WorldWideScience

Sample records for biochemical genomics screen

  1. Genomic futures of prenatal screening: ethical reflection.

    Science.gov (United States)

    Dondorp, W J; Page-Christiaens, G C M L; de Wert, G M W R

    2016-05-01

    The practice of prenatal screening is undergoing important changes as a result of the introduction of genomic testing technologies at different stages of the screening trajectory. It is expected that eventually it will become possible to routinely obtain a comprehensive 'genome scan' of all fetuses. Although this will still take several years, there are clear continuities between present developments and this future scenario. As this review shows, behind the still limited scope of screening for common aneuploidies, a rapid widening of the range of conditions tested for is already taking shape at the invasive testing stage. But the continuities are not just technical; they are also ethical. If screening for Down's syndrome is a matter of providing autonomous reproductive choice, then why would providing the choice to have a full fetal genome scan be something entirely different? There is a clear need for a sustainable normative framework that will have to answer three challenges: the indeterminateness of the autonomy paradigm, the need to acknowledge the future child as an interested stakeholder, and the prospect of broad-scope genomic prenatal screening with a double purpose: autonomy and prevention. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Cushing's syndrome: update on signs, symptoms and biochemical screening.

    Science.gov (United States)

    Nieman, Lynnette K

    2015-10-01

    Endogenous pathologic hypercortisolism, or Cushing's syndrome, is associated with poor quality of life, morbidity, and increased mortality. Early diagnosis may mitigate against this natural history of the disorder. The clinical presentation of Cushing's syndrome varies, in part related to the extent and duration of cortisol excess. When hypercortisolism is severe, its signs and symptoms are unmistakable. However, most of the signs and symptoms of Cushing's syndrome are common in the general population (e.g., hypertension and weight gain) and not all are present in every patient. In addition to classical features of glucocorticoid excess, such as proximal muscle weakness and wide purple striae, patients may present with the associated comorbidities that are caused by hypercortisolism. These include cardiovascular disease, thromboembolic disease, psychiatric and cognitive deficits, and infections. As a result, internists and generalists must consider Cushing's syndrome as a cause, and endocrinologists should search for and treat these comorbidities. Recommended tests to screen for Cushing's syndrome include 1  mg dexamethasone suppression, urine free cortisol, and late night salivary cortisol. These may be slightly elevated in patients with physiologic hypercortisolism, which should be excluded, along with exogenous glucocorticoid use. Each screening test has caveats and the choice of tests should be individualized based on each patient's characteristics and lifestyle. The objective of this review is to update the readership on the clinical and biochemical features of Cushing's syndrome that are useful when evaluating patients for this diagnosis. © 2015 European Society of Endocrinology.

  3. Genome-Wide RNAi Ionomics Screen Reveals New Genes and Regulation of Human Trace Element Metabolism

    OpenAIRE

    Malinouski, Mikalai; Hasan, Nesrin M.; Zhang, Yan; Seravalli, Javier; Lin, Jie; Avanesov, Andrei; Lutsenko, Svetlana; Gladyshev, Vadim N.

    2017-01-01

    Trace elements are essential for human metabolism and dysregulation of their homeostasis is associated with numerous disorders. Here we characterize mechanisms that regulate trace elements in human cells by designing and performing a genome-wide high-throughput siRNA/ionomics screen, and examining top hits in cellular and biochemical assays. The screen reveals high stability of the ionomes, especially the zinc ionome, and yields known regulators and novel candidates. We further uncover fundam...

  4. Genome-wide identification of the regulatory targets of a transcription factor using biochemical characterization and computational genomic analysis

    Directory of Open Access Journals (Sweden)

    Jolly Emmitt R

    2005-11-01

    Full Text Available Abstract Background A major challenge in computational genomics is the development of methodologies that allow accurate genome-wide prediction of the regulatory targets of a transcription factor. We present a method for target identification that combines experimental characterization of binding requirements with computational genomic analysis. Results Our method identified potential target genes of the transcription factor Ndt80, a key transcriptional regulator involved in yeast sporulation, using the combined information of binding affinity, positional distribution, and conservation of the binding sites across multiple species. We have also developed a mathematical approach to compute the false positive rate and the total number of targets in the genome based on the multiple selection criteria. Conclusion We have shown that combining biochemical characterization and computational genomic analysis leads to accurate identification of the genome-wide targets of a transcription factor. The method can be extended to other transcription factors and can complement other genomic approaches to transcriptional regulation.

  5. Genome screen in familial intracranial aneurysm

    Directory of Open Access Journals (Sweden)

    Langefeld Carl

    2009-01-01

    Full Text Available Abstract Background Individuals with 1st degree relatives harboring an intracranial aneurysm (IA are at an increased risk of IA, suggesting genetic variation is an important risk factor. Methods Families with multiple members having ruptured or unruptured IA were recruited and all available medical records and imaging data were reviewed to classify possible IA subjects as definite, probable or possible IA or not a case. A 6 K SNP genome screen was performed in 333 families, representing the largest linkage study of IA reported to date. A 'narrow' (n = 705 definite IA cases and 'broad' (n = 866 definite or probable IA disease definition were used in multipoint model-free linkage analysis and parametric linkage analysis, maximizing disease parameters. Ordered subset analysis (OSA was used to detect gene × smoking interaction. Results Model-free linkage analyses detected modest evidence of possible linkage (all LOD Conclusion These data suggest it is unlikely that there is a single common variant with a strong effect in the majority of the IA families. Rather, it is likely that multiple genetic and environmental risk factors contribute to the susceptibility for intracranial aneurysms.

  6. Early Biochemical Screening for Fetal Aneuploidy in the First Trimester

    DEFF Research Database (Denmark)

    Tørring, Niels

    2013-01-01

    Background Screening for fetal trisomy 21 in the first trimester includes analysis of the serological markers pregnancy-associated plasma protein A (PAPP-A) and free beta human choriogonadotropin (free βhCG). With the recent launch of the PAPP-A free βhCG and assays on the Roche Cobas and Elecsys...... assays showed slopes of 0.94 and 0.95 and Pearson’s correlation of r = 0.981 and r = 0.987 respectively. Similar comparison to AutoDELFIA PerkinElmer Perkin gave slopes of 0,83 (free βhCG) and 1.20 (PAPP-A). With a cut off at 1:300 the overall sensitivity of the first trimester screening including nuchal...

  7. Genomic, proteomic and biochemical analysis of the organohalide respiratory pathway in Desulfitobacterium dehalogenans

    NARCIS (Netherlands)

    Kruse, T.; Pas, van de B.A.; Atteia, A.; Krab, K.; Hagen, W.R.; Goodwin, L.; Chain, P.; Boeren, S.; Maphosa, F.; Schraa, G.; Vos, de W.M.; Oost, van der J.; Smidt, H.; Stams, A.J.M.

    2015-01-01

    Desulfitobacterium dehalogenans is able to grow by organohalide respiration using 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA) as an electron acceptor. We used a combination of genome sequencing, biochemical analysis of redox active components and shotgun proteomics to study elements of the

  8. Enzymatically Generated CRISPR Libraries for Genome Labeling and Screening.

    Science.gov (United States)

    Lane, Andrew B; Strzelecka, Magdalena; Ettinger, Andreas; Grenfell, Andrew W; Wittmann, Torsten; Heald, Rebecca

    2015-08-10

    CRISPR-based technologies have emerged as powerful tools to alter genomes and mark chromosomal loci, but an inexpensive method for generating large numbers of RNA guides for whole genome screening and labeling is lacking. Using a method that permits library construction from any source of DNA, we generated guide libraries that label repetitive loci or a single chromosomal locus in Xenopus egg extracts and show that a complex library can target the E. coli genome at high frequency. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Screening synteny blocks in pairwise genome comparisons through integer programming.

    Science.gov (United States)

    Tang, Haibao; Lyons, Eric; Pedersen, Brent; Schnable, James C; Paterson, Andrew H; Freeling, Michael

    2011-04-18

    It is difficult to accurately interpret chromosomal correspondences such as true orthology and paralogy due to significant divergence of genomes from a common ancestor. Analyses are particularly problematic among lineages that have repeatedly experienced whole genome duplication (WGD) events. To compare multiple "subgenomes" derived from genome duplications, we need to relax the traditional requirements of "one-to-one" syntenic matchings of genomic regions in order to reflect "one-to-many" or more generally "many-to-many" matchings. However this relaxation may result in the identification of synteny blocks that are derived from ancient shared WGDs that are not of interest. For many downstream analyses, we need to eliminate weak, low scoring alignments from pairwise genome comparisons. Our goal is to objectively select subset of synteny blocks whose total scores are maximized while respecting the duplication history of the genomes in comparison. We call this "quota-based" screening of synteny blocks in order to appropriately fill a quota of syntenic relationships within one genome or between two genomes having WGD events. We have formulated the synteny block screening as an optimization problem known as "Binary Integer Programming" (BIP), which is solved using existing linear programming solvers. The computer program QUOTA-ALIGN performs this task by creating a clear objective function that maximizes the compatible set of synteny blocks under given constraints on overlaps and depths (corresponding to the duplication history in respective genomes). Such a procedure is useful for any pairwise synteny alignments, but is most useful in lineages affected by multiple WGDs, like plants or fish lineages. For example, there should be a 1:2 ploidy relationship between genome A and B if genome B had an independent WGD subsequent to the divergence of the two genomes. We show through simulations and real examples using plant genomes in the rosid superorder that the quota

  10. Genomic analysis of thermophilic Bacillus coagulans strains: efficient producers for platform bio-chemicals.

    Science.gov (United States)

    Su, Fei; Xu, Ping

    2014-01-29

    Microbial strains with high substrate efficiency and excellent environmental tolerance are urgently needed for the production of platform bio-chemicals. Bacillus coagulans has these merits; however, little genetic information is available about this species. Here, we determined the genome sequences of five B. coagulans strains, and used a comparative genomic approach to reconstruct the central carbon metabolism of this species to explain their fermentation features. A novel xylose isomerase in the xylose utilization pathway was identified in these strains. Based on a genome-wide positive selection scan, the selection pressure on amino acid metabolism may have played a significant role in the thermal adaptation. We also researched the immune systems of B. coagulans strains, which provide them with acquired resistance to phages and mobile genetic elements. Our genomic analysis provides comprehensive insights into the genetic characteristics of B. coagulans and paves the way for improving and extending the uses of this species.

  11. Screening for genomic rearrangements at BRCA1 locus in Iranian ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Home; Journals; Journal of Genetics; Volume 92; Issue 1. Screening for genomic rearrangements at BRCA1 locus in Iranian women with breast cancer using multiplex ligation-dependent probe amplification. Vahid R. Yassaee Babak Emamalizadeh Mir Davood Omrani. Research Note Volume 92 Issue 1 ...

  12. A comparison of the impact of screen-positive results obtained from ultrasound and biochemical screening for Down syndrome in the first trimester : a pilot study

    NARCIS (Netherlands)

    Weinans, M.J.; Kooij, L.; Muller, M.A.; Bilardo, K.M.; van Lith, J.M.; Tymstra, T.

    2004-01-01

    OBJECTIVE: To compare the experiences of women who received a screen-positive test result for Down syndrome after nuchal translucency screening or after biochemical screening in the first trimester of pregnancy in the Netherlands. METHOD: Semi-quantitative questionnaires were sent to 40 women with a

  13. Good laboratory practices for biochemical genetic testing and newborn screening for inherited metabolic disorders.

    Science.gov (United States)

    2012-04-06

    Biochemical genetic testing and newborn screening are essential laboratory services for the screening, detection, diagnosis, and monitoring of inborn errors of metabolism or inherited metabolic disorders. Under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) regulations, laboratory testing is categorized on the basis of the level of testing complexity as either waived (i.e., from routine regulatory oversight) or nonwaived testing (which includes tests of moderate and high complexity). Laboratories that perform biochemical genetic testing are required by CLIA regulations to meet the general quality systems requirements for nonwaived testing and the personnel requirements for high-complexity testing. Laboratories that perform public health newborn screening are subject to the same CLIA regulations and applicable state requirements. As the number of inherited metabolic diseases that are included in state-based newborn screening programs continues to increase, ensuring the quality of performance and delivery of testing services remains a continuous challenge not only for public health laboratories and other newborn screening facilities but also for biochemical genetic testing laboratories. To help ensure the quality of laboratory testing, CDC collaborated with the Centers for Medicare & Medicaid Services, the Food and Drug Administration, the Health Resources and Services Administration, and the National Institutes of Health to develop guidelines for laboratories to meet CLIA requirements and apply additional quality assurance measures for these areas of genetic testing. This report provides recommendations for good laboratory practices that were developed based on recommendations from the Clinical Laboratory Improvement Advisory Committee, with additional input from the Secretary's Advisory Committee on Genetics, Health, and Society; the Secretary's Advisory Committee on Heritable Disorders in Newborns and Children; and representatives of newborn

  14. Biochemical markers assisted screening of Fusarium wilt resistant Musa paradisiaca (L.) cv. puttabale micropropagated clones.

    Science.gov (United States)

    Venkatesh; Krishna, V; Kumar, K Girish; Pradeepa, K; Kumar, S R Santosh; Kumar, R Shashi

    2013-07-01

    An efficient protocol was standardized for screening of panama wilt resistant Musa paradisiaca cv. Puttabale clones, an endemic cultivar of Karnataka, India. The synergistic effect of 6-benzyleaminopurine (2 to 6 mg/L) and thidiazuron (0.1 to 0.5 mg/L) on MS medium provoked multiple shoot induction from the excised meristem. An average of 30.10 +/- 5.95 shoots was produced per propagule at 4 mg/L 6-benzyleaminopurine and 0.3 mg/L thidiazuron concentrations. Elongation of shoots observed on 5 mg/L BAP augmented medium with a mean length of 8.38 +/- 0.30 shoots per propagule. For screening of disease resistant clones, multiple shoot buds were mutated with 0.4% ethyl-methane-sulfonate and cultured on MS medium supplemented with Fusarium oxysporum f. sp. cubense (FOC) culture filtrate (5-15%). Two month old co-cultivated secondary hardened plants were used for screening of disease resistance against FOC by the determination of biochemical markers such as total phenol, phenylalanine ammonia lyase, oxidative enzymes like peroxidase, polyphenol oxidase, catalase and PR-proteins like chitinase, beta-1-3 glucanase activities. The mutated clones of M. paradisiaca cv. Puttabale cultured on FOC culture filtrate showed significant increase in the levels of biochemical markers as an indicative of acquiring disease resistant characteristics to FOC wilt.

  15. Biochemical screening of 504,049 newborns in Denmark, the Faroe Islands and Greenland--experience and development of a routine program for expanded newborn screening

    DEFF Research Database (Denmark)

    Lund, Allan Meldgaard; Hougaard, David Michael; Simonsen, Henrik

    2012-01-01

    Expanded newborn screening for selected inborn errors of metabolism (IEM) in Denmark, the Faroe Islands and Greenland was introduced in 2002. We now present clinical, biochemical, and statistical results of expanded screening (excluding PKU) of 504,049 newborns during nine years as well as diagno......Expanded newborn screening for selected inborn errors of metabolism (IEM) in Denmark, the Faroe Islands and Greenland was introduced in 2002. We now present clinical, biochemical, and statistical results of expanded screening (excluding PKU) of 504,049 newborns during nine years as well...... as a pilot study during the first seven years, and the experience obtained during these years was used in the development of the routine neonatal screening program introduced in 2009. Methods for screening included tandem mass spectrometry and an assay for determination of biotinidase activity. A total...

  16. Genome-wide screening and identification of antigens for rickettsial vaccine development

    Science.gov (United States)

    The capacity to identify immunogens for vaccine development by genome-wide screening has been markedly enhanced by the availability of complete microbial genome sequences coupled to rapid proteomic and bioinformatic analysis. Critical to this genome-wide screening is in vivo testing in the context o...

  17. A Biochemical Screen for Identification of Small-Molecule Regulators of the Wnt Pathway Using Xenopus Egg Extracts

    OpenAIRE

    Thorne, Curtis A.; Lafleur, Bonnie; Lewis, Michelle; Hanson, Alison J.; Jernigan, Kristin K.; Weaver, David C.; Huppert, Kari A.; Chen, Tony W.; Wichadiit, Chonlarat; Cselenyi, Christopher S.; Tahinci, Emilios; Meyers, Kelly C.; Waskow, Emily; Orton, Darren; Salic, Adrian

    2011-01-01

    Misregulation of the Wnt pathway has been shown to be responsible for a variety of human diseases, most notably cancers. Screens for inhibitors of this pathway have been performed almost exclusively using cultured mammalian cells or with purified proteins. We have previously developed a biochemical assay using Xenopus egg extracts to recapitulate key cytoplasmic events in the Wnt pathway. Using this biochemical system, we show that a recombinant form of the Wnt coreceptor, LRP6, regulates the...

  18. Whole genome expression and biochemical correlates of extreme constitutional types defined in Ayurveda.

    Science.gov (United States)

    Prasher, Bhavana; Negi, Sapna; Aggarwal, Shilpi; Mandal, Amit K; Sethi, Tav P; Deshmukh, Shailaja R; Purohit, Sudha G; Sengupta, Shantanu; Khanna, Sangeeta; Mohammad, Farhan; Garg, Gaurav; Brahmachari, Samir K; Mukerji, Mitali

    2008-09-09

    Ayurveda is an ancient system of personalized medicine documented and practiced in India since 1500 B.C. According to this system an individual's basic constitution to a large extent determines predisposition and prognosis to diseases as well as therapy and life-style regime. Ayurveda describes seven broad constitution types (Prakritis) each with a varying degree of predisposition to different diseases. Amongst these, three most contrasting types, Vata, Pitta, Kapha, are the most vulnerable to diseases. In the realm of modern predictive medicine, efforts are being directed towards capturing disease phenotypes with greater precision for successful identification of markers for prospective disease conditions. In this study, we explore whether the different constitution types as described in Ayurveda has molecular correlates. Normal individuals of the three most contrasting constitutional types were identified following phenotyping criteria described in Ayurveda in Indian population of Indo-European origin. The peripheral blood samples of these individuals were analysed for genome wide expression levels, biochemical and hematological parameters. Gene Ontology (GO) and pathway based analysis was carried out on differentially expressed genes to explore if there were significant enrichments of functional categories among Prakriti types. Individuals from the three most contrasting constitutional types exhibit striking differences with respect to biochemical and hematological parameters and at genome wide expression levels. Biochemical profiles like liver function tests, lipid profiles, and hematological parameters like haemoglobin exhibited differences between Prakriti types. Functional categories of genes showing differential expression among Prakriti types were significantly enriched in core biological processes like transport, regulation of cyclin dependent protein kinase activity, immune response and regulation of blood coagulation. A significant enrichment of

  19. Genome-wide deficiency screen for the genomic regions responsible for heat resistance in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Teramura Kouhei

    2011-06-01

    Full Text Available Abstract Background Temperature adaptation is one of the most important determinants of distribution and population size of organisms in nature. Recently, quantitative trait loci (QTL mapping and gene expression profiling approaches have been used for detecting candidate genes for heat resistance. However, the resolution of QTL mapping is not high enough to examine the individual effects of various genes in each QTL. Heat stress-responsive genes, characterized by gene expression profiling studies, are not necessarily responsible for heat resistance. Some of these genes may be regulated in association with the heat stress response of other genes. Results To evaluate which heat-responsive genes are potential candidates for heat resistance with higher resolution than previous QTL mapping studies, we performed genome-wide deficiency screen for QTL for heat resistance. We screened 439 isogenic deficiency strains from the DrosDel project, covering 65.6% of the Drosophila melanogaster genome in order to map QTL for thermal resistance. As a result, we found 19 QTL for heat resistance, including 3 novel QTL outside the QTL found in previous studies. Conclusion The QTL found in this study encompassed 19 heat-responsive genes found in the previous gene expression profiling studies, suggesting that they were strong candidates for heat resistance. This result provides new insights into the genetic architecture of heat resistance. It also emphasizes the advantages of genome-wide deficiency screen using isogenic deficiency libraries.

  20. Identification and screening of potent antimicrobial peptides in arthropod genomes.

    Science.gov (United States)

    Duwadi, Deepesh; Shrestha, Anishma; Yilma, Binyam; Kozlovski, Itamar; Sa-Eed, Munaya; Dahal, Nikesh; Jukosky, James

    2018-05-01

    Using tBLASTn and BLASTp searches, we queried recently sequenced arthropod genomes and expressed sequence tags (ESTs) using a database of known arthropod cecropins, defensins, and attacins. We identified and synthesized 6 potential AMPs and screened them for antimicrobial activity. Using radial diffusion assays and microtiter antimicrobial assays, we assessed the in vitro antimicrobial effects of these peptides against several human pathogens including Gram-positive and Gram-negative bacteria and fungi. We also conducted hemolysis assays to examine the cytotoxicity of these peptides to mammalian cells. Four of the six peptides identified showed antimicrobial effects in these assays. We also created truncated versions of these four peptides to assay their antimicrobial activity. Two cecropins derived from the monarch butterfly genome (Danaus plexippus), DAN1 and DAN2, showed minimum inhibitory concentrations (MICs) in the range of 2-16 μg/ml when screened against Gram-negative bacteria. HOLO1 and LOUDEF1, two defensin-like peptides derived from red flour beetle (Tribolium castaneum) and human body louse (Pediculus humanus humanus), respectively, exhibited MICs in the range of 13-25 μg/ml against Gram-positive bacteria. Furthermore, HOLO1 showed an MIC less than 5 μg/ml against the fungal species Candida albicans. These peptides exhibited no hemolytic activity at concentrations up to 200 μg/ml. The truncated peptides derived from DAN2 and HOLO1 showed very little antimicrobial activity. Our experiments show that the peptides DAN1, DAN2, HOLO1, and LOUDEF1 showed potent antimicrobial activity in vitro against common human pathogens, did not lyse mammalian red blood cells, and indicates their potential as templates for novel therapeutic agents against microbial infection. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. ScreenBEAM: a novel meta-analysis algorithm for functional genomics screens via Bayesian hierarchical modeling | Office of Cancer Genomics

    Science.gov (United States)

    Functional genomics (FG) screens, using RNAi or CRISPR technology, have become a standard tool for systematic, genome-wide loss-of-function studies for therapeutic target discovery. As in many large-scale assays, however, off-target effects, variable reagents' potency and experimental noise must be accounted for appropriately control for false positives.

  2. Genome-Wide RNAi Ionomics Screen Reveals New Genes and Regulation of Human Trace Element Metabolism

    Science.gov (United States)

    Malinouski, Mikalai; Hasan, Nesrin M.; Zhang, Yan; Seravalli, Javier; Lin, Jie; Avanesov, Andrei; Lutsenko, Svetlana; Gladyshev, Vadim N.

    2017-01-01

    Trace elements are essential for human metabolism and dysregulation of their homeostasis is associated with numerous disorders. Here we characterize mechanisms that regulate trace elements in human cells by designing and performing a genome-wide high-throughput siRNA/ionomics screen, and examining top hits in cellular and biochemical assays. The screen reveals high stability of the ionomes, especially the zinc ionome, and yields known regulators and novel candidates. We further uncover fundamental differences in the regulation of different trace elements. Specifically, selenium levels are controlled through the selenocysteine machinery and expression of abundant selenoproteins; copper balance is affected by lipid metabolism and requires machinery involved in protein trafficking and posttranslational modifications; and the iron levels are influenced by iron import and expression of the iron/heme-containing enzymes. Our approach can be applied to a variety of disease models and/or nutritional conditions, and the generated dataset opens new directions for studies of human trace element metabolism. PMID:24522796

  3. Genomic screening for blood-borne viruses in transfusion settings.

    Science.gov (United States)

    Allain, J P

    2000-02-01

    The residual risk of post-transfusion human immunodeficiency virus (HIV) infection is low but slightly higher for hepatitis B virus (HBV) and hepatitis C virus (HCV), the main reason being viraemia during the window period preceding antibody or antigen detection by enzyme immunoassays. Immunosilent-infected individuals and carriers of distant viral variants also play an unquantifiable role. Multiple techniques, e.g. reverse transcription-polymerase chain reaction (RT-PCR), PCR, ligase-chain reaction, nucleic acid sequence-based amplification (NASBA) and transcription-mediated amplification (TMA) have been developed to amplify and detect viral genomes as single or multiplex assays. Equipment providing various degrees of automation has been adapted to these techniques. Applying nucleic acid amplification techniques (NAT) to blood screening, two main approaches have been advocated: plasma pool and single-donation testing. Pool testing presents the advantage of lower cost and readily available equipment although it is prone to false negative and positive reactions. The time required to identify infected donations is incompatible with blood component release, and may lead to product waste. Single-unit testing, although appealing, is not yet fully automated and potentially very costly unless a systematic multiplex approach is taken. Although technically feasible, NAT applied to the blood supply needs to be clinically evaluated and its cost efficiency assessed in the general public health context. However, pool NAT is currently implemented in continental Europe and the USA.

  4. ScreenBEAM: a novel meta-analysis algorithm for functional genomics screens via Bayesian hierarchical modeling.

    Science.gov (United States)

    Yu, Jiyang; Silva, Jose; Califano, Andrea

    2016-01-15

    Functional genomics (FG) screens, using RNAi or CRISPR technology, have become a standard tool for systematic, genome-wide loss-of-function studies for therapeutic target discovery. As in many large-scale assays, however, off-target effects, variable reagents' potency and experimental noise must be accounted for appropriately control for false positives. Indeed, rigorous statistical analysis of high-throughput FG screening data remains challenging, particularly when integrative analyses are used to combine multiple sh/sgRNAs targeting the same gene in the library. We use large RNAi and CRISPR repositories that are publicly available to evaluate a novel meta-analysis approach for FG screens via Bayesian hierarchical modeling, Screening Bayesian Evaluation and Analysis Method (ScreenBEAM). Results from our analysis show that the proposed strategy, which seamlessly combines all available data, robustly outperforms classical algorithms developed for microarray data sets as well as recent approaches designed for next generation sequencing technologies. Remarkably, the ScreenBEAM algorithm works well even when the quality of FG screens is relatively low, which accounts for about 80-95% of the public datasets. R package and source code are available at: https://github.com/jyyu/ScreenBEAM. ac2248@columbia.edu, jose.silva@mssm.edu, yujiyang@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. "Is It Worth Knowing?" Focus Group Participants' Perceived Utility of Genomic Preconception Carrier Screening.

    Science.gov (United States)

    Schneider, Jennifer L; Goddard, Katrina A B; Davis, James; Wilfond, Benjamin; Kauffman, Tia L; Reiss, Jacob A; Gilmore, Marian; Himes, Patricia; Lynch, Frances L; Leo, Michael C; McMullen, Carmit

    2016-02-01

    As genome sequencing technology advances, research is needed to guide decision-making about what results can or should be offered to patients in different clinical settings. We conducted three focus groups with individuals who had prior preconception genetic testing experience to explore perceived advantages and disadvantages of genome sequencing for preconception carrier screening, compared to usual care. Using a discussion guide, a trained qualitative moderator facilitated the audio-recorded focus groups. Sixteen individuals participated. Thematic analysis of transcripts started with a grounded approach and subsequently focused on participants' perceptions of the value of genetic information. Analysis uncovered two orientations toward genomic preconception carrier screening: "certain" individuals desiring all possible screening information; and "hesitant" individuals who were more cautious about its value. Participants revealed valuable information about barriers to screening: fear/anxiety about results; concerns about the method of returning results; concerns about screening necessity; and concerns about partner participation. All participants recommended offering choice to patients to enhance the value of screening and reduce barriers. Overall, two groups of likely users of genome sequencing for preconception carrier screening demonstrated different perceptions of the advantages or disadvantages of screening, suggesting tailored approaches to education, consent, and counseling may be warranted with each group.

  6. A variational principle for computing nonequilibrium fluxes and potentials in genome-scale biochemical networks.

    Science.gov (United States)

    Fleming, R M T; Maes, C M; Saunders, M A; Ye, Y; Palsson, B Ø

    2012-01-07

    We derive a convex optimization problem on a steady-state nonequilibrium network of biochemical reactions, with the property that energy conservation and the second law of thermodynamics both hold at the problem solution. This suggests a new variational principle for biochemical networks that can be implemented in a computationally tractable manner. We derive the Lagrange dual of the optimization problem and use strong duality to demonstrate that a biochemical analogue of Tellegen's theorem holds at optimality. Each optimal flux is dependent on a free parameter that we relate to an elementary kinetic parameter when mass action kinetics is assumed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. A Biochemical Approach to Understanding the Fanconi Anemia Pathway-Regulated Nucleases in Genome Maintenance for Preventing Bone Marrow Failure and Cancer

    Science.gov (United States)

    2014-04-01

    the Fanconi Anemia Pathway- Regulated Nucleases in Genome Maintenance for Preventing Bone Marrow Failure and Cancer PRINCIPAL INVESTIGATOR...GRANT NUMBER 4. TITLE AND SUBTITLE A Biochemical Approach to Understanding the Fanconi Anemia Pathway-Regulated Nucleases in Genome Maintenance for...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Fanconi anemia is the most prevalent inherited BMF syndromes, caused by mutations in

  8. From structure prediction to genomic screens for novel non-coding RNAs

    DEFF Research Database (Denmark)

    Gorodkin, Jan; Hofacker, Ivo L.

    2011-01-01

    Abstract: Non-coding RNAs (ncRNAs) are receiving more and more attention not only as an abundant class of genes, but also as regulatory structural elements (some located in mRNAs). A key feature of RNA function is its structure. Computational methods were developed early for folding and prediction....... This and the increased amount of available genomes have made it possible to employ structure-based methods for genomic screens. The field has moved from folding prediction of single sequences to computational screens for ncRNAs in genomic sequence using the RNA structure as the main characteristic feature. Whereas early...... upon some of the concepts in current methods that have been applied in genomic screens for de novo RNA structures in searches for novel ncRNA genes and regulatory RNA structure on mRNAs. We discuss the strengths and weaknesses of the different strategies and how they can complement each other....

  9. Construction of the BAC Library of Small Abalone (Haliotis diversicolor) for Gene Screening and Genome Characterization.

    Science.gov (United States)

    Jiang, Likun; You, Weiwei; Zhang, Xiaojun; Xu, Jian; Jiang, Yanliang; Wang, Kai; Zhao, Zixia; Chen, Baohua; Zhao, Yunfeng; Mahboob, Shahid; Al-Ghanim, Khalid A; Ke, Caihuan; Xu, Peng

    2016-02-01

    The small abalone (Haliotis diversicolor) is one of the most important aquaculture species in East Asia. To facilitate gene cloning and characterization, genome analysis, and genetic breeding of it, we constructed a large-insert bacterial artificial chromosome (BAC) library, which is an important genetic tool for advanced genetics and genomics research. The small abalone BAC library includes 92,610 clones with an average insert size of 120 Kb, equivalent to approximately 7.6× of the small abalone genome. We set up three-dimensional pools and super pools of 18,432 BAC clones for target gene screening using PCR method. To assess the approach, we screened 12 target genes in these 18,432 BAC clones and identified 16 positive BAC clones. Eight positive BAC clones were then sequenced and assembled with the next generation sequencing platform. The assembled contigs representing these 8 BAC clones spanned 928 Kb of the small abalone genome, providing the first batch of genome sequences for genome evaluation and characterization. The average GC content of small abalone genome was estimated as 40.33%. A total of 21 protein-coding genes, including 7 target genes, were annotated into the 8 BACs, which proved the feasibility of PCR screening approach with three-dimensional pools in small abalone BAC library. One hundred fifty microsatellite loci were also identified from the sequences for marker development in the future. The BAC library and clone pools provided valuable resources and tools for genetic breeding and conservation of H. diversicolor.

  10. Position statement on opportunistic genomic screening from the Association of Genetic Nurses and Counsellors (UK and Ireland)

    OpenAIRE

    Middleton, Anna; Patch, Chris; Wiggins, Jennifer; Barnes, Kathy; Crawford, Gill; Benjamin, Caroline; Bruce, Anita

    2014-01-01

    The American College of Medical Genetics and Genomics released recommendations for reporting incidental findings (IFs) in clinical exome and genome sequencing. These suggest ‘opportunistic genomic screening' should be available to both adults and children each time a sequence is done and would be undertaken without seeking preferences from the patient first. Should opportunistic genomic screening be implemented in the United Kingdom, the Association of Genetic Nurses and Counsellors (AGNC), w...

  11. Screening for genomic rearrangements at BRCA1 locus in Iranian ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. RESEARCH NOTE. Screening ... women with breast cancer using multiplex ligation-dependent probe amplification .... In addition, one normal peak in the left side and two in the right side are shown with equal ...

  12. Towards Early Biochemical screening for Fetal Aneupliody in the First Trimester

    DEFF Research Database (Denmark)

    Tørring, Niels

    2011-01-01

    Objectives At Aarhus University Hospital, Denmark, the first trimester screening has been performed with the blood sample taken as early as gestational week 7 since 2003. We hereby present the status for the screening program. Methods: The study includes singleton pregnancies with complete first......: Screening for fetal aneuploidy can be performed with good results with the blood sample taken as early as the 7th week of gestation. Taking the blood sample before the 10th gestational week showed a high detection rate of fetal trisomy 21, with no difference in the detection of fetal trisomy 18, 13...

  13. Biochemical reasoning for radiation protection and screening methods for radiation sensitivity and potential carcinogenicity

    International Nuclear Information System (INIS)

    Riklis, Emanuel; Emerit, Ingrid

    1994-01-01

    Cells of different genetic characteristics respond differently to agents that modify radiation effects. When the modification is a result of chemical repair, reduction of the amount of damage by radical scavenging, production of hypoxia, or any other such mechanism, then the modification of the response will be the same for all types of cells, but not the same when biological or biochemical parameters are involved, because the differences between the cells affect the final outcome, and the genetic traits obviously become affected by chemical modifying agents. Some of these agents directly affect the repair of deoxyribonucleic acid (DNA) by mechanisms not yet understood. Another agent nicotinamide (NA), is directly linked to a repair pathway. Thus, a system that uses NA as a precursor of nicotinamide adenine dinucleotide (NAD) + , and uses NAD + to produce the polymer polyadenosine diphosphate ribose (PADPR) appears to be an interesting and important factor in the biochemical events that may be linked to improved radioprotection. (author). 36 refs., 5 figs

  14. From structure prediction to genomic screens for novel non-coding RNAs.

    Science.gov (United States)

    Gorodkin, Jan; Hofacker, Ivo L

    2011-08-01

    Non-coding RNAs (ncRNAs) are receiving more and more attention not only as an abundant class of genes, but also as regulatory structural elements (some located in mRNAs). A key feature of RNA function is its structure. Computational methods were developed early for folding and prediction of RNA structure with the aim of assisting in functional analysis. With the discovery of more and more ncRNAs, it has become clear that a large fraction of these are highly structured. Interestingly, a large part of the structure is comprised of regular Watson-Crick and GU wobble base pairs. This and the increased amount of available genomes have made it possible to employ structure-based methods for genomic screens. The field has moved from folding prediction of single sequences to computational screens for ncRNAs in genomic sequence using the RNA structure as the main characteristic feature. Whereas early methods focused on energy-directed folding of single sequences, comparative analysis based on structure preserving changes of base pairs has been efficient in improving accuracy, and today this constitutes a key component in genomic screens. Here, we cover the basic principles of RNA folding and touch upon some of the concepts in current methods that have been applied in genomic screens for de novo RNA structures in searches for novel ncRNA genes and regulatory RNA structure on mRNAs. We discuss the strengths and weaknesses of the different strategies and how they can complement each other.

  15. SARS CTL vaccine candidates; HLA supertype-, genome-wide scanning and biochemical validation

    DEFF Research Database (Denmark)

    Sylvester-Hvid, C.; Nielsen, Morten; Lamberth, K.

    2004-01-01

    . Exact knowledge of how the immune system handles protein antigens would allow for the identification of such linear sequences directly, from genomic/proteomic sequence information (Lauemoller et al., Rev Immunogenet 2001: 2: 477-91). The latter was recently established when a causative coronavirus (SARS...

  16. Biochemical verification of the self-reported smoking status of screened male smokers of the Dutch-Belgian randomized controlled lung cancer screening trial.

    Science.gov (United States)

    van der Aalst, Carlijn M; de Koning, Harry J

    2016-04-01

    Smoking is the main cause of lung cancer, so data linked to smoking behaviour are important in lung cancer screening trials. However, self-reporting data concerning smoking behaviour are mainly used. The aim of this study was to biochemically determine the validity and reliability of self-reported smoking status among smokers at high risk for developing lung cancer participating in the Dutch-Belgian lung cancer screening (NELSON) trial. For this sub study, a random sample of 475 men was selected who were scheduled for the fourth screening round in the NELSON trial. They were asked to complete a short questionnaire to verify the smoking behaviour for the previous seven days and a blood sample was collected to measure the cotinine level. The validity (sensitivity (Se), specificity (Sp), positive predictive value (PPV), and negative predictive value (NPV)) and reliability (Kappa) of the self-reported smoking status compared to the cotinine level (as golden standard) were determined. Both a completed questionnaire as well as a cotinine level were available for 199 (41.9%) participants. Based on these data, Se and Sp were respectively 98% (95%-Confidence Interval (CI): 91-99) and 98% (95%-CI: 93-100). PPV and NPV were 98% and 96% and Kappa was 0.96. In conclusion, the validity of the self-reported smoking status turned out to be reliable amongst men at high risk for developing lung cancer who participate in the NELSON lung cancer screening trial. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. A Genome-wide multidimensional RNAi screen reveals pathways controlling MHC class II antigen presentation

    NARCIS (Netherlands)

    Paul, Petra; van den Hoorn, Tineke; Jongsma, Marlieke L. M.; Bakker, Mark J.; Hengeveld, Rutger; Janssen, Lennert; Cresswell, Peter; Egan, David A.; van Ham, Marieke; ten Brinke, Anja; Ovaa, Huib; Beijersbergen, Roderick L.; Kuijl, Coenraad; Neefjes, Jacques

    2011-01-01

    MHC class II molecules (MHC-II) present peptides to T helper cells to facilitate immune responses and are strongly linked to autoimmune diseases. To unravel processes controlling MHC-II antigen presentation, we performed a genome-wide flow cytometry-based RNAi screen detecting MHC-II expression and

  18. An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes

    Science.gov (United States)

    Racher, Hilary; Phelps, Ian G.; Toedt, Grischa; Kennedy, Julie; Wunderlich, Kirsten A.; Sorusch, Nasrin; Abdelhamed, Zakia A.; Natarajan, Subaashini; Herridge, Warren; van Reeuwijk, Jeroen; Horn, Nicola; Boldt, Karsten; Parry, David A.; Letteboer, Stef J.F.; Roosing, Susanne; Adams, Matthew; Bell, Sandra M.; Bond, Jacquelyn; Higgins, Julie; Morrison, Ewan E.; Tomlinson, Darren C.; Slaats, Gisela G.; van Dam, Teunis J. P.; Huang, Lijia; Kessler, Kristin; Giessl, Andreas; Logan, Clare V.; Boyle, Evan A.; Shendure, Jay; Anazi, Shamsa; Aldahmesh, Mohammed; Al Hazzaa, Selwa; Hegele, Robert A.; Ober, Carole; Frosk, Patrick; Mhanni, Aizeddin A.; Chodirker, Bernard N.; Chudley, Albert E.; Lamont, Ryan; Bernier, Francois P.; Beaulieu, Chandree L.; Gordon, Paul; Pon, Richard T.; Donahue, Clem; Barkovich, A. James; Wolf, Louis; Toomes, Carmel; Thiel, Christian T.; Boycott, Kym M.; McKibbin, Martin; Inglehearn, Chris F.; Stewart, Fiona; Omran, Heymut; Huynen, Martijn A.; Sergouniotis, Panagiotis I.; Alkuraya, Fowzan S.; Parboosingh, Jillian S.; Innes, A Micheil; Willoughby, Colin E.; Giles, Rachel H.; Webster, Andrew R.; Ueffing, Marius; Blacque, Oliver; Gleeson, Joseph G.; Wolfrum, Uwe; Beales, Philip L.; Gibson, Toby

    2015-01-01

    Defects in primary cilium biogenesis underlie the ciliopathies, a growing group of genetic disorders. We describe a whole genome siRNA-based reverse genetics screen for defects in biogenesis and/or maintenance of the primary cilium, obtaining a global resource. We identify 112 candidate ciliogenesis and ciliopathy genes, including 44 components of the ubiquitin-proteasome system, 12 G-protein-coupled receptors, and three pre-mRNA processing factors (PRPF6, PRPF8 and PRPF31) mutated in autosomal dominant retinitis pigmentosa. The PRPFs localise to the connecting cilium, and PRPF8- and PRPF31-mutated cells have ciliary defects. Combining the screen with exome sequencing data identified recessive mutations in PIBF1/CEP90 and C21orf2/LRRC76 as causes of the ciliopathies Joubert and Jeune syndromes. Biochemical approaches place C21orf2 within key ciliopathy-associated protein modules, offering an explanation for the skeletal and retinal involvement observed in individuals with C21orf2-variants. Our global, unbiased approaches provide insights into ciliogenesis complexity and identify roles for unanticipated pathways in human genetic disease. PMID:26167768

  19. Lessons Learned From A Study Of Genomics-Based Carrier Screening For Reproductive Decision Making.

    Science.gov (United States)

    Wilfond, Benjamin S; Kauffman, Tia L; Jarvik, Gail P; Reiss, Jacob A; Richards, C Sue; McMullen, Carmit; Gilmore, Marian; Himes, Patricia; Kraft, Stephanie A; Porter, Kathryn M; Schneider, Jennifer L; Punj, Sumit; Leo, Michael C; Dickerson, John F; Lynch, Frances L; Clarke, Elizabeth; Rope, Alan F; Lutz, Kevin; Goddard, Katrina A B

    2018-05-01

    Genomics-based carrier screening is one of many opportunities to use genomic information to inform medical decision making, but clinicians, health care delivery systems, and payers need to determine whether to offer screening and how to do so in an efficient, ethical way. To shed light on this issue, we conducted a study in the period 2014-17 to inform the design of clinical screening programs and guide further health services research. Many of our results have been published elsewhere; this article summarizes the lessons we learned from that study and offers policy insights. Our experience can inform understanding of the potential impact of expanded carrier screening services on health system workflows and workforces-impacts that depend on the details of the screening approach. We found limited patient or health system harms from expanded screening. We also found that some patients valued the information they learned from the process. Future policy discussions should consider the value of offering such expanded carrier screening in health delivery systems with limited resources.

  20. Genomic, proteomic and biochemical analysis of the chitinolytic machinery of Serratia marcescens BJL200.

    Science.gov (United States)

    Tuveng, Tina R; Hagen, Live Heldal; Mekasha, Sophanit; Frank, Jeremy; Arntzen, Magnus Øverlie; Vaaje-Kolstad, Gustav; Eijsink, Vincent G H

    2017-04-01

    The chitinolytic machinery of Serratia marcescens BJL200 has been studied in detail over the last couple of decades, however, the proteome secreted by this Gram-negative bacterium during growth on chitin has not been studied in depth. In addition, the genome of this most studied chitinolytic Serratia strain has until now, not been sequenced. We report a draft genome sequence for S. marcescens BJL200. Using label-free quantification (LFQ) proteomics and a recently developed plate-method for assessing secretomes during growth on solid substrates, we find that, as expected, the chitin-active enzymes (ChiA, B, C, and CBP21) are produced in high amounts when the bacterium grows on chitin. Other proteins produced in high amounts after bacterial growth on chitin provide interesting targets for further exploration of the proteins involved in degradation of chitin-rich biomasses. The genome encodes a fourth chitinase (ChiD), which is produced in low amounts during growth on chitin. Studies of chitin degradation with mixtures of recombinantly produced chitin-degrading enzymes showed that ChiD does not contribute to the overall efficiency of the process. ChiD is capable of converting N,N'-diacetyl chitobiose to N-acetyl glucosamine, but is less efficient than another enzyme produced for this purpose, the Chitobiase. Thus, the role of ChiD in chitin degradation, if any, remains unclear. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Total flavonoids content and biochemical screening of the leaves of tropical endemic medicinal plant Merremia borneensis

    Directory of Open Access Journals (Sweden)

    Muhammad Dawood Shah

    2014-12-01

    Full Text Available The developing and under developed countries mostly rely on traditional medicines. This herbal or traditional medicine involves the use of different types of organic extracts or the bioactive chemical constituents. This type of biochemical investigation provides health care at an affordable cost. This survey such as ethnomedicine keenly represents one of the best avenues in searching new economic plants for medicines. Keeping this view in mind, the present study is carried out in Merremia borneensis leaves of University Malaysia Sabah, Sabah, Malaysia. The plant has several beneficial properties, such as antioxidant activity. The dry powder of the leaves of M. borneensis was extracted with hexane, ethyl acetate, chloroform, butanol and aqueous ethanol. The flavonoids content of the extracts was determined by Willet method. The flavonoids content of the extracts as quercetin equivalents was found to be highest in aqueous ethanol (53.28% followed by chloroform (38.83%, ethyl acetate (24.51%, butanol (12.54% and hexane extract (3.44%. The results suggest the presence of phytochemical properties in the leaves, which are used in curing the ailments.

  2. Genome-wide screening and transcriptional profile analysis of desaturase genes in the European corn borer moth

    Institute of Scientific and Technical Information of China (English)

    Bingye Xue; Alejandro P. Rooney; Wendell L. Roelofs

    2012-01-01

    Acyl-coenzyme A (Acyl-CoA) desaturases play a key role in the biosynthesis of female moth sex pheromones.Desaturase genes are encoded by a large multigene family,and they have been divided into five subgroups on the basis of biochemical functionality and phylogenetic affinity.In this study both copy numbers and transcriptional levels of desaturase genes in the European corn borer (ECB),Ostrinia nubilalis,were investigated.The results from genome-wide screening of ECB bacterial artificial chromosome (BAC)library indicated there are many copies of some desaturase genes in the genome.An open reading frame (ORF) has been isolated for the novel desaturase gene ECB ezi-△11β from ECB gland complementary DNA and its functionality has been analyzed by two yeast expression systems.No functional activities have been detected for it.The expression levels of the four desaturase genes both in the pheromone gland and fat body of ECB and Asian corn borer (ACB),O.furnacalis,were determined by real-time polymerase chain reaction.In the ECB gland,△ 11 is the most abundant,although the amount of △14 is also considerable.In the ACB gland,△14 is the most abundant and is 100 times more abundant than all the other three combined.The results from the analysis of evolution of desaturase gene transcription in the ECB,ACB and other moths indicate that the pattern of △ 11 gene transcription is significantly different from the transcriptional patterns of other desaturase genes and this difference is tied to the underlying nucleotide composition bias of the genome.

  3. A plant-based chemical genomics screen for the identification of flowering inducers.

    Science.gov (United States)

    Fiers, Martijn; Hoogenboom, Jorin; Brunazzi, Alice; Wennekes, Tom; Angenent, Gerco C; Immink, Richard G H

    2017-01-01

    Floral timing is a carefully regulated process, in which the plant determines the optimal moment to switch from the vegetative to reproductive phase. While there are numerous genes known that control flowering time, little information is available on chemical compounds that are able to influence this process. We aimed to discover novel compounds that are able to induce flowering in the model plant Arabidopsis. For this purpose we developed a plant-based screening platform that can be used in a chemical genomics study. Here we describe the set-up of the screening platform and various issues and pitfalls that need to be addressed in order to perform a chemical genomics screening on Arabidopsis plantlets. We describe the choice for a molecular marker, in combination with a sensitive reporter that's active in plants and is sufficiently sensitive for detection. In this particular screen, the firefly Luciferase marker was used, fused to the regulatory sequences of the floral meristem identity gene APETALA1 (AP1) , which is an early marker for flowering. Using this screening platform almost 9000 compounds were screened, in triplicate, in 96-well plates at a concentration of 25 µM. One of the identified potential flowering inducing compounds was studied in more detail and named Flowering1 (F1). F1 turned out to be an analogue of the plant hormone Salicylic acid (SA) and appeared to be more potent than SA in the induction of flowering. The effect could be confirmed by watering Arabidopsis plants with SA or F1, in which F1 gave a significant reduction in time to flowering in comparison to SA treatment or the control. In this study a chemical genomics screening platform was developed to discover compounds that can induce flowering in Arabidopsis. This platform was used successfully, to identify a compound that can speed-up flowering in Arabidopsis.

  4. SARS CTL vaccine candidates; HLA supertype-, genome-wide scanning and biochemical validation

    DEFF Research Database (Denmark)

    Sylvester-Hvid, C; Nielsen, M; Lamberth, K

    2004-01-01

    . Exact knowledge of how the immune system handles protein antigens would allow for the identification of such linear sequences directly from genomic/proteomic sequence information (Lauemoller et al., Rev Immunogenet 2001: 2: 477-91). The latter was recently established when a causative coronavirus (SARS...... of the HLA supertypes and identified almost 100 potential vaccine candidates. These should be further validated in SARS survivors and used for vaccine formulation. We suggest that immunobioinformatics may become a fast and valuable tool in rational vaccine design....

  5. SARS CTL vaccine candidates; HLA supertype-, genome-wide scanning and biochemical validation

    DEFF Research Database (Denmark)

    Sylvester-Hvid, C.; Nielsen, Morten; Lamberth, K.

    2004-01-01

    . Exact knowledge of how the immune system handles protein antigens would allow for the identification of such linear sequences directly, from genomic/proteomic sequence information (Lauemoller et al., Rev Immunogenet 2001: 2: 477-91). The latter was recently established when a causative coronavirus (SARS...... of the HLA supertypes and identified almost 100 potential vaccine candidates. These should be further validated in SARS survivors and used for vaccine formulation. We suggest that immunobioinformatics may become a fast and valuable tool in rational vaccine design....

  6. From structure prediction to genomic screens for novel non-coding RNAs.

    Directory of Open Access Journals (Sweden)

    Jan Gorodkin

    2011-08-01

    Full Text Available Non-coding RNAs (ncRNAs are receiving more and more attention not only as an abundant class of genes, but also as regulatory structural elements (some located in mRNAs. A key feature of RNA function is its structure. Computational methods were developed early for folding and prediction of RNA structure with the aim of assisting in functional analysis. With the discovery of more and more ncRNAs, it has become clear that a large fraction of these are highly structured. Interestingly, a large part of the structure is comprised of regular Watson-Crick and GU wobble base pairs. This and the increased amount of available genomes have made it possible to employ structure-based methods for genomic screens. The field has moved from folding prediction of single sequences to computational screens for ncRNAs in genomic sequence using the RNA structure as the main characteristic feature. Whereas early methods focused on energy-directed folding of single sequences, comparative analysis based on structure preserving changes of base pairs has been efficient in improving accuracy, and today this constitutes a key component in genomic screens. Here, we cover the basic principles of RNA folding and touch upon some of the concepts in current methods that have been applied in genomic screens for de novo RNA structures in searches for novel ncRNA genes and regulatory RNA structure on mRNAs. We discuss the strengths and weaknesses of the different strategies and how they can complement each other.

  7. A whole genome screen for HIV restriction factors

    Directory of Open Access Journals (Sweden)

    Liu Li

    2011-11-01

    Full Text Available Abstract Background Upon cellular entry retroviruses must avoid innate restriction factors produced by the host cell. For human immunodeficiency virus (HIV human restriction factors, APOBEC3 (apolipoprotein-B-mRNA-editing-enzyme, p21 and tetherin are well characterised. Results To identify intrinsic resistance factors to HIV-1 replication we screened 19,121 human genes and identified 114 factors with significant inhibition of infection. Those with a known function are involved in a broad spectrum of cellular processes including receptor signalling, vesicle trafficking, transcription, apoptosis, cross-nuclear membrane transport, meiosis, DNA damage repair, ubiquitination and RNA processing. We focused on the PAF1 complex which has been previously implicated in gene transcription, cell cycle control and mRNA surveillance. Knockdown of all members of the PAF1 family of proteins enhanced HIV-1 reverse transcription and integration of provirus. Over-expression of PAF1 in host cells renders them refractory to HIV-1. Simian Immunodeficiency Viruses and HIV-2 are also restricted in PAF1 expressing cells. PAF1 is expressed in primary monocytes, macrophages and T-lymphocytes and we demonstrate strong activity in MonoMac1, a monocyte cell line. Conclusions We propose that the PAF1c establishes an anti-viral state to prevent infection by incoming retroviruses. This previously unrecognised mechanism of restriction could have implications for invasion of cells by any pathogen.

  8. Optimization of Biochemical Screening Methods for Volatile and Unstable Sesquiterpenoids Using HS-SPME-GC-MS

    Directory of Open Access Journals (Sweden)

    Trine Bundgaard Andersen

    2015-06-01

    Full Text Available HS-SPME-GC-MS has been suggested as a fast and robust analytical platform for the product characterization of sesquiterpene synthases. The choice of fiber and injection temperature can have a significant effect on the observed product profile, due to the chemical rearrangements that can occur on the fiber material. Here we present a systematic study on the effects of fiber choice and injection port temperature on the observed sesquiterpenoid profile of four sesquiterpene synthases expressed in Nicotiana benthamiana. We found that the absorbent material PDMS was much less likely to support acid-induced rearrangement of sesquiterpenoids when compared to the adsorbent materials PDMS/DVB, PDMS/CAR, and PDMS/CAR/DVB. Furthermore, utilizing an injection port temperature at 160 °C almost eliminated the inherent thermal instability of germacrene sesquiterpenoids. Thus, for fast screening of sesquiterpene synthases, the results suggest that PDMS fibers and an injection temperature of 160 °C provide a fast and reproducible HS-SPME GC-MS method when using H2 as carrier gas.

  9. Relationship between arterial vascular calcifications seen on screening mammograms and biochemical markers of endothelial injury

    Energy Technology Data Exchange (ETDEWEB)

    Pidal, Diego [Unidad de Investigacion del, Hospital de Jove, Gijon (Spain)], E-mail: dpidal@hotmail.com; Sanchez Vidal, M Teresa [Servicio de Medicina Interna, Hospital de Jove (Spain)], E-mail: medicinainterna@hospitaldejove.com; Rodriguez, Juan Carlos [Unidad de Investigacion del, Hospital de Jove, Gijon (Spain); Servicio de Cirugia General, Hospital de Jove (Spain); Instituto Universitario de Oncologia del Principado de Asturias, Oviedo (Spain)], E-mail: investigacion@hospitaldejove.com; Corte, M Daniela [Unidad de Investigacion del, Hospital de Jove, Gijon (Spain); Instituto Universitario de Oncologia del Principado de Asturias, Oviedo (Spain)], E-mail: mdanielac@hotmail.com; Pravia, Paz [Servicio de Radiodiagnostico, Hospital de Jove (Spain)], E-mail: radiologia@hospitaldejove.com; Guinea, Oscar [Servicio de Radiodiagnostico, Hospital de Jove (Spain)], E-mail: oscarfguinea@seram.org; Pidal, Ivan [Unidad de Investigacion del, Hospital de Jove, Gijon (Spain)], E-mail: ivanpida@hotmail.com; Bongera, Miguel [Unidad de Investigacion del, Hospital de Jove, Gijon (Spain)], E-mail: mbchoppy@hotmail.com; Escribano, Damaso [Servicio de Medicina Interna, Hospital de Jove (Spain)], E-mail: medicinainterna@hospitaldejove.com; Gonzalez, Luis O. [Unidad de Investigacion del, Hospital de Jove, Gijon (Spain)], E-mail: lovidiog@telefonica.net; Diez, M Cruz [Servicio de Cirugia General, Hospital de Jove (Spain)], E-mail: cirugiageneral@hospitaldejove.com; Venta, Rafael [Servicio de Analisis Clinicos, Hospital de San Agustin, Aviles (Spain); Departamento de Bioquimica y Biologia Molecular, Universidad de Oviedo (Spain)], E-mail: rafael.venta@sespa.princast.es; Vizoso, Francisco J. [Unidad de Investigacion del, Hospital de Jove, Gijon (Spain); Servicio de Cirugia General, Hospital de Jove (Spain); Instituto Universitario de Oncologia del Principado de Asturias, Oviedo (Spain)], E-mail: fjvizoso@telefonica.net

    2009-01-15

    To assess whether breast arterial calcifications (BAC) are associated with altered serum markers of cardiovascular risk, mammograms and records from 1759 women (age range: 45-65 years) screened for breast cancer were revised. One hundred and forty seven (8.36%) women showed BAC. A total of 136 women with BAC and controls (mean age: 57 and 55 years, respectively) accepted entering the study. There were no significant differences in serum levels of urea, glucose, uric acid, creatinine, total cholesterol, HDL-C, LDL-C, folic acid, vitamin B{sub 12}, TSH or cysteine, between both groups of patients. However, women with BAC showed higher serum levels of triglycerides (p = 0.006), homocysteine (p = 0.002) and hs-CRP (p = 0.003) than women without BAC. Likewise, we found a significantly higher percentage of cases with an elevated LDL-C/HDL-C ratio (coronary risk index >2) amongst women with BAC than in women without BAC (56.7 and 38.2%, respectively; p = 0.04). Our results indicate that the finding of BAC identify women showing altered serum markers of cardiovascular risk.

  10. Relationship between arterial vascular calcifications seen on screening mammograms and biochemical markers of endothelial injury

    International Nuclear Information System (INIS)

    Pidal, Diego; Sanchez Vidal, M Teresa; Rodriguez, Juan Carlos; Corte, M Daniela; Pravia, Paz; Guinea, Oscar; Pidal, Ivan; Bongera, Miguel; Escribano, Damaso; Gonzalez, Luis O.; Diez, M Cruz; Venta, Rafael; Vizoso, Francisco J.

    2009-01-01

    To assess whether breast arterial calcifications (BAC) are associated with altered serum markers of cardiovascular risk, mammograms and records from 1759 women (age range: 45-65 years) screened for breast cancer were revised. One hundred and forty seven (8.36%) women showed BAC. A total of 136 women with BAC and controls (mean age: 57 and 55 years, respectively) accepted entering the study. There were no significant differences in serum levels of urea, glucose, uric acid, creatinine, total cholesterol, HDL-C, LDL-C, folic acid, vitamin B 12 , TSH or cysteine, between both groups of patients. However, women with BAC showed higher serum levels of triglycerides (p = 0.006), homocysteine (p = 0.002) and hs-CRP (p = 0.003) than women without BAC. Likewise, we found a significantly higher percentage of cases with an elevated LDL-C/HDL-C ratio (coronary risk index >2) amongst women with BAC than in women without BAC (56.7 and 38.2%, respectively; p = 0.04). Our results indicate that the finding of BAC identify women showing altered serum markers of cardiovascular risk

  11. Rapid screening for lipid storage disorders using biochemical markers. Expert center data and review of the literature.

    Science.gov (United States)

    Voorink-Moret, M; Goorden, S M I; van Kuilenburg, A B P; Wijburg, F A; Ghauharali-van der Vlugt, J M M; Beers-Stet, F S; Zoetekouw, A; Kulik, W; Hollak, C E M; Vaz, F M

    2018-02-01

    In patients suspected of a lipid storage disorder (sphingolipidoses, lipidoses), confirmation of the diagnosis relies predominantly on the measurement of specific enzymatic activities and genetic studies. New UPLC-MS/MS methods have been developed to measure lysosphingolipids and oxysterols, which, combined with chitotriosidase activity may represent a rapid first tier screening for lipid storage disorders. A lysosphingolipid panel consisting of lysoglobotriaosylceramide (LysoGb3), lysohexosylceramide (LysoHexCer: both lysoglucosylceramide and lysogalactosylceramide), lysosphingomyelin (LysoSM) and its carboxylated analogue lysosphingomyelin-509 (LysoSM-509) was measured in control subjects and plasma samples of predominantly untreated patients affected with lipid storage disorders (n=74). In addition, the oxysterols cholestane-3β,5α,6β-triol and 7-ketocholesterol were measured in a subset of these patients (n=36) as well as chitotriosidase activity (n=43). A systematic review of the literature was performed to assess the usefulness of these biochemical markers. Specific elevations of metabolites, i.e. without overlap between controls and other lipid storage disorders, were found for several lysosomal storage diseases: increased LysoSM levels in acid sphingomyelinase deficiency (Niemann-Pick disease type A/B), LysoGb3 levels in males with classical phenotype Fabry disease and LysoHexCer (i.e. lysoglucosylceramide/lysogalactosylceramide) in Gaucher and Krabbe diseases. While elevated levels of LysoSM-509 and cholestane-3β,5α,6β-triol did not discriminate between Niemann Pick disease type C and acid sphingomyelinase deficiency, LysoSM-509/LysoSM ratio was specifically elevated in Niemann-Pick disease type C. In Gaucher disease type I, mild increases in several lysosphingolipids were found including LysoGb3 with levels in the range of non-classical Fabry males and females. Chitotriosidase showed specific elevations in symptomatic Gaucher disease, and was mildly

  12. Phene Plate (PhP) biochemical fingerprinting. A screening method for epidemiological typing of enterococcal isolates.

    Science.gov (United States)

    Saeedi, B; Tärnberg, M; Gill, H; Hällgren, A; Jonasson, J; Nilsson, L E; Isaksson, B; Kühn, I; Hanberger, H

    2005-09-01

    Pulsed-field gel electrophoresis (PFGE) is currently considered the gold standard for genotyping of enterococci. However, PFGE is both expensive and time-consuming. The purpose of this study was to investigate whether the PhP system can be used as a reliable clinical screening method for detection of genetically related isolates of enterococci. If so, it should be possible to minimize the number of isolates subjected to PFGE typing, which would save time and money. Ninety-nine clinical enterococcal isolates were analysed by PhP (similarity levels 0.90-0.975) and PFGE (similarity levels PhP also belong to the same cluster according to PFGE, i.e. p(A(PFGE)=B(PFGE) * A(PhP)=B(PhP)), and the probability that a pair of isolates of different types according to PhP also belong to different clusters according to PFGE, i.e. p(A(PFGE) not equalB(PFGE) * A(PhP) not equalB(PhP)), was relatively high for E. faecalis (0.86 and 0.96, respectively), but was lower for E. faecium (0.51 and 0.77, respectively). The concordance which shows the probability that PhP and PFGE agree on match or mismatch was 86%-93% for E. faecalis and 54%-66% for E. faecium, which indicates that the PhP method may be useful for epidemiological typing of E. faecalis in the current settings but not for E. faecium.

  13. An evaluation of the Oxoid Biochemical Identification System Campy rapid screening test for Campylobacteraceae and Helicobacter spp.

    Science.gov (United States)

    Hoosain, N; Lastovica, A J

    2009-06-01

    To evaluate the Oxoid Biochemical Identification System (OBIS) Campy test (ID0800M) against Campylobacter; Arcobacter; and other micro-organisms, with similar colonial morphology, for the detection of l-alanine aminopeptidase (l-ALA). The KOH and l-ALA (OBIS and Fluka) tests were carried out on every isolate. The procedures were followed as indicated in the OBIS and Fluka kit instructions. A total of 146 strains of 19 species of Campylobacter, seven strains of Arcobacter butzleri, four Arcobacter butzleri-like strains, 42 strains of 10 species of Helicobacter, 96 Gram-negative and 49 Gram-positive clinical isolates were tested. As expected, Campylobacter and Arcobacter strains were negative, while other Gram-negative bacteria were positive for the l-ALA test. An unexpected finding was that Helicobacter strains, although Gram-negative, were all negative for the l-ALA tests suggesting the absence of l-ALA within this genus. This is a novel finding. The absence of l-ALA was confirmed upon comparison with the available full genomic sequences of Helicobacter on the NCBI database. The OBIS Campy (ID0800M) test kit proved to be rapid and accurate for the presumptive characterization of Campylobacter and Arcobacter. A novel finding was that Helicobacter species also did not have the l-ALA enzyme. The OBIS kit will be useful in diagnostic laboratories for the presumptive diagnosis of Campylobacter, Arcobacter and Helicobacter strains.

  14. Study on the Mitochondrial Genome of Sea Island Cotton (Gossypium barbadense) by BAC Library Screening

    Institute of Scientific and Technical Information of China (English)

    SU Ai-guo; LI Shuang-shuang; LIU Guo-zheng; LEI Bin-bin; KANG Ding-ming; LI Zhao-hu; MA Zhi-ying; HUA Jin-ping

    2014-01-01

    The plant mitochondrial genome displays complex features, particularly in terms of cytoplasmic male sterility (CMS). Therefore, research on the cotton mitochondrial genome may provide important information for analyzing genome evolution and exploring the molecular mechanism of CMS. In this paper, we present a preliminary study on the mitochondrial genome of sea island cotton (Gossypium barbadense) based on positive clones from the bacterial artiifcial chromosome (BAC) library. Thirty-ifve primers designed with the conserved sequences of functional genes and exons of mitochondria were used to screen positive clones in the genome library of the sea island cotton variety called Pima 90-53. Ten BAC clones were obtained and veriifed for further study. A contig was obtained based on six overlapping clones and subsequently laid out primarily on the mitochondrial genome. One BAC clone, clone 6 harbored with the inserter of approximate 115 kb mtDNA sequence, in which more than 10 primers fragments could be ampliifed, was sequenced and assembled using the Solexa strategy. Fifteen mitochondrial functional genes were revealed in clone 6 by gene annotation. The characteristics of the syntenic gene/exon of the sequences and RNA editing were preliminarily predicted.

  15. High Throughput Screening in Duchenne Muscular Dystrophy: From Drug Discovery to Functional Genomics

    OpenAIRE

    Thomas J.J. Gintjee; Alvin S.H. Magh; Carmen Bertoni

    2014-01-01

    Centers for the screening of biologically active compounds and genomic libraries are becoming common in the academic setting and have enabled researchers devoted to developing strategies for the treatment of diseases or interested in studying a biological phenomenon to have unprecedented access to libraries that, until few years ago, were accessible only by pharmaceutical companies. As a result, new drugs and genetic targets have now been identified for the treatment of Duchenne muscular dyst...

  16. Predicting ionizing radiation exposure using biochemically-inspired genomic machine learning [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Jonathan Z.L. Zhao

    2018-02-01

    Full Text Available Background: Gene signatures derived from transcriptomic data using machine learning methods have shown promise for biodosimetry testing. These signatures may not be sufficiently robust for large scale testing, as their performance has not been adequately validated on external, independent datasets. The present study develops human and murine signatures with biochemically-inspired machine learning that are strictly validated using k-fold and traditional approaches. Methods: Gene Expression Omnibus (GEO datasets of exposed human and murine lymphocytes were preprocessed via nearest neighbor imputation and expression of genes implicated in the literature to be responsive to radiation exposure (n=998 were then ranked by Minimum Redundancy Maximum Relevance (mRMR. Optimal signatures were derived by backward, complete, and forward sequential feature selection using Support Vector Machines (SVM, and validated using k-fold or traditional validation on independent datasets. Results: The best human signatures we derived exhibit k-fold validation accuracies of up to 98% (DDB2,  PRKDC, TPP2, PTPRE, and GADD45A when validated over 209 samples and traditional validation accuracies of up to 92% (DDB2,  CD8A,  TALDO1,  PCNA,  EIF4G2,  LCN2,  CDKN1A,  PRKCH,  ENO1,  and PPM1D when validated over 85 samples. Some human signatures are specific enough to differentiate between chemotherapy and radiotherapy. Certain multi-class murine signatures have sufficient granularity in dose estimation to inform eligibility for cytokine therapy (assuming these signatures could be translated to humans. We compiled a list of the most frequently appearing genes in the top 20 human and mouse signatures. More frequently appearing genes among an ensemble of signatures may indicate greater impact of these genes on the performance of individual signatures. Several genes in the signatures we derived are present in previously proposed signatures. Conclusions: Gene signatures

  17. Genome-wide RNAi Screening to Identify Host Factors That Modulate Oncolytic Virus Therapy.

    Science.gov (United States)

    Allan, Kristina J; Mahoney, Douglas J; Baird, Stephen D; Lefebvre, Charles A; Stojdl, David F

    2018-04-03

    High-throughput genome-wide RNAi (RNA interference) screening technology has been widely used for discovering host factors that impact virus replication. Here we present the application of this technology to uncovering host targets that specifically modulate the replication of Maraba virus, an oncolytic rhabdovirus, and vaccinia virus with the goal of enhancing therapy. While the protocol has been tested for use with oncolytic Maraba virus and oncolytic vaccinia virus, this approach is applicable to other oncolytic viruses and can also be utilized for identifying host targets that modulate virus replication in mammalian cells in general. This protocol describes the development and validation of an assay for high-throughput RNAi screening in mammalian cells, the key considerations and preparation steps important for conducting a primary high-throughput RNAi screen, and a step-by-step guide for conducting a primary high-throughput RNAi screen; in addition, it broadly outlines the methods for conducting secondary screen validation and tertiary validation studies. The benefit of high-throughput RNAi screening is that it allows one to catalogue, in an extensive and unbiased fashion, host factors that modulate any aspect of virus replication for which one can develop an in vitro assay such as infectivity, burst size, and cytotoxicity. It has the power to uncover biotherapeutic targets unforeseen based on current knowledge.

  18. Genome-wide screen for universal individual identification SNPs based on the HapMap and 1000 Genomes databases.

    Science.gov (United States)

    Huang, Erwen; Liu, Changhui; Zheng, Jingjing; Han, Xiaolong; Du, Weian; Huang, Yuanjian; Li, Chengshi; Wang, Xiaoguang; Tong, Dayue; Ou, Xueling; Sun, Hongyu; Zeng, Zhaoshu; Liu, Chao

    2018-04-03

    Differences among SNP panels for individual identification in SNP-selecting and populations led to few common SNPs, compromising their universal applicability. To screen all universal SNPs, we performed a genome-wide SNP mining in multiple populations based on HapMap and 1000Genomes databases. SNPs with high minor allele frequencies (MAF) in 37 populations were selected. With MAF from ≥0.35 to ≥0.43, the number of selected SNPs decreased from 2769 to 0. A total of 117 SNPs with MAF ≥0.39 have no linkage disequilibrium with each other in every population. For 116 of the 117 SNPs, cumulative match probability (CMP) ranged from 2.01 × 10-48 to 1.93 × 10-50 and cumulative exclusion probability (CEP) ranged from 0.9999999996653 to 0.9999999999945. In 134 tested Han samples, 110 of the 117 SNPs remained within high MAF and conformed to Hardy-Weinberg equilibrium, with CMP = 4.70 × 10-47 and CEP = 0.999999999862. By analyzing the same number of autosomal SNPs as in the HID-Ion AmpliSeq Identity Panel, i.e. 90 randomized out of the 110 SNPs, our panel yielded preferable CMP and CEP. Taken together, the 110-SNPs panel is advantageous for forensic test, and this study provided plenty of highly informative SNPs for compiling final universal panels.

  19. A methodological overview on molecular preimplantation genetic diagnosis and screening: a genomic future?

    Science.gov (United States)

    Vendrell, Xavier; Bautista-Llácer, Rosa

    2012-12-01

    The genetic diagnosis and screening of preimplantation embryos generated by assisted reproduction technology has been consolidated in the prenatal care framework. The rapid evolution of DNA technologies is tending to molecular approaches. Our intention is to present a detailed methodological view, showing different diagnostic strategies based on molecular techniques that are currently applied in preimplantation genetic diagnosis. The amount of DNA from one single, or a few cells, obtained by embryo biopsy is a limiting factor for the molecular analysis. In this sense, genetic laboratories have developed molecular protocols considering this restrictive condition. Nevertheless, the development of whole-genome amplification methods has allowed preimplantation genetic diagnosis for two or more indications simultaneously, like the selection of histocompatible embryos plus detection of monogenic diseases or aneuploidies. Moreover, molecular techniques have permitted preimplantation genetic screening to progress, by implementing microarray-based comparative genome hybridization. Finally, a future view of the embryo-genetics field based on molecular advances is proposed. The normalization, cost-effectiveness analysis, and new technological tools are the next topics for preimplantation genetic diagnosis and screening. Concomitantly, these additions to assisted reproduction technologies could have a positive effect on the schedules of preimplantation studies.

  20. Advances in genome-wide RNAi cellular screens: a case study using the Drosophila JAK/STAT pathway

    Science.gov (United States)

    2012-01-01

    Background Genome-scale RNA-interference (RNAi) screens are becoming ever more common gene discovery tools. However, whilst every screen identifies interacting genes, less attention has been given to how factors such as library design and post-screening bioinformatics may be effecting the data generated. Results Here we present a new genome-wide RNAi screen of the Drosophila JAK/STAT signalling pathway undertaken in the Sheffield RNAi Screening Facility (SRSF). This screen was carried out using a second-generation, computationally optimised dsRNA library and analysed using current methods and bioinformatic tools. To examine advances in RNAi screening technology, we compare this screen to a biologically very similar screen undertaken in 2005 with a first-generation library. Both screens used the same cell line, reporters and experimental design, with the SRSF screen identifying 42 putative regulators of JAK/STAT signalling, 22 of which verified in a secondary screen and 16 verified with an independent probe design. Following reanalysis of the original screen data, comparisons of the two gene lists allows us to make estimates of false discovery rates in the SRSF data and to conduct an assessment of off-target effects (OTEs) associated with both libraries. We discuss the differences and similarities between the resulting data sets and examine the relative improvements in gene discovery protocols. Conclusions Our work represents one of the first direct comparisons between first- and second-generation libraries and shows that modern library designs together with methodological advances have had a significant influence on genome-scale RNAi screens. PMID:23006893

  1. UCLA's Molecular Screening Shared Resource: enhancing small molecule discovery with functional genomics and new technology.

    Science.gov (United States)

    Damoiseaux, Robert

    2014-05-01

    The Molecular Screening Shared Resource (MSSR) offers a comprehensive range of leading-edge high throughput screening (HTS) services including drug discovery, chemical and functional genomics, and novel methods for nano and environmental toxicology. The MSSR is an open access environment with investigators from UCLA as well as from the entire globe. Industrial clients are equally welcome as are non-profit entities. The MSSR is a fee-for-service entity and does not retain intellectual property. In conjunction with the Center for Environmental Implications of Nanotechnology, the MSSR is unique in its dedicated and ongoing efforts towards high throughput toxicity testing of nanomaterials. In addition, the MSSR engages in technology development eliminating bottlenecks from the HTS workflow and enabling novel assays and readouts currently not available.

  2. Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast

    DEFF Research Database (Denmark)

    Huang, Mingtao; Bai, Yunpeng; Sjostrom, Staffan L.

    2015-01-01

    There is an increasing demand for biotech-based production of recombinant proteins for use as pharmaceuticals in the food and feed industry and in industrial applications. Yeast Saccharomyces cerevisiae is among preferred cell factories for recombinant protein production, and there is increasing...... interest in improving its protein secretion capacity. Due to the complexity of the secretory machinery in eukaryotic cells, it is difficult to apply rational engineering for construction of improved strains. Here we used high-throughput microfluidics for the screening of yeast libraries, generated by UV...... mutagenesis. Several screening and sorting rounds resulted in the selection of eight yeast clones with significantly improved secretion of recombinant a-amylase. Efficient secretion was genetically stable in the selected clones. We performed whole-genome sequencing of the eight clones and identified 330...

  3. A Drosophila Genome-Wide Screen Identifies Regulators of Steroid Hormone Production and Developmental Timing

    DEFF Research Database (Denmark)

    Thomas Danielsen, E.; E. Møller, Morten; Yamanaka, Naoki

    2016-01-01

    Steroid hormones control important developmental processes and are linked to many diseases. To systematically identify genes and pathways required for steroid production, we performed a Drosophila genome-wide in vivo RNAi screen and identified 1,906 genes with potential roles in steroidogenesis...... and developmental timing. Here, we use our screen as a resource to identify mechanisms regulating intracellular levels of cholesterol, a substrate for steroidogenesis. We identify a conserved fatty acid elongase that underlies a mechanism that adjusts cholesterol trafficking and steroidogenesis with nutrition...... and developmental programs. In addition, we demonstrate the existence of an autophagosomal cholesterol mobilization mechanism and show that activation of this system rescues Niemann-Pick type C1 deficiency that causes a disorder characterized by cholesterol accumulation. These cholesterol-trafficking mechanisms...

  4. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs.

    Science.gov (United States)

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F; Lecuit, Marc

    2016-05-12

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents.

  5. Genomic screening for dissection of a complex disease: The multiple sclerosis phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Haines, J.L.; Bazyk, A.; Gusella, J.F. [Massachusetts General Hospital, Boston, MA (United States)] [and others

    1994-09-01

    Application of positional cloning to diseases with a complex etiology is fraught with problems. These include undefined modes of inheritance, heterogeneity, and epistasis. Although microsatellite markers now make genotyping the genome a straightforward task, no single analytical method is available to efficiently and accurately use these data for a complex disease. We have developed a multi-stage genomic screening strategy which uses a combination of non-parametric approaches (Affected Pedigree Member (APM) linkage analysis and robust sib pair analysis (SP)), and the parametric lod score approach (using four different genetic models). To warrant follow-up, a marker must have two or more of: a nominal P value of 0.05 or less on the non-parametric tests, or a lod score greater than 1.0 for any model. Two adjacent markers each fulfilling one criterion are also considered for follow-up. These criteria were determined both by simulation studies and our empirical experience in screening a large number of other disorders. We applied this approach to multiple sclerosis (MS), a complex neurological disorder with a strong but ill-defined genetic component. Analysis of the first 91 markers from our screen of 55 multiplex families found 5 markers which met the SP criteria, 13 markers which met the APM criteria, and 8 markers which met the lod score criteria. Five regions (on chromosomes 2, 4, 7, 14, and 19) met our overall criteria. However, no single method identified all of these regions, suggesting that each method is sensitive to various (unknown) influences. The chromosome 14 results were not supported by follow-up typing and analysis of markers in that region, but the chromosome 19 results remain well supported. Updated screening results will be presented.

  6. STRP Screening Sets for the human genome at 5 cM density

    Directory of Open Access Journals (Sweden)

    Marth Gabor

    2003-02-01

    Full Text Available Abstract Background Short tandem repeat polymorphisms (STRPs are powerful tools for gene mapping and other applications. A STRP genome scan of 10 cM is usually adequate for mapping single gene disorders. However mapping studies involving genetically complex disorders and especially association (linkage disequilibrium often require higher STRP density. Results We report the development of two separate 10 cM human STRP Screening Sets (Sets 12 and 52 which span all chromosomes. When combined, the two Sets contain a total of 782 STRPs, with average STRP spacing of 4.8 cM, average heterozygosity of 0.72, and total sex-average coverage of 3535 cM. The current Sets are comprised almost entirely of STRPs based on tri- and tetranucleotide repeats. We also report correction of primer sequences for many STRPs used in previous Screening Sets. Detailed information for the new Screening Sets is available from our web site: http://research.marshfieldclinic.org/genetics. Conclusion Our new human STRP Screening Sets will improve the quality and cost effectiveness of genotyping for gene mapping and other applications.

  7. A genome-wide RNAi screen to dissect centriole duplication and centrosome maturation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Jeroen Dobbelaere

    2008-09-01

    Full Text Available Centrosomes comprise a pair of centrioles surrounded by an amorphous pericentriolar material (PCM. Here, we have performed a microscopy-based genome-wide RNA interference (RNAi screen in Drosophila cells to identify proteins required for centriole duplication and mitotic PCM recruitment. We analysed 92% of the Drosophila genome (13,059 genes and identified 32 genes involved in centrosome function. An extensive series of secondary screens classified these genes into four categories: (1 nine are required for centriole duplication, (2 11 are required for centrosome maturation, (3 nine are required for both functions, and (4 three genes regulate centrosome separation. These 32 hits include several new centrosomal components, some of which have human homologs. In addition, we find that the individual depletion of only two proteins, Polo and Centrosomin (Cnn can completely block centrosome maturation. Cnn is phosphorylated during mitosis in a Polo-dependent manner, suggesting that the Polo-dependent phosphorylation of Cnn initiates centrosome maturation in flies.

  8. Generation of Mouse Haploid Somatic Cells by Small Molecules for Genome-wide Genetic Screening

    Directory of Open Access Journals (Sweden)

    Zheng-Quan He

    2017-08-01

    Full Text Available The recent success of derivation of mammalian haploid embryonic stem cells (haESCs has provided a powerful tool for large-scale functional analysis of the mammalian genome. However, haESCs rapidly become diploidized after differentiation, posing challenges for genetic analysis. Here, we show that the spontaneous diploidization of haESCs happens in metaphase due to mitotic slippage. Diploidization can be suppressed by small-molecule-mediated inhibition of CDK1 and ROCK. Through ROCK inhibition, we can generate haploid somatic cells of all three germ layers from haESCs, including terminally differentiated neurons. Using piggyBac transposon-based insertional mutagenesis, we generated a haploid neural cell library harboring genome-wide mutations for genetic screening. As a proof of concept, we screened for Mn2+-mediated toxicity and identified the Park2 gene. Our findings expand the applications of mouse haploid cell technology to somatic cell types and may also shed light on the mechanisms of ploidy maintenance.

  9. Characterizing Protein Interactions Employing a Genome-Wide siRNA Cellular Phenotyping Screen

    Science.gov (United States)

    Suratanee, Apichat; Schaefer, Martin H.; Betts, Matthew J.; Soons, Zita; Mannsperger, Heiko; Harder, Nathalie; Oswald, Marcus; Gipp, Markus; Ramminger, Ellen; Marcus, Guillermo; Männer, Reinhard; Rohr, Karl; Wanker, Erich; Russell, Robert B.; Andrade-Navarro, Miguel A.; Eils, Roland; König, Rainer

    2014-01-01

    Characterizing the activating and inhibiting effect of protein-protein interactions (PPI) is fundamental to gain insight into the complex signaling system of a human cell. A plethora of methods has been suggested to infer PPI from data on a large scale, but none of them is able to characterize the effect of this interaction. Here, we present a novel computational development that employs mitotic phenotypes of a genome-wide RNAi knockdown screen and enables identifying the activating and inhibiting effects of PPIs. Exemplarily, we applied our technique to a knockdown screen of HeLa cells cultivated at standard conditions. Using a machine learning approach, we obtained high accuracy (82% AUC of the receiver operating characteristics) by cross-validation using 6,870 known activating and inhibiting PPIs as gold standard. We predicted de novo unknown activating and inhibiting effects for 1,954 PPIs in HeLa cells covering the ten major signaling pathways of the Kyoto Encyclopedia of Genes and Genomes, and made these predictions publicly available in a database. We finally demonstrate that the predicted effects can be used to cluster knockdown genes of similar biological processes in coherent subgroups. The characterization of the activating or inhibiting effect of individual PPIs opens up new perspectives for the interpretation of large datasets of PPIs and thus considerably increases the value of PPIs as an integrated resource for studying the detailed function of signaling pathways of the cellular system of interest. PMID:25255318

  10. Use of whole genome expression analysis in the toxicity screening of nanoparticles

    International Nuclear Information System (INIS)

    Fröhlich, Eleonore; Meindl, Claudia; Wagner, Karin; Leitinger, Gerd; Roblegg, Eva

    2014-01-01

    The use of nanoparticles (NPs) offers exciting new options in technical and medical applications provided they do not cause adverse cellular effects. Cellular effects of NPs depend on particle parameters and exposure conditions. In this study, whole genome expression arrays were employed to identify the influence of particle size, cytotoxicity, protein coating, and surface functionalization of polystyrene particles as model particles and for short carbon nanotubes (CNTs) as particles with potential interest in medical treatment. Another aim of the study was to find out whether screening by microarray would identify other or additional targets than commonly used cell-based assays for NP action. Whole genome expression analysis and assays for cell viability, interleukin secretion, oxidative stress, and apoptosis were employed. Similar to conventional assays, microarray data identified inflammation, oxidative stress, and apoptosis as affected by NP treatment. Application of lower particle doses and presence of protein decreased the total number of regulated genes but did not markedly influence the top regulated genes. Cellular effects of CNTs were small; only carboxyl-functionalized single-walled CNTs caused appreciable regulation of genes. It can be concluded that regulated functions correlated well with results in cell-based assays. Presence of protein mitigated cytotoxicity but did not cause a different pattern of regulated processes. - Highlights: • Regulated functions were screened using whole genome expression assays. • Polystyrene particles regulated more genes than short carbon nanotubes. • Protein coating of polystyrene particles did not change regulation pattern. • Functions regulated by microarray were confirmed by cell-based assay

  11. Use of whole genome expression analysis in the toxicity screening of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fröhlich, Eleonore, E-mail: eleonore.froehlich@medunigraz.at [Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz (Austria); Meindl, Claudia; Wagner, Karin [Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz (Austria); Leitinger, Gerd [Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz (Austria); Institute for Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21, 8010 Graz (Austria); Roblegg, Eva [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens-University of Graz, Universitätsplatz 1, 8010 Graz (Austria)

    2014-10-15

    The use of nanoparticles (NPs) offers exciting new options in technical and medical applications provided they do not cause adverse cellular effects. Cellular effects of NPs depend on particle parameters and exposure conditions. In this study, whole genome expression arrays were employed to identify the influence of particle size, cytotoxicity, protein coating, and surface functionalization of polystyrene particles as model particles and for short carbon nanotubes (CNTs) as particles with potential interest in medical treatment. Another aim of the study was to find out whether screening by microarray would identify other or additional targets than commonly used cell-based assays for NP action. Whole genome expression analysis and assays for cell viability, interleukin secretion, oxidative stress, and apoptosis were employed. Similar to conventional assays, microarray data identified inflammation, oxidative stress, and apoptosis as affected by NP treatment. Application of lower particle doses and presence of protein decreased the total number of regulated genes but did not markedly influence the top regulated genes. Cellular effects of CNTs were small; only carboxyl-functionalized single-walled CNTs caused appreciable regulation of genes. It can be concluded that regulated functions correlated well with results in cell-based assays. Presence of protein mitigated cytotoxicity but did not cause a different pattern of regulated processes. - Highlights: • Regulated functions were screened using whole genome expression assays. • Polystyrene particles regulated more genes than short carbon nanotubes. • Protein coating of polystyrene particles did not change regulation pattern. • Functions regulated by microarray were confirmed by cell-based assay.

  12. Screening the budding yeast genome reveals unique factors affecting K2 toxin susceptibility.

    Science.gov (United States)

    Servienė, Elena; Lukša, Juliana; Orentaitė, Irma; Lafontaine, Denis L J; Urbonavičius, Jaunius

    2012-01-01

    Understanding how biotoxins kill cells is of prime importance in biomedicine and the food industry. The budding yeast (S. cerevisiae) killers serve as a convenient model to study the activity of biotoxins consistently supplying with significant insights into the basic mechanisms of virus-host cell interactions and toxin entry into eukaryotic target cells. K1 and K2 toxins are active at the cell wall, leading to the disruption of the plasma membrane and subsequent cell death by ion leakage. K28 toxin is active in the cell nucleus, blocking DNA synthesis and cell cycle progression, thereby triggering apoptosis. Genome-wide screens in the budding yeast S. cerevisiae identified several hundred effectors of K1 and K28 toxins. Surprisingly, no such screen had been performed for K2 toxin, the most frequent killer toxin among industrial budding yeasts. We conducted several concurrent genome-wide screens in S. cerevisiae and identified 332 novel K2 toxin effectors. The effectors involved in K2 resistance and hypersensitivity largely map in distinct cellular pathways, including cell wall and plasma membrane structure/biogenesis and mitochondrial function for K2 resistance, and cell wall stress signaling and ion/pH homeostasis for K2 hypersensitivity. 70% of K2 effectors are different from those involved in K1 or K28 susceptibility. Our work demonstrates that despite the fact that K1 and K2 toxins share some aspects of their killing strategies, they largely rely on different sets of effectors. Since the vast majority of the host factors identified here is exclusively active towards K2, we conclude that cells have acquired a specific K2 toxin effectors set. Our work thus indicates that K1 and K2 have elaborated different biological pathways and provides a first step towards the detailed characterization of K2 mode of action.

  13. A genome scale RNAi screen identifies GLI1 as a novel gene regulating vorinostat sensitivity.

    Science.gov (United States)

    Falkenberg, K J; Newbold, A; Gould, C M; Luu, J; Trapani, J A; Matthews, G M; Simpson, K J; Johnstone, R W

    2016-07-01

    Vorinostat is an FDA-approved histone deacetylase inhibitor (HDACi) that has proven clinical success in some patients; however, it remains unclear why certain patients remain unresponsive to this agent and other HDACis. Constitutive STAT (signal transducer and activator of transcription) activation, overexpression of prosurvival Bcl-2 proteins and loss of HR23B have been identified as potential biomarkers of HDACi resistance; however, none have yet been used to aid the clinical utility of HDACi. Herein, we aimed to further elucidate vorinostat-resistance mechanisms through a functional genomics screen to identify novel genes that when knocked down by RNA interference (RNAi) sensitized cells to vorinostat-induced apoptosis. A synthetic lethal functional screen using a whole-genome protein-coding RNAi library was used to identify genes that when knocked down cooperated with vorinostat to induce tumor cell apoptosis in otherwise resistant cells. Through iterative screening, we identified 10 vorinostat-resistance candidate genes that sensitized specifically to vorinostat. One of these vorinostat-resistance genes was GLI1, an oncogene not previously known to regulate the activity of HDACi. Treatment of vorinostat-resistant cells with the GLI1 small-molecule inhibitor, GANT61, phenocopied the effect of GLI1 knockdown. The mechanism by which GLI1 loss of function sensitized tumor cells to vorinostat-induced apoptosis is at least in part through interactions with vorinostat to alter gene expression in a manner that favored apoptosis. Upon GLI1 knockdown and vorinostat treatment, BCL2L1 expression was repressed and overexpression of BCL2L1 inhibited GLI1-knockdown-mediated vorinostat sensitization. Taken together, we present the identification and characterization of GLI1 as a new HDACi resistance gene, providing a strong rationale for development of GLI1 inhibitors for clinical use in combination with HDACi therapy.

  14. Genome-wide CRISPR/Cas9 Screen Identifies Host Factors Essential for Influenza Virus Replication

    Directory of Open Access Journals (Sweden)

    Julianna Han

    2018-04-01

    Full Text Available Summary: The emergence of influenza A viruses (IAVs from zoonotic reservoirs poses a great threat to human health. As seasonal vaccines are ineffective against zoonotic strains, and newly transmitted viruses can quickly acquire drug resistance, there remains a need for host-directed therapeutics against IAVs. Here, we performed a genome-scale CRISPR/Cas9 knockout screen in human lung epithelial cells with a human isolate of an avian H5N1 strain. Several genes involved in sialic acid biosynthesis and related glycosylation pathways were highly enriched post-H5N1 selection, including SLC35A1, a sialic acid transporter essential for IAV receptor expression and thus viral entry. Importantly, we have identified capicua (CIC as a negative regulator of cell-intrinsic immunity, as loss of CIC resulted in heightened antiviral responses and restricted replication of multiple viruses. Therefore, our study demonstrates that the CRISPR/Cas9 system can be utilized for the discovery of host factors critical for the replication of intracellular pathogens. : Using a genome-wide CRISPR/Cas9 screen, Han et al. demonstrate that the major hit, the sialic acid transporter SLC35A1, is an essential host factor for IAV entry. In addition, they identify the DNA-binding transcriptional repressor CIC as a negative regulator of cell-intrinsic immunity. Keywords: CRISPR/Cas9 screen, GeCKO, influenza virus, host factors, sialic acid pathway, SLC35A1, Capicua, CIC, cell-intrinsic immunity, H5N1

  15. Genome-wide RNAi screening identifies genes inhibiting the migration of glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Jian Yang

    Full Text Available Glioblastoma Multiforme (GBM cells are highly invasive, infiltrating into the surrounding normal brain tissue, making it impossible to completely eradicate GBM tumors by surgery or radiation. Increasing evidence also shows that these migratory cells are highly resistant to cytotoxic reagents, but decreasing their migratory capability can re-sensitize them to chemotherapy. These evidences suggest that the migratory cell population may serve as a better therapeutic target for more effective treatment of GBM. In order to understand the regulatory mechanism underlying the motile phenotype, we carried out a genome-wide RNAi screen for genes inhibiting the migration of GBM cells. The screening identified a total of twenty-five primary hits; seven of them were confirmed by secondary screening. Further study showed that three of the genes, FLNA, KHSRP and HCFC1, also functioned in vivo, and knocking them down caused multifocal tumor in a mouse model. Interestingly, two genes, KHSRP and HCFC1, were also found to be correlated with the clinical outcome of GBM patients. These two genes have not been previously associated with cell migration.

  16. Genome-wide screen of Pseudomonas aeruginosa In Saccharomyces cerevisiae identifies new virulence factors

    Directory of Open Access Journals (Sweden)

    Rafat eZrieq

    2015-11-01

    Full Text Available Pseudomonas aeruginosa is a human opportunistic pathogen that causes mortality in cystic fibrosis and immunocompromised patients. While many virulence factors of this pathogen have already been identified, several remain to be discovered. In this respect we set an unprecedented genome-wide screen of a P. aeruginosa expression library based on a yeast growth phenotype. 51 candidates were selected in a three-round screening process. The robustness of the screen was validated by the selection of three well known secreted proteins including one demonstrated virulence factor, the protease LepA. Further in silico sorting of the 51 candidates highlighted three potential new Pseudomonas effector candidates (Pec. By testing the cytotoxicity of wild type P. aeruginosa vs pec mutants towards macrophages and the virulence in the Caenorhabditis elegans model, we demonstrated that the three selected Pecs are novel virulence factors of P. aeruginosa. Additional cellular localization experiments in the host revealed specific localization for Pec1 and Pec2 that could inform about their respective functions.

  17. Design of a randomized controlled trial for genomic carrier screening in healthy patients seeking preconception genetic testing

    OpenAIRE

    Kauffman, Tia L.; Wilfond, Benjamin S.; Jarvik, Gail P.; Leo, Michael C.; Lynch, Frances L.; Reiss, Jacob A.; Richards, C. Sue; McMullen, Carmit; Nickerson, Deborah; Dorschner, Michael O.; Goddard, Katrina A.B.

    2016-01-01

    Population-based carrier screening is limited to well-studied or high-impact genetic conditions for which the benefits may outweigh the associated harms and costs. As the cost of genome sequencing declines and availability increases, the balance of risks and benefits may change for a much larger number of genetic conditions, including medically actionable additional findings. We designed an RCT to evaluate genomic clinical sequencing for women and partners considering a pregnancy. All results...

  18. Position statement on opportunistic genomic screening from the Association of Genetic Nurses and Counsellors (UK and Ireland).

    Science.gov (United States)

    Middleton, Anna; Patch, Chris; Wiggins, Jennifer; Barnes, Kathy; Crawford, Gill; Benjamin, Caroline; Bruce, Anita

    2014-08-01

    The American College of Medical Genetics and Genomics released recommendations for reporting incidental findings (IFs) in clinical exome and genome sequencing. These suggest 'opportunistic genomic screening' should be available to both adults and children each time a sequence is done and would be undertaken without seeking preferences from the patient first. Should opportunistic genomic screening be implemented in the United Kingdom, the Association of Genetic Nurses and Counsellors (AGNC), which represents British and Irish genetic counsellors and nurses, feels strongly that the following must be considered (see article for complete list): (1) Following appropriate genetic counselling, patients should be allowed to consent to or opt out of opportunistic genomic screening. (2) If true IFs are discovered the AGNC are guided by the report from the Joint Committee on Medical Genetics about the sharing of genetic testing results. (3) Children should not be routinely tested for adult-onset conditions. (4) The formation of a list of variants should involve a representative from the AGNC as well as a patient support group. (5) The variants should be for serious or life-threatening conditions for which there are treatments or preventative strategies available. (6) There needs to be robust evidence that the benefits of opportunistic screening outweigh the potential harms. (7) The clinical validity and utility of variants should be known. (8) There must be a quality assurance framework that operates to International standards for laboratory testing. (9) Psychosocial research is urgently needed in this area to understand the impact on patients.

  19. Design of a randomized controlled trial for genomic carrier screening in healthy patients seeking preconception genetic testing.

    Science.gov (United States)

    Kauffman, Tia L; Wilfond, Benjamin S; Jarvik, Gail P; Leo, Michael C; Lynch, Frances L; Reiss, Jacob A; Richards, C Sue; McMullen, Carmit; Nickerson, Deborah; Dorschner, Michael O; Goddard, Katrina A B

    2017-02-01

    Population-based carrier screening is limited to well-studied or high-impact genetic conditions for which the benefits may outweigh the associated harms and costs. As the cost of genome sequencing declines and availability increases, the balance of risks and benefits may change for a much larger number of genetic conditions, including medically actionable additional findings. We designed an RCT to evaluate genomic clinical sequencing for women and partners considering a pregnancy. All results are placed into the medical record for use by healthcare providers. Through quantitative and qualitative measures, including baseline and post result disclosure surveys, post result disclosure interviews, 1-2year follow-up interviews, and team journaling, we are obtaining data about the clinical and personal utility of genomic carrier screening in this population. Key outcomes include the number of reportable carrier and additional findings, and the comparative cost, utilization, and psychosocial impacts of usual care vs. genomic carrier screening. As the study progresses, we will compare the costs of genome sequencing and usual care as well as the cost of screening, pattern of use of genetic or mental health counseling services, number of outpatient visits, and total healthcare costs. This project includes novel investigation into human reactions and responses from would-be parents who are learning information that could both affect a future pregnancy and their own health. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. A genome-wide siRNA screen to identify modulators of insulin sensitivity and gluconeogenesis.

    Directory of Open Access Journals (Sweden)

    Ruojing Yang

    Full Text Available BACKGROUND: Hepatic insulin resistance impairs insulin's ability to suppress hepatic glucose production (HGP and contributes to the development of type 2 diabetes (T2D. Although the interests to discover novel genes that modulate insulin sensitivity and HGP are high, it remains challenging to have a human cell based system to identify novel genes. METHODOLOGY/PRINCIPAL FINDINGS: To identify genes that modulate hepatic insulin signaling and HGP, we generated a human cell line stably expressing beta-lactamase under the control of the human glucose-6-phosphatase (G6PC promoter (AH-G6PC cells. Both beta-lactamase activity and endogenous G6PC mRNA were increased in AH-G6PC cells by a combination of dexamethasone and pCPT-cAMP, and reduced by insulin. A 4-gene High-Throughput-Genomics assay was developed to concomitantly measure G6PC and pyruvate-dehydrogenase-kinase-4 (PDK4 mRNA levels. Using this assay, we screened an siRNA library containing pooled siRNA targeting 6650 druggable genes and identified 614 hits that lowered G6PC expression without increasing PDK4 mRNA levels. Pathway analysis indicated that siRNA-mediated knockdown (KD of genes known to positively or negatively affect insulin signaling increased or decreased G6PC mRNA expression, respectively, thus validating our screening platform. A subset of 270 primary screen hits was selected and 149 hits were confirmed by target gene KD by pooled siRNA and 7 single siRNA for each gene to reduce G6PC expression in 4-gene HTG assay. Subsequently, pooled siRNA KD of 113 genes decreased PEPCK and/or PGC1alpha mRNA expression thereby demonstrating their role in regulating key gluconeogenic genes in addition to G6PC. Last, KD of 61 of the above 113 genes potentiated insulin-stimulated Akt phosphorylation, suggesting that they suppress gluconeogenic gene by enhancing insulin signaling. CONCLUSIONS/SIGNIFICANCE: These results support the proposition that the proteins encoded by the genes identified in

  1. Genes Important for Schizosaccharomyces pombe Meiosis Identified Through a Functional Genomics Screen

    Science.gov (United States)

    Blyth, Julie; Makrantoni, Vasso; Barton, Rachael E.; Spanos, Christos; Rappsilber, Juri; Marston, Adele L.

    2018-01-01

    Meiosis is a specialized cell division that generates gametes, such as eggs and sperm. Errors in meiosis result in miscarriages and are the leading cause of birth defects; however, the molecular origins of these defects remain unknown. Studies in model organisms are beginning to identify the genes and pathways important for meiosis, but the parts list is still poorly defined. Here we present a comprehensive catalog of genes important for meiosis in the fission yeast, Schizosaccharomyces pombe. Our genome-wide functional screen surveyed all nonessential genes for roles in chromosome segregation and spore formation. Novel genes important at distinct stages of the meiotic chromosome segregation and differentiation program were identified. Preliminary characterization implicated three of these genes in centrosome/spindle pole body, centromere, and cohesion function. Our findings represent a near-complete parts list of genes important for meiosis in fission yeast, providing a valuable resource to advance our molecular understanding of meiosis. PMID:29259000

  2. Biochemical and molecular diagnosis of tyrosinemia type I with two novel FAH mutations in a Hong Kong chinese patient: recommendation for expanded newborn screening in Hong Kong.

    Science.gov (United States)

    Mak, Chloe Miu; Lam, Ching-Wan; Chim, Stella; Siu, Tak-Shing; Ng, King-Fai; Tam, Sidney

    2013-01-01

    Tyrosinemia type I is an autosomal recessive disorder in tyrosine metabolism. In areas without expanded newborn screening, patients present with acute hepatorenal failure in early infancy. Diagnosis can be elusive when clinical presentation is non-specific and biochemical abnormalities are masked by secondary changes. This is the first Hong Kong Chinese report. A two-month-old Chinese male infant with unremarkable antenatal and postnatal history presented with progressive abdominal distension for three days. He suffered from end-stage liver failure, hypoglycemia and hepatic encephalopathy. Diagnostic work-up was complicated starting from rule-out sepsis, intestinal obstruction, volvulus, peritonitis, septic ileus, poisoning to metabolic diseases. Clinical, biochemical and genetic data was described. The patient showed increases in multiple plasma amino acids including tyrosine, phenylalanine and methionine, and hyper-excretions of 4-hydroxyphenyl-acetate, -pyruvate, and -lactate, as well as N-acetyltyrosine which could be seen in liver failure due to both tyrosinemia type I and non-metabolic conditions. Because of the volatile nature, succinylacetone was almost undetectable. The diagnosis was confirmed by genetic analysis of FAH with two novel mutations, viz. NM_000137.2:c.1063-1G>A and NM_000137.2:c.1035_1037del. Living-related liver transplantation was done. However, the patient still suffered many complications after the severe metabolic insult with hypoxic ischemic encephalopathy, cerebral atrophy, global developmental delay and cortical visual impairment. Because of the lack of expanded newborn screening in Hong Kong, this child unfortunately presented in the most severe form of tyrosinemia type I. Expanded newborn screening can save life and reduce the burden of diagnostic complexity. This illustrates the need for expanded newborn screening in Hong Kong. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights

  3. Preimplantation genetic diagnosis and screening by array comparative genomic hybridisation: experience of more than 100 cases in a single centre.

    Science.gov (United States)

    Chow, J Fc; Yeung, W Sb; Lee, V Cy; Lau, E Yl; Ho, P C; Ng, E Hy

    2017-04-01

    Preimplantation genetic screening has been proposed to improve the in-vitro fertilisation outcome by screening for aneuploid embryos or blastocysts. This study aimed to report the outcome of 133 cycles of preimplantation genetic diagnosis and screening by array comparative genomic hybridisation. This study of case series was conducted in a tertiary assisted reproductive centre in Hong Kong. Patients who underwent preimplantation genetic diagnosis for chromosomal abnormalities or preimplantation genetic screening between 1 April 2012 and 30 June 2015 were included. They underwent in-vitro fertilisation and intracytoplasmic sperm injection. An embryo biopsy was performed on day-3 embryos and the blastomere was subject to array comparative genomic hybridisation. Embryos with normal copy numbers were replaced. The ongoing pregnancy rate, implantation rate, and miscarriage rate were studied. During the study period, 133 cycles of preimplantation genetic diagnosis for chromosomal abnormalities or preimplantation genetic screening were initiated in 94 patients. Overall, 112 cycles proceeded to embryo biopsy and 65 cycles had embryo transfer. The ongoing pregnancy rate per transfer cycle after preimplantation genetic screening was 50.0% and that after preimplantation genetic diagnosis was 34.9%. The implantation rates after preimplantation genetic screening and diagnosis were 45.7% and 41.1%, respectively and the miscarriage rates were 8.3% and 28.6%, respectively. There were 26 frozen-thawed embryo transfer cycles, in which vitrified and biopsied genetically transferrable embryos were replaced, resulting in an ongoing pregnancy rate of 36.4% in the screening group and 60.0% in the diagnosis group. The clinical outcomes of preimplantation genetic diagnosis and screening using comparative genomic hybridisation in our unit were comparable to those reported internationally. Genetically transferrable embryos replaced in a natural cycle may improve the ongoing pregnancy rate

  4. NMD Microarray Analysis for Rapid Genome-Wide Screen of Mutated Genes in Cancer

    Directory of Open Access Journals (Sweden)

    Maija Wolf

    2005-01-01

    Full Text Available Gene mutations play a critical role in cancer development and progression, and their identification offers possibilities for accurate diagnostics and therapeutic targeting. Finding genes undergoing mutations is challenging and slow, even in the post-genomic era. A new approach was recently developed by Noensie and Dietz to prioritize and focus the search, making use of nonsense-mediated mRNA decay (NMD inhibition and microarray analysis (NMD microarrays in the identification of transcripts containing nonsense mutations. We combined NMD microarrays with array-based CGH (comparative genomic hybridization in order to identify inactivation of tumor suppressor genes in cancer. Such a “mutatomics” screening of prostate cancer cell lines led to the identification of inactivating mutations in the EPHB2 gene. Up to 8% of metastatic uncultured prostate cancers also showed mutations of this gene whose loss of function may confer loss of tissue architecture. NMD microarray analysis could turn out to be a powerful research method to identify novel mutated genes in cancer cell lines, providing targets that could then be further investigated for their clinical relevance and therapeutic potential.

  5. Nickel-resistance determinants in Acidiphilium sp. PM identified by genome-wide functional screening.

    Directory of Open Access Journals (Sweden)

    Patxi San Martin-Uriz

    Full Text Available Acidiphilium spp. are conspicuous dwellers of acidic, metal-rich environments. Indeed, they are among the most metal-resistant organisms; yet little is known about the mechanisms behind the metal tolerance in this genus. Acidiphilium sp. PM is an environmental isolate from Rio Tinto, an acidic, metal-laden river located in southwestern Spain. The characterization of its metal resistance revealed a remarkable ability to tolerate high Ni concentrations. Here we report the screening of a genomic library of Acidiphilium sp. PM to identify genes involved in Ni resistance. This approach revealed seven different genes conferring Ni resistance to E. coli, two of which form an operon encoding the ATP-dependent protease HslVU (ClpQY. This protease was found to enhance resistance to both Ni and Co in E. coli, a function not previously reported. Other Ni-resistance determinants include genes involved in lipopolysaccharide biosynthesis and the synthesis of branched amino acids. The diversity of molecular functions of the genes recovered in the screening suggests that Ni resistance in Acidiphilium sp. PM probably relies on different molecular mechanisms.

  6. Functional Genomic Screening Reveals Core Modulators of Echinocandin Stress Responses in Candida albicans

    Directory of Open Access Journals (Sweden)

    Tavia Caplan

    2018-05-01

    Full Text Available Summary: Candida albicans is a leading cause of death due to fungal infection. Treatment of systemic candidiasis often relies on echinocandins, which disrupt cell wall synthesis. Resistance is readily acquired via mutations in the drug target gene, FKS1. Both basal tolerance and resistance to echinocandins require cellular stress responses. We performed a systematic analysis of 3,030 C. albicans mutants to define circuitry governing cellular responses to echinocandins. We identified 16 genes for which deletion or transcriptional repression enhanced echinocandin susceptibility, including components of the Pkc1-MAPK signaling cascade. We discovered that the molecular chaperone Hsp90 is required for the stability of Pkc1 and Bck1, establishing key mechanisms through which Hsp90 mediates echinocandin resistance. We also discovered that perturbation of the CCT chaperonin complex causes enhanced echinocandin sensitivity, altered cell wall architecture, and aberrant septin localization. Thus, we provide insights into the mechanisms by which cellular chaperones enable crucial responses to echinocandin-induced stress. : Caplan et al. screen 3,030 Candida albicans mutants to define circuitry governing cellular responses to echinocandins, the first-line therapy for systemic candidiasis. They reveal that the molecular chaperone Hsp90 is required for stability of Pkc1 and Bck1 and that the CCT chaperonin complex is a key modulator of echinocandin susceptibility. Keywords: fungal pathogen, Candida albicans, echinocandins, Hsp90, Pkc1, CCT complex, client protein, stress response, functional genomic screen, drug resistance

  7. A whole mitochondrial genome screening in a MELAS patient: A novel mitochondrial tRNAVal mutation

    International Nuclear Information System (INIS)

    Mezghani, Najla; Mnif, Mouna; Kacem, Maha; Mkaouar-Rebai, Emna; Hadj Salem, Ikhlass; Kallel, Nozha; Charfi, Nadia; Abid, Mohamed; Fakhfakh, Faiza

    2011-01-01

    Highlights: → We report a young Tunisian patient with clinical features of MELAS syndrome. → Reported mitochondrial mutations were absent after a mutational screening of the whole mtDNA. → We described a novel m.1640A>G mutation in the tRNA Val gene which was absent in 150 controls. → Mitochondrial deletions and POLG1 gene mutations were absent. → The m.1640A>G mutation could be associated to MELAS syndrome. -- Abstract: Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNA Val . This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.

  8. Multiplex Polymerase Chain Reaction for Identification of Shigellae and Four Shigella Species Using Novel Genetic Markers Screened by Comparative Genomics.

    Science.gov (United States)

    Kim, Hyun-Joong; Ryu, Ji-Oh; Song, Ji-Yeon; Kim, Hae-Yeong

    2017-07-01

    In the detection of Shigella species using molecular biological methods, previously known genetic markers for Shigella species were not sufficient to discriminate between Shigella species and diarrheagenic Escherichia coli. The purposes of this study were to screen for genetic markers of the Shigella genus and four Shigella species through comparative genomics and develop a multiplex polymerase chain reaction (PCR) for the detection of shigellae and Shigella species. A total of seven genomic DNA sequences from Shigella species were subjected to comparative genomics for the screening of genetic markers of shigellae and each Shigella species. The primer sets were designed from the screened genetic markers and evaluated using PCR with genomic DNAs from Shigella and other bacterial strains in Enterobacteriaceae. A novel Shigella quintuplex PCR, designed for the detection of Shigella genus, S. dysenteriae, S. boydii, S. flexneri, and S. sonnei, was developed from the evaluated primer sets, and its performance was demonstrated with specifically amplified results from each Shigella species. This Shigella multiplex PCR is the first to be reported with novel genetic markers developed through comparative genomics and may be a useful tool for the accurate detection of the Shigella genus and species from closely related bacteria in clinical microbiology and food safety.

  9. High Throughput Screening in Duchenne Muscular Dystrophy: From Drug Discovery to Functional Genomics

    Directory of Open Access Journals (Sweden)

    Thomas J.J. Gintjee

    2014-11-01

    Full Text Available Centers for the screening of biologically active compounds and genomic libraries are becoming common in the academic setting and have enabled researchers devoted to developing strategies for the treatment of diseases or interested in studying a biological phenomenon to have unprecedented access to libraries that, until few years ago, were accessible only by pharmaceutical companies. As a result, new drugs and genetic targets have now been identified for the treatment of Duchenne muscular dystrophy (DMD, the most prominent of the neuromuscular disorders affecting children. Although the work is still at an early stage, the results obtained to date are encouraging and demonstrate the importance that these centers may have in advancing therapeutic strategies for DMD as well as other diseases. This review will provide a summary of the status and progress made toward the development of a cure for this disorder and implementing high-throughput screening (HTS technologies as the main source of discovery. As more academic institutions are gaining access to HTS as a valuable discovery tool, the identification of new biologically active molecules is likely to grow larger. In addition, the presence in the academic setting of experts in different aspects of the disease will offer the opportunity to develop novel assays capable of identifying new targets to be pursued as potential therapeutic options. These assays will represent an excellent source to be used by pharmaceutical companies for the screening of larger libraries providing the opportunity to establish strong collaborations between the private and academic sectors and maximizing the chances of bringing into the clinic new drugs for the treatment of DMD.

  10. High throughput screening in duchenne muscular dystrophy: from drug discovery to functional genomics.

    Science.gov (United States)

    Gintjee, Thomas J J; Magh, Alvin S H; Bertoni, Carmen

    2014-11-14

    Centers for the screening of biologically active compounds and genomic libraries are becoming common in the academic setting and have enabled researchers devoted to developing strategies for the treatment of diseases or interested in studying a biological phenomenon to have unprecedented access to libraries that, until few years ago, were accessible only by pharmaceutical companies. As a result, new drugs and genetic targets have now been identified for the treatment of Duchenne muscular dystrophy (DMD), the most prominent of the neuromuscular disorders affecting children. Although the work is still at an early stage, the results obtained to date are encouraging and demonstrate the importance that these centers may have in advancing therapeutic strategies for DMD as well as other diseases. This review will provide a summary of the status and progress made toward the development of a cure for this disorder and implementing high-throughput screening (HTS) technologies as the main source of discovery. As more academic institutions are gaining access to HTS as a valuable discovery tool, the identification of new biologically active molecules is likely to grow larger. In addition, the presence in the academic setting of experts in different aspects of the disease will offer the opportunity to develop novel assays capable of identifying new targets to be pursued as potential therapeutic options. These assays will represent an excellent source to be used by pharmaceutical companies for the screening of larger libraries providing the opportunity to establish strong collaborations between the private and academic sectors and maximizing the chances of bringing into the clinic new drugs for the treatment of DMD.

  11. [Risk assessment for fetal trisomy 21 based on nuchal translucency measurement and biochemical screening at 11-13 weeks.].

    Science.gov (United States)

    Harðardóttir, H

    2001-05-01

    Screening for fetal aneuploidy during the first trimester using fetal nuchal translucency measurement and maternal serum free ss-hCG (ss-human chorionic gonadotropin) and PAPP-A (pregnancy associated plasma protein A) is commonly practised. An approach with a one stop clinic for assessment of risk for fetal anomalies, where pre-test counseling, blood test, ultrasound and post-test counseling is offered in one hour visit is described. Based on maternal age, biochemistry and fetal nuchal translucency measurement an estimated risk for fetal trisomies 13,18 and 21 is calculated. The main benefit of this approach in screening for fetal aneuploidy is the short turnaround time, with immediate results and a low screen positive rate. This approach leads to diagnosis of the majority (95%) of fetal aneuploidy cases. If screening is positive a diagnostic test is available with chorionic villous sampling or amniocentesis. In Iceland, fetal karyotyping is offered to women 35 years and older and performed during the second trimester, but by using this approach prenatal diagnosis can be moved to the first trimester and also offered to women of all ages. A screening approach with a series of steps from 10-15 weeks, including maternal blood test at 10 and again at 15 weeks, as well as an ultrasound and nuchal translucency measurement at 11-13 weeks, with integrated results at 15+ weeks has been proposed. This method offers even lower screen positive rate (1%) while detection rates of fetal aneuploides are high (>90%) but it requires four visits instead of one and the prolonged approach is likely to cause excess anxiety for the parents to be. If all women are to be offered prenatal sreening in the first trimester the structure of prenatal care in Iceland needs some modifications including scheduling the first prenatal visit at 8-10 weeks and teaching healthcare providers counseling regarding prenatal testing.

  12. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome.

    Science.gov (United States)

    Klann, Tyler S; Black, Joshua B; Chellappan, Malathi; Safi, Alexias; Song, Lingyun; Hilton, Isaac B; Crawford, Gregory E; Reddy, Timothy E; Gersbach, Charles A

    2017-06-01

    Large genome-mapping consortia and thousands of genome-wide association studies have identified non-protein-coding elements in the genome as having a central role in various biological processes. However, decoding the functions of the millions of putative regulatory elements discovered in these studies remains challenging. CRISPR-Cas9-based epigenome editing technologies have enabled precise perturbation of the activity of specific regulatory elements. Here we describe CRISPR-Cas9-based epigenomic regulatory element screening (CERES) for improved high-throughput screening of regulatory element activity in the native genomic context. Using dCas9 KRAB repressor and dCas9 p300 activator constructs and lentiviral single guide RNA libraries to target DNase I hypersensitive sites surrounding a gene of interest, we carried out both loss- and gain-of-function screens to identify regulatory elements for the β-globin and HER2 loci in human cells. CERES readily identified known and previously unidentified regulatory elements, some of which were dependent on cell type or direction of perturbation. This technology allows the high-throughput functional annotation of putative regulatory elements in their native chromosomal context.

  13. A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response. | Office of Cancer Genomics

    Science.gov (United States)

    Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbations to be profiled in pooled format. We applied Perturb-seq to dissect the mammalian unfolded protein response (UPR) using single and combinatorial CRISPR perturbations. Two genome-scale CRISPR interference (CRISPRi) screens identified genes whose repression perturbs ER homeostasis.

  14. Screens

    OpenAIRE

    2016-01-01

    This Sixth volume in the series The Key Debates. Mutations and Appropriations in European Film Studies investigates the question of screens in the context both of the dematerialization due to digitalization and the multiplication of media screens. Scholars offer various infomations and theories of topics such as the archeology of screen, film and media theories, contemporary art, pragmatics of new ways of screening (from home video to street screening).

  15. A genome-wide RNAi screen identifies regulators of cholesterol-modified hedgehog secretion in Drosophila.

    Directory of Open Access Journals (Sweden)

    Reid Aikin

    Full Text Available Hedgehog (Hh proteins are secreted molecules that function as organizers in animal development. In addition to being palmitoylated, Hh is the only metazoan protein known to possess a covalently-linked cholesterol moiety. The absence of either modification severely disrupts the organization of numerous tissues during development. It is currently not known how lipid-modified Hh is secreted and released from producing cells. We have performed a genome-wide RNAi screen in Drosophila melanogaster cells to identify regulators of Hh secretion. We found that cholesterol-modified Hh secretion is strongly dependent on coat protein complex I (COPI but not COPII vesicles, suggesting that cholesterol modification alters the movement of Hh through the early secretory pathway. We provide evidence that both proteolysis and cholesterol modification are necessary for the efficient trafficking of Hh through the ER and Golgi. Finally, we identified several putative regulators of protein secretion and demonstrate a role for some of these genes in Hh and Wingless (Wg morphogen secretion in vivo. These data open new perspectives for studying how morphogen secretion is regulated, as well as provide insight into regulation of lipid-modified protein secretion.

  16. New Tools for Embryo Selection: Comprehensive Chromosome Screening by Array Comparative Genomic Hybridization

    Directory of Open Access Journals (Sweden)

    Lorena Rodrigo

    2014-01-01

    Full Text Available The objective of this study was to evaluate the usefulness of comprehensive chromosome screening (CCS using array comparative genomic hybridization (aCGH. The study included 1420 CCS cycles for recurrent miscarriage (n=203; repetitive implantation failure (n=188; severe male factor (n=116; previous trisomic pregnancy (n=33; and advanced maternal age (n=880. CCS was performed in cycles with fresh oocytes and embryos (n=774; mixed cycles with fresh and vitrified oocytes (n=320; mixed cycles with fresh and vitrified day-2 embryos (n=235; and mixed cycles with fresh and vitrified day-3 embryos (n=91. Day-3 embryo biopsy was performed and analyzed by aCGH followed by day-5 embryo transfer. Consistent implantation (range: 40.5–54.2% and pregnancy rates per transfer (range: 46.0–62.9% were obtained for all the indications and independently of the origin of the oocytes or embryos. However, a lower delivery rate per cycle was achieved in women aged over 40 years (18.1% due to the higher percentage of aneuploid embryos (85.3% and lower number of cycles with at least one euploid embryo available per transfer (40.3%. We concluded that aneuploidy is one of the major factors which affect embryo implantation.

  17. A mechanism misregulating p27 in tumors discovered in a functional genomic screen.

    Directory of Open Access Journals (Sweden)

    Carrie M Garrett-Engele

    2007-12-01

    Full Text Available The cyclin-dependent kinase inhibitor p27(KIP1 is a tumor suppressor gene in mice, and loss of p27 protein is a negative prognostic indicator in human cancers. Unlike other tumor suppressors, the p27 gene is rarely mutated in tumors. Therefore misregulation of p27, rather than loss of the gene, is responsible for tumor-associated decreases in p27 protein levels. We performed a functional genomic screen in p27(+/- mice to identify genes that regulate p27 during lymphomagenesis. This study demonstrated that decreased p27 expression in tumors resulted from altered transcription of the p27 gene, and the retroviral tagging strategy enabled us to pinpoint relevant transcription factors. inhibitor of DNA binding 3 (Id3 was isolated and validated as a transcriptional repressor of p27. We further demonstrated that p27 was a downstream target of Id3 in src-family kinase Lck-driven thymic lymphomagenesis and that p27 was an essential regulator of Lck-dependent thymic maturation during normal T-cell development. Thus, we have identified and characterized transcriptional repression of p27 by Id3 as a new mechanism decreasing p27 protein in tumors.

  18. Genome-wide RNAi screen identifies novel host proteins required for alphavirus entry.

    Directory of Open Access Journals (Sweden)

    Yaw Shin Ooi

    Full Text Available The enveloped alphaviruses include important and emerging human pathogens such as Chikungunya virus and Eastern equine encephalitis virus. Alphaviruses enter cells by clathrin-mediated endocytosis, and exit by budding from the plasma membrane. While there has been considerable progress in defining the structure and function of the viral proteins, relatively little is known about the host factors involved in alphavirus infection. We used a genome-wide siRNA screen to identify host factors that promote or inhibit alphavirus infection in human cells. Fuzzy homologue (FUZ, a protein with reported roles in planar cell polarity and cilia biogenesis, was required for the clathrin-dependent internalization of both alphaviruses and the classical endocytic ligand transferrin. The tetraspanin membrane protein TSPAN9 was critical for the efficient fusion of low pH-triggered virus with the endosome membrane. FUZ and TSPAN9 were broadly required for infection by the alphaviruses Sindbis virus, Semliki Forest virus, and Chikungunya virus, but were not required by the structurally-related flavivirus Dengue virus. Our results highlight the unanticipated functions of FUZ and TSPAN9 in distinct steps of alphavirus entry and suggest novel host proteins that may serve as targets for antiviral therapy.

  19. Genome-wide RNAi Screen Identifies Networks Involved in Intestinal Stem Cell Regulation in Drosophila

    Directory of Open Access Journals (Sweden)

    Xiankun Zeng

    2015-02-01

    Full Text Available The intestinal epithelium is the most rapidly self-renewing tissue in adult animals and maintained by intestinal stem cells (ISCs in both Drosophila and mammals. To comprehensively identify genes and pathways that regulate ISC fates, we performed a genome-wide transgenic RNAi screen in adult Drosophila intestine and identified 405 genes that regulate ISC maintenance and lineage-specific differentiation. By integrating these genes into publicly available interaction databases, we further developed functional networks that regulate ISC self-renewal, ISC proliferation, ISC maintenance of diploid status, ISC survival, ISC-to-enterocyte (EC lineage differentiation, and ISC-to-enteroendocrine (EE lineage differentiation. By comparing regulators among ISCs, female germline stem cells, and neural stem cells, we found that factors related to basic stem cell cellular processes are commonly required in all stem cells, and stem-cell-specific, niche-related signals are required only in the unique stem cell type. Our findings provide valuable insights into stem cell maintenance and lineage-specific differentiation.

  20. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells

    Science.gov (United States)

    Kraehling, Jan R.; Chidlow, John H.; Rajagopal, Chitra; Sugiyama, Michael G.; Fowler, Joseph W.; Lee, Monica Y.; Zhang, Xinbo; Ramírez, Cristina M.; Park, Eon Joo; Tao, Bo; Chen, Keyang; Kuruvilla, Leena; Larriveé, Bruno; Folta-Stogniew, Ewa; Ola, Roxana; Rotllan, Noemi; Zhou, Wenping; Nagle, Michael W.; Herz, Joachim; Williams, Kevin Jon; Eichmann, Anne; Lee, Warren L.; Fernández-Hernando, Carlos; Sessa, William C.

    2016-01-01

    In humans and animals lacking functional LDL receptor (LDLR), LDL from plasma still readily traverses the endothelium. To identify the pathways of LDL uptake, a genome-wide RNAi screen was performed in endothelial cells and cross-referenced with GWAS-data sets. Here we show that the activin-like kinase 1 (ALK1) mediates LDL uptake into endothelial cells. ALK1 binds LDL with lower affinity than LDLR and saturates only at hypercholesterolemic concentrations. ALK1 mediates uptake of LDL into endothelial cells via an unusual endocytic pathway that diverts the ligand from lysosomal degradation and promotes LDL transcytosis. The endothelium-specific genetic ablation of Alk1 in Ldlr-KO animals leads to less LDL uptake into the aortic endothelium, showing its physiological role in endothelial lipoprotein metabolism. In summary, identification of pathways mediating LDLR-independent uptake of LDL may provide unique opportunities to block the initiation of LDL accumulation in the vessel wall or augment hepatic LDLR-dependent clearance of LDL. PMID:27869117

  1. Comprehensive Screening of Some West and Central African Sesame Genotypes for Drought Resistance Probing by Agromorphological, Physiological, Biochemical and Seed Quality Traits

    Directory of Open Access Journals (Sweden)

    Komivi Dossa

    2017-12-01

    Full Text Available Sesame is an important crop in West and Central Africa playing a role of an alternative cash crop for smallholders. However, sesame productivity is highly impaired by drought. This study aimed at identifying some drought-resistant genotypes and efficient screening traits in large sesame germplasm. Ten genotypes were examined based on 21 biochemical, physiological, agromorphological and seed quality traits under three weeks of water stress. A high variability for drought resistance was observed among the genotypes. The genotypes WC17, WC18 and WC14 were drought resistant, WC12, WC13, WC06 and WC03 were moderately drought resistant while, WC02, WC10 and WC08 were drought sensitive, based on principal component analysis. The resistant genotypes exhibited both avoidance and tolerance features including increase of the root system, reduced water loss, highest activity of antioxidative enzymes and accumulation of proline. They produced higher biomass and had higher ability to maintain seed quality under drought stress compared with the sensitive genotypes. Strong accumulation (~200% ratio stress/control of biochemical markers including superoxide dismutase, ascorbate peroxidase, catalase and proline could be regarded as an important indicator for selecting drought resistant genotypes. This study represents a reference for future research towards developing new varieties with improved drought resistance in West and Central Africa.

  2. OS090. Performance of candidate clinical and biochemical markers in screening early in pregnancy to detect women at high risk to develop preeclampsia.

    Science.gov (United States)

    Forest, J-C; Massé, J; Bujold, E; Rousseau, F; Charland, M; Thériault, S; Lafond, J; Giguère, Y

    2012-07-01

    The advent of early preventive measures, such as low-dose aspirin targeting women at high risk of preeclampsia (PE), emphasizes the need for better detection. Despite the emergence of promising biochemical markers linked to the pathophysiological processes, systematic reviews have shown that, until now, no single tests fulfill the criteria set by WHO for biomarkers to screen for a disease. However, recent literature reveals that by combining various clinical, biophysical and biochemical markers into multivariate algorithms, one can envisage to estimate the risk of PE with a performance that would reach clinical utility and cost-effectiveness, but this remains to be demonstrated in various environments and health care settings. To investigate, in a prospective study, the clinical utility of candidate biomarkers and clinical data to detect, early in pregnancy, women at risk to develop PE and to propose a multivariate prediction algorithm combining clinical parameters to biochemical markers. 7929 pregnant women prospectively recruited at the first prenatal visit, provided blood samples, clinical and sociodemographic information. 214 pregnant women developed hypertensive disorders of pregnancy (HDP) of which 88 had PE (1.2%), including 44 with severe PE (0.6%). A nested case-control study was performed including for each case of HDP two normal pregnancies matched for maternal age, gestational age at recruitment, ethnicity, parity, and smoking status. Based on the literature we selected the most promising markers in a multivariate logistic regression model: mean arterial pressure (MAP), BMI, placental growth factor (PlGF), soluble Flt-1, inhibin A and PAPP-A. Biomarker results measured between 10-18 weeks gestation were expressed as multiples of the median. Medians were determined for each gestational week. When combined with MAP at the time of blood sampling and BMI at the beginning of pregnancy, the four biochemical markers discriminate normal pregnancies from those

  3. Elucidating the Molecular Basis and Regulation of Chromium (VI) Reduction by Shewanella oneidensis MR-1 Using Biochemical, Genomic, and Proteomic Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Hettich, Robert L.

    2006-10-30

    Although microbial metal reduction has been investigated intensively from physiological and biochemical perspectives, little is known about the genetic basis and regulatory mechanisms underlying the ability of certain bacteria to transform, detoxify, or immobilize a wide array of heavy metals contaminating DOE-relevant environments. The major goal of this work is to elucidate the molecular components comprising the chromium(VI) response pathway, with an emphasis on components involved in Cr(VI) detoxification and the enzyme complex catalyzing the terminal step in Cr(VI) reduction by Shewanella oneidensis MR-1. We have identified and characterized (in the case of DNA-binding response regulator [SO2426] and a putative azoreductase [SO3585]) the genes and gene products involved in the molecular response of MR-1 to chromium(VI) stress using whole-genome sequence information for MR-1 and recently developed proteomic technology, in particular liquid chromatographymass spectrometry (LC-MS), in conjunction with conventional protein purification and characterization techniques. The proteome datasets were integrated with information from whole-genome expression arrays for S. oneidensis MR-1 (as illustrated in Figure 1). The genes and their encoded products identified in this study are of value in understanding metal reduction and bacterial resistance to metal toxicity and in developing effective metal immobilization strategies.

  4. Infrared microspectroscopy: a multiple-screening platform for investigating single-cell biochemical perturbations upon prion infection.

    Science.gov (United States)

    Didonna, Alessandro; Vaccari, Lisa; Bek, Alpan; Legname, Giuseppe

    2011-03-16

    Prion diseases are a group of fatal neurodegenerative disorders characterized by the accumulation of prions in the central nervous system. The pathogenic prion (PrP(Sc)) possesses the capability to convert the host-encoded cellular isoform of the prion protein, PrP(C), into nascent PrP(Sc). The present work aims at providing novel insight into cellular response upon prion infection evidenced by synchrotron radiation infrared microspectroscopy (SR-IRMS). This non-invasive, label-free analytical technique was employed to investigate the biochemical perturbations undergone by prion infected mouse hypothalamic GT1-1 cells at the cellular and subcellular level. A decrement in total cellular protein content upon prion infection was identified by infrared (IR) whole-cell spectra and validated by bicinchoninic acid assay and single-cell volume analysis by atomic force microscopy (AFM). Hierarchical cluster analysis (HCA) of IR data discriminated between infected and uninfected cells and allowed to deduce an increment of lysosomal bodies within the cytoplasm of infected GT1-1 cells, a hypothesis further confirmed by SR-IRMS at subcellular spatial resolution and fluorescent microscopy. The purpose of this work, therefore, consists of proposing IRMS as a powerful multiscreening platform, drawing on the synergy with conventional biological assays and microscopy techniques in order to increase the accuracy of investigations performed at the single-cell level.

  5. Infrared Microspectroscopy: A Multiple-Screening Platform for Investigating Single-Cell Biochemical Perturbations upon Prion Infection

    Science.gov (United States)

    2011-01-01

    Prion diseases are a group of fatal neurodegenerative disorders characterized by the accumulation of prions in the central nervous system. The pathogenic prion (PrPSc) possesses the capability to convert the host-encoded cellular isoform of the prion protein, PrPC, into nascent PrPSc. The present work aims at providing novel insight into cellular response upon prion infection evidenced by synchrotron radiation infrared microspectroscopy (SR-IRMS). This non-invasive, label-free analytical technique was employed to investigate the biochemical perturbations undergone by prion infected mouse hypothalamic GT1-1 cells at the cellular and subcellular level. A decrement in total cellular protein content upon prion infection was identified by infrared (IR) whole-cell spectra and validated by bicinchoninic acid assay and single-cell volume analysis by atomic force microscopy (AFM). Hierarchical cluster analysis (HCA) of IR data discriminated between infected and uninfected cells and allowed to deduce an increment of lysosomal bodies within the cytoplasm of infected GT1-1 cells, a hypothesis further confirmed by SR-IRMS at subcellular spatial resolution and fluorescent microscopy. The purpose of this work, therefore, consists of proposing IRMS as a powerful multiscreening platform, drawing on the synergy with conventional biological assays and microscopy techniques in order to increase the accuracy of investigations performed at the single-cell level. PMID:22778865

  6. Dana-Farber Cancer Institute (DFCI): Computational Correction of Copy-number Effect in CRISPR-Cas9 Essentiality Screens of Cancer Cells | Office of Cancer Genomics

    Science.gov (United States)

    Genome-wide CRISPR-Cas9 screens were performed in 341 cell lines. The results were processed with the CERES algorithm to produce copy-number and guide-efficacy corrected gene knockout effect estimates.

  7. Complete genome-wide screening and subtractive genomic approach revealed new virulence factors, potential drug targets against bio-war pathogen Brucella melitensis 16M

    Directory of Open Access Journals (Sweden)

    Pradeepkiran JA

    2015-03-01

    Full Text Available Jangampalli Adi Pradeepkiran,1* Sri Bhashyam Sainath,2,3* Konidala Kranthi Kumar,1 Matcha Bhaskar1 1Division of Animal Biotechnology, Department of Zoology, Sri Venkateswara University, Tirupati, India; 2CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, Porto, Portugal, 3Department of Biotechnology, Vikrama Simhapuri University, Nellore, Andhra Pradesh, India *These authors contributed equally to this work Abstract: Brucella melitensis 16M is a Gram-negative coccobacillus that infects both animals and humans. It causes a disease known as brucellosis, which is characterized by acute febrile illness in humans and causes abortions in livestock. To prevent and control brucellosis, identification of putative drug targets is crucial. The present study aimed to identify drug targets in B. melitensis 16M by using a subtractive genomic approach. We used available database repositories (Database of Essential Genes, Kyoto Encyclopedia of Genes and Genomes Automatic Annotation Server, and Kyoto Encyclopedia of Genes and Genomes to identify putative genes that are nonhomologous to humans and essential for pathogen B. melitensis 16M. The results revealed that among 3 Mb genome size of pathogen, 53 putative characterized and 13 uncharacterized hypothetical genes were identified; further, from Basic Local Alignment Search Tool protein analysis, one hypothetical protein showed a close resemblance (50% to Silicibacter pomeroyi DUF1285 family protein (2RE3. A further homology model of the target was constructed using MODELLER 9.12 and optimized through variable target function method by molecular dynamics optimization with simulating annealing. The stereochemical quality of the restrained model was evaluated by PROCHECK, VERIFY-3D, ERRAT, and WHATIF servers. Furthermore, structure-based virtual screening was carried out against the predicted active site of the respective protein using the

  8. Screening of whole genome sequences identified high-impact variants for stallion fertility.

    Science.gov (United States)

    Schrimpf, Rahel; Gottschalk, Maren; Metzger, Julia; Martinsson, Gunilla; Sieme, Harald; Distl, Ottmar

    2016-04-14

    Stallion fertility is an economically important trait due to the increase of artificial insemination in horses. The availability of whole genome sequence data facilitates identification of rare high-impact variants contributing to stallion fertility. The aim of our study was to genotype rare high-impact variants retrieved from next-generation sequencing (NGS)-data of 11 horses in order to unravel harmful genetic variants in large samples of stallions. Gene ontology (GO) terms and search results from public databases were used to obtain a comprehensive list of human und mice genes predicted to participate in the regulation of male reproduction. The corresponding equine orthologous genes were searched in whole genome sequence data of seven stallions and four mares and filtered for high-impact genetic variants using SnpEFF, SIFT and Polyphen 2 software. All genetic variants with the missing homozygous mutant genotype were genotyped on 337 fertile stallions of 19 breeds using KASP genotyping assays or PCR-RFLP. Mixed linear model analysis was employed for an association analysis with de-regressed estimated breeding values of the paternal component of the pregnancy rate per estrus (EBV-PAT). We screened next generation sequenced data of whole genomes from 11 horses for equine genetic variants in 1194 human and mice genes involved in male fertility and linked through common gene ontology (GO) with male reproductive processes. Variants were filtered for high-impact on protein structure and validated through SIFT and Polyphen 2. Only those genetic variants were followed up when the homozygote mutant genotype was missing in the detection sample comprising 11 horses. After this filtering process, 17 single nucleotide polymorphism (SNPs) were left. These SNPs were genotyped in 337 fertile stallions of 19 breeds using KASP genotyping assays or PCR-RFLP. An association analysis in 216 Hanoverian stallions revealed a significant association of the splice-site disruption variant

  9. A Class of Diacylglycerol Acyltransferase 1 Inhibitors Identified by a Combination of Phenotypic High-throughput Screening, Genomics, and Genetics

    Directory of Open Access Journals (Sweden)

    Kirsten Tschapalda

    2016-06-01

    Full Text Available Excess lipid storage is an epidemic problem in human populations. Thus, the identification of small molecules to treat or prevent lipid storage-related metabolic complications is of great interest. Here we screened >320.000 compounds for their ability to prevent a cellular lipid accumulation phenotype. We used fly cells because the multifarious tools available for this organism should facilitate unraveling the mechanism-of-action of active small molecules. Of the several hundred lipid storage inhibitors identified in the primary screen we concentrated on three structurally diverse and potent compound classes active in cells of multiple species (including human and negligible cytotoxicity. Together with Drosophila in vivo epistasis experiments, RNA-Seq expression profiles suggested that the target of one of the small molecules was diacylglycerol acyltransferase 1 (DGAT1, a key enzyme in the production of triacylglycerols and prominent human drug target. We confirmed this prediction by biochemical and enzymatic activity tests.

  10. SCREEN FOR DOMINANT BEHAVIORAL MUTATIONS CAUSED BY GENOMIC INSERTION OF P-ELEMENT TRANSPOSONS IN DROSOPHILA: AN EXAMINATION OF THE INTEGRATION OF VIRAL VECTOR SEQUENCES

    OpenAIRE

    FOX, LYLE E.; GREEN, DAVID; YAN, ZIYING; ENGELHARDT, JOHN F.; WU, CHUN-FANG

    2007-01-01

    Here we report the development of a high-throughput screen to assess dominant mutation rates caused by P-element transposition within the Drosophila genome that is suitable for assessing the undesirable effects of integrating foreign regulatory sequences (viral cargo) into a host genome. Three different behavioral paradigms were used: sensitivity to mechanical stress, response to heat stress, and ability to fly. The results, from our screen of 35,000 flies, indicate that mutations caused by t...

  11. Genomic, proteomic, and biochemical analyses of oleaginous Mucor circinelloides: evaluating its capability in utilizing cellulolytic substrates for lipid production.

    Directory of Open Access Journals (Sweden)

    Hui Wei

    Full Text Available Lipid production by oleaginous microorganisms is a promising route to produce raw material for the production of biodiesel. However, most of these organisms must be grown on sugars and agro-industrial wastes because they cannot directly utilize lignocellulosic substrates. We report the first comprehensive investigation of Mucor circinelloides, one of a few oleaginous fungi for which genome sequences are available, for its potential to assimilate cellulose and produce lipids. Our genomic analysis revealed the existence of genes encoding 13 endoglucanases (7 of them secretory, 3 β-D-glucosidases (2 of them secretory and 243 other glycoside hydrolase (GH proteins, but not genes for exoglucanases such as cellobiohydrolases (CBH that are required for breakdown of cellulose to cellobiose. Analysis of the major PAGE gel bands of secretome proteins confirmed expression of two secretory endoglucanases and one β-D-glucosidase, along with a set of accessory cell wall-degrading enzymes and 11 proteins of unknown function. We found that M. circinelloides can grow on CMC (carboxymethyl cellulose and cellobiose, confirming the enzymatic activities of endoglucanases and β-D-glucosidases, respectively. The data suggested that M. circinelloides could be made usable as a consolidated bioprocessing (CBP strain by introducing a CBH (e.g. CBHI into the microorganism. This proposal was validated by our demonstration that M. circinelloides growing on Avicel supplemented with CBHI produced about 33% of the lipid that was generated in glucose medium. Furthermore, fatty acid methyl ester (FAME analysis showed that when growing on pre-saccharified Avicel substrates, it produced a higher proportion of C14 fatty acids, which has an interesting implication in that shorter fatty acid chains have characteristics that are ideal for use in jet fuel. This substrate-specific shift in FAME profile warrants further investigation.

  12. Genomic, proteomic, and biochemical analyses of oleaginous Mucor circinelloides: evaluating its capability in utilizing cellulolytic substrates for lipid production.

    Science.gov (United States)

    Wei, Hui; Wang, Wei; Yarbrough, John M; Baker, John O; Laurens, Lieve; Van Wychen, Stefanie; Chen, Xiaowen; Taylor, Larry E; Xu, Qi; Himmel, Michael E; Zhang, Min

    2013-01-01

    Lipid production by oleaginous microorganisms is a promising route to produce raw material for the production of biodiesel. However, most of these organisms must be grown on sugars and agro-industrial wastes because they cannot directly utilize lignocellulosic substrates. We report the first comprehensive investigation of Mucor circinelloides, one of a few oleaginous fungi for which genome sequences are available, for its potential to assimilate cellulose and produce lipids. Our genomic analysis revealed the existence of genes encoding 13 endoglucanases (7 of them secretory), 3 β-D-glucosidases (2 of them secretory) and 243 other glycoside hydrolase (GH) proteins, but not genes for exoglucanases such as cellobiohydrolases (CBH) that are required for breakdown of cellulose to cellobiose. Analysis of the major PAGE gel bands of secretome proteins confirmed expression of two secretory endoglucanases and one β-D-glucosidase, along with a set of accessory cell wall-degrading enzymes and 11 proteins of unknown function. We found that M. circinelloides can grow on CMC (carboxymethyl cellulose) and cellobiose, confirming the enzymatic activities of endoglucanases and β-D-glucosidases, respectively. The data suggested that M. circinelloides could be made usable as a consolidated bioprocessing (CBP) strain by introducing a CBH (e.g. CBHI) into the microorganism. This proposal was validated by our demonstration that M. circinelloides growing on Avicel supplemented with CBHI produced about 33% of the lipid that was generated in glucose medium. Furthermore, fatty acid methyl ester (FAME) analysis showed that when growing on pre-saccharified Avicel substrates, it produced a higher proportion of C14 fatty acids, which has an interesting implication in that shorter fatty acid chains have characteristics that are ideal for use in jet fuel. This substrate-specific shift in FAME profile warrants further investigation.

  13. Biochemical and molecular characteristics of patients with organic acidaemias and urea cycle disorders identified through newborn screening.

    Science.gov (United States)

    Barends, M; Pitt, J; Morrissy, S; Tzanakos, N; Boneh, A

    2014-01-01

    In recent years it has become clear that newborn screening (NBS) programmes using tandem mass spectrometry identify "patients" with "classical" inborn errors of metabolism who are asymptomatic. This observation raises issues regarding medicalization of "non-diseases," potentially unnecessary treatment and unnecessary anxiety to parents. This study aims to identify possible markers that may assist in predicting the need for treatment of infants with "classical" organic acidaemias (OA) and urea cycle disorders (UCD) diagnosed through NBS. Medical records of all patients with classical OA and UCD detected through the Victorian NBS programme from February 2002 to January 2014, or diagnosed clinically between 1990 and January 2002 were retrospectively reviewed. Neonatal presentation did not always predict the need for on-going strict treatment. Blood concentrations of amino acids and acyl-carnitines and the changes thereof in follow-up samples correlated with severity in citrullinaemia-I, possibly isovaleric acidaemia but not in argininosuccinic aciduria or propionic acidaemia. Some specific mutations correlate with "attenuated" citrullinaemia-I. Gender may affect clinical outcome in propionic acidaemia. Changes in blood concentration of certain metabolites (amino acids, acyl-carnitines) in the first weeks of life may be predictive of the need for treatment in some disorders but not in others. Mutation analysis may be predictive in some disorders but whether or not this should be considered as second-tier testing in NBS should be discussed separately. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. A comparative genomics screen identifies a Sinorhizobium meliloti 1021 sodM-like gene strongly expressed within host plant nodules

    Directory of Open Access Journals (Sweden)

    Queiroux Clothilde

    2012-05-01

    Full Text Available Abstract Background We have used the genomic data in the Integrated Microbial Genomes system of the Department of Energy’s Joint Genome Institute to make predictions about rhizobial open reading frames that play a role in nodulation of host plants. The genomic data was screened by searching for ORFs conserved in α-proteobacterial rhizobia, but not conserved in closely-related non-nitrogen-fixing α-proteobacteria. Results Using this approach, we identified many genes known to be involved in nodulation or nitrogen fixation, as well as several new candidate genes. We knocked out selected new genes and assayed for the presence of nodulation phenotypes and/or nodule-specific expression. One of these genes, SMc00911, is strongly expressed by bacterial cells within host plant nodules, but is expressed minimally by free-living bacterial cells. A strain carrying an insertion mutation in SMc00911 is not defective in the symbiosis with host plants, but in contrast to expectations, this mutant strain is able to out-compete the S. meliloti 1021 wild type strain for nodule occupancy in co-inoculation experiments. The SMc00911 ORF is predicted to encode a “SodM-like” (superoxide dismutase-like protein containing a rhodanese sulfurtransferase domain at the N-terminus and a chromate-resistance superfamily domain at the C-terminus. Several other ORFs (SMb20360, SMc01562, SMc01266, SMc03964, and the SMc01424-22 operon identified in the screen are expressed at a moderate level by bacteria within nodules, but not by free-living bacteria. Conclusions Based on the analysis of ORFs identified in this study, we conclude that this comparative genomics approach can identify rhizobial genes involved in the nitrogen-fixing symbiosis with host plants, although none of the newly identified genes were found to be essential for this process.

  15. Novel immune-modulator identified by a rapid, functional screen of the parapoxvirus ovis (Orf virus genome

    Directory of Open Access Journals (Sweden)

    McGuire Michael J

    2012-01-01

    Full Text Available Abstract Background The success of new sequencing technologies and informatic methods for identifying genes has made establishing gene product function a critical rate limiting step in progressing the molecular sciences. We present a method to functionally mine genomes for useful activities in vivo, using an unusual property of a member of the poxvirus family to demonstrate this screening approach. Results The genome of Parapoxvirus ovis (Orf virus was sequenced, annotated, and then used to PCR-amplify its open-reading-frames. Employing a cloning-independent protocol, a viral expression-library was rapidly built and arrayed into sub-library pools. These were directly delivered into mice as expressible cassettes and assayed for an immune-modulating activity associated with parapoxvirus infection. The product of the B2L gene, a homolog of vaccinia F13L, was identified as the factor eliciting immune cell accumulation at sites of skin inoculation. Administration of purified B2 protein also elicited immune cell accumulation activity, and additionally was found to serve as an adjuvant for antigen-specific responses. Co-delivery of the B2L gene with an influenza gene-vaccine significantly improved protection in mice. Furthermore, delivery of the B2L expression construct, without antigen, non-specifically reduced tumor growth in murine models of cancer. Conclusion A streamlined, functional approach to genome-wide screening of a biological activity in vivo is presented. Its application to screening in mice for an immune activity elicited by the pathogen genome of Parapoxvirus ovis yielded a novel immunomodulator. In this inverted discovery method, it was possible to identify the adjuvant responsible for a function of interest prior to a mechanistic study of the adjuvant. The non-specific immune activity of this modulator, B2, is similar to that associated with administration of inactivated particles to a host or to a live viral infection. Administration

  16. A Genome-Wide Screen for Interactions Reveals a New Locus on 4p15 Modifying the Effect of Waist-to-Hip Ratio on Total Cholesterol

    NARCIS (Netherlands)

    Surakka, Ida; Isaacs, Aaron; Karssen, Lennart C.; Laurila, Pirkka-Pekka P.; Middelberg, Rita P. S.; Tikkanen, Emmi; Ried, Janina S.; Lamina, Claudia; Mangino, Massimo; Igl, Wilmar; Hottenga, Jouke-Jan; Lagou, Vasiliki; van der Harst, Pim; Mateo Leach, Irene; Esko, Tonu; Kutalik, Zoltan; Wainwright, Nicholas W.; Struchalin, Maksim V.; Sarin, Antti-Pekka; Kangas, Antti J.; Viikari, Jorma S.; Perola, Markus; Rantanen, Taina; Petersen, Ann-Kristin; Soininen, Pasi; Johansson, Asa; Soranzo, Nicole; Heath, Andrew C.; Papamarkou, Theodore; Prokopenko, Inga; Toenjes, Anke; Kronenberg, Florian; Doering, Angela; Rivadeneira, Fernando; Montgomery, Grant W.; Whitfield, John B.; Kahonen, Mika; Lehtimaki, Terho; Freimer, Nelson B.; Willemsen, Gonneke; de Geus, Eco J. C.; Palotie, Aarno; Sandhu, Manj S.; Waterworth, Dawn M.; Metspalu, Andres; Stumvoll, Michael; Uitterlinden, Andre G.; Navis, Gerjan; Wijmenga, Cisca; Wolffenbuttel, Bruce H. R.

    2011-01-01

    Recent genome-wide association (GWA) studies described 95 loci controlling serum lipid levels. These common variants explain similar to 25% of the heritability of the phenotypes. To date, no unbiased screen for gene-environment interactions for circulating lipids has been reported. We screened for

  17. A Genome-Wide Screen for Interactions Reveals a New Locus on 4p15 Modifying the Effect of Waist-to-Hip Ratio on Total Cholesterol

    NARCIS (Netherlands)

    Surakka, I.; Isaacs, A.; Karssen, L.C.; Laurila, P.P.P.; Middelberg, R.P.S.; Tikkanen, E.; Ried, J.S.; Lamina, C.; Mangino, M.; Igl, W.; Hottenga, J.J.; Lagou, V.; van der Harst, P.; Mateo Leach, I.; Esko, T.; Kutalik, Z.; Wainwright, N.W.; Struchalin, M.V.; Sarin, A.P.; Kangas, A.J.; Viikari, J.S.; Perola, M.; Rantanen, T.; Petersen, A.K.; Soininen, P.; Johansson, Å.; Soranzo, N.; Heath, A.C.; Papamarkou, T.; Prokopenko, I.; Tönjes, A.; Kronenberg, F.; Döring, A.; Rivadeneira, F.; Montgomery, GW; Whitfield, J.B.; Kähönen, M.; Lehtimäki, T.; Freimer, N.B.; Willemsen, G.; de Geus, E.J.C.; Palotie, A.; Sandhu, M.S.; Waterworth, D.; Metspalu, A.; Stumvoll, M.; Uitterlinden, A.G.; Navis, G.; Wijmenga, C.; Wolffenbuttel, B.H.R.; Taskinen, M.R.; Ala-Korpela, M.; Kaprio, J.; Kyvik, K.O.; Boomsma, D.I.; Pedersen, N.L.; Gyllensten, U.; Wilson, J.F.; Rudan, I.; Campbell, H.; Pramstaller, P.P.; Spector, T.D.; Witteman, J.C.M.; Eriksson, J.G.; Salomaa, V.; Oostra, B.A.; Raitakari, O.T.; Wichmann, H.E.; Gieger, C.; Järvelin, M.J.; Martin, N.G.; Hofman, A.; McCarthy, M.I.; Peltonen, L.; van Duijn, C.M.; Aulchenko, Y.S.; Ripatti, S.

    2011-01-01

    Recent genome-wide association (GWA) studies described 95 loci controlling serum lipid levels. These common variants explain ~25% of the heritability of the phenotypes. To date, no unbiased screen for gene-environment interactions for circulating lipids has been reported. We screened for variants

  18. A genome-wide screen for interactions reveals a new locus on 4p15 modifying the effect of waist-to-hip ratio on total cholesterol

    NARCIS (Netherlands)

    I. Surakka (Ida); A.J. Isaacs (Aaron); L.C. Karssen (Lennart); P.-P.P. Laurila; R.P.S. Middelberg (Rita); E. Tikkanen (Emmi); J.S. Ried (Janina); C. Lamina (Claudia); M. Mangino (Massimo); W. Igl (Wilmar); J.J. Hottenga (Jouke Jan); V. Lagou (Vasiliki); P. van der Harst (Pim); I.M. Leach (Irene Mateo); T. Esko (Tõnu); Z. Kutalik (Zoltán); N.W. Wainwright (Nicholas); M.V. Struchalin (Maksim); A.-P. Sarin; A.J. Kangas (Antti); J. Viikari (Jorma); M. Perola (Markus); T. Rantanen (Taina); A.K. Petersen; P. Soininen (Pasi); A. Johansson (Åsa); N. Soranzo (Nicole); A.C. Heath (Andrew); T. Papamarkou (Theodore); I. Prokopenko (Inga); A. Tönjes (Anke); F. Kronenberg (Florian); A. Döring (Angela); F. Rivadeneira Ramirez (Fernando); G.W. Montgomery (Grant); J.B. Whitfield (John); M. Kähönen (Mika); T. Lehtimäki (Terho); N.B. Freimer (Nelson); G.A.H.M. Willemsen (Gonneke); E.J.C. de Geus (Eco); A. Palotie (Aarno); M.S. Sandhu (Manj); D. Waterworth (Dawn); A. Metspalu (Andres); M. Stumvoll (Michael); A.G. Uitterlinden (André); A. Jula (Antti); G. Navis (Gerjan); C. Wijmenga (Cisca); B.H.R. Wolffenbuttel (Bruce); M.-R. Taskinen; M. Ala-Korpela (Mika); J. Kaprio (Jaakko); K.O. Kyvik (Kirsten Ohm); D.I. Boomsma (Dorret); N.L. Pedersen (Nancy); U. Gyllensten (Ulf); J.F. Wilson (James); I. Rudan (Igor); H. Campbell (Harry); P.P. Pramstaller (Peter Paul); T.D. Spector (Timothy); J.C.M. Witteman (Jacqueline); J.G. Eriksson (Johan); V. Salomaa (Veikko); B.A. Oostra (Ben); O. Raitakari (Olli); H.E. Wichmann (Heinz Erich); C. Gieger (Christian); M.R. Järvelin; N.G. Martin (Nicholas); A. Hofman (Albert); M.I. McCarthy (Mark); Y.S. Aulchenko (Yurii); L. Peltonen (Leena Johanna); P. Tikka-Kleemola (Päivi); S. Ripatti (Samuli)

    2011-01-01

    textabstractRecent genome-wide association (GWA) studies described 95 loci controlling serum lipid levels. These common variants explain ~25% of the heritability of the phenotypes. To date, no unbiased screen for gene-environment interactions for circulating lipids has been reported. We screened for

  19. Combining chemical genomics screens in yeast to reveal spectrum of effects of chemical inhibition of sphingolipid biosynthesis

    Directory of Open Access Journals (Sweden)

    Giaever Guri

    2009-01-01

    Full Text Available Abstract Background Single genome-wide screens for the effect of altered gene dosage on drug sensitivity in the model organism Saccharomyces cerevisiae provide only a partial picture of the mechanism of action of a drug. Results Using the example of the tumor cell invasion inhibitor dihydromotuporamine C, we show that a more complete picture of drug action can be obtained by combining different chemical genomics approaches – analysis of the sensitivity of ρ0 cells lacking mitochondrial DNA, drug-induced haploinsufficiency, suppression of drug sensitivity by gene overexpression and chemical-genetic synthetic lethality screening using strains deleted of nonessential genes. Killing of yeast by this chemical requires a functional mitochondrial electron-transport chain and cytochrome c heme lyase function. However, we find that it does not require genes associated with programmed cell death in yeast. The chemical also inhibits endocytosis and intracellular vesicle trafficking and interferes with vacuolar acidification in yeast and in human cancer cells. These effects can all be ascribed to inhibition of sphingolipid biosynthesis by dihydromotuporamine C. Conclusion Despite their similar conceptual basis, namely altering drug sensitivity by modifying gene dosage, each of the screening approaches provided a distinct set of information that, when integrated, revealed a more complete picture of the mechanism of action of a drug on cells.

  20. What’s old is new again: yeast mutant screens in the era of pooled segregant analysis by genome sequencing

    Directory of Open Access Journals (Sweden)

    Chris Curtin

    2016-04-01

    Full Text Available While once de-rigueur for identification of genes involved in biological processes, screening of chemically induced mutant populations is an approach that has largely been superseded for model organisms such as Saccharomyces cerevisiae. Availability of single gene deletion/overexpression libraries and combinatorial synthetic genetic arrays provide yeast researchers more structured ways to probe genetic networks. Furthermore, in the age of inexpensive DNA sequencing, methodologies such as mapping of quantitative trait loci (QTL by pooled segregant analysis and genome-wide association enable the identification of multiple naturally occurring allelic variants that contribute to polygenic phenotypes of interest. This is, however, contingent on the capacity to screen large numbers of individuals and existence of sufficient natural phenotypic variation within the available population. The latter cannot be guaranteed and non-selectable, industrially relevant phenotypes, such as production of volatile aroma compounds, pose severe limitations on the use of modern genetic techniques due to expensive and time-consuming downstream analyses. An interesting approach to overcome these issues can be found in Den Abt et al.[1] (this issue of Microbial Cell, where a combination of repeated rounds of chemical mutagenesis and pooled segregant analysis by whole genome sequencing was applied to identify genes involved in ethyl acetate formation, demonstrating a new path for industrial yeast strain development and bringing classical mutant screens into the 21st century.

  1. Array-based genomic screening at diagnosis and during follow-up in chronic lymphocytic leukemia

    DEFF Research Database (Denmark)

    Gunnarsson, Rebeqa; Mansouri, Larry; Isaksson, Anders

    2011-01-01

    High-resolution genomic microarrays enable simultaneous detection of copy-number aberrations such as the known recurrent aberrations in chronic lymphocytic leukemia [del(11q), del(13q), del(17p) and trisomy 12], and copy-number neutral loss of heterozygosity. Moreover, comparison of genomic...... profiles from sequential patients' samples allows detection of clonal evolution....

  2. Array-based genomic screening at diagnosis and during follow-up in chronic lymphocytic leukemia

    DEFF Research Database (Denmark)

    Gunnarsson, Rebeqa; Mansouri, Larry; Isaksson, Anders

    2011-01-01

    High-resolution genomic microarrays enable simultaneous detection of copy-number aberrations such as the known recurrent aberrations in chronic lymphocytic leukemia [del(11q), del(13q), del(17p) and trisomy 12], and copy-number neutral loss of heterozygosity. Moreover, comparison of genomic...

  3. Biochemical and biophysical characterization of cell-free synthesized Rift Valley fever virus nucleoprotein capsids enables in vitro screening to identify novel antivirals.

    Science.gov (United States)

    Broce, Sean; Hensley, Lisa; Sato, Tomoharu; Lehrer-Graiwer, Joshua; Essrich, Christian; Edwards, Katie J; Pajda, Jacqueline; Davis, Christopher J; Bhadresh, Rami; Hurt, Clarence R; Freeman, Beverly; Lingappa, Vishwanath R; Kelleher, Colm A; Karpuj, Marcela V

    2016-05-14

    Viral capsid assembly involves the oligomerization of the capsid nucleoprotein (NP), which is an essential step in viral replication and may represent a potential antiviral target. An in vitro transcription-translation reaction using a wheat germ (WG) extract in combination with a sandwich ELISA assay has recently been used to identify small molecules with antiviral activity against the rabies virus. Here, we examined the application of this system to viruses with capsids with a different structure, such as the Rift Valley fever virus (RVFV), the etiological agent of a severe emerging infectious disease. The biochemical and immunological characterization of the in vitro-generated RVFV NP assembly products enabled the distinction between intermediately and highly ordered capsid structures. This distinction was used to establish a screening method for the identification of potential antiviral drugs for RVFV countermeasures. These results indicated that this unique analytical system, which combines nucleoprotein oligomerization with the specific immune recognition of a highly ordered capsid structure, can be extended to various viral families and used both to study the early stages of NP assembly and to assist in the identification of potential antiviral drugs in a cost-efficient manner. Reviewed by Jeffry Skolnick and Noah Isakov. For the full reviews please go to the Reviewers' comments section.

  4. Rapid Biochemical Mixture Screening by Three-Dimensional Patterned Multifunctional Substrate with Ultra-Thin Layer Chromatography (UTLC) and Surface Enhanced Raman Scattering (SERS).

    Science.gov (United States)

    Lee, Bi-Shen; Lin, Pi-Chen; Lin, Ding-Zheng; Yen, Ta-Jen

    2018-01-11

    We present a three-dimensional patterned (3DP) multifunctional substrate with the functions of ultra-thin layer chromatography (UTLC) and surface enhanced Raman scattering (SERS), which simultaneously enables mixture separation, target localization and label-free detection. This multifunctional substrate is comprised of a 3DP silicon nanowires array (3DP-SiNWA), decorated with silver nano-dendrites (AgNDs) atop. The 3DP-SiNWA is fabricated by a facile photolithographic process and low-cost metal assisted chemical etching (MaCE) process. Then, the AgNDs are decorated onto 3DP-SiNWA by a wet chemical reduction process, obtaining 3DP-AgNDs@SiNWA multifunctional substrates. With various patterns designed on the substrates, the signal intensity could be maximized by the excellent confinement and concentrated effects of patterns. By using this 3DP-AgNDs@SiNWA substrate to scrutinize the mixture of two visible dyes, the individual target could be recognized and further boosted the Raman signal of target 15.42 times comparing to the un-patterned AgNDs@SiNWA substrate. Therefore, such a three-dimensional patterned multifunctional substrate empowers rapid mixture screening, and can be readily employed in practical applications for biochemical assays, food safety and other fields.

  5. Data Mining Approaches for Genomic Biomarker Development: Applications Using Drug Screening Data from the Cancer Genome Project and the Cancer Cell Line Encyclopedia.

    Directory of Open Access Journals (Sweden)

    David G Covell

    Full Text Available Developing reliable biomarkers of tumor cell drug sensitivity and resistance can guide hypothesis-driven basic science research and influence pre-therapy clinical decisions. A popular strategy for developing biomarkers uses characterizations of human tumor samples against a range of cancer drug responses that correlate with genomic change; developed largely from the efforts of the Cancer Cell Line Encyclopedia (CCLE and Sanger Cancer Genome Project (CGP. The purpose of this study is to provide an independent analysis of this data that aims to vet existing and add novel perspectives to biomarker discoveries and applications. Existing and alternative data mining and statistical methods will be used to a evaluate drug responses of compounds with similar mechanism of action (MOA, b examine measures of gene expression (GE, copy number (CN and mutation status (MUT biomarkers, combined with gene set enrichment analysis (GSEA, for hypothesizing biological processes important for drug response, c conduct global comparisons of GE, CN and MUT as biomarkers across all drugs screened in the CGP dataset, and d assess the positive predictive power of CGP-derived GE biomarkers as predictors of drug response in CCLE tumor cells. The perspectives derived from individual and global examinations of GEs, MUTs and CNs confirm existing and reveal unique and shared roles for these biomarkers in tumor cell drug sensitivity and resistance. Applications of CGP-derived genomic biomarkers to predict the drug response of CCLE tumor cells finds a highly significant ROC, with a positive predictive power of 0.78. The results of this study expand the available data mining and analysis methods for genomic biomarker development and provide additional support for using biomarkers to guide hypothesis-driven basic science research and pre-therapy clinical decisions.

  6. CTL epitopes for influenza A including the H5N1 bird flu; genome-, pathogen-, and HLA-wide screening

    DEFF Research Database (Denmark)

    Wang, M.J.; Lamberth, K.; Harndahl, M.

    2007-01-01

    are present in the emerging bird flu isolates. Our study demonstrates that present technology enables a fast global screening for T cell immune epitopes of potential diagnostics and vaccine interest. This technology includes immuno-bioinformatics predictors with the capacity to perform fast genome-, pathogen......-, and HLA-wide searches for immune targets. To exploit this new potential, a coordinated international effort to analyze the precious source of information represented by rare patients, such as the current victims of bird flu, would be essential....

  7. The promises of genomic screening: building a governance infrastructure. Special issue: genetics and democracy

    NARCIS (Netherlands)

    Cornel, M.C.; van El, C.G.; Dondorp, W.J.

    2012-01-01

    New screening possibilities become available at a high rate, both useful and unsound possibilities. All screening programmes do harm, and only few have more advantages than disadvantages at reasonable cost. Horizon scanning is needed to identify those few possibilities with more pros than cons.

  8. Improved genome-scale multi-target virtual screening via a novel collaborative filtering approach to cold-start problem.

    Science.gov (United States)

    Lim, Hansaim; Gray, Paul; Xie, Lei; Poleksic, Aleksandar

    2016-12-13

    Conventional one-drug-one-gene approach has been of limited success in modern drug discovery. Polypharmacology, which focuses on searching for multi-targeted drugs to perturb disease-causing networks instead of designing selective ligands to target individual proteins, has emerged as a new drug discovery paradigm. Although many methods for single-target virtual screening have been developed to improve the efficiency of drug discovery, few of these algorithms are designed for polypharmacology. Here, we present a novel theoretical framework and a corresponding algorithm for genome-scale multi-target virtual screening based on the one-class collaborative filtering technique. Our method overcomes the sparseness of the protein-chemical interaction data by means of interaction matrix weighting and dual regularization from both chemicals and proteins. While the statistical foundation behind our method is general enough to encompass genome-wide drug off-target prediction, the program is specifically tailored to find protein targets for new chemicals with little to no available interaction data. We extensively evaluate our method using a number of the most widely accepted gene-specific and cross-gene family benchmarks and demonstrate that our method outperforms other state-of-the-art algorithms for predicting the interaction of new chemicals with multiple proteins. Thus, the proposed algorithm may provide a powerful tool for multi-target drug design.

  9. A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene.

    Science.gov (United States)

    Gobeil, Stephane; Zhu, Xiaochun; Doillon, Charles J; Green, Michael R

    2008-11-01

    Metastasis suppressor genes inhibit one or more steps required for metastasis without affecting primary tumor formation. Due to the complexity of the metastatic process, the development of experimental approaches for identifying genes involved in metastasis prevention has been challenging. Here we describe a genome-wide RNAi screening strategy to identify candidate metastasis suppressor genes. Following expression in weakly metastatic B16-F0 mouse melanoma cells, shRNAs were selected based upon enhanced satellite colony formation in a three-dimensional cell culture system and confirmed in a mouse experimental metastasis assay. Using this approach we discovered 22 genes whose knockdown increased metastasis without affecting primary tumor growth. We focused on one of these genes, Gas1 (Growth arrest-specific 1), because we found that it was substantially down-regulated in highly metastatic B16-F10 melanoma cells, which contributed to the high metastatic potential of this mouse cell line. We further demonstrated that Gas1 has all the expected properties of a melanoma tumor suppressor including: suppression of metastasis in a spontaneous metastasis assay, promotion of apoptosis following dissemination of cells to secondary sites, and frequent down-regulation in human melanoma metastasis-derived cell lines and metastatic tumor samples. Thus, we developed a genome-wide shRNA screening strategy that enables the discovery of new metastasis suppressor genes.

  10. Genomes

    National Research Council Canada - National Science Library

    Brown, T. A. (Terence A.)

    2002-01-01

    ... of genome expression and replication processes, and transcriptomics and proteomics. This text is richly illustrated with clear, easy-to-follow, full color diagrams, which are downloadable from the book's website...

  11. Context-Dependent Effects of Genome-Wide Association Study Genotypes and Macro-Environmental Factors on Time to Biochemical (PSA) Failure after Prostatectomy

    Science.gov (United States)

    Rebbeck, Timothy R.; Weber, Anita L.; Walker, Amy H.; Stefflova, Klara; Tran, Teo V.; Spangler, Elaine; Chang, Bao-Li; Zeigler-Johnson, Charnita M.

    2010-01-01

    Background Disparities in cancer defined by race, age, or gender are well established. However, demographic metrics are surrogates for the complex contributions of genotypes, exposures, health care, socioeconomic and sociocultural environment, and many other factors. Macro-environmental factors represent novel surrogates for exposures, lifestyle and other factors that are difficult to measure but may influence cancer outcomes. Methods We applied a “multilevel molecular epidemiology” approach using a prospective cohort of 444 White prostate cancer cases who underwent prostatectomy and were followed until biochemical failure (BF) or censoring without BF. We applied Cox regression models to test for joint effects of 86 genome-wide association study-identified genotypes and macro-environmental contextual effects after geocoding all cases to their residential census tracts. All analyses were adjusted for age at diagnosis and tumor aggressiveness. Results Residents living in macroenvironments with a high proportion of older single heads of household, high rates of vacant housing, or high unemployment had shorter time until BF post-surgery after adjustment for patient age and tumor aggressiveness. After correction for multiple testing, genotypes alone did not predict time to BF, but interactions predicting time to BF were observed for MSMB (rs10993994) and percent of older single head of households (p=0.0004), and for HNF1B/TCF2 (rs4430796) and macroenvironment per capita income (p=0.0002). Conclusions Context-specific macro-environmental effects of genotype may improve the ability to identify groups that may experience poor prostate cancer outcomes. Impact Risk estimation and clinical translation of genotype information may require an understanding of both individual-level and macroenvironmental context. PMID:20826827

  12. Context-dependent effects of genome-wide association study genotypes and macroenvironment on time to biochemical (prostate specific antigen) failure after prostatectomy.

    Science.gov (United States)

    Rebbeck, Timothy R; Weber, Anita L; Walker, Amy H; Stefflova, Klara; Tran, Teo V; Spangler, Elaine; Chang, Bao-Li; Zeigler-Johnson, Charnita M

    2010-09-01

    Disparities in cancer defined by race, age, or gender are well established. However, demographic metrics are surrogates for the complex contributions of genotypes, exposures, health care, socioeconomic and sociocultural environment, and many other factors. Macroenvironmental factors represent novel surrogates for exposures, lifestyle, and other factors that are difficult to measure but might influence cancer outcomes. We applied a "multilevel molecular epidemiology" approach using a prospective cohort of 444 White prostate cancer cases who underwent prostatectomy and were followed until biochemical failure (BF) or censoring without BF. We applied Cox regression models to test for joint effects of 86 genome-wide association study-identified genotypes and macroenvironment contextual effects after geocoding all cases to their residential census tracts. All analyses were adjusted for age at diagnosis and tumor aggressiveness. Residents living in census tracts with a high proportion of older single heads of household, high rates of vacant housing, or high unemployment had shorter time until BF postsurgery after adjustment for patient age and tumor aggressiveness. After correction for multiple testing, genotypes alone did not predict time to BF, but interactions predicting time to BF were observed for MSMB (rs10993994) and percentage of older single heads of households (P = 0.0004), and for HNF1B/TCF2 (rs4430796) and census tract per capita income (P = 0.0002). The context-specific macroenvironmental effects of genotype might improve the ability to identify groups that might experience poor prostate cancer outcomes. Risk estimation and clinical translation of genotype information might require an understanding of both individual- and macroenvironment-level context. (c) 2010 AACR.

  13. Genome-Wide Screening of Cytogenetic Abnormalities in Multiple Myeloma Patients Using Array-CGH Technique: A Czech Multicenter Experience

    Directory of Open Access Journals (Sweden)

    Jan Smetana

    2014-01-01

    Full Text Available Characteristic recurrent copy number aberrations (CNAs play a key role in multiple myeloma (MM pathogenesis and have important prognostic significance for MM patients. Array-based comparative genomic hybridization (aCGH provides a powerful tool for genome-wide classification of CNAs and thus should be implemented into MM routine diagnostics. We demonstrate the possibility of effective utilization of oligonucleotide-based aCGH in 91 MM patients. Chromosomal aberrations associated with effect on the prognosis of MM were initially evaluated by I-FISH and were found in 93.4% (85/91. Incidence of hyperdiploidy was 49.5% (45/91; del(13(q14 was detected in 57.1% (52/91; gain(1(q21 occurred in 58.2% (53/91; del(17(p13 was observed in 15.4% (14/91; and t(4;14(p16;q32 was found in 18.6% (16/86. Genome-wide screening using Agilent 44K aCGH microarrays revealed copy number alterations in 100% (91/91. Most common deletions were found at 13q (58.9%, 1p (39.6%, and 8p (31.1%, whereas gain of whole 1q was the most often duplicated region (50.6%. Furthermore, frequent homozygous deletions of genes playing important role in myeloma biology such as TRAF3, BIRC1/BIRC2, RB1, or CDKN2C were observed. Taken together, we demonstrated the utilization of aCGH technique in clinical diagnostics as powerful tool for identification of unbalanced genomic abnormalities with prognostic significance for MM patients.

  14. Genome-wide RNAi screen reveals the E3 SUMO-protein ligase gene SIZ1 as a novel determinant of furfural tolerance in Saccharomyces cerevisiae

    OpenAIRE

    Xiao, Han; Zhao, Huimin

    2014-01-01

    Background Furfural is a major growth inhibitor in lignocellulosic hydrolysates and improving furfural tolerance of microorganisms is critical for rapid and efficient fermentation of lignocellulosic biomass. In this study, we used the RNAi-Assisted Genome Evolution (RAGE) method to select for furfural resistant mutants of Saccharomyces cerevisiae, and identified a new determinant of furfural tolerance. Results By using a genome-wide RNAi (RNA-interference) screen in S. cerevisiae for genes in...

  15. A Genome-Wide Screen for Interactions Reveals a New Locus on 4p15 Modifying the Effect of Waist-to-Hip Ratio on Total Cholesterol

    DEFF Research Database (Denmark)

    Surakka, I.; Isaacs, A.; Karssen, L. C.

    2011-01-01

    Recent genome-wide association (GWA) studies described 95 loci controlling serum lipid levels. These common variants explain similar to 25% of the heritability of the phenotypes. To date, no unbiased screen for gene-environment interactions for circulating lipids has been reported. We screened......, and rs6448771 on 4p15 demonstrated genome-wide significant interaction with waist-to-hip-ratio (WHR) on total cholesterol (TC) with a combined P-value of 4.79 x 10(-9). There were two potential candidate genes in the region, PCDH7 and CCKAR, with differential expression levels for rs6448771 genotypes...

  16. An analysis of normalization methods for Drosophila RNAi genomic screens and development of a robust validation scheme

    Science.gov (United States)

    Wiles, Amy M.; Ravi, Dashnamoorthy; Bhavani, Selvaraj; Bishop, Alexander J.R.

    2010-01-01

    Genome-wide RNAi screening is a powerful, yet relatively immature technology that allows investigation into the role of individual genes in a process of choice. Most RNAi screens identify a large number of genes with a continuous gradient in the assessed phenotype. Screeners must then decide whether to examine just those genes with the most robust phenotype or to examine the full gradient of genes that cause an effect and how to identify the candidate genes to be validated. We have used RNAi in Drosophila cells to examine viability in a 384-well plate format and compare two screens, untreated control and treatment. We compare multiple normalization methods, which take advantage of different features within the data, including quantile normalization, background subtraction, scaling, cellHTS2 1, and interquartile range measurement. Considering the false-positive potential that arises from RNAi technology, a robust validation method was designed for the purpose of gene selection for future investigations. In a retrospective analysis, we describe the use of validation data to evaluate each normalization method. While no normalization method worked ideally, we found that a combination of two methods, background subtraction followed by quantile normalization and cellHTS2, at different thresholds, captures the most dependable and diverse candidate genes. Thresholds are suggested depending on whether a few candidate genes are desired or a more extensive systems level analysis is sought. In summary, our normalization approaches and experimental design to perform validation experiments are likely to apply to those high-throughput screening systems attempting to identify genes for systems level analysis. PMID:18753689

  17. A functional genomics screen in planarians reveals regulators of whole-brain regeneration

    Science.gov (United States)

    Roberts-Galbraith, Rachel H; Brubacher, John L; Newmark, Phillip A

    2016-01-01

    Planarians regenerate all body parts after injury, including the central nervous system (CNS). We capitalized on this distinctive trait and completed a gene expression-guided functional screen to identify factors that regulate diverse aspects of neural regeneration in Schmidtea mediterranea. Our screen revealed molecules that influence neural cell fates, support the formation of a major connective hub, and promote reestablishment of chemosensory behavior. We also identified genes that encode signaling molecules with roles in head regeneration, including some that are produced in a previously uncharacterized parenchymal population of cells. Finally, we explored genes downregulated during planarian regeneration and characterized, for the first time, glial cells in the planarian CNS that respond to injury by repressing several transcripts. Collectively, our studies revealed diverse molecules and cell types that underlie an animal’s ability to regenerate its brain. DOI: http://dx.doi.org/10.7554/eLife.17002.001 PMID:27612384

  18. Dual gene activation and knockout screen reveals directional dependencies in genetic networks. | Office of Cancer Genomics

    Science.gov (United States)

    Understanding the direction of information flow is essential for characterizing how genetic networks affect phenotypes. However, methods to find genetic interactions largely fail to reveal directional dependencies. We combine two orthogonal Cas9 proteins from Streptococcus pyogenes and Staphylococcus aureus to carry out a dual screen in which one gene is activated while a second gene is deleted in the same cell. We analyze the quantitative effects of activation and knockout to calculate genetic interaction and directionality scores for each gene pair.

  19. Chromoanasynthetic Genomic Rearrangement Identified in a N-Ethyl-N-Nitrosourea (ENU Mutagenesis Screen in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Omar A. Itani

    2016-02-01

    Full Text Available Chromoanasynthesis is a recently discovered phenomenon in humans with congenital diseases that is characterized by complex genomic rearrangements (CGRs resulting from aberrant repair of catastrophic chromosomal damage. How these CGRs are induced is not known. Here, we describe the structure and function of dpDp667, a causative CGR that emerged from a Caenorhabditis elegans dauer suppressor screen in which animals were treated with the point mutagen N-ethyl-N-nitrosourea (ENU. dpDp667 comprises nearly 3 Mb of sequence on the right arm of the X chromosome, contains three duplications and one triplication, and is devoid of deletions. Sequences from three out of the four breakpoint junctions in dpDp667 reveal microhomologies that are hallmarks of chromoanasynthetic CGRs. Our findings suggest that environmental insults and physiological processes that cause point mutations may give rise to chromoanasynthetic rearrangements associated with congenital disease. The relatively subtle phenotype of animals harboring dpDp667 suggests that the prevalence of CGRs in the genomes of mutant and/or phenotypically unremarkable animals may be grossly underestimated.

  20. Uncovering buffered pleiotropy: a genome-scale screen for mel-28 genetic interactors in Caenorhabditis elegans.

    Science.gov (United States)

    Fernandez, Anita G; Mis, Emily K; Lai, Allison; Mauro, Michael; Quental, Angela; Bock, Carly; Piano, Fabio

    2014-01-10

    mel-28 (maternal-effect-lethal-28) encodes a conserved protein required for nuclear envelope function and chromosome segregation in Caenorhabditis elegans. Because mel-28 is a strict maternal-effect lethal gene, its function is required in the early embryo but appears to be dispensable for larval development. We wanted to test the idea that mel-28 has postembryonic roles that are buffered by the contributions of other genes. To find genes that act coordinately with mel-28, we did an RNA interference-based genetic interaction screen using mel-28 and wild-type larvae. We screened 18,364 clones and identified 65 genes that cause sterility in mel-28 but not wild-type worms. Some of these genes encode components of the nuclear pore. In addition we identified genes involved in dynein and dynactin function, vesicle transport, and cell-matrix attachments. By screening mel-28 larvae we have bypassed the requirement for mel-28 in the embryo, uncovering pleiotropic functions for mel-28 later in development that are normally provided by other genes. This work contributes toward revealing the gene networks that underlie cellular processes and reveals roles for a maternal-effect lethal gene later in development.

  1. Quantitative genome-wide genetic interaction screens reveal global epistatic relationships of protein complexes in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Mohan Babu

    2014-02-01

    Full Text Available Large-scale proteomic analyses in Escherichia coli have documented the composition and physical relationships of multiprotein complexes, but not their functional organization into biological pathways and processes. Conversely, genetic interaction (GI screens can provide insights into the biological role(s of individual gene and higher order associations. Combining the information from both approaches should elucidate how complexes and pathways intersect functionally at a systems level. However, such integrative analysis has been hindered due to the lack of relevant GI data. Here we present a systematic, unbiased, and quantitative synthetic genetic array screen in E. coli describing the genetic dependencies and functional cross-talk among over 600,000 digenic mutant combinations. Combining this epistasis information with putative functional modules derived from previous proteomic data and genomic context-based methods revealed unexpected associations, including new components required for the biogenesis of iron-sulphur and ribosome integrity, and the interplay between molecular chaperones and proteases. We find that functionally-linked genes co-conserved among γ-proteobacteria are far more likely to have correlated GI profiles than genes with divergent patterns of evolution. Overall, examining bacterial GIs in the context of protein complexes provides avenues for a deeper mechanistic understanding of core microbial systems.

  2. A genome-wide RNAi screen identifies novel targets of neratinib sensitivity leading to neratinib and paclitaxel combination drug treatments.

    Science.gov (United States)

    Seyhan, Attila A; Varadarajan, Usha; Choe, Sung; Liu, Yan; McGraw, John; Woods, Matthew; Murray, Stuart; Eckert, Amy; Liu, Wei; Ryan, Terence E

    2011-06-01

    ErbB2 is frequently activated in tumors, and influences a wide array of cellular functions, including proliferation, apoptosis, cell motility and adhesion. HKI-272 (neratinib) is a small molecule pan-kinase inhibitor of the ErbB family of receptor tyrosine kinases, and shows strong antiproliferative activity in ErbB2-overexpressing breast cancer cells. We undertook a genome-wide pooled lentiviral RNAi screen to identify synthetic lethal or enhancer (synthetic modulator screen) genes that interact with neratinib in a human breast cancer cell line (SKBR-3). These genes upon knockdown would modulate cell viability in the presence of subeffective concentrations of neratinib. We discovered a diverse set of genes whose depletion selectively impaired or enhanced the viability of SKBR-3 cells in the presence of neratinib. We observed diverse pathways including EGFR, hypoxia, cAMP, and protein ubiquitination that, when co-treated with RNAi and neratinib, resulted in arrest of cell proliferation. Examining the changes of these genes and their protein products also led to a rationale for clinically relevant drug combination treatments. Treatment of cells with either paclitaxel or cytarabine in combination with neratinib resulted in a strong antiproliferative effect. The identification of novel mediators of cellular response to neratinib and the development of potential drug combination treatments have expanded our understanding of neratinib's mode-of-action for the development of more effective therapeutic regimens. Notably, our findings support a paclitaxel and neratinib phase III clinical trial in breast cancer patients.

  3. A genome-wide screen identifies conserved protein hubs required for cadherin-mediated cell–cell adhesion

    Science.gov (United States)

    Toret, Christopher P.; D’Ambrosio, Michael V.; Vale, Ronald D.; Simon, Michael A.

    2014-01-01

    Cadherins and associated catenins provide an important structural interface between neighboring cells, the actin cytoskeleton, and intracellular signaling pathways in a variety of cell types throughout the Metazoa. However, the full inventory of the proteins and pathways required for cadherin-mediated adhesion has not been established. To this end, we completed a genome-wide (∼14,000 genes) ribonucleic acid interference (RNAi) screen that targeted Ca2+-dependent adhesion in DE-cadherin–expressing Drosophila melanogaster S2 cells in suspension culture. This novel screen eliminated Ca2+-independent cell–cell adhesion, integrin-based adhesion, cell spreading, and cell migration. We identified 17 interconnected regulatory hubs, based on protein functions and protein–protein interactions that regulate the levels of the core cadherin–catenin complex and coordinate cadherin-mediated cell–cell adhesion. Representative proteins from these hubs were analyzed further in Drosophila oogenesis, using targeted germline RNAi, and adhesion was analyzed in Madin–Darby canine kidney mammalian epithelial cell–cell adhesion. These experiments reveal roles for a diversity of cellular pathways that are required for cadherin function in Metazoa, including cytoskeleton organization, cell–substrate interactions, and nuclear and cytoplasmic signaling. PMID:24446484

  4. A whole mitochondrial genome screening in a MELAS patient: A novel mitochondrial tRNA{sup Val} mutation

    Energy Technology Data Exchange (ETDEWEB)

    Mezghani, Najla [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Mnif, Mouna [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Kacem, Maha [Service de Medecine interne, C.H.U. Fattouma Bourguiba de Monastir (Tunisia); Mkaouar-Rebai, Emna, E-mail: emna_mkaouar@mail2world.com [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Hadj Salem, Ikhlass [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Kallel, Nozha; Charfi, Nadia; Abid, Mohamed [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Fakhfakh, Faiza [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia)

    2011-04-22

    Highlights: {yields} We report a young Tunisian patient with clinical features of MELAS syndrome. {yields} Reported mitochondrial mutations were absent after a mutational screening of the whole mtDNA. {yields} We described a novel m.1640A>G mutation in the tRNA{sup Val} gene which was absent in 150 controls. {yields} Mitochondrial deletions and POLG1 gene mutations were absent. {yields} The m.1640A>G mutation could be associated to MELAS syndrome. -- Abstract: Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNA{sup Val}. This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.

  5. Genome-wide screening for genes whose deletions confer sensitivity to mutagenic purine base analogs in yeast

    Directory of Open Access Journals (Sweden)

    Kozmin Stanislav G

    2005-06-01

    Full Text Available Abstract Background N-hydroxylated base analogs, such as 6-hydroxylaminopurine (HAP and 2-amino-6-hydroxylaminopurine (AHA, are strong mutagens in various organisms due to their ambiguous base-pairing properties. The systems protecting cells from HAP and related noncanonical purines in Escherichia coli include specialized deoxyribonucleoside triphosphatase RdgB, DNA repair endonuclease V, and a molybdenum cofactor-dependent system. Fewer HAP-detoxification systems have been identified in yeast Saccharomyces cerevisiae and other eukaryotes. Cellular systems protecting from AHA are unknown. In the present study, we performed a genome-wide search for genes whose deletions confer sensitivity to HAP and AHA in yeast. Results We screened the library of yeast deletion mutants for sensitivity to the toxic and mutagenic action of HAP and AHA. We identified novel genes involved in the genetic control of base analogs sensitivity, including genes controlling purine metabolism, cytoskeleton organization, and amino acid metabolism. Conclusion We developed a method for screening the yeast deletion library for sensitivity to the mutagenic and toxic action of base analogs and identified 16 novel genes controlling pathways of protection from HAP. Three of them also protect from AHA.

  6. Genes Required for Growth at High Hydrostatic Pressure in Escherichia coli K-12 Identified by Genome-Wide Screening

    Science.gov (United States)

    Black, S. Lucas; Dawson, Angela; Ward, F. Bruce; Allen, Rosalind J.

    2013-01-01

    Despite the fact that much of the global microbial biosphere is believed to exist in high pressure environments, the effects of hydrostatic pressure on microbial physiology remain poorly understood. We use a genome-wide screening approach, combined with a novel high-throughput high-pressure cell culture method, to investigate the effects of hydrostatic pressure on microbial physiology in vivo. The Keio collection of single-gene deletion mutants in Escherichia coli K-12 was screened for growth at a range of pressures from 0.1 MPa to 60 MPa. This led to the identification of 6 genes, rodZ, holC, priA, dnaT, dedD and tatC, whose products were required for growth at 30 MPa and a further 3 genes, tolB, rffT and iscS, whose products were required for growth at 40 MPa. Our results support the view that the effects of pressure on cell physiology are pleiotropic, with DNA replication, cell division, the cytoskeleton and cell envelope physiology all being potential failure points for cell physiology during growth at elevated pressure. PMID:24040140

  7. A genome-scale RNA-interference screen identifies RRAS signaling as a pathologic feature of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    John P Miller

    Full Text Available A genome-scale RNAi screen was performed in a mammalian cell-based assay to identify modifiers of mutant huntingtin toxicity. Ontology analysis of suppressor data identified processes previously implicated in Huntington's disease, including proteolysis, glutamate excitotoxicity, and mitochondrial dysfunction. In addition to established mechanisms, the screen identified multiple components of the RRAS signaling pathway as loss-of-function suppressors of mutant huntingtin toxicity in human and mouse cell models. Loss-of-function in orthologous RRAS pathway members also suppressed motor dysfunction in a Drosophila model of Huntington's disease. Abnormal activation of RRAS and a down-stream effector, RAF1, was observed in cellular models and a mouse model of Huntington's disease. We also observe co-localization of RRAS and mutant huntingtin in cells and in mouse striatum, suggesting that activation of R-Ras may occur through protein interaction. These data indicate that mutant huntingtin exerts a pathogenic effect on this pathway that can be corrected at multiple intervention points including RRAS, FNTA/B, PIN1, and PLK1. Consistent with these results, chemical inhibition of farnesyltransferase can also suppress mutant huntingtin toxicity. These data suggest that pharmacological inhibition of RRAS signaling may confer therapeutic benefit in Huntington's disease.

  8. An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes

    NARCIS (Netherlands)

    Wheway, Gabrielle; Schmidts, Miriam; Mans, Dorus A; Szymanska, Katarzyna; Nguyen, Thanh-Minh T; Racher, Hilary; Phelps, Ian G; Toedt, Grischa; Kennedy, Julie; Wunderlich, Kirsten A; Sorusch, Nasrin; Abdelhamed, Zakia A; Natarajan, Subaashini; Herridge, Warren; van Reeuwijk, Jeroen; Horn, Nicola; Boldt, Karsten; Parry, David A; Letteboer, Stef J F; Roosing, Susanne; Adams, Matthew; Bell, Sandra M; Bond, Jacquelyn; Higgins, Julie; Morrison, Ewan E; Tomlinson, Darren C; Slaats, Gisela G; van Dam, Teunis J P; Huang, Lijia; Kessler, Kristin; Giessl, Andreas; Logan, Clare V; Boyle, Evan A; Shendure, Jay; Anazi, Shamsa; Aldahmesh, Mohammed; Al Hazzaa, Selwa; Hegele, Robert A; Ober, Carole; Frosk, Patrick; Mhanni, Aizeddin A; Chodirker, Bernard N; Chudley, Albert E; Lamont, Ryan; Bernier, Francois P; Beaulieu, Chandree L; Gordon, Paul; Pon, Richard T; Donahue, Clem; Barkovich, A James; Wolf, Louis; Toomes, Carmel; Thiel, Christian T; Boycott, Kym M; McKibbin, Martin; Inglehearn, Chris F; Stewart, Fiona; Omran, Heymut; Huynen, Martijn A; Sergouniotis, Panagiotis I; Alkuraya, Fowzan S; Parboosingh, Jillian S; Innes, A Micheil; Willoughby, Colin E; Giles, Rachel H; Webster, Andrew R; Ueffing, Marius; Blacque, Oliver; Gleeson, Joseph G; Wolfrum, Uwe; Beales, Philip L; Gibson, Toby; Doherty, Dan; Mitchison, Hannah M; Roepman, Ronald; Johnson, Colin A

    Defects in primary cilium biogenesis underlie the ciliopathies, a growing group of genetic disorders. We describe a whole-genome siRNA-based reverse genetics screen for defects in biogenesis and/or maintenance of the primary cilium, obtaining a global resource. We identify 112 candidate ciliogenesis

  9. Genome-wide screen of ovary-specific DNA methylation in polycystic ovary syndrome.

    Science.gov (United States)

    Yu, Ying-Ying; Sun, Cui-Xiang; Liu, Yin-Kun; Li, Yan; Wang, Li; Zhang, Wei

    2015-07-01

    To compare genome-wide DNA methylation profiles in ovary tissue from women with polycystic ovary syndrome (PCOS) and healthy controls. Case-control study matched for age and body mass index. University-affiliated hospital. Ten women with PCOS who underwent ovarian drilling to induce ovulation and 10 healthy women who were undergoing laparoscopic sterilization, hysterectomy for benign conditions, diagnostic laparoscopy for pelvic pain, or oophorectomy for nonovarian indications. None. Genome-wide DNA methylation patterns determined by immunoprecipitation and microarray (MeDIP-chip) analysis. The methylation levels were statistically significantly higher in CpG island shores (CGI shores), which lie outside of core promoter regions, and lower within gene bodies in women with PCOS relative to the controls. In addition, high CpG content promoters were the most frequently hypermethylated promoters in PCOS ovaries but were more often hypomethylated in controls. Second, 872 CGIs, specifically methylated in PCOS, represented 342 genes that could be associated with various molecular functions, including protein binding, hormone activity, and transcription regulator activity. Finally, methylation differences were validated in seven genes by methylation-specific polymerase chain reaction. These genes correlated to several functional families related to the pathogenesis of PCOS and may be potential biomarkers for this disease. Our results demonstrated that epigenetic modification differs between PCOS and normal ovaries, which may help to further understand the pathophysiology of this disease. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  10. A genome-wide immunodetection screen in S. cerevisiae uncovers novel genes involved in lysosomal vacuole function and morphology.

    Directory of Open Access Journals (Sweden)

    Florante Ricarte

    Full Text Available Vacuoles of yeast Saccharomyces cerevisiae are functionally analogous to mammalian lysosomes. Both are cellular organelles responsible for macromolecular degradation, ion/pH homeostasis, and stress survival. We hypothesized that undefined gene functions remain at post-endosomal stage of vacuolar events and performed a genome-wide screen directed at such functions at the late endosome and vacuole interface - ENV genes. The immunodetection screen was designed to identify mutants that internally accumulate precursor form of the vacuolar hydrolase carboxypeptidase Y (CPY. Here, we report the uncovering and initial characterizations of twelve ENV genes. The small size of the collection and the lack of genes previously identified with vacuolar events are suggestive of the intended exclusive functional interface of the screen. Most notably, the collection includes four novel genes ENV7, ENV9, ENV10, and ENV11, and three genes previously linked to mitochondrial processes - MAM3, PCP1, PPE1. In all env mutants, vesicular trafficking stages were undisturbed in live cells as assessed by invertase and active α-factor secretion, as well as by localization of the endocytic fluorescent marker FM4-64 to the vacuole. Several mutants exhibit defects in stress survival functions associated with vacuoles. Confocal fluorescence microscopy revealed the collection to be significantly enriched in vacuolar morphologies suggestive of fusion and fission defects. These include the unique phenotype of lumenal vesicles within vacuoles in the novel env9Δ mutant and severely fragmented vacuoles upon deletion of GET4, a gene recently implicated in tail anchored membrane protein insertion. Thus, our results establish new gene functions in vacuolar function and morphology, and suggest a link between vacuolar and mitochondrial events.

  11. Expanding sialidosis spectrum by genome-wide screening: NEU1 mutations in adult-onset myoclonus.

    Science.gov (United States)

    Canafoglia, Laura; Robbiano, Angela; Pareyson, Davide; Panzica, Ferruccio; Nanetti, Lorenzo; Giovagnoli, Anna Rita; Venerando, Anna; Gellera, Cinzia; Franceschetti, Silvana; Zara, Federico

    2014-06-03

    To identify the genetic cause of a familial form of late-onset action myoclonus in 2 unrelated patients. Both probands had 2 siblings displaying a similar disorder. Extensive laboratory examinations, including biochemical assessment for urine sialic acid in the 2 probands, were negative. Exome sequencing was performed in the probands using an Illumina platform. Segregation analysis of putative mutations was performed in all family members by standard Sanger sequencing protocols. NEU1 mutations were detected in 3 siblings of each family with prominent cortical myoclonus presenting in the third decade of life and having a mild and slowly progressive course. They did not have macular cherry-red spot and their urinary sialic acid excretion was within normal values. Genetic analysis demonstrated a homozygous mutation in family 1 (c.200G>T, p.S67I) and 2 compound heterozygous mutations in family 2 (c.679G>A, p.G227R; c.913C>T, p.R305C). Our observation indicates that sialidosis should be suspected and the NEU1 gene analyzed in patients with isolated action myoclonus presenting in adulthood in the absence of other typical clinical and laboratory findings. © 2014 American Academy of Neurology.

  12. A Genome-Wide Screen for Dendritically Localized RNAs Identifies Genes Required for Dendrite Morphogenesis

    Directory of Open Access Journals (Sweden)

    Mala Misra

    2016-08-01

    Full Text Available Localizing messenger RNAs at specific subcellular sites is a conserved mechanism for targeting the synthesis of cytoplasmic proteins to distinct subcellular domains, thereby generating the asymmetric protein distributions necessary for cellular and developmental polarity. However, the full range of transcripts that are asymmetrically distributed in specialized cell types, and the significance of their localization, especially in the nervous system, are not known. We used the EP-MS2 method, which combines EP transposon insertion with the MS2/MCP in vivo fluorescent labeling system, to screen for novel localized transcripts in polarized cells, focusing on the highly branched Drosophila class IV dendritic arborization neurons. Of a total of 541 lines screened, we identified 55 EP-MS2 insertions producing transcripts that were enriched in neuronal processes, particularly in dendrites. The 47 genes identified by these insertions encode molecularly diverse proteins, and are enriched for genes that function in neuronal development and physiology. RNAi-mediated knockdown confirmed roles for many of the candidate genes in dendrite morphogenesis. We propose that the transport of mRNAs encoded by these genes into the dendrites allows their expression to be regulated on a local scale during the dynamic developmental processes of dendrite outgrowth, branching, and/or remodeling.

  13. [Analysis of clinical outcomes of different embryo stage biopsy in array comparative genomic hybridization based preimplantation genetic diagnosis and screening].

    Science.gov (United States)

    Shen, J D; Wu, W; Shu, L; Cai, L L; Xie, J Z; Ma, L; Sun, X P; Cui, Y G; Liu, J Y

    2017-12-25

    Objective: To evaluate the efficiency of the application of array comparative genomic hybridization (array-CGH) in preimplantation genetic diagnosis or screening (PGD/PGS), and compare the clinical outcomes of different stage embryo biopsy. Methods: The outcomes of 381 PGD/PGS cycles referred in the First Affiliated Hospital of Nanjing Medical University from July 2011 to August 2015 were retrospectively analyzed. There were 320 PGD cycles with 156 cleavage-stage-biopsy cycles and 164 trophectoderm-biopsy cycles, 61 PGS cycles with 23 cleavage-stage-biopsy cycles and 38 trophectoderm-biopsy cycles. Chromosomal analysis was performed by array-CGH technology combined with whole genome amplification. Single embryo transfer was performed in all transfer cycles. Live birth rate was calculated as the main clinical outcomes. Results: The embryo diagnosis rate of PGD/PGS by array-CGH were 96.9%-99.1%. In PGD biopsy cycles, the live birth rate per embryo transfer cycle and live birth rate per embryo biopsy cycle were 50.0%(58/116) and 37.2%(58/156) in cleavage-stage-biopsy group, 67.5%(85/126) and 51.8%(85/164) in trophectoderm-biopsy group (both P 0.05). Conclusions: High diagnosis rate and idea live birth rate are achieved in PGD/PGS cycles based on array-CGH technology. The live birth rate of trophectoderm-biopsy group is significantly higher than that of cleavage-stage-biopsy group in PGD cycles; the efficiency of trophectoderm-biopsy is better.

  14. A genome-wide screen for genetic variants that modify the recruitment of REST to its target genes.

    Directory of Open Access Journals (Sweden)

    Rory Johnson

    Full Text Available Increasing numbers of human diseases are being linked to genetic variants, but our understanding of the mechanistic links leading from DNA sequence to disease phenotype is limited. The majority of disease-causing nucleotide variants fall within the non-protein-coding portion of the genome, making it likely that they act by altering gene regulatory sequences. We hypothesised that SNPs within the binding sites of the transcriptional repressor REST alter the degree of repression of target genes. Given that changes in the effective concentration of REST contribute to several pathologies-various cancers, Huntington's disease, cardiac hypertrophy, vascular smooth muscle proliferation-these SNPs should alter disease-susceptibility in carriers. We devised a strategy to identify SNPs that affect the recruitment of REST to target genes through the alteration of its DNA recognition element, the RE1. A multi-step screen combining genetic, genomic, and experimental filters yielded 56 polymorphic RE1 sequences with robust and statistically significant differences of affinity between alleles. These SNPs have a considerable effect on the the functional recruitment of REST to DNA in a range of in vitro, reporter gene, and in vivo analyses. Furthermore, we observe allele-specific biases in deeply sequenced chromatin immunoprecipitation data, consistent with predicted differenes in RE1 affinity. Amongst the targets of polymorphic RE1 elements are important disease genes including NPPA, PTPRT, and CDH4. Thus, considerable genetic variation exists in the DNA motifs that connect gene regulatory networks. Recently available ChIP-seq data allow the annotation of human genetic polymorphisms with regulatory information to generate prior hypotheses about their disease-causing mechanism.

  15. A Genome-Wide Screen for Genetic Variants That Modify the Recruitment of REST to Its Target Genes

    Science.gov (United States)

    Johnson, Rory; Richter, Nadine; Bogu, Gireesh K.; Bhinge, Akshay; Teng, Siaw Wei; Choo, Siew Hua; Andrieux, Lise O.; de Benedictis, Cinzia; Jauch, Ralf; Stanton, Lawrence W.

    2012-01-01

    Increasing numbers of human diseases are being linked to genetic variants, but our understanding of the mechanistic links leading from DNA sequence to disease phenotype is limited. The majority of disease-causing nucleotide variants fall within the non-protein-coding portion of the genome, making it likely that they act by altering gene regulatory sequences. We hypothesised that SNPs within the binding sites of the transcriptional repressor REST alter the degree of repression of target genes. Given that changes in the effective concentration of REST contribute to several pathologies—various cancers, Huntington's disease, cardiac hypertrophy, vascular smooth muscle proliferation—these SNPs should alter disease-susceptibility in carriers. We devised a strategy to identify SNPs that affect the recruitment of REST to target genes through the alteration of its DNA recognition element, the RE1. A multi-step screen combining genetic, genomic, and experimental filters yielded 56 polymorphic RE1 sequences with robust and statistically significant differences of affinity between alleles. These SNPs have a considerable effect on the the functional recruitment of REST to DNA in a range of in vitro, reporter gene, and in vivo analyses. Furthermore, we observe allele-specific biases in deeply sequenced chromatin immunoprecipitation data, consistent with predicted differenes in RE1 affinity. Amongst the targets of polymorphic RE1 elements are important disease genes including NPPA, PTPRT, and CDH4. Thus, considerable genetic variation exists in the DNA motifs that connect gene regulatory networks. Recently available ChIP–seq data allow the annotation of human genetic polymorphisms with regulatory information to generate prior hypotheses about their disease-causing mechanism. PMID:22496669

  16. Genomic library screening for viruses from the human dental plaque revealed pathogen-specific lytic phage sequences.

    Science.gov (United States)

    Al-Jarbou, Ahmed Nasser

    2012-01-01

    Bacterial pathogenesis presents an astounding arsenal of virulence factors that allow them to conquer many different niches throughout the course of infection. Principally fascinating is the fact that some bacterial species are able to induce different diseases by expression of different combinations of virulence factors. Nevertheless, studies aiming at screening for the presence of bacteriophages in humans have been limited. Such screening procedures would eventually lead to identification of phage-encoded properties that impart increased bacterial fitness and/or virulence in a particular niche, and hence, would potentially be used to reverse the course of bacterial infections. As the human oral cavity represents a rich and dynamic ecosystem for several upper respiratory tract pathogens. However, little is known about virus diversity in human dental plaque which is an important reservoir. We applied the culture-independent approach to characterize virus diversity in human dental plaque making a library from a virus DNA fraction amplified using a multiple displacement method and sequenced 80 clones. The resulting sequence showed 44% significant identities to GenBank databases by TBLASTX analysis. TBLAST homology comparisons showed that 66% was viral; 18% eukarya; 10% bacterial; 6% mobile elements. These sequences were sorted into 6 contigs and 45 single sequences in which 4 contigs and a single sequence showed significant identity to a small region of a putative prophage in the Corynebacterium diphtheria genome. These findings interestingly highlight the uniqueness of over half of the sequences, whilst the dominance of a pathogen-specific prophage sequences imply their role in virulence.

  17. Genome-wide siRNA Screening at Biosafety Level 4 Reveals a Crucial Role for Fibrillarin in Henipavirus Infection.

    Directory of Open Access Journals (Sweden)

    Celine Deffrasnes

    2016-03-01

    Full Text Available Hendra and Nipah viruses (genus Henipavirus, family Paramyxoviridae are highly pathogenic bat-borne viruses. The need for high biocontainment when studying henipaviruses has hindered the development of therapeutics and knowledge of the viral infection cycle. We have performed a genome-wide siRNA screen at biosafety level 4 that identified 585 human proteins required for henipavirus infection. The host protein with the largest impact was fibrillarin, a nucleolar methyltransferase that was also required by measles, mumps and respiratory syncytial viruses for infection. While not required for cell entry, henipavirus RNA and protein syntheses were greatly impaired in cells lacking fibrillarin, indicating a crucial role in the RNA replication phase of infection. During infection, the Hendra virus matrix protein co-localized with fibrillarin in cell nucleoli, and co-associated as a complex in pulldown studies, while its nuclear import was unaffected in fibrillarin-depleted cells. Mutagenesis studies showed that the methyltransferase activity of fibrillarin was required for henipavirus infection, suggesting that this enzyme could be targeted therapeutically to combat henipavirus infections.

  18. A genome-wide RNAi screen reveals MAP kinase phosphatases as key ERK pathway regulators during embryonic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shen-Hsi Yang

    Full Text Available Embryonic stem cells and induced pluripotent stem cells represent potentially important therapeutic agents in regenerative medicine. Complex interlinked transcriptional and signaling networks control the fate of these cells towards maintenance of pluripotency or differentiation. In this study we have focused on how mouse embryonic stem cells begin to differentiate and lose pluripotency and, in particular, the role that the ERK MAP kinase and GSK3 signaling pathways play in this process. Through a genome-wide siRNA screen we have identified more than 400 genes involved in loss of pluripotency and promoting the onset of differentiation. These genes were functionally associated with the ERK and/or GSK3 pathways, providing an important resource for studying the roles of these pathways in controlling escape from the pluripotent ground state. More detailed analysis identified MAP kinase phosphatases as a focal point of regulation and demonstrated an important role for these enzymes in controlling ERK activation kinetics and subsequently determining early embryonic stem cell fate decisions.

  19. Translational and functional oncogenomics. From cancer-oriented genomic screenings to new diagnostic tools and improved cancer treatment.

    Science.gov (United States)

    Medico, Enzo

    2008-01-01

    We present here an experimental pipeline for the systematic identification and functional characterization of genes with high potential diagnostic and therapeutic value in human cancer. Complementary competences and resources have been brought together in the TRANSFOG Consortium to reach the following integrated research objectives: 1) execution of cancer-oriented genomic screenings on tumor tissues and experimental models and merging of the results to generate a prioritized panel of candidate genes involved in cancer progression and metastasis; 2) setup of systems for high-throughput delivery of full-length cDNAs, for gain-of-function analysis of the prioritized candidate genes; 3) collection of vectors and oligonucleotides for systematic, RNA interference-mediated down-regulation of the candidate genes; 4) adaptation of existing cell-based and model organism assays to a systematic analysis of gain and loss of function of the candidate genes, for identification and preliminary validation of novel potential therapeutic targets; 5) proteomic analysis of signal transduction and protein-protein interaction for better dissection of aberrant cancer signaling pathways; 6) validation of the diagnostic potential of the identified cancer genes towards the clinical use of diagnostic molecular signatures; 7) generation of a shared informatics platform for data handling and gene functional annotation. The results of the first three years of activity of the TRANSFOG Consortium are also briefly presented and discussed.

  20. New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen.

    Directory of Open Access Journals (Sweden)

    Malene Hansen

    2005-07-01

    Full Text Available Most of our knowledge about the regulation of aging comes from mutants originally isolated for other phenotypes. To ask whether our current view of aging has been affected by selection bias, and to deepen our understanding of known longevity pathways, we screened a genomic Caenorhabditis elegans RNAi library for clones that extend lifespan. We identified 23 new longevity genes affecting signal transduction, the stress response, gene expression, and metabolism and assigned these genes to specific longevity pathways. Our most important findings are (i that dietary restriction extends C. elegans' lifespan by down-regulating expression of key genes, including a gene required for methylation of many macromolecules, (ii that integrin signaling is likely to play a general, evolutionarily conserved role in lifespan regulation, and (iii that specific lipophilic hormones may influence lifespan in a DAF-16/FOXO-dependent fashion. Surprisingly, of the new genes that have conserved sequence domains, only one could not be associated with a known longevity pathway. Thus, our current view of the genetics of aging has probably not been distorted substantially by selection bias.

  1. New Genes Tied to Endocrine, Metabolic, and Dietary Regulation of Lifespan from a Caenorhabditis elegans Genomic RNAi Screen.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available Most of our knowledge about the regulation of aging comes from mutants originally isolated for other phenotypes. To ask whether our current view of aging has been affected by selection bias, and to deepen our understanding of known longevity pathways, we screened a genomic Caenorhabditis elegans RNAi library for clones that extend lifespan. We identified 23 new longevity genes affecting signal transduction, the stress response, gene expression, and metabolism and assigned these genes to specific longevity pathways. Our most important findings are (i that dietary restriction extends C. elegans' lifespan by down-regulating expression of key genes, including a gene required for methylation of many macromolecules, (ii that integrin signaling is likely to play a general, evolutionarily conserved role in lifespan regulation, and (iii that specific lipophilic hormones may influence lifespan in a DAF-16/FOXO-dependent fashion. Surprisingly, of the new genes that have conserved sequence domains, only one could not be associated with a known longevity pathway. Thus, our current view of the genetics of aging has probably not been distorted substantially by selection bias.

  2. The effect of a 'vanishing twin' on biochemical and ultrasound first trimester screening markers for Down's syndrome in pregnancies conceived by assisted reproductive technology

    DEFF Research Database (Denmark)

    Gjerris, A C; Loft, A; Pinborg, Anja

    2008-01-01

    BACKGROUND: Previous studies have found that 1 in 10 in vitro fertilization (IVF) singletons originates from a twin gestation. First trimester Down's syndrome screening markers are altered in assisted reproductive techniques (ART) pregnancies compared with spontaneously conceived pregnancies...

  3. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. | Office of Cancer Genomics

    Science.gov (United States)

    The CRISPR-Cas9 system has revolutionized gene editing both at single genes and in multiplexed loss-of-function screens, thus enabling precise genome-scale identification of genes essential for proliferation and survival of cancer cells. However, previous studies have reported that a gene-independent antiproliferative effect of Cas9-mediated DNA cleavage confounds such measurement of genetic dependency, thereby leading to false-positive results in copy number-amplified regions.

  4. Comparative Analyses of Nonpathogenic, Opportunistic, and Totally Pathogenic Mycobacteria Reveal Genomic and Biochemical Variabilities and Highlight the Survival Attributes of Mycobacterium tuberculosis

    Science.gov (United States)

    Singh, Yadvir; Kohli, Sakshi; Ahmad, Javeed; Ehtesham, Nasreen Z.; Tyagi, Anil K.

    2014-01-01

    ABSTRACT Mycobacterial evolution involves various processes, such as genome reduction, gene cooption, and critical gene acquisition. Our comparative genome size analysis of 44 mycobacterial genomes revealed that the nonpathogenic (NP) genomes were bigger than those of opportunistic (OP) or totally pathogenic (TP) mycobacteria, with the TP genomes being smaller yet variable in size—their genomic plasticity reflected their ability to evolve and survive under various environmental conditions. From the 44 mycobacterial species, 13 species, representing TP, OP, and NP, were selected for genomic-relatedness analyses. Analysis of homologous protein-coding genes shared between Mycobacterium indicus pranii (NP), Mycobacterium intracellulare ATCC 13950 (OP), and Mycobacterium tuberculosis H37Rv (TP) revealed that 4,995 (i.e., ~95%) M. indicaus pranii proteins have homology with M. intracellulare, whereas the homologies among M. indicus pranii, M. intracellulare ATCC 13950, and M. tuberculosis H37Rv were significantly lower. A total of 4,153 (~79%) M. indicus pranii proteins and 4,093 (~79%) M. intracellulare ATCC 13950 proteins exhibited homology with the M. tuberculosis H37Rv proteome, while 3,301 (~82%) and 3,295 (~82%) M. tuberculosis H37Rv proteins showed homology with M. indicus pranii and M. intracellulare ATCC 13950 proteomes, respectively. Comparative metabolic pathway analyses of TP/OP/NP mycobacteria showed enzymatic plasticity between M. indicus pranii (NP) and M. intracellulare ATCC 13950 (OP), Mycobacterium avium 104 (OP), and M. tuberculosis H37Rv (TP). Mycobacterium tuberculosis seems to have acquired novel alternate pathways with possible roles in metabolism, host-pathogen interactions, virulence, and intracellular survival, and by implication some of these could be potential drug targets. PMID:25370496

  5. Fungal Screening on Olive Oil for Extracellular Triacylglycerol Lipases: Selection of a Trichoderma harzianum Strain and Genome Wide Search for the Genes

    Science.gov (United States)

    Canseco-Pérez, Miguel Angel; Castillo-Avila, Genny Margarita; Islas-Flores, Ignacio; Apolinar-Hernández, Max M.; Rivera-Muñoz, Gerardo; Gamboa-Angulo, Marcela; Couoh-Uicab, Yeny

    2018-01-01

    A lipolytic screening with fungal strains isolated from lignocellulosic waste collected in banana plantation dumps was carried out. A Trichoderma harzianum strain (B13-1) showed good extracellular lipolytic activity (205 UmL−1). Subsequently, functional screening of the lipolytic activity on Rhodamine B enriched with olive oil as the only carbon source was performed. The successful growth of the strain allows us to suggest that a true lipase is responsible for the lipolytic activity in the B13-1 strain. In order to identify the gene(s) encoding the protein responsible for the lipolytic activity, in silico identification and characterization of triacylglycerol lipases from T. harzianum is reported for the first time. A survey in the genome of this fungus retrieved 50 lipases; however, bioinformatic analyses and putative functional descriptions in different databases allowed us to choose seven lipases as candidates. Suitability of the bioinformatic screening to select the candidates was confirmed by reverse transcription polymerase chain reaction (RT-PCR). The gene codifying 526309 was expressed when the fungus grew in a medium with olive oil as carbon source. This protein shares homology with commercial lipases, making it a candidate for further applications. The success in identifying a lipase gene inducible with olive oil and the suitability of the functional screening and bioinformatic survey carried out herein, support the premise that the strategy can be used in other microorganisms with sequenced genomes to search for true lipases, or other enzymes belonging to large protein families. PMID:29370083

  6. A genome-wide siRNA screen in mammalian cells for regulators of S6 phosphorylation.

    Directory of Open Access Journals (Sweden)

    Angela Papageorgiou

    Full Text Available mTOR complex1, the major regulator of mRNA translation in all eukaryotic cells, is strongly activated in most cancers. We performed a genome-wide RNAi screen in a human cancer cell line, seeking genes that regulate S6 phosphorylation, readout of mTORC1 activity. Applying a stringent selection, we retrieved nearly 600 genes wherein at least two RNAis gave significant reduction in S6-P. This cohort contains known regulators of mTOR complex 1 and is significantly enriched in genes whose depletion affects the proliferation/viability of the large set of cancer cell lines in the Achilles database in a manner paralleling that caused by mTOR depletion. We next examined the effect of RNAi pools directed at 534 of these gene products on S6-P in TSC1 null mouse embryo fibroblasts. 76 RNAis reduced S6 phosphorylation significantly in 2 or 3 replicates. Surprisingly, among this cohort of genes the only elements previously associated with the maintenance of mTORC1 activity are two subunits of the vacuolar ATPase and the CUL4 subunit DDB1. RNAi against a second set of 84 targets reduced S6-P in only one of three replicates. However, an indication that this group also bears attention is the presence of rpS6KB1 itself, Rac1 and MAP4K3, a protein kinase that supports amino acid signaling to rpS6KB1. The finding that S6 phosphorylation requires a previously unidentified, functionally diverse cohort of genes that participate in fundamental cellular processes such as mRNA translation, RNA processing, DNA repair and metabolism suggests the operation of feedback pathways in the regulation of mTORC1 operating through novel mechanisms.

  7. Pathway-based analysis of genome-wide siRNA screens reveals the regulatory landscape of APP processing.

    Directory of Open Access Journals (Sweden)

    Luiz Miguel Camargo

    Full Text Available The progressive aggregation of Amyloid-β (Aβ in the brain is a major trait of Alzheimer's Disease (AD. Aβ is produced as a result of proteolytic processing of the β-amyloid precursor protein (APP. Processing of APP is mediated by multiple enzymes, resulting in the production of distinct peptide products: the non-amyloidogenic peptide sAPPα and the amyloidogenic peptides sAPPβ, Aβ40, and Aβ42. Using a pathway-based approach, we analyzed a large-scale siRNA screen that measured the production of different APP proteolytic products. Our analysis identified many of the biological processes/pathways that are known to regulate APP processing and have been implicated in AD pathogenesis, as well as revealing novel regulatory mechanisms. Furthermore, we also demonstrate that some of these processes differentially regulate APP processing, with some mechanisms favouring production of certain peptide species over others. For example, synaptic transmission having a bias towards regulating Aβ40 production over Aβ42 as well as processes involved in insulin and pancreatic biology having a bias for sAPPβ production over sAPPα. In addition, some of the pathways identified as regulators of APP processing contain genes (CLU, BIN1, CR1, PICALM, TREM2, SORL1, MEF2C, DSG2, EPH1A recently implicated with AD through genome wide association studies (GWAS and associated meta-analysis. In addition, we provide supporting evidence and a deeper mechanistic understanding of the role of diabetes in AD. The identification of these processes/pathways, their differential impact on APP processing, and their relationships to each other, provide a comprehensive systems biology view of the "regulatory landscape" of APP.

  8. A complex regulatory network coordinating cell cycles during C. elegans development is revealed by a genome-wide RNAi screen.

    Science.gov (United States)

    Roy, Sarah H; Tobin, David V; Memar, Nadin; Beltz, Eleanor; Holmen, Jenna; Clayton, Joseph E; Chiu, Daniel J; Young, Laura D; Green, Travis H; Lubin, Isabella; Liu, Yuying; Conradt, Barbara; Saito, R Mako

    2014-02-28

    The development and homeostasis of multicellular animals requires precise coordination of cell division and differentiation. We performed a genome-wide RNA interference screen in Caenorhabditis elegans to reveal the components of a regulatory network that promotes developmentally programmed cell-cycle quiescence. The 107 identified genes are predicted to constitute regulatory networks that are conserved among higher animals because almost half of the genes are represented by clear human orthologs. Using a series of mutant backgrounds to assess their genetic activities, the RNA interference clones displaying similar properties were clustered to establish potential regulatory relationships within the network. This approach uncovered four distinct genetic pathways controlling cell-cycle entry during intestinal organogenesis. The enhanced phenotypes observed for animals carrying compound mutations attest to the collaboration between distinct mechanisms to ensure strict developmental regulation of cell cycles. Moreover, we characterized ubc-25, a gene encoding an E2 ubiquitin-conjugating enzyme whose human ortholog, UBE2Q2, is deregulated in several cancers. Our genetic analyses suggested that ubc-25 acts in a linear pathway with cul-1/Cul1, in parallel to pathways employing cki-1/p27 and lin-35/pRb to promote cell-cycle quiescence. Further investigation of the potential regulatory mechanism demonstrated that ubc-25 activity negatively regulates CYE-1/cyclin E protein abundance in vivo. Together, our results show that the ubc-25-mediated pathway acts within a complex network that integrates the actions of multiple molecular mechanisms to control cell cycles during development. Copyright © 2014 Roy et al.

  9. De Novo Assembly of Candida sojae and Candida boidinii Genomes, Unexplored Xylose-Consuming Yeasts with Potential for Renewable Biochemical Production

    Science.gov (United States)

    Borelli, Guilherme; José, Juliana; Teixeira, Paulo José Pereira Lima; dos Santos, Leandro Vieira

    2016-01-01

    Candida boidinii and Candida sojae yeasts were isolated from energy cane bagasse and plague-insects. Both have fast xylose uptake rate and produce great amounts of xylitol, which are interesting features for food and 2G ethanol industries. Because they lack published genomes, we have sequenced and assembled them, offering new possibilities for gene prospection. PMID:26769937

  10. Human papillomaviruses associated with epidermodysplasia verruciformis. II. Molecular cloning and biochemical characterization of human papillomavirus 3a, 8, 10, and 12 genomes.

    OpenAIRE

    Kremsdorf, D; Jablonska, S; Favre, M; Orth, G

    1983-01-01

    The DNAs of four human papillomaviruses (HPVs) that were found in the benign lesions of three patients suffering from epidermodysplasia verruciformis have been characterized. The flat wart-like lesions and the macular lesions of patient 1 contained two viruses, HPV-3a and HPV-8, respectively, whose genomes had previously been only partially characterized. The flat wart-like lesions of patient 2 and the macular lesions of patient 3 each contained a virus previously considered as belonging to t...

  11. A screen for F1 hybrid male rescue reveals no major-effect hybrid lethality loci in the Drosophila melanogaster autosomal genome.

    Science.gov (United States)

    Cuykendall, Tawny N; Satyaki, P; Ji, Shuqing; Clay, Derek M; Edelman, Nathaniel B; Kimchy, Alexandra; Li, Ling-Hei; Nuzzo, Erin A; Parekh, Neil; Park, Suna; Barbash, Daniel A

    2014-10-27

    Hybrid sons between Drosophila melanogaster females and D. simulans males die as 3rd instar larvae. Two genes, D. melanogaster Hybrid male rescue (Hmr) on the X chromosome, and D. simulans Lethal hybrid rescue (Lhr) on chromosome II, interact to cause this lethality. Loss-of-function mutations in either gene suppress lethality, but several pieces of evidence suggest that additional factors are required for hybrid lethality. Here we screen the D. melanogaster autosomal genome by using the Bloomington Stock Center Deficiency kit to search for additional regions that can rescue hybrid male lethality. Our screen is designed to identify putative hybrid incompatibility (HI) genes similar to Hmr and Lhr which, when removed, are dominant suppressors of lethality. After screening 89% of the autosomal genome, we found no regions that rescue males to the adult stage. We did, however, identify several regions that rescue up to 13% of males to the pharate adult stage. This weak rescue suggests the presence of multiple minor-effect HI loci, but we were unable to map these loci to high resolution, presumably because weak rescue can be masked by genetic background effects. We attempted to test one candidate, the dosage compensation gene male specific lethal-3 (msl-3), by using RNA interference with short hairpin microRNA constructs targeted specifically against D. simulans msl-3 but failed to achieve knockdown, in part due to off-target effects. We conclude that the D. melanogaster autosomal genome likely does not contain additional major-effect HI loci. We also show that Hmr is insufficient to fully account for the lethality associated with the D. melanogaster X chromosome, suggesting that additional X-linked genes contribute to hybrid lethality. Copyright © 2014 Cuykendall et al.

  12. A genome-wide screen for interactions reveals a new locus on 4p15 modifying the effect of waist-to-hip ratio on total cholesterol.

    Directory of Open Access Journals (Sweden)

    Ida Surakka

    2011-10-01

    Full Text Available Recent genome-wide association (GWA studies described 95 loci controlling serum lipid levels. These common variants explain ∼25% of the heritability of the phenotypes. To date, no unbiased screen for gene-environment interactions for circulating lipids has been reported. We screened for variants that modify the relationship between known epidemiological risk factors and circulating lipid levels in a meta-analysis of genome-wide association (GWA data from 18 population-based cohorts with European ancestry (maximum N = 32,225. We collected 8 further cohorts (N = 17,102 for replication, and rs6448771 on 4p15 demonstrated genome-wide significant interaction with waist-to-hip-ratio (WHR on total cholesterol (TC with a combined P-value of 4.79×10(-9. There were two potential candidate genes in the region, PCDH7 and CCKAR, with differential expression levels for rs6448771 genotypes in adipose tissue. The effect of WHR on TC was strongest for individuals carrying two copies of G allele, for whom a one standard deviation (sd difference in WHR corresponds to 0.19 sd difference in TC concentration, while for A allele homozygous the difference was 0.12 sd. Our findings may open up possibilities for targeted intervention strategies for people characterized by specific genomic profiles. However, more refined measures of both body-fat distribution and metabolic measures are needed to understand how their joint dynamics are modified by the newly found locus.

  13. Alignment-free comparative genomic screen for structured RNAs using coarse-grained secondary structure dot plots

    DEFF Research Database (Denmark)

    Kato, Yuki; Gorodkin, Jan; Havgaard, Jakob Hull

    2017-01-01

    . Methods: Here we present a fast and efficient method, DotcodeR, for detecting structurally similar RNAs in genomic sequences by comparing their corresponding coarse-grained secondary structure dot plots at string level. This allows us to perform an all-against-all scan of all window pairs from two genomes...... without alignment. Results: Our computational experiments with simulated data and real chromosomes demonstrate that the presented method has good sensitivity. Conclusions: DotcodeR can be useful as a pre-filter in a genomic comparative scan for structured RNAs....

  14. Biochemical and full genome sequence analyses of clinical Vibrio cholerae isolates in Mexico reveals the presence of novel V. cholerae strains.

    Science.gov (United States)

    Díaz-Quiñonez, José Alberto; Hernández-Monroy, Irma; Montes-Colima, Norma Angélica; Moreno-Pérez, María Asunción; Galicia-Nicolás, Adriana Guadalupe; López-Martínez, Irma; Ruiz-Matus, Cuitláhuac; Kuri-Morales, Pablo; Ortíz-Alcántara, Joanna María; Garcés-Ayala, Fabiola; Ramírez-González, José Ernesto

    2016-05-01

    The first week of September 2013, the National Epidemiological Surveillance System identified two cases of cholera in Mexico City. The cultures of both samples were confirmed as Vibrio cholerae serogroup O1, serotype Ogawa, biotype El Tor. Initial analyses by PFGE and by PCR-amplification of the virulence genes, suggested that both strains were similar, but different from those previously reported in Mexico. The following week, four more cases were identified in a community in the state of Hidalgo, located 121 km northeast of Mexico City. Thereafter a cholera outbreak started in the region of La Huasteca. Genomic analyses of the four strains obtained in this study confirmed the presence of Pathogenicity Islands VPI-1 and -2, VSP-1 and -2, and of the integrative element SXT. The genomic structure of the 4 isolates was similar to that of V. cholerae strain 2010 EL-1786, identified during the epidemic in Haiti in 2010. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. HTS-DB: an online resource to publish and query data from functional genomics high-throughput siRNA screening projects.

    Science.gov (United States)

    Saunders, Rebecca E; Instrell, Rachael; Rispoli, Rossella; Jiang, Ming; Howell, Michael

    2013-01-01

    High-throughput screening (HTS) uses technologies such as RNA interference to generate loss-of-function phenotypes on a genomic scale. As these technologies become more popular, many research institutes have established core facilities of expertise to deal with the challenges of large-scale HTS experiments. As the efforts of core facility screening projects come to fruition, focus has shifted towards managing the results of these experiments and making them available in a useful format that can be further mined for phenotypic discovery. The HTS-DB database provides a public view of data from screening projects undertaken by the HTS core facility at the CRUK London Research Institute. All projects and screens are described with comprehensive assay protocols, and datasets are provided with complete descriptions of analysis techniques. This format allows users to browse and search data from large-scale studies in an informative and intuitive way. It also provides a repository for additional measurements obtained from screens that were not the focus of the project, such as cell viability, and groups these data so that it can provide a gene-centric summary across several different cell lines and conditions. All datasets from our screens that can be made available can be viewed interactively and mined for further hit lists. We believe that in this format, the database provides researchers with rapid access to results of large-scale experiments that might facilitate their understanding of genes/compounds identified in their own research. DATABASE URL: http://hts.cancerresearchuk.org/db/public.

  16. BLAST screening of chlamydial genomes to identify signature proteins that are unique for the Chlamydiales, Chlamydiaceae, Chlamydophila and Chlamydia groups of species

    Directory of Open Access Journals (Sweden)

    Gupta Radhey S

    2006-01-01

    Full Text Available Abstract Background Chlamydiae species are of much importance from a clinical viewpoint. Their diversity both in terms of their numbers as well as clinical involvement are presently believed to be significantly underestimated. The obligate intracellular nature of chlamydiae has also limited their genetic and biochemical studies. Thus, it is of importance to develop additional means for their identification and characterization. Results We have carried out analyses of available chlamydiae genomes to identify sets of unique proteins that are either specific for all Chlamydiales genomes, or different Chlamydiaceae family members, or members of the Chlamydia and Chlamydophila genera, or those unique to Protochlamydia amoebophila, but which are not found in any other bacteria. In total, 59 Chlamydiales-specific proteins, 79 Chlamydiaceae-specific proteins, 20 proteins each that are specific for both Chlamydia and Chlamydophila and 445 ORFs that are Protochlamydia-specific were identified. Additionally, 33 cases of possible gene loss or lateral gene transfer were also detected. Conclusion The identified chlamydiae-lineage specific proteins, many of which are highly conserved, provide novel biomarkers that should prove of much value in the diagnosis of these bacteria and in exploration of their prevalence and diversity. These conserved protein sequences (CPSs also provide novel therapeutic targets for drugs that are specific for these bacteria. Lastly, functional studies on these chlamydiae or chlamydiae subgroup-specific proteins should lead to important insights into lineage-specific adaptations with regards to development, infectivity and pathogenicity.

  17. Functional Toxicogenomic Assessment of Triclosan in Human HepG2 Cells Using Genome-Wide CRISPR-Cas9 Screening.

    Science.gov (United States)

    Xia, Pu; Zhang, Xiaowei; Xie, Yuwei; Guan, Miao; Villeneuve, Daniel L; Yu, Hongxia

    2016-10-04

    There are thousands of chemicals used by humans and detected in the environment for which limited or no toxicological data are available. Rapid and cost-effective approaches for assessing the toxicological properties of chemicals are needed. We used CRISPR-Cas9 functional genomic screening to identify the potential molecular mechanism of a widely used antimicrobial triclosan (TCS) in HepG2 cells. Resistant genes at IC50 (the concentration causing a 50% reduction in cell viability) were significantly enriched in the adherens junction pathway, MAPK signaling pathway, and PPAR signaling pathway, suggesting a potential role in the molecular mechanism of TCS-induced cytotoxicity. Evaluation of the top-ranked resistant genes, FTO (encoding an mRNA demethylase) and MAP2K3 (a MAP kinase kinase family gene), revealed that their loss conferred resistance to TCS. In contrast, sensitive genes at IC10 and IC20 were specifically enriched in pathways involved with immune responses, which was concordant with transcriptomic profiling of TCS at concentrations of CRISPR-Cas9 fingerprint may reveal the patterns of TCS toxicity at low concentration levels. Moreover, we retrieved the potential connection between CRISPR-Cas9 fingerprint and disease terms, obesity, and breast cancer from an existing chemical-gene-disease database. Overall, CRISPR-Cas9 functional genomic screening offers an alternative approach for chemical toxicity testing.

  18. Cloning and determination of biochemical properties of protective and broadly conserved vaccine antigens from the genome of extraintestinal pathogenic Escherichia coli into pET28a vector

    Directory of Open Access Journals (Sweden)

    Jamil Kheirvari Khezerloo

    2017-12-01

    Full Text Available Urinary tract infections are one of the most common infectious diseases that lead to significant health problems in the world. Urinary tract infections are referred to any infection in any part of the renal system. Uropathogenic Escherichia coli, Proteus mirabilis, and Klebsiella are main organisms that are involved in these infections. After identifying same protective and conserved virulence sequences in these microorganisms with similarity upper than 80%, sequences of synthetic gene was provided by bioinformatics techniques and ordered from Thermo Fisher Scientific Company. PCR amplification of this gene was performed by specific primers designed for this purpose. Construction of gene was performed by overlap PCR. The synthetic gene was cloned into pET28a vector. Our gene was amplified in E. coli Top10 tested. To confirm cloning, three methods including colony PCR, digestion and sequencing were used. First, two techniques were performed using horizontal electrophoresis, and also the synthetic gene showed significant homology with the sequence (99% Identified in sequencing. Sequencing of this gene showed that fusion was constructed correctly. Determination of biochemical properties such as 3D structure, Ramachandran and comparison of Non-redundant Set of PDB structure was done by bioinformatic software and had exact and expectable results. A large part of the health system in the world is occupied by a urinary tract infection and governments spend a huge amount of money for the treatment and recovery of patients with these infections. On the other hands, antibiotic resistance in the not-far future will be a disaster for medical societies. This is the most important reason for the emergence of vaccine production against urinary tract infections.

  19. Population-Based in Vitro Hazard and Concentration–Response Assessment of Chemicals: The 1000 Genomes High-Throughput Screening Study

    Science.gov (United States)

    Abdo, Nour; Xia, Menghang; Brown, Chad C.; Kosyk, Oksana; Huang, Ruili; Sakamuru, Srilatha; Zhou, Yi-Hui; Jack, John R.; Gallins, Paul; Xia, Kai; Li, Yun; Chiu, Weihsueh A.; Motsinger-Reif, Alison A.; Austin, Christopher P.; Tice, Raymond R.

    2015-01-01

    Background: Understanding of human variation in toxicity to environmental chemicals remains limited, so human health risk assessments still largely rely on a generic 10-fold factor (10½ each for toxicokinetics and toxicodynamics) to account for sensitive individuals or subpopulations. Objectives: We tested a hypothesis that population-wide in vitro cytotoxicity screening can rapidly inform both the magnitude of and molecular causes for interindividual toxicodynamic variability. Methods: We used 1,086 lymphoblastoid cell lines from the 1000 Genomes Project, representing nine populations from five continents, to assess variation in cytotoxic response to 179 chemicals. Analysis included assessments of population variation and heritability, and genome-wide association mapping, with attention to phenotypic relevance to human exposures. Results: For about half the tested compounds, cytotoxic response in the 1% most “sensitive” individual occurred at concentrations within a factor of 10½ (i.e., approximately 3) of that in the median individual; however, for some compounds, this factor was > 10. Genetic mapping suggested important roles for variation in membrane and transmembrane genes, with a number of chemicals showing association with SNP rs13120371 in the solute carrier SLC7A11, previously implicated in chemoresistance. Conclusions: This experimental approach fills critical gaps unaddressed by recent large-scale toxicity testing programs, providing quantitative, experimentally based estimates of human toxicodynamic variability, and also testable hypotheses about mechanisms contributing to interindividual variation. Citation: Abdo N, Xia M, Brown CC, Kosyk O, Huang R, Sakamuru S, Zhou YH, Jack JR, Gallins P, Xia K, Li Y, Chiu WA, Motsinger-Reif AA, Austin CP, Tice RR, Rusyn I, Wright FA. 2015. Population-based in vitro hazard and concentration–response assessment of chemicals: the 1000 Genomes high-throughput screening study. Environ Health Perspect 123:458

  20. Automated cell analysis tool for a genome-wide RNAi screen with support vector machine based supervised learning

    Science.gov (United States)

    Remmele, Steffen; Ritzerfeld, Julia; Nickel, Walter; Hesser, Jürgen

    2011-03-01

    RNAi-based high-throughput microscopy screens have become an important tool in biological sciences in order to decrypt mostly unknown biological functions of human genes. However, manual analysis is impossible for such screens since the amount of image data sets can often be in the hundred thousands. Reliable automated tools are thus required to analyse the fluorescence microscopy image data sets usually containing two or more reaction channels. The herein presented image analysis tool is designed to analyse an RNAi screen investigating the intracellular trafficking and targeting of acylated Src kinases. In this specific screen, a data set consists of three reaction channels and the investigated cells can appear in different phenotypes. The main issue of the image processing task is an automatic cell segmentation which has to be robust and accurate for all different phenotypes and a successive phenotype classification. The cell segmentation is done in two steps by segmenting the cell nuclei first and then using a classifier-enhanced region growing on basis of the cell nuclei to segment the cells. The classification of the cells is realized by a support vector machine which has to be trained manually using supervised learning. Furthermore, the tool is brightness invariant allowing different staining quality and it provides a quality control that copes with typical defects during preparation and acquisition. A first version of the tool has already been successfully applied for an RNAi-screen containing three hundred thousand image data sets and the SVM extended version is designed for additional screens.

  1. Discovery of novel targets for multi-epitope vaccines: Screening of HIV-1 genomes using association rule mining

    Directory of Open Access Journals (Sweden)

    Piontkivska Helen

    2009-07-01

    Full Text Available Abstract Background Studies have shown that in the genome of human immunodeficiency virus (HIV-1 regions responsible for interactions with the host's immune system, namely, cytotoxic T-lymphocyte (CTL epitopes tend to cluster together in relatively conserved regions. On the other hand, "epitope-less" regions or regions with relatively low density of epitopes tend to be more variable. However, very little is known about relationships among epitopes from different genes, in other words, whether particular epitopes from different genes would occur together in the same viral genome. To identify CTL epitopes in different genes that co-occur in HIV genomes, association rule mining was used. Results Using a set of 189 best-defined HIV-1 CTL/CD8+ epitopes from 9 different protein-coding genes, as described by Frahm, Linde & Brander (2007, we examined the complete genomic sequences of 62 reference HIV sequences (including 13 subtypes and sub-subtypes with approximately 4 representative sequences for each subtype or sub-subtype, and 18 circulating recombinant forms. The results showed that despite inclusion of recombinant sequences that would be expected to break-up associations of epitopes in different genes when two different genomes are recombined, there exist particular combinations of epitopes (epitope associations that occur repeatedly across the world-wide population of HIV-1. For example, Pol epitope LFLDGIDKA is found to be significantly associated with epitopes GHQAAMQML and FLKEKGGL from Gag and Nef, respectively, and this association rule is observed even among circulating recombinant forms. Conclusion We have identified CTL epitope combinations co-occurring in HIV-1 genomes including different subtypes and recombinant forms. Such co-occurrence has important implications for design of complex vaccines (multi-epitope vaccines and/or drugs that would target multiple HIV-1 regions at once and, thus, may be expected to overcome challenges

  2. Milder clinical and biochemical phenotypes associated with the c.482G>A (p.Arg161Gln) pathogenic variant in cobalamin C disease: Implications for management and screening.

    Science.gov (United States)

    Almannai, Mohammed; Marom, Ronit; Divin, Kristian; Scaglia, Fernando; Sutton, V Reid; Craigen, William J; Lee, Brendan; Burrage, Lindsay C; Graham, Brett H

    2017-09-01

    Cobalamin C disease is a multisystemic disease with variable manifestations and age of onset. Genotype-phenotype correlations are well-recognized in this disorder. Here, we present a large cohort of individuals with cobalamin C disease, several of whom are heterozygous for the c.482G>A pathogenic variant (p.Arg161Gln). We compared clinical characteristics of individuals with this pathogenic variant to those who do not have this variant. To our knowledge, this study represents the largest single cohort of individuals with the c.482G>A (p.Arg161Gln) pathogenic variant. A retrospective chart review of 27 individuals from 21 families with cobalamin C disease who are followed at our facility was conducted. 13 individuals (48%) are compound heterozygous with the c.482G>A (p.Arg161Gln) on one allele and a second pathogenic variant on the other allele. Individuals with the c.482G>A (p.Arg161Gln) pathogenic variant had later onset of symptoms and easier metabolic control. Moreover, they had milder biochemical abnormalities at presentation which likely contributed to the observation that 4 individuals (31%) in this group were missed by newborn screening. The c.482G>A (p.Arg161Gln) pathogenic variant is associated with milder disease. These individuals may not receive a timely diagnosis as they may not be identified on newborn screening or because of unrecognized, late onset symptoms. Despite the milder presentation, significant complications can occur, especially if treatment is delayed. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Genome-wide screening identifies a KCNIP1 copy number variant as a genetic predictor for atrial fibrillation

    Science.gov (United States)

    Tsai, Chia-Ti; Hsieh, Chia-Shan; Chang, Sheng-Nan; Chuang, Eric Y.; Ueng, Kwo-Chang; Tsai, Chin-Feng; Lin, Tsung-Hsien; Wu, Cho-Kai; Lee, Jen-Kuang; Lin, Lian-Yu; Wang, Yi-Chih; Yu, Chih-Chieh; Lai, Ling-Ping; Tseng, Chuen-Den; Hwang, Juey-Jen; Chiang, Fu-Tien; Lin, Jiunn-Lee

    2016-01-01

    Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Previous genome-wide association studies had identified single-nucleotide polymorphisms in several genomic regions to be associated with AF. In human genome, copy number variations (CNVs) are known to contribute to disease susceptibility. Using a genome-wide multistage approach to identify AF susceptibility CNVs, we here show a common 4,470-bp diallelic CNV in the first intron of potassium interacting channel 1 gene (KCNIP1) is strongly associated with AF in Taiwanese populations (odds ratio=2.27 for insertion allele; P=6.23 × 10−24). KCNIP1 insertion is associated with higher KCNIP1 mRNA expression. KCNIP1-encoded protein potassium interacting channel 1 (KCHIP1) is physically associated with potassium Kv channels and modulates atrial transient outward current in cardiac myocytes. Overexpression of KCNIP1 results in inducible AF in zebrafish. In conclusions, a common CNV in KCNIP1 gene is a genetic predictor of AF risk possibly pointing to a functional pathway. PMID:26831368

  4. Pharmacoeconomic evaluations of pharmacogenetic and genomic screening programmes: a systematic review on content and adherence to guidelines.

    Science.gov (United States)

    Vegter, Stefan; Boersma, Cornelis; Rozenbaum, Mark; Wilffert, Bob; Navis, Gerjan; Postma, Maarten J

    2008-01-01

    The fields of pharmacogenetics and pharmacogenomics have become important practical tools to progress goals in medical and pharmaceutical research and development. As more screening tests are being developed, with some already used in clinical practice, consideration of cost-effectiveness implications is important. A systematic review was performed on the content of and adherence to pharmacoeconomic guidelines of recent pharmacoeconomic analyses performed in the field of pharmacogenetics and pharmacogenomics. Economic analyses of screening strategies for genetic variations, which were evidence-based and assumed to be associated with drug efficacy or safety, were included in the review. The 20 papers included cover a variety of healthcare issues, including screening tests on several cytochrome P450 (CYP) enzyme genes, thiopurine S-methyltransferase (TMPT) and angiotensin-converting enzyme (ACE) insertion deletion (ACE I/D) polymorphisms. Most economic analyses reported that genetic screening was cost effective and often even clearly dominated existing non-screening strategies. However, we found a lack of standardization regarding aspects such as the perspective of the analysis, factors included in the sensitivity analysis and the applied discount rates. In particular, an important limitation of several studies related to the failure to provide a sufficient evidence-based rationale for an association between genotype and phenotype. Future economic analyses should be conducted utilizing correct methods, with adherence to guidelines and including extensive sensitivity analyses. Most importantly, genetic screening strategies should be based on good evidence-based rationales. For these goals, we provide a list of recommendations for good pharmacoeconomic practice deemed useful in the fields of pharmacogenetics and pharmacogenomics, regardless of country and origin of the economic analysis.

  5. Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells

    Directory of Open Access Journals (Sweden)

    Chad M. Toledo

    2015-12-01

    Full Text Available To identify therapeutic targets for glioblastoma (GBM, we performed genome-wide CRISPR-Cas9 knockout (KO screens in patient-derived GBM stem-like cells (GSCs and human neural stem/progenitors (NSCs, non-neoplastic stem cell controls, for genes required for their in vitro growth. Surprisingly, the vast majority GSC-lethal hits were found outside of molecular networks commonly altered in GBM and GSCs (e.g., oncogenic drivers. In vitro and in vivo validation of GSC-specific targets revealed several strong hits, including the wee1-like kinase, PKMYT1/Myt1. Mechanistic studies demonstrated that PKMYT1 acts redundantly with WEE1 to inhibit cyclin B-CDK1 activity via CDK1-Y15 phosphorylation and to promote timely completion of mitosis in NSCs. However, in GSCs, this redundancy is lost, most likely as a result of oncogenic signaling, causing GBM-specific lethality.

  6. A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells

    Science.gov (United States)

    Petrocca, Fabio; Altschuler, Gabriel; Tan, Shen Mynn; Mendillo, Marc L.; Yan, Haoheng; Jerry, D. Joseph; Kung, Andrew L.; Hide, Winston; Ince, Tan A.; Lieberman, Judy

    2013-01-01

    Summary Basal-like triple negative breast cancers (TNBC) have poor prognosis. To identify basal-like TNBC dependencies, a genome-wide siRNA lethality screen compared two human breast epithelial cell lines transformed with the same genes - basal-like BPLER and myoepithelial HMLER. Expression of the screen’s 154 BPLER dependency genes correlated with poor prognosis in breast, but not lung or colon, cancer. Proteasome genes were overrepresented hits. Basal-like TNBC lines were selectively sensitive to proteasome inhibitor drugs relative to normal epithelial, luminal and mesenchymal TNBC lines. Proteasome inhibition reduced growth of established basal-like TNBC tumors in mice and blocked tumor-initiating cell function and macrometastasis. Proteasome addiction in basal-like TNBCs was mediated by NOXA and linked to MCL-1 dependence. PMID:23948298

  7. A Genome-wide CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) Screen Identifies NEK7 as an Essential Component of NLRP3 Inflammasome Activation.

    Science.gov (United States)

    Schmid-Burgk, Jonathan L; Chauhan, Dhruv; Schmidt, Tobias; Ebert, Thomas S; Reinhardt, Julia; Endl, Elmar; Hornung, Veit

    2016-01-01

    Inflammasomes are high molecular weight protein complexes that assemble in the cytosol upon pathogen encounter. This results in caspase-1-dependent pro-inflammatory cytokine maturation, as well as a special type of cell death, known as pyroptosis. The Nlrp3 inflammasome plays a pivotal role in pathogen defense, but at the same time, its activity has also been implicated in many common sterile inflammatory conditions. To this effect, several studies have identified Nlrp3 inflammasome engagement in a number of common human diseases such as atherosclerosis, type 2 diabetes, Alzheimer disease, or gout. Although it has been shown that known Nlrp3 stimuli converge on potassium ion efflux upstream of Nlrp3 activation, the exact molecular mechanism of Nlrp3 activation remains elusive. Here, we describe a genome-wide CRISPR/Cas9 screen in immortalized mouse macrophages aiming at the unbiased identification of gene products involved in Nlrp3 inflammasome activation. We employed a FACS-based screen for Nlrp3-dependent cell death, using the ionophoric compound nigericin as a potassium efflux-inducing stimulus. Using a genome-wide guide RNA (gRNA) library, we found that targeting Nek7 rescued macrophages from nigericin-induced lethality. Subsequent studies revealed that murine macrophages deficient in Nek7 displayed a largely blunted Nlrp3 inflammasome response, whereas Aim2-mediated inflammasome activation proved to be fully intact. Although the mechanism of Nek7 functioning upstream of Nlrp3 yet remains elusive, these studies provide a first genetic handle of a component that specifically functions upstream of Nlrp3. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. A bacterial genetic screen identifies functional coding sequences of the insect mariner transposable element Famar1 amplified from the genome of the earwig, Forficula auricularia.

    Science.gov (United States)

    Barry, Elizabeth G; Witherspoon, David J; Lampe, David J

    2004-02-01

    Transposons of the mariner family are widespread in animal genomes and have apparently infected them by horizontal transfer. Most species carry only old defective copies of particular mariner transposons that have diverged greatly from their active horizontally transferred ancestor, while a few contain young, very similar, and active copies. We report here the use of a whole-genome screen in bacteria to isolate somewhat diverged Famar1 copies from the European earwig, Forficula auricularia, that encode functional transposases. Functional and nonfunctional coding sequences of Famar1 and nonfunctional copies of Ammar1 from the European honey bee, Apis mellifera, were sequenced to examine their molecular evolution. No selection for sequence conservation was detected in any clade of a tree derived from these sequences, not even on branches leading to functional copies. This agrees with the current model for mariner transposon evolution that expects neutral evolution within particular hosts, with selection for function occurring only upon horizontal transfer to a new host. Our results further suggest that mariners are not finely tuned genetic entities and that a greater amount of sequence diversification than had previously been appreciated can occur in functional copies in a single host lineage. Finally, this method of isolating active copies can be used to isolate other novel active transposons without resorting to reconstruction of ancestral sequences.

  9. Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation.

    Directory of Open Access Journals (Sweden)

    Paola Fabrizio

    2010-07-01

    Full Text Available The study of the chronological life span of Saccharomyces cerevisiae, which measures the survival of populations of non-dividing yeast, has resulted in the identification of homologous genes and pathways that promote aging in organisms ranging from yeast to mammals. Using a competitive genome-wide approach, we performed a screen of a complete set of approximately 4,800 viable deletion mutants to identify genes that either increase or decrease chronological life span. Half of the putative short-/long-lived mutants retested from the primary screen were confirmed, demonstrating the utility of our approach. Deletion of genes involved in vacuolar protein sorting, autophagy, and mitochondrial function shortened life span, confirming that respiration and degradation processes are essential for long-term survival. Among the genes whose deletion significantly extended life span are ACB1, CKA2, and TRM9, implicated in fatty acid transport and biosynthesis, cell signaling, and tRNA methylation, respectively. Deletion of these genes conferred heat-shock resistance, supporting the link between life span extension and cellular protection observed in several model organisms. The high degree of conservation of these novel yeast longevity determinants in other species raises the possibility that their role in senescence might be conserved.

  10. Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation.

    Science.gov (United States)

    Fabrizio, Paola; Hoon, Shawn; Shamalnasab, Mehrnaz; Galbani, Abdulaye; Wei, Min; Giaever, Guri; Nislow, Corey; Longo, Valter D

    2010-07-15

    The study of the chronological life span of Saccharomyces cerevisiae, which measures the survival of populations of non-dividing yeast, has resulted in the identification of homologous genes and pathways that promote aging in organisms ranging from yeast to mammals. Using a competitive genome-wide approach, we performed a screen of a complete set of approximately 4,800 viable deletion mutants to identify genes that either increase or decrease chronological life span. Half of the putative short-/long-lived mutants retested from the primary screen were confirmed, demonstrating the utility of our approach. Deletion of genes involved in vacuolar protein sorting, autophagy, and mitochondrial function shortened life span, confirming that respiration and degradation processes are essential for long-term survival. Among the genes whose deletion significantly extended life span are ACB1, CKA2, and TRM9, implicated in fatty acid transport and biosynthesis, cell signaling, and tRNA methylation, respectively. Deletion of these genes conferred heat-shock resistance, supporting the link between life span extension and cellular protection observed in several model organisms. The high degree of conservation of these novel yeast longevity determinants in other species raises the possibility that their role in senescence might be conserved.

  11. A genome-wide RNAi screen identifies novel targets of neratinib resistance leading to identification of potential drug resistant genetic markers.

    Science.gov (United States)

    Seyhan, Attila A; Varadarajan, Usha; Choe, Sung; Liu, Wei; Ryan, Terence E

    2012-04-01

    Neratinib (HKI-272) is a small molecule tyrosine kinase inhibitor of the ErbB receptor family currently in Phase III clinical trials. Despite its efficacy, the mechanism of potential cellular resistance to neratinib and genes involved with it remains unknown. We have used a pool-based lentiviral genome-wide functional RNAi screen combined with a lethal dose of neratinib to discover chemoresistant interactions with neratinib. Our screen has identified a collection of genes whose inhibition by RNAi led to neratinib resistance including genes involved in oncogenesis (e.g. RAB33A, RAB6A and BCL2L14), transcription factors (e.g. FOXP4, TFEC, ZNF), cellular ion transport (e.g. CLIC3, TRAPPC2P1, P2RX2), protein ubiquitination (e.g. UBL5), cell cycle (e.g. CCNF), and genes known to interact with breast cancer-associated genes (e.g. CCNF, FOXP4, TFEC, several ZNF factors, GNA13, IGFBP1, PMEPA1, SOX5, RAB33A, RAB6A, FXR1, DDO, TFEC, OLFM2). The identification of novel mediators of cellular resistance to neratinib could lead to the identification of new or neoadjuvant drug targets. Their use as patient or treatment selection biomarkers could make the application of anti-ErbB therapeutics more clinically effective.

  12. Genome-wide miRNA screening reveals miR-310 family members negatively regulate the immune response in Drosophila melanogaster via co-targeting Drosomycin.

    Science.gov (United States)

    Li, Yao; Li, Shengjie; Li, Ruimin; Xu, Jiao; Jin, Ping; Chen, Liming; Ma, Fei

    2017-03-01

    Although innate immunity mediated by Toll signaling has been extensively studied in Drosophila melanogaster, the role of miRNAs in regulating the Toll-mediated immune response remains largely unknown. In this study, following Gram-positive bacterial challenge, we identified 93 differentially expressed miRNAs via genome-wide miRNA screening. These miRNAs were regarded as immune response related (IRR). Eight miRNAs were confirmed to be involved in the Toll-mediated immune response upon Gram-positive bacterial infection through genetic screening of 41 UAS-miRNA lines covering 60 miRNAs of the 93 IRR miRNAs. Interestingly, four out of these eight miRNAs, miR-310, miR-311, miR-312 and miR-313, are clustered miRNAs and belong to the miR-310 family. These miR-310 family members were shown to target and regulate the expression of Drosomycin, an antimicrobial peptide produced by Toll signaling. Taken together, our study implies important regulatory roles of miRNAs in the Toll-mediated innate immune response of Drosophila upon Gram-positive bacterial infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A "genome-to-lead" approach for insecticide discovery: pharmacological characterization and screening of Aedes aegypti D(1-like dopamine receptors.

    Directory of Open Access Journals (Sweden)

    Jason M Meyer

    2012-01-01

    Full Text Available BACKGROUND: Many neglected tropical infectious diseases affecting humans are transmitted by arthropods such as mosquitoes and ticks. New mode-of-action chemistries are urgently sought to enhance vector management practices in countries where arthropod-borne diseases are endemic, especially where vector populations have acquired widespread resistance to insecticides. METHODOLOGY/PRINCIPAL FINDINGS: We describe a "genome-to-lead" approach for insecticide discovery that incorporates the first reported chemical screen of a G protein-coupled receptor (GPCR mined from a mosquito genome. A combination of molecular and pharmacological studies was used to functionally characterize two dopamine receptors (AaDOP1 and AaDOP2 from the yellow fever mosquito, Aedes aegypti. Sequence analyses indicated that these receptors are orthologous to arthropod D(1-like (Gα(s-coupled receptors, but share less than 55% amino acid identity in conserved domains with mammalian dopamine receptors. Heterologous expression of AaDOP1 and AaDOP2 in HEK293 cells revealed dose-dependent responses to dopamine (EC(50: AaDOP1 = 3.1±1.1 nM; AaDOP2 = 240±16 nM. Interestingly, only AaDOP1 exhibited sensitivity to epinephrine (EC(50 = 5.8±1.5 nM and norepinephrine (EC(50 = 760±180 nM, while neither receptor was activated by other biogenic amines tested. Differential responses were observed between these receptors regarding their sensitivity to dopamine agonists and antagonists, level of maximal stimulation, and constitutive activity. Subsequently, a chemical library screen was implemented to discover lead chemistries active at AaDOP2. Fifty-one compounds were identified as "hits," and follow-up validation assays confirmed the antagonistic effect of selected compounds at AaDOP2. In vitro comparison studies between AaDOP2 and the human D(1 dopamine receptor (hD(1 revealed markedly different pharmacological profiles and identified amitriptyline and doxepin as AaDOP2

  14. SCREENING LOW FREQUENCY SNPS FROM GENOME WIDE ASSOCIATION STUDY REVEALS A NEW RISK ALLELE FOR PROGRESSION TO AIDS

    Science.gov (United States)

    Le Clerc, Sigrid; Coulonges, Cédric; Delaneau, Olivier; Van Manen, Danielle; Herbeck, Joshua T.; Limou, Sophie; An, Ping; Martinson, Jeremy J.; Spadoni, Jean-Louis; Therwath, Amu; Veldink, Jan H.; van den Berg, Leonard H.; Taing, Lieng; Labib, Taoufik; Mellak, Safa; Montes, Matthieu; Delfraissy, Jean-François; Schächter, François; Winkler, Cheryl; Froguel, Philippe; Mullins, James I.; Schuitemaker, Hanneke; Zagury, Jean-François

    2011-01-01

    Background Seven genome-wide association studies (GWAS) have been published in AIDS and only associations in the HLA region on chromosome 6 and CXCR6 have passed genome-wide significance. Methods We reanalyzed the data from three previously published GWAS, targeting specifically low frequency SNPs (minor allele frequency (MAF)<5%). Two groups composed of 365 slow progressors (SP) and 147 rapid progressors (RP) from Europe and the US were compared with a control group of 1394 seronegative individuals using Eigenstrat corrections. Results Of the 8584 SNPs with MAF<5% in cases and controls (Bonferroni threshold=5.8×10−6), four SNPs showed statistical evidence of association with the SP phenotype. The best result was for HCP5 rs2395029 (p=8.54×10−15, OR=3.41) in the HLA locus, in partial linkage disequilibrium with two additional chromosome 6 associations in C6orf48 (p=3.03×10−10, OR=2.9) and NOTCH4 (9.08×10−07, OR=2.32). The fourth association corresponded to rs2072255 located in RICH2 (p=3.30×10−06, OR=0.43) in chromosome 17. Using HCP5 rs2395029 as a covariate, the C6orf48 and NOTCH4 signals disappeared, but the RICH2 signal still remained significant. Conclusion Besides the already known chromosome 6 associations, the analysis of low frequency SNPs brought up a new association in the RICH2 gene. Interestingly, RICH2 interacts with BST-2 known to be a major restriction factor for HIV-1 infection. Our study has thus identified a new candidate gene for AIDS molecular etiology and confirms the interest of singling out low frequency SNPs in order to exploit GWAS data. PMID:21107268

  15. BISEN: Biochemical simulation environment

    NARCIS (Netherlands)

    Vanlier, J.; Wu, F.; Qi, F.; Vinnakota, K.C.; Han, Y.; Dash, R.K.; Yang, F.; Beard, D.A.

    2009-01-01

    The Biochemical Simulation Environment (BISEN) is a suite of tools for generating equations and associated computer programs for simulating biochemical systems in the MATLAB® computing environment. This is the first package that can generate appropriate systems of differential equations for

  16. Reliability analysis of the Ahringer Caenorhabditis elegans RNAi feeding library: a guide for genome-wide screens

    Directory of Open Access Journals (Sweden)

    Lu Yiming

    2011-03-01

    Full Text Available Abstract Background The Ahringer C. elegans RNAi feeding library prepared by cloning genomic DNA fragments has been widely used in genome-wide analysis of gene function. However, the library has not been thoroughly validated by direct sequencing, and there are potential errors, including: 1 mis-annotation (the clone with the retired gene name should be remapped to the actual target gene; 2 nonspecific PCR amplification; 3 cross-RNAi; 4 mis-operation such as sample loading error, etc. Results Here we performed a reliability analysis on the Ahringer C. elegans RNAi feeding library, which contains 16,256 bacterial strains, using a bioinformatics approach. Results demonstrated that most (98.3% of the bacterial strains in the library are reliable. However, we also found that 2,851 (17.54% bacterial strains need to be re-annotated even they are reliable. Most of these bacterial strains are the clones having the retired gene names. Besides, 28 strains are grouped into unreliable category and 226 strains are marginal because of probably expressing unrelated double-stranded RNAs (dsRNAs. The accuracy of the prediction was further confirmed by direct sequencing analysis of 496 bacterial strains. Finally, a freely accessible database named CelRNAi (http://biocompute.bmi.ac.cn/CelRNAi/ was developed as a valuable complement resource for the feeding RNAi library by providing the predicted information on all bacterial strains. Moreover, submission of the direct sequencing result or any other annotations for the bacterial strains to the database are allowed and will be integrated into the CelRNAi database to improve the accuracy of the library. In addition, we provide five candidate primer sets for each of the unreliable and marginal bacterial strains for users to construct an alternative vector for their own RNAi studies. Conclusions Because of the potential unreliability of the Ahringer C. elegans RNAi feeding library, we strongly suggest the user examine

  17. Using case-control designs for genome-wide screening for associations between genetic markers and disease susceptibility loci.

    Science.gov (United States)

    Yang, Q; Khoury, M J; Atkinson, M; Sun, F; Cheng, R; Flanders, W D

    1999-01-01

    We used a case-control design to scan the genome for any associations between genetic markers and disease susceptibility loci using the first two replicates of the Mycenaean population from the GAW11 (Problem 2) data. Using a case-control approach, we constructed a series of 2-by-3 tables for each allele of every marker on all six chromosomes. Odds ratios (ORs) and 95% confidence intervals (95% CI) were estimated for all alleles of every marker. We selected the one allele for which the estimated OR had the minimum p-value to plot in the graph. Among these selected ORs, we calculated 95% CI for those that had a p-value Mycenaean population, the case-control design identified allele number 1 of marker 24 on chromosome 1 to be associated with a disease susceptibility gene, OR = 2.10 (95% CI 1.66-2.62). Our approach failed to show any other significant association between case-control status and genetic markers. Stratified analysis on the environmental risk factor (E1) provided no further evidence of significant association other than allele 1 of marker 24 on chromosome 1. These data indicate the absence of linkage disequilibrium for markers flanking loci A, B, and C. Finally, we examined the effect of gene x environment (G x E) interaction for the identified allele. Our results provided no evidence of G x E interaction, but suggested that the environmental exposure alone was a risk factor for the disease.

  18. Clustering patterns of LOD scores for asthma-related phenotypes revealed by a genome-wide screen in 295 French EGEA families.

    Science.gov (United States)

    Bouzigon, Emmanuelle; Dizier, Marie-Hélène; Krähenbühl, Christine; Lemainque, Arnaud; Annesi-Maesano, Isabella; Betard, Christine; Bousquet, Jean; Charpin, Denis; Gormand, Frédéric; Guilloud-Bataille, Michel; Just, Jocelyne; Le Moual, Nicole; Maccario, Jean; Matran, Régis; Neukirch, Françoise; Oryszczyn, Marie-Pierre; Paty, Evelyne; Pin, Isabelle; Rosenberg-Bourgin, Myriam; Vervloet, Daniel; Kauffmann, Francine; Lathrop, Mark; Demenais, Florence

    2004-12-15

    A genome-wide scan for asthma phenotypes was conducted in the whole sample of 295 EGEA families selected through at least one asthmatic subject. In addition to asthma, seven phenotypes involved in the main asthma physiopathological pathways were considered: SPT (positive skin prick test response to at least one of 11 allergens), SPTQ score being the number of positive skin test responses to 11 allergens, Phadiatop (positive specific IgE response to a mixture of allergens), total IgE levels, eosinophils, bronchial responsiveness (BR) to methacholine challenge and %predicted FEV(1). Four regions showed evidence for linkage (Pscreens, 6q14 appears to be a new region potentially linked to %FEV(1). To determine which of these various asthma phenotypes are more likely to share common genetic determinants, a principal component analysis was applied to the genome-wide LOD scores. This analysis revealed clustering of LODs for asthma, SPT and Phadiatop on one axis and clustering of LODs for %FEV(1), BR and SPTQ on the other, while LODs for IgE and eosinophils appeared to be independent from all other LODs. These results provide new insights into the potential sharing of genetic determinants by asthma-related phenotypes.

  19. Possible roles of vacuolar H+-ATPase and mitochondrial function in tolerance to air-drying stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains.

    Science.gov (United States)

    Shima, Jun; Ando, Akira; Takagi, Hiroshi

    2008-03-01

    Yeasts used in bread making are exposed to air-drying stress during dried yeast production processes. To clarify the genes required for air-drying tolerance, we performed genome-wide screening using the complete deletion strain collection of diploid Saccharomyces cerevisiae. The screening identified 278 gene deletions responsible for air-drying sensitivity. These genes were classified based on their cellular function and on the localization of their gene products. The results showed that the genes required for air-drying tolerance were frequently involved in mitochondrial functions and in connection with vacuolar H(+)-ATPase, which plays a role in vacuolar acidification. To determine the role of vacuolar acidification in air-drying stress tolerance, we monitored intracellular pH. The results showed that intracellular acidification was induced during air-drying and that this acidification was amplified in a deletion mutant of the VMA2 gene encoding a component of vacuolar H(+)-ATPase, suggesting that vacuolar H(+)-ATPase helps maintain intracellular pH homeostasis, which is affected by air-drying stress. To determine the effects of air-drying stress on mitochondria, we analysed the mitochondrial membrane potential under air-drying stress conditions using MitoTracker. The results showed that mitochondria were extremely sensitive to air-drying stress, suggesting that a mitochondrial function is required for tolerance to air-drying stress. We also analysed the correlation between oxidative-stress sensitivity and air-drying-stress sensitivity. The results suggested that oxidative stress is a critical determinant of sensitivity to air-drying stress, although ROS-scavenging systems are not necessary for air-drying stress tolerance. (c) 2008 John Wiley & Sons, Ltd.

  20. Chemical Genomic Screening of a Saccharomyces cerevisiae Genomewide Mutant Collection Reveals Genes Required for Defense against Four Antimicrobial Peptides Derived from Proteins Found in Human Saliva

    Science.gov (United States)

    Bhatt, Sanjay; Schoenly, Nathan E.; Lee, Anna Y.; Nislow, Corey; Bobek, Libuse A.

    2013-01-01

    To compare the effects of four antimicrobial peptides (MUC7 12-mer, histatin 12-mer, cathelicidin KR20, and a peptide containing lactoferricin amino acids 1 to 11) on the yeast Saccharomyces cerevisiae, we employed a genomewide fitness screen of combined collections of mutants with homozygous deletions of nonessential genes and heterozygous deletions of essential genes. When an arbitrary fitness score cutoffs of 1 (indicating a fitness defect, or hypersensitivity) and −1 (indicating a fitness gain, or resistance) was used, 425 of the 5,902 mutants tested exhibited altered fitness when treated with at least one peptide. Functional analysis of the 425 strains revealed enrichment among the identified deletions in gene groups associated with the Gene Ontology (GO) terms “ribosomal subunit,” “ribosome biogenesis,” “protein glycosylation,” “vacuolar transport,” “Golgi vesicle transport,” “negative regulation of transcription,” and others. Fitness profiles of all four tested peptides were highly similar, particularly among mutant strains exhibiting the greatest fitness defects. The latter group included deletions in several genes involved in induction of the RIM101 signaling pathway, including several components of the ESCRT sorting machinery. The RIM101 signaling regulates response of yeasts to alkaline and neutral pH and high salts, and our data indicate that this pathway also plays a prominent role in regulating protective measures against all four tested peptides. In summary, the results of the chemical genomic screens of S. cerevisiae mutant collection suggest that the four antimicrobial peptides, despite their differences in structure and physical properties, share many interactions with S. cerevisiae cells and consequently a high degree of similarity between their modes of action. PMID:23208710

  1. Development and validation of concurrent preimplantation genetic diagnosis for single gene disorders and comprehensive chromosomal aneuploidy screening without whole genome amplification.

    Science.gov (United States)

    Zimmerman, Rebekah S; Jalas, Chaim; Tao, Xin; Fedick, Anastasia M; Kim, Julia G; Pepe, Russell J; Northrop, Lesley E; Scott, Richard T; Treff, Nathan R

    2016-02-01

    To develop a novel and robust protocol for multifactorial preimplantation genetic testing of trophectoderm biopsies using quantitative polymerase chain reaction (qPCR). Prospective and blinded. Not applicable. Couples indicated for preimplantation genetic diagnosis (PGD). None. Allele dropout (ADO) and failed amplification rate, genotyping consistency, chromosome screening success rate, and clinical outcomes of qPCR-based screening. The ADO frequency on a single cell from a fibroblast cell line was 1.64% (18/1,096). When two or more cells were tested, the ADO frequency dropped to 0.02% (1/4,426). The rate of amplification failure was 1.38% (55/4,000) overall, with 2.5% (20/800) for single cells and 1.09% (35/3,200) for samples that had two or more cells. Among 152 embryos tested in 17 cases by qPCR-based PGD and CCS, 100% were successfully given a diagnosis, with 0% ADO or amplification failure. Genotyping consistency with reference laboratory results was >99%. Another 304 embryos from 43 cases were included in the clinical application of qPCR-based PGD and CCS, for which 99.7% (303/304) of the embryos were given a definitive diagnosis, with only 0.3% (1/304) having an inconclusive result owing to recombination. In patients receiving a transfer with follow-up, the pregnancy rate was 82% (27/33). This study demonstrates that the use of qPCR for PGD testing delivers consistent and more reliable results than existing methods and that single gene disorder PGD can be run concurrently with CCS without the need for additional embryo biopsy or whole genome amplification. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Yeast functional genomic screens lead to identification of a role for a bacterial effector in innate immunity regulation.

    Directory of Open Access Journals (Sweden)

    Roger W Kramer

    2007-02-01

    Full Text Available Numerous bacterial pathogens manipulate host cell processes to promote infection and ultimately cause disease through the action of proteins that they directly inject into host cells. Identification of the targets and molecular mechanisms of action used by these bacterial effector proteins is critical to understanding pathogenesis. We have developed a systems biological approach using the yeast Saccharomyces cerevisiae that can expedite the identification of cellular processes targeted by bacterial effector proteins. We systematically screened the viable yeast haploid deletion strain collection for mutants hypersensitive to expression of the Shigella type III effector OspF. Statistical data mining of the results identified several cellular processes, including cell wall biogenesis, which when impaired by a deletion caused yeast to be hypersensitive to OspF expression. Microarray experiments revealed that OspF expression resulted in reversed regulation of genes regulated by the yeast cell wall integrity pathway. The yeast cell wall integrity pathway is a highly conserved mitogen-activated protein kinase (MAPK signaling pathway, normally activated in response to cell wall perturbations. Together these results led us to hypothesize and subsequently demonstrate that OspF inhibited both yeast and mammalian MAPK signaling cascades. Furthermore, inhibition of MAPK signaling by OspF is associated with attenuation of the host innate immune response to Shigella infection in a mouse model. These studies demonstrate how yeast systems biology can facilitate functional characterization of pathogenic bacterial effector proteins.

  3. Genomics-based screening of differentially expressed genes in the brains of mice exposed to silver nanoparticles via inhalation

    International Nuclear Information System (INIS)

    Lee, Hye-Young; Choi, You-Jin; Jung, Eun-Jung; Yin, Hu-Quan; Kwon, Jung-Taek; Kim, Ji-Eun; Im, Hwang-Tae; Cho, Myung-Haing; Kim, Ju-Han; Kim, Hyun-Young; Lee, Byung-Hoon

    2010-01-01

    Silver nanoparticles (AgNP) are among the fastest growing product categories in the nanotechnology industry. Despite the importance of AgNP in consumer products and clinical applications, relatively little is known regarding AgNP toxicity and its associated risks. We investigated the effects of AgNP on gene expression in the mouse brain using Affymetrix Mouse Genome Arrays. C57BL/6 mice were exposed to AgNP (geometric mean diameter, 22.18 ± 1.72 nm; 1.91 x 10 7 particles/cm 3 ) for 6 h/day, 5 days/week using the nose-only exposure system for 2 weeks. Total RNA isolated from the cerebrum and cerebellum was subjected to hybridization. From over 39,000 probe sets, 468 genes in the cerebrum and 952 genes in the cerebellum were identified as AgNP-responsive (one-way analysis of variance; p < 0.05). The largest groups of gene products affected by AgNP exposure included 73 genes in the cerebrum and 144 genes in the cerebellum. AgNP exposure modulated the expression of several genes associated with motor neuron disorders, neurodegenerative disease, and immune cell function, indicating potential neurotoxicity and immunotoxicity associated with AgNP exposure. Real-time PCR data for five genes analyzed from whole blood showed good correlation with the observed changes in the brain. Following rigorous validation and substantiation, these genes may assist in the development of surrogate markers for AgNP exposure and/or toxicity.

  4. Genome-Wide Screen for Saccharomyces cerevisiae Genes Contributing to Opportunistic Pathogenicity in an Invertebrate Model Host

    Directory of Open Access Journals (Sweden)

    Sujal S. Phadke

    2018-01-01

    Full Text Available Environmental opportunistic pathogens can exploit vulnerable hosts through expression of traits selected for in their natural environments. Pathogenicity is itself a complicated trait underpinned by multiple complex traits, such as thermotolerance, morphology, and stress response. The baker’s yeast, Saccharomyces cerevisiae, is a species with broad environmental tolerance that has been increasingly reported as an opportunistic pathogen of humans. Here we leveraged the genetic resources available in yeast and a model insect species, the greater waxmoth Galleria mellonella, to provide a genome-wide analysis of pathogenicity factors. Using serial passaging experiments of genetically marked wild-type strains, a hybrid strain was identified as the most fit genotype across all replicates. To dissect the genetic basis for pathogenicity in the hybrid isolate, bulk segregant analysis was performed which revealed eight quantitative trait loci significantly differing between the two bulks with alleles from both parents contributing to pathogenicity. A second passaging experiment with a library of deletion mutants for most yeast genes identified a large number of mutations whose relative fitness differed in vivo vs. in vitro, including mutations in genes controlling cell wall integrity, mitochondrial function, and tyrosine metabolism. Yeast is presumably subjected to a massive assault by the innate insect immune system that leads to melanization of the host and to a large bottleneck in yeast population size. Our data support that resistance to the innate immune response of the insect is key to survival in the host and identifies shared genetic mechanisms between S. cerevisiae and other opportunistic fungal pathogens.

  5. Genomics-based screening of differentially expressed genes in the brains of mice exposed to silver nanoparticles via inhalation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hye-Young; Choi, You-Jin; Jung, Eun-Jung; Yin, Hu-Quan [Seoul National University, College of Pharmacy and Research Institute of Pharmaceutical Sciences (Korea, Republic of); Kwon, Jung-Taek; Kim, Ji-Eun; Im, Hwang-Tae; Cho, Myung-Haing [Seoul National University, College of Veterinary Medicine (Korea, Republic of); Kim, Ju-Han [Seoul National University, College of Medicine (Korea, Republic of); Kim, Hyun-Young [Occupational Safety and Health Research Institute, Chemical Safety and Health Research Center (Korea, Republic of); Lee, Byung-Hoon, E-mail: lee@snu.ac.k [Seoul National University, College of Pharmacy and Research Institute of Pharmaceutical Sciences (Korea, Republic of)

    2010-06-15

    Silver nanoparticles (AgNP) are among the fastest growing product categories in the nanotechnology industry. Despite the importance of AgNP in consumer products and clinical applications, relatively little is known regarding AgNP toxicity and its associated risks. We investigated the effects of AgNP on gene expression in the mouse brain using Affymetrix Mouse Genome Arrays. C57BL/6 mice were exposed to AgNP (geometric mean diameter, 22.18 {+-} 1.72 nm; 1.91 x 10{sup 7} particles/cm{sup 3}) for 6 h/day, 5 days/week using the nose-only exposure system for 2 weeks. Total RNA isolated from the cerebrum and cerebellum was subjected to hybridization. From over 39,000 probe sets, 468 genes in the cerebrum and 952 genes in the cerebellum were identified as AgNP-responsive (one-way analysis of variance; p < 0.05). The largest groups of gene products affected by AgNP exposure included 73 genes in the cerebrum and 144 genes in the cerebellum. AgNP exposure modulated the expression of several genes associated with motor neuron disorders, neurodegenerative disease, and immune cell function, indicating potential neurotoxicity and immunotoxicity associated with AgNP exposure. Real-time PCR data for five genes analyzed from whole blood showed good correlation with the observed changes in the brain. Following rigorous validation and substantiation, these genes may assist in the development of surrogate markers for AgNP exposure and/or toxicity.

  6. Genome-wide screen of DNA methylation changes induced by low dose X-ray radiation in mice.

    Directory of Open Access Journals (Sweden)

    Jingzi Wang

    Full Text Available Epigenetic mechanisms play a key role in non-targeted effects of radiation. The purpose of this study was to investigate global hypomethylation and promoter hypermethylation of particular genes induced by low dose radiation (LDR. Thirty male BALB/c mice were divided into 3 groups: control, acutely exposed (0.5 Gy X-rays, and chronic exposure for 10 days (0.05Gy/d×10d. High-performance liquid chromatography (HPLC and MeDIP-quantitative polymerase chain reaction (qPCR were used to study methylation profiles. DNMT1 and MBD2 expression was determined by qPCR and western blot assays. Methylation and expression of Rad23b and Ddit3 were determined by bisulfate sequencing primers (BSP and qPCR, respectively. The results show that LDR induced genomic hypomethylation in blood 2 h postirraditaion, but was not retained at 1-month. DNMT1 and MBD2 were downregulated in a tissue-specific manner but did not persist. Specific hypermethylation was observed for 811 regions in the group receiving chronic exposure, which covered almost all key biological processes as indicated by GO and KEGG pathway analysis. Eight hypermethylated genes (Rad23b, Tdg, Ccnd1, Ddit3, Llgl1, Rasl11a, Tbx2, Scl6a15 were verified by MeDIP-qPCR. Among them, Rad23b and Ddit3 gene displayed tissue-specific methylation and downregulation, which persisted for 1-month postirradiation. Thus, LDR induced global hypomethylation and tissue-specific promoter hypermethylation of particular genes. Promoter hypermethylation, rather than global hypomethylation, was relatively stable. Dysregulation of methylation might be correlated with down-regulation of DNMT1 and MBD2, but much better understanding the molecular mechanisms involved in this process will require further study.

  7. Impact of human genome initiative-derived technology on genetic testing, screening and counseling: Cultural, ethical and legal issues

    Energy Technology Data Exchange (ETDEWEB)

    Trottier, R.W.; Hodgin, F.C.; Imara, M.; Phoenix, D.; Lybrook, S. (Morehouse Coll., Atlanta, GA (United States). School of Medicine); Crandall, L.A.; Moseley, R.E.; Armotrading, D. (Florida Univ., Gainesville, FL (United States). Coll. of Medicine)

    1993-01-01

    Genetic medical services provided by the Georgia Division of Public Health in two northern and two central districts are compared to services provided in a district in which a tertiary care facility is located. Genetics outreach public health nurses play key roles in Georgia's system of Children's Health Services Genetics Program, including significant roles as counselors and information sources on special needs social services and support organizations. Unique features of individual health districts, (e.g., the changing face of some rural communities in ethnocultural diversity and socioeconomic character), present new challenges to current and future genetics services delivery. Preparedness as to educational needs of both health professionals and the lay population is of foremost concern in light of the ever expanding knowledge and technology in medical genetics. Perspectives on genetics and an overview of services offered by a local private sector counselor are included for comparison to state supported services. The nature of the interactions which transpire between private and public genetic services resources in Georgia will be described. A special focus of this research includes issues associated with sickle cell disease newborn screening service delivery process in Georgia, with particular attention paid to patient follow-up and transition to primary care. Of particular interest to this focus is the problem of loss to follow-up in the current system. Critical factors in education and counseling of sickle cell patients and the expectations of expanding roles of primary care physicians are discussed. The Florida approach to the delivery of genetic services contrasts to the Georgia model by placing more emphasis on a consultant-specialist team approach.

  8. Forward genetics screen coupled with whole-genome resequencing identifies novel gene targets for improving heterologous enzyme production in Aspergillus niger.

    Science.gov (United States)

    Reilly, Morgann C; Kim, Joonhoon; Lynn, Jed; Simmons, Blake A; Gladden, John M; Magnuson, Jon K; Baker, Scott E

    2018-02-01

    Plant biomass, once reduced to its composite sugars, can be converted to fuel substitutes. One means of overcoming the recalcitrance of lignocellulose is pretreatment followed by enzymatic hydrolysis. However, currently available commercial enzyme cocktails are inhibited in the presence of residual pretreatment chemicals. Recent studies have identified a number of cellulolytic enzymes from bacteria that are tolerant to pretreatment chemicals such as ionic liquids. The challenge now is generation of these enzymes in copious amounts, an arena where fungal organisms such as Aspergillus niger have proven efficient. Fungal host strains still need to be engineered to increase production titers of heterologous protein over native enzymes, which has been a difficult task. Here, we developed a forward genetics screen coupled with whole-genome resequencing to identify specific lesions responsible for a protein hyper-production phenotype in A. niger. This strategy successfully identified novel targets, including a low-affinity glucose transporter, MstC, whose deletion significantly improved secretion of recombinant proteins driven by a glucoamylase promoter.

  9. Genome-wide RNAi screen reveals a new role of a WNT/CTNNB1 signaling pathway as negative regulator of virus-induced innate immune responses.

    Science.gov (United States)

    Baril, Martin; Es-Saad, Salwa; Chatel-Chaix, Laurent; Fink, Karin; Pham, Tram; Raymond, Valérie-Ann; Audette, Karine; Guenier, Anne-Sophie; Duchaine, Jean; Servant, Marc; Bilodeau, Marc; Cohen, Eric; Grandvaux, Nathalie; Lamarre, Daniel

    2013-01-01

    To identify new regulators of antiviral innate immunity, we completed the first genome-wide gene silencing screen assessing the transcriptional response at the interferon-β (IFNB1) promoter following Sendai virus (SeV) infection. We now report a novel link between WNT signaling pathway and the modulation of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)-dependent innate immune responses. Here we show that secretion of WNT2B and WNT9B and stabilization of β-catenin (CTNNB1) upon virus infection negatively regulate expression of representative inducible genes IFNB1, IFIT1 and TNF in a CTNNB1-dependent effector mechanism. The antiviral response is drastically reduced by glycogen synthase kinase 3 (GSK3) inhibitors but restored in CTNNB1 knockdown cells. The findings confirm a novel regulation of antiviral innate immunity by a canonical-like WNT/CTNNB1 signaling pathway. The study identifies novel avenues for broad-spectrum antiviral targets and preventing immune-mediated diseases upon viral infection.

  10. Genome-wide RNAi screen reveals a new role of a WNT/CTNNB1 signaling pathway as negative regulator of virus-induced innate immune responses.

    Directory of Open Access Journals (Sweden)

    Martin Baril

    Full Text Available To identify new regulators of antiviral innate immunity, we completed the first genome-wide gene silencing screen assessing the transcriptional response at the interferon-β (IFNB1 promoter following Sendai virus (SeV infection. We now report a novel link between WNT signaling pathway and the modulation of retinoic acid-inducible gene I (RIG-I-like receptor (RLR-dependent innate immune responses. Here we show that secretion of WNT2B and WNT9B and stabilization of β-catenin (CTNNB1 upon virus infection negatively regulate expression of representative inducible genes IFNB1, IFIT1 and TNF in a CTNNB1-dependent effector mechanism. The antiviral response is drastically reduced by glycogen synthase kinase 3 (GSK3 inhibitors but restored in CTNNB1 knockdown cells. The findings confirm a novel regulation of antiviral innate immunity by a canonical-like WNT/CTNNB1 signaling pathway. The study identifies novel avenues for broad-spectrum antiviral targets and preventing immune-mediated diseases upon viral infection.

  11. Forward genetics screen coupled with whole-genome resequencing identifies novel gene targets for improving heterologous enzyme production in Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Morgann C. [Joint BioEnergy Institute, Emeryville, CA (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Joonhoon [Joint BioEnergy Institute, Emeryville, CA (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lynn, Jed [Joint BioEnergy Institute, Emeryville, CA (United States); Wright-Patterson Air Force Base, Dayton, OH (United States); Simmons, Blake A. [Joint BioEnergy Institute, Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gladden, John M. [Joint BioEnergy Institute, Emeryville, CA (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States); Magnuson, Jon K. [Joint BioEnergy Institute, Emeryville, CA (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baker, Scott E. [Joint BioEnergy Institute, Emeryville, CA (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2018-01-06

    Plant biomass, once reduced to its composite sugars, can be converted to fuel substitutes. One means of overcoming the recalcitrance of lignocellulose is pretreatment followed by enzymatic hydrolysis. However, currently available commercial enzyme cocktails are inhibited in the presence of residual pretreatment chemicals. Recent studies have identified a number of cellulolytic enzymes from bacteria that are tolerant to pretreatment chemicals such as ionic liquids. The challenge now is generation of these enzymes in copious amounts, an arena where fungal organisms such as Aspergillus niger have proven efficient. Fungal host strains still need to be engineered to increase production titers of heterologous protein over native enzymes, which has been a difficult task. Here, we developed a forward genetics screen coupled with whole-genome resequencing to identify specific lesions responsible for a protein hyper-production phenotype in A. niger. This strategy successfully identified novel targets, including a low-affinity glucose transporter, MstC, whose deletion significantly improved secretion of recombinant proteins driven by a glucoamylase promoter.

  12. Non-invasive preimplantation genetic screening using array comparative genomic hybridization on spent culture media: a proof-of-concept pilot study.

    Science.gov (United States)

    Feichtinger, Michael; Vaccari, Enrico; Carli, Luca; Wallner, Elisabeth; Mädel, Ulrike; Figl, Katharina; Palini, Simone; Feichtinger, Wilfried

    2017-06-01

    The aim of this pilot study was to assess if array comparative genomic hybridization (aCGH), non-invasive preimplantation genetic screening (PGS) on blastocyst culture media is feasible. Therefore, aCGH analysis was carried out on 22 spent blastocyst culture media samples after polar body PGS because of advanced maternal age. All oocytes were fertilized by intracytoplasmic sperm injection and all embryos underwent assisted hatching. Concordance of polar body analysis and culture media genetic results was assessed. Thirteen out of 18 samples (72.2%) revealed general concordance of ploidy status (euploid or aneuploid). At least one chromosomal aberration was found concordant in 10 out of 15 embryos found to be aneuploid by both polar body and culture media analysis. Overall, 17 out of 35 (48.6%) single chromosomal aneuploidies were concordant between the culture media and polar body analysis. By analysing negative controls (oocytes with fertilization failure), notable maternal contamination was observed. Therefore, non-invasive PGS could serve as a second matrix after polar body or cleavage stage PGS; however, in euploid results, maternal contamination needs to be considered and results interpreted with caution. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  13. Genome-wide screen for salmonella genes required for long-term systemic infection of the mouse.

    Directory of Open Access Journals (Sweden)

    2006-02-01

    Full Text Available A microarray-based negative selection screen was performed to identify Salmonella enterica serovar Typhimurium (serovar Typhimurium genes that contribute to long-term systemic infection in 129X1/SvJ (Nramp1(r mice. A high-complexity transposon-mutagenized library was used to infect mice intraperitoneally, and the selective disappearance of mutants was monitored after 7, 14, 21, and 28 d postinfection. One hundred and eighteen genes were identified to contribute to serovar Typhimurium infection of the spleens of mice by 28 d postinfection. The negatively selected mutants represent many known aspects of Salmonella physiology and pathogenesis, although the majority of the identified genes are of putative or unknown function. Approximately 30% of the negatively selected genes correspond to horizontally acquired regions such as those within Salmonella pathogenicity islands (SPI 1-5, prophages (Gifsy-1 and -2 and remnant, and the pSLT virulence plasmid. In addition, mutations in genes responsible for outer membrane structure and remodeling, such as LPS- and PhoP-regulated and fimbrial genes, were also selected against. Competitive index experiments demonstrated that the secreted SPI2 effectors SseK2 and SseJ as well as the SPI4 locus are attenuated relative to wild-type bacteria during systemic infection. Interestingly, several SPI1-encoded type III secretion system effectors/translocases are required by serovar Typhimurium to establish and, unexpectedly, to persist systemically, challenging the present description of Salmonella pathogenesis. Moreover, we observed a progressive selection against serovar Typhimurium mutants based upon the duration of the infection, suggesting that different classes of genes may be required at distinct stages of infection. Overall, these data indicate that Salmonella long-term systemic infection in the mouse requires a diverse repertoire of virulence factors. This diversity of genes presumably reflects the fact that

  14. Deorphanizing the human transmembrane genome: A landscape of uncharacterized membrane proteins.

    Science.gov (United States)

    Babcock, Joseph J; Li, Min

    2014-01-01

    The sequencing of the human genome has fueled the last decade of work to functionally characterize genome content. An important subset of genes encodes membrane proteins, which are the targets of many drugs. They reside in lipid bilayers, restricting their endogenous activity to a relatively specialized biochemical environment. Without a reference phenotype, the application of systematic screens to profile candidate membrane proteins is not immediately possible. Bioinformatics has begun to show its effectiveness in focusing the functional characterization of orphan proteins of a particular functional class, such as channels or receptors. Here we discuss integration of experimental and bioinformatics approaches for characterizing the orphan membrane proteome. By analyzing the human genome, a landscape reference for the human transmembrane genome is provided.

  15. A genome-wide RNAi screen identifies FOXO4 as a metastasis-suppressor through counteracting PI3K/AKT signal pathway in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Bing Su

    Full Text Available Activation of the PI3K/AKT signal pathway is a known driving force for the progression to castration-recurrent prostate cancer (CR-CaP, which constitutes the major lethal phenotype of CaP. Here, we identify using a genomic shRNA screen the PI3K/AKT-inactivating downstream target, FOXO4, as a potential CaP metastasis suppressor. FOXO4 protein levels inversely correlate with the invasive potential of a panel of human CaP cell lines, with decreased mRNA levels correlating with increased incidence of clinical metastasis. Knockdown (KD of FOXO4 in human LNCaP cells causes increased invasion in vitro and lymph node (LN metastasis in vivo without affecting indices of proliferation or apoptosis. Increased Matrigel invasiveness was found by KD of FOXO1 but not FOXO3. Comparison of differentially expressed genes affected by FOXO4-KD in LNCaP cells in culture, in primary tumors and in LN metastases identified a panel of upregulated genes, including PIP, CAMK2N1, PLA2G16 and PGC, which, if knocked down by siRNA, could decrease the increased invasiveness associated with FOXO4 deficiency. Although only some of these genes encode FOXO promoter binding sites, they are all RUNX2-inducible, and RUNX2 binding to the PIP promoter is increased in FOXO4-KD cells. Indeed, the forced expression of FOXO4 reversed the increased invasiveness of LNCaP/shFOXO4 cells; the forced expression of FOXO4 did not alter RUNX2 protein levels, yet it decreased RUNX2 binding to the PIP promoter, resulting in PIP downregulation. Finally, there was a correlation between FOXO4, but not FOXO1 or FOXO3, downregulation and decreased metastasis-free survival in human CaP patients. Our data strongly suggest that increased PI3K/AKT-mediated metastatic invasiveness in CaP is associated with FOXO4 loss, and that mechanisms to induce FOXO4 re-expression might suppress CaP metastatic aggressiveness.

  16. Segmenting the human genome based on states of neutral genetic divergence.

    Science.gov (United States)

    Kuruppumullage Don, Prabhani; Ananda, Guruprasad; Chiaromonte, Francesca; Makova, Kateryna D

    2013-09-03

    Many studies have demonstrated that divergence levels generated by different mutation types vary and covary across the human genome. To improve our still-incomplete understanding of the mechanistic basis of this phenomenon, we analyze several mutation types simultaneously, anchoring their variation to specific regions of the genome. Using hidden Markov models on insertion, deletion, nucleotide substitution, and microsatellite divergence estimates inferred from human-orangutan alignments of neutrally evolving genomic sequences, we segment the human genome into regions corresponding to different divergence states--each uniquely characterized by specific combinations of divergence levels. We then parsed the mutagenic contributions of various biochemical processes associating divergence states with a broad range of genomic landscape features. We find that high divergence states inhabit guanine- and cytosine (GC)-rich, highly recombining subtelomeric regions; low divergence states cover inner parts of autosomes; chromosome X forms its own state with lowest divergence; and a state of elevated microsatellite mutability is interspersed across the genome. These general trends are mirrored in human diversity data from the 1000 Genomes Project, and departures from them highlight the evolutionary history of primate chromosomes. We also find that genes and noncoding functional marks [annotations from the Encyclopedia of DNA Elements (ENCODE)] are concentrated in high divergence states. Our results provide a powerful tool for biomedical data analysis: segmentations can be used to screen personal genome variants--including those associated with cancer and other diseases--and to improve computational predictions of noncoding functional elements.

  17. University of Texas Southwestern Medical Center: High-Throughput siRNA Screening of a Non-Small Cell Lung Cancer (NSCLC) Cell Line Panel | Office of Cancer Genomics

    Science.gov (United States)

    The goal of this project is to use siRNA screens to identify NSCLC-selective siRNAs from two genome-wide libraries that will allow us to functionally define genetic dependencies of subtypes of NSCLC. Using bioinformatics tools, the CTD2 center at the University of Texas Southwestern Medical Center are discovering associations between this functional data (siRNAs) and NSCLC mutational status, methylation arrays, gene expression arrays, and copy number variation data that will help us identify new targets and enrollment biomarkers. 

  18. Rumen microbial genomics

    International Nuclear Information System (INIS)

    Morrison, M.; Nelson, K.E.

    2005-01-01

    Improving microbial degradation of plant cell wall polysaccharides remains one of the highest priority goals for all livestock enterprises, including the cattle herds and draught animals of developing countries. The North American Consortium for Genomics of Fibrolytic Ruminal Bacteria was created to promote the sequencing and comparative analysis of rumen microbial genomes, offering the potential to fully assess the genetic potential in a functional and comparative fashion. It has been found that the Fibrobacter succinogenes genome encodes many more endoglucanases and cellodextrinases than previously isolated, and several new processive endoglucanases have been identified by genome and proteomic analysis of Ruminococcus albus, in addition to a variety of strategies for its adhesion to fibre. The ramifications of acquiring genome sequence data for rumen microorganisms are profound, including the potential to elucidate and overcome the biochemical, ecological or physiological processes that are rate limiting for ruminal fibre degradation. (author)

  19. University of Texas MD Anderson Cancer Center: High-Throughput Screening Identifying Driving Mutations in Endometrial Cancer | Office of Cancer Genomics

    Science.gov (United States)

    Recent advances in next-generation sequencing technology have enabled the unprecedented characterization of a full spectrum of somatic alterations in cancer genomes. Given the large numbers of somatic mutations typically detected by this approach, a key challenge in the downstream analysis is to distinguish “drivers” that functionally contribute to tumorigenesis from “passengers” that occur as the consequence of genomic instability.

  20. Biochemical Markers in Neurocritical Care

    Directory of Open Access Journals (Sweden)

    Omidvar Rezae

    2016-07-01

    Full Text Available During the past two decades, a variety of serum or cerebrospinal fluid (CSF biochemical markers in daily clinical practice have been recommended to diagnose and monitor diverse diseases or pathologic situations. It will be essential to develop a panel of biomarkers, to be suitable for evaluation of treatment efficacy, representing distinct phases of injury and recovery and consider the temporal profile of those. Among the possible and different biochemical markers, S100b appeared to fulfill many of optimized criteria of an ideal marker. S100b, a cytosolic low molecular weight dimeric calciumbinding protein from chromosome 21, synthesized in glial cells throughout the CNS, an homodimeric diffusible, belongs to a family of closely related protein, predominantly expressed by astrocytes and Schwann cells and a classic immunohistochemical marker for these cells, is implicated in brain development and neurophysiology. Of the 3 isoforms of S-100, the BB subunit (S100B is present in high concentrations in central and peripheral glial and Schwann cells, Langerhans and anterior pituitary cells, fat, muscle, and bone marrow tissues. The biomarker has shown to be a sensitive marker of clinical and subclinical cerebral damage, such as stroke, traumatic brain injury, and spinal cord injury. Increasing evidence suggests that the biomarker plays a double function as an intracellular regulator and an extracellular signal of the CNS. S100b is found in the cytoplasm in a soluble form and also is associated with intracellular membranes, centrosomes, microtubules, and type III intermediate filaments. Their genomic organization now is known, and many of their target proteins have been identified, although the mechanisms of regulating S100b secretion are not completely understood and appear to be related to many factors, such as the proinflammatory cytokines, tumor necrosis factor alpha (TNF-a, interleukin (IL-1b, and metabolic stress. 

  1. Measures of Biochemical Sociology

    Science.gov (United States)

    Snell, Joel; Marsh, Mitchell

    2008-01-01

    In a previous article, the authors introduced a new sub field in sociology that we labeled "biochemical sociology." We introduced the definition of a sociology that encompasses sociological measures, psychological measures, and biological indicators Snell & Marsh (2003). In this article, we want to demonstrate a research strategy that would assess…

  2. Depression Screening

    Science.gov (United States)

    ... Depression Screening Substance Abuse Screening Alcohol Use Screening Depression Screening (PHQ-9) - Instructions The following questions are ... this tool, there is also text-only version . Depression Screening - Manual Instructions The following questions are a ...

  3. High-throughput screening of carbohydrate-degrading enzymes using novel insoluble chromogenic substrate assay kits

    DEFF Research Database (Denmark)

    Schückel, Julia; Kracun, Stjepan Kresimir; Willats, William George Tycho

    2016-01-01

    for this is that advances in genome and transcriptome sequencing, together with associated bioinformatics tools allow for rapid identification of candidate CAZymes, but technology for determining an enzyme's biochemical characteristics has advanced more slowly. To address this technology gap, a novel high-throughput assay...... CPH and ICB substrates are provided in a 96-well high-throughput assay system. The CPH substrates can be made in four different colors, enabling them to be mixed together and thus increasing assay throughput. The protocol describes a 96-well plate assay and illustrates how this assay can be used...... for screening the activities of enzymes, enzyme cocktails, and broths....

  4. Functional toxicogenomic assessment of triclosan in human HepG2 cells using genome-wide CRISPR-Cas9 screen

    Science.gov (United States)

    Thousands of chemicals for which limited toxicological data are available are used and then detected in humans and the environment. Rapid and cost-effective approaches for assessing the toxicological properties of chemicals are needed. We used CRISPR-Cas9 functional genomic scree...

  5. Cpf1-Database: web-based genome-wide guide RNA library design for gene knockout screens using CRISPR-Cpf1.

    Science.gov (United States)

    Park, Jeongbin; Bae, Sangsu

    2018-03-15

    Following the type II CRISPR-Cas9 system, type V CRISPR-Cpf1 endonucleases have been found to be applicable for genome editing in various organisms in vivo. However, there are as yet no web-based tools capable of optimally selecting guide RNAs (gRNAs) among all possible genome-wide target sites. Here, we present Cpf1-Database, a genome-wide gRNA library design tool for LbCpf1 and AsCpf1, which have DNA recognition sequences of 5'-TTTN-3' at the 5' ends of target sites. Cpf1-Database provides a sophisticated but simple way to design gRNAs for AsCpf1 nucleases on the genome scale. One can easily access the data using a straightforward web interface, and using the powerful collections feature one can easily design gRNAs for thousands of genes in short time. Free access at http://www.rgenome.net/cpf1-database/. sangsubae@hanyang.ac.kr.

  6. A massive incorporation of microbial genes into the genome of Tetranychus urticae, a polyphagous arthropod herbivore.

    Science.gov (United States)

    Wybouw, N; Van Leeuwen, T; Dermauw, W

    2018-06-01

    A number of horizontal gene transfers (HGTs) have been identified in the spider mite Tetranychus urticae, a chelicerate herbivore. However, the genome of this mite species has at present not been thoroughly mined for the presence of HGT genes. Here, we performed a systematic screen for HGT genes in the T. urticae genome using the h-index metric. Our results not only validated previously identified HGT genes but also uncovered 25 novel HGT genes. In addition to HGT genes with a predicted biochemical function in carbohydrate, lipid and folate metabolism, we also identified the horizontal transfer of a ketopantoate hydroxymethyltransferase and a pantoate β-alanine ligase gene. In plants and bacteria, both genes are essential for vitamin B5 biosynthesis and their presence in the mite genome strongly suggests that spider mites, similar to Bemisia tabaci and nematodes, can synthesize their own vitamin B5. We further show that HGT genes were physically embedded within the mite genome and were expressed in different life stages. By screening chelicerate genomes and transcriptomes, we were able to estimate the evolutionary histories of these HGTs during chelicerate evolution. Our study suggests that HGT has made a significant and underestimated impact on the metabolic repertoire of plant-feeding spider mites. © 2018 The Royal Entomological Society.

  7. Recent advances in biochemical and molecular diagnostics for the rapid detection of antibiotic-resistant Enterobacteriaceae: a focus on ß-lactam resistance.

    Science.gov (United States)

    Decousser, Jean-Winoc; Poirel, Laurent; Nordmann, Patrice

    2017-04-01

    The rapid detection of resistance is a challenge for clinical microbiologists who wish to prevent deleterious individual and collective consequences such as (i) delaying efficient antibiotic therapy, which worsens the survival rate of the most severely ill patients, or (ii) delaying the isolation of the carriers of multidrug-resistant bacteria and promoting outbreaks; this last consequence is of special concern, and there are an increasing number of approaches and market-based solutions in response. Areas covered: From simple, cheap biochemical tests to whole-genome sequencing, clinical microbiologists must select the most adequate phenotypic and genotypic tools to promptly detect and confirm β-lactam resistance from cultivated bacteria or from clinical specimens. Here, the authors review the published literature from the last 5 years about the primary technical approaches and commercial laboratory reagents for these purposes, including molecular, biochemical and immune assays. Furthermore, the authors discuss their intrinsic and relative performance, and we challenge their putative clinical impact. Expert commentary: Until the availability of fully automated wet and dry whole genome sequencing solutions, microbiologists should focus on inexpensive biochemical tests for cultured isolates or monomicrobial clinical specimen and on using the expensive molecular PCR-based strategies for the targeted screening of complex biological environments.

  8. Lipoprotein (a) and biochemical parameters in elderly

    OpenAIRE

    Yuttana Sudjaroen

    2016-01-01

    Background: Lipoprotein (a) [Lp(a)] is an low-density lipoprotein like particle and is an important independent risk factor for coronary artery diseases (CAD). Few studies on Lp(a) level in Thai elderly to screening risk of CAD may concerned. Aims: To study the relation of Lp(a) level and routine biochemical parameters including lipid profiles and fasting blood glucose in elderly and to determine risk of subclinical symptoms by using Lp(a) levels as early risk predictor. Settings and Design: ...

  9. Screening strategies for gestational diabetes mellitus at the Aga ...

    African Journals Online (AJOL)

    Background: Universal screening strategy for gestational diabetes mellitus offers biochemical screening to all women irrespective of risk factor status while selective strategy screens only those with risk factors. The Aga Khan University Hospital adopted a selective screening protocol by consensus. This study compares both ...

  10. Saúde pública e ética na era da medicina genômica: rastreamentos genéticos Public health and ethics in the age of genomic medicine: genetic screening

    Directory of Open Access Journals (Sweden)

    Flavia Miranda Gomes de Constantino Bandeira

    2006-03-01

    Full Text Available O presente artigo tem como objetivo contextualizar o campo da saúde pública diante dos grandes avanços da biotecnologia e genética aplicada, destacando elementos para a problematização do tema tais como benefícios e questões éticas relacionados aos rastreamentos genéticos. O Projeto Genoma Humano gerou várias expectativas, dentre elas, a possibilidade de rastrear genes associados a doenças e comportamentos, e mais ainda, de intervir geneticamente no ser humano, levantando preocupações relativas ao renascimento da eugenia, ao aconselhamento genético, e ao uso da informação genética como critério de acesso aos planos de saúde e postos de trabalho. Uma discussão de todos esses tópicos é essencial para que a saúde pública seja beneficiada com as informações obtidas através da análise genômica das populações.This article has the objective to bring the field of public health into context in the face of the great advances of biotechnology and applied genetics, focusing on issues related to the theme such as benefits and ethics concerning genetic screening. The Human Genome Project has generated many expectations among which the possibility of screening genes associated to diseases and behaviors, moreover, the possibility of genetic interventions on humans, creating concerns related to the resurgence of Eugenia, of genetic counseling and the use of genetic information as a standard for access to healthcare clinics and jobs. The discussion of all these issues is essential to benefit public health with information obtained through population genomic analysis.

  11. Biochemical Hypermedia: Galactose Metabolism.

    Directory of Open Access Journals (Sweden)

    J.K. Sugai

    2013-05-01

    Full Text Available Introduction: Animations of biochemical processes and virtual laboratory environments lead to true molecular simulations. The use of interactive software’s in education can improve cognitive capacity, better learning and, mainly, it makes information acquisition easier. Material and Methods: This work presents the development of a biochemical hypermedia to understanding of the galactose metabolism. It was developed with the help of concept maps, ISIS Draw, ADOBE Photoshop and FLASH MX Program. Results and Discussion: A step by step animation process shows the enzymatic reactions of galactose conversion to glucose-1-phosphate (to glycogen synthesis, glucose-6-phosphate (glycolysis intermediary, UDP-galactose (substrate to mucopolysaccharides synthesis and collagen’s glycosylation. There are navigation guide that allow scrolling the mouse over the names of the components of enzymatic reactions of via the metabolism of galactose. Thus, explanatory text box, chemical structures and animation of the actions of enzymes appear to navigator. Upon completion of the module, the user’s response to the proposed exercise can be checked immediately through text box with interactive content of the answer. Conclusion: This hypermedia was presented for undergraduate students (UFSC who revealed that it was extremely effective in promoting the understanding of the theme.

  12. Affinity selection-mass spectrometry and its emerging application to the high throughput screening of G protein-coupled receptors.

    Science.gov (United States)

    Whitehurst, Charles E; Annis, D Allen

    2008-07-01

    Advances in combinatorial chemistry and genomics have inspired the development of novel affinity selection-based screening techniques that rely on mass spectrometry to identify compounds that preferentially bind to a protein target. Of the many affinity selection-mass spectrometry techniques so far documented, only a few solution-based implementations that separate target-ligand complexes away from unbound ligands persist today as routine high throughput screening platforms. Because affinity selection-mass spectrometry techniques do not rely on radioactive or fluorescent reporters or enzyme activities, they can complement traditional biochemical and cell-based screening assays and enable scientists to screen targets that may not be easily amenable to other methods. In addition, by employing mass spectrometry for ligand detection, these techniques enable high throughput screening of massive library collections of pooled compound mixtures, vastly increasing the chemical space that a target can encounter during screening. Of all drug targets, G protein coupled receptors yield the highest percentage of therapeutically effective drugs. In this manuscript, we present the emerging application of affinity selection-mass spectrometry to the high throughput screening of G protein coupled receptors. We also review how affinity selection-mass spectrometry can be used as an analytical tool to guide receptor purification, and further used after screening to characterize target-ligand binding interactions, enabling the classification of orthosteric and allosteric binders.

  13. Galactosemia: A strategy to identify new biochemical phenotypes and molecular genotypes

    Energy Technology Data Exchange (ETDEWEB)

    Elsas, L.J.; Langley, S.; Steele, E.; Evinger, J.; Brown, A.; Singh, R.; Fernhoff, P.; Hjelm, L.N.; Dembure, P.P.; Fridovich-Keil, J.L. [Emory Univ. School of Medicine, Atlanta, GA (United States)

    1995-03-01

    We describe a stratagem for identifying new mutations in the galactose-1-phosphate uridyl transferase (GALT) gene. GALT enzyme activity and isoforms were defined in erythrocytes from probands and their first-degree relatives. If the biochemical phenotypes segregated in an autosomal recesssive pattern, we screened for common mutations by using multiplex PCR and restriction endonuclease digestions. If common mutant alleles were not present, the 11 exons of the GALT gene were amplified by PCR, and variations from the normal nucleotide sequences were identified by SSCP. The suspected region(s) was then analyzed by direct DNA sequencing. We identified 86 mutant GALT alleles that reduced erythrocyte GALT activity. Seventy-five of these GALT genomes had abnormal SSCP patterns, of which 41 were sequenced, yielding 12 new and 21 previously reported, rare mutations. Among the novel group of 12 new mutations, an unusual biochemical phenotype was found in a family whose newborn proband has classical galactosemia. He had inherited two mutations in cis (N314D-E204K) from his father, whose GALT activity was near normal, and an additional GALT mutation in the splice-acceptor site of intron C (IVSC) from his mother. The substitution of a positively charged E204K mutation created a unique isoform-banding pattern. An asymptomatic sister`s GALT genes carries three mutations (E203K-N314D/N314D) with eight distinct isoform bands. Surprisingly, her erythrocytes have normal GALT activity. We conclude that the synergism of pedigree, biochemical, SSCP, and direct GALT gene analyses is an efficient protocol for identifying new mutations and speculate that E203K and N314D codon changes produce intra-allelic complementation when in cis. 40 refs., 4 figs., 3 tabs.

  14. A genome-wide screen in human embryonic stem cells reveals novel sites of allele-specific histone modification associated with known disease loci

    LENUS (Irish Health Repository)

    Prendergast, James G D

    2012-05-19

    AbstractBackgroundChromatin structure at a given site can differ between chromosome copies in a cell, and such imbalances in chromatin structure have been shown to be important in understanding the molecular mechanisms controlling several disease loci. Human genetic variation, DNA methylation, and disease have been intensely studied, uncovering many sites of allele-specific DNA methylation (ASM). However, little is known about the genome-wide occurrence of sites of allele-specific histone modification (ASHM) and their relationship to human disease. The aim of this study was to investigate the extent and characteristics of sites of ASHM in human embryonic stem cells (hESCs).ResultsUsing a statistically rigorous protocol, we investigated the genomic distribution of ASHM in hESCs, and their relationship to sites of allele-specific expression (ASE) and DNA methylation. We found that, although they were rare, sites of ASHM were substantially enriched at loci displaying ASE. Many were also found at known imprinted regions, hence sites of ASHM are likely to be better markers of imprinted regions than sites of ASM. We also found that sites of ASHM and ASE in hESCs colocalize at risk loci for developmental syndromes mediated by deletions, providing insights into the etiology of these disorders.ConclusionThese results demonstrate the potential importance of ASHM patterns in the interpretation of disease loci, and the protocol described provides a basis for similar studies of ASHM in other cell types to further our understanding of human disease susceptibility.

  15. snoSeeker: an advanced computational package for screening of guide and orphan snoRNA genes in the human genome

    OpenAIRE

    Yang, Jian-Hua; Zhang, Xiao-Chen; Huang, Zhan-Peng; Zhou, Hui; Huang, Mian-Bo; Zhang, Shu; Chen, Yue-Qin; Qu, Liang-Hu

    2006-01-01

    Small nucleolar RNAs (snoRNAs) represent an abundant group of non-coding RNAs in eukaryotes. They can be divided into guide and orphan snoRNAs according to the presence or absence of antisense sequence to rRNAs or snRNAs. Current snoRNA-searching programs, which are essentially based on sequence complementarity to rRNAs or snRNAs, exist only for the screening of guide snoRNAs. In this study, we have developed an advanced computational package, snoSeeker, which includes CDseeker and ACAseeker ...

  16. Implantable biochemical fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Richter, G; Rao, J R

    1978-01-05

    Implantable biochemical fuel cells for the operation of heart pacemakers or artificial hearts convert oxidisable body substances such as glucose on the anode side and reduce the oxygen contained in body fluids at the cathode. The anode and cathode are separated by membranes which are impermeable to albumen and blood corpuscles in body fluids. A chemical shortcircuit cannot occur in practice if, according to the invention, one or more selective oxygen electrodes with carbon as catalyst are arranged so that the mixture which diffuses into the cell from body fluids during operation reaches the fuel cell electrode through the porous oxygen electrode. The membranes used must be permeable to water. Cellulose, polymerised polyvinyl alcohol or an ion exchanger with a buffering capacity between pH5 and 8 act as permeable materials.

  17. Genome-Wide Screening of Genes Showing Altered Expression in Liver Metastases of Human Colorectal Cancers by cDNA Microarray

    Directory of Open Access Journals (Sweden)

    Rempei Yanagawa

    2001-01-01

    Full Text Available In spite of intensive and increasingly successful attempts to determine the multiple steps involved in colorectal carcinogenesis, the mechanisms responsible for metastasis of colorectal tumors to the liver remain to be clarified. To identify genes that are candidates for involvement in the metastatic process, we analyzed genome-wide expression profiles of 10 primary colorectal cancers and their corresponding metastatic lesions by means of a cDNA microarray consisting of 9121 human genes. This analysis identified 40 genes whose expression was commonly upregulated in metastatic lesions, and 7 that were commonly downregulated. The upregulated genes encoded proteins involved in cell adhesion, or remodeling of the actin cytoskeleton. Investigation of the functions of more of the altered genes should improve our understanding of metastasis and may identify diagnostic markers and/or novel molecular targets for prevention or therapy of metastatic lesions.

  18. Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae.

    Science.gov (United States)

    Endo, Ayako; Nakamura, Toshihide; Ando, Akira; Tokuyasu, Ken; Shima, Jun

    2008-04-15

    Lignocellulosic materials are abundant and among the most important potential sources for bioethanol production. Although the pretreatment of lignocellulose is necessary for efficient saccharification and fermentation, numerous by-products, including furan derivatives, weak acids, and phenolic compounds, are generated in the pretreatment step. Many of these components inhibit the growth and fermentation of yeast. In particular, vanillin is one of the most effective inhibitors in lignocellulose hydrolysates because it inhibits fermentation at very low concentrations. To identify the genes required for tolerance to vanillin, we screened a set of diploid yeast deletion mutants, which are powerful tools for clarifying the function of particular genes. Seventy-six deletion mutants were identified as vanillin-sensitive mutants. The numerous deleted genes in the vanillin-sensitive mutants were classified under the functional categories for 'chromatin remodeling' and 'vesicle transport', suggesting that these functions are important for vanillin tolerance. The cross-sensitivity of the vanillin-sensitive mutants to furan derivatives, weak acids, and phenolic compounds was also examined. Genes for ergosterol biosynthesis were required for tolerance to all inhibitory compounds tested, suggesting that ergosterol is a key component of tolerance to various inhibitors. Our analysis predicts that vanillin tolerance in Saccharomyces cerevisiae is affected by various complicated processes that take place on both the molecular and the cellular level. In addition, the ergosterol biosynthetic process is important for achieving a tolerance to various inhibitors. Our findings provide a biotechnological basis for the molecular engineering as well as for screening of more robust yeast strains that may potentially be useful in bioethanol fermentation.

  19. Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Tokuyasu Ken

    2008-04-01

    Full Text Available Abstract Background Lignocellulosic materials are abundant and among the most important potential sources for bioethanol production. Although the pretreatment of lignocellulose is necessary for efficient saccharification and fermentation, numerous by-products, including furan derivatives, weak acids, and phenolic compounds, are generated in the pretreatment step. Many of these components inhibit the growth and fermentation of yeast. In particular, vanillin is one of the most effective inhibitors in lignocellulose hydrolysates because it inhibits fermentation at very low concentrations. To identify the genes required for tolerance to vanillin, we screened a set of diploid yeast deletion mutants, which are powerful tools for clarifying the function of particular genes. Results Seventy-six deletion mutants were identified as vanillin-sensitive mutants. The numerous deleted genes in the vanillin-sensitive mutants were classified under the functional categories for 'chromatin remodeling' and 'vesicle transport', suggesting that these functions are important for vanillin tolerance. The cross-sensitivity of the vanillin-sensitive mutants to furan derivatives, weak acids, and phenolic compounds was also examined. Genes for ergosterol biosynthesis were required for tolerance to all inhibitory compounds tested, suggesting that ergosterol is a key component of tolerance to various inhibitors. Conclusion Our analysis predicts that vanillin tolerance in Saccharomyces cerevisiae is affected by various complicated processes that take place on both the molecular and the cellular level. In addition, the ergosterol biosynthetic process is important for achieving a tolerance to various inhibitors. Our findings provide a biotechnological basis for the molecular engineering as well as for screening of more robust yeast strains that may potentially be useful in bioethanol fermentation.

  20. Purification and enzymatic characterization of secretory glycoside hydrolase family 3 (GH3) aryl β-glucosidases screened from Aspergillus oryzae genome.

    Science.gov (United States)

    Kudo, Kanako; Watanabe, Akira; Ujiie, Seiryu; Shintani, Takahiro; Gomi, Katsuya

    2015-12-01

    By a global search of the genome database of Aspergillus oryzae, we found 23 genes encoding putative β-glucosidases, among which 10 genes with a signal peptide belonging to glycoside hydrolase family 3 (GH3) were overexpressed in A. oryzae using the improved glaA gene promoter. Consequently, crude enzyme preparations from three strains, each harboring the genes AO090038000223 (bglA), AO090103000127 (bglF), and AO090003001511 (bglJ), showed a substrate preference toward p-nitrophenyl-β-d-glucopyranoside (pNPGlc) and thus were purified to homogeneity and enzymatically characterized. All the purified enzymes (BglA, BglF, and BglJ) preferentially hydrolyzed aryl β-glycosides, including pNPGlc, rather than cellobiose, and these enzymes were proven to be aryl β-glucosidases. Although the specific activity of BglF toward all the substrates tested was significantly low, BglA and BglJ showed appreciably high activities toward pNPGlc and arbutin. The kinetic parameters of BglA and BglJ for pNPGlc suggested that both the enzymes had relatively higher hydrolytic activity toward pNPGlc among the fungal β-glucosidases reported. The thermal and pH stabilities of BglA were higher than those of BglJ, and BglA was particularly stable in a wide pH range (pH 4.5-10). In contrast, BglJ was the most heat- and alkaline-labile among the three β-glucosidases. Furthermore, BglA was more tolerant to ethanol than BglJ; as a result, it showed much higher hydrolytic activity toward isoflavone glycosides in the presence of ethanol than BglJ. This study suggested that the mining of novel β-glucosidases exhibiting higher activity from microbial genome sequences is of great use for the production of beneficial compounds such as isoflavone aglycones. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Modular evolution of glutathione peroxidase genes in association with different biochemical properties of their encoded proteins in invertebrate animals

    Directory of Open Access Journals (Sweden)

    Zo Young-Gun

    2009-04-01

    Full Text Available Abstract Background Phospholipid hydroperoxide glutathione peroxidases (PHGPx, the most abundant isoforms of GPx families, interfere directly with hydroperoxidation of lipids. Biochemical properties of these proteins vary along with their donor organisms, which has complicated the phylogenetic classification of diverse PHGPx-like proteins. Despite efforts for comprehensive analyses, the evolutionary aspects of GPx genes in invertebrates remain largely unknown. Results We isolated GPx homologs via in silico screening of genomic and/or expressed sequence tag databases of eukaryotic organisms including protostomian species. Genes showing strong similarity to the mammalian PHGPx genes were commonly found in all genomes examined. GPx3- and GPx7-like genes were additionally detected from nematodes and platyhelminths, respectively. The overall distribution of the PHGPx-like proteins with different biochemical properties was biased across taxa; selenium- and glutathione (GSH-dependent proteins were exclusively detected in platyhelminth and deuterostomian species, whereas selenium-independent and thioredoxin (Trx-dependent enzymes were isolated in the other taxa. In comparison of genomic organization, the GSH-dependent PHGPx genes showed a conserved architectural pattern, while their Trx-dependent counterparts displayed complex exon-intron structures. A codon for the resolving Cys engaged in reductant binding was found to be substituted in a series of genes. Selection pressure to maintain the selenocysteine codon in GSH-dependent genes also appeared to be relaxed during their evolution. With the dichotomized fashion in genomic organizations, a highly polytomic topology of their phylogenetic trees implied that the GPx genes have multiple evolutionary intermediate forms. Conclusion Comparative analysis of invertebrate GPx genes provides informative evidence to support the modular pathways of GPx evolution, which have been accompanied with sporadic

  2. The impact of TEL-AML1 (ETV6-RUNX1) expression in precursor B cells and implications for leukaemia using three different genome-wide screening methods

    International Nuclear Information System (INIS)

    Linka, Y; Ginzel, S; Krüger, M; Novosel, A; Gombert, M; Kremmer, E; Harbott, J; Thiele, R; Borkhardt, A; Landgraf, P

    2013-01-01

    The reciprocal translocation t(12;21)(p13;q22), the most common structural genomic alteration in B-cell precursor acute lymphoblastic leukaemia in children, results in a chimeric transcription factor TEL-AML1 (ETV6-RUNX1). We identified directly and indirectly regulated target genes utilizing an inducible TEL-AML1 system derived from the murine pro B-cell line BA/F3 and a monoclonal antibody directed against TEL-AML1. By integration of promoter binding identified with chromatin immunoprecipitation (ChIP)-on-chip, gene expression and protein output through microarray technology and stable labelling of amino acids in cell culture, we identified 217 directly and 118 indirectly regulated targets of the TEL-AML1 fusion protein. Directly, but not indirectly, regulated promoters were enriched in AML1-binding sites. The majority of promoter regions were specific for the fusion protein and not bound by native AML1 or TEL. Comparison with gene expression profiles from TEL-AML1-positive patients identified 56 concordantly misregulated genes with negative effects on proliferation and cellular transport mechanisms and positive effects on cellular migration, and stress responses including immunological responses. In summary, this work for the first time gives a comprehensive insight into how TEL-AML1 expression may directly and indirectly contribute to alter cells to become prone for leukemic transformation

  3. A whole genome screening and RNA interference identify a juvenile hormone esterase-like gene of the diamondback moth, Plutella xylostella.

    Science.gov (United States)

    Gu, Xiaojun; Kumar, Sunil; Kim, Eunjin; Kim, Yonggyun

    2015-09-01

    Juvenile hormone (JH) plays a crucial role in preventing precocious metamorphosis and stimulating reproduction. Thus, its hemolymph titer should be under a tight control. As a negative controller, juvenile hormone esterase (JHE) performs a rapid breakdown of residual JH in the hemolymph during last instar to induce a larval-to-pupal metamorphosis. A whole genome of the diamondback moth (DBM), Plutella xylostella, has been annotated and proposed 11 JHE candidates. Sequence analysis using conserved motifs commonly found in other JHEs proposed a putative JHE (Px004817). Px004817 (64.61 kDa, pI=5.28) exhibited a characteristic JHE expression pattern by showing high peak at the early last instar, at which JHE enzyme activity was also at a maximal level. RNA interference of Px004817 reduced JHE activity and interrupted pupal development with a significant increase of larval period. This study identifies Px004817 as a JHE-like gene of P. xylostella. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Diagnosis Of Inherited Neurometabolic Disorders : A Biochemical Approach

    Directory of Open Access Journals (Sweden)

    Christopher R

    1999-01-01

    Full Text Available The past two decades have witnessed a rapid increase in the knowledge of the inherited neurometabolic disorders. The precise diagnosis of these disorders which is a challenge to the physician can be best accomplished by biochemical methods. Screening of clinically selected patients with simple chemical urine tests and routine blood chemistry investigations followed by measurement of specific metabolites and assay of the relevant enzymes confirms the diagnosis in most cases. Biochemical diagnosis of inherited neurometabolic disorders although expensive is rapid and confirmatory and therefore aids in treatment and further prevention of these rare disorders.

  5. Development of a High-Throughput Screen for Inhibitors of Epstein-Barr Virus EBNA1

    Science.gov (United States)

    Thompson, Scott; Messick, Troy; Schultz, David C.; Reichman, Melvin; Lieberman, Paul M.

    2012-01-01

    Latent infection with Epstein-Barr Virus (EBV) is a carcinogenic cofactor in several lymphoid and epithelial cell malignancies. At present, there are no small molecule inhibitors that specifically target EBV latent infection or latency-associated oncoproteins. EBNA1 is an EBV-encoded sequence-specific DNA-binding protein that is consistently expressed in EBV-associated tumors and required for stable maintenance of the viral genome in proliferating cells. EBNA1 is also thought to provide cell survival function in latently infected cells. In this work we describe the development of a biochemical high-throughput screening (HTS) method using a homogenous fluorescence polarization (FP) assay monitoring EBNA1 binding to its cognate DNA binding site. An FP-based counterscreen was developed using another EBV-encoded DNA binding protein, Zta, and its cognate DNA binding site. We demonstrate that EBNA1 binding to a fluorescent labeled DNA probe provides a robust assay with a Z-factor consistently greater than 0.6. A pilot screen of a small molecule library of ~14,000 compounds identified 3 structurally related molecules that selectively inhibit EBNA1, but not Zta. All three compounds had activity in a cell-based assay specific for the disruption of EBNA1 transcription repression function. One of the compounds was effective in reducing EBV genome copy number in Raji Burkitt lymphoma cells. These experiments provide a proof-of-concept that small molecule inhibitors of EBNA1 can be identified by biochemical high-throughput screening of compound libraries. Further screening in conjunction with medicinal chemistry optimization may provide a selective inhibitor of EBNA1 and EBV latent infection. PMID:20930215

  6. Application of a Combination of a Knowledge-Based Algorithm and 2-Stage Screening to Hypothesis-Free Genomic Data on Irinotecan-Treated Patients for Identification of a Candidate Single Nucleotide Polymorphism Related to an Adverse Effect

    Science.gov (United States)

    Takahashi, Hiro; Sai, Kimie; Saito, Yoshiro; Kaniwa, Nahoko; Matsumura, Yasuhiro; Hamaguchi, Tetsuya; Shimada, Yasuhiro; Ohtsu, Atsushi; Yoshino, Takayuki; Doi, Toshihiko; Okuda, Haruhiro; Ichinohe, Risa; Takahashi, Anna; Doi, Ayano; Odaka, Yoko; Okuyama, Misuzu; Saijo, Nagahiro; Sawada, Jun-ichi; Sakamoto, Hiromi; Yoshida, Teruhiko

    2014-01-01

    Interindividual variation in a drug response among patients is known to cause serious problems in medicine. Genomic information has been proposed as the basis for “personalized” health care. The genome-wide association study (GWAS) is a powerful technique for examining single nucleotide polymorphisms (SNPs) and their relationship with drug response variation; however, when using only GWAS, it often happens that no useful SNPs are identified due to multiple testing problems. Therefore, in a previous study, we proposed a combined method consisting of a knowledge-based algorithm, 2 stages of screening, and a permutation test for identifying SNPs. In the present study, we applied this method to a pharmacogenomics study where 109,365 SNPs were genotyped using Illumina Human-1 BeadChip in 168 cancer patients treated with irinotecan chemotherapy. We identified the SNP rs9351963 in potassium voltage-gated channel subfamily KQT member 5 (KCNQ5) as a candidate factor related to incidence of irinotecan-induced diarrhea. The p value for rs9351963 was 3.31×10−5 in Fisher's exact test and 0.0289 in the permutation test (when multiple testing problems were corrected). Additionally, rs9351963 was clearly superior to the clinical parameters and the model involving rs9351963 showed sensitivity of 77.8% and specificity of 57.6% in the evaluation by means of logistic regression. Recent studies showed that KCNQ4 and KCNQ5 genes encode members of the M channel expressed in gastrointestinal smooth muscle and suggested that these genes are associated with irritable bowel syndrome and similar peristalsis diseases. These results suggest that rs9351963 in KCNQ5 is a possible predictive factor of incidence of diarrhea in cancer patients treated with irinotecan chemotherapy and for selecting chemotherapy regimens, such as irinotecan alone or a combination of irinotecan with a KCNQ5 opener. Nonetheless, clinical importance of rs9351963 should be further elucidated. PMID:25127363

  7. Designing Epigenome Editors: Considerations of Biochemical and Locus Specificities.

    Science.gov (United States)

    Sen, Dilara; Keung, Albert J

    2018-01-01

    The advent of locus-specific protein recruitment technologies has enabled a new class of studies in chromatin biology. Epigenome editors enable biochemical modifications of chromatin at almost any specific endogenous locus. Their locus specificity unlocks unique information including the functional roles of distinct modifications at specific genomic loci. Given the growing interest in using these tools for biological and translational studies, there are many specific design considerations depending on the scientific question or clinical need. Here we present and discuss important design considerations and challenges regarding the biochemical and locus specificities of epigenome editors. These include how to account for the complex biochemical diversity of chromatin; control for potential interdependency of epigenome editors and their resultant modifications; avoid sequestration effects; quantify the locus specificity of epigenome editors; and improve locus specificity by considering concentration, affinity, avidity, and sequestration effects.

  8. Biochemical research elucidating metabolic pathways in Pneumocystis*

    Directory of Open Access Journals (Sweden)

    Kaneshiro E.S.

    2010-12-01

    Full Text Available Advances in sequencing the Pneumocystis carinii genome have helped identify potential metabolic pathways operative in the organism. Also, data from characterizing the biochemical and physiological nature of these organisms now allow elucidation of metabolic pathways as well as pose new challenges and questions that require additional experiments. These experiments are being performed despite the difficulty in doing experiments directly on this pathogen that has yet to be subcultured indefinitely and produce mass numbers of cells in vitro. This article reviews biochemical approaches that have provided insights into several Pneumocystis metabolic pathways. It focuses on 1 S-adenosyl-L-methionine (AdoMet; SAM, which is a ubiquitous participant in numerous cellular reactions; 2 sterols: focusing on oxidosqualene cyclase that forms lanosterol in P. carinii; SAM:sterol C-24 methyltransferase that adds methyl groups at the C-24 position of the sterol side chain; and sterol 14α-demethylase that removes a methyl group at the C-14 position of the sterol nucleus; and 3 synthesis of ubiquinone homologs, which play a pivotal role in mitochondrial inner membrane and other cellular membrane electron transport.

  9. A re-assessment of biochemical marker distributions in T21 affected and unaffected twin pregnancies in the first trimester

    DEFF Research Database (Denmark)

    Madsen, Helen Nordahl; Ball, Susan; Wright, Dave

    2011-01-01

    OBJECTIVE: To estimate the difference between levels of the two biochemical markers pregnancy-associated plasma protein-A (PAPP-A) and maternal serum free β-human chorionic gonadotropin (free β-hCG) in twin pregnancies relative to singleton pregnancies and establish an improved screening procedure...... of the biochemical markers were calculated. Detection rates and false-positive rates were estimated for screening tests incorporating nuchal translucency and maternal age, with and without biochemistry. RESULTS: Medians for the two biochemical markers for monochorionic and dichorionic twins in unaffected pregnancies......-trimester screening for chromosomal abnormalities in twins to a level comparable with that in singleton pregnancies....

  10. Impact of human genome initiative-derived technology on genetic testing, screening and counseling: Cultural, ethical and legal issues. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Trottier, R.W.; Hodgin, F.C.; Imara, M.; Phoenix, D.; Lybrook, S. [Morehouse Coll., Atlanta, GA (United States). School of Medicine; Crandall, L.A.; Moseley, R.E.; Armotrading, D. [Florida Univ., Gainesville, FL (United States). Coll. of Medicine

    1993-03-01

    Genetic medical services provided by the Georgia Division of Public Health in two northern and two central districts are compared to services provided in a district in which a tertiary care facility is located. Genetics outreach public health nurses play key roles in Georgia`s system of Children`s Health Services Genetics Program, including significant roles as counselors and information sources on special needs social services and support organizations. Unique features of individual health districts, (e.g., the changing face of some rural communities in ethnocultural diversity and socioeconomic character), present new challenges to current and future genetics services delivery. Preparedness as to educational needs of both health professionals and the lay population is of foremost concern in light of the ever expanding knowledge and technology in medical genetics. Perspectives on genetics and an overview of services offered by a local private sector counselor are included for comparison to state supported services. The nature of the interactions which transpire between private and public genetic services resources in Georgia will be described. A special focus of this research includes issues associated with sickle cell disease newborn screening service delivery process in Georgia, with particular attention paid to patient follow-up and transition to primary care. Of particular interest to this focus is the problem of loss to follow-up in the current system. Critical factors in education and counseling of sickle cell patients and the expectations of expanding roles of primary care physicians are discussed. The Florida approach to the delivery of genetic services contrasts to the Georgia model by placing more emphasis on a consultant-specialist team approach.

  11. Preimplantation genetic screening.

    Science.gov (United States)

    Harper, Joyce C

    2018-03-01

    Preimplantation genetic diagnosis was first successfully performed in 1989 as an alternative to prenatal diagnosis for couples at risk of transmitting a genetic or chromosomal abnormality, such as cystic fibrosis, to their child. From embryos generated in vitro, biopsied cells are genetically tested. From the mid-1990s, this technology has been employed as an embryo selection tool for patients undergoing in vitro fertilisation, screening as many chromosomes as possible, in the hope that selecting chromosomally normal embryos will lead to higher implantation and decreased miscarriage rates. This procedure, preimplantation genetic screening, was initially performed using fluorescent in situ hybridisation, but 11 randomised controlled trials of screening using this technique showed no improvement in in vitro fertilisation delivery rates. Progress in genetic testing has led to the introduction of array comparative genomic hybridisation, quantitative polymerase chain reaction, and next generation sequencing for preimplantation genetic screening, and three small randomised controlled trials of preimplantation genetic screening using these new techniques indicate a modest benefit. Other trials are still in progress but, regardless of their results, preimplantation genetic screening is now being offered globally. In the near future, it is likely that sequencing will be used to screen the full genetic code of the embryo.

  12. Genome-wide gene expression profiling and a forward genetic screen show that differential expression of the sodium ion transporter Ena21 contributes to the differential tolerance of Candida albicans and Candida dubliniensis to osmotic stress.

    LENUS (Irish Health Repository)

    Enjalbert, Brice

    2009-04-01

    Candida albicans is more pathogenic than Candida dubliniensis. However, this disparity in virulence is surprising given the high level of sequence conservation and the wide range of phenotypic traits shared by these two species. Increased sensitivity to environmental stresses has been suggested to be a possible contributory factor to the lower virulence of C. dubliniensis. In this study, we investigated, in the first comparison of C. albicans and C. dubliniensis by transcriptional profiling, global gene expression in each species when grown under conditions in which the two species exhibit differential stress tolerance. The profiles revealed similar core responses to stresses in both species, but differences in the amplitude of the general transcriptional responses to thermal, salt and oxidative stress. Differences in the regulation of specific stress genes were observed between the two species. In particular, ENA21, encoding a sodium ion transporter, was strongly induced in C. albicans but not in C. dubliniensis. In addition, ENA21 was identified in a forward genetic screen for C. albicans genomic sequences that increase salt tolerance in C. dubliniensis. Introduction of a single copy of CaENA21 was subsequently shown to be sufficient to confer salt tolerance upon C. dubliniensis.

  13. Screening of a clinically and biochemically diagnosed SOD patient ...

    African Journals Online (AJOL)

    The disease follows an autosomal recessive pattern of inheritance and causes deficiency in the activity of sulfite oxidase, an enzyme that normally catalyzes conversion of sulfite to sulfate. Aim of the study: SOD is an underdiagnosed disorder and its diagnosis can be difficult in young infants as early clinical features and ...

  14. Application of physiological and biochemical indices as a screening ...

    African Journals Online (AJOL)

    With a view to understanding the traits which can be used as a quick criteria for drought tolerance, field and laboratory experiments were used to evaluate nine wheat (Triticum aestivum L.) genotypes; seven local varieties with two introduced genotypes from International Center for Agricultural Research in the Dry Areas ...

  15. Screening of a clinically and biochemically diagnosed SOD patient ...

    African Journals Online (AJOL)

    Mohamad-Reza Aghanoori

    2015-07-22

    Jul 22, 2015 ... The parents of this case were maternal first-cousins (mother ..... of sulfite oxidation in · perfused rat liver; interaction of sulfite oxidase with the mito- ... parental disomy of chromosome 12 in a patient with isolated · sulfite oxidase ...

  16. Implementation of biochemical screening to improve baking quality of barley

    DEFF Research Database (Denmark)

    Vincze, Éva; Dionisio, Giuseppe; Aaslo, Per

    2011-01-01

    Barley (Hordeum vulgare) has the potential to offer considerable human nutritional benefits, especially as supplement to wheat-based breads. Under current commercial baking conditions it is not possible to introduce more that 20% barley flour to the wheat bread without negative impact on the phys......Barley (Hordeum vulgare) has the potential to offer considerable human nutritional benefits, especially as supplement to wheat-based breads. Under current commercial baking conditions it is not possible to introduce more that 20% barley flour to the wheat bread without negative impact...... on the physical chemical properties of the bread products due to the poor baking properties of barley flour. As a consequence, the nutritional advantages of barley are not fully exploited. The inferior leavening and baking properties of barley can, in part, be attributed to the physical properties of the storage...... proteins. Changing the storage protein composition can lessen this problem. Our working hypothesis was that exploiting the substantial genetic variation within the gene pool for storage proteins could enable improving the baking qualities of barley flour. We characterised forty-nine barley cultivars...

  17. Screening of systemic fungicides and biochemicals against seed ...

    African Journals Online (AJOL)

    Jane

    2011-07-18

    Jul 18, 2011 ... Aspergillus flavus showed highest percentage that is, 27.3% followed by Rhizopus stolonifer 17.98%,. Alternaria .... characteristics were cultured on PDA medium. ..... Fungi of Rice (Oryzae sativa L) Variety Faro 15 In Vitro.

  18. Ouroboros - Playing A Biochemical

    Directory of Open Access Journals (Sweden)

    D. T. Rodrigues

    2014-08-01

    Full Text Available Ouroboros: Playing A Biochemical RODRIGUES,D.T.1,2;GAYER, M.C.1,2; ESCOTO, D.F.1; DENARDIN, E.L.G.2, ROEHRS, R.1,2 1Interdisciplinary Research Group on Teaching Practice, Graduate Program in Biochemistry, Unipampa, RS, Brazil 2Laboratory of Physicochemical Studies and Natural Products, Post Graduate Program in Biochemistry, Unipampa, RS, Brazil Introduction: Currently, teachers seek different alternatives to enhance the teaching-learning process. Innovative teaching methodologies are increasingly common tools in educational routine. The use of games, electronic or conventional, is an effective tool to assist in learning and also to raise the social interaction between students. Objective: In this sense our work aims to evaluate the card game and "Ouroboros" board as a teaching and learning tool in biochemistry for a graduating class in Natural Sciences. Materials and methods: The class gathered 22 students of BSc in Natural Sciences. Each letter contained a question across the board that was drawn to a group to answer within the allotted time. The questions related concepts of metabolism, organic and inorganic chemical reactions, bioenergetics, etc.. Before the game application, students underwent a pre-test with four issues involving the content that was being developed. Soon after, the game was applied. Then again questions were asked. Data analysis was performed from the ratio of the number of correct pre-test and post-test answers. Results and discussion: In the pre-test 18.1% of the students knew all issues, 18.1% got 3 correct answers, 40.9% answered only 2 questions correctly and 22.7% did not hit any. In post-test 45.4% answered all the questions right, 31.8% got 3 questions and 22.7% got 2 correct answers. The results show a significant improvement of the students about the field of content taught through the game. Conclusion: Generally, traditional approaches of chemistry and biochemistry are abstract and complex. Thus, through games

  19. Enzyme and biochemical producing fungi

    DEFF Research Database (Denmark)

    Lübeck, Peter Stephensen; Lübeck, Mette; Nilsson, Lena

    2010-01-01

    factories for sustainable production of important molecules. For developing fungi into efficient cell factories, the project includes identification of important factors that control the flux through the pathways using metabolic flux analysis and metabolic engineering of biochemical pathways....

  20. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network

    DEFF Research Database (Denmark)

    Förster, Jochen; Famili, I.; Fu, P.

    2003-01-01

    The metabolic network in the yeast Saccharomyces cerevisiae was reconstructed using currently available genomic, biochemical, and physiological information. The metabolic reactions were compartmentalized between the cytosol and the mitochondria, and transport steps between the compartments...

  1. Biochemical and genetic improvement of Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, L O; Carey, V C; Dombek, K M; Holt, A S; Holt, W A; Osman, Y A; Walia, S K

    1984-01-01

    Zymomonas mobilis offers many advantages for alcohol production including three- to five-fold higher rates of substrate conversion. Current progress and approaches are discussed for the biochemical and genetic improvement of this organism. These include the isolation of salt-resistant mutants and low pH-tolerant mutants. Gene banks of Lactobacillus heterohiochi are being screened for genes encoding alcohol resistance which can be subsequently introduced into Zymomonas mobilis. In addition, an enteric lactose operon has been inserted into Zymomonas mobilis and is expressed. These new strains are being further modified to increase the substrate range of Zymomonas mobilis to include lactose. This lactose operon serves as a model system to investigate the expression of foreign genes in Zymomonas mobilis. 25 references.

  2. Pheochromocytoma-paraganglioma: Biochemical and genetic diagnosis.

    Science.gov (United States)

    Cano Megías, Marta; Rodriguez Puyol, Diego; Fernández Rodríguez, Loreto; Sención Martinez, Gloria Lisette; Martínez Miguel, Patricia

    Pheochromocytomas and paragangliomas are tumours derived from neural crest cells, which can be diagnosed by biochemical measurement of metanephrine and methoxytyramine. Advances in genetic research have identified many genes involved in the pathogenesis of these tumours, suggesting that up to 35-45% may have an underlying germline mutation. These genes have a singular transcriptional signature and can be grouped into 2 clusters (or groups): cluster 1 (VHL and SHDx), involved in angiogenesis and hypoxia pathways; and cluster 2 (MEN2 and NF1), linked to the kinase signalling pathway. In turn, these genes are associated with a characteristic biochemical phenotype (noradrenergic and adrenergic), and clinical features (location, biological behaviour, age of presentation, etc.) in a large number of cases. Early diagnosis of these tumours, accompanied by a correct genetic diagnosis, should eventually become a priority to enable better treatment, early detection of complications, proper screening of family members and related tumours, as well as an improvement in the overall prognosis of these patients. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  3. Toxicology screen

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003578.htm Toxicology screen To use the sharing features on this page, please enable JavaScript. A toxicology screen refers to various tests that determine the ...

  4. Extreme genomes

    OpenAIRE

    DeLong, Edward F

    2000-01-01

    The complete genome sequence of Thermoplasma acidophilum, an acid- and heat-loving archaeon, has recently been reported. Comparative genomic analysis of this 'extremophile' is providing new insights into the metabolic machinery, ecology and evolution of thermophilic archaea.

  5. Preimplantation genetic screening for all 24 chromosomes by microarray comparative genomic hybridization significantly increases implantation rates and clinical pregnancy rates in patients undergoing in vitro fertilization with poor prognosis

    Science.gov (United States)

    Majumdar, Gaurav; Majumdar, Abha; Lall, Meena; Verma, Ishwar C.; Upadhyaya, Kailash C.

    2016-01-01

    CONTEXT: A majority of human embryos produced in vitro are aneuploid, especially in couples undergoing in vitro fertilization (IVF) with poor prognosis. Preimplantation genetic screening (PGS) for all 24 chromosomes has the potential to select the most euploid embryos for transfer in such cases. AIM: To study the efficacy of PGS for all 24 chromosomes by microarray comparative genomic hybridization (array CGH) in Indian couples undergoing IVF cycles with poor prognosis. SETTINGS AND DESIGN: A retrospective, case–control study was undertaken in an institution-based tertiary care IVF center to compare the clinical outcomes of twenty patients, who underwent 21 PGS cycles with poor prognosis, with 128 non-PGS patients in the control group, with the same inclusion criterion as for the PGS group. MATERIALS AND METHODS: Single cells were obtained by laser-assisted embryo biopsy from day 3 embryos and subsequently analyzed by array CGH for all 24 chromosomes. Once the array CGH results were available on the morning of day 5, only chromosomally normal embryos that had progressed to blastocyst stage were transferred. RESULTS: The implantation rate and clinical pregnancy rate (PR) per transfer were found to be significantly higher in the PGS group than in the control group (63.2% vs. 26.2%, P = 0.001 and 73.3% vs. 36.7%, P = 0.006, respectively), while the multiple PRs sharply declined from 31.9% to 9.1% in the PGS group. CONCLUSIONS: In this pilot study, we have shown that PGS by array CGH can improve the clinical outcome in patients undergoing IVF with poor prognosis. PMID:27382234

  6. Grass genomes

    OpenAIRE

    Bennetzen, Jeffrey L.; SanMiguel, Phillip; Chen, Mingsheng; Tikhonov, Alexander; Francki, Michael; Avramova, Zoya

    1998-01-01

    For the most part, studies of grass genome structure have been limited to the generation of whole-genome genetic maps or the fine structure and sequence analysis of single genes or gene clusters. We have investigated large contiguous segments of the genomes of maize, sorghum, and rice, primarily focusing on intergenic spaces. Our data indicate that much (>50%) of the maize genome is composed of interspersed repetitive DNAs, primarily nested retrotransposons that in...

  7. Cancer genomics

    DEFF Research Database (Denmark)

    Norrild, Bodil; Guldberg, Per; Ralfkiær, Elisabeth Methner

    2007-01-01

    Almost all cells in the human body contain a complete copy of the genome with an estimated number of 25,000 genes. The sequences of these genes make up about three percent of the genome and comprise the inherited set of genetic information. The genome also contains information that determines whe...

  8. St2-80: a new FISH marker for St genome and genome analysis in Triticeae.

    Science.gov (United States)

    Wang, Long; Shi, Qinghua; Su, Handong; Wang, Yi; Sha, Lina; Fan, Xing; Kang, Houyang; Zhang, Haiqin; Zhou, Yonghong

    2017-07-01

    The St genome is one of the most fundamental genomes in Triticeae. Repetitive sequences are widely used to distinguish different genomes or species. The primary objectives of this study were to (i) screen a new sequence that could easily distinguish the chromosome of the St genome from those of other genomes by fluorescence in situ hybridization (FISH) and (ii) investigate the genome constitution of some species that remain uncertain and controversial. We used degenerated oligonucleotide primer PCR (Dop-PCR), Dot-blot, and FISH to screen for a new marker of the St genome and to test the efficiency of this marker in the detection of the St chromosome at different ploidy levels. Signals produced by a new FISH marker (denoted St 2 -80) were present on the entire arm of chromosomes of the St genome, except in the centromeric region. On the contrary, St 2 -80 signals were present in the terminal region of chromosomes of the E, H, P, and Y genomes. No signal was detected in the A and B genomes, and only weak signals were detected in the terminal region of chromosomes of the D genome. St 2 -80 signals were obvious and stable in chromosomes of different genomes, whether diploid or polyploid. Therefore, St 2 -80 is a potential and useful FISH marker that can be used to distinguish the St genome from those of other genomes in Triticeae.

  9. A mouse model of hereditary coproporphyria identified in an ENU mutagenesis screen

    Directory of Open Access Journals (Sweden)

    Ashlee J. Conway

    2017-08-01

    Full Text Available A genome-wide ethyl-N-nitrosourea (ENU mutagenesis screen in mice was performed to identify novel regulators of erythropoiesis. Here, we describe a mouse line, RBC16, which harbours a dominantly inherited mutation in the Cpox gene, responsible for production of the haem biosynthesis enzyme, coproporphyrinogen III oxidase (CPOX. A premature stop codon in place of a tryptophan at amino acid 373 results in reduced mRNA expression and diminished protein levels, yielding a microcytic red blood cell phenotype in heterozygous mice. Urinary and faecal porphyrins in female RBC16 heterozygotes were significantly elevated compared with that of wild-type littermates, particularly coproporphyrinogen III, whereas males were biochemically normal. Attempts to induce acute porphyric crises were made using fasting and phenobarbital treatment on females. While fasting had no biochemical effect on RBC16 mice, phenobarbital caused significant elevation of faecal coproporphyrinogen III in heterozygous mice. This is the first known investigation of a mutagenesis mouse model with genetic and biochemical parallels to hereditary coproporphyria.

  10. Biochemical reactions of the organism

    International Nuclear Information System (INIS)

    Fedorova, A.V.

    1984-01-01

    Effects of mercury, strontium chloride, GMDA, trichlorfon as well as some radionuclides ( 89 Sr, 137 Cs, 203 Hg) were studied on rats. Changes in biochemical parameters (histamine content, activity of cholinesterase and histaminase) are noted. Most noticeable changes were observed in enzymatic activity. Distortion of enzymatic systems and accumulation of intermediate exchange and decay products of tissues in excess quantities affecting other systems can be the reason for changes in the organism. The observed changes in biochemical parameters should be necessarily taken into account at hygienic regulations of harmful effects of enviroment

  11. Genomes to Proteomes

    Energy Technology Data Exchange (ETDEWEB)

    Panisko, Ellen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Grigoriev, Igor [USDOE Joint Genome Inst., Walnut Creek, CA (United States); Daly, Don S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webb-Robertson, Bobbie-Jo [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baker, Scott E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-03-01

    Biologists are awash with genomic sequence data. In large part, this is due to the rapid acceleration in the generation of DNA sequence that occurred as public and private research institutes raced to sequence the human genome. In parallel with the large human genome effort, mostly smaller genomes of other important model organisms were sequenced. Projects following on these initial efforts have made use of technological advances and the DNA sequencing infrastructure that was built for the human and other organism genome projects. As a result, the genome sequences of many organisms are available in high quality draft form. While in many ways this is good news, there are limitations to the biological insights that can be gleaned from DNA sequences alone; genome sequences offer only a bird's eye view of the biological processes endemic to an organism or community. Fortunately, the genome sequences now being produced at such a high rate can serve as the foundation for other global experimental platforms such as proteomics. Proteomic methods offer a snapshot of the proteins present at a point in time for a given biological sample. Current global proteomics methods combine enzymatic digestion, separations, mass spectrometry and database searching for peptide identification. One key aspect of proteomics is the prediction of peptide sequences from mass spectrometry data. Global proteomic analysis uses computational matching of experimental mass spectra with predicted spectra based on databases of gene models that are often generated computationally. Thus, the quality of gene models predicted from a genome sequence is crucial in the generation of high quality peptide identifications. Once peptides are identified they can be assigned to their parent protein. Proteins identified as expressed in a given experiment are most useful when compared to other expressed proteins in a larger biological context or biochemical pathway. In this chapter we will discuss the automatic

  12. Colon cancer screening

    Science.gov (United States)

    Screening for colon cancer; Colonoscopy - screening; Sigmoidoscopy - screening; Virtual colonoscopy - screening; Fecal immunochemical test; Stool DNA test; sDNA test; Colorectal cancer - screening; Rectal ...

  13. Circadian Clocks: Unexpected Biochemical Cogs.

    Science.gov (United States)

    Mori, Tetsuya; Mchaourab, Hassane; Johnson, Carl Hirschie

    2015-10-05

    A circadian oscillation can be reconstituted in vitro from three proteins that cycles with a period of ∼ 24 h. Two recent studies provide surprising biochemical answers to why this remarkable oscillator has such a long time constant and how it can switch effortlessly between alternating enzymatic modes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Circadian Clocks: Unexpected Biochemical Cogs

    OpenAIRE

    Mori, Tetsuya; Mchaourab, Hassane; Johnson, Carl Hirschie

    2015-01-01

    A circadian oscillation can be reconstituted in vitro from three proteins that cycles with a period of ~24 h. Two recent studies provide surprising biochemical answers to why this remarkable oscillator has such a long time constant and how it can switch effortlessly between alternating enzymatic modes.

  15. Molecular and biochemical characterization of a novel intracellular invertase from Aspergillus niger with transfructosylating activity

    NARCIS (Netherlands)

    Goosen, C.; Yuan, X.L.; Munster, J.M. van; Ram, A.F.J.; Maarel, M.J.E.C. van der; Dijkhuizen, L.

    2007-01-01

    A novel subfamily of putative intracellular invertase enzymes (glycoside hydrolase family 32) has previously been identified in fungal genomes. Here, we report phylogenetic, molecular, and biochemical characteristics of SucB, one of two novel intracellular invertases identified in Aspergillus niger.

  16. iScreen: Image-Based High-Content RNAi Screening Analysis Tools.

    Science.gov (United States)

    Zhong, Rui; Dong, Xiaonan; Levine, Beth; Xie, Yang; Xiao, Guanghua

    2015-09-01

    High-throughput RNA interference (RNAi) screening has opened up a path to investigating functional genomics in a genome-wide pattern. However, such studies are often restricted to assays that have a single readout format. Recently, advanced image technologies have been coupled with high-throughput RNAi screening to develop high-content screening, in which one or more cell image(s), instead of a single readout, were generated from each well. This image-based high-content screening technology has led to genome-wide functional annotation in a wider spectrum of biological research studies, as well as in drug and target discovery, so that complex cellular phenotypes can be measured in a multiparametric format. Despite these advances, data analysis and visualization tools are still largely lacking for these types of experiments. Therefore, we developed iScreen (image-Based High-content RNAi Screening Analysis Tool), an R package for the statistical modeling and visualization of image-based high-content RNAi screening. Two case studies were used to demonstrate the capability and efficiency of the iScreen package. iScreen is available for download on CRAN (http://cran.cnr.berkeley.edu/web/packages/iScreen/index.html). The user manual is also available as a supplementary document. © 2014 Society for Laboratory Automation and Screening.

  17. Discovery of selective inhibitors against EBNA1 via high throughput in silico virtual screening.

    Directory of Open Access Journals (Sweden)

    Ning Li

    2010-04-01

    Full Text Available Epstein-Barr Virus (EBV latent infection is associated with several human malignancies and is a causal agent of lymphoproliferative diseases during immunosuppression. While inhibitors of herpesvirus DNA polymerases, like gancyclovir, reduce EBV lytic cycle infection, these treatments have limited efficacy for treating latent infection. EBNA1 is an EBV-encoded DNA-binding protein required for viral genome maintenance during latent infection.Here, we report the identification of a new class of small molecules that inhibit EBNA1 DNA binding activity. These compounds were identified by virtual screening of 90,000 low molecular mass compounds using computational docking programs with the solved crystal structure of EBNA1. Four structurally related compounds were found to inhibit EBNA1-DNA binding in biochemical assays with purified EBNA1 protein. Compounds had a range of 20-100 microM inhibition of EBNA1 in fluorescence polarization assays and were further validated for inhibition using electrophoresis mobility shift assays. These compounds exhibited no significant inhibition of an unrelated DNA binding protein. Three of these compounds inhibited EBNA1 transcription activation function in cell-based assays and reduced EBV genome copy number when incubated with a Burkitt lymphoma cell line.These experiments provide a proof-of-principle that virtual screening can be used to identify specific inhibitors of EBNA1 that may have potential for treatment of EBV latent infection.

  18. Biochemical Process Development and Integration | Bioenergy | NREL

    Science.gov (United States)

    Biochemical Process Development and Integration Biochemical Process Development and Integration Our conversion and separation processes to pilot-scale integrated process development and scale up. We also Publications Accounting for all sugar produced during integrated production of ethanol from lignocellulosic

  19. Accurate atom-mapping computation for biochemical reactions.

    Science.gov (United States)

    Latendresse, Mario; Malerich, Jeremiah P; Travers, Mike; Karp, Peter D

    2012-11-26

    The complete atom mapping of a chemical reaction is a bijection of the reactant atoms to the product atoms that specifies the terminus of each reactant atom. Atom mapping of biochemical reactions is useful for many applications of systems biology, in particular for metabolic engineering where synthesizing new biochemical pathways has to take into account for the number of carbon atoms from a source compound that are conserved in the synthesis of a target compound. Rapid, accurate computation of the atom mapping(s) of a biochemical reaction remains elusive despite significant work on this topic. In particular, past researchers did not validate the accuracy of mapping algorithms. We introduce a new method for computing atom mappings called the minimum weighted edit-distance (MWED) metric. The metric is based on bond propensity to react and computes biochemically valid atom mappings for a large percentage of biochemical reactions. MWED models can be formulated efficiently as Mixed-Integer Linear Programs (MILPs). We have demonstrated this approach on 7501 reactions of the MetaCyc database for which 87% of the models could be solved in less than 10 s. For 2.1% of the reactions, we found multiple optimal atom mappings. We show that the error rate is 0.9% (22 reactions) by comparing these atom mappings to 2446 atom mappings of the manually curated Kyoto Encyclopedia of Genes and Genomes (KEGG) RPAIR database. To our knowledge, our computational atom-mapping approach is the most accurate and among the fastest published to date. The atom-mapping data will be available in the MetaCyc database later in 2012; the atom-mapping software will be available within the Pathway Tools software later in 2012.

  20. Biochemical markers of bone turnover

    International Nuclear Information System (INIS)

    Kim, Deog Yoon

    1999-01-01

    Biochemical markers of bone turnover has received increasing attention over the past few years, because of the need for sensitivity and specific tool in the clinical investigation of osteoporosis. Bone markers should be unique to bone, reflect changes of bone less, and should be correlated with radiocalcium kinetics, histomorphometry, or changes in bone mass. The markers also should be useful in monitoring treatment efficacy. Although no bone marker has been established to meet all these criteria, currently osteocalcin and pyridinium crosslinks are the most efficient markers to assess the level of bone turnover in the menopausal and senile osteoporosis. Recently, N-terminal telopeptide (NTX), C-terminal telopeptide (CTX) and bone specific alkaline phosphatase are considered as new valid markers of bone turnover. Recent data suggest that CTX and free deoxypyridinoline could predict the subsequent risk of hip fracture of elderly women. Treatment of postmenopausal women with estrogen, calcitonin and bisphosphonates demonstrated rapid decrease of the levels of bone markers that correlated with the long-term increase of bone mass. Factors such as circadian rhythms, diet, age, sex, bone mass and renal function affect the results of biochemical markers and should be appropriately adjusted whenever possible. Each biochemical markers of bone turnover may have its own specific advantages and limitations. Recent advances in research will provide more sensitive and specific assays

  1. Biochemical toxicology of environmental agents

    International Nuclear Information System (INIS)

    Bruin, A. de

    1976-01-01

    A thorough and up-to-date account of the molecular-biological aspects of harmful agents - both chemical and physical - is given. This current treatise is principally intended to serve as an informative reference work for researchers in various areas of the field. In the pursuit of this aim, a devision of the entire field into 42 chapters has been made. Each chapter starts with a short introductory account dealing with the biochemical essentials of the particular subject. Radiation effects are discussed briefly at the end of each treatise. In order to make the treatise useful as a source book, a substantial collection of pertinent literature references is provided which are numbered in order of citation in the text. Initial chapters are devoted to the metabolic fate of the major classes of xenobiotic compounds. Peripheral topics, closely related to metabolism and dealing with modification of xenobiotic-metabolizing ability, as well as interaction phenomena follow (chs. 5-8). Subjects that draw heavily on the practical field of occupational hygiene are dealt with in chapters 9 and 10. The systematic treatment of how chemical and physical agents interact with the various biochemical and enzymatic systems they encounter during their passage through the organism occupies quantitatively the main part of the book (chs. 11-36). Finally, radiation biochemistry is discussed from the viewpoint of its high degree of scientific advancement, and secondly because the type of biochemical changes produced in vivo by X-rays closely parallel those evoked by chemical agents

  2. Defining functional DNA elements in the human genome

    Science.gov (United States)

    Kellis, Manolis; Wold, Barbara; Snyder, Michael P.; Bernstein, Bradley E.; Kundaje, Anshul; Marinov, Georgi K.; Ward, Lucas D.; Birney, Ewan; Crawford, Gregory E.; Dekker, Job; Dunham, Ian; Elnitski, Laura L.; Farnham, Peggy J.; Feingold, Elise A.; Gerstein, Mark; Giddings, Morgan C.; Gilbert, David M.; Gingeras, Thomas R.; Green, Eric D.; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D.; Myers, Richard M.; Pazin, Michael J.; Ren, Bing; Stamatoyannopoulos, John A.; Weng, Zhiping; White, Kevin P.; Hardison, Ross C.

    2014-01-01

    With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease. PMID:24753594

  3. Using Partial Genomic Fosmid Libraries for Sequencing CompleteOrganellar Genomes

    Energy Technology Data Exchange (ETDEWEB)

    McNeal, Joel R.; Leebens-Mack, James H.; Arumuganathan, K.; Kuehl, Jennifer V.; Boore, Jeffrey L.; dePamphilis, Claude W.

    2005-08-26

    Organellar genome sequences provide numerous phylogenetic markers and yield insight into organellar function and molecular evolution. These genomes are much smaller in size than their nuclear counterparts; thus, their complete sequencing is much less expensive than total nuclear genome sequencing, making broader phylogenetic sampling feasible. However, for some organisms it is challenging to isolate plastid DNA for sequencing using standard methods. To overcome these difficulties, we constructed partial genomic libraries from total DNA preparations of two heterotrophic and two autotrophic angiosperm species using fosmid vectors. We then used macroarray screening to isolate clones containing large fragments of plastid DNA. A minimum tiling path of clones comprising the entire genome sequence of each plastid was selected, and these clones were shotgun-sequenced and assembled into complete genomes. Although this method worked well for both heterotrophic and autotrophic plants, nuclear genome size had a dramatic effect on the proportion of screened clones containing plastid DNA and, consequently, the overall number of clones that must be screened to ensure full plastid genome coverage. This technique makes it possible to determine complete plastid genome sequences for organisms that defy other available organellar genome sequencing methods, especially those for which limited amounts of tissue are available.

  4. Mass spectrometry for fragment screening.

    Science.gov (United States)

    Chan, Daniel Shiu-Hin; Whitehouse, Andrew J; Coyne, Anthony G; Abell, Chris

    2017-11-08

    Fragment-based approaches in chemical biology and drug discovery have been widely adopted worldwide in both academia and industry. Fragment hits tend to interact weakly with their targets, necessitating the use of sensitive biophysical techniques to detect their binding. Common fragment screening techniques include differential scanning fluorimetry (DSF) and ligand-observed NMR. Validation and characterization of hits is usually performed using a combination of protein-observed NMR, isothermal titration calorimetry (ITC) and X-ray crystallography. In this context, MS is a relatively underutilized technique in fragment screening for drug discovery. MS-based techniques have the advantage of high sensitivity, low sample consumption and being label-free. This review highlights recent examples of the emerging use of MS-based techniques in fragment screening. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  5. Genome Imprinting

    Indian Academy of Sciences (India)

    the cell nucleus (mitochondrial and chloroplast genomes), and. (3) traits governed ... tively good embryonic development but very poor development of membranes and ... Human homologies for the type of situation described above are naturally ..... imprint; (b) New modifications of the paternal genome in germ cells of each ...

  6. Baculovirus Genomics

    NARCIS (Netherlands)

    Oers, van M.M.; Vlak, J.M.

    2007-01-01

    Baculovirus genomes are covalently closed circles of double stranded-DNA varying in size between 80 and 180 kilobase-pair. The genomes of more than fourty-one baculoviruses have been sequenced to date. The majority of these (37) are pathogenic to lepidopteran hosts; three infect sawflies

  7. Genomic Testing

    Science.gov (United States)

    ... this database. Top of Page Evaluation of Genomic Applications in Practice and Prevention (EGAPP™) In 2004, the Centers for Disease Control and Prevention launched the EGAPP initiative to establish and test a ... and other applications of genomic technology that are in transition from ...

  8. Ancient genomes

    OpenAIRE

    Hoelzel, A Rus

    2005-01-01

    Ever since its invention, the polymerase chain reaction has been the method of choice for work with ancient DNA. In an application of modern genomic methods to material from the Pleistocene, a recent study has instead undertaken to clone and sequence a portion of the ancient genome of the cave bear.

  9. Screen dealing

    International Nuclear Information System (INIS)

    Barlow, J.W.

    1991-01-01

    The screen dealing system provides a facility whereby buyers and sellers of spot thermal coal can make bids and offers via the medium of the Reuters screen. A sale results when a market participant notifies his acceptance of a price to a central dealing desk. Use of the system is available to all genuine participants in the coal trade. This paper reports that it provides a focus for information and for the visible making of coal prices. For years screen trading has been used successfully to trade other commodities. At last coal is being traded electronically. It makes sense. It works. Users like it

  10. Use of laminar flow patterning for miniaturised biochemical assays

    DEFF Research Database (Denmark)

    Regenberg, Birgitte; Krühne, Ulrich; Beyer, M.

    2004-01-01

    Laminar flow in microfluidic chambers was used to construct low (one dimensional) density arrays suitable for miniaturized biochemical assays. By varying the ratio of flows of two guiding streams flanking a sample stream, precise focusing and positioning of the latter was achieved, and reactive s...... species carried in the sample stream were deposited on functionalized chip surfaces as discrete 50 mm wide lanes. Using different model systems we have confirmed the method's suitability for qualitative screening and quantification tasks in receptor-ligand assays, recording biotin...

  11. Airport Screening

    Science.gov (United States)

    Health Physics Society Specialists in Radiation Safety Airport Screening Fact Sheet Adopted: May 2011 Photo courtesy of Dan ... a safe level. An American National Standards Institute/Health Physics Society industry standard states that the maxi- mum ...

  12. Hypertension screening

    Science.gov (United States)

    Foulke, J. M.

    1975-01-01

    An attempt was made to measure the response to an announcement of hypertension screening at the Goddard Space Center, to compare the results to those of previous statistics. Education and patient awareness of the problem were stressed.

  13. Carrier Screening

    Science.gov (United States)

    ... How accurate is carrier screening? No test is perfect. In a small number of cases, test results ... in which an egg is removed from a woman’s ovary, fertilized in a laboratory with the man’s ...

  14. Biochemical Abnormalities in Batten's Syndrome

    DEFF Research Database (Denmark)

    Clausen, Jytte Lene; Nielsen, Gunnar Gissel; Jensen, Gunde Egeskov

    1978-01-01

    The present data indicate that a group of ten patients with Batten's syndrome showed reduced activity of erythrocyte glutathione (GSH) peroxidase (Px) (glutathione: H2O2 oxidoreductase, EC 1.1.1.9.) using H2O2 as peroxide donor. Assay of erythrocyte GSHPx using H2O2, cumene hydroperoxide and t......-butyl hydroperoxide as donors also makes it possible biochemically to divide Batten's syndrome into two types: (1) one type with decreased values when H2O2 and cumene hydroperoxide are used, and (2) one type with increased values when t-butyl hydroperoxide is used. Furthermore an increased content of palmitic, oleic...

  15. Slot-waveguide biochemical sensor.

    Science.gov (United States)

    Barrios, Carlos A; Gylfason, Kristinn B; Sánchez, Benito; Griol, Amadeu; Sohlström, H; Holgado, M; Casquel, R

    2007-11-01

    We report an experimental demonstration of an integrated biochemical sensor based on a slot-waveguide microring resonator. The microresonator is fabricated on a Si3N4-SiO2 platform and operates at a wavelength of 1.3 microm. The transmission spectrum of the sensor is measured with different ambient refractive indices ranging from n=1.33 to 1.42. A linear shift of the resonant wavelength with increasing ambient refractive index of 212 nm/refractive index units (RIU) is observed. The sensor detects a minimal refractive index variation of 2x10(-4) RIU.

  16. Thermodynamic analysis of biochemical systems

    International Nuclear Information System (INIS)

    Yuan, Y.; Fan, L.T.; Shieh, J.H.

    1989-01-01

    Introduction of the concepts of the availability (or exergy), datum level materials, and the dead state has been regarded as some of the most significant recent developments in classical thermodynamics. Not only the available energy balance but also the material and energy balances of a biological system may be established in reference to the datum level materials in the dead state or environment. In this paper these concepts are illustrated with two examples of fermentation and are shown to be useful in identifying sources of thermodynamic inefficiency, thereby leading naturally to the rational definition of thermodynamic efficiency of a biochemical process

  17. RNAi Screening in Spodoptera frugiperda.

    Science.gov (United States)

    Ghosh, Subhanita; Singh, Gatikrushna; Sachdev, Bindiya; Kumar, Ajit; Malhotra, Pawan; Mukherjee, Sunil K; Bhatnagar, Raj K

    2016-01-01

    RNA interference is a potent and precise reverse genetic approach to carryout large-scale functional genomic studies in a given organism. During the past decade, RNAi has also emerged as an important investigative tool to understand the process of viral pathogenesis. Our laboratory has successfully generated transgenic reporter and RNAi sensor line of Spodoptera frugiperda (Sf21) cells and developed a reversal of silencing assay via siRNA or shRNA guided screening to investigate RNAi factors or viral pathogenic factors with extraordinary fidelity. Here we describe empirical approaches and conceptual understanding to execute successful RNAi screening in Spodoptera frugiperda 21-cell line.

  18. Herbarium genomics

    DEFF Research Database (Denmark)

    Bakker, Freek T.; Lei, Di; Yu, Jiaying

    2016-01-01

    Herbarium genomics is proving promising as next-generation sequencing approaches are well suited to deal with the usually fragmented nature of archival DNA. We show that routine assembly of partial plastome sequences from herbarium specimens is feasible, from total DNA extracts and with specimens...... up to 146 years old. We use genome skimming and an automated assembly pipeline, Iterative Organelle Genome Assembly, that assembles paired-end reads into a series of candidate assemblies, the best one of which is selected based on likelihood estimation. We used 93 specimens from 12 different...... correlation between plastome coverage and nuclear genome size (C value) in our samples, but the range of C values included is limited. Finally, we conclude that routine plastome sequencing from herbarium specimens is feasible and cost-effective (compared with Sanger sequencing or plastome...

  19. Figure 5 from Integrative Genomics Viewer: Visualizing Big Data | Office of Cancer Genomics

    Science.gov (United States)

    Split-Screen View. The split-screen view is useful for exploring relationships of genomic features that are independent of chromosomal location. Color is used here to indicate mate pairs that map to different chromosomes, chromosomes 1 and 6, suggesting a translocation event. Adapted from Figure 8; Thorvaldsdottir H et al. 2012

  20. Molecular screening in galactosemia

    Energy Technology Data Exchange (ETDEWEB)

    Elsas, L.J.; Singh, R.; Fernhoff, P.M. [Emory Univ., Atlanta, GA (United States)] [and others

    1994-09-01

    Classical galactosemia (G/G) is caused by the absence of galactose-1-phosphate uridyl transferase (GALT) activity while the Duarte allele produces partial impairment and a specific biochemical phenotype. Cloning and sequencing of the human GALT gene has enabled the identification of prevalent mutations for both Classical and Duarte alleles. The G allele is caused by a Q188R codon mutation in exon 6 in 70% of a Caucasian population while the D allele is caused by an N134D codon mutation in exon 10. Since the Q188R sequence creates a new Hpa II site and the N314D sequence creates a new Sin I site, it is relatively easy to screen for both mutations by multiplex PCR and restriction digest. Here we describe a method for detection of new mutations producing impaired GALT. Patient DNAs are subjected to SSCP (single strand conformational polymorphism) analysis of their 11 GALT exons. Direct sequencing of the exons targeted by SSCP has revealed many codon changes: IVSC 956 (a splice acceptor site loss), S135L, V151A, E203K, A320T, and Y323D. Two of these codon changes, V151A and S135L, have been confirmed as mutations by finding impaired GALT activity in a yeast expression system. We conclude that molecular screening of GALT DNA will clarify the structural biology of GALT and the pathophysiology of galactosemia.

  1. Discovery of novel inhibitors for DHODH via virtual screening and X-ray crystallographic structures

    Energy Technology Data Exchange (ETDEWEB)

    McLean, Larry R.; Zhang, Ying; Degnen, William; Peppard, Jane; Cabel, Dasha; Zou, Chao; Tsay, Joseph T.; Subramaniam, Arun; Vaz, Roy J.; Li, Yi (Sanofi)

    2010-10-28

    Amino-benzoic acid derivatives 1-4 were found to be inhibitors for DHODH by virtual screening, biochemical, and X-ray crystallographic studies. X-ray structures showed that 1 and 2 bind to DHODH as predicted by virtual screening, but 3 and 4 were found to be structurally different from the corresponding compounds initially identified by virtual screening.

  2. Incorporating Protein Biosynthesis into the Saccharomyces cerevisiae Genome-scale Metabolic Model

    DEFF Research Database (Denmark)

    Olivares Hernandez, Roberto

    Based on stoichiometric biochemical equations that occur into the cell, the genome-scale metabolic models can quantify the metabolic fluxes, which are regarded as the final representation of the physiological state of the cell. For Saccharomyces Cerevisiae the genome scale model has been construc......Based on stoichiometric biochemical equations that occur into the cell, the genome-scale metabolic models can quantify the metabolic fluxes, which are regarded as the final representation of the physiological state of the cell. For Saccharomyces Cerevisiae the genome scale model has been...

  3. Luminescent screens

    International Nuclear Information System (INIS)

    Lu, C.-I.

    1982-01-01

    Luminescent screens which are useful for such purposes as intensifying screens for radiographs are comprised of a support bearing a layer of finely divided particles of a phosphor dispersed in a cross-linked polymeric matrix formed by heat-curing of a coating composition comprising an unsaturated cross-linkable polymer, a polymerizable acrylic monomer, a thermoplastic polyurethane elastomer, and a heat-activatable polymerization initiator. The phosphor layer includes voids formed by evaporation of an evaporable component which is present in the coating composition from which such layer is formed. (author)

  4. Data Mining Supercomputing with SAS JMP® Genomics

    Directory of Open Access Journals (Sweden)

    Richard S. Segall

    2011-02-01

    Full Text Available JMP® Genomics is statistical discovery software that can uncover meaningful patterns in high-throughput genomics and proteomics data. JMP® Genomics is designed for biologists, biostatisticians, statistical geneticists, and those engaged in analyzing the vast stores of data that are common in genomic research (SAS, 2009. Data mining was performed using JMP® Genomics on the two collections of microarray databases available from National Center for Biotechnology Information (NCBI for lung cancer and breast cancer. The Gene Expression Omnibus (GEO of NCBI serves as a public repository for a wide range of highthroughput experimental data, including the two collections of lung cancer and breast cancer that were used for this research. The results for applying data mining using software JMP® Genomics are shown in this paper with numerous screen shots.

  5. Alcohol Use Screening

    Science.gov (United States)

    ... Depression Screening Substance Abuse Screening Alcohol Use Screening Alcohol Use Screening (AUDIT-C) - Instructions The following questions ... this tool, there is also text-only version . Alcohol Use Screening (AUDIT-C) - Manual Instructions The following ...

  6. Biochemical nature of Russell Bodies.

    Science.gov (United States)

    Mossuto, Maria Francesca; Ami, Diletta; Anelli, Tiziana; Fagioli, Claudio; Doglia, Silvia Maria; Sitia, Roberto

    2015-07-30

    Professional secretory cells produce and release abundant proteins. Particularly in case of mutations and/or insufficient chaperoning, these can aggregate and become toxic within or amongst cells. Immunoglobulins (Ig) are no exception. In the extracellular space, certain Ig-L chains form fibrils causing systemic amyloidosis. On the other hand, Ig variants lacking the first constant domain condense in dilated cisternae of the early secretory compartment, called Russell Bodies (RB), frequently observed in plasma cell dyscrasias, autoimmune diseases and chronic infections. RB biogenesis can be recapitulated in lymphoid and non-lymphoid cells by expressing mutant Ig-μ, providing powerful models to investigate the pathophysiology of endoplasmic reticulum storage disorders. Here we analyze the aggregation propensity and the biochemical features of the intra- and extra-cellular Ig deposits in human cells, revealing β-aggregated features for RB.

  7. Biochemical Characterization of a Family 15 Carbohydrate Esterase from a Bacterial Marine Arctic Metagenome.

    Directory of Open Access Journals (Sweden)

    Concetta De Santi

    Full Text Available The glucuronoyl esterase enzymes of wood-degrading fungi (Carbohydrate Esterase family 15; CE15 form part of the hemicellulolytic and cellulolytic enzyme systems that break down plant biomass, and have possible applications in biotechnology. Homologous enzymes are predicted in the genomes of several bacteria, however these have been much less studied than their fungal counterparts. Here we describe the recombinant production and biochemical characterization of a bacterial CE15 enzyme denoted MZ0003, which was identified by in silico screening of a prokaryotic metagenome library derived from marine Arctic sediment. MZ0003 has high similarity to several uncharacterized gene products of polysaccharide-degrading bacterial species, and phylogenetic analysis indicates a deep evolutionary split between these CE15s and fungal homologs.MZ0003 appears to differ from previously-studied CE15s in some aspects. Some glucuronoyl esterase activity could be measured by qualitative thin-layer chromatography which confirms its assignment as a CE15, however MZ0003 can also hydrolyze a range of other esters, including p-nitrophenyl acetate, which is not acted upon by some fungal homologs. The structure of MZ0003 also appears to differ as it is predicted to have several large loop regions that are absent in previously studied CE15s, and a combination of homology-based modelling and site-directed mutagenesis indicate its catalytic residues deviate from the conserved Ser-His-Glu triad of many fungal CE15s. Taken together, these results indicate that potentially unexplored diversity exists among bacterial CE15s, and this may be accessed by investigation of the microbial metagenome. The combination of low activity on typical glucuronoyl esterase substrates, and the lack of glucuronic acid esters in the marine environment suggest that the physiological substrate of MZ0003 and its homologs is likely to be different from that of related fungal enzymes.

  8. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes

    Science.gov (United States)

    Liu, Shengyi; Liu, Yumei; Yang, Xinhua; Tong, Chaobo; Edwards, David; Parkin, Isobel A. P.; Zhao, Meixia; Ma, Jianxin; Yu, Jingyin; Huang, Shunmou; Wang, Xiyin; Wang, Junyi; Lu, Kun; Fang, Zhiyuan; Bancroft, Ian; Yang, Tae-Jin; Hu, Qiong; Wang, Xinfa; Yue, Zhen; Li, Haojie; Yang, Linfeng; Wu, Jian; Zhou, Qing; Wang, Wanxin; King, Graham J; Pires, J. Chris; Lu, Changxin; Wu, Zhangyan; Sampath, Perumal; Wang, Zhuo; Guo, Hui; Pan, Shengkai; Yang, Limei; Min, Jiumeng; Zhang, Dong; Jin, Dianchuan; Li, Wanshun; Belcram, Harry; Tu, Jinxing; Guan, Mei; Qi, Cunkou; Du, Dezhi; Li, Jiana; Jiang, Liangcai; Batley, Jacqueline; Sharpe, Andrew G; Park, Beom-Seok; Ruperao, Pradeep; Cheng, Feng; Waminal, Nomar Espinosa; Huang, Yin; Dong, Caihua; Wang, Li; Li, Jingping; Hu, Zhiyong; Zhuang, Mu; Huang, Yi; Huang, Junyan; Shi, Jiaqin; Mei, Desheng; Liu, Jing; Lee, Tae-Ho; Wang, Jinpeng; Jin, Huizhe; Li, Zaiyun; Li, Xun; Zhang, Jiefu; Xiao, Lu; Zhou, Yongming; Liu, Zhongsong; Liu, Xuequn; Qin, Rui; Tang, Xu; Liu, Wenbin; Wang, Yupeng; Zhang, Yangyong; Lee, Jonghoon; Kim, Hyun Hee; Denoeud, France; Xu, Xun; Liang, Xinming; Hua, Wei; Wang, Xiaowu; Wang, Jun; Chalhoub, Boulos; Paterson, Andrew H

    2014-01-01

    Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B. oleracea. This study provides insights into Brassica genome evolution and will underpin research into the many important crops in this genus. PMID:24852848

  9. Hearing Screening

    Science.gov (United States)

    Johnson-Curiskis, Nanette

    2012-01-01

    Hearing levels are threatened by modern life--headsets for music, rock concerts, traffic noises, etc. It is crucial we know our hearing levels so that we can draw attention to potential problems. This exercise requires that students receive a hearing screening for their benefit as well as for making the connection of hearing to listening.

  10. Vision Screening

    Science.gov (United States)

    ... an efficient and cost-effective method to identify children with visual impairment or eye conditions that are likely to lead ... main goal of vision screening is to identify children who have or are at ... visual impairment unless treated in early childhood. Other problems that ...

  11. Cephalopod genomics

    DEFF Research Database (Denmark)

    Albertin, Caroline B.; Bonnaud, Laure; Brown, C. Titus

    2012-01-01

    The Cephalopod Sequencing Consortium (CephSeq Consortium) was established at a NESCent Catalysis Group Meeting, ``Paths to Cephalopod Genomics-Strategies, Choices, Organization,'' held in Durham, North Carolina, USA on May 24-27, 2012. Twenty-eight participants representing nine countries (Austria......, Australia, China, Denmark, France, Italy, Japan, Spain and the USA) met to address the pressing need for genome sequencing of cephalopod mollusks. This group, drawn from cephalopod biologists, neuroscientists, developmental and evolutionary biologists, materials scientists, bioinformaticians and researchers...... active in sequencing, assembling and annotating genomes, agreed on a set of cephalopod species of particular importance for initial sequencing and developed strategies and an organization (CephSeq Consortium) to promote this sequencing. The conclusions and recommendations of this meeting are described...

  12. Biochemical fingerprinting of Vibrio parahaemolyticus by the PhenePlate system: comparison between pandemic and non-pandemic serotypes.

    Science.gov (United States)

    Rahman, Mokhlasur; Bhuiyan, N A; Kuhn, I; Ramamurthy, T; Rahman, M; Mollby, R; Nair, G Balakrish

    2006-10-01

    During recent years a pandemic clone of Vibrio parahaemolyticus has emerged. Isolates of this clone are distributed among several serotypes, but are genotypically related. In the present study, a phenotyping method (biochemical fingerprinting) was used to characterize pandemic and non-pandemic isolates belonging to V. parahaemolyticus. It was found that the pandemic isolates showed a high level of phenotypic homogeneity and a majority of the pandemic isolates belonged to the same biochemical phenotype, whereas non-pandemic V. parahemolyticus isolates were more heterogeneous. In conclusion, biochemical fingerprinting of V. parahaemolyticus can be used as a first screening method to differentiate between pandemic and non-pandemic isolates of V. parahaemolyticus.

  13. Genome Sequencing

    DEFF Research Database (Denmark)

    Sato, Shusei; Andersen, Stig Uggerhøj

    2014-01-01

    The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based on transcr......The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based...

  14. Preimplantation Genetic Screening and Preimplantation Genetic Diagnosis.

    Science.gov (United States)

    Sullivan-Pyke, Chantae; Dokras, Anuja

    2018-03-01

    Preimplantation genetic testing encompasses preimplantation genetic screening (PGS) and preimplantation genetic diagnosis (PGD). PGS improves success rates of in vitro fertilization by ensuring the transfer of euploid embryos that have a higher chance of implantation and resulting in a live birth. PGD enables the identification of embryos with specific disease-causing mutations and transfer of unaffected embryos. The development of whole genome amplification and genomic tools, including single nucleotide polymorphism microarrays, comparative genomic hybridization microarrays, and next-generation sequencing, has led to faster, more accurate diagnoses that translate to improved pregnancy and live birth rates. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Prevalence of biochemical and immunological abnormalities in ...

    African Journals Online (AJOL)

    Tile prevalence of biochemical and immunological abnormalities was studied in a group of 256 patients with rheumatoid arthritis (104 coloureds, 100 whites and 52 blacks). The most common biochemical abnormalities detected were a reduction in the serum creatinine value (43,4%), raised globulins (39,7%), raised serum ...

  16. Vision Screening

    Science.gov (United States)

    1993-01-01

    The Visi Screen OSS-C, marketed by Vision Research Corporation, incorporates image processing technology originally developed by Marshall Space Flight Center. Its advantage in eye screening is speed. Because it requires no response from a subject, it can be used to detect eye problems in very young children. An electronic flash from a 35 millimeter camera sends light into a child's eyes, which is reflected back to the camera lens. The photorefractor then analyzes the retinal reflexes generated and produces an image of the child's eyes, which enables a trained observer to identify any defects. The device is used by pediatricians, day care centers and civic organizations that concentrate on children with special needs.

  17. Genomic sequencing in cystic fibrosis newborn screening: what works best, two-tier predefined CFTR mutation panels or second-tier CFTR panel followed by third-tier sequencing?

    Science.gov (United States)

    Currier, Robert J; Sciortino, Stan; Liu, Ruiling; Bishop, Tracey; Alikhani Koupaei, Rasoul; Feuchtbaum, Lisa

    2017-10-01

    PurposeThe purpose of this study was to model the performance of several known two-tier, predefined mutation panels and three-tier algorithms for cystic fibrosis (CF) screening utilizing the ethnically diverse California population.MethodsThe cystic fibrosis transmembrane conductance regulator (CFTR) mutations identified among the 317 CF cases in California screened between 12 August 2008 and 18 December 2012 were used to compare the expected CF detection rates for several two- and three-tier screening approaches, including the current California approach, which consists of a population-specific 40-mutation panel followed by third-tier sequencing when indicated.ResultsThe data show that the strategy of using third-tier sequencing improves CF detection following an initial elevated immunoreactive trypsinogen and detection of only one mutation on a second-tier panel.ConclusionIn a diverse population, the use of a second-tier panel followed by third-tier CFTR gene sequencing provides a better detection rate for CF, compared with the use of a second-tier approach alone, and is an effective way to minimize the referrals of CF carriers for sweat testing. Restricting screening to a second-tier testing to predefined mutation panels, even broad ones, results in some missed CF cases and demonstrates the limited utility of this approach in states that have diverse multiethnic populations.

  18. Comparative Genomics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 8. Comparative Genomics - A Powerful New Tool in Biology. Anand K Bachhawat. General Article Volume 11 Issue 8 August 2006 pp 22-40. Fulltext. Click here to view fulltext PDF. Permanent link:

  19. Organic and biochemical synthesis group

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Stable isotopes, because of their unique properties and non-radioactive nature, have great potential for many fields of science and technology. In particular, isotopes of carbon, nitrogen, oxygen, and sulfur (the basic building blocks of all biological molecules) would be widely used in biomedical and environmental research if they were economically available in sufficient quantities and in the required chemical forms. The major objective of our program continues to be stimulation of the widespread utilization of stable isotopes and commercial involvement through development and demonstration of applications which have potential requirements for large quantities of isotopes. Thus, demand will be created which is necessary for large-scale production of stable isotopes and labeled compounds and concomitant low unit costs. The program continues to produce a variety of labeled materials needed for clinical, biomedical, chemical, and environmental applications which serve as effective demonstrations of unique and advantageous utilization of stable isotopes. Future commercial involvement should benefit, and is a consideration in our research and development, from the technology transfer that can readily be made as a result of our organic and biochemical syntheses and also of various techniques involved in applications

  20. Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe

    NARCIS (Netherlands)

    Slawiak, M.; Beckhoven, van J.R.C.M.; Speksnijder, A.G.C.L.; Czajkowski, R.L.; Grabe, G.; Wolf, van der J.M.

    2009-01-01

    Sixty-five potato strains of the soft rot-causing plant pathogenic bacterium Dickeya spp., and two strains from hyacinth, were characterised using biochemical assays, REP-PCR genomic finger printing, 16S rDNA and dnaX sequence analysis. These methods were compared with nineteen strains representing

  1. Polyphenol Oxidases in Crops: Biochemical, Physiological and Genetic Aspects

    Directory of Open Access Journals (Sweden)

    Francesca Taranto

    2017-02-01

    Full Text Available Enzymatic browning is a colour reaction occurring in plants, including cereals, fruit and horticultural crops, due to oxidation during postharvest processing and storage. This has a negative impact on the colour, flavour, nutritional properties and shelf life of food products. Browning is usually caused by polyphenol oxidases (PPOs, following cell damage caused by senescence, wounding and the attack of pests and pathogens. Several studies indicated that PPOs play a role in plant immunity, and emerging evidence suggested that PPOs might also be involved in other physiological processes. Genomic investigations ultimately led to the isolation of PPO homologs in several crops, which will be possibly characterized at the functional level in the near future. Here, focusing on the botanic families of Poaceae and Solanaceae, we provide an overview on available scientific literature on PPOs, resulting in useful information on biochemical, physiological and genetic aspects.

  2. Enumeration of smallest intervention strategies in genome-scale metabolic networks.

    Directory of Open Access Journals (Sweden)

    Axel von Kamp

    2014-01-01

    Full Text Available One ultimate goal of metabolic network modeling is the rational redesign of biochemical networks to optimize the production of certain compounds by cellular systems. Although several constraint-based optimization techniques have been developed for this purpose, methods for systematic enumeration of intervention strategies in genome-scale metabolic networks are still lacking. In principle, Minimal Cut Sets (MCSs; inclusion-minimal combinations of reaction or gene deletions that lead to the fulfilment of a given intervention goal provide an exhaustive enumeration approach. However, their disadvantage is the combinatorial explosion in larger networks and the requirement to compute first the elementary modes (EMs which itself is impractical in genome-scale networks. We present MCSEnumerator, a new method for effective enumeration of the smallest MCSs (with fewest interventions in genome-scale metabolic network models. For this we combine two approaches, namely (i the mapping of MCSs to EMs in a dual network, and (ii a modified algorithm by which shortest EMs can be effectively determined in large networks. In this way, we can identify the smallest MCSs by calculating the shortest EMs in the dual network. Realistic application examples demonstrate that our algorithm is able to list thousands of the most efficient intervention strategies in genome-scale networks for various intervention problems. For instance, for the first time we could enumerate all synthetic lethals in E.coli with combinations of up to 5 reactions. We also applied the new algorithm exemplarily to compute strain designs for growth-coupled synthesis of different products (ethanol, fumarate, serine by E.coli. We found numerous new engineering strategies partially requiring less knockouts and guaranteeing higher product yields (even without the assumption of optimal growth than reported previously. The strength of the presented approach is that smallest intervention strategies can be

  3. Darwinism for the Genomic Age: Connecting Mutation to Diversification

    OpenAIRE

    Hua, Xia; Bromham, Lindell

    2017-01-01

    A growing body of evidence suggests that rates of diversification of biological lineages are correlated with differences in genome-wide mutation rate. Given that most research into differential patterns of diversification rate have focused on species traits or ecological parameters, a connection to the biochemical processes of genome change is an unexpected observation. While the empirical evidence for a significant association between mutation rate and diversification rate is mounting, there...

  4. The pomegranate (Punica granatum L.) genome and the genomics of punicalagin biosynthesis.

    Science.gov (United States)

    Qin, Gaihua; Xu, Chunyan; Ming, Ray; Tang, Haibao; Guyot, Romain; Kramer, Elena M; Hu, Yudong; Yi, Xingkai; Qi, Yongjie; Xu, Xiangyang; Gao, Zhenghui; Pan, Haifa; Jian, Jianbo; Tian, Yinping; Yue, Zhen; Xu, Yiliu

    2017-09-01

    Pomegranate (Punica granatum L.) is a perennial fruit crop grown since ancient times that has been planted worldwide and is known for its functional metabolites, particularly punicalagins. We have sequenced and assembled the pomegranate genome with 328 Mb anchored into nine pseudo-chromosomes and annotated 29 229 gene models. A Myrtales lineage-specific whole-genome duplication event was detected that occurred in the common ancestor before the divergence of pomegranate and Eucalyptus. Repetitive sequences accounted for 46.1% of the assembled genome. We found that the integument development gene INNER NO OUTER (INO) was under positive selection and potentially contributed to the development of the fleshy outer layer of the seed coat, an edible part of pomegranate fruit. The genes encoding the enzymes for synthesis and degradation of lignin, hemicelluloses and cellulose were also differentially expressed between soft- and hard-seeded varieties, reflecting differences in their accumulation in cultivars differing in seed hardness. Candidate genes for punicalagin biosynthesis were identified and their expression patterns indicated that gallic acid synthesis in tissues could follow different biochemical pathways. The genome sequence of pomegranate provides a valuable resource for the dissection of many biological and biochemical traits and also provides important insights for the acceleration of breeding. Elucidation of the biochemical pathway(s) involved in punicalagin biosynthesis could assist breeding efforts to increase production of this bioactive compound. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. Genome shuffling of Saccharomyces cerevisiae through recursive population mating to evolve tolerance to inhibitors of Spent Sulfite Liquor

    Energy Technology Data Exchange (ETDEWEB)

    Martin, V.J.J.; Pinel, D.J.; D' aoust, F. [Concordia Univ., Montreal, PQ (Canada). Dept. of Biological Sciences; Bajwa, P.K.; Trevors, J.T.; Lee, H. [Guelph Univ., ON (Canada). Dept. of Environmental Biology

    2009-07-01

    The biochemical steps in the conversion of cellulosics to biofuels include the pretreatment, hydrolysis and fermentation of substrates into a final product. Fermentation of lignocellulosic substrates derived from waste biomass requires metabolic engineering. A biochemical flow chart from the Tembec Biorefinery plant was presented in which Spent Sulfite Liquor (SSL) was used to add value to the pulp and paper industry. The sugars contained in this carbohydrate-rich effluent from sulfite pulping were used to produce ethanol. A robust, ethanologenic microorganism that can withstand the substrate toxicity was needed. Saccharomyces cerevisiae is currently used for the production of ethanol from SSL. This yeast will succumb to toxicity and inhibition, particularly in the most inhibitor rich forms of SSL such as hardwood SSL (HWSSL). A genome shuffling method was therefore developed to create a better SSL fermenting strain. This method was designed to improve polygenic traits by generating pools of mutants with improved phenotypes, followed by iterative recombination between their genomes. Through 5 rounds of recursive mating and screening, 3 strains that could survive and grow in undiluted HWSSL were obtained. The study demonstrated that the tolerance of these strains to SSL translates into an increased capacity to produce ethanol over time using this substrate, due to continued viability of the yeast population. Phenotypic analysis of the three strains revealed that the genome shuffling approach successfully co-evolved tolerance to acetic acid, NaCl (osmotic) and HMF. A systems biology analysis of strain R57 was initiated in order to establish the genetic basis for HWSSL tolerance. tabs., figs.

  6. Exploratory analysis of genomic segmentations with Segtools

    Directory of Open Access Journals (Sweden)

    Buske Orion J

    2011-10-01

    Full Text Available Abstract Background As genome-wide experiments and annotations become more prevalent, researchers increasingly require tools to help interpret data at this scale. Many functional genomics experiments involve partitioning the genome into labeled segments, such that segments sharing the same label exhibit one or more biochemical or functional traits. For example, a collection of ChlP-seq experiments yields a compendium of peaks, each labeled with one or more associated DNA-binding proteins. Similarly, manually or automatically generated annotations of functional genomic elements, including cis-regulatory modules and protein-coding or RNA genes, can also be summarized as genomic segmentations. Results We present a software toolkit called Segtools that simplifies and automates the exploration of genomic segmentations. The software operates as a series of interacting tools, each of which provides one mode of summarization. These various tools can be pipelined and summarized in a single HTML page. We describe the Segtools toolkit and demonstrate its use in interpreting a collection of human histone modification data sets and Plasmodium falciparum local chromatin structure data sets. Conclusions Segtools provides a convenient, powerful means of interpreting a genomic segmentation.

  7. Personal genomics services: whose genomes?

    Science.gov (United States)

    Gurwitz, David; Bregman-Eschet, Yael

    2009-07-01

    New companies offering personal whole-genome information services over the internet are dynamic and highly visible players in the personal genomics field. For fees currently ranging from US$399 to US$2500 and a vial of saliva, individuals can now purchase online access to their individual genetic information regarding susceptibility to a range of chronic diseases and phenotypic traits based on a genome-wide SNP scan. Most of the companies offering such services are based in the United States, but their clients may come from nearly anywhere in the world. Although the scientific validity, clinical utility and potential future implications of such services are being hotly debated, several ethical and regulatory questions related to direct-to-consumer (DTC) marketing strategies of genetic tests have not yet received sufficient attention. For example, how can we minimize the risk of unauthorized third parties from submitting other people's DNA for testing? Another pressing question concerns the ownership of (genotypic and phenotypic) information, as well as the unclear legal status of customers regarding their own personal information. Current legislation in the US and Europe falls short of providing clear answers to these questions. Until the regulation of personal genomics services catches up with the technology, we call upon commercial providers to self-regulate and coordinate their activities to minimize potential risks to individual privacy. We also point out some specific steps, along the trustee model, that providers of DTC personal genomics services as well as regulators and policy makers could consider for addressing some of the concerns raised below.

  8. Water screen

    Energy Technology Data Exchange (ETDEWEB)

    Kutepov, A.I.; Fedotov, I.N.; Prokopov, O.I.

    1981-01-01

    The invention refers to ventilation and can be used for repair-fitting operations in a blasting-dangerous gas condition, for example, during elimination of gas-oil gushers, repair of gas-oil pipelines, equipment etc. In order to improve safety of labor, the nozzle adapters of the water collector are oriented towards each other. The collector is installed on a support with the possibility of rotating and vertical movement. The proposed screen excludes the possibility of blasting-dangerous concentrations of gases and guarantees extinguishing of the impact spark during operation of the tool.

  9. RBC Antibody Screen

    Science.gov (United States)

    ... C Cystic Fibrosis (CF) Gene Mutations Testing Cytomegalovirus (CMV) Tests D-dimer Dengue Fever Testing Des-gamma- ... Index of Screening Recommendations Not Listed? Not Listed? Newborn Screening Screening Tests for Infants Screening Tests for ...

  10. Mental Health Screening Center

    Science.gov (United States)

    ... Releases & Announcements Public Service Announcements Partnering with DBSA Mental Health Screening Center These online screening tools are not ... you have any concerns, see your doctor or mental health professional. Depression Screening for Adult Depression Screening for ...

  11. Breast cancer screening

    Science.gov (United States)

    Mammogram - breast cancer screening; Breast exam - breast cancer screening; MRI - breast cancer screening ... is performed to screen women to detect early breast cancer when it is more likely to be cured. ...

  12. Glucuronoyl Esterase Screening and Characterization Assays Utilizing Commercially Available Benzyl Glucuronic Acid Ester

    Directory of Open Access Journals (Sweden)

    Hampus Sunner

    2015-09-01

    Full Text Available Research on glucuronoyl esterases (GEs has been hampered by the lack of enzyme assays based on easily obtainable substrates. While benzyl d-glucuronic acid ester (BnGlcA is a commercially available substrate that can be used for GE assays, several considerations regarding substrate instability, limited solubility and low apparent affinities should be made. In this work we discuss the factors that are important when using BnGlcA for assaying GE activity and show how these can be applied when designing BnGlcA-based GE assays for different applications: a thin-layer chromatography assay for qualitative activity detection, a coupled-enzyme spectrophotometric assay that can be used for high-throughput screening or general activity determinations and a HPLC-based detection method allowing kinetic determinations. The three-level experimental procedure not merely facilitates routine, fast and simple biochemical characterizations but it can also give rise to the discovery of different GEs through an extensive screening of heterologous Genomic and Metagenomic expression libraries.

  13. Visualization for genomics: the Microbial Genome Viewer.

    NARCIS (Netherlands)

    Kerkhoven, R.; Enckevort, F.H.J. van; Boekhorst, J.; Molenaar, D; Siezen, R.J.

    2004-01-01

    SUMMARY: A Web-based visualization tool, the Microbial Genome Viewer, is presented that allows the user to combine complex genomic data in a highly interactive way. This Web tool enables the interactive generation of chromosome wheels and linear genome maps from genome annotation data stored in a

  14. Genomic localization, sequence analysis, and transcription of the putative human cytomegalovirus DNA polymerase gene

    International Nuclear Information System (INIS)

    Heilbronn, T.; Jahn, G.; Buerkle, A.; Freese, U.K.; Fleckenstein, B.; Zur Hausen, H.

    1987-01-01

    The human cytomegalovirus (HCMV)-induced DNA polymerase has been well characterized biochemically and functionally, but its genomic location has not yet been assigned. To identify the coding sequence, cross-hybridization with the herpes simplex virus type 1 (HSV-1) polymerase gene was used, as suggested by the close similarity of the herpes group virus-induced DNA polymerases to the HCMV DNA polymerase. A cosmid and plasmid library of the entire HCMV genome was screened with the BamHI Q fragment of HSF-1 at different stringency conditions. One PstI-HincII restriction fragment of 850 base pairs mapping within the EcoRI M fragment of HCMV cross-hybridized at T/sub m/ - 25/degrees/C. Sequence analysis revealed one open reading frame spanning the entire sequence. The amino acid sequence showed a highly conserved domain of 133 amino acids shared with the HSV and putative Esptein-Barr virus polymerase sequences. This domain maps within the C-terminal part of the HSV polymerase gene, which has been suggested to contain part of the catalytic center of the enzyme. Transcription analysis revealed one 5.4-kilobase early transcript in the sense orientation with respect to the open reading frame identified. This transcript appears to code for the 140-kilodalton HCMV polymerase protein

  15. Chemical and biochemical tools to assess pollution exposure in cultured fish

    International Nuclear Information System (INIS)

    Fernandes, Denise; Zanuy, Silvia; Bebianno, Maria Joao; Porte, Cinta

    2008-01-01

    There is little information regarding pollutant levels in farmed fish, and the risks associated to consumption. This study was designed to assess levels of exposure to metals, organochlorinated compounds, polycyclic aromatic hydrocarbons (PAHs) and alkylphenols (APEs) in farmed sea bass Dicentrarchus labrax from five aquacultures located in Southern Europe. Additionally, several biochemical responses (metallothionein, 7-ethoxyresorufin O-deethylase, vitellogenin) were determined as complementary tools. The obtained data indicate that pollutants exposure in farmed fish is similar to the levels reported in wild specimens from the area. Nonetheless, some biochemical responses were observed in the studied organisms, viz. metallothionein induction in Cu exposed organisms, and 7-ethoxyresorufin O-deethylase (EROD) and vitellogenin induction in PAHs and APEs exposed ones. The study further supports the usefulness of the biomarker approach as a first screening method to discriminate between basal and high levels of exposure in cultured fish. - Pollution assessment in cultured fish: chemical and biochemical tools

  16. Seroprevalence of brucellosis and associated hemato-biochemical changes in pakistani horses

    International Nuclear Information System (INIS)

    Gul, S.T.; Khan, A.; Ahmad, M.

    2013-01-01

    The aim of this study was to determine the seroprevalence and hemato-biochemical manifestations of brucellosis in horses. Serum samples were screened for Brucella antibodies by Rose Bengal plate test (RBPT) and serum agglutination test (SAT). Blood samples were evaluated for hemato-biochemical parameters following standard procedures. Results indicated seroprevalence of brucellosis 20.13 and 16.23% in horses by RBPT and SAT, respectively. Brucellosis does not lead to any significant change in hematological and biochemical parameters in relation to age, sex, body condition and lactation except few parameters. The values of erythrocyte sedimentation rate, neutrophil, basophil and alkaline phosphatase significantly decreased in brucellosis positive animals as compared to healthy animals whereas lymphocytes and alanine aminotransferase were in opposite order. It was concluded from the results that prevalence of brucellosis in horse population is of concern; therefore, control measures should be opted so that its zoonotic threat is curtailed. (author)

  17. Expanded Newborn Screening Program in Saudi Arabia: Incidence of screened disorders.

    Science.gov (United States)

    Alfadhel, Majid; Al Othaim, Ali; Al Saif, Saif; Al Mutairi, Fuad; Alsayed, Moeenaldeen; Rahbeeni, Zuhair; Alzaidan, Hamad; Alowain, Mohammed; Al-Hassnan, Zuhair; Saeedi, Mohamad; Aljohery, Saeed; Alasmari, Ali; Faqeih, Eissa; Alwakeel, Mansour; AlMashary, Maher; Almohameed, Sulaiman; Alzahrani, Mohammed; Migdad, Abeer; Al-Dirbashi, Osama Y; Rashed, Mohamed; Alamoudi, Mohamed; Jacob, Minnie; Alahaidib, Lujane; El-Badaoui, Fahd; Saadallah, Amal; Alsulaiman, Ayman; Eyaid, Wafaa; Al-Odaib, Ali

    2017-06-01

    To address the implementation of the National Newborn Screening Program (NBS) in Saudi Arabia and stratify the incidence of the screened disorders. A retrospective study conducted between 1 August 2005 and 31 December 2012, total of 775 000 newborns were screened from 139 hospitals distributed among all regions of Saudi Arabia. The NBS Program screens for 16 disorders from a selective list of inborn errors of metabolism (IEM) and endocrine disorders. Heel prick dry blood spot samples were obtained from all newborns for biochemical and immunoassay testing. Recall screening testing was performed for Initial positive results and confirmed by specific biochemical assays. A total of 743 cases were identified giving an overall incidence of 1:1043. Frequently detected disorders nationwide were congenital hypothyroidism and congenital adrenal hyperplasia with an incidence of 1:7175 and 1:7908 correspondingly. The highest incidence among the IEM was propionic acidaemia with an incidence rate of 1:14 000. The article highlights the experience of the NBS Program in Saudi Arabia and providing data on specific regional incidences of all the screened disorders included in the programme; and showed that the incidence of these disorders is one of the highest reported so far world-wide. © 2017 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).

  18. Partnering for functional genomics research conference: Abstracts of poster presentations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    This reports contains abstracts of poster presentations presented at the Functional Genomics Research Conference held April 16--17, 1998 in Oak Ridge, Tennessee. Attention is focused on the following areas: mouse mutagenesis and genomics; phenotype screening; gene expression analysis; DNA analysis technology development; bioinformatics; comparative analyses of mouse, human, and yeast sequences; and pilot projects to evaluate methodologies.

  19. Biochemical thermodynamics: applications of Mathematica.

    Science.gov (United States)

    Alberty, Robert A

    2006-01-01

    reactants. Thus loading this package makes available 774 mathematical functions for these properties. These functions can be added and subtracted to obtain changes in these properties in biochemical reactions and apparent equilibrium constants.

  20. Morphological, physiological and biochemical studies on Pyricularia ...

    African Journals Online (AJOL)

    SARAH

    2014-02-28

    Feb 28, 2014 ... compounds seem to reflect inherent biochemical and physiological differences among P. grisea isolates .... solutions for imaging and microscopy, soft image system .... characteristics among 12 P. grisea isolates from rice were.

  1. Biochemical changes in blood caused by radioisotopes

    International Nuclear Information System (INIS)

    Zapol'skaya, N.A.; Fedorova, A.V.

    1975-01-01

    The changes were studied occurring in some biochemical indicators in blood at chronic peroral administration of strontium-90, cesium-137 and iodine-131 in amounts resulting in accumulation of commensurable doses in critical organs corresponding to each isotope

  2. Biochemical and kinetic characterization of geranylgeraniol 18 ...

    African Journals Online (AJOL)

    Suchart

    2015-07-22

    Jul 22, 2015 ... biochemical characterization of GGOH 18-hydroxylase activity in the microsomal fraction from C. .... method as previously described (Chanama et al., 2009). Briefly, 30 g of frozen ..... Catalytic properties of the plant cytochrome.

  3. Short Report Biochemical derangements prior to emergency ...

    African Journals Online (AJOL)

    MMJ VOL 29 (1): March 2017. Biochemical derangements prior to emergency laparotomy at QECH 55. Malawi Medical Journal 29 (1): March 2017 ... Venepuncture was performed preoperatively for urgent cases, defined as those requiring.

  4. A Program on Biochemical and Biomedical Engineering.

    Science.gov (United States)

    San, Ka-Yiu; McIntire, Larry V.

    1989-01-01

    Presents an introduction to the Biochemical and Biomedical Engineering program at Rice University. Describes the development of the academic and enhancement programs, including organizational structure and research project titles. (YP)

  5. Raman spectroscopic biochemical mapping of tissues

    Science.gov (United States)

    Stone, Nicholas; Hart Prieto, Maria C.; Kendall, Catherine A.; Shetty, Geeta; Barr, Hugh

    2006-02-01

    Advances in technologies have brought us closer to routine spectroscopic diagnosis of early malignant disease. However, there is still a poor understanding of the carcinogenesis process. For example it is not known whether many cancers follow a logical sequence from dysplasia, to carcinoma in situ, to invasion. Biochemical tissue changes, triggered by genetic mutations, precede morphological and structural changes. These can be probed using Raman or FTIR microspectroscopy and the spectra analysed for biochemical constituents. Local microscopic distribution of various constituents can then be visualised. Raman mapping has been performed on a number of tissues including oesophagus, breast, bladder and prostate. The biochemical constituents have been calculated at each point using basis spectra and least squares analysis. The residual of the least squares fit indicates any unfit spectral components. The biochemical distribution will be compared with the defined histopathological boundaries. The distribution of nucleic acids, glycogen, actin, collagen I, III, IV, lipids and others appear to follow expected patterns.

  6. [Biochemical diagnostics of fatal opium intoxication].

    Science.gov (United States)

    Papyshev, I P; Astashkina, O G; Tuchik, E S; Nikolaev, B S; Cherniaev, A L

    2013-01-01

    Biochemical diagnostics of fatal opium intoxication remains a topical problem in forensic medical science and practice. We investigated materials obtained in the course of forensic medical expertise of the cases of fatal opium intoxication. The study revealed significant differences between myoglobin levels in blood, urine, myocardium, and skeletal muscles. The proposed approach to biochemical diagnostics of fatal opium intoxication enhances the accuracy and the level of evidence of expert conclusions.

  7. Improving Marine Ecosystem Models with Biochemical Tracers

    Science.gov (United States)

    Pethybridge, Heidi R.; Choy, C. Anela; Polovina, Jeffrey J.; Fulton, Elizabeth A.

    2018-01-01

    Empirical data on food web dynamics and predator-prey interactions underpin ecosystem models, which are increasingly used to support strategic management of marine resources. These data have traditionally derived from stomach content analysis, but new and complementary forms of ecological data are increasingly available from biochemical tracer techniques. Extensive opportunities exist to improve the empirical robustness of ecosystem models through the incorporation of biochemical tracer data and derived indices, an area that is rapidly expanding because of advances in analytical developments and sophisticated statistical techniques. Here, we explore the trophic information required by ecosystem model frameworks (species, individual, and size based) and match them to the most commonly used biochemical tracers (bulk tissue and compound-specific stable isotopes, fatty acids, and trace elements). Key quantitative parameters derived from biochemical tracers include estimates of diet composition, niche width, and trophic position. Biochemical tracers also provide powerful insight into the spatial and temporal variability of food web structure and the characterization of dominant basal and microbial food web groups. A major challenge in incorporating biochemical tracer data into ecosystem models is scale and data type mismatches, which can be overcome with greater knowledge exchange and numerical approaches that transform, integrate, and visualize data.

  8. RMBNToolbox: random models for biochemical networks

    Directory of Open Access Journals (Sweden)

    Niemi Jari

    2007-05-01

    Full Text Available Abstract Background There is an increasing interest to model biochemical and cell biological networks, as well as to the computational analysis of these models. The development of analysis methodologies and related software is rapid in the field. However, the number of available models is still relatively small and the model sizes remain limited. The lack of kinetic information is usually the limiting factor for the construction of detailed simulation models. Results We present a computational toolbox for generating random biochemical network models which mimic real biochemical networks. The toolbox is called Random Models for Biochemical Networks. The toolbox works in the Matlab environment, and it makes it possible to generate various network structures, stoichiometries, kinetic laws for reactions, and parameters therein. The generation can be based on statistical rules and distributions, and more detailed information of real biochemical networks can be used in situations where it is known. The toolbox can be easily extended. The resulting network models can be exported in the format of Systems Biology Markup Language. Conclusion While more information is accumulating on biochemical networks, random networks can be used as an intermediate step towards their better understanding. Random networks make it possible to study the effects of various network characteristics to the overall behavior of the network. Moreover, the construction of artificial network models provides the ground truth data needed in the validation of various computational methods in the fields of parameter estimation and data analysis.

  9. An orphan gyrB in the Mycobacterium smegmatis genome ...

    Indian Academy of Sciences (India)

    Unknown

    2002-12-13

    Dec 13, 2002 ... ... respect to gene organization and regulation, biochemical characterization, ... marin class of drugs, resides in GyrB, providing essential energetics for the ... Materials and methods ... analysis of the M. smegmatis genome revealed presence of a gene .... outs of either one of the gyrB alleles to evaluate their.

  10. The complete mitochondrial genome of Gossypium hirsutum and evolutionary analysis of higher plant mitochondrial genomes.

    Science.gov (United States)

    Liu, Guozheng; Cao, Dandan; Li, Shuangshuang; Su, Aiguo; Geng, Jianing; Grover, Corrinne E; Hu, Songnian; Hua, Jinping

    2013-01-01

    Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.

  11. LeishCyc: a biochemical pathways database for Leishmania major

    Directory of Open Access Journals (Sweden)

    Doyle Maria A

    2009-06-01

    Full Text Available Abstract Background Leishmania spp. are sandfly transmitted protozoan parasites that cause a spectrum of diseases in more than 12 million people worldwide. Much research is now focusing on how these parasites adapt to the distinct nutrient environments they encounter in the digestive tract of the sandfly vector and the phagolysosome compartment of mammalian macrophages. While data mining and annotation of the genomes of three Leishmania species has provided an initial inventory of predicted metabolic components and associated pathways, resources for integrating this information into metabolic networks and incorporating data from transcript, protein, and metabolite profiling studies is currently lacking. The development of a reliable, expertly curated, and widely available model of Leishmania metabolic networks is required to facilitate systems analysis, as well as discovery and prioritization of new drug targets for this important human pathogen. Description The LeishCyc database was initially built from the genome sequence of Leishmania major (v5.2, based on the annotation published by the Wellcome Trust Sanger Institute. LeishCyc was manually curated to remove errors, correct automated predictions, and add information from the literature. The ongoing curation is based on public sources, literature searches, and our own experimental and bioinformatics studies. In a number of instances we have improved on the original genome annotation, and, in some ambiguous cases, collected relevant information from the literature in order to help clarify gene or protein annotation in the future. All genes in LeishCyc are linked to the corresponding entry in GeneDB (Wellcome Trust Sanger Institute. Conclusion The LeishCyc database describes Leishmania major genes, gene products, metabolites, their relationships and biochemical organization into metabolic pathways. LeishCyc provides a systematic approach to organizing the evolving information about Leishmania

  12. Ancient genomics

    DEFF Research Database (Denmark)

    Der Sarkissian, Clio; Allentoft, Morten Erik; Avila Arcos, Maria del Carmen

    2015-01-01

    throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained...... by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans...

  13. Marine genomics

    DEFF Research Database (Denmark)

    Oliveira Ribeiro, Ângela Maria; Foote, Andrew David; Kupczok, Anne

    2017-01-01

    Marine ecosystems occupy 71% of the surface of our planet, yet we know little about their diversity. Although the inventory of species is continually increasing, as registered by the Census of Marine Life program, only about 10% of the estimated two million marine species are known. This lag......-throughput sequencing approaches have been helping to improve our knowledge of marine biodiversity, from the rich microbial biota that forms the base of the tree of life to a wealth of plant and animal species. In this review, we present an overview of the applications of genomics to the study of marine life, from...

  14. Searching for cellular partners of hantaviral nonstructural protein NSs: Y2H screening of mouse cDNA library and analysis of cellular interactome.

    Science.gov (United States)

    Rönnberg, Tuomas; Jääskeläinen, Kirsi; Blot, Guillaume; Parviainen, Ville; Vaheri, Antti; Renkonen, Risto; Bouloy, Michele; Plyusnin, Alexander

    2012-01-01

    Hantaviruses (Bunyaviridae) are negative-strand RNA viruses with a tripartite genome. The small (S) segment encodes the nucleocapsid protein and, in some hantaviruses, also the nonstructural protein (NSs). The aim of this study was to find potential cellular partners for the hantaviral NSs protein. Toward this aim, yeast two-hybrid (Y2H) screening of mouse cDNA library was performed followed by a search for potential NSs protein counterparts via analyzing a cellular interactome. The resulting interaction network was shown to form logical, clustered structures. Furthermore, several potential binding partners for the NSs protein, for instance ACBD3, were identified and, to prove the principle, interaction between NSs and ACBD3 proteins was demonstrated biochemically.

  15. Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting | Office of Cancer Genomics

    Science.gov (United States)

    The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest.

  16. Fostering caring relationships: Suggestions to rethink liberal perspectives on the ethics of newborn screening

    NARCIS (Netherlands)

    Burg, S. van der; Oerlemans, A.J.M.

    2018-01-01

    Newborn screening (NBS) involves the collection of blood from the heel of a newborn baby and testing it for a list of rare and inheritable disorders. New biochemical screening technologies led to expansions of NBS programs in the first decade of the 21st century. It is expected that they will in

  17. A comprehensive platform for highly multiplexed mammalian functional genetic screens

    Directory of Open Access Journals (Sweden)

    Cheung-Ong Kahlin

    2011-05-01

    Full Text Available Abstract Background Genome-wide screening in human and mouse cells using RNA interference and open reading frame over-expression libraries is rapidly becoming a viable experimental approach for many research labs. There are a variety of gene expression modulation libraries commercially available, however, detailed and validated protocols as well as the reagents necessary for deconvolving genome-scale gene screens using these libraries are lacking. As a solution, we designed a comprehensive platform for highly multiplexed functional genetic screens in human, mouse and yeast cells using popular, commercially available gene modulation libraries. The Gene Modulation Array Platform (GMAP is a single microarray-based detection solution for deconvolution of loss and gain-of-function pooled screens. Results Experiments with specially constructed lentiviral-based plasmid pools containing ~78,000 shRNAs demonstrated that the GMAP is capable of deconvolving genome-wide shRNA "dropout" screens. Further experiments with a larger, ~90,000 shRNA pool demonstrate that equivalent results are obtained from plasmid pools and from genomic DNA derived from lentivirus infected cells. Parallel testing of large shRNA pools using GMAP and next-generation sequencing methods revealed that the two methods provide valid and complementary approaches to deconvolution of genome-wide shRNA screens. Additional experiments demonstrated that GMAP is equivalent to similar microarray-based products when used for deconvolution of open reading frame over-expression screens. Conclusion Herein, we demonstrate four major applications for the GMAP resource, including deconvolution of pooled RNAi screens in cells with at least 90,000 distinct shRNAs. We also provide detailed methodologies for pooled shRNA screen readout using GMAP and compare next-generation sequencing to GMAP (i.e. microarray based deconvolution methods.

  18. Novel biochemical markers of psychosocial stress in women.

    Directory of Open Access Journals (Sweden)

    Marie Asberg

    Full Text Available BACKGROUND: Prolonged psychosocial stress is a condition assessed through self-reports. Here we aimed to identify biochemical markers for screening and early intervention in women. METHODS: Plasma concentrations of interleukin (IL 1-alpha, IL1-beta, IL-2, IL-4, IL-6, IL-8, IL-10, interferon-gamma (INF-gamma, tumor necrosis factor-alpha (TNF-alpha, monocyte chemotactic protein-1 (MCP-1, epidermal growth factor (EGF, vascular endothelial growth factor (VEGF, thyroid stimulating hormone (TSH, total tri-iodothyronine (TT3, total thyroxine (TT4, prolactin, and testosterone were measured in: 195 women on long-term sick-leave for a stress-related affective disorder, 45 women at risk for professional burnout, and 84 healthy women. RESULTS: We found significantly increased levels of MCP-1, VEGF and EGF in women exposed to prolonged psychosocial stress. Statistical analysis indicates that they independently associate with a significant risk for being classified as ill. CONCLUSIONS: MCP-1, EGF, and VEGF are potential markers for screening and early intervention in women under prolonged psychosocial stress.

  19. MIPS: a database for protein sequences and complete genomes.

    Science.gov (United States)

    Mewes, H W; Hani, J; Pfeiffer, F; Frishman, D

    1998-01-01

    The MIPS group [Munich Information Center for Protein Sequences of the German National Center for Environment and Health (GSF)] at the Max-Planck-Institute for Biochemistry, Martinsried near Munich, Germany, is involved in a number of data collection activities, including a comprehensive database of the yeast genome, a database reflecting the progress in sequencing the Arabidopsis thaliana genome, the systematic analysis of other small genomes and the collection of protein sequence data within the framework of the PIR-International Protein Sequence Database (described elsewhere in this volume). Through its WWW server (http://www.mips.biochem.mpg.de ) MIPS provides access to a variety of generic databases, including a database of protein families as well as automatically generated data by the systematic application of sequence analysis algorithms. The yeast genome sequence and its related information was also compiled on CD-ROM to provide dynamic interactive access to the 16 chromosomes of the first eukaryotic genome unraveled. PMID:9399795

  20. Biochemical Removal of HAP Precursors From Coal

    International Nuclear Information System (INIS)

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE's interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals

  1. Biochemical Removal of HAP Precursors From Coal

    Energy Technology Data Exchange (ETDEWEB)

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE`s interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals.

  2. eQuilibrator--the biochemical thermodynamics calculator.

    Science.gov (United States)

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like 'how much Gibbs energy is released by ATP hydrolysis at pH 5?' are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use.

  3. eQuilibrator—the biochemical thermodynamics calculator

    Science.gov (United States)

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like ‘how much Gibbs energy is released by ATP hydrolysis at pH 5?’ are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use. PMID:22064852

  4. Thyroid dysfunction in Down's syndrome and screening for hypothyroidism in children and adolescents using capillary TSH measurement.

    LENUS (Irish Health Repository)

    Murphy, J

    2008-02-01

    Thyroid dysfunction is more common in individuals with Down\\'s syndrome (DS) than in the general population, whose clinical features can mask the presenting signs and symptoms of hypothyroidism. Biochemical screening is necessary; however, venepuncture may be difficult.

  5. Skin Cancer Screening

    Science.gov (United States)

    ... Genetics of Skin Cancer Skin Cancer Screening Research Skin Cancer Screening (PDQ®)–Patient Version What is screening? ... These are called diagnostic tests . General Information About Skin Cancer Key Points Skin cancer is a disease ...

  6. Screening for Cancer

    Science.gov (United States)

    Cancer screening is checking for cancer in people who don't have symptoms. Screening tests can help doctors find and treat several types of cancer early, but cancer screening can have harms as well as benefits.

  7. Colorectal Cancer Screening

    Science.gov (United States)

    ... Genetics of Colorectal Cancer Colorectal Cancer Screening Research Colorectal Cancer Screening (PDQ®)–Patient Version What is screening? Go ... These are called diagnostic tests . General Information About Colorectal Cancer Key Points Colorectal cancer is a disease in ...

  8. Screen time and children

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000355.htm Screen time and children To use the sharing features on ... videos is considered unhealthy screen time. Current Screen Time Guidelines Children under age 2 should have no ...

  9. Stomach (Gastric) Cancer Screening

    Science.gov (United States)

    ... Stomach Cancer Prevention Stomach Cancer Screening Research Stomach (Gastric) Cancer Screening (PDQ®)–Patient Version What is screening? Go ... are called diagnostic tests . General Information About Stomach (Gastric) Cancer Key Points Stomach cancer is a disease in ...

  10. Ensembl Genomes 2016: more genomes, more complexity.

    Science.gov (United States)

    Kersey, Paul Julian; Allen, James E; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello-Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M; Howe, Kevin L; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M

    2016-01-04

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Rodent malaria parasites : genome organization & comparative genomics

    NARCIS (Netherlands)

    Kooij, Taco W.A.

    2006-01-01

    The aim of the studies described in this thesis was to investigate the genome organization of rodent malaria parasites (RMPs) and compare the organization and gene content of the genomes of RMPs and the human malaria parasite P. falciparum. The release of the complete genome sequence of P.

  12. Biochemical activity of fullerenes and related derivatives

    International Nuclear Information System (INIS)

    Huczko, A.; Lange, H.; Calko, E.

    1999-01-01

    An astonishing scientific interest, embodied in over 15000 research articles so far, has been encountered since 1985 when fullerenes were discovered. From new superconductors to a rich electrochemistry and reaction chemistry, fullerene nanostructures continue to excite the scientific world, and new findings continue at record pace. This review presents many examples of the biochemical activities of fullerenes and derivatives, e. g. cytotoxic activity, selective DNA cleavage and antiviral activity against HIV. We also present some results of our testing which show that, despite its chemical and biochemical activity, fullerene matter does not present any health hazard directly related to skin irritation and allergic risks. (author)

  13. RNAi screening in primary human hepatocytes of genes implicated in genome-wide association studies for roles in type 2 diabetes identifies roles for CAMK1D and CDKAL1, among others, in hepatic glucose regulation.

    Directory of Open Access Journals (Sweden)

    Steven Haney

    Full Text Available Genome-wide association (GWA studies have described a large number of new candidate genes that contribute to of Type 2 Diabetes (T2D. In some cases, small clusters of genes are implicated, rather than a single gene, and in all cases, the genetic contribution is not defined through the effects on a specific organ, such as the pancreas or liver. There is a significant need to develop and use human cell-based models to examine the effects these genes may have on glucose regulation. We describe the development of a primary human hepatocyte model that adjusts glucose disposition according to hormonal signals. This model was used to determine whether candidate genes identified in GWA studies regulate hepatic glucose disposition through siRNAs corresponding to the list of identified genes. We find that several genes affect the storage of glucose as glycogen (glycolytic response and/or affect the utilization of pyruvate, the critical step in gluconeogenesis. Of the genes that affect both of these processes, CAMK1D, TSPAN8 and KIF11 affect the localization of a mediator of both gluconeogenesis and glycolysis regulation, CRTC2, to the nucleus in response to glucagon. In addition, the gene CDKAL1 was observed to affect glycogen storage, and molecular experiments using mutant forms of CDK5, a putative target of CDKAL1, in HepG2 cells show that this is mediated by coordinate regulation of CDK5 and PKA on MEK, which ultimately regulates the phosphorylation of ribosomal protein S6, a critical step in the insulin signaling pathway.

  14. Funding Opportunity: Genomic Data Centers

    Science.gov (United States)

    Funding Opportunity CCG, Funding Opportunity Center for Cancer Genomics, CCG, Center for Cancer Genomics, CCG RFA, Center for cancer genomics rfa, genomic data analysis network, genomic data analysis network centers,

  15. Prenatal screening and genetics

    DEFF Research Database (Denmark)

    Alderson, P; Aro, A R; Dragonas, T

    2001-01-01

    Although the term 'genetic screening' has been used for decades, this paper discusses how, in its most precise meaning, genetic screening has not yet been widely introduced. 'Prenatal screening' is often confused with 'genetic screening'. As we show, these terms have different meanings, and we...... examine definitions of the relevant concepts in order to illustrate this point. The concepts are i) prenatal, ii) genetic screening, iii) screening, scanning and testing, iv) maternal and foetal tests, v) test techniques and vi) genetic conditions. So far, prenatal screening has little connection...... with precisely defined genetics. There are benefits but also disadvantages in overstating current links between them in the term genetic screening. Policy making and professional and public understandings about screening could be clarified if the distinct meanings of prenatal screening and genetic screening were...

  16. Biochemical characterization of Tunisian grapevine varieties

    Directory of Open Access Journals (Sweden)

    Ferjani Ben Abdallah

    1998-03-01

    The study of GPI, PGM, AAT and peroxydase isozyme banding patterns in combination with berry colour has led to establish a classification of the 61 autochton varieties into 37 groups including 26 varieties definitely differentiated through the results of this biochemical study.

  17. Survey of Biochemical Education in Japanese Universities.

    Science.gov (United States)

    Kagawa, Yasuo

    1995-01-01

    Reports findings of questionnaires sent to faculty in charge of biochemical education in medical schools and other programs from dentistry to agriculture. Total class hours have declined since 1984. New trends include bioethics and computer-assisted learning. Tables show trends in lecture hours, lecture content, laboratory hours, core subject…

  18. Haematological and biochemical responses of starter broiler ...

    African Journals Online (AJOL)

    A study was conducted to investigate the haematological and biochemical responses of starter broiler chickens fed copper and probiotics supplemented diets. A total of 180-day old Marshal broiler chicks were randomly allotted to six treatment groups of 30 birds each. The treatments were divided into three replicates of ten ...

  19. Probabilistic sensitivity analysis of biochemical reaction systems.

    Science.gov (United States)

    Zhang, Hong-Xuan; Dempsey, William P; Goutsias, John

    2009-09-07

    Sensitivity analysis is an indispensable tool for studying the robustness and fragility properties of biochemical reaction systems as well as for designing optimal approaches for selective perturbation and intervention. Deterministic sensitivity analysis techniques, using derivatives of the system response, have been extensively used in the literature. However, these techniques suffer from several drawbacks, which must be carefully considered before using them in problems of systems biology. We develop here a probabilistic approach to sensitivity analysis of biochemical reaction systems. The proposed technique employs a biophysically derived model for parameter fluctuations and, by using a recently suggested variance-based approach to sensitivity analysis [Saltelli et al., Chem. Rev. (Washington, D.C.) 105, 2811 (2005)], it leads to a powerful sensitivity analysis methodology for biochemical reaction systems. The approach presented in this paper addresses many problems associated with derivative-based sensitivity analysis techniques. Most importantly, it produces thermodynamically consistent sensitivity analysis results, can easily accommodate appreciable parameter variations, and allows for systematic investigation of high-order interaction effects. By employing a computational model of the mitogen-activated protein kinase signaling cascade, we demonstrate that our approach is well suited for sensitivity analysis of biochemical reaction systems and can produce a wealth of information about the sensitivity properties of such systems. The price to be paid, however, is a substantial increase in computational complexity over derivative-based techniques, which must be effectively addressed in order to make the proposed approach to sensitivity analysis more practical.

  20. Biochemical applications of FT-IR spectroscopy

    NARCIS (Netherlands)

    Pistorius, A.M.A.

    1996-01-01

    This thesis describes the use of (FT-)IR spectroscopy in general biochemical research. In chapter 3, IR spectroscopy is used in the quantitation of residual detergent after reconstitution of an integral membrane protein in a pre-defined lipid matrix. This chapter discusses the choice of the

  1. Some hematological and biochemical parameters in smokeless ...

    African Journals Online (AJOL)

    AJB SERVER

    2007-01-04

    Jan 4, 2007 ... The effect of Jharda powder (smokeless tobacco) on some hematological and biochemical parameters in consumers was investigated. Hematological parameters including hemoglobin content and white blood cell and leukocyte counts were higher in jharda powder consumers, while monocytes and.

  2. 2009 Biochemical Conversion Platform Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program’s Biochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

  3. Some hematological and biochemical parameters in smokeless ...

    African Journals Online (AJOL)

    The effect of Jharda powder (smokeless tobacco) on some hematological and biochemical parameters in consumers was investigated. Hematological parameters including hemoglobin content and white blood cell and leukocyte counts were higher in jharda powder consumers, while monocytes and basophiles counts were ...

  4. Haematological And Biochemical Effects Of Sulphadimidine In ...

    African Journals Online (AJOL)

    Haematological and biochemical efects of sulphadmidine were studied in Nigerian mongrel dogs. Five Nigerian mongrel dogs of either sex weighing between 7 and 12 kg were used for the study. The pretreatment blood and serum samples were collected and the weight of animals taken before the administraton of 100 ...

  5. Biochemical and secondary metabolites changes under moisture ...

    African Journals Online (AJOL)

    The study showed the importance of carbohydrate and nitrogen cycle related metabolites in mediating tolerance in cassava by affecting their phenotypic expression in the plant. Keywords: Hydrothermal stress, bio-chemicals, pigments, secondary metabolites, cassava. African Journal of Biotechnology, Vol 13(31) 3173-3186 ...

  6. Biochemical and serological characterization of Escherichia coli ...

    African Journals Online (AJOL)

    This study was designed to determine the isolation rate, serotypes and biochemical profiles of E. coli from colibacillosis and dead-in-shell embryos in Zaria, Northern-Nigeria. The isolation rate of E. coli from hatcheries studied were 4.67% and 7.50% from farms of Simtu Agricultural Company and National Animal Production ...

  7. Biochemical and Kinetic Characterization of Geranylgeraniol 18 ...

    African Journals Online (AJOL)

    This enzyme and its gene are an attractive target for development of plaunotol production and its detailed biochemical properties need to be understood. Recently, even though the gene (CYP97C27) coding for GGOH 18-hydroxylase has been identified, cloned, and expressed in Escherichia coli system, the enzyme activity ...

  8. Characterizing multistationarity regimes in biochemical reaction networks.

    Directory of Open Access Journals (Sweden)

    Irene Otero-Muras

    Full Text Available Switch like responses appear as common strategies in the regulation of cellular systems. Here we present a method to characterize bistable regimes in biochemical reaction networks that can be of use to both direct and reverse engineering of biological switches. In the design of a synthetic biological switch, it is important to study the capability for bistability of the underlying biochemical network structure. Chemical Reaction Network Theory (CRNT may help at this level to decide whether a given network has the capacity for multiple positive equilibria, based on their structural properties. However, in order to build a working switch, we also need to ensure that the bistability property is robust, by studying the conditions leading to the existence of two different steady states. In the reverse engineering of biological switches, knowledge collected about the bistable regimes of the underlying potential model structures can contribute at the model identification stage to a drastic reduction of the feasible region in the parameter space of search. In this work, we make use and extend previous results of the CRNT, aiming not only to discriminate whether a biochemical reaction network can exhibit multiple steady states, but also to determine the regions within the whole space of parameters capable of producing multistationarity. To that purpose we present and justify a condition on the parameters of biochemical networks for the appearance of multistationarity, and propose an efficient and reliable computational method to check its satisfaction through the parameter space.

  9. Evaluation of Haematological and Biochemical Parameters of ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Evaluation of Haematological and Biochemical Parameters of Juvenile Oreochromis niloticus after Exposure to Water Soluble Fractions of ... niloticus were evaluated. After a preliminary determination of the 96 h-LC50 of ... evaporation, dissolution, emulsion, photolysis and biodegradation which generate a water soluble.

  10. Metabonomics and medicine: the Biochemical Oracle.

    Science.gov (United States)

    Mitchell, Steve; Holmes, Elaine; Carmichael, Paul

    2002-10-01

    Occasionally, a new idea emerges that has the potential to revolutionize an entire field of scientific endeavour. It is now within our grasp to be able to detect subtle perturbations within the phenomenally complex biochemical matrix of living organisms. The discipline of metabonomics promises an all-encompassing approach to understanding total, yet fundamental, changes occurring in disease processes, drug toxicity and cell function.

  11. Discordant results between biochemical and molecular transthyretin

    Indian Academy of Sciences (India)

    Discordant results between biochemical and molecular transthyretin assays: lessons learned from a unique testing algorithm at the Mayo Clinic. Honey V. Reddi Brittany C. Thomas Kurt S. Willkomm Matthew J. Ferber Kandelaria M. Rumilla Kimiyo M. Raymond John F. O'Brien W. Edward Highsmith. Research Note Volume ...

  12. Biochemical and microstructural characteristics of meat samples ...

    African Journals Online (AJOL)

    This study was conducted to compare the efficiency of different plant proteases for changing biochemical and microstructural characteristics in muscle foods. The meat samples from chicken, giant catfish, pork and beef were treated with four types of proteolytic enzymes: Calotropis procera latex proteases, papaya latex ...

  13. Comprehensive analyses of genomes, transcriptomes and metabolites of neem tree

    Directory of Open Access Journals (Sweden)

    Nagesh A. Kuravadi

    2015-08-01

    Full Text Available Neem (Azadirachta indica A. Juss is one of the most versatile tropical evergreen tree species known in India since the Vedic period (1500 BC–600 BC. Neem tree is a rich source of limonoids, having a wide spectrum of activity against insect pests and microbial pathogens. Complex tetranortriterpenoids such as azadirachtin, salanin and nimbin are the major active principles isolated from neem seed. Absolutely nothing is known about the biochemical pathways of these metabolites in neem tree. To identify genes and pathways in neem, we sequenced neem genomes and transcriptomes using next generation sequencing technologies. Assembly of Illumina and 454 sequencing reads resulted in 267 Mb, which accounts for 70% of estimated size of neem genome. We predicted 44,495 genes in the neem genome, of which 32,278 genes were expressed in neem tissues. Neem genome consists about 32.5% (87 Mb of repetitive DNA elements. Neem tree is phylogenetically related to citrus, Citrus sinensis. Comparative analysis anchored 62% (161 Mb of assembled neem genomic contigs onto citrus chromomes. Ultrahigh performance liquid chromatography-mass spectrometry-selected reaction monitoring (UHPLC-MS/SRM method was used to quantify azadirachtin, nimbin, and salanin from neem tissues. Weighted Correlation Network Analysis (WCGNA of expressed genes and metabolites resulted in identification of possible candidate genes involved in azadirachtin biosynthesis pathway. This study provides genomic, transcriptomic and quantity of top three neem metabolites resource, which will accelerate basic research in neem to understand biochemical pathways.

  14. Comprehensive analyses of genomes, transcriptomes and metabolites of neem tree

    Science.gov (United States)

    Rangiah, Kannan; Mahesh, HB; Rajamani, Anantharamanan; Shirke, Meghana D.; Russiachand, Heikham; Loganathan, Ramya Malarini; Shankara Lingu, Chandana; Siddappa, Shilpa; Ramamurthy, Aishwarya; Sathyanarayana, BN

    2015-01-01

    Neem (Azadirachta indica A. Juss) is one of the most versatile tropical evergreen tree species known in India since the Vedic period (1500 BC–600 BC). Neem tree is a rich source of limonoids, having a wide spectrum of activity against insect pests and microbial pathogens. Complex tetranortriterpenoids such as azadirachtin, salanin and nimbin are the major active principles isolated from neem seed. Absolutely nothing is known about the biochemical pathways of these metabolites in neem tree. To identify genes and pathways in neem, we sequenced neem genomes and transcriptomes using next generation sequencing technologies. Assembly of Illumina and 454 sequencing reads resulted in 267 Mb, which accounts for 70% of estimated size of neem genome. We predicted 44,495 genes in the neem genome, of which 32,278 genes were expressed in neem tissues. Neem genome consists about 32.5% (87 Mb) of repetitive DNA elements. Neem tree is phylogenetically related to citrus, Citrus sinensis. Comparative analysis anchored 62% (161 Mb) of assembled neem genomic contigs onto citrus chromomes. Ultrahigh performance liquid chromatography-mass spectrometry-selected reaction monitoring (UHPLC-MS/SRM) method was used to quantify azadirachtin, nimbin, and salanin from neem tissues. Weighted Correlation Network Analysis (WCGNA) of expressed genes and metabolites resulted in identification of possible candidate genes involved in azadirachtin biosynthesis pathway. This study provides genomic, transcriptomic and quantity of top three neem metabolites resource, which will accelerate basic research in neem to understand biochemical pathways. PMID:26290780

  15. Exploring Other Genomes: Bacteria.

    Science.gov (United States)

    Flannery, Maura C.

    2001-01-01

    Points out the importance of genomes other than the human genome project and provides information on the identified bacterial genomes Pseudomonas aeuroginosa, Leprosy, Cholera, Meningitis, Tuberculosis, Bubonic Plague, and plant pathogens. Considers the computer's use in genome studies. (Contains 14 references.) (YDS)

  16. Genome-wide screening identifies Plasmodium chabaudi-induced modifications of DNA methylation status of Tlr1 and Tlr6 gene promoters in liver, but not spleen, of female C57BL/6 mice.

    Science.gov (United States)

    Al-Quraishy, Saleh; Dkhil, Mohamed A; Abdel-Baki, Abdel Azeem S; Delic, Denis; Santourlidis, Simeon; Wunderlich, Frank

    2013-11-01

    Epigenetic reprogramming of host genes via DNA methylation is increasingly recognized as critical for the outcome of diverse infectious diseases, but information for malaria is not yet available. Here, we investigate the effect of blood-stage malaria of Plasmodium chabaudi on the DNA methylation status of host gene promoters on a genome-wide scale using methylated DNA immunoprecipitation and Nimblegen microarrays containing 2,000 bp oligonucleotide features that were split into -1,500 to -500 bp Ups promoters and -500 to +500 bp Cor promoters, relative to the transcription site, for evaluation of differential DNA methylation. Gene expression was analyzed by Agilent and Affymetrix microarray technology. Challenging of female C57BL/6 mice with 10(6) P. chabaudi-infected erythrocytes resulted in a self-healing outcome of infections with peak parasitemia on day 8 p.i. These infections induced organ-specific modifications of DNA methylation of gene promoters. Among the 17,354 features on Nimblegen arrays, only seven gene promoters were identified to be hypermethylated in the spleen, whereas the liver exhibited 109 hyper- and 67 hypomethylated promoters at peak parasitemia in comparison with non-infected mice. Among the identified genes with differentially methylated Cor-promoters, only the 7 genes Pigr, Ncf1, Klkb1, Emr1, Ndufb11, and Tlr6 in the liver and Apol6 in the spleen were detected to have significantly changed their expression. Remarkably, the Cor promoter of the toll-like receptor Tlr6 became hypomethylated and Tlr6 expression increased by 3.4-fold during infection. Concomitantly, the Ups promoter of the Tlr1 was hypermethylated, but Tlr1 expression also increased by 11.3-fold. TLR6 and TLR1 are known as auxillary receptors to form heterodimers with TLR2 in plasma membranes of macrophages, which recognize different pathogen-associated molecular patterns (PAMPs), as, e.g., intact 3-acyl and sn-2-lyso-acyl glycosylphosphatidylinositols of P. falciparum

  17. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase.

    Science.gov (United States)

    Jackson, R G; Lim, E K; Li, Y; Kowalczyk, M; Sandberg, G; Hoggett, J; Ashford, D A; Bowles, D J

    2001-02-09

    Biochemical characterization of recombinant gene products following a phylogenetic analysis of the UDP-glucosyltransferase (UGT) multigene family of Arabidopsis has identified one enzyme (UGT84B1) with high activity toward the plant hormone indole-3-acetic acid (IAA) and three related enzymes (UGT84B2, UGT75B1, and UGT75B2) with trace activities. The identity of the IAA conjugate has been confirmed to be 1-O-indole acetyl glucose ester. A sequence annotated as a UDP-glucose:IAA glucosyltransferase (IAA-UGT) in the Arabidopsis genome and expressed sequence tag data bases given its similarity to the maize iaglu gene sequence showed no activity toward IAA. This study describes the first biochemical analysis of a recombinant IAA-UGT and provides the foundation for future genetic approaches to understand the role of 1-O-indole acetyl glucose ester in Arabidopsis.

  18. Lipidomics: Novel insight into the biochemical mechanism of lipid metabolism and dysregulation-associated disease.

    Science.gov (United States)

    Zhao, Ying-Yong; Miao, Hua; Cheng, Xian-Long; Wei, Feng

    2015-10-05

    The application of lipidomics, after genomics, proteomics and metabolomics, offered largely opportunities to illuminate the entire spectrum of lipidome based on a quantitative or semi-quantitative level in a biological system. When combined with advances in proteomics and metabolomics high-throughput platforms, lipidomics provided the opportunity for analyzing the unique roles of specific lipids in complex cellular processes. Abnormal lipid metabolism was demonstrated to be greatly implicated in many human lifestyle-related diseases. In this review, we focused on lipidomic applications in brain injury disease, cancer, metabolic disease, cardiovascular disease, respiratory disease and infectious disease to discover disease biomarkers and illustrate biochemical metabolic pathways. We also discussed the analytical techniques, future perspectives and potential problems of lipidomic applications. The application of lipidomics in disease biomarker discovery provides the opportunity for gaining novel insights into biochemical mechanism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. A decade of human genome project conclusion: Scientific diffusion about our genome knowledge.

    Science.gov (United States)

    Moraes, Fernanda; Góes, Andréa

    2016-05-06

    The Human Genome Project (HGP) was initiated in 1990 and completed in 2003. It aimed to sequence the whole human genome. Although it represented an advance in understanding the human genome and its complexity, many questions remained unanswered. Other projects were launched in order to unravel the mysteries of our genome, including the ENCyclopedia of DNA Elements (ENCODE). This review aims to analyze the evolution of scientific knowledge related to both the HGP and ENCODE projects. Data were retrieved from scientific articles published in 1990-2014, a period comprising the development and the 10 years following the HGP completion. The fact that only 20,000 genes are protein and RNA-coding is one of the most striking HGP results. A new concept about the organization of genome arose. The ENCODE project was initiated in 2003 and targeted to map the functional elements of the human genome. This project revealed that the human genome is pervasively transcribed. Therefore, it was determined that a large part of the non-protein coding regions are functional. Finally, a more sophisticated view of chromatin structure emerged. The mechanistic functioning of the genome has been redrafted, revealing a much more complex picture. Besides, a gene-centric conception of the organism has to be reviewed. A number of criticisms have emerged against the ENCODE project approaches, raising the question of whether non-conserved but biochemically active regions are truly functional. Thus, HGP and ENCODE projects accomplished a great map of the human genome, but the data generated still requires further in depth analysis. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:215-223, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  20. The first Chameleon transcriptome: comparative genomic analysis of the OXPHOS system reveals loss of COX8 in Iguanian lizards.

    Science.gov (United States)

    Bar-Yaacov, Dan; Bouskila, Amos; Mishmar, Dan

    2013-01-01

    Recently, we found dramatic mitochondrial DNA divergence of Israeli Chamaeleo chamaeleon populations into two geographically distinct groups. We aimed to examine whether the same pattern of divergence could be found in nuclear genes. However, no genomic resource is available for any chameleon species. Here we present the first chameleon transcriptome, obtained using deep sequencing (SOLiD). Our analysis identified 164,000 sequence contigs of which 19,000 yielded unique BlastX hits. To test the efficacy of our sequencing effort, we examined whether the chameleon and other available reptilian transcriptomes harbored complete sets of genes comprising known biochemical pathways, focusing on the nDNA-encoded oxidative phosphorylation (OXPHOS) genes as a model. As a reference for the screen, we used the human 86 (including isoforms) known structural nDNA-encoded OXPHOS subunits. Analysis of 34 publicly available vertebrate transcriptomes revealed orthologs for most human OXPHOS genes. However, OXPHOS subunit COX8 (Cytochrome C oxidase subunit 8), including all its known isoforms, was consistently absent in transcriptomes of iguanian lizards, implying loss of this subunit during the radiation of this suborder. The lack of COX8 in the suborder Iguania is intriguing, since it is important for cellular respiration and ATP production. Our sequencing effort added a new resource for comparative genomic studies, and shed new light on the evolutionary dynamics of the OXPHOS system.

  1. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication.

    Directory of Open Access Journals (Sweden)

    Ji'an Pan

    Full Text Available Analyses of viral protein-protein interactions are an important step to understand viral protein functions and their underlying molecular mechanisms. In this study, we adopted a mammalian two-hybrid system to screen the genome-wide intraviral protein-protein interactions of SARS coronavirus (SARS-CoV and therefrom revealed a number of novel interactions which could be partly confirmed by in vitro biochemical assays. Three pairs of the interactions identified were detected in both directions: non-structural protein (nsp 10 and nsp14, nsp10 and nsp16, and nsp7 and nsp8. The interactions between the multifunctional nsp10 and nsp14 or nsp16, which are the unique proteins found in the members of Nidovirales with large RNA genomes including coronaviruses and toroviruses, may have important implication for the mechanisms of replication/transcription complex assembly and functions of these viruses. Using a SARS-CoV replicon expressing a luciferase reporter under the control of a transcription regulating sequence, it has been shown that several viral proteins (N, X and SUD domains of nsp3, and nsp12 provided in trans stimulated the replicon reporter activity, indicating that these proteins may regulate coronavirus replication and transcription. Collectively, our findings provide a basis and platform for further characterization of the functions and mechanisms of coronavirus proteins.

  2. A microscale protein NMR sample screening pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo; Swapna, G. V. T.; Huang, Yuanpeng J.; Aramini, James M. [State University of New Jersey, Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers (United States); Anklin, Clemens [Bruker Biospin Corporation (United States); Conover, Kenith; Hamilton, Keith; Xiao, Rong; Acton, Thomas B.; Ertekin, Asli; Everett, John K.; Montelione, Gaetano T., E-mail: guy@cabm.rutgers.ed [State University of New Jersey, Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers (United States)

    2010-01-15

    As part of efforts to develop improved methods for NMR protein sample preparation and structure determination, the Northeast Structural Genomics Consortium (NESG) has implemented an NMR screening pipeline for protein target selection, construct optimization, and buffer optimization, incorporating efficient microscale NMR screening of proteins using a micro-cryoprobe. The process is feasible because the newest generation probe requires only small amounts of protein, typically 30-200 {mu}g in 8-35 {mu}l volume. Extensive automation has been made possible by the combination of database tools, mechanization of key process steps, and the use of a micro-cryoprobe that gives excellent data while requiring little optimization and manual setup. In this perspective, we describe the overall process used by the NESG for screening NMR samples as part of a sample optimization process, assessing optimal construct design and solution conditions, as well as for determining protein rotational correlation times in order to assess protein oligomerization states. Database infrastructure has been developed to allow for flexible implementation of new screening protocols and harvesting of the resulting output. The NESG micro NMR screening pipeline has also been used for detergent screening of membrane proteins. Descriptions of the individual steps in the NESG NMR sample design, production, and screening pipeline are presented in the format of a standard operating procedure.

  3. Genetic dissection of mammalian ERAD through comparative haploid and CRISPR forward genetic screens

    DEFF Research Database (Denmark)

    Timms, Richard T.; Menzies, Sam A.; Tchasovnikarova, Iva A.

    2016-01-01

    The application of forward genetic screens to cultured human cells represents a powerful method to study gene function. The repurposing of the bacterial CRISPR/Cas9 system provides an effective method to disrupt gene function in mammalian cells, and has been applied to genome-wide screens. Here, we...... compare the efficacy of genome-wide CRISPR/Cas9-mediated forward genetic screens versus gene-trap mutagenesis screens in haploid human cells, which represent the existing ‘gold standard’ method. This head-to-head comparison aimed to identify genes required for the endoplasmic reticulum....../3-associated disulphide reductase. Genome-wide CRISPR/Cas9-mediated screens together with haploid genetic screens provide a powerful addition to the forward genetic toolbox....

  4. Genomics With Cloud Computing

    OpenAIRE

    Sukhamrit Kaur; Sandeep Kaur

    2015-01-01

    Abstract Genomics is study of genome which provides large amount of data for which large storage and computation power is needed. These issues are solved by cloud computing that provides various cloud platforms for genomics. These platforms provides many services to user like easy access to data easy sharing and transfer providing storage in hundreds of terabytes more computational power. Some cloud platforms are Google genomics DNAnexus and Globus genomics. Various features of cloud computin...

  5. Genome Maps, a new generation genome browser.

    Science.gov (United States)

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-07-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org.

  6. Genomic alterations detected by comparative genomic hybridization in ovarian endometriomas

    Directory of Open Access Journals (Sweden)

    L.C. Veiga-Castelli

    2010-08-01

    Full Text Available Endometriosis is a complex and multifactorial disease. Chromosomal imbalance screening in endometriotic tissue can be used to detect hot-spot regions in the search for a possible genetic marker for endometriosis. The objective of the present study was to detect chromosomal imbalances by comparative genomic hybridization (CGH in ectopic tissue samples from ovarian endometriomas and eutopic tissue from the same patients. We evaluated 10 ovarian endometriotic tissues and 10 eutopic endometrial tissues by metaphase CGH. CGH was prepared with normal and test DNA enzymatically digested, ligated to adaptors and amplified by PCR. A second PCR was performed for DNA labeling. Equal amounts of both normal and test-labeled DNA were hybridized in human normal metaphases. The Isis FISH Imaging System V 5.0 software was used for chromosome analysis. In both eutopic and ectopic groups, 4/10 samples presented chromosomal alterations, mainly chromosomal gains. CGH identified 11q12.3-q13.1, 17p11.1-p12, 17q25.3-qter, and 19p as critical regions. Genomic imbalances in 11q, 17p, 17q, and 19p were detected in normal eutopic and/or ectopic endometrium from women with ovarian endometriosis. These regions contain genes such as POLR2G, MXRA7 and UBA52 involved in biological processes that may lead to the establishment and maintenance of endometriotic implants. This genomic imbalance may affect genes in which dysregulation impacts both eutopic and ectopic endometrium.

  7. Kombucha tea fermentation: Microbial and biochemical dynamics.

    Science.gov (United States)

    Chakravorty, Somnath; Bhattacharya, Semantee; Chatzinotas, Antonis; Chakraborty, Writachit; Bhattacharya, Debanjana; Gachhui, Ratan

    2016-03-02

    Kombucha tea, a non-alcoholic beverage, is acquiring significant interest due to its claimed beneficial properties. The microbial community of Kombucha tea consists of bacteria and yeast which thrive in two mutually non-exclusive compartments: the soup or the beverage and the biofilm floating on it. The microbial community and the biochemical properties of the beverage have so far mostly been described in separate studies. This, however, may prevent understanding the causal links between the microbial communities and the beneficial properties of Kombucha tea. Moreover, an extensive study into the microbial and biochemical dynamics has also been missing. In this study, we thus explored the structure and dynamics of the microbial community along with the biochemical properties of Kombucha tea at different time points up to 21 days of fermentation. We hypothesized that several biochemical properties will change during the course of fermentation along with the shifts in the yeast and bacterial communities. The yeast community of the biofilm did not show much variation over time and was dominated by Candida sp. (73.5-83%). The soup however, showed a significant shift in dominance from Candida sp. to Lachancea sp. on the 7th day of fermentation. This is the first report showing Candida as the most dominating yeast genus during Kombucha fermentation. Komagateibacter was identified as the single largest bacterial genus present in both the biofilm and the soup (~50%). The bacterial diversity was higher in the soup than in the biofilm with a peak on the seventh day of fermentation. The biochemical properties changed with the progression of the fermentation, i.e., beneficial properties of the beverage such as the radical scavenging ability increased significantly with a maximum increase at day 7. We further observed a significantly higher D-saccharic acid-1,4-lactone content and caffeine degradation property compared to previously described Kombucha tea fermentations. Our

  8. UO{sub 2}{sup 2+}/protein complexation sites screening

    Energy Technology Data Exchange (ETDEWEB)

    Guilbaud, P.; Pible, O

    2004-07-01

    Uranium(VI) is likely to make strong coordination with some proteins in the plasma and in targeted cells. In the frame of a nuclear toxicology program, a biochemical strategy has been developed to identify these targets in complex biological media. The present work focuses on an approach based on the screening of 3D protein structures in order to identify proteins able to bind UO{sub 2}{sup 2+} and the corresponding complexation sites in these proteins. Our preliminary results show that indeed a few proteins display a high affinity to uranyl salt. The site of interaction may be mapped using molecular modeling, providing coherent results with the biochemical data. (authors)

  9. Application of genomic tools in plant breeding.

    Science.gov (United States)

    Pérez-de-Castro, A M; Vilanova, S; Cañizares, J; Pascual, L; Blanca, J M; Díez, M J; Prohens, J; Picó, B

    2012-05-01

    Plant breeding has been very successful in developing improved varieties using conventional tools and methodologies. Nowadays, the availability of genomic tools and resources is leading to a new revolution of plant breeding, as they facilitate the study of the genotype and its relationship with the phenotype, in particular for complex traits. Next Generation Sequencing (NGS) technologies are allowing the mass sequencing of genomes and transcriptomes, which is producing a vast array of genomic information. The analysis of NGS data by means of bioinformatics developments allows discovering new genes and regulatory sequences and their positions, and makes available large collections of molecular markers. Genome-wide expression studies provide breeders with an understanding of the molecular basis of complex traits. Genomic approaches include TILLING and EcoTILLING, which make possible to screen mutant and germplasm collections for allelic variants in target genes. Re-sequencing of genomes is very useful for the genome-wide discovery of markers amenable for high-throughput genotyping platforms, like SSRs and SNPs, or the construction of high density genetic maps. All these tools and resources facilitate studying the genetic diversity, which is important for germplasm management, enhancement and use. Also, they allow the identification of markers linked to genes and QTLs, using a diversity of techniques like bulked segregant analysis (BSA), fine genetic mapping, or association mapping. These new markers are used for marker assisted selection, including marker assisted backcross selection, 'breeding by design', or new strategies, like genomic selection. In conclusion, advances in genomics are providing breeders with new tools and methodologies that allow a great leap forward in plant breeding, including the 'superdomestication' of crops and the genetic dissection and breeding for complex traits.

  10. Screening for novel laccase-producing microbes.

    Science.gov (United States)

    Kiiskinen, L-L; Rättö, M; Kruus, K

    2004-01-01

    To discover novel laccases potential for industrial applications. Fungi were cultivated on solid media containing indicator compounds that enabled the detection of laccases as specific colour reactions. The indicators used were Remazol Brilliant Blue R (RBBR), Poly R-478, guaiacol and tannic acid. The screening work resulted in isolation of 26 positive fungal strains. Liquid cultivations of positive strains confirmed that four efficient laccase producers were found in the screening. Biochemical characteristics of the four novel laccases were typical for fungal laccases in terms of molecular weight, pH optima and pI. The laccases showed good thermal stability at 60 degrees C. Plate-test screening based on polymeric dye compounds, guaiacol and tannic acid is an efficient way to discover novel laccase producers. The results indicated that screening for laccase activity can be performed with guaiacol and RBBR or Poly R-478. Laccases have many potential industrial applications including textile dye decolourization, delignification of pulp and effluent detoxification. It is essential to find novel, efficient enzymes to further develop these applications. This study showed that relatively simple plate test screening method can be used for discovery of novel laccases. Copyright 2004 The Society for Applied Microbiology

  11. Structuring evolution: biochemical networks and metabolic diversification in birds.

    Science.gov (United States)

    Morrison, Erin S; Badyaev, Alexander V

    2016-08-25

    Recurrence and predictability of evolution are thought to reflect the correspondence between genomic and phenotypic dimensions of organisms, and the connectivity in deterministic networks within these dimensions. Direct examination of the correspondence between opportunities for diversification imbedded in such networks and realized diversity is illuminating, but is empirically challenging because both the deterministic networks and phenotypic diversity are modified in the course of evolution. Here we overcome this problem by directly comparing the structure of a "global" carotenoid network - comprising of all known enzymatic reactions among naturally occurring carotenoids - with the patterns of evolutionary diversification in carotenoid-producing metabolic networks utilized by birds. We found that phenotypic diversification in carotenoid networks across 250 species was closely associated with enzymatic connectivity of the underlying biochemical network - compounds with greater connectivity occurred the most frequently across species and were the hotspots of metabolic pathway diversification. In contrast, we found no evidence for diversification along the metabolic pathways, corroborating findings that the utilization of the global carotenoid network was not strongly influenced by history in avian evolution. The finding that the diversification in species-specific carotenoid networks is qualitatively predictable from the connectivity of the underlying enzymatic network points to significant structural determinism in phenotypic evolution.

  12. Mammalian cells exposed to ionizing radiation: structural and biochemical aspects

    International Nuclear Information System (INIS)

    Sabanero, M.; Flores V, L. L.; Azorin V, J. C.; Vallejo, M. A.; Cordova F, T.; Sosa A, M.; Castruita D, J. P.; Barbosa S, G.

    2015-10-01

    Acute or chronic exposure to ionizing radiation is a factor that may be hazardous to health. It has been reported that exposure to low doses of radiation (less than 50 mSv / year) and subsequently exposure to high doses have greater effects in people. However, it is unknown molecular and biochemical level alteration. This study, analyzes the susceptibility of a biological system (HeLa Atcc CCL-2 human cervix cancer cell line) to ionizing radiation (6 and 60 mSv/ 90). Our evaluate multiple variables such as: total protein profile, mitochondrial metabolic activity (XTT assay), cell viability (Trypan blue exclusion assay), cytoskeleton (actin micro filaments), nuclei (D API), genomic DNA. The results indicate, that cells exposed to ionizing radiation structurally show alterations in nuclear phenotype and aneuploidy, further disruption in the tight junctions and consequently on the distribution of actin micro filaments. Similar alterations were observed in cells treated with a genotoxic agent (200μM H 2 O 2 /1 h). In conclusion, this multi-criteria assessment enables precise comparisons of the effects of radiation between any biological systems. However, it is necessary to determine stress markers for integration of the effects of ionizing radiation. (Author)

  13. Mammalian cells exposed to ionizing radiation: structural and biochemical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Sabanero, M.; Flores V, L. L. [Universidad de Guanajuato, Departamento de Biologia, DCNE, Noria Alta s/n, 36250 Guanajuato, Gto. (Mexico); Azorin V, J. C.; Vallejo, M. A.; Cordova F, T.; Sosa A, M. [Universidad de Guanajuato, Departamento de Ingenieria Fisica, DCI, Loma del Bosque 103, Col. Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Castruita D, J. P. [Universidad de Guadalajara, Departamento de Ecologia, CUCBA, Las Agujas, 45100 Zapopan, Jalisco (Mexico); Barbosa S, G., E-mail: myrna.sabanero@gmail.com [Universidad de Guanajuato, Departamento de Ciencias Medicas, DCS, 20 de Enero No. 929, Col. Obregon, 37000 Leon, Guanajuato (Mexico)

    2015-10-15

    Acute or chronic exposure to ionizing radiation is a factor that may be hazardous to health. It has been reported that exposure to low doses of radiation (less than 50 mSv / year) and subsequently exposure to high doses have greater effects in people. However, it is unknown molecular and biochemical level alteration. This study, analyzes the susceptibility of a biological system (HeLa Atcc CCL-2 human cervix cancer cell line) to ionizing radiation (6 and 60 mSv/ 90). Our evaluate multiple variables such as: total protein profile, mitochondrial metabolic activity (XTT assay), cell viability (Trypan blue exclusion assay), cytoskeleton (actin micro filaments), nuclei (D API), genomic DNA. The results indicate, that cells exposed to ionizing radiation structurally show alterations in nuclear phenotype and aneuploidy, further disruption in the tight junctions and consequently on the distribution of actin micro filaments. Similar alterations were observed in cells treated with a genotoxic agent (200μM H{sub 2}O{sub 2}/1 h). In conclusion, this multi-criteria assessment enables precise comparisons of the effects of radiation between any biological systems. However, it is necessary to determine stress markers for integration of the effects of ionizing radiation. (Author)

  14. JGI Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  15. Genomic Encyclopedia of Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-08-10

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 150 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  16. Biochemical and toxicological studies of aqueous extract of ...

    African Journals Online (AJOL)

    Biochemical and toxicological studies of aqueous extract of Syzigium ... tract diseases and also used as food spices), on some biochemical indices, such as ... liver functions and blood parameters were studied in adult albino rats of both sexes.

  17. Biochemical changes during aging of soybean seed

    Directory of Open Access Journals (Sweden)

    Balešević-Tubić Svetlana

    2009-01-01

    Full Text Available Biochemical changes that occur in the seed as a result of ageing are very significant for seed quality and longevity. Because of its characteristic composition, processes occurring in the seed of oil crops during storage will be typical as well. Six soybean varieties developed in Institute of field and vegetable crops Novi Sad, submitted to accelerated and natural aging, under controlled and conventional storage conditions were used in these trials. The content of malondialdehyde, superoxide dismutase and peroxidase activities were studied. The biochemical processes i.e. lipid peroxidation, as well as the decrease in supeoxide dismutase and peroxidase activities (especially pronounced by applied accelerated aging were caused by both type of aging. The degree of seed damage and the ability of seed to resist the negative consequences of aging were influenced, beside duration of aging period, by type of storage and characteristics of soybean varieties. .

  18. Reconstructing biochemical pathways from time course data.

    Science.gov (United States)

    Srividhya, Jeyaraman; Crampin, Edmund J; McSharry, Patrick E; Schnell, Santiago

    2007-03-01

    Time series data on biochemical reactions reveal transient behavior, away from chemical equilibrium, and contain information on the dynamic interactions among reacting components. However, this information can be difficult to extract using conventional analysis techniques. We present a new method to infer biochemical pathway mechanisms from time course data using a global nonlinear modeling technique to identify the elementary reaction steps which constitute the pathway. The method involves the generation of a complete dictionary of polynomial basis functions based on the law of mass action. Using these basis functions, there are two approaches to model construction, namely the general to specific and the specific to general approach. We demonstrate that our new methodology reconstructs the chemical reaction steps and connectivity of the glycolytic pathway of Lactococcus lactis from time course experimental data.

  19. Optical Slot-Waveguide Based Biochemical Sensors

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2009-06-01

    Full Text Available Slot-waveguides allow light to be guided and strongly confined inside a nanometer-scale region of low refractive index. Thus stronger light-analyte interaction can be obtained as compared to that achievable by a conventional waveguide, in which the propagating beam is confined to the high-refractive-index core of the waveguide. In addition, slot-waveguides can be fabricated by employing CMOS compatible materials and technology, enabling miniaturization, integration with electronic, photonic and fluidic components in a chip, and mass production. These advantages have made the use of slot-waveguides for highly sensitive biochemical optical integrated sensors an emerging field. In this paper, recent achievements in slot-waveguide based biochemical sensing will be reviewed. These include slot-waveguide ring resonator based refractometric label-free biosensors, label-based optical sensing, and nano-opto-mechanical sensors.

  20. Optimal Information Processing in Biochemical Networks

    Science.gov (United States)

    Wiggins, Chris

    2012-02-01

    A variety of experimental results over the past decades provide examples of near-optimal information processing in biological networks, including in biochemical and transcriptional regulatory networks. Computing information-theoretic quantities requires first choosing or computing the joint probability distribution describing multiple nodes in such a network --- for example, representing the probability distribution of finding an integer copy number of each of two interacting reactants or gene products while respecting the `intrinsic' small copy number noise constraining information transmission at the scale of the cell. I'll given an overview of some recent analytic and numerical work facilitating calculation of such joint distributions and the associated information, which in turn makes possible numerical optimization of information flow in models of noisy regulatory and biochemical networks. Illustrating cases include quantification of form-function relations, ideal design of regulatory cascades, and response to oscillatory driving.

  1. Some biochemical studies on thyroid immunity

    International Nuclear Information System (INIS)

    Shoush, M.A.M.

    1980-01-01

    The present study was carried out to investigate the effect of induced immunological environment on: a - Carbohydrate metabolism as reflected by immunoreactive insulin and blood sugar levels. b - Biochemical parameters, namely total protein, albumin, globulin, alkaline phosphatase and transaminases, reflecting liver function. c - Radioimmunological tests reflecting thyroid function. The study comprised 36 male rabbits, boscate strain of six months age assigned randomly to : control, albumin immunized and thyroglobulin immunized groups

  2. Biochemical composition and methane production correlations

    OpenAIRE

    Charnier, Cyrille; Latrille, Eric; Moscoviz, Roman; Miroux, Jérémie; Steyer, Jean-Philippe

    2016-01-01

    Substrates for anaerobic digestion are composed of heterogeneous and complex organic matter. General parameters of the organic matter can be used to describe its composition such as sugar, protein and lipid contents, Chemical Oxygen Demand (COD), Biochemical Methane Potential (BMP) and kinetic of methane production. These parameters are required for the monitoring of digesters but their characterization are time consuming and expensive; thus, these parameters are rarely assessed all together....

  3. Biochemical characterization of cholesterol-reducing Eubacterium.

    OpenAIRE

    Mott, G E; Brinkley, A W; Mersinger, C L

    1980-01-01

    We characterized two isolates of cholesterol-reducing Eubacterium by conducting conventional biochemical tests and by testing various sterols and glycerolipids as potential growth factors. In media containing cholesterol and plasmenylethanolamine, the tests for nitrate reduction, indole production, and gelatin and starch hydrolyses were negative, and no acid was produced from any of 22 carbohydrates. Both isolates hydrolyzed esculin to esculetin, indicating beta-glycosidase activity. In addit...

  4. Biochemical changes in ginger after gamma irradiation

    International Nuclear Information System (INIS)

    Kausar, T.; Salahuddin; Pervaiz, K.; Niazi, A.H.K.

    2001-01-01

    Ginger (Zingiber officinate) was irradiated with gamma rays (0.1Kgy, 1.0Kgy). Biochemical changes during storage at room temperature (23-28 degree centigrade), in sand (23-28 degree centigrade) and at cold (8 degree centigrade) temperature were observed. Changes in starch, soluble protein, fixed oil and volatile oil contents showed that treatment of ginger at 0.1Kgy radiation level was most appropriate for storage upto 45 days

  5. Physiological and biochemical response to high temperature stress in Okra (Abelmoschus esculentus L. Moench)

    Science.gov (United States)

    Hayamanesh, Shahnoosh; Keitel, Claudia; Ahmad, Nabil; Trethowan, Richard

    2016-04-01

    High temperature has been shown to lower the growth and yield of Okra, an important summer vegetable crop grown in Asia, Africa, the Middle East and Australia. We aimed to characterise the physiological and biochemical response of Okra to heat stress. 150 genotypes from Pakistan and the AVRDC (The World Vegetable Centre) were screened for their physiological response (fluorescence, electrolyte leakage and yield) to heat in a greenhouse. Four genotypes (including heat tolerant and sensitive) were selected and subsequently grown in control and hot greenhouses. Daytime temperatures were on average 10°C warmer in the hot greenhouse, whereas nighttime temperatures were similar between the two temperature treatments. During a 12 week period, the physiological (assimilation rate, transpiration rate, stomatal conductance, fluorescence, electrolyte leakage, water potential) and biochemical (carbohydrates, sugar alcohols, C content) response of the four genotypes to heat stress was assessed. The effect of heat stress on the C allocation patterns and yield in Okra will be discussed.

  6. Drosophila as a Screening Platform for Novel Lung Cancer Therapeutics

    Science.gov (United States)

    2016-09-01

    Distinct roles for two receptor tyrosine kinases in epithelial branching morphogenesis in Drosophila. Dev. Cell 9, 831–842. Cancer Genome Atlas Research...Ras isoprenylation and pAkt inhibition by zole- dronic acid and fluvastatin enhances paclitaxel activity in T24 bladder cancer cells. Cancers (Basel...PKB signaling via P2X7 receptor in pancreatic cancer cells. Biochem. Pharmacol. 78, 1115–1126. Mo, H., and Elson, C.E. (2004). Studies of the

  7. Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses

    DEFF Research Database (Denmark)

    Prangishvili, D; Garrett, R A

    2004-01-01

    and Rudiviridae. They all have double-stranded DNA genomes and infect hyperthermophilic crenarchaea of the orders Sulfolobales and Thermoproteales. Representatives of the different viral families share a few homologous ORFs (open reading frames). However, about 90% of all ORFs in the seven sequenced genomes show...... no significant matches to sequences in public databases. This suggests that these hyperthermophilic viruses have exceptional biochemical solutions for biological functions. Specific features of genome organization, as well as strategies for DNA replication, suggest that phylogenetic relationships exist between...... crenarchaeal rudiviruses and the large eukaryal DNA viruses: poxviruses, the African swine fever virus and Chlorella viruses. Sequence patterns at the ends of the linear genome of the lipothrixvirus AFV1 are reminiscent of the telomeric ends of linear eukaryal chromosomes and suggest that a primitive telomeric...

  8. Biochemical Factors Modulating Cellular Neurotoxicity of Methylmercury

    Directory of Open Access Journals (Sweden)

    Parvinder Kaur

    2011-01-01

    Full Text Available Methylmercury (MeHg, an environmental toxicant primarily found in fish and seafood, poses a dilemma to both consumers and regulatory authorities, given the nutritional benefits of fish consumption versus the possible adverse neurological damage. Several studies have shown that MeHg toxicity is influenced by a number of biochemical factors, such as glutathione (GSH, fatty acids, vitamins, and essential elements, but the cellular mechanisms underlying these complex interactions have not yet been fully elucidated. The objective of this paper is to outline the cellular response to dietary nutrients, as well as to describe the neurotoxic exposures to MeHg. In order to determine the cellular mechanism(s of toxicity, the effect of pretreatment with biochemical factors (e.g., N-acetyl cysteine, (NAC; diethyl maleate, (DEM; docosahexaenoic acid, (DHA; selenomethionine, SeM; Trolox and MeHg treatment on intercellular antioxidant status, MeHg content, and other endpoints was evaluated. This paper emphasizes that the protection against oxidative stress offered by these biochemical factors is among one of the major mechanisms responsible for conferring neuroprotection. It is therefore critical to ascertain the cellular mechanisms associated with various dietary nutrients as well as to determine the potential effects of neurotoxic exposures for accurately assessing the risks and benefits associated with fish consumption.

  9. Multidimensional biochemical information processing of dynamical patterns.

    Science.gov (United States)

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  10. Explorations into Chemical Reactions and Biochemical Pathways.

    Science.gov (United States)

    Gasteiger, Johann

    2016-12-01

    A brief overview of the work in the research group of the present author on extracting knowledge from chemical reaction data is presented. Methods have been developed to calculate physicochemical effects at the reaction site. It is shown that these physicochemical effects can quite favourably be used to derive equations for the calculation of data on gas phase reactions and on reactions in solution such as aqueous acidity of alcohols or carboxylic acids or the hydrolysis of amides. Furthermore, it is shown that these physicochemical effects are quite effective for assigning reactions into reaction classes that correspond to chemical knowledge. Biochemical reactions constitute a particularly interesting and challenging task for increasing our understanding of living species. The BioPath.Database is a rich source of information on biochemical reactions and has been used for a variety of applications of chemical, biological, or medicinal interests. Thus, it was shown that biochemical reactions can be assigned by the physicochemical effects into classes that correspond to the classification of enzymes by the EC numbers. Furthermore, 3D models of reaction intermediates can be used for searching for novel enzyme inhibitors. It was shown in a combined application of chemoinformatics and bioinformatics that essential pathways of diseases can be uncovered. Furthermore, a study showed that bacterial flavor-forming pathways can be discovered. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Genomics With Cloud Computing

    Directory of Open Access Journals (Sweden)

    Sukhamrit Kaur

    2015-04-01

    Full Text Available Abstract Genomics is study of genome which provides large amount of data for which large storage and computation power is needed. These issues are solved by cloud computing that provides various cloud platforms for genomics. These platforms provides many services to user like easy access to data easy sharing and transfer providing storage in hundreds of terabytes more computational power. Some cloud platforms are Google genomics DNAnexus and Globus genomics. Various features of cloud computing to genomics are like easy access and sharing of data security of data less cost to pay for resources but still there are some demerits like large time needed to transfer data less network bandwidth.

  12. Endogenous viral elements in animal genomes.

    Directory of Open Access Journals (Sweden)

    Aris Katzourakis

    2010-11-01

    Full Text Available Integration into the nuclear genome of germ line cells can lead to vertical inheritance of retroviral genes as host alleles. For other viruses, germ line integration has only rarely been documented. Nonetheless, we identified endogenous viral elements (EVEs derived from ten non-retroviral families by systematic in silico screening of animal genomes, including the first endogenous representatives of double-stranded RNA, reverse-transcribing DNA, and segmented RNA viruses, and the first endogenous DNA viruses in mammalian genomes. Phylogenetic and genomic analysis of EVEs across multiple host species revealed novel information about the origin and evolution of diverse virus groups. Furthermore, several of the elements identified here encode intact open reading frames or are expressed as mRNA. For one element in the primate lineage, we provide statistically robust evidence for exaptation. Our findings establish that genetic material derived from all known viral genome types and replication strategies can enter the animal germ line, greatly broadening the scope of paleovirological studies and indicating a more significant evolutionary role for gene flow from virus to animal genomes than has previously been recognized.

  13. Biochemical signatures mimicking multiple carboxylase deficiency in children with mutations in MT-ATP6.

    Science.gov (United States)

    Larson, Austin A; Balasubramaniam, Shanti; Christodoulou, John; Burrage, Lindsay C; Marom, Ronit; Graham, Brett H; Diaz, George A; Glamuzina, Emma; Hauser, Natalie; Heese, Bryce; Horvath, Gabriella; Mattman, Andre; van Karnebeek, Clara; Lane Rutledge, S; Williamson, Amy; Estrella, Lissette; Van Hove, Johan K L; Weisfeld-Adams, James D

    2018-01-04

    Elevations of specific acylcarnitines in blood reflect carboxylase deficiencies, and have utility in newborn screening for life-threatening organic acidemias and other inherited metabolic diseases. In this report, we describe a newly-identified association of biochemical features of multiple carboxylase deficiency in individuals harboring mitochondrial DNA (mtDNA) mutations in MT-ATP6 and in whom organic acidemias and multiple carboxylase deficiencies were excluded. Using retrospective chart review, we identified eleven individuals with abnormally elevated propionylcarnitine (C3) or hydroxyisovalerylcarnitine (C5OH) with mutations in MT-ATP6, most commonly m.8993T>G in high heteroplasmy or homoplasmy. Most patients were ascertained on newborn screening; most had normal enzymatic or molecular genetic testing to exclude biotinidase and holocarboxylase synthetase deficiencies. MT-ATP6 is associated with some cases of Leigh disease; clinical outcomes in our cohort ranged from death from neurodegenerative disease in early childhood to clinically and developmentally normal after several years of follow-up. These cases expand the biochemical phenotype associated with MT-ATP6 mutations, especially m.8993T>G, to include acylcarnitine abnormalities mimicking carboxylase deficiency states. Clinicians should be aware of this association and its implications for newborn screening, and consider mtDNA sequencing in patients exhibiting similar acylcarnitine abnormalities that are biotin-unresponsive and in whom other enzymatic deficiencies have been excluded. Copyright © 2018 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  14. Activity profiles of 309 ToxCastTM chemicals evaluated across 292 biochemical targets

    International Nuclear Information System (INIS)

    Knudsen, Thomas B.; Houck, Keith A.; Sipes, Nisha S.; Singh, Amar V.; Judson, Richard S.; Martin, Matthew T.; Weissman, Arthur; Kleinstreuer, Nicole C.; Mortensen, Holly M.; Reif, David M.; Rabinowitz, James R.; Setzer, R. Woodrow; Richard, Ann M.; Dix, David J.; Kavlock, Robert J.

    2011-01-01

    Understanding the potential health risks posed by environmental chemicals is a significant challenge elevated by the large number of diverse chemicals with generally uncharacterized exposures, mechanisms, and toxicities. The present study is a performance evaluation and critical analysis of assay results for an array of 292 high-throughput cell-free assays aimed at preliminary toxicity evaluation of 320 environmental chemicals in EPA's ToxCast TM project (Phase I). The chemicals (309 unique, 11 replicates) were mainly precursors or the active agent of commercial pesticides, for which a wealth of in vivo toxicity data is available. Biochemical HTS (high-throughput screening) profiled cell and tissue extracts using semi-automated biochemical and pharmacological methodologies to evaluate a subset of G-protein coupled receptors (GPCRs), CYP450 enzymes (CYPs), kinases, phosphatases, proteases, HDACs, nuclear receptors, ion channels, and transporters. The primary screen tested all chemicals at a relatively high concentration 25 μM concentration (or 10 μM for CYP assays), and a secondary screen re-tested 9132 chemical-assay pairs in 8-point concentration series from 0.023 to 50 μM (or 0.009-20 μM for CYPs). Mapping relationships across 93,440 chemical-assay pairs based on half-maximal activity concentration (AC50) revealed both known and novel targets in signaling and metabolic pathways. The primary dataset, summary data and details on quality control checks are available for download at (http://www.epa.gov/ncct/toxcast/).

  15. Potential biochemical markers for selection of disease resistance in Vigna radiata

    International Nuclear Information System (INIS)

    Badere, R.S.; Koche, D.K.; Choudhary, A.D.; Pawar, S.E.

    2001-01-01

    The Vigna radiata (L.) Wilczek (Green gram), a major pulse crop is prone to damaging diseases caused by Erysiphe polygoni, Cercospora canescens and Rhizoctonia sp. Therefore, the development of multiple resistance is a major breeding objective in green gram. Resistance to powdery mildew has already been developed, however, there are no reports on the development of resistance to Cercospora in green gram. Owing to limitation of conventional screening methods, the improvement for multiple disease resistance is inadequate, in this crop. It needs an efficient and quick selection method, for screening the plant population at an early stage. It is well established that the resistant interaction, in plants, involves accumulation of antibiotic compound phytoalexin (Genestein in Vigna radiata) and induction of enzymes such as β-1,3 gulcanase and Chitinases. These compounds are not only induced by pathogens but also pathogen-derived elicitors. These biochemical compounds can be used as resistance indicative biochemical markers for screening the natural or mutagen induced genetic diversity in populations of Vigna radiata in non-destructive manner. It, however, needs a systematic study of plant defense response. This paper deals with the response of resistant and susceptible cultivars of vigna radiata to Cercospora elicitor and development of non-destructive selection method for disease resistance. (author)

  16. First-trimester screening for chromosomal abnormalities: advantages of an instant results approach.

    Science.gov (United States)

    Norton, Mary E

    2010-09-01

    Protocols that include first trimester screening for fetal chromosome abnormalities have become standard of care throughout the United States. Earlier screening allows for first trimester diagnostic testing in cases found to be at increased risk. However, first trimester screening requires coordination of the nuchal translucency ultrasound screening (NT) and biochemical screening, during early, specific, narrow, but slightly different gestational age ranges. Instant results can often be provided at the time of the NT ultrasound if preceded by the programs that perform the biochemical analyses; this optimizes the benefits of the first trimester approach while improving efficiency and communication with the patient. This article discusses the benefits and logistics of such an approach. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Cancer Screening and Genetics: A Tale of Two Paradigms

    OpenAIRE

    Hamilton, Jada G.; Edwards, Heather M.; Khoury, Muin J.; Taplin, Stephen H.

    2014-01-01

    The long-standing medical tradition to “first do no harm” is reflected in population-wide evidence-based recommendations for cancer screening tests that focus primarily on reducing morbidity and mortality. The conventional cancer screening process is predicated on finding early-stage disease that can be treated effectively; yet emerging genetic and genomic testing technologies have moved the target earlier in the disease development process to identify a probabilistic predisposition to diseas...

  18. Comparative Genome Analysis and Genome Evolution

    NARCIS (Netherlands)

    Snel, Berend

    2002-01-01

    This thesis described a collection of bioinformatic analyses on complete genome sequence data. We have studied the evolution of gene content and find that vertical inheritance dominates over horizontal gene trasnfer, even to the extent that we can use the gene content to make genome phylogenies.

  19. Genomic Data Commons launches

    Science.gov (United States)

    The Genomic Data Commons (GDC), a unified data system that promotes sharing of genomic and clinical data between researchers, launched today with a visit from Vice President Joe Biden to the operations center at the University of Chicago.

  20. Rat Genome Database (RGD)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Rat Genome Database (RGD) is a collaborative effort between leading research institutions involved in rat genetic and genomic research to collect, consolidate,...

  1. Proteomic screening for amyloid proteins.

    Directory of Open Access Journals (Sweden)

    Anton A Nizhnikov

    Full Text Available Despite extensive study, progress in elucidation of biological functions of amyloids and their role in pathology is largely restrained due to the lack of universal and reliable biochemical methods for their discovery. All biochemical methods developed so far allowed only identification of glutamine/asparagine-rich amyloid-forming proteins or proteins comprising amyloids that form large deposits. In this article we present a proteomic approach which may enable identification of a broad range of amyloid-forming proteins independently of specific features of their sequences or levels of expression. This approach is based on the isolation of protein fractions enriched with amyloid aggregates via sedimentation by ultracentrifugation in the presence of strong ionic detergents, such as sarkosyl or SDS. Sedimented proteins are then separated either by 2D difference gel electrophoresis or by SDS-PAGE, if they are insoluble in the buffer used for 2D difference gel electrophoresis, after which they are identified by mass-spectrometry. We validated this approach by detection of known yeast prions and mammalian proteins with established capacity for amyloid formation and also revealed yeast proteins forming detergent-insoluble aggregates in the presence of human huntingtin with expanded polyglutamine domain. Notably, with one exception, all these proteins contained glutamine/asparagine-rich stretches suggesting that their aggregates arose due to polymerization cross-seeding by human huntingtin. Importantly, though the approach was developed in a yeast model, it can easily be applied to any organism thus representing an efficient and universal tool for screening for amyloid proteins.

  2. Visualization for genomics: the Microbial Genome Viewer.

    Science.gov (United States)

    Kerkhoven, Robert; van Enckevort, Frank H J; Boekhorst, Jos; Molenaar, Douwe; Siezen, Roland J

    2004-07-22

    A Web-based visualization tool, the Microbial Genome Viewer, is presented that allows the user to combine complex genomic data in a highly interactive way. This Web tool enables the interactive generation of chromosome wheels and linear genome maps from genome annotation data stored in a MySQL database. The generated images are in scalable vector graphics (SVG) format, which is suitable for creating high-quality scalable images and dynamic Web representations. Gene-related data such as transcriptome and time-course microarray experiments can be superimposed on the maps for visual inspection. The Microbial Genome Viewer 1.0 is freely available at http://www.cmbi.kun.nl/MGV

  3. CRISPR-FOCUS: A web server for designing focused CRISPR screening experiments

    OpenAIRE

    Cao, Qingyi; Ma, Jian; Chen, Chen-Hao; Xu, Han; Chen, Zhi; Li, Wei; Liu, X. Shirley

    2017-01-01

    The recently developed CRISPR screen technology, based on the CRISPR/Cas9 genome editing system, enables genome-wide interrogation of gene functions in an efficient and cost-effective manner. Although many computational algorithms and web servers have been developed to design single-guide RNAs (sgRNAs) with high specificity and efficiency, algorithms specifically designed for conducting CRISPR screens are still lacking. Here we present CRISPR-FOCUS, a web-based platform to search and prioriti...

  4. Screening for Glaucoma

    Science.gov (United States)

    Understanding Task Force Recommendations Screening for Glaucoma The U.S. Preventive Services Task Force (Task Force) has issued a final recommendation statement on Screening for Glaucoma . This final recommendation statement ...

  5. Liver (Hepatocellular) Cancer Screening

    Science.gov (United States)

    ... Treatment Liver Cancer Prevention Liver Cancer Screening Research Liver (Hepatocellular) Cancer Screening (PDQ®)–Patient Version What is ... These are called diagnostic tests . General Information About Liver (Hepatocellular) Cancer Key Points Liver cancer is a ...

  6. Hearing Loss: Screening Newborns

    Science.gov (United States)

    ... of this page please turn JavaScript on. Feature: Hearing Loss Screening Newborns Past Issues / Spring 2015 Table ... deafness, which account for most cases. Screening Newborns' Hearing Now Standard In 1993, children born in the ...

  7. Cervical Cancer Screening

    Science.gov (United States)

    ... Cancer found early may be easier to treat. Cervical cancer screening is usually part of a woman's health ... may do more tests, such as a biopsy. Cervical cancer screening has risks. The results can sometimes be ...

  8. Screening for Cervical Cancer

    Science.gov (United States)

    Understanding Task Force Recommendations Screening for Cervical Cancer The U.S. Preventive Services Task Force (Task Force) has issued final recommendations on Screening for Cervical Cancer . These recommendations are for women ...

  9. Genomic prediction using subsampling

    OpenAIRE

    Xavier, Alencar; Xu, Shizhong; Muir, William; Rainey, Katy Martin

    2017-01-01

    Background Genome-wide assisted selection is a critical tool for the?genetic improvement of plants and animals. Whole-genome regression models in Bayesian framework represent the main family of prediction methods. Fitting such models with a large number of observations involves a prohibitive computational burden. We propose the use of subsampling bootstrap Markov chain in genomic prediction. Such method consists of fitting whole-genome regression models by subsampling observations in each rou...

  10. Ebolavirus comparative genomics

    DEFF Research Database (Denmark)

    Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat

    2015-01-01

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. To examine the dynamics of this genome, we compare more than 100 currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms...

  11. On the Adaptive Design Rules of Biochemical Networks in Evolution

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2007-01-01

    Full Text Available Biochemical networks are the backbones of physiological systems of organisms. Therefore, a biochemical network should be sufficiently robust (not sensitive to tolerate genetic mutations and environmental changes in the evolutionary process. In this study, based on the robustness and sensitivity criteria of biochemical networks, the adaptive design rules are developed for natural selection in the evolutionary process. This will provide insights into the robust adaptive mechanism of biochemical networks in the evolutionary process. We find that if a mutated biochemical network satisfies the robustness and sensitivity criteria of natural selection, there is a high probability for the biochemical network to prevail during natural selection in the evolutionary process. Since there are various mutated biochemical networks that can satisfy these criteria but have some differences in phenotype, the biochemical networks increase their diversities in the evolutionary process. The robustness of a biochemical network enables co-option so that new phenotypes can be generated in evolution. The proposed robust adaptive design rules of natural selection gain much insight into the evolutionary mechanism and provide a systematic robust biochemical circuit design method of biochemical networks for biotechnological and therapeutic purposes in the future.

  12. Genome-wide functional divergence after the symbiosis of proteobacteria with insects unraveled through a novel computational approach.

    Directory of Open Access Journals (Sweden)

    Christina Toft

    2009-04-01

    Full Text Available Symbiosis has been among the most important evolutionary steps to generate biological complexity. The establishment of symbiosis required an intimate metabolic link between biological systems with different complexity levels. The strict endo-cellular symbiotic bacteria of insects are beautiful examples of the metabolic coupling between organisms belonging to different kingdoms, a eukaryote and a prokaryote. The host (eukaryote provides the endosymbiont (prokaryote with a stable cellular environment while the endosymbiont supplements the host's diet with essential metabolites. For such communication to take place, endosymbionts' genomes have suffered dramatic modifications and reconfigurations of proteins' functions. Two of the main modifications, loss of genes redundant for endosymbiotic bacteria or the host and bacterial genome streamlining, have been extensively studied. However, no studies have accounted for possible functional shifts in the endosymbiotic proteomes. Here, we develop a simple method to screen genomes for evidence of functional divergence between two species clusters, and we apply it to identify functional shifts in the endosymbiotic proteomes. Despite the strong effects of genetic drift in the endosymbiotic systems, we unexpectedly identified genes to be under stronger selective constraints in endosymbionts of aphids and ants than in their free-living bacterial relatives. These genes are directly involved in supplementing the host's diet with essential metabolites. A test of functional divergence supports a strong relationship between the endosymbiosis and the functional shifts of proteins involved in the metabolic communication with the insect host. The correlation between functional divergence in the endosymbiotic bacterium and the ecological requirements of the host uncovers their intimate biochemical and metabolic communication and provides insights on the role of symbiosis in generating species diversity.

  13. Biochemical and genetic analysis of the Drk SH2/SH3 adaptor protein of Drosophila.

    OpenAIRE

    Raabe, T; Olivier, J P; Dickson, B J; Liu, X; Gish, G D; Pawson, T; Hafen, E

    1995-01-01

    The Drk SH3-SH2-SH3 adaptor protein has been genetically identified in a screen for rate-limiting components acting downstream of the Sevenless (Sev) receptor tyrosine kinase in the developing eye of Drosophila. It provides a link between the activated Sev receptor and Sos, a guanine nucleotide release factor that activates Ras1. We have used a combined biochemical and genetic approach to study the interactions between Sev, Drk and Sos. We show that Tyr2546 in the cytoplasmic tail of Sev is r...

  14. Between Stage and Screen

    NARCIS (Netherlands)

    Tornqvist, Egil

    1996-01-01

    Ingmar Bergman is worldwide known as a film and stage director. Yet no-one has attempted to compare his stage and screen activities. In Between stage and screen Egil Tornqvist examines formal and thematical correspondences and differences between a number of Bergman's stage, screen, and radio

  15. Biochemical Network Stochastic Simulator (BioNetS: software for stochastic modeling of biochemical networks

    Directory of Open Access Journals (Sweden)

    Elston Timothy C

    2004-03-01

    Full Text Available Abstract Background Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. Results We have developed the software package Biochemical Network Stochastic Simulator (BioNetS for efficientlyand accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solvesthe appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. Conclusions We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.

  16. Structure, sequence and expression of the hepatitis delta (δ) viral genome

    Science.gov (United States)

    Wang, Kang-Sheng; Choo, Qui-Lim; Weiner, Amy J.; Ou, Jing-Hsiung; Najarian, Richard C.; Thayer, Richard M.; Mullenbach, Guy T.; Denniston, Katherine J.; Gerin, John L.; Houghton, Michael

    1986-10-01

    Biochemical and electron microscopic data indicate that the human hepatitis δ viral agent contains a covalently closed circular and single-stranded RNA genome that has certain similarities with viroid-like agents from plants. The sequence of the viral genome (1,678 nucleotides) has been determined and an open reading frame within the complementary strand has been shown to encode an antigen that binds specifically to antisera from patients with chronic hepatitis δ viral infections.

  17. Biochemical Markers for Assessing Aquatic Contamination

    Directory of Open Access Journals (Sweden)

    Zdeňka Svobodová

    2007-11-01

    Full Text Available Biochemical markers, specifically enzymes of the first phase of xenobiotic transformation - cytochrome P450 and ethoxyresorufin-O-deethylase (EROD - were used to determine the quantities of persistent organic pollutants (POPs in fish muscle (PCB, HCB, HCH, OCS, DDT. Eight rivers were monitored (Orlice, Chrudimka, Cidlina, Jizera, Vltava, Ohře and Bílina; and the River Blanice was used as a control. The indicator species selected was the chub (Leuciscus cephalus L.. There were no significant differences in cytochrome P450 content between the locations monitored. The highest concentration of cytochrome P450 in fish liver was in the Vltava (0.241 nmol mg-1 protein, and the lowest was in the Orlice (0.120 nmol mg-1 protein. Analysis of EROD activity showed a significant difference between the Blanice and the Vltava (P< 0.05, and also between the Orlice and the Vltava (P< 0.01, the Orlice and the Bílina (P< 0.01, and the Orlice and the Ohře (P< 0.05. The highest EROD activity in fish liver was in the Vltava (576.4 pmol min-1 mg-1 protein, and the lowest was in the Orlice (63.05 pmol min-1 mg-1 protein. In individual locations, results of chemical monitoring and values of biochemical markers were compared. A significant correlation (P< 0.05 was found between biochemical markers and OCS, and PCB. Among the tributaries studied those that contaminated the Elbe most were the Vltava and the Bílina. These tributaries should not be considered the main sources of industrial contamination of the River Elbe, because the most important contamination sources were along the river Elbe itself.

  18. Biochemical and genetic analysis of the role of the viral polymerase in enterovirus recombination.

    Science.gov (United States)

    Woodman, Andrew; Arnold, Jamie J; Cameron, Craig E; Evans, David J

    2016-08-19

    Genetic recombination in single-strand, positive-sense RNA viruses is a poorly understand mechanism responsible for generating extensive genetic change and novel phenotypes. By moving a critical cis-acting replication element (CRE) from the polyprotein coding region to the 3' non-coding region we have further developed a cell-based assay (the 3'CRE-REP assay) to yield recombinants throughout the non-structural coding region of poliovirus from dually transfected cells. We have additionally developed a defined biochemical assay in which the only protein present is the poliovirus RNA dependent RNA polymerase (RdRp), which recapitulates the strand transfer events of the recombination process. We have used both assays to investigate the role of the polymerase fidelity and nucleotide turnover rates in recombination. Our results, of both poliovirus intertypic and intratypic recombination in the CRE-REP assay and using a range of polymerase variants in the biochemical assay, demonstrate that RdRp fidelity is a fundamental determinant of recombination frequency. High fidelity polymerases exhibit reduced recombination and low fidelity polymerases exhibit increased recombination in both assays. These studies provide the basis for the analysis of poliovirus recombination throughout the non-structural region of the virus genome and provide a defined biochemical assay to further dissect this important evolutionary process. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Biochemical Disincentives to Fertilizing Cellulosic Ethanol Crops

    Science.gov (United States)

    Gallagher, M. E.; Hockaday, W. C.; Snapp, S.; McSwiney, C.; Baldock, J.

    2010-12-01

    Corn grain biofuel crops produce the highest yields when the cropping ecosystem is not nitrogen (N)-limited, achieved by application of fertilizer. There are environmental consequences for excessive fertilizer application to crops, including greenhouse gas emissions, hypoxic “dead zones,” and health problems from N runoff into groundwater. The increase in corn acreage in response to demand for alternative fuels (i.e. ethanol) could exacerbate these problems, and divert food supplies to fuel production. A potential substitute for grain ethanol that could reduce some of these impacts is cellulosic ethanol. Cellulosic ethanol feedstocks include grasses (switchgrass), hardwoods, and crop residues (e.g. corn stover, wheat straw). It has been assumed that these feedstocks will require similar N fertilization rates to grain biofuel crops to maximize yields, but carbohydrate yield versus N application has not previously been monitored. We report the biochemical stocks (carbohydrate, protein, and lignin in Mg ha-1) of a corn ecosystem grown under varying N levels. We measured biochemical yield in Mg ha-1 within the grain, leaf and stem, and reproductive parts of corn plants grown at seven N fertilization rates (0-202 kg N ha-1), to evaluate the quantity and quality of these feedstocks across a N fertilization gradient. The N fertilization rate study was performed at the Kellogg Biological Station-Long Term Ecological Research Site (KBS-LTER) in Michigan. Biochemical stocks were measured using 13C nuclear magnetic resonance spectroscopy (NMR), combined with a molecular mixing model (Baldock et al. 2004). Carbohydrate and lignin are the main biochemicals of interest in ethanol production since carbohydrate is the ethanol feedstock, and lignin hinders the carbohydrate to ethanol conversion process. We show that corn residue carbohydrate yields respond only weakly to N fertilization compared to grain. Grain carbohydrate yields plateau in response to fertilization at

  20. The biochemical womb of schizophrenia: A review.

    Science.gov (United States)

    Gaur, N; Gautam, S; Gaur, M; Sharma, P; Dadheech, G; Mishra, S

    2008-10-01

    The conclusive identification of specific etiological factors or pathogenic processes in the illness of schizophrenia has remained elusive despite great technological progress. The convergence of state-of-art scientific studies in molecular genetics, molecular neuropathophysiology, in vivo brain imaging and psychopharmacology, however, indicates that we may be coming much closer to understanding the genesis of schizophrenia. In near future, the diagnosis and assessment of schizophrenia using biochemical markers may become a "dream come true" for the medical community as well as for the general population. An understanding of the biochemistry/ visa vis pathophysiology of schizophrenia is essential to the discovery of preventive measures and therapeutic intervention.

  1. Conservation Laws in Biochemical Reaction Networks

    DEFF Research Database (Denmark)

    Mahdi, Adam; Ferragut, Antoni; Valls, Claudia

    2017-01-01

    We study the existence of linear and nonlinear conservation laws in biochemical reaction networks with mass-action kinetics. It is straightforward to compute the linear conservation laws as they are related to the left null-space of the stoichiometry matrix. The nonlinear conservation laws...... are difficult to identify and have rarely been considered in the context of mass-action reaction networks. Here, using the Darboux theory of integrability, we provide necessary structural (i.e., parameterindependent) conditions on a reaction network to guarantee the existence of nonlinear conservation laws...

  2. Radiation treatment of drugs, biochemicals and vaccines

    International Nuclear Information System (INIS)

    Nordheim, W.; Braeuniger, S.; Kirsch, B.; Kotowski, H.; Teupel, D.

    1984-12-01

    The concise and tabulated review reports experimental results on the effects of radiation treatment on drugs, vaccines, biochemicals and adjuvants including enzymes as well. Irradiation was mostly performed by γ-radiation using 60 Co and to a lesser extent by 137 Cs, 182 Ta, X-rays and accelerators. Ionizing radiation proved to be a useful tool for sterilization and inactivation in producing drugs, vaccines, and bioactive agents and will contribute to realize procedures difficultly solvable as to engineering and economy, respectively. 124 refs

  3. The Sequenced Angiosperm Genomes and Genome Databases.

    Science.gov (United States)

    Chen, Fei; Dong, Wei; Zhang, Jiawei; Guo, Xinyue; Chen, Junhao; Wang, Zhengjia; Lin, Zhenguo; Tang, Haibao; Zhang, Liangsheng

    2018-01-01

    Angiosperms, the flowering plants, provide the essential resources for human life, such as food, energy, oxygen, and materials. They also promoted the evolution of human, animals, and the planet earth. Despite the numerous advances in genome reports or sequencing technologies, no review covers all the released angiosperm genomes and the genome databases for data sharing. Based on the rapid advances and innovations in the database reconstruction in the last few years, here we provide a comprehensive review for three major types of angiosperm genome databases, including databases for a single species, for a specific angiosperm clade, and for multiple angiosperm species. The scope, tools, and data of each type of databases and their features are concisely discussed. The genome databases for a single species or a clade of species are especially popular for specific group of researchers, while a timely-updated comprehensive database is more powerful for address of major scientific mysteries at the genome scale. Considering the low coverage of flowering plants in any available database, we propose construction of a comprehensive database to facilitate large-scale comparative studies of angiosperm genomes and to promote the collaborative studies of important questions in plant biology.

  4. Screening for colorectal cancer.

    Science.gov (United States)

    He, Jin; Efron, Jonathan E

    2011-01-01

    March is national colorectal cancer awareness month. It is estimated that as many as 60% of colorectal cancer deaths could be prevented if all men and women aged 50 years or older were screened routinely. In 2000, Katie Couric's televised colonoscopy led to a 20% increase in screening colonoscopies across America, a stunning rise called the "Katie Couric Effect". This event demonstrated how celebrity endorsement affects health behavior. Currently, discussion is ongoing about the optimal strategy for CRC screening, particularly the costs of screening colonoscopy. The current CRC screening guidelines are summarized in Table 2. Debates over the optimum CRC screening test continue in the face of evidence that 22 million Americans aged 50 to 75 years are not screened for CRC by any modality and 25,000 of those lives may have been saved if they had been screened for CRC. It is clear that improving screening rates and reducing disparities in underscreened communities and population subgroups could further reduce colorectal cancer morbidity and mortality. National Institutes of Health consensus identified the following priority areas to enhance the use and quality of colorectal cancer screening: Eliminate financial barriers to colorectal cancer screening and appropriate follow-up of positive results of colorectal cancer screening. Develop systems to ensure the high quality of colorectal cancer screening programs. Conduct studies to determine the comparative effectiveness of the various colorectal cancer screening methods in usual practice settings. Encouraging population adherence to screening tests and allowing patients to select the tests they prefer may do more good (as long as they choose something) than whatever procedure is chosen by the medical profession as the preferred test.

  5. Staged anticonvulsant screening for chronic epilepsy.

    Science.gov (United States)

    Berdichevsky, Yevgeny; Saponjian, Yero; Park, Kyung-Il; Roach, Bonnie; Pouliot, Wendy; Lu, Kimberly; Swiercz, Waldemar; Dudek, F Edward; Staley, Kevin J

    2016-12-01

    Current anticonvulsant screening programs are based on seizures evoked in normal animals. One-third of epileptic patients do not respond to the anticonvulsants discovered with these models. We evaluated a tiered program based on chronic epilepsy and spontaneous seizures, with compounds advancing from high-throughput in vitro models to low-throughput in vivo models. Epileptogenesis in organotypic hippocampal slice cultures was quantified by lactate production and lactate dehydrogenase release into culture media as rapid assays for seizure-like activity and cell death, respectively. Compounds that reduced these biochemical measures were retested with in vitro electrophysiological confirmation (i.e., second stage). The third stage involved crossover testing in the kainate model of chronic epilepsy, with blinded analysis of spontaneous seizures after continuous electrographic recordings. We screened 407 compound-concentration combinations. The cyclooxygenase inhibitor, celecoxib, had no effect on seizures evoked in normal brain tissue but demonstrated robust antiseizure activity in all tested models of chronic epilepsy. The use of organotypic hippocampal cultures, where epileptogenesis occurs on a compressed time scale, and where seizure-like activity and seizure-induced cell death can be easily quantified with biomarker assays, allowed us to circumvent the throughput limitations of in vivo chronic epilepsy models. Ability to rapidly screen compounds in a chronic model of epilepsy allowed us to find an anticonvulsant that would be missed by screening in acute models.

  6. Phylogenomics and the Dynamic Genome Evolution of the Genus Streptococcus

    Science.gov (United States)

    Richards, Vincent P.; Palmer, Sara R.; Pavinski Bitar, Paulina D.; Qin, Xiang; Weinstock, George M.; Highlander, Sarah K.; Town, Christopher D.; Burne, Robert A.; Stanhope, Michael J.

    2014-01-01

    The genus Streptococcus comprises important pathogens that have a severe impact on human health and are responsible for substantial economic losses to agriculture. Here, we utilize 46 Streptococcus genome sequences (44 species), including eight species sequenced here, to provide the first genomic level insight into the evolutionary history and genetic basis underlying the functional diversity of all major groups of this genus. Gene gain/loss analysis revealed a dynamic pattern of genome evolution characterized by an initial period of gene gain followed by a period of loss, as the major groups within the genus diversified. This was followed by a period of genome expansion associated with the origins of the present extant species. The pattern is concordant with an emerging view that genomes evolve through a dynamic process of expansion and streamlining. A large proportion of the pan-genome has experienced lateral gene transfer (LGT) with causative factors, such as relatedness and shared environment, operating over different evolutionary scales. Multiple gene ontology terms were significantly enriched for each group, and mapping terms onto the phylogeny showed that those corresponding to genes born on branches leading to the major groups represented approximately one-fifth of those enriched. Furthermore, despite the extensive LGT, several biochemical characteristics have been retained since group formation, suggesting genomic cohesiveness through time, and that these characteristics may be fundamental to each group. For example, proteolysis: mitis group; urea metabolism: salivarius group; carbohydrate metabolism: pyogenic group; and transcription regulation: bovis group. PMID:24625962

  7. The first three years of screening for medium chain acyl-CoA dehydrogenase deficiency (MCADD by newborn screening ontario

    Directory of Open Access Journals (Sweden)

    Fisher Lawrence

    2010-11-01

    identified by other newborn screening programs internationally. We observed some evidence of correlation between genotype and biochemical phenotype (C8 levels, and between C8 screening levels and eventual diagnosis. Current research priorities include further examining the relationships among genotype, biochemical phenotype, and clinical phenotype, with the ultimate goal of improving clinical risk prediction in order to provide tailored disease management advice and genetic counselling to families.

  8. Screening on Gibberellic Acid Producing Activity of Azospirillum Isolates

    International Nuclear Information System (INIS)

    Shun Lai Ei; Khin Mya Lwin; Myo Myint

    2010-12-01

    Six strains of Azopirillum spp were isolated from rice, sugarcane, corn, maize, sunflower and pepper roots and screened the gibberellic acid productivity. Only three strains of Azospirillum species showed the activity and were indentified by cultural, biochemical and drug sensitivity patterns. Among them,one strain isolated from rice root can produce microbial gibberellic acid. It showed greenish yellow colour in chromatogram under UV absorption. This screening method was studied from 1 to 14 days incubation. Qualitative measurement of GA productivity was determined by thin layer chromatography.

  9. Assembly and Multiplex Genome Integration of Metabolic Pathways in Yeast Using CasEMBLR

    DEFF Research Database (Denmark)

    Jakočiūnas, Tadas; Jensen, Emil D.; Jensen, Michael Krogh

    2018-01-01

    and marker-free integration of the carotenoid pathway from 15 exogenously supplied DNA parts into three targeted genomic loci. As a second proof-of-principle, a total of ten DNA parts were assembled and integrated in two genomic loci to construct a tyrosine production strain, and at the same time knocking......Genome integration is a vital step for implementing large biochemical pathways to build a stable microbial cell factory. Although traditional strain construction strategies are well established for the model organism Saccharomyces cerevisiae, recent advances in CRISPR/Cas9-mediated genome...... engineering allow much higher throughput and robustness in terms of strain construction. In this chapter, we describe CasEMBLR, a highly efficient and marker-free genome engineering method for one-step integration of in vivo assembled expression cassettes in multiple genomic sites simultaneously. Cas...

  10. Screen Practice in Curating

    DEFF Research Database (Denmark)

    Toft, Tanya Søndergaard

    2014-01-01

    During the past one and a half decade, a curatorial orientation towards "screen practice" has expanded the moving image and digital art into the public domain, exploring alternative artistic uses of the screen. The emergence of urban LED screens in the late 1990s provided a new venue that allowed...... for digital art to expand into public space. It also offered a political point of departure, inviting for confrontation with the Spectacle and with the politics and ideology of the screen as a mass communication medium that instrumentalized spectator positions. In this article I propose that screen practice...... to the dispositif of screen practice in curating, resulting in a medium-based curatorial discourse. With reference to the nomadic exhibition project Nordic Outbreak that I co-curated with Nina Colosi in 2013 and 2014, I suggest that the topos of the defined visual display area, frequently still known as "the screen...

  11. Exploiting PubChem for Virtual Screening.

    Science.gov (United States)

    Xie, Xiang-Qun

    2010-12-01

    IMPORTANCE OF THE FIELD: PubChem is a public molecular information repository, a scientific showcase of the NIH Roadmap Initiative. The PubChem database holds over 27 million records of unique chemical structures of compounds (CID) derived from nearly 70 million substance depositions (SID), and contains more than 449,000 bioassay records with over thousands of in vitro biochemical and cell-based screening bioassays established, with targeting more than 7000 proteins and genes linking to over 1.8 million of substances. AREAS COVERED IN THIS REVIEW: This review builds on recent PubChem-related computational chemistry research reported by other authors while providing readers with an overview of the PubChem database, focusing on its increasing role in cheminformatics, virtual screening and toxicity prediction modeling. WHAT THE READER WILL GAIN: These publicly available datasets in PubChem provide great opportunities for scientists to perform cheminformatics and virtual screening research for computer-aided drug design. However, the high volume and complexity of the datasets, in particular the bioassay-associated false positives/negatives and highly imbalanced datasets in PubChem, also creates major challenges. Several approaches regarding the modeling of PubChem datasets and development of virtual screening models for bioactivity and toxicity predictions are also reviewed. TAKE HOME MESSAGE: Novel data-mining cheminformatics tools and virtual screening algorithms are being developed and used to retrieve, annotate and analyze the large-scale and highly complex PubChem biological screening data for drug design.

  12. From NGS assembly challenges to instability of fungal mitochondrial genomes: A case study in genome complexity.

    Science.gov (United States)

    Misas, Elizabeth; Muñoz, José Fernando; Gallo, Juan Esteban; McEwen, Juan Guillermo; Clay, Oliver Keatinge

    2016-04-01

    The presence of repetitive or non-unique DNA persisting over sizable regions of a eukaryotic genome can hinder the genome's successful de novo assembly from short reads: ambiguities in assigning genome locations to the non-unique subsequences can result in premature termination of contigs and thus overfragmented assemblies. Fungal mitochondrial (mtDNA) genomes are compact (typically less than 100 kb), yet often contain short non-unique sequences that can be shown to impede their successful de novo assembly in silico. Such repeats can also confuse processes in the cell in vivo. A well-studied example is ectopic (out-of-register, illegitimate) recombination associated with repeat pairs, which can lead to deletion of functionally important genes that are located between the repeats. Repeats that remain conserved over micro- or macroevolutionary timescales despite such risks may indicate functionally or structurally (e.g., for replication) important regions. This principle could form the basis of a mining strategy for accelerating discovery of function in genome sequences. We present here our screening of a sample of 11 fully sequenced fungal mitochondrial genomes by observing where exact k-mer repeats occurred several times; initial analyses motivated us to focus on 17-mers occurring more than three times. Based on the diverse repeats we observe, we propose that such screening may serve as an efficient expedient for gaining a rapid but representative first insight into the repeat landscapes of sparsely characterized mitochondrial chromosomes. Our matching of the flagged repeats to previously reported regions of interest supports the idea that systems of persisting, non-trivial repeats in genomes can often highlight features meriting further attention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Genome Editing Redefines Precision Medicine in the Cardiovascular Field

    Directory of Open Access Journals (Sweden)

    Elda Dzilic

    2018-01-01

    Full Text Available Genome editing is a powerful tool to study the function of specific genes and proteins important for development or disease. Recent technologies, especially CRISPR/Cas9 which is characterized by convenient handling and high precision, revolutionized the field of genome editing. Such tools have enormous potential for basic science as well as for regenerative medicine. Nevertheless, there are still several hurdles that have to be overcome, but patient-tailored therapies, termed precision medicine, seem to be within reach. In this review, we focus on the achievements and limitations of genome editing in the cardiovascular field. We explore different areas of cardiac research and highlight the most important developments: (1 the potential of genome editing in human pluripotent stem cells in basic research for disease modelling, drug screening, or reprogramming approaches and (2 the potential and remaining challenges of genome editing for regenerative therapies. Finally, we discuss social and ethical implications of these new technologies.

  14. Screening of Gibberellic Acid Production by Pseudomonas SPP

    International Nuclear Information System (INIS)

    Khine Zar Wynn Myint; Khin Mya Lwin; Myo Myint

    2010-12-01

    The microbial gibberellic acid (GA3) production of Pseudomonas spp., was studied and qualitatively indentified by UV spectrophotometer. 20 strains of Pseudomonas spp., were isolated and screened the gibberellic acid productivily in King's B medium. Among them, only four strains can produce microbial gibberellic acid. The Rf values and colour appearance under UV were the same as authentic gibberellic acid. Moreover, the gibberellic acid producer strains were identified as Pseudomonas spp., by cultural, biochemical and drug sensitivity pattern.

  15. Biases in Drosophila melanogaster protein trap screens

    Directory of Open Access Journals (Sweden)

    Müller Ilka

    2009-05-01

    Full Text Available Abstract Background The ability to localise or follow endogenous proteins in real time in vivo is of tremendous utility for cell biology or systems biology studies. Protein trap screens utilise the random genomic insertion of a transposon-borne artificial reporter exon (e.g. encoding the green fluorescent protein, GFP into an intron of an endogenous gene to generate a fluorescent fusion protein. Despite recent efforts aimed at achieving comprehensive coverage of the genes encoded in the Drosophila genome, the repertoire of genes that yield protein traps is still small. Results We analysed the collection of available protein trap lines in Drosophila melanogaster and identified potential biases that are likely to restrict genome coverage in protein trap screens. The protein trap screens investigated here primarily used P-element vectors and thus exhibit some of the same positional biases associated with this transposon that are evident from the comprehensive Drosophila Gene Disruption Project. We further found that protein trap target genes usually exhibit broad and persistent expression during embryonic development, which is likely to facilitate better detection. In addition, we investigated the likely influence of the GFP exon on host protein structure and found that protein trap insertions have a significant bias for exon-exon boundaries that encode disordered protein regions. 38.8% of GFP insertions land in disordered protein regions compared with only 23.4% in the case of non-trapping P-element insertions landing in coding sequence introns (p -4. Interestingly, even in cases where protein domains are predicted, protein trap insertions frequently occur in regions encoding surface exposed areas that are likely to be functionally neutral. Considering the various biases observed, we predict that less than one third of intron-containing genes are likely to be amenable to trapping by the existing methods. Conclusion Our analyses suggest that the

  16. [Biochemical principles of early saturnism recognition].

    Science.gov (United States)

    Tsimakuridze, M P; Mansuradze, E A; Zurashvili, D G; Tsimakuridze, M P

    2009-03-01

    The aim of the work is to determine the major sensitive criteria of biochemical indicators that allow timely discovery of negative influence of lead on organism and assist in early diagnosis of primary stages of saturnism. The workers of Georgian typographies, performing technological processes of letterpress printing were observed. Professional groups having contact with lead aerosols (main group of 66 people) and the workers of the same typography not being in touch with the poison (control group of 24 people) were studied. It was distinguished that, protracted professional contact with lead causes moderate increase of lead, coproporphyrin and DALA in daily urine in most cases; it is more clearly evidenced in the professional groups of lead smelters and lino operators and less clearly among typesetter and printers. Upon the checkup of people, having a direct contact with lead, biochemical analysis of urine should be given a preference, especially the determination of quantitative content of lead and coproporphyrin in urine with the aim of revealing the lead carrier, which is one of the first signals for occupational lookout and medical monitoring of the similar contingent.

  17. Identifying optimal models to represent biochemical systems.

    Directory of Open Access Journals (Sweden)

    Mochamad Apri

    Full Text Available Biochemical systems involving a high number of components with intricate interactions often lead to complex models containing a large number of parameters. Although a large model could describe in detail the mechanisms that underlie the system, its very large size may hinder us in understanding the key elements of the system. Also in terms of parameter identification, large models are often problematic. Therefore, a reduced model may be preferred to represent the system. Yet, in order to efficaciously replace the large model, the reduced model should have the same ability as the large model to produce reliable predictions for a broad set of testable experimental conditions. We present a novel method to extract an "optimal" reduced model from a large model to represent biochemical systems by combining a reduction method and a model discrimination method. The former assures that the reduced model contains only those components that are important to produce the dynamics observed in given experiments, whereas the latter ensures that the reduced model gives a good prediction for any feasible experimental conditions that are relevant to answer questions at hand. These two techniques are applied iteratively. The method reveals the biological core of a model mathematically, indicating the processes that are likely to be responsible for certain behavior. We demonstrate the algorithm on two realistic model examples. We show that in both cases the core is substantially smaller than the full model.

  18. Biochemical Manifestation of HIV Lipodystrophy Syndrome.

    Science.gov (United States)

    Ihenetu, Kenneth; Mason, Darius

    2012-01-01

    Highly active anti-retroviral therapy (HAART), including protease inhibitors (PI) have led to dramatic improvements in the quality and quantity of life in patients with acquired immunodeficiency syndrome (AIDS). However, a significant number of AIDS patients on HAART develop characteristic changes in body fat redistribution referred to as lipodystrophy syndrome (LDS). Features of LDS include hypertrophy in the neck fat pad (buffalo hump), increased fat in the abdominal region (protease paunch), gynecomastia and loss of fat in the mid-face and extremities. The aim of this paper is to review the current knowledge regarding this syndrome. This article reviews the published investigations on biochemical manifestation of HIV lipodystrophy syndrome. It is estimated that approximately 64% of patients treated with PI will experience this syndrome. Biochemically, these patients have increased triglycerides (Trig), total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C) and extremely low high-density lipoprotein-cholesterol (HDL-C). It is hoped that awareness of this syndrome would aid in early diagnosis and better patient management, possibly leading to a lower incidence of cardiovascular complications among these patients.

  19. Genome-wide screens for expressed hypothetical proteins

    DEFF Research Database (Denmark)

    Madsen, Claus Desler; Durhuus, Jon Ambæk; Rasmussen, Lene Juel

    2012-01-01

    A hypothetical protein (HP) is defined as a protein that is predicted to be expressed from an open reading frame, but for which there is no experimental evidence of translation. HPs constitute a substantial fraction of proteomes of human as well as of other organisms. With the general belief that...... that the majority of HPs are the product of pseudogenes, it is essential to have a tool with the ability of pinpointing the minority of HPs with a high probability of being expressed....

  20. Genome Editing in Sugarcane: Challenges ahead

    Directory of Open Access Journals (Sweden)

    Chakravarthi Mohan

    2016-10-01

    Full Text Available Genome editing opens new and unique opportunities for researchers to enhance crop production. Until 2013, the zinc finger nucleases (ZFNs and transcription activator-like effector nucleases (TALENs were the key tools used for genome editing applications. The advent of RNA-guided engineered nucleases - the type II clustered regularly interspaced short palindromic repeat (CRISPR/Cas9 (CRISPR-associated system from Streptococcus pyogenes holds great potential since it is simple, effective and more versatile than ZFNs and TALENs. CRISPR/Cas9 system has already been successfully employed in several crop plants. Use of these techniques is in its infant stage in sugarcane. Jung and Altpeter (2016 have reported TALEN mediated approach for the first time to reduce lignin content in sugarcane to make it amenable for biofuel production. This is so far the only report describing genome editing in sugarcane. Large genome size, polyploidy, low transformation efficiency, transgene silencing and lack of high throughput screening techniques are certainly great challenges for genome editing in sugarcane which would be discussed in detail in this review.

  1. The Front Line of Genomic Translation

    International Nuclear Information System (INIS)

    O'Neill, C. S.; McBride, C. M.; Koehly, L. M.; Bryan, A. D.; Wideroff, L.

    2012-01-01

    Cancer prevention, detection, and treatment represent the front line of genomic translation. Increasingly, new genomic knowledge is being used to inform personalized cancer prevention recommendations and treatment [1-3]. Genomic applications proposed and realized span the full cancer continuum, from cancer prevention and early detection vis a vis genomic risk profiles to motivate behavioral risk reduction and adherence [4] to screening and prophylactic prevention recommendations for high-risk families [5-7], to enhancing cancer survivorship by using genomic tumor profiles to inform treatment decisions and targeted cancer therapies [8, 9]. Yet the utility for many of these applications is as yet unclear and will be influenced heavily by the public’s, patients’, and health care providers’ responses and in numerous other factors, such as health care delivery models [3]. The contributors to this special issue consider various target groups’ responses and contextual factors. To reflect the cancer continuum, the special issue is divided into three broad, overlapping themes-primary prevention, high risk families and family communication and clinical translation.

  2. In Vivo RNAi-Based Screens: Studies in Model Organisms

    Directory of Open Access Journals (Sweden)

    Miki Yamamoto-Hino

    2013-11-01

    Full Text Available RNA interference (RNAi is a technique widely used for gene silencing in organisms and cultured cells, and depends on sequence homology between double-stranded RNA (dsRNA and target mRNA molecules. Numerous cell-based genome-wide screens have successfully identified novel genes involved in various biological processes, including signal transduction, cell viability/death, and cell morphology. However, cell-based screens cannot address cellular processes such as development, behavior, and immunity. Drosophila and Caenorhabditis elegans are two model organisms whose whole bodies and individual body parts have been subjected to RNAi-based genome-wide screening. Moreover, Drosophila RNAi allows the manipulation of gene function in a spatiotemporal manner when it is implemented using the Gal4/UAS system. Using this inducible RNAi technique, various large-scale screens have been performed in Drosophila, demonstrating that the method is straightforward and valuable. However, accumulated results reveal that the results of RNAi-based screens have relatively high levels of error, such as false positives and negatives. Here, we review in vivo RNAi screens in Drosophila and the methods that could be used to remove ambiguity from screening results.

  3. Life style and biochemical adaptation in Antarctic fishes

    Science.gov (United States)

    di Prisco, Guido

    2000-12-01

    Respiration and metabolism are under investigation in Antarctic fish, in an effort to understand the interplay between ecology and biochemical and physiological processes. Fish of the dominant suborder Notothenioidei are red-blooded, except Channichthyidae (the most phyletically derived family), whose genomes retain transcriptionally inactive DNA sequences closely related to the α-globin gene of red-blooded notothenioids and have lost the β-globin locus. Our structure/function studies on 38 of the 80 red-blooded species are aimed at correlating sequence, multiplicity and oxygen binding with ecological constraints and at obtaining phylogenetic information on evolution. For comparative purposes, this work has been extended to non-Antarctic notothenioids. All sluggish bottom dwellers have a single major hemoglobin (Hb) and often a minor, functionally similar one. Three species of the family Nototheniidae have different life styles. They have uniquely specialised oxygen-transport systems, adjusted to the mode of life of each species. Artedidraconidae have a single Hb, lacking oxygen-binding cooperativity, similar to the ancestral hemoproteins of primitive organisms. The amino acid sequences are currently used in the molecular modelling approach. The study of several enzymes with key roles in metabolism (e.g. glucose-6-phosphate dehydrogenase, L-glutamate dehydrogenase, phosphorylase b, carbonic anhydrase) indicate that some aspects of the molecular structure (e.g. molecular mass, number of subunits, amino acid sequence, temperature of irreversible heat inactivation) have been conserved during development of cold adaptation. However, high catalytic efficiency, possibly due to subtle molecular changes, is observed at low temperature.

  4. How resilient is the soybean genome? Insights from fast neutron mutagenesis

    Science.gov (United States)

    Previously, we described the development of a fast neutron mutant population resource in soybean and identified mutations of interest through phenotypic screening. Here, we consider the resiliency of the soybean genome by examining genomic rearrangements and mutations that arise from fast neutron ra...

  5. Enhancing Reproducibility in Cancer Drug Screening: How Do We Move Forward?

    DEFF Research Database (Denmark)

    Shi, Leming; Haibe-Kains, Benjamin; Birkbak, Nicolai Juul

    2014-01-01

    Large-scale pharmacogenomic high-throughput screening (HTS) studies hold great potential for generating robust genomic predictors of drug response. Two recent large-scale HTS studies have reported results of such screens, revealing several known and novel drug sensitivities and biomarkers...

  6. Automated Groundwater Screening

    International Nuclear Information System (INIS)

    Taylor, Glenn A.; Collard, Leonard B.

    2005-01-01

    The Automated Intruder Analysis has been extended to include an Automated Ground Water Screening option. This option screens 825 radionuclides while rigorously applying the National Council on Radiation Protection (NCRP) methodology. An extension to that methodology is presented to give a more realistic screening factor for those radionuclides which have significant daughters. The extension has the promise of reducing the number of radionuclides which must be tracked by the customer. By combining the Automated Intruder Analysis with the Automated Groundwater Screening a consistent set of assumptions and databases is used. A method is proposed to eliminate trigger values by performing rigorous calculation of the screening factor thereby reducing the number of radionuclides sent to further analysis. Using the same problem definitions as in previous groundwater screenings, the automated groundwater screening found one additional nuclide, Ge-68, which failed the screening. It also found that 18 of the 57 radionuclides contained in NCRP Table 3.1 failed the screening. This report describes the automated groundwater screening computer application

  7. Recent Advances on the Use of Biochemical Extracts as Filaricidal Agents

    Directory of Open Access Journals (Sweden)

    Nazeh M. Al-Abd

    2013-01-01

    Full Text Available Lymphatic filariasis is a parasitic infection that causes a devastating public health and socioeconomic burden with an estimated infection of over 120 million individuals worldwide. The infection is caused by three closely related nematode parasites, namely, Wuchereria bancrofti, Brugia malayi, and B. timori, which are transmitted to human through mosquitoes of Anopheles, Culex, and Aedes genera. The species have many ecological variants and are diversified in terms of their genetic fingerprint. The rapid spread of the disease and the genetic diversification cause the lymphatic filarial parasites to respond differently to diagnostic and therapeutic interventions. This in turn prompts the current challenge encountered in its management. Furthermore, most of the chemical medications used are characterized by adverse side effects. These complications urgently warrant intense prospecting on bio-chemicals that have potent efficacy against either the filarial worms or thier vector. In lieu of this, we presented a review on recent literature that reported the efficacy of filaricidal biochemicals and those employed as vector control agents. In addition, methods used for biochemical extraction, screening procedures, and structure of the bioactive compounds were also presented.

  8. Controversy and debate on clinical genomics sequencing-paper 1: genomics is not exceptional: rigorous evaluations are necessary for clinical applications of genomic sequencing.

    Science.gov (United States)

    Wilson, Brenda J; Miller, Fiona Alice; Rousseau, François

    2017-12-01

    Next generation genomic sequencing (NGS) technologies-whole genome and whole exome sequencing-are now cheap enough to be within the grasp of many health care organizations. To many, NGS is symbolic of cutting edge health care, offering the promise of "precision" and "personalized" medicine. Historically, research and clinical application has been a two-way street in clinical genetics: research often driven directly by the desire to understand and try to solve immediate clinical problems affecting real, identifiable patients and families, accompanied by a low threshold of willingness to apply research-driven interventions without resort to formal empirical evaluations. However, NGS technologies are not simple substitutes for older technologies and need careful evaluation for use as screening, diagnostic, or prognostic tools. We have concerns across three areas. First, at the moment, analytic validity is unknown because technical platforms are not yet stable, laboratory quality assurance programs are in their infancy, and data interpretation capabilities are badly underdeveloped. Second, clinical validity of genomic findings for patient populations without pre-existing high genetic risk is doubtful, as most clinical experience with NGS technologies relates to patients with a high prior likelihood of a genetic etiology. Finally, we are concerned that proponents argue not only for clinically driven approaches to assessing a patient's genome, but also for seeking out variants associated with unrelated conditions or susceptibilities-so-called "secondary targets"-this is screening on a genomic scale. We argue that clinical uses of genomic sequencing should remain limited to specialist and research settings, that screening for secondary findings in clinical testing should be limited to the maximum extent possible, and that the benefits, harms, and economic implications of their routine use be systematically evaluated. All stakeholders have a responsibility to ensure that

  9. genome-wide association and metabolic pathway analysis of corn earworm resistance in maize

    Science.gov (United States)

    Marilyn L. Warburton; Erika D. Womack; Juliet D. Tang; Adam Thrash; J. Spencer Smith; Wenwei Xu; Seth C. Murray; W. Paul Williams

    2018-01-01

    Maize (Zea mays mays L.) is a staple crop of economic, industrial, and food security importance. Damage to the growing ears by corn earworm [Helicoverpa zea (Boddie)] is a major economic burden and increases secondary fungal infections and mycotoxin levels. To identify biochemical pathways associated with native resistance mechanisms, a genome-wide...

  10. Comparative genomics of a plant-parasitic nematode endosymbiont suggest a role in nutritional symbiosis

    Science.gov (United States)

    Bacterial mutualists can increase the biochemical capacity of animals. Highly co-evolved nutritional mutualists do this by synthesizing nutrients missing from the host's diet. Genomics tools have recently advanced the study of these partnerships. Here we examined the endosymbiont Xiphinematobacter (...

  11. Functional Insights from Structural Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Forouhar,F.; Kuzin, A.; Seetharaman, J.; Lee, I.; Zhou, W.; Abashidze, M.; Chen, Y.; Montelione, G.; Tong, L.; et al

    2007-01-01

    Structural genomics efforts have produced structural information, either directly or by modeling, for thousands of proteins over the past few years. While many of these proteins have known functions, a large percentage of them have not been characterized at the functional level. The structural information has provided valuable functional insights on some of these proteins, through careful structural analyses, serendipity, and structure-guided functional screening. Some of the success stories based on structures solved at the Northeast Structural Genomics Consortium (NESG) are reported here. These include a novel methyl salicylate esterase with important role in plant innate immunity, a novel RNA methyltransferase (H. influenzae yggJ (HI0303)), a novel spermidine/spermine N-acetyltransferase (B. subtilis PaiA), a novel methyltransferase or AdoMet binding protein (A. fulgidus AF{_}0241), an ATP:cob(I)alamin adenosyltransferase (B. subtilis YvqK), a novel carboxysome pore (E. coli EutN), a proline racemase homolog with a disrupted active site (B. melitensis BME11586), an FMN-dependent enzyme (S. pneumoniae SP{_}1951), and a 12-stranded {beta}-barrel with a novel fold (V. parahaemolyticus VPA1032).

  12. BioNessie - a grid enabled biochemical networks simulation environment

    OpenAIRE

    Liu, X.; Jiang, J.; Ajayi, O.; Gu, X.; Gilbert, D.; Sinnott, R.O.

    2008-01-01

    The simulation of biochemical networks provides insight and understanding about the underlying biochemical processes and pathways used by cells and organisms. BioNessie is a biochemical network simulator which has been developed at the University of Glasgow. This paper describes the simulator and focuses in particular on how it has been extended to benefit from a wide variety of high performance compute resources across the UK through Grid technologies to support larger scale simulations.

  13. Possibilities and methods for biochemical assessment of radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Minkova, M [Meditsinska Akademiya, Sofia (Bulgaria). Nauchen Inst. po Rentgenologiya i Radiobiologiya

    1986-01-01

    An extensitive review (77 references) is made of the application of biochemical diagnostic methods for assessment of radiation diseases. A brief characteristics of several biochemical indicators is given: deoxycytidine, thymidine, rho-aminoisocarboxylic acid, DNA-ase, nucleic acids. Influence of such factors as age, sex, season etc. is studied by means of functional biochemical indicators as: creatine, triptophanic metabolites, 5-hydroxy-indolacetic acid, biogenic amines, serum proteins, enzymes, etc.

  14. Identification of neural outgrowth genes using genome-wide RNAi.

    Directory of Open Access Journals (Sweden)

    Katharine J Sepp

    2008-07-01

    Full Text Available While genetic screens have identified many genes essential for neurite outgrowth, they have been limited in their ability to identify neural genes that also have earlier critical roles in the gastrula, or neural genes for which maternally contributed RNA compensates for gene mutations in the zygote. To address this, we developed methods to screen the Drosophila genome using RNA-interference (RNAi on primary neural cells and present the results of the first full-genome RNAi screen in neurons. We used live-cell imaging and quantitative image analysis to characterize the morphological phenotypes of fluorescently labelled primary neurons and glia in response to RNAi-mediated gene knockdown. From the full genome screen, we focused our analysis on 104 evolutionarily conserved genes that when downregulated by RNAi, have morphological defects such as reduced axon extension, excessive branching, loss of fasciculation, and blebbing. To assist in the phenotypic analysis of the large data sets, we generated image analysis algorithms that could assess the statistical significance of the mutant phenotypes. The algorithms were essential for the analysis of the thousands of images generated by the screening process and will become a valuable tool for future genome-wide screens in primary neurons. Our analysis revealed unexpected, essential roles in neurite outgrowth for genes representing a wide range of functional categories including signalling molecules, enzymes, channels, receptors, and cytoskeletal proteins. We also found that genes known to be involved in protein and vesicle trafficking showed similar RNAi phenotypes. We confirmed phenotypes of the protein trafficking genes Sec61alpha and Ran GTPase using Drosophila embryo and mouse embryonic cerebral cortical neurons, respectively. Collectively, our results showed that RNAi phenotypes in primary neural culture can parallel in vivo phenotypes, and the screening technique can be used to identify many new

  15. Screening for abdominalt aortaaneurisme

    DEFF Research Database (Denmark)

    Lindholt, J S; Juul, Svend; Henneberg, E W

    1997-01-01

    rupture. Ultrasonographic screening for AAA takes 10 minutes per scan, and the sensitivity and specificity are high. Ultrasonographic screening for AAA is a reliable, safe and inexpensive method for screening, and screening for AAA is discussed worldwide. One point four percent of deaths among men from 65...... to 80 year of age are caused by ruptured AAA. Screening men over 65 for AAA can theoretically prevent a substantial number of deaths. Our calculations predict one prevented AAA-death per 200-300 scans for a cost of about 4000 DKK per saved year of life. However, cost-benefit analyses are based...... on uncertain assumptions concerning prevalence, incidence and risk of rupture. Therefore a randomized trial screening of 65-73 year old males is taking place in the County of Viborg in Denmark. Udgivelsesdato: 1997-Mar-24...

  16. Prions: the danger of biochemical weapons

    Directory of Open Access Journals (Sweden)

    Eric Almeida Xavier

    2014-09-01

    Full Text Available The knowledge of biotechnology increases the risk of using biochemical weapons for mass destruction. Prions are unprecedented infectious pathogens that cause a group of fatal neurodegenerative diseases by a novel mechanism. They are transmissible particles that are devoid of nucleic acid. Due to their singular characteristics, Prions emerge as potential danger since they can be used in the development of such weapons. Prions cause fatal infectious diseases, and to date there is no therapeutic or prophylactic approach against these diseases. Furthermore, Prions are resistant to food-preparation treatments such as high heat and can find their way from the digestive system into the nervous system; recombinant Prions are infectious either bound to soil particles or in aerosols. Therefore, lethal Prions can be developed by malicious researchers who could use it to attack political enemies since such weapons cause diseases that could be above suspicion.

  17. Biochemical Basis of Sestrin Physiological Activities

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Allison; Cho, Chun-Seok; Namkoong, Sim; Cho, Uhn-Soo; Lee, Jun Hee (Michigan)

    2016-05-10

    Excessive accumulation of reactive oxygen species (ROS) and chronic activation of mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) are well-characterized promoters of aging and age-associated degenerative pathologies. Sestrins, a family of highly conserved stress-inducible proteins, are important negative regulators of both ROS and mTORC1 signaling pathways; however, the mechanistic basis of how Sestrins suppress these pathways remains elusive. In the past couple of years, breakthrough discoveries about Sestrin signaling and its molecular nature have markedly increased our biochemical understanding of Sestrin function. These discoveries have also uncovered new potential therapeutic strategies that may eventually enable us to attenuate aging and age-associated diseases.

  18. Simplifying biochemical models with intermediate species

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Wiuf, Carsten

    2013-01-01

    techniques, we study systematically the effects of intermediate, or transient, species in biochemical systems and provide a simple, yet rigorous mathematical classification of all models obtained from a core model by including intermediates. Main examples include enzymatic and post-translational modification...... systems, where intermediates often are considered insignificant and neglected in a model, or they are not included because we are unaware of their existence. All possible models obtained from the core model are classified into a finite number of classes. Each class is defined by a mathematically simple...... canonical model that characterizes crucial dynamical properties, such as mono- and multistationarity and stability of steady states, of all models in the class. We show that if the core model does not have conservation laws, then the introduction of intermediates does not change the steady...

  19. Implantable biochemical fuel cell. [German patent

    Energy Technology Data Exchange (ETDEWEB)

    Richter, G; Rao, J R

    1978-09-14

    Implantable biochemical fuel cells for the operation of heart pacemakers or artificial hearts convert oxidisable body substances such as glucose on the anode side and reduce the oxygen contained in body fluids at the cathode. The anode and cathode are separated by membranes which are impermeable to albumen and blood corpuscles in body fluids. A chemical shortcircuit cannot occur in practice if, according to the invention, one or more selective oxygen electrodes with carbon as catalyst are arranged so that the mixture which diffuses into the cell from body fluids during operation reaches the fuel cell electrode through the porous oxygen electrode. The membranes used must be permeable to water. Cellulose, polymerised polyvinyl alcohol or an ion exchanger with a buffering capacity between pH5 and 8 act as permeable materials.

  20. The biochemical anatomy of cortical inhibitory synapses.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Heller

    Full Text Available Classical electron microscopic studies of the mammalian brain revealed two major classes of synapses, distinguished by the presence of a large postsynaptic density (PSD exclusively at type 1, excitatory synapses. Biochemical studies of the PSD have established the paradigm of the synapse as a complex signal-processing machine that controls synaptic plasticity. We report here the results of a proteomic analysis of type 2, inhibitory synaptic complexes isolated by affinity purification from the cerebral cortex. We show that these synaptic complexes contain a variety of neurotransmitter receptors, neural cell-scaffolding and adhesion molecules, but that they are entirely lacking in cell signaling proteins. This fundamental distinction between the functions of type 1 and type 2 synapses in the nervous system has far reaching implications for models of synaptic plasticity, rapid adaptations in neural circuits, and homeostatic mechanisms controlling the balance of excitation and inhibition in the mature brain.