WorldWideScience

Sample records for bioconcentration factors bcfs

  1. The use of aquatic bioconcentration factors in ecological risk assessments: Confounding issues, laboratory v/s modeled results

    International Nuclear Information System (INIS)

    Brandt, C.; Blanton, M.L.; Dirkes, R.

    1995-01-01

    Bioconcentration in aquatic systems is generally taken to refer to contaminant uptake through non-ingestion pathways (i.e., dermal and respiration uptake). Ecological risk assessments performed on aquatic systems often rely on published data on bioconcentration factors to calibrate models of exposure. However, many published BCFs, especially those from in situ studies, are confounded by uptake from ingestion of prey. As part of exposure assessment and risk analysis of the Columbia River's Hanford Reach, the authors tested a methodology to estimate radionuclide BCFs for several aquatic species in the Hanford Reach of the Columbia River. The iterative methodology solves for BCFs from known body burdens and environmental media concentrations. This paper provides BCF methodology description comparisons of BCF from literature and modeled values and how they were used in the exposure assessment and risk analysis of the Columbia River's Hanford Reach

  2. Bioconcentration factors and plant-water partition coefficients of munitions compounds in barley.

    Science.gov (United States)

    Torralba-Sanchez, Tifany L; Kuo, Dave T F; Allen, Herbert E; Di Toro, Dominic M

    2017-12-01

    Plants growing in the soils at military ranges and surrounding locations are exposed, and potentially able to uptake, munitions compounds (MCs). The extent to which a compound is transferred from the environment into organisms such as plants, referred to as bioconcentration, is conventionally measured through uptake experiments with field/synthetic soils. Multiple components/phases that vary among different soil types and affect the bioavailability of the MC, however, hinder the ability to separate the effects of soil characteristics from the MC chemical properties on the resulting plant bioconcentration. To circumvent the problem, this work presents a protocol to measure steady state bioconcentration factors (BCFs) for MCs in barley (Hordeum vulgare L.) using inert laboratory sand rather than field/synthetic soils. Three MCs: 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), and 2,4-dinitroanisole (2,4-DNAN), and two munition-like compounds (MLCs): 4-nitroanisole (4-NAN) and 2-methoxy-5-nitropyridine (2-M-5-NPYNE) were evaluated. Approximately constant plant biomass and exposure concentrations were achieved within a one-month period that produced steady state log BCF values: 0.62 ± 0.02, 0.70 ± 0.03, 1.30 ± 0.06, 0.52 ± 0.03, and 0.40 ± 0.05 L kg plant dwt -1 for TNT, 2,4-DNT, 2,4-DNAN, 4-NAN, and 2-M-5-NPYNE, respectively. Furthermore, results suggest that the upper-bounds of the BCFs can be estimated within an order of magnitude by measuring the partitioning of the compounds between barley biomass and water. This highlights the importance of partition equilibrium as a mechanism for the uptake of MCs and MLCs by barley from interstitial water. The results from this work provide chemically meaningful data for prediction models able to estimate the bioconcentration of these contaminants in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Bioconcentration of atrazine and chlorophenols into roots and shoots of rice seedlings

    International Nuclear Information System (INIS)

    Su Yuhong; Zhu Yongguan

    2006-01-01

    Accumulation of o-chlorophenol (CP), 2,4-dichlorophenol (DCP), and atrazine (ATR), as single and mixed contaminants, from hydroponic solutions into roots and shoots of rice seedlings was studied following 48-h exposure of the plant roots. As single contaminants at low levels, the observed bioconcentration factors (BCFs) of CP and DCP with roots approximated the equilibrium values according to the partition-limited model. The BCF of atrazine with roots was about half the partition limit for unknown reasons. The BCFs of CP and ATR with shoots also approximated the partition limits, while the BCF for more lipophilic DCP with shoots was about half the estimated limit, due to insufficient water transport into plants for DCP. As mixed contaminants at low levels, the BCFs with both roots and shoots were comparable with those for the single contaminants; at high levels, the BCFs generally decreased because of the enhanced mixed-contaminant phytotoxicity, as manifested by the greatly reduced plant transpiration rate. - Uptakes of o-chlorophenol, 2,4-dichlorophenol, and atrazine at various levels from nutrient solution by roots and shoots of rice seedlings were investigated using a partition-limited model

  4. Linear and nonlinear models for predicting fish bioconcentration factors for pesticides.

    Science.gov (United States)

    Yuan, Jintao; Xie, Chun; Zhang, Ting; Sun, Jinfang; Yuan, Xuejie; Yu, Shuling; Zhang, Yingbiao; Cao, Yunyuan; Yu, Xingchen; Yang, Xuan; Yao, Wu

    2016-08-01

    This work is devoted to the applications of the multiple linear regression (MLR), multilayer perceptron neural network (MLP NN) and projection pursuit regression (PPR) to quantitative structure-property relationship analysis of bioconcentration factors (BCFs) of pesticides tested on Bluegill (Lepomis macrochirus). Molecular descriptors of a total of 107 pesticides were calculated with the DRAGON Software and selected by inverse enhanced replacement method. Based on the selected DRAGON descriptors, a linear model was built by MLR, nonlinear models were developed using MLP NN and PPR. The robustness of the obtained models was assessed by cross-validation and external validation using test set. Outliers were also examined and deleted to improve predictive power. Comparative results revealed that PPR achieved the most accurate predictions. This study offers useful models and information for BCF prediction, risk assessment, and pesticide formulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Apple snails and their endosymbionts bioconcentrate heavy metals and uranium from contaminated drinking water.

    Science.gov (United States)

    Vega, Israel A; Arribére, María A; Almonacid, Andrea V; Ribeiro Guevara, Sergio; Castro-Vazquez, Alfredo

    2012-09-01

    The differential ability of apple snail tissues, endosymbionts, and eggs to bioaccumulate several metals (Sb, As, Ba, Br, Zn, Cr, Fe, Hg, Se, and U) was investigated. Metal concentrations were determined by neutron activation analysis in several tissues, endosymbionts, and eggs from mature apple snails cultured in either drinking water or reconstituted water (prepared with American Society for Testing and Materials type I water). The highest bioconcentration factors (BCFs) in the midgut gland were found for Ba, Zn, Se, As, U, Br, and Hg (in decreasing order), while the highest in the kidney were for Ba, Br, and Hg. The foot showed the highest BCFs for Ba, Hg, Br, and Se (in decreasing order). Calcified tissues (uterus, shell) and eggs showed low BCFs, except for Ba. Both C corpuscles and gland tissue showed statistically higher BCFs than K corpuscles for Ba, Fe, U, Br, and Sb. The concentration of most of the studied elements was significantly lower in tissues and endosymbionts obtained from snails cultured in reconstituted water instead of drinking water. Snails cultured in reconstituted water and then exposed or not to Hg, As, and U (at the maximum contaminant level allowed by the US Environmental Protection Agency) also resulted in high levels accumulated in midgut gland, endosymbionts and kidney. Our findings suggest that the midgut gland (and the symbionts contained therein), the kidney, and the foot of Pomacea canaliculata may be useful bioindicators of Hg, As and U pollution in freshwater bodies and that the unrestricted use of ampullariid snails as human and animal food must be considered with caution.

  6. The effects of dissolved organic matter and feeding on bioconcentration and oxidative stress of ethylhexyl dimethyl p-aminobenzoate (OD-PABA) to crucian carp (Carassius auratus).

    Science.gov (United States)

    Ma, Binni; Lu, Guanghua; Yang, Haohan; Liu, Jianchao; Yan, Zhenhua; Nkoom, Matthew

    2018-03-01

    Bioconcentration of UV filters in organisms is an important indicator for the assessment of environmental hazards. However, bioconcentration testing rarely accounts for the influence of natural aquatic environmental factors. In order to better assess the ecological risk of organic UV filters (OUV-Fs) in an actual water environment, this study determined the influences of dissolved organic matter (DOM) (0, 1, 10, and 20 mg/L) and feeding (0, 0.5, 1, and 2% body weight/d) on bioconcentration of ethylhexyl dimethyl p-aminobenzoate (OD-PABA) in various tissues of crucian carp (Carassius auratus). Moreover, oxidative stress in the fish liver caused by the OD-PABA was also investigated by measuring activities of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST), and levels of glutathione (GSH) and malondialdehyde (MDA). The bioconcentration of OD-PABA in the fish tissues was significantly decreased with the presence of DOM indicating a reduction of OD-PABA bioavailability caused by DOM. The bioconcentration factors (BCFs) decreased by 28.00~50.93% in the muscle, 72.67~96.74% in the gill, 37.84~87.72% in the liver, and 10.32~79.38% in the kidney at different DOM concentrations compared to those of the non-DOM treatments. Significant changes in SOD, CAT, GST, GSH, and MDA levels were found in the DOM- and OD-PABA-alone treatments. However, there were no significant differences in the SOD, CAT, GST, and MDA levels found when co-exposure to OD-PABA and DOM. Feeding led to lower OD-PABA concentrations in the fish tissues, and the concentrations were decreased with increasing feeding ratios. BCFs in various tissues reduced by 39.75~72.52% in the muscle, 56.86~79.73% in the gill, 66.41~87.50% in the liver, and 75.88~89.10% in the kidney, respectively. In the unfed treatments, the levels of SOD and MDA were significantly higher than those of the fed ones while GST and GSH levels were remarkably inhibited indicating the enhanced effect of starvation

  7. Profile and bioconcentration of minerals by King Bolete (Boletus edulis) from the Płocka Dale in Poland.

    Science.gov (United States)

    Frankowska, Aneta; Ziółkowska, Joanna; Bielawski, Leszek; Falandysz, Jerzy

    2010-01-01

    This study aimed to provide basic data on the composition of metallic elements, including toxicologically important Cd and Hg, in popular and prized wild King Bolete mushrooms. We investigated the importance of soil substratum as a source of these metals. ICP-OES and CV-AAS were applied to determine the profile of Al, Ba, Ca, Cd, Cu, Fe, Hg, K, Mg, Mn, Na, Sr and Zn in caps and stipes of King Bolete mushroom and in the surface layer of soil (0-10 cm) from the Płocka Dale area of Poland. Hg, Cu, Cd, Zn, Mg and K exhibited bioconcentration factors (BCF) > 1. Specifically, Hg, Cu and Cd (mean BCFs for caps were 110, 19 and 16, respectively) were efficiently bioconcentrated by King Bolete, while other elements were bioexcluded (BCF < 1). Cadmium was present in the caps at mean levels of 5.5 ± 2.4 mg kg(-1) dry weight (dw) and mercury at levels of 4.9 ± 1.4 mg kg(-1) dw, both occurring at elevated concentrations in those King Bolete mushrooms surveyed.

  8. A Bayesian approach to assessing the uncertainty in estimating bioconcentration factors in earthworms--the example of quinoxyfen.

    Science.gov (United States)

    Fragoulis, George; Merli, Annalisa; Reeves, Graham; Meregalli, Giovanna; Stenberg, Kristofer; Tanaka, Taku; Capri, Ettore

    2011-06-01

    Quinoxyfen is a fungicide of the phenoxyquinoline class used to control powdery mildew, Uncinula necator (Schw.) Burr. Owing to its high persistence and strong sorption in soil, it could represent a risk for soil organisms if they are exposed at ecologically relevant concentrations. The objective of this paper is to predict the bioconcentration factors (BCFs) of quinoxyfen in earthworms, selected as a representative soil organism, and to assess the uncertainty in the estimation of this parameter. Three fields in each of four vineyards in southern and northern Italy were sampled over two successive years. The measured BCFs varied over time, possibly owing to seasonal changes and the consequent changes in behaviour and ecology of earthworms. Quinoxyfen did not accumulate in soil, as the mean soil concentrations at the end of the 2 year monitoring period ranged from 9.16 to 16.0 µg kg⁻¹ dw for the Verona province and from 23.9 to 37.5 µg kg⁻¹ dw for the Taranto province, with up to eight applications per season. To assess the uncertainty of the BCF in earthworms, a probabilistic approach was used, firstly by building with weighted bootstrapping techniques a generic probabilistic density function (PDF) accounting for variability and incompleteness of knowledge. The generic PDF was then used to derive prior distribution functions, which, by application of Bayes' theorem, were updated with the new measurements and a posterior distribution was finally created. The study is a good example of probabilistic risk assessment. The means of mean and SD posterior estimates of log BCFworm (2.06, 0.91) are the 'best estimate values'. Further risk assessment of quinoxyfen and other phenoxyquinoline fungicides and realistic representative scenarios for modelling exercises required for future authorization and post-authorization requirements can now use this value as input. Copyright © 2011 Society of Chemical Industry.

  9. Comparison of cadmium and chromium bioconcentration factors between scaled and scale less fish species: common carp and sutchi (striped catfish

    Directory of Open Access Journals (Sweden)

    Sideh Zainab Abedi

    2014-10-01

    Full Text Available Background: Water-borne, indissoluble heavy metals are bioaccumulated in fish (human food source. In this research, chromium (Cr and cadmium (Cd bioconcentration factors (BCFs in the skin, gills, scales, livers and muscles of two widely-consumed fish species, scaled common carp Cyprinus carpio and scaleless catfish Pangasius hypophthalmus were compared. Material and Methods: Lethal concentrations of Cd and Cr (64.89 & 7.46, and 84.8 & 17.05 mg/L for the catfish and carp, respectively were determined during 96 hrs (96 h LC50, and the fishes were exposed for 15 days. Then the tissue samples were chemically digested and the contents of Cd and Cr were determined using atomic absorption. Results: Total contents of Cr and Cd in the catfish's tissues were 2286.11 & 360.73, and those of Cr & Cd in carp were 734.71 & 725.67 μg/g.dw (excluding the scales, respectively. Metal concentrations in the water residues (day 15 revealed lower Cr and Cd (0.059 & 0.0036 mg/L in the catfish than those in the carp media (0.1 & 0.0412 mg/L, respectively. In common carp, BCF of Cd was as liver > skin > gills > muscle > scales, and those in the catfish marked as liver>muscle >gills >skin. The BCF of Cr in common carp ranked as gills>liver>skin>scales>muscle, and the catfish showing a BCF pattern of Cr as liver> muscle>skin>gills. Conclusion: This study signifies that small amounts of cadmium and chromium with high BCFs especially in the muscles of scale less fish (catfish threat consumers’ health.

  10. Radiological bioconcentration factors for aquatic, terrestrial, and wetland ecosystems at the Savannah River Site

    International Nuclear Information System (INIS)

    Cummins, C.L.

    1994-09-01

    As a result of operations at the Savannah River Site (SRS), over 50 radionuclides have been released to the atmosphere and to onsite streams and seepage basins. Now, many of these radionuclides are available to aquatic and/or terrestrial organisms for uptake and cycling through the food chain. Knowledge about the uptake and cycling of these radionuclides is now crucial in evaluating waste management and clean-up alternatives for the site. Numerous studies have been conducted at the SRS over the past forty years to study the uptake and distribution of radionuclides in the Savannah River Site environment. In many instances, bioconcentration factors have been calculated to quantify the uptake of a radionuclide by an organism from the surrounding medium (i.e., soil or water). In the past, it has been common practice to use bioconcentration factors from the literature because site-specific data were not readily available. However, because of the variability of bioconcentration factors due to experimental or environmental conditions, site-specific data should be used when available. This report compiles and summarizes site-specific bioconcentration factors for selected radionuclides released at the Savannah River Site (SRS). An extensive literature search yielded site-specific bioconcentration factors for cesium, strontium, cobalt, plutonium, americium, curium, and tritium. These eight radionuclides have been the primary radionuclides studied at SRS because of their long half lives or because they are major contributors to radiological dose from exposure. For most radionuclides, it was determined that the site-specific bioconcentration factors were higher than those reported in literature. This report also summarizes some conditions that affect radionuclide bioavailability to and bioconcentration by aquatic and terrestrial organisms

  11. Influence of nitrogen status on the bioconcentration of hydrophobic organic compounds to Selenastrum capricornutum

    DEFF Research Database (Denmark)

    Halling-Sørensen, B.; Nyholm, Niels; Kusk, Kresten Ole

    2000-01-01

    - creased from 17 to 44% of the algal dry weight as a consequence of nitrogen starvation. An increase in total lipid from 17 to 44% should theoretically increase the BCFs by a factor of 2.6. BCFs for PCB 31, PCB 49, PCB 153, and DDT increased with maximum lipid content by factors of 6.3, 8.9, 8.9, and 6...

  12. Contamination status and accumulation features of persistent organochlorines in pet dogs and cats from Japan

    International Nuclear Information System (INIS)

    Kunisue, Tatsuya; Nakanishi, Shigeyuki; Watanabe, Mafumi; Abe, Takao; Nakatsu, Susumu; Kawauchi, Sakio; Sano, Akihiko; Horii, Akira; Kano, Yasumasa; Tanabe, Shinsuke

    2005-01-01

    Concentrations of persistent organochlorines (OCs) such as polychlorinated dibenzo-p-dioxin (PCDDs), dibenzofurans (PCDFs), biphenyls, dichlorodiphenyltrichloroethane and their metabolites (DDTs), hexachlorocyclohexane isomers, hexachlorobenzene, and chlordane compounds were determined in genital organs of pet dogs and cats and pet foods from Japan. Levels of OCs in dogs were relatively lower than those in cats, while residue levels in their diets were almost similar, implying that accumulation and elimination mechanisms of these contaminants are different between dogs and cats. When bioconcentration factors (BCFs) were estimated from concentrations of OCs in dogs, cats, and their diets, BCFs of all the OCs except PCDD/DFs exceeded 1.0 in cats. On the other hand, in all the dogs, BCFs of DDTs were below 1.0, suggesting that dogs do not bioconcentrate DDTs. Furthermore, BCFs of all the OCs except PCDD/DFs in dogs were notably lower than those in cats, suggesting that dogs have higher metabolic and elimination capacity for these contaminants than cats. When residue levels of OCs in livers, adipose tissue, and genital organs of two pet dogs were examined, hepatic sequestration of PCDD/DFs and oxychlordane was observed. - Pet dogs may have higher metabolic and elimination capacity for organochlorines than pet cats

  13. Ramie (Boehmeria nivea)'s uranium bioconcentration and tolerance attributes.

    Science.gov (United States)

    Wang, Wei-Hong; Luo, Xue-Gang; Liu, Lai; Zhang, Yan; Zhao, Hao-Zhou

    2018-04-01

    The authors sampled and analyzed 15 species of dominant wild plants in Huanan uranium tailings pond in China, whose tailings' uranium contents were 3.21-120.52 μg/g. Among the 15 species of wild plants, ramie (Boehmeria nivea) had the strongest uranium bioconcentration and transfer capacities. In order to study the uranium bioconcentration and tolerance attributes of ramie in detail, and provide a reference for the screening remediation plants to phytoremedy on a large scale in uranium tailings pond, a ramie cultivar Xiangzhu No. 7 pot experiment was carried out. We found that both wild ramie and Xiangzhu No. 7 could bioconcentrate uranium, but there were two differences. One was wild ramie's shoots bioconcentrated uranium up to 20 μg/g (which can be regarded as the critical content value of the shoot of uranium hyperaccumulator) even the soil uranium content was as low as 5.874 μg/g while Xiangzhu No. 7's shoots could reach 20 μg/g only when the uranium treatment concentrations were 275 μg/g or more; the other was that all the transfer factors of 3 wild samples were >1, and the transfer factors of 27 out of 28 pot experiment samples were uranium hyperaccumulator. Xiangzhu No. 7 satisfied the needs of uranium hyperaccumulator on accumulation capability, tolerance capability, bioconcentration factor, but not transfer capability, so Xiangzhu No. 7 was not a uranium hyperaccumulator. We analyzed the possible reasons why there were differences in the uranium bioconcentration and transfer attributes between wild ramie and Xiangzhu No. 7., and proposed the direction for further research. In our opinion, both the plants which bioconcentrate contaminants in the shoots and roots can act as phytoextractors. Although Xiangzhu No. 7's biomass and accumulation of uranium were concentrated on the roots, the roots were small in volume and easy to harvest. And Xiangzhu No. 7's cultivating skills and protection measures had been developed very well. Xiangzhu No. 7's

  14. Metal uptake by homegrown vegetables – The relative importance in human health risk assessments at contaminated sites

    International Nuclear Information System (INIS)

    Augustsson, Anna L.M.; Uddh-Söderberg, Terese E.; Hogmalm, K. Johan; Filipsson, Monika E.M.

    2015-01-01

    Risk assessments of contaminated land often involve the use of generic bioconcentration factors (BCFs), which express contaminant concentrations in edible plant parts as a function of the concentration in soil, in order to assess the risks associated with consumption of homegrown vegetables. This study aimed to quantify variability in BCFs and evaluate the implications of this variability for human exposure assessments, focusing on cadmium (Cd) and lead (Pb) in lettuce and potatoes sampled around 22 contaminated glassworks sites. In addition, risks associated with measured Cd and Pb concentrations in soil and vegetable samples were characterized and a probabilistic exposure assessment was conducted to estimate the likelihood of local residents exceeding tolerable daily intakes. The results show that concentrations in vegetables were only moderately elevated despite high concentrations in soil, and most samples complied with applicable foodstuff legislation. Still, the daily intake of Cd (but not Pb) was assessed to exceed toxicological thresholds for about a fifth of the study population. Bioconcentration factors were found to vary more than indicated by previous studies, but decreasing BCFs with increasing metal concentrations in the soil can explain why the calculated exposure is only moderately affected by the choice of BCF value when generic soil guideline values are exceeded and the risk may be unacceptable. - Highlights: • Uptake of Cd and Pb by lettuce and potatoes increased with soil contamination. • Consumption of homegrown vegetables may lead to a daily Cd intake above TDIs. • The variability in the calculated BCFs is high when compared to previous studies. • Exposure assessments are most sensitive to the choice of BCFs at low contamination

  15. Metal uptake by homegrown vegetables – The relative importance in human health risk assessments at contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Augustsson, Anna L.M., E-mail: anna.augustsson@lnu.se [Department of Biology and Environmental Science, Linnaeus University, SE-391 82 Kalmar (Sweden); Uddh-Söderberg, Terese E. [Department of Biology and Environmental Science, Linnaeus University, SE-391 82 Kalmar (Sweden); Hogmalm, K. Johan [Department of Earth Sciences, University of Gothenburg, Gothenburg (Sweden); Filipsson, Monika E.M. [Department of Biology and Environmental Science, Linnaeus University, SE-391 82 Kalmar (Sweden)

    2015-04-15

    Risk assessments of contaminated land often involve the use of generic bioconcentration factors (BCFs), which express contaminant concentrations in edible plant parts as a function of the concentration in soil, in order to assess the risks associated with consumption of homegrown vegetables. This study aimed to quantify variability in BCFs and evaluate the implications of this variability for human exposure assessments, focusing on cadmium (Cd) and lead (Pb) in lettuce and potatoes sampled around 22 contaminated glassworks sites. In addition, risks associated with measured Cd and Pb concentrations in soil and vegetable samples were characterized and a probabilistic exposure assessment was conducted to estimate the likelihood of local residents exceeding tolerable daily intakes. The results show that concentrations in vegetables were only moderately elevated despite high concentrations in soil, and most samples complied with applicable foodstuff legislation. Still, the daily intake of Cd (but not Pb) was assessed to exceed toxicological thresholds for about a fifth of the study population. Bioconcentration factors were found to vary more than indicated by previous studies, but decreasing BCFs with increasing metal concentrations in the soil can explain why the calculated exposure is only moderately affected by the choice of BCF value when generic soil guideline values are exceeded and the risk may be unacceptable. - Highlights: • Uptake of Cd and Pb by lettuce and potatoes increased with soil contamination. • Consumption of homegrown vegetables may lead to a daily Cd intake above TDIs. • The variability in the calculated BCFs is high when compared to previous studies. • Exposure assessments are most sensitive to the choice of BCFs at low contamination.

  16. A review of measured bioaccumulation data in terrestrial plants for organic chemicals: Metrics, variability and the need for standardized measurement protocols

    DEFF Research Database (Denmark)

    Doucette, William J; Shunthirasingham, Chubashini; Dettenmaier, Erik M

    2018-01-01

    by plants are often expressed as ratios of chemical concentrations in the plant compartments of interest (e.g., leaves, shoots, roots, xylem sap) to that in the exposure medium (e.g., soil, soil pore water, hydroponic solution, air). These ratios are generally referred to as bioconcentration factors (BCFs...

  17. Bioaccumulation of pharmaceutically active compounds and endocrine disrupting chemicals in aquatic macrophytes: Results of hydroponic experiments with Echinodorus horemanii and Eichhornia crassipes.

    Science.gov (United States)

    Pi, N; Ng, J Z; Kelly, B C

    2017-12-01

    Information regarding the bioaccumulation behaviour of pharmaceutically active compounds (PhACs) and endocrine disrupting chemicals (EDCs) in aquatic plants is limited. The present study involved controlled hydroponic experiments to assess uptake and elimination rate constants (k u , k e ), bioconcentration factors (BCFs) and translocation factors (TFs) of several PhACs and EDCs in two aquatic macrophyte species, including one submerged species (Echinodorus horemanii) and one free-floating species (Eichhornia crassipes). The results revealed that the studied compounds are readily taken up in these aquatic plants. While bioconcentration factors (BCFs) and translocation factors (TFs) of the test compounds varied substantially, no discernible relationship with physicochemical properties such as octanol-water distribution coefficient (D ow ), membrane-water distribution coefficient (D mw ) and organic carbon-water partition coefficient (K oc ). Diphenhydramine and triclosan exhibited the highest degree of uptake and bioaccumulation potential. For example, the whole-plant BCF of triclosan in E. horemanii was 4390L/kg, while the whole-plant BCF of diphenhydramine in E. crassipes was 6130L/kg. BCFs of 17β-estradiol (E2), 17α-ethinylestradiol (EE2), estrone (E1) and bisphenol A (BPA) were relatively low (2-150L/kg). BCFs were generally higher in free-floating aquatic macrophyte species compared to the submerged species. For the free-floating species, E. crassipes, the majority of PhACs and EDCs were more allocated in roots compared to leaves, with TFs1). The study findings may be useful for design and implementation of phytoremediation systems, as well as aid future modeling and risk assessment initiatives for these emerging organic contaminants. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Uptake and depuration of pharmaceuticals in aquatic invertebrates

    International Nuclear Information System (INIS)

    Meredith-Williams, Melanie; Carter, Laura J.; Fussell, Richard; Raffaelli, David; Ashauer, Roman; Boxall, Alistair B.A.

    2012-01-01

    The uptake and depuration of a range of pharmaceuticals in the freshwater shrimp (Gammarus pulex) and the water boatman (Notonecta glauca) was studied. For one compound, studies were also done using the freshwater snail Planobarius corneus. In G. pulex, bioconcentration factors (BCFs) ranged from 4.6 to 185,900 and increased in the order moclobemide < 5-fluoruracil < carbamazepine < diazepam < carvedilol < fluoxetine. In N. glauca BCFs ranged from 0.1 to 1.6 and increased in the order 5-fluorouracil < carbamazepine < moclobemide < diazepam < fluoxetine < carvedilol. For P. corneus, the BCF for carvedilol was 57.3. The differences in degree of uptake across the three organisms may be due to differences in mode of respiration, behaviour and the pH of the test system. BCFs of the pharmaceuticals for each organism were correlated to the pH-corrected liposome–water partition coefficient of the pharmaceuticals. - Highlights: ► One of the first studies exploring the uptake of pharmaceuticals into aquatic invertebrates. ► Data presented on uptake, depuration rates and bioconcentration for a range of pharmaceuticals. ► Uptake is correlated with the pH-corrected liposome–water partition coefficient. ► Findings can be used to better predict impacts of pharmaceuticals on the aquatic environment. - The factors affecting the degree of uptake of pharmaceuticals into aquatic invertebrates were studied. The results indicate that species traits such as respiration and behaviour of the organisms and pH-corrected liposome–water partition coefficients are important factors in determining pharmaceutical uptake.

  19. Bioconcentration of haloxyfop-methyl in bluegill (Lepomis macrochirus Rafinesque)

    International Nuclear Information System (INIS)

    Murphy, P.G.; Lutenske, N.E.

    1990-01-01

    Bluegill (Lepomis macrochirus Rafinesque) were exposed to a 14 C haloxyfop-methyl [methyl 2-(4-((3-chloro-5-(trifluoromethyl)-2-pyridinyl)oxy)phenoxy)propanoate] concentration averaging 0.29 μg/L under flow-through conditions for 28 days. At the end of 28 days, the fish were transferred to clean water for a 4-day flow-through clearance period. Bluegill were found to rapidly absorb the ester from water which was then biotransformed at an extremely fast rate within the fish, such that essentially no haloxyfop-methyl was detected in the fish. The estimated bioconcentration factor for haloxyfop-methyl in whole fish was 14 C residue within whole fish was haloxyfop acid [2-(4-((3-chloro-5-(trifluoromethyl)-2-pyridinyl)oxy)phenoxy)propanoic acid] which accounted for an average of about 60% of the total radioactivity. The high rate of biotransformation of the parent compound within the fish demonstrates the importance of basing the bioconcentration factor upon the actual concentration of parent material within the organism rather than the total radioactive residue levels for bioconcentration studies with radiolabeled compounds

  20. Quantitative structure-activity relationships for the toxicity and bioconcentration factor of nitrobenzene derivatives towards the guppy (Poecilia reticulata)

    NARCIS (Netherlands)

    Deneer, J.W.; Sinnige, T.L.; Seinen, W.; Hermens, J.L.M.

    The acute toxicity and bioconcentration factor of a series of nitrobenzene derivatives was determined for the guppy. Toxicity is found to be determined by both hydrophobicity (expressed by the octanol/water partition coefficient) and rate of reduction of the nitro group (expressed by either

  1. Influence of natural dissolved organic carbon on the bioavailability of mercury to a freshwater alga

    International Nuclear Information System (INIS)

    Gorski, P.R.; Armstrong, D.E.; Hurley, J.P.; Krabbenhoft, D.P.

    2008-01-01

    Bioavailability of mercury (Hg) to Selenastrum capricornutum was assessed in bioassays containing field-collected freshwater of varying dissolved organic carbon (DOC) concentrations. Bioconcentration factor (BCF) was measured using stable isotopes of methylmercury (MeHg) and inorganic Hg(II). BCFs for MeHg in low-DOC lake water were significantly larger than those in mixtures of lake water and high-DOC river water. The BCF for MeHg in rainwater (lowest DOC) was the largest of any treatment. Rainwater and lake water also had larger BCFs for Hg(II) than river water. Moreover, in freshwater collected from several US and Canadian field sites, BCFs for Hg(II) and MeHg were low when DOC concentrations were >5 mg L -1 . These results suggest high concentrations of DOC inhibit bioavailability, while low concentrations may provide optimal conditions for algal uptake of Hg. However, variability of BCFs at low DOC indicates that DOC composition or other ligands may determine site-specific bioavailability of Hg. - Bioavailability of mercury to an alga was greatest at low concentrations of natural dissolved organic carbon and inhibited at high concentrations of natural dissolved organic carbon

  2. Pesticide bioconcentration modelling for fruit trees.

    Science.gov (United States)

    Paraíba, Lourival Costa

    2007-01-01

    The model presented allows simulating the pesticide concentration evolution in fruit trees and estimating the pesticide bioconcentration factor in fruits. Pesticides are non-ionic organic compounds that are degraded in soils cropped with woody species, fruit trees and other perennials. The model allows estimating the pesticide uptake by plants through the water transpiration stream and also the time in which maximum pesticide concentration occur in the fruits. The equation proposed presents the relationships between bioconcentration factor (BCF) and the following variables: plant water transpiration volume (Q), pesticide transpiration stream concentration factor (TSCF), pesticide stem-water partition coefficient (K(Wood,W)), stem dry biomass (M) and pesticide dissipation rate in the soil-plant system (k(EGS)). The modeling started and was developed from a previous model "Fruit Tree Model" (FTM), reported by Trapp and collaborators in 2003, to which was added the hypothesis that the pesticide degradation in the soil follows a first order kinetic equation. The FTM model for pesticides (FTM-p) was applied to a hypothetic mango plant cropping (Mangifera indica) treated with paclobutrazol (growth regulator) added to the soil. The model fitness was evaluated through the sensitivity analysis of the pesticide BCF values in fruits with respect to the model entry data variability.

  3. Radiological bioconcentration factors for aquatic, terrestrial, and wetland ecosystems at the Savannah River site

    International Nuclear Information System (INIS)

    Friday, G.P.; Cummins, C.L.; Schwartzman, A.L.

    1996-01-01

    Since the early 1950s, the Savannah River Site (SRS) released over 50 radionuclides into the environment while producing nuclear defense materials. These releases directly exposed aquatic and terrestrial biota to ionizing radiation from surface water, soil, and sediment, and also indirectly by the ingestion of items in the food chain. As part of new missions to develop waste management strategies and identify cost-effective environmental restoration options, knowledge concerning the uptake and distribution of these radionuclides is essential. This report compiles and summarizes site-specific bioconcentration factors for selected radionuclides released at SRS

  4. Radiological bioconcentration factors for aquatic, terrestrial, and wetland ecosystems at the Savannah River site

    Energy Technology Data Exchange (ETDEWEB)

    Friday, G.P.; Cummins, C.L.; Schwartzman, A.L.

    1996-12-31

    Since the early 1950s, the Savannah River Site (SRS) released over 50 radionuclides into the environment while producing nuclear defense materials. These releases directly exposed aquatic and terrestrial biota to ionizing radiation from surface water, soil, and sediment, and also indirectly by the ingestion of items in the food chain. As part of new missions to develop waste management strategies and identify cost-effective environmental restoration options, knowledge concerning the uptake and distribution of these radionuclides is essential. This report compiles and summarizes site-specific bioconcentration factors for selected radionuclides released at SRS.

  5. Half-lives and bioconcentration of lindane (gamma-HCH) in different fish species and relationship with their lipid content

    DEFF Research Database (Denmark)

    Geyer, H.J.; Scheunert, I.; Brüggemann, R.

    1997-01-01

    such as mussels, Daphnia, and fishes range from 43 to 4240. It is further demonstrated that the bioconcentration factors on a wet weight basis are positively correlated with the lipid content (%). The mean bioconcentration factor on a lipid basis (BCF-L) of gamma-HCH is 11,000. This BCF-L value is in satisfactory...

  6. Dissecting variation in biomass conversion factors across China's forests: implications for biomass and carbon accounting.

    Science.gov (United States)

    Luo, Yunjian; Zhang, Xiaoquan; Wang, Xiaoke; Ren, Yin

    2014-01-01

    Biomass conversion factors (BCFs, defined as the ratios of tree components (i.e. stem, branch, foliage and root), as well as aboveground and whole biomass of trees to growing stock volume, Mg m-3) are considered as important parameters in large-scale forest biomass carbon estimation. To date, knowledge of possible sources of the variation in BCFs is still limited at large scales. Using our compiled forest biomass dataset of China, we presented forest type-specific values of BCFs, and examined the variation in BCFs in relation to forest type, stand development and environmental factors (climate and soil fertility). BCFs exhibited remarkable variation across forest types, and also were significantly related to stand development (especially growing stock volume). BCFs (except Stem BCF) had significant relationships with mean annual temperature (MAT) and mean annual precipitation (MAP) (Pforest carbon estimates, we should apply values of BCFs for a specified forest type, and also consider climatic and edaphic effects, especially climatic effect, in developing predictive models of BCFs (except Stem BCF).

  7. The bioconcentration factor of perfluorooctane sulfonate is significantly larger than that of perfluorooctanoate in wild turtles (Trachemys scripta elegans and Chinemys reevesii): an Ai river ecological study in Japan.

    Science.gov (United States)

    Morikawa, Akiko; Kamei, Naoya; Harada, Kouji; Inoue, Kayoko; Yoshinaga, Takeo; Saito, Norimitsu; Koizumi, Akio

    2006-09-01

    Turtles rank high in the river food chain, and are suitable for predicting the bioconcentrations of chemicals through the food chain. Trachemys scripta elegans (N=46) and Chinemys reevesii (N=51) were captured in a river in Japan, from September to October 2003 and April to June 2004. Surface water samples were collected simultaneously from the same sites at which the turtles were caught. Serum perfluorooctane sulfonate (PFOS) ranged from 2.4 to 486 microg/L, while water PFOS levels ranged from 2.9 to 37 ng/L. The geometric mean (GM) (geometric standard deviation, GSD) of the bioconcentration factor (BCF) of PFOS was 10,964 (2.5). In contrast, the perfluorooctanoate (PFOA) level in water ranged from 16.7-87,100 ng/L, and serum PFOA ranged from <0.2 to 870 microg/L. The GM (GSD) of the BCF of PFOA was 3.2 (7.9). Furthermore, the BCF of PFOA decreased as the PFOA level in the surface water increased. PFOS could be preferentially bioconcentrated in biota, and PFOA, slightly bioconcentrated.

  8. Bioconcentration factors and potential human health risks of heavy metals in cultivated Lentinus edodes in Chengdu, People's Republic of China.

    Science.gov (United States)

    Pei, Donghui; Xie, Han; Song, Haihai; Xu, Heng; Wu, Yumeng

    2015-02-01

    Lentinus edodes is one of the most popular edible mushrooms in the market. However, it contains heavy metals that are poisonous to humans even at trace concentrations. The concentrations and bioconcentration factors of five heavy metals in cultivated L. edodes in Chengdu were studied, and the potential health risks to local residents associated with the cultivated L. edodes consumption were evaluated. Total concentrations of cadmium (Cd), lead (Pb), chromium (Cr), arsenic (As), and mercury were determined in the fruiting bodies and the substrate from three agricultural areas. Fruiting bodies samples were collected at different growing times (2, 4, 6, and 8 days). The bioconcentration factors of heavy metals from the substrate to the fruiting bodies were estimated, and the potential health risks of local L. edodes were assessed. Because antioxidant enzymes can resist the creation of reactive oxygen species and defend against heavy metals, the activities of three antioxidant enzymes (superoxide dismutase, catalase, and peroxidase) in the fruiting bodies were also determined. A gradual change in heavy metal concentrations occurred across the growing time of the fruiting bodies. Cd transferred from the substrate to the fruiting bodies in larger concentrations than did Pb, Cr, and As. However, Chengdu residents were not exposed to significant health risks associated with consumption of local L. edodes. Nevertheless, more attention should be focused on children because of their higher sensitivity to metal pollutants.

  9. Uptake and elimination kinetics of perfluoroalkyl substances in submerged and free-floating aquatic macrophytes: Results of mesocosm experiments with Echinodorus horemanii and Eichhornia crassipes.

    Science.gov (United States)

    Pi, N; Ng, J Z; Kelly, B C

    2017-06-15

    Studies investigating the bioaccumulation behavior of perfluoroalkyl substances (PFASs) in aquatic macrophytes are limited. The present study involved controlled mesocosm experiments to assess uptake and elimination rate constants (k u, k e ), bioconcentration factors (BCFs) and translocation factors (TFs) of several perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs) in two aquatic plant species, including one submerged species (Echinodorus horemanii) and one free-floating species (Eichhornia crassipes). The results indicated all PFASs were readily accumulated in these aquatic macrophytes. k u and BCFs increased with increasing perfluoroalkyl chain length. For PFCAs and PFSAs with identical perfluoroalkyl chain length, the corresponding PFSA exhibited higher bioaccumulation potential. On a whole-plant basis, the bioaccumulation potential of PFASs in submerged and free-floating macrophytes were comparable, indicating sorption to plant biomass is similar in the different species. Conversely, when considering accumulation in foliage, BCFs in the free-floating macrophyte were substantially lower compared to submerged species, especially for longer-chain PFASs. Compounds with shorter perfluoroalkyl chain length (PFBS, PFPeA and PFHxA) exhibited preferential translocation to leaf tissue (TFs >1). BCFs exhibited a sigmoidal relationship with pefluoroalkyl chain length, membrane-water distribution coefficients (D mw ), protein-water distribution coefficients (D pw ) and organic-water partition coefficients (K oc ). For these trends, maximum BCF values were exhibited by long-chain PFCAs, with a log D mw , log D pw and log K oc of 6.47, 5.72 and 5.04, respectively. These findings are useful for future design and implementation of phytoremediation systems, as well for future develop of mechanistic models for predicting the environmental fate and distribution of these contaminants of concern. Copyright © 2017. Published by Elsevier Ltd.

  10. The Bioconcentration and Degradation of Nonylphenol and Nonylphenol Polyethoxylates by Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Hong-Wen Sun

    2014-01-01

    Full Text Available Nonylphenol polyethoxylates (NPnEOs, a major class of nonionic surfactants, can easily enter into aquatic environments through various pathways due to their wide applications, which leads to the extensive existence of their relative stable metabolites, namely nonylphenol (NP and mono- to tri-ethoxylates. This study investigated the bioconcentration and degradation of NP and NPnEO oligomers (n = 1–12 by a green algae, Chlorella vulgaris. Experimental results showed that C. vulgaris can remove NP from water phase efficiently, and bioconcentration and degradation accounted for approximately half of its loss, respectively, with a 48 h BCF (bioconcentration factor of 2.42 × 103. Moreover, C. vulgaris could concentrate and degrade NPnEOs, distribution profiles of the series homologues of the NPnEOs in algae and water phase were quite different from the initial homologue profile. The 48 h BCF of the NPnEO homologues increased with the length of the EO chain. Degradation extent of total NPnEOs by C. vulgaris was 95.7%, and only 1.1% remained in water phase, and the other 3.2% remained in the algal cells. The algae removed the NPnEOs mainly through degradation. Due to rapid degradation, concentrations of the long chain NPnEO homologous in both water (n ≥ 2 and the algal phase (n ≥ 5 was quite low at the end of a 48 h experiment.

  11. Inheritance of p,p'-DDE phytoextraction ability in hybridized Cucurbita pepo cultivars.

    Science.gov (United States)

    White, Jason C

    2010-07-01

    Cucurbita pepo ssp pepo (zucchini) has been shown to uniquely phytoextract percent level amounts of dichlorodiphenyldichloroethylene (DDE) and other organic contaminants from soil. Since C. pepo ssp ovifera (squash) does not have this ability, a three-year field trial was conducted to follow the inheritance pattern of DDE accumulation for cross pollinated C. pepo cultivars. Parental zucchini and squash cultivars (3 each) had stem-to-soil bioconcentration factors (BCF, contaminant ratio of stem to soil) of 16 and 1.7, respectively, and phytoextracted 1.8 and 0.18% of the DDE from soil. The 18 possible first filial (F1) hybrids of zucchini and squash accumulated significantly different DDE levels than the respective parents. The zucchini F1 hybrid (zucchini pollinated with squash) stem BCFs and percent phytoextraction values were 10 and 0.96, respectively, or 36% and 47% less than the parental zucchini. The squash F1 hybrid (squash pollinated with zucchini) stem BCFs and percent phytoextraction values were 8.3 and 0.68, respectively, or 490% and 370% greater than the parental squash. When backcrossed (BC) with the original parent, the nine zucchini F1 BC cultivars did not regain the capability to take up DDE; stem BCFs and percent phytoextraction values were equivalent to those of the F1 generation. However, the nine squash F1 BC cultivars lost much of the DDE uptake capability of the F1 generation; stem BCFs and percent phytoextraction values were intermediate but closer to those of the parental squash. The inheritance patterns suggest single locus control for persistent organic pollutant (POP) uptake ability in C. pepo ssp pepo.

  12. Influence of ortho-substitution homolog group on polychlorobiphenyl bioaccumulation factors and fugacity ratios in plankton and zebra mussels (Dreissena polymorpha)

    Energy Technology Data Exchange (ETDEWEB)

    Willman, E.J.; Manchester-Neesvig, J.B.; Agrell, C.; Armstrong, D.E.

    1999-07-01

    The accumulation of a set of non- and mono-ortho (coplanar) PCB congeners in aquatic ecosystems is of interest due to their dioxin-like toxicities. Chemical properties (octanol-water partition coefficients) suggest that the coplanar congeners may accumulate in organisms to a greater extent than homologs with greater ortho substitution. The authors analyzed a set of 65 PCB congeners with zero to four ortho-chlorines from seven homolog groups in water, suspended particulate matter, and zebra mussels from Green Bay, Wisconsin, USA, on four dates throughout the ice-free season. The suspended particulate matter was separated by size and characterized as phytoplankton or zooplankton using diagnostic carotenoid pigments and light microscopy. Median bioconcentration factors (BCFs) for accumulation from water by phytoplankton and bioaccumulation factors (BAFs) for accumulation from water plus food by zooplankton and zebra mussels ranged from 1 x 10{sup 4} to 1 x 10{sup 6} and were generally the greatest for the tetra- to heptachlorobiphenyls. The average coplanar congener BCFs and BAFs for accumulation from water by phytoplankton, zooplankton, and zebra mussels for the tri-, tetra-, and pentachlorobiphenyls were 54% larger than corresponding values for their homologs. Biomagnification factors (BMFs) of the tetra-, penta-, and hexachlorobiphenyls between zooplankton and zebra mussels and their food source, phytoplankton, typically ranged between 1 and 10, but the average coplanar congener BMFs were 25% less than values for their corresponding homologs. The tendency for coplanar congeners to accumulate to a lesser extent between trophic levels was not as large as their tendency to accumulate from water to a greater extent. Based on accumulation factors, the authors conclude that the dioxin-like tetra- and pentachlorobiphenyls generally accumulate in the phytoplankton, zooplankton, and zebra mussels of the Green Bay ecosystem to a greater extent than other congeners. Fugacity

  13. Toxic effects, bioconcentration and depuration of verapamil in the early life stages of common carp (Cyprinus carpio L.)

    Czech Academy of Sciences Publication Activity Database

    Steinbach, C.; Fedorova, G.; Prokeš, Miroslav; Grabicová, K.; Máchová, J.; Grabic, R.; Valentová, O.; Kocour Kroupová, H.

    461-462, 461-462 (2013), s. 198-206 ISSN 0048-9697 Institutional support: RVO:68081766 Keywords : Bioconcentration * Embryo-larval test * Half-life time * Heart rate * Verapamil Subject RIV: GL - Fishing Impact factor: 3.163, year: 2013

  14. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.

    Science.gov (United States)

    Katagi, Toshiyuki

    2010-01-01

    The ecotoxicological assessment of pesticide effects in the aquatic environment should normally be based on a deep knowledge of not only the concentration of pesticides and metabolites found but also on the influence of key abiotic and biotic processes that effect rates of dissipation. Although the bioconcentration and bioaccumulation potentials of pesticides in aquatic organisms are conveniently estimated from their hydrophobicity (represented by log K(ow), it is still indispensable to factor in the effects of key abiotic and biotic processes on such pesticides to gain a more precise understanding of how they may have in the natural environment. Relying only on pesticide hydrophobicity may produce an erroneous environmental impact assessment. Several factors affect rates of pesticide dissipation and accumulation in the aquatic environment. Such factors include the amount and type of sediment present in the water and type of diet available to water-dwelling organisms. The particular physiological behavior profiles of aquatic organisms in water, such as capacity for uptake, metabolism, and elimination, are also compelling factors, as is the chemistry of the water. When evaluating pesticide uptake and bioconcentration processes, it is important to know the amount and nature of bottom sediments present and the propensity that the stuffed aquatic organisms have to absorb and process xenobiotics. Extremely hydrophobic pesticides such as the organochlorines and pyrethroids are susceptible to adsorb strongly to dissolved organic matter associated with bottom sediment. Such absorption reduces the bioavailable fraction of pesticide dissolved in the water column and reduces the probable ecotoxicological impact on aquatic organisms living the water. In contrast, sediment dweller may suffer from higher levels of direct exposure to a pesticide, unless it is rapidly degraded in sediment. Metabolism is important to bioconcentration and bioaccumulation processes, as is

  15. Bioconcentration and localization of lead in the freshwater rotifer Brachionus calyciflorus Pallas 1677 (Rotifera: Monogononta)

    International Nuclear Information System (INIS)

    Alvarado-Flores, Jesús; Rico-Martínez, Roberto; Ventura-Juárez, Javier; Silva-Briano, Marcelo; Rubio-Franchini, Isidoro

    2012-01-01

    We studied how lead is bioconcentrated and distributed in the rotifer Brachionus calyciflorus using metal histochemistry to locate lead granules, Leadmium Green ® analysis to establish the route of uptake, atomic absorption to determined the bioconcentration factor (BCF), and detected the presence of microelements in the cuticle by X-ray microanalysis with scanning electron microscopy. Our results indicate: (a) the digestive system is the main route of lead uptake in the rotifer B. calyciflorus, (b) after 24-h lead is deposited in granules in the mastax and vitellarium, (c) our energy-dispersive X-ray microanalysis indicates decalcification taking place in the cuticle of the rotifer after a 24-h lead exposure, and (d) we determined a BCF = 115 for lead after a 24 h exposure. However, the route of mobilization and storage of intracellular lead are still not fully understood in B. calyciflorus.

  16. Bioconcentration and distribution of silver nanoparticles in Japanese medaka (Oryzias latipes)

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Youn-Joo [Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST) , 261 Cheom-dan Gwagi-ro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Kim, Ki-Tae [Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of); Kim, Jun. Y. [Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST) , 261 Cheom-dan Gwagi-ro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Yang, Song-Yi; Lee, Byeong-Gweon [Department of Oceanography, Chonnam National University, Gwangju 500-755 (Korea, Republic of); Kim, Sang D., E-mail: sdkim@gist.ac.kr [Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST) , 261 Cheom-dan Gwagi-ro, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2014-02-01

    Highlights: • The bioconcentration and biodistribution of AgNPs were measured by the silver isotope {sup 110m}Ag. • BCF values were 39.8 ± 7.4, 42.5 ± 5.1 and 116.4 ± 6.1 L kg{sup −1} for AgNPs-CIT, AgNPs-PVP and AgNO{sub 3}, respectively. • The extent of silver ion release from AgNPs affected the uptake kinetic pattern. • AgNPs were mainly concentrated in the liver of Japanese medaka. - Abstract: The study of the bioconcentration of silver nanoparticles (AgNPs) is important to fully understand their hazard potential in the aquatic environment. We synthesized AgNPs radiolabeled with silver isotopes ({sup 110m}Ag) to quantify the bioconcentration of AgNPs coated with citrate (AgNPs-CIT) and polyvinylpyrrolidone (AgNPs-PVP) in Japanese medaka, and to investigate the biodistribution of silver in organs, which were compared with {sup 110m}AgNO{sub 3}. BCF values were determined to be 39.8 ± 7.4, 42.5 ± 5.1 and 116.4 ± 6.1 L kg{sup −1} for AgNPs-CIT, AgNPs-PVP and AgNO{sub 3}, respectively. The release of more silver ions in AgNPs-PVP contributed to a different kinetic uptake pattern with AgNPs-CIT, which was similar to that of AgNO{sub 3}. Bioconcentrated AgNPs in medaka were not observed to be eliminated, independent of surface coating differences, similarly to AgNO{sub 3}. There was no difference in biodistribution in each organ before and after depuration in two types of AgNPs and AgNO{sub 3}, all of which were mainly concentrated in the liver. This study quantified the bioconcentration and distribution of AgNPs and AgNO{sub 3} more precisely by utilizing a silver isotope, which is helpful in monitoring the toxicity of AgNPs to Japanese medaka.

  17. Bioconcentration and localization of lead in the freshwater rotifer Brachionus calyciflorus Pallas 1677 (Rotifera: Monogononta)

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado-Flores, Jesus, E-mail: jalvaflo@hotmail.com [Universidad Autonoma de Aguascalientes, Centro de Ciencias Basicas, Departamento de Quimica, Avenida Universidad 940, Aguascalientes, Ags., CP 20131 (Mexico); Rico-Martinez, Roberto, E-mail: rrico@correo.uaa.mx [Universidad Autonoma de Aguascalientes, Centro de Ciencias Basicas, Departamento de Quimica, Avenida Universidad 940, Aguascalientes, Ags., CP 20131 (Mexico); Ventura-Juarez, Javier, E-mail: jventur@correo.uaa.mx [Universidad Autonoma de Aguascalientes, Centro de Ciencias Basicas, Departamento de Morfologia, Avenida Universidad 940, Aguascalientes, Ags., CP 20131 (Mexico); Silva-Briano, Marcelo, E-mail: msilva@correo.uaa.mx [Universidad Autonoma de Aguascalientes, Centro de Ciencias Basicas, Departamento de Biologia, Avenida Universidad 940, Aguascalientes, Ags., CP 20131 (Mexico); Rubio-Franchini, Isidoro, E-mail: rubio_reyes@hotmail.com [Instituto de Servicios de Salud del Estado de Aguascalientes, Laboratorio Estatal de Salud Publica, Av. Siglo XXI 105, Ciudad Satelite Morelos, C.P. 20270, Aguascalientes, Ags. (Mexico)

    2012-03-15

    We studied how lead is bioconcentrated and distributed in the rotifer Brachionus calyciflorus using metal histochemistry to locate lead granules, Leadmium Green{sup Registered-Sign} analysis to establish the route of uptake, atomic absorption to determined the bioconcentration factor (BCF), and detected the presence of microelements in the cuticle by X-ray microanalysis with scanning electron microscopy. Our results indicate: (a) the digestive system is the main route of lead uptake in the rotifer B. calyciflorus, (b) after 24-h lead is deposited in granules in the mastax and vitellarium, (c) our energy-dispersive X-ray microanalysis indicates decalcification taking place in the cuticle of the rotifer after a 24-h lead exposure, and (d) we determined a BCF = 115 for lead after a 24 h exposure. However, the route of mobilization and storage of intracellular lead are still not fully understood in B. calyciflorus.

  18. Bioconcentration of manganese and iron in Panaeoloideae Sing

    NARCIS (Netherlands)

    Stijve, T.; Blake, C.

    1994-01-01

    According to literature, the manganese content of most basidiomycetes fluctuates between 10 and 60 mg/kg, whereas the iron levels range from 100-500 mg/kg (both expressed on dry weight). The present authors report that bioconcentration of manganese is a distinguishing feature of the Panaeoloideae,

  19. Integration of QSAR models for bioconcentration suitable for REACH

    Energy Technology Data Exchange (ETDEWEB)

    Gissi, Andrea [Laboratory of Chemistry and Environmental Toxicology, IRCCS - Istituto di Ricerche Farmacologiche “Mario Negri”, via Giuseppe La Masa 19, 20156 Milan (Italy); Dipartimento di Farmacia — Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via Orabona 4, I-70125 Bari (Italy); Nicolotti, Orazio; Carotti, Angelo; Gadaleta, Domenico [Dipartimento di Farmacia — Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via Orabona 4, I-70125 Bari (Italy); Lombardo, Anna [Laboratory of Chemistry and Environmental Toxicology, IRCCS - Istituto di Ricerche Farmacologiche “Mario Negri”, via Giuseppe La Masa 19, 20156 Milan (Italy); Benfenati, Emilio, E-mail: benfenati@marionegri.it [Laboratory of Chemistry and Environmental Toxicology, IRCCS - Istituto di Ricerche Farmacologiche “Mario Negri”, via Giuseppe La Masa 19, 20156 Milan (Italy)

    2013-07-01

    QSAR (Quantitative Structure Activity Relationship) models can be a valuable alternative method to replace or reduce animal test required by REACH. In particular, some endpoints such as bioconcentration factor (BCF) are easier to predict and many useful models have been already developed. In this paper we describe how to integrate two popular BCF models to obtain more reliable predictions. In particular, the herein presented integrated model relies on the predictions of two among the most used BCF models (CAESAR and Meylan), together with the Applicability Domain Index (ADI) provided by the software VEGA. Using a set of simple rules, the integrated model selects the most reliable and conservative predictions and discards possible outliers. In this way, for the prediction of the 851 compounds included in the ANTARES BCF dataset, the integrated model discloses a R{sup 2} (coefficient of determination) of 0.80, a RMSE (Root Mean Square Error) of 0.61 log units and a sensitivity of 76%, with a considerable improvement in respect to the CAESAR (R{sup 2} = 0.63; RMSE = 0.84 log units; sensitivity 55%) and Meylan (R{sup 2} = 0.66; RMSE = 0.77 log units; sensitivity 65%) without discarding too many predictions (118 out of 851). Importantly, considering solely the compounds within the new integrated ADI, the R{sup 2} increased to 0.92, and the sensitivity to 85%, with a RMSE of 0.44 log units. Finally, the use of properly set safety thresholds applied for monitoring the so called “suspicious” compounds, which are those chemicals predicted in proximity of the border normally accepted to discern non-bioaccumulative from bioaccumulative substances, permitted to obtain an integrated model with sensitivity equal to 100%. - Highlights: • Applying two independent QSAR models for bioconcentration factor increases the prediction. • The concordance of the models is an important component of the integration. • The measurement of the applicability domain improves the

  20. Integration of QSAR models for bioconcentration suitable for REACH

    International Nuclear Information System (INIS)

    Gissi, Andrea; Nicolotti, Orazio; Carotti, Angelo; Gadaleta, Domenico; Lombardo, Anna; Benfenati, Emilio

    2013-01-01

    QSAR (Quantitative Structure Activity Relationship) models can be a valuable alternative method to replace or reduce animal test required by REACH. In particular, some endpoints such as bioconcentration factor (BCF) are easier to predict and many useful models have been already developed. In this paper we describe how to integrate two popular BCF models to obtain more reliable predictions. In particular, the herein presented integrated model relies on the predictions of two among the most used BCF models (CAESAR and Meylan), together with the Applicability Domain Index (ADI) provided by the software VEGA. Using a set of simple rules, the integrated model selects the most reliable and conservative predictions and discards possible outliers. In this way, for the prediction of the 851 compounds included in the ANTARES BCF dataset, the integrated model discloses a R 2 (coefficient of determination) of 0.80, a RMSE (Root Mean Square Error) of 0.61 log units and a sensitivity of 76%, with a considerable improvement in respect to the CAESAR (R 2 = 0.63; RMSE = 0.84 log units; sensitivity 55%) and Meylan (R 2 = 0.66; RMSE = 0.77 log units; sensitivity 65%) without discarding too many predictions (118 out of 851). Importantly, considering solely the compounds within the new integrated ADI, the R 2 increased to 0.92, and the sensitivity to 85%, with a RMSE of 0.44 log units. Finally, the use of properly set safety thresholds applied for monitoring the so called “suspicious” compounds, which are those chemicals predicted in proximity of the border normally accepted to discern non-bioaccumulative from bioaccumulative substances, permitted to obtain an integrated model with sensitivity equal to 100%. - Highlights: • Applying two independent QSAR models for bioconcentration factor increases the prediction. • The concordance of the models is an important component of the integration. • The measurement of the applicability domain improves the prediction. • The use of a

  1. Effect of Biological Contact Filters (BCFs on Membrane Fouling in Drinking Water Treatment Systems

    Directory of Open Access Journals (Sweden)

    Susumu Hasegawa

    2017-12-01

    Full Text Available Membrane fouling is a serious problem in drinking water treatment systems. Biological contact filters (BCFs are often used as a pretreatment to remove ammonia, dissolved organic matter (DOM, and metal ions such as iron and manganese. In this study, the effect of BCF as a pretreatment for membrane fouling was evaluated using a laboratory-scale mini module consisting of a mini BCF column and a mini MF column. Initially, it was confirmed that the main foulant was a biopolymer (at low concentration in the raw water. Subsequently, the biopolymer concentrations in the BCF influent and effluent were measured with the excitation emission matrix (EEM fluorescence spectroscopy and the liquid chromatograph organic carbon detector (LC-OCD. The fouling potential of the BCF influent and effluent was also measured to evaluate MF membrane fouling rate. The results demonstrate that application of the BCF reduced the biopolymer concentration of the effluent and reduced membrane fouling. The effect of BCF was also established in an actual drinking water treatment plant. It was found that optimizing the contact time of raw water with the BCF was crucial to reduce membrane fouling.

  2. A flow-through passive dosing system for continuously supplying aqueous solutions of hydrophobic chemicals to bioconcentration and aquatic toxicity tests

    DEFF Research Database (Denmark)

    Adolfsson-Erici, Margaretha; Åkerman, Gun; Jahnke, Annika

    2012-01-01

    A continuous supply of water with defined stable concentrations of hydrophobic chemicals is a requirement in a range of laboratory tests such as the OECD 305 protocol for determining the bioconcentration factor in fish. Satisfying this requirement continues to be a challenge, particularly for hyd...

  3. Estimation of herbicide bioconcentration in sugarcane (Saccharum officinarum L.

    Directory of Open Access Journals (Sweden)

    Antonio Luiz Cerdeira

    2015-04-01

    Full Text Available Sugarcane is an important crop for sugar and biofuel production in Brazil. Growers depend greatly on herbicides to produce it. This experiment used herbicide physical-chemical and sugarcane plant physiological properties to simulate herbicide uptake and estimate the bioconcentration factor (BCF. The (BCF was calculated for the steady state chemical equilibrium between the plant herbicide concentration and soil solution. Plant-water partition coefficient (sugarcane bagasse-water partition coefficient, herbicide dilution rate, metabolism and dissipation in the soil-plant system, as well as total plant biomass factors were used. In addition, we added Tebuthiuron at rate of 5.0kg a.i. ha-1 to physically test the model. In conclusion, the model showed the following ranking of herbicide uptake: sulfentrazone > picloram >tebuthiuron > hexazinone > metribuzin > simazine > ametryn > diuron > clomazone > acetochlor. Furthermore, the highest BCF herbicides showed higher Groundwater Ubiquity Score (GUS index indicating high leaching potential. We did not find tebuthiuron in plants after three months of herbicide application

  4. Trace elements in fruiting bodies of ectomycorrhizal fungi growing in Scots pine (Pinus sylvestris L.) stands in Poland

    International Nuclear Information System (INIS)

    Rudawska, Maria; Leski, Tomasz

    2005-01-01

    The trace metal contents in fruiting bodies of ectomycorrhizal (ECM) fungi, symbiotic partners of Scots pine, were studied on three sites situated in west-central Poland. Elements were determined by atomic absorption spectrometry in 123 samples of 16 species. The study explored the differences in metal accumulation in relation to site, fungal species, age and part of the fruiting body and results were related to metal content in soil and plant material (roots and needles). Soil analysis revealed that results were obtained under environmental conditions not subject to strong anthropogenic pressure. Median metal concentrations did not differ disparately between sites, although the concentrations of each of the tested metals in the individual species varied to a large extent. Extremely high levels of Al with a large bioconcentration factor (BCF) were found in sporocarps of Thelephora terrestris. The spread between the highest and the lowest concentration (max/min) was very wide in Al, Cd and Pb and these elements may be considered to be absorbed preferentially by fruiting bodies of some species whereas Fe, Mn and Zn, with relatively low values of max/min, are normally absorbed by the majority of fungi. There was no clear relationship between caps and stipes in metal content. However, a tendency to higher metal concentration in the caps was observed. The metal content in young and older fruiting bodies of five different fungi was species dependent. In order to estimate the degree of accumulation of each element by plant and mushrooms, bioconcentration factors (BCFs) were calculated. In plant material (roots and needles), highest values of BCFs were noted for essential metals, like Zn and Mn. Lead showed a definite exclusion pattern (BCF below 1). In fruiting bodies of tested fungi, especially in Amanita muscaria, cadmium was the most intensively accumulated metal. Lead was excluded by plants but was accumulated or excluded by fungi depending on the species. The

  5. Assessment of potential indigenous plant species for the phytoremediation of arsenic-contaminated areas of Bangladesh.

    Science.gov (United States)

    Mahmud, Rezwanul; Inoue, Naoto; Kasajima, Shin-Ya; Shaheen, Riffat

    2008-01-01

    Soil and water contaminated with arsenic (As) pose a major environmental and human health problem in Bangladesh. Phytoremediation, a plant-based technology, may provide an economically viable solution for remediating the As-polluted sites. The use of indigenous plants with a high tolerance and accumulation capacity for As may be a very convenient approach for phytoremediation. To assess the potential of native plant species for phytoremediation, plant and soil samples were collected from four As-contaminated (groundwater) districts in Bangladesh. The main criteria used for selecting plants for phytoremediation were high bioconcentration factors (BCFs) and translocation factors (TFs) of As. From the results of a screening of 49 plant species belonging to 29 families, only one species of fern (Dryopteris filix-mas), three herbs (Blumea lacera, Mikania cordata, and Ageratum conyzoides), and two shrubs (Clerodendrum trichotomum and Ricinus communis) were found to be suitable for phytoremediation. Arsenic bioconcentration and translocation factors > 1 suggest that these plants are As-tolerant accumulators with potential use in phytoextraction. Three floating plants (Eichhornia crassipes, Spirodela polyrhiza, and Azolla pinnata) and a common wetland weed (Monochoria vaginalis) also showed high BCF and TF values; therefore, these plants may be promising candidates for cleaningup As-contaminated surface water and wetland areas. The BCF of Oryza sativa, obtained from As-contaminated districts was > 1, which highlights possible food-chain transfer issues for As-contaminated areas in Bangladesh.

  6. Growth and metal bioconcentration by conspecific freshwater macroalgae cultured in industrial waste water.

    Science.gov (United States)

    Ellison, Michael B; de Nys, Rocky; Paul, Nicholas A; Roberts, David A

    2014-01-01

    The bioremediation of industrial waste water by macroalgae is a sustainable and renewable approach to the treatment of waste water produced by multiple industries. However, few studies have tested the bioremediation of complex multi-element waste streams from coal-fired power stations by live algae. This study compares the ability of three species of green freshwater macroalgae from the genus Oedogonium, isolated from different geographic regions, to grow in waste water for the bioremediation of metals. The experiments used Ash Dam water from Tarong power station in Queensland, which is contaminated by multiple metals (Al, Cd, Ni and Zn) and metalloids (As and Se) in excess of Australian water quality guidelines. All species had consistent growth rates in Ash Dam water, despite significant differences in their growth rates in "clean" water. A species isolated from the Ash Dam water itself was not better suited to the bioremediation of that waste water. While there were differences in the temporal pattern of the bioconcentration of metals by the three species, over the course of the experiment, all three species bioconcentrated the same elements preferentially and to a similar extent. All species bioconcentrated metals (Cu, Mn, Ni, Cd and Zn) more rapidly than metalloids (As, Mo and Se). Therefore, bioremediation in situ will be most rapid and complete for metals. Overall, all three species of freshwater macroalgae had the ability to grow in waste water and bioconcentrate elements, with a consistent affinity for the key metals that are regulated by Australian and international water quality guidelines. Together, these characteristics make Oedogonium a clear target for scaled bioremediation programs across a range of geographic regions.

  7. Growth and metal bioconcentration by conspecific freshwater macroalgae cultured in industrial waste water

    Directory of Open Access Journals (Sweden)

    Michael B. Ellison

    2014-05-01

    Full Text Available The bioremediation of industrial waste water by macroalgae is a sustainable and renewable approach to the treatment of waste water produced by multiple industries. However, few studies have tested the bioremediation of complex multi-element waste streams from coal-fired power stations by live algae. This study compares the ability of three species of green freshwater macroalgae from the genus Oedogonium, isolated from different geographic regions, to grow in waste water for the bioremediation of metals. The experiments used Ash Dam water from Tarong power station in Queensland, which is contaminated by multiple metals (Al, Cd, Ni and Zn and metalloids (As and Se in excess of Australian water quality guidelines. All species had consistent growth rates in Ash Dam water, despite significant differences in their growth rates in “clean” water. A species isolated from the Ash Dam water itself was not better suited to the bioremediation of that waste water. While there were differences in the temporal pattern of the bioconcentration of metals by the three species, over the course of the experiment, all three species bioconcentrated the same elements preferentially and to a similar extent. All species bioconcentrated metals (Cu, Mn, Ni, Cd and Zn more rapidly than metalloids (As, Mo and Se. Therefore, bioremediation in situ will be most rapid and complete for metals. Overall, all three species of freshwater macroalgae had the ability to grow in waste water and bioconcentrate elements, with a consistent affinity for the key metals that are regulated by Australian and international water quality guidelines. Together, these characteristics make Oedogonium a clear target for scaled bioremediation programs across a range of geographic regions.

  8. Effect of mycorrhizal fungi on the phytoextraction of weathered p,p-DDE by Cucurbita pepo.

    Science.gov (United States)

    White, Jason C; Ross, Daniel W; Gent, Martin P N; Eitzer, Brian D; Mattina, Maryjane Incorvia

    2006-10-11

    Field experiments were conducted to assess the impact of inoculation with mycorrhizal fungi on the accumulation of weathered p,p'-DDE from soil by three cultivars of zucchini (Cucurbita pepo spp. pepo cv Costata Romanesco, Goldrush, Raven). Three commercially available mycorrhizal products (BioVam, Myco-Vam, INVAM) were inoculated into the root system of the zucchini seedlings at planting. In agreement with our previous findings, plants not inoculated with fungi accumulated large but variable amounts of contaminant, with root bioconcentration factors (BCFs, ratio of p,p'-DDE, on a dry weight basis, in the root to that in the soil) ranging from 10 to 48 and stem BCFs ranging from 5.5 to 11. The total amount of contaminant phytoextracted during the 62 day growing season ranged from 0.72-2.9%. The effect of fungal inoculation on the release of weathered p,p'-DDE from soil and on the subsequent uptake of the parent compound by zucchini appeared to vary at the cultivar level. For Goldrush, fungal inoculation generally decreased tissue BCFs but because of slightly larger biomass, did not significantly impact the percent contaminant phytoextracted. Alternatively, for Costata, BioVam and Myco-Vam generally enhanced p,p'-DDE accumulation from soil, and increased the amount of contaminant phytoextracted by up to 34%. For Raven, BioVam reduced contaminant uptake whereas Myco-Vam and INVAM increased contaminant phytoextraction by 53 and 60%, respectively. The data show that fungal inoculation may significantly increase the remedial potential of C. pepo ssp. pepo. The apparent cultivar specific response to mycorrhizal inoculation is unexpected and the subject of ongoing investigation.

  9. Translocation of metal ions from soil to tobacco roots and their concentration in the plant parts.

    Science.gov (United States)

    da Silva, Cleber Pinto; de Almeida, Thiago E; Zittel, Rosimara; de Oliveira Stremel, Tatiana R; Domingues, Cinthia E; Kordiak, Januário; de Campos, Sandro Xavier

    2016-12-01

    This paper presents a study on the translocation factors (TFs) and bioconcentration factors (BCFs) of copper (Cu), manganese (Mn), zinc (Zn), cobalt (Co), chromium (Cr), cadmium (Cd), lead (Pb), iron (Fe), nickel (Ni), and arsenic (As) ions in roots, stems, and leaves of tobacco. The results revealed that during the tobacco growth, the roots are able to increase the sensitiveness of the physiological control, reducing the translocation of the metals Ni (0.38) and Pb (0.48) to the leaves. Cd and Zn presented factors TF and BCF >1 in the three tissues under analysis, which indicates the high potential for transportation and accumulation of these metals in all plant tissues. The TF values for Cr (0.65) and As (0.63) revealed low translocation of these ions to the aerial parts, indicating low mobility of ions from the roots. Therefore, tobacco can be considered an efficient accumulator of Ni, Cr, As and Pb in roots and Cd and Zn in all plant parts.

  10. Models for transport and fate of carbon, nutrients and radionuclides in the aquatic ecosystem at Oeregrundsgrepen

    Energy Technology Data Exchange (ETDEWEB)

    Erichsen, Anders Christian; Moehlenberg, Flemming; Closter, Rikke Margrethe; Sandberg, Johannes [DHI, Hoersholm (Denmark)

    2010-06-15

    -stationary equilibrium within the model area. The coupled ecosystem and radionuclide models were used to simulate present conditions, i.e. 2020 AD. Six radionuclides were modelled explicitly in addition to C-14. They represent a wide range of accumulation potentials and partition coefficients (K{sub d}, distribution of radionuclides between water, sediment and biota). The ecosystem and associated radionuclide model include a detailed sediment module where radionuclides can be bound by adsorption to the organic and inorganic fractions, be precipitated, be transported by resuspension and later deposited at larger depths. With the exception of radionuclides with very low particle affinity, such as Cl-35, the majority of radionuclides released in basins where they were introduced via groundwater flow remained in the sediments even after a simulation period of eight years. The spread of radionuclides with high partition coefficients for sediments from areas with groundwater flow takes place by sediment resuspension and subsequent transport and sedimentation. In the case of radionuclides with lower partition coefficients, release from the sediments to the water column followed by transport of dissolved radionuclides by currents plays a larger role. A significant result of the modelling was the quantification of the seasonal and spatial variation in radionuclide accumulation and in bioconcentration factors (BCFs) with spatial variation of BCFs often ranging 2 to 3 orders of magnitude. This variation was dominated by spatial differences in concentrations of radionuclides in water. In basins where radionuclides were introduced by groundwater flow, BCFs were typically 2-3 orders of magnitude lower than in deep basins without radionuclide release in the groundwater. In phytoplankton and grazers, bioconcentration factors (BCFs) scaled linearly to partition coefficients (Kd), underlining the fact that adsorption is an important process for radionuclide accumulation in the lower parts of the food web

  11. Models for transport and fate of carbon, nutrients and radionuclides in the aquatic ecosystem at Oeregrundsgrepen

    Energy Technology Data Exchange (ETDEWEB)

    Erichsen, Anders Christian; Moehlenberg, Flemming; Closter, Rikke Margrethe; Sandberg, Johannes (DHI, Hoersholm (Denmark))

    2010-06-15

    quasi-stationary equilibrium within the model area. The coupled ecosystem and radionuclide models were used to simulate present conditions, i.e. 2020 AD. Six radionuclides were modelled explicitly in addition to C-14. They represent a wide range of accumulation potentials and partition coefficients (K{sub d}, distribution of radionuclides between water, sediment and biota). The ecosystem and associated radionuclide model include a detailed sediment module where radionuclides can be bound by adsorption to the organic and inorganic fractions, be precipitated, be transported by resuspension and later deposited at larger depths. With the exception of radionuclides with very low particle affinity, such as Cl-35, the majority of radionuclides released in basins where they were introduced via groundwater flow remained in the sediments even after a simulation period of eight years. The spread of radionuclides with high partition coefficients for sediments from areas with groundwater flow takes place by sediment resuspension and subsequent transport and sedimentation. In the case of radionuclides with lower partition coefficients, release from the sediments to the water column followed by transport of dissolved radionuclides by currents plays a larger role. A significant result of the modelling was the quantification of the seasonal and spatial variation in radionuclide accumulation and in bioconcentration factors (BCFs) with spatial variation of BCFs often ranging 2 to 3 orders of magnitude. This variation was dominated by spatial differences in concentrations of radionuclides in water. In basins where radionuclides were introduced by groundwater flow, BCFs were typically 2-3 orders of magnitude lower than in deep basins without radionuclide release in the groundwater. In phytoplankton and grazers, bioconcentration factors (BCFs) scaled linearly to partition coefficients (Kd), underlining the fact that adsorption is an important process for radionuclide accumulation in the

  12. Models for transport and fate of carbon, nutrients and radionuclides in the aquatic ecosystem at Oeregrundsgrepen

    International Nuclear Information System (INIS)

    Erichsen, Anders Christian; Moehlenberg, Flemming; Closter, Rikke Margrethe; Sandberg, Johannes

    2010-06-01

    -stationary equilibrium within the model area. The coupled ecosystem and radionuclide models were used to simulate present conditions, i.e. 2020 AD. Six radionuclides were modelled explicitly in addition to C-14. They represent a wide range of accumulation potentials and partition coefficients (K d , distribution of radionuclides between water, sediment and biota). The ecosystem and associated radionuclide model include a detailed sediment module where radionuclides can be bound by adsorption to the organic and inorganic fractions, be precipitated, be transported by resuspension and later deposited at larger depths. With the exception of radionuclides with very low particle affinity, such as Cl-35, the majority of radionuclides released in basins where they were introduced via groundwater flow remained in the sediments even after a simulation period of eight years. The spread of radionuclides with high partition coefficients for sediments from areas with groundwater flow takes place by sediment resuspension and subsequent transport and sedimentation. In the case of radionuclides with lower partition coefficients, release from the sediments to the water column followed by transport of dissolved radionuclides by currents plays a larger role. A significant result of the modelling was the quantification of the seasonal and spatial variation in radionuclide accumulation and in bioconcentration factors (BCFs) with spatial variation of BCFs often ranging 2 to 3 orders of magnitude. This variation was dominated by spatial differences in concentrations of radionuclides in water. In basins where radionuclides were introduced by groundwater flow, BCFs were typically 2-3 orders of magnitude lower than in deep basins without radionuclide release in the groundwater. In phytoplankton and grazers, bioconcentration factors (BCFs) scaled linearly to partition coefficients (Kd), underlining the fact that adsorption is an important process for radionuclide accumulation in the lower parts of the food web

  13. Bioconcentration of manganese and iron in Panaeoloideae Sing

    OpenAIRE

    Stijve, T.; Blake, C.

    1994-01-01

    According to literature, the manganese content of most basidiomycetes fluctuates between 10 and 60 mg/kg, whereas the iron levels range from 100-500 mg/kg (both expressed on dry weight). The present authors report that bioconcentration of manganese is a distinguishing feature of the Panaeoloideae, as demonstrated by the analysis of 44 collections representing 15 taxons. Carpophores generally contain between 250 and 2500 mg/kg on dry weight, and, with the notable exception of Panaeolus semiova...

  14. Solid-phase microextraction for bioconcentration studies according to OECD TG 305

    Energy Technology Data Exchange (ETDEWEB)

    Duering, Rolf-Alexander; Boehm, Leonard [Land Use and Nutrition (IFZ) Justus Liebig University Giessen, Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Giessen (Germany); Schlechtriem, Christian [Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schmallenberg (Germany)

    2012-12-15

    An important aim of the European Community Regulation on chemicals and their safe use is the identification of (very) persistent, (very) bioaccumulative, and toxic substances. In other regulatory chemical safety assessments (pharmaceuticals, biocides, pesticides), the identification of such (very) persistent, (very) bioaccumulative, and toxic substances is of increasing importance. Solid-phase microextraction is especially capable of extracting total water concentrations as well as the freely dissolved fraction of analytes in the water phase, which is available for bioconcentration in fish. However, although already well established in environmental analyses to determine and quantify analytes mainly in aqueous matrices, solid-phase microextraction is still a rather unusual method in regulatory ecotoxicological research. Here, the potential benefits and drawbacks of solid-phase microextraction are discussed as an analytical routine approach for aquatic bioconcentration studies according to OECD TG 305, with a special focus on the testing of hydrophobic organic compounds characterized by log K{sub OW}> 5. (orig.)

  15. Accumulation of heavy metals in soil-crop systems: a review for wheat and corn.

    Science.gov (United States)

    Wang, Shiyu; Wu, Wenyong; Liu, Fei; Liao, Renkuan; Hu, Yaqi

    2017-06-01

    The health risks arising from heavy metal pollution (HMP) in agricultural soils have attracted global attention, and research on the accumulation of heavy metals in soil-plant systems is the basis for human health risk assessments. This review studied the accumulation of seven typical heavy metals-Cd, Cr, As, Pb, Hg, Cu, and Zn-in soil-corn and soil-wheat systems. The findings indicated that, in general, wheat was more likely to accumulate heavy metals than corn. Bioconcentration factor (BCF) of the seven heavy metals in wheat and corn grains decreased exponentially with their average concentrations in soil. The seven heavy metals were ranked as follows, in ascending order of accumulation in corn grains: Pb < Cr < Zn < As < Cu < Cd BCFs of Cd, Cr, As, Pb, Hg, Cu, and Zn in corn grains were 0.054, 6.65 × 10 -4 , 7.94 × 10 -4 , 0.0044, 0.028, 0.13, and 0.19, respectively. The corresponding BCFs values for wheat grains were 0.25, 0.0045, 5.42 × 10 -4 , 0.009, 4.03 × 10 -4 , 0.11, and 0.054, respectively.

  16. Changes in bioaccumulation and translocation patterns between root and leafs of Avicennia schaueriana as adaptive response to different levels of metals in mangrove system.

    Science.gov (United States)

    Souza, Iara da C; Rocha, Lívia D; Morozesk, Mariana; Bonomo, Marina M; Arrivabene, Hiulana P; Duarte, Ian D; Furlan, Larissa M; Monferrán, Magdalena V; Mazik, Krysia; Elliott, Michael; Matsumoto, Silvia T; Milanez, Camilla R D; Wunderlin, Daniel A; Fernandes, Marisa N

    2015-05-15

    Espírito Santo estuaries (Brazil) are impacted by industrial activities, resulting in contamination of water and sediments. This raise questions on biological uptake, storage and consequences of metal contamination to mangrove plants. The goal of this work was evaluating accumulation and translocation of metals from sediment to roots and leaves of Avicennia schaueriana, growing in areas with different degrees of contamination, correlating bioaccumulation with changes in its root anatomy. Highest bioconcentration factors (BCFs) were observed in plants growing in less polluted areas. Conversely, highest translocation factors were found in plants from highest polluted area, evidencing an adaptive response of A. schaueriana to less favourable conditions. Namely, the absorption of metals by roots is diminished when facing highest levels of metals in the environment; alternatively, plants seem to enhance the translocation to diminish the concentration of toxic metals in roots. Root also responded to highly polluted scenarios with modifications of its anatomy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effects of soil properties on the uptake of pharmaceuticals into earthworms

    International Nuclear Information System (INIS)

    Carter, Laura J.; Ryan, Jim J.; Boxall, Alistair B.A.

    2016-01-01

    Pharmaceuticals can enter the soil environment when animal slurries and sewage sludge are applied to land as a fertiliser or during irrigation with contaminated water. These pharmaceuticals may then be taken up by soil organisms possibly resulting in toxic effects and/or exposure of organisms higher up the food chain. This study investigated the influence of soil properties on the uptake and depuration of pharmaceuticals (carbamazepine, diclofenac, fluoxetine and orlistat) in the earthworm Eisenia fetida. The uptake and accumulation of pharmaceuticals into E. fetida changed depending on soil type. Orlistat exhibited the highest pore water based bioconcentration factors (BCFs) and displayed the largest differences between soil types with BCFs ranging between 30.5 and 115.9. For carbamazepine, diclofenac and fluoxetine BCFs ranged between 1.1 and 1.6, 7.0 and 69.6 and 14.1 and 20.4 respectively. Additional analysis demonstrated that in certain treatments the presence of these chemicals in the soil matrices changed the soil pH over time, with a statistically significant pH difference to control samples. The internal pH of E. fetida also changed as a result of incubation in pharmaceutically spiked soil, in comparison to the control earthworms. These results demonstrate that a combination of soil properties and pharmaceutical physico-chemical properties are important in terms of predicting pharmaceutical uptake in terrestrial systems and that pharmaceuticals can modify soil and internal earthworm chemistry which may hold wider implications for risk assessment. - Highlights: • Uptake of pharmaceuticals into earthworms is influenced by soil parameters. • Presence of pharmaceuticals in the terrestrial environment influences soil pH. • Uptake of pharmaceuticals by earthworms changes internal earthworm pH. - The uptake of pharmaceuticals into soil invertebrates is dependent on the complex interplay between pharmaceutical physico-chemical properties and soil

  18. Assessment and validation of the CAESAR predictive model for bioconcentration factor (BCF in fish

    Directory of Open Access Journals (Sweden)

    Milan Chiara

    2010-07-01

    Full Text Available Abstract Background Bioconcentration factor (BCF describes the behaviour of a chemical in terms of its likelihood of concentrating in organisms in the environment. It is a fundamental property in recent regulations, such as the European Community Regulation on chemicals and their safe use or the Globally Harmonized System for classification, labelling and packaging. These new regulations consider the possibility of reducing or waiving animal tests using alternative methods, such as in silico methods. This study assessed and validated the CAESAR predictive model for BCF in fish. Results To validate the model, new experimental data were collected and used to create an external set, as a second validation set (a first validation exercise had been done just after model development. The performance of the model was compared with BCFBAF v3.00. For continuous values and for classification purposes the CAESAR BCF model gave better results than BCFBAF v3.00 for the chemicals in the applicability domain of the model. R2 and Q2 were good and accuracy in classification higher than 90%. Applying an offset of 0.5 to the compounds predicted with BCF close to the thresholds, the number of false negatives (the most dangerous errors dropped considerably (less than 0.6% of chemicals. Conclusions The CAESAR model for BCF is useful for regulatory purposes because it is robust, reliable and predictive. It is also fully transparent and documented and has a well-defined applicability domain, as required by REACH. The model is freely available on the CAESAR web site and easy to use. The reliability of the model reporting the six most similar compounds found in the CAESAR dataset, and their experimental and predicted values, can be evaluated.

  19. The effect of pH on the bioconcentration and toxicity of weak organic electrolytes

    DEFF Research Database (Denmark)

    Rendal, Cecilie

    to the bioconcentration of ionizing organic compounds showed that this fraction cannot safely be overlooked. The work presented in this thesis suggests that the standard test procedures used to test toxicity and bioconcentration are not sufficient to fully illuminate the ecotoxicity of ionizing organic compounds unless......Many of the compounds in use today have ionizing properties. Investigations have shown that around half of the compounds preregistered for REACH and over 70% of all pharmaceuticals are ionizing organic compounds. These compounds may pose a risk when they are released into the environment....... Ionization, however, complicates the environmental risk assessment of these compounds because the uptake processes of the neutral fraction differ from the processes of the ionized fraction. Acids are increasingly neutral at pH levels below the pKa while bases are increasingly neutral at pH levels above the p...

  20. Toxic effects, bioconcentration and depuration of verapamil in the early life stages of common carp (Cyprinus carpio L.)

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, Christoph, E-mail: steinbach@frov.jcu.cz [Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, CZ-38925 Vodnany (Czech Republic); Fedorova, Ganna [Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, CZ-38925 Vodnany (Czech Republic); Prokes, Miroslav [Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Kvetna 8, 603 65 Brno (Czech Republic); Grabicova, Katerina; Machova, Jana; Grabic, Roman; Valentova, Olga; Kroupova, Hana Kocour [Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, CZ-38925 Vodnany (Czech Republic)

    2013-09-01

    Verapamil is a pharmaceutical that belongs to a group of calcium channel blockers and is mainly used as a treatment of angina pectoris and arterial hypertension. Verapamil has been detected in aquatic environments in concentrations ranging from ng L{sup −1} to μg L{sup −1}. In the present study, a series of acute toxicity tests of verapamil on various developmental stages of common carp (Cyprinus carpio) were conducted. As a result, 96hLC{sub 50} values of verapamil were estimated at 16.4 ± 9.2, 7.3 ± 1.5 and 4.8 ± 0.2 mg L{sup −1} for embryos (E5–E9) and common carp larvae L2 and L5, respectively. Lethal concentrations of verapamil decreased with an increase in the age of the fish. Acute exposure to verapamil significantly reduced the heart rate in the embryos and larvae. In an embryo-larval toxicity test (sub-chronic exposure), the bioconcentration, depuration, and toxic effects of verapamil were assessed in common carp. The fish were exposed to verapamil in a concentration of 0.463 (environmentally relevant), 4.63, 46.3 and 463 μg L{sup −1}. Verapamil had no effect on the accumulated mortality, hatching, condition factor, growth or ontogeny of the fish in any of the tested concentrations. In carp exposed to 463 and 46.3 μg L{sup −1} of verapamil, significantly higher occurrences of malformations and edemas were observed compared to the control. The bioconcentration factor of verapamil in whole fish homogenates ranged between 6.6 and 16.6 and was therefore below the critical value for hazard substances (BCF > 500). The half-life and the 95% depuration time for the tested compound were estimated to be 10.2 ± 1.6 days and 44.2 ± 8.6 days, respectively. No effects of verapamil on the studied endpoints were observed at environmentally relevant concentrations. - Highlights: • Study of the acute and sub-chronic toxicity of verapamil on early-life stages of common carp. • Acute exposure to verapamil reduced the heart rate in early-life stages of

  1. Toxic effects, bioconcentration and depuration of verapamil in the early life stages of common carp (Cyprinus carpio L.)

    International Nuclear Information System (INIS)

    Steinbach, Christoph; Fedorova, Ganna; Prokes, Miroslav; Grabicova, Katerina; Machova, Jana; Grabic, Roman; Valentova, Olga; Kroupova, Hana Kocour

    2013-01-01

    Verapamil is a pharmaceutical that belongs to a group of calcium channel blockers and is mainly used as a treatment of angina pectoris and arterial hypertension. Verapamil has been detected in aquatic environments in concentrations ranging from ng L −1 to μg L −1 . In the present study, a series of acute toxicity tests of verapamil on various developmental stages of common carp (Cyprinus carpio) were conducted. As a result, 96hLC 50 values of verapamil were estimated at 16.4 ± 9.2, 7.3 ± 1.5 and 4.8 ± 0.2 mg L −1 for embryos (E5–E9) and common carp larvae L2 and L5, respectively. Lethal concentrations of verapamil decreased with an increase in the age of the fish. Acute exposure to verapamil significantly reduced the heart rate in the embryos and larvae. In an embryo-larval toxicity test (sub-chronic exposure), the bioconcentration, depuration, and toxic effects of verapamil were assessed in common carp. The fish were exposed to verapamil in a concentration of 0.463 (environmentally relevant), 4.63, 46.3 and 463 μg L −1 . Verapamil had no effect on the accumulated mortality, hatching, condition factor, growth or ontogeny of the fish in any of the tested concentrations. In carp exposed to 463 and 46.3 μg L −1 of verapamil, significantly higher occurrences of malformations and edemas were observed compared to the control. The bioconcentration factor of verapamil in whole fish homogenates ranged between 6.6 and 16.6 and was therefore below the critical value for hazard substances (BCF > 500). The half-life and the 95% depuration time for the tested compound were estimated to be 10.2 ± 1.6 days and 44.2 ± 8.6 days, respectively. No effects of verapamil on the studied endpoints were observed at environmentally relevant concentrations. - Highlights: • Study of the acute and sub-chronic toxicity of verapamil on early-life stages of common carp. • Acute exposure to verapamil reduced the heart rate in early-life stages of common carp. • The

  2. Mosses as an integrating tool for monitoring PAH atmospheric deposition: comparison with total deposition and evaluation of bioconcentration factors. A year-long case-study.

    Science.gov (United States)

    Foan, Louise; Domercq, Maria; Bermejo, Raúl; Santamaría, Jesús Miguel; Simon, Valérie

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) atmospheric deposition was evaluated at a remote site in Northern Spain using moss biomonitoring with Hylocomium splendens (Hedw.) Schimp., and by measuring the total deposition fluxes of PAHs. The year-long study allowed seasonal variations of PAH content in mosses to be observed, and these followed a similar trend to those of PAH fluxes in total deposition. Generally, atmospheric deposition of PAHs is greater in winter than in summer, due to more PAH emissions from domestic heating, less photoreactivity of the compounds, and intense leaching of the atmosphere by wet deposition. However, fractionation of these molecules between the environmental compartments occurs: PAH fluxes in total deposition and PAH concentrations in mosses are correlated with their solubility (r=0.852, pPAH fluxes can be estimated with moss biomonitoring data if the bioconcentration or 'enriching' factors are known. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Plant Uptake of Organic Pollutants from Soil: A Critical Review ofBioconcentration Estimates Based on Modelsand Experiments

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.; Maddalena, Randy L.

    2007-01-01

    The role of terrestrial vegetation in transferring chemicals from soil and air into specific plant tissues (stems, leaves, roots, etc.) is still not well characterized. We provide here a critical review of plant-to-soil bioconcentration ratio (BCR) estimates based on models and experimental data. This review includes the conceptual and theoretical formulations of the bioconcentration ratio, constructing and calibrating empirical and mathematical algorithms to describe this ratio and the experimental data used to quantify BCRs and calibrate the model performance. We first evaluate the theoretical basis for the BCR concept and BCR models and consider how lack of knowledge and data limits reliability and consistency of BCR estimates. We next consider alternate modeling strategies for BCR. A key focus of this evaluation is the relative contributions to overall uncertainty from model uncertainty versus variability in the experimental data used to develop and test the models. As a case study, we consider a single chemical, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and focus on variability of bioconcentration measurements obtained from 81 experiments with different plant species, different plant tissues, different experimental conditions, and different methods for reporting concentrations in the soil and plant tissues. We use these observations to evaluate both the magnitude of experimental variability in plant bioconcentration and compare this to model uncertainty. Among these 81 measurements, the variation of the plant/soil BCR has a geometric standard deviation (GSD) of 3.5 and a coefficient of variability (CV-ratio of arithmetic standard deviation to mean) of 1.7. These variations are significant but low relative to model uncertainties--which have an estimated GSD of 10 with a corresponding CV of 14.

  4. Biological effects and bioaccumulation of steroidal and phenolic endocrine disrupting chemicals in high-back crucian carp exposed to wastewater treatment plant effluents

    International Nuclear Information System (INIS)

    Liu Jingliang; Wang Renmin; Huang Bin; Lin Chan; Zhou Jiali; Pan Xuejun

    2012-01-01

    Endocrine disrupting chemicals (EDCs) found in wastewater treatment plant (WWTP) effluents have been shown to cause adverse effects, but the uptake of EDCs from effluents (measured in fish muscle) are not known. In this study, the biological effects and bioaccumulation of steroidal and phenolic EDCs were assessed in high-back crucian carp (Carassius auratus) exposed to WWTP effluents for 141 days. Compared with fish controls caged in Dianchi Lake, a significant reduction in gonadosomatic index (GSI) and increase in hepatosomatic index (HSI) and plasma vitellogenin (VTG) levels were observed in effluent-exposed fish. The concentrations of steroids and phenols in effluent-exposed fish showed time-dependent increase during the exposure. In addition, bioconcentration factors (BCFs) for steroids and phenols were between 17 and 59 on day 141. The results confirm that steroids and phenols bioconcentrate in fish muscle and this accumulation may account for the biological effects associated with exposures to WWTP effluents. - Highlights: ► We assess the potential risk of WWTP effluents to fish. ► We investigate the biological responses of EDCs in fish exposed to effluents. ► We estimate the uptake of EDCs originating from WWTP effluents in fish. ► The bioaccumulation of EDCs may account for the biological effects of effluents. - Bioaccumulation of endocrine disrupting chemicals in WWTP effluent-exposed fish.

  5. Effect of Transpiration on Plant Accumulation and Translocation of PPCP/EDCs

    Science.gov (United States)

    Dodgen, Laurel K; Ueda, Aiko; Wu, Xiaoqin; Parker, David R; Gan, Jay

    2015-01-01

    The reuse of treated wastewater for agricultural irrigation in arid and hot climates where plant transpiration is high may affect plant accumulation of pharmaceutical and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs). In this study, carrot, lettuce, and tomato plants were grown in solution containing 16 PPCP/EDCs in either a cool-humid or a warm-dry environment. Leaf bioconcentration factors (BCF) were positively correlated with transpiration for chemical groups of different ionized states (p < 0.05). However, root BCFs were correlated with transpiration only for neutral PPCP/EDCs (p < 0.05). Neutral and cationic PPCP/EDCs showed similar accumulation, while anionic PPCP/EDCs had significantly higher accumulation in roots and significantly lower accumulation in leaves (p < 0.05). Results show that plant transpiration may play a significant role in the uptake and translocation of PPCP/EDCs, which may have a pronounced effect in arid and hot climates where irrigation with treated wastewater is common. PMID:25594843

  6. [Phytoremediation of mercury and cadmium polluted wetland by Arundo donax].

    Science.gov (United States)

    Han, Zhiping; Hu, Xiaobin; Hu, Zhenghai

    2005-05-01

    With a pot culture of simulated mercury (Hg) and cadmium (Cd)-polluted wetland, this paper studied the capability of Arundo donax in accumulating these heavy metals, and their distribution in the plant. The results showed that after grown in a 101 mg.kg(-1) Hg-polluted wetland for 8 months, the Hg-concentrating capability of Arundo donax was in order of root > stem > leaf, and the Hg concentration in its aboveground parts was 200 +/- 20 mg.kg(-1) (DW); while in the case of 115 mg.kg(-1) Cd-pollution, the Cd-concentrating capability was in order of leaf > root > stem, and the Cd concentration in leaf was 160 +/- 26 mg.kg(-1) (DW). The heavy metals concentration in Arundo donax organs increased with its growth time, being 30%-50% higher for 8 months than for 4 months. The BCF (Bio-concentration factor) decreased with increasing heavy metals concentration. In polluted wetland, the BCFs of Hg by the leaf and stem were 1.9 and 2.1, and those of Cd were 1.5 and 0.3, respectively; while in unpolluted wetland, the concentration of Hg and Cd was 6.8 and 8.5 mg.kg(-1), the BCFs of Hg by the leaf and stem were 6.8 and 12.2, and those of Cd were 7.0 and 2.7, respectively. It was indicated that Arundo donax not only had the characters of large biomass, exuberant root, and good adaptability, but also exhibited high tolerance and concentrating capability to Cd and Hg.

  7. Specific profiles of perfluorinated compounds in surface and drinking waters and accumulation in mussels, fish, and dolphins from southeastern Brazil.

    Science.gov (United States)

    Quinete, Natalia; Wu, Qian; Zhang, Tao; Yun, Se Hun; Moreira, Isabel; Kannan, Kurunthachalam

    2009-10-01

    Despite the concern over widespread distribution of perfluorinated compounds (PFCs) even in sparsely populated regions of the world, few studies have reported their occurrence in South America. In this study, PFCs were measured in Rio de Janeiro State in southeast Brazil: in drinking water from various districts in the State, in river water and tucuxi dolphins from the Paraiba do Sul River, several species of fish from the State, and mussels from Guanabara Bay. Liver, kidney, and muscle from fishes were analyzed to enable an understanding of the tissue distribution of PFCs. PFOS, PFOA, and PFHxS were detected in all drinking water samples in concentration ranges of 0.58-6.70, 0.35-2.82, and 0.15-1.00 ng L(-1), respectively. The profiles of PFCs in drinking water from Brazil (with PFOS concentrations comparable to or higher than those of PFOA) were different from the profiles that have been reported for other countries. In fish, concentrations of PFOS were, in general, higher in liver than in muscle. Concentrations of PFOA in livers of fish were similar to or lower than fish muscle tissue concentrations. PFOS and PFOA were found in brown mussels from Guanabara Bay. Bioconcentration factors (BCFs) of PFOA calculated for mussels were higher than the BCFs calculated for fishes. Elevated concentrations of PFUnDA (mean: 109+/-17.4 ng g(-1) wet weight) were found in mussels from certain locations within Guanabara Bay. Although PFCs were detected in all types of samples analyzed, the concentrations were generally lower than the concentrations reported for Japan and the USA.

  8. Cadmium tolerance and accumulation in cultivars of a high-biomass tropical tree (Averrhoa carambola) and its potential for phytoextraction.

    Science.gov (United States)

    Li, J T; Liao, B; Lan, C Y; Ye, Z H; Baker, A J M; Shu, W S

    2010-01-01

    Averrhoa carambola is a high-biomass tropical tree that has been identified as a Cd accumulator. In the present study, field survey, pot, and hydroponic experiments were conducted to investigate the variation of Cd tolerance and accumulation in cultivars of A. carambola as well as its potential for phytoextraction. In the field survey, it was found that concentrations of Cd in aerial tissues of A. carambola varied greatly among sites and cultivars. The Cd bioconcentration factors (BCFs) and Cd removals by the field-grown A. carambola differed significantly among sites but not among cultivars. Nonetheless, all four carambola cultivars investigated were able to accumulate considerably high concentrations of Cd in their shoots, which indicated that the 4-yr-old carambola stands could remove 0.3 to 51.8% of the total Cd content in the top 20-cm soil layer. When cultured in Cd-spiked soils, the carambola cultivar Hua-Di always showed higher Cd tolerance than the other cultivars; however, this tendency was not confirmed by hydroponic experiment. The Cd BCFs of cultivar Thailand grown in soils with 6 and 12 mg Cd kg(-1) were highest among cultivars, whereas this trend was reversed at 120 mg Cd kg(-1) treatment. Nevertheless, the pot- and hydroponics-grown carambola cultivars generally showed higher capacities to tolerate and accumulate Cd, compared with the control species. The present results indicate that a strong ability to tolerate and accumulate Cd seems to be a trait at the species level in A. carambola, although some degree of variances in both Cd tolerance and accumulation exists among cultivars.

  9. Mercury in mushrooms and soil from the Wieluńska Upland in south-central Poland.

    Science.gov (United States)

    Falandysz, Jerzy; Bielawski, Leszek; Kawano, Masabide; Brzostowski, Andrzej; Chudzyński, Krzysztof

    2002-09-01

    Concentrations of mercury were determined in the fruiting bodies of 15 species of higher mushrooms and underlying soil substrate collected from Wieluńska Upland in northern part of Sandomierska Valley in south-central Poland in 1995. A total of 197 samples of caps, 197 stalks, 30 whole fruiting bodies and 227 soil (0-10 cm layer) were analyzed. Mean mercury concentrations in soil substrate corresponding to 15 mushroom species were between 28 +/- 17 and 85 +/- 62 ng/g dry matter (total range between 3.0-190 ng/g). The average cap to stalk concentration quotients of Hg were around 2 (range between 1.1 +/- 1.1 and 2.8 +/- 1.4). However, this quotient in Larch bolete (Suillus grevillei) was 4.4 +/- 6.3. Concentrations of Hg varied depending on the mushroom species. Parasol Mushroom (Macrolepiota procera) and Horse mushroom (Agaricus arvensis) contained the greatest mean mercury concentrations both in caps (between 4500 +/- 1700 and 4400 +/- 2400 ng/g dry matter) and stalks (between 2800 +/- 1300 and 3000 +/- 2000 ng/g dry matter). Both the Parasol Mushroom and Horse mushroom were characterised also by a greater potential to bioconcentrate mercury from soils as evidenced by great bioconcentration factors (BCFs), which were between 170 +/- 160 and 130 +/- 120 for caps, and 110 +/- 97 and 89 +/- 92 for stalks. Mercury concentrations in caps and stalks of False death cap (Amanita citrina) increased (p Suillus luteus).

  10. Piperonyl butoxide enhances the bioconcentration and photoinduced toxicity of fluoranthene and benzo[a]pyrene to larvae of the grass shrimp (Palaemonetes pugio).

    Science.gov (United States)

    Weinstein, John E; Garner, Thomas R

    2008-04-08

    Piperonyl butoxide (PBO) is a commonly used synergist in many pyrethroid formulations due to its ability to interfere with cytochrome P450 (CYP) monooxygenases. Because PBO can co-occur in the estuarine environment with polycyclic aromatic hydrocarbons (PAHs), a class of compounds metabolized by CYP isozymes, the overall objective of this study was to investigate the influence of PBO on the bioconcentration and photoinduced toxicity of two common PAH contaminants, fluoranthene (FLU) and benzo[a]pyrene (BaP), on the larvae of the grass shrimp (Palaemonetes pugio). PBO alone was not particularly toxic to grass shrimp larvae. In dark exposures and under simulated sunlight (UV-A=211.0+/-7.0 microW/cm(2), UV-B=9.8+/-2.4microW/cm(2)), 96-h LC(50) values were similar (814.4 and 888.6 microg/L, respectively), suggesting that PBO toxicity is not enhanced in the presence of sunlight. The presence of sublethal concentrations of PBO in single PAH toxicity tests increased the bioconcentration of the two tested PAHs, and these increases were greatest at the lowest tested PAH concentrations. Mean bioconcentration factors (BCF) at the three lowest FLU and BaP treatments increased 14.3- and 7.1-fold, respectively, in the low PBO (127 microg/L) exposure compared to that of the no PBO exposure. Under simulated sunlight, PBO exposure also increased the photoinduced toxicity of the two tested PAHs, and this increase occurred in a PBO concentration-dependent fashion. For FLU, 96-h LC(50) values decreased from 2.35 microg/L in the absence of PBO to 0.76 microg/L in the high PBO (256 microg/L) exposure. For BaP, 96-h LC(50) values similarly decreased from 1.02 microg/L in the absence of PBO to 0.30microg/L in the high PBO exposure. The presence of PBO also influenced the PAH tissue residue-response relationship, but in different ways for FLU and BaP. For FLU, slopes of the tissue residue-response relationship decreased in the presence of PBO, and for BaP, there was a trend towards

  11. Effect of pH on the toxicity and bioconcentration of sulfadiazine on Daphnia magna

    DEFF Research Database (Denmark)

    Anskjær, Gitte Gotholdt; Rendal, Cecilie; Kusk, Kresten Ole

    2013-01-01

    The antimicrobial sulfonamide sulfadiazine has in the last decades been detected in environmental water bodies, both surface and ground water. Since pH in the environment may vary considerably, this study examined the toxicity of the amphoter sulfadiazine towards Daphnia magna at pH levels of 6.......0, 7.5 and 8.5, thus taking the impact of speciation into consideration, contrary to earlier eco-toxicity studies conducted at standard conditions. Toxicity tests were performed using the standard ISO 6341 test procedure modified to accommodate the three pH levels and the toxicity was expressed as EC50....... After 48h the EC50 was determined to be 27.2, 188 and 310mgL−1 at pH 6.0, 7.5 and 8.5, respectively, thus demonstrating a significant effect of pH on the toxicity of sulfadiazine. Furthermore, the bioconcentration factor (dry weight) was determined to be 50 and 36 at pH 6.0 and 8.5, respectively...

  12. Evaluation of the cadmium and lead phytoextraction by castor bean (Ricinus communis L.) in hydroponics

    Science.gov (United States)

    Niu, Z. X.; Sun, L. N.

    2017-06-01

    Phytoextraction has been considered as an innovative method to remove toxic metals from soil; higher biomass plants such as castor bean (Ricinus communis L.) have already been considered as a hyperaccumulating candidate. In the present study, castor bean was used to accumulate the cadmium and lead in hydroponic culture, and the root exudates and biomass changes were analyzed. Results demonstrated that ratios of aerial biomass/ root biomass (AW/RW) in treatments declined with concentrations of Cd or Pb. Optical density (OD) at 190 nm and 280 nm of root exudates observed in Cd and Pb treatments were lower than the control. In single Cd or Pb treatments, bioconcentration factors (BCF) of Cd or Pb increased with time and decreased with concentrations, the highest BCFs appeared in Cd5 (14.36) and Pb50 (6.48), respectively. Cd-BCF or Pb-BCF showed positive correlations with AW/RW ratios and OD values, and they were negative correlated with Cd and Pb concentration. Results in this study may supply useful information for phytoremediation of soil contaminated with cadmium and lead in situ.

  13. Bioaccumulation of trace metals in the Antarctic amphipod Paramoera walkeri (Stebbing, 1906): comparison of two-compartment and hyperbolic toxicokinetic models

    International Nuclear Information System (INIS)

    Clason, B.; Duquesne, S.; Liess, M.; Schulz, R.; Zauke, G.-P.

    2003-01-01

    Bioaccumulation of Cd, Pb, Cu and Zn in the Antarctic gammaridean amphipod Paramoera walkeri (Stebbing, 1906) was investigated at Casey station (Australian Antarctic Territory). The main goals were to provide information on accumulation strategies of the organisms tested and to verify toxicokinetic models as a predictive tool. The organisms accumulated metals upon exposure and it was possible to estimate significant model parameters of two-compartment and hyperbolic models. These models were successfully verified in a second toxicokinetic study. However, the application of hyperbolic models appears to be more promising as a predictive tool for metals in amphipods compared to compartment models, which have failed to adequately predict metal accumulation in experiments with increasing external exposures in previous studies. The following kinetic bioconcentration factors (BCFs) for the theoretical equilibrium were determined: 150-630 (Cd), 1600-7000 (Pb), 1700-3800 (Cu) and 670-2400 (Zn). We find decreasing BCFs with increasing external metal dosing but similar results for treatments with and without natural UV radiation and for the combined effect of different exposure regimes (single versus multiple metal exposure) and/or the amphipod collective involved (Beall versus Denison Island). A tentative estimation showed the following sequence of sensitivity of P. walkeri to an increase of soluble metal exposure: 0.2-3.0 μg Cd l -1 , 0.12-0.25 μg Pb l -1 , 0.9-3.0 μg Cu l -1 and 9-26 μg Zn l -1 . Thus, the amphipod investigated proved to be more sensitive as biomonitor compared to gammarids from German coastal waters (with the exception of Cd) and to copepods from the Weddell Sea inferred from literature data

  14. Bioconcentration and acute toxicity of polycyclic musks in two benthic organisms (Chironomus riparius and Lumbriculus variegatus)

    NARCIS (Netherlands)

    Artola-Garicano, E.; Sinnige, T.L.; Holsteijn, I. van; Vaes, W.H.J.; Hermens, J.L.M.

    2003-01-01

    In the current study, the bioconcentration behavior and acute toxicity of two polycyclic musks, Tonalide® 7-acetyl-1,1,3,4,4,6,-hexamethyl-1,2,3,4,-tetrahydronaphthalene (AHTN) and Galaxolide® 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexa-methyl-cyclopenta[γ]-2- benzopyran (HHCB), were studied in two

  15. Mercury in wild mushrooms and underlying soil substrate from Koszalin, North-central Poland.

    Science.gov (United States)

    Falandysz, Jerzy; Jedrusiak, Aneta; Lipka, Krzysztof; Kannan, Kurunthachalam; Kawano, Masahide; Gucia, Magdalena; Brzostowski, Andrzej; Dadej, Monika

    2004-01-01

    Concentrations of total mercury were determined by cold-vapour atomic absorption spectroscopy (CV-AAS) in 221 caps and 221 stalks of 15 species of wild growing higher fungi/mushrooms and 221 samples of corresponding soil substrate collected in 1997-98 in Manowo County, near the city of Koszalin in North-central Poland. Mean mercury concentrations in caps and stalks of the mushroom species examined and soils varied between 30+/-31 and 920+/-280, 17+/-11 and 560+/-220, and 10+/-9 and 170+/-110 ng/g dry matter, respectively. Cap to stalk mercury concentration quotients were from 1.0+/-0.4 in poison pax (Paxillus involutus) to 2.8+/-0.7 in slippery jack (Suillus luteus). Brown cort (Cortinarius malicorius), fly agaric (Amanita muscaria), orange-brown ringless amanita (A. fulva), red-aspen bolete (Leccinum rufum) and mutagen milk cap (Lactarius necator) contained the highest concentrations of mercury both in caps and stalks, and mean concentrations varied between 600+/-750 and 920+/-280 and 370+/-470 and 560+/-220 ng/g dry matter, respectively. An estimate of daily intake of mercury from mushroom consumption indicated that the flesh of edible species of mushrooms may not pose hazards to human health even at a maximum consumption rate of 28 g/day. However, it should be noted that mercury intake from other foods will augment the daily intake rates. Species such as the sickener (Russula emetica), Geranium-scented russula (R. fellea) and poison pax (P. involutus) did not concentrate mercury as evidenced from the bioconcentration factors (BCFs: concentrations in mushroom/concentration in soil substrate), which were less than 1. Similarly, red-hot milk cap (L. rufus), rickstone funnel cap (Clitocybe geotropa) and European cow bolete (S. bovinus) were observed to be weak accumulators of mercury. Fly agaric (A. muscaria) accumulated great concentrations of mercury with BCFs reaching 73+/-42 and 38+/-22 in caps and stalks, respectively. Mercury BCFs of between 4.0+/-2.3 and 23

  16. Bioconcentration of the antidepressant fluoxetine and its effects on the physiological and biochemical status in Daphnia magna.

    Science.gov (United States)

    Ding, Jiannan; Zou, Hua; Liu, Qingqing; Zhang, Shanshan; Mamitiana Razanajatovo, Roger

    2017-08-01

    The aim of this study was to evaluate the bioconcentration potential of fluoxetine and its biological effects in Daphnia magna. After 48h of waterborne exposure, the bioconcentration of fluoxetine in D. magna was determined to be 460.61 and 174.41Lkg -1 for nominal exposure concentrations of 0.5 and 5µgL -1 , respectively. Moreover, various biological endpoints, including physiological responses (filtration and ingestion rates), enzymatic biomarkers related to neurotoxicity [acetylcholinesterase (AChE)] and antioxidant defense [superoxide dismutase (SOD)], and an oxidative stress damage marker [malondialdehyde (MDA)], were assessed. Fluoxetine exposure increased the filtration rate of daphnia, while the ingestion rate was not obviously modified. AChE activity was significantly inhibited, highlighting the neurotoxicity of fluoxetine on D. magna. However, with some alterations in the SOD activity and MDA content, no obvious oxidative damage was observed in D. magna exposed to fluoxetine at the tested concentrations. These results indicate that fluoxetine can be accumulated and consequently induce physiological and biochemical perturbations in D. magna. Copyright © 2017. Published by Elsevier Inc.

  17. Bioconcentration of TNT and RDX in coastal marine biota.

    Science.gov (United States)

    Ballentine, Mark; Tobias, Craig; Vlahos, Penny; Smith, Richard; Cooper, Christopher

    2015-05-01

    The bioconcentration factor (BCF) was measured for 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in seven different marine species of varying trophic levels. Time series and concentration gradient treatments were used for water column and tissue concentrations of TNT, RDX, and their environmentally important derivatives 2-amino-4,6-dintrotoluene (2-ADNT) and 4-amino-2,6-dinitrotoluene (4-ADNT). BCF values ranged from 0.0031 to 484.5 mL g(-1) for TNT and 0.023 to 54.83 mL g(-1) for RDX. The use of log K ow value as an indicator was evaluated by adding marine data from this study to previously published data. For the munitions in this study, log K ow value was a good indicator in the marine environment. The initial uptake and elimination rates of TNT and RDX for Fucus vesiculosus were 1.79 and 0.24 h(-1) for TNT and 0.50 and 0.0035 h(-1) for RDX respectively. Biotransformation was observed in all biota for both TNT and RDX. Biotransformation of TNT favored 4-ADNT over 2-ADNT at ratios of 2:1 for F. vesiculosus and 3:1 for Mytilus edulis. Although RDX derivatives were measureable, the ratios of RDX derivatives were variable with no detectable trend. Previous approaches for measuring BCF in freshwater systems compare favorably with these experiments with marine biota, yet significant gaps on the ultimate fate of munitions within the biota exist that may be overcome with the use stable isotope-labeled munitions substrates.

  18. Evaluation and comparison of benchmark QSAR models to predict a relevant REACH endpoint: The bioconcentration factor (BCF).

    Science.gov (United States)

    Gissi, Andrea; Lombardo, Anna; Roncaglioni, Alessandra; Gadaleta, Domenico; Mangiatordi, Giuseppe Felice; Nicolotti, Orazio; Benfenati, Emilio

    2015-02-01

    The bioconcentration factor (BCF) is an important bioaccumulation hazard assessment metric in many regulatory contexts. Its assessment is required by the REACH regulation (Registration, Evaluation, Authorization and Restriction of Chemicals) and by CLP (Classification, Labeling and Packaging). We challenged nine well-known and widely used BCF QSAR models against 851 compounds stored in an ad-hoc created database. The goodness of the regression analysis was assessed by considering the determination coefficient (R(2)) and the Root Mean Square Error (RMSE); Cooper's statistics and Matthew's Correlation Coefficient (MCC) were calculated for all the thresholds relevant for regulatory purposes (i.e. 100L/kg for Chemical Safety Assessment; 500L/kg for Classification and Labeling; 2000 and 5000L/kg for Persistent, Bioaccumulative and Toxic (PBT) and very Persistent, very Bioaccumulative (vPvB) assessment) to assess the classification, with particular attention to the models' ability to control the occurrence of false negatives. As a first step, statistical analysis was performed for the predictions of the entire dataset; R(2)>0.70 was obtained using CORAL, T.E.S.T. and EPISuite Arnot-Gobas models. As classifiers, ACD and logP-based equations were the best in terms of sensitivity, ranging from 0.75 to 0.94. External compound predictions were carried out for the models that had their own training sets. CORAL model returned the best performance (R(2)ext=0.59), followed by the EPISuite Meylan model (R(2)ext=0.58). The latter gave also the highest sensitivity on external compounds with values from 0.55 to 0.85, depending on the thresholds. Statistics were also compiled for compounds falling into the models Applicability Domain (AD), giving better performances. In this respect, VEGA CAESAR was the best model in terms of regression (R(2)=0.94) and classification (average sensitivity>0.80). This model also showed the best regression (R(2)=0.85) and sensitivity (average>0.70) for

  19. Evidence of lead biomagnification in invertebrate predators from laboratory and field experiments

    International Nuclear Information System (INIS)

    Rubio-Franchini, Isidoro; Rico-Martinez, Roberto

    2011-01-01

    This report includes atomic absorption data from water column, elutriates and zooplankton that demonstrate that lead biomagnifies at El Niagara reservoir, Mexico. Results include field data (bioaccumulation factors) (BAFs) and laboratory data (bioconcentration factors) (BCFs). Two findings: high BAFs for invertebrate predator like Acanthocyclops robustus, Asplanchna brightwellii, Culex sp. larvae, and Hyalella azteca, compared to grazer species Moina micrura and Simocephalus vetulus; low BCF's found for some predators, suggested that lead biomagnifications were taking place. The presence of Moina micrura in the gut of Asplanchna allowed us to design experiments where A. brightwellii was fed lead-exposed M. micrura neonates. The BAF of Asplanchna was 123,684, BCF was 490. Asplanchna individuals fed exposed Moina had 13.31 times more lead than Asplanchna individuals just exposed 48-h to lead, confirming that lead biomagnification occurs. Results of two fish species showed no lead biomagnification, suggesting that lead biomagnification might be restricted to invertebrate predators. - Highlights: → Study shows lead biomagnification evidence in reservoirs where top predators are invertebrates. → Study discusses why in previous studies lead biomagnifications were not detected. → Evidence of biomagnification comes from field and laboratory studies. - This study shows evidence (from field and laboratory experiments) of lead biomagnification in a freshwater reservoir where the main predators are invertebrates.

  20. Using DTPA-extractable soil fraction to assess the bioconcentration factor of plants in phytoremediation of urban soils

    Science.gov (United States)

    Rodríguez-Bocanegra, Javier; Roca, Núria; Tume, Pedro; Bech, Jaume

    2017-04-01

    Urban soils may be highly contaminated with potentially toxic metals, as a result of intensive anthropogenic activities. Developing cities are increasing the number of lands where is practiced the urban agriculture. In this way, it is necessary to assess the part of heavy metals that is transferred to plants in order to a) know the potential health risk that represent soils and b) know the relation soil-plant to assess the ability of these plants to remove heavy metals from soil. Nowadays, to assess the bioconcentration factor (BF) of plants in phytoremediation, the pseudototal o total concentration has been used by many authors. Two different urban soils with similar pH and carbonates content but with different pollution degree were phytoremediated with different plant species. Urban soil from one Barcelona district (Spain), the most contaminated soil, showed an extractability of Cu, Pb and Zn of 9.6, 6.7 and 5.8% of the total fraction respectively. The soil from Talcahuano city (Chile), with contents of heavy metals slightly above the background upper limit, present values of 15.5, 13.5 and 12% of the total fraction of studied heavy metals. Furthermore, a peri-urban analysed soil from Azul (Argentina) also showed an elevated extractability with values of 24, 13.5 and 14% of the Cu, Pb and Zn contents respectively. These soils presented more extractability than other disturbed soils, like for example, soils from mine areas. The urban soils present more developed soil with an interaction between solution and solid phase in polluted systems. The most important soil surface functional groups include the basal plane of phyllosilicates and metal hydroxyls at edge sites of clay minerals, iron oxyhydroxides, manganese oxyhydroxides and organic matter. The interaction between solution and solid phase in polluted urban systems tends to form labile associations and pollutants are more readily mobilized because their bonds with soil particles are weaker. Clay and organic

  1. Heavy metal sensitivity and bioconcentration in oribatid mites (Acari, Oribatida)

    Energy Technology Data Exchange (ETDEWEB)

    Skubala, Piotr, E-mail: piotr.skubala@us.edu.pl [Department of Ecology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland); Zaleski, Tomasz [Department of Soil Science and Soil Protection, Agricultural University in Krakow, Mickiewicza 21, 31-120 Cracow (Poland)

    2012-01-01

    In this study we aimed to identify different reactions of oribatid species to heavy metal pollution and to measure concentrations of cadmium, zinc and copper in oribatid species sampled along a gradient. Oribatid mites were sampled seasonally during two years in five meadows located at different distances from the zinc smelter in the Olkusz District, southern Poland. Oribatids were shown to withstand critical metal concentration and established comparatively abundant and diverse communities. The highest abundance and species richness of oribatids were recorded in soils with moderate concentrations of heavy metals. Four different responses of oribatid species to heavy metal pollution were recognized. Heavy metals (Zn, Pb, Cd, Ni) and various physical (bulk density, field capacity, total porosity) and chemical (K{sub av}, P{sub av}, N, C, pH) factors were recognized as the structuring forces that influence the distribution of oribatid species. Analysis by atomic absorption spectrophotometry revealed large differences in metal body burdens among species. None of the species can be categorized as accumulators or non-accumulators of the heavy metals - the pattern depends on the metal. The process of bioconcentration of the toxic metal (regulated) and essential elements (accumulated) was generally different in the five oribatid species studied. - Highlights: Black-Right-Pointing-Pointer Responses of oribatid mites to metal contamination along a gradient in meadow soils were studied. Black-Right-Pointing-Pointer Small concentrations of heavy metals positively influenced the abundance of oribatid mites. Black-Right-Pointing-Pointer Four different responses of oribatid species to heavy metal pollution were recognised. Black-Right-Pointing-Pointer Bioaccumulation of the toxic metal and essential elements proceeded differently in oribatid species. Black-Right-Pointing-Pointer Five studied oribatid species were deconcentrators of cadmium.

  2. Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant. IV. Bioconcentration of mercury in in situ aquatic and terrestrial plants at Ganjam, India.

    Science.gov (United States)

    Lenka, M; Panda, K K; Panda, B B

    1992-02-01

    In situ aquatic and terrestrial plants including a few vegetable and crop plants growing in and around a chloralkali plant at Ganjam, India were analyzed for concentrations of root and shoot mercury. The aquatic plants found to bioconcentrate mercury to different degrees included Marsilea spp., Spirodela polyrhiza, Jussiea repens, Paspalum scrobiculatam, Pistia stratiotes, Eichhornia crassipes, Hygrophila schulli, Monochoria hastata and Bacopa monniera. Among wild terrestrial plants Chloris barbata, Cynodon dactylon, Cyperus rotundus and Croton bonplandianum were found growing on heavily contaminated soil containing mercury as high as 557 mg/kg. Analysis of mercury in root and shoot of these plants in relation to the mercury levels in soil indicated a significant correlation between soil and plant mercury with the exception of C. bonplandianum. Furthermore, the tolerance to mercury toxicity was highest with C. barbata followed by C. dactylon and C. rotundus, in that order. The rice plants analyzed from the surrounding agricultural fields did not show any significant levels of bioconcentrated mercury. Of the different vegetables grown in a contaminated kitchen garden with mercury level at 8.91 mg/kg, the two leafy vegetables, namely cabbage (Brassica oleracea) and amaranthus (Amaranthus oleraceous), were found to bioconcentrate mercury at statistically significant levels. The overall study indicates that the mercury pollution is very much localized to the specific sites in the vicinity of the chloralkali plant.

  3. Bioconcentration of zinc and cadmium in ectomycorrhizal fungi and associated aspen trees as affected by level of pollution

    International Nuclear Information System (INIS)

    Krpata, Doris; Fitz, Walter; Peintner, Ursula; Langer, Ingrid; Schweiger, Peter

    2009-01-01

    Concentrations of Zn and Cd were measured in fruitbodies of ectomycorrhizal (ECM) fungi and leaves of co-occurring accumulator aspen. Samples were taken on three metal-polluted sites and one control site. Fungal bioconcentration factors (BCF = fruitbody concentration: soil concentration) were calculated on the basis of total metal concentrations in surface soil horizons (BCF tot ) and NH 4 NO 3 -extractable metal concentrations in mineral soil (BCF lab ). When plotted on log-log scale, values of BCF decreased linearly with increasing soil metal concentrations. BCF lab for both Zn and Cd described the data more closely than BCF tot . Fungal genera differed in ZnBCF but not in CdBCF. The information on differences between fungi with respect to their predominant occurrence in different soil horizons did not improve relations of BCF with soil metal concentrations. Aspen trees accumulated Zn and Cd to similar concentrations as the ECM fungi. Apparently, the fungi did not act as an effective barrier against aspen metal uptake by retaining the metals. - Populus tremula and associated ectomycorrhizal fungi accumulate zinc and cadmium to similar concentrations

  4. Acute toxicity and bioconcentration of 14C-fenvalerate in tilapianilotica, the Bioavilability and biological activity of its residues in rats

    International Nuclear Information System (INIS)

    Aly, M.A.S.

    2003-01-01

    Fresh water fish tilapia treated with 300 MU/L of 1 4C-fenvalerate died at 24 h post treatment with (Ld50, 12 h). however, when sand sediments were pure in the glass aquaria (250 g/L), 50% of fish survived with (Lc50 extended to 72-96 h) a bioconcentration factor (BCF) of 800 for fenvalerate was observed at 24 h in tilapia. Maximum accumulation of 1 4C-fenvalerate in fish was at 24 h (15.6 Mg/g) and 50% eliminated in 96 h. At the end of depuration period of 8 days 36% of radioactivity (3.0 Mg/g) could be recovered in fish (40% in head, the rest in different parts of body). In believability study, when rats were fed on dried fish the majority of radioactivity was eliminated at 48 h (19.0% in urine and 68.6% in faeces) with majority of radioactivity eliminated as fenvalerate equivalent in 5 days

  5. Uptake of polybrominated diphenyl ethers by carrot and lettuce crops grown in compost-amended soils.

    Science.gov (United States)

    Bizkarguenaga, E; Iparraguirre, A; Oliva, E; Quintana, J B; Rodil, R; Fernández, L A; Zuloaga, O; Prieto, A

    2016-02-01

    The uptake of polybrominated diphenyl ethers (PBDEs) by carrot and lettuce was investigated. Degradation of PBDEs in soil in the absence of the plants was discarded. Different carrot (Nantesa and Chantenay) and lettuce (Batavia Golden Spring and Summer Queen) varieties were grown in fortified or contaminated compost-amended soil mixtures under greenhouse conditions. After plant harvesting, roots (core and peel) and leaves were analyzed separately for carrot, while for lettuce, leaves and hearts were analyzed together. The corresponding bioconcentration factors (BCFs) were calculated. In carrots, a concentration gradient of 2,2',3,4,4',5'-hexabromodiphenyl ether (BDE-138) became evident that decreased from the root peel via root core to the leaves. For decabromodiphenyl ether (BDE-209) at the low concentration level (7 and 20 ng g(-1)), the leaves incorporated the highest concentration of the target substance. For lettuce, a decrease in the BCF value (from 0.24 to 0.02) was observed the higher the octanol-water partition coefficient, except in the case of BDE-183 (BCF = 0.51) and BDE-209 (BCF values from 0.41 to 0.74). Significant influence of the soils and crop varieties on the uptake could not be supported. Metabolic debromination, hydroxylation or methylation of the target PBDEs in the soil-plant system was not observed.

  6. Effects of artificial sweeteners on metal bioconcentration and toxicity on a green algae Scenedesmus obliquus.

    Science.gov (United States)

    Hu, Hongwei; Deng, Yuanyuan; Fan, Yunfei; Zhang, Pengfei; Sun, Hongwen; Gan, Zhiwei; Zhu, Hongkai; Yao, Yiming

    2016-05-01

    The ecotoxicity of heavy metals depends much on their speciation, which is influenced by other co-existing substances having chelating capacity. In the present study, the toxic effects of Cd(2+) and Cu(2+) on a green algae Scenedesmus obliquus were examined in the presence of two artificial sweeteners (ASs), acesulfame (ACE) and sucralose (SUC) by comparing the cell specific growth rate μ and pulse-amplitude-modulated (PAM) parameters (maximal photosystem II photochemical efficiency Fv/Fm, actual photochemical efficiency Yield, and non-photochemical quenching NPQ) of the algae over a 96-h period. Simultaneously, the bioconcentration of the metals by the algal cells in the presence of the ASs was measured. The presence of ACE enhanced the growth of S. obliquus and promoted the bioconcentration of Cd(2+) in S. obliquus, while the impacts of SUC were not significant. Meanwhile, EC50 values of Cd(2+) on the growth of S. obliquus increased from 0.42 mg/L to 0.54 mg/L and 0.48 mg/L with the addition of 1.0 mg/L ACE and SUC, respectively. As for Cu(2+), EC50 values increased from 0.13 mg/L to 0.17 mg/L and 0.15 mg/L with the addition of 1.0 mg/L ACE and SUC, respectively. In summary, the two ASs reduced the toxicity of the metals on the algae, with ACE showing greater effect than SUC. Although not as sensitive as the cell specific growth rate, PAM parameters could disclose the mechanisms involved in metal toxicity at subcellular levels. This study provides the first evidence for the possible impact of ASs on the ecotoxicity of heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Applicability of concentration factors for the heavy metals hazard identification

    International Nuclear Information System (INIS)

    Guzzi, Luigi

    2006-01-01

    The bioconcentration factor (BCF) and bioaccumulation factor (BAF) used as criteria for heavy metals hazards identification are inadequate. These considerations is based on the argument that the BCF-BAF model was developed and validated for xenobiotic synthetic organic substances and that does not recognize the complex internal metal dynamic of uptake, the internal sequestration, and the essentially of some heavy metals [it

  8. Can an aquatic macrophyte bioaccumulate glyphosate? A watershed scale study using a non-target hydrophyte Ludwigia peploides

    Science.gov (United States)

    Perez, Debora; Okada, Elena; Menone, Mirta; Aparicio, Virginia; Costa, Jose Luis

    2017-04-01

    The hydrophyte Ludwigia peploides is widely distributed in South America streams, and therefore, it can be used as a biomonitor for pesticides used in agricultural production. Glyphosate is one of the main pesticides used in Argentina. This has resulted in its occurrence in non-target wetland ecosystems. The objectives of this study were to: 1) establish and validate an extraction and quantification methodology for glyphosate in L.peploides plants, and 2) evaluated the role of this species as a glyphosate biomonitor in the agricultural watershed of the El Crespo stream. For the first objective, we collected plant material in the field. The leaves were dissected and oven dried at 60° C, grinded and sieved through a 0.5 mm mesh. Different solutions were tested for the extraction step. Labeled glyphosate was used as an internal standard to evaluate the recovery rate and the matrix effect of the different extraction methods. Glyphosate was derivatized with FMOC-Cl and then quantified by ultra-performance liquid chromatography (UPLC) coupled to a mass tandem spectrometer (MS/MS). The method based on an aqueous phase extraction step 0.01 mg/mL of activated carbon as a clean-up to decrease the matrix interference had a recovery of 117 ± 20% and the matrix effect was less than 20%. This method was used to analyze the glyphosate levels in L.peploides in the El Crespo stream. For the second objective, plants of L.peploides were collected on March 2016 in eight monitoring sites of the stream from the headwaters to the stream mouth. Surface water and sediments samples were collected at the same time to calculate the bioconcentration factors (BCFs) and biota-sediment bioaccumulation factors (BSAFs). The BCFs ranged between 28.57 - 280 L/Kg and the BSAFs ranged between 2.52- 30.66 at different sites. These results indicate that L.peploides can bioaccumulated glyphosate in its leaves and the major bioavailability is given mainly by the herbicide molecules present in surface

  9. Evaluation and comparison of benchmark QSAR models to predict a relevant REACH endpoint: The bioconcentration factor (BCF)

    Energy Technology Data Exchange (ETDEWEB)

    Gissi, Andrea [Laboratory of Environmental Chemistry and Toxicology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano (Italy); Dipartimento di Farmacia – Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari (Italy); Lombardo, Anna; Roncaglioni, Alessandra [Laboratory of Environmental Chemistry and Toxicology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano (Italy); Gadaleta, Domenico [Laboratory of Environmental Chemistry and Toxicology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano (Italy); Dipartimento di Farmacia – Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari (Italy); Mangiatordi, Giuseppe Felice; Nicolotti, Orazio [Dipartimento di Farmacia – Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari (Italy); Benfenati, Emilio, E-mail: emilio.benfenati@marionegri.it [Laboratory of Environmental Chemistry and Toxicology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano (Italy)

    2015-02-15

    The bioconcentration factor (BCF) is an important bioaccumulation hazard assessment metric in many regulatory contexts. Its assessment is required by the REACH regulation (Registration, Evaluation, Authorization and Restriction of Chemicals) and by CLP (Classification, Labeling and Packaging). We challenged nine well-known and widely used BCF QSAR models against 851 compounds stored in an ad-hoc created database. The goodness of the regression analysis was assessed by considering the determination coefficient (R{sup 2}) and the Root Mean Square Error (RMSE); Cooper's statistics and Matthew's Correlation Coefficient (MCC) were calculated for all the thresholds relevant for regulatory purposes (i.e. 100 L/kg for Chemical Safety Assessment; 500 L/kg for Classification and Labeling; 2000 and 5000 L/kg for Persistent, Bioaccumulative and Toxic (PBT) and very Persistent, very Bioaccumulative (vPvB) assessment) to assess the classification, with particular attention to the models' ability to control the occurrence of false negatives. As a first step, statistical analysis was performed for the predictions of the entire dataset; R{sup 2}>0.70 was obtained using CORAL, T.E.S.T. and EPISuite Arnot–Gobas models. As classifiers, ACD and log P-based equations were the best in terms of sensitivity, ranging from 0.75 to 0.94. External compound predictions were carried out for the models that had their own training sets. CORAL model returned the best performance (R{sup 2}{sub ext}=0.59), followed by the EPISuite Meylan model (R{sup 2}{sub ext}=0.58). The latter gave also the highest sensitivity on external compounds with values from 0.55 to 0.85, depending on the thresholds. Statistics were also compiled for compounds falling into the models Applicability Domain (AD), giving better performances. In this respect, VEGA CAESAR was the best model in terms of regression (R{sup 2}=0.94) and classification (average sensitivity>0.80). This model also showed the best

  10. Evaluation and comparison of benchmark QSAR models to predict a relevant REACH endpoint: The bioconcentration factor (BCF)

    International Nuclear Information System (INIS)

    Gissi, Andrea; Lombardo, Anna; Roncaglioni, Alessandra; Gadaleta, Domenico; Mangiatordi, Giuseppe Felice; Nicolotti, Orazio; Benfenati, Emilio

    2015-01-01

    The bioconcentration factor (BCF) is an important bioaccumulation hazard assessment metric in many regulatory contexts. Its assessment is required by the REACH regulation (Registration, Evaluation, Authorization and Restriction of Chemicals) and by CLP (Classification, Labeling and Packaging). We challenged nine well-known and widely used BCF QSAR models against 851 compounds stored in an ad-hoc created database. The goodness of the regression analysis was assessed by considering the determination coefficient (R 2 ) and the Root Mean Square Error (RMSE); Cooper's statistics and Matthew's Correlation Coefficient (MCC) were calculated for all the thresholds relevant for regulatory purposes (i.e. 100 L/kg for Chemical Safety Assessment; 500 L/kg for Classification and Labeling; 2000 and 5000 L/kg for Persistent, Bioaccumulative and Toxic (PBT) and very Persistent, very Bioaccumulative (vPvB) assessment) to assess the classification, with particular attention to the models' ability to control the occurrence of false negatives. As a first step, statistical analysis was performed for the predictions of the entire dataset; R 2 >0.70 was obtained using CORAL, T.E.S.T. and EPISuite Arnot–Gobas models. As classifiers, ACD and log P-based equations were the best in terms of sensitivity, ranging from 0.75 to 0.94. External compound predictions were carried out for the models that had their own training sets. CORAL model returned the best performance (R 2 ext =0.59), followed by the EPISuite Meylan model (R 2 ext =0.58). The latter gave also the highest sensitivity on external compounds with values from 0.55 to 0.85, depending on the thresholds. Statistics were also compiled for compounds falling into the models Applicability Domain (AD), giving better performances. In this respect, VEGA CAESAR was the best model in terms of regression (R 2 =0.94) and classification (average sensitivity>0.80). This model also showed the best regression (R 2 =0.85) and

  11. Effects of titanium dioxide nanoparticles on lead bioconcentration and toxicity on thyroid endocrine system and neuronal development in zebrafish larvae.

    Science.gov (United States)

    Miao, Wei; Zhu, Biran; Xiao, Xiaohong; Li, Ying; Dirbaba, Niguse Bekele; Zhou, Bingsheng; Wu, Hongjuan

    2015-04-01

    Nanoparticles (NPs) have attracted considerable attention because of their wide range of applications. Interactions between heavy metals (e.g., Pb) and NPs in aquatic environments may modify the bioavailability and toxicity of heavy metals. Therefore, this study investigated the influence of NPs (e.g., nano-TiO2) on the bioavailability and toxicity of Pb and its effects in the thyroid endocrine and nervous systems of zebrafish (Danio rerio) larvae. Zebrafish embryos (2-h post-fertilization) were exposed to five concentrations of Pb alone (0, 5, 10, 20, and 30μg/L) or in combination with nano-TiO2 (0.1mg/L) until 6 days post-fertilization. Results showed that the bioconcentration of Pb was significantly enhanced when combined with nano-TiO2 than when used alone. Zebrafish exposure to Pb alone at 30μg/L significantly decreased the thyroid hormone levels (T4 and T3), whereas nano-TiO2 treatment alone did not produce detectable changes. The levels of T4 and T3 were further decreased when Pb was combined with nano-TiO2 than when used alone. The transcription of the thyroid hormone-related factor tg gene was remarkably down-regulated by Pb treatment alone but up-regulated when Pb was combined with nano-TiO2. The significant up-regulation of tshβ gene and the down-regulation of TTR gene expression in the hypothalamic-pituitary-thyroid were observed in Pb with or without nano-TiO2 treatment groups. In addition, the transcription of genes involved in central nervous system (CNS) development (α-tubulin, mbp, gfap and shha) were significantly down-regulated by Pb and nano-TiO2 co-exposure as compared with Pb exposure alone. The locomotion activity analyzes confirmed that nano-TiO2 might enhance the toxicity of Pb to CNS development. These results suggest that nano-TiO2 increase bioconcentration of lead, which lead to the disruption of thyroid endocrine and neuronal system in zebrafish larvae. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Bio-concentration of Polycyclic Aromatic Hydrocarbons in the grey Mangrove (Avicennia marina along eastern coast of the Red Sea

    Directory of Open Access Journals (Sweden)

    El-Amin Bashir M.

    2017-12-01

    Full Text Available There are numerous sources of chemical pollutants which can impact the mangrove ecosystem through adjacent waters, industrial and sewage discharges and air depositions. Polycyclic aromatic hydrocarbons (PAHs are semi volatile ubiquitous anthropogenic pollutants detected in all environmental compartments. In the monitoring framework for the mangrove ecosystem along the Red Sea coast of Saudi Arabia, nine mangrove stands were examined for the accumulation of PAHs. Polycyclic aromatic hydrocarbons were measured using Gas Chromatography-Mass Spectrometry (GC-MS. The mean values detected for total PAHs in sediments, roots and leaf were 2.98, 8.57 and 23.43 ng/g respectively. The trend of the total PAHs concentration in all sites showed the descending order: leaf > roots > sediments. Beside the sandy nature of the sediments, the presences of all stands in remote areas fare from the direct anthropogenic effects lead to these relative low values. PAH bio-concentration factors for leaf are two to three magnitudes higher than that in roots, suggesting atmosphere deposition /leaf uptake mechanism in addition to the sediment/root mechanism. The diagnostic ratios revealed that the sources of PAHs are mainly pyrogenic.

  13. Survey on composition and bioconcentration potential of 12 metallic elements in King Bolete (Boletus edulis) mushroom that emerged at 11 spatially distant sites.

    Science.gov (United States)

    Falandysz, Jerzy; Frankowska, Aneta; Jarzynska, Grazyna; Dryzałowska, Anna; Kojta, Anna K; Zhang, Dan

    2011-01-01

    This paper provides data on baseline concentrations, interrelationships and bioconcentration potential of 12 metallic elements by King Bolete collected from 11 spatially distant sites across Poland. There are significant differences in concentrations of metals (Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Sr, Zn) and their bioconcentration potential in King Bolete Boletus edulis at 11 spatially distant sites surveyed across Poland. These have resulted from significant geographical differences in trace metal concentrations in a layer (0-10 cm) of organic and mineral soil underneath to fruiting bodies and possible local bioavailabilities of macro- (Ca, K, Mg, Na) and trace metals (Al, Ba, Cd, Cu, Fe, Mn, Sr, Zn) to King Bolete. The use of highly appreciated wild-grown edible King Bolete mushroom has established a baseline measure of regional minerals status, heavy metals pollution and assessment of intake rates for wild mushroom dish fanciers against which future changes can be compared. Data on Cd, Cu and Zn from this study and from literature search can be useful to set the maximum limit of these metals in King Bolete collected from uncontaminated (background) areas. In this report also reviewed are data on Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Sr and Zn accumulation in King Bolete.

  14. Heavy metal tolerance and accumulation of Triarrhena sacchariflora, a large amphibious ornamental grass.

    Science.gov (United States)

    Tian, R N; Yu, S; Wang, S G; Zhang, Y; Tang, J Y; Liu, Y L; Nie, Y H

    2013-01-01

    In this study, we report the tolerance and accumulation of Triarrhena sacchariflora to copper (Cu) and cadmium (Cd). The results show that T. sacchariflora had strong tolerance to Cu and Cd stress. The tolerance indexes (TI) were greater than 0.5 for all treatments. The bioconcentration factors (BCFs) to Cu and Cd were both above 1.0. The accumulation ability of roots was stronger than that of shoots, and ranges of BCF to Cu and Cd in roots were 37.89-79.08 and 83.96-300.57, respectively. However, the translocation ability to Cu and Cd was weak, with more than 86% of Cu or Cd accumulated in roots, suggesting an exclusion strategy for heavy metal tolerance. The uptake efficiency (UE) and translocation efficiency (TE) to Cu and Cd increased linearly as the Cu and Cd concentration in the substrate increased. UE was higher than TE, with a maximum of 2,118.90 μg g(-1) root dry weight (DW) (50 mg L(-1) Cu) and 1,847.51 μg g(-1) root DW (20 mg L(-1)Cd), respectively. The results indicate that T. sacchariflora is a Cu- and Cd-tolerant non-hyperaccumulator plant, suggesting that T. sacchariflora could play an important role in phytoremediation in areas contaminated with Cu and Cd.

  15. Bioaccumulation of heavy metals both in wild and mariculture food chains in Daya Bay, South China

    Science.gov (United States)

    Qiu, Yao-Wen

    2015-09-01

    Bioaccumulation and trophic transfer of heavy metals both in the natural marine ecosystem (seawater, sediment, coral reef, phytoplankton, macrophyte, shrimp, crab, shellfish, planktivorous and carnivorous fish) and in the mariculture ecosystem (compound feed, trash fish, farmed pompano and snapper) were studied at Daya Bay, a typical subtropical bay in Southern China. The levels of Cu, Zn, Pb and Cd in sediment were 11.7, 10.2, 53.8 and 2.8 times than those in coral reef, respectively. Pb and Zn levels were markedly higher in phytoplankton than in macrophyte, probably caused by the larger specific surface area in phytoplankton. The highest levels of Zn (98.1), Pb (1.87) and Cd (5.11 μg g-1 dw) in wild organisms were all found in clam (Veremolpa scabra), indicating that these metals were apt to bioaccumulate in shellfish. The average concentrations of Cu, Zn, Pb and Cd in wild fish were 3.7, 2.1, 0.4 and 22.2 times than those in farmed fish, confirming the "growth dilution" hypothesis in farmed fish. Heavy metal bioconcentration factors (BCFs) in algae, bioaccumulation factors (BAFs) in wild species and transfer factors (TFs) in organism were calculated and discussed. The results suggested that biologically essential Cu and Zn were easier to accumulate in fish than non-essential Cd. Concentrations of Cu, Zn and Cd were several times higher in wild fish than in farmed fish whereas the opposite was observed for Pb. This metal also showed the highest transfer factor from food, which means that special attention must be given to fish feed production in relation to metal contamination.

  16. Element composition of biota, water and sediment in the Forsmark area, Baltic Sea. Concentrations, bioconcentration factors and partitioning coefficients (Kd) of 48 elements

    International Nuclear Information System (INIS)

    Kumblad, Linda; Bradshaw, Clare

    2008-08-01

    In this study the elemental composition of biota, water and sediment from a shallow bay in the Forsmark region have been determined. The report presents data for 48 different elements (Al, As, Ba, Br, C, Ca, Cd, Ce, Cl, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Gd, Hg, Ho, I, K, Li, Lu, Mg, Mn, N, Na, Nd, Ni, P, Pb, Pr, Ra, Rb, S, Se, Si, Sm, Tb, Th, Ti, Tm, V, Yb, Zn, Zr) in all major functional groups of the coastal ecosystem (phytoplankton, zooplankton, benthic microalgae, macroalgae, macrophytes, benthic herbivores, benthic filter feeders, benthic detrivores, planktivorous fish, benthic omnivorous fish, carnivorous fish, dissolved and particulate matter in the water and the sediment) during spring 2005. The overall aim of the study is to contribute to a better understanding of ecological properties and processes that govern uptake and transfer of trace elements, heavy-metals, radionuclides and other non-essential elements/contaminants in coastal environments of the Baltic Sea. In addition, the data was collected to provide site-specific Bioconcentration Factors (BCF), Biomagnification Factors (BMF), partitioning coefficients (K d ) and element ratios (relative to carbon) for use in ongoing SKB safety assessments. All these values, as well as the element concentration data from which they are derived, are presented here. As such, this is mainly a data report, although initial interpretations of the data also are presented and discussed. Reported data include element concentrations, CNP-stoichiometry, and multivariate data analysis. Elemental concentrations varied greatly between organisms and environmental components, depending on the function of the elements, and the habitat, ecosystem function, trophic level and morphology (taxonomy) of the organisms. The results show for instance that food intake and metabolism strongly influence the elemental composition of organisms. The three macrophytes had quite similar elemental composition (despite their taxonomic differences

  17. Fate, toxicity and bioconcentration of cadmium on Pseudokirchneriella subcapitata and Lemna minor in mid-term single tests.

    Science.gov (United States)

    Clément, Bernard; Lamonica, Dominique

    2018-03-01

    In the frame of a project which consists in modeling a laboratory microcosm under cadmium pressure, we initiated this study on the fate and effects of cadmium in the presence of either the microalga Pseudokirchneriella subcapitata or the duckweed Lemna minor, two organisms of the microcosm. For each organism, growth inhibition tests on a duration of 2-3 weeks were carried out with the objective of linking effects with total dissolved, ionic and internalized forms of cadmium. Numbers of organisms (algal cells or duckweed fronds) in 2-L beakers filled with synthetic nutritive medium containing EDTA were counted during the course of assays, while cadmium concentrations in the water and in the organisms were measured. Free cadmium fraction was calculated using PHREEQC, a computer program for chemical speciation. Results showed that cadmium toxicity to microalgae could be correlated to the free divalent fraction of this metal, limited by the presence of EDTA, and to its concentration in the organisms. Bioconcentration factors for our medium were suggested for P. subcapitata (111,000 on the basis of free cadmium concentration) and L. minor (17,812 on the basis of total dissolved concentration). No effect concentrations were roughly estimated around 400 µg/g for Pseudokirchneriella subcapitata and 200-300 µg/g for Lemna minor. This study is a first step towards a fate model based on chemical speciation for a better understanding of microcosm results.

  18. Effect of transpiration on plant accumulation and translocation of PPCP/EDCs

    International Nuclear Information System (INIS)

    Dodgen, Laurel K.; Ueda, Aiko; Wu, Xiaoqin; Parker, David R.; Gan, Jay

    2015-01-01

    The reuse of treated wastewater for agricultural irrigation in arid and hot climates where plant transpiration is high may affect plant accumulation of pharmaceutical and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs). In this study, carrot, lettuce, and tomato plants were grown in solution containing 16 PPCP/EDCs in either a cool-humid or a warm-dry environment. Leaf bioconcentration factors (BCF) were positively correlated with transpiration for chemical groups of different ionized states (p < 0.05). However, root BCFs were correlated with transpiration only for neutral PPCP/EDCs (p < 0.05). Neutral and cationic PPCP/EDCs showed similar accumulation, while anionic PPCP/EDCs had significantly higher accumulation in roots and significantly lower accumulation in leaves (p < 0.05). Results show that plant transpiration may play a significant role in the uptake and translocation of PPCP/EDCs, which may have a pronounced effect in arid and hot climates where irrigation with treated wastewater is common. - Highlights: • Leaf accumulation of PPCP/EDCs is related on plant transpiration. • Cationic and neutral PPCP/EDCs have similar leaf and root accumulation. • Anionic PPCP/EDCs have greater root accumulation and lesser leaf accumulation. • PPCP/EDCs are extensively metabolized in plant tissue and hydroponic solution. - High plant transpiration in arid and hot areas may lead to increased foliar accumulation of PPCP/EDCs from treated wastewater irrigation

  19. Soil-plant transfer models for metals to improve soil screening value guidelines valid for São Paulo, Brazil.

    Science.gov (United States)

    Dos Santos-Araujo, Sabrina N; Swartjes, Frank A; Versluijs, Kees W; Moreno, Fabio Netto; Alleoni, Luís R F

    2017-11-07

    In Brazil, there is a lack of combined soil-plant data attempting to explain the influence of specific climate, soil conditions, and crop management on heavy metal uptake and accumulation by plants. As a consequence, soil-plant relationships to be used in risk assessments or for derivation of soil screening values are not available. Our objective in this study was to develop empirical soil-plant models for Cd, Cu, Pb, Ni, and Zn, in order to derive appropriate soil screening values representative of humid tropical regions such as the state of São Paulo (SP), Brazil. Soil and plant samples from 25 vegetable species in the production areas of SP were collected. The concentrations of metals found in these soil samples were relatively low. Therefore, data from temperate regions were included in our study. The soil-plant relations derived had a good performance for SP conditions for 8 out of 10 combinations of metal and vegetable species. The bioconcentration factor (BCF) values for Cd, Cu, Ni, Pb, and Zn in lettuce and for Cd, Cu, Pb, and Zn in carrot were determined under three exposure scenarios at pH 5 and 6. The application of soil-plant models and the BCFs proposed in this study can be an important tool to derive national soil quality criteria. However, this methodological approach includes data assessed under different climatic conditions and soil types and need to be carefully considered.

  20. Element composition of biota, water and sediment in the Forsmark area, Baltic Sea. Concentrations, bioconcentration factors and partitioning coefficients (K{sub d}) of 48 elements

    Energy Technology Data Exchange (ETDEWEB)

    Kumblad, Linda; Bradshaw, Clare (Dept. of Systems Ecology, Stockholm Univ. (Sweden))

    2008-08-15

    In this study the elemental composition of biota, water and sediment from a shallow bay in the Forsmark region have been determined. The report presents data for 48 different elements (Al, As, Ba, Br, C, Ca, Cd, Ce, Cl, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Gd, Hg, Ho, I, K, Li, Lu, Mg, Mn, N, Na, Nd, Ni, P, Pb, Pr, Ra, Rb, S, Se, Si, Sm, Tb, Th, Ti, Tm, V, Yb, Zn, Zr) in all major functional groups of the coastal ecosystem (phytoplankton, zooplankton, benthic microalgae, macroalgae, macrophytes, benthic herbivores, benthic filter feeders, benthic detrivores, planktivorous fish, benthic omnivorous fish, carnivorous fish, dissolved and particulate matter in the water and the sediment) during spring 2005. The overall aim of the study is to contribute to a better understanding of ecological properties and processes that govern uptake and transfer of trace elements, heavy-metals, radionuclides and other non-essential elements/contaminants in coastal environments of the Baltic Sea. In addition, the data was collected to provide site-specific Bioconcentration Factors (BCF), Biomagnification Factors (BMF), partitioning coefficients (K{sub d}) and element ratios (relative to carbon) for use in ongoing SKB safety assessments. All these values, as well as the element concentration data from which they are derived, are presented here. As such, this is mainly a data report, although initial interpretations of the data also are presented and discussed. Reported data include element concentrations, CNP-stoichiometry, and multivariate data analysis. Elemental concentrations varied greatly between organisms and environmental components, depending on the function of the elements, and the habitat, ecosystem function, trophic level and morphology (taxonomy) of the organisms. The results show for instance that food intake and metabolism strongly influence the elemental composition of organisms. The three macrophytes had quite similar elemental composition (despite their taxonomic

  1. Phthalate esters contamination in soil and plants on agricultural land near an electronic waste recycling site.

    Science.gov (United States)

    Ma, Ting Ting; Christie, Peter; Luo, Yong Ming; Teng, Ying

    2013-08-01

    The accumulation of phthalic acid esters (PAEs) in soil and plants in agricultural land near an electronic waste recycling site in east China has become a great threat to the neighboring environmental quality and human health. Soil and plant samples collected from land under different utilization, including fallow plots, vegetable plots, plots with alfalfa (Medicago sativa L.) as green manure, fallow plots under long-term flooding and fallow plots under alternating wet and dry periods, together with plant samples from relative plots were analyzed for six PAE compounds nominated as prior pollutants by USEPA. In the determined samples, the concentrations of six target PAE pollutants ranged from 0.31-2.39 mg/kg in soil to 1.81-5.77 mg/kg in various plants (dry weight/DW), and their bioconcentration factors (BCFs) ranged from 5.8 to 17.9. Health risk assessments were conducted on target PAEs, known as typical environmental estrogen analogs, based on their accumulation in the edible parts of vegetables. Preliminary risk assessment to human health from soil and daily vegetable intake indicated that DEHP may present a high-exposure risk on all ages of the population in the area by soil ingestion or vegetable consumption. The potential damage that the target PAE compounds may pose to human health should be taken into account in further comprehensive risk assessments in e-waste recycling sites areas. Moreover, alfalfa removed substantial amounts of PAEs from the soil, and its use can be considered a good strategy for in situ remediation of PAEs.

  2. Bioconcentration of 14 C-Carbofuran and 14 C- Lindane in fresh water Tilapia Nilitica and the bioavailability of their residues to rats

    International Nuclear Information System (INIS)

    Aly, M.A.S.; Afifi, L.M.

    1997-01-01

    Tilapia Nilotica were exposed to 14 C- carbofuran (125 MUg/1) and 14 C - lindane (80 MUg/1) for 96 h. Uptake period followed by 8 days depuration period. The bioconcentration factor (BCF) for carbofuran reached 32.4 at 12 h and 82 for lindane at 48 h. The amount of 14 C-activity found in fish treated with 14 C - carbofuran after the uptake period showed the following descending order: viscera > remaining parts > gills > muscles. In case of 14 C - lindane treated fish the recovered amount followed the order; remaining parts> viscera > gills muscles. During the depuration period, carbofuran residues taken up by fish were eliminated in 2 phases, an initial rapid phase followed by a slower gradual one. However, the rate of elimination in case of lindane was much slower especially during the first 2 days. At the end of the depuration period (8 days), the muscles (edible portion) contained 10% and 58% of 14 C -activity in case of carbofuran and lindane treated groups, respectively. Both insecticides proved to be bioavailable when rats were fed treated fish. Of the administered dose, 44.1% and 53.0% were excreted in urine and feces case of 14 C-carbofuran while in case of 14 C - lindane it was 30.9% and 41.7% for urine and feces, respectively. 2 figs., 2 tabs

  3. Migration and health risks of nonylphenol and bisphenol a in soil-winter wheat systems with long-term reclaimed water irrigation.

    Science.gov (United States)

    Wang, Shiyu; Liu, Fei; Wu, Wenyong; Hu, Yaqi; Liao, Renkuan; Chen, Gaoting; Wang, Jiulong; Li, Jialin

    2018-04-12

    Reclaimed water reuse has become an important means of alleviating agricultural water shortage worldwide. However, the presence of endocrine disrupters has roused up considerable attention. Barrel test in farmland was conducted to investigate the migration of nonylphenol (NP) and bisphenol A (BPA) in soil-winter wheat system simulating reclaimed water irrigation. Additionally, the health risks on humans were assessed based on US EPA risk assessment model. The migration of NP and BPA decreased from the soil to the winter wheat; the biological concentration factors (BCFs) of NP and BPA in roots, stems, leaves, and grains all decreased with their added concentrations in soils. The BCFs of NP and BPA in roots were greatest (0.60-5.80 and 0.063-1.45, respectively). The average BCFs of NP and BPA in winter wheat showed negative exponential relations to their concentrations in soil. The amounts of NP and BPA in soil-winter wheat system accounted for 8.99-28.24% and 2.35-4.95%, respectively, of the initial amounts added into the soils. The hazard quotient (HQ) for children and adults ranged between 10 -6 and 1, so carcinogenic risks could be induced by ingesting winter wheat grains under long-term reclaimed water irrigation. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Bioaccumulation of short chain chlorinated paraffins in a typical freshwater food web contaminated by e-waste in south china: Bioaccumulation factors, tissue distribution, and trophic transfer.

    Science.gov (United States)

    Sun, Runxia; Luo, Xiaojun; Tang, Bin; Chen, Laiguo; Liu, Yu; Mai, Bixian

    2017-03-01

    Short chain chlorinated paraffins (SCCPs) are under review for inclusion into the Stockholm Convention on Persistent Organic Pollutants. However, limited information is available on their bioaccumulation and biomagnification in ecosystems, which is hindering evaluation of their ecological and health risks. In the present study, wild aquatic organisms (fish and invertebrates), water, and sediment collected from an enclosed freshwater pond contaminated by electronic waste (e-waste) were analyzed to investigate the bioaccumulation, distribution, and trophic transfer of SCCPs in the aquatic ecosystem. SCCPs were detected in all of the investigated aquatic species at concentrations of 1700-95,000 ng/g lipid weight. The calculated bioaccumulation factors (BAFs) varied from 2.46 to 3.49. The relationship between log BAF and the octanol/water partition coefficient (log K OW ) for benthopelagic omnivorous fish species followed the empirical model of bioconcentration, indicating that bioconcentration plays an important role in accumulation of SCCPs. In contrast, the relationship for the benthic carnivorous fish and invertebrates was not consistent with the empirical model of bioconcentration, implying that the bioaccumulation of SCCPs in these species could be more influenced by other complex factors (e.g., habitat and feeding habit). Preferential distribution in the liver rather than in other tissues (e.g., muscle, gills, skin, and kidneys) was noted for the SCCP congeners with higher log K OW , and bioaccumulation pathway (i.e. water or sediment) can affect the tissue distribution of SCCP congeners. SCCPs underwent trophic dilution in the aquatic food web, and the trophic magnification factor (TMF) values of SCCP congener groups significantly correlated with their corresponding log K OW values (p < 0.0001). The present study results improved our understanding on the environmental behavior and fate of SCCPs in aquatic ecosystem. Copyright © 2016 Elsevier Ltd. All rights

  5. Total mercury and methylmercury accumulation in wild plants grown at wastelands composed of mine tailings: Insights into potential candidates for phytoremediation.

    Science.gov (United States)

    Qian, Xiaoli; Wu, Yonggui; Zhou, Hongyun; Xu, Xiaohang; Xu, Zhidong; Shang, Lihai; Qiu, Guangle

    2018-08-01

    Total mercury (THg) and methylmercury (MMHg) were investigated in 259 wild plants belonging to 49 species in 29 families that grew in heavily Hg-contaminated wastelands composed of cinnabar ore mine tailings (calcines) in the Wanshan region, southwestern China, the world's third largest Hg mining district. The bioconcentration factors (BCFs) of THg and MMHg from soil to roots ([THg] root /[THg] soil , [MMHg] root /[MMHg] soil ) were evaluated. The results showed that THg and MMHg in both plants and soils varied widely, with ranges of 0.076-140 μg/g THg and 0.19-87 ng/g MMHg in roots, 0.19-106 μg/g THg and 0.06-31 ng/g MMHg in shoots, and 0.74-1440 μg/g THg and 0.41-820 ng/g MMHg in soil. Among all investigated species, Arthraxon hispidus, Eremochloa ciliaris, Clerodendrum bunge, and Ixeris sonchifolia had significantly elevated concentrations of THg in shoots and/or roots that reached 100 μg/g, whereas Chenopodium glaucum, Corydalisedulis maxim, and Rumex acetosa contained low values below 0.5 μg/g. In addition to the high THg concentrations, the fern E. ciliaris also showed high BCF values for both THg and MMHg exceeding 1.0, suggesting its capability to extract Hg from soils. Considering its dominance and the tolerance identified in the present study, E. ciliaris is suggested to be a practical candidate for phytoextraction, whereas A. hispidus is identified as a potential candidate for phytostabilization of Hg mining-contaminated soils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Sublethal toxicity and biotransformation of pyrene in Lumbriculus variegatus (Oligochaeta)

    International Nuclear Information System (INIS)

    Maeenpaeae, K.; Leppaenen, M.T.; Kukkonen, J.V.K.

    2009-01-01

    The aim of this work was to study the toxicity and biotransformation of polyaromatic hydrocarbon (PAH) pyrene in the oligochaete aquatic worm, Lumbriculus variegatus. PAHs are ubiquitous environmental pollutants that pose a hazard to aquatic organisms, and metabolizing capability is poorly known in the case of many invertebrate species. To study the toxicity and biotransformation of pyrene, the worm was exposed for 15 days to various concentrations of water-borne pyrene. The dorsal blood vessel pulse rate was used as a sublethal endpoint. Pyrene biotransformation by L. variegatus was studied and the critical body residues (CBR) were estimated for pyrene toxicity. The toxicokinetics of pyrene uptake was evaluated. A combination of radiolabeled ( 14 C) and nonlabeled pyrene was used in the exposures, and liquid scintillation counting (LSC) and high-pressure liquid chromatography were employed in both water and tissue residue analyses. The results showed that L. variegatus was moderately able to metabolize pyrene to 1-hydroxypyrene (1-HP), thus demonstrating that the phase-I-like oxidizing enzyme system metabolizes pyrene in L. variegatus. The amount of the 1-HP was 1-2% of the amount of pyrene in the worm tissues. The exposure to pyrene reduced the blood vessel pulse rate significantly (p < 0.05), showing that pyrene had a narcotic effect. The estimated CBRs remained constant during the exposure time, varying from 0.120 to 0.174 mmol pyrene/kg worm wet weight. The bioconcentration factors (BCF) decreased as exposure concentration increased. It was suggested that the increased toxicity of pyrene accounted for the decrease in BCFs by lowering the activity of the organism

  7. Mercury in Orange Birch Bolete Leccinum versipelle and soil substratum: bioconcentration by mushroom and probable dietary intake by consumers.

    Science.gov (United States)

    Krasińska, Grażyna; Falandysz, Jerzy

    2016-01-01

    The aim of this study was to examine the contamination, accumulation, and distribution of mercury in fruiting bodies by Leccinum versipelle fungus collected from distant sites across Poland. Mercury was determined using validated method by cold-vapor atomic absorption spectroscopy after direct sample matrix combustion. A large set of data gained using 371 fruiting bodies and 204 soil samples revealed the susceptibility of L. versipelle to Hg contamination and permitted the estimation of probable intake of Hg contaminant by consumers foraging for this species. The range of median values of Hg determined in caps of L. versipelle was from 0.20 to 2.0 mg kg(-1) dry biomass, and the median for 19 localities was 0.65 mg kg(-1) dry biomass. The values of the Hg bioconcentration factor (BCF) determined for L. versipelle correlated negatively with Hg contents. Mercury in topsoil beneath L. versipelle ranged from 0.019 to 0.041 mg kg(-1) dry matter for less-contaminated locations (BCF of 17 to 65 for caps) and from 0.076 to 0.39 mg kg(-1) dry matter for more contaminated locations (BCF of 1.9 to 22). Fruiting bodies of L. versipelle collected in some regions of Poland if consumed in amount of 300 g in one meal in a week could provide Hg doses above the provisionally tolerable weekly intake (PTWI) value of 0.004 mg Hg kg(-1) body mass, while regular consumptions for most of the locations were below the limit even with more frequent consumption. Also summarized are available data on Hg for three species of fungi of genus Leccinum foraged in Europe.

  8. A modified parallel artificial membrane permeability assay for evaluating the bioconcentration of highly hydrophobic chemicals in fish.

    Science.gov (United States)

    Kwon, Jung-Hwan; Escher, Beate I

    2008-03-01

    Low cost in vitro tools are needed at the screening stage of assessment of bioaccumulation potential of new and existing chemicals because the number of chemical substances that needs to be tested highly exceeds the capacity of in vivo bioconcentration tests. Thus, the parallel artificial membrane permeability assay (PAMPA) system was modified to predict passive uptake/ elimination rate in fish. To overcome the difficulties associated with low aqueous solubility and high membrane affinity of highly hydrophobic chemicals, we measured the rate of permeation from the donor poly(dimethylsiloxane)(PDMS) disk to the acceptor PDMS disk through aqueous and PDMS membrane boundary layers and term the modified PAMPA system "PDMS-PAMPA". Twenty chemicals were selected for validation of PDMS-PAMPA. The measured permeability is proportional to the passive elimination rate constant in fish and was used to predict the "minimum" in vivo elimination rate constant. The in vivo data were very close to predicted values except for a few polar chemicals and metabolically active chemicals, such as pyrene and benzo[a]pyrene. Thus, PDMS-PAMPA can be an appropriate in vitro system for nonmetabolizable chemicals. Combination with metabolic clearance rates using a battery of metabolic degradation assays would enhance the applicability for metabolizable chemicals.

  9. Validation of an electrothermal atomization atomic absorption spectrometry method for quantification of total chromium and chromium(VI) in wild mushrooms and underlying soils.

    Science.gov (United States)

    Figueiredo, Estela; Soares, M Elisa; Baptista, Paula; Castro, Marisa; Bastos, M Lourdes

    2007-08-22

    , and for Cr(VI), the mean values were 0.103 and 0.143 microg/g of dry weight for cap and stalk, respectively. For soils, the mean concentrations found were, for total Cr, 84.0 microg/g and, for Cr(VI), 0.483 microg/g. The bioconcentration factors (BCFs) based on dry weight for cap and stalk were determined, and the values found, for both total Cr and Cr(VI), were always <1, although for hexavalent chromium, the BCFs were 10 times higher than for total chromium.

  10. Mangroves and Their Response to a Heavy Metal Polluted Wetland in The North Coast of Puerto Rico

    Directory of Open Access Journals (Sweden)

    Marixa Maldonado-Román

    2016-11-01

    Full Text Available Peninsula La Esperanza is part of the San Juan Bay Estuary and located in the north coast of Puerto Rico. Mangroves are the predominant type of vegetation; that can exhibit diverse external and internal mechanisms allowing them to tolerate and to act as phytoremediators of heavy metals (HM in surrounding soils. This study was focused in three mangrove species that can be found in La Esperanza: Rhizophora mangle (RM, Laguncularia racemosa (LR and Avicennia germinans (AG. Arsenic (As, cadmium (Cd, chromium (Cr, copper (Cu, mercury (Hg, lead (Pb, and zinc (Zn were selected to be identified, measure concentrations in sediments, in green (GL and senescent (SL leaves, and study phytoremediation potential as a mitigation alternative calculating bioconcentration afctors (BCFs and retranslocation percents (RT%. For this, Peninsula La Esperanza was divided in three main research sites. Our results show a significant difference among all heavy metals and their distribution in each site. Moreover, the mangrove species, A. germinans, showed lower RT% for Hg in all three sites, which could be considered the best species for phytoextraction of this heavy metal. The results suggest that the three species have a synergistic effect in the way they manage the heavy metal in surrounding polluted soils, although each species have a different capacity to manage each heavy metal.

  11. In-situ partitioning and bioconcentration of polycyclic aromatic hydrocarbons among water, suspended particulate matter, and fish in the Dongjiang and Pearl Rivers and the Pearl River Estuary, China

    International Nuclear Information System (INIS)

    Li, Haiyan; Lu, Lei; Huang, Wen; Yang, Juan; Ran, Yong

    2014-01-01

    Highlights: • PAHs are relatively higher in marine fish than in freshwater fish. • PAHs respectively show significant correlations with DOC, POC, and Chl a. • The log K oc for PAHs is one order magnitude higher than the predicted. • The log BCF values in fish and their tissues are nonlinear in respect to log K ow . • Lipid is related to PAHs in freshwater fish, but not in marine fishes. - Abstract: The partitioning and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in water, suspended particulate matter (SPM), and fish samples from the Dongjiang River (DR), Pearl River (PR), and the Pearl River Estuary (PRE) were examined. Although PAHs are much lower in PRE than in DR or PR, PAHs in some fish species are significantly higher in PRE than in DR or PR. Aqueous or particulate PAHs respectively show significant correlations with dissolved organic carbon, particulate organic matter, and chlorophyll a, suggesting that biological pumping effect regulates their distribution. The in situ partitioning coefficients (log K oc ) for PAHs are one order magnitude higher than the empirical log K oc –log K ow correlation. The bioconcentration factor (BCF) is slightly higher for the marine fish than for the freshwater fish. The above phenomena indicate that BCF may vary due to the diversity of fish species, feeding habits, and metabolism of PAHs in fish

  12. Chemical analysis of fish bile extracts for monitoring endocrine disrupting chemical exposure in water: Bisphenol A, alkylphenols, and norethindrone.

    Science.gov (United States)

    Wu, Minghong; Pan, Chenyuan; Yang, Ming; Xu, Bentuo; Lei, Xiangjie; Ma, Jing; Cai, Ling; Chen, Jingsi

    2016-01-01

    The present study determined concentrations of estrogenic bisphenol A (BPA), nonylphenol, octylphenol (4-tert-octylphenol), butylphenol (4-tert-butylphenol), and progestogenic norethindrone by liquid chromatography-tandem mass spectrometry in bile extracts from field fish from the Xin'an River and market fish in Shanghai, China. Compared with the field fish, endocrine disrupting chemical (EDC) concentrations in market fish bile were at relatively high levels with high detectable rates. The average concentrations of BPA, nonylphenol, 4-tert-octylphenol, 4-tert-butylphenol, and norethindrone in field fish bile were 30.1 µg/L, 203 µg/L, 4.69 µg/L, 7.84 µg/L, and 0.514 µg/L, respectively; in market fish bile they were 240 µg/L, 528 µg/L, 76.5 µg/L, 12.8 µg/L, and 5.26 µg/L, respectively; and in the surface water of Xin'an River they were 38.8 ng/L, 7.91 ng/L, 1.98 ng/L, 2.66 ng/L, and 0.116 ng/L, respectively. The average of total estrogenic activity of river water was 3.32 ng/L estradiol equivalents. High bioconcentration factors (BCFs) were discovered for all 5 EDCs (≧998-fold) in field fish bile. Furthermore, the authors analyzed the BCF value of BPA in fish bile after 30-d exposure to environmentally relevant concentrations of BPA in the laboratory, and the analysis revealed that BCF in fish bile (BCF(Fish bile)) changed in an inverse concentration-dependent manner based on the log10-transformed BPA concentration in water. Strikingly, the data from the field study were well fitted within this trend. The data together suggested that analysis of fish bile extracts could be an efficient method for assessing waterborne EDCs exposure for aquatic biota. © 2015 SETAC.

  13. Factors affecting heavy metal uptake in plant selection for phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Anton, A.; Mathe-Gaspar, G. [Research Inst. for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences, Budapest (Hungary)

    2005-04-01

    The heavy metal uptake of ten plant species was studied under different soil and climatic conditions. Effects of soil pH, temperature, plant species and phenophase on the heavy metal content of stems and leaves were determined in pot experiments. Plants and soil samples were collected from a lead/zinc mine ore (Gyoengyoesoroszi, Hungary) and characterised by high contents of Pb, Zn, As, Cd, Cu. The possibility of an adapted phytoremediation technology was indicated by different bioconcentration factors (BCF). The BCF depended markedly (10- to 100-fold) on plant species and environmental conditions. Based on our results a ''season-adapted'' phytoextraction technology with different plant species (utilising their different temperature requirements and/or harvest time) is suggested. (orig.)

  14. A study on the Phytoremediation Potential of Azolla pinnata under laboratory conditions

    Directory of Open Access Journals (Sweden)

    Upekha Mandakini Lenaduwa Lokuge

    2016-11-01

    Full Text Available Heavy metal contamination in aquatic environments has become one of the major environmental problems all over the world. Phytoremediation is a plant based technology that utilizes special plants known as hyperaccumulators to purify heavy metal contaminated sites. Hyperaccumulators are capable of absorbing heavy metals in greater concentrations.  Azolla pinnata is an aquatic macrophyte that has been earmarked for its hyperaccumulation ability. This green technology is often more favoured over conventional methods due to its low cost, low environmental impacts and wider public acceptance.This study was conducted under laboratory conditions to assess the ability of A. pinnata for the removal of Cr, Ni, Cd and Pb through rhizofiltration, which is one of the phytoremediation strategies under laboratory conditions. Under three main experiments, the fern’s phytoremediation ability was investigated. In the first experiment, A. pinnata was exposed to prepared solutions of Cr, Ni and Pb of 2ppm, 4ppm, 6ppm, 8ppm and 10ppm and of Cd solutions of 0.5ppm, 1.0ppm, 1.5ppm, 2.0ppm, 2.5ppm and 3.0ppm respectively. Experiments were carried out separately for Cr, Ni, Cd and Pb concentrations for 7 days. The concentrations of heavy metals used in the experiments largely agreed with the environmentally measured values, although in certain experiments, the initial concentrations exceeded the environmental pollution levels.The presence of Cr, Ni, Cd and Pb caused a maximum inhibition of A.pinnata growth by 47%, 54%, 52% and 45% respectively while the highest removal percentages of Cr- 98%, Ni- 57%, Cd- 88% and Pb- 86% were recorded in 2ppm, 2ppm, 0.5ppm and 8ppm treatments respectively. The highest Bio Concentration Factor (BCF for Cr was 1376.67 when treated with 6ppm, 684.95 at 4ppm for Ni, 1120.06 at 0.5ppm for Cd and 1332.53 at 8ppm for Pb respectively. At the end of the experiments toxic symptoms were observed in plats exposed to Cd and Ni. The findings of

  15. Concentration factors of radionuclides in the marine organisms

    International Nuclear Information System (INIS)

    1996-03-01

    Parameters related to the bioconcentration of radionuclides in the marine were shown by 'Assessment and guideline to the target value of dose in the environment of the power light water reactor facilities' (Nuclear Safety Commission), but the guideline data did not contain Ru and Ce relating to the reprocessing plant. So that more new data than these of 'Technical Reports Series No. 247' (published by IAEA in 1985) were mainly collected. Especially the data of nuclides with poor data of concentration factors (CF) and natural radionuclides (Po-210, Pb-210) were gathered. These data were pigeonholed and many tables (element, kinds of organisms, experimental methods) were made by separating the general remarks from the original experimental reports. The contents of this report are given as under, history of concentration factor (CF), determination method of CF, CF calculation method, calculation models related to CF, tables of metabolic parameters, tables of CF, the present conditions of studies for uptake of radionuclides with long half-life into the marine organisms, CF abstract tables and trial calculation of human exposure by eating the marine organisms. (S.Y.)

  16. Periodic depuration of anthracene metabolites by rainbow trout

    International Nuclear Information System (INIS)

    Linder, G.; Bergman, H.L.

    1984-01-01

    Rainbow trout Salmo gairdneri, statically exposed to 36 μg/liter anthracene (including 9- 14 C-C anthracene), bioconcentrated the polynuclear aromatic hydrocarbon 200 times the exposure concentration over 18 hours. Then, during a 96-hour clearance periods, mass-balance analysis of fish and water samples indicated that anthracene was rapidly converted to polar metabolites(s), then eliminated periodically. Maximum depuration occurred during the dark phase of a 16-hour-light: 8-hour-dark photocycle. Of the 2-3% contribution of 14 C metabolites(s) to the total 14 C residue, nearly half came from the bile. This periodic depuration may be circadian, although this requires confirmation by further work; to the extent it affects metabolic fate of bioconcentrated organics, periodic depuration undoubtedly contributes to differences between predicted and observed bioconcentration factors

  17. Predicting the bioaccumulation of polyaromatic hydrocarbons and polychlorinated biphenyls in benthic animals in sediments

    Energy Technology Data Exchange (ETDEWEB)

    Tuikka, A.I., E-mail: anitat@student.uef.fi [University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, FI-80101 Joensuu (Finland); Leppänen, M.T., E-mail: Matti.T.Leppanen@ymparisto.fi [Finnish Environment Institute, Laboratories/Research and Innovation Laboratory, P.O. Box 35, University of Jyväskylä, FI-40014 Jyväskylä (Finland); Akkanen, J., E-mail: jarkko.akkanen@uef.fi [University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, FI-80101 Joensuu (Finland); Sormunen, A.J., E-mail: Arto.Sormunen@mamk.fi [University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, FI-80101 Joensuu (Finland); Leonards, P.E.G., E-mail: pim.leonards@vu.nl [Institute for Environmental Studies, Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam (Netherlands); Hattum, B. van, E-mail: bert.vanhattum@deltares.nl [Institute for Environmental Studies, Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam (Netherlands); Vliet, L.A. van, E-mail: lavanvliet@hotmail.com [Ministry of Transport, Public Works and Water Management, National Institute for Coastal and Marine Management/RIKZ, P.O. Box 207, 9750 AE Haren (Netherlands); Brack, W., E-mail: werner.brack@ufz.de [Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstraße 15, 04318 Leipzig (Germany); Smedes, F., E-mail: smedes@recetox.muni.cz [Ministry of Transport, Public Works and Water Management, National Institute for Coastal and Marine Management/RIKZ, P.O. Box 207, 9750 AE Haren (Netherlands); and others

    2016-09-01

    There were two main objectives in this study. The first was to compare the accuracy of different prediction methods for the chemical concentrations of polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in the organism, based on the measured chemical concentrations existing in sediment dry matter or pore water. The predicted tissue concentrations were compared to the measured ones after 28-day laboratory test using oligochaeta worms (Lumbriculus variegatus). The second objective was to compare the bioaccumulation of PAHs and PCBs in the laboratory test with the in situ bioaccumulation of these compounds. Using the traditional organic carbon-water partitioning model, tissue concentrations were greatly overestimated, based on the concentrations in the sediment dry matter. Use of an additional correction factor for black carbon with a two-carbon model, significantly improved the bioaccumulation predictions, thus confirming that black carbon was important in binding the chemicals and reducing their accumulation. The predicted PAH tissue concentrations were, however, high compared to the observed values. The chemical concentrations were most accurately predicted from their freely dissolved pore water concentrations, determined using equilibrium passive sampling. The patterns of PCB and PAH accumulation in sediments for laboratory-exposed L. variegatus were similar to those in field-collected Lumbriculidae worms. Field-collected benthic invertebrates and L. variegatus accumulated less PAHs than PCBs with similar lipophilicity. The biota to sediment accumulation factors of PAHs tended to decrease with increasing sediment organic carbon normalized concentrations. The presented data yields bioconcentration factors (BCF) describing the chemical water-lipid partition, which were found to be higher than the octanol-water partition coefficients, but on a similar level with BCFs drawn from relevant literature. In conclusion, using the two-carbon model method

  18. Tissue uptake, distribution and elimination of {sup 14}C-PFOA in zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Ulhaq, Mazhar [Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala (Sweden); Sundström, Maria [Environmental Chemistry Unit, Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm (Sweden); Larsson, Pia; Gabrielsson, Johan [Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala (Sweden); Bergman, Åke [Environmental Chemistry Unit, Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm (Sweden); Norrgren, Leif [Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala (Sweden); Örn, Stefan, E-mail: Stefan.Orn@slu.se [Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala (Sweden)

    2015-06-15

    Highlights: • Bioconcentration of PFOA at steady-state was approximately 20–30 times. • High concentrations were observed in bile and intestines implying enterohepatic circulation. • PFOA accumulated in oocytes indicating maternal transfer. - Abstract: Perfluorooctanoic acid (PFOA) is a long-chain perfluorinated chemical that has been shown to be non-degradable and persistent in the environment. Laboratory studies on bioconcentration and compound-specific tissue distribution in fish can be valuable for prediction of the persistence and environmental effects of the chemicals. In the present study male and female zebrafish (Danio rerio) were continuously exposed to 10 μg/L of radiolabeled perfluorooctanoic acid ({sup 14}C-PFOA) for 40 days, after which the exposed fish were transferred to fresh clean water for another 80 days wash-out period. At defined periodic intervals during the uptake and wash-out, fish were sampled for liquid scintillation counting and whole body autoradiography to profile the bioconcentration and tissue distribution of PFOA. The steady-state concentration of {sup 14}C-PFOA in the zebrafish was reached within 20–30 days of exposure. The concentration-time course of {sup 14}C-PFOA displayed a bi-exponential decline during washout, with a terminal half-life of approximately 13–14 days. At steady-state the bioconcentration of {sup 14}C-PFOA into whole-body fish was approximately 20–30 times greater than that of the exposure concentration, with no differences between females and males. The bioconcentration factors for liver and intestine were approximately 100-fold of the exposure medium, while in brain, ovary and gall bladder the accumulation factors were in the range 15–20. Whole-body autoradiograms confirmed the highest labeling of PFOA in bile and intestines, which implies enterohepatic circulation of PFOA. The {sup 14}C-PFOA was also observed in maturing vitellogenic oocytes, suggesting chemical accumulation via yolk proteins

  19. The effect of technogenic emissions on the heavy metals accumulation by herbaceous plants.

    Science.gov (United States)

    Chaplygin, Victor; Minkina, Tatiana; Mandzhieva, Saglara; Burachevskaya, Marina; Sushkova, Svetlana; Poluektov, Evgeniy; Antonenko, Elena; Kumacheva, Valentina

    2018-02-07

    The effect of technogenic emissions on the input of Pb, Zn, Cd, Cu, Mn, Cr, and Ni into plants from the Poaceae and Asteraceae families has been studied. Soil and plant contamination by anthropogenic emissions from industrial enterprises leads the decreasing of crop quality; therefore, the monitoring investigation of plants and soils acquires special importance. The herbaceous plants may be used as bioindicators for main environmental changes. It was found that the high level of anthropogenic load related to atmospheric emissions from the power plant favors the heavy metal (HM) accumulation in herbaceous plants. Contamination with Pb, Cd, Cr, and Ni was revealed in plants growing near the power plant. Heavy metals arrive to plants from the soil in the form of mobile compounds. Plant family is one of the main factors affecting the HM distribution in the above- and underground parts of plants. Plants from the Poaceae family accumulate less chemical elements in their aboveground parts than the Asteraceae plants. Ambrosia artemisiifolia and Artemisia austriaca are HM accumulators. For assessing the stability of plants under contamination with HMs, metal accumulation by plants from soil (the bioconcentration factor) and metal phytoavailability from plants above- and underground parts (the acropetal coefficient) were calculated. According to the bioconcentration factor and translocation factor values, Poaceae species are most resistant to technogenic contamination with HMs. The translocation factor highest values were found for Tanacetum vulgare; the lowest bioconcentration factor values were typical for Poa pratensis.

  20. Uptake of phosphorus from feed by carps

    International Nuclear Information System (INIS)

    Kellermann, H.J.; Buehringer, H.

    1993-01-01

    One of the aims of the International Conference for the Protection of the North Sea is to reduce the input of nutrients by 50% within the period of 1985 -1995. This is only possible by reducing the riverine input of phosphorus into the North Sea. For the regulated shortlived isotope of this element the bioconcentration factor to fishmeat is determined by the phosporus concentration in the water on the one hand and by the biological turn over rate in tissue on the other hand. Aquaria studies of the turn over rate of carps at different feed applications reveal that the recommended bioconcentration factor does not yield the desired conservative assessment. (orig.) [de

  1. Radioecological studies in marine ecosystems

    International Nuclear Information System (INIS)

    Kellermann, H.J.; Kanisch, G.

    1999-01-01

    The bioconcentration factor shows the ratio between concentration of a substance in water or in fish. It is a calculation quantity, used for assessing the possible concentration in fish in proportion to the known concentration in water. Although the element cesium discussed in this report is primarily ingested via the food chain (biomagnification) and not via direct uptake through the gills, but the bioconcentration factor model is nevertheless applicable, because there is a relation between the element's concentration in water and in food. One has to consider, however, the influence on cesium uptake through the quantity of food and species-dependent accumulation. Experimental results obtained for various ecosystems are reported and illustrate the mechanisms involved. (orig./CB) [de

  2. Bioconcentration of artificial radionuclides in edible mushrooms: in situ and in vitro studies

    Energy Technology Data Exchange (ETDEWEB)

    Dementyev, Dmitry V.; Manukovsky, Nikolai S.; Bolsunovsky, Alexander Ya.; Alexandrova, Yuliyana V. [Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, 660036, Krasnoyarsk (Russian Federation)

    2014-07-01

    Some areas of the Yenisei River basin are affected by the operation of the Mining-and-Chemical Combine (MCC), producing weapons-grade plutonium. Flood plain soils of the Yenisei contain a wide range of artificial radionuclides, including transuranium elements, which can be accumulated by living organisms. Concentrations of artificial radionuclides and heavy metals accumulated by mushrooms may be several orders of magnitude higher than those accumulated by plants, and, thus, mushrooms may be used as bio-concentrators of radionuclides and heavy metals for bioremediation of contaminated areas. The purposes of this study were to investigate 1) species specificity of accumulation of artificial radionuclides by edible mushrooms in radioactively contaminated areas of the Yenisei River flood plain and 2) accumulation rates of artificial radionuclides, including transuranium elements, in mushrooms under laboratory conditions. Species specificity of accumulation of artificial radionuclides and uranium by mushrooms was analyzed for 12 species of edible mushrooms. The study was performed at the sites affected by MCC operation, which were divided into two groups: 1) the sites only affected by aerosol-bound radionuclides and 2) the sites that also received waterborne radionuclides. Field studies showed great interspecific variations in Cs-137 accumulation by mushrooms. Activity concentrations of Cs-137 in bioindicator species Suillus granulatus and S. Luteus reached 10 kBq/kg dry weight. S. granulatus and S. luteus are concentrators of Cs-137, as suggested by the analysis of concentration factors (CFs), which reached 0.7-16 for these mushroom species. The CF of U-238 in fruiting bodies of the mushrooms was no greater than 0.11. Yenisei flood plain soils contain a wide range of transuranium elements, which can accumulate in environmental objects. Laboratory experiments on accumulation of Am-241 from solution by mycelium and Am-241 accumulation by fruiting bodies of mushrooms

  3. Influences of binding to dissolved organic matter on hydrophobic organic compounds in a multi-contaminant system: Coefficients, mechanisms and ecological risks

    International Nuclear Information System (INIS)

    Li, Yi-Long; He, Wei; Liu, Wen-Xiu; Kong, Xiang-Zhen; Yang, Bin; Yang, Chen; Xu, Fu-Liu

    2015-01-01

    The complexation flocculation (CF) method was successfully employed to identify binding coefficients (K_d_o_c) of specific organic contaminants to dissolved organic matter (DOM, often indicated by dissolved organic carbon, DOC) in a multi-contaminant hydrophobic organic contaminant (HOC) system. K_d_o_c values were obtained for most of the evaluated 33 HOCs, indicating the feasibility and applicability of the CF method in a multi-contaminant system. Significant positive correlations were observed between binding coefficients and octanol–water partition coefficients (K_o_w) for organic halogen compounds, such as polybrominated diphenyl ethers (PBDEs) (R"2 = 0.95, p < 0.05) and organic chlorine pesticides (OCPs) (methoxychlor excluded, R"2 = 0.82, p < 0.05). The positive correlations identified between the lgK_d_o_c and lgBCF (bioconcentration factor) for PBDEs and OCPs, as well as the negative correlation observed for polycyclic aromatic hydrocarbons (PAHs), indicated that different binding or partition mechanisms between PAHs and organic halogen compounds exist. These differences further result in discriminative competition partitions of HOCs between DOM and organisms. Assuming that only freely dissolved HOCs are bioconcentrative, the results of DOM-influenced bioconcentration factor (BCF_D_O_M) and DOM-influenced lowest observed effect level (LOEL_D_O_M) indicate that the ecological risk of HOCs is decreased by DOM. - Highlights: • Complexing-flocculation is viable in measuring K_d_o_c in a multi-polluted system. • The binding mechanisms between PAHs and organic halogens were different. • DOM should be considered when assessing ecological risk of HOCs in natural ecosystem. - Assuming only freely dissolved HOCs are effective, bioconcentration factors and ecological risks of HOCs are decreased by dissolved organic matter via binding.

  4. Fractionation, transfer, and ecological risks of heavy metals in riparian and ditch wetlands across a 100-year chronosequence of reclamation in an estuary of China

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Rong [State Key Laboratory of Water Environment Stimulation, School of Environment, Beijing Normal University, Beijing 100875 (China); School of Nature Conservation, Beijing Forestry University, Beijing 100083 (China); Bai, Junhong, E-mail: junhongbai@163.com [State Key Laboratory of Water Environment Stimulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Lu, Qiongqiong; Zhao, Qingqing; Gao, Zhaoqin; Wen, Xiaojun; Liu, Xinhui [State Key Laboratory of Water Environment Stimulation, School of Environment, Beijing Normal University, Beijing 100875 (China)

    2015-06-01

    The effect of reclamation on heavy metal concentrations and the ecological risks in ditch wetlands (DWs) and riparian wetlands (RWs) across a 100-year chronosequence in the Pearl River Estuary of China was investigated. Concentrations of 4 heavy metals (Cd, Cu, Pb, and Zn) in soil and plant samples, and sequential extracts of soil samples were determined, using inductively coupled plasma atomic absorption spectrometry. Results showed that heavy metal concentrations were higher in older DW soils than in the younger ones, and that the younger RW soils contained higher heavy metal concentrations compared to the older ones. Although the increasing tendency of heavy metal concentrations in soil was obvious after wetland reclamation, the metals Cu, Pb, and Zn exhibited low or no risks to the environment based on the risk assessment code (RAC). Cd, on the other hand, posed a medium or high risk. Cd, Pb, and Zn were mainly bound to Fe–Mn oxide, whereas most of Cu remained in the residual phase in both ditch and riparian wetland soils, and the residual proportions generally increased with depth. Bioconcentration and translocation factors for most of these four heavy metals significantly decreased in the DWs with older age (p < 0.05), whereas they increased in the RWs with younger age (p < 0.05). The DW soils contained higher concentrations of heavy metals in the organic fractions, whereas there were more carbonate and residual fractions in the RW soils. The non-bioavailable fractions of Cu and Zn, and the organic-bound Cd and Pb significantly inhibited plant growth. - Highlights: • Heavy metals in ditch wetland accumulated with increasing reclamation history. • Heavy metals exist in the Fe–Mn oxides and residual fractions in both wetlands. • Cd posed a medium to high environmental risk while low risk for other metals. • Long reclamation history caused lower BCFs and TFs in DWs and higher levels in RWs. • RW soils contained more heavy metals in the carbonate

  5. Fractionation, transfer, and ecological risks of heavy metals in riparian and ditch wetlands across a 100-year chronosequence of reclamation in an estuary of China

    International Nuclear Information System (INIS)

    Xiao, Rong; Bai, Junhong; Lu, Qiongqiong; Zhao, Qingqing; Gao, Zhaoqin; Wen, Xiaojun; Liu, Xinhui

    2015-01-01

    The effect of reclamation on heavy metal concentrations and the ecological risks in ditch wetlands (DWs) and riparian wetlands (RWs) across a 100-year chronosequence in the Pearl River Estuary of China was investigated. Concentrations of 4 heavy metals (Cd, Cu, Pb, and Zn) in soil and plant samples, and sequential extracts of soil samples were determined, using inductively coupled plasma atomic absorption spectrometry. Results showed that heavy metal concentrations were higher in older DW soils than in the younger ones, and that the younger RW soils contained higher heavy metal concentrations compared to the older ones. Although the increasing tendency of heavy metal concentrations in soil was obvious after wetland reclamation, the metals Cu, Pb, and Zn exhibited low or no risks to the environment based on the risk assessment code (RAC). Cd, on the other hand, posed a medium or high risk. Cd, Pb, and Zn were mainly bound to Fe–Mn oxide, whereas most of Cu remained in the residual phase in both ditch and riparian wetland soils, and the residual proportions generally increased with depth. Bioconcentration and translocation factors for most of these four heavy metals significantly decreased in the DWs with older age (p < 0.05), whereas they increased in the RWs with younger age (p < 0.05). The DW soils contained higher concentrations of heavy metals in the organic fractions, whereas there were more carbonate and residual fractions in the RW soils. The non-bioavailable fractions of Cu and Zn, and the organic-bound Cd and Pb significantly inhibited plant growth. - Highlights: • Heavy metals in ditch wetland accumulated with increasing reclamation history. • Heavy metals exist in the Fe–Mn oxides and residual fractions in both wetlands. • Cd posed a medium to high environmental risk while low risk for other metals. • Long reclamation history caused lower BCFs and TFs in DWs and higher levels in RWs. • RW soils contained more heavy metals in the carbonate

  6. Phytoremediation of heavy metals from fly ash pond by Azolla caroliniana.

    Science.gov (United States)

    Pandey, Vimal Chandra

    2012-08-01

    Abundance of naturally growing Azolla caroliniana (water fern) on the surface of metal enriched fly ash (FA) pond reflects its toxitolerant characteristics. Results indicate the efficiency of A. caroliniana for phytoremediation of FA pond because of its higher bioconcentration factor. The metal concentration ranged from 175 to 538 and 86 to 753mgkg(-1) in roots and fronds, respectively. Bioconcentration factor (BCF) values of all metals in root and frond ranged from 1.7 to18.6 and 1.8 to 11.0, respectively, which were greater than one and indicates the metal accumulation potential of A. caroliniana. Translocation factor (TF) ranged from 0.37 to 1.4 for various heavy metals. The field result proved that A. caroliniana is a potential accumulator for the examined heavy metals and can be used for phytoremediation of FA pond. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. KABAM Version 1.0 User's Guide and Technical Documentation - Appendix F -Description of Equations Used to Calculate the BCF, BAF, BMF, and BSAF Values

    Science.gov (United States)

    Describes equations for bioconcentration, bioaccumulation, biomagnification and biota-sediment accumulation factors used in KABAM V1.0. KABAM is a simulation model used to predict pesticide concentrations in aquatic regions for use in exposure assessments.

  8. Bioaccumulation factor of 137Cs in some marine biotas from West Bangka Indonesia

    Science.gov (United States)

    Suseno, Heny

    2014-03-01

    Radionuclides may be released from nuclear facilities to the marine environment. Concentrations of radionuclides within marine biotic systems can be influenced by a number of factors, including the type of biota, its source, the radionuclide, and specific characteristics of the sampled specimens and the marine environment (salinity, etc.). The bioconcentration factor for a marine organism is the ratio of the concentration of a radionuclide in that organism to the concentration found in its marine water environment - under conditions of equilibrium. Information on the bioaccumulation of Cs-137 in marine organisms is required to risk assessment evaluates the potential risks to human health. Bioaccumulation of Cs was investigated in marine biota from west Bangka such as Marine cat fish (Arius thalassinus), Baramundi (Lates calcarifer), Mackerel (Scomberomorus commerson), Striped eel catfish (Plotosus lineatus), eel tailed fish (Euristhmus microceps), Yellowtail fusilier (Caesio erythrogaster), Coastal crab (Scylla sp), White shrimp (Penaeus merguiensis) and marine bivalve mollusk (Anadara granosa). Muscle of these marine biota, sediments and water were assayed for Cs-137 by HPGe gamma spectrometer. The bioaccumulation factor for fishes were calculated by ratio of concentration Cs-137 in muscle biota to the its concentration in water. The bioaccumulation factor for mollusks were calculates by ratio of concentration Cs-137 in muscle biota to the its concentration in sediments. The bioaccumulation factor were range 4.99 to 136.34.

  9. Bioaccumulation factor of 137Cs in some marine biotas from West Bangka Indonesia

    International Nuclear Information System (INIS)

    Suseno, Heny

    2014-01-01

    Radionuclides may be released from nuclear facilities to the marine environment. Concentrations of radionuclides within marine biotic systems can be influenced by a number of factors, including the type of biota, its source, the radionuclide, and specific characteristics of the sampled specimens and the marine environment (salinity, etc.). The bioconcentration factor for a marine organism is the ratio of the concentration of a radionuclide in that organism to the concentration found in its marine water environment - under conditions of equilibrium. Information on the bioaccumulation of Cs-137 in marine organisms is required to risk assessment evaluates the potential risks to human health. Bioaccumulation of Cs was investigated in marine biota from west Bangka such as Marine cat fish (Arius thalassinus), Baramundi (Lates calcarifer), Mackerel (Scomberomorus commerson), Striped eel catfish (Plotosus lineatus), eel tailed fish (Euristhmus microceps), Yellowtail fusilier (Caesio erythrogaster), Coastal crab (Scylla sp), White shrimp (Penaeus merguiensis) and marine bivalve mollusk (Anadara granosa). Muscle of these marine biota, sediments and water were assayed for Cs-137 by HPGe gamma spectrometer. The bioaccumulation factor for fishes were calculated by ratio of concentration Cs-137 in muscle biota to the its concentration in water. The bioaccumulation factor for mollusks were calculates by ratio of concentration Cs-137 in muscle biota to the its concentration in sediments. The bioaccumulation factor were range 4.99 to 136.34

  10. Bioaccumulation factor of {sup 137}Cs in some marine biotas from West Bangka Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Suseno, Heny, E-mail: henis@batan.go.id [Radioactive Waste Technology Center - The Indonesia Nuclear Energy Agency (BATAN) (Indonesia)

    2014-03-24

    Radionuclides may be released from nuclear facilities to the marine environment. Concentrations of radionuclides within marine biotic systems can be influenced by a number of factors, including the type of biota, its source, the radionuclide, and specific characteristics of the sampled specimens and the marine environment (salinity, etc.). The bioconcentration factor for a marine organism is the ratio of the concentration of a radionuclide in that organism to the concentration found in its marine water environment - under conditions of equilibrium. Information on the bioaccumulation of Cs-137 in marine organisms is required to risk assessment evaluates the potential risks to human health. Bioaccumulation of Cs was investigated in marine biota from west Bangka such as Marine cat fish (Arius thalassinus), Baramundi (Lates calcarifer), Mackerel (Scomberomorus commerson), Striped eel catfish (Plotosus lineatus), eel tailed fish (Euristhmus microceps), Yellowtail fusilier (Caesio erythrogaster), Coastal crab (Scylla sp), White shrimp (Penaeus merguiensis) and marine bivalve mollusk (Anadara granosa). Muscle of these marine biota, sediments and water were assayed for Cs-137 by HPGe gamma spectrometer. The bioaccumulation factor for fishes were calculated by ratio of concentration Cs-137 in muscle biota to the its concentration in water. The bioaccumulation factor for mollusks were calculates by ratio of concentration Cs-137 in muscle biota to the its concentration in sediments. The bioaccumulation factor were range 4.99 to 136.34.

  11. Acute exposure to synthetic pyrethroids causes bioconcentration and disruption of the hypothalamus–pituitary–thyroid axis in zebrafish embryos

    International Nuclear Information System (INIS)

    Tu, Wenqing; Xu, Chao; Lu, Bin; Lin, Chunmian; Wu, Yongming; Liu, Weiping

    2016-01-01

    Synthetic pyrethroids (SPs) have the potential to disrupt the thyroid endocrine system in mammals; however, little is known of the effects of SPs and underlying mechanisms in fish. In the current study, embryonic zebrafish were exposed to various concentrations (1, 3 and 10 μg/L) of bifenthrin (BF) or λ-cyhalothrin (λ-CH) until 72 h post fertilization, and body condition, bioaccumulation, thyroid hormone levels and transcription of related genes along the hypothalamus–pituitary–thyroid (HPT) axis examined. Body weight was significantly decreased in the λ-CH exposure groups, but not the BF exposure groups. BF and λ-CH markedly accumulated in the larvae, with concentrations ranging from 90.7 to 596.8 ng/g. In both exposure groups, alterations were observed in thyroxine (T 4 ) and triiodothyronine (T 3 ) levels. In addition, the majority of the HPT axis-related genes examined, including CRH, TSHβ, TTR, UGT1ab, Pax8, Dio2 and TRα, were significantly upregulated in the presence of BF. Compared to BF, λ-CH induced different transcriptional regulation patterns of the tested genes, in particular, significant stimulation of TTR, Pax8, Dio2 and TRα levels along with concomitant downregulation of Dio1. Molecular docking analyses revealed that at the atomic level, BF binds to thyroid hormone receptor (TRα) protein more potently than λ-CH, consequently affecting HPT axis signal transduction. In vitro and in silico experiments disclosed that during the early stages of zebrafish development, BF and λ-CH have the potential to disrupt thyroid endocrine system. - Highlights: • Following respective exposure of embryos to BF and λ-CH, thyroid endocrine disruption was investigated in zebrafish embryos. • Thyroid hormones (T3 and T4 levels) were significantly altered after being exposed to BF and λ-CH. • Gene transcription modulation in the HPT axis was examined. • BF and λ-CH bioconcentration in zebrafish larvae were evident. • BF binds to thyroid hormone

  12. Acute exposure to synthetic pyrethroids causes bioconcentration and disruption of the hypothalamus–pituitary–thyroid axis in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Wenqing [Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330029 (China); Institute of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Xu, Chao, E-mail: chaoxu@zjut.edu.cn [Institute of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Lu, Bin; Lin, Chunmian [Institute of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Wu, Yongming [Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330029 (China); Liu, Weiping [Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2016-01-15

    Synthetic pyrethroids (SPs) have the potential to disrupt the thyroid endocrine system in mammals; however, little is known of the effects of SPs and underlying mechanisms in fish. In the current study, embryonic zebrafish were exposed to various concentrations (1, 3 and 10 μg/L) of bifenthrin (BF) or λ-cyhalothrin (λ-CH) until 72 h post fertilization, and body condition, bioaccumulation, thyroid hormone levels and transcription of related genes along the hypothalamus–pituitary–thyroid (HPT) axis examined. Body weight was significantly decreased in the λ-CH exposure groups, but not the BF exposure groups. BF and λ-CH markedly accumulated in the larvae, with concentrations ranging from 90.7 to 596.8 ng/g. In both exposure groups, alterations were observed in thyroxine (T{sub 4}) and triiodothyronine (T{sub 3}) levels. In addition, the majority of the HPT axis-related genes examined, including CRH, TSHβ, TTR, UGT1ab, Pax8, Dio2 and TRα, were significantly upregulated in the presence of BF. Compared to BF, λ-CH induced different transcriptional regulation patterns of the tested genes, in particular, significant stimulation of TTR, Pax8, Dio2 and TRα levels along with concomitant downregulation of Dio1. Molecular docking analyses revealed that at the atomic level, BF binds to thyroid hormone receptor (TRα) protein more potently than λ-CH, consequently affecting HPT axis signal transduction. In vitro and in silico experiments disclosed that during the early stages of zebrafish development, BF and λ-CH have the potential to disrupt thyroid endocrine system. - Highlights: • Following respective exposure of embryos to BF and λ-CH, thyroid endocrine disruption was investigated in zebrafish embryos. • Thyroid hormones (T3 and T4 levels) were significantly altered after being exposed to BF and λ-CH. • Gene transcription modulation in the HPT axis was examined. • BF and λ-CH bioconcentration in zebrafish larvae were evident. • BF binds to thyroid

  13. Uptake of polychlorinated biphenyls and organochlorine pesticides from soil and air into radishes (Raphanus sativus)

    DEFF Research Database (Denmark)

    Mikes, Ondrej; Cupr, P.; Trapp, Stefan

    2009-01-01

    Uptake of organochlorine pesticides and polychlorinated biphenyls from soil and air into radishes was measured at a heavily contaminated field site. The highest contaminant concentrations were found for DDT and its metabolites, and for beta-hexachlorocyclohexane. Bioconcentration factor (BCF, def...

  14. The bioconcentration of 131I in fresh water fish

    International Nuclear Information System (INIS)

    Yu, K.N.; Cheung, T.; Young, E.C.M.; Luo, D.L.

    1996-01-01

    The dynamic characteristics of the radionuclide concentration process in fresh water fish have been studied. The experimental data for the tilapias were fitted using a simple compartment model to get characteristics parameters such as concentration factors, elimination rate constants, and initial concentration rates, which are 3.08 Bq kg -1 /Bq L -1 , 0.00573 h -1 , and 12.42 Bq kg -1 h -1 , respectively. The relative concentrations of 131 I in different parts, i.e., head, gills, flesh, bone and internal organs, of the tilapias are also determined, which are found to be 10.8, 15.4, 26.1, 11.0, and 37.0%, respectively. The effects of different factors on the transfer of radionuclides in fresh water fishes are also discussed. Experiments on the tilapias and the common carp show that the variation of concentration factors for different species may be significant even for the same radionuclide and the same ecological system. On the other hand, the variation in the concentration factors for the flesh of the tilapias is not significant for a certain range of 131 I concentrations in the water. 12 refs., 1 fig., 1 tab

  15. Aquatic fate of synfuel residuals: bioaccumulation of aniline and phenol by the freshwater phytoplankter Scenedesmus quadricauda

    International Nuclear Information System (INIS)

    Hardy, J.T.; Dauble, D.D.; Felice, L.J.

    1985-01-01

    Coal liquefaction compounds could, through accidental release, enter aquatic environments. Experiments were conducted to determine the kinetics, degree of bioconcentration and stability of two of these compounds at the first level of aquatic food web. The authors exposed the freshwater phytoplankter Scenedesmus quadricauda to sublethal concentrations of 14 C-labeled phenol and aniline. Both accumulation and elimination occurred within a few hours and followed hyperbolic kinetics. Results indicate that substantial quantities of accumulated compounds remain as the parent compound (22% for phenol and 52% for aniline) for up to 24 h and could be available to animals higher in the food web. Bioconcentration factors were 3.5 for phenol and 91 for aniline. 24 references, 2 figures, 1 table

  16. Short-term bioconcentration studies of Np in freshwater biota

    International Nuclear Information System (INIS)

    Poston, T.M.; Klopfer, D.C.; Simmons, M.A.

    1990-01-01

    Short-term laboratory exposures were conducted to determine the potential accumulation of Np in aquatic organisms. Concentration factors were highest in green algae. Daphnia magna, a filter-feeding crustacean, accumulated Np at levels one order of magnitude greater than the amphipod Gammarus sp., an omnivorous substrate feeder. Accumulation of Np in juvenile rainbow trout (Oncorhynchus mykiss) was highest in carcass (generally greater than 78% of the total body burden) and lowest in fillets. Recommended concentration factors for Np, based on fresh weight, were 300 for green algae, 100 for filter-feeding invertebrates, for nonfilter-feeding invertebrates, 10 for whole fish, and one for fish flesh

  17. Evaluation of the Sagittaria montevidensis Cham. & Schltdl. as a bioindicator and phytoextractor of toxic metals

    Directory of Open Access Journals (Sweden)

    Edila Maria Kickhöfel Ferrer

    2017-12-01

    Full Text Available This study evaluated the bioindication and phytoremediation capacity of the aquatic macrophyte Sagittaria montevidensis by using it to assess the bioconcentration and translocation of heavy metals. A simple sampling was conducted at four sites in the region of Pelotas, southern Brazil, where plants, water and sediments were collected. The plants were subjected to nitric-perchloric acid digestion and the sediments underwent pseudo-total acid digestion. The determination of the elements Cr, Cu, Pb, Ni and Zn in the extracts was performed by flame atomic absorption spectrometry. Physicochemical tests were also carried out on water samples, including pH, electrical conductivity, chlorides, alkalinity, hardness and organic matter, and in sediment samples, moisture and organic matter content. The macrophyte study indicated a Bioconcentration Factor (BCF and a Translocation Factor (TF, especially for Ni. The results showed that the aquatic macrophyte species S. montevidensis has a phytoextraction capacity, mainly for Ni, and potentially for bioindication of Cu, Ni and Zn.

  18. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators

    Energy Technology Data Exchange (ETDEWEB)

    Liang, H.-M. [Agricultural Biotechnology Research Center, Academia Sinica, 128 Section 2, Academia Road, Taipei, Taiwan 11529, Taiwan (China); Lin, T.-H. [Department of Statistics, National Taipei University, Taiwan (China); Chiou, J.-M. [Institute of Statistical Science, Academia Sinica, Taiwan (China); Yeh, K.-C., E-mail: kcyeh@gate.sinica.edu.t [Agricultural Biotechnology Research Center, Academia Sinica, 128 Section 2, Academia Road, Taipei, Taiwan 11529, Taiwan (China)

    2009-06-15

    Evaluation of the remediation ability of zinc/cadmium in hyper- and non-hyperaccumulator plant species through greenhouse studies is limited. To bridge the gap between greenhouse studies and field applications for phytoextraction, we used published data to examine the partitioning of heavy metals between plants and soil (defined as the bioconcentration factor). We compared the remediation ability of the Zn/Cd hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri and the non-hyperaccumulators Nicotiana tabacum and Brassica juncea using a hierarchical linear model (HLM). A recursive algorithm was then used to evaluate how many harvest cycles were required to clean a contaminated site to meet Taiwan Environmental Protection Agency regulations. Despite the high bioconcentration factor of both hyperaccumulators, metal removal was still limited because of the plants' small biomass. Simulation with N. tabacum and the Cadmium model suggests further study and development of plants with high biomass and improved phytoextraction potential for use in environmental cleanup. - A quantitative solution enables the evaluation of Zn/Cd phytoextraction.

  19. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators.

    Science.gov (United States)

    Liang, Hong-Ming; Lin, Ting-Hsiang; Chiou, Jeng-Min; Yeh, Kuo-Chen

    2009-06-01

    Evaluation of the remediation ability of zinc/cadmium in hyper- and non-hyperaccumulator plant species through greenhouse studies is limited. To bridge the gap between greenhouse studies and field applications for phytoextraction, we used published data to examine the partitioning of heavy metals between plants and soil (defined as the bioconcentration factor). We compared the remediation ability of the Zn/Cd hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri and the non-hyperaccumulators Nicotiana tabacum and Brassica juncea using a hierarchical linear model (HLM). A recursive algorithm was then used to evaluate how many harvest cycles were required to clean a contaminated site to meet Taiwan Environmental Protection Agency regulations. Despite the high bioconcentration factor of both hyperaccumulators, metal removal was still limited because of the plants' small biomass. Simulation with N. tabacum and the Cadmium model suggests further study and development of plants with high biomass and improved phytoextraction potential for use in environmental cleanup.

  20. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators

    International Nuclear Information System (INIS)

    Liang, H.-M.; Lin, T.-H.; Chiou, J.-M.; Yeh, K.-C.

    2009-01-01

    Evaluation of the remediation ability of zinc/cadmium in hyper- and non-hyperaccumulator plant species through greenhouse studies is limited. To bridge the gap between greenhouse studies and field applications for phytoextraction, we used published data to examine the partitioning of heavy metals between plants and soil (defined as the bioconcentration factor). We compared the remediation ability of the Zn/Cd hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri and the non-hyperaccumulators Nicotiana tabacum and Brassica juncea using a hierarchical linear model (HLM). A recursive algorithm was then used to evaluate how many harvest cycles were required to clean a contaminated site to meet Taiwan Environmental Protection Agency regulations. Despite the high bioconcentration factor of both hyperaccumulators, metal removal was still limited because of the plants' small biomass. Simulation with N. tabacum and the Cadmium model suggests further study and development of plants with high biomass and improved phytoextraction potential for use in environmental cleanup. - A quantitative solution enables the evaluation of Zn/Cd phytoextraction.

  1. Hazard assessment of metals in invasive fish species of the Yamuna River, India in relation to bioaccumulation factor and exposure concentration for human health implications.

    Science.gov (United States)

    Singh, Atul K; Srivastava, Sharad C; Verma, Pankaj; Ansari, Abubakar; Verma, Ambrish

    2014-06-01

    Monitoring of heavy metals was conducted in the Yamuna River considering bioaccumulation factor, exposure concentration, and human health implications which showed contamination levels of copper (Cu), lead (Pb), nickel (Ni), and chromium (Cr) and their dispersion patterns along the river. Largest concentration of Pb in river water was 392 μg L(-1); Cu was 392 μg L(-1) at the extreme downstream, Allahabad and Ni was 146 μg L(-1) at midstream, Agra. Largest concentration of Cu was 617 μg kg(-1), Ni 1,621 μg kg(-1) at midstream while Pb was 1,214 μg kg(-1) at Allahabad in surface sediment. The bioconcentration of Cu, Pb, Ni, and Cr was observed where the largest accumulation of Pb was 2.29 μg kg(-1) in Oreochromis niloticus and 1.55 μg kg(-1) in Cyprinus carpio invaded at Allahabad while largest concentration of Ni was 174 μg kg(-1) in O. niloticus and 124 μg kg(-1) in C. carpio in the midstream of the river. The calculated values of hazard index (HI) for Pb was found more than one which indicated human health concern. Carcinogenic risk value for Ni was again high i.e., 17.02 × 10(-4) which was larger than all other metals studied. The results of this study indicated bioconcentration in fish due to their exposures to heavy metals from different routes which had human health risk implications. Thus, regular environmental monitoring of heavy metal contamination in fish is advocated for assessing food safety since health risk may be associated with the consumption of fish contaminated through exposure to a degraded environment.

  2. Absorption and translocation of polybrominated diphenyl ethers (PBDEs) by plants from contaminated sewage sludge

    Czech Academy of Sciences Publication Activity Database

    Vrkoslavová, J.; Demnerová, K.; Macková, M.; Zemanová, T.; Macek, Tomáš; Hajšlová, J.; Pulkrabová, J.; Hrádková, P.; Stiborová, H.

    2010-01-01

    Roč. 81, č. 3 (2010), s. 381-386 ISSN 0045-6535 R&D Projects: GA MŠk 2B06151 Grant - others:GA ČR(CZ) GP104/08/P188 Institutional research plan: CEZ:AV0Z40550506 Keywords : polybrominated diphenyl ethers * contaminated sewage sludge * plant uptake * bioconcentration factors * Nicotiana tabacum Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.155, year: 2010

  3. Incorporation of inorganic mercury (Hg2+) in pelagic food webs of ultraoligotrophic and oligotrophic lakes: The role of different plankton size fractions and species assemblages

    International Nuclear Information System (INIS)

    Soto Cárdenas, Carolina; Diéguez, Maria C.; Ribeiro Guevara, Sergio; Marvin-DiPasquale, Mark; Queimaliños, Claudia P.

    2014-01-01

    In lake food webs, pelagic basal organisms such as bacteria and phytoplankton incorporate mercury (Hg 2+ ) from the dissolved phase and pass the adsorbed and internalized Hg to higher trophic levels. This experimental investigation addresses the incorporation of dissolved Hg 2+ by four plankton fractions (picoplankton: 0.2–2.7 μm; pico + nanoplankton: 0.2–20 μm; microplankton: 20–50 μm; and mesoplankton: 50–200 μm) obtained from four Andean Patagonian lakes, using the radioisotope 197 Hg 2+ . Species composition and abundance were determined in each plankton fraction. In addition, morphometric parameters such as surface and biovolume were calculated using standard geometric models. The incorporation of Hg 2+ in each plankton fraction was analyzed through three concentration factors: BCF (bioconcentration factor) as a function of cell or individual abundance, SCF (surface concentration factor) and VCF (volume concentration factor) as functions of individual exposed surface and biovolume, respectively. Overall, this investigation showed that through adsorption and internalization, pico + nanoplankton play a central role leading the incorporation of Hg 2+ in pelagic food webs of Andean lakes. Larger planktonic organisms included in the micro- and mesoplankton fractions incorporate Hg 2+ by surface adsorption, although at a lesser extent. Mixotrophic bacterivorous organisms dominate the different plankton fractions of the lakes connecting trophic levels through microbial loops (e.g., bacteria–nanoflagellates–crustaceans; bacteria–ciliates–crustaceans; endosymbiotic algae–ciliates). These bacterivorous organisms, which incorporate Hg from the dissolved phase and through their prey, appear to explain the high incorporation of Hg 2+ observed in all the plankton fractions. - Highlights: • Hg 2+ incorporation in lake plankton fractions was studied using the isotope 197 Hg 2+ . • Hg 2+ incorporation was assessed using three different

  4. Incorporation of inorganic mercury (Hg{sup 2+}) in pelagic food webs of ultraoligotrophic and oligotrophic lakes: The role of different plankton size fractions and species assemblages

    Energy Technology Data Exchange (ETDEWEB)

    Soto Cárdenas, Carolina, E-mail: sotocardenascaro@gmail.com [Laboratorio de Fotobiología, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNComahue-CONICET), Quintral 1250, 8400 San Carlos de Bariloche, Río Negro (Argentina); Diéguez, Maria C. [Laboratorio de Fotobiología, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNComahue-CONICET), Quintral 1250, 8400 San Carlos de Bariloche, Río Negro (Argentina); Ribeiro Guevara, Sergio [Laboratorio de Análisis por Activación Neutrónica, CAB, CNEA, Av. Bustillo Km 9.5, 8400, San Carlos de Bariloche, Río Negro (Argentina); Marvin-DiPasquale, Mark [United States Geological Survey, 345 Middlefield Rd./MS 480, Menlo Park, CA 94025 (United States); Queimaliños, Claudia P. [Laboratorio de Fotobiología, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNComahue-CONICET), Quintral 1250, 8400 San Carlos de Bariloche, Río Negro (Argentina)

    2014-10-01

    In lake food webs, pelagic basal organisms such as bacteria and phytoplankton incorporate mercury (Hg{sup 2+}) from the dissolved phase and pass the adsorbed and internalized Hg to higher trophic levels. This experimental investigation addresses the incorporation of dissolved Hg{sup 2+} by four plankton fractions (picoplankton: 0.2–2.7 μm; pico + nanoplankton: 0.2–20 μm; microplankton: 20–50 μm; and mesoplankton: 50–200 μm) obtained from four Andean Patagonian lakes, using the radioisotope {sup 197}Hg{sup 2+}. Species composition and abundance were determined in each plankton fraction. In addition, morphometric parameters such as surface and biovolume were calculated using standard geometric models. The incorporation of Hg{sup 2+} in each plankton fraction was analyzed through three concentration factors: BCF (bioconcentration factor) as a function of cell or individual abundance, SCF (surface concentration factor) and VCF (volume concentration factor) as functions of individual exposed surface and biovolume, respectively. Overall, this investigation showed that through adsorption and internalization, pico + nanoplankton play a central role leading the incorporation of Hg{sup 2+} in pelagic food webs of Andean lakes. Larger planktonic organisms included in the micro- and mesoplankton fractions incorporate Hg{sup 2+} by surface adsorption, although at a lesser extent. Mixotrophic bacterivorous organisms dominate the different plankton fractions of the lakes connecting trophic levels through microbial loops (e.g., bacteria–nanoflagellates–crustaceans; bacteria–ciliates–crustaceans; endosymbiotic algae–ciliates). These bacterivorous organisms, which incorporate Hg from the dissolved phase and through their prey, appear to explain the high incorporation of Hg{sup 2+} observed in all the plankton fractions. - Highlights: • Hg{sup 2+} incorporation in lake plankton fractions was studied using the isotope {sup 197}Hg{sup 2+}. • Hg{sup 2

  5. Different transfer pathways of an organochlorine pesticide across marine tropical food webs assessed with stable isotope analysis.

    Directory of Open Access Journals (Sweden)

    Charlotte R Dromard

    Full Text Available Chlordecone is a persistent organochlorine pesticide used in the banana fields of the French West Indies from 1972 to 1993. Three marine habitats (mangroves, seagrass beds and coral reefs of two study sites located downstream contaminated rivers were chosen to evaluate the level of contamination of marine food webs. On each habitat, the food chain collected included suspended organic matter, primary producers (macroalgae, algal turf, seagrass, zooplankton, symbiotic organisms (corals, sea anemones, primary consumers (herbivores, suspension feeders, biofilm feeders, omnivores and detritivores (lobsters, fish, secondary consumers (carnivores 1: invertebrate feeders, planktivores and tertiary consumers (carnivores 2: invertebrate and fish feeders, piscivores. Log-linear regressions of the concentrations of chlordecone versus nitrogen isotopic ratios (δ15N were used to assess the bioaccumulation of chlordecone along trophic food webs. At each site, bioconcentration and bioamplification take part on the transfer of chlordecone in marine organisms. In mangroves (i.e. close to the source of pollution, lower trophic magnification factors (TMF indicated that bioconcentration prevailed over bioamplification phenomenon. The opposite phenomenon appeared on coral reefs in which bioconcentration processes were less important and bioamplification pathway became dominant. Far from the source of pollution, molecules of chlordecone seemed to be transfered to organisms mostly via trophic interactions rather than water contact.

  6. Breaking continuous flash suppression: Competing for consciousness on the pre-semantic battlefield.

    Directory of Open Access Journals (Sweden)

    Surya eGayet

    2014-05-01

    Full Text Available Traditionally, interocular suppression is believed to disrupt high-level (i.e., semantic or conceptual processing of the suppressed visual input. The development of a new experimental paradigm, breaking continuous flash suppression (b-CFS, has caused a resurgence of studies demonstrating high-level processing of visual information in the absence of visual awareness. In this method the time it takes for interocularly suppressed stimuli to breach the threshold of visibility, is regarded as a measure of access to awareness. The aim of the current review is twofold. First, we provide an overview of the literature using this b-CFS method, while making a distinction between two types of studies: those in which suppression durations are compared between different stimulus classes (such as upright faces versus inverted faces, and those in which suppression durations are compared for stimuli that either match or mismatch concurrently available information (such as a colored target that either matches or mismatches a color retained in working memory. Second, we aim at dissociating high-level processing from low-level (i.e., crude visual processing of the suppressed stimuli. For this purpose, we include a thorough review of the control conditions that are used in these experiments. Additionally, we provide recommendations for proper control conditions that we deem crucial for disentangling high-level from low-level effects. Based on this review, we argue that crude visual processing suffices for explaining differences in breakthrough times reported using b-CFS. As such, we conclude that there is as yet no reason to assume that interocularly suppressed stimuli receive full semantic analysis.

  7. Uptake, accumulation and some biochemical responses in ...

    African Journals Online (AJOL)

    Under the conditions of these increasing zinc concentrations, the highest zinc accumulation was obtained in the roots of the plants treated with 10 mM applications. The zinc concentration in the vegetative parts, was highest in the root and was lowest in the cotyledons. The highest bioconcentration factor (BCF) value was ...

  8. 77 FR 38070 - Office of Refugee Resettlement; Announcing the Award of a Single-Source Program Expansion...

    Science.gov (United States)

    2012-06-26

    ....676] Office of Refugee Resettlement; Announcing the Award of a Single- Source Program Expansion... (BCFS) in San Antonio, TX AGENCY: Office of Refugee Resettlement, ACF, HHS. ACTION: The Office of Refugee Resettlement announces the award of a single-source program expansion supplement grant from its...

  9. Developing Quantum Chemical and Polyparameter Models for Predicting Environmentally Significant Parameters for New Munition Compounds

    Science.gov (United States)

    2017-05-31

    in fish , plants, and soil invertebrates have been used to build the models. In addition the BCFs for a soil invertebrate (oligochaete Eisenia......Streit B, Nagel R. Tubifex tubifex as a link in food chain transfer of hexachlorobenzene from contaminated sediment to fish . Hydrobiologia

  10. Heavy metal phytoextraction-natural and EDTA-assisted remediation of contaminated calcareous soils by sorghum and oat.

    Science.gov (United States)

    Mahmood-Ul-Hassan, Muhammad; Suthar, Vishandas; Ahmad, Rizwan; Yousra, Munazza

    2017-10-30

    The abilities of sorghum (Sorghum bicolor L.) and oat (Avena sativa L.) to take up heavy metals from soils amended with ethylenediaminetetraacetic acid (EDTA) were assessed under greenhouse conditions. Both plants were grown in two soils contaminated with heavy metals (Gujranwala-silty loam and Pacca-clay loam). The soils were treated with 0, 0.625, 1.25, and 2.5 mM EDTA kg -1 soil applied at both 45 and 60 days after sowing (DAS); the experiment was terminated at 75 DAS. Addition of EDTA significantly increased concentrations of Cd, Cr, and Pb in roots and shoots, and bio-concentration factors and phytoextraction rates were also increased. Post-harvest soil analysis showed that soluble fractions of metals were also increased significantly. The increase in Cd was ≈ 3-fold and Pb was ≈ 15-fold at the highest addition of EDTA in Gujranwala soil; in the Pacca soil, the increase was less. Similarly, other phytoremediation factors, such as metal translocation, bio-concentration factor, and phytoextraction, efficiency were also maximum when soils were treated with 2.5 mM EDTA kg -1 soil. The study demonstrated that sorghum was better than oat for phytoremediation.

  11. A comparative study on the uptake and translocation of organochlorines by Phragmites australis

    Energy Technology Data Exchange (ETDEWEB)

    San Miguel, Angélique; Ravanel, Patrick [Laboratoire d’Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09 (France); Raveton, Muriel, E-mail: muriel.raveton@ujf-grenoble.fr [Laboratoire d’Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09 (France)

    2013-01-15

    Highlights: ► This study compares uptake/translocation of organochlorine congeners in macrophytes. ► First, root OC uptake was strongly linked with the partitioning/diffusion process. ► With time exposure, bioconcentration increased with OC solubility and volatility. ► Translocation was linked to the combination of water flow and vapor flux transfers. ► The most volatile OCs might be phytovolatilized from foliar surfaces. -- Abstract: Organochlorines (OCs) are persistent chemicals found in various environmental compartments. The differences in the uptake of {sup 14}C-labeled 1,4-dichlorobenzene (DCB), 1,2,4-trichlorobenzene (TCB) and γ-hexachlorocyclohexane (γHCH) by Phragmites australis were investigated under hydroponic conditions. The first step in sorption appears to be correlated with the hydrophobic nature of the compounds, since log-linear correlations were obtained between root concentration factor and partition coefficient (LogK{sub ow}). After 7 days of exposure, plant uptake of DCB, TCB, γHCH was significant with bioconcentration factors reaching 14, 19 and 15, respectively. Afterwards, uptake and translocation were seen to be more complex, with a loss of the simple relationship between uptake and LogK{sub ow}. Linear correlations between the bioconcentration/translocation factors and the physico-chemical properties of OCs were shown, demonstrating that translocation from roots to shoots increases with solubility and volatility of the OCs. This suggests that OC-translocation inside plants might result from the combination of two processes, xylem sap flow and vapor fluxes. {sup 14}C-phytovolatilization was measured and was correlated with the volatility of the compounds; the more volatile OCs being most the likely to be phytovolatilized from foliar surfaces (p = 0.0008). Thus, OC-uptake/translocation appears to proceed at a rate that depends mostly on the OCs hydrophobicity, solubility and volatility.

  12. Uptake of radionuclide thorium by twelve native plants grown in uranium mill tailings soils from south part of China

    International Nuclear Information System (INIS)

    Yan, Xun

    2016-01-01

    Highlights: • Screen dominant plants grown in uranium mill tailings soils. • Quantify the content of "2"3"2Th of soil samples from uranium mill tailings. • Quantify the transfer factor, bioconcentration factor and phytoremediation factor. • Screen out the plant species capable of remediating radionuclide contaminated soils. • Guide the reuse of study area in future. - Abstract: The concentrations of thorium ("2"3"2Th) in soil from a uranium mill tailings repository in South China were analyzed. The results showed that all the soil samples were acidic and the concentrations of "2"3"2Th in all the soil samples were more than the natural radionuclide content in soil of China. Through the field investigation, twelve kinds of dominant plants were discovered. The total quantity of "2"3"2Th in the whole plant is highest in rice flat sedge. We also found that Miscanthus floridulus has the greatest transfer factor (TF) for "2"3"2Th, rice flat sedge has the greatest bioconcentration factor (BF) for "2"3"2Th. At the mean time, M. floridulus has the greatest phytoremediation factor (PF) for "2"3"2Th. On the basis of the above conclusions and the definition for hyperaccumulator, rice flat sedge and M. floridulus could be the candidates of phytoremediation for radionuclide "2"3"2Th in the soil.

  13. Uptake of radionuclide thorium by twelve native plants grown in uranium mill tailings soils from south part of China

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Xun, E-mail: m13836295186@163.com

    2016-08-01

    Highlights: • Screen dominant plants grown in uranium mill tailings soils. • Quantify the content of {sup 232}Th of soil samples from uranium mill tailings. • Quantify the transfer factor, bioconcentration factor and phytoremediation factor. • Screen out the plant species capable of remediating radionuclide contaminated soils. • Guide the reuse of study area in future. - Abstract: The concentrations of thorium ({sup 232}Th) in soil from a uranium mill tailings repository in South China were analyzed. The results showed that all the soil samples were acidic and the concentrations of {sup 232}Th in all the soil samples were more than the natural radionuclide content in soil of China. Through the field investigation, twelve kinds of dominant plants were discovered. The total quantity of {sup 232}Th in the whole plant is highest in rice flat sedge. We also found that Miscanthus floridulus has the greatest transfer factor (TF) for {sup 232}Th, rice flat sedge has the greatest bioconcentration factor (BF) for {sup 232}Th. At the mean time, M. floridulus has the greatest phytoremediation factor (PF) for {sup 232}Th. On the basis of the above conclusions and the definition for hyperaccumulator, rice flat sedge and M. floridulus could be the candidates of phytoremediation for radionuclide {sup 232}Th in the soil.

  14. Field based investigation on phytoremediation potentials of Lemna minor and Azolla filiculoides in tropical, semiarid regions: Case of Ethiopia.

    Science.gov (United States)

    Amare, Elfu; Kebede, Fassil; Berihu, Tesfay; Mulat, Worku

    2017-10-16

    This study investigated the concurrent accumulation of eight heavy metals by two floating aquatic macrophytes (Lemna minor and Azolla filiculoides) cultivated in ambient media and blended wastewaters in the semiarid regions of Ethiopia. Both species accumulated heavy metals in varying degrees with a significant concentration gradient within the immediate water media. Highest bioconcentration factor was determined for Mn and Fe in both plants. Results revealed that L. minor was high phytoaccumulator for Fe, Mn, Zn and Co but moderate for Cd, Cu, Ni and Cr. On the other hand, A. filiculoides was a high accumulator for Fe, Mn, Zn and Cu, but its potency was moderate for Co, Cr and Ni, but lower for Cd. Both species exhibited significant difference in accumulating Co, Zn and Mn (p < 0.05). In general, the bioconcentration factors for both plants were comparable within the same treatment. In this study, stronger associations between the heavy metal concentrations in the plant tissues and in the grown water media were observed for A. filiculoides.

  15. Metals and organotins in multiple bivalve species in a one-off global survey

    DEFF Research Database (Denmark)

    Larsen, Martin Mørk; Strand, Jakob; Christensen, Jan H.

    2011-01-01

    contamination levels on a global scale. Metal concentrations in nine bivalve species were normalised to the Mytilidae family using conversion factors based on cosampled species and literature bioconcentration factors. The lowest metal and tributyltin concentrations were below background assessment...... were low, but not always lower than expected impacted areas. The most contaminated areas were harbours, where especially Copenhagen, St Croix and Sydney, can be considered hotspots of tributyltin as well as a number of metals....

  16. Distribution and bioconcentration of heavy metals in a tropical aquatic food web: A case study of a tropical estuarine lagoon in SE Mexico

    International Nuclear Information System (INIS)

    Mendoza-Carranza, Manuel; Sepúlveda-Lozada, Alejandra; Dias-Ferreira, Celia; Geissen, Violette

    2016-01-01

    Despite the increasing impact of heavy metal pollution in southern Mexico due to urban growth and agricultural and petroleum activities, few studies have focused on the behavior and relationships of these pollutants in the biotic and abiotic components of aquatic environments. Here, we studied the bioaccumulation of heavy metals (Cd, Cr, Ni, Pb, V, Zn) in suspended load, sediment, primary producers, mollusks, crustaceans, and fish, in a deltaic lagoon habitat in the Tabasco coast, with the aim to assess the potential ecological risk in that important wetland. Zn showed the highest concentrations, e.g., in suspended load (mean of 159.58 mg kg"−"1) and aquatic consumers (15.43–171.71 mg kg"−"1), particularly Brachyura larvae and ichthyoplankton (112.22–171.71 mg kg"−"1), followed by omnivore Callinectes sp. crabs (113.81–128.07 mg kg"−"1). The highest bioconcentration factors (BCF) of Zn were observed for planktivore and omnivore crustaceans (3.06–3.08). Zn showed a pattern of distribution in the food web through two pathways: the pelagic (where the higher concentrations were found), and the benthic (marsh plants, sediment, mollusk, fish). The other heavy metals had lower occurrences in the food web. Nevertheless, high concentrations of Ni and Cr were found in phytoplankton and sediment (37.62–119.97 mg kg"−"1), and V in epiphytes (68.64 mg kg"−"1). Ni, Cr, and Cd concentrations in sediments surpassed international and national threshold values, and Cd entailed a “considerable” potential risk. These heavy metals are most likely transferred into the food web up to fishes through the benthic pathway. Most of the collected fishes are residents in this type of habitat and have commercial importance. Our results show that the total potential ecological risk in the area can be considered as “moderate”. Nevertheless, heavy metal values were similar or surpassed the values from other highly industrialized tropical coastal regions

  17. Arsenic contamination in irrigation water, agricultural soil and maize crop from an abandoned smelter site in Matehuala, Mexico.

    Science.gov (United States)

    Ruíz-Huerta, Esther Aurora; de la Garza Varela, Alonso; Gómez-Bernal, Juan Miguel; Castillo, Francisco; Avalos-Borja, Miguel; SenGupta, Bhaskar; Martínez-Villegas, Nadia

    2017-10-05

    Mobility of Arsenic (As) from metallurgical wastes in Matehuala, Mexico has been accounted for ultra-high concentration of As in water (4.8-158mg/L) that is used for recreational purposes as well as cultivation of maize. In this study, we (i) measured As concentrations in soils irrigated with this water, (ii) investigated the geochemical controls of available As, and (iii) measured bioaccumulation of As in maize. Water, soil, and maize plant samples were collected from 3 different plots to determine As in environmental matrices as well as water soluble As in soils. Soil mineralogy was determined by X-ray diffraction analysis. Bioaccumulation of As in maize plants was estimated from the bioconcentration and translocation factors. We recorded As built-up in agricultural soils to the extent of 172mg/kg, and noted that this As is highly soluble in water (30% on average). Maize crops presented high bioaccumulation, up to 2.5 times of bioconcentration and 45% of translocation. Furthermore, we found that water extractable As was higher in soils rich in calcite, while it was lower in soils containing high levels of gypsum, but As bioconcentration showed opposite trend. Results from this study show that irrigation with As rich water represents a significant risk to the population consuming contaminated crops. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Absorption of Mercury from Polluted Soil by Rice Plant(Case Study: Farms of Amol Industrial Suburban Area

    Directory of Open Access Journals (Sweden)

    Fatemeh Ahmadipour

    2013-03-01

    Full Text Available Mercury has recognized as one of the most toxic heavy metals, which many industries generate and dispose to the environment. Few studies are done about mercury accumulation in soil and bioconcentration and transfer factor of mercury in rice plant cultivated in industrial areas. In this study samples were taken randomly from 10 farms in vicinity of Amol industrial suburban area with three replications. Samples were measured by the LECO AMA 254 Advanced Mercury Analyzer according to ASTM D-6733method. Also the parameters related to the quality of the soil were measured. The mean of mercury concentration in soil, root, stem and grain were found 0.031 ±0.012 mg/kg, 0.074 ±0.0163 mg/kg, 0.058 ±0.008 mg/kg and 0.051 ±0.0083 mg/kg respectively. The calculated transfer factor of mercury to various organs and bioconcentration factor were < 1 and 2.46 respectively. Pearson correlation test showed a positive correlation between mercury concentration in soil with mercury concentration in grain and also a negative correlation between pH with mercury concentration in root and soil. It is concluded that rice plant have high potential for phytoremediation of mercury from soil.

  19. Heavy Metals Accumulation Characteristics of Vegetables in Hangzhou City, China

    Directory of Open Access Journals (Sweden)

    GU Yan-qing

    2015-08-01

    Full Text Available A field survey of heavy metal concentrations in soils and vegetables grown in 30 vegetable farmlands of Hangzhou City were carried out. Through calculating the bioconcentration factor(BCFand transfer factor(TFfor different heavy metals(Cu, Zn, Cd, Cr and Pbin 27 kinds of different vegetables which belong to leafy vegetables, root vegetables or eggplant fruit vegetables, assessing their accumulation characteristics of heavy metals according to the differences of the bio-concentration factor, the reasonable proposals were put forward to optimize the planting structure of vegetables in mild and middle-level heavy metal contamination soils. The experimental results were as follows: In soils with mild and middle-level heavy metal contamination, leafy vegetables, such as crown daisy, cabbage, celery and Chinese long cabbage, had relatively low enrichment ability of heavy metals, so as the root and fruit vegetables like white radish, carrot, tomatoes, hence these vegetables could be planted preferentially. In contrast, some kinds of vegetables, including white amaranth, red amaranth, tatsoi, broccoli, gynura, brassica juncea and lettuce of leafy vegetables, lactuca sativa, taro, red radish and cherry radish of rhizome vegetables and sweet pepper of fruit vegetables, had relatively high accumulation ability of heavy metal, which should be avoided to be planted in soils with mild and middle-level heavy metal contamination.

  20. Trace Elements in Dominant Species of the Fenghe River, China: Their Relations to Environmental Factors.

    Science.gov (United States)

    Yang, Yang; Zhou, Zhengchao; Bai, Yanying; Jiao, Wentao; Chen, Weiping

    2016-07-01

    The distribution of trace elements (TEs) in water, sediment, riparian soil and dominant plants was investigated in the Fenghe River, Northwestern China. The Fenghe River ecosystem was polluted with Cd, Cr, Hg and Pb. There was a high pollution risk in the midstream and downstream regions and the risk level for Cd was much higher than that of the other elements. The average values of bioconcentration coefficient for Cd and Zn were 2.21 and 1.75, respectively, indicating a large accumulation of Cd and Zn in the studied species. With broad ecological amplitudes, L. Levl. et Vant. Trin., and L. had the greatest TE concentrations in aboveground and belowground biomass of the studied species and were potential biomonitors or phytoremediators for the study area. Multivariate techniques including cluster analysis, correlation analysis, principal component analysis, and canonical correspondence analysis were used to analyze the relations between TE concentrations in plants and various environmental factors. The soil element concentration is the main factor determining the accumulation of TEs in plants. The co-release behavior of common pollutants and TEs drove the accumulation of Hg, Cd, and As in the studied plants. Significant enrichment of some elements in the Fenghe River has led to a decline in the biodiversity of plants. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals.

    Science.gov (United States)

    Cheraghi, M; Lorestani, B; Khorasani, N; Yousefi, N; Karami, M

    2011-12-01

    As a result of human activities such as mining, metal pollution has become one of the most serious environmental problems today. Phytoremediation, an emerging cost-effective, non-intrusive, and aesthetically pleasing technology that uses the remarkable ability of plants to concentrate elements can be potentially used to remediate metal-contaminated sites. The aim of this work was to assess the extent of metal accumulation by plants found in a mining area in Hamedan province with the ultimate goal of finding suitable plants for phytoextraction and phytostabilization (two processes of phytoremediation). To this purpose, shoots and roots of the 12 plant species and the associated soil samples were collected and analyzed by measurement of total concentrations of some elements (Fe, Mn, Zn, and Cu) using atomic absorption spectrophotometer and then biological absorption coefficient, bioconcentration factor, and translocation factor parameters calculated for each element. Our results showed that none of the plants were suitable for phytoextraction and phytostabilization of Fe, Zn, and Cu, while Chenopodium botrys, Stipa barbata, Cousinia bijarensis, Scariola orientalis, Chondrila juncea, and Verbascum speciosum, with a high biological absorption coefficient for Mn, were suitable for phytoextraction of Mn, and C. bijarensis, C. juncea, V. speciosum, S. orientalis, C. botrys, and S. barbata, with a high bioconcentration factor and low translocation factor for Mn, had the potential for the phytostabilization of this element.

  2. Manganese, nickel and strontium bioaccumulation in the tissues of the African sharptooth catfish, Clarias gariepinus from the Olifants River, Kruger National Park

    Directory of Open Access Journals (Sweden)

    Annemarie Avenant-Oldewage

    2000-07-01

    Full Text Available The gills, liver, muscle and skin were collected from Clarias gariepinus, during four surveys (February, May, June and November in 1994 from two sites on the Olifants River in the Kruger National Park. With the use of atomic absorption spectrophotometry, metal concentrations of manganese, nickel and strontium bioaccumulated in these tissues were determined. This information was then used to differentiate between the concentrations found at the two locations and between the four survey periods. The con- centration of the metals were found to be highest in the gills, followed by the liver. This suggests the gills to be the primary uptake tissue for these metals following their intimate blood-water contact. The concentration of manganese and strontium, with particular reference to the gills, showed highest bioaccumulation at Mamba. Very little differences in the nickel concentrations were found at both Mamba and Balule. Water bioconcentration factors for manganese and nickel were much higher than that noted for sediment, suggesting a much lower bioavailability of these metals from the sediment. On the other hand, sediment bioconcentration factors for strontium were generally higher than that for water, which could imply higher bioavailability and concentration from the sediment.

  3. A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air.

    Science.gov (United States)

    Alahabadi, Ahmad; Ehrampoush, Mohammad Hassan; Miri, Mohammad; Ebrahimi Aval, Hamideh; Yousefzadeh, Samira; Ghaffari, Hamid Reza; Ahmadi, Ehsan; Talebi, Parvaneh; Abaszadeh Fathabadi, Zeynab; Babai, Fatemeh; Nikoonahad, Ali; Sharafi, Kiomars; Hosseini-Bandegharaei, Ahmad

    2017-04-01

    Heavy metals (HMs) in the urban environment can be bio-accumulated by plant tissues. The aim of this study was to compare fourteen different tree species in terms of their capability to accumulate four airborne and soilborne HMs including; zinc (Zn), copper (Cu), lead (Pb), and cadmium (Cd). Samplings were performed during spring, summer, and fall seasons. To compare bioaccumulation ability, bio-concentration factor (BCF), comprehensive bio-concentration index (CBCI), and metal accumulation index (MAI) were applied. Species with the highest accumulation for single metal which shown using BCF did not have the highest CBCI and MAI. Based on CBCI and MAI, Pinus eldarica (7.74), Wistaria sinensis (8.82), Morus alba (8.7), and Nigral morus (27.15) had the highest bioaccumulation capacity of HMs, respectively. Therefore, these species can be used for phytoextraction of HMs pollution and green and buffer zone in the urban. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Influences of binding to dissolved organic matter on hydrophobic organic compounds in a multi-contaminant system: Coefficients, mechanisms and ecological risks.

    Science.gov (United States)

    Li, Yi-Long; He, Wei; Liu, Wen-Xiu; Kong, Xiang-Zhen; Yang, Bin; Yang, Chen; Xu, Fu-Liu

    2015-11-01

    The complexation flocculation (CF) method was successfully employed to identify binding coefficients (Kdoc) of specific organic contaminants to dissolved organic matter (DOM, often indicated by dissolved organic carbon, DOC) in a multi-contaminant hydrophobic organic contaminant (HOC) system. Kdoc values were obtained for most of the evaluated 33 HOCs, indicating the feasibility and applicability of the CF method in a multi-contaminant system. Significant positive correlations were observed between binding coefficients and octanol-water partition coefficients (Kow) for organic halogen compounds, such as polybrominated diphenyl ethers (PBDEs) (R(2) = 0.95, p mechanisms between PAHs and organic halogen compounds exist. These differences further result in discriminative competition partitions of HOCs between DOM and organisms. Assuming that only freely dissolved HOCs are bioconcentrative, the results of DOM-influenced bioconcentration factor (BCFDOM) and DOM-influenced lowest observed effect level (LOELDOM) indicate that the ecological risk of HOCs is decreased by DOM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Environmental behavior and impact assessment of radioactive materials

    International Nuclear Information System (INIS)

    Lee, S.R.; Ryu, B.S.; Kim, K.C.; Lee, G.J.; Shim, A.R.; Park, H.K.

    1982-01-01

    It was studied to investigate the bioconcentration processes of strontium-90 in aquatic and terrestrial plants. The concentration and retention of strontium-90 from seawater by the seaweed Undaria pinnatifida varied depending on the plant part, exposure time, radionuclide concentration, salinity, contents of stable calcium and strontium, and presence of chelating agent in the seawater. The concentration factors attained at equilibrium were in the range of 50, and it was evident that the bioconcentration was largely due to the adsorption of the radionuclide on the surface of seaweed. In the foliar application of strontium-90 to a terrestrial plant soybean, Glycine max, only a portion of the radioactivity was translocated to other parts, and most of it remained in the applied leaves, causing soil contamination by falling. In the soil application of strontium-90 during the growth period of the plant, the radioactivity was absorbed through the root and translocated to other parts by different patterns according to the growth stage. (Author)

  6. Occurrence of perchloroethylene in surface water and fish in a river ecosystem affected by groundwater contamination.

    Science.gov (United States)

    Wittlingerová, Zdena; Macháčková, Jiřina; Petruželková, Anna; Zimová, Magdalena

    2016-03-01

    Long-term monitoring of the content of perchloroethylene (PCE) in a river ecosystem affected by groundwater contamination was performed at a site in the Czech Republic. The quality of surface water was monitored quarterly between 1994 and 2013, and fish were collected from the affected ecosystem to analyse the content of PCE in their tissue in 1998, 2011 and 2012. Concentrations of PCE (9-140 μg/kg) in the tissue of fish collected from the contaminated part of the river were elevated compared to the part of the river unaffected by the contamination (ND to 5 μg/kg PCE). The quality of surface water has improved as a result of groundwater remediation during the evaluated period. Before the remedial action, PCE concentrations ranged from 30 to 95 μg/L (1994-1997). Following commencement of remedial activities in September 1997, a decrease in the content of PCE in the surface water to 7.3 μg/L (1998) and further to 1 μg/L (2011) and 1.1 μg/L (2012) led to a progressive decrease in the average concentration of PCE in the fish muscle tissue from 79 μg/kg (1998) to 24 (2011) and 30 μg/kg (2012), respectively. It was determined that the bioconcentration of PCE does not have a linear dependence because the decrease in contamination in the fish muscle tissue is not directly proportional to the decrease in contamination in the river water. The observed average bioconcentration factors were 24 and 28 for the lower concentrations of PCE and 11 for the higher concentrations of PCE in the river. In terms of age, length and weight of the collected fish, weight had the greatest significance for bioconcentration, followed by the length, with age being evaluated as a less significant factor.

  7. Exposure and food web transfer of pharmaceuticals in ospreys (Pandion haliaetus): Predictive model and empirical data

    Science.gov (United States)

    Lazarus, Rebecca S.; Rattner, Barnett A.; Du, Bowen; McGowan, Peter C.; Blazer, Vicki S.; Ottinger, Mary Ann

    2015-01-01

    The osprey (Pandion haliaetus) is a well-known sentinel of environmental contamination, yet no studies have traced pharmaceuticals through the water–fish–osprey food web. A screening-level exposure assessment was used to evaluate the bioaccumulation potential of 113 pharmaceuticals and metabolites, and an artificial sweetener in this food web. Hypothetical concentrations in water reflecting “wastewater effluent dominated” or “dilution dominated” scenarios were combined with pH-specific bioconcentration factors (BCFs) to predict uptake in fish. Residues in fish and osprey food intake rate were used to calculate the daily intake (DI) of compounds by an adult female osprey. Fourteen pharmaceuticals and a drug metabolite with a BCF greater than 100 and a DI greater than 20 µg/kg were identified as being most likely to exceed the adult human therapeutic dose (HTD). These 15 compounds were also evaluated in a 40 day cumulative dose exposure scenario using first-order kinetics to account for uptake and elimination. Assuming comparable absorption to humans, the half-lives (t1/2) for an adult osprey to reach the HTD within 40 days were calculated. For 3 of these pharmaceuticals, the estimated t1/2 in ospreys was less than that for humans, and thus an osprey might theoretically reach or exceed the HTD in 3 to 7 days. To complement the exposure model, 24 compounds were quantified in water, fish plasma, and osprey nestling plasma from 7 potentially impaired locations in Chesapeake Bay. Of the 18 analytes detected in water, 8 were found in fish plasma, but only 1 in osprey plasma (the antihypertensive diltiazem). Compared to diltiazem detection rate and concentrations in water (10/12 detects,

  8. Medium-chain chlorinated paraffins (MCCPs): a review of bioaccumulation potential in the aquatic environment.

    Science.gov (United States)

    Thompson, Roy; Vaughan, Martin

    2014-01-01

    Chlorinated paraffins (CPs) are high molecular weight organochlorine compounds that have been used in a variety of industrial applications for many years. Medium-chain chlorinated paraffins (MCCPs) (CAS 85535-85-9; Alkanes, C14-17 , chloro) are currently under investigation as potential persistent bioaccumulative toxic (PBT) compounds. In this article, the bioaccumulation potential of MCCPs is assessed using a tiered framework proposed after a recent Society of Environmental Toxicology and Chemistry (SETAC) Pellston Workshop in 2008. The framework proposes the use of physicochemical properties and modeling assessment, bioconcentration/bioaccumulation (BCF/BAF) assessment, biomagnification (BMF) assessment, and trophic magnification factor (TMF) assessment. It is hoped that use of this framework could harmonize and improve the efficiency and effectiveness of the chemical substance evaluation screening process for PBT properties. When applied to MCCPs, the following conclusions were made: empirical physiochemical data is available negating the use of models; laboratory BCFs range from 1000 to 15 000 (growth-corrected lipid normalized values) for 2 MCCP structures; field BAFs were an order of magnitude higher than the trigger criterion for "B status possible"; although results may not meet acceptance criteria for field studies, laboratory-derived BMFs for a number of C14-17 chlorinated alkanes were less than the trigger value of 1 (based on whole-body concentrations) whereas field-derived BMFs were less than 1 (based on lipid corrected values [generally used for field data] excluding one measure for sculpin, [Cottus cognatus]-Diporeia that was based on only one detectable sample); and finally, TMFs were less than the trigger criterion value of 1, which are considered the most convincing evidence for bioaccumulative properties of a compound and the "Gold Standard" measure of bioaccumulation. This article also discusses the uncertainties surrounding the published data

  9. Phytoremediation efficiency of pondweed (Potamogeton crispus in removing heavy metals (Cu, Cr, Pb, As and Cd from water of Anzali wetland

    Directory of Open Access Journals (Sweden)

    Hajar Norouznia

    2014-09-01

    Full Text Available Plant-based remediation (i.e. phytoremediation is one of the most significant eco-sustainable techniques to cope with devastating consequences of pollutants. In the present study, the potential of a wetland macrophyt (i.e. Potamogeton crispus for the phytoremediation of heavy metals (i.e. Cu, Cr, Pb, As and Cd in the Anzali wetland was evaluated. The results showed that P. crispus tends to accumulate notable amounts of Cu, Cr, Pb, As and Cd according to their assayed concentrations as follows: 8.2 µg g-1 dw, 0.97 µg g-1 dw, 6.04 µg g-1 dw, 2.52 µg g-1 dw and 0.34 µg g-1 dw, respectively. Further accurate perception of the phytoremediation efficiency were conducted using both bioconcentration factor and translocation factor. The average of the highest bioconcentration factors was presented in a descending order as: 2.9×103, 1.9×103, 1.17×103, 0.68×103 and 0.46×103 for the Cu, Cr, Pb, Cd and As, respectively. Based on the results, P. crispus presents high potential to absorb all the alluded metals except for As and partly Cd. Correspondingly, the mean values of translocation factor were reported in the range of 0.41 to 2.24. Eventually, relying on the observed findings, the results support the idea that P. crispus species would be employed as the prospective candidate for the phytoremediation processes in Anzali wetland.

  10. Removal of triazine herbicides from freshwater systems using photosynthetic microorganisms

    International Nuclear Information System (INIS)

    Gonzalez-Barreiro, O.; Rioboo, C.; Herrero, C.; Cid, A.

    2006-01-01

    The uptake of the triazine herbicides, atrazine and terbutryn, was determined for two freshwater photosynthetic microorganisms, the green microalga Chlorella vulgaris and the cyanobacterium Synechococcus elongatus. An extremely rapid uptake of both pesticides was recorded, although uptake rate was lower for the cyanobacterium, mainly for atrazine. Other parameters related to the herbicide bioconcentration capacity of these microorganisms were also studied. Growth rate, biomass, and cell viability in cultures containing herbicide were clearly affected by herbicide uptake. Herbicide toxicity and microalgae sensitivity were used to determine the effectiveness of the bioconcentration process and the stability of herbicide removal. C. vulgaris showed higher bioconcentration capability for these two triazine herbicides than S. elongatus, especially with regard to terbutryn. This study supports the usefulness of such microorganisms, as a bioremediation technique in freshwater systems polluted with triazine herbicides

  11. Removal of triazine herbicides from freshwater systems using photosynthetic microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Barreiro, O. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain); Rioboo, C. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain); Herrero, C. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain); Cid, A. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain)]. E-mail: cid@udc.es

    2006-11-15

    The uptake of the triazine herbicides, atrazine and terbutryn, was determined for two freshwater photosynthetic microorganisms, the green microalga Chlorella vulgaris and the cyanobacterium Synechococcus elongatus. An extremely rapid uptake of both pesticides was recorded, although uptake rate was lower for the cyanobacterium, mainly for atrazine. Other parameters related to the herbicide bioconcentration capacity of these microorganisms were also studied. Growth rate, biomass, and cell viability in cultures containing herbicide were clearly affected by herbicide uptake. Herbicide toxicity and microalgae sensitivity were used to determine the effectiveness of the bioconcentration process and the stability of herbicide removal. C. vulgaris showed higher bioconcentration capability for these two triazine herbicides than S. elongatus, especially with regard to terbutryn. This study supports the usefulness of such microorganisms, as a bioremediation technique in freshwater systems polluted with triazine herbicides.

  12. Distribution, Fraction, and Ecological Assessment of Heavy Metals in Sediment-Plant System in Mangrove Forest, South China Sea

    Science.gov (United States)

    Li, Ruili; Chai, Minwei; Qiu, Guo Yu

    2016-01-01

    Overlying water, sediment, rhizosphere sediment and mangrove seedlings in the Futian mangrove forest were analyzed for heavy metals. The results showed that mangrove plant acidified sediment and increased organic matter contents. Except for chromium (Cr), nickel (Ni) and copper (Cu) in Aegiceras corniculatum sediment, heavy metals in all sediments were higher than in overlying water, rhizosphere sediment and mangrove root. Heavy metals in Avicennia marina sediments were higher than other sediments. The lower heavy metal biological concentration factors (BCFs) and translocation factors (TFs) indicated that mangrove plant adopted exclusion strategy. The geo-accumulation index, potential ecological risk index and risk assessment code (RAC) demonstrated that heavy metals have posed a considerable ecological risk, especially for cadmium (Cd). Heavy metals (Cr, Ni, Cu and Cd) mainly existed in the reducible fractions. These findings provide actual heavy metal accumulations in sediment-plant ecosystems in mangrove forest, being important in designing the long-term management and conservation policies for managers of mangrove forest. PMID:26800267

  13. Physiologically-based toxicokinetic models help identifying the key factors affecting contaminant uptake during flood events

    International Nuclear Information System (INIS)

    Brinkmann, Markus; Eichbaum, Kathrin; Kammann, Ulrike; Hudjetz, Sebastian; Cofalla, Catrina; Buchinger, Sebastian; Reifferscheid, Georg; Schüttrumpf, Holger; Preuss, Thomas

    2014-01-01

    Highlights: • A PBTK model for trout was coupled with a sediment equilibrium partitioning model. • The influence of physical exercise on pollutant uptake was studies using the model. • Physical exercise during flood events can increase the level of biliary metabolites. • Cardiac output and effective respiratory volume were identified as relevant factors. • These confounding factors need to be considered also for bioconcentration studies. - Abstract: As a consequence of global climate change, we will be likely facing an increasing frequency and intensity of flood events. Thus, the ecotoxicological relevance of sediment re-suspension is of growing concern. It is vital to understand contaminant uptake from suspended sediments and relate it to effects in aquatic biota. Here we report on a computational study that utilizes a physiologically based toxicokinetic model to predict uptake, metabolism and excretion of sediment-borne pyrene in rainbow trout (Oncorhynchus mykiss). To this end, data from two experimental studies were compared with the model predictions: (a) batch re-suspension experiments with constant concentration of suspended particulate matter at two different temperatures (12 and 24 °C), and (b) simulated flood events in an annular flume. The model predicted both the final concentrations and the kinetics of 1-hydroxypyrene secretion into the gall bladder of exposed rainbow trout well. We were able to show that exhaustive exercise during exposure in simulated flood events can lead to increased levels of biliary metabolites and identified cardiac output and effective respiratory volume as the two most important factors for contaminant uptake. The results of our study clearly demonstrate the relevance and the necessity to investigate uptake of contaminants from suspended sediments under realistic exposure scenarios

  14. Physiologically-based toxicokinetic models help identifying the key factors affecting contaminant uptake during flood events

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, Markus; Eichbaum, Kathrin [Department of Ecosystem Analysis, Institute for Environmental Research,ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); Kammann, Ulrike [Thünen-Institute of Fisheries Ecology, Palmaille 9, 22767 Hamburg (Germany); Hudjetz, Sebastian [Department of Ecosystem Analysis, Institute for Environmental Research,ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); Institute of Hydraulic Engineering and Water Resources Management, RWTH Aachen University, Mies-van-der-Rohe-Straße 1, 52056 Aachen (Germany); Cofalla, Catrina [Institute of Hydraulic Engineering and Water Resources Management, RWTH Aachen University, Mies-van-der-Rohe-Straße 1, 52056 Aachen (Germany); Buchinger, Sebastian; Reifferscheid, Georg [Federal Institute of Hydrology (BFG), Department G3: Biochemistry, Ecotoxicology, Am Mainzer Tor 1, 56068 Koblenz (Germany); Schüttrumpf, Holger [Institute of Hydraulic Engineering and Water Resources Management, RWTH Aachen University, Mies-van-der-Rohe-Straße 1, 52056 Aachen (Germany); Preuss, Thomas [Department of Environmental Biology and Chemodynamics, Institute for Environmental Research,ABBt- Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); and others

    2014-07-01

    Highlights: • A PBTK model for trout was coupled with a sediment equilibrium partitioning model. • The influence of physical exercise on pollutant uptake was studies using the model. • Physical exercise during flood events can increase the level of biliary metabolites. • Cardiac output and effective respiratory volume were identified as relevant factors. • These confounding factors need to be considered also for bioconcentration studies. - Abstract: As a consequence of global climate change, we will be likely facing an increasing frequency and intensity of flood events. Thus, the ecotoxicological relevance of sediment re-suspension is of growing concern. It is vital to understand contaminant uptake from suspended sediments and relate it to effects in aquatic biota. Here we report on a computational study that utilizes a physiologically based toxicokinetic model to predict uptake, metabolism and excretion of sediment-borne pyrene in rainbow trout (Oncorhynchus mykiss). To this end, data from two experimental studies were compared with the model predictions: (a) batch re-suspension experiments with constant concentration of suspended particulate matter at two different temperatures (12 and 24 °C), and (b) simulated flood events in an annular flume. The model predicted both the final concentrations and the kinetics of 1-hydroxypyrene secretion into the gall bladder of exposed rainbow trout well. We were able to show that exhaustive exercise during exposure in simulated flood events can lead to increased levels of biliary metabolites and identified cardiac output and effective respiratory volume as the two most important factors for contaminant uptake. The results of our study clearly demonstrate the relevance and the necessity to investigate uptake of contaminants from suspended sediments under realistic exposure scenarios.

  15. Correlation and prediction of environmental properties of alcohol ethoxylate surfactants using the UNIFAC method

    DEFF Research Database (Denmark)

    Cheng, Hongyuan; Kontogeorgis, Georgios; Stenby, Erling Halfdan

    2005-01-01

    ), the bioconcentration factor (BCF), and the toxicity. Kow values of alcohol ethoxylates are difficult to measure. Existing methods such as those in commercial software like ACD,ClogP and KowWin have not been applied to surfactants, and they fail for heavy alcohol ethoxylates (alkyl carbon numbers above 12). Thus...... and toxicity of alcohol ethoxylates are correlated with their Kow. The proposed approach can be extended to other families of nonionic surfactants....

  16. Ecotoxicity literature review of selected Hanford Site contaminants

    International Nuclear Information System (INIS)

    Driver, C.J.

    1994-03-01

    Available information on the toxicity, food chain transport, and bioconcentration of several Hanford Site contaminants were reviewed. The contaminants included cesium-137, cobalt-60, europium, nitrate, plutonium, strontium-90, technetium, tritium, uranium, and chromium (III and VI). Toxicity and mobility in both aquatic and terrestrial systems were considered. For aquatic systems, considerable information was available on the chemical and/or radiological toxicity of most of the contaminants in invertebrate animals and fish. Little information was available on aquatic macrophyte response to the contaminants. Terrestrial animals such as waterfowl and amphibians that have high exposure potential in aquatic systems were also largely unrepresented in the toxicity literature. The preponderance of toxicity data for terrestrial biota was for laboratory mammals. Bioconcentration factors and transfer coefficients were obtained for primary producers and consumers in representative aquatic and terrestrial systems; however, little data were available for upper trophic level transfer, particularly for terrestrial predators. Food chain transport and toxicity information for the contaminants were generally lacking for desert or sage brush-steppe organisms, particularly plants and reptiles

  17. Effects of climate change on bioaccumulation and biomagnification of polycyclic aromatic hydrocarbons in the planktonic food web of a subtropical shallow eutrophic lake in China.

    Science.gov (United States)

    Tao, Yuqiang; Xue, Bin; Lei, Guoliang; Liu, Fei; Wang, Zhen

    2017-04-01

    To date effects of climate change on bioaccumulation and biomagnification of chemical pollutants in planktonic food webs have rarely been studied. Recruitments of plankton have shifted earlier due to global warming. Global warming and precipitation patterns are projected to shift seasonally. Whether and how the shifts in plankton phenology induced by climate change will impact bioaccumulation and biomagnification of chemical pollutants, and how they will respond to climate change are largely unknown. Here, we combine data analysis of the past seven decades, high temporal resolution monitoring and model development to test this hypothesis with nine polycyclic aromatic hydrocarbons (PAHs) in the planktonic food web of a subtropical shallow eutrophic lake in China. We find biphasic correlations between both bioconcentration factors and bioaccumulation factors of the PAHs and the mean temperature, which depend on the recruitment temperatures of cyanobacteria, and copepods and cladocerans. The positive correlations between bioconcentration factors, bioaccumulation factors and the mean temperature will be observed less than approximately 13-18 days by 2050-2060 due to the shifts in plankton phenology. The PAHs and their bioaccumulation and biomagnification will respond seasonally and differently to climate change. Bioaccumulation of most of the PAHs will decrease with global warming, with higher decreasing rates appearing in winter and spring. Biomagnification of most of the PAHs from phytoplankton to zooplankton will increase with global warming, with higher increasing rates appearing in winter and spring. Our study provides novel insights into bioaccumulation and biomagnification of chemical pollutants in eutrophic waters under climate change scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Environmental Containment Property Estimation Using QSARs in an Expert System

    Science.gov (United States)

    1993-01-15

    Soil Adsorption , Octanol- Water Partition Coefficients, Water Solubilities, Bioconcentration Factors and the Parachor. J. Agric. Food Chý’m., 1981. 29...CCOO CH3CO CH3SH CH3SH CH2COO CH2SH HCOO HCOO Furfural Furfural CH20 CH30 DOH (CH2OH)2 CH20 I I CH-O Br Br FCH20 C=C CH=C CNH2 CJ’-NH2 C=C Ci,2NH2 DMSO

  19. Radiocesium bioaccumulation in freshwater plankton: Influences of cation concentrations (K+ and Na+) on direct uptake of 137Cs in Chlamydomonas, Scenedesmus and Daphnia. Food-chain transfer of 137Cs from Chlamydomonas to Daphnia at different K+ concentrations

    International Nuclear Information System (INIS)

    Hagstroem, J.

    2002-01-01

    The influences of cation concentrations (K + and Na + ) on radiocesium ( 137 Cs) bioaccumulation in two freshwater phytoplankton species (Scenedesmus quadricauda and Chlamydomonas noctigama) were systematically investigated in batch-cultures monitored during two weeks. Both species were cultured at 9 μE M -2 s -1 constant illumination at 20 deg. C. The exponential growth phase lasted for more than 100 hours (μ ≅ 0.02 h -1 for C. noctigama and 0.03 h -1 for S, quadricauda). Over cation concentration ranges encountered in natural fresh waters ([K + ] from 0.1 μM to 3 mM, [Na + ] from 20 μM to 3 mM), a more than three order of magnitude variation was found for both intake rate and observed bioconcentration factors (BCF) at apparent steady-state (from less than 10 3 to 10 6 L (kg C) -1 ). For both species, the major effector on BCF and uptake rate was external [K + ], which was inversely proportional to these parameters over wide ranges (1-1000 μM for S. quadricauda and 0.1 to 300 μM for C. noctigama). At concentrations above these ranges K + still reduced 137 Cs bio-uptake, but less effectively. A minor influence of external [Na + ] on 137 Cs bioaccumulation was indicated for S. quadricauda, whereas no such influence was significant for C. noctigama. A biphasic pattern for 137 Cs bioaccumulation was discovered in C. noctigama. A rapid 'quasi-steady state' with an effective equilibration time of less than 100 hours was approached during the exponential growth phase. A surge in the uptake occurred when exponential growth ceased, and this pattern was consistent over the range 30 μM to 1.4 mM external [K + ]. Since depletion of external [K + ] was not detected for these treatments, this pattern can only be explained if there are at least two different cellular compartments involved. Although less certain, a second steady-state BCF appeared within two weeks, which seems to be up to one order of magnitude higher than the first. Microcosm experiments with the

  20. Organochlorine pollution in tropical rivers (Guadeloupe): Role of ecological factors in food web bioaccumulation

    Energy Technology Data Exchange (ETDEWEB)

    Coat, Sophie, E-mail: coatsophie@gmail.com [EA 926 DYNECAR, Laboratoire de Biologie Marine, UFR Sciences, Universite des Antilles et de la Guyane, BP592, 97159 Pointe-a-Pitre Cedex (France); Monti, Dominique, E-mail: dominique.monti@univ-ag.fr [EA 926 DYNECAR, Laboratoire de Biologie Marine, UFR Sciences, Universite des Antilles et de la Guyane, BP592, 97159 Pointe-a-Pitre Cedex (France); Legendre, Pierre, E-mail: pierre.legendre@umontreal.ca [Departement de Sciences Biologique, Universite de Montreal, C.P. 6128, succursale A, Montreal, Quebec H3C 3J7 (Canada); Bouchon, Claude, E-mail: claude.bouchon@univ-ag.fr [EA 926 DYNECAR, Laboratoire de Biologie Marine, UFR Sciences, Universite des Antilles et de la Guyane, BP592, 97159 Pointe-a-Pitre Cedex (France); Massat, Felix, E-mail: fmassat@ladrome.fr [LDA26, laboratoire Departemental d' Analyses de la Drome, 27 avenue Lautagne, 26000 Valence (France); Lepoint, Gilles, E-mail: g.lepoint@ulg.ac.be [MARE Centre, Laboratoire d' Oceanologie, Universite de Liege, Bat. B6, 4000 Sart Tilman, Belgique (Belgium)

    2011-06-15

    Concentrations of organochlorine pesticides and stable isotope ratios of nitrogen and carbon were measured in a tropical freshwater ecosystem to evaluate the contamination level of biota and examine the bioaccumulation patterns of pollutants through the food web. Chemical analyses showed a general and heavy contamination of the entire food web. They revealed the strong accumulation of pollutants by juveniles of diadromous fishes and shrimps, as they re-enter the river. The role of ecological factors in the bioaccumulation of pesticides was evaluated. Whereas the most persistent pollutants (chlordecone and monohydro-chlordecone) were related to the organisms diet and habitat, bioaccumulation of {beta}-HCH was only influenced by animal lipid content. The biomagnification potential of chlordecone through the food chain has been demonstrated. It highlighted the importance of trophic transfer in this compound bioaccumulation process. In contrast, bioconcentration by passive diffusion from water seemed to be the main exposure route of biota to {beta}-HCH. - Highlights: > We measured OC pesticides and stable isotope ratios in a tropical stream. > Results showed a strong and ubiquitous contamination of the entire food web. > Diadromous juveniles strongly accumulated pollutants when they re-enter the river. > The most persistent pollutant (chlordecone) was related to species diet and habitat. > {beta}-HCH was only influenced by animal lipid content. - This paper determines the bioaccumulation and transfer processes of organochlorine pesticides within the stream food web in Guadeloupe (Caribbean).

  1. Effects of sewage sludge on Di-(2-ethylhexyl) phthalate uptake by plants

    International Nuclear Information System (INIS)

    Aranda, J.M.; O'Connor, G.A.; Eiceman, G.A.

    1989-01-01

    Di-(2-ethylhexyl) phthalate (DEHP) is a priority organic pollutant frequently found in municipal sludges. A greenhouse study was conducted to determine the effect of sludge on plant uptake of 14 C-DEHP (carbonyl labeled). Plants grown included three food chain crops, lettuce (Lactuca sativa L.), carrot (Daucus carota L.) and chile pepper (Capsicum annuum L.) and tall fescue (Festuca arundinacea Schreb.). Net 14 C concentration in plants grown in soil amended with 14 C-DEHP-contaminated sludge was independent of sludge rate (at the same DEHP loading) for lettuce, chile fruit, and carrot roots. Net 14 C concentration, however, was inversely related to sludge rate in carrot tops, fescue, and chile plants. Intact DEHP was not detected in plants by gas chromatography/mass spectrometry analysis. Calculated plant DEHP concentrations (based on measured net 14 C concentrations and DEHP specific activities) were generally correlated better with DEHP soil solution concentrations than with total DEHP soil concentrations. Net 14 C-DEHP bioconcentration factors were calculated from initial soil DEHP concentration and plant fresh weights. Bioconcentration factors ranged from 0.01 to 0.03 for fescue, lettuce, carrots, and chile, suggesting little DEHP uptake. Additionally, because intact DEHP was not detected in any plants, DEHP uptake by plants was of minor importance and would not limit sludge additions to soils used to grow these crops

  2. Uptake of Cadmium by Lemna minor, a (hyper?- accumulator plant involved in phytoremediation applications

    Directory of Open Access Journals (Sweden)

    Bianconi D.

    2013-04-01

    Full Text Available Metal pollution in waters and soils is a major environmental and human health problem. Cadmium (Cd2+ is a heavy metal displaying toxic effects in plants. In this work we studied the potentiality of Lemna minor, a monocotyledonous aquatic macrophyte, to phytoremediate cadmium-polluted waters. The plants were exposed to different cadmium concentrations 0, 13, 22 and 46μM CdSO4 for a period of 24, 48 and 72 hours. Relative growth rates (RGR, bioconcentration factor (BCF, tolerance index (Ti, cadmium uptake in whole plant and maximum efficiency of PSII (Fv/Fm were measured under controlled climate conditions. RGR, Ti and Fv/Fm declined with increasing exposure time and cadmium concentrations, while the BCF and cadmium uptake showed an opposite behavior. Data analysis of RGR, BCF, Tiand FV/FM indicates that L. minor maintains a good capacity of growth, metal bioconcentration, tolerance and efficiency of PSII up to 48h in plants exposed to 13 and 22μM CdSO4. Our results exhibited that L. minor is a good cadmium accumulator and is able to remediate Cd-polluted waters, especially at low Cd concentrations.

  3. Biotransformation and detoxication of molinate (Ordram) in fish

    International Nuclear Information System (INIS)

    Tjeerdema, R.S.

    1987-01-01

    Bioconcentration, deputation, and biotransformation of molinate were compared in common carp (cyprinus carpio), striped bass (Morone saxatilis), and white sturgeon (acipenser transmontanus) using a flow-through metabolism system. When compared to static conditions, flowing water improved oxygenation, decreased chemical volatilization and remetabolism, and run through a macroreticular resin, improved waste-product collection. Metabolite analysis employed gradient high-pressure liquid chromatography. Exposure to 100 μg L -1 [ring- 14 C]molinate for 24 h resulted in bioconcentration factors of 30.5 (carp), 25.3 (bass), and 19.7 (sturgeon); differences were not significant (all, P > 0.05). 14 C depuration by common carp was significantly slower than that by either striped bass or white sturgeon (both, P < 0.01). All three species oxidized molinate to a number of products and hydrolyzed, or conjugated with glutathione (GSH), the sulfoxide or sulfone, ultimately producing the mercapturic acid; carp and sturgeon also formed a D-glucuronic acid conjugate. Common carp were significantly less capable of sulfoxidation and GSH conjugation than either striped bass (P < 0.05) or white sturgeon (P < 0.01). Therefore, the selective toxicity of molinate in carp may be due to less efficient depuration and metabolic deactivation

  4. Accumulation factors of mercury in mushrooms from Zaborski Landscape Park, Poland.

    Science.gov (United States)

    Falandysz, Jerzy; Lipka, Krzysztof; Gucia, Magdalena; Kawano, Masahide; Strumnik, Katarzyna; Kannan, Kurunthachalam

    2002-11-01

    Total mercury concentrations were determined by cold-vapour atomic absorption spectroscopy (CV-AAS) in 117 samples of caps, 117 of stalks and 47 of whole fruiting bodies of 13 species of wild mushrooms and in 164 underlying soil substrate collected from Zaborski Landscape Park during 1997 and 1998. The study area is a background, forested site with rural landscape and no known local sources of mercury emission. Mean mercury concentrations in mushrooms varied widely (range: 50 +/- 20 to 3700 +/- 1700 ng/g, dry matter) depending on the site and mushroom species investigated. However, mercury concentrations in soil samples varied less (range: 3.0 +/- 3.0 to 43 +/- 17 ng/g dry matter). Fruiting bodies of Common Puffball (Lycoperdon perlatum) and King Bolete (Boletus edulis) contained the greatest concentrations of mercury of 3700 +/- 1700 and 2600 +/- 1200 ng/g dry matter, respectively. A positive correlation existed between mercury concentrations in the caps of Slippery Jack (Suillus luteus) and Fly Agaric (Amanita muscaria) (p Suillus grevillei) and King Bolete (B. edulis) and varied between 130 +/- 78 and 160 +/- 120, while for the other species BCFs were between 4.0 +/- 6.0 and 61 +/- 20 in caps, and 4.4 +/- 3.1 and 70 +/- 68 in stalks. The concentration ratios of Hg in cap to stalk were from 1.1 +/- 0.5 for Poison Pax (Paxillus involutus) to 2.7 +/- 1.7 in Larch Bolete (S. grevillei).

  5. Metal-resistant rhizobacteria isolates improve Mucuna deeringiana phytoextraction capacity in multi-metal contaminated soils from a gold mining area.

    Science.gov (United States)

    Boechat, Cácio Luiz; Giovanella, Patricia; Amorim, Magno Batista; de Sá, Enilson Luiz Saccol; de Oliveira Camargo, Flávio Anastácio

    2017-01-01

    Phytoremediation consists of biological techniques for heavy metal remediation, which include exploring the genetic package of vegetable species to remove heavy metals from the environment. The goals of this study were to investigate heavy metal and bioaugmentation effects on growth and nutrient uptake by Mucuna deeringiana; to determine the metal translocation factor and bioconcentration factor and provide insight for using native bacteria to enhance heavy metal accumulation. The experiment was conducted under greenhouse conditions using a 2 × 4 factorial scheme with highly and slightly contaminated soil samples and inoculating M. deeringiana with three highly lead (Pb +2 )-resistant bacteria Kluyvera intermedia (Ki), Klebsiella oxytoca (Ko), and Citrobacter murliniae (Cm) isolated from the rhizosphere of native plants identified as Senecio brasiliensis (Spreng.) Less., Senecio leptolobus DC., and Baccharis trimera (Less) DC., respectively. The increased heavy metal concentrations in soil samples do not decrease the root dry mass of M. deeringiana, concerning the number and dry weight of nodules. The shoot dry mass is reduced by the increasing concentration of heavy metals in soil associated with Kluyvera intermedia and Klebsiella oxytoca bacteria. The number of nodules is affected by heavy metals associated with Citrobacter murliniae bacteria. The bacteria K. intermedia, C. murliniae, and K. oxytoca increase the lead and cadmium available in the soil and enhanced metal uptake by Mucuna deeringiana. The M. deeringiana specie has characteristics that make it hyperaccumulate copper and zinc. The translocation and bioconcentration factors for M. deeringiana characterize it as a promising candidate to phytostabilize multi-metal contaminated soils.

  6. Selection of bioaccumulation criteria for environmental emergency (E2) planning

    International Nuclear Information System (INIS)

    Ketcheson, K.; Hradecky, K.; Gagne, M.; St-Amant-Verret, M.

    2006-01-01

    Environment Canada's Environmental Emergency regulations require the evaluation of a substance by a Risk Evaluation Framework (REF). Bioaccumulation criteria are used within the environmental hazard ratings section of the REF to determine the risk of a substance to organisms and are obtained from 3 types of measurements depending on data reliability: (1) bioaccumulation factors (BAF); (2) bioconcentration factors (BCF); and (3) an octanol-water partition coefficient (log K ow ). This paper presented details of a study of international and regional bioaccumulation criteria conducted to aid in determining appropriate criteria for E2 regulations and plans, with specific reference to substances toxic to aquatic organisms. An E2 plan is required if a substance has a bioconcentration factor of more than 500 in conjunction with aquatic toxicity. Bioaccumulation criteria from several sources for 745 substances were obtained to aid in choosing the most important parameters. Various international and regional criteria were examined and corresponding sources were summarized, and different source criteria was compared with empirical chemical data. The criteria chosen included both log K ow values and BCF values, although it was suggested that BCF and BAF are more realistic measures of bioaccumulation than log K ow , as they are derived from animal studies. The chosen values agreed with the virtual elimination criteria set out by the Canadian Environmental Protection Act (CEPA) 1999 as well as United States Environmental Protection Agency (EPA) criteria. It was concluded that the bioaccumulation criteria for E2 planning will help Environment Canada ensure the protection of the environment from hazardous substances. 11 refs., 3 tabs., 5 figs

  7. Calibrating passive sampling and passive dosing techniques to lipid based concentrations

    DEFF Research Database (Denmark)

    Mayer, Philipp; Schmidt, Stine Nørgaard; Annika, A.

    2011-01-01

    Equilibrium sampling into various formats of the silicone polydimethylsiloxane (PDMS) is increasingly used to measure the exposure of hydrophobic organic chemicals in environmental matrices, and passive dosing from silicone is increasingly used to control and maintain their exposure in laboratory...... coated vials and with Head Space Solid Phase Microextraction (HS-SPME) yielded lipid based concentrations that were in good agreement with each other, but about a factor of two higher than measured lipid-normalized concentrations in the organisms. Passive dosing was applied to bioconcentration...

  8. Human toxicity as a criterion in the environmental assessment of products

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Olsen, Stig Irving; Wenzel, Henrik

    1998-01-01

    . The assessment proceeds through the steps of classification, characterization, normalization and valuation. In the classification step attention is focused on intrinsic toxicity, low biodegradability and potential for bioconcentration as properties that predicpose a substance for ecotoxicity. No concrete values...... references derived for each of these scenarios are presented as personal equivalents for citizens in the considered region. Valuation Applying the "distance to target principle to the present Danish political reduction targets for toxicity a weighting factor is derived to be used in the quantitative weighing...

  9. Copper regulation and homeostasis of Daphnia magna and Pseudokirchneriella subcapitata: influence of acclimation

    International Nuclear Information System (INIS)

    Bossuyt, Bart T.A.; Janssen, Colin R.

    2005-01-01

    This study aimed to evaluate (1) the capacity of the green alga Pseudokirchneriella subcapitata and the waterflea Daphnia magna to regulate copper when exposed to environmentally realistic copper concentrations and (2) the influence of multi-generation acclimation to these copper concentrations on copper bioaccumulation and homeostasis. Based on bioconcentration factors, active copper regulation was observed in algae up to 5 μg Cu L -1 and in daphnids up to 35 μg Cu L -1 . Constant body copper concentrations (13 ± 4 μg Cu g DW -1 ) were observed in algae exposed to 1 through 5 μg Cu L -1 and in daphnids exposed to 1 through 12 μg Cu L -1 . At higher exposure concentrations, there was an increase in internal body copper concentration, while no increase was observed in bioconcentration factors, suggesting the presence of a storage mechanism. At copper concentrations of 100 μg Cu L -1 (P. subcapitata) and 150 μg Cu L -1 (D. magna), the significant increases observed in body copper concentrations and in bioconcentration factors may be related to a failure of this regulation mechanism. For both organisms, internal body copper concentrations lower than 13 μg Cu g DW -1 may result in copper deficiency. For P. subcapitata acclimated to 0.5 and 100 μg Cu L -1 , body copper concentrations ranged (mean ± standard deviation) between 5 ± 2 μg Cu g DW -1 and 1300 ± 197 μg Cu g DW -1 , respectively. For D. magna, this value ranged between 9 ± 2 μg Cu g DW -1 and 175 ± 17 μg Cu g DW -1 for daphnids acclimated to 0.5 and 150 μg Cu L -1 . Multi-generation acclimation to copper concentrations ≥12 μg Cu L -1 resulted in a decrease (up to 40%) in body copper concentrations for both organisms compared to the body copper concentration of the first generation. It can be concluded that there is an indication that P. subcapitata and D. magna can regulate their whole body copper concentration to maintain copper homeostasis within their optimal copper range and

  10. Concentration dependence of biotransformation in fish liver S9: Optimizing substrate concentrations to estimate hepatic clearance for bioaccumulation assessment.

    Science.gov (United States)

    Lo, Justin C; Allard, Gayatri N; Otton, S Victoria; Campbell, David A; Gobas, Frank A P C

    2015-12-01

    In vitro bioassays to estimate biotransformation rate constants of contaminants in fish are currently being investigated to improve bioaccumulation assessments of hydrophobic contaminants. The present study investigates the relationship between chemical substrate concentration and in vitro biotransformation rate of 4 environmental contaminants (9-methylanthracene, pyrene, chrysene, and benzo[a]pyrene) in rainbow trout (Oncorhynchus mykiss) liver S9 fractions and methods to determine maximum first-order biotransformation rate constants. Substrate depletion experiments using a series of initial substrate concentrations showed that in vitro biotransformation rates exhibit strong concentration dependence, consistent with a Michaelis-Menten kinetic model. The results indicate that depletion rate constants measured at initial substrate concentrations of 1 μM (a current convention) could underestimate the in vitro biotransformation potential and may cause bioconcentration factors to be overestimated if in vitro biotransformation rates are used to assess bioconcentration factors in fish. Depletion rate constants measured using thin-film sorbent dosing experiments were not statistically different from the maximum depletion rate constants derived using a series of solvent delivery-based depletion experiments for 3 of the 4 test chemicals. Multiple solvent delivery-based depletion experiments at a range of initial concentrations are recommended for determining the concentration dependence of in vitro biotransformation rates in fish liver fractions, whereas a single sorbent phase dosing experiment may be able to provide reasonable approximations of maximum depletion rates of very hydrophobic substances. © 2015 SETAC.

  11. Radiocesium bioaccumulation in freshwater plankton: Influences of cation concentrations (K{sup +} and Na{sup +}) on direct uptake of {sup 137}Cs in Chlamydomonas, Scenedesmus and Daphnia. Food-chain transfer of {sup 137}Cs from Chlamydomonas to Daphnia at different K{sup +} concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Hagstroem, J. [Uppsala Univ., Dept. of Limnology, Uppsala (Sweden)

    2002-04-01

    The influences of cation concentrations (K{sup +} and Na{sup +}) on radiocesium ({sup 137}Cs) bioaccumulation in two freshwater phytoplankton species (Scenedesmus quadricauda and Chlamydomonas noctigama) were systematically investigated in batch-cultures monitored during two weeks. Both species were cultured at 9 {mu}E M{sup -2} s{sup -1} constant illumination at 20 deg. C. The exponential growth phase lasted for more than 100 hours ({mu} {approx_equal} 0.02 h{sup -1} for C. noctigama and 0.03 h{sup -1} for S, quadricauda). Over cation concentration ranges encountered in natural fresh waters ([K{sup +}] from 0.1 {mu}M to 3 mM, [Na{sup +}] from 20 {mu}M to 3 mM), a more than three order of magnitude variation was found for both intake rate and observed bioconcentration factors (BCF) at apparent steady-state (from less than 10{sup 3} to 10{sup 6} L (kg C){sup -1}). For both species, the major effector on BCF and uptake rate was external [K{sup +}], which was inversely proportional to these parameters over wide ranges (1-1000 {mu}M for S. quadricauda and 0.1 to 300 {mu}M for C. noctigama). At concentrations above these ranges K{sup +} still reduced {sup 137} Cs bio-uptake, but less effectively. A minor influence of external [Na{sup +}] on {sup 137}Cs bioaccumulation was indicated for S. quadricauda, whereas no such influence was significant for C. noctigama. A biphasic pattern for {sup 137}Cs bioaccumulation was discovered in C. noctigama. A rapid 'quasi-steady state' with an effective equilibration time of less than 100 hours was approached during the exponential growth phase. A surge in the uptake occurred when exponential growth ceased, and this pattern was consistent over the range 30 {mu}M to 1.4 mM external [K{sup +}]. Since depletion of external [K{sup +}] was not detected for these treatments, this pattern can only be explained if there are at least two different cellular compartments involved. Although less certain, a second steady-state BCF

  12. The Environmentally Sound Aquaculture Strategies Based on Bioaccumulation of Heavy Metal of Lead (Pb) on Seaweed of Gracilaria verrucosa on Aquaculture Areas of MuararejaVillage, Tegal City

    Science.gov (United States)

    Nurjanah; Ambariyanto; Supriharyono; Yulianto, Bambang

    2018-02-01

    Community activities such as industry, trade, animal husbandry and agriculture and ssettlements resulting in heavy metals of lead (Pb) can be accumulated in water, sediment and seaweed Gracillaria verrucosa. It can contaminate ponds and affect aquaculture activities in Tegal. Seaweed Gracilaria verrucosa is afisheries commodity that has economical value and cultivated in the area of aquaculture MuararejaTegal. It can serve as fitoremedian that will help reduce the impact of heavy metal pollution due to its ability to accumulate pollutants. The objective of this study was to analyze bioaccumulation of heavy metals of lead (Pb) and its relationship with water quality management in order to develop seaweed cultivation of Gracillaria verrucosa in ponds in the area of aquaculture MuararejaTegal. The method used in this study is a survey, analysis of heavy metals of lead (Pb) in pond water, sediment and seaweed using Atomic Absorption Spectrophotometer (AAS) and the data were analyzed by descriptive quantitative. Bioconcentration of lead (Pb) during the dry season in pond water, sediment and seaweed Gracillaria verrucosa was measured from 0.003 to 0.025 ppm,5.543 to 23.699 ppm and 0.209 to 0.326 ppm respectively. While in the rainy season bioconcentration of lead (Pb) are from 0.003 to 0.015 ppm, sediment from 6.377 to 9.858 ppm and 0.209 to 0.326 ppm respectively. Bioconcentration of Pb in dry season was higher than in the rainy season and the biggest bioconcentration was found in the sediment pond waters. Pb bioaccumulation low and still below the quality standards of the Ministry of Environment decision 51 of 2004 so that the product is safe for consumption.

  13. Human health risk assessment: heavy metal contamination of vegetables in Bahawalpur, Pakistan

    Directory of Open Access Journals (Sweden)

    Hafiza Hira Iqbal

    2016-01-01

    Full Text Available Dietary exposure of toxic metals is a vital concern for human health through vegetable consumption, especially in developing countries. Aim of the current study was to determine the health risk related to vegetables contamination of heavy metals by irrigated with sewage and turbine water. Irrigation water sources, soils and vegetables were analyzed for selected metals viz: Pb, Cd, Cr and Ni. Heavy metals in water samples were within the permissible limits except Cd in sewage water. The concentration of heavy metals in soil and vegetables irrigated with turbine water were lower than the safe limits. In case of vegetables irrigated with sewage water, Cd was higher in soil while Pb, Cd and Cr were higher in most of the vegetables. Daily intake of metals, health risk index and Bio-concentration factor was also determined. Health risk index values for Cd, Pb and Ni were exceeded the permissible limits (European Union, 2002. Bio-concentration factor (BCF found to be maximum (16.4 mg/kg in Coriandrum sativum cultivated with sewage water. Raphanus caudatus, Coriandrum sativum, Daucus carota, Allium sativum and Solanum tuberosum showed Health Risk Index of Cd > 1 in adults and children. Allium sativum also showed HRI of Pb > 1 in children. We conclude that the quality of vegetables irrigated with sewage water is poor and not fit for human health, evident from the high concentration of Pb, Cd and Cr. Urgent measures are required to prevent consumption and production vegetables irrigated with of sewage water in the study area.

  14. Phytoremediation of Pb and Hg by using Scirpus mucronatus with addition of bacterial inoculums

    International Nuclear Information System (INIS)

    Hamzah, A.; Yatim, N.I.; Sarmani, S.B.

    2015-01-01

    Two heavy metal-resistant rhizobacteria bacteria (Brevundimonas diminuta SF-S1-5 and Alcaligenes faecalis SF-S1-60) were bioaugmented in sand and also spiked with 100 ppm Pb and 1 ppm Hg and the removal of these metals was monitored using plant, Scirpus mucronatus. The highest accumulation of Pb and Hg were obtained in the root of S. mucronatus inoculated with A. faecalis at day 42 and 28, respectively. Plant inoculated with A. faecalis also showed the highest bioaccumulation coefficient and bioconcentration factor values > 1 compared to plant inoculated with B. diminuta and control. (author)

  15. Biochemical impacts of Hg in Mytilus galloprovincialis under present and predicted warming scenarios.

    Science.gov (United States)

    Coppola, Francesca; Almeida, Ângela; Henriques, Bruno; Soares, Amadeu M V M; Figueira, Etelvina; Pereira, Eduarda; Freitas, Rosa

    2017-12-01

    The interest in the consequences of climate change on the physiological and biochemical functioning of marine organisms is increasing, but the indirect and interactive effects resulting from warming on bioconcentration and responsiveness to pollutants are still poorly explored, particularly in terms of cellular responses. The present study investigated the impacts of Hg in Mytilus galloprovincialis under control (17°C) and warming (21°C) conditions, assessing mussels Hg bioconcentration capacity, metabolic and oxidative status after 14 and 28days of exposure. Results obtained showed greater impacts in mussels exposed for 28days in comparison to 14days of exposure. Furthermore, our findings revealed that the increase in temperature from 17 to 21°C reduced the bioconcentration of Hg by M. galloprovincialis, which may explain higher mortality rates at 17°C in comparison to 21°C. Lower Hg concentration at 21°C in mussels tissue may result from valves closure for longer periods, identified by reduced energy reserves consumption at higher temperature, which in turn might also contributed to higher oxidative stress in organisms exposed to this condition. The highest LPO levels observed in mussels exposed to higher temperatures alone indicate that warming conditions will greatly affect M. galloprovincialis. Furthermore, the present study showed that the impacts induced by the combination of Hg and warming were similar to the ones caused by increased temperature acting alone, mainly due to increased antioxidant defenses in organisms under combined effects of Hg and warming, suggesting that warming was the factor that mostly contributed to oxidative stress in mussels. Although higher mortality was observed in individuals exposed to 17°C and Hg compared to organisms exposed to Hg at 21°C, the oxidative stress induced at higher temperature may generate negative consequences on mussels reproductive and feeding capacity, growth and, consequently, on population

  16. Evaluation of the transfer and the accumulation of microcystins in tomato (Solanum lycopersicum cultivar MicroTom) tissues using a cyanobacterial extract containing microcystins and the radiolabeled microcystin-LR ("1"4C-MC-LR)

    International Nuclear Information System (INIS)

    Corbel, Sylvain; Mougin, Christian; Nélieu, Sylvie; Delarue, Ghislaine; Bouaïcha, Noureddine

    2016-01-01

    Microcystins are the most common cyanotoxins and may be expected wherever blooms of cyanobacteria occur in surface waters. Their persistence both in the irrigation water and in the soil can lead to their transfer and bioaccumulation into agricultural plants. The aim of this work was to investigate microcystin accumulation in Solanum lycopersicum cultivar MicroTom. The plant was exposed to either Microcystis aeruginosa crude extracts containing up to 100 μg eq. MC-LR L"−"1 in a soil–plant system for 90 days or pure radiolabeled "1"4C-MC-LR in a hydroponic condition for 48 h. Toxin bioaccumulation in the soil and different plant tissues was assessed both by the PP2A inhibition assay and by liquid chromatography-mass spectrometry (LC/MS/MS). After 90 days of exposure, microcystins persisted in the soil and their free extractable concentrations accumulated were very low varying between 1.6 and 3.9 μg eq. MC-LR kg"−"1 DW. Free MC-LR was detected only in roots and leaves with concentrations varying between 4.5 and 8.1 μg kg"−"1 DW and between 0.29 and 0.55 μg kg"−"1 DW, respectively. By using radioactivity ("1"4C-MC-LR), the results have reported a growing accumulation of toxins within the organs roots > leaves > stems and allowed them to confirm the absence of MC-LR in fruits after 48 h of exposure. The bioconcentration factor (BCF) was 13.6 in roots, 4.5 in leaves, and 1.4 in stems. On the other hand, the results highlight the presence of two radioactive fractions in different plant tissues. The non-extractable fraction of radioactivity, corresponding to the covalently bound MC-LR, was higher than that of the extractable fraction only in roots and leaves reaching 56% and 71% of the total accumulated toxin, respectively. Therefore, results raise that monitoring programs must monitor the presence of MCs in the irrigation water to avoid the transfer and accumulation of these toxins in crops. - Graphical abstract: Bioconcentration factors in organs of the

  17. Evaluation of the transfer and the accumulation of microcystins in tomato (Solanum lycopersicum cultivar MicroTom) tissues using a cyanobacterial extract containing microcystins and the radiolabeled microcystin-LR ({sup 14}C-MC-LR)

    Energy Technology Data Exchange (ETDEWEB)

    Corbel, Sylvain [INRA, UMR1402 ECOSYS, F-78850 Thiverval-Grignon (France); AgroParisTech, UMR1402 ECOSYS, F-78850 Thiverval-Grignon (France); Laboratoire Ecologie, Systématique et Evolution, UMR8079, Univ. Paris-Sud/CNRS/AgroParisTech, Université Paris-Sud, F-91405 Orsay (France); Mougin, Christian; Nélieu, Sylvie; Delarue, Ghislaine [INRA, UMR1402 ECOSYS, F-78850 Thiverval-Grignon (France); AgroParisTech, UMR1402 ECOSYS, F-78850 Thiverval-Grignon (France); Bouaïcha, Noureddine, E-mail: noureddine.bouaicha@u-psud.fr [Laboratoire Ecologie, Systématique et Evolution, UMR8079, Univ. Paris-Sud/CNRS/AgroParisTech, Université Paris-Sud, F-91405 Orsay (France)

    2016-01-15

    Microcystins are the most common cyanotoxins and may be expected wherever blooms of cyanobacteria occur in surface waters. Their persistence both in the irrigation water and in the soil can lead to their transfer and bioaccumulation into agricultural plants. The aim of this work was to investigate microcystin accumulation in Solanum lycopersicum cultivar MicroTom. The plant was exposed to either Microcystis aeruginosa crude extracts containing up to 100 μg eq. MC-LR L{sup −1} in a soil–plant system for 90 days or pure radiolabeled {sup 14}C-MC-LR in a hydroponic condition for 48 h. Toxin bioaccumulation in the soil and different plant tissues was assessed both by the PP2A inhibition assay and by liquid chromatography-mass spectrometry (LC/MS/MS). After 90 days of exposure, microcystins persisted in the soil and their free extractable concentrations accumulated were very low varying between 1.6 and 3.9 μg eq. MC-LR kg{sup −1} DW. Free MC-LR was detected only in roots and leaves with concentrations varying between 4.5 and 8.1 μg kg{sup −1} DW and between 0.29 and 0.55 μg kg{sup −1} DW, respectively. By using radioactivity ({sup 14}C-MC-LR), the results have reported a growing accumulation of toxins within the organs roots > leaves > stems and allowed them to confirm the absence of MC-LR in fruits after 48 h of exposure. The bioconcentration factor (BCF) was 13.6 in roots, 4.5 in leaves, and 1.4 in stems. On the other hand, the results highlight the presence of two radioactive fractions in different plant tissues. The non-extractable fraction of radioactivity, corresponding to the covalently bound MC-LR, was higher than that of the extractable fraction only in roots and leaves reaching 56% and 71% of the total accumulated toxin, respectively. Therefore, results raise that monitoring programs must monitor the presence of MCs in the irrigation water to avoid the transfer and accumulation of these toxins in crops. - Graphical abstract: Bioconcentration

  18. Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria--effects on phytoremediation strategies.

    Science.gov (United States)

    Marques, Ana P G C; Moreira, Helena; Franco, Albina R; Rangel, António O S S; Castro, Paula M L

    2013-06-01

    Plant growth promoting bacteria (PGPR) may help reducing the toxicity of heavy metals to plants in polluted environments. In this work the effects of inoculating metal resistant and plant growth promoting bacterial strains on the growth of Helianthus annuus grown in Zn and Cd spiked soils were assessed. The PGPR strains Ralstonia eutropha (B1) and Chrysiobacterium humi (B2) reduced losses of weight in metal exposed plants and induced changes in metal bioaccumulation and bioconcentration - with strain B2 decreasing up to 67% Zn accumulation and by 20% Zn bioconcentration factor (BCF) in the shoots, up to 64% Zn uptake and 38% Zn BCF in the roots, and up to 27% Cd uptake and 27% Cd BCF in plant roots. The impact of inoculation on the bacterial communities in the rhizosphere of the plant was also assessed. Bacterial community diversity decreased with increasing levels of metal contamination in the soil, but in rhizosphere soil of plants inoculated with the PGPR strains, a higher bacterial diversity was kept throughout the experimental period. Inoculation of sunflower, particularly with C. humi (B2), appears to be an effective way of enhancing the short term stabilization potential of the plant in metal contaminated land, lowering losses in plant biomass and decreasing aboveground tissue contamination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Vegetation response to soil salinity and waterlogging in three saltmarsh hydrosequences through macronutrients distribution

    Science.gov (United States)

    Ferronato, Chiara; Speranza, Maria; Ferroni, Lucia; Buscaroli, Alessandro; Vianello, Gilmo; Vittori Antisari, Livia

    2018-01-01

    Saltmarshes consist of soil hydrosequences, where the complex interactions between water tide fluctuations, soil physicochemical properties and plant colonization contribute to the triggering of the pedogenetic processes and consequently to the stability of the saltmarsh edges. In this study, the composition and richness of the vegetation cover were investigated along soil transects in three different saltmarshes. With the aim to investigate the response of the vegetation to the soil hydroperiod and its influence on the availability of soil nutrients, plant and soil samples were collected in four representative sites on each saltmarsh transect (hydrosequence). Among the different species of saltmarshes, L. vulgare and S. europaea colonized intertidal areas, where an accumulation of nutrients (Ca, K, P, S and Na) and organic C and total N (OC and TN, respectively) was found. These intertidal areas are the "critical transition zones", which drive the transition between the terrestrial and the aquatic systems along the increase of soil salinity and water saturation. Among the different element cycles analysed in the soil-plant system, the analysis of the Na and S dynamic, through both bioconcentration and translocation indexes, explains the different adaptation mechanisms to different salinity and waterlogging stressors. The limiting of the species areal was generally associated firstly with a decrease in their Na and S bioconcentration factor and, to a lesser extent, with the increase in their Na and S translocation.

  20. Climate change - An uncertainty factor in risk analysis of contaminated land

    International Nuclear Information System (INIS)

    Augustsson, Anna; Filipsson, Monika; Oberg, Tomas; Bergbaeck, Bo

    2011-01-01

    Metals frequently occur at contaminated sites, where their potential toxicity and persistence require risk assessments that consider possible long-term changes. Changes in climate are likely to affect the speciation, mobility, and risks associated with metals. This paper provides an example of how the climate effect can be inserted in a commonly used exposure model, and how the exposure then changes compared to present conditions. The comparison was made for cadmium (Cd) exposure to 4-year-old children at a highly contaminated iron and steel works site in southeastern Sweden. Both deterministic and probabilistic approaches (through probability bounds analysis, PBA) were used in the exposure assessment. Potential climate-sensitive variables were determined by a literature review. Although only six of the total 39 model variables were assumed to be sensitive to a change in climate (groundwater infiltration, hydraulic conductivity, soil moisture, soil:water distribution, and two bioconcentration factors), the total exposure was clearly affected. For example, by altering the climate-sensitive variables in the order of 15% to 20%, the deterministic estimate of exposure increased by 27%. Similarly, the PBA estimate of the reasonable maximum exposure (RME, defined as the upper bound of the 95th percentile) increased by almost 20%. This means that sites where the exposure in present conditions is determined to be slightly below guideline values may in the future exceed these guidelines, and risk management decisions could thus be affected. The PBA, however, showed that there is also a possibility of lower exposure levels, which means that the changes assumed for the climate-sensitive variables increase the total uncertainty in the probabilistic calculations. This highlights the importance of considering climate as a factor in the characterization of input data to exposure assessments at contaminated sites. The variable with the strongest influence on the result was the

  1. Fate of 7,12-dimethylbenz(a)anthracene in rainbow trout, Salmo gairdneri

    International Nuclear Information System (INIS)

    Schnitz, A.R.; Squibb, K.S.; O'Connor, J.M.

    1987-01-01

    Polycyclic aromatic hydrocarbons (PAH) are contaminants of surface waters and sediments, especially near urban centers. Although aquatic biota accumulate PAHs from environmental sources, metabolism may be rapid, and biota sampled from contaminated areas often have concentrations lower than might be estimated from bioconcentration factors. In some cases PAH metabolism by aquatic biota may create reactive intermediates, some of which have been related to chronic effects in fishes. This report describes the fate and distribution of 7,12-dimethylbenz(a)anthracene (DMBA) after oral administration to rainbows trout (Salmo gairdneri). Emphasis has been placed on the disposition of DMBA among tissues and on DMBA transformation in the hepatobiliary system

  2. Uranium bioaccumulation and biological disorders induced in zebrafish (Danio rerio) after a depleted uranium waterborne exposure

    Energy Technology Data Exchange (ETDEWEB)

    Barillet, Sabrina, E-mail: sabrina.barillet@free.f [Laboratory of Radioecology and Ecotoxicology, IRSN (Institute for Radiological protection and Nuclear Safety), DEI/SECRE/LRE, Cadarache, Bat 186, BP 3, 13115 St-Paul-Lez-Durance cedex (France); Adam-Guillermin, Christelle, E-mail: christelle.adam-guillermin@irsn.f [Laboratory of Radioecology and Ecotoxicology, IRSN (Institute for Radiological protection and Nuclear Safety), DEI/SECRE/LRE, Cadarache, Bat 186, BP 3, 13115 St-Paul-Lez-Durance cedex (France); Palluel, Olivier, E-mail: olivier.palluel@ineris.f [Ecotoxicological Risk Assessment Unit, INERIS (National Institute for Industrial Environment and Risks), Parc technologique ALATA, 60 550 Verneuil-en-Halatte (France); Porcher, Jean-Marc, E-mail: jean-marc.porcher@ineris.f [Ecotoxicological Risk Assessment Unit, INERIS (National Institute for Industrial Environment and Risks), Parc technologique ALATA, 60 550 Verneuil-en-Halatte (France); Devaux, Alain, E-mail: alain.devaux@entpe.f [Universite de Lyon, INRA, EFPA-SA, Environmental Science Laboratory (LSE), ENTPE, 69518 Vaulx en Velin cedex (France)

    2011-02-15

    Because of its toxicity and its ubiquity within aquatic compartments, uranium (U) represents a significant hazard to aquatic species such as fish. In a previous study, we investigated some biological responses in zebrafish either exposed to depleted or to enriched U (i.e., to different radiological activities). However, results required further experiments to better understand biological responses. Moreover, we failed to clearly demonstrate a significant relationship between biological effects and U radiological activity. We therefore chose to herein examine U bioaccumulation and induced effects in zebrafish according to a chemical dose-response approach. Results showed that U is highly bioconcentrated in fish, according to a time- and concentration-dependent model. Additionally, hepatic antioxidant defenses, red blood cells DNA integrity and brain acetylcholinesterase activity were found to be significantly altered. Generally, the higher the U concentration, the sooner and/or the greater the effect, suggesting a close relationship between accumulation and effect. - Research highlights: Depleted U bioconcentration factor is of about 1000 in zebrafish exposed to 20 {mu}g/L. Hepatic antioxidant disorders are noticed as soon as the first hours of exposure. DNA damage is induced in red blood cells after 20 d of exposure to 500 {mu}g DU/L. The brain cholinergic system (AChE activity) is impacted. - This study demonstrates that U is highly bioaccumulated in fish, resulting in biological disorders such as hepatic oxidative stress as well as genotoxic and neurotoxic events.

  3. Molecular effects and bioaccumulation of levonorgestrel in the non-target organism Dreissena polymorpha

    International Nuclear Information System (INIS)

    Contardo-Jara, Valeska; Lorenz, Claudia; Pflugmacher, Stephan; Nuetzmann, Gunnar; Kloas, Werner; Wiegand, Claudia

    2011-01-01

    Bioaccumulation and effects of the contraceptive hormone levonorgestrel were examined in the non-target organism Dreissena polymorpha. Molecular biomarkers of biotransformation, elimination, antioxidant defence and protein damage were analyzed after exposure to increasing concentrations of levonorgestrel in a flow-through system. The lowest concentration (0.312 μg L -1 ) was 100-fold bioconcentrated within four days. A decrease of the bioconcentration factor was observed within one week for the highest test concentrations (3.12 and 6.24 μg L -1 ) suggesting enhanced excretory processes. The immediate mRNA up-regulation of pi class glutathione S-transferase proved that phase II biotransformation processes were induced. Disturbance of fundamental cell functions was assumed since the aryl hydrocarbon receptor has been permanently down-regulated. mRNA up-regulation of P-glycoprotein, superoxide dismutase and metallothioneine suggested enhanced elimination processes and ongoing oxidative stress. mRNA up-regulation of heat shock protein 70 in mussels exposed to the two highest concentrations clearly indicated impacts on protein damage. - Fundamental cell processes as biotransformation, elimination and prevention from oxidative stress are influenced by exposure of the contraceptive levonorgestrel in non-target organisms. - Research highlights: → Bioaccumulation of levonorgestrel in mussels is higher than expected based on its lipophilicity. → Exposure to levonorgestrel causes oxidative stress and enhanced elimination processes. → Glutathione S-transferase (pi class) mRNA induction after one day hint on phase II biotransformation. → mRNA induction of heat shock protein 70 after one week prove protein damage.

  4. Uranium bioaccumulation and biological disorders induced in zebrafish (Danio rerio) after a depleted uranium waterborne exposure

    International Nuclear Information System (INIS)

    Barillet, Sabrina; Adam-Guillermin, Christelle; Palluel, Olivier; Porcher, Jean-Marc; Devaux, Alain

    2011-01-01

    Because of its toxicity and its ubiquity within aquatic compartments, uranium (U) represents a significant hazard to aquatic species such as fish. In a previous study, we investigated some biological responses in zebrafish either exposed to depleted or to enriched U (i.e., to different radiological activities). However, results required further experiments to better understand biological responses. Moreover, we failed to clearly demonstrate a significant relationship between biological effects and U radiological activity. We therefore chose to herein examine U bioaccumulation and induced effects in zebrafish according to a chemical dose-response approach. Results showed that U is highly bioconcentrated in fish, according to a time- and concentration-dependent model. Additionally, hepatic antioxidant defenses, red blood cells DNA integrity and brain acetylcholinesterase activity were found to be significantly altered. Generally, the higher the U concentration, the sooner and/or the greater the effect, suggesting a close relationship between accumulation and effect. - Research highlights: → Depleted U bioconcentration factor is of about 1000 in zebrafish exposed to 20 μg/L. → Hepatic antioxidant disorders are noticed as soon as the first hours of exposure. → DNA damage is induced in red blood cells after 20 d of exposure to 500 μg DU/L. → The brain cholinergic system (AChE activity) is impacted. - This study demonstrates that U is highly bioaccumulated in fish, resulting in biological disorders such as hepatic oxidative stress as well as genotoxic and neurotoxic events.

  5. Concentration parameters for radionuclides by marine molluscs

    International Nuclear Information System (INIS)

    Nakahara, Motokazu; Makamura, Ryoichi; Suzuki, Yuzuru; Matsuba, Mitsue

    1994-01-01

    Accumulation of radionuclides from seawater and from food by marine molluscs was observed in the laboratory experiments to get bioconcentration parameters for the nuclides. The radionuclides investigated were 57 Co, 95m Tc, 103 Ru, 137 Cs, 65 Zn and 54 Mn. Several species of molluscs containing pelecypods, gastropods and cephalopod were used for the experimental organisms. For the uptake experiment from seawater, the organisms were kept for more than seven days in radioactive seawater containing those radionuclides together. Then the organisms were transferred into nonradioactive seawater to observe the loss of the nuclides from the organisms. Biphasic loss curves were observed for all of the nuclides. Bioconcentration parameters, such as uptake rate, excretion rate, biological half-life and concentration factor at steady state were estimated from the uptake and excretion curves of the nuclides by the organisms by applying an exponential model. In the uptake experiments from radioactive food, the phytoplankton (Tetraselmis tetrathele), the brown algae (Eisenia bicyclis) and the viscera of abalone (Haliotis discus) were fed to bivalves, herbivorous gastropods and carnivorous molluscs, respectively. After single feeding of the labelled food with the nuclides, retention of the nuclides in whole body of the organisms was followed for several weeks or more. The organisms showed relatively high retention of the nuclides in whole body, except 137 Cs and 54 Mn. Retention of 137 Cs and 54 Mn in the organisms one day after feeding of radioactive food was lower than 25% of the radioactivity dosed. (author)

  6. Concentration of radionuclides by marine organisms and their food chain

    International Nuclear Information System (INIS)

    Nakahara, Motokazu

    1993-01-01

    Accumulation of radionuclides from seawater and from food by marine organisms was observed in the laboratory experiments to get bioconcentration parameters for the nuclides. The radionuclides investigated were 57 Co, 95m Tc, 103 Ru, 137 Cs, 65 Zn and 54 Mn. Several species of molluscs containing pelecypods, gastropods and cephalopod were used for the experimental organisms. For the uptake experiment from seawater, the organisms were kept for more than seven days in radioactive seawater containing those radionuclides together. Then the organisms were transferred into non-radioactive seawater to observe the loss of the nuclides from the organisms. Biphasic loss curves were observed for all of the nuclides. Bioconcentration parameters, such as uptake rate, excretion rate, biological half-life and concentration factor at steady state were estimated from the uptake and excretion curves of the nuclides by the organisms by applying an exponential model. In the uptake experiments from radioactive food, the phytoplankton (Tetraselmis tetrathele), the brown algae (Eisenia bicyclis) and the viscera of abalone were fed to bivalves, herbivorous gastropods and carnivorous molluscs, respectively. After single feeding of the labelled food with the nuclides, retention of the nuclides in whole body of the organisms was followed for several weeks or more. The organisms showed relatively high retention of the nuclides in whole body, except 137 Cs and 54 Mn. Retention of 137 Cs and 54 Mn in the organisms one day after feeding of radioactive food was lower than 25 % of the radioactivity dosed. (author)

  7. Ecotoxicity studies in Jamaican environment I. Toxicity, bioaccumulation, elimination and tissue partitioning of ethoprophos by the fish Tilapia in brackish water microcosm

    International Nuclear Information System (INIS)

    Robinson, D.E.; Mansingh, A.

    1999-01-01

    The present study was conducted on the toxicity of ethoprophos to sexually mature red hybrid Tilapia. The NOEC and LOEC were 1 and 4 mg/L of ethoprophos; the 24-h LC 50 and LC 95 values were 8.41 and 21.00 mg/L. Bioconcentration of the insecticide from NOEC and LOEC in the surrounding water by the fish peaked (3.25'' 0.412 and 12.50'' 1.831 μg/g, respectively) eight to twelve hours after exposure. Bioconcentration from LOEC was 3.8-fold greater than at NOEC. The contaminated fish (after 24-h exposure to LOEC) eliminated 83% of the ethoprophos residues within 12-h exposure to uncontaminated water. The order of partitioning of ethoprophos in the different tissues of the fish was gonads > liver > gut > gills > skin-muscle-bone. (author)

  8. Study of the potential of barnyard grass for the remediation of Cd- and Pb-contaminated soil.

    Science.gov (United States)

    Xu, Jianling; Cai, Qiongyao; Wang, Hanxi; Liu, Xuejun; Lv, Jing; Yao, Difu; Lu, Yue; Li, Wei; Liu, Yuanyuan

    2017-05-01

    In this study, the microwave digestion method was used to determine total cadmium (Cd) and lead (Pb) concentrations, the BCR method was used to determine different states of Cd and Pb, and atomic absorption spectroscopy (AAS) and inductively coupled plasma optical emission spectrometry (ICP-OES) were used to determine Cd and Pb concentrations in simulated soil and barnyard grass before and after planting barnyard grass to provide a theoretical basis for the remediation of Cd- and Pb-contaminated soil. The results showed that the bioconcentration factor changes with different Cd concentrations are relatively complex and that the removal rate increases regularly. The 100 mg kg -1 Cd treatment had the highest removal rate, which reached 36.66%. For Pb, the bioconcentration factor decreased and tended to reach equilibrium as the Pb concentration increased. The highest removal rate was 41.72% and occurred in the 500 mg kg -1 Pb treatment; however, this removal rate was generally lower than that of Cd. In addition, the reduction state had the highest change rate, followed by the residual, acid soluble and oxidation states. For Pb, the residual state has the highest change rate, followed by the acid soluble state, reduction state and oxidation state. In addition, a significant correlation was observed between the soil Pb and Cd concentrations and the concentrations of Pb and Cd that accumulated in the belowground biomass of the barnyard grass, but no significant correlation was observed between the soil Pb and Cd concentrations and the amounts of Pb and Cd that accumulated in the aboveground biomass of the barnyard grass. The highest transfer factor of Cd was 0.49, which occurred in the 5 mg kg -1 Cd treatment. The higher transfer factor of Pb was 0.48 in the 100 mg kg -1 Pb treatment. All of these factors indicate that the belowground biomass of barnyard grass plays a more important role in the remediation of Cd- and Pb-contaminated soils than the aboveground

  9. Subcellular localization of cadmium in the root cells of Allium cepa ...

    Indian Academy of Sciences (India)

    Unknown

    showed that significantly higher level of Cd in vacuoles existed in the vacuolar precipitates of meristematic or ... containers by dipping the base in half Hoagland's nutrient ..... Greger M 1999 Metal availability and bioconcentration in plants;.

  10. Thallium, uranium, and 235U/238U ratios in the digestive gland of American lobster (Homarus americanus) from an industrialized harbor

    International Nuclear Information System (INIS)

    Chou, C.L.; Uthe, J.F.

    1995-01-01

    Only a few studies have concentrated on elements such as thallium (TI). Uranium (U) has been studied as a radionuclide of concern in food and the environment. Foodstuffs contain 10-100 ng U· -1 with vegetables and cereals contributing most heavily to the daily intake of ca 1.5 ug U. Between 10-30% of ingested U is absorbed, with most being stored in bone. Rainbow trout (onchorynchus mykiss) and longnose sucker (Catostomus catostomus) from a lake with naturally high radioactivity contained -1 in the flesh. Trout bone contained 40 ng U·g -1 . Higher tissue U concentrations occurred in fish from areas receiving U mining wastes. Bioconcentration factors for bone and flesh were estimated to be low, 118 and 14.7, respectively. This paper describes the Inductively coupled plasma-mass spectrometry (ICP-MS) determination of Tl and U in digestive gland tissue from lobsters captured in the vicinity of Belledune Harbor, New Brunswick, Canada. The harbor is the site of a lead smelter, a fertilizer plant, and a coal-fired power station (the latter due to enter production in late 1993) and thus has the potential of adding significant amounts of Tl to the local marine environment. The accumulation of Tl from water by marine shellfish is low, at least for bivalves, and the accumulated Tl is eliminated in a number of days when the animals are transferred to clean water. Bioconcentration factors for U in finfish ranged from 0.4-17 for larger species. However, because of the high concentrations of various trace elements in lobster digestive gland, its desirability as a foodstuff, and its relatively large size (approximately 20% of the edible tissue yield), we have investigated Tl and U concentrations and 235U / 238U ratios in it. 15 refs., 1 fig., 3 tabs

  11. Bioconcentração e biomagnificação de metilmercúrio na baía de Guanabara, Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Helena A. Kehrig

    2011-01-01

    Full Text Available Methylmercury was determined in water and aquatic biota from Guanabara Bay. Trophic transfer of methylmercury was observed between trophic levels from prey (microplankton, mesoplankton and fish with different feeding habits to top predator (pelagic demersal fish. Top predator fish presented the highest methylmercury concentrations (320.3 ± 150.7 mg kg-1 dry wt., whereas microplankton presented the lowest (8.9 ± 3.3 mg kg-1 dry wt.. The successive amplification of methylmercury concentrations and its bioconcentration factor with increasing trophic levels from base to top indicate that biomagnification may be occurring along the food web. Results suggest the importance of feeding habits and trophic level in the bioaccumulation of methylmercury by aquatic biota.

  12. Intestinal parasite Acanthocephalus lucii (Acanthocephala) from European perch (Perca fluviatilis) as a bioindicator for lead pollution in the stream "Jevanský potok" near Prague, Czech Republic.

    Science.gov (United States)

    Jankovská, Ivana; Miholová, Daniela; Petrtýl, Miloslav; Romočuský, Stěpán; Kalous, Lukáš; Vadlejch, Jaroslav; Cadková, Zuzana; Langrová, Iva

    2011-03-01

    Lead concentrations in the tissues of perch and its parasites were determined as mg/kg dw. Lead was found at higher concentrations in the acanthocephalans (11.56) than in different tissues (liver, gonads and muscle with skin and bone) of perch. With respect to fish tissues, the highest concentrations of lead were present in the liver (1.24), followed by the gonads (0.57) whereas the lowest concentrations were in the muscle with skin and bone (0.21). The bioconcentration factors for lead indicated that parasites accumulate metals to a higher degree than fish tissues--lead concentrations in acanthocephalans were 9.32, 19.27 and 55.05 higher than in liver, gonads and muscles of host, respectively.

  13. An exploration of the relationship between adsorption and bioavailability of pesticides in soil to earthworm

    International Nuclear Information System (INIS)

    Yu Yunlong; Wu Xiaomao; Li Shaonan; Fang Hua; Zhan Haiyan; Yu Jingquan

    2006-01-01

    A study was conducted to determine the adsorption/desorption of butachlor, myclobutanil and chlorpyrifos on five soils using a batch equilibration technique and to study the relationship between bioavailability to Allolobophora caliginosa and the adsorption/desorption of these three pesticides. The results showed that the adsorption/desorption processes of the tested compounds were mainly controlled by soil organic matter content (OM) and octanol/water-partitioning coefficient (K ow ), and that the bioavailability of the pesticides was dependent on characteristics of pesticides, properties of soils, and uptake routes of earthworms. Bioconcentration of butachlor and myclobutanil was negatively correlated with Freundlich adsorption constant K af and K df . However, only a slightly positive correlation between bioconcentration and K af and K df was observed for chlorpyrifos due to its high affinity onto soil. - Bioavailability of pesticides in soil to earthworm is governed by adsorption characteristics

  14. Instrumental neutron activation analysis to determine inorganic elements in paddy soil and rice and evaluate bioconcentration factors in rice

    Directory of Open Access Journals (Sweden)

    Prapamon Seeprasert

    2017-06-01

    Full Text Available Increased anthropogenic activity, especially in thriving industries and mining activity, has led to the accumulation of inorganic elements in the soil. This study applied neutron activation analysis for the determination of inorganic element concentrations in paddy soils and quantified the nutrient value of paddy rice cultivated on various agricultural sites throughout Thailand. The determination accuracy of the elements—U, As, Sb, W, Mn, K, La, Cr, Hf, Cs, Sc, Fe, Co, Cd and Zn was assessed using National Institute of Standards and Technology standard reference materials; the results were satisfactory, showing low relative error. High analytical precision was also observed. Cadmium was selected to check the linearity of the calibration curve against a Cd standard. For a calibration curve in the range 1–9 μg, a correlation coefficient of 0.997 was found. Trace amounts of U, As, Sb, W, Mn, K, La, Cr, Hf, Cs, Sc, Fe, Co, Zn and Cd were also found in the soil samples. However, the Co, Cd, and Zn concentrations were especially high in agricultural sites in Tak province. The elemental concentrations in rice followed the order K > Zn > Mn. The data obtained are of potential benefit for the development of trace element supplementation in food.

  15. Subcellular localization of Cd in the root cells of Allium sativum by ...

    Indian Academy of Sciences (India)

    Unknown

    Cd. High amounts of Cd were mainly accumulated in the vacuoles and nucleoli of cortical cells in differentiat- ing and ... The bulbs were germinated, and grown in 3 containers ..... Greger M 1999 Metal availability and bioconcentration in plants ...

  16. High pressure processing of bivalve shellfish and HPP's potential use as a virus intervention

    Science.gov (United States)

    Bivalve shellfish readily bioconcentrate pathogenic microbes and substance, such as algal and dinoflagulate toxins, fecal viruses and bacteria, and naturally present vibrio bacteria. High pressure processing (HPP) is currently used as an intervention for Vibrio vulnificus bacteria within molluscan ...

  17. Seasonal study on Bothriocephalus as indicator of metal pollution in ...

    African Journals Online (AJOL)

    ... vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, arsenic, selenium, molybdenum, cadmium, tin, antimony, tellurium, barium, mercury, thallium, lead and uranium) were determined with an ICP-MS. Bioconcentration of metals (selenium, mercury, and lead during autumn; copper, zinc, selenium, cadmium, ...

  18. Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan

    International Nuclear Information System (INIS)

    Malik, R.N.; Husain, S.Z.; Nazir, I.

    2010-01-01

    This study was designed to assess total contents of 6 toxic metals viz., Pb, Cu, Zn, Co, Ni, and Cr in the soil and plant samples of 16 plant species collected from industrial zone of Islamabad, Pakistan. The concentration, transfer and accumulation of metals from soil to roots and shoots was evaluated in terms of Biological Concentration Factor (BCF), Translocation Factor (TF) and Bioaccumulation Coefficient (BAC). Total metal concentrations of Pb, Zn, Cu, Co, Ni, and Cr in soils varied between 2.0-29.0, 61.9-172.6, 8.9 to 357.4, 7.3-24.7, 41.4-59.3, and 40.2-927.2 mg/kg. Total metal concentrations pattern in roots were: Cu>Cr>Zn>Ni>Pb>Co. Grasses showed relatively higher total Zn concentration. Accumulation of Cu was highest in shoots followed by Zn, Cr, Pb, Co and Ni. None of plant species were identified as hyper accumulator; however, based on BCFs, TFs, and BACs values, most of the studied species have potential for phyto stabilization and phyto extraction. Parthenium hysterophoirus L., and Amaranthus viridis L., is suggested for phytoextraction of Pb and Ni, whereas, Partulaca oleracea L., Brachiaria reptans (L.) Gard. and Hubb., Solanum nigrum L., and Xanthium stromarium L., for hytostabilization of soils contaminated with Pb and Cu. (author)

  19. Accumulation and distribution of mercury in fruiting bodies by fungus Suillus luteus foraged in Poland, Belarus and Sweden.

    Science.gov (United States)

    Saba, Martyna; Falandysz, Jerzy; Nnorom, Innocent C

    2016-02-01

    Presented in this paper is result of the study of the bioconcentration potential of mercury (Hg) by Suillus luteus mushroom collected from regions within Central, Eastern, and Northern regions of Europe. As determined by cold-vapor atomic absorption spectroscopy, the Hg content varied from 0.13 ± 0.05 to 0.33 ± 0.13 mg kg(-1) dry matter for caps and from 0.038 ± 0.014 to 0.095 ± 0.038 mg kg(-1) dry matter in stems. The Hg content of the soil substratum (0-10 cm layer) underneath the fruiting bodies showed generally low Hg concentrations that varied widely ranging from 0.0030 to 0.15 mg kg(-1) dry matter with mean values varying from 0.0078 ± 0.0035 to 0.053 ± 0.025 mg kg(-1) dry matter, which is below typical content in the Earth crust. The caps were observed to be on the richer in Hg than the stems at ratio between 1.8 ± 0.4 and 5.3 ± 2.6. The S. luteus mushroom showed moderate ability to accumulate Hg with bioconcentration factor (BCF) values ranging from 3.6 ± 1.3 to 42 ± 18. The consumption of fresh S. luteus mushroom in quantities up to 300 g week(-1) (assuming no Hg ingestion from other foods) from background areas in the Central, Eastern, and Northern part of Europe will not result in the intake of Hg exceeds the provisional weekly tolerance limit (PTWI) of 0.004 mg kg(-1) body mass.

  20. Concentration parameters for radionuclides by marine molluscs

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, Motokazu; Makamura, Ryoichi; Suzuki, Yuzuru; Matsuba, Mitsue [National Inst. of Radiological Sciences, Nakaminato, Ibaraki (Japan). Nakaminato Lab. Branch Office

    1994-03-01

    Accumulation of radionuclides from seawater and from food by marine molluscs was observed in the laboratory experiments to get bioconcentration parameters for the nuclides. The radionuclides investigated were {sup 57}Co, {sup 95m}Tc, {sup 103}Ru, {sup 137}Cs, {sup 65}Zn and {sup 54}Mn. Several species of molluscs containing pelecypods, gastropods and cephalopod were used for the experimental organisms. For the uptake experiment from seawater, the organisms were kept for more than seven days in radioactive seawater containing those radionuclides together. Then the organisms were transferred into nonradioactive seawater to observe the loss of the nuclides from the organisms. Biphasic loss curves were observed for all of the nuclides. Bioconcentration parameters, such as uptake rate, excretion rate, biological half-life and concentration factor at steady state were estimated from the uptake and excretion curves of the nuclides by the organisms by applying an exponential model. In the uptake experiments from radioactive food, the phytoplankton (Tetraselmis tetrathele), the brown algae (Eisenia bicyclis) and the viscera of abalone (Haliotis discus) were fed to bivalves, herbivorous gastropods and carnivorous molluscs, respectively. After single feeding of the labelled food with the nuclides, retention of the nuclides in whole body of the organisms was followed for several weeks or more. The organisms showed relatively high retention of the nuclides in whole body, except {sup 137}Cs and {sup 54}Mn. Retention of {sup 137}Cs and {sup 54}Mn in the organisms one day after feeding of radioactive food was lower than 25% of the radioactivity dosed. (author).

  1. Phytoremediation of Heavy Metals in Contaminated Water and Soil Using Miscanthus sp. Goedae-Uksae 1.

    Science.gov (United States)

    Bang, Jihye; Kamala-Kannan, Seralathan; Lee, Kui-Jae; Cho, Min; Kim, Chang-Hwan; Kim, Young-Jin; Bae, Jong-Hyang; Kim, Kyong-Ho; Myung, Hyun; Oh, Byung-Taek

    2015-01-01

    The aim of this study is to characterize the heavy metal phytoremediation potential of Miscanthus sp. Goedae-Uksae 1, a hybrid, perennial, bio-energy crop developed in South Korea. Six different metals (As, Cu, Pb, Ni, Cd, and Zn) were used for the study. The hybrid grass effectively absorbed all the metals from contaminated soil. The maximum removal was observed for As (97.7%), and minimum removal was observed for Zn (42.9%). Similarly, Goedae-Uksae 1 absorbed all the metals from contaminated water except As. Cd, Pb, and Zn were completely (100%) removed from contaminated water samples. Generally, the concentration of metals in roots was several folds higher than in shoots. Initial concentration of metals highly influenced the phytoremediation rate. The results of the bioconcentration factor, translocation factor, and enrichment coefficient tests indicate that Goedae-Uksae 1 could be used for phytoremediation in a marginally contaminated ecosystem.

  2. Growth and Heavy Metal Accumulation of Koelreuteria Paniculata Seedlings and Their Potential for Restoring Manganese Mine Wastelands in Hunan, China

    Science.gov (United States)

    Huang, Zhihong; Xiang, Wenhua; Ma, Yu’e; Lei, Pifeng; Tian, Dalun; Deng, Xiangwen; Yan, Wende; Fang, Xi

    2015-01-01

    The planting of trees on mine wastelands is an effective, long-term technique for phytoremediation of heavy metal-contaminated wastes. In this study, a pot experiment with seedlings of Koelreuteria paniculata under six treatments of local mine wastes was designed to determine the major constraints on tree establishment and to evaluate the feasibility of planting K. paniculata on manganese mine wastelands. Results showed that K. paniculata grew well in mine tailings, and also under a regime of equal amounts of mine tailings and soil provided in adjacent halves of pots. In contrast, mine sludge did not favor survival and growth because its clay texture limited fine root development. The bio-concentration factor and the translocation factor were mostly less than 1, indicating a low phytoextraction potential for K. paniculata. K. paniculata is suited to restore manganese mine sludge by mixing the mine sludge with local mine tailings or soil. PMID:25654773

  3. Accumulation of Metals and Boron in Phragmites australis Planted in Constructed Wetlands Polishing Real Electroplating Wastewater.

    Science.gov (United States)

    Sochacki, Adam; Guy, Bernard; Faure, Olivier; Surmacz-Górska, Joanna

    2015-01-01

    The concentration of metals (Al, Cu, Fe, Mn, Ni, Zn) and B were determined in the above- and belowground biomass of Phragmites australis collected from the microcosm constructed wetland system used for the polishing of real electroplating wastewater. Translocation factor and bioconcentration factor were determined. Pearson correlation test was used to determine correlation between metal concentration in substrate and above- and belowground parts of Phragmites australis. The obtained results suggested that Phragmites australis did not play a major role as an accumulator of metals. It was observed also that the substrate could have exerted an effect on the translocation of Ni, Cu, Zn and Mn. The analysed concentrations of metals and B in biomass were in the range or even below the concentrations reported in the literature with the exception of Ni. The aboveground biomass was found suitable as a composting input in terms of metals concentrations.

  4. Bioconcentration of elements by Poison pax (Paxillus involutus)

    African Journals Online (AJOL)

    Jerzy Falandysz

    2012-03-08

    Mar 8, 2012 ... brand new polyethylene bags and kept in dry and clean condition. Reagents. All reagents were of analytical reagent grade unless otherwise. Jarzyńska and Falandysz 4589 stated. Double distilled water (resistivity > 10 MΩ cm) was used for the preparation of solutions. The nitric acid (65% HNO3) was of.

  5. Hemocytes are sites of persistence for virus-contaminated oysters

    Science.gov (United States)

    Like fecal bacteria, waterborne enteric viruses are readily bioconcentrated by bivalve shellfish. However while many bacteria decline rapidly when bivalves are placed in uncontaminated water, viruses tend to be retained within shellfish. In this study, we offer evidence that phagocytic blood cells...

  6. An exploration of the relationship between adsorption and bioavailability of pesticides in soil to earthworm

    Energy Technology Data Exchange (ETDEWEB)

    Yu Yunlong [Department of Plant Protection, Zhejiang University, Kaixuan Road 268, Hangzhou, Zhejiang 310029 (China)]. E-mail: ylyu@zju.edu.cn; Wu Xiaomao [Department of Plant Protection, College of Agriculture, Guizhou University, Guiyang 550025 (China); Li Shaonan [Department of Plant Protection, Zhejiang University, Kaixuan Road 268, Hangzhou, Zhejiang 310029 (China); Fang Hua [Department of Plant Protection, Zhejiang University, Kaixuan Road 268, Hangzhou, Zhejiang 310029 (China); Zhan Haiyan [Department of Plant Protection, Zhejiang University, Kaixuan Road 268, Hangzhou, Zhejiang 310029 (China); Yu Jingquan [Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China)

    2006-06-15

    A study was conducted to determine the adsorption/desorption of butachlor, myclobutanil and chlorpyrifos on five soils using a batch equilibration technique and to study the relationship between bioavailability to Allolobophora caliginosa and the adsorption/desorption of these three pesticides. The results showed that the adsorption/desorption processes of the tested compounds were mainly controlled by soil organic matter content (OM) and octanol/water-partitioning coefficient (K {sub ow}), and that the bioavailability of the pesticides was dependent on characteristics of pesticides, properties of soils, and uptake routes of earthworms. Bioconcentration of butachlor and myclobutanil was negatively correlated with Freundlich adsorption constant K {sub af} and K {sub df}. However, only a slightly positive correlation between bioconcentration and K {sub af} and K {sub df} was observed for chlorpyrifos due to its high affinity onto soil. - Bioavailability of pesticides in soil to earthworm is governed by adsorption characteristics.

  7. Taiwan's industrial heavy metal pollution threatens terrestrial biota

    International Nuclear Information System (INIS)

    Hsu, M.J.; Selvaraj, K.; Agoramoorthy, G.

    2006-01-01

    The bioconcentration levels of essential (Cu, Fe, Mg, Mn, and Zn) and non-essential (As, Cd, Hg, Pb, and Sn) elements have been investigated in different terrestrial biota such as fungi, plant, earthworm, snail, crab, insect, amphibian, lizard, snake, and bat including the associated soil, to investigate the ecosystem health status in Kenting National Park, Taiwan. High bioconcentrations of Cd, Hg, and Sn in snail, earthworm, crab, lizard, snake, and bat indicated a contaminated terrestrial ecosystem. High concentrations of Cd, Hg, and Sn in plant species, effective bioaccumulation of Cd by earthworm, snail, crab and bat, as well as very high levels of Hg found in invertebrates, amphibians, and reptiles revealed a strong influence from industrial pollution on the biotic community. This study for the first time presents data on the impact of heavy metal pollution on various terrestrial organisms in Taiwan. - Metal effects occur at any terrestrial levels in Taiwan

  8. Taiwan's industrial heavy metal pollution threatens terrestrial biota

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, M.J. [Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan (China); Selvaraj, K. [Institute of Marine Geology and Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan (China); Agoramoorthy, G. [Department of Pharmacy, Tajen University, Yanpu, Pingtung 907, Taiwan (China)]. E-mail: agoram@mail.tajen.edu.tw

    2006-09-15

    The bioconcentration levels of essential (Cu, Fe, Mg, Mn, and Zn) and non-essential (As, Cd, Hg, Pb, and Sn) elements have been investigated in different terrestrial biota such as fungi, plant, earthworm, snail, crab, insect, amphibian, lizard, snake, and bat including the associated soil, to investigate the ecosystem health status in Kenting National Park, Taiwan. High bioconcentrations of Cd, Hg, and Sn in snail, earthworm, crab, lizard, snake, and bat indicated a contaminated terrestrial ecosystem. High concentrations of Cd, Hg, and Sn in plant species, effective bioaccumulation of Cd by earthworm, snail, crab and bat, as well as very high levels of Hg found in invertebrates, amphibians, and reptiles revealed a strong influence from industrial pollution on the biotic community. This study for the first time presents data on the impact of heavy metal pollution on various terrestrial organisms in Taiwan. - Metal effects occur at any terrestrial levels in Taiwan.

  9. Use of a parallel artificial membrane system to evaluate passive absorption and elimination in small fish.

    Science.gov (United States)

    Kwon, Jung-Hwan; Katz, Lynn E; Liljestrand, Howard M

    2006-12-01

    A parallel artificial lipid membrane system was developed to mimic passive mass transfer of hydrophobic organic chemicals in fish. In this physical model system, a membrane filter-supported lipid bilayer separates two aqueous phases that represent the external and internal aqueous environments of fish. To predict bioconcentration kinetics in small fish with this system, literature absorption and elimination rates were analyzed with an allometric diffusion model to quantify the mass transfer resistances in the aqueous and lipid phases of fish. The effect of the aqueous phase mass transfer resistance was controlled by adjusting stirring intensity to mimic bioconcentration rates in small fish. Twenty-three simple aromatic hydrocarbons were chosen as model compounds for purposes of evaluation. For most of the selected chemicals, literature absorption/elimination rates fall into the range predicted from measured membrane permeabilities and elimination rates of the selected chemicals determined by the diffusion model system.

  10. Studies on transfer, bioaccumulation and disappearance of glyphosate in the aquatic ecosystem by utilizing 14C tracer technique

    International Nuclear Information System (INIS)

    Zhu Guonian; Guo Jiangfeng; Sun Jinhe

    2002-01-01

    Studies on transfer, bioaccumulation and disappearance of glyphosate in the aquatic environment were conducted with methods of model tests and outdoor trials in the aquatic ecosystem. The result showed that glyphosate transferred rapidly into sediment and hormwort (Ceratopyllum demersum L.) after applied; and then, it was taken up faster and accumulated more by topmouth gudgeon (Psudorasobora parva) 5-10 days after application. The partitioning coefficient (sediment-water) and bioconcentration factors of glyphosate were 8.59, 27.96 and 45.79, respectively, in day 20. The concentration of glyphosate residue in the aquatic ecosystem followed the order of topmouth gudgeon > hormwort > sediment > water. And it was also indicated that glyphosate transferred and disappeared extremely fast in both pond and river after application

  11. Lead (Pb Accumulation in Water, Sediment and Mussels (Hiatula chinensis from Pasir Panjang Coast, Lekok-Pasuruan

    Directory of Open Access Journals (Sweden)

    Defri Yona

    2016-10-01

    Full Text Available This study attempted to evaluate Pb accumulation in the water, sediment and mussels (Hiatula chinensis from Lekok-Pasuruan. There were four sampling stations representing the study area: (1 urban areas, (2 water flow area from steam power plant (PLTU, (3 waste disposal area of PLTU, (4 fishing port. The average concentration of lead varied between stations in the water (0.279 ppm, sediment (0.423 ppm and mussels (0.427 ppm. Pearson`s correlation test shows strong relationship (p > 0.05 between Pb in the water, sediment and Hiatula chinensis. Mussels accumulation of lead from the sediment was assessed using bio-concentration factor (BCF and the result shows Hiatula chinensis is an accumulator of Pb (BCF > 1.

  12. Characterisation of the potential hazards of water pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Koch, R.

    1986-01-01

    The danger potential of chemicals to man and environment is essentially a function of exposure and toxicity. For the exposure of ecological systems there is decisive the distribution of the particular substance in and among the hydro-, pedo-, atmo- and biospheres. Proceeding from statistical relations between different molecular structure parameters and the distribution as well as action of substances, the approximate determination of distribution parameters, sorption coefficients and bioconcentration factors is possible. By means of a discriminant analysis the substances can be assigned to given classes of toxicity and mutagenicity. Proceeding from structure-analogy models, for several substances used as examples the distribution and toxicity parameters are calculated and an evaluation of the danger potential for aquatic ecosystems and man is discussed.

  13. Breaking continuous flash suppression: A new measure of unconscious processing during interocular suppression?

    Directory of Open Access Journals (Sweden)

    Timo eStein

    2011-12-01

    Full Text Available Until recently, it has been thought that under interocular suppression high-level visual processing is strongly inhibited if not abolished. With the development of continuous flash suppression (CFS, a variant of binocular rivalry, this notion has now been challenged by a number of reports showing that even high-level aspects of visual stimuli, such as familiarity, affect the time stimuli need to overcome CFS and emerge into awareness. In this breaking CFS (b-CFS paradigm, differential unconscious processing during suppression is inferred when (a speeded detection responses to initially invisible stimuli differ, and (b no comparable differences are found in non-rivalrous control conditions supposed to measure general threshold differences between stimuli. To critically evaluate these assumptions was the aim of the present study. In six experiments we compared the time upright and inverted faces needed to be detected. We found that not only under CFS, but also in control conditions upright faces were detected faster and more accurately than inverted faces, although the effect was larger during CFS. However, reaction time (RT distributions indicated critical differences between the CFS and the control condition. When RT distributions were matched, similar effect sizes were obtained in both conditions. Moreover, subjective ratings revealed that CFS and control conditions are not perceptually comparable. These findings cast doubt on the usefulness of non-rivalrous control conditions to rule out mere detection threshold differences as a cause of shorter detection latencies during CFS. In conclusion, we acknowledge that the b-CFS paradigm can be fruitfully applied as a highly sensitive device to probe differences between stimuli in their potency to gain access to awareness. However, our current findings suggest that such differences can not unequivocally be attributed to differential unconscious processing under interocular suppression.

  14. Object Localization Does Not Imply Awareness of Object Category at the Break of Continuous Flash Suppression

    Directory of Open Access Journals (Sweden)

    Florian Kobylka

    2017-06-01

    Full Text Available In continuous flash suppression (CFS, a dynamic noise masker, presented to one eye, suppresses conscious perception of a test stimulus, presented to the other eye, until the suppressed stimulus comes to awareness after few seconds. But what do we see breaking the dominance of the masker in the transition period? We addressed this question with a dual-task in which observers indicated (i whether the test object was left or right of the fixation mark (localization and (ii whether it was a face or a house (categorization. As done recently Stein et al. (2011a, we used two experimental varieties to rule out confounds with decisional strategy. In the terminated mode, stimulus and masker were presented for distinct durations, and the observers were asked to give both judgments at the end of the trial. In the self-paced mode, presentation lasted until the observers responded. In the self-paced mode, b-CFS durations for object categorization were about half a second longer than for object localization. In the terminated mode, correct categorization rates were consistently lower than correct detection rates, measured at five duration intervals ranging up to 2 s. In both experiments we observed an upright face advantage compared to inverted faces and houses, as concurrently reported in b-CFS studies. Our findings reveal that more time is necessary to enable observers judging the nature of the object, compared to judging that there is “something other” than the noise which can be localized, but not recognized. This suggests gradual transitions in the first break of CFS. Further, the results imply that suppression is such that no cues to object identity are conveyed in potential “leaks” of CFS (Gelbard-Sagiv et al., 2016.

  15. Heavy metal biosorption by three bacteria isolated from a tropical river

    African Journals Online (AJOL)

    Bioaccumulation (bioconcentration) of four heavy metals cadmium, lead, zinc and nickel by three bacteria Bacillus, Staphylococcus and Pseudomonas as a tool for the decontamination of heavy metal impacted aquatic systems was investigated . The bacteria were obtained from the New Calabar River. Monitoring of the ...

  16. The major and trace element chemistry of fish and lake water within ...

    African Journals Online (AJOL)

    Chemical elements in lake water are incorporated into fish tissues through bioconcentration and biomagnification. Lake water and fish tissue samples from 23 lakes, located within 4 major South African catchments, were analysed to investigate the link between element concentrations in lake water and otolith, fin spine, ...

  17. Effects of Nigeria Ekete light crude oil on plasma electrolytes ...

    African Journals Online (AJOL)

    Hydrocarbon is known to alter blood parameters; some of these blood parameters may affect the activities of certain systems like cardiovascular system. Hydrocarbon gets into man and animal either through ingestion of contaminated food and water, bio-concentration through food chain, occupational exposure or by using ...

  18. Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant. III. Concentration and genotoxicity of mercury in the industrial effluent and contaminated water of Rushikulya estuary, India.

    Science.gov (United States)

    Panda, K K; Lenka, M; Panda, B B

    1992-01-01

    Aquatic mercury pollution of the Rushikulya estuary in the vicinity of the chloralkali plant at Ganjam, India was monitored over a period from October 1987 to May 1989. The concentrations of aquatic mercury in the water samples taken from the effluent channel and from different sites along the course of the estuary covering a distance of 2 km were periodically recorded and ranged from 0 to 0.5 mg/l. The bioconcentration and genotoxicity of aquatic mercury in the samples were assessed by the Allium micronucleus (MNC) assay. The frequency of cells with MNC was highly correlated not only with bioconcentrated mercury (root mercury) but also with the levels of aquatic mercury. The threshold assessment values such as effective concentration fifty (EC50) for root growth, lowest effective concentration tested (LECT), and highest ineffective concentration tested (HICT) for induction of MNC in Allium MNC assay for the present aquatic industrial mercury were determined to be 0.14, 0.06 and 0.02 mg/l, respectively.

  19. Immobilisation of Cu, Pb and Zn in Scrap Metal Yard Soil Using Selected Waste Materials.

    Science.gov (United States)

    Kamari, A; Putra, W P; Yusoff, S N M; Ishak, C F; Hashim, N; Mohamed, A; Isa, I M; Bakar, S A

    2015-12-01

    Immobilisation of heavy metals in a 30-year old active scrap metal yard soil using three waste materials, namely coconut tree sawdust (CTS), sugarcane bagasse (SB) and eggshell (ES) was investigated. The contaminated soil was amended with amendments at application rates of 0 %, 1 % and 3 % (w/w). The effects of amendments on metal accumulation in water spinach (Ipomoea aquatica) and soil metal bioavailability were studied in a pot experiment. All amendments increased biomass yield and reduced metal accumulation in the plant shoots. The bioconcentration factor and translocation factor values of the metals were in the order of Zn > Cu > Pb. The addition of ES, an alternative source of calcium carbonate (CaCO3), has significantly increased soil pH and resulted in marked reduction in soil metal bioavailability. Therefore, CTS, SB and ES are promising low-cost immobilising agents to restore metal contaminated land.

  20. Phytoextraction potential of poplar (Populus alba L. var. pyramidalis Bunge) from calcareous agricultural soils contaminated by cadmium.

    Science.gov (United States)

    Hu, Yahu; Nan, Zhongren; Jin, Cheng; Wang, Ning; Luo, Huanzhang

    2014-01-01

    To investigate the phytoextraction potential of Populus alba L. var. pyramidalis Bunge for cadmium (Cd) contaminated calcareous soils, a concentration gradient experiment and a field sampling experiment (involving poplars of different ages) were conducted. The translocation factors for all experiments and treatments were greater than 1. The bioconcentration factor decreased from 2.37 to 0.25 with increasing soil Cd concentration in the concentration gradient experiment and generally decreased with stand age under field conditions. The Cd concentrations in P. pyramidalis organs decreased in the order of leaves > stems > roots. The shoot biomass production in the concentration gradient experiment was not significantly reduced with soil Cd concentrations up to or slightly over 50 mg kg(-1). The results show that the phytoextraction efficiency of P. pyramidalis depends on both the soil Cd concentration and the tree age. Populus pyramidalis is most suitable for remediation of slightly Cd contaminated calcareous soils through the combined harvest of stems and leaves under actual field conditions.

  1. Growth and Heavy Metal Accumulation of Koelreuteria Paniculata Seedlings and Their Potential for Restoring Manganese Mine Wastelands in Hunan, China

    Directory of Open Access Journals (Sweden)

    Zhihong Huang

    2015-02-01

    Full Text Available The planting of trees on mine wastelands is an effective, long-term technique for phytoremediation of heavy metal-contaminated wastes. In this study, a pot experiment with seedlings of Koelreuteria paniculata under six treatments of local mine wastes was designed to determine the major constraints on tree establishment and to evaluate the feasibility of planting K. paniculata on manganese mine wastelands. Results showed that K. paniculata grew well in mine tailings, and also under a regime of equal amounts of mine tailings and soil provided in adjacent halves of pots. In contrast, mine sludge did not favor survival and growth because its clay texture limited fine root development. The bio-concentration factor and the translocation factor were mostly less than 1, indicating a low phytoextraction potential for K. paniculata. K. paniculata is suited to restore manganese mine sludge by mixing the mine sludge with local mine tailings or soil.

  2. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: A review

    Energy Technology Data Exchange (ETDEWEB)

    Lebeau, Thierry [Equipe Depollution Biologique des Sols (EDBS), University of Haute-Alsace, 28, rue de Herrlisheim, BP 50 568, 68 008 Colmar Cedex (France)], E-mail: thierry.lebeau@uha.fr; Braud, Armelle; Jezequel, Karine [Equipe Depollution Biologique des Sols (EDBS), University of Haute-Alsace, 28, rue de Herrlisheim, BP 50 568, 68 008 Colmar Cedex (France)

    2008-06-15

    Bioaugmentation-assisted phytoextraction is a promising method for the cleaning-up of soils contaminated by metals. Bacteria mainly Plant Growth Promoting Rhizobacteria (PGPR) and fungi mainly Arbuscular Mycorrhizal Fungi (AMF) associated with hyperaccumulating or non-hyperaccumulating plants were analyzed on the basis of a bioprocess engineering approach (concentration and amount of metals extracted by plants, translocation and bioconcentration factor, and plant biomass). In average bioaugmentation increased metals accumulated by shoots by a factor of about 2 (metal concentration) and 5 (amount) without any obvious differences between bacteria and fungi. To optimize this process, new relevant microorganism-plant associations and field scale experiments are needed along with a common methodology for the comparison of all experiments on the same basis. Recommendations were suggested concerning both the microbial-plant selection and the implementation of bioaugmentation to enhance the microbial survival. The use of microbial consortia associated with plant was discussed notably for multi-contaminated soils. - Bioaugmentation-assisted plant improves the phytoextraction performances for soils contaminated by metals.

  3. Phytoextraction and phytostabilization potential of plants grown in the vicinity of heavy metal-contaminated soils: a case study at an industrial town site.

    Science.gov (United States)

    Lorestani, B; Yousefi, N; Cheraghi, M; Farmany, A

    2013-12-01

    With the development of urbanization and industrialization, soils have become increasingly polluted by heavy metals. Phytoremediation, an emerging cost-effective, nonintrusive, and aesthetically pleasing technology that uses the remarkable ability of plants to concentrate elements, can be potentially used to remediate metal-contaminated sites. In this research, two processes of phytoremediation (phytoextraction and phytostabilization) were surveyed in some plant species around an industrial town in the Hamedan Province in the central-western part of Iran. To this purpose, shoots and roots of the seven plant species and the associated soil samples were collected and analyzed by measuring Pb, Fe, Mn, Cu, and Zn concentrations using ICP-AES and then calculating the biological absorption coefficient, bioconcentration factor, and translocation factor parameters for each element. The obtained results showed that among the collected plants, Salsola soda is the most effective species for phytoextraction and phytostabilization and Cirsium arvense has the potential for phytostabilization of the measured heavy metals.

  4. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: A review

    International Nuclear Information System (INIS)

    Lebeau, Thierry; Braud, Armelle; Jezequel, Karine

    2008-01-01

    Bioaugmentation-assisted phytoextraction is a promising method for the cleaning-up of soils contaminated by metals. Bacteria mainly Plant Growth Promoting Rhizobacteria (PGPR) and fungi mainly Arbuscular Mycorrhizal Fungi (AMF) associated with hyperaccumulating or non-hyperaccumulating plants were analyzed on the basis of a bioprocess engineering approach (concentration and amount of metals extracted by plants, translocation and bioconcentration factor, and plant biomass). In average bioaugmentation increased metals accumulated by shoots by a factor of about 2 (metal concentration) and 5 (amount) without any obvious differences between bacteria and fungi. To optimize this process, new relevant microorganism-plant associations and field scale experiments are needed along with a common methodology for the comparison of all experiments on the same basis. Recommendations were suggested concerning both the microbial-plant selection and the implementation of bioaugmentation to enhance the microbial survival. The use of microbial consortia associated with plant was discussed notably for multi-contaminated soils. - Bioaugmentation-assisted plant improves the phytoextraction performances for soils contaminated by metals

  5. A newly found cadmium accumulator-Malva sinensis Cavan

    International Nuclear Information System (INIS)

    Zhang Shirong; Chen Mingying; Li Ting; Xu Xiaoxun; Deng Liangji

    2010-01-01

    Screening hyperaccumulators and accumulators is a key step in the phytoremediation of soils contaminated by heavy metals. A pot experiment was conducted involving a soil Cd concentration gradient (0, 50, 75, 100, 125, 150, 175, and 200 mg kg -1 ) to determine if Malva sinensis Cavan. from two lead-zinc mines in Kangding and Yajiang in western Sichuan, China, is a Cd-hyperaccumulator. The highest Cd concentrations in plant shoots from Kangding and Yajiang were 154.30 and 122.77 mg kg -1 , respectively, at a soil Cd concentration of 200 mg kg -1 . The largest amounts of accumulation in plant shoots from Kangding and Yajiang were 700.5 and 1403.2 μg pot -1 , respectively. The bioconcentration factors in shoots were 0.53-1.03 for Kangding and 0.69-1.25 for Yajiang. Moreover, all translocation factors of plants from the two sites were over 1.0. Therefore, M. sinensis can be classified as a Cd-accumulator or non-standard Cd-hyperaccumulator.

  6. Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture.

    Science.gov (United States)

    Zhi-xin, Niu; Sun, Li-na; Sun, Tie-heng; Li, Yu-shuang; Wang, Hong

    2007-01-01

    Soil contaminated with heavy metals cadmium (Cd) and lead (Pb) is hard to be remediated. Phytoremediation may be a feasible method to remove toxic metals from soil, but there are few suitable plants which can hyperaccumulate metals. In this study, Cd and Pb accumulation by four plants including sunflower (Helianthus annuus L.), mustard (Brassica juncea L.), alfalfa (Medicago sativa L.), ricinus (Ricinus communis L.) in hydroponic cultures was compared. Results showed that these plants could phytoextract heavy metals, the ability of accumulation differed with species, concentrations and categories of heavy metals. Values of BCF (bioconcentration factor) and TF (translocation factor) indicated that four species had dissimilar abilities of phytoextraction and transportation of heavy metals. Changes on the biomass of plants, pH and Eh at different treatments revealed that these four plants had distinct responses to Cd and Pb in cultures. Measurements should be taken to improve the phytoremediation of sites contaminated with heavy metals, such as pH and Eh regulations, and so forth.

  7. Greenhouse cultivation mitigates metal-ingestion-associated health risks from vegetables in wastewater-irrigated agroecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chun [College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu (China); College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu (China); Chen, Xing-Peng; Ma, Zhen-Bang [College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu (China); Jia, Hui-Hui [State High-Tech Industrial Innovation Center, Shenzhen 518057, Guangdong (China); Wang, Jun-Jian, E-mail: junjian.wang@utoronto.ca [Department of Physical and Environmental Sciences, University of Toronto, Toronto M1C 1A4 (Canada)

    2016-08-01

    Wastewater irrigation can elevate metal concentrations in soils and crops and increase the metal-associated health risks via vegetable ingestion in arid and semiarid northwestern China. Here, we investigated the As, Cd, Cr, Cu, Ni, Pb, and Zn concentrations in four vegetable species from Dongdagou and Xidagou farmlands in Baiyin, Gansu, China. We evaluated the effects of irrigation type (Dongdagou: industrial wastewater; Xidagou: domestic wastewater) and cultivation mode (open field and greenhouse) on the vegetable metal concentration, metal partitioning, soil-to-plant bioconcentration factor (BCF), and the health risk index. All stream waters, soils, and vegetables were found most severely polluted by As and Cd, with higher severity in the industrial-wastewater-irrigated Dongdagou than the domestic-wastewater-irrigated Xidagou. All vegetables had higher or, at least, comparable metal mass allocated in the shoot than in the root. Greenhouse cultivation could reduce metal-ingestion-associated health risks from edible vegetable biomass by decreasing the soil to plant bioaccumulation (BCF) and the metal concentration. This effect was always significant for all vegetables within Xidagou, and for carrot within Dongdagou. This mitigation effect of greenhouse cultivation could be attributed to the metal sorption by a higher level of soil organic matter and faster growth rate over metal uptake rate in greenhouses compared to open fields. Such mitigation effect was, however, insignificant for leafy vegetables within Dongdagou, when much more severely polluted water for irrigation was applied in greenhouses compared to open fields within Dongdagou. The present study highlights greenhouse cultivation as a potential mitigating approach to providing less-polluted vegetables for residents in the severely polluted area in addition to the source pollution control. - Highlights: • Vegetable farmlands in Baiyin, Gansu, China were severely polluted by As and Cd. • Greenhouses had

  8. Greenhouse cultivation mitigates metal-ingestion-associated health risks from vegetables in wastewater-irrigated agroecosystems

    International Nuclear Information System (INIS)

    Cao, Chun; Chen, Xing-Peng; Ma, Zhen-Bang; Jia, Hui-Hui; Wang, Jun-Jian

    2016-01-01

    Wastewater irrigation can elevate metal concentrations in soils and crops and increase the metal-associated health risks via vegetable ingestion in arid and semiarid northwestern China. Here, we investigated the As, Cd, Cr, Cu, Ni, Pb, and Zn concentrations in four vegetable species from Dongdagou and Xidagou farmlands in Baiyin, Gansu, China. We evaluated the effects of irrigation type (Dongdagou: industrial wastewater; Xidagou: domestic wastewater) and cultivation mode (open field and greenhouse) on the vegetable metal concentration, metal partitioning, soil-to-plant bioconcentration factor (BCF), and the health risk index. All stream waters, soils, and vegetables were found most severely polluted by As and Cd, with higher severity in the industrial-wastewater-irrigated Dongdagou than the domestic-wastewater-irrigated Xidagou. All vegetables had higher or, at least, comparable metal mass allocated in the shoot than in the root. Greenhouse cultivation could reduce metal-ingestion-associated health risks from edible vegetable biomass by decreasing the soil to plant bioaccumulation (BCF) and the metal concentration. This effect was always significant for all vegetables within Xidagou, and for carrot within Dongdagou. This mitigation effect of greenhouse cultivation could be attributed to the metal sorption by a higher level of soil organic matter and faster growth rate over metal uptake rate in greenhouses compared to open fields. Such mitigation effect was, however, insignificant for leafy vegetables within Dongdagou, when much more severely polluted water for irrigation was applied in greenhouses compared to open fields within Dongdagou. The present study highlights greenhouse cultivation as a potential mitigating approach to providing less-polluted vegetables for residents in the severely polluted area in addition to the source pollution control. - Highlights: • Vegetable farmlands in Baiyin, Gansu, China were severely polluted by As and Cd. • Greenhouses had

  9. Trace metal geochemistry in mangrove sediments and their transfer to mangrove plants (New Caledonia)

    International Nuclear Information System (INIS)

    Marchand, C.; Fernandez, J.-M.; Moreton, B.

    2016-01-01

    Because of their physico-chemical inherent properties, mangrove sediments may act as a sink for pollutants coming from catchments. The main objective of this study was to assess the distribution of some trace metals in the tissues of various mangrove plants developing downstream highly weathered ferralsols, taking into account metals partitioning in the sediment. In New Caledonia, mangroves act as a buffer between open-cast mines and the world's largest lagoon. As a result of the erosion of lateritic soils, Ni and Fe concentrations in the sediment were substantially higher than the world average. Whatever the mangrove stand and despite low bioaccumulation and translocations factors, Fe and Ni were also the most abundant metals in the different plant tissues. This low bioaccumulation may be explained by: i) the low availability of metals, which were mainly present in the form of oxides or sulfur minerals, and ii) the root systems acting as barriers towards the transfer of metals to the plant. Conversely, Cu and Zn metals had a greater mobility in the plant, and were characterized by high bioconcentration and translocation factors compared to the other metals. Cu and Zn were also more mobile in the sediment as a result of their association with organic matter. Whatever the metal, a strong decrease of trace metal stock was observed from the landside to the seaside of the mangrove, probably as a result of the increased reactivity of the sediment due to OM enrichment. This reactivity lead to higher dissolution of bearing phases, and thus to the export of dissolved trace metals trough the tidal action. Cu and Zn were the less concerned by the phenomenon probably as a result of higher plant uptake and their restitution to the sediment with litter fall in stands where tidal flushing is limited. - Highlights: • Unusual high concentrations of Fe and Ni were measured in mangrove tissues. • Bioconcentration and translocation factors of Fe, Ni, Co and Mn were low. • Low

  10. Trace metal geochemistry in mangrove sediments and their transfer to mangrove plants (New Caledonia)

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, C., E-mail: cyril.marchand@ird.fr [Institut de Recherche pour le Développement (IRD), UR 206/UMR 7590 IMPMC, 98848 Nouméa, New Caledonia (France); Fernandez, J.-M.; Moreton, B. [AEL/LEA, 7 rue Loriot de Rouvray, 98800 Nouméa, New Caledonia (France)

    2016-08-15

    Because of their physico-chemical inherent properties, mangrove sediments may act as a sink for pollutants coming from catchments. The main objective of this study was to assess the distribution of some trace metals in the tissues of various mangrove plants developing downstream highly weathered ferralsols, taking into account metals partitioning in the sediment. In New Caledonia, mangroves act as a buffer between open-cast mines and the world's largest lagoon. As a result of the erosion of lateritic soils, Ni and Fe concentrations in the sediment were substantially higher than the world average. Whatever the mangrove stand and despite low bioaccumulation and translocations factors, Fe and Ni were also the most abundant metals in the different plant tissues. This low bioaccumulation may be explained by: i) the low availability of metals, which were mainly present in the form of oxides or sulfur minerals, and ii) the root systems acting as barriers towards the transfer of metals to the plant. Conversely, Cu and Zn metals had a greater mobility in the plant, and were characterized by high bioconcentration and translocation factors compared to the other metals. Cu and Zn were also more mobile in the sediment as a result of their association with organic matter. Whatever the metal, a strong decrease of trace metal stock was observed from the landside to the seaside of the mangrove, probably as a result of the increased reactivity of the sediment due to OM enrichment. This reactivity lead to higher dissolution of bearing phases, and thus to the export of dissolved trace metals trough the tidal action. Cu and Zn were the less concerned by the phenomenon probably as a result of higher plant uptake and their restitution to the sediment with litter fall in stands where tidal flushing is limited. - Highlights: • Unusual high concentrations of Fe and Ni were measured in mangrove tissues. • Bioconcentration and translocation factors of Fe, Ni, Co and Mn were low.

  11. Sub-chronic exposure to fluoxetine in juvenile oysters (Crassostrea gigas): uptake and biological effects.

    Science.gov (United States)

    Di Poi, Carole; Evariste, Lauris; Séguin, Alexis; Mottier, Antoine; Pedelucq, Julie; Lebel, Jean-Marc; Serpentini, Antoine; Budzinski, Hélène; Costil, Katherine

    2016-03-01

    The bioconcentration potential of fluoxetine (FLX) and its biological effects were investigated in juvenile Pacific oyster exposed for 28 days to environmentally relevant concentrations of FLX (1 ng L(-1), 100 ng L(-1) and up to 10 μg L(-1)). FLX bioaccumulated in oyster flesh resulting in 28-day bioconcentration factors greater than 2,000 and 10,000 by referring to wet and dry weights, respectively. Nevertheless, FLX did not induce oyster mortality, delayed gametogenesis, or lead to adverse histopathological alterations. At the two highest concentrations, despite non-optimal trophic conditions, FLX stimulated shell growth but only in a transient manner, suggesting a role of serotonin in the regulation of feeding and metabolism in bivalves. Those high concentrations seemed to drive bell-shaped responses of catalase and glutathione S-transferase activities throughout the exposure period, which may indicate the activation of antioxidant enzyme synthesis and then an enhanced catabolic rate or direct inhibition of those enzymes. However, no clear oxidative stress was detected because no strong differences in thiobarbituric acid-reactive substance (TBARS) content (i.e. lipid peroxidation) were observed between oyster groups, suggesting that cellular defence mechanisms were effective. These results demonstrate the importance of considering additional biomarkers of oxidative stress to obtain a comprehensive overview of the FLX-induced changes in marine bivalves exposed under realistic conditions. Considering the battery of biomarkers used, FLX appears to induce little or no effects on oyster physiology even at a concentration of 10 μg L(-1). These results do not confirm the lowest observed effect concentration (LOEC) values reported by some authors in other mollusc species.

  12. Accumulation of current-use and organochlorine pesticides in crab embryos from northern California, USA.

    Science.gov (United States)

    Smalling, Kelly L; Morgan, Steven; Kuivila, Kathryn K

    2010-11-01

    Invertebrates have long been used as resident sentinels for assessing ecosystem health and productivity. The shore crabs, Hemigrapsus oregonensis and Pachygrapsus crassipes, are abundant in estuaries and beaches throughout northern California, USA and have been used as indicators of habitat conditions in several salt marshes. The overall objectives of the present study were to conduct a lab-based study to test the accumulation of current-use pesticides, validate the analytical method and to analyze field-collected crabs for a suite of 74 current-use and legacy pesticides. A simple laboratory uptake study was designed to determine if embryos could bioconcentrate the herbicide molinate over a 7-d period. At the end of the experiment, embryos were removed from the crabs and analyzed by gas chromatography/mass spectrometry. Although relatively hydrophilic (log K(OW) of 2.9), molinate did accumulate with an estimated bioconcentration factor (log BCF) of approximately 2.5. Following method validation, embryos were collected from two different Northern California salt marshes and analyzed. In field-collected embryos 18 current-use and eight organochlorine pesticides were detected including synthetic pyrethroids and organophosphate insecticides, as well as DDT and its degradates. Lipid-normalized concentrations of the pesticides detected in the field-collected crab embryos ranged from 0.1 to 4 ppm. Pesticide concentrations and profiles in crab embryos were site specific and could be correlated to differences in land-use practices. These preliminary results indicate that embryos are an effective sink for organic contaminants in the environment and have the potential to be good indicators of ecosystem health, especially when contaminant body burden analyses are paired with reproductive impairment assays. © 2010 SETAC.

  13. The environmental toxicology of rare earth elements (147Pm, 141Ce, 147Nd) and their safety evaluation in environment

    International Nuclear Information System (INIS)

    Chen Zuyi; Liu Yu; Cheng Wei; Zhang Ligan; Li Huixin; Wang Yuanxing

    2001-01-01

    The environmental behaviour, bioconcentration of rare earth elements and their effects on the animal gonadial hormone secretion were studied using the radioisotope tracer. The results were as follows: (1) The 147 Pm, 141 Ce and 147 Nd have strong adsorption in soil. They accumulated in soil easily and belonged to the matter which was difficult to move. When in water body, they concentrated in the bottom mud. (2) The authors tested bioconcentration factors (BCF) of 5 aquatics and absorption coefficients of 3 aquatic vegetables on 147 Pm, and their concentration in edible organ-stems. The materials for study showed apparent concentrating capabilities. (3) The distribution of 147 Pm, 141 Ce and 147 Nd residues were uneven in the animal's viscera and tissue. But, the higher residues were in bone, marrow, eye, brain, heart, adipose and testis, and their accumulation increased with dosage and time, which showed selective accumulation. There were much higher accumulation of RE in bone than in other viscera and tissues, and 141 Ce was highest in eye. (4) With the Nd or Ce of dose 200 mg/kg by once intraperitoneally, gonadial hormone (testosterone or progesterone) concentration in the serum decreased significantly compared with the control. This showed apparent inhibition on gonadial hormone secretion in mice; however with different dosages of Ce (200 and 800 mg/kg · d) in feed, the testosterone concentration of serum made no significant difference, but, the misshape rate of spermatozoon proved higher, and the misshape rate increased with feeding time and dosage. Rudimentary exploration on safety of agricultural use of Re for eco-environment are made, and some suggestions are proposed

  14. Fruit tree model for uptake of organic compounds from soil

    DEFF Research Database (Denmark)

    Trapp, Stefan; Rasmussen, D.; Samsoe-Petersen, L.

    2003-01-01

    -state, and an example calculation is given. The Fruit Tree Model is compared to the empirical equation of Travis and Arms (T&A), and to results from fruits, collected in contaminated areas. For polar compounds, both T&A and the Fruit Tree Model predict bioconcentration factors fruit to soil (BCF, wet weight based......) of > 1. No empirical data are available to support this prediction. For very lipophilic compounds (log K-OW > 5), T&A overestimates the uptake. The conclusion from the Fruit Tree Model is that the transfer of lipophilic compounds into fruits is not relevant. This was also found by an empirical study...... with PCDD/F. According to the Fruit Tree Model, polar chemicals are transferred efficiently into fruits, but empirical data to verify these predictions are lacking....

  15. Bioavailability of energy-effluent materials in coastal ecosystems

    International Nuclear Information System (INIS)

    Hardy, J.T.

    1987-01-01

    An attempt is made to study the long-term effects of effluents from coastal and offshore nuclear power plants. The original intent of the program was to integrate approaches in chemistry, ocean transport, and biological uptake to quantify the variables that regulate biological availability of energy-effluent materials. Initial work was focused on the fate and effects of copper. In later research, the authors examined the basic environmental variables controlling the bioavailability of energy-related contaminants. They investigated how factors such as dissolved organic compounds, suspended particles, and sediment binding affected chemical speciation and how chemical speciation, in turn, influenced the availability of metals and radionuclides to marine invertebrates. They developed a hydrodynamic model to predict sediment and contaminant transport, and they quantified the bioconcentration of synthetic-fuel residuals in plankton

  16. Marisa cornuarietis (Gastropoda, prosobranchia): a potential TBT bioindicator for freshwater environments.

    Science.gov (United States)

    Schulte-Oehlmann, U; Bettin, C; Fioroni, P; Oehlmann, J; Stroben, E

    1995-12-01

    : The ramshorn snail Marisa cornuarietis (L., 1767) exhibits imposex (occurrence of male parts in addition to the female genital duct) under the influence of TBT (tributyltin) in laboratory experiments and accumulates this biocide in a time-and concentration-dependent manner. A comparison of BCF (bioconcentration factors) demonstrates that this limnic species accumulates more TBT than marine species. Evidence is given that TBT causes hormonal disorders which are responsible for imposex development. The testosterone/oestradiol quotient reflects the imposex development which can be described by a classification scheme differentiating four stages in Marisa cornuarietis. In the background of the constantly increasing organotin concentration in the limnic environment Marisa cornuarietis could be a well-suited bioindicator for TBT pollution. No other limnic species with a lower threshold concentration for measurable TBT effects is reported within the literature.

  17. Radionuclides in the ecosystem of the southern Baltic Sea

    International Nuclear Information System (INIS)

    Skwarzec, B.; Struminska, D.I.; Borylo, A.

    2006-01-01

    It has been shown that 210 Po and plutonium are significantly more concentrated in the Baltic Sea ecosystem than uranium . Bioaccumulation coefficients in flora and fauna (BCFs) of 210 Po are of the 2·10 3 - 2·10 5 range and plutonium - of the 1·10 2 - 1·10 4 . 238 Pu/ 239-240 Pu isotopic ratio shows for the increasing content in the living organisms of plutonium coming from the Chernobyl NPP accident. Content of 55 Fe and 63 Ni in the Baltic ecosystem (sea water, Fucus Vesilculous) is inverse proportional to the distance from the contamination place (e.g. from the NPP). Against to 55 Fe - 63 Ni is accumulated in the fish skin and flakes through passive diffusion

  18. Allometric relationships in the bioconcentration of heavy metals by the edible tropical clam Gafrarium tumidum

    International Nuclear Information System (INIS)

    Hedouin, L.; Metian, M.; Teyssie, J.-L.; Fowler, S.W.; Fichez, R.; Warnau, M.

    2006-01-01

    Although metal contamination is a problem of major concern in the lagoon of New Caledonia due to intense mining activities conducted on land, very little is known on the metal ecotoxicology of local marine organisms. The clam Gafrarium tumidum was investigated to assess its usefulness as a bioindicator species of metal contamination in this lagoon. More particularly, allometric relationships between metal accumulation and clam size were determined for five common metals in New Caledonian lagoon waters (Cd, Cr, Co, Zn and Ag) using a highly sensitive radiotracer technique. Experimental results showed that allometric relationships were dependent on the element and on the body compartment considered. As a rule, allometric relationships of metal concentration factor were more pronounced in shell than in soft parts. Significant relationships with clam size for Cd, Cr, Co and Zn followed inverse power functions. In contrast, the degree of Ag bioaccumulation was positively correlated with size. In view of the literature on Ag in bivalves, the latter observation suggests the occurrence of a specific detoxification mechanism (sequestration) that would be more efficient in old individuals. Overall, the experimental results indicate that the use of G. tumidum as a bioindicator in monitoring programmes requires selecting individuals of a specific size range in order to obtain comparable information about ambient metal levels. Since the size effect is greatest among smaller individuals, it is recommended to select clams with a shell width greater than 35 mm

  19. Allometric relationships in the bioconcentration of heavy metals by the edible tropical clam Gafrarium tumidum

    Energy Technology Data Exchange (ETDEWEB)

    Hedouin, L. [International Atomic Energy Agency-Marine Environment Laboratory, 4 Quai Antoine 1er, MC-98000 Monaco (Monaco); Laboratoire de Biologie et d' Environnement Marins, FRE 2727, La Rochelle University, 22 Av. Michel Crepeau, F-17000 La Rochelle (France); Institut de Recherche pour le Developpement, Centre d' Oceanologie de Marseille, Station Marine d' Endoume, Rue de la Batterie des Lions, F-13007 Marseille (France); Metian, M. [International Atomic Energy Agency-Marine Environment Laboratory, 4 Quai Antoine 1er, MC-98000 Monaco (Monaco); Teyssie, J.-L. [International Atomic Energy Agency-Marine Environment Laboratory, 4 Quai Antoine 1er, MC-98000 Monaco (Monaco); Fowler, S.W. [International Atomic Energy Agency-Marine Environment Laboratory, 4 Quai Antoine 1er, MC-98000 Monaco (Monaco); Fichez, R. [Institut de Recherche pour le Developpement, Centre d' Oceanologie de Marseille, Station Marine d' Endoume, Rue de la Batterie des Lions, F-13007 Marseille (France); Warnau, M. [International Atomic Energy Agency-Marine Environment Laboratory, 4 Quai Antoine 1er, MC-98000 Monaco (Monaco)]. E-mail: m.warnau@iaea.org

    2006-07-31

    Although metal contamination is a problem of major concern in the lagoon of New Caledonia due to intense mining activities conducted on land, very little is known on the metal ecotoxicology of local marine organisms. The clam Gafrarium tumidum was investigated to assess its usefulness as a bioindicator species of metal contamination in this lagoon. More particularly, allometric relationships between metal accumulation and clam size were determined for five common metals in New Caledonian lagoon waters (Cd, Cr, Co, Zn and Ag) using a highly sensitive radiotracer technique. Experimental results showed that allometric relationships were dependent on the element and on the body compartment considered. As a rule, allometric relationships of metal concentration factor were more pronounced in shell than in soft parts. Significant relationships with clam size for Cd, Cr, Co and Zn followed inverse power functions. In contrast, the degree of Ag bioaccumulation was positively correlated with size. In view of the literature on Ag in bivalves, the latter observation suggests the occurrence of a specific detoxification mechanism (sequestration) that would be more efficient in old individuals. Overall, the experimental results indicate that the use of G. tumidum as a bioindicator in monitoring programmes requires selecting individuals of a specific size range in order to obtain comparable information about ambient metal levels. Since the size effect is greatest among smaller individuals, it is recommended to select clams with a shell width greater than 35 mm.

  20. Levels and bioaccumulation of organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs) in fishes from the Pearl River estuary and Daya Bay, South China

    International Nuclear Information System (INIS)

    Guo Lingli; Qiu Yaowen; Zhang Gan; Zheng, Gene J.; Lam, Paul K.S.; Li Xiangdong

    2008-01-01

    Fifty fish samples were collected from the Pearl River estuary (PRE) and Daya Bay, South China and were analyzed for DDTs, HCHs, chlordanes and polybrominated biphenyl ethers (PBDEs). Except the high concentrations of DDT observed in fishes, the concentrations of HCHs, chlordanes and PBDEs were low when compared to other regions. BDE-47 was the predominant PBDE congener and the BDE-209 concentrations were relatively low, despite its high concentration in surface sediments. The absence of significant increase of DDT, HCH, chlordane and PBDE concentrations towards higher δ 15 N values, as well as the lack of a significant correlation (p 15 N, may indicate a weak biomagnification of these chemicals in the food webs. Good agreement was observed between their concentrations and lipid contents of the organisms. Bioconcentration was suggested to be responsible for the accumulation of OCPs and PBDEs in the lower trophic organisms in the studied subtropical waters. - Bioconcentration was suggested to be responsible for the accumulation of OCPs and PBDEs in the lower trophic organisms of subtropical waters

  1. Cadmium - a case of mistaken identity

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, D

    1984-05-01

    New evidence is presented which describes the impact of cadmium in the environment. Cadmium is a persistent material, although its compounds may undergo a range of chemical changes in the environment. In soluble form cadmium and its compounds are toxic at relatively low concentrations to aquatic animals although their bioconcentrations in such animals is in general low, and there is no evidence of biomagnification. In insoluble form cadmium and its compounds are relatively non-toxic to aquatic animals and are unlikely to be bioconcentrated. As such, cadmium is similar to most other heavy metals. Recent studies indicate that cadmium is not implicated in Itai-Itai disease and does not appear to cause hypertension or cancer. In addition, the accepted critical level in the kidney may have been underestimated. Thus, the hazard to man appears to be considerably less than the original estimates. In view of these data, there seems little justification in treating cadmium in any way differently from the other metals and hence no reason for retaining it on the Black List of the international conventions. 19 references.

  2. Accumulation and elimination of polychlorinated dibenzo-p-dioxins and dibenzofurans in mule ducks.

    Science.gov (United States)

    Wu, Ting-Wei; Lee, Jai-Wei; Liu, Hsueh-Yen; Lin, Wei-Hsiao; Chu, Chun-Yen; Lin, Sheng-Lun; Chang-Chien, Guo Ping; Yu, Chi

    2014-11-01

    In Taiwan, a food safety crisis involving a presence of high concentrations of dioxin residues in duck eggs occurred in 2004. The dioxin content in duck meat sampled from supermarkets was also reported to be substantially higher than in products from other farm animals. Despite increased awareness of the potential for contamination and exposure to dioxins, the accumulation and elimination of dioxins in ducks have not been well characterized. In the present study, mule ducks were fed capsules containing polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) for 14 days and the trial was continued for another 28 days without PCDD/Fs supplementation. Ducks were sacrificed on the 14th, 28th, and 42nd days from the beginning of administration and samples of abdominal fat, breast, and liver tissue were obtained. The concentrations of PCDD/Fs were analyzed in the samples to investigate their distribution and elimination in various duck tissues. The bioaccumulation of PCDD/Fs in ducks was found to be tissue-dependent. In the abdominal fat, the bioconcentration factor was negatively correlated with the degree of chlorination. Conversely, more chlorinated PCDD/Fs (hexa- or hepta-congeners) were associated with higher bioconcentration in the liver and breast tissue. In terms of the efficiency of PCDD/Fs elimination, the liver was found to be the fastest, followed by the breast and the abdominal fat. The clearance rate positively correlated with the degree of chlorination, as determined by comparing the apparent elimination rate constant (k) of PCDD/Fs in various tissues. Overall, lower k values observed in this study imply that mule ducks have a reduced clearance of PCDD/Fs in comparison with layer and broiler chickens. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Characterization of elements in marine organisms

    International Nuclear Information System (INIS)

    Ishii, Toshiaki

    1994-01-01

    Characterization of elements was carried out to clarify the mechanisms of bioconcentration and the physiological roles of elements in marine organisms. The concentrations of 238 U in fifty-five species of marine organisms were measured by inductively coupled plasma mass spectrometry. The concentrations of 238 U in soft tissues of marine animals ranged from 0.076 to 500ng/g wet wt. Especially, the branchial heart of cephalopod molluscs showed the specific accumulation of 238 U. The concentration factor of the branchial heart of Octopus vulgaris, which indicated the highest value, was calculated to be about 10 3 by comparing it with the concentration of 238 U (3.2 ± 0.2ng/ml) in coastal seawater of Japan. The concentrations of 238 U of twenty species of algae ranged from 10 to 3700ng/g dry wt. (author)

  4. Snapping turtles, a biological screen for PCB's

    Energy Technology Data Exchange (ETDEWEB)

    Olafsson, P.G.; Bryan, A.M.; Bush, B.; Stone, W.

    1983-01-01

    Snapping turtles are capable of storing extremely high concentration of organochlorine compounds in their fat without any apparent detrimental effect. This tolerance, to high bioconcentration, permits a wide gradation between the extremes in pollution levels and facilitates the detection of extremely toxic substances present in trace amounts. Consequently snapping turtles provide an excellent biological screen for these compounds.

  5. Experimental validation of geosmin uptake in rainbow trout, Oncorhynchus mykiss (Waldbaum) suggests biotransformation

    NARCIS (Netherlands)

    Schram, Edward; Schrama, Johan W.; Kooten, van Tobias; Kwadijk, Christiaan J.A.F.; Kampen, Harm; Kampen, Harm; Heul, van de Jan W.; Verreth, Johan A.J.; Murk, Albertinka J.

    2018-01-01

    The bioconcentration of waterborne geosmin in rainbow trout, Oncorhynchus mykiss (Waldbaum) was assessed. Fifty rainbow trout with a mean (SD) weight of 226.6 (29.0) g and lipid content of 6.2 (0.6) % (w/w) were exposed to geosmin in static water for 0, 2, 4, 6, 8, 12, 24, 36, 48 and 120 hr, with

  6. Heavy Metal Residues in Soil and Accumulation in Maize at Long-Term Wastewater Irrigation Area in Tongliao, China

    Directory of Open Access Journals (Sweden)

    Yintao Lu

    2015-01-01

    Full Text Available Soil and plant samples were collected from Tongliao, China, during the maize growth cycle between May and October 2010. Heavy metals, such as Cr, Pb, Ni, and Zn, were analyzed. The concentrations of Cr, Pb, Ni, and Zn in the wastewater-irrigated area were higher than those in the topsoil from the groundwater-irrigated area. The concentrations of metals in the maize increased as follows: Pb < Ni < Zn < Cr. In addition, Cr, Pb, and Ni mainly accumulated in the maize roots, and Zn mainly accumulated in the maize fruit. The results of translocation factors (TF and bioconcentration factors (BCF of maize for heavy metals revealed that maize is an excluder plant and a potential accumulator plant and can serve as an ideal slope remediation plant. In addition, the increasing heavy metal contents in soils that have been polluted by wastewater irrigation must result in the accumulation of Cr, Pb, Ni, and Zn in maize. Thus, the pollution level can be decreased by harvesting and disposing of and recovering the plant material.

  7. A newly found cadmium accumulator-Malva sinensis Cavan

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shirong, E-mail: rsz01@163.com [College of Resources and Environment, Sichuan Agricultural University, 46 Xinkang Road, Yaan 625014 (China); Chen Mingying; Li Ting; Xu Xiaoxun; Deng Liangji [College of Resources and Environment, Sichuan Agricultural University, 46 Xinkang Road, Yaan 625014 (China)

    2010-01-15

    Screening hyperaccumulators and accumulators is a key step in the phytoremediation of soils contaminated by heavy metals. A pot experiment was conducted involving a soil Cd concentration gradient (0, 50, 75, 100, 125, 150, 175, and 200 mg kg{sup -1}) to determine if Malva sinensis Cavan. from two lead-zinc mines in Kangding and Yajiang in western Sichuan, China, is a Cd-hyperaccumulator. The highest Cd concentrations in plant shoots from Kangding and Yajiang were 154.30 and 122.77 mg kg{sup -1}, respectively, at a soil Cd concentration of 200 mg kg{sup -1}. The largest amounts of accumulation in plant shoots from Kangding and Yajiang were 700.5 and 1403.2 {mu}g pot{sup -1}, respectively. The bioconcentration factors in shoots were 0.53-1.03 for Kangding and 0.69-1.25 for Yajiang. Moreover, all translocation factors of plants from the two sites were over 1.0. Therefore, M. sinensis can be classified as a Cd-accumulator or non-standard Cd-hyperaccumulator.

  8. Leaf-age and soil-plant relationships: key factors for reporting trace-elements hyperaccumulation by plants and design applications.

    Science.gov (United States)

    Losfeld, Guillaume; L'Huillier, Laurent; Fogliani, Bruno; Mc Coy, Stéphane; Grison, Claude; Jaffré, Tanguy

    2015-04-01

    Relationships between the trace-elements (TE) content of plants and associated soil have been widely investigated especially to understand the ecology of TE hyperaccumulating species to develop applications using TE phytoextraction. Many studies have focused on the possibility of quantifying the soil TE fraction available to plants, and used bioconcentration (BC) as a measure of the plants ability to absorb TE. However, BC only offers a static view of the dynamic phenomenon of TE accumulation. Accumulation kinetics are required to fully account for TE distributions in plants. They are also crucial to design applications where maximum TE concentrations in plant leaves are needed. This paper provides a review of studies of BC (i.e. soil-plant relationships) and leaf-age in relation to TE hyperaccumulation. The paper focuses of Ni and Mn accumulators and hyperaccumulators from New Caledonia who were previously overlooked until recent Ecocatalysis applications emerged for such species. Updated data on Mn hyperaccumulators and accumulators from New Caledonia are also presented and advocate further investigation of the hyperaccumulation of this element. Results show that leaf-age should be considered in the design of sample collection and allowed the reclassification of Grevillea meisneri known previously as a Mn accumulator to a Mn hyperaccumulator.

  9. Cyclic volatile methylsiloxane bioaccumulation in flounder and ragworm in the Humber Estuary.

    Science.gov (United States)

    Kierkegaard, Amelie; van Egmond, Roger; McLachlan, Michael S

    2011-07-15

    Cyclic volatile methylsiloxanes are being subjected to regulatory scrutiny as possible PBT chemicals. The investigation of bioaccumulation has yielded apparently contradictory results, with high laboratory fish bioconcentration factors on the one hand and low field trophic magnification factors on the other. In this study, octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) were studied along with polychlorinated biphenyls (PCBs) in sediments, ragworm, and flounder from six sites in the Humber Estuary. Bioaccumulation was evaluated using multimedia bioaccumulation factors (mmBAFs) which quantified the fraction of the contaminant present in the aquatic environment that is transferred to the biota. PCB 180, a known strongly bioaccumulative chemical, was used as a benchmark. The mean mmBAF of D5 was about twice that of PCB 180 in both polycheates and flounder, while for D4 it was 6 and 14 times higher, respectively. The mmBAF of D6 was a factor 5-10 lower than that of PCB180. The comparatively strong multimedia bioaccumulation of D4 and D5, even in the absence of biomagnification, was explained by both compounds having a >100 times stronger tendency to partition into lipid rather than into organic carbon, while PCB 180 partitions to a similar extent into both matrices.

  10. Physical and chemical properties of pyrethroids.

    Science.gov (United States)

    Laskowski, Dennis A

    2002-01-01

    The physical and chemical properties of the pyrethroids bifenthrin, cyfluthrin, cypermethrin (also zetacypermethrin), deltamethrin, esfenvalerate (also fenvalerate), fenpropathrin, lambda-cyhalothrin (also cyhalothrin), permethrin, and tralomethrin have been reviewed and summarized in this paper. Physical properties included molecular weight, octanol-water partition coefficient, vapor pressure, water solubility, Henry's law constant, fish biocencentration factor, and soil sorption, desorption, and Freundlich coefficients. Chemical properties included rates of degradation in water as a result of hydrolysis, photodecomposition, aerobic or anaerobic degradation by microorganisms in the absence of light, and also rates of degradation in soil incubated under aerobic or anaerobic conditions. Collectively, the pyrethroids display a highly nonpolar nature of low water solubility, low volatility, high octanol-water partition coefficients, and have high affinity for soil and sediment particulate matter. Pyrethroids have low mobility in soil and are sorbed strongly to the sediments of natural water systems. Although attracted to living organisms because of their nonpolar nature, their capability to bioconcentrate is mitigated by their metabolism and subsequent elimination by the organisms. In fish, bioconcentration factors (BCF) ranged from 360 and 6000. Pyrethroids in water solution tend to be stable at acid and neutral pH but [table: see text] become increasingly susceptible to hydrolysis at pH values beyond neutral. Exceptions at higher pH are bifenthrin (stable), esfenvalerate (stable), and permethrin (half-life, 240 d). Pyrethroids vary in susceptibility to sunlight. Cyfluthrin and tralomethrin in water had half-lives of 0.67 and 2.5 d; lambda-cyhalothrin, esfenvalerate, deltamethrin, permethrin, and cypermethrin were intermediate with a range of 17-110 d; and bifenthrin and fenpropathrin showed the least susceptibility with half-lives of 400 and 600 d, respectively

  11. Accumulation, transfer, and potential sources of mercury in the soil-wheat system under field conditions over the Loess Plateau, northwest China

    International Nuclear Information System (INIS)

    Wang, Shengli; Nan, Zhongren; Prete, Daniel; Ma, Jianmin; Liao, Qin; Zhang, Qian

    2016-01-01

    There is limited information on accumulation, transfer, and source of mercury in wheats under field conditions over the Loess Plateau, northwest China. The present study collected 26 pairs of topsoil and whole wheat samples (roots, stems, leaves, shells, and grains) from Dongdagou stream watershed and upper Xidagou stream watershed, Baiyin City, northwest China. Hg concentrations from these samples were used to identify their relationships with soil properties, interactions with other metals, localization of Hg in the different wheat tissues, bio-concentration and transfer of Hg, and major sources of Hg in wheat. Results show that Hg levels in 11 out of 26 sampled soils (42.3% of soil samples) exceeded Hg limit of grade II soil environmental quality standards in China (1.0 mg·kg"− "1). Likewise, it was also found that Hg in over 50% of wheat grain samples reached or exceeded the maximum permissible food safety levels (0.02 mg·kg"− "1) according to the General Standard of Contaminants in Food in China (GB 2762-2012). The spatial distribution pattern of Hg in wheats grains was different from that in the sampled soils. Hg concentrations in different wheat tissues were highest in roots, followed by leaves, stalks, shells, and grains, respectively. Bio-concentration factors (BCF) of Hg in almost all grains samples were one or two orders of magnitude lower than that in roots, except for two wheat samples. The translocation factors (TF) of Hg in wheat tissues on average were leaves > stems > shells > grains. The spatial distribution of Hg and its correlation with other heavy metal detected simultaneously in the soil samples suggested that the Hg soil contamination was probably caused by past sewage irrigation practices and atmospheric deposition. Correlation analysis revealed that the principle source of Hg in wheat roots was very likely from Hg contaminated soils. - Highlights: • Hg concentrations in wheats and corresponding soils from loess plateau, northwest

  12. Accumulation, transfer, and potential sources of mercury in the soil-wheat system under field conditions over the Loess Plateau, northwest China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shengli [Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Western China' s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000 (China); Nan, Zhongren, E-mail: nanzhongren@lzu.edu.cn [Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Western China' s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000 (China); Prete, Daniel [Department of Chemistry and Biology, Ryerson University, Toronto M5B 2K3 (Canada); Ma, Jianmin; Liao, Qin; Zhang, Qian [Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000 (China)

    2016-10-15

    There is limited information on accumulation, transfer, and source of mercury in wheats under field conditions over the Loess Plateau, northwest China. The present study collected 26 pairs of topsoil and whole wheat samples (roots, stems, leaves, shells, and grains) from Dongdagou stream watershed and upper Xidagou stream watershed, Baiyin City, northwest China. Hg concentrations from these samples were used to identify their relationships with soil properties, interactions with other metals, localization of Hg in the different wheat tissues, bio-concentration and transfer of Hg, and major sources of Hg in wheat. Results show that Hg levels in 11 out of 26 sampled soils (42.3% of soil samples) exceeded Hg limit of grade II soil environmental quality standards in China (1.0 mg·kg{sup −} {sup 1}). Likewise, it was also found that Hg in over 50% of wheat grain samples reached or exceeded the maximum permissible food safety levels (0.02 mg·kg{sup −} {sup 1}) according to the General Standard of Contaminants in Food in China (GB 2762-2012). The spatial distribution pattern of Hg in wheats grains was different from that in the sampled soils. Hg concentrations in different wheat tissues were highest in roots, followed by leaves, stalks, shells, and grains, respectively. Bio-concentration factors (BCF) of Hg in almost all grains samples were one or two orders of magnitude lower than that in roots, except for two wheat samples. The translocation factors (TF) of Hg in wheat tissues on average were leaves > stems > shells > grains. The spatial distribution of Hg and its correlation with other heavy metal detected simultaneously in the soil samples suggested that the Hg soil contamination was probably caused by past sewage irrigation practices and atmospheric deposition. Correlation analysis revealed that the principle source of Hg in wheat roots was very likely from Hg contaminated soils. - Highlights: • Hg concentrations in wheats and corresponding soils from loess

  13. On the variability of plant bio-concentration factors (BCF) of environmental radionuclides. A case study on the effects of surface film and free space on the interpretation of 99mTcO4- sorption in duckweed

    International Nuclear Information System (INIS)

    Wolterbeek, H.T.; Van der Meer, A.J.G.M.; Dielemans, U.

    2000-01-01

    The present paper addresses plant bioaccumulation factor (BCF) variability, and specifically focuses attention upon the handling of duckweed (Lemna gibba) material, sampled from experimental media, especially considering accumulation/kinetic studies with 99mTcO 4 - . In these short-term studies, relatively small BCF-values may be encountered, with related interferences in its assessment due to the presence of 99mTcO 4 - in the surface film medium (SF) and in the cellular water free spaces (FS). The sample handling methods used to remove the SF+FS component of the accumulated 99mTcO 4 - consisted of blotting, centrifugation and rinsing. The three methods were investigated using d-[1- 14 C]mannitol, 42K + , 82Br - and 99mTcO 4 - radioisotopes, which were measured by - and γ-spectrometry, in both solution and solid samples. Centrifugation seems the most promising method to remove SF+FS 99mTcO 4 - . Results based on both mass analysis and radioactivity determinations in centrifugated fluids are independent of applied concentrations (10 -11 to 10 -3 mol m -3 99mTcO 4 - ), and are invariably compatible with the conceptual idea of the FS as a free-entrance phase for solutes. Blotting results in an overestimation of BCF values (up to factor 3 for the 99mTcO 4 - experiments performed), probably due to the incomplete removal of the SF+FS, and is suggested to yield irregular results, leading to high variances in BCF values obtained. The application of an efflux/rinsing period is indicated to result in an underestimation of BCF values (up to factor 10 for the 99mTcO 4 - experiments performed), probably due to excess removal of (non-SF+FS) components of accumulated solutes. Here we advocate centrifugation as a routine sample handling method to avoid SF+FS interferences in short-term (kinetic) 99mTcO 4 - uptake studies in duckweed. Moreover, the results suggest a more general applicability of centrifugation as a sample handling method to avoid SF+FS interferences in short

  14. Characterization of elements in marine organisms

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Toshiaki [National Inst. of Radiological Sciences, Nakaminato, Ibaraki (Japan). Nakaminato Lab. Branch Office

    1994-03-01

    Characterization of elements was carried out to clarify the mechanisms of bioconcentration and the physiological roles of elements in marine organisms. The concentrations of {sup 238}U in fifty-five species of marine organisms were measured by inductively coupled plasma mass spectrometry. The concentrations of {sup 238}U in soft tissues of marine animals ranged from 0.076 to 500ng/g wet wt. Especially, the branchial heart of cephalopod molluscs showed the specific accumulation of {sup 238}U. The concentration factor of the branchial heart of Octopus vulgaris, which indicated the highest value, was calculated to be about 10{sup 3} by comparing it with the concentration of {sup 238}U (3.2 {+-} 0.2ng/ml) in coastal seawater of Japan. The concentrations of {sup 238}U of twenty species of algae ranged from 10 to 3700ng/g dry wt. (author).

  15. The toxicity of a new disinfection by-product, 2,2-dichloroacetamide (DCAcAm), on adult zebrafish (Danio rerio) and its occurrence in the chlorinated drinking water.

    Science.gov (United States)

    Yu, Shilin; Lin, Tao; Chen, Wei; Tao, Hui

    2015-11-01

    The detection method of 2,2-dichloroacetamide (DCAcAm), a new disinfection by-product (DBP) in chlorinated drinking water, was established using a gas chromatograph coupled with a micro-electron capture detector. The chlorinated water samples were taken from ten drinking water treatment plants around Yangtze River or Taihu Lake in China. The concentration of DCAcAm was detected ranging from 0.5 to 1.8μg/L in the waterworks around Yangtze River, and 1.5-2.6μg/L around Taihu Lake. The toxicity of DCAcAm on adult zebrafish was assessed by investigating the metabolism damage with multiple metabolic biomarkers and the accumulation capability with bio-concentration factor. The results showed that DCAcAm could cause the acute metabolism damage and was easily accumulated in zebrafish, and should be extremely cautioned. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Developing biological and chemical methods for environmental monitoring of DOE waste disposal and storage facilities. Progress report, April 1, 1985--October 30, 1985

    International Nuclear Information System (INIS)

    1997-01-01

    During the first year of this contract great efforts were made to develop methods for (1) characterizing bacteria from soil and sediment, (2) evaluating the ability of single and mixed soil bacterial isolates to, (a) bioconcentrate, (b) biodegrade and/or (c) precipitate inorganic and organic pollutants and (3) expanding current concepts for treating waste in aqueous (i.e. biological waste treatment system) and solid media (i.e. in situ soil (soil) treatment system). The development of the above methods are in the final stages of completion and we have as a result of these efforts isolated from soil (1) a mixed culture which precipitate toxic metals (i.e. mercury cadmium, lead etc.) and (2) single isolates which bioconcentrate a variety of toxic metals. Methods for screening soil bacterial isolates for their ability to concentrate, degrade and/or precipitate environmental pollutants have been developed. The development of those methods will allow the staff at ORRI to quickly screen hundreds of samples in our attempt to isolate bacteria capable of degrading, concentrating and/or precipitating inorganics and organics in aqueous and solid waste. The results of these studies are summarized below

  17. Preliminary Problem Definition Study on Munitions-Related Chemicals.

    Science.gov (United States)

    1979-04-01

    Thorium-230, Radium-226, Lead- 210 and Polonium - 210 by Plants," Radiat. Bot., 10(3), 293-295. Ernst, W. (1968), "Ecological Studies on Plants Grown on...dechlorane in the environment and its bioconcentration and biomagnifica- tion through the food chain. In mammals, dechlorane has been shown to be tei-atogenic...08 5. Phytotoxicity .o......................208 *6. Environmental Fate ....................... 210 7. Availability of Literature for

  18. Combustion characterization of beneficiated coal-based fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Levasseur, A.A.

    1995-11-01

    The Pittsburgh Energy Technology Center (PETC) of the U.S. Department of Energy is sponsoring the development of advanced coal-cleaning technologies aimed at expanding the use of the nation`s vast coal reserves in an environmentally and economically acceptable manner. Because of the lack of practical experience with deeply beneficiated coal-based fuels, PETC has contracted Combustion Engineering, Inc. to perform a multi-year project on `Combustion Characterization of Beneficiated Coal-Based Fuels.` The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of Beneficiated Coal-Based Fuels (BCs) influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs.

  19. Lake Chapala, Mexico: lead distribution in water, sediment and bacteria; Escenarios de la distribucion de plomo en agua, sedimentos y bacterias del lago de Chapala, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Anne M. [Instituto Mexicano de Tecnologia del Agua, Jiutepec, Morelos (Mexico); Villa-Navia, Adriana [Interventor Ambiental de Occidental de Colombia, Inc. (Colombia); Afferden, Manfred van [Instituto Mexicano de Tecnologia del Agua, Jiutepec, Morelos (Mexico)

    2006-04-15

    To evaluate the distribution of lead in the natural resources of lake Chapala, the adsorption of this metal in bacteria was analyzed and, through published data and the application of a chemical equilibrium model, the risk associated with the consumption of fish and water was estimated. Adsorption experiments of lead in three bacterial strains and simulations of the distribution of lead in the water-sediment-bacteria system indicate that the distribution of lead in the lake depends on variations of water quality such as suspended solids, lead and biomass concentrations. Considering only the lead contained in the bottom sediments, the simulations suggest that concentrations do not exceed the limits nor the criteria for use and protection of water, sediments, and biota. Considering an additional source of lead that locally increases the concentration by a factor of ten, the amount of lead in water and sediments may exceed these limits. The bioaccumulation of lead in lake Chapala was evaluated through calculation of bioconcentration and biomagnification factors, using simulated and published data on lead in fish (Ayla Jay y Ford, 2001). The results indicate that lead may be concentrated 721 and 6,195 times in bacteria and fish, respectively. Furthermore, bioaccumulation of lead in the lake may occur mainly as bioconcentration in fish rather than biomagnification in the food chain. [Spanish] Para evaluar la distribucion de plomo en los recursos naturales en el lago de Chapala se analizo la adsorcion de este metal en bacterias y, mediante datos publicados en la literatura y modelacion numerica, se estimo el riesgo asociado al consumo de peces y agua. Experimentos de adsorcion en tres cepas de bacterias y simulaciones de la distribucion en un sistema agua-sedimentos-bacterias indican que la distribucion del plomo en el lago depende de variaciones en calidad del agua tales como solidos suspendidos totales, plomo total y biomasa. Considerando unicamente el plomo contenido

  20. A study on possible use of Urtica dioica (common nettle) plant as polonium (210)Po and lead (210)Pb contamination biomonitor in the area of phosphogypsum stockpile.

    Science.gov (United States)

    Olszewski, Grzegorz; Boryło, Alicja; Skwarzec, Bogdan

    2016-04-01

    The aim of this study was to test a possible use of Urtica dioica (common nettle) plant as a biomonitor of polonium (210)Po and lead (210)Pb contamination near phosphogypsum stacks by determining concentrations of these radionuclides in samples collected from the area of phosphogypsum stockpile in Wiślinka (northern Poland). The (210)Po and (210)Pb contents in roots depended on their concentrations in soils. Bioconcentration factor values from soil to root of the plant did not depend on (210)Po and (210)Pb contents in soils that leads to the conclusion that different polonium and lead species have different affinities to U. dioica plants. The main sources of both analyzed radionuclides in green parts of plants are wet and dry air deposition and transportation from soil. The values of (210)Po/(210)Pb activity ratio indicate natural origin of these radioisotopes in analyzed plants. (210)Po and (210)Pb concentration in U. dioica roots is negatively weakly correlated with distance from phosphogypsum stockpile.

  1. Acute toxicity of dichloroacetonitrile (DCAN), a typical nitrogenous disinfection by-product (N-DBP), on zebrafish (Danio rerio).

    Science.gov (United States)

    Lin, Tao; Zhou, Dongju; Dong, Jian; Jiang, Fuchun; Chen, Wei

    2016-11-01

    Dichloroacetonitrile (DCAN) is a typical nitrogenous disinfection by-product (N-DBP) and its toxicity on aquatic animals is investigated for the first time. The present study was designed to investigate the potential adverse effects of DCAN on zebrafish. DCAN could induce developmental toxicity to zebrafish embryos. A significant decrease in hatchability and an increase in malformation and mortality occurred when DCAN concentration was above 100µg/L. Heart function alteration and neuronal function disturbance occurred at concentration higher than 500 and 100µg/L, respectively. Further, DCAN was easily accumulated in adult zebrafish. The rank order of declining bioconcentration factor (BCF) was liver (1240-1670)> gill (1210-1430)> muscle (644-877). DCAN caused acute metabolism damage to adult zebrafish especially at 8 days exposure, at which time the "Integrated Biomarker Response" (IBR) index value reached 798 at 1mg/L DCAN dose. Acute DNA damage was induced to adult zebrafish by DCAN even at 10µg/L dose. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The Effect of Trichoderma on Heavy Metal Mobility and Uptake by Miscanthus giganteus, Salix sp., Phalaris arundinacea, and Panicum virgatum

    Directory of Open Access Journals (Sweden)

    Malgorzata J. Kacprzak

    2014-01-01

    Full Text Available The effect of land application of biomaterials based on two strains of Trichoderma fungus on phytoremediation processes was studied. Six metals (Cd, Cr, Cu, Pb, Zn, and Ni were analysed in soil and soil leachate as well as in plant tissues. The translocation index (Ti and metal bioconcentration factors (BCF calculated for the inoculated plants were increased compared to the noninoculated control, except for Pb and Salix sp. Simultaneously, the mobilisation of metals in soil solution as an effect of biomaterials was noted. The highest values of Ti—339% (for Cr, 190% (for Ni, and 110% (for Cu—were achieved for the combination Miscanteus giganteus and Trichoderma MSO1. The results indicated that the application of fungus has positive effects on increasing the biomass, soil parameters (C, N, and P, and solubility of heavy metals in soil and therefore in enhancing phytoextraction for Miscanthus giganteus L., Panicum virgatum L., Phalaris arundinacea L., and Salix sp.

  3. Accumulation and distribution of polycyclic aromatic hydrocarbons in rice (Oryza sativa)

    International Nuclear Information System (INIS)

    Tao, S.; Jiao, X.C.; Chen, S.H.; Liu, W.X.; Coveney, R.M.; Zhu, L.Z.; Luo, Y.M.

    2006-01-01

    Various tissues of rice plants were sampled from a PAH contaminated site in Tianjin, China at different growth stages of the ripening period and analyzed for PAHs. PAHs were much higher in roots than in the exposed tissues. Grains and internodes accumulated much smaller amounts of PAHs than leaves, hulls or ear axes. No specific gradient trends along roots, stem, ear axes, and grains were observed, suggesting that systematic translocation among them is unlikely. Over the ripening period, PAH concentrations were increased in rice roots and decreased in most above-ground tissues. Significant correlations between PAH and lipid contents can only be observed during full mature stage. The spectra of individual PAH compounds in rice organs including roots were similar to those in air, rather than those in soil. There was also a significant correlation between bioconcentration factor (BCF, plant over air) and octanol/air partitioning coefficient (K oa ). - PAHs in various tissues of rice plants from various growth stages were investigated

  4. Contaminant profiles for surface water, sediment, flora and fauna associated with the mangrove fringe along middle and lower eastern Tampa Bay.

    Science.gov (United States)

    Lewis, M A; Russell, M J

    2015-06-15

    Contaminant concentrations are reported for surface water, sediment, flora and fauna collected during 2010-2011 from the mangrove fringe along eastern Tampa Bay, Florida. Concentrations of trace metals, chlorinated pesticides, atrazine, total polycyclic aromatic hydrocarbons, and polychlorinated biphenyls were species-, chemical- and location-specific. Contaminants in sediments did not exceed proposed individual sediment quality guidelines. Most sediment quality assessment quotients were less than one indicating the likelihood of no inhibitory effect based on chemical measurements alone. Faunal species typically contained more contaminants than plant species; seagrass usually contained more chemicals than mangroves. Bioconcentration factors for marine angiosperms were usually less than 10 and ranged between 1 and 31. Mercury concentrations (ppm) in blue crabs and fish did not exceed the U.S. Environmental Protection Agency fish tissue criterion of 0.3 and the U.S. Food and Drug Administration action level of 1.0. In contrast, total mercury concentrations in faunal species often exceeded guideline values for wildlife consumers of aquatic biota. Published by Elsevier Ltd.

  5. Plant uptake of pentachlorophenol from sludge-amended soils

    International Nuclear Information System (INIS)

    Bellin, C.A.; O'Connor, G.A.

    1990-01-01

    A greenhouse study was conducted to determine the effects of sludge on plant uptake of 14 C-pentachlorophenol (PCP). Plants included tall fescue (Festuca arundinacea Schreb.), lettuce (Latuca sativa L.), carrot (Daucus carota L.), and chile pepper (Capsicum annum L.). Minimal intact PCP was detected in the fescue and lettuce by gas chromatography/mass spectrometry (GC/MS) analysis. No intact PCP was detected in the carrot tissue extracts. Chile pepper was not analyzed for intact PCP because methylene chloride extracts contained minimal 14 C. The GC/MS analysis of soil extracts at harvest suggests a half-life of PCP of about 10 d independent of sludge rate or PCP loading rate. Rapid degradation of PCP in the soil apparently limited PCP availability to the plant. Bioconcentration factors (dry plant wt./initial soil PCP concentration) based on intact PCP were < 0.01 for all crops, suggesting little PCP uptake. Thus, food-chain crop PCP uptake in these alkaline soils should not limit land application of sludge

  6. Bioaccumulation of toxic metals (Cd and Cu) by Groenlandia densa (L.) Fourr.

    Science.gov (United States)

    Kara, Yesim; Zeytunluoglu, Ali

    2007-12-01

    In this study, Groenlandia densa (L.) Fourr. (opposite-leaved pondweed), was exposed to prepared stock solution of cadmium and copper with 1.0, 3.0, 5.0 and 7.0 mg L(-1) concentration in certain periods (24, 48, 72 and 96 h) and changing amount of accumulation of plants in depending on time and concentration was measured by atomic absorption spectrophotometer. The results show that under experimental conditions, G. densa (L.) Fourr. proved to be a good accumulator of Cd and Cu. Removal of the metals from solution was fast in the first 4 days. The accumulation of Cd and Cu increased with the initial concentration and also with time. The highest concentrations of each trace element accumulated in opposite-leaved pondweed tissues were 1,955 mug Cd g(-1), 6,135 microg Cu g(-1) after 4 days. The maximum values of bioconcentration factor (BCF) were found for Cd and Cu 724 and 1,669, respectively. BCF values for Cd and Cu increased with time.

  7. Modelling oral up-take of hydrophobic and super-hydrophobic chemicals in fish.

    Science.gov (United States)

    Larisch, Wolfgang; Goss, Kai-Uwe

    2018-01-24

    We have extended a recently published toxicokinetic model for fish (TK-fish) towards the oral up-take of contaminants. Validation with hydrophobic chemicals revealed that diffusive transport through aqueous boundary layers in the gastro-intestinal tract and in the blood is the limiting process. This process can only be modelled correctly if facilitated transport by albumin or bile micelles through these boundary layers is accounted for. In a case study we have investigated the up-take of a super hydrophobic chemical, Dechlorane Plus. Our results suggest that there is no indication of a hydrophobicity or size cut-off in the bioconcentration of this chemical. Based on an extremely high, but mechanistically sound facilitation factor we received model results in good agreement with experimental values from the literature. The results also indicate that established experimental procedures for BCF determination cannot cover the very slow up-take and clearance kinetics that are to be expected for such a chemical.

  8. Studies onthe behaviour of the insecticide 14C-Pirimiphos-Methyl in aquatic species: tilapia nilotica and potamogeton crispus plant

    International Nuclear Information System (INIS)

    Afifi, L.M.; Kamel, H.A.; Aly, M.A.S.

    2003-01-01

    The bioaccumulation and depletion of 1 4C-labelled pirimiphos-methyl (O-2- diethyl amino-6-methyl pyrimidine-4-gamma l O,O-dimethyl phosphorothioa) were monitored for 6 days following a single application at 7.5 ppm to 2 aquatic species: Bolti fish (Tilapia nilotica) and a rapid growing plant (Potamogeton crispus). The bioconcentration factor (BCF) for fish was relatively low with a maximum reached at 24 hours 122 and 55 in the absence and presence of the weed respectively. Depuration of the insecticide and/or its metabolites in clear water was readily fast. Feeding the treated dried fish to rat, the substance residues were found to be bioavailable where, 75.7% of the given amount was excreted in the urine and 15.3% in the feces. TLC analysis of the urine revealed the presence of 4 metabolites: Desethyl pirimiphos-methyl, 2-diethyl amino-4-hydroxy-6-methylpyrimidine, 2-ethyl amino-4-hydroxy-6-methyl-pyrimidine and 2-amino -4-hydroxy-6- methyl- pyrimidine

  9. Kinetics of polychlorinated biphenyl partitioning to marine Chrysophyte Isochrysis galbana

    International Nuclear Information System (INIS)

    Ko, Fung-Chi; Baker, Joel E.; Tew, Kwee S.

    2012-01-01

    This study focused on the uptake kinetics of polychlorinated biphenyl (PCB) congeners by the Chrysophyte, Isochrysis galbana. A gas-purging experimental system was used to maintain constant dissolved PCB concentrations. Three phases of absorption were observed: first, a rapid absorption phase within the first 15 min, second, a first order process reaching the maximum concentration within 48 h of exposure, and third, a plateau phase as yet to be determined with very slight increases in concentration. In this study, the percentage of the maximum concentration reached within the first phase varied from 10% to 67%, depending on the size of the PCB (as determined by molecular weight and total surface area), whereas the uptake rate (k u ) during the second phase was more comparable across different PCBs. In addition, for the first phase, the bioconcentration factor (BCF) of PCBs deviated from its expected relationship with hydrophobicity, as determined by K ow , and was instead related to the molecular structure of the compound.

  10. Mercury, cadmium and lead concentrations in different ecophysiological groups of earthworms in forest soils

    International Nuclear Information System (INIS)

    Ernst, Gregor; Zimmermann, Stefan; Christie, Peter; Frey, Beat

    2008-01-01

    Bioaccumulation of Hg, Cd and Pb by eight ecophysiologically distinct earthworm species was studied in 27 polluted and uncontaminated forest soils. Lowest tissue concentrations of Hg and Cd occurred in epigeic Lumbricus rubellus and highest in endogeic Octolasion cyaneum. Soils dominated by Dendrodrilus rubidus possess a high potential of risk of Pb biomagnification for secondary predators. Bioconcentration factors (soil-earthworm) followed the sequence ranked Cd > Hg > Pb. Ordination plots of redundancy analysis were used to compare HM concentrations in earthworm tissues with soil, leaf litter and root concentrations and with soil pH and CEC. Different ecological categories of earthworms are exposed to Hg, Cd and Pb in the topsoil by atmospheric deposition and accumulate them in their bodies. Species differences in HM concentrations largely reflect differences in food selectivity and niche separation. - Accumulation of non-essential heavy metals by earthworms is species-dependent and is affected by soil characteristics in natural forest soils

  11. Phytoremediation of heavy metal copper (Cu2+) by sunflower (Helianthus annuus l.)

    Science.gov (United States)

    Mahardika, G.; Rinanti, A.; Fachrul, M. F.

    2018-01-01

    A study in microcosmic condition has been carried out to determine the effectiveness of Helianthus annuus as a hyperaccumulator plant for heavy metal, Copper (Cu2+), that exposed in the soil. Artificial pollutants containing Copper (Cu2+) 0, 60, 120, 180 ppm are exposed to uncontaminated soil. The 12-weeks old H. annuus seedling were grown in Cu2+ contaminated soil, with variations of absorption time 3, 6, and 9 weeks. Analysis of Cu2+ concentration on soil and H. annuus (root, stem, leaf) was analised by Atomic Absorbtion Spectrometry (AAS). H. annuus are capable for Cu2+ removal, and the highest removal of Cu2+ is 85.56%, the highest metal accumulation/bioconcentration factor (BCF) is 0.99 occurred at roots with 9 weeks of exposure time and the highest translocation factor (TF) is 0.71. This highest removal is five times better than absorption by stems and leaves. The results concluded, the use of H. annuus for phytoextraction of heavy metals Cu2+ in contaminated soil can be an alternative to the absorption of heavy metal Cu2+ with low concentration metals which is generally very difficult to do in physical-chemical removal.

  12. Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands.

    Science.gov (United States)

    Galal, Tarek M; Eid, Ebrahem M; Dakhil, Mohammed A; Hassan, Loutfy M

    2018-04-16

    The bioaccumulation and rhizofiltration potential of P. stratiotes for heavy metals were investigated to mitigate water pollution in the Egyptian wetlands. Plant and water samples were collected monthly through nine quadrats equally distributed along three sites at Al-Sero drain in Giza Province. The annual mean of the shoot biomass was 10 times that of the root. The concentrations of shoot heavy metals fell in the order: Fe < Mn < Cr < Pb < Cu < Zn < Ni < Co < Cd, while that of the roots were: Fe < Mn < Cr < Pb < Zn < Ni < Co < Cu < Cd. The bio-concentration factor (BCF) of most investigated heavy metals, except Cr and Pb, was greater than 1000, while the translocation factor (TF) of most investigated metals, except Pb and Cu, did not exceed one. The rhizofiltration potential (RP) of heavy metals was higher than 1000 for Fe, and 100 for Cr, Pb and Cu. Significant positive correlations between Fe and Cu in water with those in plant roots and leaves, respectively were recorded, which, in addition to the high BCF and RP, indicate the potential use of P. stratiotes in mitigating these toxic metals.

  13. Grey relational analysis for evaluating the effects of different rates of wine lees-derived biochar application on a plant-soil system with multi-metal contamination.

    Science.gov (United States)

    Xu, Min; Zhu, Qihong; Wu, Jun; He, Yan; Yang, Gang; Zhang, Xiaohong; Li, Li; Yu, Xiaoyu; Peng, Hong; Wang, Lilin

    2018-03-01

    In this study, grey relational analysis (GRA) was used to investigate the effects of different application rates of wine lees-derived biochar on a plant-soil system with multi-metal contamination. A pot experiment was conducted to determine rice growth in multi-metal-contaminated soil amended with samples of wine lees-derived biochar, and 47 indicators (including soil properties, microbial activity, and plant physiology) were selected as evaluation indexes to assess the plant-soil system. The results indicated that higher wine lees-derived biochar application rates (2% W/W) were favorable for soil fertility, the bioconcentration factor (BF), and the mobility factor (MF, %) (with the exception of Cr, Zn, and Hg), but an application of 1% produced the highest plant growth, enzymatic activities, and bacterial diversity. The richness of the bacterial communities was reduced in the soil amended with the wine lees-derived biochar. According to the GRA assessment, the 1% application rate of wine lees-derived biochar was more suitable for restoring the holistic plant-soil system than were the application rates of 0, 0.5, and 2% (W/W). Furthermore, this study shows that GRA is a useful method for evaluating plant-soil systems.

  14. Distribution, bioaccumulation and trophic transfer of chlorinated polyfluoroalkyl ether sulfonic acids in the marine food web of Bohai, China.

    Science.gov (United States)

    Chen, Hong; Han, Jianbo; Cheng, Jiayi; Sun, Ruijun; Wang, Xiaomeng; Han, Gengchen; Yang, Wenchao; He, Xin

    2018-06-04

    Chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) caused great concerns recently as novel fluorinated alternatives. However, information on their bioconcentration, bioaccumulation and biomagnification in marine ecosystems is limited. In this study, 152 biological samples including invertebrates, fishes, seabirds and mammals collected from Bohai Sea of China were analyzed to investigate the residual level, spatial distribution, bioaccumulation and biomagnification of Cl-PFESAs. 6:2 Cl-PFESA was found in concentrations ranging from factors (BAFs) for 6:2 Cl-PFESA ranged from 2.23 to 4.21, implying the bioaccumulation of this compound. The trophic magnification factor (BMF) for 6:2 Cl-PFESA was determined to be 3.37 in the marine food web, indicating biomagnification potential along the marine food chain. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Seasonal variation in radiocaesium concentration in willow ptarmigan and rock ptarmigan in central Norway after the Chernobyl fallout

    International Nuclear Information System (INIS)

    Pedersen, H.C.; Nyboe, S.; Varskog, P.

    1998-01-01

    Radioactive caesium (20-60 kBq m -2 ) was deposited after the Chernobyl accident in the mountains of central Norway. Two sympatric ptarmigan species, willow ptarmigan Lagopus lagopus and rock ptarmigan L. mutus, inhabit this alpine ecosystem and are important game species. In 1987 and 1988, a study was carried out to try to identify factors affecting radioactive caesium concentration in these birds. Juvenile willow ptarmigan contained more radiocaesium than adults, but the two sexes did not differ in radiocaesium concentration. The radiocaesium concentration of food plants correlated with radiocaesium concentration of rock ptarmigan, and a seasonal variation in radiocaesium concentration of both ptarmigan species was seen. Rock ptarmigan contained more radiocaesium than willow ptarmigan during winter, but not in summer. This difference was related to differences in diet. The bioconcentration factor was 0·4-0·6. The aggregated transfer coefficient was 0·003-0·009 m 2 kg -1 for both species. In spite of the high deposition, the radiocaesium concentration in muscle rarely exceeded the limit recommended for human food consumption (600 Bq kg -1 ). (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  16. Concept of Aided Phytostabilization of Contaminated Soils in Postindustrial Areas.

    Science.gov (United States)

    Radziemska, Maja; Koda, Eugeniusz; Bilgin, Ayla; Vaverková, Mgdalena D

    2017-12-23

    The experiment was carried out in order to evaluate the effects of trace element immobilizing soil amendments, i.e., chalcedonite, dolomite, halloysite, and diatomite on the chemical characteristics of soil contaminated with Cr and the uptake of metals by plants. The study utilized analysis of variance (ANOVA), principal component analysis (PCA) and Factor Analysis (FA). The content of trace elements in plants, pseudo-total and extracted by 0.01 M CaCl₂, were determined using the method of spectrophotometry. All of the investigated element contents in the tested parts of Indian mustard ( Brassica juncea L.) differed significantly in the case of applying amendments to the soil, as well as Cr contamination. The greatest average above-ground biomass was observed when halloysite and dolomite were amended to the soil. Halloysite caused significant increases of Cr concentrations in the roots. The obtained values of bioconcentration and translocation factors observed for halloysite treatment indicate the effectiveness of using Indian mustard in phytostabilization techniques. The addition of diatomite significantly increased soil pH. Halloysite and chalcedonite were shown to be the most effective and decreased the average Cr, Cu and Zn contents in soil.

  17. Potential of trees leaf/ bark to control atmospheric metals in a gas and petrochemical zone.

    Science.gov (United States)

    Safari, Mojgan; Ramavandi, Bahman; Sanati, Ali Mohammad; Sorial, George A; Hashemi, Seyedenayat; Tahmasebi, Saeid

    2018-05-22

    Leaf and bark of trees are tools for assessing the effects of the heavy metals pollution and monitoring the environmental air quality. The aim of this study was to evaluate the presence of Ni, Pb, V, and Co metals in four tree/shrub species (Conocarpus erectus, Nerium oleander, Bougainvillea spectabilis willd, and Hibiscus rosa-sinensis) in the heavily industrial zone of Asaloyeh, Iran. Two industrial zones (sites 1 and 2), two urban areas (sites 3 and 4), and two rural areas (sites 5 and 6) in the Asaloyeh industrial zone and an uncontaminated area as a control were selected. Sampling from leaf and bark of trees was carried out in spring 2016. The metals content in the washed and unwashed leaf and bark was investigated. The results showed that four studied metals in N. oleander, C. erectus, and B. spectabilis willd in all case sites were significantly higher than that of in the control site (p < 0.05). The highest concentration of metals was found in sites 3, 4, and 6; this was due to dispersion of the pollutants from industrial environments by dominant winds. The highest comprehensive bio-concentration index (CBCI) was found in leaf (0.37) and bark (0.12) of N. oleander. The maximum metal accumulation index (MAI) in the samples was found in leaf of N. oleander (1.58) and in bark of H. rosa-sinensis (1.95). The maximum bio-concentration factor (BCF) was seen for cobalt metal in the N. oleander leaf (0.89). The nickel concentration in washed-leaf samples of C. erectus was measured to be 49.64% of unwashed one. In general, the N. oleander and C. erectus species were found to have the highest absorption rate from the atmosphere and soil than other studied species, and are very suitable tools for managing air pollution in highly industrialized areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Accumulation and elimination of polychlorinated dibenzo-p-dioxins and dibenzofurans in mule ducks

    International Nuclear Information System (INIS)

    Wu, Ting-Wei; Lee, Jai-Wei; Liu, Hsueh-Yen; Lin, Wei-Hsiao; Chu, Chun-Yen; Lin, Sheng-Lun; Chang-Chien, Guo Ping; Yu, Chi

    2014-01-01

    In Taiwan, a food safety crisis involving a presence of high concentrations of dioxin residues in duck eggs occurred in 2004. The dioxin content in duck meat sampled from supermarkets was also reported to be substantially higher than in products from other farm animals. Despite increased awareness of the potential for contamination and exposure to dioxins, the accumulation and elimination of dioxins in ducks have not been well characterized. In the present study, mule ducks were fed capsules containing polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) for 14 days and the trial was continued for another 28 days without PCDD/Fs supplementation. Ducks were sacrificed on the 14th, 28th, and 42nd days from the beginning of administration and samples of abdominal fat, breast, and liver tissue were obtained. The concentrations of PCDD/Fs were analyzed in the samples to investigate their distribution and elimination in various duck tissues. The bioaccumulation of PCDD/Fs in ducks was found to be tissue-dependent. In the abdominal fat, the bioconcentration factor was negatively correlated with the degree of chlorination. Conversely, more chlorinated PCDD/Fs (hexa- or hepta-congeners) were associated with higher bioconcentration in the liver and breast tissue. In terms of the efficiency of PCDD/Fs elimination, the liver was found to be the fastest, followed by the breast and the abdominal fat. The clearance rate positively correlated with the degree of chlorination, as determined by comparing the apparent elimination rate constant (k) of PCDD/Fs in various tissues. Overall, lower k values observed in this study imply that mule ducks have a reduced clearance of PCDD/Fs in comparison with layer and broiler chickens. - Highlights: • We describe the accumulation and elimination of PCDD/Fs in mule ducks. • The accumulation of PCDD/Fs in mule ducks was tissue-specific. • The elimination of PCDD/Fs in tissues of mule ducks was congener-specific. • The

  19. Accumulation and elimination of polychlorinated dibenzo-p-dioxins and dibenzofurans in mule ducks

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ting-Wei, E-mail: M10126010@mail.npust.edu.tw [Department of Animal Science, National Pingtung University of Science Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan (China); Lee, Jai-Wei, E-mail: joeylee@mail.npust.edu.tw [Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan (China); Liu, Hsueh-Yen, E-mail: M9926012@mail.npust.edu.tw [Department of Animal Science, National Pingtung University of Science Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan (China); Lin, Wei-Hsiao, E-mail: M10126011@mail.npust.edu.tw [Department of Animal Science, National Pingtung University of Science Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan (China); Chu, Chun-Yen, E-mail: cychu@mail.npust.edu.tw [Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan (China); Lin, Sheng-Lun, E-mail: sllin100@csu.edu.tw [Supermicro Mass Research and Technology Center, Cheng Shiu University, No. 840, Chengcing Road, Niaosong Dist., Kaohsiung City 83347, Taiwan (China); Center for General Education, Cheng Shiu University, No. 840, Chengcing Road, Niaosong Dist., Kaohsiung City 83347, Taiwan (China); Chang-Chien, Guo Ping, E-mail: guoping@csu.edu.tw [Supermicro Mass Research and Technology Center, Cheng Shiu University, No. 840, Chengcing Road, Niaosong Dist., Kaohsiung City 83347, Taiwan (China); Department of Cosmetics and Fashion styling, Cheng Shiu University, No. 840, Chengcing Road, Niaosong Dist., Kaohsiung City 83347, Taiwan (China); Yu, Chi, E-mail: chiyu@mail.npust.edu.tw [Department of Animal Science, National Pingtung University of Science Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan (China)

    2014-11-01

    In Taiwan, a food safety crisis involving a presence of high concentrations of dioxin residues in duck eggs occurred in 2004. The dioxin content in duck meat sampled from supermarkets was also reported to be substantially higher than in products from other farm animals. Despite increased awareness of the potential for contamination and exposure to dioxins, the accumulation and elimination of dioxins in ducks have not been well characterized. In the present study, mule ducks were fed capsules containing polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) for 14 days and the trial was continued for another 28 days without PCDD/Fs supplementation. Ducks were sacrificed on the 14th, 28th, and 42nd days from the beginning of administration and samples of abdominal fat, breast, and liver tissue were obtained. The concentrations of PCDD/Fs were analyzed in the samples to investigate their distribution and elimination in various duck tissues. The bioaccumulation of PCDD/Fs in ducks was found to be tissue-dependent. In the abdominal fat, the bioconcentration factor was negatively correlated with the degree of chlorination. Conversely, more chlorinated PCDD/Fs (hexa- or hepta-congeners) were associated with higher bioconcentration in the liver and breast tissue. In terms of the efficiency of PCDD/Fs elimination, the liver was found to be the fastest, followed by the breast and the abdominal fat. The clearance rate positively correlated with the degree of chlorination, as determined by comparing the apparent elimination rate constant (k) of PCDD/Fs in various tissues. Overall, lower k values observed in this study imply that mule ducks have a reduced clearance of PCDD/Fs in comparison with layer and broiler chickens. - Highlights: • We describe the accumulation and elimination of PCDD/Fs in mule ducks. • The accumulation of PCDD/Fs in mule ducks was tissue-specific. • The elimination of PCDD/Fs in tissues of mule ducks was congener-specific. • The

  20. The presence and distribution of polycyclic aromatic hydrocarbons and inorganic elements in water and lakebed materials and the potential for bioconcentration in biota at established sampling sites on Lake Powell, Utah and Arizona

    Science.gov (United States)

    Schonauer, Kurt T.; Hart, Robert J.; Antweiler, Ronald C.

    2014-01-01

    The National Park Service is responsible for monitoring the effects of visitor use on the quality of water, lakebed material (bottom sediments), and biota, in Lake Powell, Utah and Arizona. A sampling program was begun in 2010 to assess the presence, distribution, and concentrations of organic and inorganic compounds in the water column and bottom sediment. In response to an Environmental Impact Statement regarding personal watercraft and as a continuation from previous studies by the U.S. Geological Survey and the National Park Service, Glen Canyon National Recreation Area, water samples were collected and analyzed for polycyclic aromatic hydrocarbons (PAHs) using semipermeable membrane devices and inorganic elements using a fixed-bottle sampler deployed at established monitoring sites during 2010 and 2011. Lakebed material samples were also analyzed for polycyclic aromatic hydrocarbons and inorganic elements, some of which could be harmful to aquatic biota if present at concentrations above established aquatic life criteria. Of the 44 PAH compounds analyzed, 26 individual compounds were detected above the censoring limit in the water column by semipermeable membrane devices. The highest number of compounds detected were at Lone Rock Beach, Wahweap Marina, Rainbow Bridge National Monument, and Antelope Marina which are all located in the southern part of Lake Powell where visitation and boat use is high. Because PAHs can remain near their source, the potential for bioconcentration is highest near these sites. The PAH compound found in the highest concentration was phenol (5,902 nanograms per liter), which is included in the U.S. Environmental Protection Agency’s priority pollutants list. The dissolved inorganic chemistry of water samples measured at the sampling sites in Lake Powell defined three different patterns of elements: (1) concentrations were similar between sites in the upper part of the lake near Farley Canyon downstream to Halls Crossing Marina, a

  1. Carrier Battle Group (CVBG) Homeporting in the Puget Sound Area, Washington State. Volume 1. Chapters 1-12.

    Science.gov (United States)

    1986-11-01

    East Waterway due to gray- water discharges using the Tidal Prism Method. IV-15 .1" 4-9 Marine invertebrate acute toxicity values for .- a tributyltins ...IV-22 4-10 Marine fish acute toxicity values for tributyltins . IV-25 4-11 Other marine data for tributyltins . IV-26 4-12 Summary of bioconcentration...corrosion with copper-based paints. More recently, through fiscal year 1985, only 15 Navy ships nationwide were painted with tributyltin ( TBT ) paints

  2. Role of pH for the bioconcentration of ionizable organic compounds

    DEFF Research Database (Denmark)

    Trapp, Stefan; Franco, Antonio

    -values determined at different pH. As second tool, a dynamic cell model based on the Fick-Nernst-Planck equation was tested. For the BCF fish of monovalent acids and bases, the BCF regressions and the cell model performed similar. For the BCF of water plants and plant roots, the regression failed to predict the BCF...

  3. Applicability and performance evaluation of QSAR models for bioconcentration in fish

    DEFF Research Database (Denmark)

    Lombardo, A.; Roncaglioni, A.; Rotoumenou, M. I.

    2011-01-01

    Under the REACH legislation, human and environmental protection requires carefully assessing each compound produced or imported in EU. To reduce the number of animal tests (in particular tests involving vertebrates) and the cost, REACH promotes the use of all existing information and alternative....... It is interesting to notice that the results of the different models do not always overlap. This offers the opportunity to identify strategies for the careful integration of different methods. Besides the use of combination of the results on a purely statistical way, we will address the possibility to define a more...

  4. Activation of 125I-Factor IX and 125I-Factor X: Effect of tissue factor and Factor VII, Factor Xsub(a) and thrombin

    International Nuclear Information System (INIS)

    Oesterud, B.; Rapaport, S.I.

    Activation of Factor IX and Factor X was studied by adding 125 I-Factor IX or 125 I-Factor X to reaction mixtures and quantitating cleavage products by reduced sodium dodecylsulfate gel electrophoresis. Thrombin failed to activate Factors IX or X; Factor Xsub(a) produced insignificant amounts of cleavage products of both factors. In contrast, the reaction product of tissue factor and Factor VII cleaved large amounts of both Factor IX and Factor X in purified systems and in plasma. In incubation mixtures of plasma containing added 125 I-Factor IX or 125 I-Factor X, tissue factor and Ca 2+ ions, the percentage of total radioactivity in the heavy chain peak of 125 I-IXsub(a) and the heavy chain of 125 I-Xsub(a) increased at a similar rate. When the tissue factor was diluted, similar curves were obtained for percent cleavage of 125 I-Factor IX and percent cleavage of 125 I-Factor X plotted against tissue factor concentration. These findings support the hypothesis that activation of Factor IX by the tissue factor-Factor VII reaction product represents a physiologically significant step in normal haemostasis. (author)

  5. Effects of metal-contaminated soils on the accumulation of heavy metals in gotu kola (Centella asiatica) and the potential health risks: a study in Peninsular Malaysia.

    Science.gov (United States)

    Ong, Ghim Hock; Wong, Ling Shing; Tan, Ai Li; Yap, Chee Kong

    2016-01-01

    Centella asiatica is a commonly used medicinal plant in Malaysia. As heavy metal accumulation in medicinal plants which are highly consumed by human is a serious issue, thus the assessment of heavy metals in C. asiatica is important for the safety of consumers. In this study, the heavy metal accumulation in C. asiatica and the potential health risks were investigated. Samples of C. asiatica and surface soils were collected from nine different sites around Peninsular Malaysia. The concentration of six heavy metals namely Cd, Cu, Ni, Fe, Pb and Zn were determined by air-acetylene flame atomic absorption spectrophotometer (AAS). The degree of anthropogenic influence was assessed by calculating the enrichment factor (EF) and index of geoaccumulation (Igeo). The heavy metal uptake into the plant was estimated through the calculation of translocation factor (TF), bioconcentration factor (BCF) and correlation study. Estimated daily intakes (EDI) and target hazard quotients (THQ) were used to determine the potential health risk of consuming C. asiatica. The results showed that the overall surface soil was polluted by Cd, Cu and Pb, while the uptake of Zn and Ni by the plants was high. The value of EDI and THQ showed that the potential of Pb toxicity in C. asiatica was high as well. As heavy metal accumulation was confirmed in C. asiatica, daily consumption of the plant derived from polluted sites in Malaysia was not recommended.

  6. Estimate of uptake and translocation of emerging organic contaminants from irrigation water concentration in lettuce grown under controlled conditions.

    Science.gov (United States)

    Hurtado, Carlos; Domínguez, Carmen; Pérez-Babace, Lorea; Cañameras, Núria; Comas, Jordi; Bayona, Josep M

    2016-03-15

    The widespread distribution of emerging organic contaminants (EOCs) in the water cycle can lead to their incorporation in irrigated crops, posing a potential risk for human consumption. To gain further insight into the processes controlling the uptake of organic microcontaminants, Batavia lettuce (Lactuca sativa) grown under controlled conditions was watered with EOCs (e.g., non-steroidal anti-inflammatories, sulfonamides, β-blockers, phenolic estrogens, anticonvulsants, stimulants, polycyclic musks, biocides) at different concentrations (0-40μgL(-1)). Linear correlations were obtained between the EOC concentrations in the roots and leaves and the watering concentrations for most of the contaminants investigated. However, large differences were found in the root concentration factors ( [Formula: see text] =0.27-733) and leaf translocation concentration factors ( [Formula: see text] =0-3) depending on the persistence of the target contaminants in the rhizosphere and the specific physicochemical properties of each one. With the obtained dataset, a simple predictive model based on a linear regression and the root bioconcentration and translocation factors can be used to estimate the concentration of the target EOCs in leaves based on the dose supplied in the irrigation water or the soil concentration. Finally, enantiomeric fractionation of racemic ibuprofen from the initial spiking mixture suggests that biodegradation mainly occurs in the rhizosphere. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Phytoremediation potential of Miscanthus × giganteus and Spartina pectinata in soil contaminated with heavy metals.

    Science.gov (United States)

    Korzeniowska, Jolanta; Stanislawska-Glubiak, Ewa

    2015-08-01

    The aim of this work was to assess the suitability of Miscanthus × giganteus and Spartina pectinata link to Cu, Ni, and Zn phytoremediation. A 2-year microplot experiment with the tested grasses growing on metal-contaminated soil was carried out. Microplots with cement borders, measuring 1 × 1 × 1m, were filled with Haplic Luvisols soil. Simulated soil contamination with Cu, Ni, and Zn was introduced in the following doses in mg kg(-1): 0-no metals, Cu1-100, Cu2-200, Cu3-400, Ni1-60, Ni2-100, Ni3-240, Zn1-300, Zn2-600, and Zn3-1200. The phytoremediation potential of grasses was evaluated using a tolerance index (TI), bioaccumulation factor (BF), bioconcentration factor (BCF), and translocation factor (TF). S. pectinata showed a higher tolerance to soil contamination with Cu, Ni, and Zn compared to M. × giganteus. S. pectinata was found to have a high suitability for phytostabilization of Zn and lower suitability of Cu and Ni. M. × giganteus had a lower phytostabilization potential than S. pectinata. The suitability of both grasses for Zn phytoextraction depended on the age of the plants. Both grasses were not suitable for Cu and Ni phytoextraction. The research showed that one-season studies were not valuable for fully assessing the phytoremediation potential of perennial plants.

  8. [Mercury in three species of Suillus mushroom from some sites in Poland].

    Science.gov (United States)

    Mielewska, Dominika; Stefańska, Aleksandra; Wenta, Justyna; Mazur, Michalina; Bielawski, Leszek; Danisiewicz, Dorota; Dryzałowska, Anna; Falandysz, Jerzy

    2008-01-01

    Total mercury content have been determined in fruiting bodies of Variegated Bolete (Suillus variegates), European Cow Bolete (S. bovinus) and Slippery Jack (S. luteus) and in underlying to mushroom's surface layer of soil substrate collected from several spatially distant one from another sites in Poland. All three Suillus mushroom species independent of the site characterized were by small mercury content. The arithmetic mean values of mercury concentration in caps and stipes, respectively, were: 0.17 +/- 0.07-0.22 +/- 0.12 and 0.047 +/- 0.015-0.071 +/- 0.035 microg/g dry weight for Variegated Bolete; 0.28 +/- 0.11-0.79 +/- 0.40 and 0.17 +/- 0.07- 0.51 +/- 0.22 microg/g dw for European Cow Bolete, and 0.095 +/- 0.082-0.17 +/- 0.05 and 0.045 +/- 0.026- 0.070 +/- 0.026 microg/g dw for Slippery Jack. All three species of Suillus mushrooms bio-concentrated mercury (BCF > 1). European Cow Bolete bioconcentrated mercury relatively more efficiently when compared to two other species, and means of BCF value of this element in its caps ranged from 18 +/- 10 to 45 +/- 20, and in stipes from 9.4 +/- 7.5 to 29 +/- 11. A level of surface soil pollution with mercury was low and averaged from 0.017 +/- 0.003 do 0.029 +/- 0.020 microg/g dw.

  9. Cadmium tolerance and phytoremediation potential of acacia (Acacia nilotica L.) under salinity stress.

    Science.gov (United States)

    Shabir, Rahat; Abbas, Ghulam; Saqib, Muhammad; Shahid, Muhammad; Shah, Ghulam Mustafa; Akram, Muhammad; Niazi, Nabeel Khan; Naeem, Muhammad Asif; Hussain, Munawar; Ashraf, Farah

    2018-06-07

    In this study, we explored the effect of salinity on cadmium (Cd) tolerance and phytoremediation potential of Acacia nilotica. Two-month-old uniform plants of A. nilotica were grown in pots contaminated with various levels of Cd (0, 5, 10, and 15 mg kg -1 ), NaCl (0%, 0.5%, 1.0% (hereafter referred as salinity), and all possible combinations of Cd + salinity for a period of six months. Results showed that shoot and root growth, biomass, tissue water content and chlorophyll (chl a, chl b, and total chl a+b) contents decreased more in response to salinity and combination of Cd + salinity compared to Cd alone. Shoot and root K concentrations significantly decreased with increasing soil Cd levels, whereas Na and Cl concentrations were not affected significantly. Shoot and root Cd concentrations, bioconcentration factor (BCF) and translocation factor (TF) increased with increasing soil Cd and Cd + salinity levels. At low level of salinity (0.5%), shoot and root Cd uptake enhanced, while it decreased at high level of salinity (1.0%). Due to Cd tolerance, high shoot biomass and shoot Cd uptake, this tree species has some potential for phytoremediation of Cd from the metal contaminated saline and nonsaline soils.

  10. Adaptation and detoxification mechanisms of Vetiver grass (Chrysopogon zizanioides) growing on gold mine tailings.

    Science.gov (United States)

    Melato, F A; Mokgalaka, N S; McCrindle, R I

    2016-01-01

    Vetiver grass (Chrysopogon zizanioides) was investigated for its potential use in the rehabilitation of gold mine tailings, its ability to extract and accumulate toxic metals from the tailings and its metal tolerant strategies. Vetiver grass was grown on gold mine tailings soil, in a hothouse, and monitored for sixteen weeks. The mine tailings were highly acidic and had high electrical conductivity. Vetiver grass was able to grow and adapt well on gold mine tailings. The results showed that Vetiver grass accumulated large amounts of metals in the roots and restricted their translocation to the shoots. This was confirmed by the bioconcentration factor of Zn, Cu, and Ni of >1 and the translocation factor of <1 for all the metals. This study revealed the defense mechanisms employed by Vetiver grass against metal stress that include: chelation of toxic metals by phenolics, glutathione S-tranferase, and low molecular weight thiols; sequestration and accumulation of metals within the cell wall that was revealed by the scanning electron microscopy that showed closure of stomata and thickened cell wall and was confirmed by high content of cell wall bound phenolics. Metal induced reactive oxygen species are reduced or eliminated by catalase, superoxide dismutase and peroxidase dismutase.

  11. Thallium contamination in arable soils and vegetables around a steel plant-A newly-found significant source of Tl pollution in South China.

    Science.gov (United States)

    Liu, Juan; Luo, Xuwen; Wang, Jin; Xiao, Tangfu; Chen, Diyun; Sheng, Guodong; Yin, Meiling; Lippold, Holger; Wang, Chunlin; Chen, Yongheng

    2017-05-01

    Thallium (Tl) is a highly toxic rare element. Severe Tl poisoning can cause neurological brain damage or even death. The present study was designed to investigate contents of Tl and other associated heavy metals in arable soils and twelve common vegetables cultivated around a steel plant in South China, a newly-found initiator of Tl pollution. Potential health risks of these metals to exposed population via consumption of vegetables were examined by calculating hazard quotients (HQ). The soils showed a significant contamination with Tl at a mean concentration of 1.34 mg/kg. The Tl levels in most vegetables (such as leaf lettuce, chard and pak choy) surpassed the maximum permissible level (0.5 mg/kg) according to the environmental quality standards for food in Germany. Vegetables like leaf lettuce, chard, pak choy, romaine lettuce and Indian beans all exhibited bioconcentration factors (BCF) and transfer factors (TF) for Tl higher than 1, indicating a hyperaccumulation of Tl in these plants. Although the elevated Tl levels in the vegetables at present will not immediately pose significant non-carcinogenic health risks to residents, it highlights the necessity of a permanent monitoring of Tl contamination in the steel-making areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Phytoremediation potential of transplanted bare-root seedlings of trees for lead/zinc and copper mine tailings.

    Science.gov (United States)

    Shi, Xiang; Chen, Yi-Tai; Wang, Shu-Feng; Pan, Hong-Wei; Sun, Hai-Jing; Liu, Cai-Xia; Liu, Jian-Feng; Jiang, Ze-Ping

    2016-11-01

    Selecting plant species that can overcome unfavorable conditions and increase the recovery of degraded mined lands remains a challenge. A pot experiment was conducted to evaluate the feasibility of using transplanted tree seedlings for the phytoremediation of lead/zinc and copper mine tailings. One-year-old bare-root of woody species (Rhus chinensis Mill, Quercus acutissima Carruth, Liquidambar formosana Hance, Vitex trifolia Linn. var. simplicifolia Cham, Lespedeza cuneata and Amorpha fruticosa Linn) were transplanted into pots with mine tailings and tested as potential metal-tolerant plants. Seedling survival, plant growth, root trait, nutrient uptake, and metal accumulation and translocation were assessed. The six species grew in both tailings and showed different tolerance level. A. fruticosa was highly tolerant of Zn, Pb and Cu, and grew normally in both tailings. Metal concentrations were higher in the roots than in the shoots of the six species. All of the species had low bioconcentration and translocation factor values. However, R. chinensis and L. formosana had significantly higher translocation factor values for Pb (0.88) and Zn (1.78) than the other species. The nitrogen-fixing species, A. fruticosa, had the highest tolerance and biomass production, implying that it has great potential in the phytoremediation of tailing areas in southern China.

  13. Cadmium phytoextraction from loam soil in tropical southern China by Sorghum bicolor.

    Science.gov (United States)

    Wang, Xu; Chen, Can; Wang, Jianlong

    2017-06-03

    The cadmium (Cd) uptake characteristics by Sorghum bicolor cv. Nengsi 2# and Cowley from the acidic sandy loam soil (pH = 6.1) during the entire growth period (100 days) were investigated in pot outdoors in a tropical district of southern China, Hainan Island. The Cd-spiked levels in soil were set as 3 and 15 mg/kg. Correspondingly, the available Cd levels in soil extracted by Mehlich III solution were 2.71 and 9.41 mg/kg, respectively. Basically, two varieties in a full growth period (100 days) did not show a significant difference in their growth and Cd uptake. Under high Cd stress, the plant growth was inhibited and its biomass weight and height decreased by 38.7-51.5% and 27.6-28.5%, respectively. However, S. bicolor showed higher bioaccumulation capability of Cd from soil to plant [bioconcentration factor (BCF)>4], and higher transfer capability of Cd from roots to shoots [translocation factor (TF)>1] under high Cd stress; Cd contents in the roots, stems, and leaves of S. bicolor reached 43.79-46.07, 63.28-70.60, and 63.10-66.06 mg/kg, respectively. S. bicolor exhibited the potential phytoextraction capability for low or moderate Cd-contamination in acidic sandy loam soil.

  14. Opportunities for Phytoremediation and Bioindication of Arsenic Contaminated Water Using a Submerged Aquatic Plant:Vallisneria natans (lour.) Hara.

    Science.gov (United States)

    Chen, Guoliang; Liu, Xingmei; Brookes, Philip C; Xu, Jianming

    2015-01-01

    The identification of plants with high arsenic hyperaccumulating efficiency from water is required to ensure the successful application of phytoremediation technology. Five dominant submerged plant species (Vallisneria natans (Lour.) Hara., Potamageton crispus L., Myriophyllum spicatum L., Ceratophyllum demersum L. and Hydrilla verticillata (L.f.) Royle) in China were used to determine their potential to remove As from contaminated water. V. natans had the highest accumulation of As among them. The characteristics of As accumulation, transformation and the effect of phosphate on As accumulation in V. natans were then further studied. The growth of V. natans was not inhibited even when the As concentration reached 2.0 mg L(-1). After 21 d of As treatment, the bioconcentration factor (BCF) reached 1300. The As concentration in the environment and exposure time are major factors controlling the As concentration in V. natans. After being absorbed, As(V) is efficiently reduced to As(III) in plants. The synthesis of non-enzymic antioxidants may play an important role under As stress and increase As detoxication. In addition, As(V) uptake by V. natans was negatively correlated with phosphate (P) uptake when P was sufficiently supplied. As(V) is probably taken up via P transporters in V. natans.

  15. Can Cd translocation in Oryza sativa L. be attenuated by arbuscular mycorrhizal fungi in the presence of EDTA?

    Science.gov (United States)

    Huang, Xiaochen; An, Guangnan; Zhu, Shishu; Wang, Li; Ma, Fang

    2018-04-01

    Arbuscular mycorrhizal (AM) fungi play an important role in plant tolerance of heavy metal contamination. In this study, a pot experiment was conducted to illustrate the effects of the two AM fungi species Funneliformis mosseae (Fm) and Rhizophagus irregularis (Ri) on plant growth of Oryza sativa L. either with or without ethylenediamine tetraacetate (EDTA) addition and during exposure to five Cd concentrations (in the range of 0-5 mg kg -1 ). The results showed that Fm inoculation achieved greater mycorrhizal colonization and mycorrhizal dependency indexes than Ri inoculation. In addition, the effects of AM fungi on Cd biosorption and translocation in rice were also investigated in the presence of EDTA. Despite cooperative adsorption, the Freundlich isotherm could describe the biosorption effects of Cd on rice roots regardless of AM fungi inoculation or EDTA addition. Cd concentrations in mycorrhizal roots increased but decreased in mycorrhizal shoots in contrast to the control treatment. Although EDTA addition negatively inhibited the uptake of Cd to mycorrhizal shoots, lower translocation factor (TF) and bioconcentration factor (BCF) were still observed in treatments with EDTA compared to control treatment. Our findings suggest that Ri and Fm inoculation enhanced Cd immobilization in the roots, thus preventing Cd entry into the food chain during exposure to low and high Cd stress, respectively.

  16. Composted biosolids and treated wastewater as sources of pharmaceuticals and personal care products for plant uptake: A case study with carbamazepine.

    Science.gov (United States)

    Ben Mordechay, Evyatar; Tarchitzky, Jorge; Chen, Yona; Shenker, Moshe; Chefetz, Benny

    2018-01-01

    Irrigation with treated wastewater (TWW) and application of biosolids to arable land expose the agro-environment to pharmaceuticals and personal care products (PPCPs) which can be taken up by crops. In this project, we studied the effect of a carrier medium (e.g., biosolids and TWW) on plant (tomato, wheat and lettuce) uptake, translocation and metabolism of carbamazepine as a model for non-ionic PPCPs. Plant uptake and bioconcentration factors were significantly lower in soils amended with biosolids compared to soils irrigated with TWW. In soils amended with biosolids and irrigated with TWW, the bioavailability of carbamazepine for plant uptake was moderately decreased as compared to plants grown in soils irrigated with TWW alone. While TWW acts as a continuous source of PPCPs, biosolids act both as a source and a sink for these compounds. Moreover, it appears that decomposition of the biosolids in the soil after amendment enhances their adsorptive properties, which in turn reduces the bioavailability of PPCPs in the soil environment. In-plant metabolism of carbamazepine was found to be independent of environmental factors, such as soil type, carrier medium, and absolute amount implemented to the soil, but was controlled by the total amount taken up by the plant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Levels of Platinum Group Metals in Selected Species (Sarotherodon melanotheron, Chonophorus lateristriga, Macrobrachium vollenhovenii and Crassostrea tulipa in Some Estuaries and Lagoons Along the Coast of Ghana

    Directory of Open Access Journals (Sweden)

    D. K. Essumang

    2010-01-01

    Full Text Available The use of some biota as bioindicators of heavy metal pollution has been demonstrated as particularly adequate due to their capacity of bioconcentration. This study evaluated the levels of platinum group metals (PGMs in some selected species along the coastal belt of Ghana, using the neutron activation analysis (NAA method. The result was processed to evaluate pollution indices in order to map the distribution of the metals in those species in the lagoons and estuaries along the costal belt of Ghana. The analysis showed significant levels of all PGMs in blackchin tilapia (Sarotherodon melanotheron Cichlidae, brown goby (Chonophorus lateristriga Gobiidae, shrimp (Macrobrachium vollenhovenii Palaemonidae, and mangrove oysters (Crassostrea tulipa Ostreidae in the lagoons and river Pra estuary. However, the oysters showed an elevated mean concentration of 0.13 μ/g (dry weight Pd. From the pollution indices, most of the sampling sites registered mean contamination factor (CF values between 1.20 and 3.00 for Pt, Pd, and Rh. The pollution load index (PLI conducted also gave an average pollution index between 0.79 and 2.37, indicating progressive contamination levels. The results revealed that anthropogenic sources, industrial and hospital effluent, etc., together with vehicular emissions, could be the contributing factors to the deposition of PGMs along the Ghanaian coast.

  18. Impact of dissolved organic matter on bioavailability of chlorotoluron to wheat

    Energy Technology Data Exchange (ETDEWEB)

    Song Ninghui [Department of Applied Chemistry, College of Sciences, Nanjing Agricultural University, Weigang No. 1, Building of Chemistry, Nanjing 210095 (China); Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095 (China); Zhang Shuang; Hong Min [Department of Applied Chemistry, College of Sciences, Nanjing Agricultural University, Weigang No. 1, Building of Chemistry, Nanjing 210095 (China); Yang Hong, E-mail: hongyang@njau.edu.c [Department of Applied Chemistry, College of Sciences, Nanjing Agricultural University, Weigang No. 1, Building of Chemistry, Nanjing 210095 (China); Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095 (China)

    2010-03-15

    Chlorotoluron (Chl) is a phenylurea herbicide and is widely used for controlling weeds. While it has brought great benefits to crop production, it has also resulted in contamination to ecosystem. In this study, we investigated accumulation of chlorotoluron (Chl) and biological responses of wheat plants as affected by dissolved organic matter (DOM). Wheat seedlings grown under 10 mg kg{sup -1} Chl for 4 d showed a low level of chlorophyll accumulation and damage to plasma membrane. The growth was inhibited by exposure of chlorotoluron. Treatment with 50 mg DOC kg{sup -1} DOM derived either from sludge (DOM-SL) or straw (DOM-ST) attenuated the chlorotoluron toxicity to plants. Both DOMs decreased activities of catalase, peroxidase and superoxide dismutase in Chl-treated seedlings. However, an increased glutathione S-transferases activity was observed under the same condition. Wheat plants treated with Chl in the presence of DOM accumulated less Chl than those treated with Chl alone. Moreover, in the presence of DOM, bioconcentration factor (BCF) decreased whereas translocation factors increased. Analyses with FT-IR spectra confirmed the regulatory role of DOMs in reducing Chl accumulation in wheat. - Dissolved organic matter (DOM) as a soil amendment can reduce herbicide accumulation in crops.

  19. Genotypic variation and mechanism in uptake and translocation of perfluorooctanoic acid (PFOA) in lettuce (Lactuca sativa L.) cultivars grown in PFOA-polluted soils.

    Science.gov (United States)

    Xiang, Lei; Chen, Lei; Yu, Le-Yi; Yu, Peng-Fei; Zhao, Hai-Ming; Mo, Ce-Hui; Li, Yan-Wen; Li, Hui; Cai, Quan-Ying; Zhou, Dong-Mei; Wong, Ming-Hung

    2018-05-02

    The cultivation of crop cultivars with low pollutant accumulation is an important strategy to reduce the potential health risks of food produced from polluted soils. In this study, we identified three loose-leaf lettuce cultivars with low accumulation of perfluorooctanoic acid (PFOA), a highly toxic and persistent organic pollutant. PFOA concentrations in the shoots of low-PFOA cultivars were 3.7-5.5-fold lower than those of high-PFOA cultivars. The identification of low-PFOA cultivars could contribute to ensuring food safety despite cultivation in highly polluted soils (1 mg/kg) based on the tolerable daily PFOA intake (1.5 μg/kg/d). We detected lower desorbing fractions of PFOA in rhizosphere soil, lower bioconcentration factors, and higher distribution in the cell walls and organelles of roots in low-PFOA cultivars, all of which are key factors in limiting PFOA uptake and translocation from soil to shoots, than in high-PFOA cultivars. This study reveals the mechanism of PFOA uptake from soil to crop and lays a foundation for establishing a cost-effective strategy to plant crops in polluted soil and reduce exposure risk due to persistent organic pollutants in crops. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Heavy metals bioconcentration from soil to vegetables and appraisal of health risk in Koka and Wonji farms, Ethiopia.

    Science.gov (United States)

    Eliku, Temesgen; Leta, Seyoum

    2017-04-01

    Heavy metal accumulation in agricultural crops has grown a major concern globally as a result of a significant health impact on human. The quantification of heavy metals (Cd, Pb, Cr, Zn, Cu, and Ni) in the soil and vegetables at two sites (Koka and Wonji Gefersa) was done using flame atomic absorption spectrophotometer. The mean concentrations of heavy metals in vegetable fields' soil samples obtained from Koka were higher for Pb, Cr, Zn, Cu, and Ni. The overall results of soil samples ranged 0.52-0.93, 13.6-27.3, 10.0-21.8, 44.4-88.5, 11.9-30.3, and 14.7-34.5 mg kg -1 for Cd, Pb, Cr, Zn, Cu, and Ni, respectively. The concentrations of heavy metals were maximum for Cd (0.41 ± 0.03 mg kg -1 ), Pb (0.54 ± 0.11 mg kg -1 ), Zn (14.4 ± 0.72 mg kg -1 ), Cu (2.84 ± 0.27 mg kg -1 ), and Ni (1.09 ± 0.11 mg kg -1 ) in Cabbage and for Cr (2.63 ± 0.11 mg kg -1 ) in green pepper. The result indicated that Cd has high transfer factor value and Pb was the lowest. The transfer pattern for heavy metals in different vegetables showed a trend in the order: Cd > Zn > Cu > Cr > Ni > Pb. Among different vegetables, cabbage showed the highest value of metal pollution index and bean had the lowest value. Hazard index of all the vegetables was less than unity; thus, the consumption of these vegetables is unlikely to pose health risks to the target population.

  1. Accumulation of Heavy Metals and Metalloid in Foodstuffs from Agricultural Soils around Tarkwa Area in Ghana, and Associated Human Health Risks

    Directory of Open Access Journals (Sweden)

    Nesta Bortey-Sam

    2015-07-01

    Full Text Available This study was carried out to assess the extent of heavy metals and metalloid accumulation from agricultural soils to foodstuffs (viz, M. esculenta (cassava and Musa paradisiaca (plantain around thirteen neighboring communities within Tarkwa, Ghana; and to estimate the human health risk associated with consumption of these foodstuffs. Concentrations of As, Cd, Co, Cr, Cu, Ni, Pb, and Zn were measured with an inductively coupled plasma–mass spectrometer and mercury analysis was done using a mercury analyzer. From the results, 30% of cassava samples collected, contained higher concentrations of Pb when compared to Codex Alimentarius Commission standard values. Bioconcentration factor indicated that Ni had higher capacity of absorption into food crops from soil than the other heavy metals. For both children and adults, the target hazard quotient (THQ of Pb in cassava in communities such as Techiman, Wangarakrom, Samahu, and Tebe (only children were greater than 1, which is defined as an acceptable risk value. This indicated that residents could be exposed to significant health risks associated with cassava consumption.

  2. Accumulation of elements by edible mushroom species: part I. Problem of trace element toxicity in mushrooms.

    Science.gov (United States)

    Mleczek, Mirosław; Siwulski, Marek; Stuper-Szablewska, Kinga; Rissmann, Iwona; Sobieralski, Krzysztof; Goliński, Piotr

    2013-01-01

    The aim of this study was to evaluate Cd, Co, Cu, Hg, Ni, Pb, Sr and Zn accumulation in six edible mushroom species and to assess their risk and benefits to human consumers. Mushrooms (Leccinium aurantiacum, Xerocomus badius, Lactarius deliciosus, Boletus edulis, Cantharellus cibarius and Suillus luteus) were collected from selected regions of Poland during 1990-2010. The highest diversity between studied mushroom species was observed in terms of Cu and Zn accumulation. Significant differences in the accumulation efficiency were found among the six mushroom species examined. The most efficient were Boletus edulis (Cd and Hg), Suillus luteus (Cu and Sr), and Lactarius deliciosus (Pb and Zn). In the case of Co and Ni, the most effective were Xerocomus badius and Leccinium aurantiacum, respectively. The calculated bioconcentration factor (BCF) values of Cd, Cu, Hg, Sr and Zn were > 1 for all species in this study while Co, Ni and Pb usually were bioexcluded (BCF luteus collected in Poland is safe and this finding largely agrees with results from recent studies by other authors.

  3. Accumulation of Heavy Metals and Metalloid in Foodstuffs from Agricultural Soils around Tarkwa Area in Ghana, and Associated Human Health Risks

    Science.gov (United States)

    Bortey-Sam, Nesta; Nakayama, Shouta M. M.; Akoto, Osei; Ikenaka, Yoshinori; Fobil, Julius N.; Baidoo, Elvis; Mizukawa, Hazuki; Ishizuka, Mayumi

    2015-01-01

    This study was carried out to assess the extent of heavy metals and metalloid accumulation from agricultural soils to foodstuffs (viz, M. esculenta (cassava) and Musa paradisiaca (plantain)) around thirteen neighboring communities within Tarkwa, Ghana; and to estimate the human health risk associated with consumption of these foodstuffs. Concentrations of As, Cd, Co, Cr, Cu, Ni, Pb, and Zn were measured with an inductively coupled plasma–mass spectrometer and mercury analysis was done using a mercury analyzer. From the results, 30% of cassava samples collected, contained higher concentrations of Pb when compared to Codex Alimentarius Commission standard values. Bioconcentration factor indicated that Ni had higher capacity of absorption into food crops from soil than the other heavy metals. For both children and adults, the target hazard quotient (THQ) of Pb in cassava in communities such as Techiman, Wangarakrom, Samahu, and Tebe (only children) were greater than 1, which is defined as an acceptable risk value. This indicated that residents could be exposed to significant health risks associated with cassava consumption. PMID:26225988

  4. Tributyltin distribution and producing androgenic activity in water, sediment, and fish muscle.

    Science.gov (United States)

    Shue, Meei-Fang; Chen, Ting-Chien; Bellotindos, Luzvisminda M; Lu, Ming-Chun

    2014-01-01

    This study investigated the concentrations of Tributyltin (TBT) in water, sediment, and fish muscle samples taken from Kaohsiung Harbor and Kaoping River estuary, Taiwan. TBT concentrations in water and sediment samples ranged from less than 18.5 to 34.1 ng Sn L(-1) and from 2.44 to 29.7 ng Sn g(-1) weight per weight (w/w), respectively. Concentrations in the TBT-contaminated fish muscle samples ranged from 10.8 to 79.6 ng Sn g(-1) w/w. The TBT concentrations in fish muscle were higher than those in water and sediment samples. The fish muscle/water TBT bioconcentration factor (BCF) ranged from 590 to 3363 L kg(-1). Additionally, the water samples were assessed for androgenic activity with an MCF7-AR1 human breast cancer cell line. The androgenic activity ranged from 0.94 to 3.1 ng-dihydrotestosterone per litre water (ng-DHT L(-1)). Higher concentrations of TBT in water and sediment samples occurred in the dry season, but the androgenic activity had higher values in the rainy season.

  5. Magnesium and the regulation of lead in three populations of the garden snail Cantareus aspersus

    International Nuclear Information System (INIS)

    Beeby, Alan; Richmond, Larry

    2010-01-01

    Helicid snails appear to regulate Pb more closely than other toxic metals, though it is reported as the least toxic. No regulatory mechanism has been described in animals, and the possible role of Mg in limiting Pb assimilation is examined here for the first time. Three populations of Cantareus aspersus were fed Pb and Ca with three levels of Mg for up to 64 days. Metal assimilation and production efficiency was calculated for each of 108 snails. Populations differed in their pattern of uptake but soft tissue Pb was unaffected by dietary Mg. The proportion of Pb assimilated did not change as soft tissue concentrations increased, indicating no specific regulatory mechanism. The daily addition of Pb to the soft tissues increases with growth rate suggesting uptake is instead some function of growth or cell turnover. Bioconcentration factors varied with time and are unreliable indicators of an evolved regulatory mechanism for Pb. - Lead assimilation by Cantareus aspersus provides no indication of an evolved regulatory mechanism for Pb or for any interaction with dietary Mg.

  6. Fate and effects of anthropogenic chemicals in mangrove ecosystems: A review

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Michael, E-mail: lewis.michael@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, 1 Sabine Island Drive, Gulf Breeze, FL 32561 (United States); Pryor, Rachel; Wilking, Lynn [U.S. Environmental Protection Agency, Office of Research and Development, 1 Sabine Island Drive, Gulf Breeze, FL 32561 (United States)

    2011-10-15

    The scientific literature for fate and effects of non-nutrient contaminant concentrations is skewed for reports describing sediment contamination and bioaccumulation for trace metals. Concentrations for at least 22 trace metals have been reported in mangrove sediments. Some concentrations exceed sediment quality guidelines suggesting adverse effects. Bioaccumulation results are available for at least 11 trace metals, 12 mangrove tissues, 33 mangrove species and 53 species of mangrove-habitat biota. Results are specific to species, tissues, life stage, and season and accumulated concentrations and bioconcentration factors are usually low. Toxicity tests have been conducted with 12 mangrove species and 8 species of mangrove-related fauna. As many as 39 effect parameters, most sublethal, have been monitored during the usual 3 to 6 month test durations. Generalizations and extrapolations for toxicity between species and chemicals are restricted by data scarcity and lack of experimental consistency. This hinders chemical risk assessments and validation of effects-based criteria. - Chemical risk assessments and resource management are restricted by the limited chemical fate and effects database for mangroves.

  7. Partition of ruthenium-106 between the fresh water environment and crayfish

    International Nuclear Information System (INIS)

    Berg, G.G.; Ginsberg, E.

    1976-01-01

    Crayfish of two species, Orconectes obscurus and Cambarus robustus, were identified in West Valley, New York, in streams contaminated with radioactive wastes. 106 Ru accounted for over 90% of the gamma radioactivity in specimens collected in 1972, and had higher concentrations in the crayfish than in fish from that site. Crayfish are suggested as indicator organisms for 106 Ru. In subsequent aquarium experiments, crayfish exposed to water labeled with inorganic complexes of 106 Ru concentrated the dissolved ruthenium an average of 9 x and accumulated 50% of the equilibrium body burden in approximately 10 hr, with the bulk of the isotope bound at the surface of the exoskeleton. If food was also exposed to the labeled water, uptake was faster and high concentrations were found in the digestive gland, which showed concentration factors in excess of 25 x. Releases were slower and bimodal, with approximately 10% of body burden remaining after 1 or 2 months in repeated changes of water. Data describe the partition of 106 Ru to colloidal aggregates and organically-bound sediments, and its availability for bioconcentration. (author)

  8. Comparison of techniques for estimating PAH bioavailability: Uptake in Eisenia fetida, passive samplers and leaching using various solvents and additives

    International Nuclear Information System (INIS)

    Bergknut, Magnus; Sehlin, Emma; Lundstedt, Staffan; Andersson, Patrik L.; Haglund, Peter; Tysklind, Mats

    2007-01-01

    The aim of this study was to evaluate different techniques for assessing the availability of polycyclic aromatic hydrocarbons (PAHs) in soil. This was done by comparing the amounts (total and relative) taken up by the earthworm Eisenia fetida with the amounts extracted by solid-phase microextraction (SPME), semi-permeable membrane devices (SPMDs), leaching with various solvent mixtures, leaching using additives, and sequential leaching. Bioconcentration factors of PAHs in the earthworms based on equilibrium partitioning theory resulted in poor correlations to observed values. This was most notable for PAHs with high concentrations in the studied soil. Evaluation by principal component analysis (PCA) showed distinct differences between the evaluated techniques and, generally, there were larger proportions of carcinogenic PAHs (4-6 fused rings) in the earthworms. These results suggest that it may be difficult to develop a chemical method that is capable of mimicking biological uptake, and thus estimating the bioavailability of PAHs. - The total and relative amounts of PAHs extracted by abiotic techniques for assessing the bioavailability of PAHs was found to differ from the amounts taken up by Eisenia fetida

  9. Uptake of metals and metalloids by plants growing in a lead-zinc mine area, Northern Vietnam

    International Nuclear Information System (INIS)

    Ha, Nguyen Thi Hoang; Sakakibara, Masayuki; Sano, Sakae; Nhuan, Mai Trong

    2011-01-01

    This study was conducted to evaluate the phytoremediation and phytomining potential of 10 plant species growing naturally at one of the largest lead-zinc mines in Northern Vietnam. Total concentrations of heavy metals and arsenic were determined in the plant and in associated soil and water in and outside of the mine area. The results indicate that hyperaccumulation levels (mg kg -1 dry weight) were obtained in Houttuynia cordata Thunb. (1140) and Pteris vittata L. (3750) for arsenic, and in Ageratum houstonianum Mill. (1130), Potamogeton oxyphyllus Miq. (4210), and P. vittata (1020) for lead. To the best of our knowledge, the present paper is the first report on metal accumulation and hyperaccumulation by H. cordata, A. houstonianum, and P. oxyphyllus. Based on the obtained concentrations of metals, bioconcentration and translocation factors, as well as the biomass of these plants, the two latter species and P. vittata are good candidates for phytoremediation of sites contaminated with arsenic and multi-metals. None of the collected plants was suitable for phytomining, given their low concentrations of useful metals (e.g., silver, gallium, and indium).

  10. An Evaluation of Molybdenum Toxicity to the Oligochaete, Tubifex tubifex, and Early-Life Stages of Brown Trout, Salmo trutta.

    Science.gov (United States)

    Lucas, Brett T; Quinteros, Claudio; Burnett-Seidel, Charlene; Elphick, James R

    2017-06-01

    Limited data are available describing the aquatic toxicity of molybdenum in freshwater environments, making it difficult to assess the aquatic risk to freshwater organisms. In order to increase available information on the aquatic toxicity of molybdenum, a 96-h LC50 test with the oligochaete Tubifex tubifex and an 85-day development test using brown trout, Salmo trutta, were conducted. The T. tubifex test resulted in an LC50 value of 2782 mg/L. No adverse effects were observed on brown trout survival or length in the concentrations tested, however an IC10 value for growth (wet weight) was determined to be 202 mg/L. Whole body fish tissue concentrations for molybdenum increased in all treatment concentrations tested, although bioconcentration factors decreased at greater exposure concentrations, and ranged from 0.13 at an exposure concentration of 20 mg/L to 0.04 at an exposure of 1247 mg/L. A body burden of 26.0 mg/kg was associated with reduced wet weight.

  11. Buckminsterfullerene's (C60) octanol-water partition coefficient (Kow) and aqueous solubility.

    Science.gov (United States)

    Jafvert, Chad T; Kulkarni, Pradnya P

    2008-08-15

    To assess the risk and fate of fullerene C60 in the environment, its water solubility and partition coefficients in various systems are useful. In this study, the log Kow of C60 was measured to be 6.67, and the toluene-water partition coefficient was measured at log Ktw = 8.44. From these values and the respective solubilities of C60 in water-saturated octanol and water-saturated toluene, C60's aqueous solubility was calculated at 7.96 ng/L(1.11 x 10(-11) M) for the organic solvent-saturated aqueous phase. Additionally, the solubility of C60 was measured in mixtures of ethanol-water and tetrahydrofuran-water and modeled with Wohl's equation to confirm the accuracy of the calculated solubility value. Results of a generator column experiment strongly support the hypothesis that clusters form at aqueous concentrations below or near this calculated solubility. The Kow value is compared to those of other hydrophobic organic compounds, and bioconcentration factors for C60 were estimated on the basis of Kow.

  12. Comparison of techniques for estimating PAH bioavailability: Uptake in Eisenia fetida, passive samplers and leaching using various solvents and additives

    Energy Technology Data Exchange (ETDEWEB)

    Bergknut, Magnus [Department of Chemistry, Environmental Chemistry, Umeaa University, SE-90187 Umeaa (Sweden)]. E-mail: magnus.bergknut@chem.umu.se; Sehlin, Emma [Department of Chemistry, Environmental Chemistry, Umeaa University, SE-90187 Umeaa (Sweden); Lundstedt, Staffan [Department of Chemistry, Environmental Chemistry, Umeaa University, SE-90187 Umeaa (Sweden); Andersson, Patrik L. [Department of Chemistry, Environmental Chemistry, Umeaa University, SE-90187 Umeaa (Sweden); Haglund, Peter [Department of Chemistry, Environmental Chemistry, Umeaa University, SE-90187 Umeaa (Sweden); Tysklind, Mats [Department of Chemistry, Environmental Chemistry, Umeaa University, SE-90187 Umeaa (Sweden)

    2007-01-15

    The aim of this study was to evaluate different techniques for assessing the availability of polycyclic aromatic hydrocarbons (PAHs) in soil. This was done by comparing the amounts (total and relative) taken up by the earthworm Eisenia fetida with the amounts extracted by solid-phase microextraction (SPME), semi-permeable membrane devices (SPMDs), leaching with various solvent mixtures, leaching using additives, and sequential leaching. Bioconcentration factors of PAHs in the earthworms based on equilibrium partitioning theory resulted in poor correlations to observed values. This was most notable for PAHs with high concentrations in the studied soil. Evaluation by principal component analysis (PCA) showed distinct differences between the evaluated techniques and, generally, there were larger proportions of carcinogenic PAHs (4-6 fused rings) in the earthworms. These results suggest that it may be difficult to develop a chemical method that is capable of mimicking biological uptake, and thus estimating the bioavailability of PAHs. - The total and relative amounts of PAHs extracted by abiotic techniques for assessing the bioavailability of PAHs was found to differ from the amounts taken up by Eisenia fetida.

  13. Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar wetland, Punjab, India and its environs.

    Science.gov (United States)

    Sharma, Sakshi; Nagpal, Avinash Kaur; Kaur, Inderpreet

    2018-07-30

    In the present study, an assessment of heavy metal content in soil and food crops (wheat, rice, maize grains and mustard seeds) and associated health risks was carried out for residents of Ropar wetland and its environs. All the soil samples had high cadmium and cobalt contents, whereas, all crop samples had high contents of cobalt and lead. Bioconcentration factor (BCF) analysis indicated that rice grains act as hyper-accumulators of chromium (BCF = 17.98) and copper (BCF = 10.91), whereas, maize grains act as hyper-accumulators of copper (BCF = 30.43). One-way ANOVA suggested that heavy metal content in food crops varied significantly at p ≤ 0.05 for different sites, indicating anthropogenic contribution of heavy metals in agricultural fields. Dietary intake of cobalt via all food crops posed higher non-cancer health risk to residents in comparison to other heavy metals. Chromium posed highest cancer risk through consumption of wheat grains, being staple diet in study area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Combined effects of elevated CO2 and Cd-contaminated water on growth, photosynthetic response, Cd accumulation and thiolic components status in Lemna minor L.

    Science.gov (United States)

    Pietrini, F; Bianconi, D; Massacci, A; Iannelli, M A

    2016-05-15

    The objective of this study was to investigate the combined effects of elevated CO2 and cadmium (Cd) treatments on growth, photosynthetic efficiency and phytoremediation ability in Lemna minor L. Plants of L. minor were exposed to different Cd concentrations (0, 1.5, 2.5 and 5 mg L(-1) Cd) for periods of 24, 48 and 72 h at ambient (AC) and at elevated (EC) CO2 (350 and 700 ppm, respectively). Cadmium concentration, bioconcentration factor, enzyme activities and thiols content enhanced in plants with the increase of Cd treatments, time of exposure and at both CO2 levels. Glutathione levels increased only at AC. Growth, photosynthetic and chlorophyll fluorescence parameters, and the reduced glutathione to oxidized glutathione ratio declined in plants with increasing exposure time, Cd treatments and at both CO2 levels. Our results suggested that the alleviation of toxicity, at low Cd doses, observed in L. minor grown at EC is dependent on both increased photosynthesis and an enhanced antioxidant capacity. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Phytoremediation of metal-contaminated soil in temperate humid regions of British Columbia, Canada.

    Science.gov (United States)

    Padmavathiamma, Prabha K; Li, Loretta Y

    2009-08-01

    The suitability of five plant species was studied for phytoextraction and phytostabilisation in a region with temperate maritime climate of coastal British Columbia, Canada. Pot experiments were conducted using Lolium perenne L (perennial rye grass), Festuca rubra L (creeping red fescue), Helianthus annuus L (sunflower), Poa pratensis L (Kentucky bluegrass) and Brassica napus L (rape) in soils treated with three different metal (Cu, Pb, Mn, and Zn) concentrations. The bio-metric characters of plants in soils with multiple-metal contaminations, their metal accumulation characteristics, translocation properties and metal removal were assessed at different stages of plant growth, 90 and 120 DAS (days after sowing). Lolium was found to be suitable for the phytostabilisation of Cu and Pb, Festuca for Mn and Poa for Zn. Metal removal was higher at 120 than at 90 days after sowing, and metals concentrated more in the underground tissues with less translocation to the aboveground parts. Bioconcentration factors indicate that Festuca had the highest accumulation for Cu, Helianthus for Pb and Zn and Poa for Mn.

  16. Uptake of metals and metalloids by plants growing in a lead-zinc mine area, Northern Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Nguyen Thi Hoang [Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Sakakibara, Masayuki, E-mail: sakakiba@sci.ehime-u.ac.jp [Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Sano, Sakae [Department of Geology, Ehime University, Matsuyama 790-8577 (Japan); Nhuan, Mai Trong [Department of Environmental Geology, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi (Viet Nam)

    2011-02-28

    This study was conducted to evaluate the phytoremediation and phytomining potential of 10 plant species growing naturally at one of the largest lead-zinc mines in Northern Vietnam. Total concentrations of heavy metals and arsenic were determined in the plant and in associated soil and water in and outside of the mine area. The results indicate that hyperaccumulation levels (mg kg{sup -1} dry weight) were obtained in Houttuynia cordata Thunb. (1140) and Pteris vittata L. (3750) for arsenic, and in Ageratum houstonianum Mill. (1130), Potamogeton oxyphyllus Miq. (4210), and P. vittata (1020) for lead. To the best of our knowledge, the present paper is the first report on metal accumulation and hyperaccumulation by H. cordata, A. houstonianum, and P. oxyphyllus. Based on the obtained concentrations of metals, bioconcentration and translocation factors, as well as the biomass of these plants, the two latter species and P. vittata are good candidates for phytoremediation of sites contaminated with arsenic and multi-metals. None of the collected plants was suitable for phytomining, given their low concentrations of useful metals (e.g., silver, gallium, and indium).

  17. Radiation-induced defects formation in Bi-containing vitreous chalcogenides

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Vakiv, M.; Balitska, V.; Kovalskiy, A.

    1997-01-01

    Processes of formation and annihilation of coordination defects in As 2 Se 3 Bi y and (As 2 Se 3 )(Bi 2 Se 3 ) y amorphous chalcogenide semiconductors induced by influence of Co 60 gamma-irradiation are investigated by photoelectric spectroscopy method. It is obtained that radiation-induced changes of photoelectrical properties on bioconcentration of As 2 Se 3 Bi y glasses are characterized by anomalous concentration dependence. The nature of this effect is associated with diamagnetic coordination defects formation. (author). 19 refs, 3 figs

  18. Tissue factor-dependent activation of tritium-labeled factor IX and factor X in human plasma

    International Nuclear Information System (INIS)

    Morrison, S.A.; Jesty, J.

    1984-01-01

    A comparism was made of the tissue factor-dependent activation of tritium-labeled factor IX and factor X in a human plasma system and a study was made of the role of proteases known to stimulate factor VII activity. Plasma was defibrinated by heating and depleted of its factors IX and X by passing it through antibody columns. Addition of human brain thromboplastin, Ca2+, and purified 3H-labeled factor X to the plasma resulted, after a short lag, in burst-like activation of the factor X, measured as the release of radiolabeled activation peptide. The progress of activation was slowed by both heparin and a specific inhibitor of factor Xa but factor X activation could not be completely abolished by such inhibitors. In the case of 3H-factor IX activation, the rate also increased for approximately 3 min after addition of thromboplastin, but was not subsequently curtailed. A survey of proteases implicated as activators of factor VII in other settings showed that both factor Xa and factor IXa could accelerate the activation of factor IX. However, factor Xa was unique in obliterating activation when present at concentrations greater than approximately 1 nM. Heparin inhibited the tissue factor-dependent activation of factor IX almost completely, apparently through the effect of antithrombin on the feedback reactions of factors Xa and IXa on factor VII. These results suggest that a very tight, biphasic control of factor VII activity exists in human plasma, which is modulated mainly by factor Xa. At saturation of factor VIIa/tissue factor, factor IX activation was significantly more rapid than was previously found in bovine plasma under similar conditions. The activation of factor X at saturation was slightly more rapid than in bovine plasma, despite the presence of heparin

  19. Investigations performed on the compost worm Eisenia fetida and selected species of earthworms concerning the intake of HCB and pyrene with the goal of deriving a bioaccumulation test; Untersuchungen zur Aufnahme von HCB und Pyren durch den Kompostwurm Eisenia fetida und ausgewaehlte Regenwurmwildarten. Ableitung eines Bioakkumulationstests

    Energy Technology Data Exchange (ETDEWEB)

    Vespermann, A.; Riepert, F.; Pflugmacher, J. [Biologische Bundesanstalt fuer Land- und Forstwirtschaft, Inst. fuer Oekotoxikologie im Pflanzenschutz, Berlin (Germany)

    2003-07-01

    The man issues of the studies described were the validation of a test design for the assessment of the bioaccumulation potential of environmental pollutants and the applicability of Eisenia fetida as a model-organism and artificial soil (OECD) as a standard test substrate. The test organisms used were E. fetida of our own breeding stock and Allolobophora caliginosa, Allolobophora chlorotica, Allolobophora longa and Lumbricus rubellus sampled from a field site. Test soils used were the artificial soil (OECD) and a BBA field soil. Soils were each contaminated with 10 mg HCB and Pyrene per soil dry-weight. Within the test period of 4 weeks, samples were taken weekly for residue analysis in the worms and soils. Bioaccumulation factors (AF) calculated for E. fetida and the free-living species were in the range of 10-17 (HCB) and 0.9-1.7 (Pyrene) depending on the soil used. By re-calculation of the concentrations in soil to concentrations in soil water, the resulting bioconcentration factors are compared with published BCF values determined from QSAR's of other worm species and fresh water fish. It could be concluded that the existing earthworm tests (OECD 1984, ISO 1998) represent an appropriate design for testing the bioconcentration potential of chemicals in soil. (orig.) [German] Ziel der beschriebenen Untersuchungen war die praktische Ueberpruefung eines Methodenentwurfs zur Erfassung der Bioakkumulation von Umweltchemikalien mit Eisenia fetida, der Eignung von E. fetida als Modellorganismus und des OECD-Kunstbodens als Standardsubstrat. Als Testorganismen wurden aus eigener Zucht der Kompostwurm Eisenia fetida und nach Feldentnahme Allolobophora caliginosa, Allolobophora chlorotica, Allolobophora longa und Lumbricus rubellus eingesetzt. Testboeden waren der OECD-Kunstboden und ein Boden vom Versuchsfeld der BBA in Berlin-Dahlem. Beiden Boeden wurden die Testsubstanzen Hexachlorbenzol und Pyren in einer Konzentration von 10 mg/kg Bodentrockengewicht zugemischt

  20. Factors and factorizations of graphs proof techniques in factor theory

    CERN Document Server

    Akiyama, Jin

    2011-01-01

    This book chronicles the development of graph factors and factorizations. It pursues a comprehensive approach, addressing most of the important results from hundreds of findings over the last century. One of the main themes is the observation that many theorems can be proved using only a few standard proof techniques. This stands in marked contrast to the seemingly countless, complex proof techniques offered by the extant body of papers and books. In addition to covering the history and development of this area, the book offers conjectures and discusses open problems. It also includes numerous explanatory figures that enable readers to progressively and intuitively understand the most important notions and proofs in the area of factors and factorization.

  1. Reproductive toxicity assessment of surface water of the Tai section of the Yangtze River, China by in vitro bioassays coupled with chemical analysis

    International Nuclear Information System (INIS)

    Wang Xiaoyi; Wu Jiang; Hao Yingqun; Zhu Bingqing; Shi Wei; Hu Guanjiu; Han Xiaodong; Giesy, John P.; Yu Hongxia

    2011-01-01

    Reproductive toxicity of organic extracts of the surface water from the Tai section of the Yangtze River was assessed by in vitro cytotoxity assays and selected persistent organic pollutants including PCBs, OCPs and PAHs were quantified by instrumental analysis. Eleven of the US EPA priority PAHs were detected. Individual PAHs were found to range from 0.7 to 20 ng/L. Concentrations of BaP did not exceed the national drinking water source quality standard of China. However, a 286-fold concentrated organic extract induced significant reproductive toxicity in adult male rats. The morphology of cells, MTT assay and LDH release assay were all affected by exposure to the organic extracts of water. The results of the reproductive toxicity indicated that PAHs posed the greatest risk of the chemicals studied. The compounds present in the water could be bioconcentrated and result in adverse effects. - Highlights: → Only 11 PAHs of US EPA priority PAHs were detected in surface water the Yangtze River. → Level of BaP didn't exceed national drinking water source quality standard of China. → 286-fold concentrated organic extracts induced great reproductive toxicity in rats. → PAHs posed the greatest risk of the chemicals studied. → The compounds in the water could be bioconcentrated and result in adverse effects. - In vitro bioassay responses observed in Yangtze River source water extracts showed great reproductive toxicity, and PAHs were responsible.

  2. Factor XII (Hageman factor) deficiency

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000545.htm Factor XII (Hageman factor) deficiency To use the sharing features on this ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  3. Screening of a new cadmium hyperaccumulator, Galinsoga parviflora, from winter farmland weeds using the artificially high soil cadmium concentration method.

    Science.gov (United States)

    Lin, Lijin; Jin, Qian; Liu, Yingjie; Ning, Bo; Liao, Ming'an; Luo, Li

    2014-11-01

    A new method, the artificially high soil cadmium (Cd) concentration method, was used to screen for Cd hyperaccumulators among winter farmland weeds. Galinsoga parviflora was the most promising remedial plant among 5 Cd accumulators or hyperaccumulators. In Cd concentration gradient experiments, as soil Cd concentration increased, root and shoot biomass decreased, and their Cd contents increased. In additional concentration gradient experiments, superoxide dismutase and peroxidase activities increased with soil Cd concentrations up to 75 mg kg(-1) , while expression of their isoenzymes strengthened. Catalase (CAT) activity declined and CAT isoenzyme expression weakened at soil Cd concentrations less than 50 mg kg(-1) . The maxima of Cd contents in shoots and roots were 137.63 mg kg(-1) and 105.70 mg kg(-1) , respectively, at 100 mg kg(-1) Cd in soil. The root and shoot bioconcentration factors exceeded 1.0, as did the translocation factor. In a field experiment, total extraction of Cd by shoots was 1.35 mg m(-2) to 1.43 mg m(-2) at soil Cd levels of 2.04 mg kg(-1) to 2.89 mg kg(-1) . Therefore, the artificially high soil Cd concentration method was effective for screening Cd hyperaccumulators. Galinsoga parviflora is a Cd hyperaccumulator that could be used to efficiently remediate Cd-contaminated farmland soil. © 2014 SETAC.

  4. Tolerance and accumulation characteristics of cadmium in Amaranthus hybridus L

    International Nuclear Information System (INIS)

    Zhang Xiaochuan; Zhang Shirong; Xu Xiaoxun; Li Ting; Gong Guoshu; Jia Yongxia; Li Yun; Deng Liangji

    2010-01-01

    Because of its toxicity to animals and humans, cadmium (Cd) is an environmentally important heavy metal. Consequently, researchers are interested in using hyperaccumulator and accumulator plants to decontaminate Cd polluted soils. To investigate Cd tolerance, uptake and accumulation by Amaranthus hybridus L., Cd concentration gradients were applied to a soil (at rates of 0, 30, 60, 90, 120, 150 and 180 mg kg -1 ) and hydroponics solutions (at rates of 0, 5, 10, 15, 20, 30, and 40 mg L -1 ) following a field survey. A. hybridus grew normally at added Cd concentrations ≤ 90 mg kg -1 and ≤ 20 mg L -1 in the soil culture and in the hydroponics solutions, respectively. In the hydroponics solutions, peroxidase activity showed a quadratic relationship and catalase activity changed irregularly with increasing Cd concentrations. The highest Cd concentration and accumulation in shoots were 241.56 mg kg -1 and 1006.95 μg pot -1 in the soil culture, and 354.56 mg kg -1 and 668.42 μg pot -1 in the hydroponics experiment. Bioconcentration factors in soil culture and hydroponics solutions were 0.58-1.22 and 5.18-17.55, and translocation factors were 0.64-1.50 and 0.33-0.92, respectively. A. hybridus has potential phytoremediation capability in Cd polluted soils.

  5. Aquatic to terrestrial transfer of sediment associated persistent organic pollutants is enhanced by bioamplification processes.

    Science.gov (United States)

    Daley, Jennifer M; Corkum, Lynda D; Drouillard, Ken G

    2011-09-01

    Ephemeral emergent insects, such as mayflies (Hexagenia spp.), are commonly used as biomonitors of persistent organic pollutants (POPs) and provide a vector for aquatic-terrestrial contaminant transfer. Mayflies bioaccumulate sediment-associated contaminants by bioconcentration and biomagnification during the aquatic stage and concentrate POP residues postemergence due to bioamplification, which occurs as a result of weight and lipid loss without contaminant loss. The present study quantified polychlorinated biphenyl (PCB) bioamplification in male and female emergent mayflies at three sites. Male mayflies used 36 to 68% of their lipids during emergence, with the exception of caged males that were prevented from flight. Females did not lose lipid content between pre-emergent nymph and emerged life stages. Mass balance indicated no PCB elimination between life stages. The mean PCB bioamplification factor, expressed as the ratio of lipid-equivalent PCB concentrations across life stages, was 2.05 ± 0.38 for male imagos/nymphs and 1.91 ± 0.18 for male imago/subimago life stages. For females, bioamplification factors were close to unity. Wildlife consumers of imago stages of emergent mayflies can potentially increase their total daily intake of PCBs by 36% depending on the sex-ratio composition of their diet relative to animals that feed predominantly on nymph or subimago stages during mass emergence events. Copyright © 2011 SETAC.

  6. Phytoextraction with Salix viminalis in a moderately to strongly contaminated area.

    Science.gov (United States)

    Tőzsér, Dávid; Harangi, Sándor; Baranyai, Edina; Lakatos, Gyula; Fülöp, Zoltán; Tóthmérész, Béla; Simon, Edina

    2018-02-01

    We tested the suitability of Salix viminalis for phytoextraction with the analysis of selected elements in soil, root, and leaf, and by visual tree condition assessment in an area with varying levels of contamination. Bioconcentration factor (BCF) and translocation factor (TF) were used to assess the phytoextraction potential of willows. The middle part of the study area was strongly contaminated, while the northern and southern parts were moderately contaminated. We found increasing element concentrations toward deeper layers. Mean concentrations of elements in roots were similar among the three parts, while in leaves the highest concentrations were found in the strongly contaminated part of the study area. Tree condition scores were the lowest in the strongly contaminated part of the study area, which was caused by Al, Ca, K, Mg, Ni, Sr, and Zn concentration. These elements induced leaf disease and leaf feeders. The highest BCF values were found for Cu, Fe, Mn, and Zn in root, and for Cd and Zn in leaves, indicating that S. viminalis had high accumulation potential of these elements. Furthermore, TF values were high for Cd, Mn, Sr, and Zn. Our results also demonstrated that soil element composition has major influence on the condition of S. viminalis individuals. Furthermore, visual condition assessment was found to be a useful tool to assess the phytoextraction potential of trees.

  7. Microbial Assisted Phyto remediation Of Palm Oil Mill Final Discharge (POMFD) Wastewater

    International Nuclear Information System (INIS)

    Mohd Faizal Hamzah; Norjan Yusof; Hasimah Alimon

    2016-01-01

    This study assesses microbial assisted phyto remediation of palm oil mill final discharge (POMFD) wastewater using three local macrophyte species: Leersia oryzoides, Pistia stratiotes and Ludwigia peploides. It was found respectively that BOD 5 , COD, NH 3 -N removal efficiencies of 84.7 %, 22.3 %, and 73.5 % were achieved for P. stratiotes; 88.1 %, 18 % and 69.2 % for L. peploides; and 86.1 %, 11.7 % and 69.3 % for L. oryzoides. The level of C, H and N in the tissue were influenced by macrophyte species and organs (p < 0.05). The bioconcentration factors (BCF) of various metals such as Mg, Ca, K, Na, Fe and Zn of the three macrophyte were 10 -1 to 10 0 with Fe being highly accumulated in roots of all the macrophyte (BCF=10 2 ). The translocation factors (TF) of most metals from root to shoot tissues were in a range of 10 -3 to 10 0 . In comparison with other metals, K was capable to be efficiently translocated from root to shoots in all the macrophyte species (TF=10 0 ). In this study, Bacillus megaterium, Pseudomonas spp. and Bacillus cereus that are usually involved in denitrification were identified in P. stratiotes, L. pepoides and L. oryzoides roots respectively. This confirms the macrophyte-microorganism interaction in remediation of POMFD wastewater. (author)

  8. Phosphate-assisted phytoremediation of arsenic by Brassica napus and Brassica juncea: Morphological and physiological response.

    Science.gov (United States)

    Niazi, Nabeel Khan; Bibi, Irshad; Fatimah, Ayesha; Shahid, Muhammad; Javed, Muhammad Tariq; Wang, Hailong; Ok, Yong Sik; Bashir, Safdar; Murtaza, Behzad; Saqib, Zulfiqar Ahmad; Shakoor, Muhammad Bilal

    2017-07-03

    In this study, we examined the potential role of phosphate (P; 0, 50, 100 mg kg -1 ) on growth, gas exchange attributes, and photosynthetic pigments of Brassica napus and Brassica juncea under arsenic (As) stress (0, 25, 50, 75 mg kg -1 ) in a pot experiment. Results revealed that phosphate supplementation (P100) to As-stressed plants significantly increased shoot As concentration, dry biomass yield, and As uptake, in addition to the improved morphological and gas exchange attributes and photosynthetic pigments over P0. However, phosphate-assisted increase in As uptake was substantially (up to two times) greater for B. napus, notably due to higher shoot As concentration and dry biomass yield, compared to B. juncea at the P100 level. While phosphate addition in soil (P100) led to enhanced shoot As concentration in B. juncea, it reduced shoot dry biomass, primarily after 50 and 75 mg kg -1 As treatments. The translocation factor and bioconcentration factor values of B. napus were higher than B. juncea for all As levels in the presence of phosphate. This study demonstrates that phosphate supplementation has a potential to improve As phytoextraction efficiency, predominantly for B. napus, by minimizing As-induced damage to plant growth, as well as by improving the physiological and photosynthetic attributes.

  9. Distribution and transfer of potentially toxic metal(loid)s in Juncus effusus from the indigenous zinc smelting area, northwest region of Guizhou Province, China.

    Science.gov (United States)

    Peng, Yishu; Chen, Jun; Wei, Huairui; Li, Shibin; Jin, Tao; Yang, Ruidong

    2018-05-15

    We collected samples (i.e., the aerial parts and roots of Juncus effusus and their growth media) in the indigenous zinc smelting area in the northwest region of Guizhou Province, China, and we measured and analyzed potentially toxic metal(loid)s (arsenic, As; cadmium, Cd; chromium, Cr; copper, Cu; mercury, Hg; lead, Pb and zinc, Zn) in these samples. The results include the following: First, there is a high concentration of one or more potentially toxic metal(loid)s in the slag and surrounding soil in the research area. This situation might be caused by metal(loid) damage or contamination due to the circumstances. Additionally, Juncus effusus in the indigenous zinc smelting area are contaminated by some potentially toxic metal(loid)s; since they are used for Chinese medical materials, it is especially significant that their As, Cd and Pb concentrations are greater than their limited standard values. Finally, both the bioconcentration factors and transfer factors for most potentially toxic metal(loid)s in Juncus effusus are less than 1 in the study area. Therefore, we suggest that Juncus effusus could be used for phytostabilization or as a pioneer plant for phytoremediation of potentially toxic metal(loid)s because it has a tolerance and exclusion mechanism for these metal(loid)s in the research district. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites.

    Science.gov (United States)

    Xun, Yu; Feng, Liu; Li, Youdan; Dong, Haochen

    2017-12-01

    Cyrtomium macrophyllum naturally grown in 225.73 mg kg -1 of soil mercury in mining area was found to be a potential mercury accumulator plant with the translocation factor of 2.62 and the high mercury concentration of 36.44 mg kg -1 accumulated in its aerial parts. Pot experiments indicated that Cyrtomium macrophyllum could even grow in 500 mg kg -1 of soil mercury with observed inhibition on growth but no obvious toxic effects, and showed excellent mercury accumulation and translocation abilities with both translocation and bioconcentration factors greater than 1 when exposed to 200 mg kg -1 and lower soil mercury, indicating that it could be considered as a great mercury accumulating species. Furthermore, the leaf tissue of Cyrtomium macrophyllum showed high resistance to mercury stress because of both the increased superoxide dismutase activity and the accumulation of glutathione and proline induced by mercury stress, which favorited mercury translocation from the roots to the aerial parts, revealing the possible reason for Cyrtomium macrophyllum to tolerate high concentration of soil mercury. In sum, due to its excellent mercury accumulation and translocation abilities as well as its high resistance to mercury stress, the use of Cyrtomium macrophyllum should be a promising approach to remediating mercury polluted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Assessment of arsenic content in soil, rice grains and groundwater and associated health risks in human population from Ropar wetland, India, and its vicinity.

    Science.gov (United States)

    Sharma, Sakshi; Kaur, Inderpreet; Nagpal, Avinash Kaur

    2017-08-01

    In the present study, potential health risks posed to human population from Ropar wetland and its vicinity, by consumption of inorganic arsenic (i-As) via arsenic contaminated rice grains and groundwater, were assessed. Total arsenic (t-As) in soil and rice grains were found in the range of 0.06-0.11 mg/kg and 0.03-0.33 mg/kg, respectively, on dry weight basis. Total arsenic in groundwater was in the range of 2.31-15.91 μg/L. i-As was calculated from t-As using relevant conversion factors. Rice plants were found to be arsenic accumulators as bioconcentration factor (BCF) was observed to be >1 in 75% of rice grain samples. Further, correlation analysis revealed that arsenic accumulation in rice grains decreased with increase in the electrical conductivity of soil. One-way ANOVA, cluster analysis and principal component analysis indicated that both geogenic and anthropogenic sources affected t-As in soil and groundwater. Hazard index and total cancer risk estimated for individuals from the study area were above the USEPA limits of 1.00 and 1.00 × 10 -6 , respectively. Kruskal-Wallis H test indicated that groundwater intake posed significantly higher health risk than rice grain consumption (χ 2 (1) = 17.280, p = 0.00003).

  12. Cadmium removal by Lemna minor and Spirodela polyrhiza.

    Science.gov (United States)

    Chaudhuri, Devaleena; Majumder, Arunabha; Misra, Amal K; Bandyopadhyay, Kaushik

    2014-01-01

    The present study investigates the ability of two genus of duckweed (Lemna minor and Spirodela polyrhiza) to phytoremediate cadmium from aqueous solution. Duckweed was exposed to six different cadmium concentrations, such as, 0.5,1.0,1.5, 2.0, 2.5, and 3.0 mg/L and the experiment was continued for 22 days. Water samples were collected periodically for estimation of residual cadmium content in aqueous solution. At the end of treatment period plant samples were collected and accumulated cadmium content was measured. Cadmium toxicity was observed through relative growth factor and changes in chlorophyll content Experimental results showed that Lemna minor and Spirodela polyrhiza were capable of removing 42-78% and 52-75% cadmium from media depending upon initial cadmium concentrations. Cadmium was removed following pseudo second order kinetic model Maximum cadmium accumulation in Lemna minor was 4734.56 mg/kg at 2 mg/L initial cadmium concentration and 7711.00 mg/kg in Spirodela polyrhiza at 3 mg/L initial cadmium concentration at the end of treatment period. Conversely in both cases maximum bioconcentration factor obtained at lowest initial cadmium concentrations, i.e., 0.5 mg/L, were 3295.61 and 4752.00 for Lemna minor and Spirodela polyrhiza respectively. The present study revealed that both Lemna minor and Spirodela polyrhiza was potential cadmium accumulator.

  13. Removal of chromium ions from wastewater by duckweed, Lemna minor L. by using a pilot system with continuous flow.

    Science.gov (United States)

    Uysal, Y

    2013-12-15

    The aim of this study was to determine the ability of Lemna minor to remove Cr (VI) ions from wastewater in a continuous flow pond system. This system was used to simulate a wastewater treatment pond and a natural wetland as habitat of plants. In order to find optimal conditions for chromium removal, ponds were operated with aqueous solutions having different pH (4.0-7.0) and chromium concentration of 0.25 mgCr(+6)/L, then plants were exposed to different chromium concentrations (0.25-5.0 mgCr(+6)/L) at pH 4.0. Chromium concentrations, both in biomass and wastewater, were measured and removal efficiency was determined throughout water flow. Growth factors such as growth rates, chlorophyll contents and dry/fresh weight ratios of plants were also determined to measure toxic effects of chromium. The percentages of chromium uptake (PMU) and bioconcentration factors (BCF) were calculated for each run. The highest accumulated chromium concentration (4.423 mgCr/g) was found in plants grown in the first chamber of pond operated at pH 4.0 and 5.0 mgCr/L, while the minimum accumulated chromium concentration (0.122 mgCr/g) was in plants grown in the last chamber of pond operated at pH 4.0 and 0.25 mgCr(+6)/L. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Tolerance and accumulation characteristics of cadmium in Amaranthus hybridus L

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiaochuan [College of Resources and Environment, Sichuan Agricultural University, 46 Xinkang Road, Yaan 625014 (China); Zhang Shirong, E-mail: rsz01@163.com [College of Resources and Environment, Sichuan Agricultural University, 46 Xinkang Road, Yaan 625014 (China); Xu Xiaoxun; Li Ting [College of Resources and Environment, Sichuan Agricultural University, 46 Xinkang Road, Yaan 625014 (China); Gong Guoshu [Agricultural College, Sichuan Agricultural University, Yaan 625014 (China); Jia Yongxia; Li Yun; Deng Liangji [College of Resources and Environment, Sichuan Agricultural University, 46 Xinkang Road, Yaan 625014 (China)

    2010-08-15

    Because of its toxicity to animals and humans, cadmium (Cd) is an environmentally important heavy metal. Consequently, researchers are interested in using hyperaccumulator and accumulator plants to decontaminate Cd polluted soils. To investigate Cd tolerance, uptake and accumulation by Amaranthus hybridus L., Cd concentration gradients were applied to a soil (at rates of 0, 30, 60, 90, 120, 150 and 180 mg kg{sup -1}) and hydroponics solutions (at rates of 0, 5, 10, 15, 20, 30, and 40 mg L{sup -1}) following a field survey. A. hybridus grew normally at added Cd concentrations {<=} 90 mg kg{sup -1} and {<=} 20 mg L{sup -1} in the soil culture and in the hydroponics solutions, respectively. In the hydroponics solutions, peroxidase activity showed a quadratic relationship and catalase activity changed irregularly with increasing Cd concentrations. The highest Cd concentration and accumulation in shoots were 241.56 mg kg{sup -1} and 1006.95 {mu}g pot{sup -1} in the soil culture, and 354.56 mg kg{sup -1} and 668.42 {mu}g pot{sup -1} in the hydroponics experiment. Bioconcentration factors in soil culture and hydroponics solutions were 0.58-1.22 and 5.18-17.55, and translocation factors were 0.64-1.50 and 0.33-0.92, respectively. A. hybridus has potential phytoremediation capability in Cd polluted soils.

  15. Factors affecting construction performance: exploratory factor analysis

    Science.gov (United States)

    Soewin, E.; Chinda, T.

    2018-04-01

    The present work attempts to develop a multidimensional performance evaluation framework for a construction company by considering all relevant measures of performance. Based on the previous studies, this study hypothesizes nine key factors, with a total of 57 associated items. The hypothesized factors, with their associated items, are then used to develop questionnaire survey to gather data. The exploratory factor analysis (EFA) was applied to the collected data which gave rise 10 factors with 57 items affecting construction performance. The findings further reveal that the items constituting ten key performance factors (KPIs) namely; 1) Time, 2) Cost, 3) Quality, 4) Safety & Health, 5) Internal Stakeholder, 6) External Stakeholder, 7) Client Satisfaction, 8) Financial Performance, 9) Environment, and 10) Information, Technology & Innovation. The analysis helps to develop multi-dimensional performance evaluation framework for an effective measurement of the construction performance. The 10 key performance factors can be broadly categorized into economic aspect, social aspect, environmental aspect, and technology aspects. It is important to understand a multi-dimension performance evaluation framework by including all key factors affecting the construction performance of a company, so that the management level can effectively plan to implement an effective performance development plan to match with the mission and vision of the company.

  16. Activation of human factor V by factor Xa and thrombin

    International Nuclear Information System (INIS)

    Monkovic, D.D.; Tracy, P.B.

    1990-01-01

    The activation of human factor V by factor Xa and thrombin was studied by functional assessment of cofactor activity and sodium dodecyl sulfate-polycarylamide gel electrophoresis followed by either autoradiography of 125 I-labeled factor V activation products or Western blot analyses of unlabeled factor V activation products. Cofactor activity was measured by the ability of the factor V/Va peptides to support the activation of prothrombin. The factor Xa catalyzed cleavage of factor V was observed to be time, phospholipid, and calcium ion dependent, yielding a cofactor with activity equal to that of thrombin-activated factor V (factor Va). The cleavage pattern differed markedly from the one observed in the bovine system. The factor Xa activated factor V subunits expressing cofactor activity were isolated and found to consist of peptides of M r 220,000 and 105,000. Although thrombin cleaved the M r 220,000 peptide to yield peptides previously shown to be products of thrombin activation, cofactor activity did not increase. N-Terminal sequence analysis confirmed that both factor Xa and thrombin cleave factor V at the same bond to generate the M r 220,000 peptide. The factor Xa dependent functional assessment of 125 I-labeled factor V coupled with densitometric analyses of the cleavage products indicated that the cofactor activity of factor Xa activated factor V closely paralleled the appearance of the M r 220,000 peptide. The data indicate that factor Xa is as efficient an enzyme toward factor V as thrombin

  17. Toxicity of Metals to a Freshwater Snail, Melanoides tuberculata

    Directory of Open Access Journals (Sweden)

    M. Shuhaimi-Othman

    2012-01-01

    Full Text Available Adult freshwater snails Melanoides tuberculata (Gastropod, Thiaridae were exposed for a four-day period in laboratory conditions to a range of copper (Cu, cadmium (Cd, zinc (Zn, lead (Pb, nickel (Ni, iron (Fe, aluminium (Al, and manganese (Mn concentrations. Mortality was assessed and median lethal times (LT50 and concentrations (LC50 were calculated. LT50 and LC50 increased with the decrease in mean exposure concentrations and times, respectively, for all metals. The LC50 values for the 96-hour exposures to Cu, Cd, Zn, Pb, Ni, Fe, Al, and Mn were 0.14, 1.49, 3.90, 6.82, 8.46, 8.49, 68.23, and 45.59 mg L−1, respectively. Cu was the most toxic metal to M. tuberculata, followed by Cd, Zn, Pb, Ni, Fe, Mn, and Al (Cu > Cd > Zn > Pb > Ni > Fe > Mn > Al. Metals bioconcentration in M. tuberculata increases with exposure to increasing concentrations and Cu has the highest accumulation (concentration factor in the soft tissues. A comparison of LC50 values for metals for this species with those for other freshwater gastropods reveals that M. tuberculata is equally sensitive to metals.

  18. Phytoextraction of cadmium by Ipomoea aquatica (water spinach) in hydroponic solution: effects of cadmium speciation.

    Science.gov (United States)

    Wang, Kai-Sung; Huang, Lung-Chiu; Lee, Hong-Shen; Chen, Pai-Ye; Chang, Shih-Hsien

    2008-06-01

    Phytoextraction is a promising technique to remediate heavy metals from contaminated wastewater. However, the interactions of multi-contaminants are not fully clear. This study employed cadmium, Triton X-100 (TX-100), and EDTA to investigate their interactions on phytotoxicity and Cd phytoextraction of Ipomoea aquatica (water spinach) in simulated wastewater. The Cd speciation was estimated by a chemical equilibrium model and MINEQL+. Statistic regression was applied to evaluate Cd speciation on Cd uptake in shoots and stems of I. aquatica. Results indicated that the root length was a more sensitive parameter than root weight and shoot weight. Root elongation was affected by Cd in the Cd-EDTA solution and TX-100 in the Cd-TX-100 solution. Both the root length and the root biomass were negatively correlated with the total soluble Cd ions. In contrast, Cd phytoextraction of I. aquatic was correlated with the aqueous Cd ions in the free and complex forms rather than in the chelating form. Additionally, the high Cd bioconcentration factors of I. aquatica (375-2227 l kg(-1) for roots, 45-144 l kg(-1) for shoots) imply that I. aquatica is a potential aquatic plant to remediate Cd-contaminated wastewater.

  19. Retrospective monitoring of organotin compounds in biological samples from North Sea and Baltic Sea. Are the use restrictions successful?; Retrospektives Monitoring von Organozinnverbindungen in biologischen Proben aus Nord- und Ostsee. Sind die Anwendungsbeschraenkungen erfolgreich?

    Energy Technology Data Exchange (ETDEWEB)

    Ruedel, Heinz; Steinhanses, Juergen; Mueller, Josef [Fraunhofer-Inst. fuer Molekularbiologie und Angewandte Oekologie (IME), Schmallenberg (Germany); Schroeter-Kermani, Christa [Umweltbundesamt, FG II 1.2, Berlin (Germany)

    2009-06-15

    Organotin compounds are used as biocides, plastic additives and catalysts. With respect to environmental effects, tributyltin (TBT) and triphenyltin (TPT) compounds are the most relevant, because of their high aquatic toxicity and endocrine effects on mussels and snails. TBT was mainly used as antifouling agents in coatings of ships and boats. In 1989, Germany banned the application to ships < 25 m length. Finally, in 2003, the use of organotin-based antifoulants within the European Union was completely banned. The results demonstrate the effectiveness of the legal measures undertaken to control organotin inputs into the aquatic environment. Nevertheless, organotin compounds are still relevant pollutants. Water concentrations calculated from the measured tissue concentrations by using the respective bioconcentration factors are still above the Environmental Quality Standards derived in the context of the Water Framework Directive (0.2ng/l) and the OSPAR mussel EAC (Environmental Assessment Criteria; 2.4ng/g ww), Thus adverse effects to marine organisms cannot be excluded. Further studies should be performed to verify the declining trends. More sensitive analytical methods, e.g. species-specific isotope dilution analysis, are recommended in order to detect lower environmental concentrations. (orig.)

  20. Selenium in edible mushrooms.

    Science.gov (United States)

    Falandysz, Jerzy

    2008-01-01

    Selenium is vital to human health. This article is a compendium of virtually all the published data on total selenium concentrations, its distribution in fruitbody, bioconcentration factors, and chemical forms in wild-grown, cultivated, and selenium-enriched mushrooms worldwide. Of the 190 species reviewed (belonging to 21 families and 56 genera), most are considered edible, and a few selected data relate to inedible mushrooms. Most of edible mushroom species examined until now are selenium-poor (cesarea, A. campestris, A. edulis, A. macrosporus, and A. silvaticus. A particularly rich source of selenium could be obtained from selenium-enriched mushrooms that are cultivated on a substrate fortified with selenium (as inorganic salt or selenized-yeast). The Se-enriched Champignon Mushroom could contain up to 30 or 110 microg Se/g dw, while the Varnished Polypore (Ganoderma lucidum) could contain up to 72 microg Se/g dw. An increasingly growing database on chemical forms of selenium of mushrooms indicates that the seleno-compounds identified in carpophore include selenocysteine, selenomethionine, Se-methylselenocysteine, selenite, and several unidentified seleno-compounds; their proportions vary widely. Some aspects of environmental selenium occurrence and human body pharmacokinetics and nutritional needs will also be briefly discussed in this review.

  1. Bio-remediation of Pb and Cd polluted soils by switchgrass: A case study in India.

    Science.gov (United States)

    Arora, Kalpana; Sharma, Satyawati; Monti, Andrea

    2016-01-01

    In the present study bioremediation potential of a high biomass yielding grass, Panicum virgatum (switchgrass), along with plant associated microbes (AM fungi and Azospirillum), was tested against lead and cadmium in pot trials. A pot trial was set up in order to evaluate bioremediation efficiency of P. virgatum in association with PAMs (Plant Associated Microbes). Growth parameters and bioremediation potential of endomycorrhizal fungi (AMF) and Azospirillum against different concentrations of Pb and Cd were compared. AM fungi and Azospirillum increased the root length, branches, surface area, and root and shoot biomass. The soil pH was found towards neutral with AMF and Azospirillum inoculations. The bioconcentration factor (BCF) for Pb (12 mg kg(-1)) and Cd (10 mg kg(-1)) were found to be 0.25 and 0.23 respectively and translocation index (Ti) was 17.8 and 16.7 respectively (approx 45% higher than control). The lower values of BCF and Ti, even at highest concentration of Pb and Cd, revealed the capability of switchgrass of accumulating high concentration of Pb and Cd in the roots, while preventing the translocation of Pb and Cd to aerial biomass.

  2. Toxicity and uptake of cyclic nitramine explosives in ryegrass Lolium perenne

    International Nuclear Information System (INIS)

    Rocheleau, Sylvie; Lachance, Bernard; Kuperman, Roman G.; Hawari, Jalal; Thiboutot, Sonia; Ampleman, Guy; Sunahara, Geoffrey I.

    2008-01-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) are cyclic nitramines used as explosives. Their ecotoxicities have been characterized incompletely and little is known about their accumulation potential in soil organisms. We assessed the toxicity and uptake of these explosives in perennial ryegrass Lolium perenne L. exposed in a Sassafras sandy loam (SSL) or in a sandy soil (DRDC, CL-20 only) containing contrasting clay contents (11% and 0.3%, respectively). A 21-d exposure to RDX, HMX or CL-20 in either soil had no adverse effects on ryegrass growth. RDX and HMX were translocated to ryegrass shoots, with bioconcentration factors (BCF) of up to 15 and 11, respectively. In contrast, CL-20 was taken up by the roots (BCF up to 19) with no translocation to the shoots. These studies showed that RDX, HMX, and CL-20 can accumulate in plants and may potentially pose a risk of biomagnification across the food chain. - Cyclic nitramine explosives accumulate in perennial ryegrass and exhibit distinct uptake patterns

  3. Micropropagation of Myriophyllum alterniflorum (Haloragaceae) for stream rehabilitation: first in vitro culture and reintroduction assays of a heavy-metal hyperaccumulator immersed macrophyte.

    Science.gov (United States)

    Delmail, David; Labrousse, Pascal; Hourdin, Philippe; Larcher, Laure; Moesch, Christian; Botineau, Michel

    2013-01-01

    Nowadays, submersed aquatic macrophytes play a key role in stream ecology and they are often used as biomonitors of freshwater quality. So, these plants appear as natural candidates to stream rehabilitation experiments. Among them, the stream macrophyte Myriophyllum alterniflorum is used recently as biomonitor and is potentially useful for the restoration of heavy-metal contaminated localities. The best way to obtain a mass production of watermilfoil plants is micropropagation. We developed in vitro culture of M. alterniflorum and the effects of five media on the plant development were assessed. Five morphological and four physiological endpoints were examined leading to the recommendation of the Murashige and Skoog medium for ecotoxicological studies on chlorophyllous parts, and of the Gaudet medium for root cytotoxicity and phytoremediation studies. Micropropagated clones were acclimatized in a synthetic medium and in situ reintroduction was performed efficiently. This is the first report of micropropagated plants transplantation in streams. The successful establishment of watermilfoil beds even in polluted areas strongly suggested that ecological restoration using micropropagated watermilfoil is a promising biotechnology for phytoremediation and rehabilitation of degraded areas. Moreover, high bioconcentration factors evidenced that watermilfoil hyperaccumulates Cd and Cu, and could be potentially used in phytoremediation studies.

  4. Organic amendments enhance Pb tolerance and accumulation during micropropagation of Daphne jasminea.

    Science.gov (United States)

    Wiszniewska, Alina; Muszyńska, Ewa; Hanus-Fajerska, Ewa; Smoleń, Sylwester; Dziurka, Michał; Dziurka, Kinga

    2017-01-01

    The study investigated the effects of organic amendments: pineapple pulp (PP) and agar hydrolyzate (AH), on micropropagation and Pb bioaccumulation and tolerance in a woody shrub Daphne jasminea cultured in vitro. The amendments were analyzed for their content of carbohydrates, phenolic acids, and phytohormones and added at a dose of 10 mL L -1 to the medium containing 1.0 mM lead nitrate. Micropropagation coefficient increased by 10.2-16.6 % in PP and AH variants, respectively. Growth tolerance index increased by 22.9-31.8 % for the shoots and by 60.1-82.4 % for the roots. In the absence of Pb, the additives inhibited multiplication and growth of microplantlets. PP and AH facilitated Pb accumulation in plant organs, especially in the roots. PP enhanced bioconcentration factor and AH improved Pb translocation to the shoots. Adaptation to Pb was associated with increased accumulation of phenolics and higher radical scavenging activity. Medium supplementation, particularly with AH, enhanced antiradical activity of Pb-adapted lines but reduced the content of phenolic compounds. The study results indicated that supplementation with organic amendments may be beneficial in in vitro selection against lead toxicity.

  5. Developing ecotoxicological testing procedures for chemicals in soils

    International Nuclear Information System (INIS)

    Scheunert, I.; Doerfler, U.; Quast, I.; Schroll, R.; Topp, E.; Wolf, E.; Korte, F.

    1989-01-01

    The work deals with the determination of adsorption coefficients of volatile environmental chemicals, of volatilization rates (example: Lindane), biomineralization rates, total balances, and uptake into higher plants, further with the correlation of the uptake of chemicals by plants with physico-chemical and structural mass characteristics, and field experiments with lysimeters using labelled carbon 14 compounds for validation of the results obtained under laboratory conditions. - The devices for determination of adsorption coefficients and of volatilization rates of chemicals from soil and plant surfaces, as well as the closed experimental setup with controlled air throughput for billing labelled carbon 14 chemicals in the soil/plant system are described. The mass balance of the adsorption of volatile labelled carbon 14 chemicals in an alfisol, the volatilization of Lindane from the surface of a sandy soil, the concentration of hexachlorbenzene in different parts of plants, the uptake pathways of organic chemicals in higher plants and their corelation with mass properties, as well as the correlation between bioconcentration factors of chemicals in barley after application into the soil and physico-chemical and structural mass parameters are investigated and indicated in the form of tables and diagrams. (HK) [de

  6. Phytoextraction of trace elements by water hyacinth in contaminated area of gold mine tailing.

    Science.gov (United States)

    Romanova, Tamara E; Shuvaeva, Olga V; Belchenko, Ludmila A

    2016-01-01

    The ability of water hyacinth (Eichhornia crassipes) to uptake Ag, Ba, Cd, Mo, and Pb from waters in gold mine tailing area was studied. All experiments were carried out in the field conditions without using of model system. Bioconcentration (BCF) and translocation factors (TF) as well as elements accumulation by plant in different points of tailings-impacted area were evaluated. It has been shown that water hyacinth demonstrates high ability to accumulate Mo, Pb, and Ba with BCF values 24,360 ± 3600, 18,800 ± 2800 and 10,040 ± 1400, respectively and is efficient in translocation of Mo and Cd. The general trend of the plant accumulation ability in relation to the studied elements corresponds to their concentration in the medium. As the distance from tailings increases, concentration of Ag, Ba and Pb in plant decreases more clearly than that of Cd, while the amount of Mo accumulated by plant doesn't drop significantly in accordance with its concentration in water. Under the conditions of the confluence of river Ur and drainage stream Ba and Ag can be considered as potential candidates for phytomining.

  7. Toxicity and uptake of cyclic nitramine explosives in ryegrass Lolium perenne

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, Sylvie; Lachance, Bernard [Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2 (Canada); Kuperman, Roman G. [Edgewood Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, MD 21010-5424 (United States); Hawari, Jalal [Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2 (Canada); Thiboutot, Sonia; Ampleman, Guy [Defense Research and Development Canada, 2459 Pie IX Boulevard, Val Belair, Quebec G3J 1X5 (Canada); Sunahara, Geoffrey I. [Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2 (Canada)], E-mail: geoffrey.sunahara@cnrc-nrc.gc.ca

    2008-11-15

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) are cyclic nitramines used as explosives. Their ecotoxicities have been characterized incompletely and little is known about their accumulation potential in soil organisms. We assessed the toxicity and uptake of these explosives in perennial ryegrass Lolium perenne L. exposed in a Sassafras sandy loam (SSL) or in a sandy soil (DRDC, CL-20 only) containing contrasting clay contents (11% and 0.3%, respectively). A 21-d exposure to RDX, HMX or CL-20 in either soil had no adverse effects on ryegrass growth. RDX and HMX were translocated to ryegrass shoots, with bioconcentration factors (BCF) of up to 15 and 11, respectively. In contrast, CL-20 was taken up by the roots (BCF up to 19) with no translocation to the shoots. These studies showed that RDX, HMX, and CL-20 can accumulate in plants and may potentially pose a risk of biomagnification across the food chain. - Cyclic nitramine explosives accumulate in perennial ryegrass and exhibit distinct uptake patterns.

  8. Uptake of polychlorinated biphenyls and organochlorine pesticides from soil and air into radishes (Raphanus sativus)

    Energy Technology Data Exchange (ETDEWEB)

    Mikes, Ondrej; Cupr, Pavel [RECETOX, Research Centre for Environmental Chemistry and Ecotoxicology, Masaryk University, Kamenice 126/3, 625 00 Brno (Czech Republic); Trapp, Stefan [Department of Environmental Engineering, Technical University of Denmark, Miljoevej 113, DK-2800 Kgs. Lyngby (Denmark); Klanova, Jana [RECETOX, Research Centre for Environmental Chemistry and Ecotoxicology, Masaryk University, Kamenice 126/3, 625 00 Brno (Czech Republic)], E-mail: klanova@recetox.muni.cz

    2009-02-15

    Uptake of organochlorine pesticides and polychlorinated biphenyls from soil and air into radishes was measured at a heavily contaminated field site. The highest contaminant concentrations were found for DDT and its metabolites, and for {beta}-hexachlorocyclohexane. Bioconcentration factor (BCF, defined as a ratio between the contaminant concentration in the plant tissue and concentration in soil) was determined for roots, edible bulbs and shoots. Root BCF values were constant and not correlated to log K{sub OW}. A negative correlation between BCF and log K{sub OW} was found for edible bulbs. Shoot BCF values were rather constant and varied between 0.01 and 0.22. Resuspended soil particles may facilitate the transport of chemicals from soil to shoots. Elevated POP concentrations found in shoots of radishes grown in the control plot support the hypothesis that the uptake from air was more significant for shoots than the one from soil. The uptake of POPs from air was within the range of theoretical values predicted from log K{sub OA}. - Uptake from air represented for majority of persistent organochlorines a dominant pathway into shoots while uptake from soil was dominant for roots.

  9. Phytoremediation of heavy metal-contaminated water and sediment by eleocharis acicularis

    Energy Technology Data Exchange (ETDEWEB)

    Sakakibara, Masayuki; Ha, Nguyen Thi Hoang [Graduate School of Science and Engineering, Ehime University, Matsuyama (Japan); Ohmori, Yuko [Graduate School of Science and Engineering, Ehime University, Matsuyama (Japan); Taisei Kiso Sekkei Co., Ltd., Tokyo (Japan); Sano, Sakae [Faculty of Education, Ehime University, Matsuyama (Japan); Sera, Koichiro [Cyclotron Center, Iwate Medical University, Takizawa-mura (Japan)

    2011-08-15

    Phytoremediation is an environmental remediation technique that takes advantage of plant physiology and metabolism. The unique property of heavy metal hyperaccumulation by the macrophyte Eleocharis acicularis is of great significance in the phytoremediation of water and sediments contaminated by heavy metals at mine sites. In this study, a field cultivation experiment was performed to examine the applicability of E. acicularis to the remediation of water contaminated by heavy metals. The highest concentrations of heavy metals in the shoots of E. acicularis were 20 200 mg Cu/kg, 14 200 mg Zn/kg, 1740 mg As/kg, 894 mg Pb/kg, and 239 mg Cd/kg. The concentrations of Cu, Zn, As, Cd, and Pb in the shoots correlate with their concentrations in the soil in a log-linear fashion. The bioconcentration factor for these elements decreases log-linearly with increasing concentration in the soil. The results indicate the ability of E. acicularis to hyperaccumulate Cu, Zn, As, and Cd under natural conditions, making it a good candidate species for the phytoremediation of water contaminated by heavy metals. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Bioconcentration of trace metals by Saccostrea cucullata (von Born 1778) from Andaman waters

    Digital Repository Service at National Institute of Oceanography (India)

    Abhilash, K.R.; Gireeshkumar, T.R.; Venu, S.; Raveendran, T.V.

    glomerata 97 - 900 4.4 - 380 x x x 5. Bhat et al., 1968 27 Crassostrea gryphoides 171 - 403 x x x x 6. Coombs, 1972 28 Ostrea edulis 1050 - 395 42 - 67 x x x 7. Pringle et al., 1968 29 Crassostrea virginica 180 - 1420 7 - 517 x x x 8. Mc Farren et... Oyster, Mar Poll Bull, 6 (1975) 72–73. 27 Bhat Y M, Sastry H, Shah S M & Krishnamurthy T M, Manganese and cobalt content of some marine bivalves from Bombay. Indian National Science Academy Proceeding, Biology, 34 (1968) 283–287. 28 Coombs T L...

  11. Growth and metal bioconcentration by conspecific freshwater macroalgae cultured in industrial waste water

    OpenAIRE

    Michael B. Ellison; Rocky de Nys; Nicholas A. Paul; David A. Roberts

    2014-01-01

    The bioremediation of industrial waste water by macroalgae is a sustainable and renewable approach to the treatment of waste water produced by multiple industries. However, few studies have tested the bioremediation of complex multi-element waste streams from coal-fired power stations by live algae. This study compares the ability of three species of green freshwater macroalgae from the genus Oedogonium, isolated from different geographic regions, to grow in waste water for the bioremediation...

  12. Incorporation of inorganic mercury (Hg²⁺) in pelagic food webs of ultraoligotrophic and oligotrophic lakes: the role of different plankton size fractions and species assemblages.

    Science.gov (United States)

    Soto Cárdenas, Carolina; Diéguez, Maria C; Ribeiro Guevara, Sergio; Marvin-DiPasquale, Mark; Queimaliños, Claudia P

    2014-10-01

    In lake food webs, pelagic basal organisms such as bacteria and phytoplankton incorporate mercury (Hg(2+)) from the dissolved phase and pass the adsorbed and internalized Hg to higher trophic levels. This experimental investigation addresses the incorporation of dissolved Hg(2+) by four plankton fractions (picoplankton: 0.2-2.7 μm; pico+nanoplankton: 0.2-20 μm; microplankton: 20-50 μm; and mesoplankton: 50-200 μm) obtained from four Andean Patagonian lakes, using the radioisotope (197)Hg(2+). Species composition and abundance were determined in each plankton fraction. In addition, morphometric parameters such as surface and biovolume were calculated using standard geometric models. The incorporation of Hg(2+) in each plankton fraction was analyzed through three concentration factors: BCF (bioconcentration factor) as a function of cell or individual abundance, SCF (surface concentration factor) and VCF (volume concentration factor) as functions of individual exposed surface and biovolume, respectively. Overall, this investigation showed that through adsorption and internalization, pico+nanoplankton play a central role leading the incorporation of Hg(2+) in pelagic food webs of Andean lakes. Larger planktonic organisms included in the micro- and mesoplankton fractions incorporate Hg(2+) by surface adsorption, although at a lesser extent. Mixotrophic bacterivorous organisms dominate the different plankton fractions of the lakes connecting trophic levels through microbial loops (e.g., bacteria-nanoflagellates-crustaceans; bacteria-ciliates-crustaceans; endosymbiotic algae-ciliates). These bacterivorous organisms, which incorporate Hg from the dissolved phase and through their prey, appear to explain the high incorporation of Hg(2+) observed in all the plankton fractions. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The porifera Hymeniacidon perlevis (Montagu, 1818) as a bioindicator for water quality monitoring.

    Science.gov (United States)

    Mahaut, Marie-Laure; Basuyaux, Olivier; Baudinière, Estelle; Chataignier, Claire; Pain, Julien; Caplat, Christelle

    2013-05-01

    Because sponges are promising bioindicators, we present here a multispecies comparison of the bioconcentration capacity for copper, zinc and the hydrocarbon fluoranthene. The spatial distribution of sponge populations was studied in 17 areas in intertidal zones on the Lower Normandy coast (France) to determine the most common species with the highest bioaccumulation capacity. Results are compared with published data on blue mussels Mytilus edulis from the Réseau d'Observation de la Contamination Chimique biomonitoring network. A total of 720 sponge samples were collected to assess species richness. Samples were analysed for metal concentrations by flame-mode atomic absorption spectrometry. Analyses of polycyclic aromatic hydrocarbon were sub-contracted. Species richness varies according to the water mass concerned. The most common species in the study area showing the highest bioconcentration in its soft tissues is Hymeniacidon perlevis, which contains about 20 times the zinc, 44 times the copper and 16 times the fluoranthene levels found in mussels. The variability of contaminant concentrations in H. perlevis is also systematically higher than those in mussels. The results obtained for this sponge closely reflect the heterogeneous distribution of contaminants. This study demonstrates that H. perlevis has a much higher capacity to accumulate in situ contaminants than the blue mussel M. edulis. H. perlevis meets all the requirements of a good bioindicator suitable for use in an integrated monitoring programme. In the near future, controlled cultivation of H. perlevis will allow us to produce sufficient quantities of this species to carry out ecotoxicological tests and in situ biomonitoring by caging.

  14. Adaptive response of arbuscular mycorrhizal symbiosis to accumulation of elements and translocation in Phragmites australis affected by cadmium stress.

    Science.gov (United States)

    Huang, Xiaochen; Ho, Shih-Hsin; Zhu, Shishu; Ma, Fang; Wu, Jieting; Yang, Jixian; Wang, Li

    2017-07-15

    Arbuscular mycorrhizal (AM) fungi have been reported to play a central role in improving plant tolerance to cadmium (Cd)-contaminated sites. This is achieved by enhancing both the growth of host plants and the nutritive elements in plants. This study assessed potential regulatory effects of AM symbiosis with regard to nutrient uptake and transport, and revealed different response strategies to various Cd concentrations. Phragmites australis was inoculated with Rhizophagus irregularis in the greenhouse cultivation system, where it was treated with 0-20 mg L -1 of Cd for 21days to investigate growth parameters, as well as Cd and nutritive element distribution in response to AM fungus inoculation. Mycorrhizal plants showed a higher tolerance, particularly under high Cd-level stress in the substrate. Moreover, our results determined the roots as dominant Cd reservoirs in plants. The AM fungus improved Cd accumulation and saturated concentration in the roots, thus inhibiting Cd uptake to shoots. The observed distributions of nutritive elements and the interactions among these indicated the highest microelement contribution to roots, Ca contributed maximally in leaves, and K and P contributed similarly under Cd stress. In addition, AM fungus inoculation effectively impacted Mn and P uptake and accumulation while coping with Cd toxicity. This study also demonstrated translocation factor from metal concentration (TF) could be a good parameter to evaluate different transportation strategies induced by various Cd stresses in contrast to the bioconcentration factor (BCF) and translocation factor from metal accumulation (TF'). Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Factorization and non-factorization in diffractive hard scattering

    International Nuclear Information System (INIS)

    Berera, Arjun

    1997-01-01

    Factorization, in the sense defined for inclusive hard scattering, is discussed for diffractive hard scattering. A factorization theorem similar to its inclusive counterpart is presented for diffractive DIS. For hadron-hadron diffractive hard scattering, in contrast to its inclusive counterpart, the expected breakdown of factorization is discussed. Cross section estimates are given from a simple field theory model for non-factorizing double-pomeron-exchange (DPE) dijet production with and without account for Sudakov suppression

  16. Crystal Structure of Human Factor VIII: Implications for the Formation of the Factor IXa-Factor VIIIa Complex

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, J.C.; Huang, M.; Roth, D.A.; Furie, B.C.; Furie, B. (Wyeth); (MBL)

    2008-06-03

    Factor VIII is a procofactor that plays a critical role in blood coagulation, and is missing or defective in hemophilia A. We determined the X-ray crystal structure of B domain-deleted human factor VIII. This protein is composed of five globular domains and contains one Ca{sup 2+} and two Cu{sup 2+} ions. The three homologous A domains form a triangular heterotrimer where the A1 and A3 domains serve as the base and interact with the C2 and C1 domains, respectively. The structurally homologous C1 and C2 domains reveal membrane binding features. Based on biochemical studies, a model of the factor IXa-factor VIIIa complex was constructed by in silico docking. Factor IXa wraps across the side of factor VIII, and an extended interface spans the factor VIII heavy and light chains. This model provides insight into the activation of factor VIII and the interaction of factor VIIIa with factor IXa on the membrane surface.

  17. Crystal Structure of Human Factor VIII: Implications for the Formation of the Factor IXa-Factor VIIIa Complex

    Energy Technology Data Exchange (ETDEWEB)

    Chi Ki Ngo,J.; Huang, M.; Roth, D.; Furie, B.; Furie, B.

    2008-01-01

    Factor VIII is a procofactor that plays a critical role in blood coagulation, and is missing or defective in hemophilia A. We determined the X-ray crystal structure of B domain-deleted human factor VIII. This protein is composed of five globular domains and contains one Ca(2+) and two Cu(2+) ions. The three homologous A domains form a triangular heterotrimer where the A1 and A3 domains serve as the base and interact with the C2 and C1 domains, respectively. The structurally homologous C1 and C2 domains reveal membrane binding features. Based on biochemical studies, a model of the factor IXa-factor VIIIa complex was constructed by in silico docking. Factor IXa wraps across the side of factor VIII, and an extended interface spans the factor VIII heavy and light chains. This model provides insight into the activation of factor VIII and the interaction of factor VIIIa with factor IXa on the membrane surface.

  18. Radiation-induced defects formation in Bi-containing vitreous chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O.; Vakiv, M.; Balitska, V.; Kovalskiy, A. [Institute of Materials, Lvov (Ukraine)

    1997-12-01

    Processes of formation and annihilation of coordination defects in As{sub 2}Se{sub 3}Bi{sub y} and (As{sub 2}Se{sub 3})(Bi{sub 2}Se{sub 3}){sub y} amorphous chalcogenide semiconductors induced by influence of Co{sup 60} gamma-irradiation are investigated by photoelectric spectroscopy method. It is obtained that radiation-induced changes of photoelectrical properties on bioconcentration of As{sub 2}Se{sub 3}Bi{sub y} glasses are characterized by anomalous concentration dependence. The nature of this effect is associated with diamagnetic coordination defects formation. (author). 19 refs, 3 figs.

  19. Bioprocessing of ores: Application to space resources

    Science.gov (United States)

    Johansson, Karl R.

    1992-01-01

    The role of microorganisms in the oxidation and leaching of various ores (especially those of copper, iron, and uranium) is well known. This role is increasingly being applied by the mining, metallurgy, and sewage industries in the bioconcentration of metal ions from natural receiving waters and from waste waters. It is concluded that bioprocessing using bacteria in closed reactors may be a variable option for the recovery of metals from the lunar regolith. Obviously, considerable research must be done to define the process, specify the appropriate bacteria, determine the necessary conditions and limitations, and evaluate the overall feasibility.

  20. Activation of factor VII bound to tissue factor: A key early step in the tissue factor pathway of blood coagulation

    International Nuclear Information System (INIS)

    Rao, L.V.M.; Rapaport, S.I.

    1988-01-01

    Whether the factor VII/tissue factor complex that forms in tissue factor-dependent blood coagulation must be activated to factor VIIa/tissue factor before it can activate its substrates, factor X and IX, has been a difficult question to answer because the substrates, once activated, back-activate factor VII. The earlier studies suggested that human factor VII/tissue factor cannot activate factor IX. Studies have now been extended to the activation of factor X. Reaction mixtures were made with purified factor VII, X, and tissue factor; in some experiments antithrombin III and heparin were added to prevent back-activation of factor VII. Factor X was activated at similar rates in reaction mixtures containing either VII or factor VIIa after an initial 30-sec lag with factor VII. In reaction mixtures with factor VII a linear activation of factor X was established several minutes before cleavage of 125 I-labeled factor VII to the two-chain activated molecule was demonstrable on gel profiles. These data suggest that factor VII/tissue factor cannot activate measurable amounts of factor X over several minutes. Overall, the results support the hypothesis that a rapid preferential activation of factor VII bound to tissue factor by trace amounts of factor Xa is a key early step in tissue factor-dependent blood coagulation

  1. Ecosystem services trade-offs and determinants in China's Yangtze River Economic Belt from 2000 to 2015.

    Science.gov (United States)

    Xu, Xibao; Yang, Guishan; Tan, Yan; Liu, Jingping; Hu, Huizhi

    2018-09-01

    Ecosystem services (ES) play an important role in sustaining ecological security, sustainable development and human well-being. This study investigates spatio-temporal changes in five key ES in the Yangtze River Economic Belt of China in 2000-2015-water conservation (WC), soil retention (SR), carbon sequestration (CS), biodiversity conservation (BC) and food supply (FS), by applying three ecological models (InVEST, RUSLE, CASA). Employing scenario simulations, the study quantifies distinct effects of significant factors on ES changes. Using spatial overlapping and Spearman's rank correlation respectively, the study distinguishes spatial patterns of synergies and trade-offs between five ES at the grid and city-scales. The results show that CS, FS, WC and SR presented an overall upward trend, increasing by 22.7%, 16.9%, 6.4% and 4.7%, respectively, while BC remained steady with a marginal degradation. Change in these five ES exhibited dramatic spatial heterogeneity. Across 131 cities, 98.5% of which increased in CS, 87.7% in WC, 68.5% in FS, and 53.1% in SR, while more than half experienced slight degradation in BC. There is high heterogeneity and a great diversity among spatial distributions of ES synergies and trade-offs, which is largely dependent on ES pairs and spatial patterns of land use. Land use/land cover change was the dominant force driving changes in SR, BC and CS, while meteorological factors exhibited a greater effect on WS change than land use/land cover change. The paper examines the synergies between WC-SR, CS-BC and BC-FS on the city level, while WC-BC exhibits significant trade-offs, and no significant relationships for other ES pairs. It is imperative that ES trade-offs at different scales are incorporated to strengthen ecological protection and management policies in project implementation, maintaining ES within vital regions in China. More sophisticated methods and more ES indicators need to be incorporated to enhance the robustness and

  2. Activation of factor VII bound to tissue factor: a key early step in the tissue factor pathway of blood coagulation.

    OpenAIRE

    Rao, L V; Rapaport, S I

    1988-01-01

    Whether the factor VII/tissue factor complex that forms in tissue factor-dependent blood coagulation must be activated to factor VIIa/tissue factor before it can activate its substrates, factor X and factor IX, has been a difficult question to answer because the substrates, once activated, back-activate factor VII. Our earlier studies suggested that human factor VII/tissue factor cannot activate factor IX. Studies have now been extended to the activation of factor X. Reaction mixtures were ma...

  3. Risk Factors

    Science.gov (United States)

    ... cells do not invade nearby tissues or spread. Risk Factors Key Points Factors That are Known to ... chemicals . Factors That are Known to Increase the Risk of Cancer Cigarette Smoking and Tobacco Use Tobacco ...

  4. Determining the Number of Factors in P-Technique Factor Analysis

    Science.gov (United States)

    Lo, Lawrence L.; Molenaar, Peter C. M.; Rovine, Michael

    2017-01-01

    Determining the number of factors is a critical first step in exploratory factor analysis. Although various criteria and methods for determining the number of factors have been evaluated in the usual between-subjects R-technique factor analysis, there is still question of how these methods perform in within-subjects P-technique factor analysis. A…

  5. Distribuição ambiental de poluentes orgânicos encontrados em lodos de esgoto Environmental distribution of the organic contaminants found in sewage sludge

    Directory of Open Access Journals (Sweden)

    Lourival Costa Paraíba

    2005-09-01

    , water solubility, Henry's constant, octanol-water partition coefficient and soil half-life of each contaminant were used by the model. The bioconcentration factors in aquatic biota, roots, xylem sap, soil sorption coefficient were estimated by expressions that correlate each one of these bioconcentration factors with the octanol-water partition coefficient of the contaminants. The partition coefficients air-water and leaf-air, and the GUS index were calculated and used in this study. The modeling and simulations presented in this work reveal the preferential compartments of the contaminants.

  6. Heparanase enhances the generation of activated factor X in the presence of tissue factor and activated factor VII.

    Science.gov (United States)

    Nadir, Yona; Brenner, Benjamin; Fux, Liat; Shafat, Itay; Attias, Judith; Vlodavsky, Israel

    2010-11-01

    Heparanase is an endo-β-D-glucuronidase dominantly involved in tumor metastasis and angiogenesis. Recently, we demonstrated that heparanase is involved in the regulation of the hemostatic system. Our hypothesis was that heparanase is directly involved in activation of the coagulation cascade. Activated factor X and thrombin were studied using chromogenic assays, immunoblotting and thromboelastography. Heparanase levels were measured by enzyme-linked immunosorbent assay. A potential direct interaction between tissue factor and heparanase was studied by co-immunoprecipitation and far-western assays. Interestingly, addition of heparanase to tissue factor and activated factor VII resulted in a 3- to 4-fold increase in activation of the coagulation cascade as shown by increased activated factor X and thrombin production. Culture medium of human embryonic kidney 293 cells over-expressing heparanase and its derivatives increased activated factor X levels in a non-enzymatic manner. When heparanase was added to pooled normal plasma, a 7- to 8-fold increase in activated factor X level was observed. Subsequently, we searched for clinical data supporting this newly identified role of heparanase. Plasma samples from 35 patients with acute leukemia at presentation and 20 healthy donors were studied for heparanase and activated factor X levels. A strong positive correlation was found between plasma heparanase and activated factor X levels (r=0.735, P=0.001). Unfractionated heparin and an inhibitor of activated factor X abolished the effect of heparanase, while tissue factor pathway inhibitor and tissue factor pathway inhibitor-2 only attenuated the procoagulant effect. Using co-immunoprecipitation and far-western analyses it was shown that heparanase interacts directly with tissue factor. Overall, our results support the notion that heparanase is a potential modulator of blood hemostasis, and suggest a novel mechanism by which heparanase increases the generation of activated

  7. Transforming growth factor alpha, Shope fibroma growth factor, and vaccinia growth factor can replace myxoma growth factor in the induction of myxomatosis in rabbits.

    Science.gov (United States)

    Opgenorth, A; Nation, N; Graham, K; McFadden, G

    1993-02-01

    The epidermal growth factor (EGF) homologues encoded by vaccinia virus, myxoma virus, and malignant rabbit fibroma virus have been shown to contribute to the pathogenicity of virus infection upon inoculation of susceptible hosts. However, since the primary structures of these growth factors and the disease profiles induced by different poxvirus genera vary substantially, the degree to which the various EGF homologues perform similar roles in viral pathogenesis remains unclear. In order to determine whether different EGF-like growth factors can perform qualitatively similar functions in the induction of myxomatosis in rabbits, we created recombinant myxoma virus variants in which the native growth factor, myxoma growth factor (MGF), was disrupted and replaced with either vaccinia virus growth factor, Shope fibroma growth factor, or rat transforming growth factor alpha. Unlike the control virus containing an inactivated MGF gene, which caused marked attenuation of the disease syndrome and substantially less proliferation of the epithelial cell layers in the conjunctiva and respiratory tract, the recombinant myxoma virus strains expressing heterologous growth factors produced infections which were both clinically and histopathologically indistinguishable from wild-type myxomatosis. We conclude that these poxviral and cellular EGF-like growth factors, which are diverse with respect to primary structure and origin, have similar biological functions in the context of myxoma virus pathogenesis and are mitogenic for the same target cells.

  8. The effect of activated carbon on partitioning, desorption, and biouptake of native polychlorinated biphenyls in four freshwater sediments.

    Science.gov (United States)

    Sun, Xueli; Ghosh, Upal

    2008-11-01

    The present study evaluated the effect of activated carbon amendment in four freshwater sediments from the Great Lakes (North America) areas of concern with a wide range of sediment geochemical characteristics (0.83-5.1% total organic carbon) and polychlorinated biphenyl (PCB) concentrations (0.33-84.7 microg/g). The work focused on understanding the impact of activated carbon amendment on PCB aqueous partitioning, PCB desorption characteristics, and PCB biouptake in a freshwater oligochaete (Lumbriculus variegatus). The results showed that PCB aqueous equilibrium concentrations, rapid desorption fractions, and biouptake by the oligochaete were reduced after activated carbon amendment. Addition of activated carbon at a dose of 0.5-fold native organic carbon reduced PCB bioaccumulation by 42% for Niagara River sediment, 85% for Grasse River sediment, 74% for Milwaukee River sediment 1, and 70% for Milwaukee River sediment 2. A linear relationship was observed between log biota-sediment accumulation factor and the first 6-h desorption fractions for each PCB homologue for treated and untreated sediments. Water-lipid bioconcentration factors for PCB congeners were largely conserved after amendment with activated carbon. Our present results suggest that at steady state, changes in the aqueous PCB concentrations can be used to predict changes in PCB bioaccumulation in deposit-feeding organisms. Thus, use of advanced pore-water measurement techniques, such as solid-phase extraction passive samplers, may be suitable for long-term monitoring of treatment performance.

  9. Evaluation of potential phytoremediation of chrysanthemum in soil with excess copper

    Directory of Open Access Journals (Sweden)

    Janine Farias Menegaes

    2017-02-01

    Full Text Available Minimizing the harmful effects of copper (Cu in the soil, using plants are slow and gradual, requiring the identification of species with fitorremediativa fitness for this process. Thus, the present work had as objective to evaluate the cultivation of chrysanthemum cv. Dark Fiji in soil added with Cu as promising phytoremediation. The experiment was conducted in the period from July to December 2014, in the greenhouse of the Floriculture UFSM. In a completely randomized experimental design, with five treatments composed of doses of Cu added to the soil, in the amounts of 250, 500, 750 and 1,000 mg kg-1 and control (without addition, with five replications. In two crop cycles both with duration of 104 days from the production of seedlings to harvest. Chrysanthemum cuttings were obtained from cuttings collected in the garden clonal itself, with 8 cm long, rooted in commercial substrate and transplanted into containers containing soil. They evaluated phytotechnical parameters and translocation factors of aerial part of bioaccumulation and bioconcentration factor of Cu in plant roots and metal extraction rate. It was observed that at all doses of Cu added to the soil, the plants showed low plant development and floriferous affecting its aesthetic quality in both crop cycles. The high accumulation of Cu in the roots is indicative of growing tolerance, cv. Dark Fiji in areas with excess of this, with phytoremediation potential.

  10. Heavy metal contamination in water, soil and a potential vegetable garlic (Allium sativum L.) in Punjab, Pakistan

    International Nuclear Information System (INIS)

    Khan, Z.I.; Ahmad, K.; Yasmeen, S.; Mehmood, N.

    2017-01-01

    Heavy metal contamination in soil, water, and garlic (Allium sativum L.) (watered with canal, ground and sewage waters) in a semi-arid region was investigated in this study. A sub-urban area of district Khushab, Pakistan was chosen as the study site to assess the risks associated with the consumption of this vegetable supplied with three different types of water for irrigation. Sewage water had higher contents of metals and metalloids (Cu, Ni, Se, Mo, As, Fe and Zn) than in other waters. Mean metal concentrations were below the permissible values, but those of Pb and Mo exceeded their respective limits. Metal correlation for the vegetable and soil was significantly positive except for Cu. The range of bio-concentration factor varied between 0.06-20.51 mg/kg. The sewage water had the highest pollution load index. Zinc had the highest daily intake value (0.199), while Se had the lowest value (0.003). The range for health index stood between 0.261-73.44 mg/kg. Metals like Zn, Ni and Cu had enrichment factor higher than 1.0 which raised serious health concerns. It has been a routine to irrigate crops with sewage water but proper management of wastewater is required prior to its supply to the fields. Hazardous quotient (HQ) indicated alarming levels of different metals with respect to public health due to utilization of this vegetable receiving wastewater irrigation. (author)

  11. Uptake and Tissue Distribution of Pharmaceuticals and Personal Care Products in Wild Fish from Treated-Wastewater-Impacted Streams.

    Science.gov (United States)

    Tanoue, Rumi; Nomiyama, Kei; Nakamura, Haruna; Kim, Joon-Woo; Isobe, Tomohiko; Shinohara, Ryota; Kunisue, Tatsuya; Tanabe, Shinsuke

    2015-10-06

    A fish plasma model (FPM) has been proposed as a screening technique to prioritize potential hazardous pharmaceuticals to wild fish. However, this approach does not account for inter- or intraspecies variability of pharmacokinetic and pharmacodynamic parameters. The present study elucidated the uptake potency (from ambient water), tissue distribution, and biological risk of 20 pharmaceutical and personal care product (PPCP) residues in wild cyprinoid fish inhabiting treated-wastewater-impacted streams. In order to clarify the uncertainty of the FPM for PPCPs, we compared the plasma bioaccumulation factor in the field (BAFplasma = measured fish plasma/ambient water concentration ratio) with the predicted plasma bioconcentration factor (BCFplasma = fish plasma predicted by use of theoretical partition coefficients/ambient water concentration ratio) in the actual environment. As a result, the measured maximum BAFplasma of inflammatory agents was up to 17 times higher than theoretical BCFplasma values, leading to possible underestimation of toxicological risk on wild fish. When the tissue-blood partition coefficients (tissue/blood concentration ratios) of PPCPs were estimated, higher transportability into tissues, especially the brain, was found for psychotropic agents, but brain/plasma ratios widely varied among individual fish (up to 28-fold). In the present study, we provide a valuable data set on the intraspecies variability of PPCP pharmacokinetics, and our results emphasize the importance of determining PPCP concentrations in possible target organs as well as in the blood to assess the risk of PPCPs on wild fish.

  12. Estimation of physicochemical properties of 2-ethylhexyl-4-methoxycinnamate (EHMC) degradation products and their toxicological evaluation.

    Science.gov (United States)

    Gackowska, Alicja; Studziński, Waldemar; Kudlek, Edyta; Dudziak, Mariusz; Gaca, Jerzy

    2018-06-01

    The organic UV filters, commonly used in personal protection products, are of concern because of their potential risk to aquatic ecosystems and living organisms. One of UV filters is ethylhexyl-4-methoxycinnamate (EHMC) acid. Studies have shown that, in the presence of oxidizing and chlorinating factors, EHMC forms a series of products with different properties than the substrate. In this study, the toxicities of EHMC and its transformation/degradation products formed under the influence of NaOCl/UV and H 2 O 2 /UV systems in the water medium were tested using Microtox® bioassay and by observation of mortality of juvenile crustaceans Daphnia magna and Artemia Salina. We have observed that oxidation and chlorination products of EHMC show significantly higher toxicity than EHMC alone. The toxicity of chemicals is related to their physicochemical characteristic such as lipophilicity and substituent groups. With the increase in lipophilicity of products, expressed as log K OW , the toxicity (EC 50 ) increases. On the basis of physicochemical properties such as vapour pressure (VP), solubility (S), octanol-water partition coefficient (K OW ), bioconcentration factor (BCF) and half-lives, the overall persistence (P OV ) and long-range transport potential (LRTP) of all the products and EHMC were calculated. It was shown that the most persistent and traveling on the long distances in environment are methoxyphenol chloroderivatives, then methoxybenzene chloroderivatives, EHMC chloroderivatives, methoxybenzaldehyde chloroderivatives and methoxycinnamate acid chloroderivatives. These compounds are also characterised by high toxicity.

  13. Germination and seedling growth of Indian mustard exposed to cadmium and chromium

    Directory of Open Access Journals (Sweden)

    Luca Marchiol

    2006-03-01

    Full Text Available To make phytoremediation a technically viable option for large-scale applications we need plants that are able to guarantee high biomass yield as well as high accumulation of heavy metals in their aerial parts. The aim of this investigation was to study the performance of aquacultured plants of Indian mustard in the presence of different concentrations of cadmium and chromium since seed germination. The effects on germination and growth of seedlings of Indian mustard (Brassica juncea L. Czern cv. WNFP, Varuna and Barton, were investigated in/under hydroponic conditions during a 4-week experiment. Cadmium and chromium were provided since germination as cadmium nitrate Cd(NO32 and chromium bichromate K2Cr2O7 (0.5, 1 and 1.5 M. Plant biomass growth measured at the end of the experiments varied with the different metal concentrations in the nutrient solution and the accumulation of the elements in the plant fractions differed significantly among/between cultivars. Ability in the uptake of metals and their mobilization and storage in the aerial plant biomass, expressed by the bioconcentration factor (BCF and translocation factor (TF, respectively, are the most important traits of plants with phytoextraction potential. Brassica juncea was confirmed as being a highly tolerant species, but poor metal translocation values were registered, therefore the high amount of Cd and Cr concentrated in the root systems did not migrate to the aerial, harvestable, part of the plant.

  14. Factor concentrates for the treatment of factor XIII deficiency.

    Science.gov (United States)

    Gootenberg, J E

    1998-11-01

    Factor XIII deficiency is a severe autosomal recessive bleeding disorder associated with a characteristic pattern of neonatal hemorrhage and a lifelong bleeding diathesis. Even relatively minor trauma can be followed by prolonged and recurrent bleeding. Intracranial hemorrhage is a frequent complication. With the development of safe and effective factor XIII concentrates, reliable prophylactic treatment is possible. Two plasma-derived, virus-inactivated factor XIII concentrates are currently in production. The first, Fibrogammin P, (Centeon LLC, King of Prussia, PA, USA; and Centeon Pharma GmbH, Marburg, Germany) is marketed in Europe, South America, South Africa, and Japan. It is distributed in the United States under a Food and Drug Administration Investigational New Drug Application. A second factor XIII concentrate (Bio Products Laboratory, Elstree, UK) is available for use only on a "named patient" compassionate basis in the United Kingdom. Patients with factor XIII deficiency who receive appropriately timed periodic infusions of such factor XIII concentrates are able to live normal lives, free from catastrophic bleeding episodes.

  15. Epidermal growth factor and insulin-like growth factor I upregulate the expression of the epidermal growth factor system in rat liver

    DEFF Research Database (Denmark)

    Bor, M V; Sørensen, B S; Vinter-Jensen, L

    2000-01-01

    BACKGROUND/AIM: Both epidermal growth factor and insulin-like growth factor I play a role in connection with the liver. In the present study, the possible interaction of these two growth factor systems was studied by investigating the effect of epidermal growth factor or insulin-like growth factor...... I treatment on the expression of the epidermal growth factor receptor, and its activating ligands, transforming growth factor-alpha and epidermal growth factor. METHODS: Fifty-five male rats received no treatment, human recombinant epidermal growth factor or human recombinant insulin-like growth.......8+/-1.6 fmol/mg protein epidermal growth factor and 144+/-22 fmol/mg protein transforming growth factor-alpha. Both epidermal growth factor and insulin-like growth factor I treatment increased the expression of mRNA for transforming growth factor-alpha and epidermal growth factor receptor, as well...

  16. Hemophilia B with mutations at glycine-48 of factor IX exhibited delayed activation by the factor VIIa-tissue factor complex.

    Science.gov (United States)

    Wu, P C; Hamaguchi, N; Yu, Y S; Shen, M C; Lin, S W

    2000-10-01

    Gly-48 is in the conserved DGDQC sequence (residues 47-51 of human factor IX) of the first EGF (EGF-1)-like domain of factor IX. The importance of the Gly-48 is manifested by two hemophilia B patients; factor IXTainan and factor IXMalmo27, with Gly-48 replaced by arginine (designated IXG48R) and valine (IXG48V), respectively. Both patients were CRM+ exhibiting mild hemophilic episodes with 25% (former) and 19% (latter) normal clotting activities. We characterize both factor IX variants to show the roles of Gly-48 and the conservation of the DGDQC sequence in factor IX. Purified plasma and recombinant factor IX variants exhibited approximately 26%-27% normal factor IX's clotting activities with G48R or G48V mutation. Both variants depicted normal quenching of the intrinsic fluorescence by increasing concentrations of calcium ions and Tb3+, indicating that arginine and valine substitution for Gly-48 did not perturb the calcium site in the EGF-1 domain. Activation of both mutants by factor XIa appeared normal. The reduced clotting activity of factors IXG48R and IXG48V was attributed to the failure of both mutants to cleavage factor X: in the presence of only phospholipids and calcium ions, both mutants showed a 4 to approximately 7-fold elevation in Km, and by adding factor VIIIa to the system, although factor VIIIa potentiated the activation of factor X by the mutants factor IXaG48R and factor IXaG48V, a 2 to approximately 3-fold decrease in the catalytic function was observed with the mutant factor IXa's, despite that they bound factor VIIIa on the phospholipid vesicles with only slightly reduced affinity when compared to wild-type factor IXa. The apparent Kd for factor VIIIa binding was 0.83 nM for normal factor IXa, 1.74 nM for IXaG48R and 1.4 nM for IXaG48V. Strikingly, when interaction with the factor VIIa-TF complex was examined, both mutations were barely activated by the VIIa-TF complex and they also showed abnormal interaction with VIIa-TF in bovine

  17. The importance of residues 195-206 of human blood clotting factor VII in the interaction of factor VII with tissue factor

    International Nuclear Information System (INIS)

    Wildgoose, P.; Kisiel, W.; Kazim, A.L.

    1990-01-01

    Previous studies indicated that human and bovine factor VII exhibit 71% amino acid sequence identity. In the present study, competition binding experiments revealed that the interaction of human factor VII with cell-surface human tissue factor was not inhibited by 100-fold molar excess of bovine factor VII. This finding indicated that bovine and human factor VII are not structurally homologous in the region(s) where human factor VII interacts with human tissue factor. On this premise, the authors synthesized three peptides corresponding to regions of human factor VII that exhibited marked structural dissimilarity to bovine factor VII; these regions of dissimilarity included residues 195-206, 263-274, and 314-326. Peptide 195-206 inhibited the interaction of factor VII with cell-surface tissue factor and the activation of factor X by a complex of factor VIIa and tissue factor half-maximally at concentrations of 1-2 mM. A structurally rearranged form of peptide 195-206 containing an aspartimide residue inhibited these reactions half-maximally at concentrations of 250-300 μM. In contrast, neither peptide 263-274 nor peptide 314-326, at 2 mM concentration, significantly affected either factor VIIa interaction with tissue factor or factor VIIa-mediated activation of factor X. The data provide presumptive evidence that residues 195-206 of human factor VII are involved in the interaction of human factor VII with the extracellular domain of human tissue factor apoprotein

  18. [Coagulation factor VII levels in uremic patients and theirs influence factors].

    Science.gov (United States)

    Fang, Jun; Xia, Ling-Hui; Wei, Wen-Ning; Song, Shan-Jun

    2004-12-01

    This study was aimed to investigate coagulation factor VII level in uremic patients with chronic renal failure and to explore theirs influence factors. The plasma levels of coagulation factor VII were detected in 30 uremic patients with chronic renal failure before and after hemodialysis for 1 month, the factor VII activity (FVII:C) was determined by one-stage coagulation method, while activated factor VII (FVIIa) was measured by one-stage coagulation method using recombinant soluble tissue factor, and factor VII antigen was detected by ELISA. The results showed that: (1) The FVIIa, FVII:C and FVIIAg levels in chronic uremic patients before hemodialysis were 4.00 +/- 0.86 microg/L, (148.5 +/- 40.4)% and (99.8 +/- 21.1)% respectively, which were significantly increased, as compared with healthy controls [2.77 +/- 1.02 microg/L, (113.1 +/- 33.0)% and (73.7 +/- 18.3)% respectively, P factor VII was positively correlated with levels of blood uria nitrogen and serum creatinine before hemodialysis but not after hemodialysis. It is concluded that the enhanced levels of coagulation factor VII in chronic uremic patients suggested abnormal activated state, herperactivity and elevated production of factor VII which correlated with renal functional injury. The abnormality of factor VII in uremia may be aggravated by hemodialysis. Coagulation factor (FVII) may be a risk factor for cardiovascular events in uremic patients who especially had been accepted long-term hemodialysis.

  19. External Factors, Internal Factors and Self-Directed Learning Readiness

    Science.gov (United States)

    Ramli, Nurjannah; Muljono, Pudji; Afendi, Farit M.

    2018-01-01

    There are many factors which affect the level of self-directed learning readiness. This study aims to investigate the relationship between external factors, internal factors and self-directed learning readiness. This study was carried out by using a census method for fourth year students of medical program of Tadulako University. Data were…

  20. A factor analysis to detect factors influencing building national brand

    Directory of Open Access Journals (Sweden)

    Naser Azad

    Full Text Available Developing a national brand is one of the most important issues for development of a brand. In this study, we present factor analysis to detect the most important factors in building a national brand. The proposed study uses factor analysis to extract the most influencing factors and the sample size has been chosen from two major auto makers in Iran called Iran Khodro and Saipa. The questionnaire was designed in Likert scale and distributed among 235 experts. Cronbach alpha is calculated as 84%, which is well above the minimum desirable limit of 0.70. The implementation of factor analysis provides six factors including “cultural image of customers”, “exciting characteristics”, “competitive pricing strategies”, “perception image” and “previous perceptions”.

  1. Copper toxicity in leaves of Elodea canadensis Michx.

    Science.gov (United States)

    Malec, Przemysław; Maleva, Maria; Prasad, M N V; Strzałka, Kazimierz

    2009-05-01

    Elodea canadensis (Canadian waterweed) has an ability to accumulate and bioconcentrate heavy metals. In this work, selected cellular responses for Cu treatment were studied in leaves of E. canadensis. Short term experiments, i.e. 1 week exposure to 0.5, 1, 5, and 10 microM of Cu indicated that concentrations up to 10 microM Cu causes a pronounced accumulation of photosynthetic pigments, a drastic degradation of soluble proteins with molecular weight above 18 kDa and a rapid accumulation of polypeptides with molecular weight below 14 kDa. The connection of these observations with copper detoxification mechanisms in aquatic macrophytes are discussed.

  2. Diffusion of PAH in potato and carrot slices and application for a potato model

    DEFF Research Database (Denmark)

    Trapp, Stefan; Cammarano, A.; Capri, E.

    2007-01-01

    of water, potato tissue, and carrot tissue. Naphthalene, phenanthrene, anthracene, and fluoranthene served as model substances. Their transfer from source to sink disk was measured by HPLC to determine a velocity rate constant proportional to the diffusive conductivity. The diffusive flux through the plant...... of the chemical. The findings of this study provide a convenient method to estimate the diffusion of nonvolatile organic chemicals through various plant materials. The application to a radial diffusion model suggests that "growth dilution" renders the concentration of highly hydrophobic chemicals in potatoes...... below their equilibrium partitioning level. This is in agreement with field results for the bioconcentration of PAHs in potatoes....

  3. Identifying the important factors in simulation models with many factors

    NARCIS (Netherlands)

    Bettonvil, B.; Kleijnen, J.P.C.

    1994-01-01

    Simulation models may have many parameters and input variables (together called factors), while only a few factors are really important (parsimony principle). For such models this paper presents an effective and efficient screening technique to identify and estimate those important factors. The

  4. Quality factors

    International Nuclear Information System (INIS)

    Kerr, G.D.

    1986-01-01

    The quality factor, Q, is a dimensionless modifier used in converting absorbed dose, expressed in rads (or grays), to dose equivalent, expressed in rems (or seiverts). The dose equivalent is used in radiation protection to account for the biological effectiveness of different kinds of radiation. The quality factor is related to both the linear energy transfer (LET) and relative biological effectiveness (RBE). The RBE's obtained from biological experiments depend in a complex way on the observed biological effect, the specific test organism, and the experimental conditions. Judgement is involved, therefore, in the choice of the quality factor. Questions regarding the adequacy of current Q values for neutrons were raised first in a 1980 statement by the National Council on Radiation Protection (NCRP) and later in a 1985 statement by the International Commission on Radiological Protection (ICRP). In 1980, the NCRP alerted the technical community to possible future increases between a factor of three and ten in the Q for neutrons, and in 1985, the ICRP suggested an increase by a factor of two in Q for neutrons. Both the ICRP and NRCP are now recommending essentially the same guidance with regard to Q for neutrons: an increase by a factor of two. The Q for neutrons is based on a large, albeit unfocused, body of experimental data. In spite of the lack of focus, the data supporting a change in the neutron quality factor are substantial. However, the proposed doubling of Q for neutrons is clouded by other issues regarding its application. 33 refs., 4 figs., 6 tabs

  5. Pharmaceuticals in water, fish and osprey nestlings in Delaware River and Bay

    Science.gov (United States)

    Bean, Thomas G.; Rattner, Barnett A.; Lazarus, Rebecca S.; Day, Daniel D.; Burket, S. Rebekah; Brooks, Bryan W.; Haddad, Samuel P.; Bowerman, William W.

    2018-01-01

    Exposure of wildlife to Active Pharmaceutical Ingredients (APIs) is likely to occur but studies of risk are limited. One exposure pathway that has received attention is trophic transfer of APIs in a water-fish-osprey food chain. Samples of water, fish plasma and osprey plasma were collected from Delaware River and Bay, and analyzed for 21 APIs. Only 2 of 21 analytes exceeded method detection limits in osprey plasma (acetaminophen and diclofenac) with plasma levels typically 2–3 orders of magnitude below human therapeutic concentrations (HTC). We built upon a screening level model used to predict osprey exposure to APIs in Chesapeake Bay and evaluated whether exposure levels could have been predicted in Delaware Bay had we just measured concentrations in water or fish. Use of surface water and BCFs did not predict API concentrations in fish well, likely due to fish movement patterns, and partitioning and bioaccumulation uncertainties associated with these ionizable chemicals. Input of highest measured API concentration in fish plasma combined with pharmacokinetic data accurately predicted that diclofenac and acetaminophen would be the APIs most likely detected in osprey plasma. For the majority of APIs modeled, levels were not predicted to exceed 1 ng/mL or method detection limits in osprey plasma. Based on the target analytes examined, there is little evidence that APIs represent a significant risk to ospreys nesting in Delaware Bay. If an API is present in fish orders of magnitude below HTC, sampling of fish-eating birds is unlikely to be necessary. However, several human pharmaceuticals accumulated in fish plasma within a recommended safety factor for HTC. It is now important to expand the scope of diet-based API exposure modeling to include alternative exposure pathways (e.g., uptake from landfills, dumps and wastewater treatment plants) and geographic locations (developing countries) where API contamination of the environment may represent greater risk.

  6. Kinetics of the Factor XIa catalyzed activation of human blood coagulation Factor IX

    International Nuclear Information System (INIS)

    Walsh, P.N.; Bradford, H.; Sinha, D.; Piperno, J.R.; Tuszynski, G.P.

    1984-01-01

    The kinetics of activation of human Factor IX by human Factor XIa was studied by measuring the release of a trichloroacetic acid-soluble tritium-labeled activation peptide from Factor IX. Initial rates of trichloroacetic acid-soluble 3 H-release were linear over 10-30 min of incubation of Factor IX (88 nM) with CaCl 2 (5 mM) and with pure (greater than 98%) Factor XIa (0.06-1.3 nM), which was prepared by incubating human Factor XI with bovine Factor XIIa. Release of 3 H preceded the appearance of Factor IXa activity, and the percentage of 3 H released remained constant when the mole fraction of 3 H-labeled and unlabeled Factor IX was varied and the total Factor IX concentration remained constant. A linear correlation (r greater than 0.98, P less than 0.001) was observed between initial rates of 3 H-release and the concentration of Factor XIa, measured by chromogenic assay and by radioimmunoassay and added at a Factor IX:Factor XIa molar ratio of 70-5,600. Kinetic parameters, determined by Lineweaver-Burk analysis, include K/sub m/ (0.49 microM) of about five- to sixfold higher than the plasma Factor IX concentration, which could therefore regulate the reaction. The catalytic constant (k/sub cat/) (7.7/s) is approximately 20-50 times higher than that reported by Zur and Nemerson for Factor IX activation by Factor VIIa plus tissue factor. Therefore, depending on the relative amounts of Factor XIa and Factor VIIa generated in vivo and other factors which may influence reaction rates, these kinetic parameters provide part of the information required for assessing the relative contributions of the intrinsic and extrinsic pathways to Factor IX activation, and suggest that the Factor XIa catalyzed reaction is physiologically significant

  7. Factoring in Factor VIII With Acute Ischemic Stroke.

    Science.gov (United States)

    Siegler, James E; Samai, Alyana; Albright, Karen C; Boehme, Amelia K; Martin-Schild, Sheryl

    2015-10-01

    There is growing research interest into the etiologies of cryptogenic stroke, in particular as it relates to hypercoagulable states. An elevation in serum levels of the procoagulant factor VIII is recognized as one such culprit of occult cerebral infarctions. It is the objective of the present review to summarize the molecular role of factor VIII in thrombogenesis and its clinical use in the diagnosis and prognosis of acute ischemic stroke. We also discuss the utility of screening for serum factor VIII levels among patients at risk for, or those who have experienced, ischemic stroke. © The Author(s) 2015.

  8. Ricinus communis L. A Value Added Crop for Remediation of Cadmium Contaminated Soil.

    Science.gov (United States)

    Bauddh, Kuldeep; Singh, Kripal; Singh, Rana P

    2016-02-01

    Heavy metal pollution of soil is a global environmental problem and therefore its remediation is of paramount importance. Cadmium (Cd) is a potential toxicant to living organisms and even at very low concentrations. This study was aimed to assess the effectiveness of Ricinus communis for remediation of Cd contaminated soils. For this, growth and biomass of R. communis and Cd accumulation, translocation and partitioning in different plant parts were investigated after 8 months of plant growth in Cd contaminated soil (17.50 mg Cd kg−1 soil). Eight months old plants stabilized 51 % Cd in its roots and rest of the metal was transferred to the stem and leaves. There were no significant differences in growth, biomass and yield between control and Cd treated plants, except fresh weight of shoots. The seed yield per plant was reduced only by 5 % of Cd contaminated plants than control. The amount of Cd translocated to the castor seeds was nominal i.e. 0.007 µg Cd g−1 seeds. The bioconcentration factor reduced significantly in shoots and seeds in comparison to roots. The data indicates that R. communis is highly tolerant to Cd contamination and can be used for remediation of heavy metal polluted sites.

  9. Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India

    Energy Technology Data Exchange (ETDEWEB)

    Agoramoorthy, Govindasamy; Chen, F.-A. [Department of Pharmacy, Tajen University, Yanpu, Pingtung 907, Taiwan (China); Hsu, Minna J. [Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China)], E-mail: hsumin@mail.nsysu.edu.tw

    2008-09-15

    Mangrove and halophytic plants occur along the coastal areas of Tamil Nadu, south India and these plants have been used in traditional medicine for centuries. Heavy metals are known to pose a potential threat to terrestrial and aquatic biota. However, little is known on the toxic levels of heavy metals found in mangrove and halophytic plants that are used in traditional medicine in India. To understand heavy metal toxicity, we investigated the bioconcentration factors (BCF) of heavy metals in leaves collected from eight mangroves and five halophytes in the protected Pichavaram mangrove forest reserve in Tamil Nadu State, south India. Data presented in this paper describe the impact of essential (Cu, Fe, Mg, Mn and Zn) and non-essential/environmentally toxic trace metals (Hg, Pb and Sn) in mangrove and halophytic medicinal plants. The concentrations of Pb among 13 plant species were higher than the normal range of contamination reported for plants. The average concentration of Hg in the halophytic plants (0.43 {+-} 0.37 {mu}g/g) was seven times higher than mangrove plants (0.06 {+-} 0.03 {mu}g/g) and it indicated pollutants from industrial sources affecting halophytes more than mangroves. - Metal effects occur in India's mangrove ecosystem.

  10. Comparative evaluation of phytoremediation of metal contaminated soil of firing range by four different plant species

    Directory of Open Access Journals (Sweden)

    Saadia R. Tariq

    2016-11-01

    Full Text Available The phytoremediation potential of Helianthus annuus, Zea maize, Brassica campestris and Pisum sativum was studied for the soil of firing range contaminated with selected metals i.e. Cd, Cu, Co, Ni, Cr and Pb. The seedlings of the selected plants germinated in a mixture of sand and alluvial soil were transferred to the pots containing the soil of firing ranges and allowed to grow to the stage of reproductive growth. Subsequently they were harvested and then analyzed for selected metals by using AAS. Among the studied plants, P. sativum exhibited highest removal efficiency (i.e. 96.23% and bioconcentration factor for Pb thereby evidencing it to be Pb hyperaccumulator from the soil of firing ranges. Z. maize appreciably reduced the levels of all the selected metals in the soil but the highest phytoextraction capacity was shown for Pb i.e. 66.36%, which was enhanced to approximately 74% on EDTA application. H. annuus represented the highest removal potential for Cd i.e. 56.03% which was further increased on EDTA application. Thus it proved to be an accumulator of Cd after EDTA application. It was therefore concluded that different plants possess different phytoremediation potentials under given set of conditions.

  11. Degradation and plant uptake of nonylphenol (NP) and nonylphenol-12-ethoxylate (NP12EO) in four contrasting agricultural soils

    International Nuclear Information System (INIS)

    Sjoestroem, A.E.; Collins, C.D.; Smith, S.R.; Shaw, G.

    2008-01-01

    Nonylphenol polyethoxylates (NPEOs) are surfactants found ubiquitously in the environment due to widespread industrial and domestic use. Biodegradation of NPEOs produces nonylphenol (NP), an endocrine disruptor. Sewage sludge application introduces NPEOs and NP into soils, potentially leading to accumulation in soils and crops. We examined degradation of NP and nonylphenol-12-ethoxylate (NP12EO) in four soils. NP12EO degraded rapidly (initial half time 0.3-5 days). Concentrations became undetectable within 70-90 days, with a small increase in NP concentrations after 30 days. NP initially degraded quickly (mean half time 11.5 days), but in three soils a recalcitrant fraction of 26-35% remained: the non-degrading fraction may consist of branched isomers, resistant to biodegradation. Uptake of NP by bean plants was also examined. Mean bioconcentration factors for shoots and seeds were 0.71 and 0.58, respectively. Removal of NP from the soil by plant uptake was negligible (0.01-0.02% of initial NP). Root concentrations were substantially higher than shoot and seed concentrations. - Degradation curves of nonylphenol (NP) and nonylphenol-12-ethoxylate (NP12EO) in four soils indicate that 26-35% of NP is recalcitrant, with minor NP ingrowth from NP12EO breakdown

  12. Phytoremediation of Heavy Metals in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Felix Aibuedefe AISIEN

    2010-12-01

    Full Text Available One of the major environmental problems is the pollution of water and soil by toxic heavy metals. This study investigated the phytoremediation potential of water hyacinth, for the removal of cadmium (Cd, lead (Pb and zinc (Zn. Water hyacinths were cultured in bore-hole water, supplemented with 5mg/l of Zn and Pb and 1mg/l of Cd at pH 4.5, 6.8 and 8.5. The plants were separately harvested each week for six weeks. The results showed that removal of these metals from solution was fast especially in the first two weeks, after which it became gradual till saturation point was reached. The accumulation of Cd and Zn in leaves and roots increased with increase in pH. The highest accumulation was in the roots with metal concentration of 4870mg/kg, 4150mg/kg and 710mg/kg for Zn, Pb and Cd respectively at pH 8.5. The maximum values of bioconcentration factor (BCF for Zn, Pb and Cd were 1674, 1531 and 1479 respectively, suggesting that water hyacinth was good accumulator of Zn, Pb and Cd, and could be used to treat industrial wastewater contaminated with heavy metals such as Zn, Pb and Cd.

  13. Bioaccumulation and physiological effects of copepods sp. (Eucyclop sp.) fed Chlorella ellipsoides exposed to titanium dioxide (TiO2) nanoparticles and lead (Pb2+).

    Science.gov (United States)

    Matouke, Moise M; Mustapha, Moshood

    2018-05-01

    The demand for manufactured products and the derivatives of nanomaterials and non essential metals continue to increase, and as a consequence their presence in fisheries and aquaculture has therefore become a major concern for the risks to which our environment is exposed. The bioaccumulation profile of binary compounds (Titanium dioxide nanoparticles and lead) and their effects on the feeding behaviour of copepods were assessed in a simplified food chain including, the freshwater alga Chlorella ellipsoides and the cyclopoids copepods sp. Our results indicated that Pb and TiO 2 NPs individually and mixed can be transferred from alga to copepods via dietary pathway. The highest bioconcentration factor (748.5) was recorded for Pb in the combined compounds (Pb15 + Ti16.5) μg L -1 and the highest BCF (5.57) recorded for TiO 2 NPs was found in TiO 2 NPs (16.5) alone. Ingestion and filtration rate decreased significantly (p  0.05) in both single and binary treatments. The results demonstrate that the co-exposure of TiO 2 NPs and Pb inhibit the ingestion and filtration of microalgae by cyclopoid copepods sp. and also induce increase of carbohydrate, lipid; GPx, GR and CAT due to stress. Copyright © 2018. Published by Elsevier B.V.

  14. Phytoremediation of metals using lemongrass (Cymbopogon citratus (D.C.) Stapf.) grown under different levels of red mud in soil amended with biowastes.

    Science.gov (United States)

    Gautam, Meenu; Pandey, Divya; Agrawal, Madhoolika

    2017-06-03

    Due to hostile condition of red mud (RM), its utilization for vegetation is restricted. Therefore, RM with biowastes as soil amendment may offer suitable combination to support plant growth with reduced risk of metal toxicity. To evaluate the effects of RM on soil properties, plant growth performance, and metal accumulation in lemongrass, a study was conducted using different RM concentrations (0, 5, 10, and 15% w/w) in soil amended with biowastes [cow dung manure (CD) or sewage-sludge (SS)]. Application of RM in soil with biowastes improved organic matter and nutrient contents and caused reduction in phytoavailable metal contents. Total plant biomass was increased under all treatments, maximally at 5% RM in soil with SS (91.4%) and CD (51.7%) compared to that in control (no RM and biowastes). Lemongrass acted as a potential metal-tolerant plant as its metal tolerance index is >100%. Based on translocation and bioconcentration factors, lemongrass acted as a potential phytostabilizer of Fe, Mn, and Cu in roots and was found efficient in translocation of Al, Zn, Cd, Pb, Cr, As, and Ni from roots to shoot. The study suggests that 5% RM with biowastes preferably SS may be used to enhance phytoremediation potential of lemongrass.

  15. Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India

    International Nuclear Information System (INIS)

    Agoramoorthy, Govindasamy; Chen, F.-A.; Hsu, Minna J.

    2008-01-01

    Mangrove and halophytic plants occur along the coastal areas of Tamil Nadu, south India and these plants have been used in traditional medicine for centuries. Heavy metals are known to pose a potential threat to terrestrial and aquatic biota. However, little is known on the toxic levels of heavy metals found in mangrove and halophytic plants that are used in traditional medicine in India. To understand heavy metal toxicity, we investigated the bioconcentration factors (BCF) of heavy metals in leaves collected from eight mangroves and five halophytes in the protected Pichavaram mangrove forest reserve in Tamil Nadu State, south India. Data presented in this paper describe the impact of essential (Cu, Fe, Mg, Mn and Zn) and non-essential/environmentally toxic trace metals (Hg, Pb and Sn) in mangrove and halophytic medicinal plants. The concentrations of Pb among 13 plant species were higher than the normal range of contamination reported for plants. The average concentration of Hg in the halophytic plants (0.43 ± 0.37 μg/g) was seven times higher than mangrove plants (0.06 ± 0.03 μg/g) and it indicated pollutants from industrial sources affecting halophytes more than mangroves. - Metal effects occur in India's mangrove ecosystem

  16. Vitellogenin and vitellogenin receptor gene expression and 20-hydroxyecdysone concentration in Macrobrachium rosenbergii exposed to chlordecone.

    Science.gov (United States)

    Lafontaine, Anne; Hanikenne, Marc; Boulangé-Lecomte, Céline; Forget-Leray, Joëlle; Thomé, Jean-Pierre; Gismondi, Eric

    2016-10-01

    Chlordecone is a persistent organochlorine pesticide widely used in Guadeloupe (French West Indies) to control the banana weevil Cosmopolites sordidus. Although it was previously highlighted that chlordecone may affect the reproduction and growth of vertebrate species, little information is available on the chlordecone effects in invertebrates. The present study investigated the effects of chlordecone on a hormone and a protein having key roles in reproduction and growth of the decapod crustacean Macrobrachium rosenbergii, by measuring the 20-hydroxyecdysone concentration, vitellogenin, and vitellogenin receptor gene expression, as well as the bioconcentration of chlordecone in exposed prawns. First, the results revealed that chlordecone was accumulated in M. rosenbergii. Then, it was found that Vg and VgR gene expression were increased in male and female M. rosenbergii exposed to chlordecone for 90 and 240 days, while the 20-hydroxyecdysone concentrations were decreased. This work suggests that chlordecone accumulates in prawn tissues and could affect key molecules involved in the reproduction and the growth of the invertebrate M. rosenbergii. However, many questions remain unresolved regarding the impacts of chlordecone on growth and reproduction and the signaling pathways responsible for these effects, as well as the potential role of confounding factors present in in situ studies.

  17. Organochlorine pesticide levels in adipose tissue of pregnant women in Veracruz, Mexico.

    Science.gov (United States)

    Herrero-Mercado, Margarita; Waliszewski, S M; Valencia-Quintana, R; Caba, M; Hernández-Chalate, F; García-Aguilar, E; Villalba, R

    2010-06-01

    DDT and Lindane (gamma-HCH) which were used until 1999 in Mexico, have provided great benefits in the combat of vectors that spread infection-borne diseases and in agriculture for crop protection. The persistence in the environment and their accumulative properties results in bioconcentration in lipid rich tissues of the human body that reflect the extent of environmental pollution. Human adipose tissue samples were taken during 2009 from abdominal cavities of 69 pregnant women by cesarean surgery and from 34 samples of control donors by autopsy in Veracruz State. The samples were analyzed by gas chromatography with ECD. The results of mean levels (mg/kg on fat basis) were higher in controls compared to pregnant women beta-HCH 0.064 vs 0.027; pp'DDE 1.187 vs. 0.745; op'DDT 0.016 vs. 0.011; pp'DDT 0.117 vs. 0.099 and Sigma-DDT 1.337 vs. 0.854. The pregnant women group was divided according to age: up to 20, 20-30, and more than 30 years, and presented an increase for the more persistent pesticides with age in terms of mean concentrations and a more pronounced higher correlation in medians levels. Pairing Body Mass Index to organochlorine pesticide mean levels revealed no correlation between these factors in pregnant women.

  18. Total and bioavailable arsenic concentration in arid soils and its uptake by native plants from the pre-Andean zones in Chile.

    Science.gov (United States)

    Díaz, O; Tapia, Y; Pastene, R; Montes, S; Núñez, N; Vélez, D; Montoro, R

    2011-06-01

    Arsenic is the most important contaminant of the environment in northern Chile. Soil samples and plant organs from three native plant species, Pluchea absinthioides, Atriplex atacamensis and Lupinus microcarpus, were collected from arid zones in order to determine the total and bioavailable arsenic concentrations in soils and to assess the bioconcentration factor (BCF) and transport index (Ti) of arsenic in the plants. Total arsenic concentrations in soils (pH 8.3-8.5) where A. atacamensis and P. absinthioides were collected, reached levels considered to be contaminated (54.3 ± 15.4 and 52.9 ± 9.9 mg kg⁻¹, respectively), and these values were approximately ten times higher than in soils (pH 7.6) where L. microcarpus was collected. Bioavailable arsenic ranged from 0.18 to 0.42% of total arsenic concentration. In the three plant species, arsenic concentration in leaves were significantly (p ≤ 0.05) higher than in roots. L. microcarpus showed the highest arsenic concentration in its leaves (9.7 ± 1.6 mg kg⁻¹) and higher values of BCF (1.8) and Ti (6.1), indicating that this species has a greater capacity to accumulate and translocate the metalloid to the leaf than do the other species.

  19. A Comparison of growth on mercuric chloride for three Lemnaceae species reveals differences in growth dynamics that effect their suitability for use in either monitoring or remediating ecosystems contaminated with mercury.

    Science.gov (United States)

    Yang, Jingjing; Li, Gaojie; Bishopp, Anthony; Heenatigala, P. P. M.; Hu, Shiqi; Chen, Yan; Wu, Zhigang; Kumar, Sunjeet; Duan, Pengfei; Yao, Lunguang; Hou, Hongwei

    2018-04-01

    Mercury (Hg) is a toxic heavy metal that can alter the ecological balance when it contaminates aquatic ecosystems. Previously, researchers have used various Lemnaceae species either to monitor and/or remove heavy metals from freshwater systems. As Hg contamination is a pressing issue for aquatic systems worldwide, we assessed its impact on the growth of three commonly species of Lemnaceae - Lemna gibba 6745, Lemna minor 6580 and Spirodela polyrhiza 5543. We exposed plants to different concentrations of mercuric chloride (HgCl2) and monitored their growth, including relative growth rate, frond number, and fresh weight. These data were coupled with measurements of starch content, levels of photosynthetic pigment and the activities of antioxidant substances. The growth of all three lines showed significant negative correlations with Hg concentrations, and starch content, photosynthetic pigment, soluble protein and antioxidant enzymes levels were all clearly affected. Our results indicate that the L. gibba line used in this study was the most suitable of the three for biomonitoring of water contaminated with Hg. Accumulation of Hg was highest in the S. polyrhiza line with a bioconcentration factor over 1000, making this line the most suitable of the three tested for use in an Hg bioremediation system.

  20. A Comparison of Growth on Mercuric Chloride for Three Lemnaceae Species Reveals Differences in Growth Dynamics That Effect Their Suitability for Use in Either Monitoring or Remediating Ecosystems Contaminated With Mercury

    Directory of Open Access Journals (Sweden)

    Jingjing Yang

    2018-04-01

    Full Text Available Mercury (Hg is a toxic heavy metal that can alter the ecological balance when it contaminates aquatic ecosystems. Previously, researchers have used various Lemnaceae species either to monitor and/or remove heavy metals from freshwater systems. As Hg contamination is a pressing issue for aquatic systems worldwide, we assessed its impact on the growth of three commonly species of Lemnaceae- Lemna gibba 6745, Lemna minor 6580 and Spirodela polyrhiza 5543. We exposed plants to different concentrations of mercuric chloride (HgCl2 and monitored their growth, including relative growth rate, frond number (FN, and fresh weight (FW. These data were coupled with measurements of starch content, levels of photosynthetic pigment and the activities of antioxidant substances. The growth of all three lines showed significant negative correlations with Hg concentrations, and starch content, photosynthetic pigment, soluble protein and antioxidant enzymes levels were all clearly affected. Our results indicate that the L. gibba line used in this study was the most suitable of the three for biomonitoring of water contaminated with Hg. Accumulation of Hg was highest in the S. polyrhiza line with a bioconcentration factor over 1,000, making this line the most suitable of the three tested for use in an Hg bioremediation system.

  1. Combined effects of elevated CO_2 and Cd-contaminated water on growth, photosynthetic response, Cd accumulation and thiolic components status in Lemna minor L

    International Nuclear Information System (INIS)

    Pietrini, F.; Bianconi, D.; Massacci, A.; Iannelli, M.A.

    2016-01-01

    Highlights: • Elevated CO_2 did not affect the ability of L. minor plants to accumulate Cd in their tissues. • Elevated CO_2 decreased Cd toxicity in L. minor plants by increasing photosynthesis. • Elevated CO_2 reduced Cd toxicity in duckweed by enhancing antioxidant system. - Abstract: The objective of this study was to investigate the combined effects of elevated CO_2 and cadmium (Cd) treatments on growth, photosynthetic efficiency and phytoremediation ability in Lemna minor L. Plants of L. minor were exposed to different Cd concentrations (0, 1.5, 2.5 and 5 mg L"−"1 Cd) for periods of 24, 48 and 72 h at ambient (AC) and at elevated (EC) CO_2 (350 and 700 ppm, respectively). Cadmium concentration, bioconcentration factor, enzyme activities and thiols content enhanced in plants with the increase of Cd treatments, time of exposure and at both CO_2 levels. Glutathione levels increased only at AC. Growth, photosynthetic and chlorophyll fluorescence parameters, and the reduced glutathione to oxidized glutathione ratio declined in plants with increasing exposure time, Cd treatments and at both CO_2 levels. Our results suggested that the alleviation of toxicity, at low Cd doses, observed in L. minor grown at EC is dependent on both increased photosynthesis and an enhanced antioxidant capacity.

  2. Nitrate removal from polluted water by using a vegetated floating system.

    Science.gov (United States)

    Bartucca, Maria Luce; Mimmo, Tanja; Cesco, Stefano; Del Buono, Daniele

    2016-01-15

    Nitrate (NO3(-)) water pollution is one of the most prevailing and relevant ecological issues. For instance, the wide presence of this pollutant in the environment is dramatically altering the quality of superficial and underground waters. Therefore, we set up a floating bed vegetated with a terrestrial herbaceous species (Italian ryegrass) with the aim to remediate hydroponic solutions polluted with NO3(-). The floating bed allowed the plants to grow and achieve an adequate development. Ryegrass was not affected by the treatments. On the contrary, plant biomass production and total nitrogen content (N-K) increased proportionally to the amount of NO3(-) applied. Regarding to the water cleaning experiments, the vegetated floating beds permitted to remove almost completely all the NO3(-) added from the hydroponic solutions with an initial concentration of 50, 100 and 150 mg L(-1). Furthermore, the calculation of the bioconcentration factor (BCF) indicated this species as successfully applicable for the remediation of solutions polluted by NO3(-). In conclusion, the results highlight that the combination of ryegrass and the floating bed system resulted to be effective in the remediation of aqueous solutions polluted by NO3(-). Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Radionuclides in plankton from the South Pacific Basin

    International Nuclear Information System (INIS)

    Marsh, K.V.; Buddemeier, R.W.

    1984-01-01

    An investigation has been initiated of the utility of marine plankton as bioconcentrating samplers of low-level marine radioactivity in the southern hemisphere. A literature review has shown that both freshwater and marine plankton have trace element and radionuclide concentration factors (relative to water) of up to 10 4 . In 1956 and 1958 considerable work was done on the accumulation and distribution of a variety of fission and activation products produced by nuclear tests in the Marshall Islands. Since then, studies, have largely been confined to a few radionuclides, and most of the work in the last twenty years has been done in the northern hemisphere. The authors participated in Operations Deepfreeze 1981 and 1982, collecting a total of 48 plankton samples from the USCGC Glacier on its Antarctic cruises. Battelle Pacific Northwest Laboratories sampled air, water, rain, and fallout. The authors were able to measure concentrations in plankton of the naturally-occurring radionuclides 7 Be, 40 K, and the U and Th series, and they believe that they have detected low levels of 144 Ce and 95 Nb in seven samples ranging as far south as 68 0 . Biological identification of the plankton suggests a possible correlation between radionuclide concentration and the protozoa content of the samples. 7 references, 5 figures, 1 table

  4. Accumulation of cadmium, zinc, and copper by Helianthus annuus L.: impact on plant growth and uptake of nutritional elements.

    Science.gov (United States)

    Rivelli, Anna Rita; De Maria, Susanna; Puschenreiter, Markus; Gherbin, Piergiorgio

    2012-04-01

    We investigated the effects on physiological response, trace elements and nutrients accumulation of sunflower plants grown in soil contaminated with: 5 mg kg(-1) of Cd; 5 and 300 mg kg(-1) of Cd and Zn, respectively; 5, 300, and 400 mg kg(-1) of Cd, Zn, and Cu, respectively. Contaminants applied did not produce large effects on growth, except in Cd-Zn-Cu treatment in which leaf area and total dry matter were reduced, by 15%. The contamination with Cd alone did not affect neither growth nor physiological parameters, despite considerable amounts of Cd accumulated in roots and older leaves, with a high bioconcentration factor from soil to plant. By adding Zn and then Cu to Cd in soil, significant were the toxic effects on chlorophyll content and water relations due to greater accumulation of trace elements in tissues, with imbalances in nutrients uptake. Highly significant was the interaction between shoot elements concentration (Cd, Zn, Cu, Fe, Mg, K, Ca) and treatments. Heavy metals concentrations in roots always exceeded those in stem and leaves, with a lower translocation from roots to shoots, suggesting a strategy of sunflower to compartmentalise the potentially toxic elements in physiologically less active parts in order to preserve younger tissues.

  5. Estimation of Uptake of Humic Substances from Different Sources by Escherichia coli Cells under Optimum and Salt Stress Conditions by Use of Tritium-Labeled Humic Materials▿

    Science.gov (United States)

    Kulikova, Natalia A.; Perminova, Irina V.; Badun, Gennady A.; Chernysheva, Maria G.; Koroleva, Olga V.; Tsvetkova, Eugenia A.

    2010-01-01

    The primary goal of this paper is to demonstrate potential strengths of the use of tritium-labeled humic substances (HS) to quantify their interaction with living cells under various conditions. A novel approach was taken to study the interaction between a model microorganism and the labeled humic material. The bacterium Escherichia coli was used as a model microorganism. Salt stress was used to study interactions of HS with living cells under nonoptimum conditions. Six tritium-labeled samples of HS originating from coal, peat, and soil were examined. To quantify their interaction with E. coli cells, bioconcentration factors (BCF) were calculated and the amount of HS that penetrated into the cell interior was determined, and the liquid scintillation counting technique was used as well. The BCF values under optimum conditions varied from 0.9 to 13.1 liters kg−1 of cell biomass, whereas under salt stress conditions the range of corresponding values increased substantially and accounted for 0.2 to 130 liters kg−1. The measured amounts of HS that penetrated into the cells were 23 to 167 mg and 25 to 465 mg HS per kg of cell biomass under optimum and salt stress conditions, respectively. This finding indicated increased penetration of HS into E. coli cells under salt stress. PMID:20639375

  6. Interaction effects on uptake and toxicity of perfluoroalkyl substances and cadmium in wheat (Triticum aestivum L.) and rapeseed (Brassica campestris L.) from co-contaminated soil.

    Science.gov (United States)

    Zhao, Shuyan; Fan, Ziyan; Sun, Lihui; Zhou, Tao; Xing, Yuliang; Liu, Lifen

    2017-03-01

    A vegetation study was conducted to investigate the interactive effects of perfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), and Cadmium (Cd) on soil enzyme activities, phytotoxicity and bioaccumulation of wheat (Triticum aestivum L.) and rapeseed (Brassica campestris L.) from co-contaminated soil. Soil urease activities were inhibited significantly but catalase activities were promoted significantly by interaction of PFASs and Cd which had few effects on sucrase activities. Joint stress with PFASs and Cd decreased the biomass of plants and chlorophyll (Chl) content in both wheat and rapeseed, and malondialdehyde (MDA) content, superoxide dismutase (SOD) and peroxidase (POD) activities were increased in wheat but inhibited in rapeseed compared with single treatments. The bioconcentration abilities of PFASs in wheat and rapeseed were decreased, and the translocation factor of PFASs was decreased in wheat but increased in rapeseed with Cd addition. The bioaccumulation and translocation abilities of Cd were increased significantly in both wheat and rapeseed with PFASs addition. These findings suggested important evidence that the co-existence of PFASs and Cd reduced the bioavailability of PFASs while enhanced the bioavailability of Cd in soil, which increased the associated environmental risk for Cd but decreased for PFASs. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Using Bayes factors for multi-factor, biometric authentication

    Science.gov (United States)

    Giffin, A.; Skufca, J. D.; Lao, P. A.

    2015-01-01

    Multi-factor/multi-modal authentication systems are becoming the de facto industry standard. Traditional methods typically use rates that are point estimates and lack a good measure of uncertainty. Additionally, multiple factors are typically fused together in an ad hoc manner. To be consistent, as well as to establish and make proper use of uncertainties, we use a Bayesian method that will update our estimates and uncertainties as new information presents itself. Our algorithm compares competing classes (such as genuine vs. imposter) using Bayes Factors (BF). The importance of this approach is that we not only accept or reject one model (class), but compare it to others to make a decision. We show using a Receiver Operating Characteristic (ROC) curve that using BF for determining class will always perform at least as well as the traditional combining of factors, such as a voting algorithm. As the uncertainty decreases, the BF result continues to exceed the traditional methods result.

  8. Electroweak form factors

    International Nuclear Information System (INIS)

    Singh, S.K.

    2002-01-01

    The present status of electroweak nucleon form factors and the N - Δ transition form factors is reviewed. Particularly the determination of dipole mass M A in the axial vector form factor is discussed

  9. El factoring

    Directory of Open Access Journals (Sweden)

    Alberto Rosenthal

    1988-04-01

    Full Text Available RESUMEN El artículo  presenta, una conceptualización general de lo que es el factoring, el origen del mismo, su evolución y hace una clasificación de los distintos tipos de factoring.

  10. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

    Science.gov (United States)

    Gaviglio, Angela L; Knelson, Erik H; Blobe, Gerard C

    2017-05-01

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. © FASEB.

  11. Tumour Necrosis Factor-alpha and Nuclear Factor-kappa B Gene Variants in Sepsis.

    Science.gov (United States)

    Acar, Leyla; Atalan, Nazan; Karagedik, E Hande; Ergen, Arzu

    2018-01-20

    The humoral system is activated and various cytokines are released due to infections in tissues and traumatic damage. Nuclear factor-kappa B dimers are encoded by nuclear factor-kappa B genes and regulate transcription of several crucial proteins of inflammation such as tumour necrosis factor-alpha. To investigate the possible effect of polymorphisms on tumour necrosis factor-alpha serum levels with clinical and prognostic parameters of sepsis by determining the nuclear factor-kappa B-1-94 ins/del ATTG and tumour necrosis factor-alpha (-308 G/A) gene polymorphisms and tumour necrosis factor-alpha serum levels. Case-control study. Seventy-two patients with sepsis and 104 healthy controls were included in the study. In order to determine the polymorphisms of nuclear factor-kappa B-1-94 ins/del ATTG and tumour necrosis factor-alpha (-308 G/A), polymerase chain reaction-restriction fragment length polymorphism analysis was performed and serum tumour necrosis factor-alpha levels were determined using an enzyme-linked immunosorbent assay. We observed no significant differences in tumour necrosis factor-alpha serum levels between the study groups. In the patient group, an increase in the tumour necrosis factor-alpha serum levels in patients carrying the tumour necrosis factor-alpha (-308 G/A) A allele compared to those without the A allele was found to be statistically significant. Additionally, an increase in the tumour necrosis factor-alpha serum levels in patients carrying tumour necrosis factor-alpha (-308 G/A) AA genotype compared with patients carrying the AG or GG genotypes was statistically significant. No significant differences were found in these 2 polymorphisms between the patient and control groups (p>0.05). Our results showed the AA genotype and the A allele of the tumour necrosis factor-alpha (-308 G/A) polymorphism may be used as a predictor of elevated tumour necrosis factor-alpha levels in patients with sepsis.

  12. Growth factors II: insuline-like growth binging proteins (GFBPs Factores de crecimiento II: factores insulinoides de crecimiento

    Directory of Open Access Journals (Sweden)

    Hilda Norha Jaramillo Londoño

    1996-03-01

    Full Text Available This review summarizes recent knowledge concerning Insulin.like growth factors I and II, with emphasis on their biochemical structure, concentrations, binding proteins, receptors, mechanisms of action, biological effects, and alterations of their concentrations in biological fluids. Se revisan los Factores Insulinoides de Crecimiento, también denominados ";Factores de Crecimiento Similares a la Insulina";, sobre los cuales se dispone de abundante información. Se sintetizan conocimientos recientes sobre dichos factores con énfasis en los siguientes aspectos: estructura bioquímica, concentraciones y sus cambios en los líquidos biológicos, proteínas fijadoras, receptores, mecanismos de acción y efectos biológicos.

  13. EVALUATING THE IMPORTANCE OF FACTORS IN ANY GIVEN ORDER OF FACTORING.

    Science.gov (United States)

    Humphreys, L G; Tucker, L R; Dachler, P

    1970-04-01

    A methodology has been described and illustrated for obtaining an evaluation of the importance of the factors in a particular order of factoring that does not require faotoring beyond that order. For example, one can estimate the intercorrelations of the original measures with the perturbations of the first-order factor held constant or, the reverse, estimate the contribution to the intercorrelations of the originral measures from the first-order factors alone. Similar operations are possible at higher orders.

  14. Robust factorization

    DEFF Research Database (Denmark)

    Aanæs, Henrik; Fisker, Rune; Åström, Kalle

    2002-01-01

    Factorization algorithms for recovering structure and motion from an image stream have many advantages, but they usually require a set of well-tracked features. Such a set is in generally not available in practical applications. There is thus a need for making factorization algorithms deal effect...

  15. Heart disease - risk factors

    Science.gov (United States)

    Heart disease - prevention; CVD - risk factors; Cardiovascular disease - risk factors; Coronary artery disease - risk factors; CAD - risk ... a certain health condition. Some risk factors for heart disease you cannot change, but some you can. ...

  16. Concentrations of 17 elements, including mercury, in the tissues, food and abiotic environment of Arctic shorebirds.

    Science.gov (United States)

    Hargreaves, Anna L; Whiteside, Douglas P; Gilchrist, Grant

    2011-09-01

    Exposure to contaminants is one hypothesis proposed to explain the global decline in shorebirds, and is also an increasing concern in the Arctic. We assessed potential contaminants (As, Be, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, and Zn) at a shorebird breeding site in Nunavut, Canada. We compared element levels in soil, invertebrates and shorebird blood to assess evidence for bioconcentration and biomagnification within the Arctic-based food chain. We tested whether elements in blood, feathers and eggs of six shorebird species (Pluvialis squatarola, Calidris alpina, C. fuscicollis, Phalaropus fulicarius, Charadrius semipalmatus, and Arenaria interpres) were related to fitness endpoints: adult body condition, blood-parasite load, egg size, eggshell thickness, nest duration, and hatching success. To facilitate comparison to other sites, we summarise the published data on toxic metals in shorebird blood and egg contents. Element concentrations and invertebrate composition differed strongly among habitats, and habitat use and element concentrations differed among shorebird species. Hg, Se, Cd, Cu, and Zn bioconcentrated from soil to invertebrates, and Hg, Se and Fe biomagnified from invertebrates to shorebird blood. As, Ni, Pb, Co and Mn showed significant biodilution from soil to invertebrates to shorebirds. Soil element levels were within Canadian guidelines, and invertebrate Hg levels were below dietary levels suggested for the protection of wildlife. However, maximum Hg in blood and eggs approached levels associated with toxicological effects and Hg-pollution in other bird species. Parental blood-Hg was negatively related to egg volume, although the relationship varied among species. No other elements approached established toxicological thresholds. In conclusion, whereas we found little evidence that exposure to elements at this site is leading to the declines of the species studied, Hg, as found elsewhere in the Canadian Arctic, is of potential

  17. Accumulation of 137Cs and 90Sr from contaminated soil by three grass species inoculated with mycorrhizal fungi

    International Nuclear Information System (INIS)

    Entry, J.A.; Watrud, L.S.; Reeves, M.

    1999-01-01

    The use of plants to accumulate low level radioactive waste from soil, followed by incineration of plant material to concentrate radionuclides may prove to be a viable and economical method of remediating contaminated areas. We tested the influence of arbuscular mycorrhizae on 137 Cs and 90 Sr uptake by bahia grass (Paspalum notatum), johnson grass (Sorghum halpense) and switchgrass (Panicum virginatum) for the effectiveness on three different contaminated soil types. Exposure to 137 Cs or 90 Sr over the course of the experiment did not affect above ground biomass of the three grasses. The above ground biomass of bahia, johnson and switchgrass plants accumulated from 26.3 to 71.7% of the total amount of the 137 Cs and from 23.8 to 88.7% of the total amount of the 90 Sr added to the soil after three harvests. In each of the three grass species tested, plants inoculated with Glomus mosseae or Glomus intraradices had greater aboveground plant biomass, higher concentrations of 137 Cs or 90 Sr in plant tissue, % accumulation of 137 Cs or 90 Sr from soil and plant bioconcentration ratios at each harvest than those that did not receive mycorrhizal inoculation. Johnson grass had greater aboveground plant biomass, greater accumulation of 137 Cs or 90 Sr from soil and plant higher bioconcentration ratios with arbuscular mycorrhizal fungi than bahia grass and switchgrass. The greatest accumulation of 137 Cs and 90 Sr was observed in johnson grass inoculated with G. mosseae. Grasses can grow in wide geographical ranges that include a broad variety of edaphic conditions. The highly efficient removal of these radionuclides by these grass species after inoculation with arbuscular mycorrhizae supports the concept that remediation of radionuclide contaminated soils using mycorrhizal plants may present a viable strategy to remediate and reclaim sites contaminated with radionuclides

  18. The joy of factoring

    CERN Document Server

    Wagstaff, Samuel S

    2013-01-01

    This book is about the theory and practice of integer factorization presented in a historic perspective. It describes about twenty algorithms for factoring and a dozen other number theory algorithms that support the factoring algorithms. Most algorithms are described both in words and in pseudocode to satisfy both number theorists and computer scientists. Each of the ten chapters begins with a concise summary of its contents. The book starts with a general explanation of why factoring integers is important. The next two chapters present number theory results that are relevant to factoring. Further on there is a chapter discussing, in particular, mechanical and electronic devices for factoring, as well as factoring using quantum physics and DNA molecules. Another chapter applies factoring to breaking certain cryptographic algorithms. Yet another chapter is devoted to practical vs. theoretical aspects of factoring. The book contains more than 100 examples illustrating various algorithms and theorems. It also co...

  19. A factor analysis to find critical success factors in retail brand

    Directory of Open Access Journals (Sweden)

    Naser Azad

    2013-03-01

    Full Text Available The present exploratory study aims to find critical components of retail brand among some retail stores. The study seeks to build a brand name in retail level and looks to find important factors affecting it. Customer behavior is largely influenced when the first retail customer experience is formed. These factors have direct impacts on customer experience and satisfaction in retail industry. The proposed study performs an empirical investigation on two well-known retain stores located in city of Tehran, Iran. Using a sample of 265 people from regular customers, the study uses factor analysis and extracts four main factors including related brand, product benefits, customer welfare strategy and corporate profits using the existing 31 factors in the literature.

  20. Theoretical difference between impact factor and influence factor

    Directory of Open Access Journals (Sweden)

    Đilda Pečarić

    2010-06-01

    Full Text Available Bibliometric constructions of "knowledge maps" and "cognitive structures of science" do not differentiate between impact and influence factors. The difference can be constructedaccording to different meaning and interpretation of the terms reference and citation. Reference is "acknowledgment which one author gives to another", whereas citation is "acknowledgment which one document receives from another". Development of Information Science according to period and subject area is analyzed on the corpus of citation literature retrieved from doctoral dissertations in Information Science from 1978 to 2007 at Croatian universities. The research aim is to indicate the difference between document impact factor and author's influence factor (i.e. reference ability to produce effects on actions, behavior, and opinions of authors of doctoral theses. The influence factor serves to distinguish the key role of cited authors in time and according to the duration of the influence (the average age for cited papers of dominant authors in different periods is between eight and ten years. The difference between linear and interactive communication seems vital for the interpretation of cited half-life, i.e. the attitude of one science community towards used information resources and cognitive heritage. The analyzed corpus of 22,210 citations can be divided into three communication phases according to influence factor criteria: in the phase of dialogue and interactive communication 25% of bibliographic units are cited in the first four years; in the second phase another 25% of units are cited from the fifth to the ninth year; after ten years, in the dominant linear communication phase, approximately 30% of units are cited.

  1. Morphological re-description of Electrotaenia malapteruri (Cestoda: Proteocephalidae) and Dujardinnascaris malapteruri (Nematoda: Heterocheilidae) infecting the Electric catfish Malapterurus electricus and heavy metal accumulation in host and parasites in relation to water and sediment analysis in Lake Manzala, North Delta, Egypt.

    Science.gov (United States)

    Abdel-Gaber, Rewaida; Abdel-Ghaffar, Fathy; Abdallah Shazly, Mohamed; Morsy, Kareem; Al Quraishy, Saleh; Mohamed, Sanna; Mehlhorn, Heinz

    2017-06-01

    Parasites are one of the most serious limiting factors in aquaculture. The Electric catfish Malapterurus electricus was subjected to study the prevalence and mean intensity of parasitic infections throughout the whole year of 2015. Heavy metals accumulation in host fish and parasites were determined in relation to water quality and sediments of two different sites of Lake Manzala (Manzala and Bahr El-Baqar), Egypt. A total of 100 specimens of Electric catfish were collected and examined for the presence of helminth parasites. Two parasite species were recovered and morphologically identified. These were cestoda Electrotaenia malapteruri and nematode Dujardinnascaris malapteruri. Heavy metal analysis in water and sediments showed that measured heavy metals in Bahr El-Baqar were found in risky levels higher than permissible limits and Manzala site. Sediments were found to contain a higher level of metals than water samples. Heavy metals accumulation in recovered parasites and their host were also determined and showed significantly higher concentrations in parasites compared to their host tissues. According to bioconcentration factors, E. malapteruri showed that highest accumulation rate for all recorded elements up to 302. Essential elements like Cu and Fe were found in significantly higher concentrations in D. malapteruri, whereas E. malapteruri accumulated elements Cd, Pb, Ni, Mn, Zn and Ca to a significantly higher degree. Accordingly, the ratios (C[D.malapteruri]/C[E. malapteruri]) for most essential elements were higher than 0.5. Therefore, fish cestodes can be regarded as useful bio-indicators more than nematodes when evaluating the environmental pollution of aquatic ecosystems by heavy metals.

  2. Use of filler limestone and construction and demolition residues for remediating soils contaminated with heavy metals: an assessment by means of plant uptake.

    Science.gov (United States)

    Banegas, Ascension; Martinez-Sanchez, Maria Jose; Agudo, Ines; Perez-Sirvent, Carmen

    2010-05-01

    A greenhouse trial was carried out to evaluate the assimilation of heavy metals by three types of horticultural plants (lettuce, broccoli and alfalfa), different parts of which are destined for human and animal consumption (leaves, roots, fruits). The plants were cultivated in four types of soil, one uncontaminated (T1), one soil collected in the surrounding area of Sierra Minera (T2), the third being remediated with residues coming from demolition and construction activities (T3) and the four remediated with filler limestone (T4). To determine the metal content, soil samples were first ground to a fine powder using an agate ball mill. Fresh vegetable samples were separated into root and aboveground biomass and then lyophilized. The DTPA-extractable content was also determined to calculate the bioavailable amount of metal. Finally, the translocation factor (TF) and bioconcentration factor (BCF) were calculated. Arsenic levels were obtained by using atomic fluorescence spectrometry with an automated continuous flow hydride generation (HG-AFS) spectrometer and Cd, Pb and Zn was determined by electrothermal atomization atomic absorption spectrometry (ETAAS) or flame atomic absorption spectrometry (FAAS). Samples of the leached water were also obtained and analyzed. According to our results, the retention of the studied elements varies with the type of plant and is strongly decreased by the incorporation of filler limestone and/or construction and demolition residues to the soils. This practice represents a suitable way to reduce the risk posed to the biota by the presence of high levels of heavy metal in soil.

  3. A preliminary evaluation of some soil and plant parameters that influence root uptake of arsenic, cadmium, cooper, and zinc

    International Nuclear Information System (INIS)

    Hattemer-Frey, H.A.; Krieger, G.R.; Lau, V.

    1994-01-01

    In the absence of site-specific data, the concentration of metals in plants is typically estimated by multiplying the total concentration of metal in soil by a metal-specific soil-to-root bioconcentration factor (BCF). However, this approach does not account for various soil properties, such as pH, organic matter content, and cation exchange capacity, that are known to influence root uptake of some metals. For risk assessment purposes, a simple, predictive method for estimating root uptake of metals that is based on site-specific soil and crop data is needed so that the importance of the produce ingestion pathway and subsequent influence on human exposure can be quantitatively assessed. An easy-to-use method is necessary since collecting site-specific data on the concentration of metals in home-grown produce is often time-consuming and costly. Ideally, it should be possible to develop a statistically-reliable relationship between plant and soil metals levels that includes appropriate weighing factors for various soil properties. Multiple linear regression analyses were used to develop simple, predictive models for estimating the concentration of metals in plants via root uptake using site-specific soil data. This paper presents preliminary predictive equations for estimating root uptake of arsenic, cadmium, copper, and zinc in fruiting, root, and all vegetables combined (i.e., fruiting and root crop data were combined). Results show that by using data on additional soil parameters (other than relying solely on the concentration of metals in soil), the concentration of metals in fruiting and root vegetables can be more confidently predicted

  4. Phytofiltration of cadmium from water by Limnocharis flava (L.) Buchenau grown in free-floating culture system

    International Nuclear Information System (INIS)

    Abhilash, P.C.; Pandey, Vimal Chandra; Srivastava, Pankaj; Rakesh, P.S.; Chandran, Smitha; Singh, Nandita; Thomas, A.P.

    2009-01-01

    A hydroponics experiment was conducted to examine the phytofiltration of Cd by Limnocharis flava (L.) Buchenau grown in low-level Cd-contaminated water. For this, 45 d old seedlings of L .flava were transferred to a floating-support culture system containing nutrient solution spiked with four levels of Cd (0.5, 1, 2 and 4 mg l -1 ) and were separately harvested after 3, 7, 21 and 30 d. After 30 d harvesting, the percentage removal of Cd from the above four treatments reached up to 98, 96, 95 and 93%, respectively. Interestingly, all treatments had higher growth rate than control at 95% confidence level and plants still remained healthy at 4 mg l -1 Cd exposure. The bioaccumulation study showed a linear relationship of Cd (R 2 = 0.896-0.999) in all plant parts with the exposure time (3-30 d) and Cd concentrations in hydroponics system (0.5-4 mg l -1 ). Although, the root of L. flava had higher Cd concentration than leaf and peduncles, the total Cd concentrations in aerial plant parts were higher than the roots. The maximum bioconcentration factor (BCF) and translocation factor (TF) value of L. flava were calculated as 984.42 and 1.43, respectively. Estimated Cd accumulation capacity of L. flava per unit area (m 2 ) was found to be in the range of 218. 35-1698.92 mg m -2 .The experimental results demonstrated that L. flava is a suitable candidate for the phytofiltartion (>93%) of Cd from low-level Cd-contaminated water.

  5. Phytofiltration of cadmium from water by Limnocharis flava (L.) Buchenau grown in free-floating culture system

    Energy Technology Data Exchange (ETDEWEB)

    Abhilash, P.C., E-mail: pcabhilash@gmail.com [Eco-Auditing Group, National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow-226 001, Uttar Pradesh (India); School of Environmental Sciences, Mahatma Gandhi University, Priyadharshini Hills P.O., Kottayam- 686 008, Kerala (India); Pandey, Vimal Chandra; Srivastava, Pankaj [Eco-Auditing Group, National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow-226 001, Uttar Pradesh (India); Rakesh, P.S.; Chandran, Smitha [School of Environmental Sciences, Mahatma Gandhi University, Priyadharshini Hills P.O., Kottayam-686 008, Kerala (India); Singh, Nandita [Eco-Auditing Group, National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow-226 001, Uttar Pradesh (India); Thomas, A.P. [School of Environmental Sciences, Mahatma Gandhi University, Priyadharshini Hills P.O., Kottayam-686 008, Kerala (India)

    2009-10-30

    A hydroponics experiment was conducted to examine the phytofiltration of Cd by Limnocharis flava (L.) Buchenau grown in low-level Cd-contaminated water. For this, 45 d old seedlings of L .flava were transferred to a floating-support culture system containing nutrient solution spiked with four levels of Cd (0.5, 1, 2 and 4 mg l{sup -1}) and were separately harvested after 3, 7, 21 and 30 d. After 30 d harvesting, the percentage removal of Cd from the above four treatments reached up to 98, 96, 95 and 93%, respectively. Interestingly, all treatments had higher growth rate than control at 95% confidence level and plants still remained healthy at 4 mg l{sup -1} Cd exposure. The bioaccumulation study showed a linear relationship of Cd (R{sup 2} = 0.896-0.999) in all plant parts with the exposure time (3-30 d) and Cd concentrations in hydroponics system (0.5-4 mg l{sup -1}). Although, the root of L. flava had higher Cd concentration than leaf and peduncles, the total Cd concentrations in aerial plant parts were higher than the roots. The maximum bioconcentration factor (BCF) and translocation factor (TF) value of L. flava were calculated as 984.42 and 1.43, respectively. Estimated Cd accumulation capacity of L. flava per unit area (m{sup 2}) was found to be in the range of 218. 35-1698.92 mg m{sup -2}.The experimental results demonstrated that L. flava is a suitable candidate for the phytofiltartion (>93%) of Cd from low-level Cd-contaminated water.

  6. Phytoremediation potential of wild plants growing on soil contaminated with heavy metals.

    Science.gov (United States)

    Čudić, Vladica; Stojiljković, Dragoslava; Jovović, Aleksandar

    2016-09-01

    Phytoremediation is an emerging technology that employs higher plants to cleanup contaminated environments, including metal-polluted soils. Because it produces a biomass rich in extracted toxic metals, further treatment of this biomass is necessary. The aim of our study was to assess the five-year potential of the following native wild plants to produce biomass and remove heavy metals from a polluted site: poplar (Populus ssp.), ailanthus (Ailanthus glandulosa L.), false acacia (Robinia pseudoacacia L.), ragweed (Artemisia artemisiifolia L.), and mullein (Verbascum thapsus L). Average soil contamination with Pb, Cd, Zn, Cu, Ni, Cr, and As in the root zone was 22,948.6 mg kg-1, 865.4 mg kg-1, 85,301.7 mg kg-1, 3,193.3 mg kg-1, 50.7 mg kg-1, 41.7 mg kg-1,and 617.9 mg kg-1, respectively. We measured moisture and ash content, concentrations of Pb, Cd, Zn, Cu, Ni, Cr, and As in the above-ground parts of the plants and in ash produced by combustion of the plants, plus gross calorific values. The plants' phytoextraction and phytostabilisation potential was evaluated based on their bioconcentration factor (BCF) and translocation factor (TF). Mullein was identified as a hyperaccumulator for Cd. It also showed a higher gross calorific value (19,735 kJ kg-1) than ragweed (16,469 kJ kg-1).The results of this study suggest that mullein has a great potential for phytoextraction and for biomass generation, and that ragweed could be an effective tool of phytostabilisation.

  7. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress.

    Science.gov (United States)

    Ma, Ying; Rajkumar, Mani; Moreno, António; Zhang, Chang; Freitas, Helena

    2017-10-01

    This study evaluates the potential of serpentine endophytic bacterium to foster phytoremediation efficiency of Trifolium arvense grown on multi-metal (Cu, Zn and Ni) contaminated soils under drought stress. A drought resistant endophytic bacterial strain ASS1 isolated from the leaves of Alyssum serpyllifolium grown in serpentine soils was identified as Pseudomonas azotoformans based on biochemical tests and partial 16S rRNA gene sequencing. P. azotoformans ASS1 possessed abiotic stress resistance (heavy metals, drought, salinity, antibiotics and extreme temperature) and plant growth promoting (PGP) properties (phosphate solubilization, nitrogen fixation, production of 1-aminocyclopropane-1-carboxylate deaminase, siderophore and ammonia). Inoculation of T. arvense with ASS1 considerably increased the plant biomass and leaf relative water content in both roll towel assay and pot experiments in the absence and presence of drought stress (DS). In the pot experiments, ASS1 greatly enhanced chlorophyll content, catalase, peroxidase, superoxide dismutase activities, and proline content (only in the absence of drought) in plant leaves, whereas they decreased the concentrations of malondialdehyde. Irrespective of water stress, ASS1 significantly improved accumulation, total removal, bio-concentration factor and biological accumulation coefficient of metals (Cu, Zn and Ni), while decreased translocation factors of Cu. The effective colonization and survival in the rhizosphere and tissue interior assured improved plant growth and successful metal phytoremediation under DS. These results demonstrate the potential of serpentine endophytic bacterium ASS1 for protecting plants against abiotic stresses and helping plants to thrive in semiarid ecosystems and accelerate phytoremediation process in metal polluted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Uptake of metals and metalloids by Conyza canadensis L. from a thermoelectric power plant landfill

    Directory of Open Access Journals (Sweden)

    Vukojević Vesna

    2016-01-01

    Full Text Available Fourteen metals and metalloids were determined in Conyza canadensis L. harvested from the fly ash landfill of the thermoelectric power plant “Kolubara” (Serbia. Fly ash samples were collected together with the plant samples and subjected to sequential extraction according to the three-step sequential extraction scheme proposed by the Community Bureau of Reference (BCR; now the Standards, Measurements and Testing Program. The contents of metals and metalloids were determined by inductively coupled plasma optical emission spectrometry (ICP-OES in plant root and the aboveground part and correlated with their contents in the fly ash samples. The bioconcentration factor (BCF and translocation factors (TF were calculated to access uptake of metals from fly ash and their translocation to the aboveground part. Results regarding As revealed that fly ash samples in the proximity of the active cassette had higher amounts of the element. Principal component analysis (PCA showed that As had no impact on the classification of plant parts. BCF for As ranged from 1.44 to 23.8 and varied, depending on the investigated area; TF for As ranged from 0.43 to 2.61, indicating that the plant translocated As from root to shoot. In addition to As, Conyza canadensis L. exhibited efficient uptake of other metals from fly ash. According to the calculated BCF and TF, the plant retained Al, Fe and Cr in the root and translocated Zn, Cd, Cu and As from root to shoot in the course of the detoxifying process. [Projekat Ministarstva nauke Republike Srbije, br. 172030 i br. 172017

  9. Phytofiltration of cadmium from water by Limnocharis flava (L.) Buchenau grown in free-floating culture system.

    Science.gov (United States)

    Abhilash, P C; Pandey, Vimal Chandra; Srivastava, Pankaj; Rakesh, P S; Chandran, Smitha; Singh, Nandita; Thomas, A P

    2009-10-30

    A hydroponics experiment was conducted to examine the phytofiltration of Cd by Limnocharis flava (L.) Buchenau grown in low-level Cd-contaminated water. For this, 45 d old seedlings of L .flava were transferred to a floating-support culture system containing nutrient solution spiked with four levels of Cd (0.5, 1, 2 and 4 mg l(-1)) and were separately harvested after 3, 7, 21 and 30 d. After 30 d harvesting, the percentage removal of Cd from the above four treatments reached up to 98, 96, 95 and 93%, respectively. Interestingly, all treatments had higher growth rate than control at 95% confidence level and plants still remained healthy at 4 mg l(-1) Cd exposure. The bioaccumulation study showed a linear relationship of Cd (R(2)=0.896-0.999) in all plant parts with the exposure time (3-30 d) and Cd concentrations in hydroponics system (0.5-4 mg l(-1)). Although, the root of L. flava had higher Cd concentration than leaf and peduncles, the total Cd concentrations in aerial plant parts were higher than the roots. The maximum bioconcentration factor (BCF) and translocation factor (TF) value of L. flava were calculated as 984.42 and 1.43, respectively. Estimated Cd accumulation capacity of L. flava per unit area (m(2)) was found to be in the range of 218. 35-1698.92 mg m(-2).The experimental results demonstrated that L. flava is a suitable candidate for the phytofiltartion (>93%) of Cd from low-level Cd-contaminated water.

  10. Lead accumulation by jabon seedling (Anthocephalus cadamba) on tailing media with application of compost and arbuscular mycorrhizal fungi

    Science.gov (United States)

    Setyaningsih, L.; Setiadi, Y.; Budi, S. W.; Hamim; Sopandie, D.

    2017-03-01

    Lead (Pb) is one of the dangerous heavy metal contained in tailing that needs remediation activity. This study aimed to investigate the potency of jabon to take up and accumulate lead in its tissue by the application of compost and arbuscular mycorrhiza fungus (AMF) on pot observation. In Pb-containing tailing media, the average levels of Pb in roots seedling was 50% greater as compared to the levels of Pb in the stem and leaves of seedlings. Application of compost in tailings media significantly increased (p ≤ 0.5) the average levels of Pb in the roots and stems, but decreased Pb levels in leaves. Applications AMF significantly decreased (p ≤ 0.5) the average levels of Pb in the roots, stem and leaves of seedlings by approximately 18-33%. The combination applications of compost and AMF significantly (p ≤ 0.5) increased the level of Pb in the roots, stems and leaves of seedlings at 6, 16 and 27 fold respectively than that in control plant (without compost and AMF). After 12 weeks exposure, lead bioconcentration factor varied from 0.1-1.6 in seedling tissue with transport factor varied from 0.1-1.0. The application of active compost and AMF increased 1-15 fold lead accumulation from control, and the biggest accumulation was 452.9 x10-2 mg/plant with Pb concentration of 1.5 mM. Active compost and AMF application supported jabon seedling to act as lead phytostabilizer and to remove lead from the tailing to the above part of the plant.

  11. Bioaccumulation of trace metals in farmed pacific oysters Crassostrea gigas from SW Gulf of California coast, Mexico.

    Science.gov (United States)

    Jonathan, M P; Muñoz-Sevilla, N P; Góngora-Gómez, Andrés Martin; Luna Varela, Raquel Gabriela; Sujitha, S B; Escobedo-Urías, D C; Rodríguez-Espinosa, P F; Campos Villegas, Lorena Elizabeth

    2017-11-01

    The aim of the study was to evaluate the bioavailability of trace metals (Chromium, Copper, Nickel, Lead, Zinc, Cadmium, Arsenic, and Mercury) in the commercially consumed Crassostrea gigas oysters collected over a 12-month growth period (2011-12) from an experimental cultivation farm in La Pitahaya, Sinaloa State, Mexico. Sediment and water samples were also collected from four different zones adjacent to the cultivation area to identify the concentration patterns of metals. The results revealed that sewage disposals, fertilizers used for agricultural practices and shrimp culture are the major sources for the enrichment of certain toxic metals. The metal concentrations in oysters presented a decreasing order of abundance (all values in mg Kg -1 ): Zn (278.91 ± 93.03) > Cu (63.13 ± 31.72) > Cr (22.29 ± 30.23) > Cd (14.54 ± 4.28) > Ni (9.41 ± 11.33) > Pb (2.22 ± 1.33) > As (0.58 ± 0.91) > Hg (0.04 ± 0.06). Bioconcentration Factor (BCF) and Biota Sediment Accumulation Factor (BSAF) exhibited that C. gigas in the region are strong accumulators for Zn and Cd respectively. Thus, the present study proves to fulfill the gap in understanding the rate of bioaccumulation of metals in C. gigas which is regarded as the most sought after oyster species globally. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Clustering pesticides according to their molecular properties and their impacts by considering additional ecotoxicological parameters in the TyPol method

    Science.gov (United States)

    Traore, Harouna; Crouzet, Olivier; Mamy, Laure; Sireyjol, Christine; Rossard, Virginie; Servien, Remy; Latrille, Eric; Benoit, Pierre

    2017-04-01

    The understanding of the fate of pesticides and their environmental impacts largely relies on their molecular properties. We recently developed 'TyPol' (Typology of Pollutants), a clustering method based on statistical analyses combining several environmental endpoints (i.e. environmental parameters such as sorption coefficient, degradation half-life) and one ecotoxicological one (bioconcentration factor), and structural molecular descriptors (number of atoms in the molecule, molecular surface, dipole moment, energy of orbitals…). TyPol has been conceived on the available knowledge on QSAR of a wide diversity of organic compounds (Mamy et al., 2015). This approach also allows to focus on transformation products present in different clusters and to infer possible changes in environmental fate consecutively to different degradation processes (Servien et al., 2014; Benoit et al., 2016). The initial version of TyPol did not include any ecotoxicological parameters except the bioconcentration factor (BCF), which informs more on the transfer along the trophic chain rather than on the effects on non-target organisms. The objective was to implement the TyPol database with a data set of ecotoxicological data concerning pesticides and several aquatic and terrestrial organisms, in order to test the possibility to extend TyPol to ecotoxicological effects on various organisms. The data analysis (available literature and databases) revealed that relevant ecotoxicological endpoints for terrestrial organisms such as soil microorganisms and macroinvertebrates are lacking compared to aquatic organisms. We have added seven parameters for acute (EC50, LC50) and chronic (NOEC) toxicological effects for the following organisms: Daphnia, Algae, Lemna and Earthworm. In this new configuration, TyPol was used to classify about 45 pesticides in different behavioural and ecotoxicity clusters. The clustering results were analyzed to reveals relationships between molecular descriptors

  13. Amplification factor variable amplifier

    NARCIS (Netherlands)

    Akitsugu, Oshita; Nauta, Bram

    2007-01-01

    PROBLEM TO BE SOLVED: To provide an amplification factor variable amplifier capable of achieving temperature compensation of an amplification factor over a wide variable amplification factor range. ; SOLUTION: A Gilbert type amplification factor variable amplifier 11 amplifies an input signal and

  14. Electrical tortuosity, Kozeny’s factor and cementation factor modelled for chalk

    DEFF Research Database (Denmark)

    Katika, Konstantina; Fabricius, Ida Lykke

    2015-01-01

    saturated core plugs to determine the cementation factor, m. This value differs from the one Archie used to describe his equation and best describes the formation factor based on experimental data. Based on this m, we determine the formation factor, F, and the tortuosity, τ. We use this value of τ...

  15. Amplification factor variable amplifier

    NARCIS (Netherlands)

    Akitsugu, Oshita; Nauta, Bram

    2010-01-01

    PROBLEM TO BE SOLVED: To provide an amplification factor variable amplifier capable of achieving temperature compensation of an amplification factor over a wide variable amplification factor range. ;SOLUTION: A Gilbert type amplification factor variable amplifier 11 amplifies an input signal and can

  16. Affinity chromatography with pseudobiospecific ligands on high-performance supports for purification of proteins of biotechnological interest

    Directory of Open Access Journals (Sweden)

    N.B. Iannucci

    2003-03-01

    Full Text Available High-performance affinity matrices were obtained by attaching pseudobiospecific ligands to hollow-fibre membranes. The neutral protease contained in FlavourzymeTM was purified to homogeneity with Yellow 4R-HE affinity hollow-fibre membranes. Immobilisation of Red HE-3B allowed purification of a milk-clotting enzyme obtained by solid-state culture of Mucor bacilliformis. Copper immobilisation through iminodiacetic acid allowed fractionation of Biocon Bioconcentrated PlusTM to separate the pectinesterase-containing fraction. The productivity of the developed processes - 1900, 94 and 750 U/ml.min, respectively - was 10- to 15-fold higher than that achieved with the same ligands immobilised on agarose-based soft gels, mainly due to the shortening of the purification processes.

  17. Freshwater algae of the Nevada Test Site

    International Nuclear Information System (INIS)

    Taylor, W.D.; Giles, K.R.

    1979-06-01

    Fifty-two species of freshwater algae were identified in samples collected from the eight known natural springs of the Nevada Test Site. Although several species were widespread, 29 species were site specific. Diatoms provided the greatest variety of species at each spring. Three-fifths of all algal species encountered were diatoms. Well-developed mats of filamentous green algae (Chlorophyta) were common in many of the water tanks associated with the springs and accounted for most of the algal biomass. Major nutrients were adequate, if not abundant, in most spring waters - growth being limited primarily by light and physical habitat. There was some evidence of cesium-137 bioconcentration by algae at several of the springs

  18. Risk Factors for Internet Gaming Disorder: Psychological Factors and Internet Gaming Characteristics.

    Science.gov (United States)

    Rho, Mi Jung; Lee, Hyeseon; Lee, Taek-Ho; Cho, Hyun; Jung, Dong Jin; Kim, Dai-Jin; Choi, In Young

    2017-12-27

    Background : Understanding the risk factors associated with Internet gaming disorder (IGD) is important to predict and diagnose the condition. The purpose of this study is to identify risk factors that predict IGD based on psychological factors and Internet gaming characteristics; Methods : Online surveys were conducted between 26 November and 26 December 2014. There were 3568 Korean Internet game users among a total of 5003 respondents. We identified 481 IGD gamers and 3087 normal Internet gamers, based on Diagnostic and Statistical Manual for Mental Disorders (DSM-5) criteria. Logistic regression analysis was applied to identify significant risk factors for IGD; Results : The following eight risk factors were found to be significantly associated with IGD: functional and dysfunctional impulsivity (odds ratio: 1.138), belief self-control (1.034), anxiety (1.086), pursuit of desired appetitive goals (1.105), money spent on gaming (1.005), weekday game time (1.081), offline community meeting attendance (2.060), and game community membership (1.393; p < 0.05 for all eight risk factors); Conclusions : These risk factors allow for the prediction and diagnosis of IGD. In the future, these risk factors could also be used to inform clinical services for IGD diagnosis and treatment.

  19. Synergistic effect of factor VII gene polymorphisms causing mild factor VII deficiency in a case of severe factor X deficiency.

    Science.gov (United States)

    Deshpande, Rutuja; Ghosh, Kanjaksha; Shetty, Shrimati

    2017-01-01

    Congenital combined deficiency of coagulation factors VII and X are mainly attributed to large deletions involving both the genes in chromosome 13 or occasionally due to the coincidental occurrence of independently occurring mutations. We report the molecular basis of congenital combined deficiency of factors VII and X in a 6-year-old female child. Direct DNA sequencing of both factor VII (F7) and factor X (F10) genes showed a novel homozygous missense mutation p.Cys90Tyr (c.307G>A) in exon 4 of F10. No mutations were detected in F7; however, the patient was homozygous for three polymorphic alleles known to be associated with reduced factor VII levels. The present case illustrates the synergistic effect of multiple polymorphisms resulting in phenotypic factor VII deficiency in the absence of a pathogenic mutation.

  20. Mesonic Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    Frederic D. R. Bonnet; Robert G. Edwards; George T. Fleming; Randal Lewis; David Richards

    2003-07-22

    We have started a program to compute the electromagnetic form factors of mesons. We discuss the techniques used to compute the pion form factor and present preliminary results computed with domain wall valence fermions on MILC asqtad lattices, as well as Wilson fermions on quenched lattices. These methods can easily be extended to rho-to-gamma-pi transition form factors.

  1. Constructivism, Factoring, and Beliefs.

    Science.gov (United States)

    Rauff, James V.

    1994-01-01

    Discusses errors made by remedial intermediate algebra students in factoring polynomials in light of student definitions of factoring. Found certain beliefs about factoring to logically imply many of the errors made. Suggests that belief-based teaching can be successful in teaching factoring. (16 references) (Author/MKR)

  2. Components of WWER engineering factors for peaking factors: status and trends

    International Nuclear Information System (INIS)

    Tsyganov, S.V.

    2010-01-01

    One of the topics for discussion at special working group 'Elaboration of the methodology for calculating the core design engineering factors' is the problem of engineering factor components. The list of components corresponds to the phenomena that are taken into account with the engineering factor. It is supposed the better understanding of the influenced phenomena is important stage for developing unified methodology. This paper presents some brief overview of components of the engineering factor for VVER core peaking factors as they are in the Kurchatov Institute methodology. The evolution of some components to less conservative values is observed. Author makes some assumptions as for the further progress in components assessment. The engineering factors providing observance of design limits at normal operation, should cover, with the set probability, the uncertainty, connected with process of core design. For definition of the value of factors it is necessary to define influence of these uncertainties on the investigated parameter of the reactor. Practice consists in defining all possible sources of uncertainties, to estimate influence of each of them, and on their basis to define total influence of all uncertainties. The important stage of a technique of factor calculation is a definition of the list influencing uncertainties. It is obvious that all characteristics of VVER core are known with some uncertainty-owing to manufacturing tolerances, the measurement errors, etc. However essential influence on the parameters connected with safety, render only a part from them. At list formation those characteristics get out only, whose influence is essential to the corresponding parameter. (Author)

  3. Risk Factors for Internet Gaming Disorder: Psychological Factors and Internet Gaming Characteristics

    Directory of Open Access Journals (Sweden)

    Mi Jung Rho

    2017-12-01

    Full Text Available Background: Understanding the risk factors associated with Internet gaming disorder (IGD is important to predict and diagnose the condition. The purpose of this study is to identify risk factors that predict IGD based on psychological factors and Internet gaming characteristics; Methods: Online surveys were conducted between 26 November and 26 December 2014. There were 3568 Korean Internet game users among a total of 5003 respondents. We identified 481 IGD gamers and 3087 normal Internet gamers, based on Diagnostic and Statistical Manual for Mental Disorders (DSM-5 criteria. Logistic regression analysis was applied to identify significant risk factors for IGD; Results: The following eight risk factors were found to be significantly associated with IGD: functional and dysfunctional impulsivity (odds ratio: 1.138, belief self-control (1.034, anxiety (1.086, pursuit of desired appetitive goals (1.105, money spent on gaming (1.005, weekday game time (1.081, offline community meeting attendance (2.060, and game community membership (1.393; p < 0.05 for all eight risk factors; Conclusions: These risk factors allow for the prediction and diagnosis of IGD. In the future, these risk factors could also be used to inform clinical services for IGD diagnosis and treatment.

  4. Risk Factors for Internet Gaming Disorder: Psychological Factors and Internet Gaming Characteristics

    Science.gov (United States)

    Lee, Hyeseon; Lee, Taek-Ho; Cho, Hyun; Kim, Dai-Jin; Choi, In Young

    2017-01-01

    Background: Understanding the risk factors associated with Internet gaming disorder (IGD) is important to predict and diagnose the condition. The purpose of this study is to identify risk factors that predict IGD based on psychological factors and Internet gaming characteristics; Methods: Online surveys were conducted between 26 November and 26 December 2014. There were 3568 Korean Internet game users among a total of 5003 respondents. We identified 481 IGD gamers and 3087 normal Internet gamers, based on Diagnostic and Statistical Manual for Mental Disorders (DSM-5) criteria. Logistic regression analysis was applied to identify significant risk factors for IGD; Results: The following eight risk factors were found to be significantly associated with IGD: functional and dysfunctional impulsivity (odds ratio: 1.138), belief self-control (1.034), anxiety (1.086), pursuit of desired appetitive goals (1.105), money spent on gaming (1.005), weekday game time (1.081), offline community meeting attendance (2.060), and game community membership (1.393; p < 0.05 for all eight risk factors); Conclusions: These risk factors allow for the prediction and diagnosis of IGD. In the future, these risk factors could also be used to inform clinical services for IGD diagnosis and treatment. PMID:29280953

  5. Recombinant factor VIIa treatment for asymptomatic factor VII deficient patients going through major surgery.

    Science.gov (United States)

    Livnat, Tami; Shenkman, Boris; Spectre, Galia; Tamarin, Ilia; Dardik, Rima; Israeli, Amnon; Rivkind, Avraham; Shabtai, Moshe; Marinowitz, Uri; Salomon, Ophira

    2012-07-01

    Factor VII deficiency is the most common among the rare autosomal recessive coagulation disorders worldwide. In factor VII deficient patients, the severity and clinical manifestations cannot be reliably determined by factor VII levels. Severe bleeding tends to occur in individuals with factor VII activity levels of 2% or less of normal. Patients with 2-10% factor VII vary between asymptomatic to severe life threatening haemorrhages behaviour. Recombinant factor VIIa (rFVIIa) is the most common replacement therapy for congenital factor VII deficiency. However, unlike haemophilia patients for whom treatment protocols are straight forward, in asymptomatic factor VII deficiency patients it is still debatable. In this study, we demonstrate that a single and very low dose of recombinant factor VIIa enabled asymptomatic patients with factor VII deficiency to go through major surgery safely. This suggestion was also supported by thrombin generation, as well as by thromboelastometry.

  6. Blood coagulation factor VIII

    Indian Academy of Sciences (India)

    Factor VIII (FVIII) functions as a co-factor in the blood coagulation cascade for the proteolytic activation of factor X by factor IXa. Deficiency of FVIII causes hemophilia A, the most commonly inherited bleeding disorder. This review highlights current knowledge on selected aspects of FVIII in which both the scientist and the ...

  7. Production and properties of monoclonal antibodies to human blood coagulation factor VII and factor VIIa

    International Nuclear Information System (INIS)

    Mann, P.; Nesbitt, J.A.; Ge, M.; Kisiel, W.

    1986-01-01

    Human factor VII is a trace vitamin K-dependent protein that circulates in blood as a single-chain precursor to a serine protease. Upon activation, two-chain factor VIIa activates factor x in the presence of tissue factor and calcium. Purified preparations of single-chain (SC) human factor VII and two-chain (TC) factor VIIa were utilized to immunize Balb/c mice. Spleen cells from these immunized mice were fused to a non-secreting NS-1 derivative of X63-Ag8 myeloma cells and grown in selective medium. Analysis of culture supernatants by EIA revealed several hybridomas that were secreting IgG specific for Sc-factor VII and TC-factor VIIa. In addition, several hybridomas secreted IgG that reacted equally well with factor VII and factor VIIa. One of the latter McAb (A-29) reacted with the heavy chain of factor VIIa and the intact factor VII molecule equally as judged by Western blotting. A-29 was produced in ascites fluid, purified and coupled to activated CH-Sepharose. Application of one liter of normal human plasma to 10 ml of this immunoadsorbent column, elution of factor VII and subsequent Western blot using 125 I-rabbit anti-human factor VII indicated a single species of factor VII(M/sub r/ = 50 KDa) in normal plasma. These specific factor VII/VIIa McAbs may prove useful in the analysis of these factors, and in the separation of SC-factor VII from TC-factor VIIa

  8. Organizational factors

    International Nuclear Information System (INIS)

    Holy, J.

    1999-12-01

    The following organizational factors are considered with respect to the human factor and operating safety of nuclear power plants: external influences; objectives and strategy; positions and ways of management; allocation of resources; working with human resources; operators' training; coordination of work; knowledge of organization and management; proceduralization of the topic; labour organizing culture; self-improvement system; and communication. (P.A.)

  9. Foundations of factor analysis

    CERN Document Server

    Mulaik, Stanley A

    2009-01-01

    Introduction Factor Analysis and Structural Theories Brief History of Factor Analysis as a Linear Model Example of Factor AnalysisMathematical Foundations for Factor Analysis Introduction Scalar AlgebraVectorsMatrix AlgebraDeterminants Treatment of Variables as Vectors Maxima and Minima of FunctionsComposite Variables and Linear Transformations Introduction Composite Variables Unweighted Composite VariablesDifferentially Weighted Composites Matrix EquationsMulti

  10. A probabilistic model for deriving soil quality criteria based on secondary poisoning of top predators. I. Model description and uncertainty analysis.

    Science.gov (United States)

    Traas, T P; Luttik, R; Jongbloed, R H

    1996-08-01

    In previous studies, the risk of toxicant accumulation in food chains was used to calculate quality criteria for surface water and soil. A simple algorithm was used to calculate maximum permissable concentrations [MPC = no-observed-effect concentration/bioconcentration factor(NOEC/BCF)]. These studies were limited to simple food chains. This study presents a method to calculate MPCs for more complex food webs of predators. The previous method is expanded. First, toxicity data (NOECs) for several compounds were corrected for differences between laboratory animals and animals in the wild. Second, for each compound, it was assumed these NOECs were a sample of a log-logistic distribution of mammalian and avian NOECs. Third, bioaccumulation factors (BAFs) for major food items of predators were collected and were assumed to derive from different log-logistic distributions of BAFs. Fourth, MPCs for each compound were calculated using Monte Carlo sampling from NOEC and BAF distributions. An uncertainty analysis for cadmium was performed to identify the most uncertain parameters of the model. Model analysis indicated that most of the prediction uncertainty of the model can be ascribed to uncertainty of species sensitivity as expressed by NOECs. A very small proportion of model uncertainty is contributed by BAFs from food webs. Correction factors for the conversion of NOECs from laboratory conditions to the field have some influence on the final value of MPC5, but the total prediction uncertainty of the MPC is quite large. It is concluded that the uncertainty in species sensitivity is quite large. To avoid unethical toxicity testing with mammalian or avian predators, it cannot be avoided to use this uncertainty in the method proposed to calculate MPC distributions. The fifth percentile of the MPC is suggested as a safe value for top predators.

  11. A GIS-based tool for bioaccumulation risk analysis and its application to study polychlorinated biphenyls in the Great Lakes

    Directory of Open Access Journals (Sweden)

    Fernanda P. Maciel

    2018-01-01

    Full Text Available This paper presents a GIS-based tool named Arc-BEST (Bioaccumulation Evaluation Screening Tool to perform spatially distributed bioaccumulation risk analyses. Estimating bioaccumulation risk is important to help predict potentially adverse effects from contaminants on ecosystems and human health, which are key factors in the development of sound public policy. Arc-BEST is based on the BEST model in the U.S. Army Corps of Engineers BRAMS (Bioaccumulation Risk Assessment Modeling System software, released in 2012. It predicts concentration of concern contaminants in predators’ tissues from concentrations in organisms at the bottom of the food chain, and corresponding bioaccumulation factors. Additionally, it estimates carcinogenic and non-carcinogenic risks for humans that consume those species. The greatest contribution of Arc-BEST is that it enables the automated use of digital spatial data sets, which improves model creation speed, analysis and visualization of results, and comparison and cross-referencing with other geographic datasets. Furthermore, the model was improved to consider up to four trophic levels. The code is written in Python and is open-source. In this work Arc-BEST is used as part of a screening-level risk assessment process in order to identify hot spots where further studies and monitoring should be performed to ensure humans and ecosystems health. The tool is successfully applied to a case study in the Laurentian Great Lakes, where long-term effects of polychlorinated biphenyls (PCBs is performed, based on measured concentrations in zebra mussels (Dreissena polymorpha, and local bioaccumulation factors from previous studies. Zebra mussels have a great filtration capacity and high bioconcentration rates, increasing the bioavailability of contaminants for predator species. PCBs concentrations in different-level predators are predicted. Furthermore, health risks for humans that consume sport fish are estimated for various

  12. Dynamic Multi-Factor Credit Risk Model with Fat-Tailed Factors

    Czech Academy of Sciences Publication Activity Database

    Gapko, Petr; Šmíd, Martin

    2012-01-01

    Roč. 62, č. 2 (2012), s. 125-140 ISSN 0015-1920 R&D Projects: GA ČR GD402/09/H045; GA ČR GA402/09/0965 Grant - others:Univerzita Karlova(CZ) GAUK 46108 Institutional research plan: CEZ:AV0Z10750506 Keywords : credit risk * probability of default * loss given default * credit loss * credit loss distribution * Basel II Subject RIV: AH - Economics Impact factor: 0.340, year: 2012 http://library.utia.cas.cz/separaty/2012/E/smid-dynamic multi-factor credit risk model with fat-tailed factors.pdf

  13. Oversimplifying quantum factoring.

    Science.gov (United States)

    Smolin, John A; Smith, Graeme; Vargo, Alexander

    2013-07-11

    Shor's quantum factoring algorithm exponentially outperforms known classical methods. Previous experimental implementations have used simplifications dependent on knowing the factors in advance. However, as we show here, all composite numbers admit simplification of the algorithm to a circuit equivalent to flipping coins. The difficulty of a particular experiment therefore depends on the level of simplification chosen, not the size of the number factored. Valid implementations should not make use of the answer sought.

  14. Elevated plasma factor VIII enhances venous thrombus formation in rabbits: contribution of factor XI, von Willebrand factor and tissue factor.

    Science.gov (United States)

    Sugita, Chihiro; Yamashita, Atsushi; Matsuura, Yunosuke; Iwakiri, Takashi; Okuyama, Nozomi; Matsuda, Shuntaro; Matsumoto, Tomoko; Inoue, Osamu; Harada, Aya; Kitazawa, Takehisa; Hattori, Kunihiro; Shima, Midori; Asada, Yujiro

    2013-07-01

    Elevated plasma levels of factor VIII (FVIII) are associated with increased risk of deep venous thrombosis. The aim of this study is to elucidate how elevated FVIII levels affect venous thrombus formation and propagation in vivo. We examined rabbit plasma FVIII activity, plasma thrombin generation, whole blood coagulation, platelet aggregation and venous wall thrombogenicity before and one hour after an intravenous infusion of recombinant human FVIII (rFVIII). Venous thrombus induced by the endothelial denudation of rabbit jugular veins was histologically assessed. Thrombus propagation was evaluated as indocyanine green fluorescence intensity. Argatroban, a thrombin inhibitor, and neutralised antibodies for tissue factor (TF), factor XI (FXI), and von Willebrand factor (VWF) were infused before or after thrombus induction to investigate their effects on venous thrombus formation or propagation. Recombinant FVIII (100 IU/kg) increased rabbit plasma FVIII activity two-fold and significantly enhanced whole blood coagulation and total plasma thrombin generation, but did not affect initial thrombin generation time, platelet aggregation and venous wall thrombogenicity. The rFVIII infusion also increased the size of venous thrombus 1 hour after thrombus induction. Argatroban and the antibodies for TF, FXI or VWF inhibited such enhanced thrombus formation and all except TF suppressed thrombus propagation. In conclusion, elevated plasma FVIII levels enhance venous thrombus formation and propagation. Excess thrombin generation by FXI and VWF-mediated FVIII recruitment appear to contribute to the growth of FVIII-driven venous thrombus.

  15. El factoring

    Directory of Open Access Journals (Sweden)

    Alberto Rosenthal

    2015-04-01

    Full Text Available RESUMEN Se presenta la segunda parte del artículo aparecido en  el número 6 de la revista EAN. Su contenido es complementario a lo expuesto en dicho número, en está aparecen las ventajas del factoring, conveniencias, limitaciones así como la forma  de efectuar un factor en Colombia,  su necesidad, incidencia económica, etc.

  16. Factorization of heavy-to-light form factors in soft-collinear effective theory

    CERN Document Server

    Beneke, Martin; Feldmann, Th.

    2004-01-01

    Heavy-to-light transition form factors at large recoil energy of the light meson have been conjectured to obey a factorization formula, where the set of form factors is reduced to a smaller number of universal form factors up to hard-scattering corrections. In this paper we extend our previous investigation of heavy-to-light currents in soft-collinear effective theory to final states with invariant mass Lambda^2 as is appropriate to exclusive B meson decays. The effective theory contains soft modes and two collinear modes with virtualities of order m_b*Lambda (`hard-collinear') and Lambda^2. Integrating out the hard-collinear modes results in the hard spectator-scattering contributions to exclusive B decays. We discuss the representation of heavy-to-light currents in the effective theory after integrating out the hard-collinear scale, and show that the previously conjectured factorization formula is valid to all orders in perturbation theory. The naive factorization of matrix elements in the effective theory ...

  17. Annual Adjustment Factors

    Data.gov (United States)

    Department of Housing and Urban Development — The Department of Housing and Urban Development establishes the rent adjustment factors - called Annual Adjustment Factors (AAFs) - on the basis of Consumer Price...

  18. Risks factoring business: accounting measurement

    Directory of Open Access Journals (Sweden)

    Z.V. Gutsaylyuk

    2015-06-01

    Full Text Available The paper carried out the identification of risk factors for the development of possible accounting software management. Studied theoretical and methodological aspects of the risk classification of factoring operations in the part of the risk assessment factors. It is proposed to consider the risks factors as the risk that is acceptable controlled by accounting instruments and the risks that can not be taken into account in the accounting records. To minimize the risk factor, accounting-driven tools, a method of self-insurance, which is a factor in the creation of provision for factoring transactions designed to cover unexpected expenses and losses. Provision for factoring factor will establish more stable conditions of financial activity and avoid the fluctuations of profit factor in relation to the writing off of losses on factoring operatsіyam.Developed proposals allow for further research to improve the organizational and methodological basis of accounting and analysis of information as a basis for providing risk management factor, particularly in terms of improving the evaluation questions such risks and their qualitative and quantitative analysis.

  19. Risk analysis-based food safety policy: scientific factors versus socio-cultural factors

    NARCIS (Netherlands)

    Rosa, P.; Knapen, van F.; Brom, F.W.A.

    2008-01-01

    The purpose of this article is to illustrate the importance of socio-cultural factors in risk management and the need to incorporate these factors in a standard, internationally recognized (wto) framework. This was achieved by analysing the relevance of these factors in 3 cases
    The purpose of

  20. Structuring factoring business: accounting aspects

    Directory of Open Access Journals (Sweden)

    I.M. Vygivska

    2017-08-01

    Full Text Available The article theoretically substantiates the fact that factoring belongs to the main operational activity of a factoring company, and this allowed structuring the factoring business by types of activity. The lack of a unified approach to the classification of factoring (factoring services made it possible to systematize and refine their classification as a basis for developing accounting and analytical support for risk management of factoring business. The authors single out such classification signs as: the right of the reverse claim (reverse, irretrievable, a territorial feature (international, internal, the subject of the factoring contract (real, consensual, the availability of notification of the debtor (conventional, confidential. The structuring of factoring business contributes to the identification of the risks of the economic activities of a factoring company depending on the type of factoring, the development of methodological support for the bookkeeping of factoring transactions in a risk environment, the search for risk management practices and the determination of management effectiveness in general.

  1. The Ability of Watercress (Nasturtiumofficinale and Pennyroyal (Menthapulegium in Clean up Excess Nitrate and Phosphate of Water

    Directory of Open Access Journals (Sweden)

    Z. Ahmadpoor

    2016-02-01

    of the each experiment, watercress and pennyroyal plants were brought out from the pots carefully and their roots and shoots were separated. Roots and shoots were placed in aluminum foil separately and were dried by oven method (50°C and 48 h. The weights of dried samples were measured by a digital balance scale (0.001 gr accuracy. Three accumulation indices including Bio-concentration Factor, Translocation Factor and Tolerance Index were calculated by measuring of nitrate and phosphate accumulation in roots and shoots Results and Discussion: According to the results, root phosphate accumulation in two plants was different significantly (p ≤ 0.05. Also, the level values of nitrate and phosphate were resulted to their root accumulation significantly. In this regard, the phosphate accumulation in watercress root changed to 10 mg. Lit-1 significantly and reached to 4.3 mg.Kg-1 dry weight in this concentration. While for pennyroyal, there was no significant increasing in roots phosphate accumulation when its concentration was increased in medium (p ≤ 0.05. Although phosphate accumulation was difference between the two plants in root and shoots, there was similar the alteration of phosphor bioconcentration trend. Because increasing of phosphate concentration resulted in significant decreasing of this index. Whilst both of watercress and pennyroyal accumulated high amount of nitrate and phosphate, quantity of accumulation in shoots was higher than of roots. Consequently, nitrate translocation factor was 1.3 in watercress and 1.07 in pennyroyal, and phosphor translocation factor was 1.07 and 0.94 in watercress and pennyroyal respectively. Conclusions: Results indicated that two plants were pollutants purified of nitrate and phosphate (The nitrate translocation factors were 1.3 and 1.07 in watercress and pennyroyal and the phosphate translocation factors were 1.07 and 094 in watercress and pennyroyal, respectively. Generally, it was found that watercress and pennyroyal

  2. What Are Rare Clotting Factor Deficiencies?

    Science.gov (United States)

    ... Deficiency Factor V Deficiency Combined FV & FVIII Deficiencies Factor VII Deficiency Factor X Deficiency Factor XI Deficiency Factor ... Deficiency Factor V Deficiency Combined FV & FVIII Deficiencies Factor VII Deficiency Factor X Deficiency Factor XI Deficiency Factor ...

  3. Risk Factors for Scleroderma

    Science.gov (United States)

    ... You are here: Home For Patients Risk Factors Risk Factors for Scleroderma The cause of scleroderma is ... what biological factors contribute to scleroderma pathogenesis. Genetic Risk Scleroderma does not tend to run in families ...

  4. Risk Factors and Prevention

    Science.gov (United States)

    ... Resources Risk Factors & Prevention Back to Patient Resources Risk Factors & Prevention Even people who look healthy and ... Blood Pressure , high cholesterol, diabetes, and thyroid disease. Risk Factors For Arrhythmias and Heart Disease The following ...

  5. Factor VII deficiency

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000548.htm Factor VII deficiency To use the sharing features on this page, please enable JavaScript. Factor VII (seven) deficiency is a disorder caused by a ...

  6. Quantitative Index and Abnormal Alarm Strategy Using Sensor-Dependent Vibration Data for Blade Crack Identification in Centrifugal Booster Fans.

    Science.gov (United States)

    Chen, Jinglong; Sun, Hailiang; Wang, Shuai; He, Zhengjia

    2016-05-09

    Centrifugal booster fans are important equipment used to recover blast furnace gas (BFG) for generating electricity, but blade crack faults (BCFs) in centrifugal booster fans can lead to unscheduled breakdowns and potentially serious accidents, so in this work quantitative fault identification and an abnormal alarm strategy based on acquired historical sensor-dependent vibration data is proposed for implementing condition-based maintenance for this type of equipment. Firstly, three group dependent sensors are installed to acquire running condition data. Then a discrete spectrum interpolation method and short time Fourier transform (STFT) are applied to preliminarily identify the running data in the sensor-dependent vibration data. As a result a quantitative identification and abnormal alarm strategy based on compound indexes including the largest Lyapunov exponent and relative energy ratio at the second harmonic frequency component is proposed. Then for validation the proposed blade crack quantitative identification and abnormality alarm strategy is applied to analyze acquired experimental data for centrifugal booster fans and it has successfully identified incipient blade crack faults. In addition, the related mathematical modelling work is also introduced to investigate the effects of mistuning and cracks on the vibration features of centrifugal impellers and to explore effective techniques for crack detection.

  7. Quantitative Index and Abnormal Alarm Strategy Using Sensor-Dependent Vibration Data for Blade Crack Identification in Centrifugal Booster Fans

    Directory of Open Access Journals (Sweden)

    Jinglong Chen

    2016-05-01

    Full Text Available Centrifugal booster fans are important equipment used to recover blast furnace gas (BFG for generating electricity, but blade crack faults (BCFs in centrifugal booster fans can lead to unscheduled breakdowns and potentially serious accidents, so in this work quantitative fault identification and an abnormal alarm strategy based on acquired historical sensor-dependent vibration data is proposed for implementing condition-based maintenance for this type of equipment. Firstly, three group dependent sensors are installed to acquire running condition data. Then a discrete spectrum interpolation method and short time Fourier transform (STFT are applied to preliminarily identify the running data in the sensor-dependent vibration data. As a result a quantitative identification and abnormal alarm strategy based on compound indexes including the largest Lyapunov exponent and relative energy ratio at the second harmonic frequency component is proposed. Then for validation the proposed blade crack quantitative identification and abnormality alarm strategy is applied to analyze acquired experimental data for centrifugal booster fans and it has successfully identified incipient blade crack faults. In addition, the related mathematical modelling work is also introduced to investigate the effects of mistuning and cracks on the vibration features of centrifugal impellers and to explore effective techniques for crack detection.

  8. Stroke - risk factors

    Science.gov (United States)

    ... oxygen. Brain cells can die, causing lasting damage. Risk factors are things that increase your chance of ... a disease or condition. This article discusses the risk factors for stroke and things you can do ...

  9. Neutron electromagnetic form factors

    International Nuclear Information System (INIS)

    Finn, J.M.; Madey, R.; Eden, T.; Markowitz, P.; Rutt, P.M.; Beard, K.; Anderson, B.D.; Baldwin, A.R.; Keane, D.; Manley, D.M.; Watson, J.W.; Zhang, W.M.; Kowalski, S.; Bertozzi, W.; Dodson, G.; Farkhondeh, M.; Dow, K.; Korsch, W.; Tieger, D.; Turchinetz, W.; Weinstein, L.; Gross, F.; Mougey, J.; Ulmer, P.; Whitney, R.; Reichelt, T.; Chang, C.C.; Kelly, J.J.; Payerle, T.; Cameron, J.; Ni, B.; Spraker, M.; Barkhuff, D.; Lourie, R.; Verst, S.V.; Hyde-Wright, C.; Jiang, W.-D.; Flanders, B.; Pella, P.; Arenhoevel, H.

    1992-01-01

    Nucleon form factors provide fundamental input for nuclear structure and quark models. Current knowledge of neutron form factors, particularly the electric form factor of the neutron, is insufficient to meet these needs. Developments of high-duty-factor accelerators and polarization-transfer techniques permit new experiments that promise results with small sensitivities to nuclear models. We review the current status of the field, our own work at the MIT/Bates linear accelerator, and future experimental efforts

  10. Organizational factors in Korean NPPs

    International Nuclear Information System (INIS)

    Jang, D. J.; Kim, Y. I.; Jeong, C. H.; Kim, J. W.

    2003-01-01

    Organizational factors are referred to as the factors that influence the achievement of a goal of an organization. Latent problems of an organization could contribute to causing human errors in such stages as design, operation and maintenance, and furthermore, leading to an severe accident. In order to evaluate an organization from the safety viewpoint, it is necessary to identify the organizational factors in a systematic fashion. In this paper, some efforts to identify the organizational factors in Korean NPPs are presented. The study was performed in the following steps: 1) Reviewing the definitions and range of the organizational factors used by the previous 13 researches, 2) Structuring the organizational factors by screening and collating factors, 3) Analysing the organizational factors that is considered to have contributed to the trip events based on the trip report of Korean NPPs, 4) Suggesting a more reliable taxonomy of organizational factors for event analysis by applying the Onion Structure Model to the selected factors

  11. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation

    DEFF Research Database (Denmark)

    Frödin, M; Gammeltoft, S

    1994-01-01

    We have investigated the effects of insulin-like growth factors (IGFs), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) on DNA synthesis in cultured chromaffin cells from fetal, neonatal, and adult rats by using 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling for 24 or 48 h...... implications for improving the survival of chromaffin cell implants in diseased human brain....

  12. Two-factor authentication

    CERN Document Server

    Stanislav, Mark

    2015-01-01

    During the book, readers will learn about the various technical methods by which two-factor authentication is implemented, security concerns with each type of implementation, and contextual details to frame why and when these technologies should be used. Readers will also be provided with insight about the reasons that two-factor authentication is a critical security control, events in history that have been important to prove why organization and individual would want to use two factor, and core milestones in the progress of growing the market.

  13. Factors in Agile Methods Adoption

    Directory of Open Access Journals (Sweden)

    Samia Abdalhamid

    2017-05-01

    Full Text Available There are many factors that can affect the process of adopting Agile methods during software developing. This paper illustrates the critical factors in Agile methods adoption in software organizations. To present the success and failure factors, an exploratory study is carried out among the critical factors of success and failure from existing studies. Dimensions and Factors are introduced utilizing success and failure dimensions. The mind map was used to clarify these factors.

  14. Modifiable risk factors for schizophrenia and autism--shared risk factors impacting on brain development.

    Science.gov (United States)

    Hamlyn, Jess; Duhig, Michael; McGrath, John; Scott, James

    2013-05-01

    Schizophrenia and autism are two poorly understood clinical syndromes that differ in age of onset and clinical profile. However, recent genetic and epidemiological research suggests that these two neurodevelopmental disorders share certain risk factors. The aims of this review are to describe modifiable risk factors that have been identified in both disorders, and, where available, collate salient systematic reviews and meta-analyses that have examined shared risk factors. Based on searches of Medline, Embase and PsycINFO, inspection of review articles and expert opinion, we first compiled a set of candidate modifiable risk factors associated with autism. Where available, we next collated systematic-reviews (with or without meta-analyses) related to modifiable risk factors associated with both autism and schizophrenia. We identified three modifiable risk factors that have been examined in systematic reviews for both autism and schizophrenia. Advanced paternal age was reported as a risk factor for schizophrenia in a single meta-analysis and as a risk factor in two meta-analyses for autism. With respect to pregnancy and birth complications, for autism one meta-analysis identified maternal diabetes and bleeding during pregnancy as risks factors for autism whilst a meta-analysis of eight studies identified obstetric complications as a risk factor for schizophrenia. Migrant status was identified as a risk factor for both autism and schizophrenia. Two separate meta-analyses were identified for each disorder. Despite distinct clinical phenotypes, the evidence suggests that at least some non-genetic risk factors are shared between these two syndromes. In particular, exposure to drugs, nutritional excesses or deficiencies and infectious agents lend themselves to public health interventions. Studies are now needed to quantify any increase in risk of either autism or schizophrenia that is associated with these modifiable environmental factors. Copyright © 2012 Elsevier Inc

  15. Critical Success Factors for E-Learning Acceptance: Confirmatory Factor Models

    Science.gov (United States)

    Selim, Hassan M.

    2007-01-01

    E-learning, one of the tools emerged from information technology, has been integrated in many university programs. There are several factors that need to be considered while developing or implementing university curriculums that offer e-learning based courses. This paper is intended to specify e-learning critical success factors (CSFs) as…

  16. Human factors in network security

    OpenAIRE

    Jones, Francis B.

    1991-01-01

    Human factors, such as ethics and education, are important factors in network information security. This thesis determines which human factors have significant influence on network security. Those factors are examined in relation to current security devices and procedures. Methods are introduced to evaluate security effectiveness by incorporating the appropriate human factors into network security controls

  17. Human factors in training

    International Nuclear Information System (INIS)

    Dutton, J.W.; Brown, W.R.

    1981-01-01

    The Human Factors concept is a focused effort directed at those activities which require human involvement. Training is, by its nature, an activity totally dependent on the Human Factor. This paper identifies several concerns significant to training situations and discusses how Human Factor awareness can increase the quality of learning. Psychology in the training arena is applied Human Factors. Training is a method of communication represented by sender, medium, and receiver. Two-thirds of this communications model involves the human element directly

  18. Rare earth elements concentration in mushroom cultivation substrates affects the production process and fruit-bodies content of Pleurotus ostreatus and Cyclocybe cylindracea.

    Science.gov (United States)

    Koutrotsios, Georgios; Danezis, Georgios P; Georgiou, Constantinos A; Zervakis, Georgios I

    2018-04-20

    Concentrations of 16 rare earth elements (REEs) and two actinides were determined for the first time both in cultivated mushrooms and in their production substrates by inductively coupled plasma mass spectroscopy. Moreover, the effect of REEs on cultivation parameters and composition of the final product was assessed, together with their potential use for authentication purposes. The concentrations of REEs varied greatly among seven cultivation substrates and correlated with measurements in Cyclocybe cylindracea mushrooms; no such correlation was established in Pleurotus ostreatus. Reduction of hemicellulose, cellulose, and lignin in substrates during P. ostreatus cultivation was positively correlated with REE concentrations, which also affected the production performance depending on the species examined. In all cases, a negative correlation was established between bioconcentration factors (BCF) in mushrooms and REE content in substrates, while the effect of substrate composition on BCF values varied according to the element studied. The estimated daily intake values of REEs through mushroom consumption was at much lower levels than those reported as potentially harmful for human health. The content of REEs in cultivation substrates and in mushrooms revealed that the bioaccumulation of elements differed in each fungus. The nature/origin of substrates seemed to affect the concentration of REEs in mushrooms to a considerable extent. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  19. Increased growth and root Cu accumulation of Sorghum sudanense by endophytic Enterobacter sp. K3-2: Implications for Sorghum sudanense biomass production and phytostabilization.

    Science.gov (United States)

    Li, Ya; Wang, Qi; Wang, Lu; He, Lin-Yan; Sheng, Xia-Fang

    2016-02-01

    Endophytic bacterial strain K3-2 was isolated from the roots of Sorghum sudanense (an bioenergy plant) grown in a Cu mine wasteland soils and characterized. Strain K3-2 was identified as Enterobacter sp. based on 16S rRNA gene sequence analysis. Strain K3-2 exhibited Cu resistance and produced 1-aminocyclopropane-1-carboxylate (ACC) deaminase, indole-3-acetic acid (IAA), siderophores, and arginine decarboxylase. Pot experiments showed that strain K3-2 significantly increased the dry weight and root Cu accumulation of Sorghum sudanense grown in the Cu mine wasteland soils. Furthermore, increase in total Cu uptake (ranging from 49% to 95%) of the bacterial inoculated-Sorghum sudanense was observed compared to the control. Notably, most of Cu (83-86%) was accumulated in the roots of Sorghum sudanense. Furthermore, inoculation with strain K3-2 was found to significantly increase Cu bioconcentration factors and the proportions of IAA- and siderophore-producing bacteria in the root interiors and rhizosphere soils of Sorghum sudanense compared with the control. Significant decrease in the available Cu content was also observed in the rhizosphere soils of the bacterial-inoculated Sorghum sudanense. The results suggest that the endophytic bacterial strain K3-2 may be exploited for promoting Sorghum sudanense biomass production and Cu phytostabilization in the Cu mining wasteland soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Adsorption and absorption of polycyclic aromatic hydrocarbons to rice roots

    International Nuclear Information System (INIS)

    Jiao, X.C.; Xu, F.L.; Dawson, R.; Chen, S.H.; Tao, S.

    2007-01-01

    Rice roots and surrounding air, soil and water samples were collected for polycyclic aromatic hydrocarbon (PAH) analysis. The rice roots were separated into lateral roots and nodal roots, and the PAH concentration in the former was found to be higher than that in the latter. In addition, root physiological characteristics including root biotic mass, root lipid content and specific surface area are also discussed. When normalizing the total, adsorption and absorption PAH fractions on a dry root weight basis to root biomass, root lipid, and surface area bases respectively, the differences between PAHs in the two types of roots diminished by 2 to 3 times on average. Results from sequential extraction indicated that PAHs were more easily absorbed by interior rice roots than adsorbed on the surface. In addition, more than 60% of total PAHs accumulated in root tissue for both lateral and nodal roots. However, the results were highly related to the solvent used, extraction time and methodology. Correlation analysis between bioconcentration factors (root over environment) and K OA , K OW showed water to be more significant for PAH adsorption in rice roots than other environmental media. - A sequential extraction method was applied to divide the PAHs accumulated on rice roots into PAHs in root exudates, PAHs adsorbed on root surfaces, and PAHs absorbed in root tissue