is determined by its growth rate, the optimum pH and temperature, the biosynthesis of extracellular hydrolytic enzymes, the biological action of mycotoxins, and the ability for parasitism. The efficiency of the introduction of Trichoderma species typical and atypical for the leached chernozem into this soil and their influence on the structure of the microbial community were evaluated. The T. pseudokoningii ecotype, which produces cellulolytic enzymes, is very promising for industrial biotechnology, and the T. harzianum ecotype can be used in soil biotechnology for the biocontrol of chernozem. The addition of a commercial trichodermin preparation into the chernozem damages the structure of its microbial community.

  9. Anti-phytopathogen potential of endophytic actinobacteria isolated from tomato plants (Lycopersicon esculentum) in southern Brazil, and characterization of Streptomyces sp. R18(6), a potential biocontrol agent.

    Science.gov (United States)

    de Oliveira, Margaroni Fialho; da Silva, Mariana Germano; Van Der Sand, Sueli T

    2010-09-01

    Tomato plants (Lycopersicon esculentum) are highly susceptible to phytopathogen attack. The resulting intensive application of pesticides on tomato crops can affect the environment and health of humans and animals. The objective of this study was to select potential biocontrol agents among actinobacteria from tomato plants, in a search for alternative phytopathogen control. We evaluated 70 endophytic actinobacteria isolated from tomato plants in southern Brazil, testing their antimicrobial activity, siderophore production, indoleacetic acid production, and phosphate solubility. The actinomycete isolate with the highest antimicrobial potential was selected using the agar-well diffusion method, in order to optimize conditions for the production of compounds with antimicrobial activity. For this study, six growth media (starch casein-SC, ISP2, Bennett's, Sahin, Czapek-Dox, and TSB), three temperatures (25 degrees C, 30 degrees C, and 35 degrees C) and different pH were tested. Of the actinobacteria tested, 88.6% showed antimicrobial activity against at least one phytopathogen, 72.1% showed a positive reaction for indoleacetic acid production, 86.8% produced siderophores and 16.2% showed a positive reaction for phosphate solubility. Isolate R18(6) was selected due to its antagonistic activity against all phytopathogenic microorganisms tested in this study. The best conditions for production were observed in the SC medium, at 30 degrees C and pH 7.0. The isolate R18(6) showed close biochemical and genetic similarity to Streptomyces pluricolorescens. PMID:20542109

  10. Auxin as a player in the biocontrol of Fusarium head blight disease of barley and its potential as a disease control agent

    Directory of Open Access Journals (Sweden)

    Petti Carloalberto

    2012-11-01

    Full Text Available Abstract Background Mechanisms involved in the biological control of plant diseases are varied and complex. Hormones, including the auxin indole acetic acid (IAA and abscisic acid (ABA, are essential regulators of a multitude of biological functions, including plant responses to biotic and abiotic stressors. This study set out to determine what hormones might play a role in Pseudomonas fluorescens –mediated control of Fusarium head blight (FHB disease of barley and to determine if biocontrol-associated hormones directly affect disease development. Results A previous study distinguished bacterium-responsive genes from bacterium-primed genes, distinguished by the fact that the latter are only up-regulated when both P. fluorescens and the pathogen Fusarium culmorum are present. In silico analysis of the promoter sequences available for a subset of the bacterium-primed genes identified several hormones, including IAA and ABA as potential regulators of transcription. Treatment with the bacterium or pathogen resulted in increased IAA and ABA levels in head tissue; both microbes had additive effects on the accumulation of IAA but not of ABA. The microbe-induced accumulation of ABA preceded that of IAA. Gene expression analysis showed that both hormones up-regulated the accumulation of bacterium-primed genes. But IAA, more than ABA up-regulated the transcription of the ABA biosynthesis gene NCED or the signalling gene Pi2, both of which were previously shown to be bacterium-responsive rather than primed. Application of IAA, but not of ABA reduced both disease severity and yield loss caused by F. culmorum, but neither hormone affect in vitro fungal growth. Conclusions Both IAA and ABA are involved in the P. fluorescens-mediated control of FHB disease of barley. Gene expression studies also support the hypothesis that IAA plays a role in the primed response to F. culmorum. This hypothesis was validated by the fact that pre-application of IAA reduced

  11. Application of Trichoderma harzianum in the control of basal stem rot of oil palms

    Institute of Scientific and Technical Information of China (English)

    Abdullah F; Ilias G N M

    2004-01-01

    @@ The palm, Elaeis guineensis, has its origins in Africa but is planted on a commercial basis in several countries Statistics for 2002 showed that in the lead for land mass under oil palm cultivation is Indonesia, at 3,769,000 ha, followed by Malaysia at 3,376,000 ha; however, the world' s leading producer of palm oil is still Malaysia, since the 1970's. Both countries are predicted to produce 82.4%of the world's palm oil production by the year 2005. However, the palm is susceptible to basal stem rot, a devastating disease which results in direct loss of field stands and to which no effective chemical control is yet available. Caused by Ganoderma boninense, infected palms appear symptomless, at the first sign of disease, at least 50 % of the internal trunk tissue stem would have actually rotted. This study investigated the efficacy of Trichoderma harzianum (isolate FA 1132) as a biological control agent, using 6-month old oil palm seedlings as models and the experiment performed in a greenhouse at 29-30 ℃ ambient conditions. The plants were artificially infected with G. boninense and a conidial suspension of 1 × 109-9 × 109 spores/mL was applied as a soil drench at 1L/plant every 2 weeks for 20weeks. The parameters examined were efficacy of the biocontrol agent and the effect of Trichodermaincorporated mulch in addition to the soil drench. Efficacy was assessed in terms disease severity index (DSI) where a higher percentage indicates a higher severity. Results showed that infection first sets in on untreated plants at week 12 and got worse progressively. The completely untreated plants were all infected and the DSI at 20 weeks after infection (wa. i.) was 92. 5%. Plants given only a Trichoderma -infused food base supplement without conidial suspension gave a DSI of 70% whereas those given a conidial soil drench without supplemental food base gave a DSI of 85% at 20 w.a.i.Infected plants given a conidial treatment together with a food base supplement gave a DSI

  12. Controle de Rhizoctonia solani e Fusarium oxysporum f.sp. phaseoli por biopreparados de isolados de Trichoderma spp.

    Directory of Open Access Journals (Sweden)

    Pedro Paulo Dias

    2013-12-01

    Full Text Available Os experimentos objetivaram avaliar em condições de casa de vegetação o biocontrole dos fitopatógenos Rhizoctonia solani (RS e Fusarium oxysporum f.sp. phaseoli (FOP em alface (Lactuca sativa L. cultivar Regina, e feijão-vagem (Phaseolus vulgaris L. cultivar Alessa, respectivamente, utilizando como agentes antagonistas, 10 isolados de Trichoderma spp. selecionados em testes in vitro. Foram feitos biopreparados à base de arroz previamente colonizado por isolados de Trichoderma spp. e posteriormente triturados. Para a realização dos testes, os biopreparados foram inoculados previamente na proporção de 10(9 conídios.mL-1, em substrato comercial para produção de mudas. Após sete dias, os patógenos foram introduzidos separadamente em duas concentrações distintas: R. solani na proporção de 144 mg de meio de arroz por kg de substrato e F. oxysporum f.sp. phaseoli inoculado na forma de suspensão contendo 4,75 x 10(6 conídios.mL-1. Avaliou-se a influência dos biopreparados na % de damping-off de pós-emergência em plantas de alface e a severidade de murcha em plantas de feijão-vagem. O biopreparado referente ao isolado T-03 foi o mais eficiente no controle de R. solani em plantas de alface cultivar Regina, por ter reduzido a incidência de damping-off de pós-emergência nessa cultura. Por outro lado, nenhum dos biopreparados apresentou efeito antagonista satisfatório à F. oxysporum f.sp. phaseoli em plantas de feijão-vagem.

  13. Use of Trichoderma spp.for biological control of the livestock feed contaminant fungus Fusarium proliferatum

    Institute of Scientific and Technical Information of China (English)

    Ruocco M; Ferraioli S; Scala F; Lorito M; Pane F; Ritieni A; Lanzuise S; Ambrosino P; Marra R; Woo S L; Ciliento R; Soriente I

    2004-01-01

    @@ Fusarium spp. are pathogens of many important agricultural crops, and are often strong mycotoxin producers. Fusarium proliferatum, in particular, causes disease in cereals and secretes the toxin Beauvaricin that contaminates livestock feed and cereals, producing a variety of toxicity symptoms ranging from poor weight gain to mortality. Beauvaricin is a cyclodepsipeptide and acts as a potent mycotoxin known to have insecticidal properties. This compound is highly toxic to human cell lines,where it induces apoptosis and specifically inhibits cholesterol acetyltransferase. Nothing is known about the role of this mycotoxin during the interaction of F. proliferatum with other microorganisms, including the fungal antagonists Trichoderma spp. In vitro tests have demonstrated that the antagonistic and mycoparasitic activity of Trichoderma is not inhibited by the presence of Beauvaricin at concentrations up to 10 mg/kg in the substrate. In vivo biocontrol assays on barley and wheat with Trichoderma against F. proliferatum isolates, producing and non-producing Beauvaricin, confirmed the ability of the antagonist to control this pathogen in all cases. Also Trichoderma culture filtrates obtained in conditions that promote _Cell Wall _Degrading Enzyme (CWDE) secretion, were able to inhibit spore germination of different F. proliferatum isolates.These results suggest the possibility of using Trichoderma and/or its metabolites to control contaminants of livestock feed by mycotoxin-producing Fusarium.

  14. Potential analysis of grass endophytes Neotyphodium as biocontrol agents%禾草内生真菌作为生防因子的潜力分析

    Institute of Scientific and Technical Information of China (English)

    李秀璋; 姚祥; 李春杰; 南志标

    2015-01-01

    Many grasses in the subfamily Pooideae develop symbioses with Neotyphodium fungal endophytes, which exist widely in nature. The stably symbiotic relationship not only ensures accessible nutrients required by Neotypho-dium fungal endophytes, but also significantly increases the resistance of host grasses to biological stresses through the production of secondary metabolites. Previous studies show that infected grasses with endophytic fungi have prominently enhanced resistance to pests, plant diseases, companion plants and other biological stresses. Grass endophytic fungi show remarkable resistant to at least 79 species of pests from three classes;arachnida, nematode and insecta, and to at least 22 species of pathogenic fungi. Although the biotechnological application of endophytic fungi in grass breeding for variety selection and quality improvement has progressed well, opportunities remain for further exploring the use of fungal endophytes among different host grasses coupled with the examination of genetic stability of Neotyphodium in novel host grasses. In the future application of endophytic fungi as a bio-control method, researchers should not only consider specificities of host grasses, but also need to have comprehensive analysis and knowledge about the mutual relationships among grasses, endo-phytic fungi and ecological environments, which will help use endophytic fungi to better serve humanity.%早熟禾亚科多种禾草可与Neotyphodium内生真菌形成禾草-内生真菌共生体,这种植物-微生物共生体性状较为稳定,且在自然界中广泛存在。禾草-内生真菌共生体稳定的互利共生关系不但保证了内生真菌所需的全部营养物质,而且共生体产生的次生代谢物又可显著提高宿主禾草对生物胁迫的抗逆性。众多研究表明,内生真菌的侵染可显著提高宿主禾草对虫害、病害及伴生植物等多种生物胁迫的抗性。据不完全统计,禾草内生真菌对蛛

  15. Trichoderma Biodiversity of Agricultural Fields in East China Reveals a Gradient Distribution of Species

    Science.gov (United States)

    Chen, Jing; Mao, Li-Juan; Feng, Xiao-Xiao; Zhang, Chu-Long; Lin, Fu-Cheng

    2016-01-01

    application of Trichoderma biocontrol strains. PMID:27482910

  16. Interregional comparison of the size-structure of populations of Melaleuca quinquenervia in its native and exotic range, with and without biocontrol agents

    Science.gov (United States)

    We compare size structure and rates of recruitment and mortality in populations of Melaleuca quinquenervia in its native and exotic ranges. In the exotic range study sites were chosen to include contrasts in presence and abundance of two biological control agents. We tagged and measured (DBH) all ...

  17. Isolation of Dickeya dadantii strains from potato disease and biocontrol by their bacteriophages

    OpenAIRE

    Soleimani-Delfan, Abbas; Etemadifar, Zahra; Emtiazi, Giti; Bouzari, Majid

    2015-01-01

    One of the most economically important bacterial pathogens of plants and plant products is Dickeya dadantii. This bacterium causes soft rot disease in tubers and other parts of the potato and other plants of the Solanaceae family. The application of restricted host range bacteriophages as biocontrol agents has recently gained widespread interest. This study purposed to isolate the infectious agent of the potato and evaluate its biocontrol by bacteriophages. Two phytopathogenic strains were is...

  18. Facilitating the registration of biocontrol organisms, plant extracts and semiochemicals in Europe

    OpenAIRE

    Speiser, B.; Tamm, L.; Bale, J.; Fjelsted, A.; Hokkanen, H; Menzler-Hokkanen, I; Kuhlmann, U.; Strasser, H; Hauschild, R.; Strauch, O.; Ehlers, R.U.

    2008-01-01

    The legal regulation of plant protection products (Dir. 91/414/ EEC) is a bottleneck in the market introduction of new microbial biocontrol agents, plant extracts and pheromones. In contrast, invertebrate biocontrol agents (“beneficials”) are not registered at EU level. The EU-funded project REBECA suggested improvements to accelerate the regulation process and make it more cost-effective, without compromises to the level of safety. Representatives of all stakeholder groups participated in...

  19. A role for reactive oxygen species in postharvest biocontrol

    Science.gov (United States)

    Reactive oxygen species (ROS) play an important role in plant defense responses against pathogens. There is evidence that microbial biocontrol agents also induce a transient production of ROS in a host plant which triggers local and systemic defense responses. In this study, we explored the abilit...

  20. Farmer evaluation of biocontrol methods against rootknot nematodes in tomatoes

    OpenAIRE

    McLeod, Anni; Ndungu, Beth; Karanja, Daniel; Karanja, Peter

    2002-01-01

    This report was presented at the UK Organic Research 2002 Conference. Root-knot nematodes in tomatoes cause financial loss to Kenyan smallholders. While soil fumigation appears to be losing effectiveness two bio-control agents (bcas), Pasteuria penetrans and Verticillium chlamydosporium, appear promising. Participatory budgeting is being used to compare the bcas with chemical and other biological controls on commercial and organic smallholdings.

  1. ROLE OF BIOFILMS IN BIOCONTROL OF BOTRYTIS CINEREA

    Science.gov (United States)

    Microorganisms often inhabit the leaf surface in organized structures termed biofilms. Burkholderia sp., FP62 is a biocontrol agent of B. cinerea in geranium and forms extensive biofilms in the phyllosphere. Scanning electron micrographs demonstrate extensive phyllosphere colonization (60-70% of t...

  2. Toxicity and sublethal effects of six insecticides to last instar larvae and adults of the biocontrol agents Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) and Adalia bipunctata (L.) (Coleoptera: Coccinellidae)

    OpenAIRE

    Garzón Hidalgo, Agustín; Medina Velez, Maria Pilar; Amor Parrilla, Fermín; Viñuela Sandoval, Elisa; Budia Marigil, Maria Flor

    2015-01-01

    To further develop Integrated Pest Management (IPM) strategies against crop pests, it is important to evaluate the effects of insecticides on biological control agents. Therefore, we tested the toxicity and sublethal effects (fecundity and fertility) of flonicamid, flubendiamide, metaflumizone, spirotetramat, sulfoxaflor and deltamethrin on the natural enemies Chrysoperla carnea and Adalia bipunctata. The side effects of the active ingredients of the insecticides were evaluated with residual ...

  3. Draft Genome Sequence of a Chitinase-producing Biocontrol Bacterium Serratia sp. C-1

    Directory of Open Access Journals (Sweden)

    Seur Kee Park

    2015-09-01

    Full Text Available The chitinase-producing bacterial strain C-1 is one of the key chitinase-producing biocontrol agents used for effective bioformulations for biological control. These bioformulations are mixed cultures of various chitinolytic bacteria. However, the precise identification, biocontrol activity, and the underlying mechanisms of the strain C-1 have not been investigated so far. Therefore, we evaluated in planta biocontrol efficacies of C-1 and determined the draft genome sequence of the strain in this study. The bacterial C-1 strain was identified as a novel Serratia sp. by a phylogenic analysis of its 16S rRNA sequence. The Serratia sp. C-1 bacterial cultures showed strong in planta biocontrol efficacies against some major phytopathogenic fungal diseases. The draft genome sequence of Serratia sp. C-1 indicated that the C-1 strain is a novel strain harboring a subset of genes that may be involved in its biocontrol activities.

  4. Identification and characterization of Trichoderma species aggressive to Pleurotus in Italy

    Institute of Scientific and Technical Information of China (English)

    Woo S L; Di Benedetto P; Senatore M; Abadi K; Gigante S; Soriente I; Ferraioli S; Scala F; Lorito M

    2004-01-01

    characterization of Trichoderma isolates parasitic to Pleurotus indicated that they are different from both T. aggressivum forms parasitic to Agaricus, and the majority of the isolates probably belong to the species T. harzianum. In vitro confrontation plates were performed with 26 isolates of aggressive Trichoderma obtained from compost, three Trichoderma isolates used in biological control and 12 varieties of Pleurotus. No inhibitory effect was observed between any of the Trichoderma isolates with Pleurotus, although some growth inhibition was caused by the biocontrol isolates of Trichoderma on some of the aggressive isolates. The temperature optimum for Pleurotus growth was at 28 ℃, whereas Trichoderma grew well at a wider range (20-28℃), and exceeded the growth rate of Pleurotus by three times at 25℃.The pH optimum for the growth of Pleurotus was alkaline (pH 8-9) whereas Trichoderma preferred acidic-neutral pH (5-7) . Various commercial fungicides used in agriculture (procloraz, thiabendazole,dichloran, benomyl, propiconazole, thiofanatomethyl) were tested against the aggressive and biocontrol isolates of Trichoderma, as well as the different varieties of Pleurotus to determine dose response curves and combinations that would inhibit spore germination, mycelial growth and subsequent sporulation. Both procloraz and thiabendazole, which are pesticides allowed in edible mushroom production, were found to control the growth of the aggressive Trichoderma isolates and did not have a negative effect on Pleurotus.

  5. Using of green fluorescent reporter gene (GFP) to monitor the fate of Fusarium moniliforme mycoparasitized by Trichoderma viride

    Institute of Scientific and Technical Information of China (English)

    ZHU Ting-heng; WANG Wei-xia; WANG Chang-chun; YANG Rui-qin; CAI Xin-zhong

    2004-01-01

    @@ Fusarium moniliforme Sheld. is a rice pathogenic fungus and causes the disease called Bakanae,which has increasingly damaged rice production in the recent years. Trichoderma spp. has been one of the most widely used biological control agent of plant disease. By geneticaly labelling F. moniliforme with the GFP reporter gene, we have studied the antagonistic action of Trichoderma viride against this pathogenic fungus.

  6. Cotton Seedling Preemergence Damping-Off Incited by Rhizopus oryzae and Pythium spp. and Its Biological Control with Trichoderma spp.

    Science.gov (United States)

    Howell, C R

    2002-02-01

    ABSTRACT Planting the cotton cv. Sure-Grow 747 in cotton seedling disease plots during the 2001 growing season resulted in high levels of preemergence damping-off among the seedlings. Four cotton pathogens, Pythium aphanidermatum, P. ultimum, an unidentified Pythium sp., and Rhizopus oryzae, were isolated from diseased seed embryos and seedlings. Disease incited by the Pythium spp. could be controlled by seed treatment with Metalaxyl, but disease incited by R. oryzae could not. Seed treatment with Metalaxyl in naturally infested field soil was only partially effective; therefore, symptoms in 47% of the diseased seedlings could be attributed to R. oryzae. Susceptibility to disease appeared to be related to release in the spermosphere, by the germinating seeds, of compounds that stimulate pathogen propagule germination, because exudates from seed of the suscept Sure-Grow 747 and extracts from wheat bran induced pathogen germination and growth, whereas exudates from resistant cv. Stoneville 213 did not. However, even Stoneville 213 became susceptible when infested soil was amended with wheat bran. Seed treatment with preparations of Trichoderma virens parent, mutant, and hybrid strains gave effective biological control of preemergence damping-off. Disease control was attributable to metabolism by the biocontrol agent of pathogen germination stimulants released by the seed, because amendment of pathogen-infested soil with the propagule germination stimulants in wheat bran negated the protective effect of the seed treatment. PMID:18943091

  7. Toxicity and sublethal effects of six insecticides to last instar larvae and adults of the biocontrol agents Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) and Adalia bipunctata (L.) (Coleoptera: Coccinellidae).

    Science.gov (United States)

    Garzón, A; Medina, P; Amor, F; Viñuela, E; Budia, F

    2015-08-01

    To further develop Integrated Pest Management (IPM) strategies against crop pests, it is important to evaluate the effects of insecticides on biological control agents. Therefore, we tested the toxicity and sublethal effects (fecundity and fertility) of flonicamid, flubendiamide, metaflumizone, spirotetramat, sulfoxaflor and deltamethrin on the natural enemies Chrysoperla carnea and Adalia bipunctata. The side effects of the active ingredients of the insecticides were evaluated with residual contact tests for the larvae and adults of these predators in the laboratory. Flonicamid, flubendiamide, metaflumizone and spirotetramat were innocuous to last instar larvae and adults of C. carnea and A. bipunctata. Sulfoxaflor was slightly toxic to adults of C. carnea and was highly toxic to the L4 larvae of A. bipunctata. For A. bipunctata, sulfoxaflor and deltamethrin were the most damaging compounds with a cumulative larval mortality of 100%. Deltamethrin was also the most toxic compound to larvae and adults of C. carnea. In accordance with the results obtained, the compounds flonicamid, flubendiamide, metaflumizone and spirotetramat might be incorporated into IPM programs in combination with these natural enemies for the control of particular greenhouse pests. Nevertheless, the use of sulfoxaflor and deltamethrin in IPM strategies should be taken into consideration when releasing either of these biological control agents, due to the toxic behavior observed under laboratory conditions. The need for developing sustainable approaches to combine the use of these insecticides and natural enemies within an IPM framework is discussed. PMID:25828251

  8. Three-way interactions between Fusarium species, their plant hosts and biocontrol organisms

    DEFF Research Database (Denmark)

    Kosawang, Chatchai

    of ABC transporters in mycoparasitic fungi focused on C. rosea and Trichoderma spp. We showed that expression of zhd101 depended on concentrations of ZEA and that the gene was not induced by other agents, suggesting specificity of the enzyme towards ZEA and its derivates. To investigate effects of...... gene birth and death identified expansion of ABC transporter families in C. rosea as in Trichoderma virens and T. harzianum, but not in T. reesei and T. atroviridae. The expansion was profoundly observed in the subfamily G of C. rosea ABC transporters and the subfamily C of Trichoderma spp, repectively...

  9. Draft Genome Sequence of a Biocontrol Rhizobacterium, Chryseobacterium kwangjuense Strain KJ1R5, Isolated from Pepper (Capsicum annuum).

    Science.gov (United States)

    Jeong, Jin-Ju; Park, Hongjae; Park, Byeong Hyeok; Mannaa, Mohamed; Sang, Mee Kyung; Choi, In-Geol; Kim, Ki Deok

    2016-01-01

    Strain KJ1R5 of the rhizobacterium ITALIC! Chryseobacterium kwangjuenseis an effective biocontrol agent against Phytophthora blight of pepper caused by a destructive soilborne oomycete, ITALIC! Phytophthora capsici Here, we present the draft genome sequence of strain KJ1R5, which contains genes related to biocontrol, plant growth promotion, and environmental stress adaptation. PMID:27103726

  10. Draft Genome Sequence of a Biocontrol Rhizobacterium, Chryseobacterium kwangjuense Strain KJ1R5, Isolated from Pepper (Capsicum annuum)

    Science.gov (United States)

    Jeong, Jin-Ju; Park, Hongjae; Park, Byeong Hyeok; Mannaa, Mohamed; Sang, Mee Kyung

    2016-01-01

    Strain KJ1R5 of the rhizobacterium Chryseobacterium kwangjuense is an effective biocontrol agent against Phytophthora blight of pepper caused by a destructive soilborne oomycete, Phytophthora capsici. Here, we present the draft genome sequence of strain KJ1R5, which contains genes related to biocontrol, plant growth promotion, and environmental stress adaptation. PMID:27103726

  11. Screening Commercially Available Entomopathogenic Biocontrol Agents for the Control of Aethina tumida (Coleoptera: Nitidulidae in the UK

    Directory of Open Access Journals (Sweden)

    Giles E. Budge

    2012-08-01

    Full Text Available The Small hive beetle, Aethina tumida, is an invasive pest of honey bees. Indigenous to sub-Saharan Africa, it has now become established in North America and Australia. It represents a serious threat to European honey bees. Commercially available entomopathogenic agents were screened for their potential to control beetle larvae. Entomopathogenic fungi investigated had minimal impact. The nematodes Steinernema kraussei and S. carpocapsae provided excellent control with 100% mortality of larvae being obtained. Sequential applications of the nematodes following larvae entering sand to pupate also provided excellent control for up to 3 weeks. The information gained supports the development of contingency plans to deal with A. tumida should it occur in the UK, and is relevant to the management of Small hive beetle where it is already present.

  12. Bioprospecting endophytic bacteria for biological control of coffee leaf rust Bioprospecção de bactérias endofíticas como agentes de biocontrole da ferrugem do cafeeiro

    Directory of Open Access Journals (Sweden)

    Humberto Franco Shiomi

    2006-02-01

    Full Text Available Suppression of plant diseases due to the action of endophytic microorganisms has been demonstrated in several pathosystems. Experiments under controlled conditions involving endophytic bacteria isolated from leaves and branches of Coffea arabica L and Coffea robusta L were conducted with the objective of evaluating the inhibition of germination of Hemileia vastatrix Berk. & Br., race II, urediniospores and the control of coffee leaf rust development in tests with leaf discs, detached leaves, and on potted seedling of cv. Mundo Novo. The endophytic bacterial isolates tested proved to be effective in inhibiting urediniospore germination and/or rust development, with values above 50%, although the results obtained in urediniospore germination tests were inferior to the treatment with fungicide propiconazole. Endophytic isolates TG4-Ia, TF2-IIc, TF9-Ia, TG11-IIa, and TF7-IIa, demonstrated better coffee leaf rust control in leaf discs, detached leaves, and coffee plant tests. The endophytic isolates TG4-Ia and TF9-Ia were identified as Bacillus lentimorbus Dutky and Bacillus cereus Frank. & Frank., respectively. Some endophytic bacterial isolates were effective in controlling the coffee leaf rust, although some increased the severity of the disease. Even though a relatively small number of endophytic bacteria were tested, promising results were obtained regarding the efficiency of coffee leaf rust biocontrol. These selected agents appears to be an alternative for future replacement of chemical fungicide.Supressão de doenças de plantas por microrganismos endofíticos tem sido demonstrada em diversos patossistemas. Neste trabalho foram selecionados isolados de bactérias endofíticas de folhas e ramos de cafeeiro com potencial para o controle biológico da ferrugem do cafeeiro, pois é conhecido que esses microrganismos podem possuir essa característica. Bactérias endofíticas isoladas previamente de folhas e ramos de Coffea arabica L e Coffea

  13. Identification and Characterisation of New Microbial Antagonists for Biocontrol of Monilinia laxa, the Causal Agent of Brown Rot on Stone Fruit

    Directory of Open Access Journals (Sweden)

    Peter Jeffries

    2013-10-01

    Full Text Available Monilinia laxa is the causal agent of brown rot disease on stone fruits, and also causes blossom wilt and twig canker. The common practice used to manage this disease is through fungicide treatments. However the demand to reduce fungicide inputs has been increasing and there is a growing number of reports of M. laxa strains that are resistant to fungicides. There is an urgent need to search for an alternative strategy to control the disease. This study focused on the isolation and characterisation of biological control agents (BCAs using indigenous isolates isolated from cherries and plums collected within the UK. A total of 192 isolates were screened against two strains of M. laxa in a series of in vitro dual culture tests. From this in vitro screen, 12 isolates were selected for a subsequent in vivo screen on detached fruits, which then narrowed these isolates down to two potential BCAs. These two strains were identified as Bacillus amyloliquefaciens/subtilis (isolate B91 and Aureobasidium pullulans (isolate Y126. The capability of these two potential BCAs to grow and survive at a range of temperatures likely to be experienced under field and storage conditions was studied in order to gain knowledge for product formulation and field application. Bacillus sp. B91 was shown to be a mesophilic bacterium that could grow at 10–25 °C but suffered significant mortality at 0 and 5 °C, while A. pullulans Y126 was both mesophilic and psychrotolerant as it grew between 0–25 °C with the optimum at 20 °C. When all nutrients were removed, Y126 was able to survive for several weeks in all test temperatures (0–25 °C but showed significant mortality at 25 °C. The capability of B91 to survive at 20 and 25 °C was higher than at low temperatures (0–15 °C. In addition, the modes of action of the potential BCAs were studied. B91 was shown to produce soluble and volatile organic compounds that inhibited M. laxa, while A. pullulans Y126 did not

  14. Laboratory evaluation ofLimnatis nilotica leech (Annelida:Hirudinea) as a biocontrol agent for the schistosome-vector snail,Bulinus truncatus

    Institute of Scientific and Technical Information of China (English)

    Yassir Sulieman; Abdel-Aziz A Ahmed; Azzam Afifi; Theerakamol Pengsakul

    2015-01-01

    Objective:To investigate the predation efficacy of the freshwater leech,Limnatis nilotica(L. nilotica) as a potential biological control agent against different stages of theBulinus truncatus (B. truncatus), the intermediate host of humanSchistosoma haematobium, under laboratory conditions. Methods:The leechL. nilotica and the snailB. truncatus were collected from El Kiryab Agriculture Scheme, Sudan. Thereafter, the predatory activity of the leech was evaluated against eggs, neonates and adults of the snail in a series of different experiments under laboratory conditions. Results:The findings showed that theL. nilotica leech was a voracious predator towards the eggs and neonates ofB. truncatus snails with a shell length of up to 3 mm, as well as of adult snails with an shell length greater than 3 mm. Conclusions: The results showed thatL. nilotica had a significant impact onB. truncatus populations. However, long term studies under natural field conditions are needed to support these results.

  15. Biology of the introduced biocontrol agent Microctonus hyperodae (Hymenoptera: Braconidae) and its host Listronotus bonariensis (Coleoptera: Curculionidae) in northern New Zealand.

    Science.gov (United States)

    Barker, Gary M

    2013-10-01

    The South American weevil Listronotus bonariensis (Kuschel) is an important pest of pastures in New Zealand. As a component of management strategies for this pest, the South American parasitoid Microctonus hyperodae Loan (Hymenoptera: Braconidae) was released in northern New Zealand during 1991 as a biological control agent. Over the subsequent 5-6 yr, the reproductive biology of M. hyperodae and its relationship to, and effects on, the reproductive phenology and fitness of L. bonariensis were studied at three sites. M. hyperodae was first recovered in the field in December 1991. Subsequently, the incidence of parasitism in L. bonariensis increased to seasonal maxima of 75-90%. There was variable synchrony between parasitoid generations and the two generations of its host, leading to marked seasonal variation in rates of parasitism and parasitoid abundance. Despite marked inter-year variation, abundance of host adult and egg populations declined in the presence of parasitoids. Parasitized host females had lower ovarian maturity scores, had lower egg loads, and exhibited less investment in wing muscle development than females that had escaped parasitism. There was almost complete elimination of egg maturation in parasitized females and these hosts contributed little to population recruitment. Rate of buildup and seasonal maxima in parasitism, frequency of superparasitism, adult abundances, and wing muscle development in adult L. bonariensis varied among the three sites in a manner that was only partially related to climate differences across the 1.83° gradient of latitude. Site effects were weak to absent in measures of reproductive condition in L. bonariensis females. PMID:24331602

  16. Stimulative effect of the fungal biocontrol agent Fusarium oxysporum f.sp. Striga on abundance of nitrifying prokaryotes in a maize rhizosphere

    Science.gov (United States)

    Musyoki, Mary; Enowashu, Esther; Zimmermann, Judith; Muema, Esther; Wainright, Henry; Vanlauwe, Bernard; Cadisch, Georg; Rasche, Frank

    2014-05-01

    The integration of resistant crop varieties and Fusarium oxysporum f.sp. strigae (Foxy-2) strains as biological control agent (BCA) has shown to be an effective control of the weed Striga hermonthica which is parasitic to several cereals (e.g., maize) cultivated in Sub-Saharan Africa. Most studies have examined the efficacy of the BCA and its interactions with host crops, while overlooking the interplay among key microorganisms in the soil nitrogen (N) cycle. Hence, we postulated that both Foxy-2 and Striga pose threats to the indigenous plant root-associated microbial communities involved in N cycling through direct or indirect competition for nutrients and that the application of high quality organic residues would compensate these effects. The primary objective of this study was thus to assess the potential impact of Foxy-2 on indigenous nitrifying prokaryotes in maize rhizosphere cultivated on two distinct soils (sandy Ferric Alisol versus clayey Humic Nitisol) obtained from Machanga and Embu, respectively, in central Kenya. These soils were treated with or without Foxy-2 and Striga; and in combination with high quality (i.e. CN ratio; 13, lignins, 8.9 % and polyphenols, 1.7 %) organic residues (i.e., Tithonia diversifolia) as N source. Using quantitative polymerase chain reaction (qPCR), we followed at three pre-defined sampling dates (14, 28 and 42 days after planting) the responses of ammonia-oxidizing archaea (AOA) and bacteria (AOB), total bacteria and archaea in four treatments of a rhizobox experiment: (i) Foxy-2 plus Striga (F+S), (ii) Striga only (C+S), (iii) Foxy-2 plus Striga plus Tithonia diversifolia residues (F+S+T), and (iv) a non-treated control (C). Overall, the treatment effects on soil microbial populations were, in comparison to the clayey Embu soil, more pronounced in the sandy Machanga soil. Contrary to our expectations, we observed a distinct stimulative, but no resource competition effect of Foxy-2 on the abundance of AOA, as well as

  17. Primary Study on Biological Control Potential of Trichoderma harzianum TL-1

    Institute of Scientific and Technical Information of China (English)

    Su; Zhenyu; Xiao; Man; Gao; Xinzheng; Tang; Libo; Li; Li

    2014-01-01

    Trichoderma harzianum is a widely used biocontrol fungus. The growth promoting effect of strain Trichoderma harzianum TL-1 on tomato and pepper and its biological control effects against tomato seedling damping-off and pepper blight were investigated through pot experiments. The results showed that the stain TL-1 had significant promotion effect on growth of pepper and tomato in sterilized and natural soils. With the application dose of 3. 0 and 0. 5g/ pot,their dry weight were increased up to 46% and 150% compared with control,respectively. In addition,TL-1 had good control effects against tomato seedling damping-off and pepper blight. Compared with fungicide treatment,TL-1 treatment could control diseases for long term,without repeat occurrence of diseases.

  18. Copper tolerance of Trichoderma species

    Directory of Open Access Journals (Sweden)

    Jovičić-Petrović Jelena

    2014-01-01

    Full Text Available Some Trichoderma strains can persist in ecosystems with high concentrations of heavy metals. The aim of this research was to examine the variability of Trichoderma strains isolated from different ecosystems, based on their morphological properties and restriction analysis of ITS fragments. The fungal growth was tested on potato dextrose agar, amended with Cu(II concentrations ranging from 0.25 to 10 mmol/l, in order to identify copper-resistant strains. The results indicate that some isolated strains of Trichoderma sp. show tolerance to higher copper concentrations. Further research to examine the ability of copper bioaccumulation by tolerant Trichoderma strains is needed. [Projekat Ministarstva nauke Republike Srbije, br. TR 31080 i br. III 43010

  19. Test of biocontrol products against fungal pathogens of tomato and lettuce

    OpenAIRE

    Lenaerts, Ruben

    2011-01-01

    Chemical control remains the main measure to reduce the incidence of fungal diseases in various fruits and vegetables. A serious problem against the effective use of these chemicals is the development of resistance by the fungi. The exploitation of biocontrol agents, safer to consumers and the environment, is urgently needed. Furthermore, the demand for reduction in the use of pesticides in agriculture and horticulture increases interest in the possibility of the application of biocontrol age...

  20. Potential Pseudomonas Isolated from Soybean Rhizosphere as Biocontrol against Soilborne Phytopathogenic Fungi

    OpenAIRE

    ANTONIUS SUWANTO; YULIN LESTARI; ARIS TRI WAHYUDI; ARI SUSILOWATI; SURYO WIYONO

    2011-01-01

    Plants are liable to be attacked by soilborne fungal pathogens which are responsible to reduce plant growth and losses in yield. In Indonesia, indigenous soybeans’ rhizobacteria such as antifungal producing Pseudomonas sp. have not many been reported yet. Therefore, the potential of the Pseudomonas sp. as biocontrol agent should be deeply explored. The aim of this study was to screen the indigenous soybeans’ rhizobacteria Pseudomonas sp. that possessing biocontrol characters against soilborne...

  1. Screening criteria for the development of commercial products for biocontrol of plant pathogens

    OpenAIRE

    Köhl, Jurgen; Blum, Bernard; Nicot, Philippe; Ruocco, Michelina

    2012-01-01

    Antagonists for use in commercial biocontrol products have to fulfil many different requirements. Besides being active control agents against the specific targeted plant pathogens, they must be safe and cost effective. The development of new biocontrol products starts with screening programs including hundreds or thousands of candidates. For commercial use, important criteria are market size, efficacy, ecological characteristics, production costs, safety, environmental risks and protection of...

  2. Myco-Biocontrol of Insect Pests: Factors Involved, Mechanism, and Regulation

    OpenAIRE

    Sardul Singh Sandhu; Sharma, Anil K; Vikas Beniwal; Gunjan Goel; Priya Batra; Anil Kumar; Sundeep Jaglan; Sharma, A K; Sonal Malhotra

    2012-01-01

    The growing demand for reducing chemical inputs in agriculture and increased resistance to insecticides have provided great impetus to the development of alternative forms of insect-pest control. Myco-biocontrol offers an attractive alternative to the use of chemical pesticides. Myco-biocontrol agents are naturally occurring organisms which are perceived as less damaging to the environment. Their mode of action appears little complex which makes it highly unlikely that resistance could be dev...

  3. Relationship between the aggressiveness of Botrytis cinerea on tomato and the efficacy of biocontrol

    OpenAIRE

    Bardin, Marc; Comby, Morgane; Troulet, Claire; Nicot, Philippe

    2013-01-01

    The development of BCAs represents an attractive alternative to fungicides for the protection of crops against plant pathogens but the durability of this method has not been studied in details. The objective of the present work was to estimate the risk of loss of biocontrol efficacy towards Botrytis cinerea, by evaluating the sensibility of various isolates of the pathogen to the biocontrol agent Microdochium dimerum. The protective efficacy of M. dimerum was evaluated on tomato plants agains...

  4. Potential biocontrol of fumonisin b1 production by fusarium verticillioides under different ecophysiological conditions in maize

    OpenAIRE

    Samsudin, Nik Iskandar Putra Bin

    2015-01-01

    Fusarium verticillioides contaminates maize with the fumonisin group of mycotoxins for which there are strict legislative limits in many countries including the EU. The objectives of this project were (a) to examine the microbial diversity of maize samples from different regions and isolate potential biocontrol agents which could antagonize F. verticillioides and reduce fumonisin B1 (FB1) production, (b) to screen the potential biocontrol candidates using antagonistic interacti...

  5. Development of a qPCR Strategy to Select Bean Genes Involved in Plant Defense Response and Regulated by the Trichoderma velutinum – Rhizoctonia solani Interaction

    Science.gov (United States)

    Mayo, Sara; Cominelli, Eleonora; Sparvoli, Francesca; González-López, Oscar; Rodríguez-González, Alvaro; Gutiérrez, Santiago; Casquero, Pedro A.

    2016-01-01

    Bean production is affected by a wide diversity of fungal pathogens, among them Rhizoctonia solani is one of the most important. A strategy to control bean infectious diseases, mainly those caused by fungi, is based on the use of biocontrol agents (BCAs) that can reduce the negative effects of plant pathogens and also can promote positive responses in the plant. Trichoderma is a fungal genus that is able to induce the expression of genes involved in plant defense response and also to promote plant growth, root development and nutrient uptake. In this article, a strategy that combines in silico analysis and real time PCR to detect additional bean defense-related genes, regulated by the presence of Trichoderma velutinum and/or R. solani has been applied. Based in this strategy, from the 48 bean genes initially analyzed, 14 were selected, and only WRKY33, CH5b and hGS showed an up-regulatory response in the presence of T. velutinum. The other genes were or not affected (OSM34) or down-regulated by the presence of this fungus. R. solani infection resulted in a down-regulation of most of the genes analyzed, except PR1, OSM34 and CNGC2 that were not affected, and the presence of both, T. velutinum and R. solani, up-regulates hGS and down-regulates all the other genes analyzed, except CH5b which was not significantly affected. As conclusion, the strategy described in the present work has been shown to be effective to detect genes involved in plant defense, which respond to the presence of a BCA or to a pathogen and also to the presence of both. The selected genes show significant homology with previously described plant defense genes and they are expressed in bean leaves of plants treated with T. velutinum and/or infected with R. solani. PMID:27540382

  6. Production Methods for Microbial Biocontrol Agents

    Science.gov (United States)

    A critical constraint to the commercial use of microbial biopesticides is the development of an economic production process. The production process must be cost-effective and yield a microbial propagule that is stable and efficacious under field conditions. Currently, the commercial production of ...

  7. Development of novel Fungal Biocontrol Agents

    OpenAIRE

    Eiben, Ute; Lüth, Dr. Peter

    2006-01-01

    One of the tasks within the scope of REPCO is to select fungal isolates from a group of candidates highly hyperparasitc to Venturia inaequalis on apple.The selected isolates should be suitable for large-scale biotechnological production processes based on Solid-State fermentation. Therefore the ability to formulate a final product suitable for application and with good shelf-life and cost-competitiveness characteristics is also to be tested.

  8. Application of biocontrol agents in forest nurseries

    Science.gov (United States)

    Bare-root conifer seedling culture consists of growing seedlings (sown or transplanted) in soil, and is the predominant method for supplying America’s need for healthy regeneration stock to produce and sustain forests, wildlife food sources, fiber, wood products, paper, bio-pharmaceuticals and now p...

  9. Differential effects of organic compounds on cucumber damping-off and biocontrol activity of antagonistic bacteria

    DEFF Research Database (Denmark)

    Li, Bin; Ravnskov, Sabine; Guanlin, X.;

    2011-01-01

    The influence of the organic compounds tryptic soy broth, cellulose, glucose and chitosan on cucumber damping-off caused by Pythium aphanidermatum and biocontrol efficacy of the biocontrol agents (BCAs) Paenibacillus macerans and P. polymyxa were examined in a seedling emergence bioassay. Results...... showed that the organic compounds differentially affected both pathogen and BCAs. Tryptic soy broth, glucose and chitosan increased Pythium damping-off of cucumber, compared to the control treatment without organic compounds, whereas cellulose had no effect. Both Paenibacillus species had biocontrol...... effects against Pythium damping-off compared with the corresponding treatments with P. aphanidermatum alone, but the biocontrol efficacy depended on the type of organic compounds added. Both BCAs counteracted damping-off in treatments with TSB and chitosan. However, P. polymyxa counteracted damping-off in...

  10. Phages of Listeria offer novel tools for diagnostics and biocontrol

    OpenAIRE

    MartinJLoessner; StevenHagens

    2014-01-01

    Historically, bacteriophages infecting their hosts have perhaps been best known and even notorious for being a nuisance in dairy-fermentation processes. However, with the rapid progress in molecular microbiology and microbial ecology, a new dawn has risen for phages. This review will provide an overview on possible uses and applications of Listeria phages, including phage-typing, reporter phage for bacterial diagnostics, and use of phage as biocontrol agents for food safety. The use of phage-...

  11. Biocontrol: Bacillus penetrans and Related Parasites of Nematodes

    OpenAIRE

    Sayre, R. M.

    1980-01-01

    Bacillus penetrans Mankau, 1975, previously described as Duboscqia penetrans Thorne 1940, is a candidate agent for biocontrol of nematodes. This review considers the life stages of this bacterium: vegetative growth phase, colony fragmentation, sporogenesis, soil phase, spore attachment, and penetration into larvae of root-knot nematodes. The morphology of the microthallus colonies and the unusual external features of the spore are discussed. Taxonomic affinities with the actinomycetes, partic...

  12. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species.

    Science.gov (United States)

    Schmoll, Monika; Dattenböck, Christoph; Carreras-Villaseñor, Nohemí; Mendoza-Mendoza, Artemio; Tisch, Doris; Alemán, Mario Ivan; Baker, Scott E; Brown, Christopher; Cervantes-Badillo, Mayte Guadalupe; Cetz-Chel, José; Cristobal-Mondragon, Gema Rosa; Delaye, Luis; Esquivel-Naranjo, Edgardo Ulises; Frischmann, Alexa; Gallardo-Negrete, Jose de Jesus; García-Esquivel, Monica; Gomez-Rodriguez, Elida Yazmin; Greenwood, David R; Hernández-Oñate, Miguel; Kruszewska, Joanna S; Lawry, Robert; Mora-Montes, Hector M; Muñoz-Centeno, Tania; Nieto-Jacobo, Maria Fernanda; Nogueira Lopez, Guillermo; Olmedo-Monfil, Vianey; Osorio-Concepcion, Macario; Piłsyk, Sebastian; Pomraning, Kyle R; Rodriguez-Iglesias, Aroa; Rosales-Saavedra, Maria Teresa; Sánchez-Arreguín, J Alejandro; Seidl-Seiboth, Verena; Stewart, Alison; Uresti-Rivera, Edith Elena; Wang, Chih-Li; Wang, Ting-Fang; Zeilinger, Susanne; Casas-Flores, Sergio; Herrera-Estrella, Alfredo

    2016-03-01

    The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway. PMID:26864432

  13. What magnitude are observed non-target impacts from weed biocontrol?

    Science.gov (United States)

    A systematic review focused by plant on non-target impacts from agents deliberately introduced for the biological control of weeds found significant non-target impacts to be rare. The magnitude of direct impact of 43 biocontrol agents on 140 non-target plants was retrospectively categorized using a ...

  14. Endophytic Bacteria from Pinus taeda L. as Biocontrol Agents of Fusarium circinatum Nirenberg & O'Donnell Bacterias Endófitas de Pinus taeda L. como Agentes de control Biológico de Fusarium circinatum Nirenberg & O'Donnell

    Directory of Open Access Journals (Sweden)

    Silvina Soria

    2012-06-01

    Full Text Available Fusarium circinatum Nirenberg & O'Donnell, the pitch canker fungus, has been recently reported in Uruguay affecting Pinus taeda L. seedlings. The spread of this pathogen to plantations constitute a risk to forestry production. The aim of this work was to evaluate the inhibitory effect of live bacteria and their thermostable metabolites on F. circinatum growth in vitro. Four Bacillus subtilis strains and one of Burkholderia sp. isolated as P. taeda endophytes were evaluated as biological control agents of F. circinatum. Dual cultures between live bacteria and pathogen were performed. Furthermore, bacteria metabolites obtained from liquid cultures were sterilized and added to the culture media where fungus was grown. In this study all bacteria showed an antagonist effect on the pathogen growth arresting the mycelia at one cm of the edge of the bacteria colony. Bacteria thermostable metabolites reduced over 50% fungal growth. These results demonstrates that endophytic bacteria, well adapted to live in host tissues, constitute a good alternative to control F. circinatum affecting Pinus seedlings.La presencia de Fusarium circinatum Niremberg & O'Donnell, agente causal del cancro resinoso en pino, ha sido detectada recientemente en plántulas de Pinus taeda L. en Uruguay. La propagación de este patógeno en las plantaciones constituye un riesgo para la producción forestal. El objetivo de este trabajo fue determinar la capacidad inhibitoria de bacterias vivas y de sus metabolitos termoestables sobre el crecimiento de F. circinatum in vitro. Cuatro cepas de Bacillus subtilis y una de Burkholderia sp. aisladas como endófitas de P. taeda, fueron evaluadas como potenciales agentes de control biológico sobre F. circinatum. Para ello, se realizaron enfrentamientos directos entre las bacterias vivas y el micelio del patógeno. Por otra parte, los metabolitos bacterianos obtenidos de cultivos líquidos fueron esterilizados en autoclave y se incorporaron al

  15. Biocontrol of the Potato Blackleg and Soft Rot Diseases Caused by Dickeya dianthicola.

    Science.gov (United States)

    Raoul des Essarts, Yannick; Cigna, Jérémy; Quêtu-Laurent, Angélique; Caron, Aline; Munier, Euphrasie; Beury-Cirou, Amélie; Hélias, Valérie; Faure, Denis

    2016-01-01

    Development of protection tools targeting Dickeya species is an important issue in the potato production. Here, we present the identification and the characterization of novel biocontrol agents. Successive screenings of 10,000 bacterial isolates led us to retain 58 strains that exhibited growth inhibition properties against several Dickeya sp. and/or Pectobacterium sp. pathogens. Most of them belonged to the Pseudomonas and Bacillus genera. In vitro assays revealed a fitness decrease of the tested Dickeya sp. and Pectobacterium sp. pathogens in the presence of the biocontrol agents. In addition, four independent greenhouse assays performed to evaluate the biocontrol bacteria effect on potato plants artificially contaminated with Dickeya dianthicola revealed that a mix of three biocontrol agents, namely, Pseudomonas putida PA14H7 and Pseudomonas fluorescens PA3G8 and PA4C2, repeatedly decreased the severity of blackleg symptoms as well as the transmission of D. dianthicola to the tuber progeny. This work highlights the use of a combination of biocontrol strains as a potential strategy to limit the soft rot and blackleg diseases caused by D. dianthicola on potato plants and tubers. PMID:26497457

  16. Novel routes for improving biocontrol activity of Bacillus based bioinoculants

    Directory of Open Access Journals (Sweden)

    Liming eWu

    2015-12-01

    Full Text Available Biocontrol formulations prepared from plant-growth-promoting bacteria are increasingly applied in sustainable agriculture. Especially inoculants prepared from endospore-forming Bacillus strains have been proven as efficient and environmental-friendly alternative to chemical pesticides due to their long shelf life, which is comparable with that of agrochemicals. However, these formulations of the first generation are sometimes hampered in their action and do not fulfill in each case the expectations of the appliers. In this review we use the well-known plant-associated Bacillus amyloliquefaciens type strain FZB42 as example for the successful application of different techniques offered today by comparative, evolutionary and functional genomics, site-directed mutagenesis and strain construction including marker removal, for paving the way for preparing a novel generation of biocontrol agents.

  17. Phages of Listeria offer novel tools for diagnostics and biocontrol

    Directory of Open Access Journals (Sweden)

    Martin J Loessner

    2014-04-01

    Full Text Available Historically, bacteriophages infecting their hosts have perhaps been best known and even notorious for being a nuisance in dairy-fermentation processes. However, with the rapid progress in molecular microbiology and microbial ecology, a new dawn has risen for phages. This review will provide an overview on possible uses and applications of Listeria phages, including phage-typing, reporter phage for bacterial diagnostics, and use of phage as biocontrol agents for food safety. The use of phage-encoded enzymes such as endolysins for the detection and as antimicrobial will also be addressed. Desirable properties of candidate phages for biocontrol will be discussed. While emphasizing the enormous future potential for applications, we will also consider some of the intrinsic limitations dictated by both phage and bacterial ecology.

  18. Characterization of a protease produced by a Trichoderma harzianum isolate which controls cocoa plant witches' broom disease

    OpenAIRE

    Felix Carlos; De Marco Janice L

    2002-01-01

    Abstract Background Several Trichoderma strains have been reported to be effective in controlling plant diseases, and the action of fungal hydrolytic enzymes has been considered as the main mechanism involved in the antagonistic process. However, although Trichoderma strains were found to impair development of Crinipellis perniciosa, the causal agent of cocoa plant witches' broom disease, no fungal strain is available for effective control of this disease. We have then undertaken a program of...

  19. Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity

    OpenAIRE

    Prieto, Pilar; Schiliro, Elisabetta; Maldonado-González, María Mercedes; Valderrama, Raquel; Barroso-Albarracín, Juan Bautista; Mercado-Blanco, Jesús

    2011-01-01

    The use of indigenous bacterial root endophytes with biocontrol activity against soil-borne phytopathogens is an environmentally-friendly and ecologically-efficient action within an integrated disease management framework. The earliest steps of olive root colonization by Pseudomonas fluorescens PICF7 and Pseudomonas putida PICP2, effective biocontrol agents (BCAs) against Verticillium wilt of olive (Olea europaea L.) caused by the fungus Verticillium dahliae Kleb., are here described. A gnoto...

  20. Effect of nitrogen fertilisation of strawberry plants on the efficacy of defence-stimulating biocontrol products against Botrytis cinerea

    OpenAIRE

    Nicot, Philippe; Bardin, Marc; Debruyne, François; Duffaud, Magali; Lecompte, François; Neu, Laurent; Pascal, Michel

    2013-01-01

    Although Nitrogen (N) is a key component in many compounds implicated in host-pathogen interactions, little is known on the possible effect of N fertilisation of the plant on the efficacy of defence-stimulating biocontrol agents. In the present work we examined the effect of five levels of N nutrition on the susceptibility of strawberry leaves to Botrytis cinerea and on the protective efficacy of two biocontrol products presumed to induce plant defence mechanisms. Two days after the app...

  1. Augmentative Biocontrol in Natural Marine Habitats: Persistence, Spread and Non-Target Effects of the Sea Urchin Evechinus chloroticus

    OpenAIRE

    Javier Atalah; Hopkins, Grant A.; Forrest, Barrie M.

    2013-01-01

    Augmentative biocontrol aims to control established pest populations through enhancement of their indigenous enemies. To our knowledge, this approach has not been applied at an operational scale in natural marine habitats, in part because of the perceived risk of adverse non-target effects on native ecosystems. In this paper, we focus on the persistence, spread and non-target effects of the sea urchin Evechinus chloroticus when used as biocontrol agent to eradicate an invasive kelp from Fiord...

  2. What Magnitude Are Observed Non-Target Impacts from Weed Biocontrol?

    OpenAIRE

    David Maxwell Suckling; René François Henri Sforza

    2014-01-01

    A systematic review focused by plant on non-target impacts from agents deliberately introduced for the biological control of weeds found significant non-target impacts to be rare. The magnitude of direct impact of 43 biocontrol agents on 140 non-target plants was retrospectively categorized using a risk management framework for ecological impacts of invasive species (minimal, minor, moderate, major, massive). The vast majority of agents introduced for classical biological control of weeds (>9...

  3. Synergy in Trichoderma Reesei cellulases

    OpenAIRE

    Jepsen Kudal, Eva Rose; Ejaz, Rooshanie Nadia; Poniewierska, Julia Alicja

    2016-01-01

    Synergy has been observed between the various cellulolytic enzymes of the fungus Trichoderma Reesei. Termed cellulases, these enzymes come together to form a potent cocktail of biomass degrading enzymes. The biofuel industry has seen a recent surge partly due to the advances in attaining a more applicable understanding of the mechanisms of synergy that occur when said enzymes are used to degrade biomass into fermentable sugar. To that end, this review summarizes the various theories postulati...

  4. Trichoderma species collected from Iran

    Institute of Scientific and Technical Information of China (English)

    Doostmorad Zafari

    2004-01-01

    @@ In order to identify Trichoderma species isolated from Iran, Trichoderma selective media and malt extract agar (MEA) were used to isolate Trichoderma species from the soil samples. All the cultures were purified on 2% water agar by hyphal tip method prior to morphological examination.Morphological observations were carried out on the cultures grown on 2% MEA and oat meal agar at 20℃ under ambient laboratory conditions. Macroscopic features of colony and microscopic features of conidiophore, phialid and conidium including position of phialids on conidiophore and shape and size of phialids and conidia were studied and recorded 3-5 days after inoculation. Out of 36 tested isolates, using morphological features and molecular data obtained from ITS1, ITS2 and 5.8S regions fourteen species were identified as follow: T. atroviride, T. ghanense, T. spirale, T. erinaceum, T. citrinoviride, T. saturnisporum,T. longibrachiatum , T. hamatum , T. harzianum, T. inhamatum , T. tomentosum , T.virens, T. asperellum, T. koningii. Among the species T. harzianum and T. virens isolates were the most frequent species. In addition of the mentioned species two Tichoderma sp. were collected from walnut rhizospher that they are not fit to any described species so far. Although one of them are T. brevicumpactum introduced informally.

  5. Antagonism of Trichoderma species on Cladosporium herbarum and their enzimatic characterization Antagonismo de espécies de Trichoderma sobre Cladosporium herbarum e suas caracterização enzimática

    Directory of Open Access Journals (Sweden)

    Maria Angélica G. Barbosa

    2001-06-01

    Full Text Available The verrucose caused by Cladosporium herbarum reduces production and quality of Passion fruit (Passiflora edulis Sims., a largely consumed tropical fruit. This work aimed to investigate the antagonism of Trichoderma species (T. polysporum, T. koningii, T. viride and T. harzianum against Cladosporium herbarum, and to study the production of extracellular hydrolytic enzymes by the pathogen and the antagonists. The results showed considerable antagonistic potential for the biocontrol of C. herbarum isolates by all Trichoderma species, except T. koningii. The most distinguished effect was observed for T. polysporum. In relation to the pattern of esterase obtained by electrophoresis in poliacrylamyde gel, the major activity presented by the isolates was observed after five days of incubation. The C. herbarum isolates produced extracellular enzymes, lipase, pectinase, cellulase, and protease, all possibly related to the infection process. Amylase excretion, not known to be associated with phytopathogens, was detected in Trichoderma species, but not in C. herbarum. In addition to amylase, all Trichoderma species tested produced also extracellular cellulase and pectinase, except T. koningii in relation to the latter enzyme. The demonstration of various esterase isoenzymes in zymograms of the Trichoderma species and C. herbarum isolates was markedly improved by washing the mycelia with detergents or EDTA. This fact suggested that a major fraction of extracelular enzymes may remain attached to outside fungal cell wall after being excreted.O maracujá (Passiflora edulis Sims., um fruto tropical amplamente consumido, tem sua produção e a qualidade dos seus frutos reduzidos pela verrugose causada por Cladosporium herbarum. Este trabalho objetivou investigar o antagonismo de espécies de Trichoderma (T. polysporum, T.koningii, T. viride e T. harzianum contra C. herbarum, e estudar a produção de enzimas hidrolíticas extracelulares pelo fitopatógeno e

  6. Burkholderia cepacia XXVI siderophore with biocontrol capacity against Colletotrichum gloeosporioides.

    Science.gov (United States)

    de Los Santos-Villalobos, Sergio; Barrera-Galicia, Guadalupe Coyolxauhqui; Miranda-Salcedo, Mario Alberto; Peña-Cabriales, Juan José

    2012-08-01

    Colletotrichum gloeosporioides is the causal agent of anthracnose in mango. Burkholderia cepacia XXVI, isolated from mango rhizosphere and identified by 16S rDNA sequencing as a member of B. cepacia complex, was more effective than 6 other mango rhizosphere bacteria in inhibiting the model mango pathogen, C. gloeosporioides ATCC MYA 456. Biocontrol of this pathogen was demonstrated on Petri-dishes containing PDA by > 90 % reduction of surface colonization. The nature of the biocontrol metabolite(s) was characterized via a variety of tests. The inhibition was almost exclusively due to production of agar-diffusible, not volatile, metabolite(s). The diffusible metabolite(s) underwent thermal degradation at 70 and 121 °C (1 atm). Tests for indole acetic acid production and lytic enzyme activities (cellulase, glucanase and chitinase) by B. cepacia XXVI were negative, indicating that these metabolites were not involved in the biocontrol effect. Based on halo formation and growth inhibition of the pathogen on the diagnostic medium, CAS-agar, as well as colorimetric tests we surmised that strain XXVI produced a hydroxamate siderophore involved in the biocontrol effect observed. The minimal inhibitory concentration test showed that 0.64 μg ml(-1) of siderophore (Deferoxamine mesylate salt-equivalent) was sufficient to achieve 91.1 % inhibition of the pathogen growth on Petri-dishes containing PDA. The biocontrol capacity against C. gloeosporioides ATCC MYA 456 correlated directly with the siderophore production by B. cepacia XXVI: the highest concentration of siderophore production in PDB on day 7, 1.7 μg ml(-1) (Deferoxamine mesylate salt-equivalent), promoted a pathogen growth inhibition of 94.9 %. The growth of 5 additional strains of C. gloeosporioides (isolated from mango "Ataulfo" orchards located in the municipality of Chahuites, State of Oaxaca in Mexico) was also inhibited when confronted with B. cepacia XXVI. Results indicate that B. cepacia XXVI or its

  7. Assessment of biocontrol strains for reduction of mycotoxins (aflatoxin and CPA) in maize

    Science.gov (United States)

    Aspergillus flavus strains K49, NRRL 21882 (from Afla-Guard®) and AF36 are being developed as biocontrol agents for the control of aflatoxin in maize. In this study, the three non-aflatoxigenic strains were compared to evaluate which is most effective in reducing aflatoxin. Also, we tested these st...

  8. Lentinula edodes enhances the biocontrol activity of Cryptococcus laurentii against Penicillium expansum contamination and patulin production in apple fruits.

    Science.gov (United States)

    Tolaini, V; Zjalic, S; Reverberi, M; Fanelli, C; Fabbri, A A; Del Fiore, A; De Rossi, P; Ricelli, A

    2010-04-15

    Penicillium expansum is a post-harvest pathogen of apples which can produce the hazardous mycotoxin patulin. The yeast Cryptococcus laurentii (LS28) is a biocontrol agent able to colonize highly oxidative environments such as wounds in apples. In this study culture filtrates of the basidiomycete Lentinula edodes (LF23) were used to enhance the biocontrol activity of LS28. In vitro L. edodes culture filtrates improved the growth of C. laurentii and the activity of its catalase, superoxide dismutase and glutathione peroxidase, which play a key role in oxidant scavenging. In addition, LF23 also delayed P. expansum conidia germination. The biocontrol effect of LS28 used together with LF23 in wounded apples improved the inhibition of P. expansum growth and patulin production in comparison with LS28 alone, under both experimental and semi-commercial conditions. The biocontrol effect was confirmed by a semi-quantitative PCR analysis set up for monitoring the growth of P. expansum. PMID:20206395

  9. Extracellular proteome of Trichoderma harzianum to identify proteins with biotechnological value

    Institute of Scientific and Technical Information of China (English)

    Ambrosino P; Lorito M; Scala V; Marra R; Vinale F; Soriente I; Ferraioli S; Carbone V; Ruocco M; Woo S L

    2004-01-01

    @@ Trichoderma harzianum strain T22 parasitizes and controls many phytopatogenic fungi and is applied commercially as biological control agent. The production of hydrolitic enzymes appears to be a key factor in the parasitic process. We tested the endo-esochitinolitic and glucanolitic activities of culture filtrates of T22 grown under carbon and nitrogen starvation or in presence of biomass or cell walls of the phytopathogenic fungi Botrytis cinerea , Rhizoctonia solani and Pythium ultimum. The highest level of enzimatic activities was found in culture where the mycoparasite interacted with a phytopathogenic fungus. Therefore we used a proteomic approach to investigate changes in the complex mixture of extracellular proteins secreted by T. harzianum strain T22 in order to identify proteins of potential biotechnology value for commercial and industrial use. Proteome technology has greatly enhanced our ability to conduct functional genomics studies. Nevertheless only a few studies have been published so far on the fungal extracellular proteome. Sample preparation remains the most critical step in analyses based on two-dimensional gel electrophoresis (2-DE), and it requires to be optimized for each specific application. In this study, our first aim was to set up the extraction protocol of the extracellular proteins secreted by T . harzianum strain T22 when it was grown in vitro . The secreted proteins were analysed by two-dimensional electrophoresis (2-DE) and substantial changes in the extracellular proteome of the mycoparasite have been observed. Comparing the 2D maps of the fungus grown in minimal medium with glycerol as carbon source (used as control condition) with those obtained in inducing conditions, a lot of novel proteins appeared. The higher number of novel and upregulated spots was obtained in the presence of Rhizoctonia solani biomass. Other spots were specifically up-regulated by the interaction with different plant pathogens. Differentially expressed

  10. Isolation and analysis of lip2 gene from Trichoderma harzianum

    OpenAIRE

    Vaz, Madalena; Belo, Hélio; Jorge, Lurdes; Gonzalez, Francisco J.; Monte, Enrique; Choupina, Altino

    2011-01-01

    The genus Trichoderma is cosmopolitan in soils, wood decomposition and plant material. Species of Trichoderma are often dominant components of the soil microflora in various habitats. This is due to different metabolic capacity of the Trichoderma species and its aggressive competitiveness in nature. The genus Trichoderma are frequently used in biological control because of its antagonist ability of phytopathogenic fungi. The mechanisms employed by Trichoderma spp. to antagon...

  11. mRNA Expression of EgCHI1, EgCHI2, and EgCHI3 in Oil Palm Leaves (Elaeis guineesis Jacq. after Treatment with Ganoderma boninense Pat. and Trichoderma harzianum Rifai

    Directory of Open Access Journals (Sweden)

    Laila Naher

    2012-01-01

    Full Text Available Background. Basal stem rot (BSR disease caused by the fungus Ganoderma boninense is the most serious disease affecting the oil palm; this is because the disease escapes the early disease detection. The biocontrol agent Trichoderma harzianum can protect the disease only at the early stage of the disease. In the present study, the expression levels of three oil palm (Elaeis guineensis Jacq. chitinases encoding EgCHI1, EgCHI2, and EgCHI3 at 2, 5, and 8 weeks inoculation were measured in oil palm leaves from plants treated with G. boninense or T. harzianum alone or both. Methods. The five-month-old oil palm seedlings were treated with Gano-wood blocks inoculum and trichomulch. Expression of EgCHI1, EgCHI2, and EgCHI3 in treated leaves tissue was determined by real-time PCR. Results. Oil palm chitinases were not strongly expressed in oil palm leaves of plants treated with G. boninense alone compared to other treatments. Throughout the 8-week experiment, expression of EgCHI1 increased more than 3-fold in leaves of plants treated with T. harzianum and G. boninense when compared to those of control and other treated plants. Conclusion. The data illustrated that chitinase cDNA expression varied depending on tissue and the type of treatment.

  12. Antagonisme in vitro de trichoderma spp. vis-a-vis de rhizoctonia solani kuhn

    OpenAIRE

    Camporota, P.

    1985-01-01

    Cet article présente les résultats obtenus lors de la réalisation de la première étape d’un programme de sélection de souches de Trichoderma spp. utilisables pour la lutte biologique contre Rhizoctonia solani dans le sol : 28 souches de Trichoderma ont été confrontées in vitro à 3 souches de R. solani appartenant à des groupes d’anastomose différents. On a mesuré, pour chaque souche de Trichoderma, la capacité à envahir les colonies de l’agent pathogène ainsi que les 3 modes d’action : my...

  13. Impact of a Recombinant Biocontrol Bacterium, Pseudomonas fluorescens pc78, on Microbial Community in Tomato Rhizosphere

    Science.gov (United States)

    Kong, Hyun Gi; Kim, Nam Hee; Lee, Seung Yeup; Lee, Seon-Woo

    2016-01-01

    Pseudomonas fluorescens pc78 is an effective biocontrol agent for soil-borne fungal diseases. We previously constructed a P43-gfp tagged biocontrol bacteria P. fluorescens pc78-48 to investigate bacterial traits in natural ecosystem and the environmental risk of genetically modified biocontrol bacteria in tomato rhizosphere. Fluctuation of culturable bacteria profile, microbial community structure, and potential horizontal gene transfer was investigated over time after the bacteria treatment to the tomato rhizosphere. Tagged gene transfer to other organisms such as tomato plants and bacteria cultured on various media was examined by polymerase chain reaction, using gene specific primers. Transfer of chromosomally integrated P43-gfp from pc78 to other organisms was not apparent. Population and colony types of culturable bacteria were not significantly affected by the introduction of P. fluorescens pc78 or pc78-48 into tomato rhizosphere. Additionally, terminal restriction fragment length polymorphism profiles were investigated to estimate the influence on the microbial community structure in tomato rhizosphere between non-treated and pc78-48-treated samples. Interestingly, rhizosphere soil treated with strain pc78-48 exhibited a significantly different bacterial community structure compared to that of non-treated rhizosphere soil. Our results suggest that biocontrol bacteria treatment influences microbial community in tomato rhizosphere, while the chromosomally modified biocontrol bacteria may not pose any specific environmental risk in terms of gene transfer. PMID:27147933

  14. Impact of a Recombinant Biocontrol Bacterium, Pseudomonas fluorescens pc78, on Microbial Community in Tomato Rhizosphere

    Directory of Open Access Journals (Sweden)

    Hyun Gi Kong

    2016-04-01

    Full Text Available Pseudomonas fluorescens pc78 is an effective biocontrol agent for soil-borne fungal diseases. We previously constructed a P43-gfp tagged biocontrol bacteria P. fluorescens pc78-48 to investigate bacterial traits in natural ecosystem and the environmental risk of genetically modified biocontrol bacteria in tomato rhizosphere. Fluctuation of culturable bacteria profile, microbial community structure, and potential horizontal gene transfer was investigated over time after the bacteria treatment to the tomato rhizosphere. Tagged gene transfer to other organisms such as tomato plants and bacteria cultured on various media was examined by polymerase chain reaction, using gene specific primers. Transfer of chromosomally integrated P43-gfp from pc78 to other organisms was not apparent. Population and colony types of culturable bacteria were not significantly affected by the introduction of P. fluorescens pc78 or pc78-48 into tomato rhizosphere. Additionally, terminal restriction fragment length polymorphism profiles were investigated to estimate the influence on the microbial community structure in tomato rhizosphere between non-treated and pc78-48-treated samples. Interestingly, rhizosphere soil treated with strain pc78-48 exhibited a significantly different bacterial community structure compared to that of non-treated rhizosphere soil. Our results suggest that biocontrol bacteria treatment influences microbial community in tomato rhizosphere, while the chromosomally modified biocontrol bacteria may not pose any specific environmental risk in terms of gene transfer.

  15. Impact of a Recombinant Biocontrol Bacterium, Pseudomonas fluorescens pc78, on Microbial Community in Tomato Rhizosphere.

    Science.gov (United States)

    Kong, Hyun Gi; Kim, Nam Hee; Lee, Seung Yeup; Lee, Seon-Woo

    2016-04-01

    Pseudomonas fluorescens pc78 is an effective biocontrol agent for soil-borne fungal diseases. We previously constructed a P43-gfp tagged biocontrol bacteria P. fluorescens pc78-48 to investigate bacterial traits in natural ecosystem and the environmental risk of genetically modified biocontrol bacteria in tomato rhizosphere. Fluctuation of culturable bacteria profile, microbial community structure, and potential horizontal gene transfer was investigated over time after the bacteria treatment to the tomato rhizosphere. Tagged gene transfer to other organisms such as tomato plants and bacteria cultured on various media was examined by polymerase chain reaction, using gene specific primers. Transfer of chromosomally integrated P43-gfp from pc78 to other organisms was not apparent. Population and colony types of culturable bacteria were not significantly affected by the introduction of P. fluorescens pc78 or pc78-48 into tomato rhizosphere. Additionally, terminal restriction fragment length polymorphism profiles were investigated to estimate the influence on the microbial community structure in tomato rhizosphere between non-treated and pc78-48-treated samples. Interestingly, rhizosphere soil treated with strain pc78-48 exhibited a significantly different bacterial community structure compared to that of non-treated rhizosphere soil. Our results suggest that biocontrol bacteria treatment influences microbial community in tomato rhizosphere, while the chromosomally modified biocontrol bacteria may not pose any specific environmental risk in terms of gene transfer. PMID:27147933

  16. Effect of Trichoderma harzianum T4 on Bacterial Community in Watermelon (Citrullus lanatus) Rhizosphere Soil%生防菌哈茨木霉Trichoderma harzianum T4对西瓜根围土壤细菌群落的影响

    Institute of Scientific and Technical Information of China (English)

    夏飞; 张于; 旭热; 王伟

    2013-01-01

      采用平板培养、末端限制性片段长度多态性(terminal restriction fragment length polymorphism, T-RFLP)以及变性梯度凝胶电泳(denatured gradient gel electrophoresis, DGGE)的方法相结合探讨生防菌哈茨木霉 Trichoderma harzianum T4对大棚西瓜根围土壤细菌群落及氨氧化细菌群落的影响,为其在田间应用的生态安全性的评估提供支撑。末端限制性片段长度多态性以及变性梯度凝胶电泳的结果均表明哈茨木霉 T4施入田间约四周内对根围土壤细菌群落产生明显的影响,随后这种扰动现象逐渐减小。对 DGGE中受影响条带的测序结果表明,生防菌 T4促进了假单胞菌 Pseudomonas,芽孢杆菌 Bacillus,苍白杆菌Ochrobactrum 以及中慢生根瘤菌 Mesorhizobium 等细菌类群的生长,对短杆菌 Brevibacterium,克雷白氏肺炎杆菌 Klebsiella pneumoniae,根瘤菌 Rhizobium sp 等表现出抑制作用。生防菌 T4对根围土壤中氨氧化细菌群落并没有产生明显的影响。可见,生防菌木霉 T4引入初期对根围土壤中细菌群落产生明显的扰动,但这种干扰是短暂的,并没有对根围土壤细菌群落形成持续的影响。%The effects of biocontrol strain Trichoderma harzianum T4 on bacterial and ammonia-oxidizing bacteria (AOB) communities in watermelon (Citrullus lanatus) rhizosphere soil were studied using plate colony calculation, T-RFLP and DGGE method, in order to provide a theoretical basis and technique for assessing the microbial ecology risk of biocontrol agents application. Both T-RFLP and DGGE method demonstrated that T. harzianum T4 had short-term influence on rhizosphere soil bacterial communities which lasted about four weeks. Biocontrol strain T. harzianum T4 increased population of some bacteria, such as Pseudomonas, Bacillus, Ochrobactrum and Mesorhizobium. Meanwhile population of other bacteria such as Brevibacterium and Klebsiella pneumoniae were

  17. Agrobacterium tumefaciens-mediated transformation of CryⅠA(b) gene to Trichoderma harzianum

    Institute of Scientific and Technical Information of China (English)

    GAO Xingxi; YANG Qian

    2004-01-01

    In this study, CryⅠA(b) gene was successfully transferred into the biocontrol fungus Trichoderma harzianum with an efficiency of 60-180 transformants per 106 spores by using Agrobacterium tumefaciens-mediated trans- formation. Putative transformants were analyzed to test the presence of CryⅠA(b) gene by Southern blot. Most transformants contained a single T-DNA copy. RT-PCR analysis showed that the CryⅠA(b) gene was transcribed. Antifungal activities and insecticidal activities of the transformants were examined. There was no obvious difference in antifungal activities between the transformants and their wild strains. The modified mortalities of the transformants T1 and T2 were 69.57% and 91.30%, respectively. The tranformation system mediated by A. tumefaciens proved to be a powerful tool for the filamentous fungi transformation and functional genomic study with its high transformation frequency, simplicity of T-DNA integration, and genetic stability of transformants.

  18. Biological control of white mold by Trichoderma harzianum in common bean under field conditions

    Directory of Open Access Journals (Sweden)

    Daniel Diego Costa Carvalho

    2015-12-01

    Full Text Available Abstract: The objective of this work was to evaluate Trichoderma harzianum isolates for biological control of white mold in common bean (Phaseolus vulgaris. Five isolates were evaluated for biocontrol of white mold in 'Perola' common bean under field conditions, in the 2009 and 2010 crop seasons. A commercial isolate (1306 and a control treatment were included. Foliar applications at 2x109 conidia mL-1 were performed at 42 and 52 days after sowing (DAS, in 2009, and at 52 DAS in 2010. The CEN287, CEN316, and 1306 isolates decreased the number of Sclerotinia sclerotiorum apothecia per square meter in comparison to the control, in both crop seasons. CEN287, CEN316, and 1306 decreased white mold severity during the experimental period, when compared to the control.

  19. Trichoderma: the genomics of opportunistic success

    Energy Technology Data Exchange (ETDEWEB)

    Druzhinina, Irina S.; Seiboth, Verena Seidl; Estrella, Alfredo Herrera; Horwitz, Benjamin A.; Kenerley, Charles M.; Monte, Enrique; Mukherjee, Prasun K.; Zeilinger, Susanne; Grigoriev, Igor V.; Kubicek, Christian P.

    2011-01-01

    Trichoderma is a genus of common filamentous fungi that display a remarkable range of lifestyles and interactions with other fungi, animals and plants. Because of their ability to antagonize plant-pathogenic fungi and to stimulate plant growth and defence responses, some Trichoderma strains are used for biological control of plant diseases. In this Review, we discuss recent advances in molecular ecology and genomics which indicate that the interactions of Trichoderma spp. with animals and plants may have evolved as a result of saprotrophy on fungal biomass (mycotrophy) and various forms of parasitism on other fungi (mycoparasitism), combined with broad environmental opportunism.

  20. Biodiversity and distribution of Hypocrea/Trichoderma species in New Zealand

    Institute of Scientific and Technical Information of China (English)

    Sarah L Dodd; Alison Stewart

    2004-01-01

    @@ With increased imports of foreign microbes either as commercial biocontrol products or for the purposes of research, there is potentially an increased threat to indigenous beneficial microflora. In the present study, indigenous species of the fungal genus Hypocrea/Trichoderma are being used as a model system to determine the impact of foreign microbes on the native microflora of New Zealand. In order to protect such microflora, one has to first be aware of what is currently present and what sites, if any,are most vulnerable. A preliminary survey for the presence and diversity of species of Hypocrea/Trichoderma is currently underway in New Zealand and samples are being assessed from forest soils,agricultural soils, orchards, garden soils, sclerotia of various plant pathogens and pasture land. To date 238 isolates have been identified using both morphological characters and DNA sequence data from the ITS regions of the ribosomal gene cluster (ITS1 & ITS2) and, in some instances, sequence of the elongation factor gene (EF1-α) . Isolates were found to represent 16 known species plus three species as yet undescribed. In forest soils T. harzianum /T. inhamatum (31%) and T. viride (29%)followed by T. fertile (13%), were clearly the most abundant species and the remaining five species found in forests ( T. atroviride, T. koningii, T. aureoviride, H. cf. flavovirens anamorph and one unknown) each accounting for <8% of the total. Dominance by the species T. harzianum/inhamatum is consistent with studies done in South-East Asia, a mid-European primeval floodplainforest and Moscow. In contrast, when isolations were conducted with a bias for biocontrol capabilities it was found that the species T. atroviride (29%), T. koningii (17%), T. harzianum (15%)and T. viride (12%) dominated respectively. This survey is currently ongoing in New Zealand.Future studies will monitor indigenous species and strains following inoculation of specific microbes to assess the impact of the

  1. Indigenous bacteria may interfere with the biocontrol of plant diseases

    Science.gov (United States)

    Someya, Nobutaka; Akutsu, Katsumi

    2009-06-01

    Prodigiosin is a reddish antibiotic pigment that plays an important role in the biocontrol of plant diseases by the bacterium Serratia marcescens. However, its activity is unstable under agricultural conditions; further, it can be degraded by various environmental factors. To examine the effect of epiphytic microbes on the stability of prodigiosin used for biological control processes, we collected a total of 1,280 bacterial isolates from the phylloplane of cyclamen and tomato plants. Approximately 72% of the bacterial strains isolated from the cyclamen plants and 66% of those isolated from the tomato plants grew on minimal agar medium containing 100 μg ml-1 prodigiosin. Certain isolates obtained from both plant species exhibited prodigiosin-degrading activity. We compared the 16S rRNA gene sequences derived from the isolates with sequences in a database. The comparison revealed that the sequences determined for the prodigiosin-degrading isolates were homologous to those of the genera Pseudomonas, Caulobacter, Rhizobium, Sphingomonas, Janthinobacterium, Novosphingobium, and Rathayibacter. These results indicate that indigenous epiphytic microorganisms may interfere with the interaction between plant pathogens and biocontrol agents by degrading the antibiotics produced by the agents.

  2. Can efficacy of new agents be predicted before their release?

    Science.gov (United States)

    Prediction of the efficacy of new biocontrol agents before their release, while desirable and of scientific interest, is not possible at this time. Several approaches that attempt to do so are discussed. Measurement of per capita impact is recommended by some weed biocontrol scientists but does not...

  3. COMPARATIVE ASSESSMENT OF MOSQUITO BIOCONTROL EFFICIENCY BETWEEN GUPPY (POECILIA RETICULATA AND PANCHAX MINNOW (APLOCHEILUS PANCHAX

    Directory of Open Access Journals (Sweden)

    Sandipan Gupta and Samir Banerjee

    2013-01-01

    Full Text Available The present work was designed to compare the mosquito biocontrol efficiency of guppy and panchax minnow, the two popular fish species which so far have been used for mosquito biocontrol here in India. Study of the predation efficiency in relation to fish size and larval size has revealed significant better predation efficiency of panchax minnow over guppy in all size groups except for pupae in small size group fishes. Study of the comparative predation efficiency under vegetative cover has revealed significant (P<0.01 higher predation efficiency for panchax minnow over guppy. Study of the comparative predation efficiency under different depth of water has revealed superior predation efficiency of guppy under shallow water depth whereas panchax minnow has shown significantly better predation efficiency with increasing water depth. So, panchax minnow is a better mosquito biocontrol agent in waterbodies with vegetative covering and in comparatively deep water bodies whereas guppy can be used for mosquito control in very shallow water depth. But overall the study has depicted the superiority of panchax minnow over guppy as mosquito biocontrol agent.

  4. Role of Two G-Protein Alpha Subunits, TgaA and TgaB, in the Antagonism of Plant Pathogens by Trichoderma virens

    OpenAIRE

    Mukherjee, Prasun K.; Latha, Jagannathan; Hadar, Ruthi; Horwitz, Benjamin A.

    2004-01-01

    G-protein α subunits are involved in transmission of signals for development, pathogenicity, and secondary metabolism in plant pathogenic and saprophytic fungi. We cloned two G-protein α subunit genes, tgaA and tgaB, from the biocontrol fungus Trichoderma virens. tgaA belongs to the fungal Gαi class, while tgaB belongs to the class defined by gna-2 of Neurospora crassa. We compared loss-of-function mutants of tgaA and tgaB with the wild type for radial growth, conidiation, germination of coni...

  5. Genome Sequence and Annotation of Trichoderma parareesei, the Ancestor of the Cellulase Producer Trichoderma reesei

    OpenAIRE

    Yang, Dongqing; Pomraning, Kyle; Kopchinskiy, Alexey; Karimi Aghcheh, Razieh; Atanasova, Lea; Chenthamara, Komal; Baker, Scott E.; Zhang, Ruifu; Shen, Qirong; Freitag, Michael; Kubicek, Christian P.; Druzhinina, Irina S.

    2015-01-01

    The filamentous fungus Trichoderma parareesei is the asexually reproducing ancestor of Trichoderma reesei, the holomorphic industrial producer of cellulase and hemicellulase. Here, we present the genome sequence of the T. parareesei type strain CBS 125925, which contains genes for 9,318 proteins.

  6. Genome Sequence and Annotation of Trichoderma parareesei, the Ancestor of the Cellulase Producer Trichoderma reesei.

    Science.gov (United States)

    Yang, Dongqing; Pomraning, Kyle; Kopchinskiy, Alexey; Karimi Aghcheh, Razieh; Atanasova, Lea; Chenthamara, Komal; Baker, Scott E; Zhang, Ruifu; Shen, Qirong; Freitag, Michael; Kubicek, Christian P; Druzhinina, Irina S

    2015-01-01

    The filamentous fungus Trichoderma parareesei is the asexually reproducing ancestor of Trichoderma reesei, the holomorphic industrial producer of cellulase and hemicellulase. Here, we present the genome sequence of the T. parareesei type strain CBS 125925, which contains genes for 9,318 proteins. PMID:26272569

  7. INTERACCIÓN DE MICROORGANISMOS BENÉFICOS EN PLANTAS: Micorrizas, Trichoderma spp. y Pseudomonas spp. UNA REVISIÓN A REVIEW OF INTERACTION OF BENEFICIAL MICROORGANISMS IN PLANTS: Mycorrhizae, Trichoderma spp. and Pseudomonas spp

    Directory of Open Access Journals (Sweden)

    Mario Alejandro Cano

    , modulated by multiple and complex biotic and abiotic factorsdo exsist. In the rhizosphere, one of the main sites where microorganisms are functiona, specifications, such as nitrogen fixers, phosphate solubilizers, plant growth promotion, biocontrol and pathogenic species, usually for space and nutrients are found. These interrelationships between organisms affect the soil-plant-micro-environment and directly influence the growth and development of plant species. Rhizospheric microorganisms such as arbuscular mycorrhizal fungi(AMF, Trichoderma fungi and bacteria of the genus Pseudomonas, usually classified as biological control agents (BCA and plant growth promoting microorganisms (PGPM, depend on these factors to express their potential beneficial effects. However, the interaction of these three types of microorganisms can be synergistic, potentializing the benefits or otherwise, antagonistic effects do not occur, being the effect on the growth and development of plants absent. According to the above, the purpose of this review was to provide information to understand some of the interactions between microorganisms and thus to clarify the applicability of the co-inoculation of BCA and PGPM from different species with a common goal, the control or biological control of plant pathogens and as a result set and parallel stimulation of plant growth.

  8. POTENCIAL FARMACOINDUSTRIAL DE Trichoderma harzianum PARA FINS FARMACOTERAPÊUTICOS

    Directory of Open Access Journals (Sweden)

    Luís Fernando Albarello Gellen

    2014-12-01

    Full Text Available Linhagens de Trichoderma estão bem difundidas nos processos de controle de fitopatógenos, além disto, para promoção do desenvolvimento e crescimento das culturas onde são inoculados, estes benefícios dão-se pela gama de processos desempenhados por este organismo, os processos são classificados em parasitismo, antibiose e competição, além de secretarem produtos enzimáticos com ações degradantes, compostos voláteis e antimicrobianos. Por meio de testes de produção enzimática, confronto em placa, metabólitos voláteis e sensibilização do agente, os isolados de Trichoderma harzianum mostraram-se como um potente produtor de substâncias antimicrobianas e antifúngicas perante Sthaphylococcus aureus, Streptococcus pyogenes, E. coli, Pseudomonas aeruginosa, E. faecalis e Rhodotorula sp., Candida albicans, Candida parapsilosis e Candida lusitaniae. Palavras-chave: antimicrobianos, antifúngicas, metabólitos, sensibilização. DOI: http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v4n4p91-96

  9. Biocontrol of Escherichia coli O157:H7 on fresh-cut lettuce and cantaloupe by treatment with bacteriophage

    Science.gov (United States)

    Introduction: Outbreaks of foodborne illness have been associated with the consumption of cantaloupes and fresh-cut lettuce. Bacteriophage mixtures may be effective biocontrol agents to reduce E. coli O157:H7 on produce. Purpose: The effectiveness of a mixture of bacteriophages (ECP-100) in reducin...

  10. Use of biocontrol organisms and compost amendments for improved control of soilborne diseases and increased potato production

    Science.gov (United States)

    Soilborne potato diseases are persistent problems in potato production and alternative management practices are needed. In this research, biocontrol agents (Bacillus subtilis GB03 and Rhizoctonia solani hypovirulent isolate Rhs1A1) and compost amendments (from different source material), were evalua...

  11. Respuesta al glifosato de un aislamiento de Rhizoctonia solani agente causal del anublo de la vaina del arroz, y de cuatro aislamientos de Trichoderma, bajo condiciones in vitro In vitro response of one isolate of Rhizoctonia solani, the pathogen of the rice sheath blight and four isolates of Trichoderma to glyphosate

    OpenAIRE

    Vargas de Álvarez Amparo; Fuentes Cilia L.; Torres Torres Enrique

    2002-01-01

    El añublo de la vaina del arroz (Orysa saliva L.), cuyo agente causal es Rhizoctonia solani Kuhn, es una de las enfermedades más importantes en el cultivo del arroz en Colombia. En los cultivos de arroz con frecuencia se aplica glifosato ((ácido N-(fosfonometil) glicina) para controlar las malezas, particularmente el arroz rojo (O. saliva), antes de la siembra del arroz. Observaciones de campo anteriores parecían indicar relación entre el uso intensivo del glifosato y el incremento en la inci...

  12. Gliocladium and Trichoderma in agricultural soil

    Institute of Scientific and Technical Information of China (English)

    LIANG Chen; LI Bao-du; LU Guo-zhong

    2004-01-01

    @@ Gliocladium and Trichoderma are common fungi in agricultural soil. Several species of them were isolated and identified, great diversity was displayed in different agricultural soils of different crops,agricultural climate zones, different seasons, depths, different treated soybean cyst nematode soil,healthy and diseased crop soil. Among five crops soil samples, wheat and corn soil were found to possess the largest number of Gliocladium and Trichoderma separately. Gliocladium and Trichoderma of three major crops showed consistent changing patterns with seasonal variation. Corn soil displayed distinct vertical distribution of Trichoderna. There is a different distribution of the two fungi in diseased and healthy plant soil. Among the various isolated methods, diluted plate method is the best for isolating Gliocladium, and Trichoderma could be found in plant residue method and be tolerant to steam for two minutes. In the soybean cyst nematode soil mycobiota, the frequency of Gliocladium is higher than that of the others fungi, and Trichoderma may have the role of bioremediation in herbicide treated soil. Similarly, Gliocladium occurred frequently in different climate zones.

  13. Purificación y caracterización de hidrolasas implicadas en el microparasitismo de Trichoderma harzianum

    OpenAIRE

    Cruz Díaz, Jesús de la

    1994-01-01

    Los hongos del genero Trichoderma son buenos agentes de control biológico. Entre los mecanismos que estos utilizan para combatir las enfermedades de plantas producidas por hongos se encuentra el fenómeno denominado micoparasitismo. Se sugiere que este proceso requiere la producción de hidrolasas de pared celular. En este trabajo se ha estudiado la producción de quitinasas y BETA-1,3 y BETA-1-6-GLUCANASAS en la estirpe micoparasitaria Trichoderma harzianum CECT 2413. Se ha analizado la regulac...

  14. Evolution in biocontrol strains: insight from the harlequin ladybird Harmonia axyridis

    OpenAIRE

    Tayeh, Ashraf; Estoup, Arnaud; Laugier, Guillaume; Loiseau, Anne; Turgeon, Julie; Toepfer, Stefan

    2012-01-01

    After being used as a biocontrol agent against aphids for decades without harmful consequences, the Asian harlequin ladybird Harmonia axyridis has suddenly become an invasive pest on a worldwide scale. We investigate the impact of captive breeding on several traits of this ladybird such as genetic diversity, fecundity, survival and pathogen resistance. We conducted an experiment in the laboratory to compare the fecundity and the susceptibility to the entomopathogenic fungus Beauveria bassiana...

  15. Ecophysiological approaches to production and formulation of the biocontrol yeast Pichia anomala

    OpenAIRE

    Mokiou, Stella

    2004-01-01

    To produce commercial biocontrol agents (BCAs) successfully, it is important that cheap and economic substrates are used which support high numbers of good quality inoculum. Production of formulations conserving ecological competence and shelf-life should also be ensured. With this in mind, studies focusing on yeast ecophysiology were conducted to produce and formulate ecologically competent P. anomala cells for controlling spoilage of moist cereal grain. The liquid culture systems used were ...

  16. Rhizospheric bacteria of maize with potential for biocontrol of Fusarium verticillioides

    OpenAIRE

    Figueroa-López, Alejandro Miguel; Cordero-Ramírez, Jesús Damián; Martínez-Álvarez, Juan Carlos; López-Meyer, Melina; Lizárraga-Sánchez, Glenda Judith; Félix-Gastélum, Rubén; Castro-Martínez, Claudia; Maldonado-Mendoza, Ignacio Eduardo

    2016-01-01

    The stalk, ear and root rot (SERR) of maize caused by Fusarium verticillioides (Fv) severely impacts crop production in tropical and subtropical regions. The aim of the present work was to screen bacterial isolates in order to find novel native biocontrol agents against Fv. A culturable bacterial collection consisting of 11,520 isolates enriched in Firmicutes and Proteobacteria was created from rhizosphere samples taken from SERR symptomatic or asymptomatic maize plants. The complete collecti...

  17. Estudo do potencial do pacu (Piaractus mesopotamicus) como agente de controle biológico de Egeria densa, E. najas e Ceratophyllum demersum Evaluation of the biocontrol potential of pacu (Piaractus mesopotamicus) for Egeria densa, E. najas and Ceratophyllum demersum

    OpenAIRE

    D.M.Y. Miyazaki; R.A. Pitelli

    2003-01-01

    Visando fornecer subsídios para elaboração de sistema de manejo integrado das grandes massas de plantas daninhas aquáticas submersas em lagos e represas, o presente trabalho teve como objetivo verificar a eficiência do pacu (Piaractus mesopotamicus) como agente de controle biológico de Egeria densa, E. najas e Ceratophyllum demersum. As espécies de plantas daninhas foram oferecidas individualmente, duas a duas e as três espécies juntas. Verificou-se que este peixe tem uma eficiência média de ...

  18. Genetic Modification of a Biocontrol Agent Pseudomonas fluorescens 2P24 by a Harpin Coding Gene%利用编码harpin蛋白的基因遗传改良生防荧光假单胞菌2P24

    Institute of Scientific and Technical Information of China (English)

    赵倩; 邹丽芳; 邹华松; 李玉蓉; 陈功友

    2012-01-01

    Biocontrol agent Pseudomonas fluorescens 2P24,one of plant growth-promoting rhizobacteria(PGPR),possesses a type-Ⅲ secretion system(T3SS) for association with plants.To enable 2P24 to express a harpin protein which triggers hypersensitive response(HR) in plants and to have the ability to induce resistance to plant pathogen infection,we constructed a fusion of a hap1 gene,which encodes a harpin of Xanthomonas oryzae pv.oryzicola,with a promoter of avrPto1 of Pseudomonas syringae pv.tomato DC3000 which was induced in 2P24.This recombination led 2P24 to express the harpin protein Hpa1.The protein,secreted via the T3SS of 2P24,triggered HR in tobacco via the activation of HR marker genes,HIN1 and HRS203J,and pathogenesis-related protein gene PR1a.The genetic modified 2P24 with the harpin coding gene,as the recipient strain 2P24,had antimicrobial ability against wheat scab Fusarium graminearum and cotton wilt F.oxysporum f.sp.vasinfectum.Using HR-elicitors from plant-pathogen interactions to genetically modify biocontrol antimicrobes provides a fundamental basis for plant disease control.%荧光假单胞菌Pseudomonas fluorescens 2P24是根围促生细菌(PGPR),具有Ⅲ型分泌系统(T3SS)。为了在2P24中表达植物过敏反应激发子harpin,赋予生防菌诱导抗病性能力,本文选择可在2P24中表达的来自Pseudomonas syringae pv.tomato DC3000的avrPto1基因启动子与水稻细菌性条斑病菌Xanthomonasoryzae pv.oryzicola harpin蛋白编码基因hpa1进行融合,实现了harpin蛋白在2P24的表达。重组菌株通过T3SS分泌harpin蛋白,可激发烟草产生过敏反应(HR),激活HR途径的HIN1基因和HRS203J基因以及病程相关蛋白PR1a基因的转录表达。harpin重组菌株与2P24一样,对小麦赤霉病菌Fusarium graminearum和棉花枯萎病菌F.oxysporum f.sp.vasinfectum具有抑制作用。这为利用植物-病原物互作中激发植物产生抗病性的激发子来遗传改良生防微生物奠定了理论和实践基础。

  19. Enhanced Expression of Endochitinase in Trichoderma harzianum with the cbh1 Promoter of Trichoderma reesei

    OpenAIRE

    Margolles-Clark, E.; Harman, G. E.; Penttila, M.

    1996-01-01

    Production of extracellular endochitinase could be increased 5-fold in the mycoparasite fungus Trichoderma harzianum by using the cellulase promoter cbh1 of Trichoderma reesei, whereas the total endochitinase activity increased 10-fold. The cbh1 promoter was not expressed on glucose and sucrose in T. harzianum and was induced by sophorose and on cellulase-inducing medium. The endogenous endochitinase gene was expressed at a low basal level on glucose and sucrose. No specific induction by crab...

  20. Improved production of Trichoderma harzianum endochitinase by expression in Trichoderma reesei.

    OpenAIRE

    Margolles-Clark, E.; Hayes, C K; Harman, G. E.; Penttilä, M

    1996-01-01

    The chromosomal endochitinase gene (ThEn-42) of the mycoparasite fungus Trichoderma harzianum P1 was isolated and overexpressed in the filamentous fungus Trichoderma reesei under the promoter of the major cellulase gene cbhl1. The host strain RutC-30 did not produce any endogenous endochitinase activity. The prepro region of the T harzianum endochitinase was correctly processed in T. reesei. No differences in expression were observed when the prepro region was replaced with the CBHI signal se...

  1. Uji Antagonis Trichoderma harzianum Terhadap Fusarium spp. Penyebab Penyakit Layu pada Tanaman Cabai (Capsicum annum) Secara In Vitro

    OpenAIRE

    Mukarlina; Khotimah, Siti; Rianti, Reny

    2010-01-01

    Fusarium spp., the causal agent of Fusarium wilt disease, infect sweet pepper inflicting damages on the roots, stems, leaves, flowers, and fruits. Infection of Fusarium spp. on some crops can be controlled by using Trichoderma harzianum as a biological control agent. The aims of this study were to determine: 1) the species of Fusarium infecting sweet pepper; and 2) the in vitro antagonistic potential of T. harzianum in controlling Fusarium spp. in vitro. The study was conducted fr...

  2. Ecological impacts of Phlebiopsis gigantea biocontrol treatment against Heterobasidion spp. as revealed by fungal community profiling and population analyses

    OpenAIRE

    Vainio, Eeva Johanna

    2008-01-01

    Wood decay fungi belonging to the species complex Heterobasidion annosum sensu lato are among the most common and economically important species causing root rot and stem decay in conifers of the northern temperate regions. New infections by these pathogens can be suppressed by tree stump treatments using chemical or biological control agents. In Finland, the corticiaceous fungus Phlebiopsis gigantea has been formulated into a commercial biocontrol agent called Rotstop (Verdera Ltd.). Th...

  3. Immobilization of Trichoderma reesei by radiation polymerization

    International Nuclear Information System (INIS)

    Immobilization of Trichoderma reesei was carried out by radiation polymerization. It was found that the activity of fixed cells increased with increasing surface area of the carrier and was affected by the concentration of monomer tetraethylenglycol dimethacrylate and the shape of the substrate composition and structure of cotton textile fabrics. (author)

  4. Isolation of Dickeya dadantii strains from potato disease and biocontrol by their bacteriophages

    Directory of Open Access Journals (Sweden)

    Abbas Soleimani-Delfan

    2015-09-01

    Full Text Available One of the most economically important bacterial pathogens of plants and plant products is Dickeya dadantii. This bacterium causes soft rot disease in tubers and other parts of the potato and other plants of the Solanaceae family. The application of restricted host range bacteriophages as biocontrol agents has recently gained widespread interest. This study purposed to isolate the infectious agent of the potato and evaluate its biocontrol by bacteriophages. Two phytopathogenic strains were isolated from infected potatoes, identified based on biochemical and 16S rRNA gene sequencing, and submitted to GenBank as D. dadantii strain pis3 (accession no. HQ423668 and D. dadantii strain sip4 (accession no. HQ423669. Their bacteriophages were isolated from Caspian Sea water by enriching the water filtrate with D. dadantii strains as hosts using spot or overlay methods. On the basis of morphotypes, the isolated bacteriophages were identified as members of the Myoviridae and Siphoviridae families and could inhibit the growth of antibiotic resistant D. dadantii strains in culture medium. Moreover, in Dickeya infected plants treated with bacteriophage, no disease progression was detected. No significant difference was seen between phage-treated and control plants. Thus, isolated bacteriophages can be suggested for the biocontrol of plant disease caused by Dickeya strains.

  5. Isolation of Dickeya dadantii strains from potato disease and biocontrol by their bacteriophages.

    Science.gov (United States)

    Soleimani-Delfan, Abbas; Etemadifar, Zahra; Emtiazi, Giti; Bouzari, Majid

    2015-01-01

    One of the most economically important bacterial pathogens of plants and plant products is Dickeya dadantii. This bacterium causes soft rot disease in tubers and other parts of the potato and other plants of the Solanaceae family. The application of restricted host range bacteriophages as biocontrol agents has recently gained widespread interest. This study purposed to isolate the infectious agent of the potato and evaluate its biocontrol by bacteriophages. Two phytopathogenic strains were isolated from infected potatoes, identified based on biochemical and 16S rRNA gene sequencing, and submitted to GenBank as D. dadantii strain pis3 (accession no. HQ423668) and D. dadantii strain sip4 (accession no. HQ423669). Their bacteriophages were isolated from Caspian Sea water by enriching the water filtrate with D. dadantii strains as hosts using spot or overlay methods. On the basis of morphotypes, the isolated bacteriophages were identified as members of the Myoviridae and Siphoviridae families and could inhibit the growth of antibiotic resistant D. dadantii strains in culture medium. Moreover, in Dickeya infected plants treated with bacteriophage, no disease progression was detected. No significant difference was seen between phage-treated and control plants. Thus, isolated bacteriophages can be suggested for the biocontrol of plant disease caused by Dickeya strains. PMID:26413062

  6. Taxon-specific metagenomics of Trichoderma reveals a narrow community of opportunistic species that regulate each other's development.

    Science.gov (United States)

    Friedl, Martina A; Druzhinina, Irina S

    2012-01-01

    In this paper, we report on the in situ diversity of the mycotrophic fungus Trichoderma (teleomorph Hypocrea, Ascomycota, Dikarya) revealed by a taxon-specific metagenomic approach. We designed a set of genus-specific internal transcribed spacer (ITS)1 and ITS2 rRNA primers and constructed a clone library containing 411 molecular operational taxonomic units (MOTUs). The overall species composition in the soil of the two distinct ecosystems in the Danube floodplain consisted of 15 known species and two potentially novel taxa. The latter taxa accounted for only 1.5 % of all MOTUs, suggesting that almost no hidden or uncultivable Hypocrea/Trichoderma species are present at least in these temperate forest soils. The species were unevenly distributed in vertical soil profiles although no universal factors controlling the distribution of all of them (chemical soil properties, vegetation type and affinity to rhizosphere) were revealed. In vitro experiments simulating infrageneric interactions between the pairs of species that were detected in the same soil horizon showed a broad spectrum of reactions from very strong competition over neutral coexistence to the pronounced synergism. Our data suggest that only a relatively small portion of Hypocrea/Trichoderma species is adapted to soil as a habitat and that the interaction between these species should be considered in a screening for Hypocrea/Trichoderma as an agent(s) of biological control of pests. PMID:22075025

  7. Characterization and gene cloning of a novel serine protease with nematicidal activity from Trichoderma pseudokoningii SMF2.

    Science.gov (United States)

    Chen, Lei-Lei; Liu, Li-Jun; Shi, Mei; Song, Xiao-Yan; Zheng, Chang-Ying; Chen, Xiu-Lan; Zhang, Yu-Zhong

    2009-10-01

    Trichoderma pseudokoningii SMF2 is a biocontrol fungus with inhibitory ability against phytopathogenic fungi. Here, a crude extract of strain SMF2 in a solid ferment exhibited strong nematicidal activity against Meloidogyne incognita, and a novel serine protease SprT with nematicidal activity was purified from the crude extract. Protease SprT has a molecular mass of 31 kDa, a pH optimum of 8.5, and a temperature optimum of 60-65 degrees C. It had good thermostability, and was stable in an alkaline environment. SprT could degrade bovine serum albumin, lysozyme, and gelatin, and its activity was enhanced by many metal ions. The cuticles of nematodes treated by protease SprT obviously crimpled. Purified protease SprT could kill juveniles of M. incognita and inhibit egg hatch, suggesting that it is involved in the nematicidal process of T. pseudokoningii SMF2. The full-length cDNA gene-encoding protease SprT was cloned by rapid amplification of cDNA ends. Sequence analysis showed that SprT is a monodomain subtilase containing 284 amino acid residues. It had higher identities and a closer relation to the nematicidal serine proteases (59-69%) from nematode parasitic fungi than to the serine proteases (activity from Trichoderma. PMID:19702879

  8. Enhancing rice resistance to fungal pathogens by transformation with cell wall degrading enzyme genes from Trichoderma atroviride

    Institute of Scientific and Technical Information of China (English)

    刘梅; 孙宗修; 朱洁; 徐同; HARMANGaryE; LORITOMatteo

    2004-01-01

    Three genes encoding for fungal cell wall degrading enzymes (CWDEs), ech42, nag70 and gluc78 from the biocontrol fungus Trichoderma atroviride were inserted into the binary vector pCAMBIA1305.2 singly and in all possible combinations and transformed to rice plants. More than 1800 independently regenerated plantlets in seven different populations (for each of the three genes and each of the four gene combinations) were obtained. The ech42 gene encoding for an endochitinase increased resistance to sheath blight caused by Rhizoctonia solani, while the exochitinase-encoding gene, nag70, had lesser effect. The expression level of endochitinase but exochitinase was correlated with disease resistance. Nevertheless, exochitinase enhanced the effect of endochitinase on disease resistance when the two genes co-expressed in transgenics. Resistance to Magnaporthe grisea was found in all kinds of regenerated plants including that with single gluc78. A few lines expressing either ech42 or nag70 gene were immune to the disease. Transgenic plants are being tested to further evaluate disease resistance at field level. This is the first report of multiple of expression of genes encoding CWDEs from Trichoderma atroviride that result in resistance to blast and sheath blight in rice.

  9. Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection

    Directory of Open Access Journals (Sweden)

    Janick eMathys

    2012-05-01

    Full Text Available In this study, the molecular basis of the induced systemic resistance (ISR in Arabidopsis thaliana by the biocontrol fungus Trichoderma hamatum T382 against the phytopathogen Botrytis cinerea B05-10 was unraveled by microarray analysis both before (ISR-prime and after (ISR-boost additional pathogen inoculation. The observed high numbers of differentially expressed genes allowed us to classify them according to the biological pathways in which they are involved. By focusing on pathways instead of genes, a holistic picture of the mechanisms underlying ISR emerged. In general, a close resemblance is observed between ISR-prime and systemic acquired resistance (SAR, the systemic defense response that is triggered in plants upon pathogen infection leading to increased resistance towards secondary infections. Treatment with Trichoderma hamatum T382 primes the plant (ISR-prime, resulting in an accelerated activation of the defense response against Botrytis cinerea during ISR-boost and a subsequent moderation of the Botrytis cinerea induced defense response (BIDR. Microarray results were confirmed for representative genes by qRT-PCR, by analysis of transgenic plants expressing relevant promoter-GUS constructs and by phenotypic analysis of mutants affected in various defense-related pathways, thereby proving the validity of our approach.

  10. Enhancement of Rice Seed Germination and Vigour by Trichoderma spp.

    OpenAIRE

    Febri Doni; I. Anizan; C.M.Z. Che Radziah; Ahmad Hilmi Salman; Muhammad Hidayat Rodzihan; Wan Mohtar Wan Yusoff

    2014-01-01

    The present study was undertaken to examine the effectiveness of Trichoderma spp. to enhance rice germination and vigour. An in vitro experiment was carried out to assess the effect of seven isolates of Trichoderma spp. in enhancing rice germination and vigour. The results showed that all isolates of Trichoderma spp. significantly increased rice seedling growth, germination rate, vigour index and speed of germination with sp., SL2 showing the greatest increase in all the four parameters. Tric...

  11. Uji Pengaruh Beberapa Herbisida Terhadap Trichoderma sp Secara In Vitro

    OpenAIRE

    Majid, Muhammad

    2016-01-01

    Muhammad Majid: In Vitro Test on the Effect of Trichoderma sp Through Application of some Herbicides. Under Supervision ofHasanuddin and Mukhtar Iskandar Pinem. Herbicide is most commonly used pesticide, yet contained multiple negative effect on environment, especially towards soil microorganisms. This research’s objective is to study effect of herbicide with different concentration towards Trichoderma sp. Trichoderma sp has been inoculated in PDA which have been induced with six different...

  12. Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, Verena; Song, Lifu; Lindquist, Erika; Gruber, Sabine; Koptchinskiy, Alexeji; Zeilinger, Susanne; Schmoll, Monika; Martinez, Pedro; Sun, Jibin; Grigoriev, Igor; Herrera-Estrella, Alfredo; Baker, Scott E; Kubicek, Christian P.

    2010-07-23

    BACKGROUND: Combating the action of plant pathogenic microorganisms by mycoparasitic fungi has been announced as an attractive biological alternative to the use of chemical fungicides since two decades. The fungal genus Trichoderma includes a high number of taxa which are able to recognize, combat and finally besiege and kill their prey. Only fragments of the biochemical processes related to this ability have been uncovered so far, however. RESULTS: We analyzed genome-wide gene expression changes during the begin of physical contact between Trichoderma atroviride and two plant pathogens Botrytis cinerea and Rhizoctonia solani, and compared with gene expression patterns of mycelial and conidiating cultures, respectively. About 3000 ESTs, representing about 900 genes, were obtained from each of these three growth conditions. 66 genes, represented by 442 ESTs, were specifically and significantly overexpressed during onset of mycoparasitism, and the expression of a subset thereof was verified by expression analysis. The upregulated genes comprised 18 KOG groups, but were most abundant from the groups representing posttranslational processing, and amino acid metabolism, and included components of the stress response, reaction to nitrogen shortage, signal transduction and lipid catabolism. Metabolic network analysis confirmed the upregulation of the genes for amino acid biosynthesis and of those involved in the catabolism of lipids and aminosugars. CONCLUSION: The analysis of the genes overexpressed during the onset of mycoparasitism in T. atroviride has revealed that the fungus reacts to this condition with several previously undetected physiological reactions. These data enable a new and more comprehensive interpretation of the physiology of mycoparasitism, and will aid in the selection of traits for improvement of biocontrol strains by recombinant techniques.

  13. Biocontrol of larval mosquitoes by Acilius sulcatus (Coleoptera: Dytiscidae

    Directory of Open Access Journals (Sweden)

    Banerjee Siddhartha S

    2008-10-01

    Full Text Available Abstract Background Problems associated with resistant mosquitoes and the effects on non-target species by chemicals, evoke a reason to find alternative methods to control mosquitoes, like the use of natural predators. In this regard, aquatic coleopterans have been explored less compared to other insect predators. In the present study, an evaluation of the role of the larvae of Acilius sulcatus Linnaeus 1758 (Coleoptera: Dytiscidae as predator of mosquito immatures was made in the laboratory. Its efficacy under field condition was also determined to emphasize its potential as bio-control agent of mosquitoes. Methods In the laboratory, the predation potential of the larvae of A. sulcatus was assessed using the larvae of Culex quinquefasciatus Say 1823 (Diptera: Culicidae as prey at varying predator and prey densities and available space. Under field conditions, the effectiveness of the larvae of A. sulcatus was evaluated through augmentative release in ten cemented tanks hosting immatures of different mosquito species at varying density. The dip density changes in the mosquito immatures were used as indicator for the effectiveness of A. sulcatus larvae. Results A single larva of A. sulcatus consumed on an average 34 IV instar larvae of Cx. quinquefasciatus in a 24 h period. It was observed that feeding rate of A. sulcatus did not differ between the light-on (6 a.m. – 6 p.m., and dark (6 p.m. – 6 a.m. phases, but decreased with the volume of water i.e., space availability. The prey consumption of the larvae of A. sulcatus differed significantly (P A. sulcatus larvae, while with the withdrawal, a significant increase (p A. sulcatus in regulating mosquito immatures. In the control tanks, mean larval density did not differ (p > 0.05 throughout the study period. Conclusion the larvae of the dytiscid beetle A. sulcatus proved to be an efficient predator of mosquito immatures and may be useful in biocontrol of medically important mosquitoes.

  14. Cultural conditions on the production of extracellular enzymes by Trichoderma isolates from tobacco rhizosphere

    Directory of Open Access Journals (Sweden)

    K.L.N Mallikharjuna Rao

    2016-03-01

    Full Text Available Abstract Twelve isolates of Trichoderma spp. isolated from tobacco rhizosphere were evaluated for their ability to produce chitinase and β-1,3-glucanase extracellular hydrolytic enzymes. Isolates ThJt1 and TvHt2, out of 12 isolates, produced maximum activities of chitinase and β-1,3-glucanase, respectively. In vitro production of chitinase and β-1,3-glucanase by isolates ThJt1 and TvHt2 was tested under different cultural conditions. The enzyme activities were significantly influenced by acidic pH and the optimum temperature was 30 °C. The chitin and cell walls of Sclerotium rolfsii, as carbon sources, supported the maximum and significantly higher chitinase activity by both isolates. The chitinase activity of isolate ThJt1 was suppressed significantly by fructose (80.28%, followed by glucose (77.42%, whereas the β-1,3-glucanase activity of ThJt1 and both enzymes of isolate TvHt2 were significantly suppressed by fructose, followed by sucrose. Ammonium nitrate as nitrogen source supported the maximum activity of chitinase in both isolates, whereas urea was a poor nitrogen source. Production of both enzymes by the isolates was significantly influenced by the cultural conditions. Thus, the isolates ThJt1 and TvHt2 showed higher levels of chitinase and β-1,3-glucanase activities and were capable of hydrolyzing the mycelium of S. rolfsii infecting tobacco. These organisms can be used therefore for assessment of their synergism in biomass production and biocontrol efficacy and for their field biocontrol ability against S. rolfsii and Pythium aphanidermatum infecting tobacco.

  15. Cultural conditions on the production of extracellular enzymes by Trichoderma isolates from tobacco rhizosphere.

    Science.gov (United States)

    Mallikharjuna Rao, K L N; Siva Raju, K; Ravisankar, H

    2016-01-01

    Twelve isolates of Trichoderma spp. isolated from tobacco rhizosphere were evaluated for their ability to produce chitinase and β-1,3-glucanase extracellular hydrolytic enzymes. Isolates ThJt1 and TvHt2, out of 12 isolates, produced maximum activities of chitinase and β-1,3-glucanase, respectively. In vitro production of chitinase and β-1,3-glucanase by isolates ThJt1 and TvHt2 was tested under different cultural conditions. The enzyme activities were significantly influenced by acidic pH and the optimum temperature was 30°C. The chitin and cell walls of Sclerotium rolfsii, as carbon sources, supported the maximum and significantly higher chitinase activity by both isolates. The chitinase activity of isolate ThJt1 was suppressed significantly by fructose (80.28%), followed by glucose (77.42%), whereas the β-1,3-glucanase activity of ThJt1 and both enzymes of isolate TvHt2 were significantly suppressed by fructose, followed by sucrose. Ammonium nitrate as nitrogen source supported the maximum activity of chitinase in both isolates, whereas urea was a poor nitrogen source. Production of both enzymes by the isolates was significantly influenced by the cultural conditions. Thus, the isolates ThJt1 and TvHt2 showed higher levels of chitinase and β-1,3-glucanase activities and were capable of hydrolyzing the mycelium of S. rolfsii infecting tobacco. These organisms can be used therefore for assessment of their synergism in biomass production and biocontrol efficacy and for their field biocontrol ability against S. rolfsii and Pythium aphanidermatum infecting tobacco. PMID:26887223

  16. Antioxident activity of the mangrove endophytic fungus (Trichoderma sp.)

    Institute of Scientific and Technical Information of China (English)

    Saravanakumar Kandasamy; Kathiresan Kandasamy

    2014-01-01

    Objective: To test antioxidant property of the endophytic Trichoderma species isolated from the leaves of 12 mangroves of Andaman Nicobar Islands. Methods: Eight strains of Trichoderma species were found predominant and their crude extracts were assessed for antioxidant activity by using seven assays.Results:EMFCAS8 and other strains also showed considerable activity. Total antioxidant activity varied with the strains and it was maximum in Trichoderma Conclusions: This work concluded that mangroves are rich in endophytic Trichoderma species with potential for antioxidant activity.

  17. Diversity of Trichoderma in greenhouse soil

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhi-hui; SUN Xiao-dong; YANG Rui-xiu; YANG Hong; LU Guo-zhong

    2004-01-01

    @@ The protected agricultural production has become one of the fast growing and widespread cultivation technology in the north parts of China. Continuous cultivation of single crop or less rotation of crops usually resulted in the large amount of accumulation of soilborne pathogens and serious crop diseases in the greenhouse. After a few years of investigation of soilborne fungi in the north parts of China, nearly one hundred species of mictosporic fungi have been identified by the authors. Among these fungi 11species of Trichoderma have been morphologically identified, namely T. atroviride, T.aureoviride, T. citrinoviride , T. fertile, T. harzianum , T. inhamatum , T.longibrachiatum, T. parceramosum, T. reeseii, T. virens and T. viride. Trichoderm is found to be a frequently occurring genus of fungi in greenhouse soil. As an important component of effective beneficial antibiotic mycoparasites in soil Trichoderma plays an important part to regulate the balance of beneficial and harmful soilborne microorganisms.

  18. Health effects of selected microbiological control agents. A 3-year follow-up study

    DEFF Research Database (Denmark)

    Baelum, Jesper; Larsen, Preben; Doekes, Gert;

    2012-01-01

    Introduction and objectives: Microbiological control agents (MBCA) are widely used in greenhouses, replacing chemical pesticides. The presented study aims to describe health effects of exposure to three types commonly used: Bacillus thuringiensis, Verticillium lecanii, and Trichoderma harzenianum...

  19. Identification and Characterization of Trichoderma Species Damaging Shiitake Mushroom Bed-Logs Infested by Camptomyia Pest.

    Science.gov (United States)

    Kim, Jun Young; Kwon, Hyuk Woo; Yun, Yeo Hong; Kim, Seong Hwan

    2016-05-28

    The shiitake mushroom industry has suffered from Camptomyia (gall midges) pest, which feeds on the mycelium of shiitake mushroom during its cultivation. It has been postulated that fungal damage of shiitake bed-logs is associated with infestation by the insect pest, but this is not well understood. To understand the fungal damage associated with Camptomyia pest, various Trichoderma species were isolated, identified, and characterized. In addition to two previously known Trichoderma species, T. citrinoviride and T. deliquescens, two other Trichoderma species, T. harzianum and T. atroviride, were newly identified from the pestinfested bed-log samples obtained at three mushroom farms in Cheonan, Korea. Among these four species, T. harzianum was the most evident. The results of a chromogenic media-based assay for extracellular enzymes showed that these four species have the ability to produce amylase, carboxyl-methyl cellulase, avicelase, pectinase, and β-glucosidase, thus indicating that they can degrade wood components. A dual culture assay on PDA indicated that T. harzianum, T. atroviride, and T. citrinoviride were antagonistic against the mycelial growth of a shiitake strain (Lentinula edodes). Inoculation tests on shiitake bed-logs revealed that all four species were able to damage the wood of bed-logs. Our results provide evidence that the four green mold species are the causal agents involved in fungal damage of shiitake bed-logs infested by Camptomyia pest. PMID:26930351

  20. Draft Genome Sequence of Biocontrol Agent Bacillus cereus UW85.

    Science.gov (United States)

    Lozano, Gabriel L; Holt, Jonathan; Ravel, Jacques; Rasko, David A; Thomas, Michael G; Handelsman, Jo

    2016-01-01

    Bacillus cereus UW85 was isolated from a root of a field-grown alfalfa plant from Arlington, WI, and identified for its ability to suppress damping off, a disease caused by Phytophthora megasperma f. sp. medicaginis on alfalfa. Here, we report the draft genome sequence of B. cereus UW85, obtained by a combination of Sanger and Illumina sequencing. PMID:27587823

  1. The use entomopathogenic and molluscparasitic nematodes as biocontrol agents

    Czech Academy of Sciences Publication Activity Database

    Nermuť, Jiří; Půža, Vladimír; Mráček, Zdeněk

    Tours : Institut de Recherche sur la Biologie de l´Insecte, 2011. s. 73-73. [Annual Meeting of the European PhD Network in "Insect Sciences" /2./. 07.11.2011-11.11.2011, Tours] Institutional research plan: CEZ:AV0Z50070508 Keywords : nematodes

  2. Selection, monitoring, and enhancement of bacterial biocontrol agents

    Science.gov (United States)

    Genetic resistance to root diseases of plants is rare, and these diseases are most commonly controlled through the use of cultural practices and synthetic fungicides. Plants also defend themselves by supporting rhizosphere microorganisms antagonistic to soilborne pathogens. Antibiotic production is ...

  3. A Search for Mosquitocidal Fish Species as Biocontrol Agents

    OpenAIRE

    Muhammad Rasool; Muhammad Suleman

    1999-01-01

    Experiment were conducted to investigate the feeding preferences of different indigenous fishes in natural habitat of NWFP. A total of 426 fish specimens were collected from two diverse localities of Peshawar and Swat. Identification of fish specimen revealed 9 and 6 different species from Peshawar and Swat respectively. Fishes were further categorized in carnivores, omnivores and herbivores by analyzing their gut contents. Main objective of our study; was to identify indigenous fishes which ...

  4. Elucidating the Diversity of Aquatic Microdochium and Trichoderma Species and Their Activity against the Fish Pathogen Saprolegnia diclina

    Directory of Open Access Journals (Sweden)

    Yiying Liu

    2016-01-01

    Full Text Available Animals and plants are increasingly threatened by emerging fungal and oomycete diseases. Amongst oomycetes, Saprolegnia species cause population declines in aquatic animals, especially fish and amphibians, resulting in significant perturbation in biodiversity, ecological balance and food security. Due to the prohibition of several chemical control agents, novel sustainable measures are required to control Saprolegnia infections in aquaculture. Previously, fungal community analysis by terminal restriction fragment length polymorphism (T-RFLP revealed that the Ascomycota, specifically the genus Microdochium, was an abundant fungal phylum associated with salmon eggs from a commercial fish farm. Here, phylogenetic analyses showed that most fungal isolates obtained from salmon eggs were closely related to Microdochium lycopodinum/Microdochium phragmitis and Trichoderma viride species. Phylogenetic and quantitative PCR analyses showed both a quantitative and qualitative difference in Trichoderma population between diseased and healthy salmon eggs, which was not the case for the Microdochium population. In vitro antagonistic activity of the fungi against Saprolegnia diclina was isolate-dependent; for most Trichoderma isolates, the typical mycoparasitic coiling around and/or formation of papilla-like structures on S. diclina hyphae were observed. These results suggest that among the fungal community associated with salmon eggs, Trichoderma species may play a role in Saprolegnia suppression in aquaculture.

  5. ISOLATION AND IDENTIFICATION OF MYCOPARASITIC ISOLATES OF TRICHODERMA ASPERELLUM WITH POTENTIAL FOR SUPRESSION OF BLACK POD DISEASE OF CACAO IN CAMEROON

    Science.gov (United States)

    Alternative measures are needed to control Phytophthora megakarya, the main causal agent of black pod disease in Africa. Precolonized plate and detached cacao pod assays were used to screen fungal isolates for mycoparasitism on P. megakarya. Only Trichoderma asperellum isolates 659-7, PR10, PR11, a...

  6. Estudio de la ruta de shikimato en Trichoderma parareesei, su papel en el antagonismo del hongo y en las relaciones que establece con la planta

    OpenAIRE

    Pérez González, Esclaudys

    2014-01-01

    [ES]Algunas especies del género Trichoderma (T. harzianum, T. virens, T. atroviride o T. asperellum) son utilizadas como agentes de control biológico en agricultura y por sus efectos positivos directo sobre las plantas. Trichoderma parareesei es una especie aislada de suelo que se adapta a diferentes fuentes de luz y a un amplio gradiente de fuentes de carbono, condiciones que les confiere gran plasticidad ecológica y un alto potencial oportunista. Además, T. parareesei presenta buenas habili...

  7. MUTATION OF A DEGS HOMOLOG IN ENTEROBACTER CLOACAE DECREASES SEED AND ROOT COLONIZATION BUT DOES NOT AFFECT BIOCONTROL OF DAMPING-OFF CAUSED BY PYTHIUM ULTIMUM ON CUCUMBER

    Science.gov (United States)

    Strains of Enterobacter cloacae show promise as biocontrol agents for Pythium ultimum-induced damping-off on cucumber and other crops. E. cloacae strain C10 is a mini-Tn5 Km transposon mutant of strain 501R3. Strain C10 was reduced in colonization of cucumber, sunflower, and pea seeds, but unaffecte...

  8. Superoxide anion and hydrogen peroxide in the yeast antagonist-fruit interaction: a new role for reactive oxygen species in postharvest biocontrol?

    Science.gov (United States)

    The importance of reactive oxygen species (ROS) in plant defense responses against certain pathogens is well documented. There is some evidence that microbial biocontrol agents also induce a transient production of ROS in a host plant which triggers local and systemic defense responses to pathogens....

  9. Universally Primed PCR (UP-PCR) and its applications for taxonomy in Trichoderma

    Institute of Scientific and Technical Information of China (English)

    Mette Lübeck

    2004-01-01

    @@ Universally Primed PCR (UP-PCR) is a PCR fingerprinting method that has demonstrated its applicability in different aspects of mycology. These applications constitute analysis of genome structures, identification of species, analysis of population and species diversity, revealing of genetic relatedness at infra-and inter-species level, and identification of UP-PCR markers at different taxonomic levels (strain, group and/or species) . A further development of the UP-PCR technique is an UP-PCR product cross hybridisation assay that facilitates investigation of sequence similarity (homology) of UP-PCR products and grouping of strains into UP-PCR hybridisation groups. This separates the strains into entities with high genetic similarity (DNA homology) . UP-PCR has been used as an aid in taxonomy and species delineation, and to monitor biocontrol strains following their release into the environment by fingerprint characterisation of pure cultures and through direct detection in soil by amplification of UP-PCR-derived SCAR markers. The technique has been applied to Trichoderma strains in particularly with the aims of strain recognition and classification.

  10. EVALUATION OF BIOLOGICAL EFFICACY OF TRICHODERMA SPECIES ISOLATES AGAINST ALTERNARIA LEAF SPOT DISEASE OF SESAME

    Directory of Open Access Journals (Sweden)

    A. S. Lubaina

    2015-03-01

    Full Text Available Alternaria leaf spot disease is a major threat to sesame (Sesamum orientale L. caused by Alternari asesami. Induced resistance is an alternative to systemic disease resistance response of plants. The present study aims to evaluate Trichoderma species efficacy as biocontrol via induction of resistance against A. sesami in sesame species. During in vitro bio control test, T. harzianum colonize and parallely inhibit the growth of the fungal pathogen. Expression of various defence related enzymes observed in sesame induce resistance against the pathogen infection in the host. T. harzianum coupled with inoculation of A. sesami enhance the remarkable induction of defence enzyme such as peroxidase (POX, polyphenol oxidase (PPO, phenylalanine ammonia lyase (PAL and also the phenolic content compared with the control. The enzyme activity increased from 48 h of sampling and peaked at 72 h and then decreased after 72 h. In greenhouse and field experiments, soil treatment with a powder formulation of T. harzianum two weeks before planting or at the time of planting reduced significantly the incidence of diseases on both the wild and cultivar Thilarani.The results demonstrate that T. harzianumcan be successfully applied as a biological control against Alternaria leaf spot disease in sesame.

  11. Growth of Trichoderma viride on bean (Phaseolus pod solid basal medium

    Directory of Open Access Journals (Sweden)

    F. I. Okungbowa

    2007-01-01

    Full Text Available Trichoderma viride Pers. isolated from soil was grown on two different solid media (Potato Dex trose Agar, PDA, and Bean ( Phaseolus Phaseolus Pod Agar, BPA impregnated sep a rate ly with three nitrogen sources at room temperature (29±2 C. Growth rate was determined from the radial growth of the fungus on Petri dishes. There was no sig nifi cant difference between radial growth of T. viride on PDA and BPA sup ple ment ed with magnesium sulphate and so di um nitrate (p<0.05%. The fun gus did not grow on BPA supplemented with sodium nitrite, where as growth of the organism was observed on PDA treated likewise. Growth of the fungus on ammoniumtreated BPA was com pa ra ble to the control, while no growth was noticed on PDA. On the whole, the growth of T. viride on BPA compared well with that on PDA (p< 0.05%. This is an indication of the possible use of bean pod as a carrier medium for T. viride in biocontrol programmes.

  12. The Putative Protein Methyltransferase LAE1 of Trichoderma atroviride Is a Key Regulator of Asexual Development and Mycoparasitism

    OpenAIRE

    Aghcheh, Razieh Karimi; Irina S. Druzhinina; Kubicek, Christian P

    2013-01-01

    In Ascomycota the protein methyltransferase LaeA is a global regulator that affects the expression of secondary metabolite gene clusters, and controls sexual and asexual development. The common mycoparasitic fungus Trichoderma atroviride is one of the most widely studied agents of biological control of plant-pathogenic fungi that also serves as a model for the research on regulation of asexual sporulation (conidiation) by environmental stimuli such as light and/or mechanical injury. In order ...

  13. Penggunaan Agensia Hayati Trichoderma koningii Oud. Untuk Menekan Jamur Akar Cokelat (Phellinus noxius) Pada Pembibitan Tanaman Kakao Di Rumah Kassa

    OpenAIRE

    Surbakti, Alprisni

    2011-01-01

    Alprisni Surbakti, “The Utilization of Biological Agent Trichoderma koningii Oud. to Emphasize Brown Root Rot (Phellinus noxius) on Cacao Nursery in Green House”. Supervised by Lahmuddin Lubis and Mukhtar Iskandar Pinem. The thump of modern system plantation that very depend on synthetic fungicide awaked our consciousness to set back biological management sketch in our plantation system now. The research aimed to know the potential of T. koningii Oud. to emphasize brown ro...

  14. PERBAIKAN PERTUMBUHAN DAN HASIL STEVIA (Stevia rebaudiana BERTONI M) MELALUI APLIKASI Trichoderma sp.

    OpenAIRE

    Haryuni -

    2013-01-01

    AbstrakTujuan penelitian ini adalah menguji perbaikan pertumbuhan dan hasil stevia (Stevia rebaudiana Bertoni M) melalui penggunaan  Trichoderma sp.  Perbanyakan  Trichoderma sp. dilakukan di laboratorium Balai Proteksi Perkebunan di Salatiga Jawa Tengah. Penelitian dirancang menggunakan rancangan factorial dengan dua faktor. Faktor pertama adalah inokulasi Trichoderma sp (To = tanpa  Trichoderma sp. & T1 = menggunakan Trichoderma sp. 100 g.  Faktor kedua adalah variasi aplikasi perlakuan...

  15. Compounds produced by two robust Bacillus amyloliquefaciens biocontrol strains involved in antimicrobial activity and plant-growth promotion

    OpenAIRE

    Magno-Pérez, Maria Concepción; Hierrezuelo, Jesús; de Vicente, Antonio; Pérez-García, Alejandro; Romero, Diego

    2015-01-01

    Several members of the Bacillus genus are potential candidates to be used as biological control agents to combat pests or plant diseases. The bacterial attributes associated to Bacillus behaviour are mainly: the production of antimicrobial compounds, the plant-growth promotion capability and the induction of systemic resistance in plant host. In previous works, we have demonstrated this multifaceted biocontrol activity of B. amyloliquefaciens CECT8237 (UMAF6639) and CECT8238 (UMAF6614) strain...

  16. 木霉菌制剂对禾谷全蚀病的防治作用%Biological control of take-all disease of cereals using formulations of Trichoderma species

    Institute of Scientific and Technical Information of China (English)

    Rosemary A WARREN; Maarten H RYDER

    2005-01-01

    木霉菌是对多种植物病原真菌有作用的拮抗体,包括Gaeumannomyces graminis var.tritici (Ggt), Pythium spp.,Rhizoctonia solani以及Fusarium spp.木霉菌能产生抑制植物病原真菌生长与活力的抗菌物质,是理想的植物病害生物防治菌.有效的生物防治方法可为农民提供低风险而又灵活的病害防治措施,特别是在需要减缓病原菌对化学杀菌剂产生抗药性的情况下.本文综合介绍了在南澳大利亚田间进行的利用康宁木霉菌(T. koningii)防治禾谷类根部病害的结果,并重点介绍澳大利亚在商品化开发方面的工作进展.在病害发生严重的情况下,康宁木霉菌可降低小麦全蚀病和丝核菌根腐病发病程度分别达24%和 48%.小麦产量增加7%,也能降低大麦丝核菌根腐病发病程度达59%.康宁木霉菌也能够防治由Ceratocystis paradoxa引起的甘蔗凤梨病.%Trichoderma spp. are effective antagonists against a wide range of plant pathogenic fungi including Gaeumannomyces graminis var.tritici(Ggt),Pythium spp.,Rhizoctonia solani and Fusarium spp.Their ability to produce antifungal compounds that limit growth and activity of plant pathogenic fungi make them ideal candidates for plant disease control. Effective biological control agents offer farmers a low risk alternative to disease control and greater flexibility in crop management, particularly if pathogen resistance to chemicals is to be avoided.This paper reviews the results of field trials conducted in southern Australia for biocontrol of cereal root diseases using isolates of Trichoderma koningii, and highlights progress towards commercialisation of Trichoderma products in Australia. Where significant disease pressure occurred T.koningii reduced take-all disease severity of wheat by 24% (Butler, S.A) and Rhizoctonia disease severity by 48% (Wanilla, S.A.).Yields of wheat were increased by 7% (Esperance, W.A.) while Rhizoctonia disease severity on barley was reduced by

  17. EVALUACIÓN DE Trichoderma asperellum COMO BIORREGULADOR DE Spongospora subterranea f. sp. subterranea EVALUATION OF Trichoderma asperellum AS BIOREGULATOR OF Spongospora subterranea f. sp. subterranea

    Directory of Open Access Journals (Sweden)

    Liliana María Hoyos Carvajal

    2008-12-01

    Full Text Available La roña de la papa causada por Spongospora subterranea, una de las principales enfermedades de la papa, es un protozoo para el cual existen limitadas estrategias de control debido a que cuenta con diversos tipos de inóculo, estructuras de resistencia y hospederos alternos. El objetivo de este trabajo fue evaluar Trichoderma asperellum T-84 y T-109 sobre S. subterranea bajo condiciones de invernadero en dos experimentos, probando en plantas hasta la novena y doceava semana, variables de peso fresco, seco y número de nódulos producidos por el patógeno. Consistentemente, las plantas tratadas con T. asperellum aumentaron el peso fresco (Experimento 1 y peso seco (Experimento 2 y redujeron el número de nódulos de S. subterranea en raíces de papa, actuando mejor en aplicaciones solos que en mezcla. Este es un estudio preliminar que sugiere que T. asperellum puede llegar a ser a futuro un potencial agente de regulación biológica para la roña de la papa, pero que requiere estudios de la interacción papa/S. subterranea/Trichoderma para su implementación.Powdery scab caused by Spongospora subterranea, is one of the main diseases on potato crops, is a protozoo for which exist limited control strategies because it counts with diverse types of inoculum, resistance structures and alternative hosts. The objective of this work was to test Trichoderma asperellum T-84 and T-109 against S. subterranea under controlled conditions in two experiments, evaluating in plants until nine and twelve week, variables of fresh and dry weight and number of galls produced by the pathogen. Consistently the plants with T. asperellum increased fresh weight (Experiment 1 and dry weight (Experiment 2 and reduced the number of nodules of S. subterranea in potato root, better in single applications than in mixture. This is a preliminary study that suggests T. asperellum could be a potential agent of biological regulation in the future for powdery scab, but it will be

  18. Antibiosis functions during interactions of Trichoderma afroharzianum and Trichoderma gamsii with plant pathogenic Rhizoctonia and Pythium.

    Science.gov (United States)

    Zhang, Xinjian; Harvey, Paul R; Stummer, Belinda E; Warren, Rosemary A; Zhang, Guangzhi; Guo, Kai; Li, Jishun; Yang, Hetong

    2015-09-01

    Trichoderma afroharzianum is one of the best characterized Trichoderma species, and strains have been utilized as plant disease suppressive inoculants. In contrast, Trichoderma gamsii has only recently been described, and there is limited knowledge of its disease suppressive efficacies. Comparative studies of changes in gene expression during interactions of these species with their target plant pathogens will provide fundamental information on pathogen antibiosis functions. In the present study, we used complementary DNA amplified fragment length polymorphism (cDNA-AFLP) analysis to investigate changes in transcript profiling of T. afroharzianum strain LTR-2 and T. gamsii strain Tk7a during in vitro interactions with plant pathogenic Rhizoctonia solani and Pythium irregulare. Considerable differences were resolved in the overall expression profiles of strains LTR-2 and Tk7a when challenged with either plant pathogen. In strain LTR-2, previously reported mycoparasitism-related genes such as chitinase, polyketide synthase, and non-ribosomal peptide synthetase were found to be differentially expressed. This was not so for strain Tk7a, with the only previously reported antibiosis-associated genes being small secreted cysteine-rich proteins. Although only one differentially expressed gene was common to both strains LTR-2 and Tk7a, numerous genes reportedly associated with pathogen antibiosis processes were differentially expressed in both strains, including degradative enzymes and membrane transport proteins. A number of novel potential antibiosis-related transcripts were found from strains LTR-2 and Tk7a and remain to be identified. The expression kinetics of 20 Trichoderma (10 from strain LTR-2, 10 from strain Tk7a) transcript-derived fragments (TDFs) were quantified by quantitative reverse transcription PCR (RT-qPCR) at pre- and post-mycelia contact stages of Trichoderma-prey interactions, thereby confirming differential gene expression. Collectively, this research

  19. Biocontrol of Some Tomato Disease Using Some Antagonistic Microorganisms

    Directory of Open Access Journals (Sweden)

    Ilham M. El–Rafai

    2003-01-01

    Full Text Available Four biocontrol�agents, namely : Trichoderma harzianum, T. hamatum, Bacillus subtilis and Pseudomonas fluorescens, have been tested for their potential antagonism for controlling fusarium wilt, verticillium wilt and early blight diseases of tomato. In vitro studies showed that culture filtrates of all antagonistic organisms significantly decrease the spore germination and germ tube-length of the tested pathogens, F. oxysporum f. sp. lycopersici, Verticillium dahliae and Alternaria solani. The linear growth and sporulation of the concerned pathogens were also inhibited the degree of inhibition was varied according to the tested antagonistic filtrate. In vivo studies, three treatments were applied; inoculation of the soil with antagonist period to sowing, soaking tomato seeds in the filtrate of the tested antagonist before sowing and coating of tomato seeds with spores of the antagonist before planting. Soil inoculation and seed coating with T. hamatum spores completely controlled the concerned diseases and improved the yield. However, P. fluorescens seed coating controlled the early blight disease and improved the tomato growth as well. Concerning the chemical assessment, T. hamatum soil inoculation and seed coating treatments gave the highest increase for chlorophyll a, b and cartenoids. Also the same treatments showed the highest increase of phenolic compounds (free and conjugated and the lowest percentage for sugars content of tomato leaves infected with the concerned pathogens.

  20. Vision and development in Trichoderma atroviride

    Institute of Scientific and Technical Information of China (English)

    Casas S; Cortés C; Ríos M; Rosales T; Bibbins M; Olmedo V; Herrera-Estrella A

    2004-01-01

    @@ Phototropism, the induction of carotenogenesis and reproductive structures, and resetting of the circadian rhythm are controlled by blue light. Trichoderma is used as a photomorphogenetic model due to its ability to conidiate upon exposure to light. In total darkness, T. atroviride grows indefinitely as a mycelium provided that nutrients are not limiting. However, nutrient deprivation and light trigger the conidiation process. A pulse of blue light given to a radially growing colony induces synchronous sporulation. A ring of conidiophores bearing green conidia is produced at what had been the colony perimeter at the time of the light pulse. All known responses to blue light in N. crassa are initiated by a couple of transcription factors encoded by the white-collar genes (wc -1 and wc-2). WC-1 and WC-2 bind to the promoters of light regulated genes to rapidly activate transcription in response to light. In T. atroviride the photolyase encoding gene phr1 undergoes fast transcriptional activation in response to light. The presence of putative WCC binding boxes in the promoter of phr1 , suggested that light responses in Trichoderma could be under the control of white-collar homologues. We cloned two genes and demonstrated by gene replacement that both are essential for photoconidiation and photolyase gene expression. Therefore, they were named blue-light regulator one and two (blr1 and blr2 ). The BLR1 protein has all the characteristics of a blue-light photoreceptor. The generation of subtractive cDNA libraries allowed us to identify novel, BLR independent, light responses including the regulation of gene expression by blue-light. In addition, we recently initiated a Trichoderma ESTs sequencing project. Until now, we have sequenced above 3000 ESTs, from which we have obtained approximately 1800 unigenes. This unigene set was printed in microarrays and used to search for light induced genes. Twenty five clearly induced and around thirty repressed genes have been

  1. Striga Biocontrol on a Toothpick: A Readily Deployable and Inexpensive Method for Smallholder Farmers

    Science.gov (United States)

    Nzioki, Henry S.; Oyosi, Florence; Morris, Cindy E.; Kaya, Eylul; Pilgeram, Alice L.; Baker, Claire S.; Sands, David C.

    2016-01-01

    Striga hermonthica (witchweed) is a parasitic weed that attacks and significantly reduces the yields of maize, sorghum, millet, and sugarcane throughout sub-Saharan Africa. Low cost management methods such as hand weeding, short crop rotations, trap cropping, or conventional biocontrol have not been effective. Likewise, Striga-tolerant or herbicide-resistant maize cultivars are higher yielding, but are often beyond the economic means of sustenance farmers. The fungal pathogen, Fusarium oxysporum f.sp. strigae, has been the object of numerous studies to develop Striga biocontrol. Under experimental conditions this pathogen can reduce the incidence of Striga infestation but field use is not extensive, perhaps because it has not been sufficiently effective in restoring crop yield and reducing the soil Striga seed bank. Here we brought together Kenyan and US crop scientists with smallholder farmers to develop and validate an effective biocontrol strategy for management of Striga on smallholder farms. Key components of this research project were the following: (1) Development of a two-step method of fungal delivery, including laboratory coating of primary inoculum on toothpicks, followed by on-farm production of secondary field inoculum in boiled rice enabling delivery of vigorous, fresh inoculum directly to the seedbed; (2) Training of smallholder farmers (85% women), to produce the biocontrol agent and incorporate it into their maize plantings in Striga-infested soils and collect agronomic data. The field tests expanded from 30 smallholder farmers to a two-season, 500-farmer plot trial including paired plus and minus biocontrol plots with fertilizer and hybrid seed in both plots and; (3) Concerted selection of variants of the pathogen identified for enhanced virulence, as has been demonstrated in other host parasite systems were employed here on Striga via pathogen excretion of the amino acids L-leucine and L-tyrosine that are toxic to Striga but innocuous to maize

  2. Striga Biocontrol on a Toothpick: A Readily Deployable and Inexpensive Method for Smallholder Farmers.

    Science.gov (United States)

    Nzioki, Henry S; Oyosi, Florence; Morris, Cindy E; Kaya, Eylul; Pilgeram, Alice L; Baker, Claire S; Sands, David C

    2016-01-01

    Striga hermonthica (witchweed) is a parasitic weed that attacks and significantly reduces the yields of maize, sorghum, millet, and sugarcane throughout sub-Saharan Africa. Low cost management methods such as hand weeding, short crop rotations, trap cropping, or conventional biocontrol have not been effective. Likewise, Striga-tolerant or herbicide-resistant maize cultivars are higher yielding, but are often beyond the economic means of sustenance farmers. The fungal pathogen, Fusarium oxysporum f.sp. strigae, has been the object of numerous studies to develop Striga biocontrol. Under experimental conditions this pathogen can reduce the incidence of Striga infestation but field use is not extensive, perhaps because it has not been sufficiently effective in restoring crop yield and reducing the soil Striga seed bank. Here we brought together Kenyan and US crop scientists with smallholder farmers to develop and validate an effective biocontrol strategy for management of Striga on smallholder farms. Key components of this research project were the following: (1) Development of a two-step method of fungal delivery, including laboratory coating of primary inoculum on toothpicks, followed by on-farm production of secondary field inoculum in boiled rice enabling delivery of vigorous, fresh inoculum directly to the seedbed; (2) Training of smallholder farmers (85% women), to produce the biocontrol agent and incorporate it into their maize plantings in Striga-infested soils and collect agronomic data. The field tests expanded from 30 smallholder farmers to a two-season, 500-farmer plot trial including paired plus and minus biocontrol plots with fertilizer and hybrid seed in both plots and; (3) Concerted selection of variants of the pathogen identified for enhanced virulence, as has been demonstrated in other host parasite systems were employed here on Striga via pathogen excretion of the amino acids L-leucine and L-tyrosine that are toxic to Striga but innocuous to maize

  3. Biocontrol of Soil Fungi in Tomato with Microencapsulates Containing Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Marcela H. Suarez

    2011-01-01

    Full Text Available Problem statement: An option to reduce pollution by synthetic agro-chemical in root plant disease management is the use of antagonist rhizobacteria belonging to Bacillus genus, because their inhibitory properties, stimulation of plant growth and crop yield increase. Approach: This study was carried out in order to evaluate if Bacillus subtilis strains could play an antagonists role of plant pathogens and if they can be microencapsulated inside a biopolymer matrix. It was adapted an equipment and evaluated a technique for microcapsules elaboration, in order to incorporate B. subtilis strains and to analyze their potential as biocontrol agents by determining their antagonistic effect against pathogenic soil fungi; in addition, it was analyzed their effect on tomato plant growth promotion under greenhouse conditions. B. subtilis strains identified as B1, J1, M2 and their mixture were used; microcapsules containing bacterial strains were inoculated to tomato seeds cv. Floradade. When seedlings emerged, a second application of microcapsules containing B. subtilis was performed on the pots, which previously were inoculated with the fungi Rhizoctonia solani and Fusarium oxysporum. Response variables were: Incidence and disease severity, plant growth, aerial and root dry weight, leaf area and fruit yield. Results: The outcome showed that the equipment designed and adapted for microcapsules elaboration was useful to obtain microcapsules containing the bacterial strains. B. subtilis strains exerted apparent biocontrol, since incidence and disease severity was reduced and for that reason inhibited the infective activity of the inoculated plant pathogens, also microcapsules containing Bacillus strains stimulated tomato growth and fruit yield. Conclusion: Microcapsules containing B. subtilis strains could be effective biocontrol agents against soil fungi plant pathogens and could have a potential biofertilizer effect, since they stimulated growth and yield

  4. Exopolysaccharide from Trichoderma pseudokoningii induces macrophage activation.

    Science.gov (United States)

    Wang, Guodong; Zhu, Lei; Yu, Bo; Chen, Ke; Liu, Bo; Liu, Jun; Qin, Guozheng; Liu, Chunyan; Liu, Huixia; Chen, Kaoshan

    2016-09-20

    In this study, we evaluated the immunomodulatory activity of an exopolysaccharide (EPS) derived from Trichoderma pseudokoningii and investigated the molecular mechanism of EPS-mediated activation of macrophages. Results revealed that EPS could significantly induce the production of nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin (IL)-1β and enhance phagocytic activity in RAW 264.7 cells. Immunofluorescence staining indicated that EPS promoted the nuclear translocation of nuclear factor (NF)-κB p65 subunit. Western blot analysis showed that EPS increased the expression of inducible nitric oxide synthase (iNOS) protein, the degradation of IκB-α and the phosphorylation of mitogen-activated protein kinases (MAPKs). Furthermore, pretreatment of RAW 264.7 cells with specific inhibitors of NF-κB and MAPKs significantly attenuated EPS-induced TNF-α and IL-1β production. EPS also induced the inhibition of cytokine secretion by special antibodies against Toll-like receptor-4 (TLR4) and Dectin-1. These data suggest that EPS from Trichoderma pseudokoningii activates RAW 264.7 cells through NF-κB and MAPKs signaling pathways via TLR4 and Dectin-1. PMID:27261736

  5. Genomic Basis of Plant Pathogen Suppression by Biocontrol Pseudomonas Species

    Science.gov (United States)

    Various plant commensal bacterial species, which naturally colonize the plant rhizosphere, are able to suppress fungal, bacterial, viral and even insect plant pathogens. These biocontrol activities are elicited primarily through the production of secreted exoenzymes and secondary metabolites that ma...

  6. Tick control: trapping, biocontrol, host management and other alternative strategies

    Science.gov (United States)

    Ginsberg, Howard S.

    2014-01-01

    Biology of Ticks is the most comprehensive work on tick biology and tick-borne diseases. This second edition is a multi-authored work, featuring the research and analyses of renowned experts across the globe. Spanning two volumes, the book examines the systematics, biology, structure, ecological adaptations, evolution, genomics and the molecular processes that underpin the growth, development and survival of these important disease-transmitting parasites. Also discussed is the remarkable array of diseases transmitted (or caused) by ticks, as well as modern methods for their control. This book should serve as a modern reference for students, scientists, physicians, veterinarians and other specialists. Volume I covers the biology of the tick and features chapters on tick systematics, tick life cycles, external and internal anatomy, and others dedicated to specific organ systems, specifically, the tick integument, mouthparts and digestive system, salivary glands, waste removal, salivary glands, respiratory system, circulatory system and hemolymph, fat body, the nervous and sensory systems and reproductive systems. Volume II includes chapters on the ecology of non-nidicolous and nidicolous ticks, genetics and genomics (including the genome of the Lyme disease vector Ixodes scapularis) and immunity, including host immune responses to tick feeding and tick-host interactions, as well as the tick's innate immune system that prevents and/or controls microbial infections. Six chapters cover in depth the many diseases caused by the major tick-borne pathogens, including tick-borne protozoa, viruses, rickettsiae of all types, other types of bacteria (e.g., the Lyme disease agent) and diseases related to tick paralytic agents and toxins. The remaining chapters are devoted to tick control using vaccines, acaricides, repellents, biocontrol, and, finally, techniques for breeding ticks in order to develop tick colonies for scientific study.

  7. Growth Inhibition of Colletotrichum gloeosporioides by Trichoderma harzianum, Trichoderma koningii, Bacillus subtilis and Pseudomonas fluorescens

    OpenAIRE

    Febrilia Nur ‘Aini; Sri Sukamto; Dwi Wahyuni; Risma Galuh Suhesti; Qurrotun Ayunin

    2015-01-01

    Colletotrichum  gloeosporioides is  a  disease  which  can  cause  significant yield  loss  of  cocoa.  The  objective  of  this  research  is  to  investigate  the  abilityof  antagonist  microbes,  Trichoderma  harzianum,  Trichoderma  koningii,  Bacillus subtilis  and Pseudomonas  fluorescens  in  controlling  gloeosporioides  biologically  in  laboratorium  condition.  The  experiment  was  carried  out  in  Crop  Protection  Laboratory,  Indonesian  Coffee  and  Cocoa  Research  Institut...

  8. Biocontrol activity of Paenibacillus polymyxa AC-1 against Pseudomonas syringae and its interaction with Arabidopsis thaliana.

    Science.gov (United States)

    Hong, Chi Eun; Kwon, Suk Yoon; Park, Jeong Mee

    2016-04-01

    Paenibacillus polymyxa AC-1 (AC-1) is a plant growth-promoting rhizobacterium (PGPR) that has been used as a soil inoculant for biocontrol of plant pathogenic fungi and to promote plant growth. In this study, we examine the effects of AC-1 on the bacterial phytopathogen Pseudomonas syringae and internal colonization of AC-1 by counting bacterial populations that colonize plants. AC-1 inhibited the growth of both P. syringae pv. tomato DC3000 (Pst) and P. syringae pv. tabaci (Pta) in a concentration-dependent manner in in vitro assays. Upon treatment of AC-1 dropping at root tip of axenically grown Arabidopsis, we found that most of the AC-1 was detected in interior of leaves of Arabidiopsis plants rather than roots after 5 days post infection, indicating systemic spreading of AC-1 occur. We examined further AC-1 colonization patterns in Arabidopsis mutants deficient in phytohormone signaling pathways. These results indicated that abscisic acid (ABA) and jasmonic acid (JA) signaling pathways positively and negatively contributed, respectively, to AC-1 colonization of leaves, whereas epiphytic accumulation of AC-1 around root tissues was not affected. This study shows that AC-1 is an effective biocontrol agent to suppress P. syringae growth, possibly owing to its colonization patterns as a leaf-inhabiting endophyte. The results showed in this work will help to expand our understanding of the mode of action of AC-1 as a biological control agent and consequently, its application in agriculture. PMID:26946374

  9. Controlled release of Pantoea agglomerans E325 for biocontrol of fire blight disease of apple.

    Science.gov (United States)

    Kim, In-Yong; Pusey, Paul Lawrence; Zhao, Youfu; Korban, Schuyler S; Choi, Hyungsoo; Kim, Kyekyoon Kevin

    2012-07-10

    Microencapsulation and controlled release of the biocontrol agent Pantoea agglomerans strain E325 (E325), an antagonist to the bacterial plant pathogen Erwinia amylovora that causes fire blight, a devastating disease of apple and pear, have been investigated. Uniform core-shell alginate microcapsules (AMCs), 60-300 μm in diameter, were fabricated to encapsulate E325 within the core, along with nutrients, to preserve viability and promote proliferation. Controlled release of E325 was achieved by separately adjusting alginate concentrations in the shell and core solutions, and by modifying the AMC size. Viability of E325 was monitored via fluorescent staining, revealing either lack of or minimal stress during or after encapsulation. Proliferation of E325 within AMCs, followed by their subsequent release, and colonization activities within confines of apple flowers were studied under different encapsulation conditions using rfp-labeled E325 to obtain highly promising results. This study provided a 'proof of concept' of the successful use of a microencapsulated biocontrol agent, E325, against E. amylovora, and could serve as a model for further studies on the development of effective plant disease management strategies. PMID:22516094

  10. Growth Inhibition of Colletotrichum gloeosporioides by Trichoderma harzianum, Trichoderma koningii, Bacillus subtilis and Pseudomonas fluorescens

    Directory of Open Access Journals (Sweden)

    Febrilia Nur ‘Aini

    2015-11-01

    Full Text Available Colletotrichum  gloeosporioides is  a  disease  which  can  cause  significant yield  loss  of  cocoa.  The  objective  of  this  research  is  to  investigate  the  abilityof  antagonist  microbes,  Trichoderma  harzianum,  Trichoderma  koningii,  Bacillus subtilis  and Pseudomonas  fluorescens  in  controlling  gloeosporioides  biologically  in  laboratorium  condition.  The  experiment  was  carried  out  in  Crop  Protection  Laboratory,  Indonesian  Coffee  and  Cocoa  Research  Institute.  Results of  this  research  showed  that  antagonist  fungi,  T.  harzianum,  T.  koningii,  had  a stronger  ability  in  inhibiting  growth  of  C.  gloeosporioides about  83%  compared  to  the  ability  of  antagonist  bacteria,  B.  subtilis  and P.  fluorescens,  only about  49%. Key words: Growth  inhibition,  Colletotrichum  gloeosporioides,  Trichoderma  harzianum, Trichoderma koningii,  Bacillus subtilis, Pseudomonas fluorescens.

  11. Morphological changes of Ganoderma boninense mycelia after challenged by Trichoderma and Bacillus

    International Nuclear Information System (INIS)

    Ganoderma boninense is a fungal pathogen that causes Basal Stem Rot (BSR) disease in oil palm. This deadly disease has caused major losses in the oil palm industry and no remedy is reported to date. The more promising control on G. boninense is the use of biological control agents (BCAs). Despite many attempts in using BCAs as a control agent but evidence on the colonization of BCAs and morphological changes of the pathogen is not well documented. We have investigated the effect of antagonist activity on the combination of Trichoderma spp. and Bacillus spp. on the morphology of G. boninense. The antagonist activity was evaluated using agar well diffusion assay. BCAs suppressed the mycelia growth of G. boninense up to 70%. Observation under Scanning Electron Microscopy (SEM) shows these BCAs induced stripping of G. boninense hyphal structure by destroying the cellular structure. Highly disrupted, disaggerated, shrivelled and lysis of G. boninense hyphal were also observed. The antifungal activity of Trichoderma spp. and Bacillus spp. observed could be associated with the production of Cell Wall Degrading Enzymes (CWDE)

  12. Morphological changes of Ganoderma boninense mycelia after challenged by Trichoderma and Bacillus

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Arnnyitte; Chong, Khim-Phin, E-mail: chongkp@ums.edu.my [Sustainable Palm Oil Research Unit (SPOR), Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah (Malaysia); Dayou, Jedol [Vibration and Sound Research Group (eVIBS), Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah (Malaysia)

    2015-07-22

    Ganoderma boninense is a fungal pathogen that causes Basal Stem Rot (BSR) disease in oil palm. This deadly disease has caused major losses in the oil palm industry and no remedy is reported to date. The more promising control on G. boninense is the use of biological control agents (BCAs). Despite many attempts in using BCAs as a control agent but evidence on the colonization of BCAs and morphological changes of the pathogen is not well documented. We have investigated the effect of antagonist activity on the combination of Trichoderma spp. and Bacillus spp. on the morphology of G. boninense. The antagonist activity was evaluated using agar well diffusion assay. BCAs suppressed the mycelia growth of G. boninense up to 70%. Observation under Scanning Electron Microscopy (SEM) shows these BCAs induced stripping of G. boninense hyphal structure by destroying the cellular structure. Highly disrupted, disaggerated, shrivelled and lysis of G. boninense hyphal were also observed. The antifungal activity of Trichoderma spp. and Bacillus spp. observed could be associated with the production of Cell Wall Degrading Enzymes (CWDE)

  13. Morphological changes of Ganoderma boninense mycelia after challenged by Trichoderma and Bacillus

    Science.gov (United States)

    Alexander, Arnnyitte; Dayou, Jedol; Chong, Khim-Phin

    2015-07-01

    Ganoderma boninense is a fungal pathogen that causes Basal Stem Rot (BSR) disease in oil palm. This deadly disease has caused major losses in the oil palm industry and no remedy is reported to date. The more promising control on G. boninense is the use of biological control agents (BCAs). Despite many attempts in using BCAs as a control agent but evidence on the colonization of BCAs and morphological changes of the pathogen is not well documented. We have investigated the effect of antagonist activity on the combination of Trichoderma spp. and Bacillus spp. on the morphology of G. boninense. The antagonist activity was evaluated using agar well diffusion assay. BCAs suppressed the mycelia growth of G. boninense up to 70%. Observation under Scanning Electron Microscopy (SEM) shows these BCAs induced stripping of G. boninense hyphal structure by destroying the cellular structure. Highly disrupted, disaggerated, shrivelled and lysis of G. boninense hyphal were also observed. The antifungal activity of Trichoderma spp. and Bacillus spp. observed could be associated with the production of Cell Wall Degrading Enzymes (CWDE).

  14. Trichoderma spp. decrease Fusarium root rot in common bean

    Directory of Open Access Journals (Sweden)

    Hudson Teixeira

    2012-12-01

    Full Text Available The effectiveness of six Trichoderma-based commercial products (TCP in controlling Fusarium root rot (FRR in common bean was assessed under field conditions. Three TCP, used for seed treatment or applied in the furrow, increased seedling emergence as much as the fungicide fludioxonil. FRR incidence was not affected, but all TCP and fludioxonil reduced the disease severity, compared to control. Application of Trichoderma-based products was as effective as that of fludioxonil in FRR management.

  15. Nonpathogenic Fusarium as a Biological Control Agent

    Directory of Open Access Journals (Sweden)

    J. Kaur

    2010-01-01

    Full Text Available Fusarium oxysporum is an important fungal group among the soil bone microflora. These strains are well-known for inducing wilt or root rots in important agricultural crops worldwide and some occur only as a saprophytes in rhizosphere of plants. There are certain strains which are nonpathogenic and protect plants from pathogenic strains. Based on phenotypic and genetic studies F. oxysporum showed a great diversity among its populations. The nonpathogenic strains, which were first isolated from suppressive soils strains showed several modes of action against pathogenic strains and thus exploited as biocontrol agents. These nonpathogenic strains suppress pathogens by competing for nutrients in the soil, reduce their chlamydospore germination, compete for infection sites on the root and induce systemic resistance in plant when invade host plant species before the pathogen. The nonpathogenic strains are formulated in talc and charcoal based media and commercial formulations are also available. These strains of Fusarium has been successfully combined with other biocontrol agents to obtain a effective biocontrol of plant pathogens. For application of nonpathogenic Fusarium under field condition some additional research is needed in several areas including: field studies and integration into production systems; risk assessment; and genetic improvement of biocontrol agents.

  16. Enhancement of Rice Seed Germination and Vigour by Trichoderma spp.

    Directory of Open Access Journals (Sweden)

    Febri Doni

    2014-05-01

    Full Text Available The present study was undertaken to examine the effectiveness of Trichoderma spp. to enhance rice germination and vigour. An in vitro experiment was carried out to assess the effect of seven isolates of Trichoderma spp. in enhancing rice germination and vigour. The results showed that all isolates of Trichoderma spp. significantly increased rice seedling growth, germination rate, vigour index and speed of germination with sp., SL2 showing the greatest increase in all the four parameters. Trichoderma sp., SL2 treated rice seeds attained values of 4.48 and 6.00 cm, 0.0084 and 0.0048 g and 1016.56 and 44.75 seeds/day for seedling shoot length seedling root length, shoot weight, root weight, vigour index and speed of germination respectively. We may conclude that Trichoderma spp. is able to enhance seed germination and vigour. The results of the study adds to the further understanding of the role of beneficial fungi in improving rice resistance to stress, yield and quality through seed invigoration. Trichoderma

  17. Selección de hongos antagonistas para el control biológico de Botrytis cinerea en viveros forestales en Chile Screening to antagonistic fungi for Botrytis cinerea biocontrol in Chilean forest nurseries

    Directory of Open Access Journals (Sweden)

    Gloria Molina Mercader

    2006-01-01

    this study was to select antagonistic fungi to B. cinerea, by means in vitro and nurseries assays, to determine its capacity as biocontrol agents of the «grey mould» disease in forest nurseries. The antagonistic potentials were obtained from the plants phyloplane, collected from forest nurseries. Seventy one fungi strains were evaluated in their capacity to reduce in vitro the pathogen colonization and sporulation by bioassays in Eucalyptus leaf discs. Selected strains were assayed under greenhouse conditions. Pinus radiata and E. globulus plants were sprayed with the pathogen (1x10(5 conidias/ml and later treated with the antagonists (1x 10(7 conidias/ml, evaluating the disease incidence and severity. In the in vitro assays, four strains of Trichoderma, three of Clonostachys, four of Penicillium, one of Cladosporium and other eight unidentified fungi strains did not significantly reduce pathogen colonization and sporulation. In the greenhouses assays, the strain Clonostachys (A-10 was able to reduce, in both P. radiata and E. globules, the disease incidence and severity. These results allow concluding that antagonists selected have the potential to B. cinerea control in forest nurseries.

  18. Parasitism of Rhizoctonia solani by strains of Trichoderma spp. Parasitismo de Rhizoctonia solani por linhagens de Trichoderma spp.

    OpenAIRE

    Itamar Soares de Melo; Jane L. Faull

    2000-01-01

    Rhizoctonia solani causes serious diseases in a wide range of plant species. The fungus Trichoderma has been shown to be particularly effective in the control of the pathogen. Thus, this research was carried out to screen fourteen Trichoderma strains against R. solani in vitro. All strains tested inhibited the growth of R. solani. Three T. koningii strains produced toxic metabolites with strong activity against R. solani, inhibiting the mycelial growth by 79%. T. harzianum, Th-9 reduced the v...

  19. Impacto de herbicidas em isolados de Trichoderma spp. Impact of herbicides on strains of Trichoderma spp.

    Directory of Open Access Journals (Sweden)

    M.R. Reis

    2013-06-01

    Full Text Available O uso de microrganismos é uma alternativa para o controle de doenças em plantas. Todavia, é prudente verificar a interação desse com os demais métodos de controle empregados em determinada cultura. Dessa forma, objetivou-se avaliar a fungitoxicidade dos herbicidas sobre o crescimento e desenvolvimento dos isolados de Trichoderma spp. Utilizou-se o delineamento inteiramente casualizado, em esquema fatorial 6 x 6 x 4, com quatro repetições. O fator A correspondeu aos herbicidas pendimethalin, clomazone, carfentrazone-ethyl, oxadiazon, thiobencarb + propanil e byspiribac-sodium; o fator B, às doses dos herbicidas - 0, 25, 50, 75, 100 e 200% da dose recomendada; e o fator C, aos isolados de Trichoderma spp. AJAM 18, CE 66, TRI 01 e TRI 02. O ensaio foi realizado em condições in vitro; avaliaram-se o crescimento micelial radial (CMR e a esporulação dos isolados após aplicação dos herbicidas. Observaram-se diferenças de sensibilidade dos isolados para o mesmo produto testado. O oxadiazon reduziu o CMR dos isolados AJAM 18 e TRI 01 em 66 e 35%, respectivamente. No entanto, reduziu apenas 16% do CMR do isolado TRI 02 e não alterou o CMR do isolado CE 66 mesmo em 200% da dose recomendada. Verificaram-se diferentes efeitos dos produtos em cada isolado. A mistura comercial de thiobencarb+propanil foi altamente tóxica aos isolados de Trichoderma spp., com reduções em torno de 85% no CMR e no número de esporos. Por outro lado, o byspiribac-sodium pouco afetou os isolados, apresentando reduções inferiores a 10% no CMR e na esporulação. O carfentrazone-ethyl e byspiribac-sodium demonstraram ser compatíveis com os isolados de Trichoderma spp. estudados.The use of microorganisms is an alternative for the control of plant diseases. However, one should verify its interaction with other methods of control used for a particular crop. The objective of this work was to evaluate the effect of herbicide fungitoxicity on the growth and

  20. Trichodermaerin: a diterpene lactone from Trichoderma asperellum

    Directory of Open Access Journals (Sweden)

    Suchada Chantrapromma

    2014-04-01

    Full Text Available The title compound, C20H28O3, known as `trichodermaerin' [systematic name: (4E-4,9,15,16,16-pentamethyl-6-oxatetracyclo[10.3.1.01,10.05,9]hexadec-4-ene-7,13-dione], is a diterpene lactone which was isolated from Trichoderma asperellum. The structure has a tetracycic 6–5–7–5 ring system, with the cyclohexanone ring adopting a twisted half-chair conformation and the cyclopentane ring adopting a half-chair conformation, whereas the cycloheptene and tetrahydrofurananone rings are in chair and envelope (with the methyl-substituted C atom as the flap conformations, respectively. The three-dimensional architecture is stabilized by C—H...O interactions.

  1. Bio-Control of Salmonella Enteritidis in Foods Using Bacteriophages

    Directory of Open Access Journals (Sweden)

    Hongduo Bao

    2015-08-01

    Full Text Available Two lytic phages, vB_SenM-PA13076 (PA13076 and vB_SenM-PC2184 (PC2184, were isolated from chicken sewage and characterized with host strains Salmonella Enteritidis (SE ATCC13076 and CVCC2184, respectively. Transmission electron microscopy revealed that they belonged to the family Myoviridae. The lytic abilities of these two phages in liquid culture showed 104 multiplicity of infection (MOI was the best in inhibiting bacteria, with PC2184 exhibiting more activity than PA13076. The two phages exhibited broad host range within the genus Salmonella. Phage PA13076 and PC2184 had a lytic effect on 222 (71.4% and 298 (95.8% of the 311 epidemic Salmonella isolates, respectively. We tested the effectiveness of phage PA13076 and PC2184 as well as a cocktail combination of both in three different foods (chicken breast, pasteurized whole milk and Chinese cabbage contaminated with SE. Samples were spiked with 1 × 104 CFU individual SE or a mixture of strains (ATCC13076 and CVCC2184, then treated with 1 × 108 PFU individual phage or a two phage cocktail, and incubated at 4 °C or 25 °C for 5 h. In general, the inhibitory effect of phage and phage cocktail was better at 4 °C than that at 25 °C, whereas the opposite result was observed in Chinese cabbage, and phage cocktail was better than either single phage. A significant reduction in bacterial numbers (1.5–4 log CFU/sample, p < 0.05 was observed in all tested foods. The two phages on the three food samples were relatively stable, especially at 4 ºC, with the phages exhibiting the greatest stability in milk. Our research shows that our phages have potential effectiveness as a bio-control agent of Salmonella in foods.

  2. Proteomic analysis of Trichoderma atroviride reveals independent roles for transcription factors BLR-1 and BLR-2 in light and darkness.

    Science.gov (United States)

    Sánchez-Arreguín, Alejandro; Pérez-Martínez, Ana Silvia; Herrera-Estrella, Alfredo

    2012-01-01

    The genus Trichoderma is one of the most widely used biological control agents of plant-pathogenic fungi. The main mechanism for survival and dispersal of Trichoderma is through the production of asexual spores (conidia). The transition from filamentous growth to conidiation can be triggered by light, nutrient deprivation, and mechanical damage of the mycelium. We conducted proteomic profiling analyses of Trichoderma atroviride after a blue light pulse. The use of two-dimensional electrophoresis (2-DE) and mass spectrometry (MS) analysis allowed us to identify 72 proteins whose expression was affected by blue light. Functional category analysis showed that the various proteins are involved in metabolism, cell rescue, and protein synthesis. We determined the relationship between mRNA levels of selected genes 30 min after a light pulse and protein expression levels at different times after the pulse and found this correlation to be very weak. The correlation was highest when protein and mRNA levels were compared for the same time point. The transcription factors BLR-1 and BLR-2 are vital to the photoconidiation process; here we demonstrate that both BLR proteins are active in darkness and affect several elements at both the transcript and protein levels. Unexpectedly, in darkness, downregulation of proteins prevailed in the Δblr-1 mutant, while upregulation of proteins predominated in the Δblr-2 mutant. Our data demonstrate that the BLR proteins play roles individually and as a complex. PMID:22058143

  3. In-Vitro Efficacy of Trichoderma viride Against Sclerotium rolfsii and Macrophomina phaseolina

    Directory of Open Access Journals (Sweden)

    Khirood DOLEY

    2012-11-01

    Full Text Available The fungal pathogen causes serious widespread losses to agricultural crops worldwide. Therefore, economy of countries may worsen especially of developing countries. In addition, harmful chemical pesticides which are being used today for increasing crop production creates very serious health hazardous problems to human beings and ecosystem as a whole. The antagonistic potential of Trichoderma species which has been long known to control various soil-borne fungal pathogens in biological way may be utilized. The faster growth rates with which it competes with fungal pathogen mainly brings upon their antagonistic characteristics. An investigation was carried out in laboratory condition towards biological efficacy of T. viride on potato dextrose agar (PDA medium for the bio-control of soil-borne plant pathogens Sclerotium rolfsii and Macrophomina phaseolina in in-vitro condition. The dual culture technique was followed in which T. viride showed significant antifungal activities towards both the pathogens. T. viride significantly inhibited the mycelial radial growth of S. rolfsii by 75% and M. phaseolina by 71.42%. The results showed variable mycelial growth rate for all fungal isolates which was determined after 6 days of incubation in which T. viride showed minimum of 4.00 days to completely cover the petri-plates and S. rolfsii showed 4.33 days whereas M. phaseolina showed 6.33 days. Thus, T. viride showed encouraging results regarding their biopesticidal and biofungicidal potential against plant pathogens which may be endorsed to substitute harmful chemical supplements that exists in modern day agricultural practices.

  4. Rhodococcus erythropolis and Its γ-Lactone Catabolic Pathway: An Unusual Biocontrol System That Disrupts Pathogen Quorum Sensing Communication

    Directory of Open Access Journals (Sweden)

    Xavier Latour

    2013-12-01

    Full Text Available Rhodococcus erythropolis is an environmental Gram-positive Actinobacterium with a versatile metabolism involved in various bioconversions and degradations. Rhodococci are best known for their great potential in numerous decontamination and industrial processes. However, they can also prevent plant disease by disrupting quorum sensing-based communication of Gram-negative soft-rot bacteria, by degrading N-acyl-homoserine lactone signaling molecules. Such biocontrol activity results partly from the action of the γ-lactone catabolic pathway. This pathway is responsible for cleaving the lactone bond of a wide range of compounds comprising a γ-butyrolactone ring coupled to an alkyl or acyl chain. The aliphatic products of this hydrolysis are then activated and enter fatty acid metabolism. This short pathway is controlled by the presence of the γ-lactone, presumably sensed by a TetR-like transcriptional regulator, rather than the presence of the pathogen or the plant-host in the environment of the Rhodococci. Both the density and biocontrol activity of R. erythropolis may be boosted in crop systems. Treatment with a cheap γ-lactone stimulator, for example, the food flavoring γ-caprolactone, induces the activity in the biocontrol agent, R. erythropolis, of the pathway degrading signaling molecules; such treatments thus promote plant protection.

  5. Augmentative biocontrol in natural marine habitats: persistence, spread and non-target effects of the sea urchin Evechinus chloroticus.

    Directory of Open Access Journals (Sweden)

    Javier Atalah

    Full Text Available Augmentative biocontrol aims to control established pest populations through enhancement of their indigenous enemies. To our knowledge, this approach has not been applied at an operational scale in natural marine habitats, in part because of the perceived risk of adverse non-target effects on native ecosystems. In this paper, we focus on the persistence, spread and non-target effects of the sea urchin Evechinus chloroticus when used as biocontrol agent to eradicate an invasive kelp from Fiordland, New Zealand. Rocky reef macrobenthic assemblages were monitored over 17 months in areas where the indigenous algal canopy was either removed or left intact prior to the translocation of a large number of urchins (>50 ind.·m(-2. Urchin densities in treated areas significantly declined ∼9 months after transplant, and began spreading to adjacent sites. At the end of the 17-month study, densities had declined to ∼5 ind.·m(-2. Compared to controls, treatment sites showed persistent shifts from kelp forest to urchin barrens, which were accompanied by significant reductions in taxa richness. Although these non-target effects were pronounced, they were considered to be localised and reversible, and arguably outweigh the irreversible and more profound ecological impacts associated with the establishment of an invasive species in a region of high conservation value. Augmentative biocontrol, used in conjunction with traditional control methods, represents a promising tool for the integrated management of marine pests.

  6. Efecto diferencial de seis aislamientos de trichoderma sobre la severidad de Rhizoctonia solani, desarrollo radical y crecimiento de plantas de maíz Differential effect of six Trichoderma isolates on root development, plant growth and severity of Rhizoctonia solani on mayze

    Directory of Open Access Journals (Sweden)

    Yuleidy López

    2010-04-01

    Full Text Available La mancha bandeada de la hoja en maíz, Rhizoctonia solani Kuhn, ha incrementado su incidencia en Venezuela y ocasiona considerables pérdidas en la producción. En muchos casos la microbiota del suelo sirve para proteger a la planta del ataque de patógenos y contribuye a su mayor desarrollo. Para estudiar medidas de biocontrol de R. solani se seleccionaron seis aislamientos de Trichoderma provenientes de la rizósfera de plantas de maíz colectadas en varias localidades de los estados Portuguesa y Yaracuy, las cuales fueron utilizadas en pruebas de antagonismo en vivero con un sustrato esterilizado. En el sustrato se hicieron dos hoyos y en ellos se colocaron dos granos de arroz esterilizados y 2 mL de solución de esporas del antagonista a 3-7x10(6 conidios·mL-1. Luego se colocó una semilla de maíz híbrido D2000 en cada hoyo y dos esclerocios de R. solani, se adicionaron 3 mL de la solución del antagonista y se cubrió con suelo esterilizado. Con relación a la sobrevivencia de plantas, hubo un efecto positivo en los tratamientos donde se utilizaron las cepas de Trichoderma, obteniéndose valores entre 70 y 90 %. En cuanto a la severidad de la enfermedad en la planta hasta los 60 días, se obtuvieron valores de 82,5 % en el testigo y 16,2 % en el mejor tratamiento con Trichoderma. Para un aislamiento proveniente de Píritu-estado Portuguesa se produjo el avance de la enfermedad fue el menor. Este aislamiento, seguido por el procedente de Yaritagua-estado Yaracuy, propiciaron un mayor crecimiento de la planta y mayor desarrollo radical.The banded leaf spot disease on maize, Rhizoctonia solani Kuhn, has increased its incidence in Venezuela, causing considerable damages and yield reduction. In many cases, soil microbiota can protect the plant from the pathogen attack and contributes to better plant development. In order to study forms of biocontrol of R. solani, six isolations of Trichoderma obtained from maize plant rizosphere were

  7. Relationship between mycoparasites lifestyles and biocontrol behaviors against Fusarium spp. and mycotoxins production.

    Science.gov (United States)

    Kim, Seon Hwa; Vujanovic, Vladimir

    2016-06-01

    Global food security research is seeking eco-friendly solutions to control mycotoxins in grain infected by fungi (molds). In particular, mycotoxigenic Fusarium spp. outbreak is a chronic threat for cereal grain production, human, and animal health. In this review paper, we discuss up-to-date biological control strategies in applying mycoparasites as biological control agents (BCA) to prevent plant diseases in crops and mycotoxins in grain, food, and feed. The aim is to increase food safety and to minimize economic losses due to the reduced grain yield and quality. However, recent papers indicate that the study of the BCA specialists with biotrophic lifestyle lags behind our understanding of the BCA generalists with necrotrophic lifestyle. We examine critical behavioral traits of the two BCA groups of mycoparasites. The goal is to highlight their major characteristics in the context of future research towards an efficient biocontrol strategy against mycotoxin-producing Fusarium species. The emphasis is put on biocontrol of Fusarium graminearum, F. avenaceum, and F. culmorum causing Fusarium head blight (FHB) in cereals and their mycotoxins. PMID:27121573

  8. Biofertilization and Biocontrol in the fight against soilborne fungal root pathogens in Australian soils

    Science.gov (United States)

    Cooper, Sarah; Agnew, Linda; Pereg, Lily

    2015-04-01

    Control of soilborne fungal root pathogens that severely compromise cotton production and other crops worldwide has historically been through the use of synthetic fungicides and fertilizers, these often have hazardous implications for environmental and soil health. The search for sustainable alternatives has lead to heightened interest in biocontrol, using soil microorganisms that suppress the growth of phytopathogens directly and biofertilization, the use of microorganisms to increasing the nutrient availability in soils, increasing seedling vigour. Soil properties and consequently soil microbial properties are strongly impacted by agricultural practices, therefore we are isolating indigenous microorganisms from soils collected from ten different geographical locations within the Australian cotton-growing region. These differ vastly in soil type and management practices. Soils are being analysed to compare the abundance of phosphate solubilising, auxin producing and nitrogen cycling bacteria. Rhizospheric bacteria capable of plant growth promoting through a multiple actions are being isolated. In addition, a method for isolating soilborne fungal suppressive microbes directly from soil samples has been designed and is currently being used. Comparisons between agricultural practices and the plant growth promoting microbial component of soil microbiome will be reported on. We will discuss the microbial isolates identified, their modes of action and their potential use as biocontrol agents and/or biofertilizers in Australian cotton growing soils.

  9. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review

    Directory of Open Access Journals (Sweden)

    Soumitra ePaul Chowdhury

    2015-07-01

    Full Text Available Bacillus amyloliquefaciens subsp. plantarum FZB42 is a gram-positive model bacterium for unraveling plant-microbe interactions in Bacilli. In addition, FZB42 is used commercially as biofertilizer and biocontrol agent in agriculture. Genome analysis of FZB42 revealed that nearly 10% of the FZB42 genome is devoted to synthesizing antimicrobial metabolites and their corresponding immunity genes. However, recent investigations in planta demonstrated that - except surfactin - the amount of such compounds found in vicinity of plant roots is relatively low, making doubtful a direct function in suppressing competing microflora including plant pathogens. These metabolites have been also suspected to induce changes within the rhizosphere microbial community, which might affect environment and plant health. However, sequence analysis of rhizosphere samples revealed only marginal changes in the root microbiome, suggesting that secondary metabolites are not the key factor in protecting plants from pathogenic microorganisms. On the other hand, adding FZB42 to plants compensate, at least in part, changes in the community structure caused by the pathogen, indicating an interesting mechanism of plant protection by beneficial Bacilli.Sub-lethal concentrations of cyclic lipopeptides and volatiles produced by plant-associated Bacilli trigger pathways of induced systemic resistance (ISR, which protect plants against attacks of pathogenic microbes, viruses and nematodes. Stimulation of ISR by bacterial metabolites is likely the main mechanism responsible for biocontrol action of FZB42.

  10. PURIFICATION AND PROPERTIES OF A FUNGAL L-ASPARAGINASE FROM TRICHODERMA VIRIDE PERS: SF GREY

    Directory of Open Access Journals (Sweden)

    Lynette Lincoln

    2015-02-01

    Full Text Available A potent L-asparaginase-producing Trichoderma viride Pers: SF Grey was screened from the marine soil with the objective of studying the enzyme properties. The maximum enzyme production occurred on the third day at pH 6.5 and 37 °C when 0.5% L-asparagine supplemented with 0.5% peptone and 0.6% maltose. The enzyme was purified to homogeneity with a specific activity of 78.2 U.mg-1 and a molecular weight of 99 ± 1 kDa. It exhibited maximum activity at pH 7.0 and 37 °C. It was inhibited by Fe2+, Fe3+, Co2+ and Mn2+ but induced by Mg2+ and Na+. N-ethylemaleimide and phenylmethylsulphonylfluoride did not alter the enzyme activity, but strongly inhibited by ethylenediaminetetraacetate. L-asparaginase showed high affinity for L-asparagine with a Km of 2.56 μM. Thin layer chromatography confirmed the hydrolysis of L-asparagine. As the purified and characterized L-asparaginase of Trichoderma viride showed a good scavenging activity and reduced acrylamide level in potato products, it can further serve as an antileukemic protein and an acrylamide mitigation agent in heat-treated food stuffs rich in carbohydrates, respectively.

  11. SSR Markers for Trichoderma virens: Their Evaluation and Application to Identify and Quantify Root-Endophytic Strains

    Directory of Open Access Journals (Sweden)

    Joerg Geistlinger

    2015-11-01

    Full Text Available Using biological fertilizers and pesticides based on beneficial soil microbes in order to reduce mineral fertilizers and chemical pesticides in conventional agriculture is still a matter of debate. In this regard, a European research project seeks to elucidate the role of root-endophytic fungi and to develop molecular tools to trace and quantify these fungi in the rhizosphere and root tissue. To do this, the draft genome sequence of the biocontrol fungus Trichoderma virens (T. virens was screened for simple sequence repeats (SSRs and primers were developed for 12 distinct loci. Primers were evaluated using a global collection of ten isolates where an average of 7.42 alleles per locus was detected. Nei’s standard genetic distance ranged from 0.18 to 0.27 among the isolates, and the grand mean of haploid diversity in AMOVA analysis was 0.693 ± 0.019. Roots of tomato plants were inoculated with different strains and harvested six weeks later. Subsequent PCR amplification identified root-endophytic strains and co-colonization of roots by different strains. Markers were applied to qPCR to quantify T. virens strains in root tissue and to determine their identity using allele-specific melting curve analysis. Thus, the root-endophytic lifestyle of T. virens was confirmed, strains in roots were quantified and simultaneous colonization of roots by different strains was observed.

  12. Real-time RT-PCR expression analysis of chitinase and endoglucanase genes in the three-way interaction between the biocontrol strain Clonostachys rosea IK726, Botrytis cinera and strawberry

    DEFF Research Database (Denmark)

    Mamarabadi, Mojtaba; Jensen, Birgit; Jensen, Søren Dan Funck;

    2008-01-01

    Clonostachys rosea is a well-known biocontrol agent against Botrytis cinerea, the causal agent of gray mold in strawberry. The activity of cell wall-degrading enzymes might play a significant role for successful biocontrol by C. rosea. The expression pattern of four chitinases, and two endoglucan......Clonostachys rosea is a well-known biocontrol agent against Botrytis cinerea, the causal agent of gray mold in strawberry. The activity of cell wall-degrading enzymes might play a significant role for successful biocontrol by C. rosea. The expression pattern of four chitinases, and two...... endoglucanase genes from C. rosea strain IK726 was analyzed using real-time RT-PCR in vitro and in strawberry leaves during interaction with B. cinerea. Specific primers were designed for ß-tubulin genes from C. rosea and B. cinerea, respectively, and a gene encoding a DNA-binding protein (DBP) from strawberry......, allowing in situ activity assessment of each fungus in vitro and during their interaction on strawberry leaves. Growth of B. cinerea was inhibited in all pathogen-antagonist interactions while the activity of IK726 was slightly increased. In all in vitro interactions, four of the six genes were upregulated...

  13. Two new Chinese record of the genus Trichoderma: Trichoderma pleuroticola and T.pleurotum%木霉属中国新纪录种Trichoderma pleuroticola和T.pleurotum

    Institute of Scientific and Technical Information of China (English)

    张广志; 杨合同; 张新建; 李纪顺; 陈凯; 黄玉杰

    2013-01-01

    [Objective] Identification of two Trichoderma isolates were isolated from the soil in vegetable greenhouses and the pileus of Asafoetida mushroom. [Methods] By combination of morphological charaters and application of internal transcribed spacer (ITS). [Results] Two Trichoderma isolates were identified as Trichoderma pleuroticola S.H.Yu & Park sp. nov. and Trichoderma pleurotum S.H.Yu & Park. The morphological charaters of T. pleuroticola is similar with T. harzianum, but its conidiospore is obviously more than T. harzianum, secretes dark brown pigment, and forms yellow crystal on PDA medium. The typical characteristics of Trichoderma pleurotum is that its conidiophores are mostly solitary and more or less prostrate, branches scattered, arising separately and bearing crowded whorls of appressed phialides at the apex rsembling the conidiophore in Gliocladium. [Conclusion] Two Trichoderma isolates are T. pleuroticola and T. pleurotum respectively, which are two new record species in China.%[目的]对蔬菜大棚土壤中和阿魏菇腐烂的菌盖上分离的两株木霉菌进行分类鉴定.[方法]结合形态学分类特征和ITS序列分析的方法进行鉴定.[结果]从蔬菜大棚的土壤中和阿魏菇腐烂的菌盖上分离的两株木霉菌分别为Trichoderma pleuroticola和T.pleurotum.T.pleuroticola的形态特征与T.harzianum相似,但其分生孢子显著大于T.harzianum的分生孢子,且在PDA上产生黑褐色的色素以及黄色的结晶物.T.pleurotum 典型特征是分生孢子梗单生,有时匍匐,分枝散生,初级分枝和分生孢子梗顶端聚生,类似粘帚霉.[结论]分离的两株木霉分别是T.pleuroticola和T.pleurotum,为木霉菌中国新纪录种.

  14. Effect of Trichoderma harzianum biomass and Bradyrhizobium sp. strain NC 92 to control leaf blight disease of bambara groundnut (Vigna subterranea) caused by Rhizoctonia solani in the field

    OpenAIRE

    Mana Kanjanamaneesathian; Paranee Sawangsri; Ashara Pengnoo; Jira Suwanprasert

    2007-01-01

    Four hundred and sixty two strains of Trichoderma spp. were isolated from 23 soil samples in which groundnut (Arachis hypogaea L.) and bambara groundnut (Vigna subterranea L.) had been planted in Songkhla, Phattalung, Nakhon Si Thammarat, Narathiwat and Yala provinces. These fungi were tested against Rhizoctonia solani, a causal agent of leaf blight of bambara groundnut, using dual culture technique on PDA medium. Among 462 isolates tested, 226 isolates had an ability to overgrow R. solani co...

  15. The effectivity of Tilletiopsis albescens in biocontrol of powdery mildew

    DEFF Research Database (Denmark)

    Knudsen, I.M.B.; Skou, J.P.

    1993-01-01

    Tilletiopsis albescens grows well on powdery mildew fungi inoculated on barley or cucumber leaves and causes collapse of the colonies. Application of ballistospores or cut mycelium was equally effective for biocontrol, and the effectiveness tended to increase exponentially with the concentration of...... germinating units (conidia and cut mycelium) applied. Seventy percent relative humidity or more is required for effective biocontrol. Two applications of T. albescens in the period from 3 days before to 3 days after inoculation with powdery mildew were more effective than one. Applications before inoculation...

  16. Survivorship and feeding preferences among size classes of outplanted sea urchins, Tripneustes gratilla, and possible use as biocontrol for invasive alien algae

    OpenAIRE

    Westbrook, Charley E.; Ringang, Rory R.; Cantero, Sean Michael A.; ,; Toonen, Robert J.

    2015-01-01

    We investigate the survivorship, growth and diet preferences of hatchery-raised juvenile urchins, Tripneustes gratilla, to evaluate the efficacy of their use as biocontrol agents in the efforts to reduce alien invasive algae. In flow-through tanks, we measured urchin growth rates, feeding rates and feeding preferences among diets of the most common invasive algae found in Kāneʻohe Bay, Hawaiʻi: Acanthophora spicifera, Gracilaria salicornia, Eucheuma denticulatum and Kappaphycus clade B. Post-...

  17. Zoospore Homing and Infection Events: Effects of the Biocontrol Bacterium Burkholderia cepacia AMMDR1 on Two Oomycete Pathogens of Pea (Pisum sativum L.)

    OpenAIRE

    Heungens, K; Parke, J. L.

    2000-01-01

    Burkholderia cepacia AMMDR1 is a biocontrol agent that protects pea and sweet corn seeds from Pythium damping-off in field experiments. The goal of this work was to understand the effect of B. cepacia AMMDR1 on Pythium aphanidermatum and Aphanomyces euteiches zoospore homing events and on infection of pea seeds or roots. In vitro, B. cepacia AMMDR1 caused zoospore lysis, prevented cyst germination, and inhibited germ tube growth of both oomycetes. B. cepacia AMMDR1 also reduced the attractive...

  18. Physiological manipulation and formulation of the biocontrol yeast Pichia anomala for control of Penicillium verrucosum and ochratoxin A contamination of moist grain.

    OpenAIRE

    Mokiou, Stella; Magan, Naresh

    2008-01-01

    The major hurdle in the production of commercial biocontrol agents (BCAs) has been the lack of production of appropriate formulations. Of particular importance is the conservation of viability and ecological competence after application. With this in mind studies were conducted to develop formulations of P. anomala which would have these attributes. Cells were grown in molasses-based medium modified with proline to different water availability levels (0.98 and 0.96) which significantly increa...

  19. Biocontrol proteomics:Implication of the pentoses phosphates pathway in the antagonist effect of Pichia anomala against Botrytis cinerea on apple

    OpenAIRE

    Kwasiborski, Anthony; Renaut, Jenny; Lepoivre, Philippe; Jijakli, Haissam

    2011-01-01

    The growing interest of the consumers for the wholesome food and the protection of the environment as well as the development of resistant pathogens to pesticides, stimulate the interest of growers to apply biological control methods. Pichia anomala strain K was previously identified as an efficient biocontrol agent of the main apple pathogens, Botrytis cinerea and Penicillum expansum. Further study demonstrated the complexicity of the mode of action of P. anomala against B. cinerea. A cDNA-A...

  20. Unraveling Trichoderma species in the attine ant environment: description of three new taxa.

    Science.gov (United States)

    Montoya, Quimi Vidaurre; Meirelles, Lucas Andrade; Chaverri, Priscila; Rodrigues, Andre

    2016-05-01

    Fungus-growing "attine" ants forage diverse substrates to grow fungi for food. In addition to the mutualistic fungal partner, the colonies of these insects harbor a rich microbiome composed of bacteria, filamentous fungi and yeasts. Previous work reported some Trichoderma species in the fungus gardens of leafcutter ants. However, no studies systematically addressed the putative association of Trichoderma with attine ants, especially in non-leafcutter ants. Here, a total of 62 strains of Trichoderma were analyzed using three molecular markers (ITS, tef1 and rpb2). In addition, 30 out of 62 strains were also morphologically examined. The strains studied correspond to the largest sampling carried out so far for Trichoderma in the attine ant environment. Our results revealed the richness of Trichoderma in this environment, since we found 20 Trichoderma species, including three new taxa described in the present work (Trichoderma attinorum, Trichoderma texanum and Trichoderma longifialidicum spp. nov.) as well as a new phylogenetic taxon (LESF 545). Moreover, we show that all 62 strains grouped within different clades across the Trichoderma phylogeny, which are identical or closely related to strains derived from several other environments. This evidence supports the transient nature of the genus Trichoderma in the attine ant colonies. The discovery of three new species suggests that the dynamic foraging behavior of these insects might be responsible for accumulation of transient fungi into their colonies, which might hold additional fungal taxa still unknown to science. PMID:26885975

  1. Study on Biological Control Of Rhizoctonia solani via Trichoderma

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Strain T02-25 was selected from approximately 30 rhizosphere isolates of Trichoderma species isolated from roots of crops. Its biological activity against Rhizoctonia solani was determined for the control efficacy to pepper seedling blight caused by R. solani in the field. The assay methods were treating R. solani sclerotia by Trichoderma conidial suspension (106cfu ml-1) and scattering Thichoderma rice bran over the pepper root medium. The results showed that T02-25 was active against R. solani in both ways, and its control efficacy was 82.7% and 78.0%, respectively. In addition to comparison of the efficacy of the two application methods, the relationship of different factors in the control efficacy of Trichoderma against R. solani was discussed.

  2. Trichoderma species occurring on wood with decay symptoms in mountain forests in Central Europe: genetic and enzymatic characterization.

    Science.gov (United States)

    Błaszczyk, Lidia; Strakowska, Judyta; Chełkowski, Jerzy; Gąbka-Buszek, Agnieszka; Kaczmarek, Joanna

    2016-08-01

    The aim of this study was to explore the species diversity of Trichoderma obtained from samples of wood collected in the forests of the Gorce Mountains (location A), Karkonosze Mountains (location B) and Tatra Mountains (location C) in Central Europe and to examine the cellulolytic and xylanolytic activity of these species as an expression of their probable role in wood decay processes. The present study has led to the identification of the following species and species complex: Trichoderma atroviride P. Karst., Trichoderma citrinoviride Bissett, Trichoderma cremeum P. Chaverri & Samuels, Trichoderma gamsii Samuels & Druzhin., Trichoderma harzianum complex, Trichoderma koningii Oudem., Trichoderma koningiopsis Samuels, C. Suárez & H.C. Evans, Trichoderma longibrachiatum Rifai, Trichoderma longipile Bissett, Trichoderma sp. (Hypocrea parapilulifera B.S. Lu, Druzhin. & Samuels), Trichoderma viride Schumach. and Trichoderma viridescens complex. Among them, T. viride was observed as the most abundant species (53 % of all isolates) in all the investigated locations. The Shannon's biodiversity index (H), evenness (E), and the Simpson's biodiversity index (D) calculations for each location showed that the highest species diversity and evenness were recorded for location A-Gorce Mountains (H' = 1.71, E = 0.82, D = 0.79). The preliminary screening of 119 Trichoderma strains for cellulolytic and xylanolytic activity showed the real potential of all Trichoderma species originating from wood with decay symptoms to produce cellulases and xylanases-the key enzymes in plant cell wall degradation. PMID:26586561

  3. Trichoderma reesei FS10-C enhances phytoremediation of Cd-contaminated soil by Sedum plumbizincicola and associated soil microbial activities

    OpenAIRE

    Teng, Ying; Luo, Yang; Ma, Wenting; Zhu, Lingjia; Ren, Wenjie; Luo, Yongming; Christie, Peter; Li, Zhengao

    2015-01-01

    This study aimed to explore the effects of Trichoderma reesei FS10-C on the phytoremediation of Cd-contaminated soil by the hyperaccumulator Sedum plumbizincicola and on soil fertility. The Cd tolerance of T. reesei FS10-C was characterized and then a pot experiment was conducted to investigate the growth and Cd uptake of S. plumbizincicola with the addition of inoculation agents in the presence and absence of T. reesei FS10-C. The results indicated that FS10-C possessed high Cd resistance (u...

  4. Mutagenesis of Trichoderma Viride by Ultraviolet and Plasma

    Institute of Scientific and Technical Information of China (English)

    姚日生; 李曼曼; 邓胜松; 胡华佳; 王淮; 李凤和

    2012-01-01

    Considering the importance of a microbial strain capable of increased cellulase production, a mutant strain UP4 of Trichoderma viride was developed by ultraviolet (UV) and plasma mutation. The mutant produced a 21.0 IU/mL FPase which was 98.1% higher than that of the parent strain Trichoderma viride ZY-1. In addition, the effect of ultraviolet and plasma mutagenesis was not merely simple superimposition of single ultraviolet mutation and single plasma mutation. Meanwhile, there appeared a capsule around some of the spores after the ultraviolet and plasma treatment, namely, the spore surface of the strain became fuzzy after ultraviolet or ultraviolet and plasma mutagenesis.

  5. Trichoharzianol, a new antifungal from Trichoderma harzianum F031.

    Science.gov (United States)

    Jeerapong, Chotika; Phupong, Worrapong; Bangrak, Phuwadol; Intana, Warin; Tuchinda, Patoomratana

    2015-04-15

    A new decalin derivative, trichoharzianol (1), together with three known compounds, eujavanicol A (2), 5-hydroxy-3-hydroxymethyl-2-methyl-7-methoxychromone (3), and 4,6-dihydroxy-5-methylphthalide (4), were isolated from Trichoderma harzianum F031. For the first time, compounds 2-4 were reported from the Trichoderma species. Their structures were characterized by spectroscopic methods. Trichoharzianol (1) showed the highest antifungal activity against Colletotrichum gloeosporioides, with a minimum inhibitory concentration (MIC) of 128 μg/mL. PMID:25817439

  6. Grouper as a natural biocontrol of invasive lionfish.

    Science.gov (United States)

    Mumby, Peter J; Harborne, Alastair R; Brumbaugh, Daniel R

    2011-01-01

    Lionfish (Pterois volitans/miles) have invaded the majority of the Caribbean region within five years. As voracious predators of native fishes with a broad habitat distribution, lionfish are poised to cause an unprecedented disruption to coral reef diversity and function. Controls of lionfish densities within its native range are poorly understood, but they have been recorded in the stomachs of large-bodied Caribbean groupers. Whether grouper predation of lionfish is sufficient to act as a biocontrol of the invasive species is unknown, but pest biocontrol by predatory fishes has been reported in other ecosystems. Groupers were surveyed along a chain of Bahamian reefs, including one of the region's most successful marine reserves which supports the top one percentile of Caribbean grouper biomass. Lionfish biomass exhibited a 7-fold and non-linear reduction in relation to the biomass of grouper. While Caribbean grouper appear to be a biocontrol of invasive lionfish, the overexploitation of their populations by fishers, means that their median biomass on Caribbean reefs is an order of magnitude less than in our study. Thus, chronic overfishing will probably prevent natural biocontrol of lionfishes in the Caribbean. PMID:21731769

  7. Grouper as a natural biocontrol of invasive lionfish.

    Directory of Open Access Journals (Sweden)

    Peter J Mumby

    Full Text Available Lionfish (Pterois volitans/miles have invaded the majority of the Caribbean region within five years. As voracious predators of native fishes with a broad habitat distribution, lionfish are poised to cause an unprecedented disruption to coral reef diversity and function. Controls of lionfish densities within its native range are poorly understood, but they have been recorded in the stomachs of large-bodied Caribbean groupers. Whether grouper predation of lionfish is sufficient to act as a biocontrol of the invasive species is unknown, but pest biocontrol by predatory fishes has been reported in other ecosystems. Groupers were surveyed along a chain of Bahamian reefs, including one of the region's most successful marine reserves which supports the top one percentile of Caribbean grouper biomass. Lionfish biomass exhibited a 7-fold and non-linear reduction in relation to the biomass of grouper. While Caribbean grouper appear to be a biocontrol of invasive lionfish, the overexploitation of their populations by fishers, means that their median biomass on Caribbean reefs is an order of magnitude less than in our study. Thus, chronic overfishing will probably prevent natural biocontrol of lionfishes in the Caribbean.

  8. Detection of Fusarium spp. and Trichoderma spp. and antagonism of Trichoderma sp. in soybean under no-tillage

    OpenAIRE

    Paola Mendes Milanesi; Elena Blume; Marlove Fátima Brião Muniz; Lia Rejane Silveira Reiniger; Zaida Inês Antoniolli; Emanuele Junges; Manoeli Lupatini

    2013-01-01

    This study aimed i) to quantify the occurrence of Fusarium spp. and Trichoderma spp. in rhizospheric soil, with and without symptoms of Sudden Death Syndrome (SDS) in eight soybean genotypes; ii) morphologically identify isolates of Fusarium spp. from roots with SDS; iii) evaluate the antagonism between Trichoderma spp. and Fusarium spp. isolates from rhizospheric soil and roots from with and without SDS, respectively; and iv) characterize through the ITS1-5.8S-ITS2 region of rDNA the isolate...

  9. 放线菌剂与腐植酸钾对魔芋抗病促生效果研究%Study of Combined Application of Actinomycetes Biocontrol Agents and Potassium Humate on Disease Resistance and Growth-promoting Effect of Amorphophallus Konjac

    Institute of Scientific and Technical Information of China (English)

    张忠良; 刘列平; 何斐

    2014-01-01

    分别以不施菌剂、不施腐植酸钾为对照,采用小区试验,探讨生防放线菌剂与腐植酸钾配施条件下二者对魔芋的防病促生作用。试验结果表明:(1)​当腐植酸钾与3号放线菌配施时,具有较强的防病促生作用。30克/株、60克/株、90克/株腐植酸钾分别配施3号菌剂时,与不施腐植酸钾对照相比,魔芋病害相对防效、增产率及增长系数分别提高了9.8%~41.6%、17.1%~76.3%和20.1%~64.2%。其中,60克/株腐植酸钾配施3号菌剂时效果最明显。(2)​当放线菌剂与腐植酸钾配施时,具有较强的防病促生作用。1、2、3号放线菌剂与60克/株腐植酸钾配施,与不施菌剂对照相比,魔芋病害相对防效、增产率及增长系数分别提高了11.7%~89.7%、33.3%~150.9%和38.5%~175.0%。其中2、3号放线菌剂与60克/株腐植酸钾配施处理效果较好。研究表明,腐植酸钾与放线菌剂配施能促进魔芋生长,提高魔芋产量,降低发病率。%With no actinomycetes and potassium humate treatments as control(CK), the effect of actinomycetes and potassium humate on disease resistance and growth-promoting of Amorphophallus konjac in the plot trials were evalu-ated. Results showed that:(1) Combined application of potassium humate and actinomycetes No.3 had strong disease resistance and growth-promoting effect. Under 30, 60, 90 gram per plant of potassium humate combined with actinomy-cetes No.3 treatment, biocontrol effect increased by 9.8%~41.6%, yield increased by 17.1%~76.3%and growth factor increased by 20.1%~64.2% compared with the group without potassium humate. Among which, the combined ap-plication of 60 gram per plant of potassium humate and actinomycetes No.3 had the most obvious effect. (2) Combined application of actinomycetes and potassium humate had signiifcant anti-disease and growth-promoting effect. Three kind of actinomycetes combined with 60 gram per plant of potassium

  10. Isolation and Selection of Epiphytic Yeast for Biocontrol of Botrytis cinerea Pers. on Table Grapes Aislación y Selección de Levaduras Epífitas para el Biocontrol de Botrytis cinerea Pers. en Uva de Mesa

    Directory of Open Access Journals (Sweden)

    Marisol Vargas

    2012-09-01

    Full Text Available Botrytis cinerea Pers., the causal agent of gray mold, infects more than 200 plant species. This pathogen has traditionally been controlled by fungicides. However, with the increasing demand for pesticide-free foods new control strategies are needed. The objective of this study was to isolate and select grapevine (Vitis vinifera L. epiphytic yeasts for the biocontrol of B. cinerea in table grapes. Of the total isolated yeasts (n = 256, 32 exhibited mycelial growth inhibition in dual cultures with a halo > 4 mm, and eight of these isolates inhibited > 90% of conidial germination. When evaluating increasing concentrations on conidial germination inhibition, a dose-dependent response was observed with EC90 values from 0.45 x 10(5 to 0.22 x 10(8 cells mL-1. The antagonistic activity of six yeasts against B. cinerea in table grape berries 'Flame Seedless' increased as the yeast colonization time increased from 1 to 24 h on the berries, resulting in a higher biocontrol activity on B. cinerea. These results show the effectiveness of grapevine epiphytic yeasts as biocontrol agents of B. cinerea on table grapes.Botrytis cinerea Pers., agente causal de la pudrición gris, infecta a más de 200 especies vegetales. Tradicionalmente, este patógeno ha sido controlado con fungicidas; sin embargo, la creciente demanda de alimentos libres de pesticidas hace necesario el uso de nuevas estrategias de control. El objetivo de este estudio fue aislar y seleccionar levaduras epífitas de vid (Vitis vinifera L. para el biocontrol de B. cinerea en uva de mesa. Del total de levaduras aisladas (n = 256, 32 presentaron inhibición del crecimiento micelial, en cultivos duales, con un halo > 4 mm y ocho de estos aislamientos inhibieron la germinación de conidias > 90%. Al evaluar concentraciones crecientes de levaduras sobre la inhibición de la germinación de conidias, se observó una respuesta dosis-dependiente, con valores de CE90 de 0,45 x 10(5 a 0,22 x 10(8 c

  11. Trichoderma volatiles effecting Arabidopsis

    DEFF Research Database (Denmark)

    Ramadan, Metwaly; Gigolashvili, Tamara; Grosskinsky, Dominik Kilian;

    2015-01-01

    Trichoderma asperellum IsmT5 on Arabidopsis thaliana. During co-cultivation of T. asperellum IsmT5 without physical contact to A. thaliana we observed smaller but vital and robust plants. The exposed plants exhibit increased trichome numbers, accumulation of defense-related compounds such as H2O2, anthocyanin...

  12. Identification of Trichoderma strains by image analysis of HPLC chromatograms

    DEFF Research Database (Denmark)

    Thrane, Ulf; Poulsen, S.B.; Nirenberg, H.I.;

    2001-01-01

    Forty-four Trichoderma strains from water-damaged building materials or indoor dust were classified with chromatographic image analysis on full chromatographic matrices obtained by high performance liquid chromatography with UV detection of culture extracts. The classes were compared with morphol...

  13. Expression of Barley Endopeptidase B in Trichoderma reesei

    OpenAIRE

    Saarelainen, R.; Mantyla, A.; Nevalainen, H.; Suominen, P.

    1997-01-01

    The gene for barley endopeptidase B (EPB) has been expressed in the filamentous fungus Trichoderma reesei from the cbh1 promoter. The EPB signal sequence allowed secretion of over 90% of the recombinant protein. Yields reached about 500 mg of immunoreactive protein per liter and exceeded values for any other protein derived from a higher eukaryotic organism produced in T. reesei.

  14. Isolation and Selection of Epiphytic Yeast for Biocontrol of Botrytis cinerea Pers. on Table Grapes Aislación y Selección de Levaduras Epífitas para el Biocontrol de Botrytis cinerea Pers. en Uva de Mesa

    OpenAIRE

    Marisol Vargas; Felipe Garrido; Nelson Zapata; Maritza Tapia

    2012-01-01

    Botrytis cinerea Pers., the causal agent of gray mold, infects more than 200 plant species. This pathogen has traditionally been controlled by fungicides. However, with the increasing demand for pesticide-free foods new control strategies are needed. The objective of this study was to isolate and select grapevine (Vitis vinifera L.) epiphytic yeasts for the biocontrol of B. cinerea in table grapes. Of the total isolated yeasts (n = 256), 32 exhibited mycelial growth inhibition in dual culture...

  15. Lignicolous Basidiomycetes as Valuable Biotechnological Agents

    Directory of Open Access Journals (Sweden)

    Cristiana-Virginia Petre

    2014-10-01

    Full Text Available Lignicolous basidiomycetes are highly specialized organisms that are capable of degrading lignin, one of the most abundant and resistant organic compounds. Through their enzymes and secondary metabolites, these fungi have a great potential that can be successfully used in various biotechnological processes, ranging from mycoremediation of different pollutants and isolation of bioactive molecules with applications in the pharmacological industry and agriculture, as biocontrol agents of phytopathogens.

  16. Intracellular trehalose and sorbitol synergistically promoting cell viability of a biocontrol yeast, Pichia anomala, for aflatoxin reduction.

    Science.gov (United States)

    Hua, Sui Sheng T; Hernlem, Bradley J; Yokoyama, Wallace; Sarreal, Siov Bouy L

    2015-05-01

    Pichia anomala (Wickerhamomyces anomalus) WRL-076 was discovered by a visual screening bioassay for its antagonism against Aspergillus flavus. The yeast was shown to significantly inhibit aflatoxin production and the growth of A. flavus. P. anomala is a potential biocontrol agent for reduction of aflatoxin in the food chain. Maintaining the viability of biocontrol agents in formulated products is a great challenge for commercial applications. Four media, NYG, NYGS, NYGT and NYGST are described which support good growth of yeast cells and were tested as storage formulations. Post growth supplement of 5 % trehalose to NYGST resulted in 83 % viable yeast cells after 12 months in cold storage. Intracellular sorbitol and trehalose concentrations were determined by HPLC analysis at the beginning of the storage and at the end of 12 month. Correlation of cell viability to both trehalose and sorbitol suggested a synergistic effect. Bonferroni (Dunn) t Test, Tukey's Studentized Range (HSD) Test and Duncan's Multiple Range Test, all showed that yeast cell viability in samples with both intracellular trehalose and sorbitol were significantly higher than those with either or none, at a 95 % confidence level. DiBAC4(5) and CFDA-AM were used as the membrane integrity fluorescent stains to create a two-color vital staining scheme with red and green fluorescence, respectively. Yeast cells stored in formulations NYG and NYGS with no detectable trehalose, displayed mostly red fluorescence. Yeast cells in NYGST+5T showed mostly green fluorescence. PMID:25700743

  17. Antifungal Activity of Isolated Bacillus amyloliquefaciens SYBC H47 for the Biocontrol of Peach Gummosis.

    Science.gov (United States)

    Li, Xunhang; Zhang, Yanzhou; Wei, Zhiwen; Guan, Zhengbing; Cai, Yujie; Liao, Xiangru

    2016-01-01

    and the growth of mycelia from B. dothidea; therefore, this strain behaves as a potential biocontrol agent against the gummosis disease. PMID:27583463

  18. Effect assessment of Puccinia xanthii f sp ambrosiae-trifidae as a biocontrol agent to control giant ragweed%苍耳柄锈菌三裂叶豚草专化型对三裂叶豚草控制效果评价

    Institute of Scientific and Technical Information of China (English)

    丁建云; 姚丹丹; 陈继东; 崔建臣; 胡冬雪; 张小利

    2014-01-01

    Based on data from systematic investigation of giant ragweed inoculated with Puccinia xanthii f. sp. ambrosiae-trifidae in field in Huairou area in 2011-2013, the occurrence regularity and biocontrol effect of giant ragweed rust were evaluated. The results indicated that giant ragweed rust was natural epidemic in Baoshan Temple area in Huairou. Giant ragweed rust occurred in early June. All the giant ragweed plants were almost infected in the middle of July and some infected plants were died. P.xanthii f. sp. ambrosiae-trifidae exhibits good control effect on growth, seed amount and seed weight of giant ragweed. The death rate of the infected giant ragweed plants was nearly 30% in the end of September and the death plants had no seed.%2011~2013年在北京怀柔宝山寺地区通过野外接菌后定点定株系统调查,探索三裂叶豚草锈病的流行规律,评价苍耳柄锈菌三裂叶豚草专化型对三裂叶豚草的控制效果。结果表明:苍耳柄锈菌三裂叶豚草专化型在北京怀柔宝山寺地区能完成周年侵染循环:6月初三裂叶豚草开始有感染锈病症状,7月中、下旬几乎全部三裂叶豚草植株感病,且开始有整株死亡。苍耳柄锈菌三裂叶豚草专化型对三裂叶豚草有较好的控制效果:该菌抑制三裂叶豚草植株生长,减少种子数量,减轻种子重量,9月末30%左右的感病三裂叶豚草植株死亡,死亡植株不能产生种子。

  19. PERBAIKAN PERTUMBUHAN DAN HASIL STEVIA (Stevia rebaudiana BERTONI M MELALUI APLIKASI Trichoderma sp.

    Directory of Open Access Journals (Sweden)

    Haryuni -

    2013-09-01

    Full Text Available AbstrakTujuan penelitian ini adalah menguji perbaikan pertumbuhan dan hasil stevia (Stevia rebaudiana Bertoni M melalui penggunaan  Trichoderma sp.  Perbanyakan  Trichoderma sp. dilakukan di laboratorium Balai Proteksi Perkebunan di Salatiga Jawa Tengah. Penelitian dirancang menggunakan rancangan factorial dengan dua faktor. Faktor pertama adalah inokulasi Trichoderma sp (To = tanpa  Trichoderma sp. & T1 = menggunakan Trichoderma sp. 100 g.  Faktor kedua adalah variasi aplikasi perlakuan yaitu: 1. S0 =  tanpa perlakuan, 2. S1 = 10 hari sebelum tanam, 3. S3 = tanama dan  4. S3 = 10  hari setelah tanam. Tiap perlakuan diulang tiga ulangan, tiap ulangan terdiri dari 16 tanaman. Hasil penelitian menunjukkan  bahwa inokulasi Trichoderma sp. dan aplikasi perlakuan  S3 = 10 hari setelah tanam dapat meningkatkan pertumbuhan dan hasil dari  tanaman tevia. AbstractThe object of this research was examine to repair of growth and yield of stevia (Stevia rebaudiana Bertoni M by Trichoderma sp. application.  Reproduction of Trichoderma sp. performed in the laboratory center of Protection plantation Central of Java at Salatiga.The experiment was arranged in a completely randomized completely factorial design, consisted of two factors. The first factor was Trichoderma sp inoculation which were To = without Trichoderma sp. and T1 = Trichoderma sp. 100 g. The second factor was variation  of plant application treatment, which were 1. S0 = without treatment, 2. S1 = 10 days before of planting , 3. S3 = planting  and 4. S3 = 10 days after planting. Each treatment was repeated three times and each replicate consisted of 16 plants. The result showed that that the inoculation of Trichoderma sp.  and application of treatmen 4 is S3= 10 days after planting increases plant growth and yields of stevia.

  20. Controle alternativo de Colletotrichum acutatum agente causal da queda prematura dos frutos cítricos Alternative control of Colletotrichum acutatum, causal agent of postbloom fruit drop of citrus

    Directory of Open Access Journals (Sweden)

    Katia Cristina Kupper

    2009-12-01

    Full Text Available A queda prematura dos frutos cítricos (QPFC, causada por Colletotrichum acutatum, dados os grandes prejuízos que têm causado aos produtores, constitui-se numa doença de grande importância econômica. O controle da doença é feito predominantemente mediante uso de fungicidas, que eleva o custo de produção e afeta negativamente o meio ambiente. Diante disso, este trabalho teve por objetivo buscar um método alternativo de controle da QPFC, mediante o uso de agentes de biocontrole ou de biofertilizantes. Diferentes concentrações de biofertilizantes (originários de duas fontes distintas e denominados de Bio1 e Bio 2; três isolados de Bacillus subtilis (ACB-69; 72 e 77 e três isolados de Trichoderma spp. (ACB-14; 37 e 39 foram testados, isoladamente ou em combinação, sob condições de laboratório, quanto à capacidade inibitória da germinação de conídios de C. acutatum. Estudaram-se, ainda, a produção de metabólitos termoestáveis por B. subtilis e o efeito sobre a germinação do patógeno. Quinze isolados de B. subtilis foram testados quanto à capacidade de prevenir a infecção por C. acutatum em flores destacadas de lima- ácida 'Tahiti' e, no campo, foram instalados dois experimentos, visando a testar ACBs e biofertilizantes no controle da doença. Verificou-se que o isolado ACB-72 (B. subtilis e ACB-37 (T. pseudokoningii foram os que mais inibiram a germinação do patógeno. Quanto à produção de metabólitos termoestáveis, ACB-69 e 77 foram os mais eficientes em produzir substâncias antifúngicas, e em quantidades suficientes para inibirem a germinação do patógeno. A mistura dos quatro isolados de Bacillus (ACBs: 69; 72; 77 e AP3 foi o que apresentou maior porcentagem de inibição (73%. Os biofertilizantes (Bio1 e Bio2, em concentrações acima de 10% e, quando em associação com isolados de Trichoderma spp., promoveram maiores inibições na germinação de C. acutatum. Em testes com flores destacadas

  1. Identification of bacteriophages for biocontrol of the kiwifruit canker phytopathogen Pseudomonas syringae pv. actinidiae.

    Science.gov (United States)

    Frampton, Rebekah A; Taylor, Corinda; Holguín Moreno, Angela V; Visnovsky, Sandra B; Petty, Nicola K; Pitman, Andrew R; Fineran, Peter C

    2014-04-01

    Pseudomonas syringae pv. actinidiae is a reemerging pathogen which causes bacterial canker of kiwifruit (Actinidia sp.). Since 2008, a global outbreak of P. syringae pv. actinidiae has occurred, and in 2010 this pathogen was detected in New Zealand. The economic impact and the development of resistance in P. syringae pv. actinidiae and other pathovars against antibiotics and copper sprays have led to a search for alternative management strategies. We isolated 275 phages, 258 of which were active against P. syringae pv. actinidiae. Extensive host range testing on P. syringae pv. actinidiae, other pseudomonads, and bacteria isolated from kiwifruit orchards showed that most phages have a narrow host range. Twenty-four were analyzed by electron microscopy, pulse-field gel electrophoresis, and restriction digestion. Their suitability for biocontrol was tested by assessing stability and the absence of lysogeny and transduction. A detailed host range was performed, phage-resistant bacteria were isolated, and resistance to other phages was examined. The phages belonged to the Caudovirales and were analyzed based on morphology and genome size, which showed them to be representatives of Myoviridae, Podoviridae, and Siphoviridae. Twenty-one Myoviridae members have similar morphologies and genome sizes yet differ in restriction patterns, host range, and resistance, indicating a closely related group. Nine of these Myoviridae members were sequenced, and each was unique. The most closely related sequenced phages were a group infecting Pseudomonas aeruginosa and characterized by phages JG004 and PAK_P1. In summary, this study reports the isolation and characterization of P. syringae pv. actinidiae phages and provides a framework for the intelligent formulation of phage biocontrol agents against kiwifruit bacterial canker. PMID:24487530

  2. Interactions between conventional and organic farming for biocontrol services across the landscape.

    Science.gov (United States)

    Bianchi, F J J A; Ives, A R; Schellhorn, N A

    2013-10-01

    While the area of organic crop production increases at a global scale, the potential interactions between pest management in organic and conventionally managed systems have so far received little attention. Here, we evaluate the landscape-level codependence of insecticide-based and natural enemy-based pest management using a simulation model for parasitoid-host interactions in landscapes consisting of conventionally and organically managed fields. In our simulations conventional management consists of broad-spectrum or selective insecticide application, while organic management involves no insecticides. Simulations indicate that insecticide use can easily result in lose-lose scenarios whereby both organically and conventionally managed fields suffer from increased pest loads as compared to a scenario where no insecticides are used, but that under some conditions insecticide use can be compatible with biocontrol. Simulations also suggest that the pathway to achieve the insecticide reduction without triggering additional pest pressure is not straightforward, because increasing the proportion of organically managed fields or reducing the spray frequency in conventional fields can potentially give rise to dramatic increases in pest load. The disruptive effect of insecticide use, however, can be mitigated by spatially clustering organic fields and using selective insecticides, although the effectiveness of this mitigation depends on the behavioral traits of the biocontrol agents. Poorly dispersing parasitoids and parasitoids with high attack rates required a lower amount of organically managed fields for effective pest suppression. Our findings show that the transition from a landscape dominated by conventionally managed crops to organic management has potential pitfalls; intermediate levels of organic management may lead to higher pest burdens than either low or high adoption of organic management. PMID:24261038

  3. An alpha-glucan elicitor from the cell wall of a biocontrol binucleate Rhizoctonia isolate.

    Science.gov (United States)

    Wolski, Erika A; Lima, Carlos; Agusti, Rosalía; Daleo, Gustavo R; Andreu, Adriana B; de Lederkremer, Rosa M

    2005-03-21

    Binucleate Rhizoctonia (BNR) isolate (232-C6) is an effective biocontrol agent for protection of potato from Rhizoctonia canker, a disease caused by Rhizoctonia solani. Production of hydrolytic enzymes is one of the best known inducible defense responses following microbial infection. We isolated and characterized a cell wall alpha-glucan from BNR, which induces beta-1,3 glucanase activities in potato sprouts, the primary site of infection by R. solani. An autoclaving method, previously reported for isolation of oligosaccharide elicitors was used, and the glucan purified by chromatographic techniques. Maximal induction of beta-1,3 glucanase activity in potato sprouts was obtained with 250 microg of the alpha-glucan elicitor after 6 days from inoculation time. Both, BNR mycelium and the alpha-glucan produced a similar kinetic response of beta-1,3 glucanase. However, the alpha-glucan did not induce phytoalexin accumulation, previously correlated with the defense response. Uronic acids (approximately 10% with respect to total neutral sugars) were determined and identified as glucuronic acid by high-pH anion-exchange chromatography. Methylation analysis showed that the glucan consists of (1-->3) and (1-->4)-linked glucose units with preponderance of the first ones. Some of the (1-->4) linkages were branched at position 6. The glucan was partially degraded with amyloglucosidase. This, together with the NMR spectra data and the high optical rotation of the original (+195 degrees ) and degraded glucans (+175 degrees ) proved the alpha configuration. Further methylation of the amyloglucosidase degraded glucans indicated that they consist of (1-->3)-linked glucoses. The present study is the first report on the isolation and characterization of an alpha-glucan from Rhizoctonia, that may be important as a biocontrol factor. PMID:15721332

  4. Ecological Complexity and the Success of Fungal Biological Control Agents

    OpenAIRE

    Knudsen, Guy R.; Louise-Marie C. Dandurand

    2014-01-01

    Fungal biological control agents against plant pathogens, especially those in soil, operate within physically, biologically, and spatially complex systems by means of a variety of trophic and nontrophic interspecific interactions. However, the biocontrol agents themselves are also subject to the same types of interactions, which may reduce or in some cases enhance their efficacy against target plant pathogens. Characterization of these ecologically complex systems is challenging, but a number...

  5. Citrus blackfly in Florida: Eradication or bio-control?

    OpenAIRE

    Tefertiller, Kenneth R.; McKee, Vernon C.; Perry, Vernon G.

    1991-01-01

    The citrus blackfly (CBF) invaded south Florida in January 1976. It was considered by scientists to be a major threat to the Florida citrus industry located in the central part of the state. The CBF was successfully contained in a 1000 square mile tri-county quarantined area surrounding Ft. Lauderdale for several months before breaking out to an area near the commercial citrus production area. During this time federal and state research agencies were evaluating a bio-control approach involvin...

  6. Novel Routes for Improving Biocontrol Activity of Bacillus Based Bioinoculants

    OpenAIRE

    Wu, Liming; Wu, Hui-Jun; Qiao, Junqing; Gao, XueWen; Borriss, Rainer

    2015-01-01

    Biocontrol (BC) formulations prepared from plant-growth-promoting bacteria are increasingly applied in sustainable agriculture. Especially inoculants prepared from endospore-forming Bacillus strains have been proven as efficient and environmental-friendly alternative to chemical pesticides due to their long shelf life, which is comparable with that of agrochemicals. However, these formulations of the first generation are sometimes hampered in their action and do not fulfill in each case the e...

  7. Genome Sequence of the Biocontrol Strain Pseudomonas fluorescens F113

    OpenAIRE

    Redondo-Nieto, M.; M. Barret; Morrisey, J; Germaine, K.; Martínez-Granero, F.; Barahona, E.; Navazo, A.; Sánchez-Contreras, M.; Moynihan, J.; Giddens, S.; Coppoolse, E.; Muriel, C.; Stiekema, W.; Rainey, P; Dowling, D

    2012-01-01

    Pseudomonas fluorescens F113 is a plant growth-promoting rhizobacterium (PGPR) that has biocontrol activity against fungal plant pathogens and is a model for rhizosphere colonization. Here, we present its complete genome sequence, which shows that besides a core genome very similar to those of other strains sequenced within this species, F113 possesses a wide array of genes encoding specialized functions for thriving in the rhizosphere and interacting with eukaryotic organisms.

  8. Evaluación del antagonismo de Trichoderma sp. y Bacillus subtilis contra tres patógenos del ajo

    Directory of Open Access Journals (Sweden)

    Karina Astorga-Quirós

    2014-05-01

    Full Text Available La producción y calidad del cultivo del ajo criollo (Allium sativum se ven limitadas por diversas enfermedades de origen fungoso y bacterial, que llevan al productor a aplicar estrategias de control químico y en algunos casos abandonar la actividad por un incremento en las pérdidas. El control biológico es una estrategia útil para combatir este tipo de microorganismos. El objetivo de esta investigación consistió en evaluar el antagonismo in vitro de Trichoderma sp. y Bacillus subtilis contra tres de los principales patógenos del ajo: Sclerotium cepivorum, Penicillium sp. y Pseudomonas marginalis. Las especies mencionadas se aislaron e identificaron con pruebas bioquímicas y claves taxonómicas respectivamente y se determinó su actividad antagónica y efecto inhibitorio utilizando el crecimiento en platos duales. La cepa de B. subtilis mostró un potencial con valores bajos de PICR: 14,087 ante S. cepivorum y 3,328 ante Penicillium sp., por lo que se clasifica como un mal biocontrolador. Por su parte, Trichoderma presentó un potencial muy alto, con valores de PICR de 40,210 frente a S. cepivorum y de 45,034 ante Penicillium sp., lo que indica que es un muy buen controlador. Los resultados apoyan el potencial de las cepas de Trichoderma sp. como agentes de control biológico frente a la pudrición causada por Penicillium del ajo, la bacteriosis por P. marginalis y la pudrición blanca por S. cepivorum. No así Bacillus subtilis, pues la cepa aislada demostró poco potencial como biocontrolador.

  9. Formulation of Trichoderma sp. SL2 inoculants using different carriers for soil treatment in rice seedling growth

    OpenAIRE

    Doni, Febri; Isahak, Anizan; Che Mohd Zain, Che Radziah; Mohd Ariffin, Salwati; Wan Mohamad, Wan Nur’ashiqin; Wan Yusoff, Wan Mohtar

    2014-01-01

    Background Trichoderma sp. SL2 has been previously reported to enhance rice germination, vigour, growth and physiological characteristics. The use of Potato Dextrose Agar as carrier of Trichoderma sp. SL2 inoculant is not practical for field application due to its short shelf life and high cost. This study focuses on the use of corn and sugarcane bagasse as potential carriers for Trichoderma sp. SL2 inoculants. Findings A completely randomized design was applied for this study. Trichoderma sp...

  10. Experimental Evolution of Trichoderma citrinoviride for Faster Deconstruction of Cellulose

    OpenAIRE

    Lin, Hui; Travisano, Michael; Kazlauskas, Romas J.

    2016-01-01

    Engineering faster cellulose deconstruction is difficult because it is a complex, cooperative, multi-enzyme process. Here we use experimental evolution to select for populations of Trichoderma citrinoviride that deconstruct up to five-fold more cellulose. Ten replicate populations of T. citrinoviride were selected for growth on filter paper by serial culture. After 125 periods of growth and transfer to fresh media, the filter paper deconstruction increased an average of 2.5 fold. Two populati...

  11. Control of lettuce bottom rot by isolates of Trichoderma spp

    Directory of Open Access Journals (Sweden)

    Zayame Vegette Pinto

    2014-06-01

    Full Text Available Bottom rot, caused by Rhizoctonia solani AG 1-IB, is an important disease affecting lettuce in Brazil, where its biological control with Trichoderma was not developed yet. The present study was carried out with the aim of selecting Trichoderma isolates to be used in the control of lettuce bottom rot. Forty-six Trichoderma isolates, obtained with baits containing mycelia of the pathogen, were evaluated in experiments carried out in vitro and in vivo in a greenhouse in two steps. In the laboratory, the isolates were evaluated for their capabilities of parasitizing and producing toxic metabolic substances that could inhibit the pathogen mycelial growth. In the first step of the in vivo experiments, the number and the dry weight of lettuce seedlings of the cultivar White Boston were evaluated. In the second step, 12 isolates that were efficient in the first step and showed rapid growth and abundant sporulation in the laboratory were tested for their capability of controlling bottom rot in two repeated experiments, and had their species identified. The majority of the isolates of Trichoderma spp. (76% showed high capacity for parasitism and 50% of them produced toxic metabolites capable of inhibiting 60-100% of R. solani AG1-IB mycelial growth. Twenty-four isolates increased the number and 23 isolates increased the dry weight of lettuce seedlings inoculated with the pathogen in the first step of the in vivo experiments.In both experiments of the second step, two isolates of T. virens, IBLF 04 and IBLF 50, reduced the severity of bottom rot and increased the number and the dry weight of lettuce seedlings inoculated with R. solani AG1-IB. These isolates had shown a high capacity for parasitism and production of toxic metabolic substances, indicating that the in vitro and in vivo steps employed in the present study were efficient in selecting antagonists to be used for the control of lettuce bottom rot.

  12. In vitro sensitivity of antagonistic Trichoderma atroviride to herbicides

    OpenAIRE

    Patricia Helena Santoro; Silvia Akimi Cavaguchi; Talita Moretto Alexandre; Janaina Zorzetti; Pedro Manuel Oliveira Janeiro Neves

    2014-01-01

    Trichoderma atroviride was tested in vitro for its sensitivity to different herbicides. The dosages tested were recommended dosage (RD), half dosage (½RD), and double dosage (2RD). Germination, colony-forming units (CFU), radial growth, and spore production were evaluated. Carfentrazone-ethyl and sulfentrazone inhibited the germination at RD and 2RD. A reduction in the CFU was observed for glufosinate-ammonium, atrazine, carfentrazone-ethyl, diuron + paraquat dichloride, imazapyr, oxyfluorfen...

  13. Ethanol Perturbs Glycosylation and Inhibits Hypersecretion in Trichoderma reesei

    OpenAIRE

    Merivuori, Hannele; Montenecourt, Bland S.; Sands, Jeffrey A.

    1987-01-01

    The effects of ethanol and phenylethanol on the growth of and glycoprotein secretion by Trichoderma reesei were studied. Low levels (1.5%, vol/vol) of ethanol perturbed the glycosylation process, as shown by alterations in the isoelectric profile of the secreted proteins and a reduction in the rate of incorporation of mannose into oligosaccharides. In addition to these effects on posttranslational modification, ethanol drastically lowered the protein secretion level of a hypersecretory strain.

  14. Systems biological approaches towards understanding cellulase production by Trichoderma reesei

    OpenAIRE

    Kubicek, Christian P.

    2013-01-01

    Recent progress and improvement in “-omics” technologies has made it possible to study the physiology of organisms by integrated and genome-wide approaches. This bears the advantage that the global response, rather than isolated pathways and circuits within an organism, can be investigated (“systems biology”). The sequencing of the genome of Trichoderma reesei (teleomorph Hypocrea jecorina), a fungus that serves as a major producer of biomass-degrading enzymes for the use of renewable lignoce...

  15. 40 CFR 180.1294 - Trichoderma asperellum strain ICC 012; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Trichoderma asperellum strain ICC 012... RESIDUES IN FOOD Exemptions From Tolerances § 180.1294 Trichoderma asperellum strain ICC 012; exemption from the requirement of a tolerance. Trichoderma asperellum strain ICC 012 is exempted from...

  16. 40 CFR 180.1293 - Trichoderma gamsii strain ICC 080; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Trichoderma gamsii strain ICC 080... RESIDUES IN FOOD Exemptions From Tolerances § 180.1293 Trichoderma gamsii strain ICC 080; exemption from the requirement of a tolerance. Trichoderma gamsii strain ICC 080 is exempted from the requirement...

  17. Expression profiles of defence related cDNAs in oil palm (Elaeis guineensis Jacq.) inoculated with mycorrhizae and Trichoderma harzianum Rifai T32.

    Science.gov (United States)

    Tan, Yung-Chie; Wong, Mui-Yun; Ho, Chai-Ling

    2015-11-01

    Basal stem rot is one of the major diseases of oil palm (Elaies guineensis Jacq.) caused by pathogenic Ganoderma species. Trichoderma and mycorrhizae were proposed to be able to reduce the disease severity. However, their roles in improving oil palm defence system by possibly inducing defence-related genes in the host are not well characterized. To better understand that, transcript profiles of eleven putative defence-related cDNAs in the roots of oil palm inoculated with Trichoderma harzianum T32 and mycorrhizae at different time points were studied. Transcripts encoding putative Bowman-Birk protease inhibitor (EgBBI2) and defensin (EgDFS) increased more than 2 fold in mycorrhizae-treated roots at 6 weeks post inoculation (wpi) compared to those in controls. Transcripts encoding putative dehydrin (EgDHN), glycine-rich RNA binding protein (EgGRRBP), isoflavone reductase (EgIFR), type 2 ribosome inactivating protein (EgT2RIP), and EgDFS increased in the oil palm roots treated with T. harzianum at 6 and/or 12 wpi compared to those in the controls. Some of these genes were also expressed in oil palm roots treated with Ganoderma boninense. This study provides an insight of some defence-related genes induced by Trichoderma and mycorrhizae, and their roles as potential agents to boost the plant defence system. PMID:26322853

  18. 灰葡萄孢霉高效拮抗木霉菌株的筛选及其翻译延伸因子序列分析%The Screen of the Antagonism of Trichoderma spp.Against Botrytis cinerea and Sequence Analysis of Translation Elongation Factor

    Institute of Scientific and Technical Information of China (English)

    王勇; 王万立; 霍建飞; 刘春艳; 郝永娟

    2012-01-01

    为进一步开发利用木霉菌资源,对从菜田土壤中初步分离纯化获得的12株木霉菌株,采用对峙培养和生长速度测定法进行灰葡萄孢霉(Botrytis cinerea)高效拮抗木霉菌株的筛选,并通过翻译延伸因子序列同源性比较对其进行分子鉴定.结果表明:菌株Tr9701和Tr1108的生长速度快,对病原菌的抑制率高,且协同应用有一定的增效作用.经对Tr9701和Tr1108翻译延伸因子同源序列分析,并结合其形态特征结果表明,Tr9701为绿色木霉(Trichoderma viride)和Tr1108为深绿木霉(Trichoderma atroviride).绿色木霉和深绿木霉为菜田生境习居菌,2种菌株协同利用对蔬菜灰霉病有较好的协同增效作用,应进一步设计利用多靶位木霉菌来提高防病效果.%The aim was to utilize the biological agents of Trichoderma spp.. There were 12 strains of Trichoderma species separated from vegetable fields, New antagonistic Trichoderma spp. Were screened through the confront culture and growth rate determination, and the sequence homology of translation elongation factor was analyzed. The results showed that, strain Tr 9701 and Tr 1108 had high growth rates and strong inhibitions. With the identification of translation elongation factor of these strains, strain Tr9701 was classified as Trichoderma viride, and Tr1108 was classified as Trichoderma atroviride respectively. Trichoderma viride and Trichoderma atroviride were all inhabitants in vegetable field. The two strains which were used to control vegetable gray mold cooperatively were effective, so it should be studied to utilize Trichoderma spp. With more targets in order to increase control efficiency.

  19. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape.

    Science.gov (United States)

    Parafati, Lucia; Vitale, Alessandro; Restuccia, Cristina; Cirvilleri, Gabriella

    2015-05-01

    Strains belonging to the species Saccharomyces cerevisiae, Wickerhamomyces anomalus, Metschnikowia pulcherrima and Aureobasidium pullulans, isolated from different food sources, were tested in vitro as biocontrol agents (BCAs) against the post-harvest pathogenic mold Botrytis cinerea. All yeast strains demonstrated antifungal activity at different levels depending on species and medium. Killer strains of W. anomalus and S. cerevisiae showed the highest biocontrol in vitro activity, as demonstrated by largest inhibition halos. The competition for iron and the ability to form biofilm and to colonize fruit wounds were hypothesized as the main action mechanisms for M. pulcherrima. The production of hydrolytic enzymes and the ability to colonize the wounds were the most important mechanisms for biocontrol activity in A. pullulans and W. anomalus, which also showed high ability to form biofilm. The production of volatile organic compounds (VOCs) with in vitro and in vivo inhibitory effect on pathogen growth was observed for the species W. anomalus, S. cerevisiae and M. pulcherrima. Our study clearly indicates that multiple modes of action may explain as M. pulcherrima provide excellent control of postharvest botrytis bunch rot of grape. PMID:25583341

  20. Characterization of the biosynthetic operon for the antibacterial peptide herbicolin in Pantoea vagans biocontrol strain C9-1 and incidence in Pantoea species.

    Science.gov (United States)

    Kamber, Tim; Lansdell, Theresa A; Stockwell, Virginia O; Ishimaru, Carol A; Smits, Theo H M; Duffy, Brion

    2012-06-01

    Pantoea vagans C9-1 is a biocontrol strain that produces at least two antibiotics inhibiting the growth of Erwinia amylovora, the causal agent of fire blight disease of pear and apple. One antibiotic, herbicolin I, was purified from culture filtrates of P. vagans C9-1 and determined to be 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine, also known as N(ß)-epoxysuccinamoyl-DAP-valine. A plasposon library was screened for mutants that had lost the ability to produce herbicolin I. It was shown that mutants had reduced biocontrol efficacy in immature pear assays. The biosynthetic gene cluster in P. vagans C9-1 was identified by sequencing the flanking regions of the plasposon insertion sites. The herbicolin I biosynthetic gene cluster consists of 10 coding sequences (CDS) and is located on the 166-kb plasmid pPag2. Sequence comparisons identified orthologous gene clusters in Pantoea agglomerans CU0119 and Serratia proteamaculans 568. A low incidence of detection of the biosynthetic cluster in a collection of 45 Pantoea spp. from biocontrol, environmental, and clinical origins showed that this is a rare trait among the tested strains. PMID:22504810