WorldWideScience

Sample records for bioceramic si zn-modified

  1. Resorption Rate Tunable Bioceramic: Si, Zn-Modified Tricalcium Phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Xiang Wei

    2006-08-09

    ''Resorption rate tunable bioceramic: Si and Zn-modified tricalcium phosphate'' was published in Ceramic Engineering and Science Proceedings (the 29th International Conference on Advanced Ceramics and Composites - Advances in Bioceramics and Biocomposites) [5].

  2. Resorption Rate Tunable Bioceramic: Si, Zn-Modified Tricalcium Phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiang [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    ''Resorption rate tunable bioceramic: Si and Zn-modified tricalcium phosphate'' was published in Ceramic Engineering and Science Proceedings (the 29th International Conference on Advanced Ceramics and Composites - Advances in Bioceramics and Biocomposites) [5].

  3. Investigation on Mechanical Properties and Microstructure of Hydroxyapatite-SiCw Composite Bioceramics

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Hydroxyapatite-SiCw composite micropowder was synthesized using in-situ composite method,and hydroxyapatite-SiCw composite bioceramics with different content of SiCw were produced by hot pressing sintering method. The microstructures of the materials were analyzed by SEM, and the relative density, bending strength and fracture toughness of the materials were tested. The results show that the mechanical properties of composite material are best when the whisker content is 20-23.7% . The mechanical properties of the material are the best when the tensile stress acted on the composite material is parallel with the hot pressing plane, and they are the worst when the tensile stress acted on the composite material is normal to the hot pressing plane.

  4. Effects of silica sol on the microstructure and mechanical properties of CaSiO3 bioceramics.

    Science.gov (United States)

    Pan, Ying; Yin, Jinwei; Yao, Dongxu; Zuo, Kaihui; Xia, Yongfeng; Liang, Hanqin; Zeng, YuPing

    2016-07-01

    CaSiO3 ceramics were fabricated with silica sol addition by pressureless sintering. The effects of silica sol on phase composition, microstructure and mechanical properties of CaSiO3 ceramics were investigated. The silica sol additive was found to be effective in speeding up pore elimination, improving the grain growth, decreasing the sintering temperature and shortening the sintering time. When the amount of SiO2 was 5wt%, a flexural strength of 186.2MPa was achieved with an open porosity of 3.9%. The main crystal phase was β-CaSiO3 below sintering temperature of 1150°C.

  5. An introduction to bioceramics

    CERN Document Server

    Hench, Larry L

    1993-01-01

    Ceramic materials that are specially developed for use as medical and dental implants are termed bioceramics. They include alumina and zirconia, bioactive glasses, glass-ceramics, coatings and composites, hydroxyapatite and resorbable calcium phosphates, and radiotherapy glasses. This is the first textbook in a field which is growing rapidly in clinical applications including orthopedics, otolaryngology, maxillo-facial and plastic surgery, oral surgery, periodontology, and tumor therapy. Fourteen chapters, written by world experts, describe the processing, compositions, properties, surface che

  6. Bioceramic Nanofibres by Electrospinning

    Directory of Open Access Journals (Sweden)

    Rajkamal Balu

    2014-08-01

    Full Text Available Nanoscale three-dimensional (3D scaffolds offer great promise for improved tissue integration and regeneration by their physical and chemical property enhancements. Electrospinning is a versatile bottom-up technique for producing porous 3D nanofibrous scaffolds that could closely mimic the structure of extracellular matrix. Much work has been committed to the development of this process through the years, and the resultant nanostructures have been subjugated to a wide range of applications in the field of bioengineering. In particular, the application of ceramic nanofibres in hard tissue engineering, such as dental and bone regeneration, is of increased research interest. This mini-review provides a brief overview of the bioceramic nanofibre scaffolds fabricated by electrospinning and highlights some of the significant process developments over recent years with their probable future trends and potential applications as biomedical implants.

  7. Fabrication of TiO2-SiO2 bioceramic coatings on Ti alloy and its synergetic effect on biocompatibility and corrosion resistance.

    Science.gov (United States)

    Mumjitha, M; Raj, V

    2015-06-01

    Most of the research work focussed on fabricating an implant material with an ideal combination of potential bioactivity on the surface and striking mechanical property of bulk in one elementary operation. Interwoven with above concept, SiO2 incorporated nanostructured titania coatings were fabricated on Ti alloy by anodization using sodium silico fluoride electrolyte (SSF). The coatings were characterized by SEM, EDS, AFM, XRD and AT-FTIR techniques. The bioactivity and biocompatibility of the anodic coatings were also investigated. The AT-FTIR, EDS and XRD studies confirm the incorporation of SiO2 into TiO2 coating was confirmed by EDS, XRD and AT-FTIR techniques. The coating formed at the optimum conditions displays a dome like structure with nano flake morphology with maximum mechanical and anticorrosion properties. AFM analysis inferred that the surface roughness of the ceramic coating is higher compared to the pure titania. The SBF test and cell adhesion results predicted that SiO2 incorporated TiO2 coating is superior in their bioactivity compared to TiO2 coating. PMID:25817608

  8. 3D Printing Bioceramic Porous Scaffolds with Good Mechanical Property and Cell Affinity.

    Directory of Open Access Journals (Sweden)

    Chih-Hao Chang

    Full Text Available Artificial bone grafting is widely used in current orthopedic surgery for bone defect problems. Unfortunately, surgeons remain unsatisfied with the current commercially available products. One of the major complaints is that these products cannot provide sufficient mechanical strength to support the human skeletal structure. In this study, we aimed to develop a bone scaffold with better mechanical property and good cell affinity by 3D printing (3DP techniques. A self-developed 3D printer with laser-aided gelling (LAG process was used to fabricate bioceramic scaffolds with inter-porous structures. To improve the mechanical property of the bioceramic parts after heating, CaCO3 was added to the silica ceramic slurry. CaCO3 was blended into a homogenous SiO2-sol dispersion at weight ratios varying from 0/100 to 5/95 to 9/91 (w/w. Bi-component CaCO3/SiO2-sol was prepared as a biocomposite for the 3DP scaffold. The well-mixed biocomposite was used to fabricate the bioceramic green part using the LAG method. The varied scaffolds were sintered at different temperatures ranging from 900 to 1500°C, and the mechanical property was subsequently analyzed. The scaffolds showed good property with the composite ratio of 5:95 CaCO3:SiO2 at a sintering temperature of 1300°C. The compressive strength was 47 MPa, and the porosity was 34%. The topography of the sintered 3DP bioceramic scaffold was examined by SEM, EDS and XRD. The silica bioceramic presented no cytotoxicity and good MG-63 osteoblast-like cell affinity, demonstrating good biocompatibility. Therefore, the new silica biocomposite is viable for fabricating 3DP bone bioceramics with improved mechanical property and good cell affinity.

  9. 3D Printing Bioceramic Porous Scaffolds with Good Mechanical Property and Cell Affinity.

    Science.gov (United States)

    Chang, Chih-Hao; Lin, Chih-Yang; Liu, Fwu-Hsing; Chen, Mark Hung-Chih; Lin, Chun-Pin; Ho, Hong-Nerng; Liao, Yunn-Shiuan

    2015-01-01

    Artificial bone grafting is widely used in current orthopedic surgery for bone defect problems. Unfortunately, surgeons remain unsatisfied with the current commercially available products. One of the major complaints is that these products cannot provide sufficient mechanical strength to support the human skeletal structure. In this study, we aimed to develop a bone scaffold with better mechanical property and good cell affinity by 3D printing (3DP) techniques. A self-developed 3D printer with laser-aided gelling (LAG) process was used to fabricate bioceramic scaffolds with inter-porous structures. To improve the mechanical property of the bioceramic parts after heating, CaCO3 was added to the silica ceramic slurry. CaCO3 was blended into a homogenous SiO2-sol dispersion at weight ratios varying from 0/100 to 5/95 to 9/91 (w/w). Bi-component CaCO3/SiO2-sol was prepared as a biocomposite for the 3DP scaffold. The well-mixed biocomposite was used to fabricate the bioceramic green part using the LAG method. The varied scaffolds were sintered at different temperatures ranging from 900 to 1500°C, and the mechanical property was subsequently analyzed. The scaffolds showed good property with the composite ratio of 5:95 CaCO3:SiO2 at a sintering temperature of 1300°C. The compressive strength was 47 MPa, and the porosity was 34%. The topography of the sintered 3DP bioceramic scaffold was examined by SEM, EDS and XRD. The silica bioceramic presented no cytotoxicity and good MG-63 osteoblast-like cell affinity, demonstrating good biocompatibility. Therefore, the new silica biocomposite is viable for fabricating 3DP bone bioceramics with improved mechanical property and good cell affinity.

  10. Quality improvement of oriental melon and watermelon using bioceramics

    International Nuclear Information System (INIS)

    Oriental melon and watermelon plants were cultivated in the soil treated with bioceramics in a greenhouse during summer season from June 1st to August 20th, 1995. Two application methods were employed, one was a mixed treatment of soil and bioceramics, and the other was a spray treatment of bioceramic solution on the stems and leaves. And two types of bioceramics were also stopped by five levels. In order to analyze the bioceramic effect on oriental melon and watermelon, the growth rate of stems, leaves and fruits were measured in the greenhouse. After harvest, the sweetness of fruits was measured and the freshness of fruits based on the storage period was tested by human taste and smell sense. The results are summarized as follows. 1. The growth rates of stems, leaves and fruits of oriental melon and watermelon were the largest in the bioceramic treatment of No. 3. 2. The density of oriental melon and watermelon was the largest in the bioceramic treatment of No. 3 and No. 2 respectively. 3. The Brix number of watermelon was 10.6 in non-bioceramic treatment and 11.5 in the bioceramic treatment of No. 2, and that of oriental melon was 8.6 in non-bioceramic treatment and 12.3 in the bioceramic treatment of No. 2. 4. The storage duration of watermelon treated with bioceramics was about 50 days in the condition of the ambient temperature of 25∼30°C. (author)

  11. 3D-printed silicate porous bioceramics using a non-sacrificial preceramic polymer binder.

    Science.gov (United States)

    Zocca, A; Elsayed, H; Bernardo, E; Gomes, C M; Lopez-Heredia, M A; Knabe, C; Colombo, P; Günster, J

    2015-06-01

    Silicate bioceramics possess an excellent bioactivity; however, shaping them into complex geometries is still challenging. Therefore, this paper aims to present a new strategy for the shaping of a bioglass-ceramic with controlled geometry and properties starting from a glass powder combined with a preceramic polymer, i.e. a silicon resin, and reactive fillers. The powder-based three-dimensional (3D)-printing of wollastonite (CaSiO3)-based silicate bioceramic parts was demonstrated in this work. The resin plays a dual role, as it not only acts as a non-sacrificial binder for the filler powders in the printing process but it also reacts with the fillers to generate the desired bioceramic phases. The mechanical and physical properties, i.e. ball-on-three-balls test, density, porosity and morphology, were evaluated in 3D-printed discs. These samples possessed a total porosity around 64 vol% and a biaxial flexural strength around 6 MPa. The raw materials used in this work also enabled the 3D-printing of scaffolds possessing a designed multi-scale porosity, suitable bioceramic phase assemblage and a compressive strength of 1 MPa (for cylindrical scaffolds with total porosity ~80 vol%). Solubility in TRIS/HCl and in vitro assays, i.e. viability, cytotoxicity and apoptosis assays, were also performed. In vitro tests indicated good cell viability and no cytotoxicity effect on the cells. PMID:26000907

  12. Development of calcium phosphate based bioceramics

    Indian Academy of Sciences (India)

    Amit Sinha; A Ingle; K R Munim; S N Vaidya; B P Sharma; A N Bhisey

    2001-12-01

    Two bioceramics (Ca–P–O glass and A–W glass ceramic) were produced using conventional methods of ceramic technology. X-ray powder diffraction patterns were used for identifying the phases and 3-point bend test was carried out for the determination of fracture strength of the bioceramics. Biocompatibility of both ceramics was evaluated using animal model experiments. Histological studies showed that A–W glass ceramic implanted in the tibia of rat formed an intimate contact with newly grown bone and provided enough strength to the bone to bear the animal weight. Implants made of Ca–P–O glass was almost fully resorbed and was replaced by new bone. The implants made of both the bioceramics were biocompatible and did not exhibit any kind of adverse effect to the surrounding tissues.

  13. Sintering of calcium phosphate bioceramics.

    Science.gov (United States)

    Champion, E

    2013-04-01

    Calcium phosphate ceramics have become of prime importance for biological applications in the field of bone tissue engineering. This paper reviews the sintering behaviour of these bioceramics. Conventional pressureless sintering of hydroxyapatite, Ca10(PO4)6(OH)2, a reference compound, has been extensively studied. Its physico-chemistry is detailed. It can be seen as a competition between two thermally activated phenomena that proceed by solid-state diffusion of matter: densification and grain growth. Usually, the objective is to promote the first and prevent the second. Literature data are analysed from sintering maps (i.e. grain growth vs. densification). Sintering trajectories of hydroxyapatite produced by conventional pressureless sintering and non-conventional techniques, including two-step sintering, liquid phase sintering, hot pressing, hot isostatic pressing, ultrahigh pressure, microwave and spark plasma sintering, are presented. Whatever the sintering technique may be, grain growth occurs mainly during the last step of sintering, when the relative bulk density reaches 95% of the maximum value. Though often considered very advantageous, most assisted sintering techniques do not appear very superior to conventional pressureless sintering. Sintering of tricalcium phosphate or biphasic calcium phosphates is also discussed. The chemical composition of calcium phosphate influences the behaviour. Similarly, ionic substitutions in hydroxyapatite or in tricalcium phosphate create lattice defects that modify the sintering rate. Depending on their nature, they can either accelerate or slow down the sintering rate. The thermal stability of compounds at the sintering temperature must also be taken into account. Controlled atmospheres may be required to prevent thermal decomposition, and flash sintering techniques, which allow consolidation at low temperature, can be helpful. PMID:23212081

  14. Bioceramic-Based Root Canal Sealers: A Review

    Science.gov (United States)

    Che Ab Aziz, Zeti A.

    2016-01-01

    Bioceramic-based root canal sealers are considered to be an advantageous technology in endodontics. The aim of this review was to consider laboratory experiments and clinical studies of these sealers. An extensive search of the endodontic literature was made to identify publications related to bioceramic-based root canal sealers. The outcome of laboratory and clinical studies on the biological and physical properties of bioceramic-based sealers along with comparative studies with other sealers was assessed. Several studies were evaluated covering different properties of bioceramic-based sealers including physical properties, biocompatibility, sealing ability, adhesion, solubility, and antibacterial efficacy. Bioceramic-based sealers were found to be biocompatible and comparable to other commercial sealers. The clinical outcomes associated with the use of bioceramic-based root canal sealers are not established in the literature. PMID:27242904

  15. Contraceptive Efficacy and Local Effects of Bioceramic IUD in Rat

    Institute of Scientific and Technical Information of China (English)

    WANG Yan; ZHANG Yuanzhen; YAN Yuhua; CHEN Weimin; LIU Wenhui; ZU Meiping

    2006-01-01

    The contraceptive efficacy and local effects of bioceramic IUD in rat were studied. The experiment was divided into four groups: bioceramic IUD group; stainless steel IUD group; operation control group; normal control group. All IUD samples were put into uterus of rats. The experimental results show that the alumina bioceramic has a strong contraceptive effect for those rats. In bioceramic IUD group the endometrial inflammation reaction was as mild as that in stainless IUD group during the early days (30 days ) and gradually abated with time during the late days (60 days ). The experiments show that the alumina bioceramic has a good biocompatibility and contraceptive effects and hint at the alumina bioceramic IUD may become a more safety reproduction family planning IUD.

  16. Bioceramic-Based Root Canal Sealers: A Review

    Directory of Open Access Journals (Sweden)

    Afaf AL-Haddad

    2016-01-01

    Full Text Available Bioceramic-based root canal sealers are considered to be an advantageous technology in endodontics. The aim of this review was to consider laboratory experiments and clinical studies of these sealers. An extensive search of the endodontic literature was made to identify publications related to bioceramic-based root canal sealers. The outcome of laboratory and clinical studies on the biological and physical properties of bioceramic-based sealers along with comparative studies with other sealers was assessed. Several studies were evaluated covering different properties of bioceramic-based sealers including physical properties, biocompatibility, sealing ability, adhesion, solubility, and antibacterial efficacy. Bioceramic-based sealers were found to be biocompatible and comparable to other commercial sealers. The clinical outcomes associated with the use of bioceramic-based root canal sealers are not established in the literature.

  17. Continuous plastic flow synthesis and characterization of nanoscale bioceramics

    OpenAIRE

    Anwar, A

    2014-01-01

    The development and use of nanoscale biomaterials offer tremendous potential for future medical diagnosis and analysis. Various types of ceramic biomaterials (bioceramics) have been studied intensively for their potential in numerous biomedical applications. Among others, advances in the synthesis and characterisation of calcium phosphate (CaP) bioceramics have contributed much to this field. The growing demand for CaP bioceramics has stimulated research and production of materials suitable f...

  18. Antibacterial Activity of Silicate Bioceramics

    Institute of Scientific and Technical Information of China (English)

    HU Sheng; NING Congqin; ZHOU Yue; CHEN Lei; LIN Kaili; CHANG Jiang

    2011-01-01

    Four kinds of pure silicate ceramic particles, CaSiO3, Ca3SiO5, bredigite and akermanite were prepared and their bactericidal effects were systematically investigated. The phase compositions of these silicate ceramics were characterized by XRD. The ionic concentration meas urement revealed that the Calcium (Ca) ion concentration were relatively higher in Ca3SiO5 and bredigite, and much lower in CaSiO3 and akermanite. Accordingly, the pH values of the four silicate ceramics extracts showed a positive correlation with the particle concentrations. Meanwhile, by decreasing the particle size, higher Ca ion concentrations can be achieved, leading to the increase of aqueous pH value as well. In summary, all of the four silicate ceramics tested in our study showed antibacterial effect in a dose-dependent manner. Generally, the order of their antibacterial activity against E.coli from strong to weak is Ca3SiO5, bredigite, CaSiO3 and akermanite.

  19. Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding

    Science.gov (United States)

    Zhu, Yizhi; Liu, Qibin; Xu, Peng; Li, Long; Jiang, Haibing; Bai, Yang

    2016-05-01

    There were always strong expectations for suitable biomaterials used for bone regeneration. In this study, to improve the biocompatiblity of titanium alloy, calcium phosphate bioceramic coating was obtained by laser cladding technology. The microstructure, phases, bioactivity, cell differentiation, morphology and resorption lacunae were investigated by optical microscope (OM), x-ray diffraction (XRD), methyl thiazolyl tetrazolium (MTT) assay, tartrate-resistant acid phosphatase (TRAP) staining and scanning electronic microscope (SEM), respectively. The results show that bioceramic coating consists of three layers, which are a substrate, an alloyed layer and a ceramic layer. Bioactive phases of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) were found in ceramic coating. Osteoclast precursors have excellent proliferation on the bioceramic surface. The bioceramics coating could be digested by osteoclasts, which led to the resorption lacunae formed on its surface. It revealed that the gradient bioceramic coating has an excellent bioactivity.

  20. Structural analysis of bioceramic materials for denture application

    Science.gov (United States)

    Rauf, Nurlaela; Tahir, Dahlang; Arbiansyah, Muhammad

    2016-03-01

    Structural analysis has been performed on bioceramic materials for denture application by using X-ray diffraction (XRD), X-ray fluorescence (XRF), and Scanning Electron Microscopy (SEM). XRF is using for analysis chemical composition of raw materials. XRF shows the ratio 1 : 1 : 1 : 1 between feldspar, quartz, kaolin and eggshell, respectively, resulting composition CaO content of 56.78 %, which is similar with natural tooth. Sample preparation was carried out on temperature of 800 °C, 900 °C and 1000 °C. X-ray diffraction result showed that the structure is crystalline with trigonal crystal system for SiO2 (a=b=4.9134 Å and c=5.4051 Å) and CaH2O2 (a=b=3.5925 Å and c=4.9082 Å). Based on the Scherrer's equation showed the crystallite size of the highest peak (SiO2) increase with increasing the temperature preparation. The highest hardness value (87 kg/mm2) and match with the standards of dentin hardness. The surface structure was observed by using SEM also discussed.

  1. Surface toughness of silicon nitride bioceramics: II, Comparison with commercial oxide materials.

    Science.gov (United States)

    McEntire, Bryan J; Enomoto, Yuto; Zhu, Wenliang; Boffelli, Marco; Marin, Elia; Pezzotti, Giuseppe

    2016-02-01

    Raman microprobe-assisted indentation, a micromechanics method validated in a companion paper, was used to compare the surface toughening behaviors of silicon nitride (Si3N4) and alumina-based bioceramics employed in joint arthroplasty (i.e., monolithic alumina, Al2O3, and yttria-stabilized zirconia (ZrO2)-toughened alumina, ZTA). Quantitative assessments of microscopic stress fields both ahead and behind the tip of Vickers indentation cracks propagated under increasing indentation loads were systematically made using a Raman microprobe with spatial resolution on the order of a single micrometer. Concurrently, crack opening displacement (COD) profiles were monitored on the same microcracks screened by Raman spectroscopy. The Raman eye clearly visualized different mechanisms operative in toughening Si3N4 and ZTA bioceramics (i.e., crack-face bridging and ZrO2 polymorphic transformation, respectively) as compared to the brittle behavior of monolithic Al2O3. Moreover, emphasis was placed on assessing not only the effectiveness but also the durability of such toughening effects when the biomaterials were aged in a hydrothermal environment. A significant degree of embrittlement at the biomaterial surface was recorded in the transformation-toughened ZTA, with the surface toughness reduced by exposure to the hydrothermal environment. Conversely, the Si3N4 biomaterial experienced a surface toughness value independent of hydrothermal attack. Crack-face bridging thus appears to be a durable surface toughening mechanism for biomaterials in joint arthroplasty. PMID:26437609

  2. Engineering bioceramic microstructure for customized drug delivery

    Science.gov (United States)

    Pacheco Gomez, Hernando Jose

    One of the most efficient approaches to treat cancer and infection is to use biomaterials as a drug delivery system (DDS). The goal is for the material to provide a sustained release of therapeutic drug dose locally to target the ill tissue without affecting other organs. Silica Calcium Phosphate nano composite (SCPC) is a drug delivery platform that successfully demonstrated the ability to bind and release several therapeutics including antibiotics, anticancer drugs, and growth factors. The aim of the present work is to analyze the role of SCPC microstructure on drug binding and release kinetics. The main crystalline phases of SCPC are alpha-cristobalite (SiO2, Cris) and beta-rhenanite (NaCaPO4, Rhe); therefore, these two phases were prepared and characterized separately. Structural and compositional features of Cris, Rhe and SCPC bioceramics demonstrated a significant influence on the loading capacity and release kinetics profile of Vancomycin (Vanc) and Cisplatin (Cis). Fourier Transform Infrared (FTIR) spectroscopy analyses demonstrated that the P-O functional group in Rhe and SCPC has high affinity to the (C=O and N-H) of Vanc and (N-H and O-H) of Cis. By contrast, a weak chemical interaction between the Si-O functional group in Cris and SCPC and the two drugs was observed. Vanc loading per unit surface area increased in the order 8.00 microg Vanc/m2 for Rhe > 4.49 microg Vanc /m2 for SCPC>3.01 microg Vanc /m2 for Cris (pDrug release kinetics was dependent on the carrier as well as on the kind of drug. Different burst release and sustained release rates were measured for Vanc and Cis from the same carrier. The percentages of drug amount released from Cris, Rhe and SCPC during the burst stage (the first 2h) were: 50%, 50%, and 46% of Vanc; and 53.4%, 36.6%, and 30.6 % of Cis, respectively. Burst release was found to correlate with the pore size distribution and surface area. Furthermore, the average rates of sustained release in the period 8-216h from Cris, Rhe

  3. Engineering bioceramic microstructure for customized drug delivery

    Science.gov (United States)

    Pacheco Gomez, Hernando Jose

    One of the most efficient approaches to treat cancer and infection is to use biomaterials as a drug delivery system (DDS). The goal is for the material to provide a sustained release of therapeutic drug dose locally to target the ill tissue without affecting other organs. Silica Calcium Phosphate nano composite (SCPC) is a drug delivery platform that successfully demonstrated the ability to bind and release several therapeutics including antibiotics, anticancer drugs, and growth factors. The aim of the present work is to analyze the role of SCPC microstructure on drug binding and release kinetics. The main crystalline phases of SCPC are alpha-cristobalite (SiO2, Cris) and beta-rhenanite (NaCaPO4, Rhe); therefore, these two phases were prepared and characterized separately. Structural and compositional features of Cris, Rhe and SCPC bioceramics demonstrated a significant influence on the loading capacity and release kinetics profile of Vancomycin (Vanc) and Cisplatin (Cis). Fourier Transform Infrared (FTIR) spectroscopy analyses demonstrated that the P-O functional group in Rhe and SCPC has high affinity to the (C=O and N-H) of Vanc and (N-H and O-H) of Cis. By contrast, a weak chemical interaction between the Si-O functional group in Cris and SCPC and the two drugs was observed. Vanc loading per unit surface area increased in the order 8.00 microg Vanc/m2 for Rhe > 4.49 microg Vanc /m2 for SCPC>3.01 microg Vanc /m2 for Cris (pDrug release kinetics was dependent on the carrier as well as on the kind of drug. Different burst release and sustained release rates were measured for Vanc and Cis from the same carrier. The percentages of drug amount released from Cris, Rhe and SCPC during the burst stage (the first 2h) were: 50%, 50%, and 46% of Vanc; and 53.4%, 36.6%, and 30.6 % of Cis, respectively. Burst release was found to correlate with the pore size distribution and surface area. Furthermore, the average rates of sustained release in the period 8-216h from Cris, Rhe

  4. Calcium Orthophosphates as Bioceramics: State of the Art

    OpenAIRE

    Sergey V. Dorozhkin

    2010-01-01

    In the late 1960s, much interest was raised in regard to biomedical applications of various ceramic materials. A little bit later, such materials were named bioceramics. This review is limited to bioceramics prepared from calcium orthophosphates only, which belong to the categories of bioactive and bioresorbable compounds. There have been a number of important advances in this field during the past 30–40 years. Namely, by structural and compositional control, it became possible to choose whet...

  5. Bioceramic Resonance Effect on Meridian Channels: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Ting-Kai Leung

    2015-01-01

    Full Text Available Bioceramic is a kind of material which emits nonionizing radiation and luminescence, induced by visible light. Bioceramic also facilitates the breakup of large clusters of water molecules by weakening hydrogen bonds. Hydrogen bond weakening, which allows water molecules to act in diverse ways under different conditions, is one of the key mechanisms underlying the effects of Bioceramic on biophysical and physical-chemical processes. Herein, we used sound to amplify the effect of Bioceramic and further developed an experimental device for use in humans. Thirteen patients who suffered from various chronic and acute illnesses that severely affected their sleep patterns and life quality were enrolled in a trial of Bioceramic resonance (i.e., rhythmic 100-dB sound waves with frequency set at 10 Hz applied to the skin surface of the anterior chest. According to preliminary data, a “Propagated Sensation along Meridians” (PSM was experienced in all Bioceramic resonance-treated patients but not in any of the nine control patients. The device was believed to enhance microcirculation through a series of biomolecular and physiological processes and to subject the specific meridian channels of Traditional Chinese Medicine (TCM to coherent vibration. This noninvasive technique may offer an alternative to needle acupuncture and other traditional medical practices with clinical benefits.

  6. Bioactivity and mineralization of hydroxyapatite with bioglass as sintering aid and bioceramics with Na3Ca6(PO4)5 and Ca5(PO4)2SiO4 in a silicate matrix

    International Nuclear Information System (INIS)

    Hydroxyapatite and Bioglass-45S5 were sintered together creating new ceramic compositions that yielded increased apatite deposition and osteoblast differentiation and proliferation in vitro compared to hydroxyapatite. The sintered products characterized by X-ray diffraction, revealed hydroxyapatite as the main phase when small quantities (1, 2.5 and 5 wt.%) of bioglass was added. Bioglass behaved as a sintering aid with β-TCP (Ca3(PO4)2) being the minor phase. The amount of β-TCP increased with the amount of bioglass added. In compositions with larger additions of bioglass (10 and 25 wt.%), new phases with compositions of calcium phosphate silicate (Ca5(PO4)2SiO4) and sodium calcium phosphate (Na3Ca6(PO4)5) were formed respectively within amorphous silicate matrices. In vitro cell culture studies of the ceramic compositions were examined using bone marrow stromal cell (BMSC). Cell proliferation and differentiation of bone marrow stromal cells into osteoblasts were determined by Pico Green DNA assays and alkaline phosphatase (ALP) activity, respectively. All hydroxyapatite-bioglass co-sintered ceramics exhibited larger cell proliferation compared to pure hydroxyapatite samples. After 6 days in cell culture, the ceramic with Ca5(PO4)3SiO4 in a silicate matrix formed by reacting hydroxyapatite with 10 wt.% bioglass exhibited the maximum proliferation of the BMSC's. The ALP activity was found to be largest in the ceramic with Na3Ca6(PO4)5 embedded in a silicate matrix synthesized by reacting hydroxyapatite with 25 wt.% bioglass.

  7. Ion-Doped Silicate Bioceramic Coating of Ti-Based Implant

    Science.gov (United States)

    Mohammadi, Hossein; Sepantafar, Mohammadmajid

    2016-01-01

    Titanium and its alloy are known as important load-bearing biomaterials. The major drawbacks of these metals are fibrous formation and low corrosion rate after implantation. The surface modification of biomedical implants through various methods such as plasma spray improves their osseointegration and clinical lifetime. Different materials have been already used as coatings on biomedical implant, including calcium phosphates and bioglass. However, these materials have been reported to have limited clinical success. The excellent bioactivity of calcium silicate (Ca-Si) has been also regarded as coating material. However, their high degradation rate and low mechanical strength limit their further coating application. Trace element modification of (Ca-Si) bioceramics is a promising method, which improves their mechanical strength and chemical stability. In this review, the potential of trace element-modified silicate coatings on better bone formation of titanium implant is investigated. PMID:26979401

  8. Ion-Doped Silicate Bioceramic Coating of Ti-Based Implant.

    Science.gov (United States)

    Mohammadi, Hossein; Sepantafar, Mohammadmajid

    2016-09-01

    Titanium and its alloy are known as important load-bearing biomaterials. The major drawbacks of these metals are fibrous formation and low corrosion rate after implantation. The surface modification of biomedical implants through various methods such as plasma spray improves their osseointegration and clinical lifetime. Different materials have been already used as coatings on biomedical implant, including calcium phosphates and bioglass. However, these materials have been reported to have limited clinical success. The excellent bioactivity of calcium silicate (Ca-Si) has been also regarded as coating material. However, their high degradation rate and low mechanical strength limit their further coating application. Trace element modification of (Ca-Si) bioceramics is a promising method, which improves their mechanical strength and chemical stability. In this review, the potential of trace element-modified silicate coatings on better bone formation of titanium implant is investigated. PMID:26979401

  9. Calcium Orthophosphates as Bioceramics: State of the Art

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin

    2010-11-01

    Full Text Available In the late 1960s, much interest was raised in regard to biomedical applications of various ceramic materials. A little bit later, such materials were named bioceramics. This review is limited to bioceramics prepared from calcium orthophosphates only, which belong to the categories of bioactive and bioresorbable compounds. There have been a number of important advances in this field during the past 30–40 years. Namely, by structural and compositional control, it became possible to choose whether calcium orthophosphate bioceramics were biologically stable once incorporated within the skeletal structure or whether they were resorbed over time. At the turn of the millennium, a new concept of calcium orthophosphate bioceramics—which is able to promote regeneration of bones—was developed. Presently, calcium orthophosphate bioceramics are available in the form of particulates, blocks, cements, coatings, customized designs for specific applications and as injectable composites in a polymer carrier. Current biomedical applications include artificial replacements for hips, knees, teeth, tendons and ligaments, as well as repair for periodontal disease, maxillofacial reconstruction, augmentation and stabilization of the jawbone, spinal fusion and bone fillers after tumor surgery. Exploratory studies demonstrate potential applications of calcium orthophosphate bioceramics as scaffolds, drug delivery systems, as well as carriers of growth factors, bioactive peptides and/or various types of cells for tissue engineering purposes.

  10. Novel Bioceramic Urethral Bulking Agents Elicit Improved Host Tissue Responses in a Rat Model.

    Science.gov (United States)

    Mann-Gow, Travis K; King, Benjamin J; El-Ghannam, Ahmed; Knabe-Ducheyne, Christine; Kida, Masatoshi; Dall, Ole M; Krhut, Jan; Zvara, Peter

    2016-01-01

    Objectives. To test the physical properties and host response to the bioceramic particles, silica-calcium phosphate (SCPC10) and Cristobalite, in a rat animal model and compare their biocompatibility to the current clinically utilized urethral bulking materials. Material and Methods. The novel bulking materials, SCPC10 and Cristobalite, were suspended in hyaluronic acid sodium salt and injected into the mid urethra of a rat. Additional animals were injected with bulking materials currently in clinical use. Physiological response was assessed using voiding trials, and host tissue response was evaluated using hard tissue histology and immunohistochemical analysis. Distant organs were evaluated for the presence of particles or their components. Results. Histological analysis of the urethral tissue five months after injection showed that both SCPC10 and Cristobalite induced a more robust fibroblastic and histiocytic reaction, promoting integration and encapsulation of the particle aggregates, leading to a larger bulking effect. Concentrations of Ca, Na, Si, and P ions in the experimental groups were comparable to control animals. Conclusions. This side-by-side examination of urethral bulking agents using a rat animal model and hard tissue histology techniques compared two newly developed bioactive ceramic particles to three of the currently used bulking agents. The local host tissue response and bulking effects of bioceramic particles were superior while also possessing a comparable safety profile. PMID:27688751

  11. Atomic transfers between implanted bioceramics and tissues in orthopaedics surgery

    CERN Document Server

    Irigaray, J L; Guibert, G; Jallot, E; democrite-00023281, ccsd

    2004-01-01

    We study transfers of ions and debris from bioceramics implanted in bone sites. A contamination of surrounding tissues may play a major role in aseptic loosening of the implant. For these reasons, bioceramics require studies of biocompatibility and biofunctionality . So, in addition to in vitro studies of bioceramics, it is essential to implant them in vivo to know body reactions. We measured the concentration of mineral elements at different time intervals after implantation over a whole cross-section. We found a discontinuity of the mineral elements (Ca, P, Sr, Zn, Fe) at the interface between the implant and the receiver. The osseous attack is not global but, on the contrary, centripetal. Moreover, the fit of the concentration time course indicates that the kinetics of ossification is different for each atomic element and characterizes a distinct biological phenomenon

  12. XANES analysis of calcium and sodium phosphates and silicates and hydroxyapatite-Bioglass (registered) 45S5 co-sintered bioceramics

    International Nuclear Information System (INIS)

    Bioglass (registered) 45S5 was co-sintered with hydroxyapatite at 1200 deg. C. When small amounts (5(PO4)2SiO4 and Na3Ca6(PO4)5 in an amorphous silicate matrix respectively. These chemistries show improved bioactivity compared to hydroxyapatite and are the subject of this study. The structure of several crystalline calcium and sodium phosphates and silicates as well as the co-sintered hydroxyapatite-Bioglass (registered) 45S5 bioceramics were examined using XANES spectroscopy. The nature of the crystalline and amorphous phases were studied using silicon (Si) and phosphorus (P) K- and L2,3-edge and calcium (Ca) K-edge XANES. Si L2,3-edge spectra of sintered bioceramic compositions indicates that the primary silicates present in these compositions are sodium silicates in the amorphous state. From Si K-edge spectra, it is shown that the silicates are in a similar structural environment in all the sintered bioceramic compositions with 4-fold coordination. Using P L2,3-edge it is clearly shown that there is no evidence of sodium phosphate present in the sintered bioceramic compositions. In the P K-edge spectra, the post-edge shoulder peak at around 2155 eV indicates that this shoulder to be more defined for calcium phosphate compounds with decreasing solubility and increasing thermodynamic stability. This shoulder peak is more noticeable in hydroxyapatite and β-TCP indicating greater stability of the phosphate phase. The only spectra that does not show a noticeable peak is the composition with Na3Ca6(PO4)5 in a silicate matrix indicating that it is more soluble compared to the other compositions.

  13. Investigation of fabrication and environmental effects on bioceramic bone scaffolds

    Science.gov (United States)

    Vivanco Morales, Juan Francisco

    2011-12-01

    Bioactive ceramic materials like tricalcium phosphates (TCP) have been emerging as viable material alternatives to the current therapies of bone scaffolding to target fracture healing and osteoporosis. Once scaffolds are implanted at the defect site they should provide mechanical and biological functions, ultimately serving to facilitate with surrounding native tissue. Optimal osteogenic signal expression and subsequent differentiation of cells seeded on the scaffold in both in vivo and in vitro conditions is known to be influenced by scaffold properties and biomechanical environmental conditions. Thus, the objective of this research was to investigate the effect of fabrication and environmental variables on the properties of bioceramic scaffolds for bone tissue engineering applications. Specifically, the effect of sintering temperature in the range of 950°C -1150°C of a cost-effective on a large scale manufacturing process, on the physical and mechanical properties of bioceramic bone scaffolds, was investigated. In addition, the effect of a controlled environment was investigated by implementing a bioreactor and bone loading system to study the response of ex vivo trabecular bone to compressive load while perfused with culture medium. Collectively, this thesis demonstrates that: (1) the sintering temperature to fabricate bioceramic scaffolds can be tuned to structural properties, and (2) the use of a controlled mechanical and biochemical environment can enhance bone tissue development. These findings support the development of clinically successful bioceramic scaffolds that may stimulate bone regeneration and scaffold integration while providing structural integrity.

  14. Processing and Characterization of Novel Biomimetic Nanoporous Bioceramic Surface on β-Ti Implant by Powder Mixed Electric Discharge Machining

    Science.gov (United States)

    Prakash, Chander; Kansal, H. K.; Pabla, B. S.; Puri, Sanjeev

    2015-09-01

    Herein, a β-Ti-based implant was subjected to powder mixed electric discharge machining (PMEDM) for surface modification to produce a novel biomimetic nanoporous bioceramic surface. The microstructure, surface topography, and phase composition of the non-machined and machined (PMEDMed) surfaces were investigated using field-emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray diffraction. The microhardness of the surfaces was measured on a Vickers hardness tester. The corrosion resistance of the surfaces was evaluated via potentiodynamic polarization measurements in simulated body fluid. The application of PMEDM not only altered the surface chemistry, but also imparted the surface with a nanoporous topography or a natural bone-like surface structure. The characterization results confirmed that the alloyed layer mainly comprised bioceramic oxides and carbide phases (TiO2, Nb2O5, ZrO2, SiO2, TiC, NbC, SiC). The microhardness of PMEDMed surface was twofold higher than that of the base material (β-Ti alloy), primarily because of the formation of the hard carbide phases on the machined layer. Electrochemical analysis revealed that PMEDMed surface featured insulative and protective properties and thus displayed higher corrosion resistance ability when compared with the non-machined surface. This result was attributed to the formation of the bioceramic oxides on the machined surface. Additionally, the in vitro biocompatibility of the surfaces was evaluated using human osteoblastic cell line MG-63. PMEDMed surface with a micro-, sub-micro-, and nano-structured topography exhibited bioactivity and improved biocompatibility relative to β-Ti surface. Furthermore, PMEDMed surface enabled better adhesion and growth of MG-63 when compared with the non-machined substrate.

  15. Bioceramic fabrics improve quiet standing posture and handstand stability in expert gymnasts.

    Science.gov (United States)

    Cian, C; Gianocca, V; Barraud, P A; Guerraz, M; Bresciani, J P

    2015-10-01

    Bioceramic fabrics have been claimed to improve blood circulation, thermoregulation and muscle relaxation, thereby also improving muscular activity. Here we tested whether bioceramic fabrics have an effect on postural control and contribute to improve postural stability. In Experiment 1, we tested whether bioceramic fabrics contribute to reduce body-sway when maintaining standard standing posture. In Experiment 2, we measured the effect of bioceramic fabrics on body-sway when maintaining a more instable posture, namely a handstand hold. For both experiments, postural oscillations were measured using a force platform with four strain gauges that recorded the displacements of the center of pressure (CoP) in the horizontal plane. In half of the trials, the participants wore a full-body second skin suit containing a bioceramic layer. In the other half of the trials, they wore a 'placebo' second skin suit that had the same cut, appearance and elasticity as the bioceramic suit but did not contain the bioceramic layer. In both experiments, the surface of displacement of the CoP was significantly smaller when participants were wearing the bioceramic suit than when they were wearing the placebo suit. The results suggest that bioceramic fabrics do have an effect on postural control and improve postural stability. PMID:26234473

  16. Bioceramic Materials and the Changing Concepts in Vital Pulp Therapy.

    Science.gov (United States)

    Cao, Yangpei; Bogen, George; Lim, Jung; Shon, Won-Jun; Kang, Mo K

    2016-05-01

    Vital pulp therapy (VPT) is devised to preserve and maintain vitality of pulpally involved teeth challenged by a variety of intraoral conditions. Notable progress has been made in this field due to a better understanding of pulp physiology, improved clinical protocols and advanced bioceramic materials paired with adhesive technology. With focused case selection, conservative VPT can provide reliable treatment options for permanent teeth diagnosed with normal pulps or reversible pulpitis. PMID:27290822

  17. MICROWAVE JOINING OF ALUMINA CERAMIC AND HYDROXYLAPATITE BIOCERAMIC

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Microwave joining is a rapid developmental new techniqu e in recent years.This paper introduces a new microwave joining equipment which was made by our lab,succeeds in alumina ceramic-hydroxylapatite bioceramic j o in in the equipment, and analyzes the join situation of join boundary by using s canni ng electron microscope(SEM),this paper analyzes the mechanism of microwave joini ng also.

  18. Preparation and properties of β-tricalcium phosphate porous bioceramic

    Institute of Scientific and Technical Information of China (English)

    张士华; 熊党生; 崔崇

    2004-01-01

    Porous β-tricalcium phosphate bioceramic (PTCP) has important roles in surgical implants because of good biocompatibility. But the low compressive strength of the ceramic limits its application. The preparation of PTCP was improved with the adjustment of the constituents and the sintering-process. A new type of PTCP material with high compressive strength was made. The compositions, microstructure and properties of PTCP were analyzed by TG-DSC, XRD, TEM, SEM and so on. The result indicates that stearic acid burns sufficiently and gives out carbon dioxide and water vapor when slowly heated between 200 ℃ and 400 ℃ so that the porous structure like coral in β-TCP bioceramic is formed. Through crystallization at 470 ℃ and 570 ℃, more CaO-P2O5 glass-cement is converted into crystallite-glass, which is beneficial for improving the compressive strength of β-TCP bioceramic.PTCP can form a support action in bone imperfect section with good solubility.

  19. Calcium phosphate bioceramics prepared from wet chemically precipitated powders

    Directory of Open Access Journals (Sweden)

    Kristine Salma

    2010-03-01

    Full Text Available In this work calcium phosphates were synthesized by modified wet chemical precipitation route. Contrary to the conventional chemical precipitation route calcium hydroxide was homogenized with planetary mill. Milling calcium oxide and water in planetary ball mill as a first step of synthesis provides a highly dispersed calcium hydroxide suspension. The aim of this work was to study the influence of main processing parameters of wet chemical precipitation synthesis product and to control the morphology, phase and functional group composition and, consequently, thermal stability and microstructure of calcium phosphate bioceramics after thermal treatment. The results showed that it is possible to obtain calcium phosphates with different and reproducible phase compositions after thermal processing (hydroxyapatite [HAp], β-tricalcium phosphate [β-TCP] and HAp/β-TCP by modified wet-chemical precipitation route. The β-TCP phase content in sintered bioceramics samples is found to be highly dependent on the changes in technological parameters and it can be controlled with ending pH, synthesis temperature and thermal treatment. Pure, crystalline and highly thermally stable (up to 1300°C HAp bioceramics with homogenous grainy microstructure, grain size up to 200–250 nm and high open porosity can be successfully obtained by powder synthesized at elevated synthesis temperature of 70°C and stabilizing ending pH at 9.

  20. Physiological effects of bioceramic material: harvard step, resting metabolic rate and treadmill running assessments.

    Science.gov (United States)

    Leung, Ting-Kai; Kuo, Chia-Hua; Lee, Chi-Ming; Kan, Nai-Wen; Hou, Chien-Wen

    2013-12-31

    Previous biomolecular and animal studies have shown that a room-temperature far-infrared-rayemitting ceramic material (bioceramic) demonstrates physical-biological effects, including the normalization of psychologically induced stress-conditioned elevated heart rate in animals. In this clinical study, the Harvard step test, the resting metabolic rate (RMR) assessment and the treadmill running test were conducted to evaluate possible physiological effects of the bioceramic material in human patients. The analysis of heart rate variability (HRV) during the Harvard step test indicated that the bioceramic material significantly increased the high-frequency (HF) power spectrum. In addition, the results of RMR analysis suggest that the bioceramic material reduced oxygen consumption (VO2). Our results demonstrate that the bioceramic material has the tendency to stimulate parasympathetic responses, which may reduce resting energy expenditure and improve cardiorespiratory recovery following exercise.

  1. Successful commercialisation of locally fabricated bioceramics for clinical applications.

    Science.gov (United States)

    Fazan, F; Besar, I; Osman, A; Samsudin, A R; Khalid, K A

    2008-07-01

    This paper chronicled the development of a locally produced bone graft substitute based on calcium phosphate bioceramics called "GranuMaS--from concepts to clinics, and finally to its successful commercialization all within 5-year duration. It was a Prioritized Research (PR) collaborative project of 5 institutions namely SIRIM, ANM, USM, UKM and IIUM, funded by MOSTI to the amount of approximately RM2.5 millions under RM8. This paper also highlighted the requirements needed in terms of technical expertise/manpower, facilities and infrastructure, and government/institutional supports, as well as the challenge faced in developing and commercializing such product.

  2. XANES analysis of calcium and sodium phosphates and silicates and hydroxyapatite-Bioglass (registered) 45S5 co-sintered bioceramics

    Energy Technology Data Exchange (ETDEWEB)

    Demirkiran, Hande [Graduate Student, Materials Science and Engineering Department, University of Texas at Arlington, Arlington, TX (United States); Hu Yongfeng; Zuin, Lucia [Beamline Scientist, Canadian Light Source, Saskatoon, SK (Canada); Appathurai, Narayana [Beamline Scientist, Synchrotron Radiation Center, Madison, WI (United States); Aswath, Pranesh B., E-mail: aswath@uta.edu [Materials Science and Engineering Department, University of Texas at Arlington, Arlington, TX (United States)

    2011-03-12

    Bioglass (registered) 45S5 was co-sintered with hydroxyapatite at 1200 deg. C. When small amounts (< 5 wt.%) of Bioglass (registered) 45S5 was added it behaved as a sintering aid and also enhanced the decomposition of hydroxyapatite to {beta}-tricalcium phosphate. However when 10 wt.% and 25 wt.% Bioglass (registered) 45S5 was used it resulted in the formation of Ca{sub 5}(PO{sub 4}){sub 2}SiO{sub 4} and Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5} in an amorphous silicate matrix respectively. These chemistries show improved bioactivity compared to hydroxyapatite and are the subject of this study. The structure of several crystalline calcium and sodium phosphates and silicates as well as the co-sintered hydroxyapatite-Bioglass (registered) 45S5 bioceramics were examined using XANES spectroscopy. The nature of the crystalline and amorphous phases were studied using silicon (Si) and phosphorus (P) K- and L{sub 2,3}-edge and calcium (Ca) K-edge XANES. Si L{sub 2,3}-edge spectra of sintered bioceramic compositions indicates that the primary silicates present in these compositions are sodium silicates in the amorphous state. From Si K-edge spectra, it is shown that the silicates are in a similar structural environment in all the sintered bioceramic compositions with 4-fold coordination. Using P L{sub 2,3}-edge it is clearly shown that there is no evidence of sodium phosphate present in the sintered bioceramic compositions. In the P K-edge spectra, the post-edge shoulder peak at around 2155 eV indicates that this shoulder to be more defined for calcium phosphate compounds with decreasing solubility and increasing thermodynamic stability. This shoulder peak is more noticeable in hydroxyapatite and {beta}-TCP indicating greater stability of the phosphate phase. The only spectra that does not show a noticeable peak is the composition with Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5} in a silicate matrix indicating that it is more soluble compared to the other compositions.

  3. Nanofiber generation of hydroxyapatite and fluor-hydroxyapatite bioceramics.

    Science.gov (United States)

    Kim, Hae-Won; Kim, Hyoun-Ee

    2006-05-01

    In this study, we produced hydroxyapatite (HA) and fluor-hydroxyapatite (FHA) bioceramics as a novel geometrical form, the nanoscale fiber, for the biomedical applications. Based on the sol-gel precursors of the apatites, an electrospinning technique was introduced to generate nanoscale fibers. The diameter of the fibers was exploited in the range of a few micrometers to hundreds of nanometers (1.55 microm-240 nm) by means of adjusting the concentration of the sols. Through the fluoridation of apatite, the solubility of the fiber was tailored and the fluorine ions were well released from the FHA. The HA and FHA nanofibers produced in this study are considered to find potential applications in the biomaterials and tissue engineering fields.

  4. The Transformation of Calcium Phosphate Bioceramics in Vivo

    Institute of Scientific and Technical Information of China (English)

    DAI Hong-lian; CAO Xian-ying; LI Xiao-xi; YAN Yu-hua; LI Shi-pu

    2003-01-01

    To study the transformation process of calcium phosphate bioceramic in vivo,biodegradable porous β-tricalcium phosphate ceramics (β-TCP) were used in this experiment. The materials (φ5×8mm) were implanted in the tibia of rabbits. The β-TCP ceramics with bone tissue were retrieved and treated for histology, and then observed by using a scanning electron microscope (SEM) and an electron probe X-ray microanalyzer (EMPA) every month. The results show that β-TCP ceramics bond to bone directly,new bones are forming and maturing with materials continuous degrading,and the materials are nearly replaced by the formed bone finally.Parts of the materials were degraded,absorpted and recrystallized,the others dispersped on the cancellous bone and the Haversian lamella with an irregular arrangement incorporating in bone formation directly by remodeling structure.

  5. Bioceramics for Hip Joints: The Physical Chemistry Viewpoint

    Directory of Open Access Journals (Sweden)

    Giuseppe Pezzotti

    2014-06-01

    Full Text Available Which intrinsic biomaterial parameter governs and, if quantitatively monitored, could reveal to us the actual lifetime potential of advanced hip joint bearing materials? An answer to this crucial question is searched for in this paper, which identifies ceramic bearings as the most innovative biomaterials in hip arthroplasty. It is shown that, if in vivo exposures comparable to human lifetimes are actually searched for, then fundamental issues should lie in the physical chemistry aspects of biomaterial surfaces. Besides searching for improvements in the phenomenological response of biomaterials to engineering protocols, hip joint components should also be designed to satisfy precise stability requirements in the stoichiometric behavior of their surfaces when exposed to extreme chemical and micromechanical conditions. New spectroscopic protocols have enabled us to visualize surface stoichiometry at the molecular scale, which is shown to be the key for assessing bioceramics with elongated lifetimes with respect to the primitive alumina biomaterials used in the past.

  6. Effects of calcium phosphate bioceramics on skeletal muscle cells.

    Science.gov (United States)

    Sun, J S; Tsuang, Y H; Yao, C H; Liu, H C; Lin, F H; Hang, Y S

    1997-02-01

    With advances in ceramics technology, calcium phosphate bioceramics have been applied as bone substitutes. The effects of implants on bony tissue have been investigated. The effects upon adjacent skeletal muscles have not been determined. The focus of this work is to elucidate the biological effects of various calcium phosphate bioceramics on skeletal muscles. Four different kinds of powder of calcium phosphate biomaterials including beta-tricalcium phosphate (beta-TCP), hydroxyapatite (HA), beta-dicalcium pyrophosphate (beta-DCP) and sintered beta-dicalcium pyrophosphate (SDCP), were tested by myoblast cell cultures. The results were analyzed by cell count, cell morphology and concentration of transforming growth factor beta 1 (TGF-beta 1) in culture medium. The cell population and TGF-beta 1 concentration of the control sample increased persistently as the time of culture increased. The changes in cell population and TGF-beta 1 concentration in culture medium of the beta-TCP and HA were quite low in the first 3 days of culture, then increased gradually toward the seventh day. The changes in cell population and TGF-beta 1 concentration in culture medium of the silica, beta-DCP, and SDCP were quite similar. They were lower during the first day of culture but increased and reached that of the control medium after 7 days' culture. Most cells on B-TCP and HA diminished in size with radially spread, long pseudopods. We conclude that HA and beta-TCP are thought to have an inhibitory effect on growth of the myoblasts. The HA and beta-TCP may interfere with the repair and regeneration of injured skeletal muscle after orthopedic surgery.

  7. New bio-ceramization processes applied to vegetable hierarchical structures for bone regeneration: an experimental model in sheep.

    Science.gov (United States)

    Filardo, Giuseppe; Kon, Elizaveta; Tampieri, Anna; Cabezas-Rodríguez, Rafael; Di Martino, Alessandro; Fini, Milena; Giavaresi, Gianluca; Lelli, Marco; Martínez-Fernández, Julian; Martini, Lucia; Ramírez-Rico, Joaquin; Salamanna, Francesca; Sandri, Monica; Sprio, Simone; Marcacci, Maurilio

    2014-02-01

    Bone loss is still a major problem in orthopedics. The purpose of this experimental study is to evaluate the safety and regenerative potential of a new scaffold based on a bio-ceramization process for bone regeneration in long diaphyseal defects in a sheep model. The scaffold was obtained by transformation of wood pieces into porous biomorphic silicon carbide (BioSiC®). The process enabled the maintenance of the original wood microstructure, thus exhibiting hierarchically organized porosity and high mechanical strength. To improve cell adhesion and osseointegration, the external surface of the hollow cylinder was made more bioactive by electrodeposition of a uniform layer of collagen fibers that were mineralized with biomimetic hydroxyapatite, whereas the internal part was filled with a bio-hybrid HA/collagen composite. The final scaffold was then implanted in the metatarsus of 15 crossbred (Merinos-Sarda) adult sheep, divided into 3 groups: scaffold alone, scaffold with platelet-rich plasma (PRP) augmentation, and scaffold with bone marrow stromal cells (BMSCs) added during implantation. Radiological analysis was performed at 4, 8, 12 weeks, and 4 months, when animals were sacrificed for the final radiological, histological, and histomorphometric evaluation. In all tested treatments, these analyses highlighted the presence of newly formed bone at the bone scaffolds' interface. Although a lack of substantial effect of PRP was demonstrated, the scaffold+BMSC augmentation showed the highest value of bone-to-implant contact and new bone growth inside the scaffold. The findings of this study suggest the potential of bio-ceramization processes applied to vegetable hierarchical structures for the production of wood-derived bone scaffolds, and document a suitable augmentation procedure in enhancing bone regeneration, particularly when combined with BMSCs.

  8. Preparation, characterization and in vitro dissolution behavior of porous biphasic α/β-tricalcium phosphate bioceramics.

    Science.gov (United States)

    Xie, Lu; Yu, Haiyang; Deng, Yi; Yang, Weizhong; Liao, Li; Long, Qin

    2016-02-01

    The ideal bone tissue engineering scaffolds are long-cherished with the properties of interconnected macroporous structures, adjustable degradation and excellent biocompatibility. Here, a series of porous α/β-tricalcium phosphate (α/β-TCP) biphasic bioceramics with different phase ratios of α-TCP and β-TCP were successfully synthesized by heating an amorphous calcium phosphate precursor. The chemical and morphological characterization showed that α- and β-TCP phases co-existed in the α/β-TCP bioceramics and they had interconnected pore structures with size between 200 and 500μm. The in vitro dissolution behavior and bioactivity of the dual α/β-TCP were also probed in static and dynamic SBF for the first time. The results revealed that α/β-TCP scaffolds had good in vitro bioactivity, as the formation of bone-like apatite layers was induced on the scaffolds after mineralization in SBF. Moreover, dissolution rate of α/β-TCP bioceramics in dynamic environment was higher than that under static condition. Compared with monophasic TCP ceramics, these porous α/β-TCP bioceramics displayed a tailored dissolution rate proportionate to the TCP content (α and β) in the materials. Further, the degradation profile of porous α/β-TCP was well-described by Avrami equation. The porous dual α/β-TCP bioceramics with controllable degradation behavior hold great potential to be applied in bone tissue engineering as bone substitutes. PMID:26652459

  9. Effect of bioceramic functional groups on drug binding and release kinetics

    Science.gov (United States)

    Trujillo, Christopher

    Bioceramics have been studied extensively as drug delivery systems (DDS). Those studies have aimed to tailor the drug binding and release kinetics to successfully treat infections and other diseases. This research suggests that the drug binding and release kinetics are predominantly driven by the functional groups available on the surface of a bioceramic. The goal of the present study is to explain the role of silicate and phosphate functional groups in drug binding to and release kinetics from bioceramics. alpha-cristobalite (Cris; SiO2) particles (90-150 microm) were prepared and doped with 0 microg (P-0), 39.1 microg (P-39.1), 78.2 microg (P-78.2), 165.5 microg (P-165.5) or 331 microg (P-331) of P 2O5 per gram Cris, using 85% orthophosphoric (H3PO 4) acid and thermal treatment. The material structure was analyzed using X-ray diffraction (XRD) with Rietveld Refinement and Fourier Transform Infrared (FTIR) spectroscopy with Gaussian fitting. XRD demonstrated an increase from sample P-0 (170.5373 A3) to P-331 (170.6466 A 3) in the unit cell volume as the P2O5 concentration increased in the material confirming phosphate silicate substitution in Cris. Moreover, FTIR showed the characteristic bands of phosphate functional groups of nu4 PO4/O-P-O bending, P-O-P stretching, P-O-P bending, P=O stretching, and P-O-H bending in doped Cris indicating phosphate incorporation in the silicate structure. Furthermore, FTIR showed that the nu4 PO4/O-P-O bending band around 557.6 cm-1 and P=O stretching band around 1343.9 cm-1 increased in area for samples P-39.1 to P-331 from 3.5 to 10.5 and from 10.1 to 22.4, respectively due to phosphate doping. In conjunction with the increase of the nu4 PO4/O-P-O bending band and P=O stretching band, a decrease in area of the O-Si-O bending bands around 488.1 and 629.8 cm-1 was noticed for samples P-39.1 to P-331 from 5 to 2 and from 11.8 to 5.4, respectively. Furthermore, Cris samples (200 mg, n=5 for each sample) were immersed separately in

  10. The Role of Bioceramics Coating in Dental Implant Reliability and Success

    Directory of Open Access Journals (Sweden)

    Mortazavi V

    2000-05-01

    Full Text Available Characterization of bioceramics coating and evaluation of the influence of kind of coating on"nthe implantation has been developed in recent years."nDifferent bioceramics coating like calcium phosphate, hydroxyapatite, fluorapatite and bioglass were"ncoated on dental and orthopedic implants. In-vitro and in-vivo experiments were done for evolution of"nimplant success and reliability and study of factors, which may influence the results."nResearches indicate that different bioceramic coating may affect the bone bonding mechanism."nBiodegredable calcium phosphate coating can be resorbed and be replaced with bone tissues."nHydroxyapatite cause earlier stabilization of dental implant in surrounding bone (biological fixation and"nreduce healing time. Bioglass can protect substrate and provide interfacial attachment to bone.

  11. The Technology and Properties of Digital Double Pulse Electrodepositing Ni-HA Composite Coating of Bioceramics

    Institute of Scientific and Technical Information of China (English)

    DONG He-yan; WANG Zhou; SHI Gu-guizhi; FU Chuan-qi; CHEN Wei-rong; JIN Zhong-hong; LI Yan

    2004-01-01

    This article discusses and analyses the technology, the surface image, microstructure and ability of digital double pulse electrodepositing Ni-HA composite coatings of bioceramics made on 1Crl8Ni9Ti substrate by SEM ,XRD and so on. The results shows that ( 1 ) the HA particles exit in substrate uniformly; (2) XRD result shows that there are HA peaks at 78. 023 ° ,43. 246°and 73. 120°differently; (3) The microhardnees of the composite coatings is increased with the rise of content of HA particles, and on the same conditions the microhardnees value is greater than that of common non-pulse electrodepositing Ni-HA composite coatings of bioceramics. (4) The grain size of digital double pulse electrodepositing Ni-HA composite coatings of bioceramics is much thinner than that of common D. C.

  12. [Study on hydrogen autotrophic denitrification of bio-ceramic reactor].

    Science.gov (United States)

    Chen, Dan; Wang, Hong-Yu; Song, Min; Yang, Kai; Liu, Chen

    2013-10-01

    Nitrate wastewater is processed in a bio-ceramic reactor based on hydrogen autotrophic denitrification. The implementation procedure of biological denitrification by hydrogen autotrophic denitrification was investigated. The effects of hydraulic retention time, influent nitrate load, influent pH, temperature and the amount of hydrogen were assessed throughout this trial. The results showed that the removal rate of NO-(3) -N was 94. 54% and 97. 47% when the hydraulic retention time was 24 h and 48 h, respectively. When the hydraulic retention time was in the range of 5-16 h, the removal rate gradually dropped with the shortening of the hydraulic retention time. When the influent NO-(3) -N concentration was low, with the increase in the influent NO-(3) -N concentration, the degradation rate also increased. The denitrification was inhibited when the NO-(3) -N concentration was higher than 110 mg.L-1. Neutral and alkaline environment was more suitable for the reactor. The reactor showed a wide range of temperature adaptation and the optimum temperature of the reactor was from 25 to 30 degrees C. When hydrogen was in short supply, the effect of denitrification was significantly reduced. These results indicated the specificity of hydrogen utilization by the denitrifying bacteria. The effluent nitrite nitrogen concentration was maintained at low levels during the operation.

  13. Fabrication of Bioceramic Bone Scaffolds for Tissue Engineering

    Science.gov (United States)

    Liu, Fwu-Hsing

    2014-10-01

    In this study, microhydroxyapatite and nanosilica sol were used as the raw materials for fabrication of bioceramic bone scaffold using selective laser sintering technology in a self-developed 3D Printing apparatus. When the fluidity of ceramic slurry is matched with suitable laser processing parameters, a controlled pore size of porous bone scaffold can be fabricated under a lower laser energy. Results shown that the fabricated scaffolds have a bending strength of 14.1 MPa, a compressive strength of 24 MPa, a surface roughness of 725 nm, a pore size of 750 μm, an apparent porosity of 32%, and a optical density of 1.8. Results indicate that the mechanical strength of the scaffold can be improved after heat treatment at 1200 °C for 2 h, while simultaneously increasing surface roughness conducive to osteoprogenitor cell adhesion. MTT method and SEM observations confirmed that bone scaffolds fabricated under the optimal manufacturing process possess suitable biocompatibility and mechanical properties, allowing smooth adhesion and proliferation of osteoblast-like cells. Therefore, they have great potential for development in the field of tissue engineering.

  14. Sputter deposited bioceramic coatings: surface characterisation and initial protein adsorption studies using surface-MALDI-MS

    DEFF Research Database (Denmark)

    Boyd, A. R.; Burke, G. A.; Duffy, H.;

    2011-01-01

    Protein adsorption onto calcium phosphate (Ca–P) bioceramics utilised in hard tissue implant applications has been highlighted as one of the key events that influences the subsequent biological response, in vivo. This work reports on the use of surface-matrix assisted laser desorption ionisation...... to a combination of growth factors and lipoproteins present in serum. From the data obtained here it is evident that surface-MALDI-MS has significant utility as a tool for studying the dynamic nature of protein adsorption onto the surfaces of bioceramic coatings, which most likely plays a significant role...

  15. Effect of bioceramic functional groups on drug binding and release kinetics

    Science.gov (United States)

    Trujillo, Christopher

    Bioceramics have been studied extensively as drug delivery systems (DDS). Those studies have aimed to tailor the drug binding and release kinetics to successfully treat infections and other diseases. This research suggests that the drug binding and release kinetics are predominantly driven by the functional groups available on the surface of a bioceramic. The goal of the present study is to explain the role of silicate and phosphate functional groups in drug binding to and release kinetics from bioceramics. alpha-cristobalite (Cris; SiO2) particles (90-150 microm) were prepared and doped with 0 microg (P-0), 39.1 microg (P-39.1), 78.2 microg (P-78.2), 165.5 microg (P-165.5) or 331 microg (P-331) of P 2O5 per gram Cris, using 85% orthophosphoric (H3PO 4) acid and thermal treatment. The material structure was analyzed using X-ray diffraction (XRD) with Rietveld Refinement and Fourier Transform Infrared (FTIR) spectroscopy with Gaussian fitting. XRD demonstrated an increase from sample P-0 (170.5373 A3) to P-331 (170.6466 A 3) in the unit cell volume as the P2O5 concentration increased in the material confirming phosphate silicate substitution in Cris. Moreover, FTIR showed the characteristic bands of phosphate functional groups of nu4 PO4/O-P-O bending, P-O-P stretching, P-O-P bending, P=O stretching, and P-O-H bending in doped Cris indicating phosphate incorporation in the silicate structure. Furthermore, FTIR showed that the nu4 PO4/O-P-O bending band around 557.6 cm-1 and P=O stretching band around 1343.9 cm-1 increased in area for samples P-39.1 to P-331 from 3.5 to 10.5 and from 10.1 to 22.4, respectively due to phosphate doping. In conjunction with the increase of the nu4 PO4/O-P-O bending band and P=O stretching band, a decrease in area of the O-Si-O bending bands around 488.1 and 629.8 cm-1 was noticed for samples P-39.1 to P-331 from 5 to 2 and from 11.8 to 5.4, respectively. Furthermore, Cris samples (200 mg, n=5 for each sample) were immersed separately in

  16. [Research on the mechanical properties of bone scaffold reinforced by magnesium alloy/bioceramics composite with stereolithography double channels].

    Science.gov (United States)

    Li, Changhai; Lian, Qin; Zhuang, Pei; Wang, Junzhong; Li, Dichen

    2015-02-01

    Focusing on the poor mechanical strength of porous bioceramics bone scaffold, and taking into account of the good mechanical properties of biodegradable magnesium alloy, we proposed a novel method to fabricate magnesium alloy/bioceramics composite bone scaffold with stereolithography double channels. Firstly, a scaffold structure without mutually connected double channels was designed. Then, an optimized bioceramics scaffold was fabricated according to stereolithography and gel-casing. Molten AZ31 magnesium alloy was perfused into the secondary channel of scaffold by low-pressure casting, and magnesium alloy/bioceramics composite bone scaffold was obtained when magnesium alloy was solidified. The compression test showed that the strength of bioceramics scaffold with only one channel and without magnesium alloy was (9.76 ± 0.64) MPa, while the strength of magnesium alloy/bioceramics composite scaffold with double channels was (17.25 ± 0.88) MPa. It can be concluded that the magnesium alloy/bioceramics composite is obviously able to improve the scaffold strength.

  17. Bioactivity and mineralization of hydroxyapatite with bioglass as sintering aid and bioceramics with Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5} and Ca{sub 5}(PO{sub 4}){sub 2}SiO{sub 4} in a silicate matrix

    Energy Technology Data Exchange (ETDEWEB)

    Demirkiran, Hande [Materials Science and Engineering Department, University of Texas at Arlington, Arlington, TX 76019 (United States); Mohandas, Arunesh; Dohi, Motokazi; Fuentes, Alonso; Nguyen, Kytai [Bioengineering Department, University of Texas at Arlington, Arlington, TX 76019 (United States); Aswath, Pranesh, E-mail: aswath@uta.edu [Materials Science and Engineering Department, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2010-01-30

    Hydroxyapatite and Bioglass-45S5 were sintered together creating new ceramic compositions that yielded increased apatite deposition and osteoblast differentiation and proliferation in vitro compared to hydroxyapatite. The sintered products characterized by X-ray diffraction, revealed hydroxyapatite as the main phase when small quantities (1, 2.5 and 5 wt.%) of bioglass was added. Bioglass behaved as a sintering aid with {beta}-TCP (Ca{sub 3}(PO{sub 4}){sub 2}) being the minor phase. The amount of {beta}-TCP increased with the amount of bioglass added. In compositions with larger additions of bioglass (10 and 25 wt.%), new phases with compositions of calcium phosphate silicate (Ca{sub 5}(PO{sub 4}){sub 2}SiO{sub 4}) and sodium calcium phosphate (Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5}) were formed respectively within amorphous silicate matrices. In vitro cell culture studies of the ceramic compositions were examined using bone marrow stromal cell (BMSC). Cell proliferation and differentiation of bone marrow stromal cells into osteoblasts were determined by Pico Green DNA assays and alkaline phosphatase (ALP) activity, respectively. All hydroxyapatite-bioglass co-sintered ceramics exhibited larger cell proliferation compared to pure hydroxyapatite samples. After 6 days in cell culture, the ceramic with Ca{sub 5}(PO{sub 4}){sub 3}SiO{sub 4} in a silicate matrix formed by reacting hydroxyapatite with 10 wt.% bioglass exhibited the maximum proliferation of the BMSC's. The ALP activity was found to be largest in the ceramic with Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5} embedded in a silicate matrix synthesized by reacting hydroxyapatite with 25 wt.% bioglass.

  18. Current perspectives of bio-ceramic technology in endodontics: calcium enriched mixture cement - review of its composition, properties and applications

    OpenAIRE

    Utneja, Shivani; Nawal, Ruchika Roongta; Talwar, Sangeeta; Verma, Mahesh

    2014-01-01

    Advancements in bio-ceramic technology has revolutionised endodontic material science by enhancing the treatment outcome for patients. This class of dental materials conciliates excellent biocompatibility with high osseoconductivity that render them ideal for endodontic care. Few recently introduced bio-ceramic materials have shown considerable clinical success over their early generations in terms of good handling characteristics. Calcium enriched mixture (CEM) cement, Endosequence sealer, a...

  19. Oxide-bioceramic coatings obtained on titanium items by the induction heat treatment and modified with hydroxyapatite nanoparticles

    Science.gov (United States)

    Fomin, Aleksandr A.; Fomina, Marina A.; Rodionov, Igor V.; Koshuro, Vladimir A.; Petrova, Natalia V.; Skaptsov, Aleksandr A.; Atkin, Vsevolod S.

    2015-06-01

    Prospective composite bioceramic titania coatings were obtained on intraosseous implants fabricated from cp-titanium and medical titanium alloy VT16 (Ti-2.5Al-5Mo-5V). Consistency changes of morphological characteristics, mechanical properties and biocompatibility of experimental titanium implant coatings obtained by oxidation during induction heat treatment are defined. Technological recommendations for obtaining bioceramic coatings with extremely high strength on titanium items surface are given.

  20. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration.

    Science.gov (United States)

    Luo, Yongxiang; Zhai, Dong; Huan, Zhiguang; Zhu, Haibo; Xia, Lunguo; Chang, Jiang; Wu, Chengtie

    2015-11-01

    Three-dimensional printing technologies have shown distinct advantages to create porous scaffolds with designed macropores for application in bone tissue engineering. However, until now, 3D-printed bioceramic scaffolds only possessing a single type of macropore have been reported. Generally, those scaffolds with a single type of macropore have relatively low porosity and pore surfaces, limited delivery of oxygen and nutrition to surviving cells, and new bone tissue formation in the center of the scaffolds. Therefore, in this work, we present a useful and facile method for preparing hollow-struts-packed (HSP) bioceramic scaffolds with designed macropores and multioriented hollow channels via a modified coaxial 3D printing strategy. The prepared HSP scaffolds combined high porosity and surface area with impressive mechanical strength. The unique hollow-struts structures of bioceramic scaffolds significantly improved cell attachment and proliferation and further promoted formation of new bone tissue in the center of the scaffolds, indicating that HSP ceramic scaffolds can be used for regeneration of large bone defects. In addition, the strategy can be used to prepare other HSP ceramic scaffolds, indicating a universal application for tissue engineering, mechanical engineering, catalysis, and environmental materials.

  1. The role of silicon on the bioactivity of Skelite(TM) bioceramic: A material and biological characterization of silicon alpha-tricalcium phosphate based ceramics

    Science.gov (United States)

    Pietak, Alexis Mari

    Skelite(TM) bioceramics are novel synthetic skeletal replacement materials that participate in the full remodeling process of bone. Skelite contains a high fraction of Silicon Stabilized alpha-Tricalcium Phosphate (Si-TCP), a novel phase to which the unique bioactive properties of Skelite have been attributed. The role of Si in the development of the microporous, interconnected microstructure and mixed phase composition of Skelite was investigated using crystallization kinetics and defect characterization studies. The kinetics of the phase transformation to Si-TCP were studied using rapid thermal processing of thin films on quartz substrates. The results, interpreted using a novel Avrami model, show that Si acts as a nucleation agent for Si-TCP, and also that Si pins the microstructure of the films at higher concentrations. Characterization of defects induced by Si substitution into the phases of Skelite material utilized electron spin resonance (ESR) and thermoluminescence (TL) techniques. These results identify two unique paramagnetic defect centers associated with Si substitution in the hydroxyapatite lattice. Quantification of the relative level of these centers supports a novel chemical model that describes the development of the mixed phase system of Skelite as a function of silica addition. The significance of the Si-TCP phase, sample morphology, and surface chemistry on the activity of osteoclast and osteoblast cells was investigated using cell culture and protein functionalized atomic force microscopy techniques. The biological characterization identifies three interaction mechanisms between Skelite and the biological system. Skelite releases a soluble molecular complex containing Si to the extracellular media, which has a significant bioactive effect on osteoclast and osteoblast growth and activity. Using protein functionalized atomic force microscopy the surface chemistry and reactivity of samples is shown to influence osteopontin affinity for Skelite

  2. A bioceramic with enhanced osteogenic properties to regulate the function of osteoblastic and osteocalastic cells for bone tissue regeneration.

    Science.gov (United States)

    Roohani-Esfahani, Seyed-Iman; No, Young Jung; Lu, Zufu; Ng, Pei Ying; Chen, Yongjuan; Shi, Jeffrey; Pavlos, Nathan J; Zreiqat, Hala

    2016-01-01

    Bioceramics for regenerative medicine applications should have the ability to promote adhesion, proliferation and differentiation of osteoblast and osteoclast cells. Osteogenic properties of the material are essential for rapid bone regeneration and new bone formation. The aim of this study was to develop a silicate-based ceramic, gehlenite (GLN, Ca2Al2SiO7), and characterise its physiochemical, biocompatibility and osteogenic properties. A pure GLN powder was synthesised by a facile reactive sintering method and compacted to disc-shaped specimens. The sintering behaviour and degradation of the GLN discs in various buffer solutions were fully characterised. The cytotoxicity of GLN was evaluated by direct and indirect methods. In the indirect method, primary human osteoblast cells (HOBs) were exposed to diluted extracts (100, 50, 25, 12.5 and 6.25 mg ml(-1)) of fine GLN particles in culture medium. The results showed that the extracts did not cause any cytotoxic effect on the HOBs with the number of cells increasing significantly from day 1 to day 7. GLN-supported HOB attachment and proliferation, and significantly enhanced osteogenic gene expression levels (Runx2, osteocalcin, osteopontin and bone sialoprotein) were compared with biphasic calcium phosphate groups (BCP, a mixture of hydroxyapatite (60wt.%) and β-tricalcium phosphate(40wt.%)). We also demonstrated that in addition to supporting HOB attachment and proliferation, GLN promoted the formation of tartrate-acid resistance phosphatase (TRAP) positive multinucleated osteoclastic cells (OCs) derived from mouse bone marrow cells. Results also demonstrated the ability of GLN to support the polarisation of OCs, a prerequisite for their functional resorptive activity which is mainly influenced by the composition and degradability of biomaterials. Overall, the developed GLN is a prospective candidate to be used in bone regeneration applications due its effective osteogenic properties and biocompatibility. PMID

  3. The Effect of Photoluminescence of Bioceramic Irradiation on Middle Cerebral Arterial Occlusion in Rats

    Science.gov (United States)

    Zhang, Lei; Chan, Paul; Liu, Zhong-Min; Hwang, Ling-Ling; Lin, Kuo-Chi; Chan, Wing P.; Leung, Ting-Kai; Choy, Cheuk Sing

    2016-01-01

    The purpose of this study is to determine the possible effect of photoluminescence of bioceramic (PLB) on ischemic cerebral infarction (stroke), by using an animal model of transient middle cerebral artery occlusion (MCAO). Sprague-Dawley rats were used to induce MCAO to block the origin of the left MCAO; three months later, the positive chronic stroke rats were selected by running tunnel maze; the MCAO rats with significant chronic stroke and neurological defects were used for treadmill experiments with varying speed settings to test their capability for restoration after muscular fatigue under conditions of with and without PLB irradiation. As a result, PLB irradiation could improve exercise completion rate and average running speed during slow and fast treadmill settings. After PLB irradiation, the selected MCAO rats successfully completed all the second-round treadmill exercises at the maximum speed setting, and they had better restoration from muscular fatigue. An in vitro cell study on astrocytes of rats by bioceramic irradiation further demonstrated increased intracellular nitric oxide. To explain these results, we suggest that cortical brain stimulation of microcirculation and enhancement of peripheral muscular activity are the main causes of the improved exercise performance in MCAO rats by PLB.

  4. The Effect of Photoluminescence of Bioceramic Irradiation on Middle Cerebral Arterial Occlusion in Rats

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2016-01-01

    Full Text Available The purpose of this study is to determine the possible effect of photoluminescence of bioceramic (PLB on ischemic cerebral infarction (stroke, by using an animal model of transient middle cerebral artery occlusion (MCAO. Sprague-Dawley rats were used to induce MCAO to block the origin of the left MCAO; three months later, the positive chronic stroke rats were selected by running tunnel maze; the MCAO rats with significant chronic stroke and neurological defects were used for treadmill experiments with varying speed settings to test their capability for restoration after muscular fatigue under conditions of with and without PLB irradiation. As a result, PLB irradiation could improve exercise completion rate and average running speed during slow and fast treadmill settings. After PLB irradiation, the selected MCAO rats successfully completed all the second-round treadmill exercises at the maximum speed setting, and they had better restoration from muscular fatigue. An in vitro cell study on astrocytes of rats by bioceramic irradiation further demonstrated increased intracellular nitric oxide. To explain these results, we suggest that cortical brain stimulation of microcirculation and enhancement of peripheral muscular activity are the main causes of the improved exercise performance in MCAO rats by PLB.

  5. Standard Enucleation with Aluminium Oxide Implant (Bioceramic Covered with Patient's Sclera

    Directory of Open Access Journals (Sweden)

    Gian Luigi Zigiotti

    2012-01-01

    Full Text Available Purpose. We describe in our study a modified standard enucleation, using sclera harvested from the enucleated eye to cover the prosthesis in order to insert a large porous implant and to reduce postoperative complication rates in a phthisis globe. Methods. We perform initially a standard enucleation. The porous implant (Bioceramic is then covered only partially by the patient's sclera. The implant is inserted in the posterior Tenon's space with the scleral covering looking at front. All patients were followed at least for twelve months (average followup 16 months. Results. We performed nineteen primary procedures (19 patients, 19 eyes, M; F and secondary, to fill the orbital cavity in patients already operated by standard evisceration (7 patients, 7 eyes. There were no cases of implant extrusion. The orbital volume was well reintegrated. Conclusion. Our procedure was safe and effective. All patients had a good cosmetic result after final prosthetic fitting and we also achieved good prothesis mobility.

  6. Micro-configuration Observation of Porous Bioceramic for Sliding on Intestinal Mucus Film

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The microstructure of the prepared porous bioceramic material, including surface porosity and apparent contact area with the artificial mucus film are computed and analyzed. The surface micro-configurations of the porous material before and after sliding on the mucus ftlm are observed in 2D and 3 D by digital microscopy. We describe how much mucus enters and stays within different pores, and how the porous material with rough/porous surface contacts with the mucus film ( elastic surface/gel). The presented results illustrate that the material with different porous structure can lead to different mucus suction, surface scraping and changes of contact area and condition during sliding, which will be active for high friction of robotic endoscope with the intestinal wall for intestinal locomotion.

  7. Sputter deposited bioceramic coatings: surface characterisation and initial protein adsorption studies using surface-MALDI-MS.

    Science.gov (United States)

    Boyd, A R; Burke, G A; Duffy, H; Holmberg, M; O' Kane, C; Meenan, B J; Kingshott, P

    2011-01-01

    Protein adsorption onto calcium phosphate (Ca-P) bioceramics utilised in hard tissue implant applications has been highlighted as one of the key events that influences the subsequent biological response, in vivo. This work reports on the use of surface-matrix assisted laser desorption ionisation mass spectrometry (Surface-MALDI-MS) as a technique for the direct detection of foetal bovine serum (FBS) proteins adsorbed to hybrid calcium phosphate/titanium dioxide surfaces produced by a novel radio frequency (RF) magnetron sputtering method incorporating in situ annealing between 500°C and 700°C during deposition. XRD and XPS analysis indicated that the coatings produced at 700°C were hybrid in nature, with the presence of Ca-P and titanium dioxide clearly observed in the outer surface layer. In addition to this, the Ca/P ratio was seen to increase with increasing annealing temperature, with values of between 2.0 and 2.26 obtained for the 700°C samples. After exposure to FBS solution, surface-MALDI-MS indicated that there were significant differences in the protein patterns as shown by unique peaks detected at masses below 23.1 kDa for the different surfaces. These adsorbates were assigned to a combination of growth factors and lipoproteins present in serum. From the data obtained here it is evident that surface-MALDI-MS has significant utility as a tool for studying the dynamic nature of protein adsorption onto the surfaces of bioceramic coatings, which most likely plays a significant role in subsequent bioactivity of the materials.

  8. Mechanochemical synthesis evaluation of nanocrystalline bone-derived bioceramic powder using for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Amirsalar Khandan

    2014-01-01

    Full Text Available Introduction: Bone tissue engineering proposes a suitable way to regenerate lost bones. Different materials have been considered for use in bone tissue engineering. Hydroxyapatite (HA is a significant success of bioceramics as a bone tissue repairing biomaterial. Among different bioceramic materials, recent interest has been risen on fluorinated hydroxyapatites, (FHA, Ca 10 (PO 4 6 F x (OH 2−x . Fluorine ions can promote apatite formation and improve the stability of HA in the biological environments. Therefore, they have been developed for bone tissue engineering. The aim of this study was to synthesize and characterize the FHA nanopowder via mechanochemical (MC methods. Materials and Methods: Natural hydroxyapatite (NHA 95.7 wt.% and calcium fluoride (CaF 2 powder 4.3 wt.% were used for synthesis of FHA. MC reaction was performed in the planetary milling balls using a porcelain cup and alumina balls. Ratio of balls to reactant materials was 15:1 at 400 rpm rotation speed. The structures of the powdered particles formed at different milling times were evaluated by X-ray diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM. Results: Fabrication of FHA from natural sources like bovine bone achieved after 8 h ball milling with pure nanopowder. Conclusion: F− ion enhances the crystallization and mechanical properties of HA in formation of bone. The produced FHA was in nano-scale, and its crystal size was about 80-90 nm with sphere distribution in shape and size. FHA powder is a suitable biomaterial for bone tissue engineering.

  9. Biodegradable Polymer-Coated, Gelatin Hydrogel/Bioceramics Ternary Composites for Antitubercular Drug Delivery and Tissue Regeneration

    OpenAIRE

    Mintao Xue; Hongtao Hu; Yuanquan Jiang; Jichun Liu; Hailong He; Xiaojian Ye

    2012-01-01

    A simple and effective strategy for the treatment of osteoarticular tuberculosis is proposed through combining tissue engineering approach with anti-tuberculosis drug therapy. A series of tricalcium phosphate bioceramics (TPB) composites, coated by degradable polymer outside and loaded with rifampicin (RFP)-containing gelatin hydrogel inside, were thus fabricated and successfully applied to deliver antitubercular drug RFP into osseous lesion and concomitantly to induce tissue regeneration. RF...

  10. Current perspectives of bio-ceramic technology in endodontics: calcium enriched mixture cement - review of its composition, properties and applications.

    Science.gov (United States)

    Utneja, Shivani; Nawal, Ruchika Roongta; Talwar, Sangeeta; Verma, Mahesh

    2015-02-01

    Advancements in bio-ceramic technology has revolutionised endodontic material science by enhancing the treatment outcome for patients. This class of dental materials conciliates excellent biocompatibility with high osseoconductivity that render them ideal for endodontic care. Few recently introduced bio-ceramic materials have shown considerable clinical success over their early generations in terms of good handling characteristics. Calcium enriched mixture (CEM) cement, Endosequence sealer, and root repair materials, Biodentine and BioAggregate are the new classes of bio-ceramic materials. The aim of this literature review is to present investigations regarding properties and applications of CEM cement in endodontics. A review of the existing literature was performed by using electronic and hand searching methods for CEM cement from January 2006 to December 2013. CEM cement has a different chemical composition from that of mineral trioxide aggregate (MTA) but has similar clinical applications. It combines the biocompatibility of MTA with more efficient characteristics, such as significantly shorter setting time, good handling characteristics, no staining of tooth and effective seal against bacterial leakage.

  11. Effect of Y2O3 Content on Microstructure of Gradient Bioceramic Composite Coating Produced by Wide-Band Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    Liu Qibin; Zou Jianglong; Zheng Min; Dong Chuang

    2005-01-01

    To eliminate thermal stress and cracks in the process of laser cladding, a kind of bioceramic coating with gradient compositional design was prepared on the surface of Ti alloy by using wide-band laser cladding. And effect of Y2O3 content on gradient bioceramic composite coating was studied. The experimental results indicate that adding rare earth can refine grain. Different rare earth contents affect formation of HA and β-TCP in bioceramic coating. When the content of rare earth ranges from 0.4% to 0.6%, the active extent of rare earth in synthesizing HA and β-TCP is the best, which indicates that "monosodium glutamate" effect of rare earth plays a dominant role. However, when rare earth content is up to 0.8%, the amount of synthesizing HA and β-TCP in coating conversely goes down, which demonstrates that rare earth gradually losts its catalysis in manufacturing HA and β-TCP.

  12. In vitro bioactivity of 3D Ti-mesh with bioceramic coatings in simulated body fluid

    Directory of Open Access Journals (Sweden)

    Wei Yi

    2014-09-01

    Full Text Available 3D Ti-mesh has been coated with bioceramics under different coating conditions, such as material compositions and micro-porosity, using a dip casting method. Hydroxyapatite (HA, micro-HA particles (HAp, a bioglass (BG and their different mixtures together with polymer additives were used to control HA-coating microstructures. Layered composites with the following coating-to-substrate designs, such as BG/Ti, HA + BG/BG/Ti and HAp + BG/BG/Ti, were fabricated. The bioactivity of these coated composites and the uncoated Ti-mesh substrate was then investigated in a simulated body fluid (SBF. The Ti-mesh substrate and BG/Ti composite did not induce biomimetic apatite deposition when they were immersed in SBF for the selected BG, a pressable dental ceramic, used in this study. After seven days in SBF, an apatite layer was formed on both HA + BG/BG/Ti and HAp + BG/BG/Ti composites. The difference is the apatite layer on the HAp + BG/BG/Ti composite was rougher and contained more micro-pores, while the apatite layer on the HA + BG/BG/Ti composite was dense and smooth. The formation of biomimetic apatite, being more bioresorbable, is favored for bone regeneration.

  13. Processing and characterization of multi-cellular monolithic bioceramics for bone regenerative scaffolds

    Science.gov (United States)

    Ari-Wahjoedi, Bambang; Ginta, Turnad Lenggo; Parman, Setyamartana; Abustaman, Mohd Zikri Ahmad

    2014-10-01

    Multicellular monolithic ceramic body is a ceramic material which has many gas or liquid passages partitioned by thin walls throughout the bulk material. There are many currently known advanced industrial applications of multicellular ceramics structures i.e. as supports for various catalysts, electrode support structure for solid oxide fuel cells, refractories, electric/electronic materials, aerospace vehicle re-entry heat shields and biomaterials for dental as well as orthopaedic implants by naming only a few. Multicellular ceramic bodies are usually made of ceramic phases such as mullite, cordierite, aluminum titanate or pure oxides such as silica, zirconia and alumina. What make alumina ceramics is excellent for the above functions are the intrinsic properties of alumina which are hard, wear resistant, excellent dielectric properties, resists strong acid and alkali attacks at elevated temperatures, good thermal conductivities, high strength and stiffness as well as biocompatible. In this work the processing technology leading to truly multicellular monolithic alumina ceramic bodies and their characterization are reported. Ceramic slip with 66 wt.% solid loading was found to be optimum as impregnant to the polyurethane foam template. Mullitic ceramic composite of alumina-sodium alumino disilicate-Leucite-like phases with bulk and true densities of 0.852 and 1.241 g cm-3 respectively, pore linear density of ±35 cm-1, linear and bulk volume shrinkages of 7-16% and 32 vol.% were obtained. The compressive strength and elastic modulus of the bioceramics are ≈0.5-1.0 and ≈20 MPa respectively.

  14. Push-out bond strength of bioceramic materials in a synthetic tissue fluid.

    Directory of Open Access Journals (Sweden)

    Noushin Shokouhinejad

    2013-12-01

    Full Text Available This study compared the push-out bond strength of EndoSequence Root Repair Material (ERRM and Bioaggregate (BA, new bioceramic materials, to that of mineral trioxide aggregate (MTA after incubation in phosphate-buffered saline (PBS, a synthetic tissue fluid, for either 1 week or 2 months.One-hundred and twenty root sections were filled with ProRoot MTA, BA, or ERRM. Each tested material was then randomly divided into two subgroups (n = 20: root sections were immersed in PBS for 1 week or 2 months. The bond strengths were measured using a universal testing machine. After that, the failure modes were examined with stereomicroscopy and scanning electron microscopy (SEM. The push-out data and failure mode categories were analyzed by two-way ANOVA and chi-square tests, respectively.The bond strength of ERRM was significantly higher than that of BA and MTA at both incubation periods. No significant difference was found between the bond strength of MTA and BA at either 1 week or 2 months. Increasing the incubation time to 2 months resulted in a significant increase in bond strength of all the materials. The failure mode was mainly mixed for MTA and BA, but cohesive for ERRM at both incubation periods.ERRM had significantly higher bond strength to root canal walls compared to MTA and BA. Increasing the incubation time significantly improved the bond strength and bioactive reaction products of all materials.

  15. Inhibition of infectious bursal disease virus transmission using bioceramic derived from chicken feces.

    Science.gov (United States)

    Thammakarn, Chanathip; Ishida, Yuki; Suguro, Atsushi; Hakim, Hakimullah; Nakajima, Katsuhiro; Kitazawa, Minori; Takehara, Kazuaki

    2015-06-01

    Bioceramic powder (BCX), at pH 13.0, derived from chicken feces, was evaluated for its efficacy to inactivate virus and inhibit virus horizontal transmission by fecal-oral route, using infectious bursal disease virus (IBDV) vaccine strain D78 as a challenge virus. Three 1-week-old SPF chicks were vaccinated per os and used as seeder birds. Six hours later, 3 sentinel 1-week-old SPF chicks were introduced into the same cage. Results revealed that BCX had excellent efficacy to inactivate IBDV within 3 min. Treating IBDV contaminated litter in the cage with BCX could prevent transmission of IBDV to new sensitive chicks completely. Further, transmission of IBDV to the sentinel chicks was significantly inhibited by adding BCX to litter and chicken feed. These data suggest that BCX at pH 13, derived from chicken feces, has excellent efficacy to inactivate IBDV, which can be applied in bedding materials for preventing viral transmission during production round. It is a good material that can effectively be used for enhancing biosecurity system in poultry farms. PMID:25892716

  16. TOPICAL REVIEW: Stem cell technology using bioceramics: hard tissue regeneration towards clinical application

    Science.gov (United States)

    Ohnishi, Hiroe; Oda, Yasuaki; Ohgushi, Hajime

    2010-02-01

    Mesenchymal stem cells (MSCs) are adult stem cells which show differentiation capabilities toward various cell lineages. We have already used MSCs for treatments of osteoarthritis, bone necrosis and bone tumor. For this purpose, culture expanded MSCs were combined with various ceramics and then implanted. Because of rejection response to allogeneic MSC implantation, we have utilized patients' own MSCs for the treatment. Bone marrow is a good cell source of MSCs, although the MSCs also exist in adipose tissue. When comparing osteogenic differentiation of these MSCs, bone marrow MSCs show more extensive bone forming capability than adipose MSCs. Thus, the bone marrow MSCs are useful for bone tissue regeneration. However, the MSCs show limited proliferation and differentiation capabilities that hindered clinical applications in some cases. Recent advances reveal that transduction of plural transcription factors into human adult cells results in generation of new type of stem cells called induced pluripotent stem cells (iPS cells). A drawback of the iPS cells for clinical applications is tumor formation after their in vivo implantation; therefore it is difficult to use iPS cells for the treatment. To circumvent the problem, we transduced a single factor of either SOX2 or NANOG into the MSCs and found high proliferation as well as osteogenic differentiation capabilities of the MSCs. The stem cells could be combined with bioceramics for clinical applications. Here, we summarize our recent technologies using adult stem cells in viewpoints of bone tissue regeneration.

  17. Evaluation of the apical sealing ability of bioceramic sealer, AH plus & epiphany: An in vitro study

    Directory of Open Access Journals (Sweden)

    Suprit Sudhir Pawar

    2014-01-01

    Full Text Available Objective: This in vitro study evaluated and compared the microleakage of three sealers; Endosequence bioceramic (BC sealer, AH Plus and Epiphany. Materials and Methods: Study was done on 75 extracted human single rooted permanent teeth, which were decoronated and the root canals were instrumented. The specimens were randomly divided into three groups (n = 25 and obturated by continuous wave condensation technique. Group A: using Endosequence BC, Group B: using AH Plus sealer, Group C: using Resilon Epiphany system. Microleakage was evaluated using dye penetration method. Teeth were split longitudinally and then horizontally markings were made at 2, 4 and 6 mm from the apex. Dye penetration evaluation was done under stereomicroscope (30X magnification. Results: The dye penetration in Group B was more than in Group A and C in both vertical and horizontal directions, suggesting that newly introduced BC sealer and Epiphany sealer sealed the root canal better compared to AH Plus Sealer. Conclusion: Newer root canal sealers seal the root canal better but cannot totally eliminate leakage.

  18. Simultaneous mechanical property and biodegradation improvement of wollastonite bioceramic through magnesium dilute doping.

    Science.gov (United States)

    Xie, Jiajun; Yang, Xianyan; Shao, Huifeng; Ye, Juan; He, Yong; Fu, Jianzhong; Gao, Changyou; Gou, Zhongru

    2016-02-01

    The large-area bone defects in head (including calvarial, orbital, and maxillofacial bone) and segmental bone are attracting increased attention in a wide range of clinical departments. A key requirement for the clinical success of the bioactive ceramics is the match of the mechanical behavior of the implants with the specific bone tissue to be filled. This raises the question as to what design strategy might be the best indicators for the balance between mechanical properties and biological performances. Here we go beyond the traditional approaches that use phase conversion or biphasic hybrid; instead, we achieved a simultaneous enhancement of several mechanical parameters and optimalization of biodegradability by using a dilute doping of Mg in a single-phase wollastonite bioceramic. We show that the wollastonite ceramic can be rationally tuned in phase (α or β), mechanical strength (in compression and bending mode), elastic modulus (18-23GPa), and fracture toughness (>3.2MPam(1/2)) through the usage of Mg dopant introduced at precisely defined dilute concentrations (Mg/Ca molar ratio: 1.2-2.1%). Meanwhile, the dilute Mg-doped wollastonite ceramics are shown to exhibit good bioactivity in vitro in SBF but biodegradation in Tris is inversely proportional to Mg content. Consequently, such new highly bioactive ceramics with appreciable strength and toughness are promising for making specific porous scaffolds for enhancing large segmental bone defect and thin-wall bone defect repair.

  19. Preparation of porous bioceramics using reverse thermo-responsive hydrogels in combination with rhBMP-2 carriers: in vitro and in vivo evaluation.

    Science.gov (United States)

    Fu, Yin-Chih; Chen, Chung-Hwan; Wang, Chau-Zen; Wang, Yan-Hsiung; Chang, Je-Ken; Wang, Gwo-Jaw; Ho, Mei-Ling; Wang, Chih-Kuang

    2013-11-01

    Porous biphasic calcium phosphates (BCP) were fabricated using reverse thermo-responsive hydrogels with hydroxyapatite (HAp) and β-tricalcium (β-TCP) powder and planetary centrifugal mixer. This hydrogel mixture slurry will shrink and compress the HAp powder during the sintering process. The porous bioceramics are expected to have good mechanical properties after sintering at 1200°C. Reverse thermo-responsive hydrogels of poly[(N-isopropylacrylamide)-co-(methacrylic acid)] p(NiPAAm-MAA) were synthesized by free-radical cross-linking copolymerization, and their chemical properties were evaluated by nuclear magnetic resonance spectroscopy, infrared spectroscopy, and electrospray-ionization mass spectrometry. The lower critical solution temperature (LCST) of the hydrogel was determined using turbidity measurements. A thermogravimetric analysis was used to examine the thermal properties. The porous bioceramic properties were analyzed by X-ray diffraction, scanning electron microscopy, bulk density, compressive strength testing and cytotoxicity. The compressive strength and average porosity of the porous bioceramics were examined at approximately 6.8MPa and 66% under 10wt% p(NiPAAm-MAA)=99:1 condition. The ratio of HAp/β-TCP can adjust two different compositional behaviors during the 1200°C sintering process without resulting in cell toxicity. The (rhBMP-2)-HAp-PLGA carriers were fabricated as in our previous study of the double emulsion and drop-coating technique. Results of animal study included histological micrographs of the 1-mm defect in the femurs, with the rhBMP-2 carrier group, the bioceramic spacer group and the bioceramic spacer with rhBMP-2 carriers group showing better callus formation around the femur defect site than the control group. The optimal dual effects of the bone growth factors from osteoconductive bioceramics and osteoinductive rhBMP-2 carriers produced better bone formation. PMID:23880039

  20. 生物陶瓷材料在牙髓病治疗中的应用%Application of bioceramic material in endodontic therapy

    Institute of Scientific and Technical Information of China (English)

    刘佳

    2012-01-01

    生物陶瓷材料在牙髓病学领域的广泛研发和临床应用,被誉为牙髓病学材料不断更新发展的里程碑性象征.本文就生物陶瓷材料的分类、研究进展及其在牙髓病治疗中的临床应用作一综述.%Bioceramic materials have developed rapidly and been widely applied in endodontic treatment. This article reviews the classification, characteristics and endodontic application of bioceramic materials.

  1. Effect of micro-nano-hybrid structured hydroxyapatite bioceramics on osteogenic and cementogenic differentiation of human periodontal ligament stem cell via Wnt signaling pathway

    Directory of Open Access Journals (Sweden)

    Mao LX

    2015-11-01

    Full Text Available Lixia Mao,1,* Jiaqiang Liu,1,* Jinglei Zhao,1 Jiang Chang,2 Lunguo Xia,1 Lingyong Jiang,1 Xiuhui Wang,2 Kaili Lin,2,3 Bing Fang11Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Top Priority Clinical Medical Center of Shanghai Municipal Commission of Health and Family Planning, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, 2State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 3Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, People’s Republic of China*These authors contributed equally to this workAbstract: The surface structure of bioceramic scaffolds is crucial for its bioactivity and osteoinductive ability, and in recent years, human periodontal ligament stem cells have been certified to possess high osteogenic and cementogenic differential ability. In the present study, hydroxyapatite (HA bioceramics with micro-nano-hybrid surface (mnHA [the hybrid of nanorods and microrods] were fabricated via hydrothermal reaction of the α-tricalcium phosphate granules as precursors in aqueous solution, and the effects of mnHA on the attachment, proliferation, osteogenic and cementogenic differentiations of human periodontal ligament stem cells as well as the related mechanisms were systematically investigated. The results showed that mnHA bioceramics could promote cell adhesion, proliferation, alkaline phosphatase (ALP activity, and expression of osteogenic/cementogenic-related markers including runt-related transcription factor 2 (Runx2, ALP, osteocalcin (OCN, cementum attachment protein (CAP, and cementum protein (CEMP as compared to the HA bioceramics with flat and dense surface. Moreover, mnHA bioceramics stimulated gene expression of low-density lipoprotein receptor

  2. Processing and characterization of multi-cellular monolithic bioceramics for bone regenerative scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Ari-Wahjoedi, Bambang, E-mail: bambang-ariwahjoedi@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia); Centre for Intelligent Signal and Imaging Research, Universiti Teknologi PETRONAS, Bandar Seri Iskandar (Malaysia); Ginta, Turnad Lenggo [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia); Centre for Intelligent Signal and Imaging Research, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tro (Malaysia); Parman, Setyamartana [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia); Abustaman, Mohd Zikri Ahmad [Kebabangan Petroleum Operating Company Sdn Bhd, Lvl. 52, Tower 2, PETRONAS Twin Towers, KLCC, 50088 Kuala Lumpur (Malaysia)

    2014-10-24

    Multicellular monolithic ceramic body is a ceramic material which has many gas or liquid passages partitioned by thin walls throughout the bulk material. There are many currently known advanced industrial applications of multicellular ceramics structures i.e. as supports for various catalysts, electrode support structure for solid oxide fuel cells, refractories, electric/electronic materials, aerospace vehicle re-entry heat shields and biomaterials for dental as well as orthopaedic implants by naming only a few. Multicellular ceramic bodies are usually made of ceramic phases such as mullite, cordierite, aluminum titanate or pure oxides such as silica, zirconia and alumina. What make alumina ceramics is excellent for the above functions are the intrinsic properties of alumina which are hard, wear resistant, excellent dielectric properties, resists strong acid and alkali attacks at elevated temperatures, good thermal conductivities, high strength and stiffness as well as biocompatible. In this work the processing technology leading to truly multicellular monolithic alumina ceramic bodies and their characterization are reported. Ceramic slip with 66 wt.% solid loading was found to be optimum as impregnant to the polyurethane foam template. Mullitic ceramic composite of alumina-sodium alumino disilicate-Leucite-like phases with bulk and true densities of 0.852 and 1.241 g cm{sup −3} respectively, pore linear density of ±35 cm{sup −1}, linear and bulk volume shrinkages of 7-16% and 32 vol.% were obtained. The compressive strength and elastic modulus of the bioceramics are ≈0.5-1.0 and ≈20 MPa respectively.

  3. Analysis of radiopacity, pH and cytotoxicity of a new bioceramic material

    Directory of Open Access Journals (Sweden)

    Letícia Chaves de SOUZA

    2015-08-01

    Full Text Available AbstractObjective RetroMTA® is a new hydraulic bioceramic indicated for pulp capping, perforations or root resorption repair, apexification and apical surgery. The aim of this study was to compare the radiopacity, pH variation and cytotoxicity of this material to ProRoot® MTA.Material and Methods Mixed cements were exposed to a digital x-ray along with an aluminum stepwedge for the radiopacity assay. pH values were verified after incubation period of 3, 24, 48, 72 and 168 hours. The cytotoxicity of each cement was tested on human periodontal ligament fibroblasts using a multiparametric assay. Data analysis was performed using ANOVA and Tukey’spost hoc in GraphPad Prism.Results ProRoot® MTA had higher radiopacity than RetroMTA®(p0.05 although pH levels of both materials reduced over time. Both ProRoot® MTA and RetroMTA® allowed for significantly higher cell viability when compared with the positive control (p<0.001. No statistical difference was observed between ProRoot® MTA and RetroMTA® cytotoxicity level in all test parameters, except for the ProRoot® MTA 48-hour extract media in the NR assay (p<0.05.Conclusion The current study provides new data about the physicochemical and biological properties of Retro® MTA concerning radiopacity, pH and cytotoxic effects on human periodontal ligaments cells. Based on our findings, RetroMTA® meets the radiopacity requirements standardized by ANSI/ADA number 572, and similar pH values and biocompatibility to ProRoot® MTA. Further studies should be performed to evaluate additional properties of this new material.

  4. Partial Pulpotomy of Immature Teeth with Apical Periodontitis using Bioceramics and Mineral Trioxide Aggregate: A Report of Three Cases.

    Science.gov (United States)

    Jiang, Shan; Wu, Hao; Zhang, Cheng Fei

    2016-06-01

    Pulpal necrosis of an immature permanent tooth with an open apex poses a challenge for the clinician. The conventional apexification technique using calcium hydroxide has yielded short-term success, but this technique has inevitable shortcomings. Hence, this case series aimed to evaluate the effectiveness of using bioceramics (iRoot BP) or mineral trioxide aggregate (MTA) for partial pulpotomies. Three boys aged 9 to 11 years old presented with partial pulp necrosis and symptomatic apical periodontitis of the mandibular right and left second premolar. The involved teeth were treated with a partial pulpotomy using either iRoot BP (case 1 and 2) or MTA (case 3). At the 8-month follow-up, no abnormal clinical signs or symptoms were observed. Periapical radiographs revealed a significant reduction in periapical radiolucency, a marked increase in the root canal wall thickness and ongoing closure of the apical opening. The bioceramic material (iRoot BP) and MTA both produced successful outcomes in the partial pulpotomy of immature teeth with partial pulp necrosis and apical periodontitis. However, iRoot BP was superior in terms of ease of clinical application, and would therefore be a better treatment alternative than MTA. PMID:27379350

  5. Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering.

    Science.gov (United States)

    Zhou, Changchun; Deng, Congying; Chen, Xuening; Zhao, Xiufen; Chen, Ying; Fan, Yujiang; Zhang, Xingdong

    2015-08-01

    Functionally graded materials (FGM) open the promising approach for bone tissue repair. In this study, a novel functionally graded hydroxyapatite (HA) bioceramic with micrograin and nanograin structure was fabricated. Its mechanical properties were tailored by composition of micrograin and nanograin. The dynamic mechanical analysis (DMA) indicated that the graded HA ceramics had similar mechanical property compared to natural bones. Their cytocompatibility was evaluated via fluorescent microscopy and MTT colorimetric assay. The viability and proliferation of rabbit bone marrow mesenchymal stem cells (BMSCs) on ceramics indicated that this functionally graded HA ceramic had better cytocompatibility than conventional HA ceramic. This study demonstrated that functionally graded HA ceramics create suitable structures to satisfy both the mechanical and biological requirements of bone tissues.

  6. Degradation behavior of n-MAO/EPD bio-ceramic composite coatings on magnesium alloy in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ying, E-mail: yxiong@zjut.edu.cn [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Lu, Chao [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Wang, Chao; Song, Renguo [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China)

    2015-03-15

    Highlights: • A bio-ceramic n-MAO/EPD coating was prepared by combined MAO and EPD technique. • The precipitates of Ca/P compound are formed on the surface samples during immersion. • The n-MAO/EPD coating with HA dense structure has a favorable anti-corrosion effect. • Two degradation mechanism models for the n-MAO and n-MAO/EPD coating were proposed. - Abstract: The bio-ceramic composite coatings have been fabricated on ZK60 magnesium (Mg) alloy to improve its bio-corrosion resistance in a simulated body fluid (SBF). Firstly, micro-arc oxidation coatings (n-MAO coating) with the addition of zirconium oxide (ZrO{sub 2}) and cerium oxide (CeO{sub 2}) nano-particles were prepared by MAO technique on ZK60Mg alloy in alkaline electrolyte. Secondly, nano-hydroxyapatite (HA) was deposited on the surface of n-MAO coatings by using electrophoretic deposition (EPD) technique. The degradation behavior of the coated samples was investigated by means of immersion tests and electrochemical impedance spectroscopy (EIS) in the SBF at 36.5 ± 0.5 °C. The variation of phase composition, surface and cross-section morphology of coatings at different immersion stages were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results showed that the precipitation layer with biological activity formed on the surface of coated samples during the SBF immersion, which can inhibit Mg alloys from degrading effectively. The n-MAO/EPD composite coating with HA dense structure has a favorable anti-corrosion effect compared to the n-MAO coating. Degradation mechanism model of the corrosion process at different corrosion stages for two kinds of coatings were proposed. The long-term corrosion protection of the n-MAO/EPD composite coating was governed significantly by the synergistic effect of phase composition stability and micro structural integrity.

  7. The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Bai Feng; Zhang Jinkang; Wang Zhen; Liu Jian; Meng Guolin; Dong Xin [Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Lu Jianxi; Chang Jiang, E-mail: baifeng_fmmu@126.com [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2011-02-15

    The purpose of this study was to investigate the role of pore size on tissue ingrowth and neovascularization in porous bioceramics under the accurate control of the pore parameters. For that purpose, {beta}-tricalcium phosphate ({beta}-TCP) cylinders with four different macropore sizes (300-400, 400-500, 500-600 and 600-700 {mu}m) but the same interconnection size (120 {mu}m) and unchangeable porosity were implanted into fascia lumbodorsalis in rabbits. The fibrous tissues and blood vessels formed in scaffolds were observed histologically and histomorphometrically. The vascularization of the porous bioceramics was analyzed by single-photon emission computed tomography (SPECT). It is found that pore size as an important parameter of a porous structure plays an important role in tissue infiltration into porous biomaterial scaffolds. The amount of fibrous tissue ingrowth increases with the decrease of the pore size. In four kinds of scaffolds with different macropore sizes (300-400, 400-500, 500-600 and 600-700 {mu}m) and a constant interconnection size of 120 {mu}m, the areas of fibrous tissue (%) were 60.5%, 52.2%, 41.3% and 37.3%, respectively, representing a significant decrease at 4 weeks (P < 0.01). The pore size of a scaffold is closely related to neovascularization of macroporous biomaterials implanted in vivo. A large pore size is beneficial for the growth of blood vessels, and the diameter of a pore smaller than 400 {mu}m limits the growth of blood vessels and results in a smaller blood vessel diameter.

  8. Hierarchical bioceramic scaffolds with 3D-plotted macropores and mussel-inspired surface nanolayers for stimulating osteogenesis

    Science.gov (United States)

    Xu, Mengchi; Zhai, Dong; Xia, Lunguo; Li, Hong; Chen, Shiyi; Fang, Bing; Chang, Jiang; Wu, Chengtie

    2016-07-01

    The hierarchical structure of biomaterials plays an important role in the process of tissue reconstruction and regeneration. 3D-plotted scaffolds have been widely used for bone tissue engineering due to their controlled macropore structure and mechanical properties. However, the lack of micro- or nano-structures on the strut surface of 3D-plotted scaffolds, especially for bioceramic scaffolds, limits their biological activity. Inspired by the adhesive versatility of mussels and the active ion-chelating capacity of polydopamine, we set out to prepare a hierarchical bioceramic scaffold with controlled macropores and mussel-inspired surface nanolayers by combining the 3D-plotting technique with the polydopamine/apatite hybrid strategy in order to synergistically accelerate the osteogenesis and angiogenesis. β-Tricalcium phosphate (TCP) scaffolds were firstly 3D-plotted and then treated in dopamine-Tris/HCl and dopamine-SBF solutions to obtain TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds, respectively. It was found that polydopamine/apatite hybrid nanolayers were formed on the surface of both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds and TCP-DOPA-SBF scaffolds induced apatite mineralization for the second time during the cell culture. As compared to TCP scaffolds, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly promoted the osteogenesis of bone marrow stromal cells (BMSCs) as well as the angiogenesis of human umbilical vein endothelial cells (HUVECs), and the TCP-DOPA-SBF group presented the highest in vitro osteogenic/angiogenic activity among the three groups. Furthermore, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly improved the formation of new bone in vivo as compared to TCP scaffolds without a nanostructured surface. Our results suggest that the utilization of a mussel-inspired Ca, P-chelated polydopamine nanolayer on 3D-plotted bioceramic scaffolds is a viable and effective strategy to construct a hierarchical structure for synergistically

  9. Hierarchical bioceramic scaffolds with 3D-plotted macropores and mussel-inspired surface nanolayers for stimulating osteogenesis

    Science.gov (United States)

    Xu, Mengchi; Zhai, Dong; Xia, Lunguo; Li, Hong; Chen, Shiyi; Fang, Bing; Chang, Jiang; Wu, Chengtie

    2016-07-01

    The hierarchical structure of biomaterials plays an important role in the process of tissue reconstruction and regeneration. 3D-plotted scaffolds have been widely used for bone tissue engineering due to their controlled macropore structure and mechanical properties. However, the lack of micro- or nano-structures on the strut surface of 3D-plotted scaffolds, especially for bioceramic scaffolds, limits their biological activity. Inspired by the adhesive versatility of mussels and the active ion-chelating capacity of polydopamine, we set out to prepare a hierarchical bioceramic scaffold with controlled macropores and mussel-inspired surface nanolayers by combining the 3D-plotting technique with the polydopamine/apatite hybrid strategy in order to synergistically accelerate the osteogenesis and angiogenesis. β-Tricalcium phosphate (TCP) scaffolds were firstly 3D-plotted and then treated in dopamine-Tris/HCl and dopamine-SBF solutions to obtain TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds, respectively. It was found that polydopamine/apatite hybrid nanolayers were formed on the surface of both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds and TCP-DOPA-SBF scaffolds induced apatite mineralization for the second time during the cell culture. As compared to TCP scaffolds, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly promoted the osteogenesis of bone marrow stromal cells (BMSCs) as well as the angiogenesis of human umbilical vein endothelial cells (HUVECs), and the TCP-DOPA-SBF group presented the highest in vitro osteogenic/angiogenic activity among the three groups. Furthermore, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly improved the formation of new bone in vivo as compared to TCP scaffolds without a nanostructured surface. Our results suggest that the utilization of a mussel-inspired Ca, P-chelated polydopamine nanolayer on 3D-plotted bioceramic scaffolds is a viable and effective strategy to construct a hierarchical structure for synergistically

  10. The effect of calcium silicate on in vitro physiochemical properties and in vivo osteogenesis, degradability and bioactivity of porous β-tricalcium phosphate bioceramics

    International Nuclear Information System (INIS)

    Porous β-tricalcium phosphate(TCP)/calcium silicate(CS) composite bioceramics with different weight proportions were prepared to investigate the in vitro effects of CS on the physiochemical properties of TCP and the in vivo effects of CS on the degradability, osteogenesis and bioactivity of TCP. The physiochemical results showed that the addition of CS to porous TCP resulted in a looser and rougher surface and a lower solid density, compressive strength and Young's modulus and a lower pH value as compared to pure CS without any chemical interaction between the TCP and the CS. The in vivo study showed that the material degradation of porous TCP/CS composite bioceramics was slower than that of pure CS, although the osteogenesis, degradability and bioactivity were significantly increased in the long term. Thereafter, the introduction of CS into porous TCP bioceramics is an effective way to prepare bioactive bone grafting scaffolds for clinical use and to control properties such as in vivo degradability and osteoinduction of TCP. (paper)

  11. Virucidal Properties of Bioceramic Derived from Chicken Feces pH 13 and its Stability in Harsh Environments.

    Science.gov (United States)

    Thammakarn, Chanathip; Sangsriratanakul, Natthanan; Ishida, Yuki; Suguro, Atsushi; Yamada, Masashi; Toyofuku, Chiharu; Nakajima, Katsuhiro; Kitazawa, Minori; Ota, Mari; Hakim, Hakimullah; Alam, Md Shahin; Shoham, Dany; Takehara, Kazuaki

    2016-09-01

    Bioceramic derived from chicken feces (BCX) is a material produced by a sintering process for the purpose of use in animal farms to control livestock infectious diseases. In the present study, BCX at pH 13 was evaluated for the durability of its virucidal activity in simulated field conditions. First it was shown that BCX had activity toward Newcastle disease virus, infectious bursal disease virus, and goose parvovirus within 3 min and toward avian influenza virus (AIV) within 1 hr. BCX was further tested by keeping it under simulated harsh environmental conditions with sunlight for several weeks as well as by repeatedly soaking it with water and drying under sunlight many times. After sampling every 2 consecutive weeks and every 2 (of 9) consecutive resuspensions, BCX was evaluated for its efficacy against AIV. Evaluation under the harsh conditions illustrated that BCX could retain its satisfactory efficacy toward AIV throughout 7 wk and through 9 resuspensions. It is hence concluded that BCX is an excellent material for applying in livestock farming as a trapping disinfectant, due to its efficacy to inactivate various viruses, and that this efficacy is prolonged even under harsh environmental conditions. PMID:27610720

  12. Surface microhardness of different thicknesses of a premixed bioceramic material with or without the application of a moist cotton pellet

    Directory of Open Access Journals (Sweden)

    Noushin Shokouhinejad

    2016-01-01

    Full Text Available Background: This study was conducted to assess the effect of thickness and hydration condition on the surface microhardness of Endosequence Root Repair Material putty (ERRM; Brasseler USA, Savannah, GA, a premixed bioceramic material. Materials and Methods: Polymethyl methacrylate cylindrical molds with an internal diameter of 4 mm and three heights of 2, 4, and 6 mm were fabricated. In Group 1 (dry condition, the molds with heights of 2, 4, and 6 mm (10 molds of each were filled with ERRM. In Groups 2 and 3 (wet condition, a distilled water- or phosphate-buffered saline (PBS-moistened cotton pellet was placed directly on the upper surface of ERRM, respectively. The lower surface of ERRM was in contact with floral foams soaked with human blood. After 4 days, Vickers microhardness of the upper surface of ERRM was tested. The data were analyzed using two-way analysis of variance. Significance level was set at P 0.05. Conclusion: Based on the results of this study, it could be concluded that placing a moistened cotton pellet on ERRM putty up to 6 mm thick might be unnecessary to improve its surface microhardness and hydration characteristics.

  13. Bioceramic-collagen scaffolds loaded with human adipose-tissue derived stem cells for bone tissue engineering.

    Science.gov (United States)

    Daei-Farshbaf, Neda; Ardeshirylajimi, Abdolreza; Seyedjafari, Ehsan; Piryaei, Abbas; Fadaei Fathabady, Fatemeh; Hedayati, Mehdi; Salehi, Mohammad; Soleimani, Masoud; Nazarian, Hamid; Moradi, Sadegh-Lotfalah; Norouzian, Mohsen

    2014-02-01

    The combination of bioceramics and stem cells has attracted the interest of research community for bone tissue engineering applications. In the present study, a combination of Bio-Oss(®) and type 1 collagen gel as scaffold were loaded with human adipose-tissue derived mesenchymal stem cells (AT-MSCs) after isolation and characterization, and the capacity of them for bone regeneration was investigated in rat critical size defects using digital mammography, multi-slice spiral computed tomography imaging and histological analysis. 8 weeks after implantation, no mortality or sign of inflammation was observed in the site of defect. According to the results of imaging analysis, a higher level of bone regeneration was observed in the rats receiving Bio-Oss(®)-Gel compared to untreated group. In addition, MSC-seeded Bio-Oss-Gel induced the highest bone reconstruction among all groups. Histological staining confirmed these findings and impressive osseointegration was observed in MSC-seeded Bio-Oss-Gel compared with Bio-Oss-Gel. On the whole, it was demonstrated that combination of AT-MSCs, Bio-Oss and Gel synergistically enhanced bone regeneration and reconstruction and also could serve as an appropriate structure to bone regenerative medicine and tissue engineering application.

  14. Bioceramic/Poly (glycolic-poly (lactic acid composite induces mineralized barrier after direct capping of rat tooth pulp tissue

    Directory of Open Access Journals (Sweden)

    Alfonso Gala-Garcia

    2010-03-01

    Full Text Available The aim of this study was to observe the histopathological pulp response following direct pulp capping of mechanically exposed teeth in rats with a composite of beta-tricalcium phosphate-hydroxyapatite bioceramic (BC and poly (glycolic-poly (lactic acid (PLGA material or a calcium hydroxide [Ca(OH2] material, compared to BC alone and a negative control of water. Pulp of the maxillary molars was exposed, followed by capping with the experimental material. The pulpal tissue response was assessed post-operatively at 1, 7, 14 and 30 d, followed by histological analysis. The Ca(OH2 group exhibited severe acute inflammatory cell infiltration at day 14. However after 30 d, a new hard tissue with macro porous obliteration of the pulp chamber and a characteristic necrotic area had appeared. BC and Ca(OH2 capping were associated with moderate inflammation and dentinal bridge similar. Meanwhile, in the BC/PLGA composite group, there was moderate inflammatory infiltrate and formation of a dense and complete dentinal bridge. In conclusion, the BC/PLGA composite material showed a large zone of tertiary dentin, and effectively reorganized the dentin-pulp complex.

  15. Preparation and performance of fosfomycin-impregnated bioceramic%复合磷霉素多孔生物陶瓷的制备及其理化性能

    Institute of Scientific and Technical Information of China (English)

    陈文钧; 许耀; 卢建熙; 周则红; 马晓生; 姜建元

    2011-01-01

    Objective To prepare fosfomycin-impregnated bioceramic as a new kind of bone graft.Methods The fosfomycin-impregnated bioceramic was prepared by means of impregnation. After irrigation sterilization, the physical and mechanical properties of fosfomycin-impregnated bioceramic was investigated. Results The physical and mechanical property test showed that the compressive strength was in the normal range after fosfomycin loaded. Conclusions There was no significant differents after the fosfomycin-impregnated bioceramic was prepared.%目的 研制磷霉素多孔生物陶瓷复合体,为临床植骨并减少感染发生提供更好的选择.方法 将磷霉素溶液与多孔生物陶瓷浸泡,风干.测定生物陶瓷吸附磷霉素能力以及测定吸附后多孔生物陶瓷理化性能上的变化.结果 生物陶瓷吸附一定量的磷霉素后,理化性能测试提示其钙磷比和压缩强度仍在正常范围内.结论 生物陶瓷能吸附磷霉素,其理化性质吸附前后没有明显的变化.

  16. Improvement of the mechanical properties of spark plasma sintered hap bioceramics by decreasing the grain size and by adding multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Veljović Đ.

    2013-01-01

    Full Text Available Composites based on HAP and oxidized multi-walled carbon nanotubes (o-MWCNT and monophase HAP materials were processed by spark plasma sintering. Starting from stoichiometric nano-sized HAP powder, monophase bioceramics were obtained with a density close to the theoretical one and with an average grain size of several hundred nanometers to micron dimensions. It was shown that decreasing the sintering temperature resulted in a decrease of the grain size, which affected an increase in the fracture toughness and hardness. The fracture toughness of an HAP/ o-MWCNT bioceramic processed at 900°C for only 5 min was 30 % higher than that of monophase HAP materials obtained under the same conditions. The addition of MWCNT during SPS processing of HAP materials caused a decrease in the grain size to the nano-dimension, which was one of the reasons for the improved mechanical properties. [Projekat Ministarstva nauke Republike Srbije, br. III45019 i FP7-REGPOT-2009-1 NANOTECH FTM, Grant Agreement Number: 245916

  17. Magnetism and thermal induced characteristics of Fe{sub 2}O{sub 3} content bioceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chun-Shiang; Hsi, Chi-Shiung [Department of Materials Science and Engineering, National United University, Miaoli 36003, Taiwan (China); Hsu, Fang-Chi, E-mail: fangchi@nuu.edu.tw [Department of Materials Science and Engineering, National United University, Miaoli 36003, Taiwan (China); Wang, Moo-Chin [Department of Fragrance and Cosmetics, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, Yung-Sheng [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 803, Taiwan (China)

    2012-11-15

    Magnetic properties of Li{sub 2}O-MnO{sub 2}-CaO-P{sub 2}O{sub 5}-SiO{sub 2} (LMCPS) glasses doped with various amounts of Fe{sub 2}O{sub 3} were investigated. There is a dramatic change in the magnetic property of pristine LMCPS after the addition of Fe{sub 2}O{sub 3} and crystallized at 850 Degree-Sign C for 4 h. Both the electron paramagnetic resonance and magnetic susceptibility measurements showed that the glass ceramic with 4 at% Fe{sub 2}O{sub 3} exhibited the coexistence of superparamagnetism and ferromagnetism at room temperature. When the Fe{sub 2}O{sub 3} content was higher than 8 at%, the LMCPS glasses showed ferromagnetism behavior. The complex magnetic behavior is due to the distribution of (Li, Mn)ferrite particle sizes driven by the Fe{sub 2}O{sub 3} content. The thermal induced hysteresis loss of the crystallized LMCPS glass ceramics was characterized under an alternating magnetic field. The energy dissipations of the crystallized LMCPS glass ceramics were determined by the concentration and Mn/Fe ratios of Li(Mn, Fe)ferrite phase formed in the glass ceramics. - Highlights: Black-Right-Pointing-Pointer Presence of Fe{sub 2}O{sub 3} in LMCPS glass ceramic promotes the growth of (Li, Mn)ferrite. Black-Right-Pointing-Pointer The amount of Fe{sub 2}O{sub 3} determines the size of (Li,Mn)ferrite particles. Black-Right-Pointing-Pointer Room temperature superparamagnetism was obtained at 4 at% of Fe{sub 2}O{sub 3} addition. Black-Right-Pointing-Pointer In addition, Li(Mn, Fe)ferrite phase contributes to the magnetic energy loss. Black-Right-Pointing-Pointer The largest energy loss is the trade-off between the ferrite content and Mn/Fe ratio.

  18. Magnetism and thermal induced characteristics of Fe2O3 content bioceramics

    International Nuclear Information System (INIS)

    Magnetic properties of Li2O–MnO2–CaO–P2O5–SiO2 (LMCPS) glasses doped with various amounts of Fe2O3 were investigated. There is a dramatic change in the magnetic property of pristine LMCPS after the addition of Fe2O3 and crystallized at 850 °C for 4 h. Both the electron paramagnetic resonance and magnetic susceptibility measurements showed that the glass ceramic with 4 at% Fe2O3 exhibited the coexistence of superparamagnetism and ferromagnetism at room temperature. When the Fe2O3 content was higher than 8 at%, the LMCPS glasses showed ferromagnetism behavior. The complex magnetic behavior is due to the distribution of (Li, Mn)ferrite particle sizes driven by the Fe2O3 content. The thermal induced hysteresis loss of the crystallized LMCPS glass ceramics was characterized under an alternating magnetic field. The energy dissipations of the crystallized LMCPS glass ceramics were determined by the concentration and Mn/Fe ratios of Li(Mn, Fe)ferrite phase formed in the glass ceramics. - Highlights: ► Presence of Fe2O3 in LMCPS glass ceramic promotes the growth of (Li, Mn)ferrite. ► The amount of Fe2O3 determines the size of (Li,Mn)ferrite particles. ► Room temperature superparamagnetism was obtained at 4 at% of Fe2O3 addition. ► In addition, Li(Mn, Fe)ferrite phase contributes to the magnetic energy loss. ► The largest energy loss is the trade-off between the ferrite content and Mn/Fe ratio.

  19. Osteoblast interaction with laser cladded HA and SiO2-HA coatings on Ti-6Al-4V

    International Nuclear Information System (INIS)

    In order to improve the bioactivity and biocompatibility of titanium endosseous implants, the morphology and composition of the surfaces were modified. Polished Ti-6Al-4V substrates were coated by a laser cladding process with different precursors: 100 wt.% HA and 25 wt.% SiO2-HA. X-ray diffraction of the laser processed samples showed the presence of CaTiO3, Ca3(PO4)2, and Ca2SiO4 phases within the coatings. From in vitro studies, it was observed that compared to the unmodified substrate all laser cladded samples presented improved cellular interactions and bioactivity. The samples processed with 25 wt.% SiO2-HA precursor showed a significantly higher HA precipitation after immersion in simulated body fluid than 100 wt.% HA precursor and titanium substrates. The in vitro biocompatibility of the laser cladded coatings and titanium substrate was investigated by culturing of mouse MC3T3-E1 pre-osteoblast cell line and analyzing the cell viability, cell proliferation, and cell morphology. A significantly higher cell attachment and proliferation rate were observed for both laser cladded 100 wt.% HA and 25 wt.% SiO2-HA samples. Compared to 100 wt.% HA sample, 25 wt.% SiO2-HA samples presented a slightly improved cellular interaction due to the addition of SiO2. The staining of the actin filaments showed that the laser cladded samples induced a normal cytoskeleton and well-developed focal adhesion contacts. Scanning electron microscopic image of the cell cultured samples revealed better cell attachment and spreading for 25 wt.% SiO2-HA and 100 wt.% HA coatings than titanium substrate. These results suggest that the laser cladding process improves the bioactivity and biocompatibility of titanium. The observed biological improvements are mainly due to the coating induced changes in surface chemistry and surface morphology. Highlights: → Laser cladding of Ti alloys with bioceramics creates new phases. → Laser cladded samples with SiO2-doped bioceramics show higher

  20. Degradation behaviour of a new bioceramic: Ca2P2O7 with addition of Na4P2O7.10H2O.

    Science.gov (United States)

    Lin, F H; Liao, C J; Chen, K S; Sun, J S; Liu, H C

    1997-07-01

    A newly produced bioceramic, beta-Ca2P2O7 with addition of Na4P2O7.10H2O (SDCP), has been implanted into the femoral condyle of rabbits. Within 6 weeks after implantation, most of the bioceramic is replaced by new woven bone. On the contrary, block from hydroxyapatite (HA) and beta-tricalcium phosphate (beta-TCP), which are osteoconductible, do not resorb within a short period of time. We believe that the biodegradable behaviour of SDCP may occur in two steps. The first and most important step is the digestion of particles and migration of the particles by phagocytosis. The object of this study is to examine the change in morphologies, chemical compositions and crystal structure of SDCP after soaking in distilled water for a certain period of time. The SDCP ceramic was also co-cultured with leucocytes to observe how the SDCP particles were digested by the leucocytes, so that the mechanism of biodegradable behaviour of SDCP ceramic in vivo might be clarified. Four types of sintered calcium phosphate ceramics were tested in the experiment: SDCP, pure beta-Ca2P2O7 (DCP), HA and beta-TCP. They wee soaked in distilled water at 37 degrees C for up to 30 days. The microstructure and morphology of crystals deposited on the surface were observed using scanning electron microscopy. Sodium, calcium and phosphorus ion contents in the supernatant solution were detected by atomic absorption analysis and ion coupled plasma. In summary, HA and DCP showed no significant evidence of dissolution in distilled water. In static distilled water, calcium ions may be released from beta-TCP into solution during the initial 7 days and then converted into HA by reprecipitation. The results showed that the SDCP was firstly dissolved into small grains or fragments by the solution. The small fragments should be so small as to be digested by the phagocytes in a physiological environment.

  1. ????????????-???????????? ?????? ? ????????????? ????????? ???????? ??????? Ge-Si

    OpenAIRE

    ????????, ?. ?.; ???????????, ?. ?.; ???, ?. ?.; ?????????, ?. ?.

    2003-01-01

    ?????????? ????????????-???????????? ?????? ? ????????????? ????????? (??) ???????? ??????? GexSi1-x (? = 0.01 - 0.03) p-???? ??????????? ? ?????????????? ????????? (4,2 ... 300 K). ????????????? ????? ?????????? ?? ?????-??? ?? ?????????????????? ??. ??????????? ?????????? ??????? ????????? ??????? ??? ?????????? ??. ???????? ?????????? ??????????? ?'???-??????? ?? ??????????????? ? ?? Ge-Si ??????? ???????? ?????-?????????? ?? ???????? ???????????. ?????????? ?????????? ??????????? ???...

  2. The experimental study on the magnetic bioceramic implant body cage%磁性生物陶瓷椎体间融合器的研究

    Institute of Scientific and Technical Information of China (English)

    娄朝晖; 陈安民; 李峰; 郭风劲; 李建军; 孙淑珍

    2008-01-01

    目的 检测由磁性生物陶瓷制作椎体间融合器生物愈合的可行性与稳定性.方法 应用磁性生物陶瓷制作椎体间融合器后,选健康2~4岁山羊9只,平均体重27.8kg,经氯胺酮诱导,气管插管,安氟醚吸入麻醉后,取右下腹腹膜外斜切口,暴露L3与L4椎间隙后,保留前纵韧带,从椎间隙外侧切开纤维环,摘除髓核后,牵引及撑开椎间隙,刮除软骨终板,凿去大部分椎骨表面皮质骨,植入"楔形"磁性生物陶瓷椎体间融合器.结果 9只山羊均成活,术后约8h即可恢复站立,行走;24h后恢复正常行走,进食,但是活动较少,大多数时间处于卧位,休息;3周后情况明显好转,活动恢复至正常.术后6个月,腹部彩色B超检查未见血拴形成,腹部大血管血供正常.定期X线检查,肉眼大体标本观察,光境观察,扫描电镜(SEM)观察,材料与骨实现牢固的"生物愈合".结论 采用磁性生物陶瓷制作椎体间融合器植入体内是可行的.%Objective To study the effect and stability of the magnetic bioceramic implant body cage in sheep.Methods After the L4/5 intervertebral disc of sheep was removed and replaced with the magnetic bioceramic implant body cage,the recovery of the 9 sheep was observed.The animals were killed at intervals from 1st,3nd and 5th month after operation,and the interface between the prosthesis and bone was examined by naked eye inspection,roentgenography,light and scanning electron microphotography.Results The function of the sheep was recovered rapidly,and bone bonding with the prosthesis was found,but the activity of the sheep could resume normally 3 weeks after the operation.Conclusion The replacement with the magnetic bioceramic implant body cage after removal of the intervertebral disc is effective and stable,and the biological fixation could be achieved with the bone ingrowth.

  3. Evaluation of a Novel HA/ZrO2-Based Porous Bioceramic Artificial Vertebral Body Combined with a rhBMP-2/Chitosan Slow-Release Hydrogel

    Science.gov (United States)

    Shi, Yihui; Quan, Renfu; Xie, Shangju; Li, Qiang; Cao, Guoping; Zhuang, Wei; Zhang, Liang; Shao, Rongxue; Yang, Disheng

    2016-01-01

    A new HA/ZrO2-based porous bioceramic artificial vertebral body (AVB), carried a recombinant human bone morphogenetic protein-2 (rhBMP-2)/chitosan slow-release hydrogel was prepared to repair vertebral bone defect in beagles. An ionic cross-linking was used to prepare the chitosan hydrogel (CS gel) as the rhBMP-2 slow-release carrier. The vertebral body defects were implanted with the rhBMP-2-loaded AVB in group A, or a non-drug-loaded AVB in group B, or autologous iliac in group C. The encapsulation rate of rhBMP-2 in rhBMP-2-loaded CS gel was 91.88±1.53%, with a drug load of 39.84±2.34 ng/mg. At 6, 12, 24 weeks postoperatively, radiography showed that the bone calluses gradually increased with time in group A, where the artificial vertebral body had completely fused with host-bone at 24 weeks after surgery. In group C, an apparent bone remodeling was occurred in the early stages, and the graft-bone and host-bone had also fused completely at 24 weeks postoperatively. In group B, fusion occurred less than in groups A and C. At 24 weeks after surgery, micro-computed tomography (Micro-CT) revealed that the volume of newly-formed bone in group A was significantly more than in group B (p<0.05). At 24 weeks after surgery, ultra-compressive strengths of the operated segments were 14.03±1.66 MPa in group A, 8.62±1.24 MPa in group B, and 13.78±1.43 MPa in group C. Groups A and C were both significantly higher than group B (p < 0.05). At 24 weeks postoperatively, the hard tissue sections showed that the AVB of group A had tightly fused with host bone, and that pores of the AVB had been filled with abundant nearly mature bone, and that the new bone structured similarly to a trabecular framework, which was similar to that in group C. In contrast, implant fusion of the AVB in group B was not as apparent as group A. In conclusion, the novel HA/ZrO2-based porous bioceramic AVB carried the rhBMP-2-loaded CS gel can promote the repair of bony defect, and induce bone tissue to

  4. Comparative study on the biodegradation and biocompatibility of silicate bioceramic coatings on biodegradable magnesium alloy as biodegradable biomaterial

    Science.gov (United States)

    Razavi, M.; Fathi, M. H.; Savabi, O.; Razavi, S. M.; Hashemibeni, B.; Yazdimamaghani, M.; Vashaee, D.; Tayebi, L.

    2014-03-01

    Many clinical cases as well as in vivo and in vitro assessments have demonstrated that magnesium alloys possess good biocompatibility. Unfortunately, magnesium and its alloys degrade too quickly in physiological media. In order to improve the biodegradation resistance and biocompatibility of a biodegradable magnesium alloy, we have prepared three types of coating include diopside (CaMgSi2O6), akermanite (Ca2MgSi2O6) and bredigite (Ca7MgSi4O16) coating on AZ91 magnesium alloy through a micro-arc oxidation (MAO) and electrophoretic deposition (EPD) method. In this research, the biodegradation and biocompatibility behavior of samples were evaluated in vitro and in vivo. The in vitro analysis was performed by cytocompatibility and MTT-assay and the in vivo test was conducted on the implantation of samples in the greater trochanter of adult rabbits. The results showed that diopside coating has the best bone regeneration and bredigite has the best biodegradation resistance compared to others.

  5. Effect of metal-ion-to-fuel ratio on the phase formation of bioceramic phosphates synthesized by self-propagating combustion

    Directory of Open Access Journals (Sweden)

    Swamiappan Sasikumar and Rajagopalan Vijayaraghavan

    2008-01-01

    Full Text Available Synthetic calcium hydroxyapatite (HAP, Ca10 (PO46 (OH2 is a well-known bioceramic material used in orthopedic and dental applications because of its excellent biocompatibility and bone-bonding ability due to its structural and compositional similarity to human bone. Here we report, for the first time, the synthesis of HAP by combustion employing tartaric acid as a fuel. Calcium nitrate is used as the source of calcium and diammonium hydrogen phosphate serves as the source of phosphate ions. Reaction processing parameters such as the pH, fuel-oxidant ratio and autoignition temperature are controlled and monitored. The products were characterized by powder x-ray diffraction, which revealed the formation of a hexagonal hydroxyapatite phase. Fourier transform infrared spectroscopy (FT-IR spectra showed that the substitution of a carbonate ion occurs at the phosphate site. The morphology of the particles was imaged by scanning electron microscopy, which also revealed that the particles are of submicron size. Thermal analysis showed that the phase formation takes place at the time of combustion. Surface area and porosity analysis showed that the surface area is high and that the pores are of nanometer size. The mean grain size of the HAP powder, determined by the Debye–Scherrer formula, is in the range 20–30 nm. Chemical analyses to determine the Ca : P atomic ratio in synthesized ceramics were performed, and it was found to be 1 : 1.66.

  6. Influence of saline solution on hydration behavior of β-dicalcium silicate in comparison with biphasic calcium phosphate/hydroxyapatite bio-ceramics.

    Science.gov (United States)

    Radwan, M M; Abd El-Hamid, H K; Mohamed, A F

    2015-12-01

    The influence of using saline solution as mixing and curing liquid on some characteristics of β-dicalcium silicate (β-C2S) and biphasic compound tri-calcium phosphate/hydroxyapatite (TCP/HAp) bio-ceramics was investigated. β-C2S (27-30 nm) was prepared by solid state reaction at 1450°C, while biphasic compound TCP/HAp (7-15 nm) was synthesized from an aqueous solution of Ca(NO3)2·4H2O and (NH4)2HPO4·12H2O by chemical precipitation method. Setting times, compressive strength, pH values, X-ray diffraction analysis, infrared spectroscopy, scanning electron microscopy (SEM) were investigated. The evaluation of cytotoxicity of both calcium silicate and biphasic compounds to human gingival fibroblasts was carried out. The use of saline solution as mixing and immersing liquid shortened the setting time for the two bio-cements. TCP/HAp did not show any mechanical strength but β-C2S showed good strength values. Both synthesized compounds showed a moderate cytotoxicity and both materials were effective in a no significant way.

  7. 与Si工艺兼容的Si/SiGe/Si HBT研究%The Study of Si/SiGe/Si HBT and Its Compatibility with Si Process

    Institute of Scientific and Technical Information of China (English)

    廖小平

    2001-01-01

    我们对Si/SiGe/Si HBT及其Si兼容工艺进行了研究,在研究了一些关键的单项工艺的基础上,提出了五个高速Si/SiGe/Si HBT结构和一个低噪声Si/SiGe/Si HBT结构,并已研制成功台面结构Si/SiGe/Si HBT和低噪声Si/SiGe/Si HBT,为进一步高指标的Si/SiGe/Si HBT的研究建立了基础.

  8. Influence of saline solution on hydration behavior of β-dicalcium silicate in comparison with biphasic calcium phosphate/hydroxyapatite bio-ceramics

    International Nuclear Information System (INIS)

    The influence of using saline solution as mixing and curing liquid on some characteristics of β-dicalcium silicate (β-C2S) and biphasic compound tri-calcium phosphate/hydroxyapatite (TCP/HAp) bio-ceramics was investigated. β-C2S (27–30 nm) was prepared by solid state reaction at 1450 °C, while biphasic compound TCP/HAp (7–15 nm) was synthesized from an aqueous solution of Ca(NO3)2·4H2O and (NH4)2HPO4·12H2O by chemical precipitation method. Setting times, compressive strength, pH values, X-ray diffraction analysis, infrared spectroscopy, scanning electron microscopy (SEM) were investigated. The evaluation of cytotoxicity of both calcium silicate and biphasic compounds to human gingival fibroblasts was carried out. The use of saline solution as mixing and immersing liquid shortened the setting time for the two bio-cements. TCP/HAp did not show any mechanical strength but β-C2S showed good strength values. Both synthesized compounds showed a moderate cytotoxicity and both materials were effective in a no significant way. - Highlights: • The dissolution and hydration of β-C2S and TCP/HAp in distilled water and saline solution were studied. • TCP/HAp did not show mechanical strength, while β-C2S showed good mechanical strength. • The use of saline solution did enhances the dissolution & hydration rate. • An increase in pH values was detected when using saline solution. • Both materials showed a moderate cytotoxicity in no significant way

  9. Influence of saline solution on hydration behavior of β-dicalcium silicate in comparison with biphasic calcium phosphate/hydroxyapatite bio-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Radwan, M.M., E-mail: mmahmoudradwan@yahoo.com [Ceramics Dept, National Research Centre, Cairo (Egypt); Abd El-Hamid, H.K. [Ceramics Dept, National Research Centre, Cairo (Egypt); Mohamed, A.F. [The Holding Company for Production of Vaccines, Sera and Drugs (EGYVAC) (Egypt)

    2015-12-01

    The influence of using saline solution as mixing and curing liquid on some characteristics of β-dicalcium silicate (β-C{sub 2}S) and biphasic compound tri-calcium phosphate/hydroxyapatite (TCP/HAp) bio-ceramics was investigated. β-C{sub 2}S (27–30 nm) was prepared by solid state reaction at 1450 °C, while biphasic compound TCP/HAp (7–15 nm) was synthesized from an aqueous solution of Ca(NO{sub 3}){sub 2}·4H{sub 2}O and (NH{sub 4}){sub 2}HPO{sub 4}·12H{sub 2}O by chemical precipitation method. Setting times, compressive strength, pH values, X-ray diffraction analysis, infrared spectroscopy, scanning electron microscopy (SEM) were investigated. The evaluation of cytotoxicity of both calcium silicate and biphasic compounds to human gingival fibroblasts was carried out. The use of saline solution as mixing and immersing liquid shortened the setting time for the two bio-cements. TCP/HAp did not show any mechanical strength but β-C{sub 2}S showed good strength values. Both synthesized compounds showed a moderate cytotoxicity and both materials were effective in a no significant way. - Highlights: • The dissolution and hydration of β-C{sub 2}S and TCP/HAp in distilled water and saline solution were studied. • TCP/HAp did not show mechanical strength, while β-C{sub 2}S showed good mechanical strength. • The use of saline solution did enhances the dissolution & hydration rate. • An increase in pH values was detected when using saline solution. • Both materials showed a moderate cytotoxicity in no significant way.

  10. Interface structure between epitaxial NiSi2 and Si

    Institute of Scientific and Technical Information of China (English)

    Wei-Long Liu; Wen-Jauh Chen; Ting-Kan Tsai; Hsun-Heng Tsai; Shu-Huei Hsieh

    2006-01-01

    The interface structure between the Si and NiSi2 epitaxially grown on the ((-1)12) Si substrate was studied using high resolution transmission electron microscopy and computer image simulation. The results showed that the interface between Si and NiSi2 epitaxially grown on the ((-1)12) Si substrate has six different types: type A NiSi2 ((-1)11 )/( (-1)11 ) Si, type A NiSi2 (001)/(001) Si, type B NiSi2 (1(-1)(-1))/(1(-1)1) Si, type B NiSi2 ((-1)12)/(1(-1)2) Si, type B NiSi2 (2(-2)1)/(001) Si, and type B NiSi2 (1(-1)(4))/( 1(-1)0 ) Si. And there are one or more different atomic structures for one type of interface.

  11. 射频 Si/SiGe/Si HBT的研究%Studies on RF Si/SiGe/Si HBT

    Institute of Scientific and Technical Information of China (English)

    廖小平; 殷刚毅

    2003-01-01

    Si/SiGe/Si HBT与Si工艺兼容的研究基础上,对射频Si/SiGe/Si HBT的射频特性和制备工艺进行了研究,分析了与器件结构有关的关键参数寄生电容和寄生电阻与Si/SiGe/Si HBT的特征频率fT和最高振荡频率fmax的关系,成功地制备了fT为2.5 GHz、fmax为2.3 GHz的射频Si/SiGe/Si HBT,为具有更好的射频性能的Si/SiGe/Si HBT的研究建立了基础.

  12. Ordering at Si(111)/o-Si and Si(111)/SiO2 Interfaces

    DEFF Research Database (Denmark)

    Robinson, I. K.; Waskiewicz, W. K.; Tung, R. T.;

    1986-01-01

    X-ray diffraction has been used to measure the intensity profile of the two-dimensional rods of scattering from a single interface buried inside a bulk material. In both Si(111)/a-Si and Si(111)/SiO2 examples there are features in the perpendicular-momentum-transfer dependence which are not expec...... are not expected from an ideal sharp interface. The diffraction profiles are explained by models with partially ordered layers extending into the amorphous region. In the Si(111)/a-Si case there is clear evidence of stacking faults which are attributed to residual 7×7 reconstruction....

  13. Privacy and Yin Si

    Institute of Scientific and Technical Information of China (English)

    胡迪

    2007-01-01

    <正>“Privacy” is translated as yin si in Chinese.Traditionally,in the Chinese mind,yin si is associated with something that is closed or unfair.If someone is said to have yin si,meddlers(好事者) will be attracted to pry(打探) into his or her affairs.So people always state that they don’t have yin si.

  14. Resonances in 28Si+28Si. II

    CERN Document Server

    Uegaki, Eiji

    2012-01-01

    Resonances observed in the 28Si+28Si collision are studied by the molecular model. In the preceding paper, it is clarified that at high spins in 28Si+28Si (oblate-oblate system), the stable dinuclear configuration of the system is equator-equator touching one, and that the axially asymmetric shape of the stable configuration of 28Si+28Si gives rise to a wobbling motion ($K$-mixing). There, the normal modes around the equilibrium have been solved and various excited states have been obtained. Those states are expected to be the origin of a large number of resonances observed. Hence their physical quantities are analyzed theoretically. The results are compared with the recent experiment performed in Strasbourg and turn out to be in good agreement with the data. Disalignments between the orbital angular momentum and the spins of the constituent 28Si nuclei in the resonance state are clarified. Moreover the analyses of the angular correlations indicate characteristic features for each normal-mode excitation. Thus...

  15. Bioactivity analysis of the Ta (V doped SiO2–CaO–Na2O–P2O5 ceramics prepared by solid state sintering method

    Directory of Open Access Journals (Sweden)

    Rehana Zia

    2016-02-01

    Full Text Available The main objective of the study was to control the degradation rate of material at a higher degradation rate improving the chemical stability of the material. Ta is known to have good chemical resistance, biocompatibility and show no adverse biological response. In the present study, SiO2–Na2O–CaO–P2O5 bioceramics with different Ta2O5 contents was prepared by solid state sintering method at 1000 °C. The as-sintered ceramics were subjected to immersion studies in stimulated body fluid (SBF for 21 days under static condition and characterized by XRD, FTIR, SEM, and AAS. The findings of the research indicate that the addition of Ta2O5 controlled degradability, and all samples showed sufficient bioactivity.

  16. Bioactivity analysis of the Ta (V) doped SiO2-CaO-Na2O-P2O5 ceramics prepared by solid state sintering method

    Institute of Scientific and Technical Information of China (English)

    Rehana Zia; Madeeha Riaz; Nida ul nasir; Farhat Saleemi; Zora Kayani; Safia Anjum; Farooq Bashir; Tousif Hussain

    2016-01-01

    The main objective of the study was to control the degradation rate of material at a higher degradation rate improving the chemical stability of the material. Ta is known to have good chemical resistance, biocompatibility and show no adverse biological response. In the present study, SiO2–Na2O–CaO–P2O5 bioceramics with different Ta2O5 contents was prepared by solid state sintering method at 1000 °C. The as-sintered ceramics were subjected to immersion studies in stimulated body fluid (SBF) for 21 days under static condition and characterized by XRD, FTIR, SEM, and AAS. The findings of the research indicate that the addition of Ta2O5 controlled degradability, and all samples showed sufficient bioactivity.

  17. Si/SiO2和Si/SiNx/SiO2超晶格的能带结构%Band structure of Si/SiO2 and Si/SiNx/SiO2 superlattices

    Institute of Scientific and Technical Information of China (English)

    魏屹; 董成军; 徐明

    2010-01-01

    利用Kronig-Penney模型从理论上计算了Si/SiO2和Si/Si/SiNx/SiO2多层膜结构中量子阱的能带结构,进一步分析了各亚层薄膜厚度对能带结构和有效质量的影响.结果发现,适当减少亚层的厚度都能使得纳米Si薄膜的带隙发生明显宽化.在Si/SiO2超晶格中,Si量子阱层带隙能量随着Si层厚度的变化符合EPLL(eV)=1.6+0.7/d2关系,与我们的计算结果十分吻合.在Si/SiNdSiO2超晶格系统中,可以通过控制各亚层厚度,尤其是Si和SiNx层厚度,均能够有效地控制发光.

  18. Shock compaction of bioceramic composites

    NARCIS (Netherlands)

    Stuivinga, M.E.C.; Carton, E.P.; Wijn, J.R. de

    2000-01-01

    A method was developed for making dense hydroxyapatite-polymer composites. Hydroxyapatite (HA) is a type of calcium phosphate, which is a bioactive material. The polymer used in this work was Polyactive™ 60/40, a block copolymer from polyethylene oxide (PEO) and polybutylene terephtalate (PBT) in a

  19. Electroluminescence from Si/SiO2 films deposited on p-Si substrates

    Institute of Scientific and Technical Information of China (English)

    马书懿; 萧勇; 陈辉

    2002-01-01

    The structure of Au/Si/SiO2/p-Si has been fabricated using the magnetron sputtering technique. It has a verygood rectifying behaviour. Visible electroluminescence (EL) has been observed from the Au/Si/SiO2/p-Si structureat a forward bias of 5V or larger. A broad band with one peak around 650-660 nm appears in all the EL spectra ofthe structure. The effects of the thickness of the Si layer in the Si/SiO2 films and of the input electrical power on ELspectra are studied systematically.

  20. Influence of Si on Interfacial Combination of SiCp/Al-Mg-Si Composite

    Institute of Scientific and Technical Information of China (English)

    Han Jianmin; Li Ronghua; Li Mingwei; Cui Shihai; Li Weijing; Wang Jinhua

    2004-01-01

    The scanning electron microscopy (SEM) analysis results of Si distribution in the interface between SiC reinforcements and aluminum matrix of a stir casting SiCp/Al-Mg-Si composite were presented. Results show that there is Si precipitation deposit on the interface of the composite and Si connects with SiC reinforcements in one side and connects with aluminum matrix in the other side. Si phase plays as a connecting bridge, which contributes to the interfacial combination of SiCp/Al composite.

  1. Introduction of atomic H into Si3N4/SiO2/Si stacks

    Institute of Scientific and Technical Information of China (English)

    JIN Hao; WEBER K.J.; LI Weitang; BLAKERS A.W.

    2006-01-01

    Atomic H generated by a plasma NH3 source at 400 ℃ was demonstrated to passivate dehydrogenated Si3N4/SiO2/Si stacks effectively by bonding with defectsin the Si3N4 film and at the Si-SiO2 interface. A subsequent anneal in N2 after atomic H reintroduction was demonstrated to further improve passivation of the Si-SiO2 interface. Isothermal and isochronal anneals in N2 were carried out in order to determine the optimized annealing conditions.

  2. SiC Technology

    Science.gov (United States)

    Neudeck, Philip G.

    1998-01-01

    Silicon carbide (SiC)-based semiconductor electronic devices and circuits are presently being developed for use in high-temperature, high-power, and/or high-radiation conditions under which conventional semiconductors cannot adequately perform. Silicon carbide's ability to function under such extreme conditions is expected to enable significant improvements to a far-ranging variety of applications and systems. These range from greatly improved high-voltage switching [1- 4] for energy savings in public electric power distribution and electric motor drives to more powerful microwave electronics for radar and communications [5-7] to sensors and controls for cleaner-burning more fuel-efficient jet aircraft and automobile engines. In the particular area of power devices, theoretical appraisals have indicated that SiC power MOSFET's and diode rectifiers would operate over higher voltage and temperature ranges, have superior switching characteristics, and yet have die sizes nearly 20 times smaller than correspondingly rated silicon-based devices [8]. However, these tremendous theoretical advantages have yet to be realized in experimental SiC devices, primarily due to the fact that SiC's relatively immature crystal growth and device fabrication technologies are not yet sufficiently developed to the degree required for reliable incorporation into most electronic systems [9]. This chapter briefly surveys the SiC semiconductor electronics technology. In particular, the differences (both good and bad) between SiC electronics technology and well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are highlighted for several large-scale applications. Key crystal growth and device-fabrication issues that presently limit the performance and capability of high temperature and/or high power SiC electronics are identified.

  3. Mechanical instabilities and piezoresistivity of SiGe/Si microtubes

    Science.gov (United States)

    Zhang, Li; Dong, Lixin; Nelson, Bradley J.

    2007-10-01

    Mechanical instabilities and piezoresistivity of individual rolled-up SiGe/Si microtubes are investigated using nanorobotic manipulation. By applying this technique, as-fabricated one-end-fixed SiGe/Si microtubes can be cut and picked up from the substrate to examine their mechanical and electromechanical properties in a free space. Individual SiGe/Si microtubes show typical Euler buckling when the uniaxial compressive load is larger than a critical value. Moreover, experiments show that 1.6-turn rolled-up SiGe/Si microtubes have similar mechanical stability to ideal seamless tubes though the former ones have a spiral-like cross sectional area instead of an ideal ring. According to the measured I-V properties, SiGe/Si microtubes show positive piezoresistivity under compressive loads.

  4. 钛基植人物生物陶瓷涂层的研究进展%Research of bio-ceramic coatings on Ti-based implants in biomedical application

    Institute of Scientific and Technical Information of China (English)

    余将明; 叶晓健; 万俊明; 宋玉林

    2011-01-01

    Titanium alloy has been used widely in fields of hard tissue replacement and repair,despite its characteristics of bio-inert material.Bio-ceramic coating deposited on Ti-based implants surface using surface modification technique can improve the bioactivity and biocompatibility of Ti-alloy material.The hydroxyapatite coating has been applied in clinic treatment,but this type of coating is still plagued with low crystallinity and poor bonding strength.In order to obtain an implant with excellent integrated properties,some novel bio-ceramic coating materials have been prepared.These materials having excellent bioactivity and biocompatibility and can directly bond with the Ti-based implants and the bone tissue.This review will present research status of the application of bio-ceramic coating on titanium alloy surface in biomedical fields%医用钛合金材料属于生物惰性材料,广泛应用于硬组织的替换与修复领域.采用表面改性技术在钛基材料表面制成生物陶瓷涂层可改善钛基材料的生物活性和生物相容性.羟基磷灰石涂层已在临床上获得应用,但使用效果仍然受其较低的结合强度和结晶度所制约.为了获得综合性能更好的植入材料,制备了多种新型生物陶瓷涂层,其具有良好的生物活性、较好的结合强度及与骨组织能有效结合的能力.综述了钛及钛合金材料表面的生物陶瓷涂层在生物医学领域应用的研究进展.

  5. Electronic Structure of Si1-xIVx/Si Superlattices on Si(001)

    Institute of Scientific and Technical Information of China (English)

    CHEN Jie; L(U) Tie-Yu; HUANG Mei-Chun

    2007-01-01

    We have preformed systematical ab initio studies of the structural and electronic properties of short-period Si1-xIVx/Si (x = 0.125, 0.25, 0.5,IV=Ge, Sn) superlattices (SLs) grown along the [001] direction on bulk Si. The present calculations reveal that the Si0.875 Ge0.125/Si, Si0.75 Ge0.25/Si and Si0.875Sn0.125/Si axe the Γ-point direct bandgap semiconductors. The technological importance lies in the expectation that the direct gap Si1-xIVx/Si SLs may be used as components in integrated optoelectronic devices, in conjunction with the already well-established and highly advanced silicon technology.

  6. Photoelectric properties of n-SiC/n-Si heterojunctions

    Directory of Open Access Journals (Sweden)

    Semenov A. V.

    2012-10-01

    Full Text Available Photovoltaic effect in isotype heterotructure formed by nanocrystalline silicon carbide films on single crystal n-Si substrates (n-SiC/n-Si heterojunction was studied. The films were produced by direct ionic deposition method. The model that takes into account the quantum wells and potential barriers caused by band offsets was proposed to explain the current-voltage characteristics and photovoltaic properties of the heterostructure n-SiC/n-Si.

  7. Correlation between Light Emissions from Amorphous-Si:H/SiO2 and nc-Si/SiO2 Multilayers

    Institute of Scientific and Technical Information of China (English)

    MA Zhong-Yuan; HUANG Xin-Fan; CHEN Kun-Ji; FENG Duan; HAN Pei-Gao; LI Wei; CHEN De-Yuan; WEI De-Yuan; QIAN Bo; LI Wei; XU Jun; XU Ling

    2007-01-01

    We investigate the properties of light emission from amorphous-Si:H/SiO2 and nc-Si/SiO2 multilayers (MLs). The size dependence of light emission is well exhibited when the a-Si:H sublayer thickness is thinner than 4nm and the interface states are well passivated by hydrogen. For the nc-Si/SiO2 MLs, the oxygen modified interface states and nanocrystalline silicon play a predominant role in the properties of light emission. It is found that the light emission from nc-Si/SiO2 is in agreement with the model of interface state combining with quantum confinement when the size of nc-Si is smaller than 4 nm. The role of hydrogen and oxygen is discussed in detail.

  8. Nanoporous membranes for enzyme-based organophosphate biosensors: Characterizating bio-ceramic conjugation, porosity, and activity in stable soil-gel ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Schoeniger, J.S.; Singh, A.K.; Volponi, J. [Sandia National Labs., Livermore, CA (United States)] [and others

    1997-12-31

    Biosensors for organophosphates in solution may be constructed by monitoring the activities of acetylcholine esterase (AchE) or organophosphate hydrolases (OPHs) immoblized on pH-sensitive field-effect transistors (FETs). In order to construct stable sensors with control over the surface catalytic activity and transport properties, SiO2 or Si3N4 surfaces were coated with highly porous, heat-stabilized sol-gel coatings. Surface porosity was characterized using SEM and AFM. AchE or OPH were covalently attached to the porous ceramics using several different conjugation chemistries and enzyme stabilization techniques. Properties such as covalent vs. non-covalent attachment, specific activity, and robustness of enzyme activity were characterized. Data on the effect of surface modifications on sensor performance will also be presented.

  9. A comparative study of electroluminescence from Ge/SiO2 and Si/SiO2 films

    Institute of Scientific and Technical Information of China (English)

    Ma Shu-Yi; Chen Hui; Xiao Yong; Ma Zi-Jun; Sun Ai-Min

    2004-01-01

    Ge/SiO2 and Si/SiO2 films were deposited using the two-target alternation magnetron sputtering technique. The Au/Ge/SiO2/p-Si and Au/Si/SiO2/p-Si structures were fabricated and their electroluminescence (EL) characteristics were comparatively studied. Both Au/Ge/SiO2/p-Si and Au/Si/SiO2/p-Si structures have rectifying property. All the EL spectra from the two types of the structure have peak positions around 650-660 nm. The EL mechanisms of the structures are discussed.

  10. Features of Mg2Si Layer Growth in Si/Mg2Si Multilayers

    Directory of Open Access Journals (Sweden)

    L.E. Konotopskyi

    2016-06-01

    Full Text Available Features of magnesium siliced layer growth in Si/Mg2Si multilayers in initial state and after thermal annealing were studied by methods of transmission electron microscopy and X-Ray scattering. As-deposited magnesium silicide layers are amorphous with nanocrystal inclusions of metastable h-Mg2Si. Formation of Mg2Si in hexagonal modification occurs under the influence of stress produced by silicon layers. At T = 723 К Mg2Si layers finished crystallizes in hexagonal modification, with some coarsening of grains. That is accompanied with 7.3 % reduction in period of the Si/Mg2Si multilayer.

  11. Photoreflectance Spectroscopy for Study of Si/SiGe/Si Heterostructure

    Institute of Scientific and Technical Information of China (English)

    Liu Zhihong; Chen Changchun; Lin Huiwang; Xiong Xiaoyi; Dou Weizhi; Tsien Pei-Hsin

    2004-01-01

    UHVCVD-grown Si/Si1- xGex/Si heterostructure was investigated by Photoreflectance spectroscopy (PR). The principle of PR used in semiconductor film was thoroughly described. According to the E1 transition energy in the Si1- xGex alloy, the Ge content in SiGe film with constant composition can be accurately characterized. In this study, determine the composition uniformity of larger diameter SiGe epiwafer by PR mapping technique was determined. These results show PR is very promising for Si1- xGex epilayer characterization with constant Ge content and can provide film measurements for production-worthy line monitor.

  12. a-Si/c-Si heterojunction solar cells on SiSiC ceramic substrates

    Institute of Scientific and Technical Information of China (English)

    LI Xudong; XU Ying; CHE Xiaoqi

    2006-01-01

    Silicon thin-film solar cells are considered to be one of the most promising cells in the future for their potential advantages, such as low cost, high efficiency, great stability, simple processing, and none-pollution. In this paper, latest progress on poly-crystalline silicon solar cells on ceramic substrates achieved by our group was reported. Rapid thermal chemical vapor deposition (RTCVD) was used to deposited poly-crystalline silicon thin films, and the grains of as-grown film were enlarged by Zone-melting Recrystallization (ZMR). As a great changein cell's structure, traditional diffused pn homojunction was replaced by a-Si/c-Si heterojunction, which lead is to distinct improvement in cell's efficiency.A conversion efficiency of 3.42% has been achieved on 1cm2 a-Si/c-Si heterojunction solar cell ( Isc =16.93 mA, Voc =310.9 mV, FF =06493, AM =1.5 G,24 ℃), while the cell with diffused homojunction only gotan efficiency of 0.6%. It indicates that a-Si emitter formed at low temperature might be more suitable for thin film cell on ceramics.

  13. The property of Si/SiGe/Si heterostructure during thermal budget characterized by HRXRD

    Institute of Scientific and Technical Information of China (English)

    CHEN Chang-Chun; LIU Zhi-Hong; HUANG Wen-Tao; DOU Wei-Zhi; ZHANG Wei; TSIEN Pei-Hsin; ZHU De-Zhang

    2003-01-01

    Si/SiGe/Si heterostructures grown by ultra-high-vacuum chemical vapor deposition (UHVCVD) werecharacterized by Rutherford backscattering/Channeling (RBS/C) together with high resolution X ray diffraction(HRXRD). High quality SiGe base layer was obtained. The Si/SiGe/Si heterostructures were subject to conventionalfurnace annealing and rapid thermal annealing with temperature between 750 ℃ and 910 ℃. Both strain and its re-laxation degree in SiGe layer are calculated by HRXRD combined with elastic theory, which are never reported inother literatures. The rapid thermal annealing at elevated temperature between 880 ℃ and 910 ℃ for very short timehad almost no influence on the strain in Si0.84Ge0. 16 epilayer. However, high temperature (900℃) furnace annealingfor 1h prompted the strain in Si0.84Ge0.16 layer to relax.

  14. Si/SiGe/Si HBT的直流特性和低频噪声%Si/SiGe/Si HBT's DC Characterization and Its Low-frequency Noise

    Institute of Scientific and Technical Information of China (English)

    廖小平; 张中平

    2003-01-01

    在对Si/SiGe/Si HBT及其Si兼容工艺的研究基础上,研制成功低噪声Si/SiGe/Si HBT,测试和分析了它的直流特性和低频噪声特性,为具有更好的低噪声性能的Si/SiGe/Si HBT的研究建立了基础.

  15. Flexible micromorph tandem a-Si/µc-Si solar cells

    OpenAIRE

    Söderström, Thomas; Haug, Franz-Joseph; Terrazzoni-Daudrix, Vanessa; Ballif, Christophe

    2010-01-01

    The deposition of a stack of amorphous (a-Si:H) and microcrystalline (µc- Si:H) tandem thin film silicon solar cells (micromorph) requires at least twice the time used for a single junction a-Si:H cell. However, micromorph devices have a higher potential efficiency, thanks to the broader absorption spectrum of µc-Si:H material. High efficiencies can only be achieved by mitigating the nanocracks in the µc-Si:H cell and the light-induced degradation of the a- Si:H cell. As a result,...

  16. Effect of Si/Si1-yCy/Si Barriers on the Characteristics of Si1-xGex/Si Resonant Tunneling Structures

    Institute of Scientific and Technical Information of China (English)

    HAN Ping; CHENG Xue-Mei; Masao Sakuraba; YoungCheon Jeong; Takashi Matsuura; Junichi Murota

    2000-01-01

    P-type double barrier resonant tunneling diodes (RTD) with the single Si0.6Ge0.4 quantum well and double Si0.6 Ge0.4 spacer have been realized by using an ultra clean low-pressure chemical vapor deposition system. The effect of Si1-yCy layer on the characteristics of the devices was shown by comparing the current-voltage (Ⅰ-Ⅴ) characteristics of RTD's of the barriers of Si layers with that of Si/Si1-yCy/Si structures. The peak voltage was gradually increased and the resonant current decreased obviously with increasing C content in the Si/Si1-yCy/Si barriers. The origin of the phenomena above can be attributed to the C related deep acceptor levels in the Si/Si1-yCy/Si barriers. The possible mechanism for the observed Ⅰ-Ⅴcharacteristics was shown more clearly by increasing C content to 3% and changing the thicknesses of Si and Si1-yCy layers in the Si/Si1-yCy/Si barriers.

  17. Si-to-Si wafer bonding using evaporated glass

    DEFF Research Database (Denmark)

    Reus, Roger De; Lindahl, M.

    1997-01-01

    Anodic bonding of Si to Si four inch wafers using evaporated glass was performed in air at temperatures ranging from 300°C to 450°C. Although annealing of Si/glass structures around 340°C for 15 minutes eliminates stress, the bonded wafer pairs exhibit compressive stress. Pull testing revealed...

  18. Si nanoparticle interfaces in Si/SiO solar cell materials

    DEFF Research Database (Denmark)

    Kilpeläinen, S.; Kujala, J.; Tuomisto, F.;

    2013-01-01

    Novel solar cell materials consisting of Si nanoparticles embedded in SiO2 layers have been studied using positron annihilation spectroscopy in Doppler broadening mode and photoluminescence. Two positron-trapping interface states are observed after high temperature annealing at 1100 °C. One...... of the states is attributed to the (SiO2/Si bulk) interface and the other to the interface between the Si nanoparticles and SiO2. A small reduction in positron trapping into these states is observed after annealing the samples in N2 atmosphere with 5% H2. Enhanced photoluminescence is also observed from...

  19. Electronic states at Si-SiO2 interface introduced by implantation of Si in thermal SiO2

    International Nuclear Information System (INIS)

    Interface traps due to excess Si introduced into the Si-SiO2 system by ion implantation are investigated. Implanted oxides are shown to have interface traps at or slightly above the Si conduction band edge with densities proportional to the density of off-stoichiometric Si at the Si-SiO2 interface. Diluted oxygen annealing is shown to result in physical separation of interface traps and equilibrium substrate electrons, demonstrating that ''interface'' states are located within a 0.5 nm thick layer of SiO2. Possible charge trapping mechanisms are discussed and the effect of these traps on MOS transistor characteristics is described using a sheet charge model. (author)

  20. Resonant Tunnelling and Storage of Electrons in Si Nanocrystals within a-SiNx/nc-Si/a-SiNx Structures

    Institute of Scientific and Technical Information of China (English)

    WANG Xiang; HUANG Jian; ZHANG Xian-Gao; DING Hong-Lin; YU Lin-Wei; HUANG Xin-Fan; LI Wei; XU Jun; CHEN Kun-Ji

    2008-01-01

    @@ The a-SiNx/nanocrystalline silicon (nc-Si)/a-SiNx sandwiched structures with asymmetric double-barrier are fabricated in a plasma enhanced chemical vapour deposition (PECVD) system on p-type Si substrates. The nc-Si layer in thickness 5nm is fabricated from a hydrogen-diluted silane gas by the layer-by-layer deposition technique. The thicknesses of tunnel and control SiNx layers are 3nm and 20nm,respectively. Frequency-dependent capacitance spectroscopy is used to study the electron tunnelling and the storage in the sandwiched structures.Distinct frequency-dependent capacitance peaks due to electrons tunnelling into the nc-Si dots and capacitance-voltage (C- V) hysteresis characteristic due to electrons storage in the nc-Si dots are observed with the same sample.

  1. GUVERNAREA DIGITALA SI MODELELE SALE

    OpenAIRE

    Mihaela SAVA; Sofia Elena COLESCA

    2007-01-01

    Aceasta lucrare descrie modele alternative de guvernare electronica, in concordanta cu abordarile diferite ale guvernului In legatura cu posibilitatile oferite de ICT (suport pentru informatii, comunicare si interactiune, managementul cunostintelor). Mai precis, este vorba de o trecere in revista si o analiza a modelelor de guvernare dezvoltate de o initiativa internationala orientata spre cresterea si sustinerea utilizarii ICT (tehnologiile informatiei si comunicatiilor) in contextul guverna...

  2. Photoluminescence from SiO sub 2 /Si/SiO sub 2 structures

    CERN Document Server

    Photopoulos, P

    2003-01-01

    Si layers were developed on pre-oxidized Si wafers by decomposition of silane in a low pressure chemical vapour deposition reactor. By keeping the deposition time constant (2 min) three sets of samples were fabricated at deposition temperatures equal to 580, 610 and 625 deg C. The deposited Si layers were thinned by high temperature dry oxidation thus forming SiO sub 2 /Si/SiO sub 2 structures. Room temperature photoluminescence (PL) measurements showed that for those samples in which the thickness of the remaining Si layer was greater than approx 6 nm, the spectra exhibited a peak at approx 650 nm. Prolonged oxidations led to the formation of SiO sub 2 /nanocrystalline-Si/SiO sub 2 structures in which the thickness of the remaining nanocrystalline Si (nc-Si) layer was smaller than 3 nm. The PL spectra obtained from these structures were at least ten times stronger compared to the previous ones. The PL peak wavelength exhibited a weak dependence on the nc-Si layer thickness shifting from 800 to 720 nm for nc-...

  3. XI. Si Heidegger…

    OpenAIRE

    2012-01-01

    C’est avec raison que Lyotard a refusé l’alternative : « si grand penseur, alors pas nazi ; si nazi, pas grand penseur. » Schirmacher, un apologète de Heidegger qui a la malchance de ne pas être pris en compte par l’apologie officielle de Heidegger, répète l’alternative avec sa question : « Est-ce qu’un salaud [Charakterschwein] peut être un grand philosophe ? » Il trouve certes « consternant que Heidegger ait été nazi », mais demande à la fin : « Heidegger était-il nazi ? » Pourtant, ce n’es...

  4. 口腔修复材料氧化锆生物陶瓷的制备方法及应用进展%Preparation of zirconia bioceramics and its application in prosthodontics

    Institute of Scientific and Technical Information of China (English)

    王强; 尹娇娇; 杨华哲

    2016-01-01

    背景:在众多口腔修复材料之中,氧化锆陶瓷具有高的强度、硬度和耐磨、耐腐蚀性等优良性能,然而远期临床观察中常出现基冠机械性能下降和饰瓷崩裂等稳定性问题,成为阻碍其进一步发展的瓶颈。  目的:归纳总结口腔修复氧化锆生物陶瓷材料的制备方法及应用进展。  方法:结合文献和课题组的研究,对氧化锆生物陶瓷的性质、晶体结构、制备方法及其在口腔修复领域应用的进展进行论述,指出影响其稳定性问题的原因,并对其发展方向做出预测。  结果与结论:氧化锆陶瓷的研制包括粉体合成、素坯成型、陶瓷烧结等几个方面。针对氧化锆基全瓷冠修复体的不稳定等问题,不仅需要从工艺上对氧化锆基粉体的制备进行优化,提高原料纯度、机械性能、生物性能和稳定性,而且需从晶体学角度研究晶体成核、生长、第二相及晶粒尺寸对晶体结构稳定性及基冠生物力学性能的影响,以及基冠与饰瓷晶格匹配对界面的影响等问题进行深入理论分析。%BACKGROUND:Zirconia is considered to be one ofthe promising prosthodontics materials because of its high strength, high hardness, excelent wear resistance and excelent corrosion resistance. However, the development of zirconia is hindered owing to the uncertainty in long-term stability of zirconiaal-ceramic crowns such as the cracking (chipping) of veneering porcelain and deterioration of mechanical properties of zirconia dental crowns under intraoral conditions. OBJECTIVE:To summarize the preparation of zirconia bioceramic and its application progress in the field of prosthodontics. METHODS:The properties, crystal structure, preparation and use of zirconia in prosthodontics were reviewed. Reasons that affected the stability of zirconia were also discussed. The future development of zirconia was forecasted. RESULTS AND CONCLUSION

  5. Study on the Properties of Fluorine Doped β-Calcium Polyphosphate Porous Bioceramics%氟掺杂β-聚磷酸钙多孔生物陶瓷特性研究

    Institute of Scientific and Technical Information of China (English)

    艾佳楠; 张垠; 王坤; 徐哲哲; 李文惠

    2013-01-01

    The amorphous and beta crystalline form of calcium polyphosphate (CPP) powder were fabricated by solid-state reaction method,porous calcium polyphosphate bioceramics prepared by impregnation with organic foam polyurethane foam as a template.In this study,using ammonium fluoride as introducing agent to introduce fluorine ion,by adjusting the amount of dilferent doping,investigating the influence of fluoride ion on the physical properties of the porous body,such as flexural strength,porosity,morphology,etc.The study shows that the introduction of ammonium fluoride can be significantly changing the β-CPP slurry' s viscosity and rheology,and to promote the sintering of the porous body to reduce porosity,and to make it more compact,and to improve the strength of the porous body.%采用固相烧结法制备了无定形和β晶型的聚磷酸钙(CPP)粉体,以β-CPP为基础粉料掺入氟化铵,并以聚氨酯泡沫为模板,采用有机泡沫浸渍法制备了掺氟多孔β-CPP生物陶瓷.本研究以氟化铵为导入剂引进氟离子,通过调节不同的掺杂量,研究了氟离子对多孔体物理性能的影响,如抗折强度、气孔率、微观形貌等.研究表明,氟化铵的引入可以显著地改变β-CPP浆料粘度和流变性,并促进多孔体的烧结,降低气孔率,使其更加致密化,提高多孔体强度.

  6. Radiation-induced plasmons in Si-SiO2

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The first level plasmons of Si in the pure Si state (corresponding to bonding energy (BE) of 116.95 eV) and in the SiO2 state (corresponding to BE of 122.0 eV) of Si-SiO2 prepared by irradiation hard and soft processing were studied with XPS before and after 60Co radiation.The experimental results indicate thatthere was an interface consisting of the two plasmons,this interface was extended by 60Co radiation, the fractions of the plasmon for Si in the Si-SiO2 werechanged with the variation of radiation dosage,the difference of the change in fraction of plasmonsfor the two kinds of samples was that the soft variedfaster than hard, the change of concentrations inplasmons for both hard and soft Si-SiO2 irradiatedin positive bias field were greater than that in bias-free field.The experimental results are explained from the view point of energy absorbed in form of quantization.

  7. Synthesis and characterization of laminated Si/SiC composites

    Directory of Open Access Journals (Sweden)

    Salma M. Naga

    2013-01-01

    Full Text Available Laminated Si/SiC ceramics were synthesized from porous preforms of biogenous carbon impregnated with Si slurry at a temperature of 1500 °C for 2 h. Due to the capillarity infiltration with Si, both intrinsic micro- and macrostructure in the carbon preform were retained within the final ceramics. The SEM micrographs indicate that the final material exhibits a distinguished laminar structure with successive Si/SiC layers. The produced composites show weight gain of ≈5% after heat treatment in air at 1300 °C for 50 h. The produced bodies could be used as high temperature gas filters as indicated from the permeability results.

  8. SiC/SiC composites and application%SiC/SiC复合材料及其应用

    Institute of Scientific and Technical Information of China (English)

    李崇俊

    2013-01-01

    日本开发的Nicalon和Tyranno两种品牌的SiC纤维占有世界上绝对性的市场份额.SiC/SiC复合材料典型的界面层是500 nm厚的单层热解碳(PyC)涂层或多层(PyC-SiC)n涂层,在湿度燃烧环境及中高温条件下界面层的稳定性是应用研究的重点.SiC/SiC复合材料,包括CVI-SiC基体和日本开发的Tyranno hex和NITE-SiC基体等,具有耐高温、耐氧化性和耐辐射性的特点,在航空涡轮发动机部件、航天热结构部件及核聚变反应堆炉第一壁材料等方面正开展工程研制应用.%The two trademarks of Nicalon and Tyranno SiC fibers,developed in Japan,occupy the overwhelming world market.The typical interlayer in SiC/SiC composites is either a single pyrolytic carbon (PyC) coating with a thickness of 500nm or multilayered (PyC-SiC)n coatings.The fiber/matrix interlayer stabilities in SiC/SiC composites are a key research topic for applications in the wet combustion environment with high temperature.The CVI-SiC matrix based SiC/SiC composites,as well as Japan produced Tyranno-hex composites and NITESiC matrix,perform the characteristics of high temperature,anti-oxidation and anti-irradiation,and are having been progressed into engineering application in the fields of aircraft turbine engine components,aerospace thermostructural parts and fusion reactor thermo-structural materials.

  9. Methods of radiation effects evaluation of SiC/SiC composite and SiC fibers

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    This report covers material presented at the IEA/Jupiter Joint International Workshop on SiC/SiC Composites for Fusion structural Applications held in conjunction with ICFRM-8, Sendai, Japan, Oct. 23--24, 1997. Several methods for radiation effects evaluation of SiC fibers and fiber-reinforced SiC/SiC composite are presented.

  10. Joining of SiC ceramics and SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Rabin, B.H. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-08-01

    This project has successfully developed a practical and reliable method for fabricating SiC ceramic-ceramic joints. This joining method has the potential to facilitate the use of SiC-based ceramics in a variety of elevated temperature fossil energy applications. The technique is based on a reaction bonding approach that provides joint interlayers compatible with SiC, and excellent joint mechanical properties at temperatures exceeding 1000{degrees}C. Recent efforts have focused on transferring the joining technology to industry. Several industrial partners have been identified and collaborative research projects are in progress. Investigations are focusing on applying the joining method to sintered a-SiC and fiber-reinforced SiC/SiC composites for use in applications such as heat exchangers, radiant burners and gas turbine components.

  11. Joining of SiC ceramics and SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Rabin, B.H. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1996-08-01

    This project has successfully developed a practical and reliable method for fabricating SiC ceramic-ceramic joints. This joining method will permit the use of SiC-based ceramics in a variety of elevated temperature fossil energy applications. The technique is based on a reaction bonding approach that provides joint interlayers compatible with SiC, and excellent joint mechanical properties at temperatures exceeding 1000{degrees}C. Recent emphasis has been given to technology transfer activities, and several collaborative research efforts are in progress. Investigations are focusing on applying the joining method to sintered {alpha}-SiC and fiber-reinforced SiC/SiC composites for use in applications such as heat exchangers, radiant burners and gas turbine components.

  12. Al versus Si competition in FeSiAl alloys

    Energy Technology Data Exchange (ETDEWEB)

    Legarra, E. [Dpto. Electricidad y Electronica, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco (UPV/EHU), CP 644, 48080 Bilbao (Spain)], E-mail: estibaliz.legarra@ehu.es; Apinaniz, E. [Dpto. Fisica Aplicada I, Escuela de Ingenieria Tecnica Superior, Universidad del Pais Vasco, Alameda de Urquijo s/n 48013 Bilbao (Spain); Plazaola, F. [Dpto. Electricidad y Electronica, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco (UPV/EHU), CP 644, 48080 Bilbao (Spain); Jimenez, J.A. [Centro Nacional de Investigaciones Metalurgicas (CENIM), Avda. Gregorio del amo 8, 28040 Madrid (Spain); Pierna, A.R. [Chemical Engineering and Environmental Department, UPV/EHU, Box 1379, 20008 San Sebastian (Spain)

    2008-10-15

    In FeSiAl alloys, when Si substitutes for Al, important changes take place in the magnetism as well as in the structural properties. Alloys in the two composition series Fe{sub 75}Al{sub 25-x}Si{sub x} (x=0, 7.5, 12.5, 17.5, 25) and Fe{sub 70}Al{sub 30-x}Si{sub x} (x=0, 9, 15, 21, 30) were prepared by induction melting; afterwards they were crushed and then annealed in order to recover the DO{sub 3} stable phase. The deformed FeAl samples show larger lattice parameters than the ordered ones; however, this difference ({delta}a) decreases when Si substitutes for Al until it becomes zero (i.e. until the ordered samples and the deformed ones have the same lattice parameters). This trend is the same for both sample series and does not depend on the Fe content of the alloy. However, the magnetization has a different behaviour depending on the Fe content. For deformed Fe{sub 75}Al{sub 25-x}Si{sub x} alloys the saturation magnetization decreases with increasing Si content while for Fe{sub 70}Al{sub 30-x}Si{sub x} deformed alloys the saturation magnetization has a plateau in which the saturation magnetization values do not vary.

  13. Stress and stress monitoring in SiC-Si heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Pezoldt, Joerg; Niebelschuetz, Florentina; Cimalla, Volker; Stauden, Thomas [FG Nanotechnology, Institute of Micro- and Nanotechnologies, TU Ilmenau, Postfach 100565, 98684 Ilmenau (Germany); Nader, Richard; Masri, Pierre [Groupe d' Etudes des Semiconducteurs, CNRS cc074, UMR 5650, Universite Montpellier 2, Place E. Bataillon, 34095 Montpellier Cedex 5 (France); Zgheib, Charbel [Department of Electrical, Computer Communication Engineering, Notre Dame University, 5725 Deir El Kamar (Lebanon)

    2008-04-15

    Infrared ellipsometry is a valuable tool to investigate the average stress and the stress distribution in thin silicon carbide layers grown on silicon as well as to monitor the changes in the stress state during device processing. It was obtained that low temperature carbonization in combination with low temperature epitaxial growth led to a compressive stress component in the SiC-Si interface region, whereas the average stress state is tensile. Ge incorporation in the interface lowered the tensile residual stress component. Metallization of SiC increases the tensile stress in the SiC on Si. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Advanced SiC fibers and SiC/SiC composites toward industrialization

    International Nuclear Information System (INIS)

    In order to establish the industrialization basis of advanced SiC fibers and SiC/SiC composites to be used in nuclear fusion reactors, R and D of Tyranno-SA grade fibers (Cef-NITETM) and NITE-SiC/SiC with sufficient quality control has been carried out. The important elements in this effort are fiber structure control and matrix density and homogeneity control. From the continuous heat treatments of pre-crystallized SiC fibers, the improved uniformity of grain size for radial position in 7-10 μm diameter SiC fibers has been confirmed with the fiber strength over 2.0 GPa. In order to establish stable mass production of NITE-SiC/SiC (Cera-NITETM), with sufficient quality control, efforts on production of mid-products, such as green sheets, prepreg sheets and preforms, have been extensively carried out. The important elements were to improve the homogeneity and density of preform so that the following sintering process has been modified for improving structure control.

  15. 纳米羟基磷灰石-二氧化锆生物陶瓷材料刀片切割伤口的愈合%Incision concrescence of a nano-sized hydroxyapatite-zirconia bioceramical scalpel

    Institute of Scientific and Technical Information of China (English)

    王竹菊; 韩文波; 陶树青

    2007-01-01

    开始愈合,可见到新生的胶原纤维充填于切口间,但胶原纤维较疏松,皮下组织内有大量的浸润的白细胞,为组织修复反应相.术后14 d,伤口创缘间被致密的胶原纤维充填,皮下组织内的白细胞浸润明显减轻,新生的毛细血管内可见到正常的血细胞,切口间新形成的胶原纤维致密坚强,为正常创伤修复与和组织.结论:纳米羟基磷灰石-二氧化锆生物陶瓷材料具有无毒、无过敏等特点,具有良好的生物活性.%BACKGROUND: Hydroxyapatite is a kind of ideal orthopedic material, but its Iow strength and brittleness need to improve. The research suggested that the improvement of the toughness and strength of bioceramics which composite hydroxyapatite (HAP) and zirconia (3% mol yttria-stabilized cubic zirconia) and fabricated ceramic scalpel possesses of the wound recover faster with smaller side. So it is significant that research on the incision concrescence of nano-sized hydroxyapatite-zirconia bioceramical scalpel.OBJECTIVE: To observe the effects of incision using nano-sized HAP-TZP bioceramics as scalpel.DESIGN: A single sample study.SETTING: Second Department of Orthopaedics, the Second Affiliated Hospital of Harbin Medical University and Harbin Institute of Technology.MATERIALS: The experiment was carried out in the Animal Laboratory of the Second Affiliated Hospital of Harbin Medical University (Provincial Laboratory) from March to May 2006. A total of 54 SD rats, of 4 months old, weighing 120-180 g, of both genders, were selected in this study. The experiment materials included nano-sized hydroxyapatite Quartz Clock Company), ammonia (Suihua Chemical Reagent Company), and anhydrous ethanol (Tianjin Chemical Reagent Company).METHODS: The nano-sized Hydroxyapatite/zirconia composite powder was synthesis by rubbing according to 40% hydroxyapatite + 60% zirconia powders (mass ratio) were mixed and milled. The knife-edge biomaterials, which fabricated by hot pressed

  16. Applications of Laser Technologies in Synthesis and Surface Modification of Bioceramic Composite Coatings%激光技术制备生物陶瓷涂层的研究现状与展望

    Institute of Scientific and Technical Information of China (English)

    王迎春; 邓崎林; 朱登洁; 李永祥; 耿铁; 吕翔飞

    2016-01-01

    The applications of laser technologies in synthesis and surface-modification of bio-ceramics compos-ite coating materials,especially hydroxyapatite (HAP)on substrate of biomedical Ti-alloys,were tentatively re-viewed.The discussions focused on i)the laser technologies in growth and surface modification of HAP thick films deposited by plasma-jet spray coating,including but not limited to the laser surface melting of HAP and Ti-alloy substrate,laser-assisted laser ablationdeposition (LALA),pulsed laser deposition (PLD)and laser cladding;ii)the growth mechanisms,optimized growth conditions and characterization of surface and interface properties,particularly biocompatibility,of the HAP grown by PLD;iii)the existing problems of the plasma-jet spray coated HAP thin films in clinic applications,including its poor mechanical behavior.In addition,the development trends and possible solu-tions to the limitations of HAP materials,such as laser melting/rapid solidification and strengthening with carbon nano-tubes(CNTs),were also discussedin a thought provoking way.%羟基磷灰石等生物陶瓷材料具有优良的生物相容性和生物活性,但其强度较低的力学性能限制了其广泛应用.在综合力学性能优良,生物活性有限的医用钛合金表面制备生物陶瓷涂层,能够扬长避短,充分发挥二者的优点,具有巨大的市场与应用价值,是国内外的研究热点.利用激光技术改性或制备生物陶瓷涂层,主要有以下几个领域的应用与研究:激光表面熔凝与其他涂层技术相结合;脉冲激光沉积法;激光熔覆等方法.本文全面阐述了国内外激光表面改性生物陶瓷涂层的研究现状与研究进展,并对其工艺与理论发展进行了展望.

  17. Biomorphous SiSiC/Al-Si ceramic composites manufactured by squeeze casting: microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Zollfrank, C.; Travitzky, N.; Sieber, H.; Greil, P. [Department of Materials Science, Glass and Ceramics, University of Erlangen-Nuernberg (Germany); Selchert, T. [Advanced Ceramics Group, Technical University of Hamburg-Harburg (Germany)

    2005-08-01

    SiSiC/Al-Si composites were fabricated by pressure-assisted infiltration of an Al-Si alloy into porous biocarbon preforms derived from the rattan palm. Al-Si alloy was found in the pore channels of the biomorphous SiSiC preform, whereas SiC and carbon were present in the struts. The formation of a detrimental Al{sub 4}C{sub 3}-phase was not observed in the composites. A bending strength of 200 MPa was measured. The fractured surfaces showed pull-out of the Al-alloy. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  18. Thermal stability of Nb-Si-N and Ta-Si-N as diffusion barriers between Cu and Si

    International Nuclear Information System (INIS)

    In this study, Nb-Si-N and Ta-Si-N films were deposited on (100)Si wafers using a reactive sputtering technique and their thermal stability indispensable for a barrier metal against Cu was investigated using sheet resistance measurement, X-ray diffraction, and Auger electron spectroscopy depth profiling. The N2/Ar gas flow ratio for the sputter deposition of the Nb-Si-N and Ta-Si-N films with the highest thermal stability were found to be 5 % and 15 %, respectively. The Nb-Si-N film failed at 700 .deg. C, while the Ta-Si-N film failed at 900 .deg. C. the failure mechanism of the Nb-Si-N was found to be as follows : Cu atoms move to the Nb-Si-N/Si interface through the Nb-Si-N film and react with Si atoms in the Si substrate resulting in the formation of Cu3Si at the Nb-Si-N/Si interface. Also the failure mechanism of Ta-Si-N was found to be nearly the same as that of Nb-Si-N

  19. Low loss Si(3)N(4)-SiO(2) optical waveguides on Si.

    Science.gov (United States)

    Henry, C H; Kazarinov, R F; Lee, H J; Orlowsky, K J; Katz, L E

    1987-07-01

    We have developed an optical integrated circuit waveguide technology based on conventional Si processing. We demonstrate waveguide losses of <0.3 dB/cm in the 1.3-1.6-microm wavelength range. We use a high refractive-index core of Si(3)N(4) surrounded by SiO(2) cladding layers, which provides a highly confined optical mode adequate for butt coupling to channel substrate buried heterostructure lasers. We report the first IR transmission experiments in these waveguides and find two absorption peaks associated with H in SiO(2) and Si(3)N(4) layers at 1.40 and 1.52 microm, respectively. The peak absorptions are 2.2 and 1.2 dB/cm, respectively, and these peaks can be largely removed by annealing at 1100-1200 degrees C. PMID:20489931

  20. Fabrication and evaluation of propagation loss of Si/SiGe/Si photonic-wire waveguides for Si based optical modulator

    International Nuclear Information System (INIS)

    We have characterized photonic-wire waveguides with Si/SiGe/Si heterostructure ribs for Si-based optical modulators. The Si (80 nm)/Si0.72Ge0.28 (40 nm) layers grown on Si-on-insulator by molecular beam epitaxy for optical modulators were evaluated by in-situ reflection high-energy electron diffraction, atomic force microscope, X-ray diffraction and Raman spectroscopy, exhibiting that the fully-strained highly-crystalline SiGe layer was obtained. We have evaluated the propagation loss of the Si/strained SiGe/Si photonic-wire waveguides. The wavelength dependence of the propagation loss exhibits the bandgap narrowing of the strained Si0.72Ge0.28, while the optical absorption of the strained Si0.72Ge0.28 is not significant for the optical modulator application at 1.55-μm wavelength. - Highlights: • We have characterized photonic-wire waveguides with Si/SiGe/Si heterostructure ribs. • The Si/Si0.72Ge0.28 grown on Si-on-insulator were evaluated to be fully strained. • We have fabricated and evaluated the Si/strained SiGe/Si photonic-wire waveguides. • The wavelength dependence exhibits bandgap narrowing of the strained Si0.72Ge0.28. • Optical absorption of the SiGe is not significant for optical modulators at 1.55 μm

  1. Synthesis and structural property of Si nanosheets connected to Si nanowires using MnCl2/Si powder source

    Science.gov (United States)

    Meng, Erchao; Ueki, Akiko; Meng, Xiang; Suzuki, Hiroaki; Itahara, Hiroshi; Tatsuoka, Hirokazu

    2016-08-01

    Si nanosheets connected to Si nanowires were synthesized using a MnCl2/Si powder source with an Au catalyst. The synthesis method has benefits in terms of avoiding conventionally used air-sensitive SiH4 or SiCl4. The existence of the Si nanosheets connected to the Si nanowires, like sprouts or leaves with petioles, was observed, and the surface of the nanosheets was Si{111}. The nanosheets were grown in the growth direction of perpendicular to that of the Si nanowires. It was evident from these structural features of the nanosheets that the nanosheets were formed by the twin-plane reentrant-edge mechanism. The feature of the observed lattice fringes, which do not appear for Si bulk crystals, of the Si(111) nanosheets obtained by high resolution transmission electron microscopy was clearly explained due to the extra diffraction spots that arose by the reciprocal lattice streaking effect.

  2. Organic thin film transistors with a SiO2/SiNx/SiO2 composite insulator layer

    Institute of Scientific and Technical Information of China (English)

    Liu Xiang; Liu Hui

    2011-01-01

    We have investigated a SiO2/SiNx/SiO2 composite insulation layer structured gate dielectric for an organic thin film transistor (OTFT) with the purpose of improving the performance of the SiO2 gate insulator.The SiO2/SiNx/SiO2 composite insulation layer was prepared by magnetron sputtering.Compared with the same thickness of a SiO2 insulation layer device,the SiO2/SiNx/SiO2 composite insulation layer is an effective method of fabricating OTFT with improved electric characteristics and decreased leakage current.Electrical parameters such as carrier mobility by field effect measurement have been calculated.The performances of different insulating layer devices have been studied,and the results demonstrate that when the insulation layer thickness increases,the off-state current decreases.

  3. The production and growth of monocrystalline Si/CoSi2/Si heterostructures after high dose ion implantation

    International Nuclear Information System (INIS)

    CoSi2 is a favourable candidate for low ohmic interconnects in integrated circuits with high temperature stability. Its CaF2 structure is very similar to the diamond structure of Si with a lattice mismatch of only -1.2%. This allows epitaxial growth of Si/CoSi2/Si heterostructures required for three dimensional device applications. High dose Co+ implantation with subsequent annealing is a valuable method to form buried epitaxial CoSi2 layers with sharp interfaces both in (111)- and (100)-Si. The excellent crystalline quality of the surface Si layer enables the epitaxial growth of an additional Si layer to bury the silicide layer deeper into the substrate. Buried CoSi2 lines of several microns width were fabricated by implanting the Co+ ions through a thermally grown SiO2 mask patterned by photolithography. Both steps are necessary for the application of ion beam synthesis to microelectronics. (orig./BHO)

  4. AMPLEX-SiCAL

    International Nuclear Information System (INIS)

    This paper reports on an analog signal processor using commercial 3 μm CMOS technology which has been designed and produced for the silicon luminosity calorimeter SiCAL of the ALEPH experiment. This processor is a modified version of the AMPLEX integrated circuit designed for the inner silicon detector of the UA-2 experiment. The output voltage swing has been increased to more than 5.5 Volt as required for the large dynamic range of 1000 MIPs or 3.8 pC2. A fast analog summation, based on a neural network principle called follower aggregation, computes the average input charges for triggering purposes. The chip contains 16 channels, with a charge amplifier, shaper, track-and-hold stage, multiplexer, fast analog sum and a calibration system. The power consumption of the overall chip is 100 mW. The equivalent noise charge is less than 0.13MIP (0.5 fC rms) for a 50 pF detector capacitance, and the peaking time is about 250ns

  5. Si Isotopes of Brownleeite

    Science.gov (United States)

    Nakamura-Messenger, K.; Messenger, Scott R.; Ito, M.; Keller, L. P.; Clemett, S. J.; Jones, J. H.; Tatsuoka, H.; Zolensky, M. E.; Tatsuoka, H.

    2010-01-01

    Brownleeite is a manganese silicide, ideally stoichiometric MnSi, not previously observed in nature until its discovery within an interplanetary dust particle (IDP) that likely originated from a comet [1]. Three discrete brownleeite grains in the IDP L2055 I3 (4 microns in size, hereafter IDP I3) were identified with maximum dimensions of 100, 250 and 600 nm and fully analyzed using scanning-transmission electron microscopy (STEM) [1]. One of the grains (100 nm in size) was poikilitically enclosed by low-Fe, Mn-enriched (LIME) olivine. LIME olivine is epitaxial to the brownleeite with the brownleeite (200) parallel to the olivine c* [1]. LIME olivine is an enigmatic phase first reported from chondritic porous IDPs and some unequilibrated ordinary chondrites [ 2], that is commonly observed in chondritic-porous IDPs. Recently, LIME olivine has been also found in comet Wild-2 (Stardust) samples [3], indicating that LIME olivine is a common mineral component of comets. LIME olivine has been proposed to form as a high temperature condensate in the protosolar nebula [2]. Brownleeite grains also likely formed as high-temperature condensates either in the early Solar System or in the outflow of an evolved star or supernova explosion [1]. The isotopic composition of the brownleeite grains may strongly constrain their ultimate source. To test this hypothesis, we performed isotopic analyses of the brownleeite and the associated LIME olivine, using the NASA/JSC NanoSIMS 50L ion microprobe.

  6. Fabrication and characterization of CuxSi1-x films on Si (111) and Si (100) by pulsed laser deposition

    Science.gov (United States)

    Zhang, Song; Wu, Jun; He, Zhiqiang; Xie, Jun; Lu, Jingqi; Tu, Rong; Zhang, Lianmeng; Shi, Ji

    2016-05-01

    The CuxSi1-x thin films have been successfully fabricated by pulsed laser deposition (PLD). The influences of laser energy fluency (I0) and deposition temperature (Td) on the phase structure were investigated. The results show that Cu deposited on Si (001) at I0 = 0.5-2.0 J/cm2, and η"-Cu3Si formed on Si (111) at I0 = 1.0-2.0 J/cm2. The films were consisted of Cu, η'-Cu3Si, ɛ-Cu15Si4 and δ-Cu0.83Si0.17 at Td = 100-500 °C on Si (001). The films were the single phase of η-Cu3Si at Td = 700 °C. In the case of Si (111), the phase structures transformed from Cu to Cu + η'-Cu3Si to η'-Cu3Si to η'-Cu3Si + η-Cu3Si with the increasing of Td. Rectangular grains were formed on Si (001), whereas triangular grains on Si (111). Cu (001) film was epitaxially grown on Si (001) at I0 = 1.5 J/cm2 and Td = 20 °C. η-Cu3Si (001) epitaxial layer was formed on Si (111) at I0 = 1.5 J/cm2 and Td = 700 °C. The epitaxial relationships of Cu (001)[100]//Si (001)[110] and η-Cu3Si (001)[-110]//Si (111)[11-2] were identified.

  7. Nonlinear Modeling of Si/SiGe HBT Using ANN

    OpenAIRE

    Taher, H.; Schreurs, D; Vestiel, E.; Gillon, R; Nauwelaers, B.

    2004-01-01

    We present a large signal model for Si/SiGe HBTs using an Artificial Neural Network (ANN). The ANN is used to model the DC non-linearities of the intrinsic device. In this way, physical phenomena such as nonideal leakage currents and the Kirk effect can be modeled without time-consuming extraction. Capacitive nonlinearities are modeled by the well-known relationship between the capacitance and the junction voltage, ignoring the diffusion capacitance. By comparing ANN mode...

  8. Study of New Way about Si/Si Bonding

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new set of technique was adopted in bonding Si-Si by using Ge (Ⅳ element),which is used as the substitute for the common hydrophilic method. The bond layer has no holes, and the edge bond-rate amounts to above 98%, and the bond strength is above 2156 Pa. By doping the same kind of dopant with low-resistance in Ge, the stress compensation was realized.

  9. Low-loss rib waveguides containing Si nanocrystals embedded in SiO2

    OpenAIRE

    Pellegrino, Paolo; Garrido Fernández, Blas; García Favrot, Cristina; Arbiol i Cobos, Jordi; Morante i Lleonart, Joan Ramon; Melchiorri, Mirko; Daldosso, Nicola; Pavesi, Lorenzo; Scheid, E; Sarrabayrouse, G.

    2005-01-01

    We report on the study and modeling of the structural and optical properties of rib-loaded waveguides working in the 600-900-nm spectral range. A Si nanocrystal (Si-nc) rich SiO2 layer with nominal Si excess ranging from 10% to 20% was produced by quadrupole ion implantation of Si into thermal SiO2 formed on a silicon substrate. Si-ncs were precipitated by annealing at 1100°C, forming a 0.4-um-thick core layer in the waveguide. The Si content, the Si-nc density and size, the Si-nc emission, a...

  10. The origin of blue photoluminescence from nc-Si/SiO2 multilayers

    Institute of Scientific and Technical Information of China (English)

    Ma Zhong-Yuan; Xu Ling; Huang Xin-Fan; Chen Kun-Ji; Feng Duan; Guo Si-Hua; Chen De-Yuan; Wei De-Yuan; Yao Yao; Zhou Jiang; Huang Rui; Li Wei; Xu Jun

    2008-01-01

    Intensive blue photoluminescence (PL) was observed at room temperature from the nanocrystalline-Si/SiO2 (ncSi/SiO2) multilayers (MLs) obtained by thermal annealing of SiO/SiO2 MLs for the first time.By controlling the size of nc-Si formed in SiO sublayer from 3.5 to 1.5 nm,the PL peak blueshifts from 457 to 411 nm.Combining the analysis of TEM,Raman and absorption measurement,this paper attributes the blue PL to multiple luminescent centres at the interface of nc-Si and SiO2.

  11. SiC/Si's CRYSTALLOGRAPHIC ORIENTATION RELATIONSHIP IN SiCp/Al-Si COMPOSITES%SiCp/Al-Si复合材料中SiC/Si的晶体学位向关系

    Institute of Scientific and Technical Information of China (English)

    隋贤栋; 罗承萍; 欧阳柳章; 骆灼旋

    2000-01-01

    用TEM研究了离心铸造和挤压铸造的SiCp/ZL109复合材料,发现Si优先在SiC表面上形核、长大,并形成大量"界面Si"及SiC/Si界面.SiC与Si之间不存在固定的晶体学位向关系,但存在(1101)sic//(111)si,[1120]sic∥[112]si优先出现的位向关系,而(0001)sic∥(111)si不是优先出现的位向关系.

  12. SiC表面处理对Si3N4-SiC材料显微结构的影响%Influence of SiC Surface Treatment on Microstructure of Si3N4-SiC

    Institute of Scientific and Technical Information of China (English)

    黎军

    2004-01-01

    在用反应烧结法制备Si3N4结合SiC复合材料时,如在反应前对SiC原料进行高温表面处理,可使SiC颗粒表面生成一层SiO2氧化层,该氧化层在高温、氮气气氛中会生成Si3N4颗粒或纤维,从而有效连接各SiC颗粒.

  13. 基于增材制造和凝胶注模成型技术的多孔生物陶瓷支架制备与表征%Preparation and characterization of porous bioceramic scaffold based on additive manufacturing and gel-casting technology

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    Objective To investigate a novel method for the preparation of porous bioceramic scaffold ofβ-tricalcium phosphate (TCP) based on additive manufacturing and gel-casting technology. Methods Internal porous structures of scaffold were designed by computer aided design (CAD) software, resin molds were produced by stereolithography, then the bioceramic slurry were cast into the molds, and were sintered to remove the resin mold after hardening. As a result, the porous bioceramic scaffolds of β-TCP were obtained. Characteristics of microcosmic pore structures, mechanical properties and cell compatibility of the scaffolds were examined subsequently. Results Porous structures of β-TCP scaffold were consistent with the original design, with the interval porosity of 45.1% ± 1.2%. and the pore size of 300 to 500 μm; The average compressive strength was 5.3 ± 0.8 MPa;The results of in vitro test showed that osteoblasts were well attached and spread on scaffold, which indicated that the porous scaffold had good biocompatibility. Conclusion A novel method based on additive manufacturing and gel-casting technology has been proposed to produce porous bioceramic scaffold, which can provide scaffolds with complex shape and controlled internal porous structures.%  目的探讨基于增材制造和凝胶注模成型技术的多孔β-磷酸三钙(TCP)生物陶瓷支架的制备方法及其表征。方法利用计算机辅助设计(CAD)软件设计支架内部孔隙结构,通过光固化快速成型技术制造相应的树脂模具,在模具中填充生物材料,待其固化后通过热分解去除树脂模具,然后对所形成的多孔β-TCP支架的微观孔隙结构特征、力学性能以及体外细胞相容性进行检测。结果多孔β-TCP支架孔隙结构与设计结构一致,孔隙率为45.1%±1.2%,孔的尺寸为300~500μm;力学性能测试表明,支架的平均抗压强度为5.3±0.8 MPa;成骨细胞能够在支架上黏附生长

  14. Effects of the use of MIG3 bioceramics fabrics use - long infrared emitter - in pain, intolerance to cold and periodic limb movements in post-polio syndrome Efeitos do uso de tecidos com biocerâmica MIG3 - emissora de infravermelho longo - na dor, intolerância ao frio e movimentos periódicos dos membros na síndrome pós-poliomielite

    Directory of Open Access Journals (Sweden)

    Tatiana Mesquita e Silva

    2009-12-01

    Full Text Available The main post-polio syndrome (PPS symptoms are new-onset weakness, new-onset atrophy, fatigue, cold intolerance, and pain associated with sleep disturbances. The polysomnographic study is the gold pattern to analyze sleep disorders. OBJECTIVE: To assess pain, intolerance to cold and periodic limb movements (PLM index before and after the use of MIG3 bioceramic fabrics over 4 weeks. METHOD: 12 patients with PPS from UNIFESP/EPM. All patients were submitted to polysomnography and infra-red examinations with answered scales of pain and intolerance to cold before and after the use of MIG3 bioceramics fabrics. RESULTS: There were significant decreases in pain and PLM index. CONCLUSION: MIG3 bioceramic fabrics can help in the treatment of pain and PLM in PPS patients.Dentre as manifestações clínicas da SPP destacam-se nova fraqueza, fadiga, dor, intolerância ao frio, nova atrofia e transtornos do sono. A polissonografia de noite inteira permanece sendo padrão ouro para análise do sono e diagnóstico de transtornos do sono. OBJETIVO: Avaliar o comportamento da dor, intolerância ao frio (IF e índice de movimentos periódicos de membros (PLMs após uso de colchonete e roupas com biocerâmica MIG3 por 4 semanas. MÉTODO: 12 pacientes com SPP, da UNIFESP/EPM. Todos realizaram exames de polissonografia e infravermelho e responderam a questionários de dor e IF antes e após o uso dos materiais. RESULTADOS: Houve diminuição significativa da dor e dos PLMs. CONCLUSÃO: Os tecidos com biocerâmica MIG3 podem ser um coadjuvante ao tratamento da dor e dos PLMs nos pacientes com SPP.

  15. Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys

    OpenAIRE

    Jiehua Li; Hage, Fredrik S.; Xiangfa Liu; Quentin Ramasse; Peter Schumacher

    2016-01-01

    The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles...

  16. THE STRUCTURE OF LIQUID LI-SI ALLOYS

    NARCIS (Netherlands)

    DEJONG, PHK; VERKERK, P; VANDERLUGT, W; DEGRAAF, LA

    1993-01-01

    The reverse Monte Carlo method is used to analyse neutron diffraction data on liquid Li65Si35. A well defined Si-Si partial pair correlation function is obtained with strong indications for covalent Si-Si bonds. It is also clear that most of the Si4 stars and Si5 rings occurring in solid Li12Si7 hav

  17. Ionic S(N)i-Si Nucleophilic Substitution in N-Methylaniline-Induced Si-Si Bond Cleavages of Si2Cl6.

    Science.gov (United States)

    Zhang, Jie; Xie, Ju; Lee, Myong Euy; Zhang, Lin; Zuo, Yujing; Feng, Shengyu

    2016-03-24

    N-Methylaniline-induced Si-Si bond cleavage of Si2Cl6 has been theoretically studied. All calculations were performed by using DFT at the MPWB1K/6-311++G(3df,2p)//MPWB1K/6-31+G(d,p) levels. An ionic SN i-Si nucleophilic substitution mechanism, which is a newly found nucleophilic substitution in silicon-containing compounds, is proposed in the N-methylaniline-induced Si-Si bond cleavage in Si2Cl6. Unlike general S(N)i-Si nucleophilic substitutions that go through a pentacoordinated silicon transition state, ionic nucleophilic substitution goes through a tetracoordinated silicon transition state, in which the Si-Si bond is broken and siliconium ions are formed. Special cleavage of the Si-Si bond is presumably due to the good bonding strength between Si and N atoms, which leads to polarization of the Si-Si bond and eventually to heterolytic cleavage. Calculation results show that, in excess N-methylaniline, the final products of the reaction, including (NMePh)(3-n) SiHCl(n) (n=0-2) and (NMePh)(4-n) SiCl(n) (n=2-3), are the Si-Si cleavage products of Si2Cl6 and the corresponding amination products of the former. The ionic S(N)i-Si nucleophilic substitution mechanism can also be employed to describe the amination of chlorosilane by N-methylaniline. The suggested mechanisms are consistent with experimental data.

  18. SiC-SiC and C-SiC Honeycomb for Advanced Flight Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project builds upon the work done in Phase I with the development of a C-SiC CMC honeycomb material that was successfully tested for mechanical...

  19. Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys.

    Science.gov (United States)

    Li, Jiehua; Hage, Fredrik S; Liu, Xiangfa; Ramasse, Quentin; Schumacher, Peter

    2016-04-28

    The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP 'patch' dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption.

  20. Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys

    Science.gov (United States)

    Li, Jiehua; Hage, Fredrik S.; Liu, Xiangfa; Ramasse, Quentin; Schumacher, Peter

    2016-04-01

    The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP ‘patch’ dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption.

  1. Prospective crystallization of amorphous Si films for new Si TFTs

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Takashi [University of the Ryukyus, Fuculty of Engineering, Nishihara, Okinawa (Japan)

    2008-07-01

    Prospective crystallization results of amorphous silicon film are reviewed and are discussed. Silicon TFTs are playing an important role for Active-Matrix Flat Panel Displays (AM-FPD) based on amorphous or poly-Si thin-film transistors (TFTs). Poly-Si TFTs provide a possibility to develop highly functional system on pane (SoP) applications. In order to get a high performance TFT, large poly-crystal grains or high cystallinity for the film is required. Two basic crystallization techniques namely solid phase crystallization (SPC) and excimer laser crystallization (ELC) are reviewed and relating issues are described. A grain growth technique has been developed based on the two crystallization techniques, so far. In order to mount a poly-Si TFT system on a flexible panel such as a plastic, an excimer laser of UV pulse beam has an advantage for the TFT channel as well as for the source and drain contacts as a ultra-low temperature poly-Si (U-LTPS) process. To realize a high performance TFT of uniform and high carrier mobility, location control crystallization had been proposed. Some of the distinctive results for crystal orientation control of (100) and (111) face using the laser crystallization techniques are described. In the future, single-crystalline Si TFT of a functional 3D structure is expected to realize an advanced SoP for ubiquitous electronics era. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Synthesis and properties of Si and SiGe/Si nanowires

    Science.gov (United States)

    Redwing, Joan M.; Lew, Kok-Keong; Bogart, Timothy E.; Pan, Ling; Dickey, Elizabeth C.; Carim, A. H.; Wang, Yanfeng; Cabassi, Marco A.; Mayer, Theresa S.

    2004-06-01

    The fabrication of semiconductor nanowires, in which composition, size and conductivity can be controlled in both the radial and axial direction of the wire is of interest for fundamental studies of carrier confinement as well as nanoscale device development. In this study, group IV semiconductor nanowires, including Si, Ge and SixGe1-x alloy nanowires were fabricated by vapor-liquid-solid (VLS) growth using gaseous precursors. In the VLS process, gold is used to form a liquid alloy with Si and Ge which, upon supersaturation, precipitates a semiconductor nanowire. Nanoporous alumina membranes were used as templates for the VLS growth process, in order to control the diameter of the nanowires over the range from 45 nm to 200 nm. Intentional p-type and n-type doping was achieved through the addition of either trimethylboron, diborane or phosphine gas during nanowire growth. The electrical properties of undoped and intentionally doped silicon nanowires were characterized using field-assisted assembly to align and position the wires onto pre-patterned test bed structures. The depletion characteristics of back-gated nanowire structures were used to determine conductivity type and qualitatively compare dopant concentration. SiGe and SiGe/Si axial heterostructure nanowires were also prepared through the addition of germane gas during VLS growth. The Ge concentration in the wires was controllable over the range from 12 % to 25% by varying the inlet GeH4/SiH4 ratio.

  3. Construction and characterization of spherical Si solar cells combined with SiC electric power inverter

    Science.gov (United States)

    Oku, Takeo; Matsumoto, Taisuke; Hiramatsu, Kouichi; Yasuda, Masashi; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio

    2015-02-01

    Spherical silicon (Si) photovoltaic solar cell systems combined with an electric power inverter using silicon carbide (SiC) field-effect transistor (FET) were constructed and characterized, which were compared with an ordinary Si-based converter. The SiC-FET devices were introduced in the direct current-alternating current (DC-AC) converter, which was connected with the solar panels. The spherical Si solar cells were used as the power sources, and the spherical Si panels are lighter and more flexible compared with the ordinary flat Si solar panels. Conversion efficiencies of the spherical Si solar cells were improved by using the SiC-FET.

  4. Reactive diffusion bonding of SiCp/Al composites by insert layers of mixed Al-Si and Al-Si-SiC powders

    Institute of Scientific and Technical Information of China (English)

    Jihua Huang; Yueling Dong; Yun Wan; Jiangang Zhang; Hua Zhang

    2005-01-01

    Mixed Al-Si and Al-Si-SiC powders were employed as insert layers to reactive diffusion bond SiCp/6063 MMC (metal matrix composites). The results show that SiCp/6063 MMC joints bonded by the insert layer of the mixed Al-Si powder have a dense joining layer with a typical hypoeutectic microstructure. Using the mixed Al-Si-SiC powder as the insert layer, SiCp/6063 MMC can be reactive diffusion bonded by a composite joint. Because of the SiC segregation, however, there are a number of porous zones in the joining layer, which results in the bad shear strength of the joints reactive diffusion bonded by the insert layer of the mixed Al-SiSiC powder, even lower than that of the joints reactive diffusion bonded by the insert layer of the mixed Al-Si powder. Ti and Mg added in the insert layers obviously improve the strength of the joints reactive diffusion bonded by the insert layer of the mixed AlSi-SiC powder, especially, Mg has a more obvious effect.

  5. Room-temperature formation of Pt$_3$Si/Pt$_2$Si films on poly-Si substrates

    CERN Document Server

    Dubkov, V P; Chizh, K V; Yuryev, V A

    2016-01-01

    We propose a way of formation of thin bilayer Pt$_3$Si/Pt$_2$Si films at room temperature on poly-Si substrates by Pt magnetron sputtering and wet etching, obtain such film, investigate its structure and phase composition and estimate the thickness of its layers. We verify by direct x-ray photoelectron-spectroscopic measurements our previous observation of the Pt$_2$Si layer formaton between Pt and poly-Si films as a result of Pt magnetron sputtering at room temperature. This layer likely appears due to high enough temperature of Pt ions in the magnetron plasma sufficient for chemical reaction of the silicide film formation on the Si surface. The Pt$_3$Si layer likely forms from the Pt--Pt$_3$Si layer (Pt$_{95}$Si$_5$), which arises under Pt film during the magnetron sputtering, as a result of Pt removal by wet etching.

  6. Recent Progress of SiC-Fibers and SiC/SiC-Composites for Fusion Applications

    Science.gov (United States)

    Noda, T.; Kohyama, A.; Katoh, Y.

    Recent progress in R&D of SiC fibers and reinforced SiC matrix (SiC/SiC) composites in Japan, especially focusing on the activities of CREST-ACE program, is presented. Firstly, the present status of high performance SiC fiber development, such as Hi-Nicalon Type-S and Tyrano-SA, is provided. The high performance SiC matrix production by reaction sintering (RS) method improved in both strength and thermal conductivity are accomplished. The efforts to make appropriate fiber-matrix interfacial microstructure by CVI and PIP methods have been successful, resulting in the production of high strength and high fracture toughness SiC/SiC composites. Several joining processes using PIP, RS and mechanical fastener for composites are introduced. Dimensional stability under radiation damage has been studied by neutron and charged particle irradiation. The SiC/SiC composites prepared with Type-S SiC fiber with a stoichiometric composition did not exhibit mechanical property degradation. Based on the development of SiC composites, test module concepts to verify the advanced fluid systems including SiC/SiC/Be/He coolant blanket are presented.

  7. Mo-Si alloy development

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Heatherly, L.; Wright, J.L. [Oak Ridge National Lab., TN (United States)

    1996-06-01

    The objective of this task is to develop new-generation corrosion-resistant Mo-Si intermetallic alloys as hot components in advanced fossil energy conversion and combustion systems. The initial effort is devoted to Mo{sub 5}-Si{sub 3}-base (MSB) alloys containing boron additions. Three MSB alloys based on Mo-10.5Si-1.1B (wt %), weighing 1500 g were prepared by hot pressing of elemental and alloy powders at temperatures to 1600{degrees}C in vacuum. Microporosities and glassy-phase (probably silicate phases) formations are identified as the major concerns for preparation of MSB alloys by powder metallurgy. Suggestions are made to alleviate the problems of material processing.

  8. Irradiation effects on thermal expansion of SiC/SiC composite materials

    International Nuclear Information System (INIS)

    Irradiation-induced dimensional change and thermal expansion of two kinds of composites, self-particle reinforced SiCp/SiC composites and a Hi-Nicalon SiC fiber reinforced SiCf/SiC composite, and monolithic α-SiC were measured after irradiation at 0.2 dpa with irradiation temperatures of 573, 673 and 843 K using the JMTR. From the measurement, swelling was observed for the SiCp/SiC composites and the monolithic α-SiC, on the contrary, the SiCf/SiC composites showed a shrinkage. The measured thermal expansion increased with increasing the specimen temperature below the irradiation temperature, and then rapidly decreased over the irradiation temperature. The so-called 'temperature monitor effect' of the silicon carbide was clearly observed for all specimens, the monolithic α-SiC and both composites

  9. HV/CVD Grown Relaxed SiGe Buffer Layers for SiGe HMOSFETs

    Institute of Scientific and Technical Information of China (English)

    黄文韬; 罗广礼; 史进; 邓宁; 陈培毅; 钱佩信

    2003-01-01

    High-vacuum/chemical-vapor deposition (HV/CVD) system was used to grow relaxed SiGe buffer layers on Si substrates. Several methods were then used to analyze the quality of the SiGe films. X-ray diffraction and Raman spectroscopy showed that the upper layer was almost fully relaxed. Second ion mass spectroscopy showed that the Ge compositions were step-graded. Transmission electron microscopy showed that the misfit dislocations were restrained to the graded SiGe layers. Tests of the electrical properties of tensile-strained Si on relaxed SiGe buffer layers showed that their transconductances were higher than that of Si devices. These results verify the high quality of the relaxed SiGe buffer layer. The calculated critical layer thicknesses of the graded Si1-xGex layer on Si substrate and a Si layer on the relaxed SiGe buffer layer agree well with experimental results.

  10. High thermal conductivity SiC/SiC composites for fusion applications -- 2

    Energy Technology Data Exchange (ETDEWEB)

    Kowbel, W.; Tsou, K.T.; Withers, J.C. [MER Corp., Tucson, AZ (United States); Youngblood, G.E. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    This report covers material presented at the IEA/Jupiter Joint International Workshop on SiC/SiC Composites for Fusion Structural Applications held in conjunction with ICFRM-8, Sendai, Japan, Oct. 23--24, 1997. An unirradiated SiC/SiC composite made with MER-developed CVR SiC fiber and a hybrid PIP/CVI SiC matrix exhibited room temperature transverse thermal conductivity of 45 W/mK. An unirradiated SiC/SiC composite made from C/C composite totally CVR-converted to a SiC/SiC composite exhibited transverse thermal conductivity values of 75 and 35 W/mK at 25 and 1000 C, respectively. Both types of SiC/SiC composites exhibited non-brittle failure in flexure testing.

  11. On the structure and chemical bonding of Si62- and Si62- in NaSi6- upon Na+ coordination

    Science.gov (United States)

    Zubarev, Dmitry Yu.; Alexandrova, Anastassia N.; Boldyrev, Alexander I.; Cui, Li-Feng; Li, Xi; Wang, Lai-Sheng

    2006-03-01

    Photoelectron spectroscopy was combined with ab initio calculations to elucidate the structure and bonding in Si62- and NaSi6-. Well-resolved electronic transitions were observed in the photoelectron spectra of Si6- and NaSi6- at three photon energies (355, 266, and 193nm). The spectra of NaSi6- were observed to be similar to those of Si6- except that the electron binding energies of the former are lower, suggesting that the Si6 motif in NaSi6- is structurally and electronically similar to that in Si6-. The electron affinities of Si6 and NaSi6 were measured fairly accurately to be 2.23±0.03eV and 1.80±0.05eV, respectively. Global minimum structure searches for Si62- and NaSi6- were performed using gradient embedded genetic algorithm followed by B3LYP, MP2, and CCSD(T) calculations. Vertical electron detachment energies were calculated for the lowest Si6- and NaSi6- structures at the CCSD(T)/6-311+G(2df ), ROVGF/6-311+G(2df), UOVGF/6-311+G(2d), and time-dependent B3LYP/6-311+G(2df) levels of theory. Experimental vertical detachment energies were used to verify the global minimum structure for NaSi6-. Though the octahedral Si62-, analogous to the closo form of borane B6H62-, is the most stable form for the bare hexasilicon dianion, it is not the kernel for the NaSi6- global minimum. The most stable isomer of NaSi6- is based on a Si62- motif, which is distorted into C2v symmetry similar to the ground state structure of Si6-. The octahedral Si62- coordinated by a Na+ is a low-lying isomer and was also observed experimentally. The chemical bonding in Si62- and NaSi6- was understood using natural bond orbital, molecular orbital, and electron localization function analyses.

  12. Mechanical Properties of Polyhydroxyalkanoate Bioceramic Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    江涛; 胡平; 柳林; 李亚栋

    2002-01-01

    New composites prepared containing nanoscale hydroxyapatite or monetite uniformly distributed in a polyhydroxyalkanoate (polyhydroxybutyrate or polyhydroxybutyrate-hydroxyvalerate) matrix with mass fractions of 1%5% were then injected into dumb-like specimens. The results show that the tensile strength and the tensile modulus of the composites are improved. The microstructures of the composites were observed using transmission electron microscopy (TEM).

  13. Progress of Si-based Optoelectronic Devices

    Institute of Scientific and Technical Information of China (English)

    PENG Ying-cai; FU Guang-sheng; WANG Ying-long; SHANG Yong

    2004-01-01

    Si-based optoelectronics is becoming a very active research area due to its potential applications to optical communications. One of the major goals of this study is to realize ali-Si optoelectronic integrated circuit. This is due to the fact that Si- based optoelectronic technology can be compatible with Si microelectronic technology. If Si-based optoelectronic devices and integrated circuits can be achieved,it will lead to a new informational technological revolution. In the article, the current developments of this exciting field are mainly reviewed in the recent years. The involved contents are the realization of various Si-based optoelectronic devices, such as light-emitting diodes,optical waveguides devices, Si photonic bandgap crystals,and Si laser,etc. Finally, the developed tendency of all-Si optoelectronic integrated technology are predicted in the near future.

  14. Preparation of the fast setting and degrading Ca-Si-Mg cement with both odontogenesis and angiogenesis differentiation of human periodontal ligament cells.

    Science.gov (United States)

    Chen, Yi-Wen; Hsu, Tuan-Ti; Wang, Kan; Shie, Ming-You

    2016-03-01

    Develop a fast setting and controllable degrading magnesium-calcium silicate cement (Mg-CS) by sol-gel, and establish a mechanism using Mg ions to stimulate human periodontal ligament cells (hPDLs) are two purposes of this study. We have used the diametral tensile strength measurement to obtain the mechanical strength and stability of Mg-CS cement; in addition, the cement degradation properties is realized by measuring the releasing amount of Si and Mg ions in the simulated body fluid. The other cell characteristics of hPDLs, such as proliferation, differentiation and mineralization were examined while hPDLs were cultured on specimen surfaces. This study found out the degradation rate of Mg-CS cements depends on the Mg content in CS. Regarding in vitro bioactivity; the CS cements were covered with abundant clusters of apatite spherulites after immersion of 24h, while less apatite spherulites were formatted on the Mg-rich cement surfaces. In addition, the authors also explored the effects of Mg ions on the odontogenesis and angiogenesis differentiation of hPDLs in comparison with CS cement. The proliferation, alkaline phosphatase, odontogenesis-related genes (DSPP and DMP-1), and angiogenesis-related protein (vWF and ang-1) secretion of hPDLs were significantly stimulated when the Mg content of the specimen was increased. The results in this study suggest that Mg-CS materials with this modified composition could stimulate hPDLs behavior and can be good bioceramics for bone substitutes and hard tissue regeneration applications as they stimulate odontogenesis/angiogenesis.

  15. Preparation of the fast setting and degrading Ca-Si-Mg cement with both odontogenesis and angiogenesis differentiation of human periodontal ligament cells.

    Science.gov (United States)

    Chen, Yi-Wen; Hsu, Tuan-Ti; Wang, Kan; Shie, Ming-You

    2016-03-01

    Develop a fast setting and controllable degrading magnesium-calcium silicate cement (Mg-CS) by sol-gel, and establish a mechanism using Mg ions to stimulate human periodontal ligament cells (hPDLs) are two purposes of this study. We have used the diametral tensile strength measurement to obtain the mechanical strength and stability of Mg-CS cement; in addition, the cement degradation properties is realized by measuring the releasing amount of Si and Mg ions in the simulated body fluid. The other cell characteristics of hPDLs, such as proliferation, differentiation and mineralization were examined while hPDLs were cultured on specimen surfaces. This study found out the degradation rate of Mg-CS cements depends on the Mg content in CS. Regarding in vitro bioactivity; the CS cements were covered with abundant clusters of apatite spherulites after immersion of 24h, while less apatite spherulites were formatted on the Mg-rich cement surfaces. In addition, the authors also explored the effects of Mg ions on the odontogenesis and angiogenesis differentiation of hPDLs in comparison with CS cement. The proliferation, alkaline phosphatase, odontogenesis-related genes (DSPP and DMP-1), and angiogenesis-related protein (vWF and ang-1) secretion of hPDLs were significantly stimulated when the Mg content of the specimen was increased. The results in this study suggest that Mg-CS materials with this modified composition could stimulate hPDLs behavior and can be good bioceramics for bone substitutes and hard tissue regeneration applications as they stimulate odontogenesis/angiogenesis. PMID:26706543

  16. Laser annealing of sputter-deposited -SiC and -SiCN films

    Indian Academy of Sciences (India)

    M A Fraga; M Massi; I C Oliveira; F D Origo; W Miyakawa

    2011-12-01

    This work describes the laser annealing of -SiC and -SiCN films deposited on (100) Si and quartz substrates by RF magnetron sputtering. Two samples of -SiCN thin films were produced under different N2/Ar flow ratios. Rutherford backscattering spectroscopy (RBS), Raman analysis and Fourier transform infrared spectrometry (FTIR) techniques were used to investigate the composition and bonding structure of as-deposited and laser annealed SiC and SiCN films.

  17. Analysis of Si/SiGe Heterostructure Solar Cell

    Directory of Open Access Journals (Sweden)

    Ashish Kumar Singh

    2014-01-01

    Full Text Available Sunlight is the largest source of carbon-neutral energy. Large amount of energy, about 4.3 × 1020 J/hr (Lewis, 2005, is radiated because of nuclear fusion reaction by sun, but it is unfortunate that it is not exploited to its maximum level. Various photovoltaic researches are ongoing to find low cost, and highly efficient solar cell to fulfil looming energy crisis around the globe. Thin film solar cell along with enhanced absorption property will be the best, so combination of SiGe alloy is considered. The paper presented here consists of a numerical model of Si/Si1-xGex heterostructure solar cell. The research has investigated characteristics such as short circuit current density (Jsc, generation rate (G, absorption coefficient (α, and open circuit voltage (Voc with optimal Ge concentration. The addition of Ge content to Si layer will affect the property of material and can be calculated with the use of Vegard’s law. Due to this, short circuit current density increases.

  18. Investigation of an a-Si/c-Si interface on a c-Si(P) substrate by simulation

    Institute of Scientific and Technical Information of China (English)

    Wang Jianqiang; Gao Hua; Zhang Jian; Meng Fanying; Ye Qinghao

    2012-01-01

    We investigate the recombination mechanism in an a-Si/c-Si interface,and analyze the key factors that influence the interface passivation quality,such as Qs,δp/δn and Dit.The polarity of the dielectric film is very important to the illustration level dependent passivation quality; when nδn =pδp and the defect level Et equal to Ei (c-Si),the defect states are the most effective recombination center,AFORS-HET simulation and analysis indicate that emitter doping and a-Si/c-Si band offset modulation are effective in depleting or accumulating one charged carrier.Interface states (Dit) severely deteriorate Voc compared with Jsc for a-Si/c-Si HJ cell performance when Dit is over 1 × 1010 cm-2.eV-1.For a c-Si(P)/a-Si(P+) structure,ΦBSF in c-Si and Φo in a-Si have different performances in optimization contact resistance and c-Si(P)/a-Si(P+) interface recombination.

  19. Structures and relative stability of medium- and large-sized silicon clusters. VI. Fullerene cage motifs for low-lying clusters Si39, Si40, Si50, Si60, Si70, and Si80

    Science.gov (United States)

    Yoo, Soohaeng; Shao, N.; Zeng, X. C.

    2008-03-01

    We performed a constrained search, combined with density-functional theory optimization, of low-energy geometric structures of silicon clusters Si39, Si40, Si50, Si60, Si70, and Si80. We used fullerene cages as structural motifs to construct initial configurations of endohedral fullerene structures. For Si39, we examined six endohedral fullerene structures using all six homolog C34 fullerene isomers as cage motifs. We found that the Si39 constructed based on the C34(Cs:2) cage motif results in a new leading candidate for the lowest-energy structure whose energy is appreciably lower than that of the previously reported leading candidate obtained based on unbiased searches (combined with tight-binding optimization). The C34(Cs:2) cage motif also leads to a new candidate for the lowest-energy structure of Si40 whose energy is notably lower than that of the previously reported leading candidate with outer cage homolog to the C34(C1:1). Low-lying structures of larger silicon clusters Si50 and Si60 are also obtained on the basis of preconstructed endohedral fullerene structures. For Si50, Si60, and Si80, the obtained low-energy structures are all notably lower in energy than the lowest-energy silicon structures obtained based on an unbiased search with the empirical Stillinger-Weber potential of silicon. Additionally, we found that the binding energy per atom (or cohesive energy) increases typically >10meV with addition of every ten Si atoms. This result may be used as an empirical criterion (or the minimal requirement) to identify low-lying silicon clusters with size larger than Si50.

  20. Microwave joining of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Silberglitt, R.; Ahmad, I.; Tian, Y.L. [FM Technologies, Inc., Fairfax, VA (United States)] [and others

    1997-04-01

    The purpose of this work is to optimize the properties of SiC-SiC joints made using microwave energy. The current focus is on identification of the most effective joining methods for scale-up to large tube assemblies, including joining using SiC produced in situ from chemical precursors. During FY 1996, a new microwave applicator was designed, fabricated and tested that provides the capability for vacuum baking of the specimens and insulation and for processing under inert environment. This applicator was used to join continuous fiber-reinforced (CFCC) SiC/SiC composites using a polymer precursor to form a SiC interlayer in situ.

  1. Interface engineering of photoelectrochemically prepared Si surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lewerenz, H.J.; Murrell, C.; Kanis, M.; Jungblut, H. [Department of Interfaces, Bereich Solarenergie, Hahn-Meitner-Institut Berlin, Glienicker Str. 100, D-14109 Berlin (Germany); Aggour, M. [University of Tofail, Kenitra (Morocco); Hoffmann, P.; Schmeisser, D. [Fakultaet 1, Brandenburgisch-Technische Universitaet, Cottbus (Germany)

    2002-05-01

    The oxide of Si(111) formed by electropolishing in dilute ammonium fluoride solution is analysed by photoelectron spectroscopy using synchrotron radiation. The oxidic layer is about 3.1 nm thick and contains Si-F{sub x} species as well as oxyfluorides. The oxyfluorides are found preferentially at the electropolishing layer surface. SiOH species are concentrated at the oxidic film/substrate interface. The full width half maximum of the Si 2p line indicates that the Si/electropolishing oxide interface is smoother than the Si/natural oxide interface.

  2. Straight β-SiC nanorods synthesized by using C-Si-SiO2

    Science.gov (United States)

    Lai, H. L.; Wong, N. B.; Zhou, X. T.; Peng, H. Y.; Au, Frederick C. K.; Wang, N.; Bello, I.; Lee, C. S.; Lee, S. T.; Duan, X. F.

    2000-01-01

    Straight beta-silicon carbide nanorods have been grown on silicon wafers using hot filament chemical vapor deposition with iron particles as catalyst. A plate made of a C-Si-SiO2 powder mixture was used as carbon and silicon sources. Hydrogen, which was the only gas fed into the deposition system, acts both as a reactant and as a mass transporting medium. The diameter of the β-SiC nanorod ranged from 20 to 70 nm, while its length was approximately 1 μm. A growth mechanism of beta-silicon carbide nanorods was proposed. The field emission properties of the beta-silicon carbide nanorods grown on the silicon substrate are also reported.

  3. Microscopic and macroscopic characterization of the charging effects in SiC/Si nanocrystals/SiC sandwiched structures

    International Nuclear Information System (INIS)

    Microscopic charge injection into the SiC/Si nanocrystals/SiC sandwiched structures through a biased conductive AFM tip is subsequently characterized by both electrostatic force microscopy and Kelvin probe force microscopy (KPFM). The charge injection and retention characteristics are found to be affected by not only the band offset at the Si nanocrystals/SiC interface but also the doping type of the Si substrate. On the other hand, capacitance–voltage (C–V) measurements investigate the macroscopic charging effect of the sandwiched structures with a thicker SiC capping layer, where the charges are injected from the Si substrates. The calculated macroscopic charging density is 3–4 times that of the microscopic one, and the possible reason is the underestimation of the microscopic charging density caused by the averaging effect and detection delay in the KPFM measurements. (paper)

  4. Three carbon pairs in Si

    Energy Technology Data Exchange (ETDEWEB)

    Docaj, A. [Physics Department, Texas Tech University, Lubbock, TX 79409-1051 (United States); Estreicher, S.K., E-mail: Stefan.Estreicher@ttu.edu [Physics Department, Texas Tech University, Lubbock, TX 79409-1051 (United States)

    2012-08-01

    Carbon impurities in Si are common in floating-zone and cast-Si materials. The simplest and most discussed carbon complex is the interstitial-substitutional C{sub i}C{sub s} pair, which readily forms when self-interstitials are present in the material. This pair has three possible configurations, each of which is electrically active. The less common C{sub s}C{sub s} pair has been studied in irradiated material but has also recently been seen in as-grown C-rich cast-Si, which is commonly used to fabricate solar cells. The third pair consists of two interstitial C atoms: C{sub i}C{sub i}. Although its formation probability is low for several reasons, the C{sub i}C{sub i} pair is very stable and electrically inactive. In this contribution, we report preliminary results of first-principles calculations of these three C pairs in Si. The structures, binding energies, vibrational spectra, and electrical activity are predicted.

  5. Phonon heat transport in superlattices: Case of Si/SiGe and SiGe/SiGe superlattices

    Science.gov (United States)

    Hijazi, M.; Kazan, M.

    2016-06-01

    We present a predictive Boltzmann model for the cross-plane thermal conductivity in superlattices. The developed model considers particle-like phonons exhibiting wave characteristics at the interfaces and makes the assumption that the phonon heat transport in a superlattice has a mixed character. Exact Boltzmann equation comprising spatial dependence of phonon distribution function is solved to yield a general expression for the lattice thermal conductivity. The intrinsic phonon scattering rates are calculated from Fermi's golden rule, and the model vibrational parameters are derived as functions of temperature and crystallographic directions by using elasticity theory-based lattice dynamics approach. The developed theory is then adapted to calculate the cross-plane thermal conductivity of superlattices. It is assumed that the phonons of wavelengths comparable or smaller than the superlattice period or the root mean square irregularity at the superlattice interfaces may be subject to a resistive scattering mechanism at the interfaces, whereas the phonons of wavelengths much greater than the superlattice period undergo ballistic transmission through the interfaces and obey dispersion relations determined by the Brillouin zone folding effects of the superlattice. The accuracy of the concept of mixed phonon transport regime in superlattices is demonstrated clearly with reference to experimental measurements regarding the effects of period thickness and temperature on the cross-plane thermal conductivity of Si/Si0.7Ge0.3 and Si0.84Ge0.16/Si0.76Ge0.3 superlattices.

  6. Palladium transport in SiC

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, E.J., E-mail: jolivier@nmmu.ac.za [Centre for High Resolution Transmission Electron Microscopy, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Neethling, J.H. [Centre for High Resolution Transmission Electron Microscopy, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer We investigate the reaction of Pd with SiC at typical HTGR operating temperatures. Black-Right-Pointing-Pointer The high temperature mobility of palladium silicides within polycrystalline SiC was studied. Black-Right-Pointing-Pointer Corrosion of SiC by Pd was seen in all cases. Black-Right-Pointing-Pointer The preferential corrosion and penetration of Pd along grain boundaries in SiC was found. Black-Right-Pointing-Pointer The penetration and transport of palladium silicides in SiC along grain boundaries was found. - Abstract: This paper reports on a transmission electron microscopy (TEM) and scanning electron microscopy (SEM) study of Pd corroded SiC. The reaction of Pd with different types of SiC at typical HTGR operating temperatures was examined. In addition the high temperature mobility of palladium silicides within polycrystalline SiC was investigated. The results indicated corrosion of the SiC by Pd in all cases studied. The corrosion leads to the formation of palladium silicides within the SiC, with the predominant phase found being Pd{sub 2}Si. Evidence for the preferential corrosion and penetration of Pd along grain boundaries in polycrystalline SiC was found. The penetration and transport, without significant corrosion, of palladium silicides into polycrystalline SiC along grain boundaries was also observed. Implications of the findings with reference to the use of Tri Isotropic particles in HTGRs will be discussed.

  7. Palladium transport in SiC

    International Nuclear Information System (INIS)

    Highlights: ► We investigate the reaction of Pd with SiC at typical HTGR operating temperatures. ► The high temperature mobility of palladium silicides within polycrystalline SiC was studied. ► Corrosion of SiC by Pd was seen in all cases. ► The preferential corrosion and penetration of Pd along grain boundaries in SiC was found. ► The penetration and transport of palladium silicides in SiC along grain boundaries was found. - Abstract: This paper reports on a transmission electron microscopy (TEM) and scanning electron microscopy (SEM) study of Pd corroded SiC. The reaction of Pd with different types of SiC at typical HTGR operating temperatures was examined. In addition the high temperature mobility of palladium silicides within polycrystalline SiC was investigated. The results indicated corrosion of the SiC by Pd in all cases studied. The corrosion leads to the formation of palladium silicides within the SiC, with the predominant phase found being Pd2Si. Evidence for the preferential corrosion and penetration of Pd along grain boundaries in polycrystalline SiC was found. The penetration and transport, without significant corrosion, of palladium silicides into polycrystalline SiC along grain boundaries was also observed. Implications of the findings with reference to the use of Tri Isotropic particles in HTGRs will be discussed.

  8. In vitro prominent bone regeneration by release zinc ion from Zn-modified implant

    International Nuclear Information System (INIS)

    Highlights: → We isolated the Zn2+ ions (eluted Zn2+ ion; EZ) from zinc-incorporated titanium implant. → The EZ promoted the cell viability in hBMCs. → The EZ stimulated preosteoblast and osteoblast marker gene expression in hBMCs. → The hBMCs supplemented with EZ showed typically cell morphology when osteoblast maturing. → It is revealed that the EZ also stimulates the calcium deposition of hBMCs. -- Abstract: Zinc is one of the trace elements which induce the proliferation and the differentiation of the osteoblast. In the previous study, we found that zinc ions (Zn2+ ion)-releasing titanium implants had excellent bone fixation using a rabbit femurs model. In this study, we isolated the Zn2+ ions (eluted Zn2+ ion; EZ) released from the implant surface, and evaluated the effect of EZ on the osteogenesis of human bone marrow-derived mesenchymal cells (hBMCs). In the result, it was found that the EZ stimulated cell viability, osteoblast marker gene (type I collagen, osteocalcin (OC), alkaline phosphatase (ALP) and bone sialoprotein (BSP)) expressions and calcium deposition in hBMCs.

  9. The HFIR 14J irradiation SiC/SiC composite and SiC fiber collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States); Kohyama, Akira; Katoh, Yutai [Kyoto Univ., Uji, Kyoto (Japan); Hasegawa, Akira [Tohoku Univ., Aramaki, Sendai (Japan); Snead, L. [Oak Ridge National Lab., TN (United States); Scholz, R.

    1998-09-01

    A short introduction with references establishes the current status of research and development of SiC{sub f}/SiC composites for fusion energy systems with respect to several key issues. The SiC fiber and composite specimen types selected for the JUPITER 14J irradiation experiment are presented together with the rationale for their selection.

  10. GeSi/Si Resonant Tunneling Diodes%GeSi/Si共振隧穿二极管

    Institute of Scientific and Technical Information of China (English)

    郭维廉

    2008-01-01

    GeSi/Si共振隧穿二极管主要包括空穴型GeSi/Si RTD、应力型GeSi/Si RTD和GeSi/Si带间共振隧穿二极管三种结构.着重讨论了后两种GeSi/Si基RTD结构;指出GeSi/Si异质结的能带偏差主要发生在二者价带之间(即△Ev>△Ec),形成的电子势阱很浅,因此适用于空穴型RTD的研制;n型带内RTD只有通过应力Si或应力GeSi来实现,这种应力型RTD为带内RTD的主要结构;而带间GeSi/Si RITD则将成为更有应用前景的、性能较好的GeSi/Si RTD器件结构.

  11. Nitrogen doping effect upon hole tunneling characteristics of Si barriers in Si1-xGex/Si resonant tunneling diode

    International Nuclear Information System (INIS)

    Nitrogen atomic-layer (N AL) doping effects upon hole tunneling characteristics of double 4 nm-thick Si barriers in the strained Si1−xGex/Si(100) hole resonant tunneling diode (RTD) were investigated. At a Si cap layer on Si1−xGex(100) (x = 0.2 and 0.4) formed at 500 °C, it was found that NH3 reaction was drastically enhanced at 500 °C especially at the Si cap layer thickness less than 0.5 nm, and the fact indicates a possibility of significant intermixing at the Si/Si1−xGex heterointerface. From current–voltage characteristics of the RTDs, drastic current suppression by N AL doping in the Si barriers can be observed with typical degree of current suppression as high as 103–105 at − 10 mV. Moreover, it was found that N AL doping influences, not only upon such current suppression, but slightly upon negative differential conductance characteristics. - Highlights: • NH3 reaction enhancement on a thin Si cap layer on Si1−xGex(100). • Drastic current suppression by N atomic-layer doping in Si barriers. • N atomic-layer doping effect upon negative differential conductance characteristics

  12. Emission efficiency limit of Si nanocrystals

    NARCIS (Netherlands)

    Limpens, R.; Luxembourg, S.L.; Weeber, A.W.; Gregorkiewicz, T.

    2016-01-01

    One of the important obstacles on the way to application of Si nanocrystals for development of practical devices is their typically low emissivity. In this study we explore the limits of external quantum yield of photoluminescence of solid-state dispersions of Si nanocrystals in SiO2. By making use

  13. High Q SiC microresonators

    OpenAIRE

    Cardenas, Jaime; Zhang, Mian; Phare, Christopher T.; Shah, Shreyas Y.; Poitras, Carl B.; Lipson, Michal

    2013-01-01

    We demonstrate photonic devices based on standard 3C SiC epitaxially grown on silicon. We achieve high optical confinement by taking advantage of the high stiffness of SiC and undercutting the underlying silicon substrate. We demonstrate a 20 um radius suspended microring resonator with Q of 18000 fabricated on commercially available SiC-on-silicon substrates.

  14. Microwave joining of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Silberglitt, R.; Ahmad, I. [FM Technologies, Inc., Fairfax, VA (United States); Black, W.M. [George Mason Univ., Fairfax, VA (United States)] [and others

    1995-05-01

    The purpose of this work is to optimize the properties of SiC-SiC joints made using microwave energy. The current focus is on optimization of time-temperature profiles, production of SiC from chemical precursors, and design of new applicators for joining of long tubes.

  15. 3C-SiC nanocrystal growth on 10° miscut Si(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Deokar, Geetanjali, E-mail: gitudeo@gmail.com [INSP, UPMC, CNRS UMR 7588, 4 place Jussieu, Paris F-75005 (France); D' Angelo, Marie; Demaille, Dominique [INSP, UPMC, CNRS UMR 7588, 4 place Jussieu, Paris F-75005 (France); Cavellin, Catherine Deville [INSP, UPMC, CNRS UMR 7588, 4 place Jussieu, Paris F-75005 (France); Faculté des Sciences et Technologie UPEC, 61 av. De Gaulle, Créteil F-94010 (France)

    2014-04-01

    The growth of 3C-SiC nano-crystal (NC) on 10° miscut Si(001) substrate by CO{sub 2} thermal treatment is investigated by scanning and high resolution transmission electron microscopies. The vicinal Si(001) surface was thermally oxidized prior to the annealing at 1100 °C under CO{sub 2} atmosphere. The influence of the atomic steps at the vicinal SiO{sub 2}/Si interface on the SiC NC growth is studied by comparison with the results obtained for fundamental Si(001) substrates in the same conditions. For Si miscut substrate, a substantial enhancement in the density of the SiC NCs and a tendency of preferential alignment of them along the atomic step edges is observed. The SiC/Si interface is abrupt, without any steps and epitaxial growth with full relaxation of 3C-SiC occurs by domain matching epitaxy. The CO{sub 2} pressure and annealing time effect on NC growth is analyzed. The as-prepared SiC NCs can be engineered further for potential application in optoelectronic devices and/or as a seed for homoepitaxial SiC or heteroepitaxial GaN film growth. - Highlights: • Synthesis of 3C-SiC nanocrystals epitaxied on miscut-Si using a simple technique • Evidence of domain matching epitaxy at the SiC/Si interface • SiC growth proceeds along the (001) plane of host Si. • Substantial enhancement of the SiC nanocrystal density due to the miscut • Effect of the process parameters (CO{sub 2} pressure and annealing duration)

  16. Ultrasound assisted siRNA delivery using PEG-siPlex loaded microbubbles.

    Science.gov (United States)

    Vandenbroucke, Roosmarijn E; Lentacker, Ine; Demeester, Joseph; De Smedt, Stefaan C; Sanders, Niek N

    2008-03-20

    Short interfering RNA (siRNA) attracts much attention for the treatment of various diseases. However, its delivery, especially via systemic routes, remains a challenge. Indeed, naked siRNAs are rapidly degraded, while complexed siRNAs massively aggregate in the blood or are captured by macrophages. Although this can be circumvented by PEGylation, we found that PEGylation had a strong negative effect on the gene silencing efficiency of siRNA-liposome complexes (siPlexes). Recently, ultrasound combined with microbubbles has been used to deliver naked siRNA but the gene silencing efficiency is rather low and very high amounts of siRNA are required. To overcome the negative effects of PEGylation and to enhance the efficiency of ultrasound assisted siRNA delivery, we coupled PEGylated siPlexes (PEG-siPlexes) to microbubbles. Ultrasound radiation of these microbubbles resulted in massive release of unaltered PEG-siPlexes. Interestingly, PEG-siPlexes loaded on microbubbles were able to enter cells after exposure to ultrasound, in contrast to free PEG-siPlexes, which were not able to enter cells rapidly. Furthermore, these PEG-siPlex loaded microbubbles induced, in the presence of ultrasound, much higher gene silencing than free PEG-siPlexes. Additionally, the PEG-siPlex loaded microbubbles only silenced the expression of genes in the presence of ultrasound, which allows space and time controlled gene silencing.

  17. Laser cladding of Al-Si/SiC composite coatings : Microstructure and abrasive wear behavior

    NARCIS (Netherlands)

    Anandkumar, R.; Almeida, A.; Vilar, R.; Ocelik, V.; De Hosson, J.Th.M.

    2007-01-01

    Surface coatings of an Al-Si-SiC composite were produced on UNS A03560 cast Al-alloy substrates by laser cladding using a mixture of powders of Al-12 wt.% Si alloy and SiC. The microstructure of the coatings depends considerably on the processing parameters. For a specific energy of 26 MJ/m2 the mic

  18. Microstructure and wear studies of laser clad Al-Si/SiC(p) composite coatings

    NARCIS (Netherlands)

    Anandkumar, R.; Almeida, A.; Colaco, R.; Vilar, R.; Ocelik, V.; De Hosson, J. Th. M.

    2007-01-01

    Coatings of a composite material consisting of an Al-Si matrix reinforced with SiC particles were produced by laser cladding on UNS A03560 cast Al-alloy substrates from mixtures of powders of Al-12 wt.% Si alloy and SiC. The influence of the processing parameters on the microstructure and abrasive w

  19. Irradiation project of SiC/SiC fuel pin 'INSPIRE': Status and future plan

    International Nuclear Information System (INIS)

    After the March 11 Disaster in East-Japan, Research and Development towards Ensuring Nuclear Safety Enhancement for LWR becomes a top priority R and D in nuclear energy policy of Japan. The role of high temperature non-metallic materials, such as SiC/SiC, is becoming important for the advanced nuclear reactor systems. SiC fibre reinforced SiC composite has been recognised to be the most attractive option for the future, now, METI fund based project, INSPIRE, has been launched as 5-year termed project at OASIS in Muroran Institute of Technology aiming at early realisation of this system. INSPIRE is the irradiation project of SiC/SiC fuel pins aiming to accumulate material, thermal, irradiation effect data of NITE-SiC/SiC in BWR environment. Nuclear fuel inserted SiC/SiC fuel pins are planned to be installed in the Halden reactor. The project includes preparing the NITE-SiC/SiC tubes, joining of end caps, preparation of rigs to control the irradiation environment to BWR condition and the instruments to measure the condition of rigs and pins in operation. Also, basic neutron irradiation data will be accumulated by SiC/SiC coupon samples currently under irradiation in BR2. The output from this project may present the potentiality of NITE-SiC/SiC fuel cladding with the first stage fuel-cladding interaction. (authors)

  20. Efficient Silicon Light-Emitting-Diodes with a p-Si/Ultrathin SiO2/n-Si Structure

    Directory of Open Access Journals (Sweden)

    Shucheng Chu

    2011-01-01

    Full Text Available We report the efficient enhancement of light emission from silicon crystal by covering the silicon surface with an ultrathin (several nm SiO2 layer. The photoluminescence of Si band edge emission (1.14 μm band at room temperature is enhanced by two orders of magnitude. Compared with a p-Si/n-Si diode, light emission from a p-Si/SiO2/n-Si diode by current injection via direct tunneling is enhanced by more than 3 orders of magnitude. The light-emission enhancement is attributed to the diminishment of nonradiation recombination at the surface/interface and to the space confinement of the carrier recombination. The simple structure and low operating bias (approximately 1 volt of our light emitting diodes supply a new choice for realizing efficient current injection light source in silicon compatible with conventional ULSI technology.

  1. Abrupt GaP/Si hetero-interface using bistepped Si buffer

    Energy Technology Data Exchange (ETDEWEB)

    Ping Wang, Y., E-mail: yanping.wang@insa-rennes.fr; Kuyyalil, J.; Nguyen Thanh, T.; Almosni, S.; Bernard, R.; Tremblay, R.; Da Silva, M.; Létoublon, A.; Rohel, T.; Tavernier, K.; Le Corre, A.; Cornet, C.; Durand, O. [UMR FOTON, CNRS, INSA Rennes, Rennes F-35708 (France); Stodolna, J.; Ponchet, A. [CEMES-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse Cedex 04 (France); Bahri, M.; Largeau, L.; Patriarche, G. [Laboratoire de Photonique et Nanostructures, CNRS UPR 20, Route de Nozay, Marcoussis 91460 (France); Magen, C. [LMA, INA-ARAID, and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50018 Zaragoza (Spain)

    2015-11-09

    We evidence the influence of the quality of the starting Si surface on the III-V/Si interface abruptness and on the formation of defects during the growth of III-V/Si heterogeneous crystal, using high resolution transmission electron microscopy and scanning transmission electron microscopy. GaP layers were grown by molecular beam epitaxy on vicinal Si (001). The strong effect of the Si substrate chemical preparation is first demonstrated by studying structural properties of both Si homoepitaxial layer and GaP/Si heterostructure. It is then shown that choosing adequate chemical preparation conditions and subsequent III-V regrowth conditions enables the quasi-suppression of micro-twins in the epilayer. Finally, the abruptness of GaP/Si interface is found to be very sensitive to the Si chemical preparation and is improved by the use of a bistepped Si buffer prior to III-V overgrowth.

  2. Si quantum dot structures and their applications

    Science.gov (United States)

    Shcherbyna, L.; Torchynska, T.

    2013-06-01

    This paper presents briefly the history of emission study in Si quantum dots (QDs) in the last two decades. Stable light emission of Si QDs and NCs was observed in the spectral ranges: blue, green, orange, red and infrared. These PL bands were attributed to the exciton recombination in Si QDs, to the carrier recombination through defects inside of Si NCs or via oxide related defects at the Si/SiOx interface. The analysis of recombination transitions and the different ways of the emission stimulation in Si QD structures, related to the element variation for the passivation of surface dangling bonds, as well as the plasmon induced emission and rare earth impurity activation, have been presented. The different applications of Si QD structures in quantum electronics, such as: Si QD light emitting diodes, Si QD single union and tandem solar cells, Si QD memory structures, Si QD based one electron devices and double QD structures for spintronics, have been discussed as well. Note the significant worldwide interest directed toward the silicon-based light emission for integrated optoelectronics is related to the complementary metal-oxide semiconductor compatibility and the possibility to be monolithically integrated with very large scale integrated (VLSI) circuits. The different features of poly-, micro- and nanocrystalline silicon for solar cells, that is a mixture of both amorphous and crystalline phases, such as the silicon NCs or QDs embedded in a α-Si:H matrix, as well as the thin film 2-cell or 3-cell tandem solar cells based on Si QD structures have been discussed as well. Silicon NC based structures for non-volatile memory purposes, the recent studies of Si QD base single electron devices and the single electron occupation of QDs as an important component to the measurement and manipulation of spins in quantum information processing have been analyzed as well.

  3. Swarm Intelligence (SI) in Manufacturing

    OpenAIRE

    Molinuevo, Javier Toral

    2010-01-01

    Manufacturing is a field of Engineering which is constantly changing. Due to this fact more and more complicated problems appear and have to be solved by engineers. Some of them are difficult to solve by usual numerical methods, as equations, so a new area is developing at present using Artificial Intelligence (AI) techniques.There are many different tools like Genetic Algorithms, Fuzzy Logic Systems… but in this thesis we are going to focus on the Swarm Intelligence (SI) which tries to mimic...

  4. Nanoporosity of Si (100) bars

    Science.gov (United States)

    Novikov, S. N.; Timoshenkov, S. P.; Minaev, V. S.; Goryunova, E. P.; Gerasimenko, N. N.; Smirnov, D. I.

    2016-09-01

    Si(100) samples cut from a typical bar (100 mm in diameter) prepared using industrial technology are studied. Measurements of the electron work function (EWF) show that the size effects in these samples (a reduction in thickness along with a sample's area and the EWF) detected earlier were due to nanostructure porosity that was buried by the technological treatment of a bar's surface. This hidden nanoporosity is assumed to be a manifestation of the secondary crystal structure.

  5. Formation of Si/SiC multilayers by low-energy ion implantation and thermal annealing

    NARCIS (Netherlands)

    Dobrovolskiy, S.; Yakshin, A.E.; Tichelaar, F.D.; Verhoeven, J.; Louis, E.; Bijkerk, F.

    2010-01-01

    Si/SiC multilayer systems for XUV reflection optics with a periodicity of 10–20 nm were produced by sequential deposition of Si and implantation of 1 keV View the MathML source ions. Only about 3% of the implanted carbon was transferred into the SiC, with a thin, 0.5–1 nm, buried SiC layer being fo

  6. Current–voltage studies on -FeSi2/Si heterojunction

    Indian Academy of Sciences (India)

    A Datta; S Kal; S Basu

    2000-08-01

    – characteristics of both -FeSi2/n-Si and -FeSi2/p-Si were studied at room temperature. The junctions were formed by depositing Fe on Si selectively followed by thermal annealing and some samples were later treated by pulsed laser. Temperature of thermal annealing and diode area were also varied. – studies on all these samples were done and ideality factors were computed. Results obtained were interpreted.

  7. Stability analysis of SiO2/SiC multilayer coatings

    International Nuclear Information System (INIS)

    The stability behaviours of SiC coatings and SiO2/SiC coatings in helium with little impurities are studied by HSC Chemistry 4.1, the software for analysis of Chemical reaction and equilibrium in multi-component complex system. It is found that in helium with a low partial pressure of oxidative impurities under different total pressure, the key influence factor controlling Tcp of SiC depends is the partial pressure of oxidative impurities; Tcp of SiC increases with the partial pressure of oxidative impurities. In helium with a low partial pressure of different impurities, the key influence factor of Tcs of SiO2 are both the partial pressure of impurities and the amount of impurities for l mol SiO2; Tcs of SiO2 increases with the partial pressure of oxidative impurities at the same amount of the impurities for 1 mol SiO2 while it decreases with the amount of the impurities for 1 mm SiO2 at the same partial pressure of the impurities. The influence of other impurities on Tcp of SiC in He-O2 is studied and it is found that CO2, H2O and N-2 increase Tcp of SiC in He-O2 while H2, CO and CH4 decrease Tcp of SiC He-O2. When there exist both oxidative impurities and reductive impurities, their effect on Tcs of SiO2 can be suppressed by the other. In HTR-10 operation atmosphere, SiO2/SiC coatings can keep stable status at higher temperature than SiC coatings, so SiO2/SiC coatings is more suitable to improve the oxidation resistance of graphite in HTR-10 operation atmosphere compared with SiC coatings. (authors)

  8. Effect of Si interface surface roughness to the tunneling current of the Si/Si1-xGex/Si heterojunction bipolar transistor

    Science.gov (United States)

    Hasanah, Lilik; Suhendi, Endi; Tayubi, Yuyu Rahmat; Yuwono, Heru; Nandiyanto, Asep Bayu Dani; Murakami, Hideki; Khairrurijal

    2016-02-01

    In this work we discuss the surface roughness of Si interface impact to the tunneling current of the Si/Si1-xGex/Si heterojunction bipolar transistor. The Si interface surface roughness can be analyzed from electrical characteristics through the transversal electron velocity obtained as fitting parameter factor. The results showed that surface roughness increase as Ge content of virtual substrate increase This model can be used to investigate the effect of Ge content of the virtual substrate to the interface surface condition through current-voltage characteristic.

  9. Effect of Si interface surface roughness to the tunneling current of the Si/Si{sub 1-x}Ge{sub x}/Si heterojunction bipolar transistor

    Energy Technology Data Exchange (ETDEWEB)

    Hasanah, Lilik, E-mail: lilikhasanah@upi.edu; Suhendi, Endi; Tayubi, Yuyu Rahmat; Yuwono, Heru [Department of Physics Education, Universitas Pendidikan Indonesia, Jl. Setiabudhi 229 Bandung 40154 (Indonesia); Nandiyanto, Asep Bayu Dani [Department Kimia, Universitas Pendidikan Indonesia, Jl. Setiabudhi 229 Bandung 40154 (Indonesia); Murakami, Hideki [Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8527 (Japan); Khairrurijal [Physics of Electronic Materials Research Division, Institut Teknologi Bandung, Bandung 40132 (Indonesia)

    2016-02-08

    In this work we discuss the surface roughness of Si interface impact to the tunneling current of the Si/Si{sub 1-x}Ge{sub x}/Si heterojunction bipolar transistor. The Si interface surface roughness can be analyzed from electrical characteristics through the transversal electron velocity obtained as fitting parameter factor. The results showed that surface roughness increase as Ge content of virtual substrate increase This model can be used to investigate the effect of Ge content of the virtual substrate to the interface surface condition through current-voltage characteristic.

  10. Active Oxidation of SiC

    Science.gov (United States)

    Jacobson, Nathan S.; Myers,Dwight L.; Harder, Bryan J.

    2011-01-01

    The high temperature oxidation of silicon carbide occurs in either a passive or active mode, depending on temperature and oxygen potential. Passive oxidation forms a protective oxide film which limits attack of the SiC:SiC(s) + 3/2 O2(g) = SiO2(s) + CO(g.) Active oxidation forms a volatile oxide and leads to extensive attack of the SiC: SiC(s) + O2(g) = SiO(g) + CO(g). The transition points and rates of active oxidation are a major issue. Previous studies are reviewed and the leading theories of passive/active transitions summarized. Comparisons are made to the active/passive transitions in pure Si, which are relatively well-understood. Critical questions remain about the difference between the active-to-passive transition and passive-to-active transition. For Si, Wagner [2] points out that the active-to-passive transition is governed by the criterion for a stable Si/SiO2 equilibria and the passive-to-active transition is governed by the decomposition of the SiO2 film. This suggests a significant oxygen potential difference between these two transitions and our experiments confirm this. For Si, the initial stages of active oxidation are characterized by the formation of SiO(g) and further oxidation to SiO2(s) as micron-sized rods, with a distinctive morphology. SiC shows significant differences. The active-to-passive and the passive-to-active transitions are close. The SiO2 rods only appear as the passive film breaks down. These differences are explained in terms of the reactions at the SiC/SiO2 interface. In order to understand the breakdown of the passive film, pre-oxidation experiments are conducted. These involve forming dense protective scales of 0.5, 1, and 2 microns and then subjecting the samples with these scales to a known active oxidation environment. Microstructural studies show that SiC/SiO2 interfacial reactions lead to a breakdown of the scale with a distinct morphology.

  11. Lattice dislocation in Si nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Omar, M.S., E-mail: dr_m_s_omar@yahoo.co [Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi Kurdistan (Iraq); Taha, H.T. [Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi Kurdistan (Iraq)

    2009-12-15

    Modified formulas were used to calculate lattice thermal expansion, specific heat and Bulk modulus for Si nanowires with diameters of 115, 56, 37 and 22 nm. From these values and Gruneisen parameter taken from reference, mean lattice volumes were found to be as 20.03 A{sup 3} for the bulk and 23.63, 29.91, 34.69 and 40.46 A{sup 3} for Si nanowire diameters mentioned above, respectively. Their mean bonding length was calculated to be as 0.235 nm for the bulk and 0.248, 0.269, 0.282 and 0.297 nm for the nanowires diameter mentioned above, respectively. By dividing the nanowires diameter on the mean bonding length, number of layers per each nanowire size was found to be as 230, 104, 65 and 37 for the diameters mentioned above, respectively. Lattice dislocations in 22 nm diameter wire were found to be from 0.00324 nm for the 1st central lattice to 0.2579 nm for the last surface lattice. Such dislocation was smaller for larger wire diameters. Dislocation concentration found to change in Si nanowires according to the proportionalities of surface thickness to nanowire radius ratios.

  12. Porous SiC/SiC composites development for industrial application

    International Nuclear Information System (INIS)

    Silicon carbide (SiC) is promising structural materials in nuclear fields due to an excellent irradiation resistance and low activation characteristics. Conventional SiC fibers reinforced SiC matrix (SiC/SiC composites) fabricated by liquid phase sintering (LPS-SiC/SiC composites) have been required high cost and long processing time. And microstructure and mechanical property data of finally obtained LPS-SiC/SiC composites are easily scattered, because quality of the composites depend on personal skill. Thus, conventional LPS-SiC/SiC composites are inadequate for industrial use. In order to overcome these issues, the novel “porous SiC/SiC composites” have been developed by means of liquid phase sintering fabrication process. The composites consist of porous SiC matrix and SiC fibers without conventional carbon interfacial layer. The composites don’t have concerns of the degradation interfacial layer at the severe accident. Porous SiC/SiC composites preform was prepared with a thin sheet shape of SiC, sintering additives and carbon powder mixture by tape casting process which was adopted because of productive and high yielding rate fabrication process. The preform was stacked with SiC fibers and sintered in hot-press at the high temperature in argon environment. The sintered preform was decarburized obtain porous matrix structure by heat-treatment in air. Moreover, mechanical property data scattering of the obtained porous SiC/SiC composites decreased. In the flexural test, the porous SiC/SiC composites showed pseudo-ductile behavior with sufficient strength even after heat treatment at high temperature in air. From these conclusions, it was proven that porous SiC/SiC composites were reliable material at severe environment such as high temperature in air, by introducing tape casting fabrication process that could produce reproducible materials with low cost and simple way. Therefore development of porous SiC/SiC composites for industrial application was

  13. Reliability study of ultra-thin gate oxides on strained-Si/SiGe MOS structures

    Energy Technology Data Exchange (ETDEWEB)

    Varzgar, John B. [School of Electrical, Electronic and Computer Engineering, Merz Court, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, NE1 7RU (United Kingdom)]. E-mail: j.b.varzgar@newcastle.ac.uk; Kanoun, Mehdi [School of Electrical, Electronic and Computer Engineering, Merz Court, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, NE1 7RU (United Kingdom); Uppal, Suresh [School of Electrical, Electronic and Computer Engineering, Merz Court, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, NE1 7RU (United Kingdom); Chattopadhyay, Sanatan [School of Electrical, Electronic and Computer Engineering, Merz Court, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, NE1 7RU (United Kingdom); Tsang, Yuk Lun [School of Electrical, Electronic and Computer Engineering, Merz Court, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, NE1 7RU (United Kingdom); Escobedo-Cousins, Enrique [School of Electrical, Electronic and Computer Engineering, Merz Court, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, NE1 7RU (United Kingdom); Olsen, Sarah H. [School of Electrical, Electronic and Computer Engineering, Merz Court, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, NE1 7RU (United Kingdom); O' Neill, Anthony [School of Electrical, Electronic and Computer Engineering, Merz Court, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, NE1 7RU (United Kingdom); Hellstroem, Per-Erik [KTH, Royal Institute of Technology, Department of Microelectronics and Information Technology, Electrum 229, SE-164 40 Kista (Sweden); Edholm, Jonas; Ostling, Mikael [KTH, Royal Institute of Technology, Department of Microelectronics and Information Technology, Electrum 229, SE-164 40 Kista (Sweden); Lyutovich, Klara; Oehme, Michael; Kasper, Erich [Institute of Semiconductor Engineering, University of Stuttgart, Pfaffenwaldring 47, Stuttgart D-70569 (Germany)

    2006-12-15

    The reliability of gate oxides on bulk Si and strained Si (s-Si) has been evaluated using constant voltage stressing (CVS) to investigate their breakdown characteristics. The s-Si architectures exhibit a shorter life time compared to that of bulk Si, which is attributed to higher bulk oxide charges (Q {sub ox}) and increased surface roughness in the s-Si structures. The gate oxide in the s-Si structure exhibits a hard breakdown (HBD) at 1.9 x 10{sup 4} s, whereas HBD is not observed in bulk Si up to a measurement period of 1.44 x 10{sup 5} s. The shorter lifetime of the s-Si gate oxide is attributed to a larger injected charge (Q {sub inj}) compared to Q {sub inj} in bulk Si. Current-voltage (I-V) measurements for bulk Si samples at different stress intervals show an increase in stress induced leakage current (SILC) of two orders in the low voltage regime from zero stress time to up to 5 x 10{sup 4} s. In contrast, superior performance enhancements in terms of drain current, maximum transconductance and effective channel mobility are observed in s-Si MOSFET devices compared to bulk Si. The results from this study indicate that further improvement in gate oxide reliability is needed to exploit the sustained performance enhancement of s-Si devices over bulk Si.

  14. Hierarchical Cd4SiS6/SiO2 Heterostructure Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Liu Jian

    2009-01-01

    Full Text Available Abstract Novel hierarchical Cd4SiS6/SiO2 based heterostructure nanowire arrays were fabricated on silicon substrates by a one-step thermal evaporation of CdS powder. The as-grown products were characterized using scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. Studies reveal that a typical hierarchical Cd4SiS6/SiO2 heterostructure nanowire is composed of a single crystalline Cd4SiS6 nanowire core sheathed with amorphous SiO2 sheath. Furthermore, secondary nanostructures of SiO2 nanowires are highly dense grown on the primary Cd4SiS6 core-SiO2 sheath nanowires and formed hierarchical Cd4SiS6/SiO2 based heterostructure nanowire arrays which stand vertically on silicon substrates. The possible growth mechanism of hierarchical Cd4SiS6/SiO2 heterostructure nanowire arrays is proposed. The optical properties of hierarchical Cd4SiS6/SiO2 heterostructure nanowire arrays are investigated using Raman and Photoluminescence spectroscopy.

  15. Modification of eutectic Si in Al–Si alloys with Eu addition

    International Nuclear Information System (INIS)

    Al–5 wt.% Si-based alloys with 0.05 wt.% Eu addition were produced by controlled sand-casting and melt-spinning, respectively. The modification of eutectic Si caused by 0.05 wt.% Eu addition was investigated by thermal analysis, differential scanning calorimetry and multi-scale microstructure characterization techniques. In the case of controlled sand-casting, 0.05 wt.% Eu addition was found to modify the eutectic Si into a fibrous morphology. Multiply twinned Si particles were observed within eutectic Si. Furthermore, the Al2Si2Eu phase was also observed both in the vicinity of eutectic Si and within eutectic Si, which was believed to hinder Si growth. In the case of melt-spun samples, nanometer-sized Al2Si2Eu phases were observed. However, after controlled cooling in a differential scanning calorimeter, multiply twinned Si particles were observed. The formation of multiply twinned Si particles was attributed to the adsorption of Eu atoms along the 〈1 1 2〉Si growth direction of Si and at the intersection of two {1 1 1}Si facets. Twinning was observed in both fundamentally different casting processes: controlled sand-casting and melt-spinning. This is fully consistent with the well-known poisoning of the twin plane re-entrant edge and the impurity-induced twinning modification mechanisms

  16. Comparison of the thermal stabilities of NiSi films in Ni/Si, Ni/Pd/Si and Ni/Pt/Si systems

    CERN Document Server

    Wang, R N

    2003-01-01

    The effects of different interlayer materials (Pd and Pt) deposited between Ni films and Si substrates on the NiSi thermal stability are discussed. Ni sub 0 sub . sub 9 sub 4 sub 3 Pd sub 0 sub . sub 0 sub 5 sub 7 Si and Ni sub 0 sub . sub 9 sub 4 sub 5 Pt sub 0 sub . sub 0 sub 5 sub 5 Si solid solutions were formed when the samples were annealed at high temperatures and the lattice parameters of Ni sub 0 sub . sub 9 sub 4 sub 3 Pd sub 0 sub . sub 0 sub 5 sub 7 Si were calculated according to Vegard's law. The NiSi thermal stability was enhanced by interposing a Pd or Pt interlayer, and the sample with the Pt interlayer had the highest NiSi thermal stability among all the samples studied. This is attributed to the reduction of the interface energy between NiSi and Si substrates and the decrease of the driving force for the nucleation of NiSi sub 2 , induced by formation of the NiSi(200) preferred orientation and the solid solution respectively.

  17. Theoretic Study on Band Structure of Si/SiNx Multilayer Film%Si/SiNx多层膜能带结构的理论研究

    Institute of Scientific and Technical Information of China (English)

    徐明; 魏屹; 何贤模; 芦伟

    2010-01-01

    利用Kronig-Penney模型计算了Si/SiNx多层膜结构中Si亚层的能带结构.结果表明,无论是减少Si或Si/SiNx亚层的厚度都将导致Si层的带隙发生宽化,计算结果与实验值符合较好.进而还发现,当Si层厚度减小时,Si/SiNx多层膜结构中载流子(电子和空穴)的有效质量均减小,有利于对载流子复合发光的控制.计算结果对实验上研究发光可控的Si/SiNx多层膜结构有重要指导意义.

  18. Differential cross sections measurement of 28Si(p,p/γ)28Si and 29Si(p,p/γ)29Si reactions for PIGE applications

    Science.gov (United States)

    Jokar, A.; Kakuee, O.; Lamehi-Rachti, M.

    2016-03-01

    Differential cross sections for gamma-ray emission from the 28Si(p,p/γ)28Si (Eγ = 1779 keV) and the 29Si(p,p/γ)29Si (Eγ = 1273 keV) nuclear reactions were measured in the energy range of 2.0-3.2 MeV and 2.0-3.0 MeV, respectively. The thin Si targets were prepared by evaporating natural SiO onto self-supporting Ag films. The gamma-rays and backscattered protons were detected simultaneously. An HPGe detector placed at an angle of 90° with respect to beam direction was employed to collect gamma-rays while an ion implanted Si detector placed at a scattering angle of 165° was used to detect backscattered protons. The great advantage of this work is that differential cross sections were obtained with a procedure irrespective of absolute value of the collected beam charge.

  19. Deformation effects in the 28Si + 12C and 28Si + 28Si reactions

    Indian Academy of Sciences (India)

    C Bhattacharya; M Rousseau; C Beck; V Rauch; R M Freeman; R Nouicer; F Haas; O Dorvaux; K Eddahbi; P Papka; O Stezwski; S Szilner; D Mahboub; A Szanto De Toledo; A Hachem; E Martin; S J Sanders

    2001-07-01

    The possible occurrence of highly deformed configurations is investigated in the 40Ca and 56Ni di-nuclear systems as formed in the 28Si + 12C, 28Si reactions by using the properties of emitted light charged particles. Inclusive as well as exclusive data of the heavy fragments and their associated light charged particles have been collected by using the ICARE charged particle multidetector array. The data are analysed by Monte Carlo CASCADE statistical-model calculations using a consistent set of parameters with spin-dependent level densities. Significant deformation effects at high spin are observed as well as an unexpected large 8Be cluster emission of a binary nature.

  20. Corrosion properties of amorphous Mo-Si-N and nanolayered Mo-Si-Nn/SiC coatings

    Energy Technology Data Exchange (ETDEWEB)

    Torri, P.; Mahiout, A.; Koskinen, J.; Hirvonen, J.P.; Johansson, L.S.

    2000-02-01

    Corrosion properties of sputter deposited MoSi{sub 2}, SiC, Mo-Si-N (MoSi{sub 2.2}N{sub 2.5}) and nanolayered Mo-Si-N/SiC coatings on Fe37 low carbon steel have been studied using electrochemical polarization measurements in 1 N H{sub 2}SO{sub 4} solution. A decrease in both critical current density for passivation and minimum current in passive state was observed in annealed nanolayered Mo-Si-N/SiC coating compared to each of its constituents alone as single layer coating. On contrary to MoSi{sub 2} coating, only slight increase in critical current density was observed in Mo-Si-N coated sample after annealing. Molybdenum disilicide source material has good thermal and electrical conductivity, which allows effective dc-magnetron sputter deposition. Therefore this is a relatively simple method to produce amorphous coatings which have a high crystallization temperature and promising properties for corrosion applications.

  1. Fiber/matrix interfaces for SiC/SiC composites: Multilayer SiC coatings

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, H.; Curtin, W.A. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1996-08-01

    Tensile tests have been performed on composites of CVI SiC matrix reinforced with 2-d Nicalon fiber cloth, with either pyrolitic carbon or multilayer CVD SiC coatings [Hypertherm High-Temperature Composites Inc., Huntington Beach, CA.] on the fibers. To investigate the role played by the different interfaces, several types of measurements are made on each sample: (i) unload-reload hysteresis loops, and (ii) acoustic emission. The pyrolitic carbon and multilayer SiC coated materials are remarkably similar in overall mechanical responses. These results demonstrate that low-modulus, or compliant, interface coatings are not necessary for good composite performance, and that complex, hierarchical coating structures may possibly yield enhanced high-temperature performance. Analysis of the unload/reload hysteresis loops also indicates that the usual {open_quotes}proportional limit{close_quotes} stress is actually slightly below the stress at which the 0{degrees} load-bearing fibers/matrix interfaces slide and are exposed to atmosphere.

  2. Simulation analysis of the effects of a back surface field on a p-a-Si:H/n-c-Si/n+-a-Si:H heterojunction solar cell

    Institute of Scientific and Technical Information of China (English)

    Hu Yuehui; Zhang Xiangwen; Qu Minghao; Wang Lifu; Zeng Tao; Xie Yaojiang

    2009-01-01

    In order to investigate the effects of a back surface field (BSF) on the performance of a p-doped amorphous silicon (p-a-Si:H)/n-doped crystalline silicon (n-c-Si) solar cell, a heterojunction solar cell with a p-a-Si:H/nc-Si/n+-a-Si:H structure was designed. An n+-a-Si:H film was deposited on the back of an n-c-Si wafer as the BSF.The photovoltaic performance of p-a-Si:H/n-c-Si/n+-a-Si:H solar cells were simulated. It was shown that the BSF of the p-a-Si:H/n-c-Si/n+-a-Si:H solar cells could effectively inhibit the decrease of the cell performance caused by interface states.

  3. Si3N4/SiC nanocomposite powder from a preceramic polymeric network based on poly(methylsilane as the SiC precursor

    Directory of Open Access Journals (Sweden)

    Gozzi Maurício F.

    2001-01-01

    Full Text Available Si3N4/SiC nanocomposite powders were obtained from a preceramic polymeric network based on poly(methylsilane as the in situ quasi-stoichiometric SiC source. These powders were constituted of nanosized SiC particles homogeneously distributed in the Si3N4 particulate matrix. beta-SiC whiskers were grown at 1400 °C in the pores of the matrix. At 1600 °C, the alpha -> beta Si3N4 phase transition took place, but no elemental silicon from Si3N4 decomposition was detected, evidencing the protective effect of the SiC phase.

  4. Fabrication and characterization of Ti3SiC2–SiC nanocomposite by in situ reaction synthesis of TiC/Si/Al powders

    Indian Academy of Sciences (India)

    Baoyan Liang; Mingzhi Wang; Xiaopu Li; Yunchao Mu

    2011-12-01

    The microstructure and mechanical properties of Ti3SiC2–SiC nanocomposite fabricated by in situ hot pressing (HP) synthesis process were studied. The results show that dense Ti3SiC2–SiC composite contained minor TiSi2 obtained by hot sintering at 1350°C for 1 h. The average grain size of Ti3SiC2 was 4 m in length, and the size of SiC grains is about 100 nm. With its fine microstructure, the Ti3SiC2–SiC nanocomposite shows good mechanical properties.

  5. Surface modifying of SiC particles and performance analysis of SiCp/Cu composites

    Science.gov (United States)

    Ming, Hu; Yunlong, Zhang; Lili, Tang; Lin, Shan; Jing, Gao; Peiling, Ding

    2015-03-01

    In this study, the electroless copper plating method was applied to deposit a Cu coating on SiCp in order to improve interface bonding performance. The SiCp surface morphology with uncoated and coated copper was investigated. The SiCp/Cu composite was fabricated by the hot-pressed sintering technology. SiC particles with various contents were used as reinforcement. The results showed that the distribution of reinforced particle with electroless plating copper coating was uniform in the copper matrix. The SiCp content played had an important role on thermal expansion coefficient and wear properties behaviors of the SiCp/Cu composites. The wear resistance capacity and thermal expansion coefficient of the composites decreased with increasing amount of SiC. Compared with the pure Cu matrix, the obtained SiCp/Cu composites had better capacity of the wear resistance. The SiCp/Cu composites increased when compared with the pure Cu material.

  6. Fusion of Si28+Si28,30: Different trends at sub-barrier energies

    Science.gov (United States)

    Montagnoli, G.; Stefanini, A. M.; Esbensen, H.; Jiang, C. L.; Corradi, L.; Courtin, S.; Fioretto, E.; Grebosz, J.; Haas, F.; Jia, H. M.; Mazzocco, M.; Michelagnoli, C.; Mijatović, T.; Montanari, D.; Parascandolo, C.; Scarlassara, F.; Strano, E.; Szilner, S.; Torresi, D.

    2014-10-01

    Background: The fusion excitation function of the system Si28+Si28 at energies near and below the Coulomb barrier is known only down to ≃15 mb. This precludes any information on both coupling effects on sub-barrier cross sections and the possible appearance of hindrance. For Si28+Si30 even if the fusion cross section is measured down to ≃50 μb, the evidence of hindrance is marginal. Both systems have positive fusion Q values. While Si28 has a deformed oblate shape, Si30 is spherical. Purpose: We investigate 1. the possible influence of the different structure of the two Si isotopes on the fusion excitation functions in the deep sub-barrier region and 2. whether hindrance exists in the Si+Si systems and whether it is strong enough to generate an S-factor maximum, thus allowing a comparison with lighter heavy-ion systems of astrophysical interest. Methods: Si28 beams from the XTU Tandem accelerator of the INFN Laboratori Nazionali di Legnaro were used. The setup was based on an electrostatic beam separator, and fusion evaporation residues (ER) were detected at very forward angles. Angular distributions of ER were measured. Results: Fusion cross sections of Si28+Si28 have been obtained down to ≃600 nb. The slope of the excitation function has a clear irregularity below the barrier, but no indication of a S-factor maximum is found. For Si28+Si30 the previous data have been confirmed and two smaller cross sections have been measured down to ≃4 μb. The trend of the S-factor reinforces the previous weak evidence of hindrance. Conclusions: The sub-barrier cross sections for Si28+Si28 are overestimated by coupled-channels calculations based on a standard Woods-Saxon potential, except for the lowest energies. Calculations using the M3Y+repulsion potential are adjusted to fit the Si28+Si28 and the existing Si30+Si30 data. An additional weak imaginary potential (probably simulating the effect of the oblate Si28 deformation) is required to fit the low-energy trend of

  7. Propagation of misfit dislocations from buffer/Si interface into Si

    Science.gov (United States)

    Liliental-Weber, Zuzanna; Maltez, Rogerio Luis; Morkoc, Hadis; Xie, Jinqiao

    2011-08-30

    Misfit dislocations are redirected from the buffer/Si interface and propagated to the Si substrate due to the formation of bubbles in the substrate. The buffer layer growth process is generally a thermal process that also accomplishes annealing of the Si substrate so that bubbles of the implanted ion species are formed in the Si at an appropriate distance from the buffer/Si interface so that the bubbles will not migrate to the Si surface during annealing, but are close enough to the interface so that a strain field around the bubbles will be sensed by dislocations at the buffer/Si interface and dislocations are attracted by the strain field caused by the bubbles and move into the Si substrate instead of into the buffer epi-layer. Fabrication of improved integrated devices based on GaN and Si, such as continuous wave (CW) lasers and light emitting diodes, at reduced cost is thereby enabled.

  8. Study of indentation induced cracks in MoSi2-reaction bonded SiC ceramics

    Indian Academy of Sciences (India)

    O P Chakrabarti; P K Das; S Mondal

    2001-04-01

    MoSi2–RBSC composite samples were prepared by infiltration of Si–2 at.% Mo melt into a preform of commercial SiC and petroleum coke powder. The infiltrated sample had a density > 92% of the theoretical density (TD) and microstructurally contained SiC, MoSi2, residual Si and unreacted C. The material was tested for indentation fracture toughness at room temperature with a Vicker’s indenter and KIC was found to be 4.42 MPa√m which is around 39% higher than the conventional RBSC material. Enhancement in indentation fracture toughness is explained in terms of bowing of propagating cracks through MoSi2/SiC interface which is under high thermal stress arising from the thermal expansion mismatch between MoSi2 and SiC.

  9. High-performance a -Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution

    KAUST Repository

    Wang, Hsin Ping

    2015-05-13

    Amorphous Si (a-Si)/crystalline Si (c-Si) heterojunction (SiHJ) can serve as highly efficient and robust photoelectrodes for solar fuel generation. Low carrier recombination in the photoelectrodes leads to high photocurrents and photovoltages. The SiHJ was designed and fabricated into both photoanode and photocathode with high oxygen and hydrogen evolution efficiency, respectively, by simply coating of a thin layer of catalytic materials. The SiHJ photoanode with sol-gel NiOx as the catalyst shows a current density of 21.48 mA/cm2 at the equilibrium water oxidation potential. The SiHJ photocathode with 2 nm sputter-coated Pt catalyst displays excellent hydrogen evolution performance with an onset potential of 0.640 V and a solar to hydrogen conversion efficiency of 13.26%, which is the highest ever reported for Si-based photocathodes. © 2015 American Chemical Society.

  10. Microwave Annealing for NiSiGe Schottky Junction on SiGe P-Channel

    Directory of Open Access Journals (Sweden)

    Yu-Hsien Lin

    2015-11-01

    Full Text Available In this paper, we demonstrated the shallow NiSiGe Schottky junction on the SiGe P-channel by using low-temperature microwave annealing. The NiSiGe/n-Si Schottky junction was formed for the Si-capped/SiGe multi-layer structure on an n-Si substrate (Si/Si0.57Ge0.43/Si through microwave annealing (MWA ranging from 200 to 470 °C for 150 s in N2 ambient. MWA has the advantage of being diffusion-less during activation, having a low-temperature process, have a lower junction leakage current, and having low sheet resistance (Rs and contact resistivity. In our study, a 20 nm NiSiGe Schottky junction was formed by TEM and XRD analysis at MWA 390 °C. The NiSiGe/n-Si Schottky junction exhibits the highest forward/reverse current (ION/IOFF ratio of ~3 × 105. The low temperature MWA is a very promising thermal process technology for NiSiGe Schottky junction manufacturing.

  11. Evaluation of photovoltaic properties of nanocrystalline-FeSi2/Si heterojunctions

    Science.gov (United States)

    Shaban, Mahmoud; Bayoumi, Amr M.; Farouk, Doaa; Saleh, Mohamed B.; Yoshitake, Tsuyoshi

    2016-09-01

    In this paper, an application of nanocrystalline iron disilicide (NC-FeSi2) combined with nanocrystalline-Si (NC-Si) in a heterostructured solar cell is introduced and numerically evaluated in detail. The proposed cell structure is studied based on an experimental investigation of photovoltaic properties of NC-FeSi2/crystalline-Si heterojunctions, composed of unintentionally-doped NC-FeSi2 thin film grown on Si substrate. Photoresponse measurement of NC-FeSi2/crystalline-Si heterojunction confirmed ability of NC-FeSi2 to absorb NIR light and to generate photocarriers. However, collection of these carriers was not so efficient and a radical improvement in design of the device is required. Therefore, a modified device structure, comprising of NC-FeSi2 layer sandwiched between two heavily-doped p- and n-type NC-Si, is suggested and numerically evaluated. Simulation results showed that the proposed structure would exhibit a relatively high conversion efficiency of 25%, due to an improvement in collection efficiency of photogenerated carriers in the NC-FeSi2 and NC-Si layers. To attain such efficiency, defect densities in NC-FeSi2 and NC-Si layers should be kept less than 1014 and 1016 cm-3 eV-1, respectively. Remarkable optical and electrical properties of NC-FeSi2, employed in the proposed structure, facilitate improving device quantum efficiency spectrum providing significant spectrum extension into the near-infrared region beyond Si bandgap.

  12. In-Plane Si Nanowire Growth Mechanism in Absence of External Si Flux.

    Science.gov (United States)

    Curiotto, Stefano; Leroy, Frédéric; Cheynis, Fabien; Müller, Pierre

    2015-07-01

    We report on a new mechanism of nanowire formation: during Au deposition on Si(110) substrates, Au-Si droplets grow, move spontaneously, and fabricate a Si nanowire behind them in the absence of Si external flux. Nanowires are formed by Si dissolved from the substrate at the advancing front of the droplets and transported backward to the crystallization front. The droplet shape is determined by the Si etching anisotropy. The nanowire formation can be tuned by changing experimental parameters like substrate temperature and Au deposition rate.

  13. Si/SiO2/p-Si结构的电学特性

    Institute of Scientific and Technical Information of China (English)

    马自军; 马书懿

    2008-01-01

    用射频磁控溅射法在p-Si衬底上制备了Si/SiO2薄膜,利用Au/(Si/SiO2)/p-Si结构的I-V特性曲线对其电学特性进行了分析.结果表明,样品具有很好的整流作用,起整流作用的势垒存在于(Si/SiO2)/p-Si界面附近.

  14. Hydrogen Passivation Effect on Enhanced Luminescence from Nanocrystalline Si/SiO2 Multilayers

    Institute of Scientific and Technical Information of China (English)

    XIA Zheng-Yue; HAN Pei-Gao; XU Jun; CHEN De-Yuan; WEI De-Yuan; MA Zhong-Yuan; CHEN Kun-Ji; XU Ling; HUANG Xin-Fan

    2007-01-01

    Nanocrystalline Si/SiO2 multilayers are prepared by thermally annealing amorphous Si/SiO2 stacked structures.The photoluminescence intensity is obviously enhanced after hydrogen passivation at various temperatures. It is suggested that the hydrogen trapping and detrapping processes at different temperatures strongly influence the passivation effect. Direct experimental evidence is given by electron spin resonance spectra that hydrogen effectively reduces the nonradiative defect states existing in the Si nanocrystas/SiO2 system which enhances the radiative recombination probability. The luminescence characteristic shows its stability after hydrogen passivation even after aging eight months.

  15. Excitation wavelength dependent photoluminescence in structurally non-uniform Si/SiGe-island heteroepitxial multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Modi, N.; Tsybeskov, L. [Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102 (United States); Lockwood, D. J.; Wu, X.; Baribeau, J.-M. [Institute for Microstructural Sciences, National Research Council, Ottawa, Ontario K1A 0R6 (Canada)

    2012-06-01

    In nanometer-size Si/SiGe-island heteroepitxial multilayers grown on Si(001), low temperature photoluminescence spectra are observed that strongly depend on the excitation wavelength and show a strong correlation with structural properties revealed by transmission electron microscopy. These experimental results can be explained by assuming that the optically created carriers are strongly localized at Si/SiGe island heterointerfaces. We show that electron-hole pairs are generated and recombine within spatial regions mainly defined by the photoexcitation penetration depth, and that the estimated exciton diffusion length is notably short and comparable with the SiGe-island average size.

  16. High temperature oxidation of SiC under helium with low-pressure oxygen. Part 3: β-SiC-SiC/PyC/SiC

    International Nuclear Information System (INIS)

    In the frame of generation IV gas-cooled fast reactor (GFR), the cladding materials currently considered is a SiC/SiC-based composite with a pyrocarbon interphase and a β-SiC coating on the surface to close the porosity (noted beta-SiC-SiC/PyC/SiC). These elements are subjected to temperatures going from 1300 to 1500 K in nominal operating conditions to 1900-2300 K in accidental conditions. The coolant gas considered is helium pressurized at 7 MPa. After a thermodynamic study carried out on the oxidation of beta-SiC under helium and low oxygen partial pressures, an experimental approach was made on β-SiC-SiC/PyC/SiC composites under active oxidation conditions (1400 ≤ T ≤ 2300 K; 0.2 ≤ pO2 ≤ 2 Pa). This study follows two preceding studies carried out on two polytypes of SiC: α (Part 1) and β (Part 2) under the same conditions. In these studies, the influence of the crystalline structure on the transition temperature between passive and active oxidation and on the mass loss rate was discussed. The experimental study allows to determine the oxidation rates in incidental and accidental conditions under pO2 = 0.2 and 2 Pa. The variation of the mass loss rates according to the temperature for β-SiC-SiC/PyC/SiC oxidized under pO2 = 0.2 and 2 Pa shows the existence of three domains in the zone of active oxidation. These tests also show the weak impact of the oxygen partial pressure on the mass loss rate of the material in this range of pressure for temperatures lower than 2070 K. On the other hand, beyond 2070 K, an increase of the mass loss rate leading to important damage of the material has been observed, at lower temperature under pO2 = 0.2 Pa than under pO2 = 2 Pa. This variation was associated to the effect of the oxygen partial pressure on the sublimation temperature of SiC. Similar experiments were performed on pre-oxidized samples and on the face without CVD β-SiC coating and both the results are close to the ones obtained for the face with the CVD

  17. 非晶硅/晶体硅(a-Si/c-Si)异质结%Property Investigation of a-Si/c-Si Hetero-Junction Structure

    Institute of Scientific and Technical Information of China (English)

    汪建强; 高华; 张剑; 张松; 李晨; 叶庆好; 孟凡英

    2011-01-01

    通过对非晶硅/晶体硅(a-Si/c-Si)异质结能带不连续、发射结掺杂以及界面态密度进行分析,研究它们对a-Si/c-Si异质结的界面特性,以及a-Si(N+)/c-Si(P)结构电池性能的影响.研究发现,能带不连续以及a-Si发射结高掺杂有利于实现界面复合机制由以悬挂键复合主导的复合机制向由少数载流子复合占主导的SRH(Shockly-Read-Hall)复合机制转变,有效降低界面复合速率.AFORS-HET软件模拟显示:在c-Si(P)衬底掺杂浓度为1.6×1016cm-3时,a-Si(N+)发射结掺杂浓度大于1.5×1020cm-3是获得高电池效率的必要条件;与短路电流密度相比,开路电压受a-Si/c-Si界面态密度影响更明显.%T his paper investigated the influence ot a-hi/c-bi band ottset, amorphous silicon emitter doping concentration and interface defects density on interface property of a-Si/c-Si structure. Band offset in a-Si(N+ )/c-Si(P) hetero-junction and a-Si emitter high level doping is very useful for the transformation of recombination mechanism from dangling bond to SRH (Shockly-Read-Hall). AFORS-HET simulation indicates that a-Si(N+ ) emitter doping level of over 1. 5X1020 cm~3 on c-Si(P) is an indispensable condition for achieving high efficiency. Comparing with density of short circuit current, open circuit voltage of a-Si/c-Si structure cell is much more susceptible to interface defect density.

  18. Magnetron-sputter epitaxy of {beta}-FeSi{sub 2}(220)/Si(111) and {beta}-FeSi{sub 2}(431)/Si(001) thin films at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Liu Hongfei; Tan Chengcheh; Chi Dongzhi [Institute of Materials Research and Engineering (IMRE), A-STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore)

    2012-07-15

    {beta}-FeSi{sub 2} thin films have been grown on Si(111) and Si(001) substrates by magnetron-sputter epitaxy at 700 Degree-Sign C. On Si(111), the growth is consistent with the commonly observed orientation of [001]{beta}-FeSi{sub 2}(220)//[1-10]Si(111) having three variants, in-plane rotated 120 Degree-Sign with respect to one another. However, on Si(001), under the same growth conditions, the growth is dominated by [-111]{beta}-FeSi{sub 2}(431)//[110]Si(001) with four variants, which is hitherto unknown for growing {beta}-FeSi{sub 2}. Photoelectron spectra reveal negligible differences in the valance-band and Fe2p core-level between {beta}-FeSi{sub 2} grown on Si(111) and Si(001) but an apparent increased Si-oxidization on the surface of {beta}-FeSi{sub 2}/Si(001). This phenomenon is discussed and attributed to the Si-surface termination effect, which also suggests that the Si/Fe ratio on the surface of {beta}-FeSi{sub 2}(431)/Si(001) is larger than that on the surface of {beta}-FeSi{sub 2}(220)/Si(111).

  19. SiCp/ZL109复合材料中SiC的界面行为%SiC PARTICLES AND THEIR INTERFACIAL BEHAVIOR IN SiCp/ZL109 COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    隋贤栋; 罗承萍; 欧阳柳章; 骆灼旋

    2000-01-01

    以常规TEM为工具,研究了SiCP/ZL109复合材料中数十个SiC颗粒及其界面,Si优先在SiC表面上形核、长大,形成界面Si,并形成大量SiC/Si界面.靠近SiC界面的Al基体中,普遍存在一层厚度小于1μm的"亚晶铝带",其内有大量位错.SiC与Al、SiC与Si之间虽然没有固定的晶体学位向关系,但是存在下列优先关系:(103)SiC//(111)Al,[110]SiC//[110]Al;(101)SiC//(111)Si;[110]SiC//[11]Si.

  20. On the role of heterolayer relaxation in luminescence response of Si/SiGe:Er structures

    Energy Technology Data Exchange (ETDEWEB)

    Krasilnikova, Ludmila; Stepikhova, Margarita; Drozdov, Yurij; Krasilnik, Zakharii [Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod (Russian Federation); Chalkov, Vadim; Shengurov, Vladimir [Physico-Technical Research Institute, Nizhny Novgorod State University, Gagarin Ave. 23, 603950 Nizhny Novgorod (Russian Federation)

    2011-03-15

    In this contribution we discuss the luminescence properties of Si/Si{sub 1-x}Ge{sub x}:Er/Si structures being of interest for a laser realization. The influence of the strain relaxation processes that take place in such kind of structures on their photoluminescence response at 1.54 {mu}m has been analyzed. The studies were performed for Si/Si{sub 1-x}Ge{sub x}:Er/Si structures with the different thickness of Si{sub 1-x}Ge{sub x}:Er layers, and consequently the degree of strain relaxation. It is shown that the structural defects arising in Si/Si{sub 1-x}Ge{sub x}:Er/Si structures due to the relaxation play only negligible role in their photoluminescence response. The contribution of the structural defects in the photoluminescence response at 1.54 {mu}m became apparent only in thin partially relaxed Si/Si{sub 1-x}Ge{sub x}:Er/Si structures, the photoluminescence spectra of which are represented by the broad ''defect related'' lines. Intense photoluminescence related with the optically active Er centers of different types was observed for the strained and completely relaxed Si/Si{sub 1-x}Ge{sub x}:Er/Si structures containing thick (d > 1 {mu}m) Si{sub 1-x}Ge{sub x}:Er layers. The external quantum efficiency of these structures reaches the value of 6.3 x 10{sup -5} at T =77 K. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Polarization memory effect in the photoluminescence of nc-Si-SiOx light-emitting structures

    Science.gov (United States)

    Michailovska, Katerina; Indutnyi, Ivan; Shepeliavyi, Petro; Sopinskyy, Mykola

    2016-06-01

    The polarization memory (PM) effect in the photoluminescence (PL) of the porous nc-Si-SiOx light-emitting structures, containing nanoparticles of silicon (nc-Si) in the oxide matrix and passivated in a solution of hydrofluoric acid (HF), has been investigated. The studied nc-Si-SiOx structures were produced by evaporation of Si monoxide (SiO) powder in vacuum and oblique deposition on Si wafer, and then the deposited silicon oxide (SiOx) films were annealed in the vacuum at 975 °C to grow nc-Si. It was found that the PM effect in the PL is observed only after passivation of nanostructures: during etching in HF solution, the initial symmetric nc-Si becomes asymmetric elongated. It was also found that in investigated nanostructures, there is a defined orientational dependence of the PL polarization degree ( ρ) in the sample plane which correlates with the orientation of SiOx nanocolumns, forming the structure of the porous layer. The increase of the ρ values in the long-wavelength spectral range with time of HF treatment can be associated with increasing of the anisotropy of large Si nanoparticles. The PM effect for this spectral interval can be described by the dielectric model. In the short-wavelength spectral range, the dependence of the ρ values agrees qualitatively with the quantum confinement effect.

  2. Polarization memory effect in the photoluminescence of nc-Si-SiOx light-emitting structures.

    Science.gov (United States)

    Michailovska, Katerina; Indutnyi, Ivan; Shepeliavyi, Petro; Sopinskyy, Mykola

    2016-12-01

    The polarization memory (PM) effect in the photoluminescence (PL) of the porous nc-Si-SiOx light-emitting structures, containing nanoparticles of silicon (nc-Si) in the oxide matrix and passivated in a solution of hydrofluoric acid (HF), has been investigated. The studied nc-Si-SiOx structures were produced by evaporation of Si monoxide (SiO) powder in vacuum and oblique deposition on Si wafer, and then the deposited silicon oxide (SiOx) films were annealed in the vacuum at 975 °C to grow nc-Si. It was found that the PM effect in the PL is observed only after passivation of nanostructures: during etching in HF solution, the initial symmetric nc-Si becomes asymmetric elongated. It was also found that in investigated nanostructures, there is a defined orientational dependence of the PL polarization degree (ρ) in the sample plane which correlates with the orientation of SiOx nanocolumns, forming the structure of the porous layer. The increase of the ρ values in the long-wavelength spectral range with time of HF treatment can be associated with increasing of the anisotropy of large Si nanoparticles. The PM effect for this spectral interval can be described by the dielectric model. In the short-wavelength spectral range, the dependence of the ρ values agrees qualitatively with the quantum confinement effect.

  3. Polarization memory effect in the photoluminescence of nc-Si-SiOx light-emitting structures.

    Science.gov (United States)

    Michailovska, Katerina; Indutnyi, Ivan; Shepeliavyi, Petro; Sopinskyy, Mykola

    2016-12-01

    The polarization memory (PM) effect in the photoluminescence (PL) of the porous nc-Si-SiOx light-emitting structures, containing nanoparticles of silicon (nc-Si) in the oxide matrix and passivated in a solution of hydrofluoric acid (HF), has been investigated. The studied nc-Si-SiOx structures were produced by evaporation of Si monoxide (SiO) powder in vacuum and oblique deposition on Si wafer, and then the deposited silicon oxide (SiOx) films were annealed in the vacuum at 975 °C to grow nc-Si. It was found that the PM effect in the PL is observed only after passivation of nanostructures: during etching in HF solution, the initial symmetric nc-Si becomes asymmetric elongated. It was also found that in investigated nanostructures, there is a defined orientational dependence of the PL polarization degree (ρ) in the sample plane which correlates with the orientation of SiOx nanocolumns, forming the structure of the porous layer. The increase of the ρ values in the long-wavelength spectral range with time of HF treatment can be associated with increasing of the anisotropy of large Si nanoparticles. The PM effect for this spectral interval can be described by the dielectric model. In the short-wavelength spectral range, the dependence of the ρ values agrees qualitatively with the quantum confinement effect. PMID:27255897

  4. 固相烧结SiC陶瓷%Solid State Sintered SiC Ceramics

    Institute of Scientific and Technical Information of China (English)

    武安华; 曹文斌; 李江涛; 葛昌纯

    2001-01-01

    Solid state sintered SiC ceramics were obtained by hot pressing of α-SiC, β-SiC and 1%α-SiC +99%β-SiC powders with boride and carbon as additives. Two phase transforms of 3C→6H and 6H→4H occurred during sintering process. The in situ toughening SiC ceramics can't be obtained only by rod-like grains without the weak grain-boundary.%实验采用α-SiC、β-SiC和(1%α-SiC +99%β-SiC)作为起始粉末,以B、C为添加剂,热压烧结SiC陶瓷。其烧结过程中尽管发生多型体之间的转变,但其表现形式为α-SiC的6H→4H和β-SiC的3C→6H两种形式。尽管有大量的长柱状颗粒生成,但是由于没有弱的界面结合,不能原位增强。

  5. Study on in-situ Mg2Si/Al-Si composites with different compositions

    Institute of Scientific and Technical Information of China (English)

    Jing Qingxiu; Zhang Caixia; Huang Xiaodong

    2009-01-01

    Effects of chemical composition and heat treatment on microstructures and mechanical properties of in-situ Mg2Si/Al-Si composites were investigated. It was found that, in the microstructure of an Al-5.7wt% Mg2Si composite with 8.2wt% extra Si, the binary eutectic Mg2Si locates at the grain boundaries with an undeveloped Chinese script-like morphology, and the primary α-Al is formed into a cell structure due to the selective modification effect of the modifiers of mischmetal and Strontium salt; whereas in the composite with a near Al-Mg2Si eutectic composition and little extra Si content, the intercrescence eutectic Mg2Si formed with the binary eutectic a-Al grows into integrated Chinese script-like shape. As Si content increases, the eutectic Mg2Si dendrite becomes coarser in morphology but less in volum e fraction. Hardness and tensile strength of the cast Mg2Si/Al-Si composites do not increase with increasing of Mg content, but they are related to the size and morphology of the eutectic and primary Mg2Si phases. Heat treatment with optimal parameters is an effective way to improve the properties of the in-situ composites.

  6. Chemical compatibility issues associated with use of SiC/SiC in advanced reactor concepts

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Silicon carbide/silicon carbide (SiC/SiC) composites are of interest for components that will experience high radiation fields in the High Temperature Gas Cooled Reactor (HTGR), the Very High Temperature Reactor (VHTR), the Sodium Fast Reactor (SFR), or the Fluoride-cooled High-temperature Reactor (FHR). In all of the reactor systems considered, reactions of SiC/SiC composites with the constituents of the coolant determine suitability of materials of construction. The material of interest is nuclear grade SiC/SiC composites, which consist of a SiC matrix [high-purity, chemical vapor deposition (CVD) SiC or liquid phase-sintered SiC that is crystalline beta-phase SiC containing small amounts of alumina-yttria impurity], a pyrolytic carbon interphase, and somewhat impure yet crystalline beta-phase SiC fibers. The interphase and fiber components may or may not be exposed, at least initially, to the reactor coolant. The chemical compatibility of SiC/SiC composites in the three reactor environments is highly dependent on thermodynamic stability with the pure coolant, and on reactions with impurities present in the environment including any ingress of oxygen and moisture. In general, there is a dearth of information on the performance of SiC in these environments. While there is little to no excess Si present in the new SiC/SiC composites, the reaction of Si with O2 cannot be ignored, especially for the FHR, in which environment the product, SiO2, can be readily removed by the fluoride salt. In all systems, reaction of the carbon interphase layer with oxygen is possible especially under abnormal conditions such as loss of coolant (resulting in increased temperature), and air and/ or steam ingress. A global outline of an approach to resolving SiC/SiC chemical compatibility concerns with the environments of the three reactors is presented along with ideas to quickly determine the baseline compatibility performance of SiC/SiC.

  7. The Stellar Imager (SI) Vision Mission

    OpenAIRE

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita; Team, SI Vision Mission

    2006-01-01

    The Stellar Imager (SI) is a UV-Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general and asteroseismic imaging of stellar interiors. SI is identified as a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and as a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap (May, 2005). SI will revolutionize ...

  8. siRNA的应用

    Institute of Scientific and Technical Information of China (English)

    孟立根; 马清河; 王安忠; 秦俊文

    2004-01-01

    RNAi(RNA interference,RNA阻断)当初是在研究绦虫C elegans时观测到的一种现象。当将双链的RNA(double stranded RNA;dsRNA)导人体内后,与这种双链RNA相同性较高的mRNA将被特异性地抑制或者消除。除了绦虫之外,RNAi已被作为一种研究基因功能的有效工具,广泛运用于植物、真菌、线虫、果蝇以及哺乳动物,并获得了好的效果。近来使用短链(21~23碱基对)siRNA(short interfering RNA)也获得了同样的效果。siRNA与传统RNA干涉技术相比具有极大的优越

  9. SiLix-C Nanocomposites

    Science.gov (United States)

    Henry, Francois

    2015-01-01

    For this Phase II project, Superior Graphite Co., in collaboration with the Georgia Institute of Technology and Streamline Nanotechnologies, Inc., developed, explored the properties of, and demonstrated the enhanced capabilities of novel nanostructured SiLix-C anodes. These anodes can retain high capacity at a rapid 2-hour discharge rate and at 0 C when used in Li-ion batteries. In Phase I, these advanced anode materials had specific capacity in excess of 1,000 mAh/g, minimal irreversible capacity losses, and stable performance for 20 cycles at C/1. The goals in Phase II were to develop and apply a variety of novel nanomaterials, fine-tune the properties of composite particles at the nanoscale, optimize the composition of the anodes, and select appropriate binder and electrolytes. In order to achieve a breakthrough in power characteristics of Li-ion batteries, the team developed new nanostructured SiLix-C anode materials to offer up to 1,200 mAh/g at C/2 at 0 C.

  10. Pd-Si binary bulk metallic glass

    Institute of Scientific and Technical Information of China (English)

    YAO KeFu; CHEN Na

    2008-01-01

    Pd80+xSi20-x (x=0, 1, and 2) binary metallic glasses with the diameter ranging from 7 to 8 mm were prepared by a combination of fluxing and water quenching or air cooling. Thermal analysis results show that with increasing Si content, the glass transition temperature Tg, the initial crystallization temperature Tx and the onset crystalliza-tion temperature Tp of Pd-Si binary glassy alloys increase. Moreover, the super-cooled liquid region reaches 61 K. It indicates that Pd-Si binary alloys possess large glass forming ability, which can be greatly improved by fluxing treatment.

  11. Pd-Si binary bulk metallic glass

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Pd80+xSi20-x (x=0,1,and 2) binary metallic glasses with the diameter ranging from 7 to 8 mm were prepared by a combination of fluxing and water quenching or air cooling. Thermal analysis results show that with increasing Si content,the glass transition temperature Tg,the initial crystallization temperature Tx and the onset crystalliza-tion temperature Tp of Pd-Si binary glassy alloys increase. Moreover,the super-cooled liquid region reaches 61 K. It indicates that Pd-Si binary alloys possess large glass forming ability,which can be greatly improved by fluxing treatment.

  12. SiD Letter of Intent

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, H., (Ed.); Burrows, P., (Ed.); Oreglia, M., (Ed.); Berger, E.L.; Guarino, V.; Repond, J.; Weerts, H.; Xia, L.; Zhang, J.; /Argonne, HEP; Zhang, Q.; /Argonne, HEP /Beijing, Inst. High Energy Phys.; Srivastava, A.; /Birla Inst. Tech. Sci.; Butler, J.M.; /Boston U.; Goldstein, Joel; Velthuis, J.; /Bristol U.; Radeka, V.; /Brookhaven; Zhu, R.-Y.; /Caltech.; Lutz, P.; /DAPNIA, Saclay; de Roeck, A.; Elsener, K.; Gaddi, A.; Gerwig, H.; /CERN /Cornell U., LNS /Ewha Women' s U., Seoul /Fermilab /Gent U. /Darmstadt, GSI /Imperial Coll., London /Barcelona, Inst. Microelectron. /KLTE-ATOMKI /Valencia U., IFIC /Cantabria Inst. of Phys. /Louis Pasteur U., Strasbourg I /Durham U., IPPP /Kansas State U. /Kyungpook Natl. U. /Annecy, LAPP /LLNL, Livermore /Louisiana Tech. U. /Paris U., VI-VII /Paris U., VI-VII /Munich, Max Planck Inst. /MIT, LNS /Chicago, CBC /Moscow State U. /Nanjing U. /Northern Illinois U. /Obninsk State Nucl. Eng. U. /Paris U., VI-VII /Strasbourg, IPHC /Prague, Inst. Phys. /Princeton U. /Purdue U. /Rutherford /SLAC /SUNY, Stony Brook /Barcelona U. /Bonn U. /UC, Davis /UC, Santa Cruz /Chicago U. /Colorado U. /Delhi U. /Hawaii U. /Helsinki U. /Indiana U. /Iowa U. /Massachusetts U., Amherst /Melbourne U. /Michigan U. /Minnesota U. /Mississippi U. /Montenegro U. /New Mexico U. /Notre Dame U. /Oregon U. /Oxford U. /Ramon Llull U., Barcelona /Rochester U. /Santiago de Compostela U., IGFAE /Hefei, CUST /Texas U., Arlington /Texas U., Dallas /Tokyo U. /Washington U., Seattle /Wisconsin U., Madison /Wayne State U. /Yale U. /Yonsei U.

    2012-04-11

    This document presents the current status of the Silicon Detector (SiD) effort to develop an optimized design for an experiment at the International Linear Collider. It presents detailed discussions of each of SiD's various subsystems, an overview of the full GEANT4 description of SiD, the status of newly developed tracking and calorimeter reconstruction algorithms, studies of subsystem performance based on these tools, results of physics benchmarking analyses, an estimate of the cost of the detector, and an assessment of the detector R and D needed to provide the technical basis for an optimised SiD.

  13. Stress-impedance effects in layered FeSiB/Cu/FeSiB films with a meander line structure

    International Nuclear Information System (INIS)

    Stress-impedance (SI) effects were realized in layered FeSiB/Cu/FeSiB films with a meander line structure by magnetron sputtering on thin glass substrate. The SI effects were studied in the frequency range of 1-40MHz for the layered FeSiB/Cu/FeSiB films with different film thickness of FeSiB film and Cu layer. Experimental results show that the values of SI ratio increase nearly linear with the deflection of the layered FeSiB/Cu/FeSiB films at high frequencies, and a large negative SI ratio of -18.3% at a frequency of 25MHz with the deflection of 1000μm is obtained in the layered FeSiB/Cu/FeSiB films with a thicker FeSiB film, which is very attractive for the applications of stress sensors

  14. Optimization of Waveguide Structure for Tunable Optical Switch in Si/SiGe System

    Institute of Scientific and Technical Information of China (English)

    Seongjae; Boo; Won-Taek; Han

    2003-01-01

    A new electro-optical device using Si/SiGe-system with two parallel ridge waveguides is proposed for optical switching and the optimization of the structure for a single mode operation is investigated.

  15. Thermogravimetric and microscopic analysis of SiC/SiC materials with advanced interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, C.F. Jr.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States); Snead, L.L. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The chemical stability of SiC/SiC composites with fiber/matrix interfaces consisting of multilayers of SiC/SiC and porous SiC have been evaluated using a thermal gravimetric analyzer (TGA). Previous evaluations of SiC/SiC composites with carbon interfacial layers demonstrated the layers are not chemically stable at goal use temperatures of 800-1100{degrees}C and O{sub 2} concentrations greater than about 1 ppm. No measureable mass change was observed for multilayer and porous SiC interfaces at 800-1100{degrees}C and O{sub 2} concentrations of 100 ppm to air; however, the total amount of oxidizable carbon is on the order of the sensitivity of the TGA. Further studies are in progress to evaluate the stability of these materials.

  16. W-Mo-Si/SiC Oxidation Protective Coating for Carbon/Carbon Composites

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A W-Mo-Si/SiC double-layer oxidation protective coating for carbon/carbon (C/C) composites was prepared by a two-step pack cementation technique. XRD (X-ray diffraction) and SEM (scanning electron microscopy)results show that the coating obtained by the first step pack cementation was a thin inner buffer layer of SiC with some cracks and pores, and a new phase of (WxMo1-x)Si2 appeared after the second step pack cementation. Oxidation test shows that, after oxidation in air at 1773 K for 175 h and thermal cycling between 1773 K and room temperature for 18 times, the weight loss of the W-Mo-Si/SiC coated C/C composites was only 2.06%. The oxidation protective failure of the W-Mo-Si/SiC coating was attributed to the formation of some penetrable cracks in the coating.

  17. Fabrication and characteristics of the nc-Si/c-Si heterojunction MAGFET

    Institute of Scientific and Technical Information of China (English)

    Zhao Xiaofeng; Wen Dianzhong

    2009-01-01

    A MAGFET using an nc-Si/c-Si heterojunction as source and drain was fabricated by CMOS technology, using two ohm-contact electrodes as Hall outputs on double sides of the channel situated 0.7L from the source. The experimental results show that when V_(DS) = -7.0 V, the magnetic sensitivity of the single nc-Si/c-Si heterojunction magnetic metal oxide semiconductor field effect transistor (MAGFET) with an L : W ratio of 2 : 1 is 21.26 mV/T,and that with an L : W ratio of 4 : 1 is 13.88 mV/T. When the outputs of double nc-Si/c-Si heterojunction MAGFETs with an L : W ratio of 4 : 1 are in series, their magnetic sensitivity is 22.74 mV/T, which is an improvement of about 64% compared with that of a single nc-Si/c-Si heterojunction MAGFET.

  18. Strain relaxation in nano-patterned strained-Si/SiGe heterostructure on insulator

    International Nuclear Information System (INIS)

    In order to evaluate the strain stability, arrays of strained Si/SiGe nano-stripes and nano-pillars were fabricated by Electron-Beam Lithography (EBL) and Reactive-Ion Etching (RIE). The strain relaxation in the patterned strained Si on SiGe-on-insulator (SGOI) was investigated by high-resolution UV micro-Raman spectroscopy. The Raman measurements before and after patterning indicate that most of the strain in the top strained Si is maintained until scaling down to 300 nm, and relaxation of <15% is observed in pillars with a dimension of 150 nm x 150 nm. In the nano-patterned heterostructure strained Si/SiGe, the observed relaxation is small, which is mainly attributed to the fully relaxed and dislocation-free SiGe virtual substrate fabricated by modified Ge condensation.

  19. Recycling of Al-Si die casting scraps for solar Si feedstock

    Science.gov (United States)

    Seo, Kum-Hee; Jeon, Je-Beom; Youn, Ji-Won; Kim, Suk Jun; Kim, Ki-Young

    2016-05-01

    Recycling of aluminum die-casting scraps for solar-grade silicon (SOG-Si) feedstock was performed successfully. 3 N purity Si was extracted from A383 die-casting scrap by using the combined process of solvent refining and an advanced centrifugal separation technique. The efficiency of separating Si from scrap alloys depended on both impurity level of scraps and the starting temperature of centrifugation. Impurities in melt and processing temperature governed the microstructure of the primary Si. The purity of Si extracted from the scrap melt was 99.963%, which was comparable to that of Si extracted from a commercial Al-30 wt% Si alloy, 99.980%. The initial purity of the scrap was 2.2% lower than that of the commercial alloy. This result confirmed that die-casting scrap is a potential source of high-purity Si for solar cells.

  20. Nanoscale structure of Si/SiO2/organics interfaces.

    Science.gov (United States)

    Steinrück, Hans-Georg; Schiener, Andreas; Schindler, Torben; Will, Johannes; Magerl, Andreas; Konovalov, Oleg; Li Destri, Giovanni; Seeck, Oliver H; Mezger, Markus; Haddad, Julia; Deutsch, Moshe; Checco, Antonio; Ocko, Benjamin M

    2014-12-23

    X-ray reflectivity measurements of increasingly more complex interfaces involving silicon (001) substrates reveal the existence of a thin low-density layer intruding between the single-crystalline silicon and the amorphous native SiO2 terminating it. The importance of accounting for this layer in modeling silicon/liquid interfaces and silicon-supported monolayers is demonstrated by comparing fits of the measured reflectivity curves by models including and excluding this layer. The inclusion of this layer, with 6-8 missing electrons per silicon unit cell area, consistent with one missing oxygen atom whose bonds remain hydrogen passivated, is found to be particularly important for an accurate and high-resolution determination of the surface normal density profile from reflectivities spanning extended momentum transfer ranges, now measurable at modern third-generation synchrotron sources. PMID:25401294

  1. Raman scattering in Si/SiGe nanostructures: Revealing chemical composition, strain, intermixing, and heat dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Mala, S. A.; Tsybeskov, L., E-mail: tsybesko@njit.edu [Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102 (United States); Lockwood, D. J.; Wu, X.; Baribeau, J.-M. [National Research Council, Ottawa, Ontario K1A 0R6 (Canada)

    2014-07-07

    We present a quantitative analysis of Raman scattering in various Si/Si{sub 1-x}Ge{sub x} multilayered nanostructures with well-defined Ge composition (x) and layer thicknesses. Using Raman and transmission electron microscopy data, we discuss and model Si/SiGe intermixing and strain. By analyzing Stokes and anti-Stokes Raman signals, we calculate temperature and discuss heat dissipation in the samples under intense laser illumination.

  2. Fabrication and Properties of Ti3SiC2/SiC Composites

    Institute of Scientific and Technical Information of China (English)

    YIN Hongfeng; FAN Qiang; REN Yun; ZHANG Junzhan

    2008-01-01

    Ti3SiC2/SiC composites were fabricated by reactive hot pressing method. Effects of hot pressing temperature, the content and panicle size of SiC on phase composition, densification, mechanical properties and behavior of stress-strain of the composites were investigated. The results showed that:(1)Hot-pressing temperature influenced the phase composition of Ti3SiC2/SiC composites. The flexural strength and fracture toughness of composites increased with hot pressing temperature.(2)It became more difficult for the composites to densify when the content of SiC in composites increased. It need be sintered at higher temperature to get denser composite. The flexural strength and fracture toughness of composites increased when the content of SiC added in composites increased. However, when the content of SiC reached 50 wt%, the flexural strength and fracture toughness of composites decreased due to high content of pore in composites.(3)When the content of SiC was same, Ti3SiC2/SiC composites were denser while the particle size of SiC added in composites is 12.8μm compared with the composites that the particle size of SiC added is 3μm.The flexural strength and fracture toughness of composites increased with the increase of particle size of SiC added in composites.(4)Ti3SiC2/SiC composites were non-brittle fracture at room temperature.

  3. Minimum bar size for flexure testing of irradiated SiC/SiC composite

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    This report covers material presented at the IEA/Jupiter Joint International Workshop on SiC/SiC Composites for Fusion structural Applications held in conjunction with ICFRM-8, Sendai, Japan, Oct. 23-24, 1997. The minimum bar size for 4-point flexure testing of SiC/SiC composite recommended by PNNL for irradiation effects studies is 30 {times} 6 {times} 2 mm{sup 3} with a span-to-depth ratio of 10/1.

  4. Passivation of surface-nanostructured f-SiC and porous SiC

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang; Ou, Yiyu;

    The further enhancement of photoluminescence from nanostructured fluorescent silicon carbide (f-SiC) and porous SiC by using atomic layer deposited (ALD) Al2O3 is studied in this paper.......The further enhancement of photoluminescence from nanostructured fluorescent silicon carbide (f-SiC) and porous SiC by using atomic layer deposited (ALD) Al2O3 is studied in this paper....

  5. Nanocrystal Formation in Si Implanted Thin SiO2 Layers under the Influence of an Absorbing Interface

    OpenAIRE

    Mueller, T.; Heinig, K. -H.; Moeller, W.

    2002-01-01

    Kinetic 3D lattice Monte Carlo studies are presented on Si nanocrystal (NC) formation by phase separation in 1 keV Si implanted thin SiO2 films. The simulation start from Si depth profiles calculated using the dynamic, high-fluence binary collision code TRIDYN. From the initial Si supersaturation, NCs are found to form either by nucleation, growth and Ostwald ripening at low Si concentrations. Or at higher concentrations, non-spherical, elongated Si structures form by spinodal decomposition, ...

  6. SiC-Si-ZrSiO4 Multiphase Oxidation Protective Coating for Carbon/Carbon Composites

    Institute of Scientific and Technical Information of China (English)

    Yulei ZHANG; Hejun LI; Qiangang FU; Kezhi LI; Dangshe HOU

    2008-01-01

    In order to improve the anti-oxidation property of carbon/carbon (C/C) composites,a novel SiC-Si-ZrSiO4 multiphase oxidation protective coating was produced on the surface of C/SiC coated carbon/carbon compos-ites by a pack cementation technique.The phase composition and microstructure of the as-prepared coatings were characterized by XRD (X-ray diffraction),SEM (scanning electron microscopy) and EDS (energy dis-persive spectroscopy).Oxidation behavior of the multiphase coated C/C composites was also investigated.It showed that the as-prepared coating characterized by excellent oxidation resistance and thermal shock re-sistance could effectively protect C/C composites from oxidation at 1773 K for 57 h in air and endure the thermal cycle between 1773 K and room temperature for 12 times,whereas the corresponding weight loss is only 1.47%.The excellent oxidation protective ability of the SiC-Si-ZrSiO4 coating could be attributed to the C/SiC gradient inner layer and the multiphase microstructure of the coating.

  7. Structure of Si-capped Ge/SiC/Si (001) epitaxial nanodots: Implications for quantum dot patterning

    Energy Technology Data Exchange (ETDEWEB)

    Petz, C. W.; Floro, J. A. [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Yang, D.; Levy, J. [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States)

    2012-04-02

    Artificially ordered quantum dot (QD) arrays, where confined carriers can interact via direct exchange coupling, may create unique functionalities such as cluster qubits and spintronic bandgap systems. Development of such arrays for quantum computing requires fine control over QD size and spatial arrangement on the sub-35 nm length scale. We employ electron-beam irradiation to locally decompose ambient hydrocarbons onto a bare Si (001) surface. These carbonaceous patterns are annealed in ultra-high vacuum (UHV), forming ordered arrays of nanoscale SiC precipitates that have been suggested to template subsequent epitaxial Ge growth to form ordered QD arrays. We show that 3C-SiC nanodots form, in cube-on-cube epitaxial registry with the Si substrate. The SiC nanodots are fully relaxed by misfit dislocations and exhibit small lattice rotations with respect to the substrate. Ge overgrowth at elevated deposition temperatures, followed by Si capping, results in expulsion of the Ge from SiC template sites due to the large chemical and lattice mismatch between Ge and C. Maintaining an epitaxial, low-defectivity Si matrix around the quantum dots is important for creating reproducible electronic and spintronic coupling of states localized at the QDs.

  8. Sr–Al–Si co-segregated regions in eutectic Si phase of Sr-modified Al–10Si alloy

    International Nuclear Information System (INIS)

    The addition of 200 ppm strontium to an Al–10 wt% Si casting alloy changes the morphology of the eutectic silicon phase from coarse plate-like to fine fibrous networks. In order to clarify this modification mechanism the location of Sr within the eutectic Si phase has been investigated by a combination of high-resolution methods. Whereas three-dimensional atom probe tomography allows us to visualise the distribution of Sr on the atomic scale and to analyse its local enrichment, transmission electron microscopy yields information about the crystallographic nature of segregated regions. Segregations with two kinds of morphologies were found at the intersections of Si twin lamellae: Sr–Al–Si co-segregations of rod-like morphology and Al-rich regions of spherical morphology. Both are responsible for the formation of a high density of multiple twins and promote the anisotropic growth of the eutectic Si phase in specific crystallographic directions during solidification. The experimental findings are related to the previously postulated mechanism of “impurity induced twinning”. - Highlights: ► Eutectic microstructure of a Sr-modified Al–10Si alloy was studied by high resolution methods. ► Nano-sized Sr–Al- and Al-enriched regions within the eutectic Si phase have been found ► Sr–Al- and Al-enriched regions are located at the intersections of Si twin lamellae. ► The findings are related to the postulated modification mechanism of impurity induced twinning

  9. Sr–Al–Si co-segregated regions in eutectic Si phase of Sr-modified Al–10Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Timpel, M., E-mail: melanie.timpel@helmholtz-berlin.de [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Wanderka, N. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Schlesiger, R. [Institute of Materials Physics, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 10, 48149 Münster (Germany); Yamamoto, T. [HVEM Laboratory, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395 (Japan); Isheim, D. [Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208-3108 (United States); Schmitz, G. [Institute of Materials Physics, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 10, 48149 Münster (Germany); Matsumura, S. [HVEM Laboratory, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395 (Japan); Banhart, J. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)

    2013-09-15

    The addition of 200 ppm strontium to an Al–10 wt% Si casting alloy changes the morphology of the eutectic silicon phase from coarse plate-like to fine fibrous networks. In order to clarify this modification mechanism the location of Sr within the eutectic Si phase has been investigated by a combination of high-resolution methods. Whereas three-dimensional atom probe tomography allows us to visualise the distribution of Sr on the atomic scale and to analyse its local enrichment, transmission electron microscopy yields information about the crystallographic nature of segregated regions. Segregations with two kinds of morphologies were found at the intersections of Si twin lamellae: Sr–Al–Si co-segregations of rod-like morphology and Al-rich regions of spherical morphology. Both are responsible for the formation of a high density of multiple twins and promote the anisotropic growth of the eutectic Si phase in specific crystallographic directions during solidification. The experimental findings are related to the previously postulated mechanism of “impurity induced twinning”. - Highlights: ► Eutectic microstructure of a Sr-modified Al–10Si alloy was studied by high resolution methods. ► Nano-sized Sr–Al- and Al-enriched regions within the eutectic Si phase have been found ► Sr–Al- and Al-enriched regions are located at the intersections of Si twin lamellae. ► The findings are related to the postulated modification mechanism of impurity induced twinning.

  10. Steady state creep behavior of two ceramic composites SiCf-SiC and SiCf -MLAS

    OpenAIRE

    Kervadec, D.; Abbe, F.; Chermant, J.-L.

    1993-01-01

    Creep were performed by three-point bending under vacuum on SICf -SiC and SiCf-MLAS composites. The results are compared and discussed according to criteria based on the values of both temperature and stress and on the damaging features observed.

  11. Formation of Si/SiC multilayers by low-energy ion implantation and thermal annealing

    NARCIS (Netherlands)

    Dobrovolskiy, S.; Yakshin, A. E.; Tichelaar, F. D.; Verhoeven, J.; E. Louis,; F. Bijkerk,

    2010-01-01

    Si/SiC multilayer systems for XUV reflection optics with a periodicity of 10-20 nm were produced by sequential deposition of Si and implantation of 1 key CHx+ ions. Only about 3% of the implanted carbon was transferred into the SIC, with a thin, 0.5-1 nm, buried SIC layer being formed. We investigat

  12. Scanning capacitance microscope study of a SiO2/Si interface modified by charge injection

    Science.gov (United States)

    Tomiye, H.; Yao, T.

    We have investigated the local electrical properties of an SiO2/Si structure using a scanning capacitance microscope (SCaM) combined with an atomic force and a scanning tunneling microscope (AFM and STM). The electrical properties of the Si substrate and the SiO2/Si interface vary with position. In this experiment we have injected charge into the SiO2 and investigated the nature of charge storage at the SiO2/Si interface. We have used the combined microscope to apply a pulse to the SiO2/Si sample, causing charge to be trapped in the SiO2/Si interface. We could clearly detect the local variation of interface charge in a non-destructive manner using the SCaM and simultaneously by capacitance-voltage (C-V) characterization. The volume of the C-V curve shift along the voltage axis due to trapped charges is dependent upon the density of the trapped charges. In doing this experiment we show one of the many possible applications of the combined SCaM/AFM/STM.

  13. Enhanced electroluminescence from nanocrystallite Si based MOSLED by interfacial Si nanopyramids

    Institute of Scientific and Technical Information of China (English)

    Gong-Ru Lin

    2007-01-01

    The interfacial Si nano-pyramid-enhanced electroluminescence (EL) of an ITO/SiOx/p-Si/Al metal-oxidesemiconductor (MOS) diode with turn-on voltage of 50 V, threshold current of 1.23 mA/cm2, output power of 16 nW, and lifetime of 10 h is reported.

  14. About the International System of Units (SI) Part III. SI Table

    Science.gov (United States)

    Aubrecht, Gordon J., II; French, Anthony P.; Iona, Mario

    2012-01-01

    Before discussing more details of SI, we will summarize the essentials in a few tables that can serve as ready references. If a unit isn't listed in Tables I-IV, it is not part of SI or specifically allowed for use with SI. The units and symbols that are sufficient for most everyday applications are given in bold.

  15. The effect of biaxial strain on impurity diffusion in Si and SiGe

    DEFF Research Database (Denmark)

    Larsen, Arne Nylandsted; Zangenberg, Nikolaj; Fage-Pedersen, Jacob

    2005-01-01

    Results from diffusion studies of different impurities in biaxially strained Si and Si"1"-"xGe"x for low x-values will be presented. The structures are all molecular-beam epitaxy (MBE) grown on strain-relaxed Si"1"-"xGe"x layers, and the impurity profiles are introduced during growth. We have...

  16. Polycrystalline SiC as source material for the growth of fluorescent SiC layers

    DEFF Research Database (Denmark)

    Kaiser, M.; Hupfer, T.; Jokubavicus, V.;

    2013-01-01

    Polycrystalline doped SiC act as source for fluorescent SiC. We have studied the growth of individual grains with different polytypes in the source material. We show an evolution and orientation of grains of different polytypes in polycrystalline SiC ingots grown by the Physical Vapor Transport...

  17. Further Developments in Modeling Creep Effects Within Structural SiC/SiC Components

    Science.gov (United States)

    Lang, Jerry; DiCarlo, James A.

    2008-01-01

    Anticipating the implementation of advanced SiC/SiC composites into turbine section components of future aero-propulsion engines, the primary objective of this on-going study is to develop physics-based analytical and finite-element modeling tools to predict the effects of constituent creep on SiC/SiC component service life. A second objective is to understand how to possibly manipulate constituent materials and processes in order to minimize these effects. Focusing on SiC/SiC components experiencing through-thickness stress gradients (e.g., airfoil leading edge), prior NASA creep modeling studies showed that detrimental residual stress effects can develop globally within the component walls which can increase the risk of matrix cracking. These studies assumed that the SiC/SiC composites behaved as isotropic viscoelastic continuum materials with creep behavior that was linear and symmetric with stress and that the creep parameters could be obtained from creep data as experimentally measured in-plane in the fiber direction of advanced thin-walled 2D SiC/SiC panels. The present study expands on those prior efforts by including constituent behavior with non-linear stress dependencies in order to predict such key creep-related SiC/SiC properties as time-dependent matrix stress, constituent creep and content effects on composite creep rates and rupture times, and stresses on fiber and matrix during and after creep.

  18. Preparation of Si3N4–SiC composites by microwave route

    Indian Academy of Sciences (India)

    M Panneerselvam; K J Rao

    2002-12-01

    Si3N4–SiC composites have been microwave sintered using -Si3N4 and -SiC as starting materials. Si3N4 rich compositions (95 and 90 vol.% Si3N4) have been sintered above 96% of theoretical density without using any sintering additives in 40 min. A monotonic decrease in relative density is observed with increase in SiC proportion in the composite. Decrease in relative density has manifested in the reduction of fracture toughness and microhardness values of the composite with increase in SiC content although the good sintering of matrix Si3N4 limits the decrease of fracture toughness. Highest value of fracture toughness of 6.1 MPa m1/2 is observed in 10 vol.% SiC composite. Crack propagation appears to be transgranular in the Si3N4 matrix and the toughening of the composites is through crack deflection around hard SiC particles in addition to its debonding from the matrix.

  19. siRNAmod: A database of experimentally validated chemically modified siRNAs.

    Science.gov (United States)

    Dar, Showkat Ahmad; Thakur, Anamika; Qureshi, Abid; Kumar, Manoj

    2016-01-01

    Small interfering RNA (siRNA) technology has vast potential for functional genomics and development of therapeutics. However, it faces many obstacles predominantly instability of siRNAs due to nuclease digestion and subsequently biologically short half-life. Chemical modifications in siRNAs provide means to overcome these shortcomings and improve their stability and potency. Despite enormous utility bioinformatics resource of these chemically modified siRNAs (cm-siRNAs) is lacking. Therefore, we have developed siRNAmod, a specialized databank for chemically modified siRNAs. Currently, our repository contains a total of 4894 chemically modified-siRNA sequences, comprising 128 unique chemical modifications on different positions with various permutations and combinations. It incorporates important information on siRNA sequence, chemical modification, their number and respective position, structure, simplified molecular input line entry system canonical (SMILES), efficacy of modified siRNA, target gene, cell line, experimental methods, reference etc. It is developed and hosted using Linux Apache MySQL PHP (LAMP) software bundle. Standard user-friendly browse, search facility and analysis tools are also integrated. It would assist in understanding the effect of chemical modifications and further development of stable and efficacious siRNAs for research as well as therapeutics. siRNAmod is freely available at: http://crdd.osdd.net/servers/sirnamod. PMID:26818131

  20. Advances in SiC/SiC Composites for Aero-Propulsion

    Science.gov (United States)

    DiCarlo, James A.

    2013-01-01

    In the last decade, considerable progress has been made in the development and application of ceramic matrix composites consisting of silicon carbide (SiC) based matrices reinforced by small-diameter continuous-length SiC-based fibers. For example, these SiC/SiC composites are now in the early stages of implementation into hot-section components of civil aero-propulsion gas turbine engines, where in comparison to current metallic components they offer multiple advantages due to their lighter weight and higher temperature structural capability. For current production-ready SiC/SiC, this temperature capability for long time structural applications is 1250 degC, which is better than 1100 degC for the best metallic superalloys. Foreseeing that even higher structural reliability and temperature capability would continue to increase the advantages of SiC/SiC composites, progress in recent years has also been made at NASA toward improving the properties of SiC/SiC composites by optimizing the various constituent materials and geometries within composite microstructures. The primary objective of this chapter is to detail this latter progress, both fundamentally and practically, with particular emphasis on recent advancements in the materials and processes for the fiber, fiber coating, fiber architecture, and matrix, and in the design methods for incorporating these constituents into SiC/SiC microstructures with improved thermo-structural performance.

  1. Microstructure and abrasive wear studies of laser clad Al-Si/SiC composite coatings

    NARCIS (Netherlands)

    Anandkumar, R.; Colaco, R.; Ocelik, V.; De Hosson, J. Th. M.; Vilar, R.; Gyulai, J; Szabo, PJ

    2007-01-01

    Surface coatings of Al-Si/SiC metal-matrix composites were deposited on Al-7 wt. % Si alloy substrates by laser cladding. The microstructure of the coatings was characterized by optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The microstructure of the coating mate

  2. Effect of Nano-SiC Particles on the Performance and Microstructure of Si3N4/SiC Composite Ceramics%纳米SiC对Si3N4/SiC复相陶瓷性能及显微结构的影响

    Institute of Scientific and Technical Information of China (English)

    张伟儒; 李勇; 陈文

    2007-01-01

    In this paper, Si3 N4/SiC composite ceramics were prepared from two different raw materials with nano-SiC particles or organic precursor. Effect of nano-SiC particles on the performance and microstructure of the Si3 N4/SiC ceramics was studied, and the relation between reinforced mechanism and microstructure of materials was also investigated.%本研究通过采用纳米SiC粉体及有机前驱体两种途径,制备了Si3N4/SiC粒子(Si3 N4/纳米SiC)复相陶瓷,研究了纳米SiC对Si3 N4/SiC复相陶瓷性能及显微结构的影响,讨论了材料强化的机制与显微结构的关系.

  3. Thermochemical instability effects in SiC-based fibers and SiC{sub f}/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Henager, C.H.; Jones, R.H. [Pacific Northwest National Laboratory, Richland, WA (United States)

    1997-08-01

    Thermochemical instability in irradiated SiC-based fibers with an amorphous silicon oxycarbide phase leads to shrinkage and mass loss. SiC{sub f}/SiC composites made with these fibers also exhibit mass loss as well as severe mechanical property degradation when irradiated at 800{degrees}C, a temperature much below the generally accepted 1100{degrees}C threshold for thermomechanical degradation alone. The mass loss is due to an internal oxidation mechanism within these fibers which likely degrades the carbon interphase as well as the fibers in SiC{sub f}/SiC composites even in so-called {open_quotes}inert{close_quotes} gas environments. Furthermore, the mechanism must be accelerated by the irradiation environment.

  4. Silane photoabsorption spectra near the Si 2p thresholds: the geometry of Si 2p excited SiH4

    Institute of Scientific and Technical Information of China (English)

    张卫华; 许如清; 李家明

    2003-01-01

    Based on the multiple-scattering self-consistent-field method, we have studied the photoabsorption spectra near the Si 2p thresholds of silane. According to our calculations, the clear assignments of the inner-shell photoabsorption spectra are provided. In comparison with the high-resolution experimental spectra, the geometric structure of the Si 2p-excited SiH4** is recommended to be of a C2v symmetry. More specifically, the Si 2p-excited Si4** have two bond lengths of 2.50 a.u. and another two bond lengths of 2.77 a.u., and the corresponding two bond angles are 104.0° and 112.5° respectively.

  5. Advances in wide bandgap SiC for optoelectronics

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Argyraki, Aikaterini;

    2014-01-01

    . This paper will review the advances in fluorescent SiC for white light-emitting diodes, covering the poly-crystalline doped SiC source material growth, single crystalline epitaxy growth of fluorescent SiC, and nanofabrication of SiC to enhance the extraction efficiency for fluorescent SiC based white LEDs....

  6. Monolithic integration of Si-MOSFET and GaN-LED using Si/SiO2/GaN-LED wafer

    Science.gov (United States)

    Tsuchiyama, Kazuaki; Yamane, Keisuke; Utsunomiya, Shu; Sekiguchi, Hiroto; Okada, Hiroshi; Wakahara, Akihiro

    2016-10-01

    In this report, we present a monolithic integration method for a Si-MOSFET and a GaN-LED onto a Si/SiO2/GaN-LED wafer as an elemental technology for monolithic optoelectronic integrated circuits. To enable a Si-MOSFET device process, we investigated the thermal tolerance of a thin top-Si and GaN-LED layer on a Si/SiO2/GaN-LED wafer. The high thermal tolerance of the Si/SiO2/GaN-LED structure allowed for the monolithic integration of a Si n-MOSFET and a GaN-µLED without degrading the performance of either device. A GaN-µLED driver circuit was fabricated using a Si n-MOSFET and a µLED of 30 × 30 µm2, with the modulation bandwidth of the circuit estimated to be over 10 MHz.

  7. Synthesis of Hybrid SiC/SiO2 Nanoparticles and Their Polymer Nanocomposites

    Science.gov (United States)

    Hassan, Tarig A.; Rangari, Vijaya K.; Baker, Fredric; Jeelani, Shaik

    2013-04-01

    In the present investigation, silicon carbide (β-SiC) nanoparticles ( 30 nm) were coated on silicon dioxide (SiO2) nanoparticles ( 200 nm) using sonochemical method. The resultant hybrid nanoparticles were then infused into SC-15 epoxy resin to enhance the thermal and mechanical properties of SC-15 epoxy for structural application. To fabricate an epoxy-based nanocomposite containing SiC/SiO2 hybrid nanoparticles, we have opted a two-step process. In the first step, the silica nanoparticles were coated with SiC nanoparticles using high intensity ultrasonic irradiation. In a second step, 1 wt.% of as-prepared SiC/SiO2 particles were dispersed in epoxy part-A (diglycidylether of bisphenol A) using a high intensity ultrasound for 30 min at 5°C. The part-B (cycloaliphatic amine hardener) of the epoxy was then mixed with part-A-SiC/SiO2 mixture using a high-speed mechanical stirrer for 10 min. The SiC/SiO2/epoxy resin mixture was cured at room temperature for 24 h. The SiC nanoparticles coating on SiO2 was characterized using X-ray diffraction (XRD) and high resolution transmission electron microscope (TEM). The as-prepared nanocomposite samples were characterized using thermo gravimetric analysis (TGA) and differential scanning calorimeter (DSC). Compression tests have been carried out for both nanocomposite and neat epoxy systems. The results indicated that 1 wt.% (SiC) + (SiO2) loading derived improvements in both thermal and mechanical properties when compared to the neat epoxy system.

  8. Modification of Mg{sub 2}Si in Mg–Si alloys with gadolinium

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Lingying; Hu, Jilong, E-mail: hjlong@csu.edu.cn; Tang, Changping; Zhang, Xinming; Deng, Yunlai; Liu, Zhaoyang; Zhou, Zhile

    2013-05-15

    The modification effect of gadolinium (Gd) on Mg{sub 2}Si in the hypereutectic Mg–3 wt.% Si alloy has been investigated using optical microscope, scanning electron microscope, X-ray diffraction and hardness measurements. The results indicate that the morphology of the primary Mg{sub 2}Si is changed from coarse dendrite into fine polygon with the increasing Gd content. The average size of the primary Mg{sub 2}Si significantly decreases with increasing Gd content up to 1.0 wt.%, and then slowly increases. Interestingly, when the Gd content is increased to 4.0 and 8.0 wt.%, the primary and eutectic Mg{sub 2}Si evidently decrease and even disappear. The modification and refinement of the primary Mg{sub 2}Si is mainly attributed to the poisoning effect. The GdMg{sub 2} phase in the primary Mg{sub 2}Si is obviously coarsened as the Gd content exceeds 2.0 wt.%. While the decrease and disappearance of the primary and eutectic Mg{sub 2}Si are ascribed to the formation of vast GdSi compound. Therefore, it is reasonable to conclude that proper Gd (1.0 wt.%) addition can effectively modify and refine the primary Mg{sub 2}Si. - Highlights: ► Proper Gd (1.0 wt.%) addition can effectively modify and refine the primary Mg{sub 2}Si. ► We studied the reaction feasibility between Mg and Si, Gd and Si in Mg–Gd–Si system. ► We explored the modification mechanism of Gd modifier on Mg{sub 2}Si.

  9. Alpha-Irradiation-Induced Doping of Si

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Je; Kong, Young Bae; Hur, Min Goo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    A method to dope Si was presented on the base of the alpha irradiation. After the alpha irradiation, P atoms were created from Si atoms by nuclear transmutation while the microstructure of Si surfaces was almost unchanged. As the fluence increased, the amount of P atoms on the Si surface was also increased. It has been revealed that semiconducting materials can be doped by nuclear reactions. Those reactions can be induced by thermal neutrons, high energy charged particles and photons. Among them, researches on neutron transmutation doping have been intensively performed. Furthermore, this method has been widely used for the production of P-doped Si in semiconductor industries. However, researches on nuclear doping induced by charged particles were rarely carried out relatively.

  10. Effects of SiC amount on phase compositions and properties of Ti3SiC2-based composites

    Institute of Scientific and Technical Information of China (English)

    蔡艳芝; 殷小玮; 尹洪峰

    2015-01-01

    The phase compositions and properties of Ti3SiC2-based composites with SiC addition of 5%−30% in mass fraction fabricated by in-situ reaction and hot pressing sintering were studied. SiC addition effectively prevented TiC synthesis but facilitated SiC synthesis. The Ti3SiC2/TiC−SiC composite had better oxidation resistance when SiC added quantity reached 20% but poorer oxidation resistance with SiC addition under 15%than Ti3SiC2/TiC composite at higher temperatures. There were more than half of the original SiC and a few Ti3SiC2 remaining in Ti3SiC2/TiC−SiC with 20% SiC addition, but all constituents in Ti3Si2/TiC composite were oxidized after 12 h in air at 1500 °C. The oxidation scale thickness of TS30, 1505.78μm, was near a half of that of T, 2715μm, at 1500 °C for 20 h. Ti3SiC2/TiC composite had a flexural strength of 474 MPa, which was surpassed by Ti3SiC2/TiC−SiC composites when SiC added amount reached 15%. The strength reached the peak of 518 MPa at 20%SiC added amount.

  11. Gate leakage mechanisms in strained Si devices

    Science.gov (United States)

    Yan, L.; Olsen, S. H.; Kanoun, M.; Agaiby, R.; O'Neill, A. G.

    2006-11-01

    This work investigates gate leakage mechanisms in advanced strained Si /SiGe metal-oxide-semiconductor field-effect transistor (MOSFET) devices. The impact of virtual substrate Ge content, epitaxial material quality, epitaxial layer structure, and device processing on gate oxide leakage characteristics are analyzed in detail. In state of the art MOSFETs, gate oxides are only a few nanometers thick. In order to minimize power consumption, leakage currents through the gate must be controlled. However, modifications to the energy band structure, Ge diffusion due to high temperature processing, and Si /SiGe material quality may all affect gate oxide leakage in strained Si devices. We show that at high oxide electric fields where gate leakage is dominated by Fowler-Nordheim tunneling, tensile strained Si MOSFETs exhibit lower leakage levels compared with bulk Si devices. This is a direct result of strain-induced splitting of the conduction band states. However, for device operating regimes at lower oxide electric fields Poole-Frenkel emissions contribute to strained Si gate leakage and increase with increasing virtual substrate Ge content. The emissions are shown to predominantly originate from surface roughness generating bulk oxide traps, opposed to Ge diffusion, and can be improved by introducing a high temperature anneal. Gate oxide interface trap density exhibits a dissimilar behavior and is highly sensitive to Ge atoms at the oxidizing surface, degrading with increasing thermal budget. Consequently advanced strained Si /SiGe devices are inadvertently subject to a potential tradeoff between power consumption (gate leakage current) and device reliability (gate oxide interface quality).

  12. Nanoscale SiC production by ballistic ion beam mixing of C/Si multilayer structures

    Science.gov (United States)

    Battistig, G.; Zolnai, Z.; Németh, A.; Panjan, P.; Menyhárd, M.

    2016-05-01

    The ion beam-induced mixing process using Ar+, Ga+, and Xe+ ion irradiation has been used to form SiC rich layers on the nanometer scale at the interfaces of C/Si/C/Si/C multilayer structures. The SiC depth distributions were determined by Auger electron spectroscopy (AES) depth profiling and were compared to the results of analytical models developed for ballistic ion mixing and local thermal spike induced mixing. In addition, the measured SiC depth distributions were correlated to the Si and C mixing profiles simulated by the TRIDYN code which can follow the ballistic ion mixing process as a function of ion fluence. Good agreement has been found between the distributions provided by AES depth profiling and TRIDYN on the assumption that the majority of the Si (C) atoms transported to the neighboring C (Si) layer form the SiC compound. The ion beam mixing process can be successfully described by ballistic atomic transport processes. The results show that SiC production as a function of depth can be predicted, and tailored compound formation on the nanoscale becomes feasible, thus leading to controlled synthesis of protective SiC coatings at room temperature.

  13. Influence of Si content and heat treatment on microstructure of Al-Fe-Si alloys

    Institute of Scientific and Technical Information of China (English)

    Zhao Yuhua; Wang Xiubin; Liu Yulin; Wang Chao

    2014-01-01

    The effect of Si addition and heat treatment on the Al-5wt.%Fe al oy has been investigated by OM, SEM-EDS and XRD. The results show that the Si plays a significant role in refining the primary Al3Fe phase. It was found that the addition of 3.0wt.% Si made the al oy present the finest and wel -distributed primary Al3Fe phase, but the Al3Fe phase almost disappeared when 5wt.% Si was added. With further increase in the Si content, some Fe-rich phases appeared in the inter-grains and coarsened. In addition, the heat treatments exert a significant impact on the microstructural evolution of the Al-5wt.%Fe-5wt.%Si al oy. After heat treatment for 28 hours at 590 ºC, the coarse platelet or blocky Fe-rich phase in Al-5wt.%Fe-5wt.%Si al oys was granulated; the phase transformation from metastable platelet Al3FeSi and blocky Al8Fe2Si to stable Al5FeSi had occurred. With the extension of heat treatment, the Si phase coarsened gradual y.

  14. Investigation on The Properties of Fe-Si3N4 Bonded SiC Composite

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong; FENG Di; PENG Dayan

    2005-01-01

    The mechanical properties of pressureless sintering Fe-Si3N4 bonded SiC and Si3 N4 bonded SiC with same manufacture process have been compared in this paper.The oxidizing mechanism of Fe-Si3 N4 bonded SiC ceramic matrix composite has been investigated especially through TG-DSC (thermo gravimetric analysis-differential scanning calorimeter) experiment. During oxidation procedure the main reaction is the oxidation of SiC and Si3N4, SiO2 which form protecting film to prevent further oxidizing. And residual iron in the samples become Fe2 O3 and Fe3O4, the oxidation kinetics at 1100 ~ 1300℃ of re-Si3 N4 bonded SiC has been studied especially. The weight gain per unit area at initial stage changes according to beeline rule, in the middle according to conic, and in the last oxidation period follows parabola rule.

  15. Nano-SiC/SiC anti-oxidant coating on the surface of graphite

    Science.gov (United States)

    Jafari, H.; Ehsani, N.; Khalifeh-Soltani, S. A.; Jalaly, M.

    2013-01-01

    In this research, a dual-layer coating has been used to improve high temperature oxidation resistance of graphite substrate. For first layer, silicon carbide was applied by pack cementation method. Powder pack consisted of Si, SiC and Al2O3 and heat-treated at 1650 °C in an argon atmosphere. SEM and XRD characterizations confirmed formation of SiC diffusion coating with about 500 μm including compositionally gradient of C and Si elements. Electrophoretic deposition (EPD) was used to deposit nano SiC (SiCn) particles as second layer. Thickness of second layer of SiCn in corresponded optimal situation was 50 μm. Samples with single and dual layers were investigated in oxidation test at 1600 °C. Results showed that an extreme increase was occurred in oxidation resistance after application of second layer of nano SiC. Weight loss value for single layer coating of SiC and dual layer coating of SiCn/SiC after oxidation test for 28 h at 1600 °C were 29 wt.% and 2.4 wt.%, respectively.

  16. Improving Passivation Process of Si Nanocrystals Embedded in SiO2 Using Metal Ion Implantation

    Directory of Open Access Journals (Sweden)

    Jhovani Bornacelli

    2013-01-01

    Full Text Available We studied the photoluminescence (PL of Si nanocrystals (Si-NCs embedded in SiO2 obtained by ion implantation at MeV energy. The Si-NCs are formed at high depth (1-2 μm inside the SiO2 achieving a robust and better protected system. After metal ion implantation (Ag or Au, and a subsequent thermal annealing at 600°C under hydrogen-containing atmosphere, the PL signal exhibits a noticeable increase. The ion metal implantation was done at energies such that its distribution inside the silica does not overlap with the previously implanted Si ion . Under proper annealing Ag or Au nanoparticles (NPs could be nucleated, and the PL signal from Si-NCs could increase due to plasmonic interactions. However, the ion-metal-implantation-induced damage can enhance the amount of hydrogen, or nitrogen, that diffuses into the SiO2 matrix. As a result, the surface defects on Si-NCs can be better passivated, and consequently, the PL of the system is intensified. We have selected different atmospheres (air, H2/N2 and Ar to study the relevance of these annealing gases on the final PL from Si-NCs after metal ion implantation. Studies of PL and time-resolved PL indicate that passivation process of surface defects on Si-NCs is more effective when it is assisted by ion metal implantation.

  17. Atomic diffusion in annealed CU/SiO2/Si (100) system prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Cu thin films are deposited on p-type Si (100) substrates by magnetron sputtering at room temperature. The interface reaction and atomic diffusion of Cu/SiO2/Si (100) systems are studied by x-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). Some significant results can be obtained. The onset temperature of interdiffusion for Cu/SiO2/Si(100) is 350 °C. With the annealing temperature increasing, the interdiffusion becomes more apparent. The calculated diffusion activation energy is about 0.91 eV. For the CU/SiO2/Si (100) systems copper silicides are not formed below an annealing temperature of 350 °C. The formation of the copper silicides phase is observed when the annealing temperature arrives at 450 °C. (condensed matter: structure, thermal and mechanical properties)

  18. Designing the Si(100) conversion into SiC(100) by Ge

    Energy Technology Data Exchange (ETDEWEB)

    Nader, Richard; Masri, Pierre [Groupe d' Etude des Semiconducteurs, CNRS-UMR 5650, Universite de Montpellier II, CC 074, 34095 Montpellier, Cedex 5 (France); Niebelschuetz, Florentina; Pezoldt, Joerg [FG Nanotechnologie, Institut fuer Mikro- und Nanotechnologien, TU Ilmenau, Postfach 100565, 98684 Ilmenau (Germany); Kulikov, Dmitri V.; Kharlamov, Vladimir V.; Trushin, Yurii V. [Department of Theoretical Bases of Microelectronics, Ioffe Physical Technical Institute, ul. Polytekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Nanostructures Physics Laboratory, St. Petersburg Research and Education Center of Science and Technology, Khlopina 8/3, St. Petersburg 195220 (Russian Federation)

    2010-02-15

    The deposition of Germanium (Ge) prior to the conversion of Si(100) into 3C-SiC(100) results in changes of the structure and surface morphology of the formed silicon carbide layer. First of all it reduces the thickness of the 3C-SiC layer grown during the conversion process and therefore the probability of voids formation. Secondly, it increases the nucleation density of the formed 3C-SiC nuclei and therefore, decreases the grain size at Ge coverages below two monolayers. These affect the roughness of the SiC surface positively by modifying the width of the SiC-Si interface. If the Ge coverages exceed two monolayers the structural and morphological properties begin to degrade. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. SiO x /SiN y multilayers for photovoltaic and photonic applications

    Science.gov (United States)

    Nalini, Ramesh Pratibha; Khomenkova, Larysa; Debieu, Olivier; Cardin, Julien; Dufour, Christian; Carrada, Marzia; Gourbilleau, Fabrice

    2012-02-01

    Microstructural, electrical, and optical properties of undoped and Nd3+-doped SiO x /SiN y multilayers fabricated by reactive radio frequency magnetron co-sputtering have been investigated with regard to thermal treatment. This letter demonstrates the advantages of using SiN y as the alternating sublayer instead of SiO2. A high density of silicon nanoclusters of the order 1019 nc/cm3 is achieved in the SiO x sublayers. Enhanced conductivity, emission, and absorption are attained at low thermal budget, which are promising for photovoltaic applications. Furthermore, the enhancement of Nd3+ emission in these multilayers in comparison with the SiO x /SiO2 counterparts offers promising future photonic applications. PACS: 88.40.fh (Advanced materials development), 81.15.cd (Deposition by sputtering), 78.67.bf (Nanocrystals, nanoparticles, and nanoclusters).

  20. Light emissions from LiNbO sub 3 /SiO sub 2 /Si structures

    CERN Document Server

    Wu, X L; Tang, N; Deng, S S; Bao, X M

    2003-01-01

    LiNbO sub 3 (LN) films with a high degree of (006) texture were deposited on Si-based dense SiO sub 2 layers by pulsed laser deposition. After annealing, the LN/SiO sub 2 /Si structures were revealed to have ultraviolet-, green-, and red-emitting properties related to self-trapped excitons and E' defect pairs in the SiO sub 2 surface, which are induced by the photorefractive effect of the LN films. The emission wavelength can be tuned by introducing different dopants into the LN films. Waveguiding properties of the structures were demonstrated. The results obtained indicate that the LN/SiO sub 2 /Si structures could be expected to have important applications in modern optoelectronic integration. (letter to the editor)

  1. Time-resolved photoluminescence of SiOx encapsulated Si

    Science.gov (United States)

    Kalem, Seref; Hannas, Amal; Österman, Tomas; Sundström, Villy

    Silicon and its oxide SiOx offer a number of exciting electrical and optical properties originating from defects and size reduction enabling engineering new electronic devices including resistive switching memories. Here we present the results of photoluminescence dynamics relevant to defects and quantum confinement effects. Time-resolved luminescence at room temperature exhibits an ultrafast decay component of less than 10 ps at around 480 nm and a slower component of around 60 ps as measured by streak camera. Red shift at the initial stages of the blue luminescence decay confirms the presence of a charge transfer to long lived states. Time-correlated single photon counting measurements revealed a life-time of about 5 ns for these states. The same quantum structures emit in near infrared close to optical communication wavelengths. Nature of the emission is described and modeling is provided for the luminescence dynamics. The electrical characteristics of metal-oxide-semiconductor devices were correlated with the optical and vibrational measurement results in order to have better insight into the switching mechanisms in such resistive devices as possible next generation RAM memory elements. ``This work was supported by ENIAC Joint Undertaking and Laser-Lab Europe''.

  2. p-n Junction Diodes Fabricated on Si-Si/Ge Heteroepitaxial Films

    Science.gov (United States)

    Das, K.; Mazumder, M. D. A.; Hall, H.; Alterovitz, Samuel A. (Technical Monitor)

    2000-01-01

    A set of photolithographic masks was designed for the fabrication of diodes in the Si-Si/Ge material system. Fabrication was performed on samples obtained from two different wafers: (1) a complete HBT structure with an n (Si emitter), p (Si/Ge base), and an n/n+ (Si collector/sub-collector) deposited epitaxially (MBE) on a high resistivity p-Si substrate, (2) an HBT structure where epitaxial growth was terminated after the p-type base (Si/Ge) layer deposition. Two different process runs were attempted for the fabrication of Si-Si/Ge (n-p) and Si/Ge-Si (p-n) junction diodes formed between the emitter-base and base-collector layers, respectively, of the Si-Si/Ge-Si HBT structure. One of the processes employed a plasma etching step to expose the p-layer in the structure (1) and to expose the e-layer in structure (2). The Contact metallization used for these diodes was a Cu-based metallization scheme that was developed during the first year of the grant. The plasma-etched base-collector diodes on structure (2) exhibited well-behaved diode-like characteristics. However, the plasma-etched emitter-base diodes demonstrated back-to-back diode characteristics. These back-to back characteristics were probably due to complete etching of the base-layer, yielding a p-n-p diode. The deep implantation process yielded rectifying diodes with asymmetric forward and reverse characteristics. The ideality factor of these diodes were between 1.6 -2.1, indicating that the quality of the MBE grown epitaxial films was not sufficiently high, and also incomplete annealing of the implantation damage. Further study will be conducted on CVD grown films, which are expected to have higher epitaxial quality.

  3. Remote plasma-assisted oxidation of SiC: a low temperature process for SiC-SiO2 interface formation that eliminates interfacial Si oxycarbide transition regions

    International Nuclear Information System (INIS)

    Remote plasma-assisted oxidation of SiC is a low temperature process, 300 deg. C, for the formation of device quality interfaces on SiC. This paper discusses two aspects of the process: (i) the motivation for eliminating high temperature oxidation processes that can generate silicon oxycarbide, Si-O-C, interfacial regions which can be a source of interfacial defects and (ii) the kinetics of the remote plasma-assisted oxidation process that effectively eliminates interfacial Si oxycarbide transition regions. The differences between interfacial relaxation at Si-SiO2 and SiC-SiO2 are based on the relative stabilities of the suboxides of Si and SiC, SiOx and (Si,C)Ox, respectively

  4. Abiologic silicon isotope fractionation between aqueous Si and Fe(III)-Si gel in simulated Archean seawater: Implications for Si isotope records in Precambrian sedimentary rocks

    Science.gov (United States)

    Zheng, Xin-Yuan; Beard, Brian L.; Reddy, Thiruchelvi R.; Roden, Eric E.; Johnson, Clark M.

    2016-08-01

    Precambrian Si-rich sedimentary rocks, including cherts and banded iron formations (BIFs), record a >7‰ spread in 30Si/28Si ratios (δ30Si values), yet interpretation of this large variability has been hindered by the paucity of data on Si isotope exchange kinetics and equilibrium fractionation factors in systems that are pertinent to Precambrian marine conditions. Using the three-isotope method and an enriched 29Si tracer, a series of experiments were conducted to constrain Si isotope exchange kinetics and fractionation factors between amorphous Fe(III)-Si gel, a likely precursor to Precambrian jaspers and BIFs, and aqueous Si in artificial Archean seawater under anoxic conditions. Experiments were conducted at room temperature, and in the presence and absence of aqueous Fe(II) (Fe(II)aq). Results of this study demonstrate that Si solubility is significantly lower for Fe-Si gel than that of amorphous Si, indicating that seawater Si concentrations in the Precambrian may have been lower than previous estimates. The experiments reached ˜70-90% Si isotope exchange after a period of 53-126 days, and the highest extents of exchange were obtained where Fe(II)aq was present, suggesting that Fe(II)-Fe(III) electron-transfer and atom-exchange reactions catalyze Si isotope exchange through breakage of Fe-Si bonds. All experiments except one showed little change in the instantaneous solid-aqueous Si isotope fractionation factor with time, allowing extraction of equilibrium Si isotope fractionation factors through extrapolation to 100% isotope exchange. The equilibrium 30Si/28Si fractionation between Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -2.30 ± 0.25‰ (2σ) in the absence of Fe(II)aq. In the case where Fe(II)aq was present, which resulted in addition of ˜10% Fe(II) in the final solid, creating a mixed Fe(II)-Fe(III) Si gel, the equilibrium fractionation between Fe(II)-Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -3.23 ± 0.37‰ (2σ). Equilibrium

  5. Experimental and thermodynamic assessments of substitutions in the AlFeSi, FeMnSi, FeSiZr and AlCaFeSi systems (65 wt % Si) - solidification simulation

    International Nuclear Information System (INIS)

    The substitutions of Al Si, Fe Mn and Fe Zr in some intermetallic compounds of the Al-Fe-Si, Fe-Mn-Si and Fe-Si-Zr systems are modelled in the Si-rich corner using a two sublattice model. The solidification paths of the studied alloys are determined at equilibrium. The ascalculated phase volume fractions of the alloys are compared to the experimental ones. Finally, a solidification simulation using the Gulliver-Scheil's model is performed in order to explain the formation of some precipitates experimentally observed. (authors). 14 figs., 19 refs

  6. Molecular Structures of Al/Si and Fe/Si Coprecipitates and the Implication for Selenite Removal.

    Science.gov (United States)

    Chan, Ya-Ting; Kuan, Wen-Hui; Tzou, Yu-Min; Chen, Tsan-Yao; Liu, Yu-Ting; Wang, Ming-Kuang; Teah, Heng-Yi

    2016-04-20

    Aluminum and iron oxides have been often used in the coagulation processes during water purification due to their unique surface properties toward anions. In the presence of silica, the coprecipitation of Al/Si or Fe/Si might decrease the efficiency of wastewater purification and reuse. In this study, surface properties and molecular structures of Al/Si and Fe/Si coprecipitates were characterized using spectroscopic techniques. Also, the selenite removal efficiency of Al/Si and Fe/Si coprecipitates in relation to their surface and structural properties was investigated. While dissolved silicate increased with increasing pH from Fe/Si coprecipitates, less than 7% of silicate was discernible from Al/Si samples over the range from acidic to alkaline conditions. Our spectroscopic results showed that the associations between Al and Si were relatively stronger than that between Fe and Si in coprecipitates. In Al/Si coprecipitates, core-shell structures were developed with AlO6/AlO4 domains as the shells and Si frameworks polymerized from the SiO2 as the cores. However, Si framework remained relatively unchanged upon coprecipitation with Fe hydroxides in Fe/Si samples. The Si core with Al shell structure of Al/Si coprecipitates shielded the negative charges from SiO2 and thereby resulted in a higher adsorption capacity of selenite than Fe/Si coprecipitates.

  7. Molecular Structures of Al/Si and Fe/Si Coprecipitates and the Implication for Selenite Removal

    Science.gov (United States)

    Chan, Ya-Ting; Kuan, Wen-Hui; Tzou, Yu-Min; Chen, Tsan-Yao; Liu, Yu-Ting; Wang, Ming-Kuang; Teah, Heng-Yi

    2016-04-01

    Aluminum and iron oxides have been often used in the coagulation processes during water purification due to their unique surface properties toward anions. In the presence of silica, the coprecipitation of Al/Si or Fe/Si might decrease the efficiency of wastewater purification and reuse. In this study, surface properties and molecular structures of Al/Si and Fe/Si coprecipitates were characterized using spectroscopic techniques. Also, the selenite removal efficiency of Al/Si and Fe/Si coprecipitates in relation to their surface and structural properties was investigated. While dissolved silicate increased with increasing pH from Fe/Si coprecipitates, less than 7% of silicate was discernible from Al/Si samples over the range from acidic to alkaline conditions. Our spectroscopic results showed that the associations between Al and Si were relatively stronger than that between Fe and Si in coprecipitates. In Al/Si coprecipitates, core-shell structures were developed with AlO6/AlO4 domains as the shells and Si frameworks polymerized from the SiO2 as the cores. However, Si framework remained relatively unchanged upon coprecipitation with Fe hydroxides in Fe/Si samples. The Si core with Al shell structure of Al/Si coprecipitates shielded the negative charges from SiO2 and thereby resulted in a higher adsorption capacity of selenite than Fe/Si coprecipitates.

  8. Dependence of Morphology of SiOx Nanowires on the Supersaturation of Au-Si Alloy Liquid Droplets Formed on the Au-Coated Si Substrate

    Institute of Scientific and Technical Information of China (English)

    张晗; 李吉学; 张泽; 金爱子

    2001-01-01

    A thermodynamic theory about the dependence of morphology of SiOx nanowires on the super-saturation of alloy liquid droplets has been proposed on the basis of the vapour-liquid-solid growth mechanism and has been supported experimentally. By changing the Si concentration in the Au-Si liquid droplets formed on the Au-coated Si substrate, firework-, tulip- and bud-shaped SiOx nanowires were synthesized by a thermal evaporation method and distributed concentrically around some void defects in the Si substrate. Voids were formed underneath the surface of the Si substrate during the thermal evaporation at 850℃ and resulted in the Si-concentration deficient thus different saturation of Au-Si droplets. Electron microscopy analysis showed that the nanowires had an amorphous structure and were terminated by Au-Si particles.

  9. 微腔中nc-Si/SiN超晶格的光致发光%Photoluminescence of nc-Si/SiN Superlattices Embedded in Optical Microcavities

    Institute of Scientific and Technical Information of China (English)

    陈三; 黄信凡; 钱波; 陈坤基; 岑展鸿; 刘艳松; 韩培高; 马忠元; 徐骏; 李伟

    2006-01-01

    We fabricate a-Si/a-SiNz superlattices and a one-dimensional amorphous silicon nitride photonic crystal microcavity by plasma enhancement chemical vapor deposition (PECVD). To improve the light-emitting efficiency of the nc-Si/a-SiNz superlattices, which are made from a-Si/a-SiNz superlattices by laser annealing, an nc-Si quantum dot array is inserted into the photonic crystal microcavity. Raman spectroscopy and transmission electron microscopy analysis show that nc-Si with a size of 4nm,which is close to the designed thickness of the a-Si sublayers,is formed in the a-Si sublayers. Owing to microcavity effects,the PL peak of the nc-Si/a-SiNz superlattices embedded in the microcavity is strongly narrowed, and the intensity of the PL is enhanced by two orders of magnitude with respect to the emission of λ/2-thick nc-Si/a-SiNz superlattices. Light emission at a cavity-resonant frequency from the nc-Si/a-SiNz superlattices is enhanced while other frequencies are forbidden. This leads to the narrowing of the PL spectrum and enhancement of the intensity.%研究了一维光子晶体微腔结构对nc-Si/a-SiNz超晶格发射的调制.一维光子晶体微腔采用两种具有不同折射率的非化学组分非晶氮化硅的周期调制结构,腔中嵌入采用激光晶化方法制备的硅量子点阵列,从Raman谱和透射电子显微镜分析得到其尺寸约为3~4 nm.从光致发光谱上观察到明显的选模作用、明显变窄的发光峰以及约两个量级的发光强度的增强.微腔对硅量子点阵列发光的调制主要表现在两个方面:共振模式的增强和非共振模式的抑制.硅量子点中位于腔共振模式的辐射跃迁被增强,非共振模式的辐射跃迁被抑制,因此位于腔共振频率处的跃迁通道成为硅量子点中唯一的辐射跃迁通道,导致光致发光谱的窄化和强度的增强.因此,在提高硅材料发光效率方面,光子晶体微腔具有非常大的应用前景.

  10. siRNA and RNAi optimization.

    Science.gov (United States)

    Alagia, Adele; Eritja, Ramon

    2016-05-01

    The discovery and examination of the posttranscriptional gene regulatory mechanism known as RNA interference (RNAi) contributed to the identification of small interfering RNA (siRNA) and the comprehension of its enormous potential for clinical purposes. Theoretically, the ability of specific target gene downregulation makes the RNAi pathway an appealing solution for several diseases. Despite numerous hurdles resulting from the inherent properties of siRNA molecule and proper delivery to the target tissue, more than 50 RNA-based drugs are currently under clinical testing. In this work, we analyze the recent literature in the optimization of siRNA molecules. In detail, we focused on describing the most recent advances of siRNA field aimed at optimize siRNA pharmacokinetic properties. Special attention has been given in describing the impact of RNA modifications in the potential off-target effects (OTEs) such as saturation of the RNAi machinery, passenger strand-mediated silencing, immunostimulation, and miRNA-like OTEs as well as to recent developments on the delivery issue. The novel delivery systems and modified siRNA provide significant steps toward the development of reliable siRNA molecules for therapeutic use. WIREs RNA 2016, 7:316-329. doi: 10.1002/wrna.1337 For further resources related to this article, please visit the WIREs website. PMID:26840434

  11. Microstructures in Centrifugal Casting of SiCp/AlSi9Mg Composites with Different Mould Rotation Speeds

    Institute of Scientific and Technical Information of China (English)

    WANG Kai; SUN Wenju; LI Bo; XUIE Hansong; LIU Changming

    2011-01-01

    Two ingots were produced by centrifugal casting at mould rotational speeds of 600 rpm and 800 rpm using 20 vol% SiCp/AlSi9Mg composite melt, respectively. The microstructure along the radial direction of cross-sectional sample of ingots was presented. SiC particles migrated towards the external circumference of the tube, and the distribution of SiC particles became uniform under centrifugal force. Voids in 20 vol% SiCp/AlSi9Mg composite melt migrated towards the inner circumference of the tube. The quantitative analysis results indicated that not only SiC particles but also primary a phases segregated greatly in centrifugal casting resulting from the transportation behavior of constitutions with different densities in the SiCp/AlSi9Mg composite melt. In addition, the eutectic Si was broken owing to the motion of SiCp/AlSi9Mg composite melt during centrifugal casting.

  12. SiC and their interfacial behavior in SiCp/ZL109 composites%SiC颗粒增强Al-Si复合材料中的SiC及其界面

    Institute of Scientific and Technical Information of China (English)

    隋贤栋; 罗承萍; 骆灼旋; 欧阳柳章

    2000-01-01

    以常规TEM为工具,对SiCp/ZL109复合材料中SiC颗粒及其界面进行了研究,除观察到大量α型六方6H SiC外,还观察到少量α型六方4H和菱形15R SiC.观察到的都是单一的SiC/Al及SiC界面,无论是SiC/Al或SiC/Si界面,界面清洁,结合紧密,无孔洞,无反应过渡层.

  13. Retrovirus-delivered siRNA

    Directory of Open Access Journals (Sweden)

    Devroe Eric

    2002-08-01

    Full Text Available Abstract Background The ability of transfected synthetic small interfering (si RNAs to suppress the expression of specific transcripts has proved a useful technique to probe gene function in mammalian cells. However, high production costs limit this technology's utility for many laboratories and experimental situations. Recently, several DNA-based plasmid vectors have been developed that direct transcription of small hairpin RNAs, which are processed into functional siRNAs by cellular enzymes. Although these vectors provide certain advantages over chemically synthesized siRNAs, numerous disadvantages remain including merely transient siRNA expression and low and variable transfection efficiency. Results To overcome several limitations of plasmid-based siRNA, a retroviral siRNA delivery system was developed based on commerically available vectors. As a pilot study, a vector was designed to target the human Nuclear Dbf2-Related (NDR kinase. Cells infected with the anti-NDR siRNA virus dramatically downregulate NDR expression, whereas control viruses have no effect on total NDR levels. To confirm and extend these findings, an additional virus was constructed to target a second gene, transcriptional coactivator p75. Conclusion The experiments presented here demonstrate that retroviruses are efficient vectors for delivery of siRNA into mammalian cells. Retrovirus-delivered siRNA provides significant advancement over previously available methods by providing efficient, uniform delivery and immediate selection of stable "knock-down" cells. This development should provide a method to rapidly assess gene function in established cell lines, primary cells, or animals.

  14. Interstitial Functionalization in elemental Si

    Science.gov (United States)

    Kiefer, Boris; Fohtung, Edwin

    Societies in the 21st century will face many challenges. Materials science and materials design will be essential to address and master some if not all of these challenges. Semiconductors are among the most important technological material classes. Properties such as electrical transport are strongly affected by defects and a central goal continues to be the reduction of defect densities as much as possible in these compounds. Here we present results of interstitial Fe doping in elemental Si using first-principles DFT calculations. The preliminary results show that Fe will only occupy octahedral interstitial sites. The analysis of the electronic structure shows that the compounds are ferromagnetic and that a bandgap opens as interstitial Fe concentrations decrease, with a possible intermittent semi-metallic phase. The formation energy for interstitial Fe is unfavorable, as expected, by ~1.5 eV but becomes favorable as the chemical potential of Fe increases. Therefore, we expect that biasing the system with an external electrical field will lead to the formation of these materials. Thus, our results show that interstitial defects can be beneficial for the design of functionalities that differ significantly from those of the host material.

  15. Completely CMOS compatible SiN-waveguide-based fiber coupling structure for Si wire waveguides.

    Science.gov (United States)

    Maegami, Yuriko; Okano, Makoto; Cong, Guangwei; Ohno, Morifumi; Yamada, Koji

    2016-07-25

    For Si wire waveguides, we designed a highly efficient fiber coupling structure consisting of a Si inverted taper waveguide and a CMOS-compatible thin SiN waveguide with an SiO2 spacer inserted between them. By using a small SiN waveguide with a 310 nm-square core, the optical field can be expanded to correspond to a fiber with a 4.0-μm mode field diameter. A coupled waveguide system with the SiN waveguide and Si taper waveguide can provide low-loss and low-polarization-dependent mode conversion. Both losses in fiber-SiN waveguide coupling and SiN-Si waveguide mode conversion are no more than 1 dB in a wide wavelength bandwidth from 1.36 μm to 1.65 μm. Through a detailed analysis of the effective refractive indices in the coupled waveguide system, we can understand mode conversion accurately and also derive guidelines for reducing the polarization dependence and for shortening device length.

  16. Wear mechanism for spray deposited Al-Si/SiCp composites under dry sliding condition

    Institute of Scientific and Technical Information of China (English)

    滕杰; 李华培; 陈刚

    2015-01-01

    Al-Si/15%SiCp (volume fraction) composites with different silicon contents were fabricated by spray deposition technique, and typical microstructures of these composites were studied by optical microscopy (OM). Dry sliding wear tests were carried out using a block-on-ring wear machine to investigate the effect of applied load range of 10−220 N on the wear and friction behavior of these composites sliding against SAE 52100 grade bearing steel. Scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDAX) were utilized to examine the morphologies of the worn surfaces in order to observe the wear characteristics and investigate the wear mechanism. The results show that the wear behavior of these composites is dependent on the silicon content in the matrix alloy and the applied load. Al-Si/15%SiCp composites with higher silicon content exhibit better wear resistance in the applied load range. Under lower loads, the major wear mechanisms are oxidation wear and abrasive wear for all tested composites. Under higher loads, severe adhesive wear becomes the main wear mechanisms for Al-7Si/15%SiCp and Al-13Si/15%SiCp composites, while Al-20Si/15%SiCp presents a compound wear mechanism, consisting of oxidation, abrasive wear and adhesion wear.

  17. Microstructural characteristics of in situ Mg2Si/Al-Si composite by low superheat pouring

    Directory of Open Access Journals (Sweden)

    Wu Xiaofeng

    2013-09-01

    Full Text Available To control the morphology and size of the primary and eutectic Mg2Si phases in in situ Mg2Si/Al-Si composite and achieve a feasible and reliable technique to produce appropriate feedstock for the thixo-casting and rheo-casting of this type of material, three Al-Si matrix composites reinforced by 5wt.%, 9wt.% and 17wt.% Mg2Si with hypoeutectic, eutectic and hypereutectic compositions were prepared by the low superheat pouring (LSP process. The effects of the pouring temperature (superheat on the morphology and size distribution of primary phases (primary α-Al and Mg2Si, binary (α-Al + Mg2Si eutectic cell and eutectic Mg2Si were investigated. The experimental results show that low pouring temperature (superheat not only refines the grain structure of the primary α-Al and binary (α-Al + Mg2Si eutectic cell in three composites and promotes the formation of more non-dendritic structural semi-solid metal (SSM slurry of these phases; but also refines the primary and eutectic Mg2Si phases, which seems to be attributed to the creation of an ideal condition for the nucleation and the acquisition of a high survival of nuclei caused by the LSP process.

  18. Refinement of primary Si grains in Al-20%Si alloy slurry through serpentine channel pouring process

    Science.gov (United States)

    Zheng, Zhi-kai; Mao, Wei-min; Liu, Zhi-yong; Wang, Dong; Yue, Rui

    2016-05-01

    In this study, a serpentine channel pouring process was used to prepare the semi-solid Al-20%Si alloy slurry and refine primary Si grains in the alloy. The effects of the pouring temperature, number of curves in the serpentine channel, and material of the serpentine channel on the size of primary Si grains in the semi-solid Al-20%Si alloy slurry were investigated. The results showed that the pouring temperature, number of the curves, and material of the channel strongly affected the size and distribution of the primary Si grains. The pouring temperature exerted the strongest effect, followed by the number of the curves and then the material of the channel. Under experimental conditions of a four-curve copper channel and a pouring temperature of 701°C, primary Si grains in the semi-solid Al-20%Si alloy slurry were refined to the greatest extent, and the lath-like grains were changed into granular grains. Moreover, the equivalent grain diameter and the average shape coefficient of primary Si grains in the satisfactory semi-solid Al-20%Si alloy slurry were 24.4 μm and 0.89, respectively. Finally, the refinement mechanism and distribution rule of primary Si grains in the slurry prepared through the serpentine channel pouring process were analyzed and discussed.

  19. Flexible micromorph tandem a-Si/μc-Si solar cells

    Science.gov (United States)

    Söderström, T.; Haug, F.-J.; Terrazzoni-Daudrix, V.; Ballif, C.

    2010-01-01

    The deposition of a stack of amorphous (a-Si:H) and microcrystalline (μc-Si:H) tandem thin film silicon solar cells (micromorph) requires at least twice the time used for a single junction a-Si:H cell. However, micromorph devices have a higher potential efficiency, thanks to the broader absorption spectrum of μc-Si:H material. High efficiencies can only be achieved by mitigating the nanocracks in the μc-Si:H cell and the light-induced degradation of the a-Si:H cell. As a result, μc-Si:H cell has to grow on a smooth substrate with large periodicity (>1 μm) and the a-Si:H cell on sharp pyramids with smaller feature size (˜350 nm) to strongly scatter the light in the weak absorption spectra of a-Si:H material. The asymmetric intermediate reflector introduced in this work uncouples the growth and light scattering issues of the tandem micromorph solar cells. The stabilized efficiency of the tandem n-i-p/n-i-p micromorph is increased by a relative 15% compared to a cell without AIR and 32% in relative compared to an a-Si:H single junction solar cells. The overall process (T cell deposited on polyethylene-naphthalate plastic substrate is 9.8% after 1000 h of light soaking at Voc, 1 sun, and 50 °C.

  20. Completely CMOS compatible SiN-waveguide-based fiber coupling structure for Si wire waveguides.

    Science.gov (United States)

    Maegami, Yuriko; Okano, Makoto; Cong, Guangwei; Ohno, Morifumi; Yamada, Koji

    2016-07-25

    For Si wire waveguides, we designed a highly efficient fiber coupling structure consisting of a Si inverted taper waveguide and a CMOS-compatible thin SiN waveguide with an SiO2 spacer inserted between them. By using a small SiN waveguide with a 310 nm-square core, the optical field can be expanded to correspond to a fiber with a 4.0-μm mode field diameter. A coupled waveguide system with the SiN waveguide and Si taper waveguide can provide low-loss and low-polarization-dependent mode conversion. Both losses in fiber-SiN waveguide coupling and SiN-Si waveguide mode conversion are no more than 1 dB in a wide wavelength bandwidth from 1.36 μm to 1.65 μm. Through a detailed analysis of the effective refractive indices in the coupled waveguide system, we can understand mode conversion accurately and also derive guidelines for reducing the polarization dependence and for shortening device length. PMID:27464137

  1. The roles of Eu during the growth of eutectic Si in Al-Si alloys

    Science.gov (United States)

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-09-01

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si.

  2. Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting

    Science.gov (United States)

    Naffouti, Meher; David, Thomas; Benkouider, Abdelmalek; Favre, Luc; Ronda, Antoine; Berbezier, Isabelle; Bidault, Sebastien; Bonod, Nicolas; Abbarchi, Marco

    2016-01-01

    We report the fabrication of Si-based dielectric Mie resonators via a low cost process based on solid-state dewetting of ultra-thin amorphous Si on SiO2. We investigate the dewetting dynamics of a few nanometer sized layers annealed at high temperature to form submicrometric Si-particles. Morphological and structural characterization reveal the polycrystalline nature of the semiconductor matrix as well as rather irregular morphologies of the dewetted islands. Optical dark field imaging and spectroscopy measurements of the single islands reveal pronounced resonant scattering at visible frequencies. The linewidth of the low-order modes can be ~20 nm in full width at half maximum, leading to a quality factor Q exceeding 25. These values reach the state-of-the-art ones obtained for monocrystalline Mie resonators. The simplicity of the dewetting process and its cost-effectiveness opens the route to exploiting it over large scales for applications in silicon-based photonics.

  3. Pattern formation in SiSb system

    OpenAIRE

    Csik, A.; Erdelyi, G.; Langer, G A; Daroczi, L.; Beke, D. L.; Nyeki, J.; Erdelyi, Z.

    2009-01-01

    Thermal annealing of Si/Si1-xSbx/Si amorphous thin film tri-layer samples (x=18 and 24 at%Sb) under 100 bar Ar pressure results in an interesting pattern formation. In pictures, taken by means of cross-sectional transmission electron microscopy (TEM), stripe-shaped contrast, with three maxima, parallel with the interfaces can be seen. Secondary neutral mass spectrometer (SNMS) measurements revealed that the regions with different contrasts correspond to Sb-rich and Sb-depleted regions. Furthe...

  4. Size and Location Control of Si Nanocrystals at Ion Beam Synthesis in Thin SiO2 Films

    OpenAIRE

    Mueller, Torsten; Heinig, Karl-Heinz; Moeller, Wolfhard

    2002-01-01

    Binary collision simulations of high-fluence 1 keV Si ion implantation into 8 nm thick SiO2 films on (001)Si were combined with kinetic Monte Carlo simulations of Si nanocrystal (NC) formation by phase separation during annealing. For nonvolatile memory applications, these simulations help to control size and location of NCs. For low concentrations of implanted Si, NCs form via nucleation, growth and Ostwald ripening, whereas for high concentrations Si separates by spinodal decomposition. In ...

  5. Removal of C and SiC from Si and FeSi during ladle refining and solidification

    Energy Technology Data Exchange (ETDEWEB)

    Klevan, Ole Svein

    1997-12-31

    The utilization of solar energy by means of solar cells requires the Si to be very pure. The purity of Si is important for other applications as well. This thesis mainly studies the total removal of carbon from silicon and ferrosilicon. The decarburization includes removal of SiC particles by stirring and during casting in addition to reduction of dissolved carbon by gas purging. It was found that for three commercial qualities of FeSi75, Refined, Gransil, and Standard lumpy, the refined quality is lowest in carbon, followed by Gransil and Standard. A decarburization model was developed that shows the carbon removal by oxidation of dissolved carbon to be a slow process at atmospheric pressure. Gas stirring experiments have shown that silicon carbide particles are removed by transfer to the ladle wall. The casting method of ferrosilicon has a strong influence on the final total carbon content in the commercial alloy. Shipped refined FeSi contains about 100 ppm total carbon, while the molten alloy contains roughly 200 ppm. The total carbon out of the FeSi-furnace is about 1000 ppm. It is suggested that low values of carbon could be obtained on an industrial scale by injection of silica combined with the use of vacuum. Also, the casting system could be designed to give low carbon in part of the product. 122 refs., 50 figs., 24 tabs.

  6. Impact of Ge content on the gate oxide reliability of strained-Si/SiGe MOS devices

    Energy Technology Data Exchange (ETDEWEB)

    Uppal, Suresh [School of Electrical, Electronic and Computer Engineering, Merz Court, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU (United Kingdom)]. E-mail: Suresh.uppal@newcastle.ac.uk; Kanoun, Mehdi [School of Electrical, Electronic and Computer Engineering, Merz Court, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU (United Kingdom); Varzgar, John B. [School of Electrical, Electronic and Computer Engineering, Merz Court, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU (United Kingdom); Chattopadhyay, Sanatan [School of Electrical, Electronic and Computer Engineering, Merz Court, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU (United Kingdom); Olsen, Sarah [School of Electrical, Electronic and Computer Engineering, Merz Court, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU (United Kingdom); O' Neill, Anthony [School of Electrical, Electronic and Computer Engineering, Merz Court, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2006-12-15

    In this paper we study the impact of the variation of Ge content on the gate oxide reliability of strained-Si/SiGe (s-Si/SiGe) MOS devices. MOS capacitors and n-MOSFET devices were fabricated on Si, and strained Si grown on SiGe virtual substrates with a Ge content of 10 and 30%. The devices had poly-Si gates and were fabricated using thermal oxidation at 800 deg. C giving average oxide thickness of 6.8 nm. Constant voltage stressing (CVS) at 7 V was used to study the breakdown characteristics of different samples. We observe a distinguishably different breakdown phenomenon for Si and s-Si/SiGe samples. Whereas the oxide on Si shows a typical breakdown behavior of a thick oxide, the oxide on s-Si/SiGe samples showed a quasi- or soft breakdown with an abrupt increase in gate leakage which increases after further stressing. The time to breakdown decreased with increase in the Ge content. These behaviors are attributed to poorer quality of the oxide on s-Si/SiGe caused by the high surface roughness, interface and oxide charges. It is pointed that quasi-breakdown may be a stronger reliability limiting factor for s-Si/SiGe devices in the oxide thickness range studied.

  7. Preparation and Characterization of Novel Porous Fe-Si Alloys

    Institute of Scientific and Technical Information of China (English)

    WANG Jiefeng; HE Yuehui; JIANG Yao; GAO Hanyan; YANG Junsheng; GAO Lin

    2016-01-01

    Porous Fe-Si alloys with different nominal compositions ranging from Fe-10wt% Si to Fe-50wt% Si were fabricated through a reactive synthesis of Fe and Si elemental powder mixtures. The effects of Si contents on the pore structure of porous Fe-Si alloy were investigated in detail. The results showed that the open porosity, gas permeability and maximum pore size of the porous Fe-Si alloys increased with increasing Si contents, indicating that the porosity and pore size can be tailored by changing the Si contents. The pore structure parameter including the open porosity, gas permeability, maximum pore size obeyed the Hagen-Poiseuille formula with the constant G=0.035 m-1Pa-1s-1 for the reactively synthesized porous Fe-Si alloys. The mechanical property of the porous Fe-Si alloys showed applicability in the ifltration industries.

  8. Fabrication of c-Si:H(p)/c-Si(n) Heterojunction Solar Cells with Microcrystalline Emitters

    Institute of Scientific and Technical Information of China (English)

    ZHOU Bing-Qing; LIU Feng-Zhen; ZHANG Qun-Fang; XU Ying; ZHOU Yu-Qin; LIU Jin-Long; ZHU Mei-Fang

    2006-01-01

    The p-type microcrystalline silicon (fj,c-Si) on n-type crystalline silicon (c-Si) heterojunction solar cells is fabricated by radio-frequency plasma enhanced chemical vapour deposition (rf-PECVD). The effect of the pc-Si:H p-layers on the performance of the heterojunction solar cells is investigated. Optimum μcSi:H p-layer is obtained with hydrogen dilution ratio of 99.65%, rf-power of 0.08 W/cm2, gas phase doping ratio of 0.125%, and the p-layer thickness of 15 nm. We fabricate μc-Si:H(p)/c-Si(n) heterojunction solar cells without texturing and obtained an efficiency of 13.4%. The comparisons of the solar-cell performances using different surface passivation techniques are discussed.

  9. Structure and chemistry of passivated SiC/SiO2 interfaces

    Science.gov (United States)

    Houston Dycus, J.; Xu, Weizong; Lichtenwalner, Daniel J.; Hull, Brett; Palmour, John W.; LeBeau, James M.

    2016-05-01

    Here, we report on the chemistry and structure of 4H-SiC/SiO2 interfaces passivated either by nitric oxide annealing or Ba deposition. Using aberration corrected scanning transmission electron microscopy and spectroscopy, we find that Ba and N remain localized at SiC/SiO2 interface after processing. Further, we find that the passivating species can introduce significant changes to the near-interface atomic structure of SiC. Specifically, we quantify significant strain for nitric oxide annealed sample where Si dangling bonds are capped by N. In contrast, strain is not observed at the interface of the Ba treated samples. Finally, we place these results in the context of field effect mobility.

  10. SiC/SiC fuel cladding R and D Project 'SCARLET': Status and future plan

    International Nuclear Information System (INIS)

    This paper provides the recent progress in SiC/SiC development towards early utilisation for LWRs based on NITE method. After the March 11 Disaster in East-Japan, ensuring safe technology for LWR became a top priority R and D in nuclear energy policy of Japan. Along this line, replacement of Zircaloy claddings with SiC/SiC based fuel cladding is becoming one of the most attractive options and a MEXT fund based project, SCARLET, and a METI fund based project have been launched as 5-year termed projects at Muroran Institute of Technology. These projects care for NITE process for making long SiC/SiC fuel pins and connecting technology integration. The SCARLET project also includes coolant compatibility and irradiation effect evaluations as LWR and LMFBR materials. The outline and the present status of the SCARLET project will be briefly introduced in the present paper. (authors)

  11. Peak Position of Photoluminescence of Si Nanocrystals versus Thickness of SiOx Thin Films

    Institute of Scientific and Technical Information of China (English)

    方应翠; 李维卿; 漆乐俊; 章壮健; 陆明

    2003-01-01

    Peak position of photoluminescence (PL) of Si nanocrystals was found to change in an exponential decay form with the increasing thickness of SiOx (0 < x < 2) thin films. The results were interpreted in terms of a model modified from the theory of Zacharias-Streitenberger (Phys. Rev. B 62 (2000) 8391) from an energetic viewpoint.It was inferred from our model that under certain conditions regarding the energies of interfaces between the substrate and Si clusters and between the matrix and the Si clusters, the further the Si cluster away from the substrate, the larger the nc-Si size until saturation is reached. This conclusion explains our PL observations according to the quantum confinement effect.

  12. The Effect of Si Morphology on Machinability of Al-Si Alloys

    Directory of Open Access Journals (Sweden)

    Muhammet Uludağ

    2015-12-01

    Full Text Available Many of the cast parts require some sort of machining like milling, drilling to be used as a finished product. In order to improve the wear properties of Al alloys, Si is added. The solubility of Si in Al is quite low and it has a crystallite type structure. It behaves as particulate metal matrix composite which makes it an attractive element. Thus, the wear and machinability properties of these type of alloys depend on the morphology of Si in the matrix. In this work, Sr was added to alter the morphology of Si in Al-7Si and Al-12Si. Cylindrical shaped samples were cast and machinability characteristics of Sr addition was studied. The relationship between microstructure and machinability was evaluated.

  13. SiC/SiC复合材料研究现状

    Institute of Scientific and Technical Information of China (English)

    周新贵

    2010-01-01

    SiC/SiC复合材料因具有高的比强度和比刚度、良好的高温力学性能和抗氧化性能以及优异的抗辐照性能和耐腐蚀性能而受到了广泛的关注。本文对SiC/SiC复合材料最近几年在航空航天和核聚变领域的应用进行了介绍,对SiC/SiC复合材料的制备工艺进行了归纳和总结。

  14. Disilicon complexes with two hexacoordinate Si atoms: paddlewheel-shaped isomers with (ClN4 )Si-Si(S4 Cl) and (ClN2 S2 )Si-Si(S2 N2 Cl) skeletons.

    Science.gov (United States)

    Wagler, Jörg; Brendler, Erica; Heine, Thomas; Zhechkov, Lyuben

    2013-10-11

    The reaction of 1-methyl-3-trimethylsilylimidazoline-2-thione with hexachlorodisilane proceeds toward substitution of four of the disilane Cl atoms during the formation of disilicon complexes with two neighboring hexacoordinate Si atoms. The N,S-bidentate methimazolide moieties adopt a buttressing role, thus forming paddlewheel-shaped complexes of the type ClSi(μ-mt)4 SiCl (mt=methimazolyl). Most interestingly, three isomers (i.e., with (ClN4 )SiSi(S4 Cl), (ClN3 S)SiSi(S3 NCl), and (ClN2 S2 )SiSi(S2 N2 Cl) skeletons as so-called (4,0), (3,1), and cis-(2,2) paddlewheels) were detected in solution by using (29) Si NMR spectroscopic analysis. Two of these isomers could be isolated as crystalline solids, thus allowing their molecular structures to be analyzed by using X-ray diffraction studies. In accord with time-dependent NMR spectroscopy, computational analyses proved the cis-(2,2) isomer with a (ClN2 S2 )SiSi(S2 N2 Cl) skeleton to be the most stable. The compounds presented herein are the first examples of crystallographically evidenced disilicon complexes with two SiSi-bonded octahedrally coordinated Si atoms and representatives of the still scarcely explored class of Si coordination compounds with sulfur donor atoms.

  15. Straight SiO_x nanorod Yjunctions

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Novel straight silicon oxide [SiOx (1Si plate by thermal evaporation of mixed powders of silica and carbon nanofibers at 1300℃ and condensation on a Si substrate without assistance of any catalyst. The synthesized samples were characterized by means of scanning electron microscopy, transmission electron microscopy, high resolution transmission electron microscopy, and energy dispersive X-ray spectroscopy. The results suggested that the straight nanorod Y junctions are amorphous and consist only of elements Si and O, and these rods with diameters about 50―200 nm have a neat smooth surface. The growth of such silicon oxide nanorods may be a result of the second nucleation on the surface of rods causing a change in the growth direc- tion of silicon oxide nanorods developed.

  16. Refractive index spectral dependence, Raman and transmission spectra of high-purity $^{28}$Si, $^{29}$Si, $^{30}$Si, and $^{nat}$Si single crystals

    CERN Document Server

    Plotnichenko, V G; Kryukova, E B; Koltashev, V V; Sokolov, V O; Dianov, E M; Gusev, A V; Gavva, V A; Kotereva, T V; Churbanov, M F

    2011-01-01

    Precise measurement of the refractive index of stable silicon isotopes $^{28}$Si, $^{29}$Si, $^{30}$Si single crystals with enrichments above 99.9 at.% and a silicon single crystal $^{nat}$Si of natural isotopic composition is performed with the Fourier-transform interference refractometry method from 1.06 to more than 80 mkm with 0.1 cm$^{-1}$ resolution and accuracy of $2 \\times 10^{-5} ... 1 \\times 10^{-4}$. The oxygen and carbon concentrations in all crystals are within $5 \\times 10^{15}$ cm$^{-3}$ and the content of metal impurities is $10^{-5} ... 10^{-6}$ at.%. The peculiar changes of the refractive index in the phonon absorption region of all silicon single crystals are shown. The coefficients of generalized Cauchy dispersion function approximating the experimental refractive index values all over the measuring range are given. The transmission and Raman spectra are also studied.

  17. Photoluminescence and electron field-emission properties of SiC–SiO{sub 2} core–shell fibers and 3C–SiC nanowires on silicon nanoporous pillar array

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiyan, E-mail: wanghaiyan@zzuli.edu.cn [Department of Technological Physics, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Jiang, Weifen [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Kang, Liping; Li, Zijiong [Department of Technological Physics, Zhengzhou University of Light Industry, Zhengzhou 450002 (China)

    2013-03-15

    Highlights: ► SiC–SiO{sub 2} fibers and 3C–SiC nanowires were directly grown on Si-NPA. ► Violet–blue light emitting were obtained in SiC–SiO{sub 2}/Si-NPA and nw-SiC/Si-NPA. ► Enhanced field-emission property was found in nw-SiC/Si-NPA. -- Abstract: SiC–SiO{sub 2} core–shell fibers and 3C–SiC nanowires (nw-SiC) were grown on silicon nanoporous pillar array (Si-NPA) by thermal chemical vapor deposition method with nickel as the catalyst. The morphology, structure and composition of SiC–SiO{sub 2}/Si-NPA and nw-SiC/Si-NPA were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. Based on the experimental results a possible growth mechanism of nw-SiC was explained. Two broad photoluminescence peaks located at ∼409 and ∼494 nm were observed both in SiC–SiO{sub 2}/Si-NPA and nw-SiC/Si-NPA when they were excited utilizing 300 nm fluorescent light at room temperature. The field-emission (FE) measurements showed that enhanced FE property was obtained in nw-SiC/Si-NPA. The excellent optical and field-emission performances of SiC–SiO{sub 2}/Si-NPA and nw-SiC/Si-NPA were mainly attributed to the quantum confinement effects in nw-SiC and the nanometer-micron hierarchy structure of the composite systems.

  18. Refinement of primary Si in hypereutectic Al-Si alloys by intensive melt shearing

    OpenAIRE

    Zhang, Z.; Li, H-T; Stone, IC; Fan, Z.

    2011-01-01

    Hypereutectic Al-Si based alloys are gaining popularity for applications where a combination of light weight and high wear resistance is required. The high wear resistance arising from the hard primary Si particles comes at the price of extremely poor machine tool life. To minimize machining problems while exploiting outstanding wear resistance, the primary Si particles must be controlled to a uniform small size and uniform spatial distribution. The current industrial means of refining primar...

  19. Laminated biomorphous SiC/Si porous ceramics made from wood veneer

    International Nuclear Information System (INIS)

    Graphical abstract: Biomorphous SiC/Si porous ceramics has a clearly laminated structure, its micropore range from 1-10 μm which retain the wood's native characteristics. Retreatment process is a key factor which influence the free silicon content in the composites and lead to affect the basic characteristic. Crack deflection occur in the flaws, pores and weak interfaces, these allow continuous add loads and show progressive failure behavior: a step-like load-displacement response, it has high fracture toughness. Highlights: → Laminated SiC/Si porous ceramics make from wood veneer and Si with a bionic design. → It has laminated structure, and still retains wood's biomorphous characterization. → Its excellent mechanical strength connects with laminated and biological structure. → Nobody discussed this material before. -- Abstract: Biomorphous SiC/Si porous ceramics with laminated structure are prepared from beech veneer and phenolic resin. The preparation involves carbonization under vacuum and reaction with melted silicon to obtain the biomorphous carbide template. X-ray diffraction confirms that the biomorphous SiC/Si porous ceramics are mainly composed of β-SiC, free silicon and residual carbon. Scanning election microscopy observations indicate a laminated structure and 1-10 μm microporous structures, which suggest retention of the native characteristics of the wood. This paper examines mechanical properties of the final composite in relation to the lamination, porous structure, and free silicon content. The bending strength of the ceramics decreases as the apparent porosity increases. The fracture toughness increases initially with apparent density and then decreases. The fracture toughness load-displacement curve presents a step-like pattern, which suggests that the laminated SiC/Si porous ceramics have high fracture toughness.

  20. Design requirements for SiC/SiC composites structural material in fusion power reactor blankets

    International Nuclear Information System (INIS)

    This paper recalls the main features of the TAURO blanket, a self-cooled Pb-17Li concept using SiC/SiC composites as structural material, developed for FPR. The objective of this design activity is to compare the characteristics of present-day industrial SiC-SiC composites with those required for a fusion power reactor blanket (FPR) and to evaluate the main needs of further R and D. The performed analyses indicated that the TAURO blanket would need the availability of SiC/SiC composites approximately 10 mm thick with a thermal conductivity through the thickness of approximately 15 Wm-1K-1 at 1000 C and a low electrical conductivity. A preliminary MHD analysis has indicated that the electrical conductivity should not be greater than 500 Ω-1m-1. Irradiation effects should be included in these figures. Under these conditions, the calculated pressure drop due to the high Pb-17Li velocity (approximately 1 m s-1) is much lower then 0.1 MPa. The characteristics and data base of the recently developed 3D-SiC/SiC composite, Cerasep trademark N3-1, are reported and discussed in relation to the identified blanket design requirements. The progress on joining techniques is briefly reported. For the time being, the best results have been obtained using Si-based brazing systems initially developed for SiC ceramics and whose major issue is the higher porosity of the SiC/SiC composites. (orig.)

  1. Thermo-Oxidative Degradation Of SiC/Si3N4 Composites

    Science.gov (United States)

    Baaklini, George Y.; Batt, Ramakrishna T.; Rokhlin, Stanislav I.

    1995-01-01

    Experimental study conducted on thermo-oxidative degradation of composite-material specimens made of silicon carbide fibers in matrices of reaction-bonded silicon nitride. In SiC/Si3N4 composites of study, interphase is 3-micrometers-thick carbon-rich coat on surface of each SiC fiber. Thermo-oxidative degradation of these composites involves diffusion of oxygen through pores of composites to interphases damaged by oxidation. Nondestructive tests reveal critical exposure times.

  2. Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes

    KAUST Repository

    Hu, Liangbing

    2011-01-01

    We designed and fabricated binder-free, 3D porous silicon nanostructures for Li-ion battery anodes, where Si nanoparticles electrically contact current collectors via vertically grown silicon nanowires. When compared with a Si nanowire anode, the areal capacity was increased by a factor of 4 without having to use long, high temperature steps under vacuum that vapour-liquid-solid Si nanowire growth entails. © 2011 The Royal Society of Chemistry.

  3. Infrared absorption of thin films MoSi2/SiNx micro-bridge

    Science.gov (United States)

    Jiang, Bo; Su, Yan; He, Yong; Wang, Kaiying

    2016-02-01

    In this paper, we report the infrared absorption and opto-electrical characteristics of multilayered thin films of MoSi2/SiNx with a micro-bridge structure. The thin films of MoSi2 deposited by radio frequency magnetron sputtering exhibit a relatively smooth surface (RMS roughness work provides the physical understanding regarding the building of micro-bridges with the high infrared absorption.

  4. Use of SWOT on SI Training

    Institute of Scientific and Technical Information of China (English)

    杨文寅

    2012-01-01

      SI, simultaneous interpretation, is always considered mysterious and machine-like. In daily practice, we are still puz⁃zled or even depressed when being told that the only path to success is the repetition of tedious practice. Definitely, practice makes perfect but enacting of scientific method enables a winged tiger. SWOT analysis, which stands for Strengths, Weaknesses, Opportunities, and Threats, provides us with an effective training theory. This article would focus on materializing SWOT into our SI practice.

  5. Silicon Photonics Cloud (SiCloud)

    DEFF Research Database (Denmark)

    DeVore, P. T. S.; Jiang, Y.; Lynch, M.;

    2015-01-01

    Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths.......Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths....

  6. The silicon vacancy in SiC

    Energy Technology Data Exchange (ETDEWEB)

    Janzen, Erik, E-mail: erija@ifm.liu.s [Department of Physics, Chemistry and Biology, Linkoeping University, SE-581 83 Linkoeping (Sweden); Gali, Adam [Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki ut 8, H-1111 Budapest (Hungary); Carlsson, Patrick; Gaellstroem, Andreas [Department of Physics, Chemistry and Biology, Linkoeping University, SE-581 83 Linkoeping (Sweden); Magnusson, Bjoern [Department of Physics, Chemistry and Biology, Linkoeping University, SE-581 83 Linkoeping (Sweden); Norstel AB, Ramshaellsvaegen 15, SE-602 38 Norrkoeping (Sweden); Son, N.T. [Department of Physics, Chemistry and Biology, Linkoeping University, SE-581 83 Linkoeping (Sweden)

    2009-12-01

    The isolated silicon vacancy is one of the basic intrinsic defects in SiC. We present new experimental data as well as new calculations on the silicon vacancy defect levels and a new model that explains the optical transitions and the magnetic resonance signals observed as occurring in the singly negative charge state of the silicon vacancy in 4H and 6H SiC.

  7. RBS using {sup 28}Si beams

    Energy Technology Data Exchange (ETDEWEB)

    Ophel, T.R. [Australian National Univ., Canberra, ACT (Australia); Mitchell, I.V. [University of Western Ontario, London, ON (Canada). Dept. of Physics

    1996-12-31

    Measurements of RBS using {sup 28}Si beams have been made to evaluate the enhancement of sensitivity that should obtain from kinematic suppression of silicon substrate scattering. Two detection methods were tried. Aside from a surface barrier detector, a magnetic spectrometer, instrumented with a multi-electrode gas focal plane detector, was used to indicate the resolution attainable with low energy {sup 28}Si ions. The results confirm that kinematically suppressed RBS does provide greatly improved sensitivity. 5 refs., 2 figs.

  8. Development and Characterization of SiC)/ MoSi2-Si3N4(p) Hybrid Composites

    Science.gov (United States)

    Hebsur, Mohan G.

    1998-01-01

    Intermetallic compound MoSi2 has long been known as a high temperature material that has excellent oxidation resistance and electrical/thermal conductivity. Also its low cost, high melting point (2023 C), relatively low density (6.2 g/cu cm versus 9 g/cu cm for current engine materials), and ease of machining, make it an attractive structural material. However, the use of MoSi2 has been hindered due to its poor toughness at low temperatures, poor creep resistance at high temperatures, and accelerated oxidation (also known as 'pest' oxidation) at temperatures between approximately 450 and 550 C. Continuous fiber reinforcing is very effective means of improving both toughness and strength. Unfortunately, MoSi2 has a relatively high coefficient of thermal expansion (CTE) compared to potential reinforcing fibers such as SiC. The large CTE mismatch between the fiber and the matrix resulted in severe matrix cracking during thermal cycling. Addition of about 30 to 50 vol % of Si3N4 particulate to MoSi2 improved resistance to low temperature accelerated oxidation by forming a Si2ON2 protective scale and thereby eliminating catastrophic 'pest failure'. The Si3N4 addition also improved the high temperature creep strength by nearly five orders of magnitude, doubled the room temperature toughness and significantly lowered the CTE of the MoSi2 and eliminated matrix cracking in SCS-6 reinforced composites even after thermal cycling. The SCS-6 fiber reinforcement improved the room temperature fracture toughness by seven times and impact resistance by five times. The composite exhibited excellent strength and toughness improvement up to 1400 C. More recently, tape casting was adopted as the preferred processing of MoSi2-base composites for improved fiber spacing, ability to use small diameter fibers, and for lower cost. Good strength and toughness values were also obtained with fine diameter Hi-Nicalon tow fibers. This hybrid composite remains competitive with ceramic matrix

  9. Fabrication and characterization of CuxSi1−x films on Si (111) and Si (100) by pulsed laser deposition

    OpenAIRE

    Song Zhang; Jun Wu; Zhiqiang He; Jun Xie; Jingqi Lu; Rong Tu; Lianmeng Zhang; Ji Shi

    2016-01-01

    The CuxSi1−x thin films have been successfully fabricated by pulsed laser deposition (PLD). The influences of laser energy fluency (I0) and deposition temperature (Td) on the phase structure were investigated. The results show that Cu deposited on Si (001) at I0 = 0.5-2.0 J/cm2, and η”-Cu3Si formed on Si (111) at I0 = 1.0-2.0 J/cm2. The films were consisted of Cu, η’-Cu3Si, ε-Cu15Si4 and δ-Cu0.83Si0.17 at Td = 100-500 °C on Si (001). The films were the single phase of η-Cu3Si at Td = 700 °C. ...

  10. High temperature creep behavior of in-situ synthesized MoSi2-30%SiC composite

    Institute of Scientific and Technical Information of China (English)

    傅晓伟; 杨王玥; 孙祖庆; 张来启; 朱静

    2002-01-01

    The compressive creep behavior at 1200~1400℃ of an in-situ synt hesized MoSi2-30%SiC (volume fraction) composite and a traditional PM MoSi2 -30%SiC (volume fraction) composite is investigated. The creep rate of the in -situ synthesized MoSi2-30%SiC (volume fraction) composite is about 10- 7s-1 under stress of 60~120MPa, and significantly lower than that made by PM method above 1300℃. The reason is that the interface be tween SiC particle and MoSi2 matrix in in-situ synthesized SiCp/MoSi2 is of direct atomic bonding without any amorphous glassy phase, such as SiO2 stru cture. Creep deformation occurs primarily by dislocation motion and the dislocat ions have Burgers vectors of the ty pe of 〈110〉 and 〈100〉.

  11. Microtwins and twin inclusions in the 3C-SiC epilayers grown on Si(001) by APCVD

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Microtwins in the 3C-SiC films grown on Si(001) by APCVD were analyzed in detail using an X-ray four-circle diffractometer. The Φ scan shows that 3C-SiC films can grow on Si substrates epitaxially and the epitaxial relationship is revealed as (001)3C-SiC//(001)Si,[111]3C-SiC//[111]Si. Other diffractions emerged in the pole figures of the (111) 3C-SiC. We performed the (1010)h-SiC and the reciprocal space mapping of the (002) plane of twins for the first time, finding that the diffractions at χ=15.8° result from not hexagonal SiC but microtwins of 3C-SiC, and twin inclusions are estimated to be 1%.

  12. The Stellar Imager (SI) Vision Mission

    CERN Document Server

    Carpenter, K G; Karovska, M; SI Vision Mission Team; Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita; Team, SI Vision Mission

    2006-01-01

    The Stellar Imager (SI) is a UV-Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general and asteroseismic imaging of stellar interiors. SI is identified as a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and as a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap (May, 2005). SI will revolutionize our view of many dynamic astrophysical processes: its resolution will transform point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant p...

  13. Specimen size effect considerations for irradiation studies of SiC/SiC

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Henager, C.H. Jr.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    For characterization of the irradiation performance of SiC/SiC, limited available irradiation volume generally dictates that tests be conducted on a small number of relatively small specimens. Flexure testing of two groups of bars with different sizes cut from the same SiC/SiC plate suggested the following lower limits for flexure specimen number and size: Six samples at a minimum for each condition and a minimum bar size of 30 x 6.0 x 2.0 mm{sup 3}.

  14. Microstructure of reactive sintered Al bonded Si3N4-SiC ceramics

    Institute of Scientific and Technical Information of China (English)

    CUI Chong; WANG Yuan-ting; JIANG Jin-guo; CHEN Guang; SUN Qiang-jin

    2006-01-01

    Aluminium nitride-silicon nitride-silicon carbide (AlN-Si3N4-SiC) composite ceramics were prepared to increase the bending strength and improve the phase structure of Si3N4-based ceramics. The ceramics were made by reactive sintering in N2 atmosphere at 1 360 ℃, using Al as sintering additive. The phase composing of ceramics was identified with an X-ray diffractometer and the microstructure of the materials was studied by scanning electron microscopy. The results indicate that the phase structure is affected remarkably and the interface modality is changed. The interface between Si3N4 and SiC becomes blurry and that between SiC and AlN matches more better at the same time. But the liquid-phase appears during the reactive sintering along with the addition of Al by which the melting point of Si is decreased. The appearance of liquid Si decreases the bending strength of the ceramics. Lower temperature nitrification technic was introduced to avoid the appearance of liquid-phase Si. The optimum addition of Al was investigated by XRD and SEM analysis in order to obtain the maximal bending strength of materials.

  15. ZnO/porous-Si and TiO{sub 2}/porous-Si nanocomposite nanopillars

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong, E-mail: dong.wang@tu-ilmenau.de; Yan, Yong; Schaaf, Peter [Chair Materials for Electronics, Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany); Sharp, Thomas [Oxford Instruments Plasma Technology Ltd., Yatton, Bristol BS49 4AP (United Kingdom); Schönherr, Sven; Ronning, Carsten [Institute for Solid State Physics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Ji, Ran [SUSS MicroTec Lithography GmbH, Schleissheimer Str. 90, 85748 Garching (Germany)

    2015-01-01

    Porous Si nanopillar arrays are used as templates for atomic layer deposition of ZnO and TiO{sub 2}, and thus, ZnO/porous-Si and TiO{sub 2}/porous-Si nanocomposite nanopillars are fabricated. The diffusion of the precursor molecules into the inside of the porous structure occurs via Knudsen diffusion and is strongly limited by the small pore size. The luminescence of the ZnO/porous-Si nanocomposite nanopillars is also investigated, and the optical emission can be changed and even quenched after a strong plasma treatment. Such nanocomposite nanopillars are interesting for photocatalysis and sensors.

  16. ABLATION PROPERTY OF SiC-TaSi2 COATED CARBON/CARBON COMPOSITES

    OpenAIRE

    SHUPING LI; KEZHI LI; HEJUN LI

    2010-01-01

    To prevent the carbon/carbon (C/C) composites from ablation, a new type of ablation protective coating was prepared on the surface of the C/C composites by a step pack cementation technique. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis show, the coatings obtained by pack cementation were silicon carbide/tantalum silicide (SiC-TaSi2). The ablation behavior of the coated samples were evaluated by the oxyacetylene flame. The results show that, the SiC-TaSi2 coating can...

  17. Fe-Si networks in Na2FeSiO4 cathode materials.

    Science.gov (United States)

    Wu, P; Wu, S Q; Lv, X; Zhao, X; Ye, Z; Lin, Z; Wang, C Z; Ho, K M

    2016-08-24

    Using a combination of adaptive genetic algorithm search, motif-network search scheme and first-principles calculations, we have systematically studied the low-energy crystal structures of Na2FeSiO4. We show that the low-energy crystal structures with different space group symmetries can be classified into several families based on the topologies of their Fe-Si networks. In addition to the diamond-like network which is shared by most of the low-energy structures, another three robust Fe-Si networks are also found to be stable during the charge/discharge process. The electrochemical properties of representative structures from these four different Fe-Si networks in Na2FeSiO4 and Li2FeSiO4 are investigated and found to be strongly correlated with the Fe-Si network topologies. Our studies provide a new route to characterize the crystal structures of Na2FeSiO4 and Li2FeSiO4 and offer useful guidance for the design of promising cathodes for Na/Li ion batteries. PMID:27523264

  18. Design and Manufacture of GeSi/Si Superlattice Nanocrystalline Photodetector

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    According to Maxwell's theory, the optical transmission characteristics in GeSi/Si superlattice nanocrystalline layer have been analyzed and calculated. The calculated result shows that when the total thickness L is 340nm, the single mode lightwave can be transmitted only at periodic number M≥15.5. In addition, at the direction of transmission, when the transmission distance is larger than 500μm, the lightwave intensity is decreased greatly. Based on the above parameters, the design and manufacture of GeSi/Si superlattice nanocrystalline photodetector are carried out.

  19. Microstructure and properties of Si-TaSi2 eutectic in situ composite for field emission

    Institute of Scientific and Technical Information of China (English)

    CUI ChunJuan; ZHANG Jun; HAN Min; CHEN Jun; XU NingSheng; LIU Lin; FU HengZhi

    2007-01-01

    The Si-TaSi2 eutectic in situ composite for field emission is prepared by electron beam floating zone melting (EBFZM) technique on the basis of Czochralski (CZ) crystal growth technique. The directional solidification microstructure and the field emission properties of the Si-TaSi2 eutectic in situ composite prepared by two kinds of crystal growth techniques have been systematically tested and compared.Researches demonstrated that the solidification microstructure of EBFZM can be fined obviously because of the relatively high solidification rate and very high temperature gradient, i.e. both the diameter and inter-rod spacing of the TaSi2 fibers prepared by EBFZM technique were decreased, and the density and the volume fraction of the TaSi2 fibers prepared by EBFZM technique were increased in comparison with that of the TaSi2 fibers prepared by CZ method. Therefore the field emission property of the Si-TaSi2 eutectic in situ composite prepared by EBFZM can be improved greatly, which exhibits better field emission uniformity and straighter F-N curve.

  20. Densification and Microstructural Evolutions during Reaction Sintering of SiC-Si-C Powder Compacts

    OpenAIRE

    Asgharzadeh, H.; Ehsani, N

    2011-01-01

    Porous SiC-Si-C ceramics were produced by reaction sintering (RS) of silicon carbide, silicon, and carbon powder compacts in the temperature range of 1400–1600°C. The effects of chemical composition of the starting powder, initial SiC particle size, and reaction sintering temperature and duration on the densification and microstructure of ceramic materials were studied. The results showed that increasing the amount of Si and/or C powders in the starting powder mixture had a detrimental influe...

  1. Effect of Adventitious Carbon on the Environmental Degradation of SiC/BN/SiC Composites

    Science.gov (United States)

    Ogbuji, L. U. J. T.; Yun, H. M.; DiCarlo, J.

    2002-01-01

    Pesting remains a major obstacle to the application of SiC/SiC composites in engine service and selective degradation of the boron nitride interphase at intermediate temperatures is of primary concern. However, significant progress has been made on interphase improvement recently and we now know more about the phenomenon and ways to suppress it. By screening SiC/BN/SiC materials through characterization of strength and microstructures after exposure in a burner rig, some factors that control pesting in these composites have been determined. A key precaution is careful control of elemental carbon presence in the interphase region.

  2. Solute adsorption and entrapment during eutectic Si growth in A–Si-based alloys

    International Nuclear Information System (INIS)

    The solute adsorption and/or segregation as well as the solute entrapment of Sr, Na and Yb atoms during eutectic Si growth in a series of high-purity Al–5 wt.% Si alloys was investigated by multi-scale microstructure characterization techniques, including high-resolution transmission electron microscopy and atomic-resolution scanning transmission electron microscopy. The adsorption of Sr atoms was directly observed along the 〈1 1 2〉Si growth direction of Si and/or at the intersection of multiple Si twins, which can be used to interpret the poisoning of the twin plane re-entrant edge and impurity induced twinning modification mechanisms, respectively. In contrast, Yb shows a different mechanism compared to the adsorption of Sr atoms. No significant Yb-rich cluster was observed at the intersection of Si twins. However, considerable Yb-rich segregation lines were observed along the 〈1 1 2〉Si direction, which can be attributed to the solute entrapment caused by a few Si twins through the natural twin plane re-entrant edge and growth mechanism. Active poisoning of the twin plane re-entrant edge and impurity induced twinning growth mechanisms cannot be observed due to the absence of Yb atoms within eutectic Si. Furthermore, the solute entrapment of modifying elements (X, Sr or Yb) together with Al and Si was proposed to interpret the formation of Al2Si2X phases or X-rich clusters within eutectic Si. Such types of Al2Si2X phases or X-rich clusters were further proposed to be an “artefact” caused by the solute entrapment during eutectic Si growth, rather than an active factor affecting the modification. The observed solute adsorption and entrapment can be used to interpret the different observations in the cases of different modifying elements, including impurity effects and so-called “quenching modification”, thereby elucidating the modification of eutectic Si in Al–Si alloys

  3. Behavior of Au-Si droplets in Si(001) at high temperatures

    Science.gov (United States)

    Shao, Y. M.; Nie, T. X.; Jiang, Z. M.; Zou, J.

    2012-07-01

    The transport behavior of Au-Si droplets near the Si(001) surface at elevated temperatures is investigated using transmission electron microscopy. It has been found that Au-Si droplets move differently under different temperatures, which lead to the formation of SiOx surface islands on top of droplets, and result in the lateral movements of smaller droplets away from their corresponding surface islands. Since Au droplets have been widely used as catalysts to induce semiconductor nanowires, this study provides insight behavior of Au containing droplets on semiconductor surfaces, which is critical for understanding the formation mechanisms of semiconductor nanowires.

  4. Theory of Si and C Pb Centers on the (111) Interfaces of the β-SiC-SiO2 System.

    Science.gov (United States)

    Fowler, W. Beall; Edwards, Arthur H.

    1997-03-01

    We report theoretical calculations on the Si and C Pb centers on the (111) interfaces of the β-SiC-SiO2 system. Our atomic cluster sizes are such that our results apply equally to (0001) 6H and 4H SiC-SiO2 interfaces. Using semiempirical quantum mechanical (MOPAC 6.0)(J. J. P. Stewart, MOPAC 6.0, QCPE 455) (1990). and ab-initio (GAMESS)(M. W. Schmidt et) al., J. Comput. C hem. 14, 1347 (1993). codes, we have calculated equilibrium geometries and have predicted ^29Si and ^14C hyperfine parameters and electrical level positions. We have also used a modified(W. B. Fowler and R. J. El liott, Phys. Rev. B34), 5525 (1986). Haldane-Anderson approach to estimate level positions and defect charge s. Compared with the Pb center on the (111) Si-SiO2 interface, we predict greater atomic relaxations for the Si Pb and smaller atomic relaxations for the C P_b. Furthermore, we predict a large increase in hyperfine constants for the Si Pb as compared with that on the Si-SiO2 interface. For the Si P_b, both -/0 and 0/+ levels are predicted to lie in the upper half of the SiC gap; for the C Pb the -/0 level is predicted to lie in the upper half and the 0/+ level in the lower half of the gap.

  5. Mass Spectrometric Investigation of Silicon Extremely Enriched in (28)Si: From (28)SiF4 (Gas Phase IRMS) to (28)Si Crystals (MC-ICP-MS).

    Science.gov (United States)

    Pramann, Axel; Rienitz, Olaf

    2016-06-01

    A new generation of silicon crystals even further enriched in (28)Si (x((28)Si) > 0.999 98 mol/mol), recently produced by companies and institutes in Russia within the framework of a project initiated by PTB, were investigated with respect to their isotopic composition and molar mass M(Si). A modified isotope dilution mass spectrometric (IDMS) method treating the silicon as the matrix containing a so-called virtual element (VE) existing of the isotopes (29)Si and (30)Si solely and high resolution multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) were applied in combination. This method succeeds also when examining the new materials holding merely trace amounts of (29)Si (x((29)Si) ≈ 5 × 10(-6) mol/mol) and (30)Si (x((30)Si) ≈ 7 × 10(-7) mol/mol) extremely difficult to detect with lowest uncertainty. However, there is a need for validating the enrichment in (28)Si already in the precursor material of the final crystals, silicon tetrafluoride (SiF4) gas prior to crystal production. For that purpose, the isotopic composition of selected SiF4 samples was determined using a multicollector magnetic sector field gas-phase isotope ratio mass spectrometer. Contaminations of SiF4 by natural silicon due to storing and during the isotope ratio mass spectrometry (IRMS) measurements were observed and quantified. The respective MC-ICP-MS measurements of the corresponding crystal samples show-in contrast-several advantages compared to gas phase IRMS. M(Si) of the new crystals were determined to some extent with uncertainties urel(M) Si)) on the degree of enrichment in (28)Si. This leads to a reduction of urel(M(Si)) during the past decade by almost 3 orders of magnitude and thus further reduces the uncertainty of the Avogadro constant NA which is one of the preconditions for the redefinition of the SI unit kilogram.

  6. Electrospun a-Si using Liquid Silane/Polymer Inks

    Energy Technology Data Exchange (ETDEWEB)

    Doug Schulz

    2010-12-09

    Amorphous silicon nanowires (a-SiNWs) were prepared by electrospinning cyclohexasilane (Si{sub 6}H{sub 12}) admixed with polymethylmethacrylate (PMMA) in toluene. Raman spectroscopy characterization of these wires (d {approx} 50-2000 nm) shows 350 C treatment yields a-SiNWs. Porous a-SiNWs are obtained using a volatile polymer.

  7. Electrospun a-Si using Liquid Silane/Polymer Inks

    Energy Technology Data Exchange (ETDEWEB)

    D.L. Schulz; J.M. Hoey; J. Smith; J. Lovaasen; C. Braun; X. Dai; K. Anderson; A. Elangovan; X. Wu; S. Payne; K. Pokhodnya; I. Akhatov; L. Pederson; P. Boudjouk

    2010-12-01

    Amorphous silicon nanowires (a-SiNWs) were prepared by electrospinning cyclohexasilane (Si{sub 6}H{sub 12}) admixed with polymethylmethacrylate (PMMA) in toluene. Raman spectroscopy characterization of these wires (d {approx} 50-2000 nm) shows 350 C treatment yields a-SiNWs. Porous a-SiNWs are obtained using a volatile polymer.

  8. Growth of single-crystal columns of CoSi2 embedded in epitaxial Si on Si(111) by molecular beam epitaxy

    Science.gov (United States)

    Fathauer, R. W.; Nieh, C. W.; Xiao, Q. F.; Hashimoto, Shin

    1989-01-01

    The codeposition of Si and Co on a heated Si(111) substrate is found to result in epitaxial columns of CoSi2 if the Si:Co ratio is greater than approximately 3:1. These columns are surrounded by an Si matrix which shows bulk-like crystalline quality based on transmission electron microscopy and ion channeling. This phenomenon has been studied as functions of substrate temperature and Si:Co ratio. Samples with columns ranging in average diameter from approximately 25 to 130 nm have been produced.

  9. Adsorption of Si on Gu(100) and (111) Surfaces

    Institute of Scientific and Technical Information of China (English)

    HE Guo-Min

    2004-01-01

    @@ Employing the density-functional theory within the generalized gradient approximation, we investigate the interaction between atomic Si and the Cu(100) and (111) surfaces. Various structures of on-surface adsorption as well as surface-substitutional adsorption for a wide range of Si coverage are considered. Our results show that both Cu(100) and (111) surfaces are active for adsorption of Si. The c(2 × 2)-Si/Cu(100) surface alloy is energetically favourable for a large range of Si chemical potential while c(2 × 2)-Si/Cu(111) is energetically favourable only under Si rich conditions.

  10. Low-temperature, self-catalyzed growth of Si nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Cuscuna, Massimo; Convertino, Annalisa; Mariucci, Luigi; Fortunato, Guglielmo; Pecora, Alessandro; Martelli, Faustino [Istituto per la Microelettronica e i Microsistemi del Consiglio Nazionale delle Ricerche, via del Fosso del Cavaliere 100, I-00133 Rome (Italy); Felisari, Laura [Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche, Basovizza, I-34149 Trieste (Italy); Nicotra, Giuseppe; Spinella, Corrado, E-mail: faustino.martelli@cnr.it [Istituto per la Microelettronica e i Microsistemi del Consiglio Nazionale delle Ricerche, Stradale Primosole 50, I-95121 Catania (Italy)

    2010-06-25

    High densities of self-catalyzed Si nanowires have been grown at temperatures down to 320 deg. C on different Si substrates, whose surfaces have been roughened by simple physical or chemical treatments. The particular substrates are Si(110) cleavage planes, chemically etched Si(111) surfaces and microcrystalline Si obtained by laser annealing thin amorphous Si layers. The NW morphology depends on the growth surface. Transmission electron microscopy indicates that the NWs are made of pure Si with a crystalline core structure. Reflectivity measurements confirm this latter finding.

  11. Influence of Si contents on tribological characteristics of CrAlSiN nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chun-Chi; Chen, Hsien-Wei [Department of Material Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan (China); Lee, Jyh-Wei [Department of Materials Engineering, Ming Chi University of Technology, Taipei, Taiwan (China); Center for Thin Film Technologies and Applications, Mingchi University of Technology, Taipei, Taiwan (China); Duh, Jenq-Gong, E-mail: jgd@mx.nthu.edu.tw [Department of Material Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan (China)

    2015-06-01

    The CrAlSiN coatings with Si contents from 0 at.% to 13.0 at.% were deposited on AISI 304 stainless steels and tungsten carbide by RF magnetron sputtering. In the ball-on-disc wear tests, the improved friction coefficient of (Cr{sub 0.5}Al{sub 0.5}){sub 1−x}Si{sub x}N coatings with increasing Si content was revealed. The hardness (H) and the reduced elastic modulus (E{sup ⁎}) of (Cr{sub 0.5}Al{sub 0.5}){sub 1−x}Si{sub x}N coatings were acquired by a nanoindentation. The H{sup 3}/E{sup ⁎2} ratio of (Cr{sub 0.5}Al{sub 0.5}){sub 1−x}Si{sub x}N coatings was found be proportional to the abrasion resistance of coatings, and therefore the (Cr{sub 0.5}Al{sub 0.5}){sub 1−x}Si{sub x}N coating with maximum H{sup 3}/E{sup ⁎2} ratio as high as 0.475 by adding 9.0 at.% Si exhibited superior resistance to plastic deformation and wear. In addition, it was revealed that the columnar grains of the CrAlN coatings were switched to refined and equi-axial ones after Si addition. From the observation of crack propagation, it was evidenced that the equi-axial grains with sophisticated boundary of (Cr{sub 0.5}Al{sub 0.5}){sub 1−x}Si{sub x}N coating prevents the direct penetration of the cracks. On the basis of these improved tribological behaviors, the superior durability of (Cr{sub 0.5}Al{sub 0.5}){sub 1−x}Si{sub x}N coating is thus demonstrated. - Highlights: • The friction coefficient of CrAlSiN films decrease with increasing Si content. • The wear rate of CrAlSiN films is dependent on resistance to plastic deformation. • Si-induced amorphization is attributed to the absence of penetrated cracks.

  12. Microstructural evolution of SiC/Cu-Si composites obtained through reactive infiltration; Evolucion microestructural de composites SiC/aleaciones CuSi obtenidos a traves de infiltracion ractiva

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo, J.; Ordonez, S.; Iturriza, I.

    2010-07-01

    The microstructural evolution of composites of SiC/Cu-Si alloys obtained through process of reactive infiltration to 1400 degree centigrade was studied. Three zones were detected in the obtained composites: the reaction zone, the transition zone and the infiltrated zone. In the reaction zone and transition zone the resulting microstructure was composed of a metallic phase, graphite laminae and SiC particles. It was found that SiC decomposes into these areas because of the alloy Cu-Si, so the available Si forms a liquid solution that a room temperature consisted of a a solid solution and a {gamma} phase (Cu{sub 5}Si). The carbon resulting from the decomposition of SiC precipitated as graphite laminae. In addition, the SiC decomposition was decreasing as the initial amount of Si in the alloy increased. (Author) 37 refs.

  13. Eu-doped Si-SiO2 core-shell nanowires for Si-compatible red emission

    Science.gov (United States)

    Xu, Jinyou; Guo, Pengfei; Zou, Zhijun; Lu, Yang; Yan, Hailong; Luo, Yongsong

    2016-09-01

    The indirect bandgap of single-crystalline silicon has so far precluded the full integration of silicon microelectronics with photonics—which is expected to allow the realization of low-cost, high-speed optical information processing and communication in the future. Here we report the growth of europium (Eu)-doped Si-SiO2 core-shell nanowires by an oxide-assisted chemical vapor deposition method. The Eu concentration in these nanowires is effectively improved by intentionally increasing the thickness of SiO2 shells. As a result, a strong Si-compatible red emission from Eu3+ ions was observed under laser illumination. The effect of Eu3+ concentration on the emission efficiency was comprehensively studied, with the highest efficiency at Eu content about 0.8 at%. The relaxation mechanism of this concentration dependent luminescence was further explored through lifetime measurements. In light of the strong characteristic red emission and nanoscale footprint, these nanowires are promising Si-compatible light emission materials for future integrated nanophotonics.

  14. Wetting behavior of Al Si Mg alloys on Si3N4/Si substrates: optimization of processing parameters

    Science.gov (United States)

    de La Peña, J. L.; Pech-Canul, M. I.

    2008-06-01

    The wetting behavior of Al Si Mg alloys on Si3N4/Si substrates has been investigated using the sessile drop technique. Based on a Taguchi experiment design, the effect of the following processing parameters on the contact angle (θ) and surface tension (σLV) was studied: processing time and temperature, atmosphere (Ar and N2), substrate surface condition (with and without a silicon wafer), as well as the Mg and Si contents in the aluminium alloy. In nitrogen, non-wetting conditions prevail during the isothermal events while in argon a remarkable non-wetting to wetting transition leads to contact angles θ as low as 11±3° and a liquid surface tension σLV of 33± 10×10-5 kJ/m2. According to the multiple analysis of variance (Manova), the optimum conditions for minimizing the values of θ and σLV are as follows: temperature of 1100 °C, processing time of 90 min, argon atmosphere, no use of a silicon wafer, and the use of the Al-18% Mg-1% Si alloy. A verification test conducted under the optimized conditions resulted in a contact angle of θ=9±3° and a surface tension of σLV=29± 9×10-5 kJ/m2, both indicative of excellent wetting.

  15. Eu-doped Si-SiO2 core-shell nanowires for Si-compatible red emission.

    Science.gov (United States)

    Xu, Jinyou; Guo, Pengfei; Zou, Zhijun; Lu, Yang; Yan, Hailong; Luo, Yongsong

    2016-09-30

    The indirect bandgap of single-crystalline silicon has so far precluded the full integration of silicon microelectronics with photonics-which is expected to allow the realization of low-cost, high-speed optical information processing and communication in the future. Here we report the growth of europium (Eu)-doped Si-SiO2 core-shell nanowires by an oxide-assisted chemical vapor deposition method. The Eu concentration in these nanowires is effectively improved by intentionally increasing the thickness of SiO2 shells. As a result, a strong Si-compatible red emission from Eu(3+) ions was observed under laser illumination. The effect of Eu(3+) concentration on the emission efficiency was comprehensively studied, with the highest efficiency at Eu content about 0.8 at%. The relaxation mechanism of this concentration dependent luminescence was further explored through lifetime measurements. In light of the strong characteristic red emission and nanoscale footprint, these nanowires are promising Si-compatible light emission materials for future integrated nanophotonics. PMID:27560836

  16. Eu-doped Si-SiO2 core–shell nanowires for Si-compatible red emission

    Science.gov (United States)

    Xu, Jinyou; Guo, Pengfei; Zou, Zhijun; Lu, Yang; Yan, Hailong; Luo, Yongsong

    2016-09-01

    The indirect bandgap of single-crystalline silicon has so far precluded the full integration of silicon microelectronics with photonics—which is expected to allow the realization of low-cost, high-speed optical information processing and communication in the future. Here we report the growth of europium (Eu)-doped Si-SiO2 core–shell nanowires by an oxide-assisted chemical vapor deposition method. The Eu concentration in these nanowires is effectively improved by intentionally increasing the thickness of SiO2 shells. As a result, a strong Si-compatible red emission from Eu3+ ions was observed under laser illumination. The effect of Eu3+ concentration on the emission efficiency was comprehensively studied, with the highest efficiency at Eu content about 0.8 at%. The relaxation mechanism of this concentration dependent luminescence was further explored through lifetime measurements. In light of the strong characteristic red emission and nanoscale footprint, these nanowires are promising Si-compatible light emission materials for future integrated nanophotonics.

  17. Determination of tunnelling parameters in ultra-thin oxide layer poly-Si/SiO 2/Si structures

    Science.gov (United States)

    Depas, M.; Vermeire, B.; Mertens, P. W.; Van Meirhaeghe, R. L.; Heyns, M. M.

    1995-08-01

    In this work the electron tunnelling in device grade ultra-thin 3-6 nm n +poly-Si/SiO 2/n-Si structures has been analysed. The well known analytic expression for the Fowler-Nordheim tunnelling current was adapted to include the case of direct tunnelling of electrons, which becomes important for oxide layers thinner than 4.5 nm. For these ultra-thin oxide MOS structures it is necessary to take the band bending in the Si substrate and in the poly-Si layer into account to determine the oxide electrical field strength and to derive the tunnelling parameters of the measured current-voltage characteristic. A method is explained to derive the tunnel barrier height φs and the effective mass of the tunnelling electron mox from the experimental tunnel current characteristics. It is shown that both the direct tunnelling and the Fowler-Nordheim tunnelling current can be quantitatively explained by a WKB approximation using mox as the single fitting parameter.

  18. Influence of absorber doping in a-SiC:H/a-Si:H/a-SiGe:H solar cells

    Institute of Scientific and Technical Information of China (English)

    Muhammad Nawaz; Ashfaq Ahmad

    2012-01-01

    This work deals with the design evaluation and influence of absorber doping for a-Si:H/a-SiC:H/a-SiGe:H based thin-film solar cells using a two-dimensional computer aided design (TCAD) tool.Various physical parameters of the layered structure,such as doping and thickness of the absorber layer,have been studied.For reliable device simulation with realistic predictability,the device performance is evaluated by implementing necessary models (e.g.,surface recombinations,thermionic field emission tunneling model for carrier transport at the heterojunction,Schokley-Read Hall recombination model,Auger recombination model,bandgap narrowing effects,doping and temperature dependent mobility model and using Fermi-Dirac statistics).A single absorber with a graded design gives an efficiency of 10.1% for 800 nm thick multiband absorption.Similarly,a tandem design shows an efficiency of 10.4% with a total absorber of thickness of 800 nm at a bandgap of 1.75 eV and 1.0 eV for the top a-Si and bottom a-SiGe component cells.A moderate n-doping in the absorber helps to improve the efficiency while p doping in the absorber degrades efficiency due to a decrease in the Voc (and fill factor) of the device.

  19. Gate-stack engineering for self-organized Ge-dot/SiO2/SiGe-shell MOS capacitors

    Directory of Open Access Journals (Sweden)

    Wei-Ting eLai

    2016-02-01

    Full Text Available We report the first-of-its-kind, self-organized gate-stack heterostructure of Ge-dot/SiO2/SiGe-shell on Si fabricated in a single step through the selective oxidation of a SiGe nano-patterned pillar over a Si3N4 buffer layer on a Si substrate. Process-controlled tunability of the Ge-dot size (7.5−90 nm, the SiO2 thickness (3−4 nm, and as well the SiGe-shell thickness (2−15 nm has been demonstrated, enabling a practically-achievable core building block for Ge-based metal-oxide-semiconductor (MOS devices. Detailed morphologies, structural, and electrical interfacial properties of the SiO2/Ge-dot and SiO2/SiGe interfaces were assessed using transmission electron microscopy, energy dispersive x-ray spectroscopy, and temperature-dependent high/low-frequency capacitance-voltage measurements. Notably, NiGe/SiO2/SiGe and Al/SiO2/Ge-dot/SiO2/SiGe MOS capacitors exhibit low interface trap densities of as low as 3-5x10^11 cm^-2·eV^-1 and fixed charge densities of 1-5x10^11 cm^-2, suggesting good-quality SiO2/SiGe-shell and SiO2/Ge-dot interfaces. In addition, the advantage of having single-crystalline Si1-xGex shell (x > 0.5 in a compressive stress state in our self-aligned gate-stack heterostructure has great promise for possible SiGe (or Ge MOS nanoelectronic and nanophotonic applications.

  20. Gate-stack engineering for self-organized Ge-dot/SiO2/SiGe-shell MOS capacitors

    Science.gov (United States)

    Lai, Wei-Ting; Yang, Kuo-Ching; Liao, Po-Hsiang; George, Tom; Li, Pei-Wen

    2016-02-01

    We report the first-of-its-kind, self-organized gate-stack heterostructure of Ge-dot/SiO2/SiGe-shell on Si fabricated in a single step through the selective oxidation of a SiGe nano-patterned pillar over a Si3N4 buffer layer on a Si substrate. Process-controlled tunability of the Ge-dot size (7.5‑90 nm), the SiO2 thickness (3‑4 nm), and as well the SiGe-shell thickness (2‑15 nm) has been demonstrated, enabling a practically-achievable core building block for Ge-based metal-oxide-semiconductor (MOS) devices. Detailed morphologies, structural, and electrical interfacial properties of the SiO2/Ge-dot and SiO2/SiGe interfaces were assessed using transmission electron microscopy, energy dispersive x-ray spectroscopy, and temperature-dependent high/low-frequency capacitance-voltage measurements. Notably, NiGe/SiO2/SiGe and Al/SiO2/Ge-dot/SiO2/SiGe MOS capacitors exhibit low interface trap densities of as low as 3-5x10^11 cm^-2·eV^-1 and fixed charge densities of 1-5x10^11 cm^-2, suggesting good-quality SiO2/SiGe-shell and SiO2/Ge-dot interfaces. In addition, the advantage of having single-crystalline Si1-xGex shell (x > 0.5) in a compressive stress state in our self-aligned gate-stack heterostructure has great promise for possible SiGe (or Ge) MOS nanoelectronic and nanophotonic applications.

  1. Evidences of the existence of SiTe2 crystalline phase and a proposed new Si-Te phase diagram

    Science.gov (United States)

    Mishra, R.; Mishra, P. K.; Phapale, S.; Babu, P. D.; Sastry, P. U.; Ravikumar, G.; Yadav, A. K.

    2016-05-01

    The existence of two distinct crystalline phases viz., Si2Te3 and SiTe2, in the Si-Te system is established from differential thermal analysis (DTA) studies. Thermo-gravimetric (TG) data on SiTe2 indicate that the compound decomposes to Si in multiple steps via intermediate Si2Te3 phase. X-ray diffraction (XRD) reveals that SiTe2 crystallizes in P 3 ̅m1 space group with CdI2 trigonal structure, whereas Si2Te3 crystallizes in trigonal structure with space group P 3 ̅1c with varying occupation of octahedral voids. Single Si atoms fill only 1/2 of the octahedral voids in SiTe2 structure whereas in Si2Te3, Si atoms are arranged in pairs occupying 2/3 of the octahedral voids in alternating planes along c-axis. Further, X-ray absorption near edge structure (XANES) and X-ray photoelectron spectroscopy (XPS) confirm the distinctness of the chemical environment in the two crystalline structures confirming the uniqueness of both the phases. DTA results on the two compounds indicate the presence of one crystallographic phase-transition in each of the compound with transition temperatures at 441 °C for Si2Te3 and 392 °C for SiTe2. At the same time both Si2Te3 and SiTe2 undergo peritectic decomposition at 683 °C and 432 °C forming [Si(s)+Te(liq)] and [α-Si2Te3(s)+Te(liq)], respectively. The system revealed eutectic reaction between β-SiTe2 and Te at 398 °C [L=Te+SiTe2]. Consequently, the phase diagram in the Si-Te system has been delineated.

  2. Transformation mechanism of n-butyl terminated Si nanoparticles embedded into Si1-xCx nanocomposites mixed with Si nanoparticles and C atoms

    International Nuclear Information System (INIS)

    Bright-field transmission electron microscopy (TEM) images, high-resolution TEM (HRTEM) images, and fast-Fourier transformed electron-diffraction patterns showed that n-butyl terminated Si nanoparticles were aggregated. The formation of Si1-xCx nanocomposites was mixed with Si nanoparticles and C atoms embedded in a SiO2 layer due to the diffusion of C atoms from n-butyl termination shells into aggregated Si nanoparticles. Atomic force microscopy (AFM) images showed that the Si1-xCx nanocomposites mixed with Si nanoparticles and C atoms existed in almost all regions of the SiO2 layer. The formation mechanism of Si nanoparticles and the transformation mechanism of n-butyl terminated Si nanoparticles embedded into Si1-xCx nanocomposites mixed with Si nanoparticles and C atoms are described on the basis of the TEM, HRTEM, and AFM results. These results can help to improve the understanding of the formation mechanism of Si nanoparticles.

  3. Stability relations in the system CaSiO3-CaMnSi2O6-CaFeSi2O6

    Science.gov (United States)

    Abrecht, Jürgen

    1980-10-01

    In the system CaSiO3-CaMnSi2O6-CaFeSi2O6 extensive miscibility gaps between pyroxenoids and clinopyroxenes are observed. The miscibility gap between Mn-bustamite and Mn-wollastonite has been determined experimentally by a hydrothermal technique between 400° and 1200° C at P f= 2 kbar. Further experiments have been performed at P f=9 kbar, which revealed a shifting of the miscibility gap towards more Ca-rich compositions. The bustamite phase is stabilized by high pressures and the wollastonite structure is the stable phase at high temperatures. Similar phase relations as along the join CaSiO3-CaMnSi2O6 exist along the join CaSiO3-CaFeSi2O6 but with a more extensive two-phase field of bustamite-clinopyroxene. Possible phase relations along the joins CaSiO3-CaMnSi2O6, CaSiO3-CaFeSi2O6 and CaFeSi2O6-CaMnSi2O6 are given in temperature-composition diagrams for low pressures, based on natural and experimental data.

  4. Absence of quantum confinement effects in the photoluminescence of Si3N4–embedded Si nanocrystals

    International Nuclear Information System (INIS)

    Superlattices of Si-rich silicon nitride and Si3N4 are prepared by plasma-enhanced chemical vapor deposition and, subsequently, annealed at 1150 °C to form size-controlled Si nanocrystals (Si NCs) embedded in amorphous Si3N4. Despite well defined structural properties, photoluminescence spectroscopy (PL) reveals inconsistencies with the typically applied model of quantum confined excitons in nitride-embedded Si NCs. Time-resolved PL measurements demonstrate 105 times faster time-constants than typical for the indirect band structure of Si NCs. Furthermore, a pure Si3N4 reference sample exhibits a similar PL peak as the Si NC samples. The origin of this luminescence is discussed in detail on the basis of radiative defects and Si3N4 band tail states in combination with optical absorption measurements. The apparent absence of PL from the Si NCs is explained conclusively using electron spin resonance data from the Si/Si3N4 interface defect literature. In addition, the role of Si3N4 valence band tail states as potential hole traps is discussed. Most strikingly, the PL peak blueshift with decreasing NC size, which is often observed in literature and typically attributed to quantum confinement (QC), is identified as optical artifact by transfer matrix method simulations of the PL spectra. Finally, criteria for a critical examination of a potential QC-related origin of the PL from Si3N4-embedded Si NCs are suggested.

  5. Single-Grain Si TFTs Fabricated by Liquid-Si and Long-Pulse Excimer-Laser

    NARCIS (Netherlands)

    Ishihara, R.; Zhang, J.; Trifunovic, M.; Van der Zwan, M.; Takagishi, H.; Kawajiri, R.; Shimoda, T.; Beenakker, C.I.M.

    2012-01-01

    Solution process of silicon using liquid-Si is attractive for fabrication of high-speed flexible electronics. We have fabricated single-grain Si TFTs on location-controlled Si grains with longpulse excimer laser crystallization of spin-coated liquid Si film. The maximum grain diameter is 3.5μm, and

  6. Realization of Colored Multicrystalline Silicon Solar Cells with SiO2/SiNx:H Double Layer Antireflection Coatings

    Directory of Open Access Journals (Sweden)

    Minghua Li

    2013-01-01

    Full Text Available We presented a method to use SiO2/SiNx:H double layer antireflection coatings (DARC on acid textures to fabricate colored multicrystalline silicon (mc-Si solar cells. Firstly, we modeled the perceived colors and short-circuit current density (Jsc as a function of SiNx:H thickness for single layer SiNx:H, and as a function of SiO2 thickness for the case of SiO2/SiNx:H (DARC with fixed SiNx:H (refractive index n=2.1 at 633 nm, and thickness = 80 nm. The simulation results show that it is possible to achieve various colors by adjusting the thickness of SiO2 to avoid significant optical losses. Therefore, we carried out the experiments by using electron beam (e-beam evaporation to deposit a layer of SiO2 over the standard SiNx:H for 156×156 mm2 mc-Si solar cells which were fabricated by a conventional process. Semisphere reflectivity over 300 nm to 1100 nm and I-V measurements were performed for grey yellow, purple, deep blue, and green cells. The efficiency of colored SiO2/SiNx:H DARC cells is comparable to that of standard SiNx:H light blue cells, which shows the potential of colored cells in industrial applications.

  7. Si/SiGe heterointerfaces in one-, two-, and three-dimensional nanostructures: their impact on SiGe light emission

    Science.gov (United States)

    Lockwood, David; Wu, Xiaohua; Baribeau, Jean-Marc; Mala, Selina; Wang, Xialou; Tsybeskov, Leonid

    2016-03-01

    Fast optical interconnects together with an associated light emitter that are both compatible with conventional Si-based complementary metal-oxide- semiconductor (CMOS) integrated circuit technology is an unavoidable requirement for the next-generation microprocessors and computers. Self-assembled Si/Si1-xGex nanostructures, which can emit light at wavelengths within the important optical communication wavelength range of 1.3 – 1.55 μm, are already compatible with standard CMOS practices. However, the expected long carrier radiative lifetimes observed to date in Si and Si/Si1-xGex nanostructures have prevented the attainment of efficient light-emitting devices including the desired lasers. Thus, the engineering of Si/Si1-xGex heterostructures having a controlled composition and sharp interfaces is crucial for producing the requisite fast and efficient photoluminescence (PL) at energies in the range 0.8-0.9 eV. In this paper we assess how the nature of the interfaces between SiGe nanostructures and Si in heterostructures strongly affects carrier mobility and recombination for physical confinement in three dimensions (corresponding to the case of quantum dots), two dimensions (corresponding to quantum wires), and one dimension (corresponding to quantum wells). The interface sharpness is influenced by many factors such as growth conditions, strain, and thermal processing, which in practice can make it difficult to attain the ideal structures required. This is certainly the case for nanostructure confinement in one dimension. However, we demonstrate that axial Si/Ge nanowire (NW) heterojunctions (HJs) with a Si/Ge NW diameter in the range 50 – 120 nm produce a clear PL signal associated with band-to-band electron-hole recombination at the NW HJ that is attributed to a specific interfacial SiGe alloy composition. For three-dimensional confinement, the experiments outlined here show that two quite different Si1-xGex nanostructures incorporated into a Si0.6Ge0.4 wavy

  8. ORASELE INTELIGENTE: PERSPECTIVA DE ANSAMBLU SI IMPLICATII POLITICE

    OpenAIRE

    Mihaela PACESILA; Sofia Elena COLESCA

    2007-01-01

    Termenul de oras inteligent se refera la abilitatea administratiei orasului de a colabora cu stakeholderii din mediul urban in scopul obtinerii unor beneficii reciproce. Aparitia oraselor inteligente necesita o colaborare intensa intre municipalitate si sectorul public, dar si intre aceasta si cel privat cu scopul de a facilita adoptarea deciziilor si de a face progrese in modul de initiere a politicilor publice la nivel local, precum si pentru imbunatatirea relatiei cu cetatenii, mediul de a...

  9. Synthesis of micro-sized interconnected Si-C composites

    Science.gov (United States)

    Wang, Donghai; Yi, Ran; Dai, Fang

    2016-02-23

    Embodiments provide a method of producing micro-sized Si--C composites or doped Si--C and Si alloy-C with interconnected nanoscle Si and C building blocks through converting commercially available SiO.sub.x (0

  10. Thermoelectric properties of porous SiC/C composites

    NARCIS (Netherlands)

    Fujisawa, Masashi; Hata, Toshimitsu; Kitagawa, Hiroyuki; Bronsveld, Paul; Suzuki, Youki; Hasezaki, Kazuhiro; Noda, Yasutoshi; Imamura, Yuji

    2008-01-01

    We developed a porous SiC/C composite by oxidizing a SiC/C composite made from a mixed powder of wood charcoal and SiO2 (32-45 mu m) by pulse current sintering at 1600 and 1800 degrees C under a N-2 atmosphere. The microstructures of the porous SiC/C composites with oxidation and the SiC/C composite

  11. Synthesis of MoSi2 by Mechanical Alloying

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The microstructure evolution of mechanical alloyed Mo-66.7%Si powder using the high-energy ball mill has been studied by X-ray diffraction and scanning electron microscopy. The results showed that MoSi2 can be synthesized by MA of Mo-66.7%Si powder mixtures. Cold welding behavior between Mo and Si powders plays an important role in the preparation of MoSi2 by the MA.

  12. Three Crystalline Polymorphs of KFeSi04, Potassium Ferrisilicate

    DEFF Research Database (Denmark)

    Bentzen, Janet Jonna

    1983-01-01

    Orthorhombic α-KFeSi04 ( a =0.5478, b =0.9192, c =0.8580 nm), hexagonal β-KFeSiO4 (a =0.5309, c =0.8873 nm), and hexagonal γ-KFeSi04 (a =0.5319, c =0.8815 nm) were synthesized by devitrification of KFeSiO4 glass. Powder X-ray diffraction data are given for all three polymorphs. Alpha KFeSiO4, the...

  13. Energetics of ultrathin CoSi sub 2 film on a Si(001) surface

    CERN Document Server

    Kang, B S; Kang, H J; Sohn, K S

    2003-01-01

    We present a first-principles study on the structural stability of Co silicide phases and their magnetic properties for 1-2 monolayers (ML) of Co deposited on Si(001). The Co-Si interaction between the nearest neighbouring sites at the surface layer is strongly attractive. The formation of CoSi in the subsurface layer is energetically more favourable than that in a surface layer. The interdiffusion of a Co atom to the fourfold (tetrahedral) site is found to be energetically favourable. For surface alloy films of 1 and 2 ML Co on Si(001), there are no Co atoms at the surface due to the interdiffusion of Co atoms. The structural stability of the 'fourfold Si surface' model with the CoSi sub 2 phase is compared with that of the sixfold model. Our result for the surface and interface of a thin CoSi sub 2 /Si(001) film is consistent with experimental and other theoretical data.

  14. Fluorescence enhancement of single DNA molecules confined in Si/SiO2 nanochannels

    DEFF Research Database (Denmark)

    Westerlund, F.; Persson, Karl Fredrik; Kristensen, Anders;

    2010-01-01

    We demonstrate that the detected emission intensity from YOYO-labeled DNA molecules confined in 180 nm deep Si/SiO2 nano-funnels changes significantly and not monotonically with the width of the funnel. This effect may be of importance for quantitative fluorescence microscopy and for experiments...

  15. Carrier Mobility Enhancement of Tensile Strained Si and SiGe Nanowires via Surface Defect Engineering.

    Science.gov (United States)

    Ma, J W; Lee, W J; Bae, J M; Jeong, K S; Oh, S H; Kim, J H; Kim, S-H; Seo, J-H; Ahn, J-P; Kim, H; Cho, M-H

    2015-11-11

    Changes in the carrier mobility of tensile strained Si and SiGe nanowires (NWs) were examined using an electrical push-to-pull device (E-PTP, Hysitron). The changes were found to be closely related to the chemical structure at the surface, likely defect states. As tensile strain is increased, the resistivity of SiGe NWs deceases in a linear manner. However, the corresponding values for Si NWs increased with increasing tensile strain, which is closely related to broken bonds induced by defects at the NW surface. Broken bonds at the surface, which communicate with the defect state of Si are critically altered when Ge is incorporated in Si NW. In addition, the number of defects could be significantly decreased in Si NWs by incorporating a surface passivated Al2O3 layer, which removes broken bonds, resulting in a proportional decrease in the resistivity of Si NWs with increasing strain. Moreover, the presence of a passivation layer dramatically increases the extent of fracture strain in NWs, and a significant enhancement in mobility of about 2.6 times was observed for a tensile strain of 5.7%.

  16. Green bean biofortification for Si through soilless cultivation: plant response and Si bioaccessibility in pods.

    Science.gov (United States)

    Montesano, Francesco Fabiano; D'Imperio, Massimiliano; Parente, Angelo; Cardinali, Angela; Renna, Massimiliano; Serio, Francesco

    2016-08-17

    Food plants biofortification for micronutrients is a tool for the nutritional value improvement of food. Soilless cultivation systems, with the optimal control of plant nutrition, represent a potential effective technique to increase the beneficial element content in plant tissues. Silicon (Si), which proper intake is recently recommended for its beneficial effects on bone health, presents good absorption in intestinal tract from green bean, a high-value vegetable crop. In this study we aimed to obtain Si biofortified green bean pods by using a Si-enriched nutrient solution in soilless system conditions, and to assess the influence of boiling and steaming cooking methods on Si content, color parameters and Si bioaccessibility (by using an in vitro digestion process) of pods. The Si concentration of pods was almost tripled as a result of the biofortification process, while the overall crop performance was not negatively influenced. The Si content of biofortified pods was higher than unbiofortified also after cooking, despite the cooking method used. Silicon bioaccessibility in cooked pods was more than tripled as a result of biofortification, while the process did not affect the visual quality of the product. Our results demonstrated that soilless cultivation can be successfully used for green bean Si biofortification.

  17. Semipolar (202̅3) nitrides grown on 3C-SiC/(001) Si substrates

    Science.gov (United States)

    Dinh, Duc V.; Presa, S.; Akhter, M.; Maaskant, P. P.; Corbett, B.; Parbrook, P. J.

    2015-12-01

    Heteroepitaxial growth of GaN buffer layers on 3C-SiC/(001) Si templates (4°-offcut towards [110]) by metalorganic vapour phase epitaxy has been investigated. High-temperature grown Al0.5Ga0.5N/AlN interlayers were employed to produce a single (202̅3) GaN surface orientation. Specular crack-free GaN layers showed undulations along [11̅0]{}3{{C}-{SiC}/{Si}} with a root mean square roughness of about 13.5 nm (50 × 50 μm2). The orientation relationship determined by x-ray diffraction (XRD) was found to be [1̅21̅0]GaN ∥[11̅0]{}3{{C}-{SiC}/{Si}} and [3̅034]GaN ∥[110]3C - SiC/Si . Low-temperature photoluminescence (PL) and XRD measurements showed the presence of basal-plane stacking faults in the layers. PL measurements of (202̅3) multiple-quantum-well and light-emitting diode structures showed uniform luminescence at about 500 nm emission wavelength. A small peak shift of about 3 nm was observed in the electroluminescence when the current was increased from 5 to 50 mA (25-250 A cm-2).

  18. Formation of nanopores in a SiN/SiO2 membrane with an electron beam

    NARCIS (Netherlands)

    Wu, M.Y.; Krapf, D.; Zandbergen, M.; Zandbergen, H.; Batson, P.E.

    2005-01-01

    An electron beam can drill nanopores in SiO2 or silicon nitride membranes and shrink a pore to a smaller diameter. Such nanopores are promising for single molecule detection. The pore formation in a 40 nm thick silicon nitride∕SiO2 bilayer using an electron beam with a diameter of 8 nm (full width o

  19. Generation of pyridyl coordinated organosilicon cation pool by oxidative Si-Si bond dissociation

    Directory of Open Access Journals (Sweden)

    Itami Kenichiro

    2007-02-01

    Full Text Available Abstract An organosilicon cation stabilized by intramolecular pyridyl coordination was effectively generated and accumulated by oxidative Si-Si bond dissociation of the corresponding disilane using low temperature electrolysis, and was characterized by NMR and CSI-MS.

  20. Refinement of primary Si in hypereutectic Al-Si alloys by intensive melt shearing

    Science.gov (United States)

    Zhang, Z.; Li, H.-T.; Stone, I. C.; Fan, Z.

    2012-01-01

    Hypereutectic Al-Si based alloys are gaining popularity for applications where a combination of light weight and high wear resistance is required. The high wear resistance arising from the hard primary Si particles comes at the price of extremely poor machine tool life. To minimize machining problems while exploiting outstanding wear resistance, the primary Si particles must be controlled to a uniform small size and uniform spatial distribution. The current industrial means of refining primary Si chemically by the addition of phosphorous suffers from a number of problems. In the present paper an alternative, physical means of refining primary Si by intensive shearing of the melt prior to casting is investigated. Al-15wt%Si alloy has been solidified under varying casting conditions (cooling rate) and the resulting microstructures have been studied using microscopy and quantitative image analysis. Primary Si particles were finer, more compact in shape and more numerous with increasing cooling rate. Intensive melt shearing led to greater refinement and more enhanced nucleation of primary Si than was achieved by adding phosphorous. The mechanism of enhanced nucleation is discussed.

  1. Graphene growth at the interface between Ni catalyst layer and SiO2/Si substrate.

    Science.gov (United States)

    Lee, Jeong-Hoon; Song, Kwan-Woo; Park, Min-Ho; Kim, Hyung-Kyu; Yang, Cheol-Woong

    2011-07-01

    Graphene was synthesized deliberately at the interface between Ni film and SiO2/Si substrate as well as on top surface of Ni film using chemical vapor deposition (CVD) which is suitable for large-scale and low-cost synthesis of graphene. The carbon atom injected at the top surface of Ni film can penetrate and reach to the Ni/SiO2 interface for the formation of graphene. Once we have the graphene in between Ni film and SiO2/Si substrate, the substrate spontaneously provides insulating SiO2 layer and we may easily get graphene/SiO2/Si structure simply by discarding Ni film. This growth of graphene at the interface can exclude graphene transfer step for electronic application. Raman spectroscopy and optical microscopy show that graphene was successfully synthesized at the back of Ni film and the coverage of graphene varies with temperature and time of synthesis. The coverage of graphene at the interface depends on the amount of carbon atoms diffused into the back of Ni film. PMID:22121737

  2. Anomalous defect processes in Si implanted amorphous SiO2, II

    International Nuclear Information System (INIS)

    Aanomalous features of the defects in Si implanted amorphous SiO2 are reported. The numbers of E1prime centers and B2 centers are found to increase monotonically with implanted Si dose, in contrast to the saturating feature of these numbers in Ar implanted samples. Moreover, when H ions are implanted in amorphous SiO2 predamaged by Si implantation, both of the density and the number of E1prime centers increase and they reach a constant value at a small H dose. We point out that these anomalies can be explained in terms of the difference in the cross-section for defect annihilation in the specimens implanted with Si ions and other ions, in accordance with the homogeneous model proposed by Devine and Golanski. We consider that the main mechanism of defect annihilation is the recombination of an E1prime center and an interstitial O, which is stabilized by an implanted Si, reducing the cross-section in Si-implanted specimens. ((orig.))

  3. Fabrication and Characteristics of an nc-Si/c-Si Heterojunction MOSFETs Pressure Sensor

    Directory of Open Access Journals (Sweden)

    Xiaofeng Zhao

    2012-05-01

    Full Text Available A novel nc-Si/c-Si heterojunction MOSFETs pressure sensor is proposed in this paper, with four p-MOSFETs with nc-Si/c-Si heterojunction as source and drain. The four p-MOSFETs are designed and fabricated on a square silicon membrane by CMOS process and MEMS technology where channel resistances of the four nc-Si/c-Si heterojunction MOSFETs form a Wheatstone bridge. When the additional pressure is P, the nc-Si/c-Si heterojunction MOSFETs pressure sensor can measure this additional pressure P. The experimental results show that when the supply voltage is 3 V, length-width (L:W ratio is 2:1, and the silicon membrane thickness is 75 μm, the full scale output voltage of the pressure sensor is 15.50 mV at room temperature, and pressure sensitivity is 0.097 mV/kPa. When the supply voltage and L:W ratio are the same as the above, and the silicon membrane thickness is 45 μm, the full scale output voltage is 43.05 mV, and pressure sensitivity is 2.153 mV/kPa. Therefore, the sensor has higher sensitivity and good temperature characteristics compared to the traditional piezoresistive pressure sensor.

  4. Simulation and Optimization of β-FeSi2(n)/a-Si(i)/c-Si(p)/μc-Si(p+) Heterojunction Solar Cells%β-FeSi2(n)/a-Si(i)/c-Si(p)/μc-Si(p+)异质结太阳能电池的模拟与优化

    Institute of Scientific and Technical Information of China (English)

    刘振芳; 刘淑平; 聂慧军

    2016-01-01

    运用AFORS-HET软件对β-FeSi2(n)/a-Si(i)/c-Si(p)/μc-Si(p+)HIT型异质结太阳能电池的性能进行了模拟,并对各层参数进行了优化.模拟结果表明,在FeSi2(n)/c-si(p)结构上加上本征层和背场,能显著地提高电池的性能.加入缺陷并优化各项参数后,电池的最后参数为VoC=647.7 mV,JSC=42.29 mA·cm-2,FF=75.32%,EFF=20.63%,β-FeSi2(n)/c-Si(p)太阳能电池的效率提高了2.3%.

  5. Microstructure of Si Cones Prepared by Ar+-Sputtering Si/Mo Target

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By Ar+ sputtering onto Si wafers which were surrounded by Mo plates, uniform cones over a large area on the Si surface were formed. Scanning electron microscopic study showed that the cones were formed on the entire surface of the Si wafer. The dimensions of the uniform cones were one micrometer in diameter and 5~6 micrometers high.They were further characterized by means of cross-sectional transmission electron microscopy, with the technique of micro-diffractions. It was found that the cone contained a pure Si regime and a Mo-rich regime. In the binary Mo-Si zone, we identified three distinct areas vertically: (1) domains of Mo-induced Si ordered structures, (2) a small volume of a new Mo3Si2 structural variant, intergrown with the Si ordered structure, and (3) a small amount of pure Mo nanoparticles covering the surface of the cones. The formation of the large and uniform cones may provide a new surface configuration for potential applications in surface science and technology.

  6. Scanning tunneling microscopy and spectroscopy of ion-bombarded Si(111) and Si(100) surfaces

    NARCIS (Netherlands)

    Zandvliet, H.J.W.; Elswijk, H.B.; Loenen, van E.J.; Tsong, I.S.T.

    1992-01-01

    Surfaces of Si(111)-(7×7) and Si(100)-(2×1) were bombarded by 3-keV Ar+ ions at doses of ≤1012 ions cm-2 to study the effect of individual ion impacts on the atomic structure of surfaces. Atom-resolved images show damaged regions of missing and displaced atoms. Current-imaging tunneling spectroscop

  7. Carrier extraction dynamics from Ge/Si quantum wells in Si solar cells

    International Nuclear Information System (INIS)

    To address the carrier extraction mechanism that determines the fundamental characteristics, such as current density, open circuit voltage, and fill factor in nanostructure-based solar cells, we performed photoluminescence (PL) decay measurements of the Ge/Si quantum wells (QWs) in crystalline-silicon (c-Si) solar cells. We found that the PL decay time of Ge/Si QWs depends on the temperature and the applied electric field; this dependence reflects the carrier separation characteristics of electron–hole pairs in Ge/Si QWs. Above ∼ 40 K, the electron–hole pairs are rapidly separated by the thermal excitation and the built-in electric field of c-Si solar cells. In contrast, at 20 K the PL decay time remains almost unchanged for an applied electric field of up to ± 1 V. These results indicate that the electrons confined in the type-II band offsets could be thermally excited and then extracted by an applied electric field. - Highlights: • Carrier extraction mechanism in nanostructure-based solar cells • Photoluminescence dynamics in Ge/Si quantum wells in Si solar cells • Carrier separation characteristics of electron-hole pairs in type-II Ge/Si QWs

  8. Green bean biofortification for Si through soilless cultivation: plant response and Si bioaccessibility in pods.

    Science.gov (United States)

    Montesano, Francesco Fabiano; D'Imperio, Massimiliano; Parente, Angelo; Cardinali, Angela; Renna, Massimiliano; Serio, Francesco

    2016-01-01

    Food plants biofortification for micronutrients is a tool for the nutritional value improvement of food. Soilless cultivation systems, with the optimal control of plant nutrition, represent a potential effective technique to increase the beneficial element content in plant tissues. Silicon (Si), which proper intake is recently recommended for its beneficial effects on bone health, presents good absorption in intestinal tract from green bean, a high-value vegetable crop. In this study we aimed to obtain Si biofortified green bean pods by using a Si-enriched nutrient solution in soilless system conditions, and to assess the influence of boiling and steaming cooking methods on Si content, color parameters and Si bioaccessibility (by using an in vitro digestion process) of pods. The Si concentration of pods was almost tripled as a result of the biofortification process, while the overall crop performance was not negatively influenced. The Si content of biofortified pods was higher than unbiofortified also after cooking, despite the cooking method used. Silicon bioaccessibility in cooked pods was more than tripled as a result of biofortification, while the process did not affect the visual quality of the product. Our results demonstrated that soilless cultivation can be successfully used for green bean Si biofortification. PMID:27530434

  9. Green bean biofortification for Si through soilless cultivation: plant response and Si bioaccessibility in pods

    Science.gov (United States)

    Montesano, Francesco Fabiano; D’Imperio, Massimiliano; Parente, Angelo; Cardinali, Angela; Renna, Massimiliano; Serio, Francesco

    2016-01-01

    Food plants biofortification for micronutrients is a tool for the nutritional value improvement of food. Soilless cultivation systems, with the optimal control of plant nutrition, represent a potential effective technique to increase the beneficial element content in plant tissues. Silicon (Si), which proper intake is recently recommended for its beneficial effects on bone health, presents good absorption in intestinal tract from green bean, a high-value vegetable crop. In this study we aimed to obtain Si biofortified green bean pods by using a Si-enriched nutrient solution in soilless system conditions, and to assess the influence of boiling and steaming cooking methods on Si content, color parameters and Si bioaccessibility (by using an in vitro digestion process) of pods. The Si concentration of pods was almost tripled as a result of the biofortification process, while the overall crop performance was not negatively influenced. The Si content of biofortified pods was higher than unbiofortified also after cooking, despite the cooking method used. Silicon bioaccessibility in cooked pods was more than tripled as a result of biofortification, while the process did not affect the visual quality of the product. Our results demonstrated that soilless cultivation can be successfully used for green bean Si biofortification. PMID:27530434

  10. Nanoscale Structuring by Misfit Dislocations in Si1-xGex/Si Epitaxial Systems

    DEFF Research Database (Denmark)

    Shiryaev, S.Y.; Jensen, Flemming; Hansen, J. Lundsgaard;

    1997-01-01

    New capabilities of misfit dislocations for spatial manipulation of islands in Si1-xGex/Si heteroepitaxial systems have been elucidated. Formation of highly ordered Ge-island patterns on substrates prestructured by slip bands of misfit dislocations is revealed. The major sources leading to the or...

  11. Interface Evolution of TiN/Poly Si as Gate Material on Si/HfO2 Stack

    Institute of Scientific and Technical Information of China (English)

    JIANG Ran; YAO Li-Ting

    2008-01-01

    TiN as gate electrode in Si/HfO2/TiN/poly-Si stack is evaluated after the postmetal annealing treatments. Interface reactions are investigated using electron-energy-loss spectroscopy and x-ray photoelectron spectroscopy. The work function of the TiN/poly-Si stack shows strong dependence on the postmetal deposition annealing conditions. The interfacia/product in TiN/poly-Si interface is inferred as TiSiN, which is beneficial for the whole high-k stack since TiSiN possesses higher work function compared to TiN and poly-Si.

  12. Hydrogen related point defects in silicon based layers: dbnd Si(·)H and tbnd SiOOH

    Science.gov (United States)

    Dřínek, Vladislav; Vacek, Karel; Yuzhakov, Gleb; Bastl, Zdeněk; Naumov, Sergej

    2006-04-01

    Layers prepared by pulsed TEA CO 2 pulsed laser ablation (PLA) of SiO and SiO 2 targets in helium were exposed to hydrogen and deuterium atmosphere up to several kPa. The deposited layers were investigated by FTIR, EPR and XP spectroscopy. Among various Si species silyl radical dbnd Si(·)H ( dbnd Si(·)D) at 2166 (1568) cm -1—H(I) center—and silyl hydroperoxide tbnd SiOOH ( tbnd SiOOD) at 3587 (2648) cm -1 were identified in FTIR spectra. Chemical pathways for production of these species are discussed. Experimental results are supported by quantum chemical calculations.

  13. Determination of band offsets in strained-Si heterolayers

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, C.K.; Samanta, S.K.; Chatterjee, S.; Dalapati, G.K.; Bhattacharya, S.; Armstrong, B.M.; Gamble, H.S.; McCarthy, J.; Perova, T.S.; Moore, R.A

    2004-09-01

    Strained-Si/SiGe/Si structures are of increasing importance for microelectronic applications. A fully relaxed-SiGe buffer layer is required for growing strained-Si for applications towards high performance field effect transistors (FETs) having strained-Si as the channel. Preparation of epitaxial strained-Si layers on relaxed-SiGe (001) heterostructures using low pressure chemical vapor deposition (LPCVD) is reported. Gas source molecular beam epitaxy (GSMBE) grown strained-Si films are used to compare with LPCVD strained-Si films. Characterization of the strained-Si layers has been performed using AFM, TEM and Raman spectroscopy. Conduction and valence band offsets of strained-Si on relaxed-SiGe heterostructures have been extracted from measured capacitance-voltage (C-V) profiling of MOS capacitors fabricated on strained-Si using SiO{sub 2} as the dielectric. Extracted experimental values of the valence and conduction band offsets are in good agreement with theoretical predictions.

  14. Hysteresis in the Active Oxidation of SiC

    Science.gov (United States)

    Jacobson, Nathan S.; Harder, Bryan J.; Myers, Dwight L.

    2011-01-01

    Si and SiC show both passive oxidation behavior where a protective film of SiO2 forms and active oxidation behavior where a volatile suboxide SiO(g) forms. The active-to-passive and passive-to-active oxidation transitions are explored for both Si and SiC. Si shows a dramatic difference between the P(O2) for the two transitions of 10-4 bar. The active-to-passive transition is controlled by the condition for SiO2/Si equilibrium and the passive-to-active transition is controlled by the decomposition of SiO2. In the case of SiC, the P(O2) for these transitions are much closer. The active-to-passive transition appears to be controlled by the condition for SiO2/SiC equilibrium. The passive-to-active transition appears to be controlled by the interfacial reaction of SiC and SiO2 and subsequent generation of gases at the interface which leads to scale breakdown.

  15. Diffusion and electrical behavior of Al implanted into capped Si

    Energy Technology Data Exchange (ETDEWEB)

    Scandurra, A. (Consorzio Catania Ricerche, Catania (Italy)); Galvagno, G. (Istituto di Metodologie e Tecnologie per la Microelettronica-CNR, Catania (Italy)); Raineri, V. (Univ. di Catania (Italy). Dipartimento di Fisica); Frisina, F. (ST-Microelectronics, Catania (Italy)); Torrisi, A. (Univ. di Catania (Italy). Dipartimento di Scienze Chimiche)

    1993-07-01

    The diffusion and the electrical behavior of Al implanted in the dose of 1 x 10[sup 13] to 5 x 10[sup 15] cm[sup [minus]2] at 300 keV in capped and uncapped Si is investigated. The Al-based precipitates which are formed when Al concentration exceeds its solid solubility in Si are electrically inactive. The out-diffusion phenomenon that is always present in uncapped samples reduces the Al dose diffused into Si substrate. A study on the electrical activity of Al implanted in Si through SiO[sub 2], Si[sub 3]N[sub 4], and Si[sub 3]N[sub 4]/SiO[sub 2] capping films also is presented. In these capped samples Al segregation in SiO[sub 2] layer occurs. The electrically active doses are small and comparable to that of uncapped samples. The authors studied the diffusivity of Al in bulk SiO[sub 2] and Si[sub 3]N[sub 4] at 1,200 C. The fast Al diffusion through SiO[sub 2] thin layers is driven by a chemical reaction between Al and SiO[sub 2] starting from the SiO[sub 2]/Si interface.

  16. Step-by-Step Laser Crystallization of Amorphous Si:H/SiNx:H Multilayer for Active Layer in Microcavities

    Institute of Scientific and Technical Information of China (English)

    QIAN Bo; CHEN San; CEN Zhan-Hong; CHEN Kun-Ji; LIU Yan-Song; XU Jun; MA Zhong-Yuan; LI Wei; HUANG Xin-Fan

    2006-01-01

    @@ We report the crystallization and photoluminescence (PL) properties of amorphous Si:H/SiNx :H multilayer (ML)films treated by step-by-step laser annealing. The results of Raman measurements show that the nanocrystalline Si (nc-Si) grains are formed in the a-Si:H layers under the constrained growth mechanism. The blue shift of PL peak with grain size is observed and can be attributed to the quantum confinement effect. For comparison, we also report the crystallization and PL of a-Si:H/SiNx :H ML samples by normal one-step treatment. This method of step-by-step laser treatment will be a candidate to make nc-Si quantum dots in amorphous Si:H/SiNx :H ML as an active layer in microcavities.

  17. Carrier recombination in tailored multilayer Si/Si{sub 1−x}Ge{sub x} nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Mala, S.A. [Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Tsybeskov, L., E-mail: tsybesko@njit.edu [Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Lockwood, D.J.; Wu, X.; Baribeau, J.-M. [National Research Council, Ottawa, ON, Canada KIA 0R6 (Canada)

    2014-11-15

    Photoluminescence (PL) measurements were performed in Si/Si{sub 1−x}Ge{sub x} nanostructures with a single Si{sub 0.92}Ge{sub 0.08} nanometer-thick layer incorporated into Si/Si{sub 0.6}Ge{sub 0.4} cluster multilayers. Under pulsed laser excitation, the PL decay associated with the Si{sub 0.92}Ge{sub 0.08} nano-layer is found to be nearly a 1000 times faster compared to that in Si/Si{sub 0.6}Ge{sub 0.4} cluster multilayers. A model considering Si/SiGe hetero-interface composition and explaining the fast and slow time-dependent recombination rates is proposed.

  18. Influence of remaining C on hardness and emissivity of SiC/SiO 2 nanocomposite coating

    Science.gov (United States)

    Yi, J.; He, X. D.; Sun, Y.; Li, Y.; Li, M. W.

    2007-06-01

    SiC/SiO 2 nanocomposite coating was deposited by electron beam-physical vapor deposition (EB-PVD) through depositing SiC target on pre-oxidized 316 stainless steel (SS) substrate. High melting point component C remained and covered on the surface of ingot after evaporation. When SiC ingot was reused, remaining C had an effect on the composition, hardness and emissivity of SiC/SiO 2 nanocomposite coating. The composition of ingot and coating was studied by X-ray photoelectron spectroscopy (XPS). The influence of remaining C on hardness and spectral normal emissivity of SiC/SiO 2 nanocomposite coating was investigated by nanoindentation and Fourier transform infrared spectrum (FTIR), respectively. The results show that remaining C has a large effect on hardness and a minor effect on spectral normal emissivity of SiC/SiO 2 nanocomposite coating.

  19. Investigation of structural and electrical properties of flat a-Si/c-Si heterostructure fabricated by EBPVD technique

    Energy Technology Data Exchange (ETDEWEB)

    Demiroğlu, D. [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Ayazağa 34469, Istanbul (Turkey); Tatar, B. [Faculty of Arts and Sciences, Department of Physics, Namık Kemal University, Değirmenaltı, Tekirdağ (Turkey); Kazmanli, K.; Urgen, M. [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Ayazağa 34469, Istanbul (Turkey)

    2013-12-16

    Flat amorphous silicon - crystal silicon (a-Si/c-Si) heterostructure were prepared by ultra-high vacuum electron beam evaporation technique on p-Si (111) and n-Si (100) single crystal substrates. Structural analyses were investigated by XRD, Raman and FEG-SEM analysis. With these analyses we determined that at the least amorphous structure shows modification but amorphous structure just protected. The electrical and photovoltaic properties of flat a-Si/c-Si heterojunction devices were investigated with current-voltage characteristics under dark and illumination conditions. Electrical properties of flat a-Si/c-Si heterorojunction; such as barrier height Φ{sub B}, diode ideality factor η were determined from current-voltage characteristics in dark conditions. These a-Si/c-Si heterostructure have good rectification behavior as a diode and exhibit high photovoltaic sensitivity.

  20. Low activation brazing materials and techniques for SiC f/SiC composites

    Science.gov (United States)

    Riccardi, B.; Nannetti, C. A.; Petrisor, T.; Sacchetti, M.

    2002-12-01

    A low activation brazing technique for silicon carbide fiber reinforced silicon carbide matrix composites (SiC f/SiC) is presented; this technique is based on the use of the 78Si-22Ti (wt%) eutectic alloy. The joints obtained take advantage of a melting point able to avoid composite fibre-interface degradation. All the joints showed absence of discontinuities and defects at the interface and a fine eutectic structure. Moreover, the joint layer appeared well adherent both to the matrix and the fibre interphase and the brazing alloy infiltration looked sufficiently controlled. The joints of SiC f/SiC composites showed 71±10 MPa almost pure shear strength at RT and up to 70 MPa at 600 °C.

  1. Si nanocrystals embedded in SiO2: Optical studies in the vacuum ultraviolet range

    DEFF Research Database (Denmark)

    Pankratov, V.; Osinniy, Viktor; Kotlov, A.;

    2011-01-01

    Photoluminescence excitation and transmission spectra of Si nanocrystals of different diameters embedded in a SiO2 matrix have been investigated in the broad visible-vacuum ultraviolet spectral range using synchrotron radiation. The dependence of the photoluminescence excitation spectra...... on the nanocrystals size was experimentally established. It is shown that the photoluminescence excitation and absorption spectra are significantly blueshifted with decreasing Si nanocrystal size. A detailed comparison of photoluminescence excitation and absorption spectra with data from theoretical modeling has been...... done. It is demonstrated that the experimentally determined blueshift of the photoluminescence excitation and absorption spectra is larger than the theoretical predictions. The influence of point defects in the SiO2 matrix on the optical and luminescence properties of the embedded Si nanocrystals...

  2. Valence band structure of strained Si/(111)Si1-xGex

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The strained Si techique has been widely adopted in the high-speed and high-performance devices and circuits. Based on the valence band E-k relations of strained Si/(111)Si1-xGex, the valence band and hole effective mass along the [111] and [-110] directions were obtained in this work. In comparison with the relaxed Si, the valence band edge degeneracy was partially lifted, and the significant change was observed band structures along the [111] and [-110] directions, as well as in its corresponding hole effective masses with the increasing Ge fraction. The results obtained can provide valuable references to the investigation concerning the Si-based strained devices enhancement and the conduction channel design related to stress and orientation.

  3. 193 nm Excimer laser processing of Si/Ge/Si(100) micropatterns

    Science.gov (United States)

    Gontad, F.; Conde, J. C.; Chiussi, S.; Serra, C.; González, P.

    2016-01-01

    193 nm Excimer laser assisted growth and crystallization of amorphous Si/Ge bilayer patterns with circular structures of 3 μm diameter and around 25 nm total thickness, is presented. Amorphous patterns were grown by Laser induced Chemical Vapor Deposition, using nanostencils as shadow masks and then irradiated with the same laser to induce structural and compositional modifications for producing crystalline SiGe alloys through fast melting/solidification cycles. Compositional and structural analyses demonstrated that pulses of 240 mJ/cm2 lead to graded SiGe alloys with Si rich discs of 2 μm diameter on top, a buried Ge layer, and Ge rich SiGe rings surrounding each feature, as predicted by previous numerical simulation.

  4. Mechanoactivation of chromium silicide formation in the SiC-Cr-Si system

    Directory of Open Access Journals (Sweden)

    Vlasova M.

    2002-01-01

    Full Text Available The processes of simultaneous grinding of the components of a SiC-Cr-Si mixture and further temperature treatment in the temperature range 1073-1793 K were studied by X-ray phase analysis, IR spectroscopy, electron microscopy, and X-ray microanalysis. It was established that, during grinding of the mixture, chromium silicides form. A temperature treatment completes the process. Silicide formation proceeds within the framework of the diffusion of silicon into chromium. In the presence of SiO2 in the mixture, silicide formation occurs also as a result of the reduction of silica by silicon and silicon carbide. The sintering of synthesized composite SiC-chromium silicides powders at a high temperature under a high pressure (T = 2073 K, P = 5 GPa is accompanied by the destruction of cc-SiC particles, the cc/3 transition in silicon carbide and deformation distortions of the lattices of chromium silicides.

  5. On the compliant behaviour of free-standing Si nanostructures on Si(001) for Ge nanoheteroepitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, Grzegorz

    2012-04-24

    Selective chemical vapor deposition Ge heteroepitaxy approaches for high quality Ge nanostructure growth with reasonable thermal budget must be developed for local Ge photonic module integration. A promising vision is offered by the compliant substrate effects within nanometer scale Ge/Si heteroepitaxial structures. Here, in contrast to the classical Ge deposition on bulk Si substrates, the thermal and lattice mismatch strain energy accumulated in the Ge epilayer is partially shifted to the free-standing Si nanostructure. This strain partitioning phenomenon is at the very heart of the nanoheteroepitaxy theory (NHE) and, if strain energy levels are correctly balanced, offers the vision to grow defect-free nanostructures of lattice mismatched semiconductors on Si. In case of the Ge/Si heterosystem with a lattice mismatch of 4.2%, the strain partitioning phenomenon is expected to be triggered when free-standing Si nanopillars with the width of 50 nm and below are used. In order to experimentally verify NHE with its compliant substrate effects, a set of free-standing Ge/Si nanostructures with diameter ranging from 150 to 50 nm were fabricated and investigated. The main limitation corresponds to a simultaneous detection of (a) the strain partitioning phenomenon between Ge and Si and (b) the absence of defects on the nano-scale. In this respect, synchrotron-based grazing incidence X-ray diffraction was applied to study the epitaxial relationship, defect and strain characteristics with high resolution and sensitivity in a non-destructive way. Raman spectroscopy supported by finite element method calculations were used to investigate the strain distribution within a single Ge/Si nanostructure. Special focus was devoted to transmission electron microscopy to determine the quality of the Ge epilayer. It was found, that although high quality Ge nanoclusters can be achieved by thermal annealing on Si pillars bigger than 50 nm in width, no proof of strain partitioning

  6. A model for thermal oxidation of Si and SiC including material expansion

    Energy Technology Data Exchange (ETDEWEB)

    Christen, T., E-mail: thomas.christen@ch.abb.com; Ioannidis, A. [ABB Corporate Research, Segelhofstrasse 1K, CH-5405 Baden (Switzerland); Winkelmann, C. [ETH Zürich, Seminar for Applied Mathematics, Rämistrasse 101, CH-8092 Zürich (Switzerland)

    2015-02-28

    A model based on drift-diffusion-reaction kinetics for Si and SiC oxidation is discussed, which takes the material expansion into account with an additional convection term. The associated velocity field is determined self-consistently from the local reaction rate. The approach allows a calculation of the densities of volatile species in an nm-resolution at the oxidation front. The model is illustrated with simulation results for the growth and impurity redistribution during Si oxidation and for carbon and silicon emission during SiC oxidation. The approach can be useful for the prediction of Si and/or C interstitial distribution, which is particularly relevant for the quality of metal-oxide-semiconductor electronic devices.

  7. Simulation of Nano Si and Al Wires Growth on Si(1O0) Surface

    Institute of Scientific and Technical Information of China (English)

    吴锋民; 黄辉; 吴自勤

    2000-01-01

    Growth of nano Si and Al wires on the Si(100) surfaces is investigated by computer simulation, including the anisotropic diffusion and the anisotropic sticking. The diffusion rates along and across the substrate dimer rows are different, so are the sticking probabilities of an adatom, at the end sites of existing islands or the side sites. Both one-dimensional wires of Si and Al are perpendicular to the dimer rows of the substrate, though the diffusion of Si adatoms is contrary to that of Al adatoms, i.e. Si adatoms diffuse faster along the dimer rows while Al adatoms faster across the dimer rows. The simulation results also show that the shape anisotropy of islands is due to the sticking anisotropy rather than the diffusion anisotropy,which is in agreement with the experiments.

  8. Dispersion of ultrafine SiC particles in molten Al- 12Si alloy

    Institute of Scientific and Technical Information of China (English)

    Jin-Ju PARK; Sang-Hoon LEE; Min-Ku LEE; Chang-Kyu RHEE

    2011-01-01

    The bulk Al-12 Si eutectic composites were fabricated through a conventional liquid metal casting route, especially with the help of ultrafine ceramic powders made by self-propagating high-temperature synthesis (SHS) process. The SHS powders were fabricated by the chemical reaction between micro-sized SiC and Al particles at very high combustion temperatures, producing the coarse Al particles (several tens of microns) containing ultrafine SiC ceramic particles. Microstmctural observation revealed that the addition of ultrafine SiC particles has a crumbling tendency of Si eutectic phase. It is suggested that the casting method combined with SHS process is promising for fabricating the Al-based MMC with ultrafine ceramic particles.

  9. Characteristics of elastic wave generated by wear and friction of SiCf/SiC composites

    International Nuclear Information System (INIS)

    The wear characteristics of SiCf/SiC composites were evaluated according to the alignment direction of the fibers, and the elastic wave-generated friction was detected and analyzed in wearing. The friction coefficient and wear loss were similar in the longitudinal and the transverse direction of the fibers. However, these values were lower in the vertical direction of the fibers because of the brittle nature of the fiber. The friction coefficient and the wear loss were directly proportional to each other. The dominant frequencies were 58.6 kHz for monolithic SiC and 117.2 and 136.7 kHz for SiCf/SiC composites, respectively.

  10. Ion channeling study of single-crystal columns of CoSi sub 2 embedded in epitaxial Si on Si(111) grown by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Shin; Xiao, Q.F.; Gibson, W.M. (Dept. of Physics and Inst. for Particle-Solid Interactions, State Univ. of New York, Albany, NY (USA)); Nieh, C.W. (Keck Lab. of Engineering, California Inst. of Tech., Pasadena, CA (USA)); Fathauer, R.W. (Jet Propulsion Lab., California Inst. of Tech., Pasadena, CA (USA))

    1990-01-01

    Codeposition of Si and Co on a heated Si(111) substrate with a Si/Co ratio much greater than 3 results in epitaxial columns of CoSi{sub 2} ({chi}{sub min} {approx equal} 4%) embedded in high quality epitaxial Si ({chi}{sub min} {approx equal} 3%). The average lattice distortion (or strain) in CoSi{sub 2} columns is estimated by channeling along off-normal axes. Due primarily to constraints by the surrounding Si lattice, the unit cell of the CoSi{sub 2} lattice in the columns is elongated perpendicular to the substrate when the average aspect ratio, (height)/(average diameter), of the columns is greater than {approx equal} 1.4. (orig.).

  11. Interfacial transformations in the a-SiC/a-Si/6H-SiC structure caused by high-temperature (1500°C) annealing

    Science.gov (United States)

    Ivanov, P. A.; Samsonova, T. P.

    2008-07-01

    We have studied the reactions that take place at interfaces in an a-SiC/a-Si/6H-SiC sandwich structure, which was obtained by the sequential deposition of amorphous silicon (a-Si) and amorphous silicon carbide (a-SiC) onto a 6H-SiC substrate by ion sputtering in vacuum and then annealed at 1500°C (i.e., above the melting point of silicon). It is shown that the annealing leads to complete îdissipationî of the silicon film in SiC, probably as a result of the dissolution of carbon in the silicon melt and the diffusion of silicon into SiC.

  12. Stepwise redefinition of the SI base units

    CERN Document Server

    Issaev, L K; Khruschov, V V

    2012-01-01

    The four SI base units are proposed to be redefined in two stages: first, the kilogram, mole and ampere should be defined, and then the kelvin. To realize the redefinition of a base unit of the SI in terms of fundamental physical constant (FPC), a principle of coincidence of their physical dimensions is put forward. Direct applying this principle will lead to the changing of the sets of base and derived units in the new SI. If we want to preserve the continuity of the division between base and derived units in the new and the current SI, the principle is to be generalized with the time dimension factor be included. The status of the mole as the base unit of measurement is considered in the current and new SI. It is proposed to redefine the kilogram using a fixed value of the Avogadro constant and then to redefine the kelvin, after the measurement accuracy of the Boltzmann constant has been increased and agreed with the values of other constants of molecular physics.

  13. Dependence of Threshold Voltage of a-Si:H TFT on a-SiNx:H Film①

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    The relation between threshold voltage for hydrogenated amorphous silicon thin film transistors(a-Si:HTFTs)and deposition conditions for hydrogenated amorphous silicon nitride(a-SiNx:H)films is investigated.It is observed that the threshold voltage,Vth,of a-Si:HTFT increases with the increase of the thickness of a-SiNx:H film,and the threshold voltage is reduced apparently with the increase of NH3/SiH4 gas flow rate ratio.

  14. Evaluation of the Machinability of Cast Ti-Si Alloys with Varying Si Content

    Science.gov (United States)

    Hsu, Hsueh-Chuan; Wu, Shih-Ching; Hsu, Shih-Kuang; Hsu, Chih-Cheng; Ho, Wen-Fu

    2016-05-01

    This study evaluated the machinability of a series of binary Ti-Si alloys with a goal of developing a titanium alloy with better machinability than commercially pure titanium (c.p. Ti). The alloys were slotted using a milling machin/span>e and end mills under four cutting conditions. Machinability was evaluated through cutting force. The experimental results indicate that alloying with Si significantly improved the machinability of c.p. Ti in terms of cutting force under the present cutting conditions. As the Si content increases, the cutting force decreases then greatly increases. The cutting forces of c.p. Ti and the Ti-Si alloys increased as the feed rate increased from 30 to 60 m/min under the cutting speed of 55 or 110 m/min. The cutting force of Ti-5Si at cutting speed 55 m/min was approximately 49% lower than that of c.p. Ti; at cutting speed 110 m/min, it was approximately 62% lower than that of c.p. Ti. The cutting force of Ti-10Si was significantly higher than those of the other Ti-Si alloys and c.p. Ti, a result that can be explained by a higher degree of hardness (626 HV) and larger amounts of Ti5Si3 (47.10 vol.%). For Ti-5Si, there was no obvious adhesion of chips observed on the cut surfaces. Furthermore, the specimens had the lowest surface roughness (Ra) values, approximately 0.3-0.4 μm, under the four cutting conditions. When cutting force, chip length, and surface roughness results are considered, the Ti-5Si alloy developed in this study is a viable candidate for machining.

  15. A porous Si-emitter crystalline-Si solar cell with 18.97% efficiency.

    Science.gov (United States)

    Wang, Liang-Xing; Zhou, Zhi-Quan; Hao, Hong-Chen; Lu, Ming

    2016-10-21

    A p-n junction was made on p-type Si〈100〉 wafer (15 × 15 × 0.2 mm(3) in size) via phosphorous diffusion at 900 °C. Porous Si (PSi) with ultralow reflectivity (Si emitter in a solution of HF, H2O2 and H2O. The PSi was found to mainly consist of Si nanocrystallites with bandgap widths larger than that of bulk Si. Compared to other micro- or nanostructured Si-based crystalline-Si solar cells found in the literature, this PSi one possessed the feature of a graded band gap, which helped to suppress the surface recombination. In addition, the preparation method was readily applicable on large-scale-sized Si wafers. Also, the PSi acted as a down-shifter that absorbed the ultraviolet/violet light to which the Si solar cell responded poorly, and emitted a red one to which the cell responded well. Front and rear surface passivations were conducted by using SiO2 and Al2O3, respectively, to suppress the surface recombination and to facilitate the charge transfer. Indium-tin-oxide was used as the front electrode that was in good contact with the PSi, and Al was used as the rear one. For such a PSi-emitter crystalline-Si solar cell, enhancements of the photovoltaic responses from the ultraviolet to near-infrared regimes were observed; the open-circuit voltage was 606.8 mV, the short-circuit current density was 40.13 mA cm(-2), the fill factor was 0.779 and the conversion efficiency was 18.97%.

  16. Non-destructive inspection of SiCf/SiC composites structure

    International Nuclear Information System (INIS)

    Fiber reinforced ceramic matrix composite is an attractive candidate as a structural material for future fusion power plants because of their light weight, high temperature capability, high strength and toughness. Ceramic matrix composite made of silicon carbide matrix and fibers (SiCf/SiC) is promising for nuclear and fusion technology due to its excellent radiation resistance, especially exposure to high-energy particles such as neutron, proton, and alpha. However, porosity, which is mainly due to manufacturing process of the SiCf/SiC composites, is a critical issue in its application in fusion technology. Internal pores mitigate most of the outstanding properties of the SiCf/SiC composites such as thermal conductivity, high strength and radiation stability. The pores in composites are unavoidable and significantly reduce the life time and performance of the composites under harsh environments. The aim of the study is to examine the pore structure and alignment between the matrix/fiber bundles and high-temperature induced changes within the SiCf/SiC composite. By means of non-destructive cold neutron tomography (at Helmholtz Zentrum Berlin) and small angle neutron scattering (at Paul Scherrer Institute, PSI-Villigen) techniques inner microstructure of the composites have been investigated. The cold neutron tomography and small angle neutron scattering techniques have been applied in order to gain complementary information on the microstructure of the SiCf/SiC composites. After heat treatment of the composites at 1300 deg. C, 1400 deg. C and 1500 deg. C for 5 hours small angle neutron scattering (SANS) measurements have been carried out to understand the structural changes under high-temperature: pore size changes induced by high temperature. Scattering curves have revealed the changes in pore size at elevated temperatures. (author)

  17. 连续SiC纤维增韧SiC基体复合材料研究进展%Research Progress of SiC Composite Toughened with Continuous SiCf

    Institute of Scientific and Technical Information of China (English)

    丁冬海; 周万城; 张标; 罗发; 朱冬梅

    2011-01-01

    近年来,SiC纤维增韧SiC基体复合材料(SiC/SiC)由于具有良好的高温力学、抗化学腐蚀、高的韧性与抗中子辐照等优异性能而受到广泛关注.本文主要从纤维、界面层、基体与应用四方面评述了近年来国内外的研究进展.SiC纤维的性能直接影响了界面层材料与基体制备技术的选择.电泳沉积有望成为一种低成本、节能及对环境无污染的界向层及基体制备技术.在应用方面,作为热结构材料,SiC/SiC复合材料已经得到了实际应用.核反应堆用SiC/SiC结构材料的研究到了实际考核验证阶段.高性能SiC纤维的大规模生产是SiC/SiC广泛应用的前提条件.%Recently, SiCf/SiC composite have attracted much attentions due to its excellent high temperature mechanical prorperty, chemical corrsion resistance and neutron radiation resistance. In this paper, the research and progress of fiber, interphase, matrix and application of SiCf/SiC are reviewed.The choices of interphase and process of matrix are infiunced by properties of SiC fiber. EPD is a lowe coast, energy conservation and friendly to enviroment process, which is potential for preparation of interphase and matrix of SiCf/SiC. As thermal structual composites, SiCf/SiC has been used. The SiCf/SiC component for fusion application is ready for system demonstration. Extensive use of SiCf/SiC composite depends partly on the large scale production of high performance of SiC fiber.

  18. Characterization of Si/SiGe/Si Deposited on SIMOX SOI by Synchrotron Radiation X-Ray Double-crystal Topography

    Institute of Scientific and Technical Information of China (English)

    Ma Tongda; Tu Hailing; Hu Guangyong; Wang Jing

    2004-01-01

    The synchrotron X-ray double-crystal topography was employed to investigate the structure of Si/SiGe/Si deposited on SIMOX SOI. Rocking curves with three diffraction peaks were acquired before and after 180° rotation of samples. Double-crystal topographs taken at the full width at half maximum (FWHM) of the three peaks differ from each other. Many defects appear in the Si layers that are likely related to the tilt between SOI and epitaxial layers.

  19. Atomic Diffusion in Cu/Si (111) and Cu/SiO2/Si (111) Systems by Neutral Cluster Beam Deposition

    Institute of Scientific and Technical Information of China (English)

    CAO Bo; LI Gong-Ping; CHEN Xi-Meng; CHO Seong-Jin; KIM Hee

    2008-01-01

    @@ The Cu films are deposited on two kinds of p-type Si (111) substrates by ionized cluster beam (ICB) technique.The interface reaction and atomic diffusion of Cu/Si (111) and Cu/SiO2/Si (111) systems are studied at different annealing temperatures by x-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). Some significant results are obtained: For the Cu/Si (111) samples prepared by neutral clusters, the interdiffusion of Cu and Si atoms occurs when annealed at 230℃. The diffusion coefficients of the samples annealed at 230℃and 500℃ are 8.5 × 10-15 cm2.s-1 and 3.0 × 10-14 cm2.s-1, respectively. The formation of the copper-silicide phase is observed by XRD, and its intensity becomes stronger with the increase of annealing temperature. For the Cu/SiO2/Si (111) samples prepared by neutral clusters, the interdiffusion of Cu and Si atoms occurs and copper silicides are formed when annealed at 450℃. The diffusion coefficients of Cu in Si are calculated to be 6.0 × 10-16 cm2.s-1 at 450℃, due to the fact that the existence of the SiO2 layer suppresses the interdiffusion of Cu and Si.

  20. Charge trapping studies in SiO2 using high current injection from Si-rich SiO2 films

    Science.gov (United States)

    DiMaria, D. J.; Ghez, R.; Dong, D. W.

    1980-09-01

    The high electron injection phenomenon of Si-rich SiO2 films deposited on top of SiO2 can be used for novel charge trapping studies of sites normally present or purposely introduced in the SiO2. From the position and extent of current ledges observed in dark current as a function of ramped gate voltage, the capture cross section and total number of traps can be determined. Using these measurements with capacitance as a function of gate voltage, the trap distribution centroid and number of trapped charges can also be found. Several experimental examples are given including trapping in thermal SiO2, in chemically vapor deposited (CVD) SiO2, and on W, less than a monolayer thick, sandwiched between thermal and CVD SiO2. These stepped insulator metal-insulator-silicon (SI-MIS) ramp I-V results for the trapping parameters are shown to be in good agreement with those determined using the conventional photo I-V and avalanche injection with flat-band voltage tracking techniques. A numerical simulation of the ramp I-V measurements, assuming electric field-enhanced Fowler-Nordheim tunneling at the Si-rich-SiO2-SiO2 interface, is described and is shown to give good agreement with the experimental data. These techniques for SI-MIS structures are faster and easier, although less accurate than the conventional techniques.

  1. Nitrogen doping effect upon hole tunneling characteristics of Si barriers in Si{sub 1-x}Ge{sub x}/Si resonant tunneling diode

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, Tomoyuki [Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Sakuraba, Masao, E-mail: sakuraba.masao@myad.jp [Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Murota, Junichi [Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2014-04-30

    Nitrogen atomic-layer (N AL) doping effects upon hole tunneling characteristics of double 4 nm-thick Si barriers in the strained Si{sub 1−x}Ge{sub x}/Si(100) hole resonant tunneling diode (RTD) were investigated. At a Si cap layer on Si{sub 1−x}Ge{sub x}(100) (x = 0.2 and 0.4) formed at 500 °C, it was found that NH{sub 3} reaction was drastically enhanced at 500 °C especially at the Si cap layer thickness less than 0.5 nm, and the fact indicates a possibility of significant intermixing at the Si/Si{sub 1−x}Ge{sub x} heterointerface. From current–voltage characteristics of the RTDs, drastic current suppression by N AL doping in the Si barriers can be observed with typical degree of current suppression as high as 10{sup 3}–10{sup 5} at − 10 mV. Moreover, it was found that N AL doping influences, not only upon such current suppression, but slightly upon negative differential conductance characteristics. - Highlights: • NH{sub 3} reaction enhancement on a thin Si cap layer on Si{sub 1−x}Ge{sub x}(100). • Drastic current suppression by N atomic-layer doping in Si barriers. • N atomic-layer doping effect upon negative differential conductance characteristics.

  2. Switching Performance Evaluation of Commercial SiC Power Devices (SiC JFET and SiC MOSFET) in Relation to the Gate Driver Complexity

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    Silicon Carbide (SiC) power devices can provide a significant improvement of power density and efficiency in power converters. The switching performances of SiC power devices are often a trade-off between the gate driver complexity and the desired performance; this is especially true for SiC BJTs...

  3. Kinetics of Ni3Si2 Formation in the Ni2Si-NiSi Thin Film Reaction from in situ Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kittl,J.; Pawlak, M.; Torregiani, C.; Lauwers, A.; Demeurisse, C.; Vrancken, C.; Absil, P.; Biesemens, S.; Detavernier, C.; et al

    2007-01-01

    The kinetics of Ni3Si2 formation in the Ni2Si-NiSi thin film reaction were determined from simultaneous in situ x-ray diffraction (XRD) measurements, performed using a synchrotron source, and sheet resistance measurements. Samples consisted of 90 nm Ni/100 nm polycrystalline-Si/SiO2 stacks, of interest for fully silicided gate applications, on (100) Si. After initial formation of a Ni2Si/NiSi bilayer, these films reacted to form Ni3Si2. The evolution of sheet resistance and of the intensity of XRD peaks were used to extract the fraction of Ni3Si2 formed during ramp and isothermal annealings. A Kissinger analysis was performed for ramp annealing with ramp rates of 1, 3, 5, 9, and 27 C/s, obtaining the activation energy of Ni3Si2 formation, Ea = 1.92{+-}0.15 eV. A Kolmogorov-Johnson-Mehl-Avrami analysis was performed for isothermal anneals, finding an Avrami exponent of 2.1{+-}0.2, suggesting two-dimensional growth. This is consistent with a nucleation controlled process for Ni3Si2 formation, with nucleation sites at different positions in the thin film, and subsequent lateral two-dimensional propagation of the transformation front parallel to the film surface. Implications for Ni fully silicided gate applications are discussed.

  4. Recent advances in siRNA delivery.

    Science.gov (United States)

    Sarisozen, Can; Salzano, Giuseppina; Torchilin, Vladimir P

    2015-12-01

    In the 1990s an unexpected gene-silencing phenomena in plants, the later called RNA interference (RNAi), perplexed scientists. Following the proof of activity in mammalian cells, small interfering RNAs (siRNAs) have quickly crept into biomedical research as a new powerful tool for the potential treatment of different human diseases based on altered gene expression. In the past decades, several promising data from ongoing clinical trials have been reported. However, despite surprising successes in many pre-clinical studies, concrete obstacles still need to be overcome to translate therapeutic siRNAs into clinical reality. Here, we provide an update on the recent advances of RNAi-based therapeutics and highlight novel synthetic platforms for the intracellular delivery of siRNAs. PMID:26609865

  5. Gain Stabilization of SiPMs

    CERN Document Server

    Cvach, Jaroslav; Kvasnicka, Jiri; Polak, Ivo; van der Kraiij, Erik; Zalieckas, Justas

    2014-01-01

    The gain of SiPMs depends both on bias voltage and on temperature. For stable operations, both need to be kept constant. In an ILC calorimeter with millions of channels, this is a challenging task. It is, therefore, desirable to compensate for temperature variations by automatically readjusting the bias voltage. We have designed a bias voltage regulator board to achieve this task. We anticipate an uncertainty on the gain stability at the level of $< 1\\%$. First, we present measurements of the gain dependence on temperature and bias voltage for several SiPMs from three different manufacturers and determine their dV/dT dependence. Next, we demonstrate the performance of the gain stability with the bias voltage regulator test board on four SiPMs.

  6. Si-based infrared optical filters

    Science.gov (United States)

    Balčytis, Armandas; Ryu, Meguya; Seniutinas, Gediminas; Nishijima, Yoshiaki; Hikima, Yuta; Zamengo, Massimiliano; Petruškevičius, Raimondas; Morikawa, Junko; Juodkazis, Saulius

    2015-12-01

    Pyramidal silicon nanospikes, termed black-Si (b-Si), with controlled height of 0.2 to 1 μm, were fabricated by plasma etching over 3-in wafers and were shown to act as variable density filters in a wide range of the IR spectrum 2.5 to 20 μm, with transmission and its spectral gradient dependent on the height of the spikes. Such variable density IR filters can be utilized for imaging and monitoring applications. Narrow IR notch filters were realized with gold mesh arrays on Si wafers prospective for applications in surface-enhanced IR absorption sensing and "cold materials" for heat radiation into atmospheric IR transmission window. Both types of filters for IR: spectrally variable and notch are made by simple fabrication methods.

  7. Thermal Properties of Al-50%Si Alloys

    Institute of Scientific and Technical Information of China (English)

    Akio Nishimoto; Katsuya Akamatsu; Kazuyoshi Nakao; Kazuo Ichii

    2004-01-01

    In order to prepare a hypereutectic Al-Si alloy with low coefficients of thermal expansion (CTE), Al-50was produced by powder metallurgy (P/M) and ingot metallurgy (I/M). P/M specimen was prepared by mechanical alloying(MA) and pulsed electric-current sintering (PECS). The microstructures of specimens were characterized by optical microscopy and scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS). Vickers microhardness and CTE measurements were performed. The grains in the P/M specimen were refined with increasing MA time. Primary Si and eutectic Si in the I/M specimen were remarkably refined by adding minute amounts of Sr. The CTE of P/M and I/M specimens were estimated as 7.8×10-6 and 10.7×10-6, respectively. These values were as same as a CTE of Al2O3 ceramics.

  8. Comment on Dimensionless Units in the SI

    CERN Document Server

    Quincey, Paul

    2015-01-01

    The recent paper by Mohr and Phillips (arXiv:1409.2794) describes several problems relating to the treatment of angle measurement within SI, the unit hertz, and quantities that can be considered countable (rather than measureable). However, the proposals that they put forward bring new problems of their own. This paper proposes alternative suggestions that solve the problems less painfully. Specifically, clarifying the text on angle in the SI brochure; relegating the hertz to a "Non-SI unit accepted for use with the International System of Units", with specific application only for "revolutions or cycles per second"; and encouraging countable quantities to be presented as pure numbers, while requiring that a sufficient description of the quantity being counted is given in the accompanying text.

  9. Light emission from Si quantum dots

    Directory of Open Access Journals (Sweden)

    Philippe M. Fauchet

    2005-01-01

    Full Text Available Si quantum dots (QDs as small as ∼2 nm in diameter have been synthesized by a variety of techniques. Because of quantum confinement and the elimination of bulk or surface defects, these dots can emit light from the near infrared throughout the visible with quantum efficiencies in excess of 10%. The luminescence wavelength range has been extended to longer wavelengths by the addition of light-emitting rare earths such as erbium (Er. Light-emitting devices (LEDs have been fabricated and their performances are starting to approach those of direct band gap semiconductor or organic LEDs. A search for a Si QD-based laser is even under way. The state-of-the-art in the materials science, physics, and device development of luminescent Si QDs is reviewed and areas of future research are pointed out.

  10. Lattice location of implanted Ag in Si

    CERN Document Server

    Wahl, U; Vantomme, A

    2002-01-01

    The lattice location of implanted silver in Si was studied by means of the emission channeling technique. Following 60 keV room temperature implantation of radioactive $^{111}$Ag at a dose of 2-3 $\\times 10^{12}$ cm$^{-2}$, we identify around 30% of Ag on near-substitutional sites (around 0.45 from ideal S-sites). Upon annealing at 200-300°C, the fraction on near-S sites reaches a maximum around 60-80%. For higher annealing temperatures it decreases again and at 600°C Ag starts to diffuse out of the Si samples. We estimate the activation energy for the dissociation of near-substitutional Ag to be 1.8-2.2 eV. The experimental results are compared to those of Cu in Si, and common features and characteristic differences in the behavior of the two group 1B metals are discussed.

  11. Point Defects in SiC

    Science.gov (United States)

    Zvanut, Mary Ellen

    2004-03-01

    Production of high frequency, high power electronic devices using wide bandgap semiconductors has spurred renewed interest in point defects in SiC. Recent electron paramagnetic resonance (EPR) spectroscopy studies focus on centers in as-grown high purity semi-insulating substrates because intrinsic defects are thought to compensate unavoidable shallow centers, thus creating the high resistivity required. The EPR studies address the chemical/structural composition of the defects, the defect level (energy with respect to a band edge with which the defect can accept or release an electron) and thermal stability. Thus far, the positively charged carbon vacancy, the Si vacancy, a carbon-vacancy/carbon antisite pair, and several as yet-unidentified centers have been observed in as-grown electronic-grade 4H-SiC [1-3]. The talk will review the types of defects recently identified in SiC and discuss their possible relationship to compensation. The photo-induced EPR experiments used to determine defect levels will be discussed, with a particular focus on the carbon vacancy. The use of high frequency EPR to resolve the many different types of centers in SiC will also be covered. Finally, the presentation will review the thermal stability of the intrinsic defects detected in as-grown 4H SiC. 1. M. E. Zvanut and V. V. Konovalov, Appl. Phys. Lett. 80, 410 (2002). 2. N.T. Son, Z. Zolnai, and E. Janzen, Phys. Rev. B64, 2452xx (2003). 3. W.E. Carlos, E.R. Glaser, and B.V. Shanabrook, in Proceedings of the 22nd conference on Defects in Semiconductors, Aarhus, Denmark, July 2003.

  12. GaP/Si heterojunction Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Saive, R.; Chen, C.; Emmer, H.; Atwater, H.

    2015-05-11

    Improving the efficiency of solar cells requires the introduction of novel device concepts. Recent developments have shown that in Si solar cell technology there is still room for tremendous improvement. Using the heterojunction with intrinsic thin layer (HIT) approach 25.6 % power conversion efficiency was achieved. However, a-Si as a window and passivation layer comes with disadvantages as a-Si shows low conductivity and high parasitic absorption. Therefore, it is likely that using a crystalline material as window layer with high band gab and high mobility can further improve efficiency. We have studied GaP grown by MOCVD on Si with (001) and (112) orientation. We obtained crystalline layers with carrier mobility around 100 cm2/Vs and which passivate Si as confirmed by carrier lifetime measurements. We performed band alignment studies by X-ray photoelectron spectroscopy yielding a valence band offset of 0.3 eV. Comparing this value with the Schottky-model leads to an interface dipole of 0.59 eV. The open circuit voltage increases with increasing doping and is consistent with the theoretical open circuit voltage deduced from work function difference and interface dipole. We obtain an open circuit voltage of 0.38 V for n-doped GaP with doping levels in the order of 10^17 1/cm^3. In our next steps we will increase the doping level further in order to gain higher open circuit voltage. We will discuss the implications of these findings for GaP/Si heterojunction solar cells.

  13. SiC nanowires synthesized from graphene and silicon vapors

    Science.gov (United States)

    Weichenpei, Luo; Gong-yi, Li; Zengyong, Chu; Tianjiao, Hu; Xiaodong, Li; Xuefei, Zhang

    2016-04-01

    The preparation of silicon carbide (SiC) nanowires is basically important for its potential applications in nanodevices, nanocomposites, etc. In the present work, a simple route was reported to synthesize SiC nanowires by heating commercial graphene with silicon vapors and no catalyst. Characterization by scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, electron energy scattering, X-ray diffraction, and Raman dispersive spectrum demonstrates the products are composed of β-SiC crystal. The SiC nanowires have the average diameter of about 50 nm and length of tens of micrometers. The vapor-solid mechanism was employed to interpret the SiC nanowires growth. Gaseous SiO which was produced by the reaction of Si powders with its surface oxidation reacted with the solid graphene to form SiC crystal nuclei. And SiC crystal nuclei would act as active sites for further growing into nanowires.

  14. SiCsf/SiC-BN复合陶瓷的制备及抗氧化性能%Preparation and Oxidation Resistance of SiCsf/SiC-BN Composites

    Institute of Scientific and Technical Information of China (English)

    杨治华; 贾德昌; 周玉; 石鹏远; 宋成斌

    2004-01-01

    制备了SiC短纤维增强原位合成的SiC-BN复合陶瓷(SiCsf/SiC-BN),对其氧化动力学进行了分析计算,并对不同成分的SiCsf/SiC-BN复合陶瓷在800~1200℃的氧化过程进行了研究.研究表明, Si3N4,B4C和C可以原位合成复合陶瓷的基体.复合陶瓷在高温发生氧化时,SiC和BN氧化产物主要为SiO2和B2O3,这两者互融形成的薄膜可以有效减缓复合陶瓷的氧化.

  15. Ag on Si(111) from basic science to application

    Energy Technology Data Exchange (ETDEWEB)

    Belianinov, Aleksey [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    In our work we revisit Ag and Au adsorbates on Si(111)-7x7, as well as experiment with a ternary system of Pentacene, Ag and Si(111). Of particular interest to us is the Si(111)-(√3x√3)R30°}–Ag (Ag-Si-√3 hereafter). In this thesis I systematically explore effects of Ag deposition on the Ag-Si-√3 at different temperatures, film thicknesses and deposition fluxes. The generated insight of the Ag system on the Si(111) is then applied to generate novel methods of nanostructuring and nanowire growth. I then extend our expertise to the Au system on the Ag-Si(111) to gain insight into Au-Si eutectic silicide formation. Finally we explore behavior and growth modes of an organic molecule on the Ag-Si interface.

  16. Generation of siRNA Nanosheets for Efficient RNA Interference

    Science.gov (United States)

    Kim, Hyejin; Lee, Jae Sung; Lee, Jong Bum

    2016-04-01

    After the discovery of small interference RNA (siRNA), nanostructured siRNA delivery systems have been introduced to achieve an efficient regulation of the target gene expression. Here we report a new siRNA-generating two dimensional nanostructure in a formation of nanosized sheet. Inspired by tunable mechanical and functional properties of the previously reported RNA membrane, siRNA nanosized sheets (siRNA-NS) with multiple Dicer cleavage sites were prepared. The siRNA-NS has two dimensional structure, providing a large surface area for Dicer to cleave the siRNA-NS for the generation of functional siRNAs. Furthermore, downregulation of the cellular target gene expression was achieved by delivery of siRNA-NS without chemical modification of RNA strands or conjugation to other substances.

  17. Wetting and reaction characteristics of crystalline and amorphous SiO2 derived rice-husk ash and SiO2/SiC substrates with Al-Si-Mg alloys

    Science.gov (United States)

    Bahrami, A.; Pech-Canul, M. I.; Gutiérrez, C. A.; Soltani, N.

    2015-12-01

    A study of the wetting behavior of three substrate types (SiC, SiO2-derived RHA and SiC/SiO2-derived RHA) by two Al-Si-Mg alloys using the sessile drop method has been conducted, using amorphous and crystalline SiO2 in the experiment. Mostly, there is a transition from non-wetting to wetting contact angles, being the lowest θ values achieved with the alloy of high Mg content in contact with amorphous SiO2. The observed wetting behavior is attributed to the deposited Mg on the substrates. A strong diffusion of Si from the SiC/Amorphous RHA substrate into the metal drop explains the free Si segregated at the drop/substrate interface and drop surface. Although incorporation of both SiO2-derived RHA structures into the SiC powder compact substrates increases the contact angles in comparison with the SiC substrate alone, the still observed acute contact angles in RHA/SiC substrates make them promising for fabrication of composites with high volume fraction of reinforcement by the pressureless infiltration technique. The observed wetting characteristics, with decrease in surface tension and contact angles is explained by surface related phenomena. Based on contact angle changes, drop dimensions and surface tension values, as well as on the interfacial elemental mapping, and XRD analysis of substrates, some wetting and reaction pathways are proposed and discussed.

  18. Revision of the Li13Si4 structure

    Directory of Open Access Journals (Sweden)

    Thomas F. Fässler

    2013-12-01

    Full Text Available Besides Li17Si4, Li16.42Si4, and Li15Si4, another lithium-rich representative in the Li–Si system is the phase Li13Si4 (tridecalithium tetrasilicide, the structure of which has been determined previously [Frank et al. (1975. Z. Naturforsch. Teil B, 30, 10–13]. A careful analysis of X-ray diffraction patterns of Li13Si4 revealed discrepancies between experimentally observed and calculated Bragg positions. Therefore, we redetermined the structure of Li13Si4 on the basis of single-crystal X-ray diffraction data. Compared to the previous structure report, decisive differences are (i the introduction of a split position for one Li site [occupancy ratio 0.838 (7:0.162 (7], (ii the anisotropic refinement of atomic displacement parameters for all atoms, and (iii a high accuracy of atom positions and unit-cell parameters. The asymmetric unit of Li13Si4 contains two Si and seven Li atoms. Except for one Li atom situated on a site with symmetry 2/m, all other atoms are on mirror planes. The structure consists of isolated Si atoms as well as Si–Si dumbbells surrounded by Li atoms. Each Si atom is either 12- or 13-coordinated. The isolated Si atoms are situated in the ab plane at z = 0 and are strictly separated from the Si–Si dumbbells at z = 0.5.

  19. Simulation of electron transmittance and tunnel current in n{sup +} Poly-Si/HfSiO{sub x}N/Trap/SiO{sub 2}/Si(100) capacitors using analytical and numerical approaches

    Energy Technology Data Exchange (ETDEWEB)

    Noor, Fatimah A., E-mail: fatimah@fi.itb.ac.id; Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal [Physics of Electronic Materials Research Division Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesa 10, Bandung 40132 (Indonesia)

    2015-04-16

    In this paper, we discuss the electron transmittance and tunneling current in high-k-based-MOS capacitors with trapping charge by including the off-diagonal effective-mass tensor elements and the effect of coupling between transverse and longitudinal energies represented by an electron velocity in the gate. The HfSiO{sub x}N/SiO{sub 2} dual ultrathin layer is used as the gate oxide in an n{sup +} poly- Si/oxide/Si capacitor to replace SiO{sub 2}. The main problem of using HfSiO{sub x}N is the charge trapping formed at the HfSiO{sub x}N/SiO{sub 2} interface that can influence the performance of the device. Therefore, it is important to develop a model taking into account the presence of electron traps at the HfSiO{sub x}N/SiO{sub 2} interface in the electron transmittance and tunneling current. The transmittance and tunneling current in n{sup +} poly- Si/HfSiO{sub x}N/trap/SiO2/Si(100) capacitors are calculated by using Airy wavefunctions and a transfer matrix method (TMM) as analytical and numerical approaches, respectively. The transmittance and tunneling current obtained from the Airy wavefunction are compared to those computed by the TMM. The effects of the electron velocity on the transmittance and tunneling current are also discussed.

  20. Spin noise spectroscopy in 28Si

    International Nuclear Information System (INIS)

    We employ spin noise spectroscopy to examine the intrinsic spin lifetime of electrons bound to phosphorus donors in isotopically pure 28Si at low temperatures. The up to now reported spin lifetime of these electrons are already extremely long but no measurement of the intrinsic lifetime has been undertaken yet. In addition we will measure the ultra narrow exciton transition lines in 28Si. These transition lines scale with the isotopical purity of the sample and should be according to calculations as small as 100 neV in the studied silicon.

  1. Spin noise spectroscopy in {sup 28}Si

    Energy Technology Data Exchange (ETDEWEB)

    Boentgen, Tammo; Huebner, Jens; Oestreich, Michael [Institute for Solid State Physics, Gottfried Wilhelm Leibniz University Hannover (Germany); Riemann, Helge [Institut fuer Kristallzuechtung, Berlin (Germany)

    2009-07-01

    We employ spin noise spectroscopy to examine the intrinsic spin lifetime of electrons bound to phosphorus donors in isotopically pure {sup 28}Si at low temperatures. The up to now reported spin lifetime of these electrons are already extremely long but no measurement of the intrinsic lifetime has been undertaken yet. In addition we will measure the ultra narrow exciton transition lines in {sup 28}Si. These transition lines scale with the isotopical purity of the sample and should be according to calculations as small as 100 neV in the studied silicon.

  2. Ciprofloxacin@SiO2: Fluorescent nanobubbles

    Indian Academy of Sciences (India)

    M J Rosemary; V Suryanarayanan; P Ganapati Reddy; Ian Maclaren; S Baskaran; T Pradeep

    2003-10-01

    We report a new nanomaterial in which ciprofloxacin molecules are incorporated inside silica nanobubbles, denoted as ciprofloxacin@SiO2. The material has been characterised using UV/Vis absorption spectroscopy, transmission electron microscopy, cyclic voltammetry, and emission spectroscopy. The material is stable and the freestanding particles can be precipitated and redispersed in several solvents. Confinement of the molecule is complete as leaching through the shell is minimal. The material behaves like free ciprofloxacin in solution; however, effects of confinement are manifested. Energy transfer reaction between ciprofloxacin@SiO2 and Tb3+ was monitored by emission spectroscopy. The emission intensity decreased with metal ion exposure indicating selective electronic interaction.

  3. Blowby Gas Composition in Si Engines

    Directory of Open Access Journals (Sweden)

    Páv Karel

    2015-12-01

    Full Text Available The paper deals with a procedure for measuring the composition of blowby gas in the engine crank case by means of a conventional NDIR (Non-Dispersive Infra-Red exhaust gas analyzer. This paper aims to evaluate the exhaust gas portion, as well as the fuel and water vapor fraction in the raw blowby gas. Determination of the exhaust content in the blowby gas is based on CO2 concentration measurement. The measurement results of several SI engines are statistically reviewed regarding the engine operational points. The influence of different operational conditions and used fuel type is shown on raw blowby gas composition in port injection SI engines.

  4. Si$_3$N$_4$ nanobeam optomechanical crystals

    OpenAIRE

    Grutter, Karen E.; Davanco, Marcelo; Srinivasan, Kartik

    2014-01-01

    The development of Si$_3$N$_4$ nanobeam optomechanical crystals is reviewed. These structures consist of a 350 nm thick, 700 nm wide doubly-clamped Si$_3$N$_4$ nanobeam that is periodically patterned with an array of air holes to which a defect region is introduced. The periodic patterning simultaneously creates a photonic bandgap for 980 nm band photons and a phononic bandgap for 4 GHz phonons, with the defect region serving to co-localize optical and mechanical modes within their respective...

  5. A novel crystalline SiCO compound.

    Science.gov (United States)

    Marqués, Miriam; Morales-García, Angel; Menéndez, José Manuel; Baonza, Valentín G; Recio, José Manuel

    2015-10-14

    Ab initio evolutionary structural searches have been performed on SixCyO2(x+y) compounds. A novel structure, with SiC2O6 stoichiometry and the P21/c space group is calculated to be stable against decomposition within a wide pressure window from 7.2 to 41 GPa, and metastable under ambient conditions. It consists of CO3 units, linked to SiO6 octahedra, supporting previous experimental studies. The evolution of the carbon environment towards tetrahedral CO4 units, thus resembling the crystal chemistry of silicon, is predicted at higher pressures. PMID:26345349

  6. Preferential growth of Si films on 6H-SiC(0 0 0 1) C-face

    Energy Technology Data Exchange (ETDEWEB)

    Xie Longfei [Department of Electronic Engineering, Xi' an University of Technology, Xi' an 710048 (China); Chen Zhiming, E-mail: chenzm@xaut.edu.cn [Department of Electronic Engineering, Xi' an University of Technology, Xi' an 710048 (China); Li Lianbi [Department of Electronic Engineering, Xi' an University of Technology, Xi' an 710048 (China); School of Science, Xi' an Polytechnic University, Xi' an 710048 (China); Yang Chen; He Xiaomin; Ye Na [Department of Electronic Engineering, Xi' an University of Technology, Xi' an 710048 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Si films are prepared on SiC C-face by low-pressure chemical vapor deposition. Black-Right-Pointing-Pointer Preferential growth orientation of Left-Pointing-Angle-Bracket 1 1 1 Right-Pointing-Angle-Bracket can be achieved in a temperature range. Black-Right-Pointing-Pointer Si films grown on SiC C-face show a better crystal quality than that of Si-face. Black-Right-Pointing-Pointer Si/SiC structures are analyzed by GULP. Black-Right-Pointing-Pointer Each of Si/SiC C-face interface energy are calculated. - Abstract: Si/SiC heterojunctions are successfully prepared on 6H-SiC(0 0 0 1) C-face by low-pressure chemical vapor deposition. X-ray diffraction and scanning electron microscopy are used to investigate the growth orientation and the surface morphology of the Si films. The results indicate that preferential growth orientation of Left-Pointing-Angle-Bracket 1 1 1 Right-Pointing-Angle-Bracket can be achieved in a temperature range of 825-1000 Degree-Sign C. Within the temperature range, grain size of the Si films becomes larger as temperature increases. Molecular dynamics calculation results indicate that the interface formation energy of the Si(1 1 1)/6H-SiC(0 0 0 1) C-face is smaller than that of Si(1 1 0)/6H-SiC(0 0 0 1) C-face. This is the reason why the Si films prefer to grow on the (1 1 1) crystal plane.

  7. Fabrication of SiC/SiC composites by means of in situ crystallization of SiC fibers

    International Nuclear Information System (INIS)

    A novel challenge, the in situ crystallization of Pre-SiC reinforced-fiber during the fabrication of SiC/SiC composites, has been made for cost effectiveness by altering the conventional coating method. Constituent parts of each fabricated material with various manufacturing conditions were assessed by microscopic observation. The depending issues of a prototype process were rather serious that the unwanted areas were conspicuously observed as several forms, such as a residual oxide area, unsintered area, course matrix, porosity along the fiber-tows, and a huge scale of deformation on fiber-tows. Crystallization process of Pre-SiC fiber itself caused volume contraction of about 24.5%, which result in the formation of a gap between the fiber-tow and pyrolytic carbon (PyC) interface. Crucial design parameter is determined as the amount of PyC, a large amount of that will cause irregular stress on fiber bundles during hot-pressing. The successful fabrication improvement, based on the control of dominant parameter and defects, shows that the known defects are rarely observed in the final product of composite material.

  8. Analysis of depth redistribution of implanted Fe near SiO{sub 2}/Si interface

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Y., E-mail: yhoshino@kanagawa-u.ac.jp; Yokoyama, A.; Yachida, G.; Nakata, J.

    2013-11-01

    We have studied diffusion and clustering processes of room-temperature (RT)-implanted Fe ions in a SiO{sub 2}/Si structure during annealing at 600 and 800 °C temperatures. The depth profile of implanted Fe was analyzed by Rutherford backscattering spectroscopy (RBS). In the previous study, we found that the hot-implanted Fe ions near the SiO{sub 2}/Si interface at high substrate temperatures of 600 and 800 °C were distributed significantly different from the result predicted in the TRIM simulation. We think that the diffusion phenomena during the ion implantation at such elevated temperatures are recognized to be strongly enhanced by ion-beam-irradiation effect. In this study, to simplify the diffusion phenomenon, we particularly treat thermal diffusion process of RT-Fe implantation around the SiO{sub 2}/Si interface in the post annealing at high temperatures. It is clearly seen that Fe atoms post-annealed at 800 °C are preferably gathered at a definitive depth in the SiO{sub 2} layer around 15 nm distances from the interface. We finally compare the Fe depth distribution for hot-implanted samples to that for the post-annealed ones by RBS analysis quantitatively.

  9. Photoresponse properties of BaSi2 film grown on Si (100) by vacuum evaporation

    Science.gov (United States)

    Thi Trinh, Cham; Nakagawa, Yoshihiko; Hara, Kosuke O.; Takabe, Ryota; Suemasu, Takashi; Usami, Noritaka

    2016-07-01

    We have succeeded in the observation of high photoresponsivity of orthorhombic BaSi2 film grown on crystalline Si by a vacuum evaporation method, raising the prospect of its promising application in high-efficiency thin-film solar cells. Photocurrent was observed at photon energies larger than 1.28 eV, which corresponds to the band gap of evaporated BaSi2 film, indicating that the photoresponsivity originates from the BaSi2 film. The effect of the substrate temperature on the film’s properties was also investigated. The films grown at a substrate temperature larger than 500 °C are single-phase polycrystalline BaSi2 films, while those grown at a substrate temperature of 400 °C is a mixture of phases. We confirmed that undoped evaporated BaSi2 films are an n-type material with high carrier concentration. High carrier lifetime of 4.8 and 2.7 μs can be found for the films grown at 500 °C and 400 °C, respectively. BaSi2 film grown at a substrate temperature of 500 °C, which is crack-free and single-phase, shows the best photoresponsivity. The maximum value of photocurrent was obtained at photon energy of 1.9 eV, corresponding to an external quantum efficiency of 22% under reverse applied voltage of 2 V.

  10. Carbonization process and SiC formation at C60/Si(111) interface studied by SRPES

    International Nuclear Information System (INIS)

    Carbonization process and SiC formation upon annealing the Si(111) surface covered by C60 molecules with the thickness of 1.3 nm have been investigated by using synchrotron radiation photoelectron spectroscopy (SRPES), X-ray photoemission (XPS) and reflection high energy electron diffraction (RHEED) in NSRL. C60 molecules are chemisorbed on the Si(111) surface at room temperature, via Si-C60 hybridization to form covalent bonds, which can be explained by adsorption model including two adsorption configurations S3 and L With annealing the sample, the Si-C60 hybridization weakened C-C bonds internally in C60 molecules and enhanced the formation of SixC60, an intermediate species. Further annealing the sample to 650 deg. C will lead to the decomposition of C60 molecules, the released carbon fragment will bond with external silicon atoms to form SiC. While annealing the sample to 850 deg. C, decomposition of all C60 molecules was accomplished, and only a SiC film was left on the surface

  11. UHV/CVD Low-Temperature Si Epitaxy Used for SiGe HBT

    Institute of Scientific and Technical Information of China (English)

    Huang Wentao; Shen Guanhao; Li Xiyou; Chen Changchun; Zhang Wei; Liu Zhihong; Chen Peiyi; Tsien Peihsin

    2004-01-01

    Low-temperature-epitaxy n-type silicon layers were grown on arsenic-doped n+-type silicon substrate by using ultra-high vacuum chemical vapor deposition (UHV/CVD). The transition region thickness of the Si layers grown under different PH3 flux and different growth temperature were investigated by spreading resistance probe. Results showed that the growth temperature had remarkable influence on the arsenic diffusion from the Si substrate. The thicknesses of the transition region were 0.16 μm grown at 700 ℃ and 0.06 μm grown at 500 ℃, respectively. Moreover, the dopant profiles were very abrupt. X-ray diffraction investigation of the epitaxial Si layer showed the quality of Si layer was very high.SiG e HBT device was fabricated by using a revised double-mesa polysilicon-emitter process. Tests show that the CB-junction breakdown characteristic of the SiGe HBT is very hard, and the leakage current is only 0.3 μA under a reverse voltage of - 14.0 V. The SiGe HBT device had also good output performance, and the current gain is 60.

  12. Fiber creep rate and high-temperature properties of SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Lewinsohn, C.A.; Jones, R.H.; Youngblood, G.E.; Henager, C.H. Jr. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    Results of studies aimed at relating the fiber creep rate to the subcritical crack growth rate and fracture properties of SiC/SiC composites have demonstrated that the crack growth rate in a bulk composite is controlled by the fiber creep rate. This result was demonstrated for Nicalon-CG and Hi-Nicalon fiber reinforced material where a 50--75 c shift in the creep strength of the fiber resulted in a similar shift in the crack growth rate of the composite. Irradiation enhanced creep of SiC fibers and matrix must also be considered in the performance assessment of SiC/SiC composites. The shape of the displacement versus time curve for composites containing Hi-Nicalon fibers were similar to those of the previously tested materials, containing Ceramic-grade fibers, that exhibited subcritical crack growth controlled by time-dependent relaxation of the fiber-bridging stresses due to fiber creep. The crack velocity in the CG-C composites at 1100 C in argon was very close to that of the Hi-C materials at 1150--1175 C, this roughly corresponds to the temperature differential shown by DiCarlo et al. to obtain the same relaxation in 1 hour bend stress relaxation (BSR) tests in the two fibers. This supports the hypothesis that subcritical crack growth in SiC/SiC composites is controlled by fiber creep.

  13. Enhancing photoluminescence properties of SiC/SiO2 coaxial nanocables by making oxygen vacancies.

    Science.gov (United States)

    Liu, Wenna; Chen, Junhong; Yang, Tao; Chou, Kuo-Chih; Hou, Xinmei

    2016-09-14

    Coaxial nanocables (CNs) with an SiC core and a SiO2 shell were fabricated at a large scale by a simple and low cost method. The thickness of the SiO2 shell could be controlled by etching in 1 M NaOH aqueous solution for different amounts of time. XRD, SEM, TEM, HRTEM, PL and UV-Vis spectra were adopted to investigate the morphology and optical properties of the obtained SiC/SiO2CNs. Blue photoluminescence was observed at room temperature from the coaxial structure. The intensity of the single emission band at 468 nm (2.65 eV) exhibited a strong dependence on the thickness of the SiO2 layer and was significantly enhanced when the outer SiO2 shell had a thickness of 2.8 nm. The enhancement effect was attributed to oxygen vacancies (OV) and this was verified by deliberately enriching the surface OV through hydrogen treatment. PMID:27503431

  14. Mass Spectrometric Investigation of Silicon Extremely Enriched in (28)Si: From (28)SiF4 (Gas Phase IRMS) to (28)Si Crystals (MC-ICP-MS).

    Science.gov (United States)

    Pramann, Axel; Rienitz, Olaf

    2016-06-01

    A new generation of silicon crystals even further enriched in (28)Si (x((28)Si) > 0.999 98 mol/mol), recently produced by companies and institutes in Russia within the framework of a project initiated by PTB, were investigated with respect to their isotopic composition and molar mass M(Si). A modified isotope dilution mass spectrometric (IDMS) method treating the silicon as the matrix containing a so-called virtual element (VE) existing of the isotopes (29)Si and (30)Si solely and high resolution multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) were applied in combination. This method succeeds also when examining the new materials holding merely trace amounts of (29)Si (x((29)Si) ≈ 5 × 10(-6) mol/mol) and (30)Si (x((30)Si) ≈ 7 × 10(-7) mol/mol) extremely difficult to detect with lowest uncertainty. However, there is a need for validating the enrichment in (28)Si already in the precursor material of the final crystals, silicon tetrafluoride (SiF4) gas prior to crystal production. For that purpose, the isotopic composition of selected SiF4 samples was determined using a multicollector magnetic sector field gas-phase isotope ratio mass spectrometer. Contaminations of SiF4 by natural silicon due to storing and during the isotope ratio mass spectrometry (IRMS) measurements were observed and quantified. The respective MC-ICP-MS measurements of the corresponding crystal samples show-in contrast-several advantages compared to gas phase IRMS. M(Si) of the new crystals were determined to some extent with uncertainties urel(M) orders of magnitude and thus further reduces the uncertainty of the Avogadro constant NA which is one of the preconditions for the redefinition of the SI unit kilogram. PMID:27173726

  15. Ultraviolet Emission Lines of Si ii in Quasars: Investigating the "Si ii Disaster"

    Science.gov (United States)

    Laha, Sibasish; Keenan, Francis P.; Ferland, Gary J.; Ramsbottom, Catherine A.; Aggarwal, Kanti M.

    2016-07-01

    The observed line intensity ratios of the Si ii λ1263 and λ1307 multiplets to that of Si ii λ1814 in the broad-line region (BLR) of quasars are both an order of magnitude larger than the theoretical values. This was first pointed out by Baldwin et al., who termed it the “Si ii disaster,” and it has remained unresolved. We investigate the problem in the light of newly published atomic data for Si ii. Specifically, we perform BLR calculations using several different atomic data sets within the CLOUDY modeling code under optically thick quasar cloud conditions. In addition, we test for selective pumping by the source photons or intrinsic galactic reddening as possible causes for the discrepancy, and we also consider blending with other species. However, we find that none of the options investigated resolve the Si ii disaster, with the potential exception of microturbulent velocity broadening and line blending. We find that a larger microturbulent velocity (˜ 500 {km} {{{s}}}-1) may solve the Si ii disaster through continuum pumping and other effects. The CLOUDY models indicate strong blending of the Si ii λ1307 multiplet with emission lines of O i, although the predicted degree of blending is incompatible with the observed λ1263/λ1307 intensity ratios. Clearly, more work is required on the quasar modeling of not just the Si ii lines but also nearby transitions (in particular those of O i) to fully investigate whether blending may be responsible for the Si ii disaster.

  16. Preparation and characterization of Sr-Ti-hardystonite (Sr-Ti-HT nanocomposite for bone repair application

    Directory of Open Access Journals (Sweden)

    Hossein Mohammadi

    2015-07-01

    Full Text Available Objective(s: Hardystonite (HT is Zn-modified silicate bioceramics with promising results for bone tissue regeneration. However, HT possesses no obvious apatite formation. Thus, in this study we incorporated Sr and Ti into HT to prepare Sr-Ti-hardystonite (Sr-Ti-HT nanocomposite and evaluated its in vitro bioactivity with the purpose of developing a more bioactive bone substitute material. Materials and methods:The HT and Sr-Ti-HT were prepared by mechanical milling and subsequent heat treatment. Calcium oxide (CaO, zinc oxide (ZnO and silicon dioxide (SiO2 (all from Merck were mixed with molar ratio of 2:1:2. The mixture of powders mixture was then milled in a planetary ball mill for 20 h. In the milling run, the ball-to-powder weight ratio was 10:1 and the rotational speed was 200 rpm. After synthesis of HT, 3% nanotitanium dioxide (TiO2, Degussa and 3% strontium carbonate (SrCO3, Merck were added to HT and then the mixture was ball milled and calcined at 1150°C for 6 h. Simultaneous thermal analysis (STA, X-ray diffraction (XRD, Transmission electron microscopy (TEM and Fourier transform infra-red spectroscopy (FT-IR performed to characterize the powders. Results:XRD and FT-IR confirmed the crystal phase and silicate structure of HT and TEM images demonstrated the nanostructure of powders. Further, Sr-Ti-HT induced apatite formation and showed a higher human mesenchymal stem cell (hMSCs adhesion and proliferation compared to HT. Conclusion:Our study revealed that Sr-Ti-HT with a nanostructured crystal structure of 50 nm, can be prepared by mechanical activation to use as biomaterials for orthopedic applications.

  17. Measurement of the absorption cross sections of SiCl_4, SiCl_3, SiCl_2 and Cl at H Lyman-α wavelength

    OpenAIRE

    Mével, R.; Catoire, L.; M. Fikri; Roth, P.

    2013-01-01

    Atomic resonance absorption spectroscopy coupled with a shock tube is a powerful technique for studying high temperature dynamics of reactive systems. Presently, high temperature pyrolysis of SiCl_4–Ar mixtures has been studied behind reflected shock waves. Using time-resolved absorption profiles at 121.6 nm and a detailed reaction model, the absorption cross sections of SiCl_4, SiCl_3, SiCl_2 and Cl have been measured. Results agree well with available data for SiCl_4 and constitute, to our ...

  18. Epitaxial Growth of Si(111)/Er2O3(111) Structure on Si(111) by Molecular Beam Epitaxy

    Institute of Scientific and Technical Information of China (English)

    XU Run; TANG Min-Yan; ZHU Yan-Yan; WANG Lin-Jun

    2011-01-01

    The Si overlayers are grown by molecular beam epitaxy on atomically smllth Er2O3(111) films prepared on Si(111) substrates. Single crystalline Si overlayers are achieved and are evident due to the spot-like reflective high energy electron diffraction(RHEED) patterns and x-ray diffraction patterns. The epitaxial relationship of the Si overlayer along the surface with respect to the orientation of EreO3 and the Si substrate is as follows:overgrown Si(111)//Er2O3(111)//Si(111).The rough surface of Si overlayers, as identified by both RHEED patterns and atomic force microscopy images, indicates a three-dimensional growth mode. The reason for this is based on the interfacial energy argument. Further growth of Er2O3 films on this rough Si overlayer leads to the polycrystalline nature of the topmost Er2O3 layer.

  19. New Insights into Understanding Irreversible and Reversible Lithium Storage within SiOC and SiCN Ceramics

    Directory of Open Access Journals (Sweden)

    Magdalena Graczyk-Zajac

    2015-02-01

    Full Text Available Within this work we define structural properties of the silicon carbonitride (SiCN and silicon oxycarbide (SiOC ceramics which determine the reversible and irreversible lithium storage capacities, long cycling stability and define the major differences in the lithium storage in SiCN and SiOC. For both ceramics, we correlate the first cycle lithiation or delithiation capacity and cycling stability with the amount of SiCN/SiOC matrix or free carbon phase, respectively. The first cycle lithiation and delithiation capacities of SiOC materials do not depend on the amount of free carbon, while for SiCN the capacity increases with the amount of carbon to reach a threshold value at ~50% of carbon phase. Replacing oxygen with nitrogen renders the mixed bond Si-tetrahedra unable to sequester lithium. Lithium is more attracted by oxygen in the SiOC network due to the more ionic character of Si-O bonds. This brings about very high initial lithiation capacities, even at low carbon content. If oxygen is replaced by nitrogen, the ceramic network becomes less attractive for lithium ions due to the more covalent character of Si-N bonds and lower electron density on the nitrogen atom. This explains the significant difference in electrochemical behavior which is observed for carbon-poor SiCN and SiOC materials.

  20. Impact of environment factors on solar cell parameters of a-Si parallel {mu}c-Si photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Ichida, Kyoko; Fukushige, Shunichi; Minemoto, Takashi; Takakura, Hideyuki [College of Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Nakajima, Akihiko [Kaneka Corporation, 2-1-1 Hieitsuji, Otsu, Shiga 520-0104 (Japan)

    2009-06-15

    The behavior of amorphous silicon parallel micro crystalline silicon (a-Si parallel {mu}c-Si) tandem-type photovoltaic (PV) module is complex because the output current is limited by the lower current component cell. Also, the outdoor behaviors are not fully understood. The impact of environment factors on solar cell parameters of a-Si parallel {mu}c-Si PV module was quantitatively analyzed and the module was compared with other silicon-based PV modules (single crystalline silicon (sc-Si) and amorphous silicon (a-Si)). The contour maps of solar cell parameters were constructed as a function of irradiance and module temperature. The contour map of a-Si parallel {mu}c-Si PV modules is similar to that of a-Si modules. The results imply that output characteristics of a-Si parallel {mu}c-Si PV modules are mainly influenced by the a-Si top cell. Furthermore, the efficiency of a-Si parallel {mu}c-Si PV modules was compared other solar cell parameters and the contour map of efficiency is similar to that of fill factor. (author)